Sample records for abnormally high pressures

  1. Abnormally high formation pressures, Potwar Plateau, Pakistan

    USGS Publications Warehouse

    Law, B.E.; Shah, S.H.A.; Malik, M.A.

    1998-01-01

    Abnormally high formation pressures in the Potwar Plateau of north-central Pakistan are major obstacles to oil and gas exploration. Severe drilling problems associated with high pressures have, in some cases, prevented adequate evaluation of reservoirs and significantly increased drilling costs. Previous investigations of abnormal pressure in the Potwar Plateau have only identified abnormal pressures in Neogene rocks. We have identified two distinct pressure regimes in this Himalayan foreland fold and thrust belt basin: one in Neogene rocks and another in pre-Neogene rocks. Pore pressures in Neogene rocks are as high as lithostatic and are interpreted to be due to tectonic compression and compaction disequilibrium associated with high rates of sedimentation. Pore pressure gradients in pre-Neogene rocks are generally less than those in Neogene rocks, commonly ranging from 0.5 to 0.7 psi/ft (11.3 to 15.8 kPa/m) and are most likely due to a combination of tectonic compression and hydrocarbon generation. The top of abnormally high pressure is highly variable and doesn't appear to be related to any specific lithologic seal. Consequently, attempts to predict the depth to the top of overpressure prior to drilling are precluded.

  2. Abnormal pressure in hydrocarbon environments

    USGS Publications Warehouse

    Law, B.E.; Spencer, C.W.

    1998-01-01

    Abnormal pressures, pressures above or below hydrostatic pressures, occur on all continents in a wide range of geological conditions. According to a survey of published literature on abnormal pressures, compaction disequilibrium and hydrocarbon generation are the two most commonly cited causes of abnormally high pressure in petroleum provinces. In young (Tertiary) deltaic sequences, compaction disequilibrium is the dominant cause of abnormal pressure. In older (pre-Tertiary) lithified rocks, hydrocarbon generation, aquathermal expansion, and tectonics are most often cited as the causes of abnormal pressure. The association of abnormal pressures with hydrocarbon accumulations is statistically significant. Within abnormally pressured reservoirs, empirical evidence indicates that the bulk of economically recoverable oil and gas occurs in reservoirs with pressure gradients less than 0.75 psi/ft (17.4 kPa/m) and there is very little production potential from reservoirs that exceed 0.85 psi/ft (19.6 kPa/m). Abnormally pressured rocks are also commonly associated with unconventional gas accumulations where the pressuring phase is gas of either a thermal or microbial origin. In underpressured, thermally mature rocks, the affected reservoirs have most often experienced a significant cooling history and probably evolved from an originally overpressured system.

  3. 14 CFR 91.144 - Temporary restriction on flight operations during abnormally high barometric pressure conditions.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... during abnormally high barometric pressure conditions. 91.144 Section 91.144 Aeronautics and Space... flight operations during abnormally high barometric pressure conditions. (a) Special flight restrictions. When any information indicates that barometric pressure on the route of flight currently exceeds or...

  4. Abnormal pressures as hydrodynamic phenomena

    USGS Publications Warehouse

    Neuzil, C.E.

    1995-01-01

    So-called abnormal pressures, subsurface fluid pressures significantly higher or lower than hydrostatic, have excited speculation about their origin since subsurface exploration first encountered them. Two distinct conceptual models for abnormal pressures have gained currency among earth scientists. The static model sees abnormal pressures generally as relict features preserved by a virtual absence of fluid flow over geologic time. The hydrodynamic model instead envisions abnormal pressures as phenomena in which flow usually plays an important role. This paper develops the theoretical framework for abnormal pressures as hydrodynamic phenomena, shows that it explains the manifold occurrences of abnormal pressures, and examines the implications of this approach. -from Author

  5. Abnormal pressure study in the Malay and Penyu Basins: A regional understanding

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kader, M.S.; Leslie, W.

    1994-07-01

    A majority of wells drilled in the Malay and Penyu basins were terminated due to abnormal pressure. Blowouts and the subsequent loss of technical data have always been a concern during drilling operations. This study employs data from 94 exploratory wells spread throughout the Malay and Penyu basins. The postdrill abnormal pressure predictive method used is pressure vs. depth plots of data obtained from Repeat Formation tester (RFT) readings. The study results indicate that abnormal pressure occurs in a progressively older stratigraphic unit toward the basin margins. The margins of the Malay and the entire Penyu basins tend to bemore » normally pressured. The onset of abnormal pressure appears to be abrupt in the northern portion and more gradual in the southern part of the Malay Basin. Abnormal pressure in the Malay Basin is found to be neither depth dependent nor age related. Many factors can cause the abnormal formation pressures. In some areas, a combination of factors prevails. Rapid deposition of the middle to late Miocene siliciclastic sediments appears to be a dominant cause particularly in the center of the Malay Basin. A low sand:shale ratio coupled with a high geothermal gradient is also found to be a local cause near the axis of the basin. This phenomenon is crucial to the understanding of hydrocarbon migration and will enable the planning of safe and efficient drilling campaigns.« less

  6. Effect of Time-Dependent Pinning Pressure on Abnormal Grain Growth: Phase Field Simulation

    NASA Astrophysics Data System (ADS)

    Kim, Jeong Min; Min, Guensik; Shim, Jae-Hyeok; Lee, Kyung Jong

    2018-05-01

    The effect of the time-dependent pinning pressure of precipitates on abnormal grain growth has been investigated by multiphase field simulation with a simple precipitation model. The application of constant pinning pressure is problematic because it always induces abnormal grain growth or no grain growth, which is not reasonable considering the real situation. To produce time-dependent pinning pressure, both precipitation kinetics and precipitate coarsening kinetics have been considered with two rates: slow and fast. The results show that abnormal grain growth is suppressed at the slow precipitation rate. At the slow precipitation rate, the overall grain growth caused by the low pinning pressure in the early stage indeed plays a role in preventing abnormal grain growth by reducing the mobility advantage of abnormal grains. In addition, the fast precipitate coarsening rate tends to more quickly transform abnormal grain growth into normal grain growth by inducing the active growth of grains adjacent to the abnormal grains in the early stage. Therefore, the present study demonstrates that the time dependence of the pinning pressure of precipitates is a critical factor that determines the grain growth mode.

  7. Effect of Time-Dependent Pinning Pressure on Abnormal Grain Growth: Phase Field Simulation

    NASA Astrophysics Data System (ADS)

    Kim, Jeong Min; Min, Guensik; Shim, Jae-Hyeok; Lee, Kyung Jong

    2018-03-01

    The effect of the time-dependent pinning pressure of precipitates on abnormal grain growth has been investigated by multiphase field simulation with a simple precipitation model. The application of constant pinning pressure is problematic because it always induces abnormal grain growth or no grain growth, which is not reasonable considering the real situation. To produce time-dependent pinning pressure, both precipitation kinetics and precipitate coarsening kinetics have been considered with two rates: slow and fast. The results show that abnormal grain growth is suppressed at the slow precipitation rate. At the slow precipitation rate, the overall grain growth caused by the low pinning pressure in the early stage indeed plays a role in preventing abnormal grain growth by reducing the mobility advantage of abnormal grains. In addition, the fast precipitate coarsening rate tends to more quickly transform abnormal grain growth into normal grain growth by inducing the active growth of grains adjacent to the abnormal grains in the early stage. Therefore, the present study demonstrates that the time dependence of the pinning pressure of precipitates is a critical factor that determines the grain growth mode.

  8. Limited evidence of abnormal intra-colonic pressure profiles in diverticular disease - a systematic review.

    PubMed

    Jaung, R; Robertson, J; O'Grady, G; Milne, T; Rowbotham, D; Bissett, I P

    2017-06-01

    Abnormal colonic pressure profiles and high intraluminal pressures are postulated to contribute to the formation of sigmoid colon diverticulosis and the pathophysiology of diverticular disease. This study aimed to review evidence for abnormal colonic pressure profiles in diverticulosis. All published studies investigating colonic pressure in patients with diverticulosis were searched in three databases (Medline, Embase, Scopus). No language restrictions were applied. Any manometry studies in which patients with diverticulosis were compared with controls were included. The Newcastle-Ottawa Quality Assessment Scale (NOS) for case-control studies was used as a measure of risk of bias. A cut-off of five or more points on the NOS (fair quality in terms of risk of bias) was chosen for inclusion in the meta-analysis. Ten studies (published 1962-2005) met the inclusion criteria. The studies followed a wide variety of protocols and all used low-resolution manometry (sensor spacing range 7.5-15 cm). Six studies compared intra-sigmoid pressure, with five of six showing higher pressure in diverticulosis vs controls, but only two reached statistical significance. A meta-analysis was not performed as only two studies were above the cut-off and these did not have comparable outcomes. This systematic review of manometry data shows that evidence for abnormal pressure in the sigmoid colon in patients with diverticulosis is weak. Existing studies utilized inconsistent methodology, showed heterogeneous results and are of limited quality. Higher quality studies using modern manometric techniques and standardized reporting methods are needed to clarify the role of colonic pressure in diverticulosis. Colorectal Disease © 2017 The Association of Coloproctology of Great Britain and Ireland.

  9. Esophageal motor abnormalities in eosinophilic esophagitis identified by high-resolution manometry.

    PubMed

    Martín Martín, Leticia; Santander, Cecilio; Lopez Martín, Mari Carmen; Espinoza-Ríos, Jorge; Chavarría-Herbozo, Carlos; Gisbert, Javier P; Moreno-Otero, Ricardo

    2011-09-01

    Esophageal motility abnormalities, as measured by conventional manometry (CM), are non-specific in the majority of patients with eosinophilic esophagitis (EoE). Moreover, the study of CM is limited by poor interobserver agreement. The aims of the present study were: (i) to assess the esophageal patterns in EoE by a topographic analysis of high-resolution manometry (HRM) data; and (ii) to establish a relationship between motility abnormalities and symptoms of EoE, such as dysphagia and bolus impaction. All adult patients with EoE diagnosed according to histological criteria, and controls with gastroesophageal reflux disease symptoms and dysphagia, were included. HRM was done in EoE patients and controls. For the analysis of data, the Chicago classification was followed. HRM was performed in 21 patients with EoE, as well as in 21 controls. Of the 21 patients with EoE, 10 (48%) showed pan-esophageal pressurization, six (28%) showed peristaltic dysfunction, and in five cases (24%), HRM was normal. There was no pan-esophageal pressurization in controls. Nine of 10 patients with pan-esophageal pressurization required endoscopic bolus removal (P < 0.05); none had obstructive endoscopy findings. The most frequent esophageal motor abnormality measured by HRM was a pan-esophageal pressurization. Bolus impaction in patients with EoE was associated with pan-esophageal pressurization. © 2011 Journal of Gastroenterology and Hepatology Foundation and Blackwell Publishing Asia Pty Ltd.

  10. Battery-Free Smart Sock for Abnormal Relative Plantar Pressure Monitoring.

    PubMed

    Lin, Xiaoyou; Seet, Boon-Chong

    2017-04-01

    This paper presents a new design of a wearable plantar pressure monitoring system in the form of a smart sock for sensing abnormal relative pressure changes. One advantage of this approach is that with a battery-free design, this system can be powered solely by radio frequency (RF) energy harvested from a radio frequency identification (RFID) reader unit hosted on a smartphone of the wearer. At the same time, this RFID reader can read foot pressure values from an embedded sensor-tag in the sock. A pressure sensing matrix made of conductive fabric and flexible piezo-resistive material is integrated into the sock during the knitting process. Sensed foot pressures are digitized and stored in the memory of a sensor-tag, thus allowing relative foot pressure values to be tracked. The control unit of the smart sock is assembled on a flexible printed circuit board (FPC) that can be strapped to the lower limb and detached easily when it is not in use. Experiments show that the system can operate reliably in both tasks of RF energy harvesting and pressure measurement.

  11. Quantification of abnormal intracranial pressure waves and isotope cisternography for diagnosis of occult communicating hydrocephalus

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Cardoso, E.R.; Piatek, D.; Del Bigio, M.R.

    1989-01-01

    Nineteen consecutive patients with suspected occult communicating hydrocephalus were investigated by means of clinical evaluation, neuropsychological testing, isotope cisternography, computed tomography scanning, and continuous intracranial pressure monitoring. Semi-quantitative grading systems were used in the evaluation of the clinical, neuropsychological, and cisternographic assessments. Clinical examination, neuropsychological testing, and computed tomography scanning were repeated 3 months after ventriculoperitoneal shunting. All patients showed abnormal intracranial pressure waves and all improved after shunting. There was close correlation between number, peak, and pulse pressures of B waves and the mean intracranial pressure. However, quantification of B waves by means of number, frequency, and amplitude didmore » not help in predicting the degree of clinical improvement postshunting. The most sensitive predictor of favorable response to shunting was enlargement of the temporal horns on computed tomography scan. Furthermore, the size of temporal horns correlated with mean intracranial pressure. There was no correlation between abnormalities on isotope cisternography and clinical improvement.« less

  12. Association between abnormal nocturnal blood pressure profile and dementia in Parkinson's disease.

    PubMed

    Tanaka, Ryota; Shimo, Yasushi; Yamashiro, Kazuo; Ogawa, Takashi; Nishioka, Kenya; Oyama, Genko; Umemura, Atsushi; Hattori, Nobutaka

    2018-01-01

    Circadian blood pressure alterations are frequently observed in Parkinson's disease, but the association between these changes and dementia in the condition remains unclear. Here, we assess the relationship between abnormal nocturnal blood pressure profiles and dementia in Parkinson's disease. We enrolled 137 patients with Parkinson's disease, who underwent 24 h ambulatory blood pressure monitoring, following cognitive and clinical assessment. Twenty-seven patients (19.7%) were diagnosed with dementia in this cohort. We observed significant associations of dementia with age, male gender, Hoehn-Yahr (H-Y) stage, diabetes mellitus, history of stroke, presence of cerebrovascular lesions on MRI, and orthostatic hypotension. Univariate logistic regression analysis showed that among the patterns of nocturnal blood pressure profiles, the riser pattern was significantly associated with dementia (OR 11.6, 95%CI: 2.14-215.0, P < 0.01), and this trend was observed after adjusting for all confounding factors except orthostatic hypotension (OR 19.2, 95%CI: 1.12-1960.3, P = 0.04). However, coexistence of a riser pattern and orthostatic hypotension was related to a higher prevalence of dementia (45.2%) than was a riser pattern alone (9.5%). Furthermore, coexistence of a riser pattern and orthostatic hypotension was significantly more associated with dementia than was a riser pattern alone, even after adjusting for confounders (OR 1625.1, 95%CI: 21.9-1343909.5, P < 0.01). Our results suggest a relationship between a riser pattern coexisting with orthostatic hypotension and dementia in Parkinson's disease. Further prospective studies are warranted to investigate whether abnormal nocturnal blood pressure profiles predict dementia in Parkinson's disease. Copyright © 2017 Elsevier Ltd. All rights reserved.

  13. Abnormalities of High Density Lipoproteins in Abetalipoproteinemia*

    PubMed Central

    Jones, John W.; Ways, Peter

    1967-01-01

    Detailed studies of the high density lipoproteins from three patients with abetalipoproteinemia have revealed the following principal abnormalities: 1) High density lipoprotein 3 (HDL3) is reduced in both absolute and relative concentration, although HDL2 is present in normal amounts. 2) The phospholipid distribution of both HDL fractions is abnormal, with low concentrations of lecithin and an increased percentage (though normal absolute quantity) of sphingomyelin. 3) In both HDL fractions, lecithin contains less linoleate and more oleate than normal. The cholesteryl esters are also low in linoleic acid, and the sphingomyelin is high in nervonic acid. Dietary intake influences the linoleic acid concentration within 2 weeks, and perhaps sooner, but the elevated sphingomyelin nervonic acid is little affected by up to 6 months of corn oil supplementation. Qualitatively similar changes in fatty acid composition, but not phospholipid distribution, are also found in other malabsorption states. The available evidence suggests that the abnormally low levels of HDL3 and the deranged phospholipid distribution are more specific for abetalipoproteinemia than the fatty acid abnormalities. However, the absence of these abnormalities in obligate heterozygous subjects makes their relationship to the primary defect of abetalipoproteinemia difficult to assess. Images PMID:6027078

  14. Intra-Ocular Pressure Measurement in a Patient with a Thin, Thick or Abnormal Cornea.

    PubMed

    Clement, Colin I; Parker, Douglas G A; Goldberg, Ivan

    2016-01-01

    Accurate measurement of intra-ocular pressure is a fundamental component of the ocular examination. The most common method of measuring IOP is by Goldmann applanation tonometry, the accuracy of which is influenced by the thickness and biomechanical properties of the cornea. Algorithms devised to correct for corneal thickness to estimate IOP oversimplify the effects of corneal biomechanics. The viscous and elastic properties of the cornea influence IOP measurements in unpredictable ways, a finding borne out in studies of patients with inherently abnormal and surgically altered corneal biomechanics. Dynamic contour tonometry, rebound tonometry and the ocular response analyzer provide useful alternatives to GAT in patients with abnormal corneas, such as those who have undergone laser vision correction or keratoplasty. This article reviews the various methods of intra-ocular pressure measurement available to the clinician and the ways in which their utility is influenced by variations in corneal thickness and biomechanics.

  15. Thermodynamic properties of gas-condensate system with abnormally high content of heavy hydrocarbons

    NASA Astrophysics Data System (ADS)

    Zanochuev, S. A.; Shabarov, A. B.; Podorozhnikov, S. Yu; Zakharov, A. A.

    2018-05-01

    Gas-condensate systems (GCS) with an abnormally high content of heavy hydrocarbons are characterized by a sharp change in both phase and component compositions with an insignificant decrease in pressure below the start pressure of the phase transitions (the beginning of condensation). Calculation methods for describing the phase behavior of such systems are very sensitive to the quality of the initial information. The uncertainty of the input data leads not only to significant errors in the forecast of phase compositions, but also to an incorrect phase state estimation of the whole system. The research presents the experimental thermodynamic parameters of the GCS of the BT reservoirs on the Beregovoye field, obtained at the phase equilibrium facility. The data contribute to the adaptation of the calculated models of the phase behavior of the GCS with a change in pressure.

  16. Phase transition induced strain in ZnO under high pressure

    DOE PAGES

    Yan, Xiaozhi; Dong, Haini; Li, Yanchun; ...

    2016-05-13

    Under high pressure, the phase transition mechanism and mechanical property of material are supposed to be largely associated with the transformation induced elastic strain. However, the experimental evidences for such strain are scanty. The elastic and plastic properties of ZnO, a leading material for applications in chemical sensor, catalyst, and optical thin coatings, were determined using in situ high pressure synchrotron axial and radial x-ray diffraction. The abnormal elastic behaviors of selected lattice planes of ZnO during phase transition revealed the existence of internal elastic strain, which arise from the lattice misfit between wurtzite and rocksalt phase. Furthermore, the strengthmore » decrease of ZnO during phase transition under non-hydrostatic pressure was observed and could be attributed to such internal elastic strain, unveiling the relationship between pressure induced internal strain and mechanical property of material. Ultimately, these findings are of fundamental importance to understanding the mechanism of phase transition and the properties of materials under pressure.« less

  17. Obesity is the major determinant of the abnormalities in blood pressure found in young women with the polycystic ovary syndrome.

    PubMed

    Luque-Ramírez, Manuel; Alvarez-Blasco, Francisco; Mendieta-Azcona, Covadonga; Botella-Carretero, José I; Escobar-Morreale, Héctor F

    2007-06-01

    Obesity and insulin resistance predispose patients with the polycystic ovary syndrome (PCOS) to abnormalities in blood pressure regulation. Our objective was to evaluate the impact of obesity on the blood pressure profiles of PCOS patients. PATIENTS, SETTING, AND DESIGN: Thirty-six PCOS patients and 20 healthy women participated in a case-control study at an academic hospital. We conducted ambulatory blood pressure monitoring and office blood pressure determinations. Hypertension (defined as increased office blood pressure confirmed by ambulatory blood pressure monitoring or by masked hypertension) was present in 12 PCOS patients and eight controls (P = 0.618). No differences between patients and controls were found in office and ambulatory blood pressure monitoring values and heart rate, yet the nocturnal decrease in mean blood pressure was smaller in patients (P = 0.038). Obese women (13 patients and eight controls) had increased frequencies of office hypertension (29% compared with 3% in lean plus overweight women, P = 0.005), increased diastolic (P = 0.009) and mean (P = 0.015) office blood pressure values, and increased heart rate values during the daytime (P = 0.038), nighttime (P = 0.002), and 24-h (P = 0.009) periods, independently of having PCOS or not. The frequency of a nocturnal nondipper pattern was 62% in obese PCOS patients, compared with 26% in lean plus overweight PCOS patients (P = 0.036) and 25% in obese and in lean plus overweight controls. Abnormalities in the regulation of blood pressure are common in young women with PCOS, yet, with the exception of the nondipper pattern, these abnormalities result from the frequent association of this syndrome with obesity.

  18. Importance of Calibration Method in Central Blood Pressure for Cardiac Structural Abnormalities.

    PubMed

    Negishi, Kazuaki; Yang, Hong; Wang, Ying; Nolan, Mark T; Negishi, Tomoko; Pathan, Faraz; Marwick, Thomas H; Sharman, James E

    2016-09-01

    Central blood pressure (CBP) independently predicts cardiovascular risk, but calibration methods may affect accuracy of central systolic blood pressure (CSBP). Standard central systolic blood pressure (Stan-CSBP) from peripheral waveforms is usually derived with calibration using brachial SBP and diastolic BP (DBP). However, calibration using oscillometric mean arterial pressure (MAP) and DBP (MAP-CSBP) is purported to provide more accurate representation of true invasive CSBP. This study sought to determine which derived CSBP could more accurately discriminate cardiac structural abnormalities. A total of 349 community-based patients with risk factors (71±5years, 161 males) had CSBP measured by brachial oscillometry (Mobil-O-Graph, IEM GmbH, Stolberg, Germany) using 2 calibration methods: MAP-CSBP and Stan-CSBP. Left ventricular hypertrophy (LVH) and left atrial dilatation (LAD) were measured based on standard guidelines. MAP-CSBP was higher than Stan-CSBP (149±20 vs. 128±15mm Hg, P < 0.0001). Although they were modestly correlated (rho = 0.74, P < 0.001), the Bland-Altman plot demonstrated a large bias (21mm Hg) and limits of agreement (24mm Hg). In receiver operating characteristic (ROC) curve analyses, MAP-CSBP significantly better discriminated LVH compared with Stan-CSBP (area under the curve (AUC) 0.66 vs. 0.59, P = 0.0063) and brachial SBP (0.62, P = 0.027). Continuous net reclassification improvement (NRI) (P < 0.001) and integrated discrimination improvement (IDI) (P < 0.001) corroborated superior discrimination of LVH by MAP-CSBP. Similarly, MAP-CSBP better distinguished LAD than Stan-CSBP (AUC 0.63 vs. 0.56, P = 0.005) and conventional brachial SBP (0.58, P = 0.006), whereas Stan-CSBP provided no better discrimination than conventional brachial BP (P = 0.09). CSBP is calibration dependent and when oscillometric MAP and DBP are used, the derived CSBP is a better discriminator for cardiac structural abnormalities. © American Journal of Hypertension

  19. Abnormalities in ambulatory blood pressure monitoring in hypertensive patients with diabetes.

    PubMed

    Gorostidi, Manuel; de la Sierra, Alejandro; González-Albarrán, Olga; Segura, Julián; de la Cruz, Juan J; Vinyoles, Ernest; Llisterri, José L; Aranda, Pedro; Ruilope, Luis M; Banegas, José R

    2011-11-01

    Our aim was to assess the ambulatory blood pressure monitoring (ABPM) characteristics or patterns in hypertensive patients with diabetes compared with non-diabetic hypertensives. We performed a cross-sectional analysis of a 68,045 patient database from the Spanish Society of Hypertension ABPM Registry, a nation-wide network of >1200 primary-care physicians performing ABPM under standardized conditions in daily practice. We identified 12,600 (18.5%) hypertensive patients with diabetes. When compared with patients without diabetes, diabetic hypertensives exhibited higher systolic blood pressure (BP) levels in every ABPM period (daytime 135.4 vs. 131.8, and nighttime 126.0 vs. 121.0 mm Hg, P<0.001 for both) despite they were receiving more antihypertensive drugs (mean number 1.71 vs. 1.23, P<0.001). Consequently, diabetic patients suffered from lack of control of BP more frequently than non-diabetic subjects particularly during the night (65.5% vs. 57.4%, P<0.001). Prevalence of a non-dipping BP profile (64.2% vs. 51.6%, P<0.001) was higher in diabetic patients. In the other hand, prevalence of 'white-coat' hypertension in diabetic patients was 33.0%. We conclude that there was a remarkably high prevalence of alterations in ABPM in patients with diabetes. Abnormalities in systolic BP, particularly during the night, and in circadian BP pattern could be linked with the excess of BP-related cardiovascular risk of diabetes. A wider use of ABPM in diabetic patients should be considered.

  20. High-resolution Anorectal Manometry for Identifying Defecatory Disorders and Rectal Structural Abnormalities in Women.

    PubMed

    Prichard, David O; Lee, Taehee; Parthasarathy, Gopanandan; Fletcher, Joel G; Zinsmeister, Alan R; Bharucha, Adil E

    2017-03-01

    Contrary to conventional wisdom, the rectoanal gradient during evacuation is negative in many healthy people, undermining the utility of anorectal high-resolution manometry (HRM) for diagnosing defecatory disorders. We aimed to compare HRM and magnetic resonance imaging (MRI) for assessing rectal evacuation and structural abnormalities. We performed a retrospective analysis of 118 patients (all female; 51 with constipation, 48 with fecal incontinence, and 19 with rectal prolapse; age, 53 ± 1 years) assessed by HRM, the rectal balloon expulsion test (BET), and MRI at Mayo Clinic, Rochester, Minnesota, from February 2011 through March 2013. Thirty healthy asymptomatic women (age, 37 ± 2 years) served as controls. We used principal components analysis of HRM variables to identify rectoanal pressure patterns associated with rectal prolapse and phenotypes of patients with prolapse. Compared with patients with normal findings from the rectal BET, patients with an abnormal BET had lower median rectal pressure (36 vs 22 mm Hg, P = .002), a more negative median rectoanal gradient (-6 vs -29 mm Hg, P = .006) during evacuation, and a lower proportion of evacuation on the basis of MRI analysis (median of 40% vs 80%, P < .0001). A score derived from rectal pressure and anorectal descent during evacuation and a patulous anal canal was associated (P = .005) with large rectoceles (3 cm or larger). A principal component (PC) logistic model discriminated between patients with and without prolapse with 96% accuracy. Among patients with prolapse, there were 2 phenotypes, which were characterized by high (PC1) or low (PC2) anal pressures at rest and squeeze along with higher rectal and anal pressures (PC1) or a higher rectoanal gradient during evacuation (PC2). In a retrospective analysis of patients assessed by HRM, measurements of rectal evacuation by anorectal HRM, BET, and MRI were correlated. HRM alone and together with anorectal descent during evacuation may identify

  1. Lattice dynamics, elasticity and magnetic abnormality in ordered crystalline alloys Fe3Pt at high pressures

    NASA Astrophysics Data System (ADS)

    Cheng, Tai-min; Yu, Guo-Liang; Su, Yong; Ge, Chong-Yuan; Zhang, Xin-Xin; Zhu, Lin; Li, Lin

    2018-05-01

    The ordered crystalline Invar alloy Fe3Pt is in a special magnetic critical state, under which the lattice dynamic stability of the system is extremely sensitive to external pressures. We studied the pressure dependence of enthalpy and magnetism of Fe3Pt in different crystalline alloys by using the first-principles projector augmented-wave method based on the density functional theory. Results show that the P4/mbm structure is the ground state structure and is more stable relative to other structures at pressures below 18.54 GPa. The total magnetic moments of L12, I4/mmm and DO22 structures decrease rapidly with pressure and oscillate near the ferromagnetic collapse critical pressure. At the pressure of 43 GPa, the ferrimagnetic property in DO22 structure becomes apparently strengthened and its volume increases rapidly. The lattice dynamics calculation for L12 structures at high pressures shows that the spontaneous magnetization of the system in ferromagnetic states induces the softening of the transverse acoustic phonon TA1 (M), and there exists a strong spontaneous volume magnetostriction at pressures below 26.95 GPa. Especially, the lattice dynamics stability is sensitive to pressure, in the pressure range between the ferromagnetic collapse critical pressure (41.9 GPa) and the magnetism completely disappearing pressure (57.25 GPa), and near the pressure of phase transition from L12 to P4/mbm structure (27.27 GPa). Moreover, the instability of magnetic structure leads to a prominent elastic modulus oscillation, and the spin polarizability of electrons near the Fermi level is very sensitive to pressures in that the pressure range. The pressure induces the stability of the phonon spectra of the system at pressures above 57.25 GPa.

  2. The effectiveness of pressure garment therapy for the prevention of abnormal scarring after burn injury: a meta-analysis.

    PubMed

    Anzarut, Alexander; Olson, Jarret; Singh, Prabhjyot; Rowe, Brian H; Tredget, Edward E

    2009-01-01

    This study had three objectives. First, to conduct a systematic review to identify the available evidence for the use of pressure garment therapy (PGT); second, to assess the quality of the available evidence; and third, to conduct a meta-analysis to quantify the effectiveness of PGT for the prevention of abnormal scarring after burn injury. Standard care for the prevention of abnormal scarring after burn injury includes pressure garment therapy (PGT); however, it is associated with potential patient morbidity and high costs. We hypothesise that an assessment of the available evidence supporting the use of pressure garment therapy will aid in directing clinical care and future research. Randomised control trials were identified from CINHAL, EMBASE, MEDLINE, CENTRAL, the 'grey literature' and hand searching of the Proceedings of the American Burn Association. Primary authors and pressure garment manufacturers were contacted to identify eligible trials. Bibliographies from included studies and reviews were searched. Study results were pooled to yield weighted mean differences or standardised mean difference and reported using 95% confidence intervals. The review incorporated six unique trials involving 316 patients. Original data from one unpublished trial were included. Overall, studies were considered to be of high methodological quality. The meta-analysis was unable to demonstrate a difference between global assessments of PGT-treated scars and control scars [weighted mean differences (WMD): -0.46; 95% confidence interval (CI): -1.07 to 0.16]. The meta-analysis for scar height showed a small, but statistically significant, decrease in height for the PGT-treated group standardised mean differences (SMD): -0.31; 95% CI: -0.63, 0.00. Results of meta-analyses of secondary outcome measures of scar vascularity, pliability and colour failed to demonstrate a difference between groups. PGT does not appear to alter global scar scores. It does appear to improve scar height

  3. Characterization of esophageal pressure-flow abnormalities in patients with non-obstructive dysphagia and normal manometry findings.

    PubMed

    Chen, Chien-Lin; Yi, Chih-Hsun; Liu, Tso-Tsai; Hsu, Ching-Sheng; Omari, Taher I

    2013-06-01

    Patients with non-obstructive dysphagia (NOD) report symptoms of impaired esophageal bolus transit without evidence of bolus stasis. In such patients, manometric investigation may diagnose esophageal motility disorders; however, many have normal motor patterns. We hypothesized that patients with NOD would demonstrate evidence of high flow-resistance during bolus passage which in turn would relate to the reporting of bolus hold up perception. Esophageal pressure-impedance recordings of 5 mL liquid and viscous swallows from 18 NOD patients (11 male; 19-71 years) and 17 control subjects (9 male; 25-60 years) were analyzed. The relationship between intrabolus pressure and bolus flow timing in the esophagus was assessed using the pressure flow index (PFI). Bolus perception was assessed swallow by swallow using standardized descriptors. NOD patients were characterized by a higher PFI than controls. The PFI defined a pressure-flow abnormality in all patients who appeared normal based on the assessment esophageal motor patterns and bolus clearance. The PFI was higher for individual swallows during which subjects reported perception of bolus passage. Bolus flow-resistance is higher in NOD patients compared with controls as well as higher in relation to perception of bolus transit, suggesting the presence of an esophageal motility disorder despite normal findings on conventional analysis. © 2013 Journal of Gastroenterology and Hepatology Foundation and Wiley Publishing Asia Pty Ltd.

  4. High pressure FAST of nanocrystalline barium titanate

    DOE PAGES

    Fraga, Martin B.; Delplanque, Jean -Pierre; Yang, Nancy; ...

    2016-06-01

    Here, this work studies the microstructural evolution of nanocrystalline (<1 µm) barium titanate (BaTiO 3), and presents high pressure in field-assisted sintering (FAST) as a robust methodology to obtain >100 nm BaTiO 3 compacts. Using FAST, two commercial ~50 nm powders were consolidated into compacts of varying densities and grain sizes. Microstructural inhomogeneities were investigated for each case, and an interpretation is developed using a modified Monte Carlo Potts (MCP) simulation. Two recurrent microstructural inhomogeneities are highlighted, heterogeneous grain growth and low-density regions, both ubiqutously present in all samples to varying degrees. In the worst cases, HGG presents an areamore » coverage of 52%. Because HGG is sporadic but homogenous throughout a sample, the catalyst (e.g., the local segregation of species) must be, correspondingly, distributed in a homogenous manner. MCP demonstrates that in such a case, a large distance between nucleating abnormal grains is required—otherwise abnormal grains prematurely impinge on each other, and their size is not distinguishable from that of normal grains. Compacts sintered with a pressure of 300 MPa and temperatures of 900 °C, were 99.5% dense and had a grain size of 90±24 nm. These are unprecedented results for commercial BaTiO 3 powders or any starting powder of 50 nm particle size—other authors have used 16 nm lab-produced powder to obtain similar results.« less

  5. Comparison of differences in respiratory function and pressure as a predominant abnormal movement of children with cerebral palsy

    PubMed Central

    Kwon, Hae-Yeon

    2017-01-01

    [Purpose] The purpose of this study was to determine differences in respiratory function and pressure among three groups of children with cerebral palsy as a predominant abnormal movement which included spastic type, dyskinetic type, and ataxic type. [Subjects and Methods] Forty-three children with cerebral palsy of 5–13 years of age in I–III levels according to the Gross Motor Function Classification System, the study subjects were divided by stratified random sampling into three groups of spastic type, dyskinetic type, and ataxic type. For reliability of the measurement results, respiratory function and pressure of the children with cerebral palsy were measured by the same inspector using Spirometer Pony FX (Cosmed Ltd., Italy) equipment, and the subject’s guardians (legal representative) was always made to observe. [Results] In the respiratory function, there were significant differences among three groups in all of forced vital capacity, forced expiratory volume at one second, and peak expiratory flow. For respiratory pressure, the maximal inspiratory pressure had significant differences among three groups, although the maximal expiratory pressure had no significant difference. [Conclusion] Therefore, pediatric physical therapists could be provided with important clinical information in understanding the differences in respiratory function and pressure for the children with cerebral palsy showing predominantly abnormal movement as a diverse qualitative characteristics of the muscle tone and movement patterns, and in planning intervention programs for improvement of respiratory capacity. PMID:28265153

  6. High Blood Pressure

    MedlinePlus

    ... normal blood pressure 140/90 or higher is high blood pressure Between 120 and 139 for the top number, ... prehypertension. Prehypertension means you may end up with high blood pressure, unless you take steps to prevent it. High ...

  7. Relationship of hypertension, blood pressure, and blood pressure control with white matter abnormalities in the Women's Health Initiative Memory Study (WHIMS)-MRI trial.

    PubMed

    Kuller, Lewis H; Margolis, Karen L; Gaussoin, Sarah A; Bryan, Nick R; Kerwin, Diana; Limacher, Marian; Wassertheil-Smoller, Sylvia; Williamson, Jeff; Robinson, Jennifer G

    2010-03-01

    This paper evaluates the relationship of blood pressure (BP) levels at Women's Health Initiative (WHI) baseline, treatment of hypertension, and white matter abnormalities among women in conjugated equine estrogen (CEE) and medroxyprogesterone acetate and CEE-alone arms. The WHI Memory Study-Magnetic Resonance Imaging (WHIMS-MRI) trial scanned 1424 participants. BP levels at baseline were significantly positively related to abnormal white matter lesion (WML) volumes. Participants treated for hypertension but who had BP > or = 140/90 mm Hg had the greatest amount of WML volumes. Women with untreated BP > or = 140/90 mm Hg had intermediate WML volumes. Abnormal WML volumes were related to hypertension in most areas of the brain and were greater in the frontal lobe than in the occipital, parietal, or temporal lobes. Level of BP at baseline was strongly related to amount of WML volumes. The results of the study reinforce the relationship of hypertension and BP control and white matter abnormalities in the brain. The evidence to date supports tight control of BP levels, especially beginning at younger and middle age as a possible and perhaps only way to prevent dementia.

  8. Pressure Dome for High-Pressure Electrolyzer

    NASA Technical Reports Server (NTRS)

    Norman, Timothy; Schmitt, Edwin

    2012-01-01

    A high-strength, low-weight pressure vessel dome was designed specifically to house a high-pressure [2,000 psi (approx. = 13.8 MPa)] electrolyzer. In operation, the dome is filled with an inert gas pressurized to roughly 100 psi (approx. = 690 kPa) above the high, balanced pressure product oxygen and hydrogen gas streams. The inert gas acts to reduce the clamping load on electrolyzer stack tie bolts since the dome pressure acting axially inward helps offset the outward axial forces from the stack gas pressure. Likewise, radial and circumferential stresses on electrolyzer frames are minimized. Because the dome is operated at a higher pressure than the electrolyzer product gas, any external electrolyzer leak prevents oxygen or hydrogen from leaking into the dome. Instead the affected stack gas stream pressure rises detectably, thereby enabling a system shutdown. All electrical and fluid connections to the stack are made inside the pressure dome and require special plumbing and electrical dome interfaces for this to be accomplished. Further benefits of the dome are that it can act as a containment shield in the unlikely event of a catastrophic failure. Studies indicate that, for a given active area (and hence, cell ID), frame outside diameter must become ever larger to support stresses at higher operating pressures. This can lead to a large footprint and increased costs associated with thicker and/or larger diameter end-plates, tie-rods, and the frames themselves. One solution is to employ rings that fit snugly around the frame. This complicates stack assembly and is sometimes difficult to achieve in practice, as its success is strongly dependent on frame and ring tolerances, gas pressure, and operating temperature. A pressure dome permits an otherwise low-pressure stack to operate at higher pressures without growing the electrolyzer hardware. The pressure dome consists of two machined segments. An O-ring is placed in an O-ring groove in the flange of the bottom

  9. T wave abnormalities, high body mass index, current smoking and high lipoprotein (a) levels predict the development of major abnormal Q/QS patterns 20 years later. A population-based study

    PubMed Central

    Moller, Christina Strom; Byberg, Liisa; Sundstrom, Johan; Lind, Lars

    2006-01-01

    Background Most studies on risk factors for development of coronary heart disease (CHD) have been based on the clinical outcome of CHD. Our aim was to identify factors that could predict the development of ECG markers of CHD, such as abnormal Q/QS patterns, ST segment depression and T wave abnormalities, in 70-year-old men, irrespective of clinical outcome. Methods Predictors for development of different ECG abnormalities were identified in a population-based study using stepwise logistic regression. Anthropometrical and metabolic factors, ECG abnormalities and vital signs from a health survey of men at age 50 were related to ECG abnormalities identified in the same cohort 20 years later. Results At the age of 70, 9% had developed a major abnormal Q/QS pattern, but 63% of these subjects had not been previously hospitalized due to MI, while 57% with symptomatic MI between age 50 and 70 had no major Q/QS pattern at age 70. T wave abnormalities (Odds ratio 3.11, 95% CI 1.18–8.17), high lipoprotein (a) levels, high body mass index (BMI) and smoking were identified as significant independent predictors for the development of abnormal major Q/QS patterns. T wave abnormalities and high fasting glucose levels were significant independent predictors for the development of ST segment depression without abnormal Q/QS pattern. Conclusion T wave abnormalities on resting ECG should be given special attention and correlated with clinical information. Risk factors for major Q/QS patterns need not be the same as traditional risk factors for clinically recognized CHD. High lipoprotein (a) levels may be a stronger risk factor for silent myocardial infarction (MI) compared to clinically recognized MI. PMID:16519804

  10. High-field/high-pressure ESR

    NASA Astrophysics Data System (ADS)

    Sakurai, T.; Okubo, S.; Ohta, H.

    2017-07-01

    We present a historical review of high-pressure ESR systems with emphasis on our recent development of a high-pressure, high-field, multi-frequency ESR system. Until 2000, the X-band system was almost established using a resonator filled with dielectric materials or a combination of the anvil cell and dielectric resonators. Recent developments have shifted from that in the low-frequency region, such as X-band, to that in multi-frequency region. High-pressure, high-field, multi-frequency ESR systems are classified into two types. First are the systems that use a vector network analyzer or a quasi-optical bridge, which have high sensitivity but a limited frequency region; the second are like our system, which has a very broad frequency region covering the THz region, but lower sensitivity. We will demonstrate the usefulness of our high-pressure ESR system, in addition to its experimental limitations. We also discuss the recent progress of our system and future plans.

  11. High Prevalence of Echocardiographic Abnormalities among HIV-infected Persons in the Era of Highly Active Antiretroviral Therapy.

    PubMed

    Mondy, Kristin E; Gottdiener, John; Overton, E Turner; Henry, Keith; Bush, Tim; Conley, Lois; Hammer, John; Carpenter, Charles C; Kojic, Erna; Patel, Pragna; Brooks, John T

    2011-02-01

    in the era of highly active antiretroviral therapy (HAART), human immunodeficiency virus (HIV)-infected persons have higher cardiovascular disease risk. Little is known about asymptomatic abnormalities in cardiac structure and function in this population. the Study to Understand the Natural History of HIV/AIDS in the Era of Effective Therapy (SUN Study) is a prospective, observational, multi-site cohort of 656 HIV-infected participants who underwent baseline echocardiography during 2004-2006. We examined prevalence of and factors associated with left ventricular systolic dysfunction (LVSD), diastolic dysfunction (DD), pulmonary hypertension (PHTN), left ventricular hypertrophy (LVH), and left atrial enlargement (LAE). participant characteristics were as follows: median age, 41 years; 24% women; 29% non-Hispanic black; 73% receiving HAART; and median CD4+ cell count, 462 cells/μL. Among evaluable participants, 18% had LVSD, 26% had DD, 57% had PHTN (right ventricular pressure >30 mm Hg), 6.5% had LVH, and 40% had LAE. In multivariate analyses, significant factors (P < .05) associated with LVSD were history of MI, elevated highly sensitive C-reactive protein (hsCRP) level, and current tobacco smoking; for DD, elevated hsCRP level and hypertension; for PHTN, current use of ritonavir; for LVH, hypertension, diabetes, non-white race, female sex with elevated body mass index, calculated as the weight in kilograms divided by the square of height in meters, of ≥ 25, elevated hsCRP level, and current use of abacavir; for LAE, hypertension and recent marijuana use. in this large contemporary HIV cohort, the prevalence of subclinical functional and structural cardiac abnormalities was greater than expected for age. Abnormalities were mostly associated with expected and often modifiable risks. Lifestyle modification should become a greater priority in the management of chronic HIV disease.

  12. High-pressure cryogenic seals for pressure vessels

    NASA Technical Reports Server (NTRS)

    Buggele, A. E.

    1977-01-01

    This investigation of the problems associated with reliably containing gaseous helium pressurized to 1530 bars (22 500 psi) between 4.2 K and 150 K led to the following conclusions: (1) common seal designs used in existing elevated-temperature pressure vessels are unsuitable for high-pressure cryogenic operation, (2) extrusion seal-ring materials such as Teflon, tin, and lead are not good seal materials for cryogenic high-pressure operation; and (3) several high-pressure cryogenic seal systems suitable for large-pressure vessel applications were developed; two seals required prepressurization, and one seal functioned repeatedly without any prepressurization. These designs used indium seal rings, brass or 304 stainless-steel anvil rings, and two O-rings of silicone rubber or Kel-F.

  13. Soybean stem growth under high-pressure sodium with supplemental blue lighting

    NASA Technical Reports Server (NTRS)

    Wheeler, R. M.; Mackowiak, C. L.; Sager, J. C.

    1991-01-01

    To study high-pressure sodium (HPS) lamps used for plant lighting because of their high energy conversion efficiencies, 'McCall' soybean plants were grown for 28 days in growth chambers utilizing HPS lamps, with/without supplemental light from blue phosphor fluorescent lamps. Total photosynthetic photon flux levels, including blue fluorescent, were maintained near 300 or 500 micromol/sq m s. Results indicate that employment of HPS or other blue-deficient sources for lighting at low to moderate photosynthetic photon flux levels may cause abnormal stem elongation, but this can be prevented by the addition of a small amount of supplemental blue light.

  14. Pressure-resisting cell for high-pressure, high-resolution nuclear magnetic resonance measurements at very high magnetic fields

    NASA Astrophysics Data System (ADS)

    Yamada, H.; Nishikawa, K.; Honda, M.; Shimura, T.; Akasaka, K.; Tabayashi, K.

    2001-02-01

    A pressure-resisting cell system has been developed for high-pressure high-resolution nuclear magnetic resonance (NMR) measurements up to a maximum pressure of 600 MPa. This cell system is capable of performing high-pressure experiments with any standard spectrometer, including modern high field NMR machines. A full description of the high-pressure NMR assembly mounted on a 750 MHz spectrometer is presented along with a detailed explanation of the procedure for preparing the pressure-resisting quartz and glass cells.

  15. Relationship of Hypertension, Blood Pressure, and Blood Pressure Control With White Matter Abnormalities in the Women’s Health Initiative Memory Study (WHIMS)—MRI Trial

    PubMed Central

    Kuller, Lewis H.; Margolis, Karen L.; Gaussoin, Sarah A.; Bryan, Nick R.; Kerwin, Diana; Limacher, Marian; Wassertheil-Smoller, Sylvia; Williamson, Jeff; Robinson, Jennifer G.

    2010-01-01

    This paper evaluates the relationship of blood pressure (BP) levels at Women’s Health Initiative (WHI) baseline, treatment of hypertension, and white matter abnormalities among women in conjugated equine estrogen (CEE) and medroxyprogesterone acetate and CEE-alone arms. The WHI Memory Study—Magnetic Resonance Imaging (WHIMS-MRI) trial scanned 1424 participants. BP levels at baseline were significantly positively related to abnormal white matter lesion (WML) volumes. Participants treated for hypertension but who had BP ≥140/90 mm Hg had the greatest amount of WML volumes. Women with untreated BP ≥140/90 mm Hg had intermediate WML volumes. Abnormal WML volumes were related to hypertension in most areas of the brain and were greater in the frontal lobe than in the occipital, parietal, or temporal lobes. Level of BP at baseline was strongly related to amount of WML volumes. The results of the study reinforce the relationship of hypertension and BP control and white matter abnormalities in the brain. The evidence to date supports tight control of BP levels, especially beginning at younger and middle age as a possible and perhaps only way to prevent dementia. PMID:20433539

  16. Molecular Mechanisms for High Hydrostatic Pressure-Induced Wing Mutagenesis in Drosophila melanogaster.

    PubMed

    Wang, Hua; Wang, Kai; Xiao, Guanjun; Ma, Junfeng; Wang, Bingying; Shen, Sile; Fu, Xueqi; Zou, Guangtian; Zou, Bo

    2015-10-08

    Although High hydrostatic pressure (HHP) as an important physical and chemical tool has been increasingly applied to research of organism, the response mechanisms of organism to HHP have not been elucidated clearly thus far. To identify mutagenic mechanisms of HHP on organisms, here, we treated Drosophila melanogaster (D. melanogaster) eggs with HHP. Approximately 75% of the surviving flies showed significant morphological abnormalities from the egg to the adult stages compared with control flies (p < 0.05). Some eggs displayed abnormal chorionic appendages, some larvae were large and red, and some adult flies showed wing abnormalities. Abnormal wing phenotypes of D. melanogaster induced by HHP were used to investigate the mutagenic mechanisms of HHP on organism. Thus 285 differentially expressed genes associated with wing mutations were identified using Affymetrix Drosophila Genome Array 2.0 and verified with RT-PCR. We also compared wing development-related central genes in the mutant flies with control flies using DNA sequencing to show two point mutations in the vestigial (vg) gene. This study revealed the mutagenic mechanisms of HHP-induced mutagenesis in D. melanogaster and provided a new model for the study of evolution on organisms.

  17. Upper esophageal sphincter abnormalities: frequent finding on high-resolution esophageal manometry and associated with poorer treatment response in achalasia.

    PubMed

    Chavez, Yamile H; Ciarleglio, Maria M; Clarke, John O; Nandwani, Monica; Stein, Ellen; Roland, Bani C

    2015-01-01

    Abnormalities of the upper esophageal sphincter (UES) on high-resolution esophageal manometry (HREM) have been observed in both symptomatic and asymptomatic individuals and are often interpreted as incidental findings of unclear clinical significance. Our primary aims were: (1) to assess the frequency of UES abnormalities in consecutive patients referred for HREM studies; and (2) to characterize the demographics, clinical symptoms, and manometric profiles associated with UES abnormalities as compared with those with normal UES function. We performed a retrospective study of 200 consecutive patients referred for HREM. Patients were divided into those with normal and abnormal UES function, including impaired relaxation (residual pressure >12 mm Hg), hypertensive (>104 mm Hg), and hypotensive (<34 mm Hg) resting pressure. Clinical and manometric profiles were compared. A total of 32.5% of patients had UES abnormalities, the majority of which were hypertensive (55.4%). Patients with achalasia were significantly more likely to have UES abnormalities as compared with normal UES function (57.2% vs. 42.9%, P=0.04), with the most frequent abnormality being a hypertensive UES (50%). In addition, patients with impaired lower esophageal sphincter (LES) relaxation (esophagogastric junction outflow obstruction or achalasia) were more likely to have an UES abnormality present as compared with those with normal LES relaxation (53.1% vs. 28.6%, P=0.01). When we assessed for treatment response among patients with achalasia, we found that subjects with evidence of UES dysfunction had significantly worse treatment outcomes as compared with those without UES abnormalities present (20% improved vs. 100%, P=0.015). This remained true even after adjusting for type of treatment received (surgical myotomy, per-oral endoscopic mytotomy, botulinum toxin injection, pneumatic dilatation, medical therapy, P=0.67) and achalasia subtype (P=1.00). UES abnormalities are a frequent finding on HREM

  18. Plantar Pressure Anomalies After Open Reduction With Internal Fixation of High-Grade Calcaneal Fractures.

    PubMed

    Hetsroni, Iftach; Ben-Sira, David; Nyska, Meir; Ayalon, Moshe

    2014-07-01

    Plantar pressure abnormalities after open reduction with internal fixation (ORIF) of intra-articular calcaneal fractures have been observed previously, but high-grade fractures were not selectively investigated and follow-up times were shorter than 2 years. The purpose of this study was to characterize plantar pressure anomalies in patients with exclusively high-grade calcaneal fractures after ORIF with a minimum 2 years of follow-up, and to test the association between plantar pressure distribution and the clinical outcome. The orthopaedic registry was reviewed to identify patients with isolated high-grade calcaneal fractures (Sanders types III-IV) who were operated on and had a minimum 2 years of follow-up. Sixteen patients were evaluated. Mean age was 47 years and follow-up was between 2 and 6 years. The Pedar-Mobile system was used to measure 3 loading and 3 temporal variables and compare these between the operated and the uninjured limbs. Mean American Orthopaedic Foot and Ankle Society (AOFAS) score was 76 ± 7 at latest follow-up. Bohler's angle was 5 ± 8 degrees before surgery and 25 ± 7 degrees at latest follow-up. Stance was shorter in operated limbs (P = .001). Timing of the peak of pressure was delayed in operated limbs under the hallux and the second toe (P ≤ .03). Peak pressure, force time integral, and pressure time integral were increased under the lateral midfoot (P ≤ .03) and decreased under the second metatarsal (P ≤ .03). Force time integral was decreased under the first metatarsal (P = .02) and under the hallux and the lateral toes (P ≤ .05). Increased loading under the lateral midfoot and decreased loading under the lateral toes were correlated with poorer clinical outcome (r = -.53, P < .05, and r = .63, P < .01, respectively). Side-to-side plantar pressure mismatch persisted at more than 2 years after ORIF of high-grade calcaneal fractures performed via lateral approach, despite improvement of Bohler's angle. This was characterized

  19. High Blood Pressure (Hypertension)

    MedlinePlus

    ... For Consumers Consumer Information by Audience For Women High Blood Pressure (Hypertension) Share Tweet Linkedin Pin it More sharing options ... En Español Who is at risk? How is high blood pressure treated? Understanding your blood pressure: What do the ...

  20. Repeated Blood Pressure Measurements in Childhood in Prediction of Hypertension in Adulthood.

    PubMed

    Oikonen, Mervi; Nuotio, Joel; Magnussen, Costan G; Viikari, Jorma S A; Taittonen, Leena; Laitinen, Tomi; Hutri-Kähönen, Nina; Jokinen, Eero; Jula, Antti; Cheung, Michael; Sabin, Matthew A; Daniels, Stephen R; Raitakari, Olli T; Juonala, Markus

    2016-01-01

    Hypertension may be predicted from childhood risk factors. Repeated observations of abnormal blood pressure in childhood may enhance prediction of hypertension and subclinical atherosclerosis in adulthood compared with a single observation. Participants (1927, 54% women) from the Cardiovascular Risk in Young Finns Study had systolic and diastolic blood pressure measurements performed when aged 3 to 24 years. Childhood/youth abnormal blood pressure was defined as above 90th or 95th percentile. After a 21- to 31-year follow-up, at the age of 30 to 45 years, hypertension (>140/90 mm Hg or antihypertensive medication) prevalence was found to be 19%. Carotid intima-media thickness was examined, and high-risk intima-media was defined as intima-media thickness >90th percentile or carotid plaques. Prediction of adulthood hypertension and high-risk intima-media was compared between one observation of abnormal blood pressure in childhood/youth and multiple observations by improved Pearson correlation coefficients and area under the receiver operating curve. When compared with a single measurement, 2 childhood/youth observations improved the correlation for adult systolic (r=0.44 versus 0.35, P<0.001) and diastolic (r=0.35 versus 0.17, P<0.001) blood pressure. In addition, 2 abnormal childhood/youth blood pressure observations increased the prediction of hypertension in adulthood (0.63 for 2 versus 0.60 for 1 observation, P=0.003). When compared with 2 measurements, third observation did not provide any significant improvement for correlation or prediction (P always >0.05). A higher number of childhood/youth observations of abnormal blood pressure did not enhance prediction of adult high-risk intima-media thickness. Compared with a single measurement, the prediction of adult hypertension was enhanced by 2 observations of abnormal blood pressure in childhood/youth. © 2015 American Heart Association, Inc.

  1. Cryogenic High Pressure Sensor Module

    NASA Technical Reports Server (NTRS)

    Chapman, John J. (Inventor); Shams, Qamar A. (Inventor); Powers, William T. (Inventor)

    1999-01-01

    A pressure sensor is provided for cryogenic, high pressure applications. A highly doped silicon piezoresistive pressure sensor is bonded to a silicon substrate in an absolute pressure sensing configuration. The absolute pressure sensor is bonded to an aluminum nitride substrate. Aluminum nitride has appropriate coefficient of thermal expansion for use with highly doped silicon at cryogenic temperatures. A group of sensors, either two sensors on two substrates or four sensors on a single substrate are packaged in a pressure vessel.

  2. Cryogenic, Absolute, High Pressure Sensor

    NASA Technical Reports Server (NTRS)

    Chapman, John J. (Inventor); Shams. Qamar A. (Inventor); Powers, William T. (Inventor)

    2001-01-01

    A pressure sensor is provided for cryogenic, high pressure applications. A highly doped silicon piezoresistive pressure sensor is bonded to a silicon substrate in an absolute pressure sensing configuration. The absolute pressure sensor is bonded to an aluminum nitride substrate. Aluminum nitride has appropriate coefficient of thermal expansion for use with highly doped silicon at cryogenic temperatures. A group of sensors, either two sensors on two substrates or four sensors on a single substrate are packaged in a pressure vessel.

  3. High-pressure behavior of amorphous selenium from ultrasonic measurements and Raman spectroscopy

    NASA Astrophysics Data System (ADS)

    He, Z.; Wang, Z. G.; Zhu, H. Y.; Liu, X. R.; Peng, J. P.; Hong, S. M.

    2014-07-01

    The high-pressure behavior of melt-quenched amorphous selenium (a-Se) has been investigated via ultrasonic measurements and Raman scattering at room temperature. The ultrasonic measurements were conducted on a-Se in a multi-anvil apparatus with two different sample assemblies at pressures of up to 4.5 and 4.8 GPa. We discovered that similar kinks occur in the slopes of the pressure dependence characteristics of the travel time and the sound velocity in both shear and longitudinal waves in the 2.0-2.5 GPa range. These kinks are independent of the sample assemblies, indicating an intrinsic transformation of the a-Se. Additionally, we deduced the pressure-volume relationship of a-Se from the sound velocity characteristics using the Birch-Murnaghan equation of state, and the results agreed well with those of previous reports. In situ high-pressure Raman scattering measurements of a-Se were conducted in a diamond anvil cell with an 830 nm excitation line up to a pressure of 4.3 GPa. We found that the characteristic band of a-Se at ˜250 cm-1 experienced a smooth shift to a lower frequency with pressure, but a sharp slope change in the band intensity versus pressure occurred near 2.5 GPa. The results of X-ray diffraction and differential scanning calorimetry measurements indicate that the samples remain in their amorphous states after decompression. Thus, we proposed that the abnormal compression behavior of a-Se in the 2.0-2.5 GPa range can be attributed to pressure-induced local atomic reconfiguration, implying an amorphous-amorphous transition of the elementary selenium.

  4. High blood pressure - children

    MedlinePlus

    ... this page: //medlineplus.gov/ency/article/007696.htm High blood pressure - children To use the sharing features on this page, please enable JavaScript. High blood pressure (hypertension) is an increase in the force of ...

  5. High temperature pressure gauge

    DOEpatents

    Echtler, J. Paul; Scandrol, Roy O.

    1981-01-01

    A high temperature pressure gauge comprising a pressure gauge positioned in fluid communication with one end of a conduit which has a diaphragm mounted in its other end. The conduit is filled with a low melting metal alloy above the diaphragm for a portion of its length with a high temperature fluid being positioned in the remaining length of the conduit and in the pressure gauge.

  6. High blood pressure medicines

    MedlinePlus

    Hypertension - medicines ... blood vessel diseases. You may need to take medicines to lower your blood pressure if lifestyle changes ... blood pressure to the target level. WHEN ARE MEDICINES FOR HIGH BLOOD PRESSURE USED Most of the ...

  7. Relationship between long-term exposure to low-level arsenic in drinking water and the prevalence of abnormal blood pressure.

    PubMed

    Zhang, Chuanwu; Mao, Guangyun; He, Suxia; Yang, Zuopeng; Yang, Wei; Zhang, Xiaojing; Qiu, Wenting; Ta, Na; Cao, Li; Yang, Hui; Guo, Xiaojuan

    2013-11-15

    Arsenic increases the risk and incidence of cardiovascular disease. To explore the impact of long-term exposure to low-level arsenic in drinking water on blood pressure including pulse pressure (PP) and mean arterial blood pressure (MAP), a cross-sectional study was conducted in 2010 in which the blood pressure of 405 villagers was measured, who had been drinking water with an inorganic arsenic content <50 μg/L. A multivariate logistic regression model was used to estimate odds ratios and 95% confidence intervals. After adjusting for age, gender, Body Mass Index (BMI), alcohol consumption and smoking, the odds ratios showed a 1.45-fold (95%CI: 0.63-3.35) increase in the group with >30-50 years of arsenic exposure and a 2.95-fold (95%CI: 1.31-6.67) increase in the group with >50 years exposure. Furthermore, the odds ratio for prevalence of abnormal PP and MAP were 1.06 (95%CI: 0.24-4.66) and 0.87 (95%CI: 0.36-2.14) in the group with >30-50 years of exposure, and were 2.46 (95%CI: 0.87-6.97) and 3.75 (95%CI: 1.61-8.71) for the group with >50 years exposure, compared to the group with arsenic exposure ≤ 30 years respectively. Significant trends for Hypertension (p<0.0001), PP (p<0.0001) and MAP (p=0.0016) were found. The prevalence of hypertension and abnormal PP as well as MAP is marked among a low-level arsenic exposure population, and significantly increases with the duration of arsenic exposure. Copyright © 2012 Elsevier B.V. All rights reserved.

  8. Materials discovery at high pressures

    NASA Astrophysics Data System (ADS)

    Zhang, Lijun; Wang, Yanchao; Lv, Jian; Ma, Yanming

    2017-02-01

    Pressure is a fundamental thermodynamic variable that can be used to control the properties of materials, because it reduces interatomic distances and profoundly modifies electronic orbitals and bonding patterns. It is thus a versatile tool for the creation of exotic materials not accessible at ambient conditions. Recently developed static and dynamic high-pressure experimental techniques have led to the synthesis of many functional materials with excellent performance: for example, superconductors, superhard materials and high-energy-density materials. Some of these advances have been aided and accelerated by first-principles crystal-structure searching simulations. In this Review, we discuss recent progress in high-pressure materials discovery, placing particular emphasis on the record high-temperature superconductivity in hydrogen sulfide and on nanotwinned cubic boron nitride and diamond, the hardest known materials. Energy materials and exotic chemical materials obtained under high pressures are also discussed. The main drawback of high-pressure materials is their destabilization after pressure release; this problem and its possible solutions are surveyed in the conclusions, which also provide an outlook on the future developments in the field.

  9. High-pressure behavior of amorphous selenium from ultrasonic measurements and Raman spectroscopy

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    He, Z.; Liu, X. R.; Hong, S. M., E-mail: hpswjtu@gmail.com, E-mail: smhong@home.swjtu.edu.cn

    2014-07-07

    The high-pressure behavior of melt-quenched amorphous selenium (a-Se) has been investigated via ultrasonic measurements and Raman scattering at room temperature. The ultrasonic measurements were conducted on a-Se in a multi-anvil apparatus with two different sample assemblies at pressures of up to 4.5 and 4.8 GPa. We discovered that similar kinks occur in the slopes of the pressure dependence characteristics of the travel time and the sound velocity in both shear and longitudinal waves in the 2.0–2.5 GPa range. These kinks are independent of the sample assemblies, indicating an intrinsic transformation of the a-Se. Additionally, we deduced the pressure-volume relationship of a-Se frommore » the sound velocity characteristics using the Birch–Murnaghan equation of state, and the results agreed well with those of previous reports. In situ high-pressure Raman scattering measurements of a-Se were conducted in a diamond anvil cell with an 830 nm excitation line up to a pressure of 4.3 GPa. We found that the characteristic band of a-Se at ∼250 cm{sup −1} experienced a smooth shift to a lower frequency with pressure, but a sharp slope change in the band intensity versus pressure occurred near 2.5 GPa. The results of X-ray diffraction and differential scanning calorimetry measurements indicate that the samples remain in their amorphous states after decompression. Thus, we proposed that the abnormal compression behavior of a-Se in the 2.0–2.5 GPa range can be attributed to pressure-induced local atomic reconfiguration, implying an amorphous-amorphous transition of the elementary selenium.« less

  10. Synchrotron x-ray high energy PDF and tomography studies for gallium melts under high-pressure conditions

    NASA Astrophysics Data System (ADS)

    Liu, H.; Liu, L. L.; Li, R.; Li, L.

    2015-12-01

    Liquid gallium exhibits unusual and unique physical properties. A rich polymorphism and metastable modifications of solid Ga have been discovered and a number of studies of liquid gallium under high pressure conditions were reported. However, some fundamental properties, such as the equation of state (EoS) of Ga melt under extreme conditions remain unclear. To compare to the previous reports, we performed the pair distribution function (PDF) study using diamond anvil cell, in which synchrotron high-energy x-ray total scattering data, combined with reverse Monte Carlo simulation, was used to study the microstructure and EoS of liquid gallium under high pressure at room temperature conditions. The EoS of Ga melt, which was measured from synchrotron x-ray tomography method at room temperature, was used to avoid the potential relatively big errors for the density estimation from the reverse Monte Carlo simulation with the mathematical fit to the measured structure factor data. The volume change of liquid gallium have been studied as a function of pressure and temperature up to 5 GPa at 370 K using synchrotron x-ray microtomography combined with energy dispersive x-ray diffraction (EDXRD) techniques using Drickamer press. The directly measured P-V-T curves were obtained from 3D tomography reconstruction data. The existence of possible liquid-liquid phase transition regions is proposed based on the abnormal compressibility and local structure change in Ga melts.

  11. HIGH-TEMPERATURE AND HIGH-PRESSURE PARTICULATE CONTROL REQUIREMENTS

    EPA Science Inventory

    The report reviews and evaluates high-temperature and high-pressure particulate cleanup requirements of existing and proposed energy processes. The study's aims are to define specific high-temperature and high-pressure particle removal problems, to indicate potential solutions, a...

  12. High lifetime probability of screen-detected cervical abnormalities.

    PubMed

    Pankakoski, Maiju; Heinävaara, Sirpa; Sarkeala, Tytti; Anttila, Ahti

    2017-12-01

    Objective Regular screening and follow-up is an important key to cervical cancer prevention; however, screening inevitably detects mild or borderline abnormalities that would never progress to a more severe stage. We analysed the cumulative probability and recurrence of cervical abnormalities in the Finnish organized screening programme during a 22-year follow-up. Methods Screening histories were collected for 364,487 women born between 1950 and 1965. Data consisted of 1 207,017 routine screens and 88,143 follow-up screens between 1991 and 2012. Probabilities of cervical abnormalities by age were estimated using logistic regression and generalized estimating equations methodology. Results The probability of experiencing any abnormality at least once at ages 30-64 was 34.0% (95% confidence interval [CI]: 33.3-34.6%) . Probability was 5.4% (95% CI: 5.0-5.8%) for results warranting referral and 2.2% (95% CI: 2.0-2.4%) for results with histologically confirmed findings. Previous occurrences were associated with an increased risk of detecting new ones, specifically in older women. Conclusion A considerable proportion of women experience at least one abnormal screening result during their lifetime, and yet very few eventually develop an actual precancerous lesion. Re-evaluation of diagnostic criteria concerning mild abnormalities might improve the balance of harms and benefits of screening. Special monitoring of women with recurrent abnormalities especially at older ages may also be needed.

  13. High Pressure Biomass Gasification

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Agrawal, Pradeep K

    2016-07-29

    According to the Billion Ton Report, the U.S. has a large supply of biomass available that can supplement fossil fuels for producing chemicals and transportation fuels. Agricultural waste, forest residue, and energy crops offer potential benefits: renewable feedstock, zero to low CO 2 emissions depending on the specific source, and domestic supply availability. Biomass can be converted into chemicals and fuels using one of several approaches: (i) biological platform converts corn into ethanol by using depolymerization of cellulose to form sugars followed by fermentation, (ii) low-temperature pyrolysis to obtain bio-oils which must be treated to reduce oxygen content via HDOmore » hydrodeoxygenation), and (iii) high temperature pyrolysis to produce syngas (CO + H 2). This last approach consists of producing syngas using the thermal platform which can be used to produce a variety of chemicals and fuels. The goal of this project was to develop an improved understanding of the gasification of biomass at high pressure conditions and how various gasification parameters might affect the gasification behavior. Since most downstream applications of synags conversion (e.g., alcohol synthesis, Fischer-Tropsch synthesis etc) involve utilizing high pressure catalytic processes, there is an interest in carrying out the biomass gasification at high pressure which can potentially reduce the gasifier size and subsequent downstream cleaning processes. It is traditionally accepted that high pressure should increase the gasification rates (kinetic effect). There is also precedence from coal gasification literature from the 1970s that high pressure gasification would be a beneficial route to consider. Traditional approach of using thermogravimetric analyzer (TGA) or high-pressure themogravimetric analyzer (PTGA) worked well in understanding the gasification kinetics of coal gasification which was useful in designing high pressure coal gasification processes. However, similar approach

  14. African Americans and High Blood Pressure

    MedlinePlus

    ANSWERS by heart Lifestyle + Risk Reduction High Blood Pressure What About African Americans and High Blood Pressure? African Americans in the U.S. have a higher prevalence of high blood pressure (HBP) ...

  15. High Blood Pressure and Kidney Disease

    MedlinePlus

    ... Your Kidneys & How They Work High Blood Pressure & Kidney Disease What is high blood pressure? Blood pressure ... have their blood pressure checked. What are the kidneys and what do they do? The kidneys are ...

  16. Elasticity of Unquenchable High-Pressure Clinopyroxene at High Pressures and Temperatures

    NASA Astrophysics Data System (ADS)

    Kung, J.; Li, B.; Uchida, T.; Wang, Y.

    2003-12-01

    A phase transformation in (Mg,Fe)SiO3, one of the common constituent of the Earth's crust and upper mantle, from orthorhombic (OEN) to monoclinic symmetry is likely to occur in the deeper portions of the upper mantle (Pacalo and Gasparik, 1990; Kanzaki, 1991). Angel et al. (1992) confirmed that the clinoenstatite phase above 8 GPa is an unquenchable high pressure monoclinic phase (HP-CEN), space group C2/c. Due to its unquenchable nature, this high pressure clinoenstatite has to be synthesized within its stability field in order to study its elasticity. The elasticity measurements were carried out using the ultrasonic technique in the large volume apparatus in conjunction with in-situ X-radiation techniques (X-ray diffraction and X-radiography). The experimental setup has made possible to monitor the length change of sample during experiment, as well as the measurements of travel times and density of the sample simultaneously. The starting material for the acoustic experiment was a well-sintered OEN polycrystalline specimen, which was hot-pressed at conditions of 5 GPa, 1000 degree C for an hour prior the experiment. After the OEN fully transformed to the HP-CEN at pressure of 13 GPa, 1000 degree C during the acoustic experiment, elasticity and X-ray data have been collected along a series of heating/cooling cycles at different pressures during the decompression. The data collection was stopped at 6.5 GPa because of the phase transition from HP-CEN to LP-CEN at lower pressure. The resulting bulk and shear moduli at different P-T conditions were treated as linear functions of both pressure and temperature with adjustable parameters: moduli at 6.5 GPa, room temperature, the pressure derivatives at constant temperatures, and the temperature derivatives at constant pressures. Compared with OEN (Flesch et al., 1998), our results show that the pressure derivatives of the bulk and shear moduli of HP-CEN are similar to those of OEN when the conditions of 6.5 GPa, room

  17. High-pressure minerals in shocked meteorites

    NASA Astrophysics Data System (ADS)

    Tomioka, Naotaka; Miyahara, Masaaki

    2017-09-01

    Heavily shocked meteorites contain various types of high-pressure polymorphs of major minerals (olivine, pyroxene, feldspar, and quartz) and accessory minerals (chromite and Ca phosphate). These high-pressure minerals are micron to submicron sized and occur within and in the vicinity of shock-induced melt veins and melt pockets in chondrites and lunar, howardite-eucrite-diogenite (HED), and Martian meteorites. Their occurrence suggests two types of formation mechanisms (1) solid-state high-pressure transformation of the host-rock minerals into monomineralic polycrystalline aggregates, and (2) crystallization of chondritic or monomineralic melts under high pressure. Based on experimentally determined phase relations, their formation pressures are limited to the pressure range up to 25 GPa. Textural, crystallographic, and chemical characteristics of high-pressure minerals provide clues about the impact events of meteorite parent bodies, including their size and mutual collision velocities and about the mineralogy of deep planetary interiors. The aim of this article is to review and summarize the findings on natural high-pressure minerals in shocked meteorites that have been reported over the past 50 years.

  18. High pressure metrology for industrial applications

    NASA Astrophysics Data System (ADS)

    Sabuga, Wladimir; Rabault, Thierry; Wüthrich, Christian; Pražák, Dominik; Chytil, Miroslav; Brouwer, Ludwig; Ahmed, Ahmed D. S.

    2017-12-01

    To meet the needs of industries using high pressure technologies, in traceable, reliable and accurate pressure measurements, a joint research project of the five national metrology institutes and the university was carried out within the European Metrology Research Programme. In particular, finite element methods were established for stress-strain analysis of elastic and nonlinear elastic-plastic deformation, as well as of contact processes in pressure-measuring piston-cylinder assemblies, and high-pressure components at pressures above 1 GPa. New pressure measuring multipliers were developed and characterised, which allow realisation of the pressure scale up to 1.6 GPa. This characterisation is based on research including measurements of material elastic constants by the resonant ultrasound spectroscopy, hardness of materials of high pressure components, density and viscosity of pressure transmitting liquids at pressures up to 1.4 GPa and dimensional measurements on piston-cylinders. A 1.6 GPa pressure system was created for operation of the 1.6 GPa multipliers and calibration of high pressure transducers. A transfer standard for 1.5 GPa pressure range, based on pressure transducers, was built and tested. Herewith, the project developed the capability of measuring pressures up to 1.6 GPa, from which industrial users can calibrate their pressure measurement devices for accurate measurements up to 1.5 GPa.

  19. High pressure and high temperature apparatus

    DOEpatents

    Voronov, Oleg A.

    2005-09-13

    A design for high pressure/high temperature apparatus and reaction cell to achieve .about.30 GPa pressure in .about.1 cm volume and .about.100 GPa pressure in .about.1 mm volumes and 20-5000.degree. C. temperatures in a static regime. The device includes profiled anvils (28) action on a reaction cell (14, 16) containing the material (26) to be processed. The reaction cell includes a heater (18) surrounded by insulating layers and screens. Surrounding the anvils are cylindrical inserts and supporting rings (30-48) whose hardness increases towards the reaction cell. These volumes may be increased considerably if applications require it, making use of presses that have larger loading force capability, larger frames and using larger anvils.

  20. What Is High Blood Pressure?

    MedlinePlus

    ... Disease Venous Thromboembolism Aortic Aneurysm More What is High Blood Pressure? Updated:Feb 27,2018 First, let’s define high ... resources . This content was last reviewed October 2016. High Blood Pressure • Home • Get the Facts About HBP Introduction What ...

  1. High pressure phase transformations revisited

    NASA Astrophysics Data System (ADS)

    Levitas, Valery I.

    2018-04-01

    High pressure phase transformations play an important role in the search for new materials and material synthesis, as well as in geophysics. However, they are poorly characterized, and phase transformation pressure and pressure hysteresis vary drastically in experiments of different researchers, with different pressure transmitting media, and with different material suppliers. Here we review the current state, challenges in studying phase transformations under high pressure, and the possible ways in overcoming the challenges. This field is critically compared with fields of phase transformations under normal pressure in steels and shape memory alloys, as well as plastic deformation of materials. The main reason for the above mentioned discrepancy is the lack of understanding that there is a fundamental difference between pressure-induced transformations under hydrostatic conditions, stress-induced transformations under nonhydrostatic conditions below yield, and strain-induced transformations during plastic flow. Each of these types of transformations has different mechanisms and requires a completely different thermodynamic and kinetic description and experimental characterization. In comparison with other fields the following challenges are indicated for high pressure phase transformation: (a) initial and evolving microstructure is not included in characterization of transformations; (b) continuum theory is poorly developed; (c) heterogeneous stress and strain fields in experiments are not determined, which leads to confusing material transformational properties with a system behavior. Some ways to advance the field of high pressure phase transformations are suggested. The key points are: (a) to take into account plastic deformations and microstructure evolution during transformations; (b) to formulate phase transformation criteria and kinetic equations in terms of stress and plastic strain tensors (instead of pressure alone); (c) to develop multiscale continuum

  2. High pressure phase transformations revisited.

    PubMed

    Levitas, Valery I

    2018-04-25

    High pressure phase transformations play an important role in the search for new materials and material synthesis, as well as in geophysics. However, they are poorly characterized, and phase transformation pressure and pressure hysteresis vary drastically in experiments of different researchers, with different pressure transmitting media, and with different material suppliers. Here we review the current state, challenges in studying phase transformations under high pressure, and the possible ways in overcoming the challenges. This field is critically compared with fields of phase transformations under normal pressure in steels and shape memory alloys, as well as plastic deformation of materials. The main reason for the above mentioned discrepancy is the lack of understanding that there is a fundamental difference between pressure-induced transformations under hydrostatic conditions, stress-induced transformations under nonhydrostatic conditions below yield, and strain-induced transformations during plastic flow. Each of these types of transformations has different mechanisms and requires a completely different thermodynamic and kinetic description and experimental characterization. In comparison with other fields the following challenges are indicated for high pressure phase transformation: (a) initial and evolving microstructure is not included in characterization of transformations; (b) continuum theory is poorly developed; (c) heterogeneous stress and strain fields in experiments are not determined, which leads to confusing material transformational properties with a system behavior. Some ways to advance the field of high pressure phase transformations are suggested. The key points are: (a) to take into account plastic deformations and microstructure evolution during transformations; (b) to formulate phase transformation criteria and kinetic equations in terms of stress and plastic strain tensors (instead of pressure alone); (c) to develop multiscale continuum

  3. High blood pressure - medicine-related

    MedlinePlus

    Drug-induced hypertension is high blood pressure caused by using a chemical substance or medicine. ... of the arteries There are several types of high blood pressure : Essential hypertension has no cause that can be ...

  4. What Is High Blood Pressure Medicine?

    MedlinePlus

    ANSWERS by heart Lifestyle + Risk Reduction High Blood Pressure What Is High Blood Pressure Medicine? Your doctor has prescribed medicine to help lower your blood pressure. You also need to make the ...

  5. New materials from high-pressure experiments.

    PubMed

    McMillan, Paul F

    2002-09-01

    High-pressure synthesis on an industrial scale is applied to obtain synthetic diamonds and cubic boron nitride (c-BN), which are the superhard abrasives of choice for cutting and shaping hard metals and ceramics. Recently, high-pressure science has undergone a renaissance, with novel techniques and instrumentation permitting entirely new classes of high-pressure experiments. For example, superconducting behaviour was previously known for only a few elements and compounds. Under high-pressure conditions, the 'superconducting periodic table' now extends to all classes of the elements, including condensed rare gases, and ionic compounds such as CsI. Another surprising result is the newly discovered solid-state chemistry of light-element 'gas' molecules such as CO2, N2 and N2O. These react to give polymerized covalently bonded or ionic mineral structures under conditions of high pressure and temperature: the new solids are potentially recoverable to ambient conditions. Here we examine innovations in high-pressure research that might be harnessed to develop new materials for technological applications.

  6. Hypertension (High Blood Pressure)

    MedlinePlus

    ... pressure to live. Without it, blood can't flow through our bodies and carry oxygen to our vital organs. But when blood pressure gets too high — a condition called hypertension — it can lead to ...

  7. (Ultra) High Pressure Homogenization for Continuous High Pressure Sterilization of Pumpable Foods – A Review

    PubMed Central

    Georget, Erika; Miller, Brittany; Callanan, Michael; Heinz, Volker; Mathys, Alexander

    2014-01-01

    Bacterial spores have a strong resistance to both chemical and physical hurdles and create a risk for the food industry, which has been tackled by applying high thermal intensity treatments to sterilize food. These strong thermal treatments lead to a reduction of the organoleptic and nutritional properties of food and alternatives are actively searched for. Innovative hurdles offer an alternative to inactivate bacterial spores. In particular, recent technological developments have enabled a new generation of high pressure homogenizer working at pressures up to 400 MPa and thus, opening new opportunities for high pressure sterilization of foods. In this short review, we summarize the work conducted on (ultra) high pressure homogenization (U)HPH to inactivate endospores in model and food systems. Specific attention is given to process parameters (pressure, inlet, and valve temperatures). This review gathers the current state of the art and underlines the potential of UHPH sterilization of pumpable foods while highlighting the needs for future work. PMID:25988118

  8. Engine having a high pressure hydraulic system and low pressure lubricating system

    DOEpatents

    Bartley, Bradley E.; Blass, James R.; Gibson, Dennis H.

    2000-01-01

    An engine includes a high pressure hydraulic system having a high pressure pump and at least one hydraulically-actuated device attached to an engine housing. A low pressure engine lubricating system is attached to the engine housing and includes a circulation conduit fluidly connected to an outlet from the high pressure pump.

  9. Manufacturing Diamond Under Very High Pressure

    NASA Technical Reports Server (NTRS)

    Voronov, Oleg

    2007-01-01

    A process for manufacturing bulk diamond has been made practical by the invention of the High Pressure and Temperature Apparatus capable of applying the combination of very high temperature and high pressure needed to melt carbon in a sufficiently large volume. The apparatus includes a reaction cell wherein a controlled static pressure as high as 20 GPa and a controlled temperature as high as 5,000 C can be maintained.

  10. High Blood Pressure and Women

    MedlinePlus

    ... fact sheet on high blood pressure . Watch interactive animations of how blood pressure works . See all the ... Matter • Find Tools & Resources HBP Resources Risk Calculator Animation Library Track Your Blood Pressure: Print (PDF) | Online ...

  11. Controlling your high blood pressure

    MedlinePlus

    Controlling hypertension ... when you wake up. For people with very high blood pressure, this is when they are most at risk ... 2014 evidence-based guideline for the management of high blood pressure in adults: report from the panel members appointed ...

  12. Managing High Blood Pressure Medications

    MedlinePlus

    ... Artery Disease Venous Thromboembolism Aortic Aneurysm More Managing High Blood Pressure Medications Updated:Jan 10,2018 When your doctor ... checkup. This content was last reviewed October 2016. High Blood Pressure • Home • Get the Facts About HBP • Know Your ...

  13. High pressure furnace

    DOEpatents

    Morris, D.E.

    1993-09-14

    A high temperature high pressure furnace has a hybrid partially externally heated construction. A metallic vessel fabricated from an alloy having a composition of at least 45% nickel, 15% chrome, and 10% tungsten is utilized (the preferred alloy including 55% nickel, 22% chrome, 14% tungsten, 2% molybdenum, 3% iron (maximum) and 5% cobalt (maximum)). The disclosed alloy is fabricated into 11/4 or 2 inch, 32 mm or 50 mm bar stock and has a length of about 22 inches, 56 cm. This bar stock has an aperture formed therein to define a closed high temperature, high pressure oxygen chamber. The opposite and closed end of the vessel is provided with a small blind aperture into which a thermocouple can be inserted. The closed end of the vessel is inserted into an oven, preferably heated by standard nickel chrome electrical elements and having a heavily insulated exterior. 19 figures.

  14. High pressure furnace

    DOEpatents

    Morris, Donald E.

    1993-01-01

    A high temperature high pressure furnace has a hybrid partially externally heated construction. A metallic vessel fabricated from an alloy having a composition of at least 45% nickel, 15% chrome, and 10% tungsten is utilized (the preferred alloy including 55% nickel, 22% chrome, 14% tungsten, 2% molybdenum, 3% iron (maximum) and 5% cobalt (maximum). The disclosed alloy is fabricated into 11/4 or 2 inch, 32 mm or 50 mm bar stock and has a length of about 22 inches, 56 cm. This bar stock has an aperture formed therein to define a closed high temperature, high pressure oxygen chamber. The opposite and closed end of the vessel is provided with a small blind aperture into which a thermocouple can be inserted. The closed end of the vessel is inserted into an oven, preferably heated by standard nickel chrome electrical elements and having a heavily insulated exterior.

  15. Cardiovascular abnormalities with normal blood pressure in tissue kallikrein-deficient mice

    NASA Astrophysics Data System (ADS)

    Meneton, Pierre; Bloch-Faure, May; Hagege, Albert A.; Ruetten, Hartmut; Huang, Wei; Bergaya, Sonia; Ceiler, Debbie; Gehring, Doris; Martins, Isabelle; Salmon, Georges; Boulanger, Chantal M.; Nussberger, Jürg; Crozatier, Bertrand; Gasc, Jean-Marie; Heudes, Didier; Bruneval, Patrick; Doetschman, Tom; Ménard, Joël; Alhenc-Gelas, François

    2001-02-01

    Tissue kallikrein is a serine protease thought to be involved in the generation of bioactive peptide kinins in many organs like the kidneys, colon, salivary glands, pancreas, and blood vessels. Low renal synthesis and urinary excretion of tissue kallikrein have been repeatedly linked to hypertension in animals and humans, but the exact role of the protease in cardiovascular function has not been established largely because of the lack of specific inhibitors. This study demonstrates that mice lacking tissue kallikrein are unable to generate significant levels of kinins in most tissues and develop cardiovascular abnormalities early in adulthood despite normal blood pressure. The heart exhibits septum and posterior wall thinning and a tendency to dilatation resulting in reduced left ventricular mass. Cardiac function estimated in vivo and in vitro is decreased both under basal conditions and in response to βadrenergic stimulation. Furthermore, flow-induced vasodilatation is impaired in isolated perfused carotid arteries, which express, like the heart, low levels of the protease. These data show that tissue kallikrein is the main kinin-generating enzyme in vivo and that a functional kallikrein-kinin system is necessary for normal cardiac and arterial function in the mouse. They suggest that the kallikrein-kinin system could be involved in the development or progression of cardiovascular diseases.

  16. Method transfer from high-pressure liquid chromatography to ultra-high-pressure liquid chromatography. II. Temperature and pressure effects.

    PubMed

    Åsberg, Dennis; Samuelsson, Jörgen; Leśko, Marek; Cavazzini, Alberto; Kaczmarski, Krzysztof; Fornstedt, Torgny

    2015-07-03

    The importance of the generated temperature and pressure gradients in ultra-high-pressure liquid chromatography (UHPLC) are investigated and compared to high-pressure liquid chromatography (HPLC). The drug Omeprazole, together with three other model compounds (with different chemical characteristics, namely uncharged, positively and negatively charged) were used. Calculations of the complete temperature profile in the column at UHPLC conditions showed, in our experiments, a temperature difference between the inlet and outlet of 16 °C and a difference of 2 °C between the column center and the wall. Through van't Hoff plots, this information was used to single out the decrease in retention factor (k) solely due to the temperature gradient. The uncharged solute was least affected by temperature with a decrease in k of about 5% while for charged solutes the effect was more pronounced, with k decreases up to 14%. A pressure increase of 500 bar gave roughly 5% increase in k for the uncharged solute, while omeprazole and the other two charged solutes gave about 25, 20 and 15% increases in k, respectively. The stochastic model of chromatography was applied to estimate the dependence of the average number of adsorption/desorption events (n) and the average time spent by a molecule in the stationary phase (τs) on temperature and pressure on peak shape for the tailing, basic solute. Increasing the temperature yielded an increase in n and decrease in τs which resulted in less skew at high temperatures. With increasing pressure, the stochastic modeling gave interesting results for the basic solute showing that the skew of the peak increased with pressure. The conclusion is that pressure effects are more pronounced for both retention and peak shape than the temperature effects for the polar or charged compounds in our study. Copyright © 2015 Elsevier B.V. All rights reserved.

  17. Electrokinetic high pressure hydraulic system

    DOEpatents

    Paul, Phillip H.; Rakestraw, David J.; Arnold, Don W.; Hencken, Kenneth R.; Schoeniger, Joseph S.; Neyer, David W.

    2001-01-01

    An electrokinetic high pressure hydraulic pump for manipulating fluids in capillary-based systems. The pump uses electro-osmotic flow to provide a high pressure hydraulic system, having no moving mechanical parts, for pumping and/or compressing fluids, for providing valve means and means for opening and closing valves, for controlling fluid flow rate, and manipulating fluid flow generally and in capillary-based systems (Microsystems), in particular. The compact nature of the inventive high pressure hydraulic pump provides the ability to construct a micro-scale or capillary-based HPLC system that fulfills the desire for small sample quantity, low solvent consumption, improved efficiency, the ability to run samples in parallel, and field portability. Control of pressure and solvent flow rate is achieved by controlling the voltage applied to an electrokinetic pump.

  18. Electrokinetic high pressure hydraulic system

    DOEpatents

    Paul, Phillip H.; Rakestraw, David J.; Arnold, Don W.; Hencken, Kenneth R.; Schoeniger, Joseph S.; Neyer, David W.

    2003-06-03

    An electrokinetic high pressure hydraulic pump for manipulating fluids in capillary-based system. The pump uses electro-osmotic flow to provide a high pressure hydraulic system, having no moving mechanical parts, for pumping and/or compressing fluids, for providing valve means and means for opening and closing valves, for controlling fluid flow rate, and manipulating fluid flow generally and in capillary-based systems (microsystems), in particular. The compact nature of the inventive high pressure hydraulic pump provides the ability to construct a micro-scale or capillary-based HPLC system that fulfills the desire for small sample quantity, low solvent consumption, improved efficiency, the ability to run samples in parallel, and field portability. Control of pressure and solvent flow rate is achieved by controlling the voltage applied to an electrokinetic pump.

  19. Method of producing a high pressure gas

    DOEpatents

    Bingham, Dennis N.; Klingler, Kerry M.; Zollinger, William T.

    2006-07-18

    A method of producing a high pressure gas is disclosed and which includes providing a container; supplying the container with a liquid such as water; increasing the pressure of the liquid within the container; supplying a reactant composition such as a chemical hydride to the liquid under pressure in the container and which chemically reacts with the liquid to produce a resulting high pressure gas such as hydrogen at a pressure of greater than about 100 pounds per square inch of pressure; and drawing the resulting high pressure gas from the container.

  20. High frequency pressure oscillator for microcryocoolers.

    PubMed

    Vanapalli, S; ter Brake, H J M; Jansen, H V; Zhao, Y; Holland, H J; Burger, J F; Elwenspoek, M C

    2008-04-01

    Microminiature pulse tube cryocoolers should operate at a frequency of an order higher than the conventional macro ones because the pulse tube cryocooler operating frequency scales inversely with the square of the pulse tube diameter. In this paper, the design and experiments of a high frequency pressure oscillator is presented with the aim to power a micropulse tube cryocooler operating between 300 and 80 K, delivering a cooling power of 10 mW. Piezoelectric actuators operate efficiently at high frequencies and have high power density making them good candidates as drivers for high frequency pressure oscillator. The pressure oscillator described in this work consists of a membrane driven by a piezoelectric actuator. A pressure ratio of about 1.11 was achieved with a filling pressure of 2.5 MPa and compression volume of about 22.6 mm(3) when operating the actuator with a peak-to-peak sinusoidal voltage of 100 V at a frequency of 1 kHz. The electrical power input was 2.73 W. The high pressure ratio and low electrical input power at high frequencies would herald development of microminiature cryocoolers.

  1. High frequency pressure oscillator for microcryocoolers

    NASA Astrophysics Data System (ADS)

    Vanapalli, S.; ter Brake, H. J. M.; Jansen, H. V.; Zhao, Y.; Holland, H. J.; Burger, J. F.; Elwenspoek, M. C.

    2008-04-01

    Microminiature pulse tube cryocoolers should operate at a frequency of an order higher than the conventional macro ones because the pulse tube cryocooler operating frequency scales inversely with the square of the pulse tube diameter. In this paper, the design and experiments of a high frequency pressure oscillator is presented with the aim to power a micropulse tube cryocooler operating between 300 and 80K, delivering a cooling power of 10mW. Piezoelectric actuators operate efficiently at high frequencies and have high power density making them good candidates as drivers for high frequency pressure oscillator. The pressure oscillator described in this work consists of a membrane driven by a piezoelectric actuator. A pressure ratio of about 1.11 was achieved with a filling pressure of 2.5MPa and compression volume of about 22.6mm3 when operating the actuator with a peak-to-peak sinusoidal voltage of 100V at a frequency of 1kHz. The electrical power input was 2.73W. The high pressure ratio and low electrical input power at high frequencies would herald development of microminiature cryocoolers.

  2. Laser techniques in high-pressure geophysics

    NASA Technical Reports Server (NTRS)

    Hemley, R. J.; Bell, P. M.; Mao, H. K.

    1987-01-01

    Laser techniques in conjunction with the diamond-anvil cell can be used to study high-pressure properties of materials important to a wide range of problems in earth and planetary science. Spontaneous Raman scattering of crystalline and amorphous solids at high pressure demonstrates that dramatic changes in structure and bonding occur on compression. High-pressure Brillouin scattering is sensitive to the pressure variations of single-crystal elastic moduli and acoustic velocities. Laser heating techniques with the diamond-anvil cell can be used to study phase transitions, including melting, under deep-earth conditions. Finally, laser-induced ruby fluorescence has been essential for the development of techniques for generating the maximum pressures now possible with the diamond-anvil cell, and currently provides a calibrated in situ measure of pressure well above 100 gigapascals.

  3. Highly variable penetrance of abnormal phenotypes in embryonic lethal knockout mice

    PubMed Central

    Wilson, Robert; Geyer, Stefan H.; Reissig, Lukas; Rose, Julia; Szumska, Dorota; Hardman, Emily; Prin, Fabrice; McGuire, Christina; Ramirez-Solis, Ramiro; White, Jacqui; Galli, Antonella; Tudor, Catherine; Tuck, Elizabeth; Mazzeo, Cecilia Icoresi; Smith, James C.; Robertson, Elizabeth; Adams, David J.; Mohun, Timothy; Weninger, Wolfgang J.

    2017-01-01

    Background: Identifying genes that are essential for mouse embryonic development and survival through term is a powerful and unbiased way to discover possible genetic determinants of human developmental disorders. Characterising the changes in mouse embryos that result from ablation of lethal genes is a necessary first step towards uncovering their role in normal embryonic development and establishing any correlates amongst human congenital abnormalities. Methods: Here we present results gathered to date in the Deciphering the Mechanisms of Developmental Disorders (DMDD) programme, cataloguing the morphological defects identified from comprehensive imaging of 220 homozygous mutant and 114 wild type embryos from 42 lethal and subviable lines, analysed at E14.5. Results: Virtually all mutant embryos show multiple abnormal phenotypes and amongst the 42 lines these affect most organ systems. Within each mutant line, the phenotypes of individual embryos form distinct but overlapping sets. Subcutaneous edema, malformations of the heart or great vessels, abnormalities in forebrain morphology and the musculature of the eyes are all prevalent phenotypes, as is loss or abnormal size of the hypoglossal nerve. Conclusions: Overall, the most striking finding is that no matter how profound the malformation, each phenotype shows highly variable penetrance within a mutant line. These findings have challenging implications for efforts to identify human disease correlates. PMID:27996060

  4. Analysis on influencing factors of abnormal renal function in elderly patients with type 2 diabetes mellitus.

    PubMed

    Chai, Tao; Zhang, Dawei; Li, Zhongxin

    2018-04-12

    To investigate the related influencing factors of abnormal renal function in elderly in patients with type 2 diabetes mellitus (T2DM) and their clinical significance. The clinical data of elderly T2DM patients hospitalized in Beijing Luhe Hospital from January 2013 to June2016 were retrospectively analyzed. According to their glomerular filtration rate (GFR) levels, these patients were divided into GFR ≥90 mL/min/1.73m2 group (Group A), GFR =60-90 mL/min/1.73m2 group (Group B), and GFR <60 mL/min/1.73m2 group (Group C, i.e., abnormal renal function group). Clinical and laboratory indicators were compared among each group. A total of 614 elderly T2DM patients were collected and divided into Group A (n=186), Group B (n=280) and Group C (n=148, 24.10%). Among them, patients clinically diagnosed with diabetic nephropathy (DN) accounted for 13.68%, and those complicated with high blood pressure (HBP) accounted for 61.40%. In Group C, DN accounted for only 29.73%. In elderly T2DM patients, HBP course, systolic blood pressure (SBP), diastolic blood pressure (DBP), 2h postprandial blood glucose (2hPBG), serum total cholesterol (TC) and blood uric acid (BUA) were independent influencing factors associated with abnormal renal function, among which HBP had a more significant impact on abnormal renal function. With the increase of blood pressure (BP) level, the extension in the course of DM, the increase in urinary albumin/creatinine (Alb/Cr) and the decrease in GFR, the incidence rate of abnormal renal function was increased. HBP course, SBP, DBP, 2hPBG, TC and BUA are independent risk factors for abnormal renal function in elderly patients with T2DM. Well-controlled BP and blood glucose are protective factors, and a comprehensive treatment targeting to the above influencing factors has important clinical significance in preventing and delaying the occurrence and development of abnormal renal function.

  5. High pressure liquid level monitor

    DOEpatents

    Bean, Vern E.; Long, Frederick G.

    1984-01-01

    A liquid level monitor for tracking the level of a coal slurry in a high-pressure vessel including a toroidal-shaped float with magnetically permeable bands thereon disposed within the vessel, two pairs of magnetic field generators and detectors disposed outside the vessel adjacent the top and bottom thereof and magnetically coupled to the magnetically permeable bands on the float, and signal processing circuitry for combining signals from the top and bottom detectors for generating a monotonically increasing analog control signal which is a function of liquid level. The control signal may be utilized to operate high-pressure control valves associated with processes in which the high-pressure vessel is used.

  6. Anxiety: A Cause of High Blood Pressure?

    MedlinePlus

    ... cause of high blood pressure? Can anxiety cause high blood pressure? Answers from Sheldon G. Sheps, M.D. Anxiety doesn't cause long-term high blood pressure (hypertension). But episodes of anxiety can cause dramatic, ...

  7. 49 CFR 192.621 - Maximum allowable operating pressure: High-pressure distribution systems.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... STANDARDS Operations § 192.621 Maximum allowable operating pressure: High-pressure distribution systems. (a) No person may operate a segment of a high pressure distribution system at a pressure that exceeds the... segment of a distribution system otherwise designed to operate at over 60 p.s.i. (414 kPa) gage, unless...

  8. 49 CFR 192.621 - Maximum allowable operating pressure: High-pressure distribution systems.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... STANDARDS Operations § 192.621 Maximum allowable operating pressure: High-pressure distribution systems. (a) No person may operate a segment of a high pressure distribution system at a pressure that exceeds the... segment of a distribution system otherwise designed to operate at over 60 p.s.i. (414 kPa) gage, unless...

  9. 49 CFR 192.621 - Maximum allowable operating pressure: High-pressure distribution systems.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... STANDARDS Operations § 192.621 Maximum allowable operating pressure: High-pressure distribution systems. (a) No person may operate a segment of a high pressure distribution system at a pressure that exceeds the... segment of a distribution system otherwise designed to operate at over 60 p.s.i. (414 kPa) gage, unless...

  10. 49 CFR 192.621 - Maximum allowable operating pressure: High-pressure distribution systems.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... STANDARDS Operations § 192.621 Maximum allowable operating pressure: High-pressure distribution systems. (a) No person may operate a segment of a high pressure distribution system at a pressure that exceeds the... segment of a distribution system otherwise designed to operate at over 60 p.s.i. (414 kPa) gage, unless...

  11. 49 CFR 192.621 - Maximum allowable operating pressure: High-pressure distribution systems.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... STANDARDS Operations § 192.621 Maximum allowable operating pressure: High-pressure distribution systems. (a) No person may operate a segment of a high pressure distribution system at a pressure that exceeds the... segment of a distribution system otherwise designed to operate at over 60 p.s.i. (414 kPa) gage, unless...

  12. High-pressure phase transitions of strontianite

    NASA Astrophysics Data System (ADS)

    Speziale, S.; Biedermann, N.; Reichmann, H. J.; Koch-Mueller, M.; Heide, G.

    2015-12-01

    Strontianite (SrCO3) is isostructural to aragonite, a major high-pressure polymorph of calcite. Thus it is a material of interest to investigate the high-pressure phase behavior of aragonite-group minerals. SrCO3 is a common component of natural carbonates and knowing its physical properties at high pressures is necessary to properly model the thermodynamic properties of complex carbonates, which are major crustal minerals but are also present in the deep Earth [Brenker et al., 2007] and control carbon cycling in the Earth's mantle. The few available high-pressure studies of SrCO3 disagree regarding both pressure stability and structure of the post-aragonite phase [Lin & Liu, 1997; Ono et al., 2005; Wang et al. 2015]. To clarify such controversies we investigated the high-pressure behavior of synthetic SrCO3 by Raman spectroscopy. Using a diamond anvil cell we compressed single-crystals or powder of strontianite (synthesized at 4 GPa and 1273 K for 24h in a multi anvil apparatus), and measured Raman scattering up to 78 GPa. SrCO3 presents a complex high-pressure behavior. We observe mode softening above 20 GPa and a phase transition at 25 - 26.9 GPa, which we interpret due to the CO3 groups rotation, in agreement with Lin & Liu [1997]. The lattice modes in the high-pressure phase show dramatic changes which may indicate a change from 9-fold coordinated Sr to a 12-fold-coordination [Ono, 2007]. Our results confirm that the high-pressure phase of strontianite is compatible with Pmmn symmetry. References Brenker, F.E. et al. (2007) Earth and Planet. Sci. Lett., 260, 1; Lin, C.-C. & Liu, L.-G. (1997) J. Phys. Chem. Solids, 58, 977; Ono, S. et al. (2005) Phys. Chem. Minerals, 32, 8; Ono, S. (2007) Phys. Chem. Minerals, 34, 215; Wang, M. et al. (2015) Phys Chem Minerals 42, 517.

  13. High-Pressure Polymorphism in Orthoamphiboles

    NASA Astrophysics Data System (ADS)

    Finkelstein, G. J.; Zhang, D.; Shelton, H.; Dera, P.

    2017-12-01

    Amphiboles are double-chain silicate minerals that are the structurally hydrated counterpart to single-chain, anhydrous pyroxenes. They may play an important role in the earth as a carrier for volatiles in subduction zones, as well as a generator for seismic anisotropy in the upper mantle. Recent work has described previously unrecognized high-pressure polymorphism at low temperatures in a variety of pyroxene minerals, which may be relevant for the structure and dynamics of thick, cold, subducted slabs. However, high-pressure polymorphism in amphiboles above a few GPa in pressure has not been well explored, and if similar polymorphism to pyroxenes exists in this mineral family, it may affect the extent and depth of volatile transport in amphiboles, as well as their rheological properties. At low temperatures and high pressures, orthopyroxenes undergo crystal structure transitions at lower pressures than clinopyroxenes (10-30 GPa vs. > 50 GPa), so for this study we have investigated polymorphism in the anthophyllite-gedrite (Al-free and Al rich) orthoamphibole solid solution series. Using neon gas-loaded diamond anvil cells, we compressed both phases to a maximum pressure of 31 GPa, and observed transitions to new monoclinic structures in both endmembers. In this presentation, we will discuss the details of these transitions and implications for the earth's interior.

  14. Application and possible benefits of high hydrostatic pressure or high-pressure homogenization on beer processing: A review.

    PubMed

    Santos, Lígia Mr; Oliveira, Fabiano A; Ferreira, Elisa Hr; Rosenthal, Amauri

    2017-10-01

    Beer is the most consumed beverage in the world, especially in countries such as USA, China and Brazil.It is an alcoholic beverage made from malted cereals, and the barley malt is the main ingredient, added with water, hops and yeast. High-pressure processing is a non-traditional method to preserve food and beverages. This technology has become more interesting compared to heat pasteurization, due to the minimal changes it brings to the original nutritional and sensory characteristics of the product, and it comprises two processes: high hydrostatic pressure, which is the most industrially used process, and high-pressure homogenization. The use of high pressure almost does not affect the molecules that are responsible for the aroma and taste, pigments and vitamins compared to the conventional thermal processes. Thus, the products processed by high-pressure processing have similar characteristics compared to fresh products, including beer. The aim of this paper was to review what has been investigated about beer processing using this technology regarding the effects on physicochemical, microbiology and sensory characteristics and related issues. It is organized by processing steps, since high pressure can be applied to malting, mashing, boiling, filtration and pasteurization. Therefore, the beer processed with high-pressure processing may have an extended shelf-life because this process can inactivate beer spoilage microorganisms and result in a superior sensory quality related to freshness and preservation of flavors as it does to juices that are already commercialized. However, beyond this application, high-pressure processing can modify protein structures, such as enzymes that are present in the malt, like α- and β-amylases. This process can activate enzymes to promote, for example, saccharification, or instead inactivate at the end of mashing, depending on the pressure the product is submitted, besides being capable of isomerizing hops to raise beer bitterness

  15. High pressure neon arc lamp

    DOEpatents

    Sze, Robert C.; Bigio, Irving J.

    2003-07-15

    A high pressure neon arc lamp and method of using the same for photodynamic therapies is provided. The high pressure neon arc lamp includes a housing that encloses a quantity of neon gas pressurized to about 500 Torr to about 22,000 Torr. At each end of the housing the lamp is connected by electrodes and wires to a pulse generator. The pulse generator generates an initial pulse voltage to breakdown the impedance of the neon gas. Then the pulse generator delivers a current through the neon gas to create an electrical arc that emits light having wavelengths from about 620 nanometers to about 645 nanometers. A method for activating a photosensitizer is provided. Initially, a photosensitizer is administered to a patient and allowed time to be absorbed into target cells. Then the high pressure neon arc lamp is used to illuminate the target cells with red light having wavelengths from about 620 nanometers to about 645 nanometers. The red light activates the photosensitizers to start a chain reaction that may involve oxygen free radicals to destroy the target cells. In this manner, a high pressure neon arc lamp that is inexpensive and efficiently generates red light useful in photodynamic therapy is provided.

  16. Electrokinetic high pressure hydraulic system

    DOEpatents

    Paul, Phillip H.; Rakestraw, David J.

    2000-01-01

    A compact high pressure hydraulic pump having no moving mechanical parts for converting electric potential to hydraulic force. The electrokinetic pump, which can generate hydraulic pressures greater than 2500 psi, can be employed to compress a fluid, either liquid or gas, and manipulate fluid flow. The pump is particularly useful for capillary-base systems. By combining the electrokinetic pump with a housing having chambers separated by a flexible member, fluid flow, including high pressure fluids, is controlled by the application of an electric potential, that can vary with time.

  17. Abnormal stress echocardiography findings in cardiac amyloidosis.

    PubMed

    Ong, Kevin C; Askew, J Wells; Dispenzieri, Angela; Maleszewski, Joseph J; Klarich, Kyle W; Anavekar, Nandan S; Mulvagh, Sharon L; Grogan, Martha

    2016-06-01

    Cardiac involvement in immunoglobulin light chain (amyloid light chain, AL) amyloidosis is characterized by myocardial interstitial deposition but can also cause obstructive deposits in the coronary microvasculature. We retrospectively identified 20 patients who underwent stress echocardiography within 1 year prior to the histologic diagnosis of AL amyloidosis. Only patients with cardiac amyloidosis and no known obstructive coronary disease were included. Stress echocardiograms (13 exercise; 7 dobutamine) were performed for evaluation of dyspnea and/or chest pain. Stress-induced wall motion abnormalities (WMAs) occurred in 11 patients (55%), 4 of whom had normal left ventricular wall thickness. Coronary angiogram was performed in 9 of 11 patients and demonstrated no or mild epicardial coronary artery disease. Seven (54%) patients had an abnormal exercise blood pressure which occurred with similar likelihood between those with and without stress-induced WMAs. Stress-induced WMAs and abnormal exercise blood pressure may occur in patients with cardiac AL amyloidosis despite the absence of significant epicardial coronary artery disease. This finding should raise the possibility of cardiac amyloidosis even in the absence of significant myocardial thickening.

  18. High pressure phase transitions in lawsonite at simultaneous high pressure and temperature: A single crystal study

    NASA Astrophysics Data System (ADS)

    O'Bannon, E. F., III; Vennari, C.; Beavers, C. C. G.; Williams, Q. C.

    2015-12-01

    Lawsonite (CaAl2Si2O7(OH)2.H2O) is a hydrous mineral with a high overall water content of ~11.5 wt.%. It is a significant carrier of water in subduction zones to depths greater than ~150 km. The structure of lawsonite has been extensively studied under room temperature, high-pressure conditions. However, simultaneous high-pressure and high-temperature experiments are scarce. We have conducted synchrotron-based simultaneous high-pressure and temperature single crystal experiments on lawsonite up to a maximum pressure of 8.4 GPa at ambient and high temperatures. We used a natural sample of lawsonite from Valley Ford, California (Sonoma County). At room pressure and temperature lawsonite crystallizes in the orthorhombic system with Cmcm symmetry. Room temperature compression indicates that lawsonite remains in the orthorhombic Cmcm space group up to ~9.0 GPa. Our 5.0 GPa crystal structure is similar to the room pressure structure, and shows almost isotropic compression of the crystallographic axes. Unit cell parameters at 5.0 GPa are a- 5.7835(10), b- 8.694(2), and c- 13.009(3). Single-crystal measurements at simultaneous high-pressure and temperature (e.g., >8.0 GPa and ~100 oC) can be indexed to a monoclinic P-centered unit cell. Interestingly, a modest temperature increase of ~100 oC appears to initiate the orthorhombic to monoclinic phase transition at ~0.6-2.4 GPa lower than room temperature compression studies have shown. There is no evidence of dehydration or H atom disorder under these conditions. This suggests that the orthorhombic to monoclinic transition could be kinetically impeded at 298 K, and that monoclinic lawsonite could be the dominant water carrier through much of the depth range of upper mantle subduction processes.

  19. Hydraulic High Pressure Valve Controller Using the In-Situ Pressure Difference

    NASA Technical Reports Server (NTRS)

    Badescu, Mircea (Inventor); Bar-Cohen, Yoseph (Inventor); Hall, Jeffery L. (Inventor); Sherrit, Stewart (Inventor); Bao, Xiaoqi (Inventor)

    2016-01-01

    A hydraulic valve controller that uses an existing pressure differential as some or all of the power source for valve operation. In a high pressure environment, such as downhole in an oil or gas well, the pressure differential between the inside of a pipe and the outside of the pipe may be adequately large to drive a linear slide valve. The valve is operated hydraulically by a piston in a bore. When a higher pressure is applied to one end of the bore and a lower pressure to the other end, the piston moves in response to the pressure differential and drives a valve attached to it. If the pressure differential is too small to drive the piston at a sufficiently high speed, a pump is provided to generate a larger pressure differential to be applied. The apparatus is conveniently constructed using multiport valves, which can be rotary valves.

  20. Electrokinetically pumped high pressure sprays

    DOEpatents

    Schoeniger, Joseph S [Oakland, CA; Paul, Phillip H [Livermore, CA; Schoeniger, Luke [Pittsford, NY

    2005-11-01

    An electrokinetic pump capable of producing high pressure is combined with a nozzle having a submicron orifice to provide a high pressure spray device. Because of its small size, the device can be contained within medical devices such as an endoscope for delivering biological materials such as DNA, chemo therapeutic agents, or vaccines to tissues and cells.

  1. Electrokinetically pumped high pressure sprays

    DOEpatents

    Schoeniger, Joseph S.; Paul, Phillip H.; Schoeniger, Luke

    2002-01-01

    An electrokinetic pump capable of producing high pressure is combined with a nozzle having a submicron orifice to provide a high pressure spray device. Because of its small size, the device can be contained within medical devices such as an endoscope for delivering biological materials such as DNA, chemo therapeutic agents, or vaccines to tissues and cells.

  2. Rotigotine Improves Abnormal Circadian Rhythm of Blood Pressure in Parkinson's Disease.

    PubMed

    Oka, Hisayoshi; Nakahara, Atuso; Umehara, Tadashi

    2018-05-15

    Cardiovascular autonomic failure is commonly associated with Parkinson's disease (PD), affecting the daily lives of patients. Rotigotine was recently reported not to influence cardiovascular autonomic responses in contrast to other dopaminergic drugs. The effect of rotigotine on daily blood pressure (BP) fluctuations might reflect autonomic failure in patients with PD. Twenty-five PD patients who were receiving rotigotine and 12 patients not receiving rotigotine were recruited. Systolic BP during the daytime and nighttime was measured by 24-h BP monitoring at an interval of 2 years. The patients were divided into 3 groups according to the BP fluctuation type: dippers (nocturnal fall in BP ≥10%), non-dippers (0-10%), and risers (< 0%). The time course of BP was compared between the patients given rotigotine and those not given rotigotine. Among the 25 patients who received rotigotine, the BP type worsened in 2 patients, was unchanged in 16 patients, and improved in 7 patients. Among the 12 patients who were not receiving rotigotine, the BP type worsened in 5 patients, was unchanged in 4 patients, and improved only in 3 patients (p = 0.042). Rotigotine improves the abnormal circadian rhythm of BP in patients with PD. Rotigotine was suggested to have favorable effects on cardiovascular autonomic responses and circadian rhythm in patients with PD. © 2018 S. Karger AG, Basel.

  3. Office blood pressure, ambulatory blood pressure monitoring, and echocardiographic abnormalities in women with polycystic ovary syndrome: role of obesity and androgen excess.

    PubMed

    Luque-Ramírez, Manuel; Martí, David; Fernández-Durán, Elena; Alpañés, Macarena; Álvarez-Blasco, Francisco; Escobar-Morreale, Héctor F

    2014-03-01

    Whether or not blood pressure (BP) and heart function of women with polycystic ovary syndrome (PCOS) are altered remains unclear, albeit subtle abnormalities in the regulation of BP observed in these women might suggest a mild masculinization of their cardiovascular system. To study the influence of obesity and androgen excess on BP and echocardiographic profiles of women with the syndrome, we conducted a cross-sectional case-control study comparing office and ambulatory BP monitoring, as well as echocardiographic assessments, in 63 premenopausal women with the classic phenotype, 33 nonhyperandrogenic women with regular menses, and 25 young men. Forty-nine subjects were lean and 72 had weight excess (body mass index ≥25 kg/m(2)). Participants had no previous history of hypertension and were nonsmokers. Men showed the highest BP readings, and the lowest readings were observed in control women, whereas women with PCOS had intermediate values. Undiagnosed hypertension was more common in subjects with weight excess irrespective of sex and hyperandrogenism. Women with PCOS and weight excess showed frequencies of previously undiagnosed hypertension that were similar to those of men with weight excess and higher than those observed in nonhyperandrogenic women. Lastly, male sex, weight excess and hypertension, the latter in men as well as in women with PCOS, increased left ventricular wall thickness. In summary, our results show that patients with classic PCOS and weight excess frequently have undiagnosed BP abnormalities, leading to target organ damage.

  4. High-pressure applications in medicine and pharmacology

    NASA Astrophysics Data System (ADS)

    Silva, Jerson L.; Foguel, Debora; Suarez, Marisa; Gomes, Andre M. O.; Oliveira, Andréa C.

    2004-04-01

    High pressure has emerged as an important tool to tackle several problems in medicine and biotechnology. Misfolded proteins, aggregates and amyloids have been studied, which point toward the understanding of the protein misfolding diseases. High hydrostatic pressure (HHP) has also been used to dissociate non-amyloid aggregates and inclusion bodies. The diverse range of diseases that result from protein misfolding has made this theme an important research focus for pharmaceutical and biotech companies. The use of high pressure promises to contribute to identifying the mechanisms behind these defects and creating therapies against these diseases. High pressure has also been used to study viruses and other infectious agents for the purpose of sterilization and in the development of vaccines. Using pressure, we have detected the presence of a ribonucleoprotein intermediate, where the coat protein is partially unfolded but bound to RNA. These intermediates are potential targets for antiviral compounds. The ability of pressure to inactivate viruses, prions and bacteria has been evaluated with a view toward the applications of vaccine development and virus sterilization. Recent studies demonstrate that pressure causes virus inactivation while preserving the immunogenic properties. There is increasing evidence that a high-pressure cycle traps a virus in the 'fusion intermediate state', not infectious but highly immunogenic.

  5. High Blood Pressure in Pregnancy

    MedlinePlus

    ... of the baby. Controlling your blood pressure during pregnancy and getting regular prenatal care are important for ... your baby. Treatments for high blood pressure in pregnancy may include close monitoring of the baby, lifestyle ...

  6. On high-pressure melting of tantalum

    NASA Astrophysics Data System (ADS)

    Luo, Sheng-Nian; Swift, Damian C.

    2007-01-01

    The issues related to high-pressure melting of Ta are discussed within the context of diamond-anvil cell (DAC) and shock wave experiments, theoretical calculations and common melting models. The discrepancies between the extrapolations of the DAC melting curve and the melting point inferred from shock wave experiments, cannot be reconciled either by superheating or solid-solid phase transition. The failure to reproduce low-pressure DAC melting curve by melting models such as dislocation-mediated melting and the Lindemann law, and molecular dynamics and quantum mechanics-based calculations, undermines their predictions at moderate and high pressures. Despite claims to the contrary, the melting curve of Ta (as well as Mo and W) remains inconclusive at high pressures.

  7. Picosecond High Pressure Gas Switch Experiment

    DTIC Science & Technology

    1993-06-01

    the calculated pulse waveform for a much higher voltage and pressure switch . Also, a discussion of the modifications made on an existing pulse...s 80 8 ~ 60 J 40 .. : ~--~: __ ~’----~-~ 0.1 10 100 1000 Frequency Figure 7. Output switch recovery. Conclusion The high- pressure switch has...effective in matching experimental results, and should thus be useful in the design of high-voltage and pressure switch configurations

  8. Laser-machined microcavities for simultaneous measurement of high-temperature and high-pressure.

    PubMed

    Ran, Zengling; Liu, Shan; Liu, Qin; Huang, Ya; Bao, Haihong; Wang, Yanjun; Luo, Shucheng; Yang, Huiqin; Rao, Yunjiang

    2014-08-07

    Laser-machined microcavities for simultaneous measurement of high-temperature and high-pressure are demonstrated. These two cascaded microcavities are an air cavity and a composite cavity including a section of fiber and an air cavity. They are both placed into a pressure chamber inside a furnace to perform simultaneous pressure and high-temperature tests. The thermal and pressure coefficients of the short air cavity are ~0.0779 nm/°C and ~1.14 nm/MPa, respectively. The thermal and pressure coefficients of the composite cavity are ~32.3 nm/°C and ~24.4 nm/MPa, respectively. The sensor could be used to separate temperature and pressure due to their different thermal and pressure coefficients. The excellent feature of such a sensor head is that it can withstand high temperatures of up to 400 °C and achieve precise measurement of high-pressure under high temperature conditions.

  9. High blood pressure and eye disease

    MedlinePlus

    ... this page: //medlineplus.gov/ency/article/000999.htm High blood pressure and eye disease To use the sharing features on this page, please enable JavaScript. High blood pressure can damage blood vessels in the retina . The ...

  10. High-pressure liquid-monopropellant strand combustion.

    NASA Technical Reports Server (NTRS)

    Faeth, G. M.

    1972-01-01

    Examination of the influence of dissolved gases on the state of the liquid surface during high-pressure liquid-monopropellant combustion through the use of a strand burning experiment. Liquid surface temperatures were measured, using fine-wire thermocouples, during the strand combustion of ethyl nitrate, normal propyl nitrate, and propylene glycol dinitrate at pressures up to 81 atm. These measurements were compared with the predictions of a variable-property gas-phase analysis assuming an infinite activation energy for the decomposition reaction. The state of the liquid surface was estimated using a conventional low-pressure phase equilibrium model, as well as a high-pressure version that considered the presence of dissolved combustion-product gases in the liquid phase. The high-pressure model was found to give a superior prediction of measured liquid surface temperatures. Computed total pressures required for the surface to reach its critical mixing point during strand combustion were found to be in the range from 2.15 to 4.62 times the critical pressure of the pure propellant. Computed dissolved gas concentrations at the liquid surface were in the range from 35 to 50% near the critical combustion condition.

  11. Abnormal high surface heat flow caused by the Emeishan mantle plume

    NASA Astrophysics Data System (ADS)

    Jiang, Qiang; Qiu, Nansheng; Zhu, Chuanqing

    2016-04-01

    It is commonly believed that increase of heat flow caused by a mantle plume is small and transient. Seafloor heat flow data near the Hawaiian hotspot and the Iceland are comparable to that for oceanic lithosphere elsewhere. Numerical modeling of the thermal effect of the Parana large igneous province shows that the added heat flow at the surface caused by the magmatic underplating is less than 5mW/m2. However, the thermal effect of Emeishan mantle plume (EMP) may cause the surface hear-flow abnormally high. The Middle-Late Emeishan mantle plume is located in the western Yangtze Craton. The Sichuan basin, to the northeast of the EMP, is a superimposed basin composed of Paleozoic marine carbonate rocks and Mesozoic-Cenozoic terrestrial clastic rocks. The vitrinite reflectance (Ro) data as a paleogeothermal indicator records an apparent change of thermal regime of the Sichuan basin. The Ro profiles from boreholes and outcrops which are close to the center of the basalt province exhibit a 'dog-leg' style at the unconformity between the Middle and Upper Permian, and they show significantly higher gradients in the lower subsection (pre-Middle Permian) than the Upper subsection (Upper Permian to Mesozoic). Thermal history inversion based on these Ro data shows that the lower subsection experienced a heat flow peak much higher than that of the upper subsection. The abnormal heat flow in the Sichuan basin is consistent with the EMP in temporal and spatial distribution. The high-temperature magmas from deep mantle brought heat to the base of the lithosphere, and then large amount of heat was conducted upwards, resulting in the abnormal high surface heat flow.

  12. NETL- High-Pressure Combustion Research Facility

    ScienceCinema

    None

    2018-02-14

    NETL's High-Pressure Combustion Facility is a unique resource within the National Laboratories system. It provides the test capabilities needed to evaluate new combustion concepts for high-pressure, high-temperature hydrogen and natural gas turbines. These concepts will be critical for the next generation of ultra clean, ultra efficient power systems.

  13. [The high pressure life of piezophiles].

    PubMed

    Oger, Philippe; Cario, Anaïs

    2014-01-01

    The deep biosphere is composed of very different biotopes located in the depth of the oceans, the ocean crust or the lithosphere. Although very different, deep biosphere biotopes share one common feature, high hydrostatic pressure. The deep biosphere is colonized by specific organisms, called piezophiles, that are able to grow under high hydrostatic pressure. Bacterial piezophiles are mainly psychrophiles belonging to five genera of γ-proteobacteria, Photobacterium, Shewanella, Colwellia, Psychromonas and Moritella, while piezophilic Archaea are mostly (hyper)thermophiles from the Thermococcales. None of these genera are specific for the deep biosphere. High pressure deeply impacts the activity of cells and cellular components, and reduces the activity of numerous key processes, eventually leading to cell death of piezosensitive organisms. Biochemical and genomic studies yield a fragmented view on the adaptive mechanisms in piezophiles. It is yet unclear whether piezophilic adaptation requires the modification of a few genes, or metabolic pathways, or a more profound reorganization of the genome, the fine tuning of gene expression to compensate the pressure-induced loss of activity of the proteins most affected by high pressure, or a stress-like physiological cell response. In contrast to what has been seen for thermophily or halophily, the adaptation to high pressure is diffuse in the genome and may concern only a small fraction of the genes. © Société de Biologie, 2014.

  14. Intra-ocular pressure normalization technique and equipment

    NASA Technical Reports Server (NTRS)

    Baehr, E. F. (Inventor)

    1979-01-01

    A method and apparatus is described for safely reducing abnormally high intraocular pressure in an eye during a predetermined time interval. This allows maintenance of normal intraocular pressure during glaucoma surgery. A pressure regulator of the spring-biassed diaphragm type is provided with additional bias by a column of liquid. The hypodermic needle can be safely inserted into the anterior chamber of the eye. Liquid is then bled out of the column to reduce the bias on the diaphragm of the pressure regulator and, consequently, the output pressure of the regulator. This lowering pressure of the regulator also occurs in the eye by means of a small second bleed path provided between the pressure regulator and the hypodermic needle.

  15. Cathode fall thickness of abnormal glow discharges between parallel-plane electrodes in different radii at low pressure

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Fu, Yangyang; Luo, Haiyun; Zou, Xiaobing

    2015-02-15

    In order to investigate the influence of electrode radius on the characteristics of cathode fall thickness, experiments of low-pressure (20 Pa ≤ p ≤ 30 Pa) abnormal glow discharge were carried out between parallel-plane electrodes in different radii keeping gap distance unchanged. Axial distributions of light intensity were obtained from the discharge images captured using a Charge Coupled Device camera. The assumption that the position of the negative glow peak coincides with the edge of cathode fall layer was verified based on a two-dimensional model, and the cathode fall thicknesses, d{sub c}, were calculated from the axial distributions of light intensity. It was observedmore » that the position of peak emission shifts closer to the cathode as current or pressure grows. The dependence of cathode fall thickness on the gas pressure and normalized current J/p{sup 2} was presented, and it was found that for discharges between electrodes in large radius the curves of pd{sub c} against J/p{sup 2} were superimposed on each other, however, this phenomenon will not hold for discharges between the smaller electrodes. The reason for this phenomenon is that the transverse diffusions of charged particles are not the same in two gaps between electrodes with different radii.« less

  16. High-pressure high-temperature phase diagram of organic crystal paracetamol

    DOE PAGES

    Smith, Spencer J.; Montgomery, Jeffrey M.; Vohra, Yogesh K.

    2016-01-06

    High-pressure high-temperature (HPHT) Raman spectroscopy studies have been performed on the organic crystal paracetamol in a diamond anvil cell utilizing boron-doped heating diamond anvil. Isobaric measurements were conducted at pressures up to 8.5 GPa and temperature up to 520 K in five different experiments. Solid state phase transitions from monoclinic Form I → orthorhombic Form II were observed at various pressures and temperatures as well as transitions from Form II → unknown Form IV. The melting temperature for paracetamol was observed to increase with increasing pressures to 8.5 GPa. As a result, this new data is combined with previous ambientmore » temperature high-pressure Raman and X- ray diffraction data to create the first HPHT phase diagram of paracetamol.« less

  17. High-pressure high-temperature phase diagram of organic crystal paracetamol

    NASA Astrophysics Data System (ADS)

    Smith, Spencer J.; Montgomery, Jeffrey M.; Vohra, Yogesh K.

    2016-01-01

    High-pressure high-temperature (HPHT) Raman spectroscopy studies have been performed on the organic crystal paracetamol in a diamond anvil cell utilizing boron-doped heating diamond anvil. Isobaric measurements were conducted at pressures up to 8.5 GPa and temperature up to 520 K in five different experiments. Solid state phase transitions from monoclinic Form I  →  orthorhombic Form II were observed at various pressures and temperatures as well as transitions from Form II  →  unknown Form IV. The melting temperature for paracetamol was observed to increase with increasing pressures to 8.5 GPa. This new data is combined with previous ambient temperature high-pressure Raman and x-ray diffraction data to create the first HPHT phase diagram of paracetamol.

  18. High-speed pressure clamp.

    PubMed

    Besch, Stephen R; Suchyna, Thomas; Sachs, Frederick

    2002-10-01

    We built a high-speed, pneumatic pressure clamp to stimulate patch-clamped membranes mechanically. The key control element is a newly designed differential valve that uses a single, nickel-plated piezoelectric bending element to control both pressure and vacuum. To minimize response time, the valve body was designed with minimum dead volume. The result is improved response time and stability with a threefold decrease in actuation latency. Tight valve clearances minimize the steady-state air flow, permitting us to use small resonant-piston pumps to supply pressure and vacuum. To protect the valve from water contamination in the event of a broken pipette, an optical sensor detects water entering the valve and increases pressure rapidly to clear the system. The open-loop time constant for pressure is 2.5 ms for a 100-mmHg step, and the closed-loop settling time is 500-600 micros. Valve actuation latency is 120 micros. The system performance is illustrated for mechanically induced changes in patch capacitance.

  19. Portable high precision pressure transducer system

    DOEpatents

    Piper, Thomas C.; Morgan, John P.; Marchant, Norman J.; Bolton, Steven M.

    1994-01-01

    A high precision pressure transducer system for checking the reliability of a second pressure transducer system used to monitor the level of a fluid confined in a holding tank. Since the response of the pressure transducer is temperature sensitive, it is continually housed in an battery powered oven which is configured to provide a temperature stable environment at specified temperature for an extended period of time. Further, a high precision temperature stabilized oscillator and counter are coupled to a single board computer to accurately determine the pressure transducer oscillation frequency and convert it to an applied pressure. All of the components are powered by the batteries which during periods of availability of line power are charged by an on board battery charger. The pressure readings outputs are transmitted to a line printer and a vacuum florescent display.

  20. Portable high precision pressure transducer system

    DOEpatents

    Piper, T.C.; Morgan, J.P.; Marchant, N.J.; Bolton, S.M.

    1994-04-26

    A high precision pressure transducer system is described for checking the reliability of a second pressure transducer system used to monitor the level of a fluid confined in a holding tank. Since the response of the pressure transducer is temperature sensitive, it is continually housed in an battery powered oven which is configured to provide a temperature stable environment at specified temperature for an extended period of time. Further, a high precision temperature stabilized oscillator and counter are coupled to a single board computer to accurately determine the pressure transducer oscillation frequency and convert it to an applied pressure. All of the components are powered by the batteries which during periods of availability of line power are charged by an on board battery charger. The pressure readings outputs are transmitted to a line printer and a vacuum fluorescent display. 2 figures.

  1. HIGH PRESSURE COAL COMBUSTON KINETICS PROJECT

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Stefano Orsino

    As part of the U.S. Department of Energy (DoE) initiative to improve the efficiency of coal-fired power plants and reduce the pollution generated by these facilities, DOE has funded the High-Pressure Coal Combustion Kinetics (HPCCK) Projects. A series of laboratory experiments were conducted on selected pulverized coals at elevated pressures with the specific goals to provide new data for pressurized coal combustion that will help extend to high pressure and validate models for burnout, pollutant formation, and generate samples of solid combustion products for analyses to fill crucial gaps in knowledge of char morphology and fly ash formation. Two seriesmore » of high-pressure coal combustion experiments were performed using SRI's pressurized radiant coal flow reactor. The first series of tests characterized the near burner flame zone (NBFZ). Three coals were tested, two high volatile bituminous (Pittsburgh No.8 and Illinois No.6), and one sub-bituminous (Powder River Basin), at pressures of 1, 2, and 3 MPa (10, 20, and 30 atm). The second series of experiments, which covered high-pressure burnout (HPBO) conditions, utilized a range of substantially longer combustion residence times to produce char burnout levels from 50% to 100%. The same three coals were tested at 1, 2, and 3 MPa, as well as at 0.2 MPa. Tests were also conducted on Pittsburgh No.8 coal in CO2 entrainment gas at 0.2, 1, and 2 MPa to begin establishing a database of experiments relevant to carbon sequestration techniques. The HPBO test series included use of an impactor-type particle sampler to measure the particle size distribution of fly ash produced under complete burnout conditions. The collected data have been interpreted with the help of CFD and detailed kinetics simulation to extend and validate devolatilization, char combustion and pollutant model at elevated pressure. A global NOX production sub-model has been proposed. The submodel reproduces the performance of the detailed chemical

  2. Low Blood Pressure

    MedlinePlus

    ... to low blood pressure are an abnormally low heart rate ( bradycardia ), problems with heart valves , heart attack and ... occurred. Is low blood pressure related to low heart rate? Find out . This content was last reviewed October ...

  3. Abnormal Pressure-Induced Photoluminescence Enhancement and Phase Decomposition in Pyrochlore La2 Sn2 O7.

    PubMed

    Zhao, Yongsheng; Li, Nana; Xu, Cong; Li, Yan; Zhu, Hongyu; Zhu, Pinwen; Wang, Xin; Yang, Wenge

    2017-09-01

    La 2 Sn 2 O 7 is a transparent conducting oxide (TCO) material and shows a strong near-infrared fluorescent at ambient pressure and room temperature. By in situ high-pressure research, pressure-induced visible photoluminescence (PL) above 2 GPa near 2 eV is observed. The emergence of unusual visible PL behavior is associated with the seriously trigonal lattice distortion of the SnO 6 octehedra, under which the Sn-O1-Sn exchange angle θ is decreased below 22.1 GPa, thus enhancing the PL quantum yield leading to Sn 3 P 1 → 1 S 0 photons transition. Besides, bandgap closing followed by bandgap opening and the visible PL appearing at the point of the gap reversal, which is consistent with high-pressure phase decomposition, are discovered. The high-pressure PL results demonstrate a well-defined pressure window (7-17 GPa) with flat maximum PL yielding and sharp edges at both ends, which may provide a great calibration tool for pressure sensors for operation in the deep sea or at extreme conditions. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  4. Introduction to High-Pressure Science

    NASA Astrophysics Data System (ADS)

    Dera, Przemyslaw

    To a common person pressure is just one of the parameters that describe a thermodynamic state. We all hear about it in everyday weather forecasts, and most of us do not associate it with anything particularly unique. Probably the most intuitive idea of the effect of high-pressure comes from movies, where submarine sinking to the bottom of the ocean is gradually crushed by the surrounding water, until its hull implodes. Why, then hundreds of scientists throughout the world spent their lifelong careers studying high-pressure phenomena? Despite all the developments in experimental technologies and instrumentation, modern scientist has very few tools that allow him or her to "grab" two atoms and bring them, in a very controllable way, closer together. Being able to achieve this task means the ability to directly probe interatomic interaction potentials and can cause transformations as dramatic as turning of a common gas into solid metal. Before the reader delves into more advanced topics described later in this book, this introductory chapter aims to explain several elementary, but extremely important concepts in high-pressure science. We will start with a brief discussion of laboratory devices used to produce pressure, address the issue of hydrostaticity, elastic and plastic compression, and will conclude with a short discussion of unique effects of anisotropic stress.

  5. 30 CFR 57.13021 - High-pressure hose connections.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 30 Mineral Resources 1 2010-07-01 2010-07-01 false High-pressure hose connections. 57.13021... Air and Boilers § 57.13021 High-pressure hose connections. Except where automatic shutoff valves are...-pressure hose lines of 3/4-inch inside diameter or larger, and between high-pressure hose lines of 3/4-inch...

  6. Abnormal formation velocities and applications to pore pressure prediction

    NASA Astrophysics Data System (ADS)

    Liu, Libin; Shen, Guoqiang; Wang, Zhentao; Yang, Hongwei; Han, Hongwei; Cheng, Yuanfeng

    2018-06-01

    The pore pressure is a vital concept to the petroleum industry and cannot be ignored by either reservoir engineers or geoscientists. Based on theoretical analyses of effective stresses and the grain packing model, a new equation is proposed for predicting pore pressures from formation velocity data. The predictions agree well with both measured pressures and estimations using Eaton's empirical equation, but the application of the new equation to seismic data is simple and convenient. One application example shows that the identification of sweet spots is much easier using pore pressure data than with inverted seismic velocity data. In another application example using field seismic data, a distribution of overpressured strata is revealed, which is a crucial clue for petroleum generation and accumulation. Still, the accuracy of pore pressure prediction is hardly always guaranteed, mainly owing to the complexity of the real geology and the suitability of specific assumptions about the underlying rock physics.

  7. Sleep Deprivation: A Cause of High Blood Pressure?

    MedlinePlus

    ... Is it true that sleep deprivation can cause high blood pressure? Answers from Sheldon G. Sheps, M.D. Possibly. It's thought ... night may be at higher risk of developing high blood pressure or worsening already high blood pressure. There's also ...

  8. Criterion for Identifying Vortices in High-Pressure Flows

    NASA Technical Reports Server (NTRS)

    Bellan, Josette; Okong'o, Nora

    2007-01-01

    A study of four previously published computational criteria for identifying vortices in high-pressure flows has led to the selection of one of them as the best. This development can be expected to contribute to understanding of high-pressure flows, which occur in diverse settings, including diesel, gas turbine, and rocket engines and the atmospheres of Jupiter and other large gaseous planets. Information on the atmospheres of gaseous planets consists mainly of visual and thermal images of the flows over the planets. Also, validation of recently proposed computational models of high-pressure flows entails comparison with measurements, which are mainly of visual nature. Heretofore, the interpretation of images of high-pressure flows to identify vortices has been based on experience with low-pressure flows. However, high-pressure flows have features distinct from those of low-pressure flows, particularly in regions of high pressure gradient magnitude caused by dynamic turbulent effects and by thermodynamic mixing of chemical species. Therefore, interpretations based on low-pressure behavior may lead to misidentification of vortices and other flow structures in high-pressure flows. The study reported here was performed in recognition of the need for one or more quantitative criteria for identifying coherent flow structures - especially vortices - from previously generated flow-field data, to complement or supersede the determination of flow structures by visual inspection of instantaneous fields or flow animations. The focus in the study was on correlating visible images of flow features with various quantities computed from flow-field data.

  9. High pressure oxygen furnace

    DOEpatents

    Morris, D.E.

    1992-07-14

    A high temperature high pressure oxygen furnace having a hybrid partially externally heated construction is disclosed. A metallic bar fabricated from an alloy having a composition of at least 45% nickel, 15% chrome, and 10% tungsten is utilized, the preferred alloy including 55% nickel, 22% chrome, 14% tungsten, 2% molybdenum, 3% iron (maximum) and 5% cobalt (maximum). The disclosed alloy is fabricated into 11/4 inch bar stock and has a length of about 17 inches. This bar stock is gun drilled for over 16 inches of its length with 0.400 inch aperture to define a closed high temperature, high pressure oxygen chamber. The opposite and closed end of the bar is provided with a small support aperture into which both a support and a thermocouple can be inserted. The closed end of the gun drilled bar is inserted into an oven, preferably heated by standard nickel chrome electrical elements and having a heavily insulated exterior. 5 figs.

  10. High pressure oxygen furnace

    DOEpatents

    Morris, Donald E.

    1992-01-01

    A high temperature high pressure oxygen furnace having a hybrid partially externally heated construction is disclosed. A metallic bar fabricated from an alloy having a composition of at least 45% nickel, 15% chrome, and 10% tungsten is utilized (the preferred alloy including 55% nickel, 22% chrome, 14% tungsten, 2% molybdenum, 3% iron (maximum) and 5% cobalt (maximum). The disclosed alloy is fabricated into 11/4 inch bar stock and has a length of about 17 inches. This bar stock is gun drilled for over 16 inches of its length with 0.400 inch aperture to define a closed high temperature, high pressure oxygen chamber. The opposite and closed end of the bar is provided with a small support aperture into which both a support and a thermocouple can be inserted. The closed end of the gun drilled bar is inserted into an oven, preferably heated by standard nickel chrome electrical elements and having a heavily insulated exterior.

  11. Functional Sub-states by High-pressure Macromolecular Crystallography.

    PubMed

    Dhaussy, Anne-Claire; Girard, Eric

    2015-01-01

    At the molecular level, high-pressure perturbation is of particular interest for biological studies as it allows trapping conformational substates. Moreover, within the context of high-pressure adaptation of deep-sea organisms, it allows to decipher the molecular determinants of piezophily. To provide an accurate description of structural changes produced by pressure in a macromolecular system, developments have been made to adapt macromolecular crystallography to high-pressure studies. The present chapter is an overview of results obtained so far using high-pressure macromolecular techniques, from nucleic acids to virus capsid through monomeric as well as multimeric proteins.

  12. Esophageal motility abnormalities in gastroesophageal reflux disease

    PubMed Central

    Martinucci, Irene; de Bortoli, Nicola; Giacchino, Maria; Bodini, Giorgia; Marabotto, Elisa; Marchi, Santino; Savarino, Vincenzo; Savarino, Edoardo

    2014-01-01

    Esophageal motility abnormalities are among the main factors implicated in the pathogenesis of gastroesophageal reflux disease. The recent introduction in clinical and research practice of novel esophageal testing has markedly improved our understanding of the mechanisms contributing to the development of gastroesophageal reflux disease, allowing a better management of patients with this disorder. In this context, the present article intends to provide an overview of the current literature about esophageal motility dysfunctions in patients with gastroesophageal reflux disease. Esophageal manometry, by recording intraluminal pressure, represents the gold standard to diagnose esophageal motility abnormalities. In particular, using novel techniques, such as high resolution manometry with or without concurrent intraluminal impedance monitoring, transient lower esophageal sphincter (LES) relaxations, hypotensive LES, ineffective esophageal peristalsis and bolus transit abnormalities have been better defined and strongly implicated in gastroesophageal reflux disease development. Overall, recent findings suggest that esophageal motility abnormalities are increasingly prevalent with increasing severity of reflux disease, from non-erosive reflux disease to erosive reflux disease and Barrett’s esophagus. Characterizing esophageal dysmotility among different subgroups of patients with reflux disease may represent a fundamental approach to properly diagnose these patients and, thus, to set up the best therapeutic management. Currently, surgery represents the only reliable way to restore the esophagogastric junction integrity and to reduce transient LES relaxations that are considered to be the predominant mechanism by which gastric contents can enter the esophagus. On that ground, more in depth future studies assessing the pathogenetic role of dysmotility in patients with reflux disease are warranted. PMID:24868489

  13. Esophageal motility abnormalities in gastroesophageal reflux disease.

    PubMed

    Martinucci, Irene; de Bortoli, Nicola; Giacchino, Maria; Bodini, Giorgia; Marabotto, Elisa; Marchi, Santino; Savarino, Vincenzo; Savarino, Edoardo

    2014-05-06

    Esophageal motility abnormalities are among the main factors implicated in the pathogenesis of gastroesophageal reflux disease. The recent introduction in clinical and research practice of novel esophageal testing has markedly improved our understanding of the mechanisms contributing to the development of gastroesophageal reflux disease, allowing a better management of patients with this disorder. In this context, the present article intends to provide an overview of the current literature about esophageal motility dysfunctions in patients with gastroesophageal reflux disease. Esophageal manometry, by recording intraluminal pressure, represents the gold standard to diagnose esophageal motility abnormalities. In particular, using novel techniques, such as high resolution manometry with or without concurrent intraluminal impedance monitoring, transient lower esophageal sphincter (LES) relaxations, hypotensive LES, ineffective esophageal peristalsis and bolus transit abnormalities have been better defined and strongly implicated in gastroesophageal reflux disease development. Overall, recent findings suggest that esophageal motility abnormalities are increasingly prevalent with increasing severity of reflux disease, from non-erosive reflux disease to erosive reflux disease and Barrett's esophagus. Characterizing esophageal dysmotility among different subgroups of patients with reflux disease may represent a fundamental approach to properly diagnose these patients and, thus, to set up the best therapeutic management. Currently, surgery represents the only reliable way to restore the esophagogastric junction integrity and to reduce transient LES relaxations that are considered to be the predominant mechanism by which gastric contents can enter the esophagus. On that ground, more in depth future studies assessing the pathogenetic role of dysmotility in patients with reflux disease are warranted.

  14. Fuel droplet burning rates at high pressures

    NASA Technical Reports Server (NTRS)

    Canada, G. S.; Faeth, G. M.

    1972-01-01

    Combustion of methanol, ethanol, propanol -1, n - pentane, n - heptane and n - decane was observed in air under natural convection conditions at pressures up to 100 atm. The droplets were simulated by porous spheres with diameters in the range 0.63 - 1.90 cm. The pressure levels of the tests were high enough so that near critical combustion was observed for methanol and ethanol. Measurements were made of the burning rate and liquid surface temperatures of the fuels. The data were compared with variable property analysis of the combustion process, including a correction for natural convection. The burning rate predictions of the various theories were similar and in fair agreement with the data. The high pressure theory gave the best prediction for the liquid surface temperatures of ethanol and propanol -1 at high pressure. The experiments indicated the approach of critical burning conditions for methanol and ethanol at pressures on the order of 80 - 100 atm, which was in good agreement with the predictions of both the low and high pressure analysis.

  15. Raman spectroscopy of triolein under high pressures

    NASA Astrophysics Data System (ADS)

    Tefelski, D. B.; Jastrzębski, C.; Wierzbicki, M.; Siegoczyński, R. M.; Rostocki, A. J.; Wieja, K.; Kościesza, R.

    2010-03-01

    This article presents results of the high pressure Raman spectroscopy of triolein. Triolein, a triacylglyceride (TAG) of oleic acid, is an unsaturated fat, present in natural oils such as olive oil. As a basic food component and an energy storage molecule, it has considerable importance for food and fuel industries. To generate pressure in the experiment, we used a high-pressure cylindrical chamber with sapphire windows, presented in (R.M. Siegoczyński, R. Kościesza, D.B. Tefelski, and A. Kos, Molecular collapse - modification of the liquid structure induced by pressure in oleic acid, High Press. Res. 29 (2009), pp. 61-66). Pressure up to 750 MPa was applied. A Raman spectrometer in "macro"-configuration was employed. Raman spectroscopy provides information on changes of vibrational modes related to structural changes of triolein under pressure. Interesting changes in the triglyceride C‒H stretching region at 2650-3100 cm-1 were observed under high-pressures. Changes were also observed in the ester carbonyl (C˭ O) stretching region 1700-1780 cm-1 and the C‒C stretching region at 1050-1150 cm-1. The overall luminescence of the sample decreased under pressure, making it possible to set longer spectrum acquisition time and obtain more details of the spectrum. The registered changes suggest that the high-pressure solid phase of triolein is organized as β-polymorphic, as was reported in (C. Akita, T. Kawaguchi, and F. Kaneko, Structural study on polymorphism of cis-unsaturated triacylglycerol: Triolein, J. Phys. Chem. B 110 (2006), pp. 4346-4353; E. Da Silva and D. Rousseau, Molecular order and thermodynamics of the solid-liquid transition in triglycerides via Raman spectroscopy, Phys. Chem. Chem. Phys. 10 (2008), pp. 4606-4613) (with temperature-induced phase transitions). The research has shown that Raman spectroscopy in TAGs under pressure reveals useful information about its structural changes.

  16. High Pressure Elastic Constants of High-Pressure Iron Analog Osmium

    NASA Astrophysics Data System (ADS)

    Godwal, B. K.; Geballe, Z.; Jeanloz, R.

    2011-12-01

    Understanding the elasticity of hcp iron is important both for ascertaining the stable phase and for explaining the observed seismic anomalies of Earth's inner core. A systematic experimental study of analog materials is warranted because experiments at inner-core conditions remain exceptionally challenging and theory has yielded conflicting results for iron. The deformation of hexagonal close-packed (hcp) Os, an analog for the high-pressure hcp form of Fe, has been characterized under non-hydrostatic stresses using synchrotron-based angular-dispersive radial x-ray diffraction to pressures of 60 GPa at room temperature. Starting with published ultrasonic values of elastic constants and previous measurements of linear and volume compressibilities, we estimate the single-crystal elasticity tensor of osmium to 60 GPa and find that the crystal orientation with the largest shear modulus, (002), accommodates the largest shear stress (10 GPa) and a differential strain surpassing the Voigt iso-strain limit. We find the conventional elastic model, bounded by Reuss (iso-stress) and Voigt limits, inadequate for explaining our measurements. Instead, we infer that plastic deformation limits the amount of shear stress supported by the crystal planes near the a-axis, causing the more elastically strong c-axis to support the majority of the differential strain. This conclusion is consistent with the elasto-plastic self-consistent approach used to model the effect of plasticity on the high-pressure deformation of hcp-Co (Merkel et al, PRB 79, 064110 (2009)). Importantly, we document a strength anisotropy so large that the Voigt (elastic) limit is clearly surpassed.

  17. Preeclampsia and High Blood Pressure During Pregnancy

    MedlinePlus

    ... AQ FREQUENTLY ASKED QUESTIONS FAQ034 PREGNANCY Preeclampsia and High Blood Pressure During Pregnancy • What is high blood pressure? • What is chronic hypertension? • What is gestational hypertension? • ...

  18. Single Molecule Raman Spectroscopy Under High Pressure

    NASA Astrophysics Data System (ADS)

    Fu, Yuanxi; Dlott, Dana

    2014-06-01

    Pressure effects on surface-enhanced Raman scattering spectra of Rhdoamine 6G adsorbed on silver nanoparticle surfaces was studied using a confocal Raman microscope. Colloidal silver nanoparticles were treated with Rhodamine 6G (R6G) and its isotopically substituted partner, R6G-d4. Mixed isotopomers let us identify single-molecule spectra, since multiple-molecule spectra would show vibrational transitions from both species. The nanoparticles were embedded into a poly vinyl alcohol film, and loaded into a diamond anvil cell for the high-pressure Raman scattering measurement. Argon was the pressure medium. Ambient pressure Raman scattering spectra showed few single-molecule spectra. At moderately high pressure ( 1GPa), a surprising effect was observed. The number of sites with observable spectra decreased dramatically, and most of the spectra that could be observed were due to single molecules. The effects of high pressure suppressed the multiple-molecule Raman sites, leaving only the single-molecule sites to be observed.

  19. 7 CFR 58.219 - High pressure pumps and lines.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 7 Agriculture 3 2010-01-01 2010-01-01 false High pressure pumps and lines. 58.219 Section 58.219....219 High pressure pumps and lines. High pressure lines may be cleaned-in-place and shall be of such construction that dead ends, valves and the high pressure pumps can be disassembled for hand cleaning. The high...

  20. High pressure studies of potassium perchlorate

    DOE PAGES

    Pravica, Michael; Wang, Yonggang; Sneed, Daniel; ...

    2016-07-29

    Two experiments are reported on KClO 4 at extreme conditions. A static high pressure Raman study was first conducted to 18.9 GPa. Evidence for at least two new phases was observed: one between 2.4 and 7.7 GPa (possibly sluggish), and the second near 11.7 GPa. Then, the X-ray induced decomposition rate of potassium perchlorate (KClO 4 hv→ KCl + 2O 2) was studied up to 15.2 GPa. The time-dependent growth of KCl and O 2 was monitored. The decomposition rate slowed at higher pressures. As a result, we present the first direct evidence for O 2 crystallization at higher pressures,more » demonstrating that O 2 molecules aggregate at high pressure.« less

  1. Determinants and clinical impact of pressure drift in manoscan anorectal high resolution manometry system.

    PubMed

    Parthasarathy, G; McMaster, J; Feuerhak, K; Zinsmeister, A R; Bharucha, A E

    2016-09-01

    Pressure drift (PD), resulting from differences between room and body temperature, reduces the accuracy of pressure measurements with the Manoscan high resolution manometry (HRM) system. Our aims were to assess PD during anorectal HRM. Defined as the residual pressure measured immediately after the catheter was removed, PD was calculated for each sensor and averaged across all 12 sensors in 454 anorectal consecutive studies recorded with 3 HRM catheters. The relationship between PD and study duration, number of prior uses of a catheter, and peak and average pressure exposure during a study were evaluated. The correction of PD with a software algorithm (thermal compensation) was evaluated in 76 studies where the most distal sensor was outside the body. The PD varied among sensors and across catheters. The average PD (7.3 ± 0.2 mmHg) was significantly greater for newer catheters, during longer studies, or when sensors were exposed to higher pressures. Together, these factors explained 81% of the variance in overall PD. After thermal compensation, the uncorrected median PD for the most distal sensor was 2.5-5 mmHg over the study duration. Correcting this changed the interpretation (e.g., as abnormal instead of normal) of at least 1 anorectal parameter in eight of 76 studies. During anorectal HRM, PD declines with catheter use and is greater for newer catheters, when sensors are exposed to higher pressures, and for studies of longer duration. While PD is partially corrected with thermal compensation algorithms, the impact on interpretation is modest. © 2016 John Wiley & Sons Ltd.

  2. Acoustic wave propagation in high-pressure system.

    PubMed

    Foldyna, Josef; Sitek, Libor; Habán, Vladimír

    2006-12-22

    Recently, substantial attention is paid to the development of methods of generation of pulsations in high-pressure systems to produce pulsating high-speed water jets. The reason is that the introduction of pulsations into the water jets enables to increase their cutting efficiency due to the fact that the impact pressure (so-called water-hammer pressure) generated by an impact of slug of water on the target material is considerably higher than the stagnation pressure generated by corresponding continuous jet. Special method of pulsating jet generation was developed and tested extensively under the laboratory conditions at the Institute of Geonics in Ostrava. The method is based on the action of acoustic transducer on the pressure liquid and transmission of generated acoustic waves via pressure system to the nozzle. The purpose of the paper is to present results obtained during the research oriented at the determination of acoustic wave propagation in high-pressure system. The final objective of the research is to solve the problem of transmission of acoustic waves through high-pressure water to generate pulsating jet effectively even at larger distances from the acoustic source. In order to be able to simulate numerically acoustic wave propagation in the system, it is necessary among others to determine dependence of the sound speed and second kinematical viscosity on operating pressure. Method of determination of the second kinematical viscosity and speed of sound in liquid using modal analysis of response of the tube filled with liquid to the impact was developed. The response was measured by pressure sensors placed at both ends of the tube. Results obtained and presented in the paper indicate good agreement between experimental data and values of speed of sound calculated from so-called "UNESCO equation". They also show that the value of the second kinematical viscosity of water depends on the pressure.

  3. Energy Systems High-Pressure Test Laboratory | Energy Systems Integration

    Science.gov Websites

    Facility | NREL Energy Systems High-Pressure Test Laboratory Energy Systems High-Pressure Test Laboratory In the Energy Systems Integration Facility's High-Pressure Test Laboratory, researchers can safely test high-pressure hydrogen components. Photo of researchers running an experiment with a hydrogen fuel

  4. 30 CFR 56.13021 - High-pressure hose connections.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 30 Mineral Resources 1 2010-07-01 2010-07-01 false High-pressure hose connections. 56.13021... and Boilers § 56.13021 High-pressure hose connections. Except where automatic shutoff valves are used, safety chains or other suitable locking devices shall be used at connections to machines of high-pressure...

  5. Magnetization at high pressure in CeP

    NASA Astrophysics Data System (ADS)

    Naka, T.; Matsumoto, T.; Okayama, Y.; Môri, N.; Haga, Y.; Suzuki, T.

    1995-02-01

    We have investigated the pressure dependence of magnetization below 60 K up to 1.6 GPa in the low-carrier concentration system CeP showing two step transitions at T = TL and TH under high pressure. At high pressure, M( P, T) exhibits a maximum at around the lower transition temperature TL. This behavior implies that the magnetic state changes at TL. The pressure dependence of isothermal magnetization M( P) is different above and below TL. In fact, M( P) below TL exhibits a maximum at around 1.4 GPa, whereas M( P) above TL increases steeply with pressure up to 1.6 GPa.

  6. A high-pressure carbon dioxide gasdynamic laser

    NASA Technical Reports Server (NTRS)

    Kuehn, D. M.

    1973-01-01

    A carbon dioxide gasdynamic laser was operated over a range of reservoir pressure and temperature, test-gas mixture, and nozzle geometry. A significant result is the dominant influence of nozzle geometry on laser power at high pressure. High reservoir pressure can be effectively utilized to increase laser power if nozzle geometry is chosen to efficiently freeze the test gas. Maximum power density increased from 3.3 W/cu cm of optical cavity volume for an inefficient nozzle to 83.4 W/cu cm at 115 atm for a more efficient nozzle. Variation in the composition of the test gas also caused large changes in laser power output. Most notable is the influence of the catalyst (helium or water vapor) that was used to depopulate the lower vibrational state of the carbon dioxide. Water caused an extreme deterioration of laser power at high pressure (100 atm), whereas, at low pressure the laser for the two catalysts approached similar values. It appears that at high pressure the depopulation of the upper laser level of the carbon dioxide by the water predominates over the lower state depopulation, thus destroying the inversion.

  7. Trends in high pressure developments for new perspectives

    NASA Astrophysics Data System (ADS)

    Largeteau, Alain; Prakasam, Mythili

    2018-06-01

    Temperature and Pressure are two parameters in the universe, where pressure represents the largest scale in comparison to temperature. The design of high pressure equipment depends mainly on the media used which could be gas, liquid or solid and the objective could be synthesis of materials or in situ characterization. The development of new research fields requiring high pressure equipment which are currently in Bordeaux - France are based on the historical development of high pressure domain initiated by Professor Gerard DEMAZEAU and his team during the last half century, which is discussed here. The main concepts governing the effect of pressure on materials synthesis is by the combination of high pressure and high temperature which are described with apt examples. There is an upsurge in various technologies for strong development for the synthesis of materials to drive several possibilities, for example: to reach very high density to obtain optical ceramics (by conventional SPS), to diminish parameters (P, T, t) of synthesis (by HP-SPS), to sinter at low temperature thermal sensitive composition (by HyS), to consolidate porous materials (by FIP), to densify biocomposite with cold decontamination (by HHP) simultaneously, etc.

  8. Critical cerebral perfusion pressure at high intracranial pressure measured by induced cerebrovascular and intracranial pressure reactivity.

    PubMed

    Bragin, Denis E; Statom, Gloria L; Yonas, Howard; Dai, Xingping; Nemoto, Edwin M

    2014-12-01

    The lower limit of cerebral blood flow autoregulation is the critical cerebral perfusion pressure at which cerebral blood flow begins to fall. It is important that cerebral perfusion pressure be maintained above this level to ensure adequate cerebral blood flow, especially in patients with high intracranial pressure. However, the critical cerebral perfusion pressure of 50 mm Hg, obtained by decreasing mean arterial pressure, differs from the value of 30 mm Hg, obtained by increasing intracranial pressure, which we previously showed was due to microvascular shunt flow maintenance of a falsely high cerebral blood flow. The present study shows that the critical cerebral perfusion pressure, measured by increasing intracranial pressure to decrease cerebral perfusion pressure, is inaccurate but accurately determined by dopamine-induced dynamic intracranial pressure reactivity and cerebrovascular reactivity. Cerebral perfusion pressure was decreased either by increasing intracranial pressure or decreasing mean arterial pressure and the critical cerebral perfusion pressure by both methods compared. Cortical Doppler flux, intracranial pressure, and mean arterial pressure were monitored throughout the study. At each cerebral perfusion pressure, we measured microvascular RBC flow velocity, blood-brain barrier integrity (transcapillary dye extravasation), and tissue oxygenation (reduced nicotinamide adenine dinucleotide) in the cerebral cortex of rats using in vivo two-photon laser scanning microscopy. University laboratory. Male Sprague-Dawley rats. At each cerebral perfusion pressure, dopamine-induced arterial pressure transients (~10 mm Hg, ~45 s duration) were used to measure induced intracranial pressure reactivity (Δ intracranial pressure/Δ mean arterial pressure) and induced cerebrovascular reactivity (Δ cerebral blood flow/Δ mean arterial pressure). At a normal cerebral perfusion pressure of 70 mm Hg, 10 mm Hg mean arterial pressure pulses had no effect on

  9. Nitromethane decomposition under high static pressure.

    PubMed

    Citroni, Margherita; Bini, Roberto; Pagliai, Marco; Cardini, Gianni; Schettino, Vincenzo

    2010-07-29

    The room-temperature pressure-induced reaction of nitromethane has been studied by means of infrared spectroscopy in conjunction with ab initio molecular dynamics simulations. The evolution of the IR spectrum during the reaction has been monitored at 32.2 and 35.5 GPa performing the measurements in a diamond anvil cell. The simulations allowed the characterization of the onset of the high-pressure reaction, showing that its mechanism has a complex bimolecular character and involves the formation of the aci-ion of nitromethane. The growth of a three-dimensional disordered polymer has been evidenced both in the experiments and in the simulations. On decompression of the sample, after the reaction, a continuous evolution of the product is observed with a decomposition into smaller molecules. This behavior has been confirmed by the simulations and represents an important novelty in the scene of the known high-pressure reactions of molecular systems. The major reaction product on decompression is N-methylformamide, the smallest molecule containing the peptide bond. The high-pressure reaction of crystalline nitromethane under irradiation at 458 nm was also experimentally studied. The reaction threshold pressure is significantly lowered by the electronic excitation through two-photon absorption, and methanol, not detected in the purely pressure-induced reaction, is formed. The presence of ammonium carbonate is also observed.

  10. Calculating Mass Diffusion in High-Pressure Binary Fluids

    NASA Technical Reports Server (NTRS)

    Bellan, Josette; Harstad, Kenneth

    2004-01-01

    A comprehensive mathematical model of mass diffusion has been developed for binary fluids at high pressures, including critical and supercritical pressures. Heretofore, diverse expressions, valid for limited parameter ranges, have been used to correlate high-pressure binary mass-diffusion-coefficient data. This model will likely be especially useful in the computational simulation and analysis of combustion phenomena in diesel engines, gas turbines, and liquid rocket engines, wherein mass diffusion at high pressure plays a major role.

  11. High-Pressure Oxygen Generation for Outpost EVA Study

    NASA Technical Reports Server (NTRS)

    Jeng, Frank F.; Conger, Bruce; Ewert, Michael K.; Anderson, Molly S.

    2009-01-01

    The amount of oxygen consumption for crew extravehicular activity (EVA) in future lunar exploration missions will be significant. Eight technologies to provide high pressure EVA O2 were investigated. They are: high pressure O2 storage, liquid oxygen (LOX) storage followed by vaporization, scavenging LOX from Lander followed by vaporization, LOX delivery followed by sorption compression, water electrolysis followed by compression, stand-alone high pressure water electrolyzer, Environmental Control and Life Support System (ECLSS) and Power Elements sharing a high pressure water electrolyzer, and ECLSS and In-Situ Resource Utilization (ISRU) Elements sharing a high pressure electrolyzer. A trade analysis was conducted comparing launch mass and equivalent system mass (ESM) of the eight technologies in open and closed ECLSS architectures. Technologies considered appropriate for the two architectures were selected and suggested for development.

  12. High-pressure Infrared Spectra of Tal and Lawsonite

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Scott,H.; Liu, Z.; Hemley, R.

    2007-01-01

    We present high-pressure infrared spectra of two geologically important hydrous minerals: talc, Mg3Si4O10(OH)2 and lawsonite, CaAl2Si2O7(OH)2{center_dot}H2O,{center_dot}at room temperature. For lawsonite, our data span the far infrared region from 150 to 550 cm-1 and extend to 25 GPa. We combine our new spectroscopic data with previously published high-pressure mid-infrared and Raman data to constrain the Gr{umlt u}neisen parameter and vibrational density of states under pressure. In the case of talc, we present high-pressure infrared data that span both the mid and far infrared from 150 to 3800 cm-1 covering lattice, silicate, and hydroxyl stretching vibrations to a maximum pressure of 30more » GPa. Both phases show remarkable metastability well beyond their nominal maximum thermodynamic stability at simultaneous high-pressure and high-temperature conditions.« less

  13. Nanoshells as a high-pressure gauge

    NASA Astrophysics Data System (ADS)

    Tempere, Jacques; van den Broeck, Nick; Putteneers, Katrijn; Silvera, Isaac

    2012-02-01

    Nanoshells, consisting of multiple spherical layers, have an extensive list of applications, usually performing the function of a probe. We add a new application to this list in the form of a high-pressure gauge in a Diamond Anvil Cell (DAC). In a DAC, where high pressures are reached by pressing two diamonds together, existing gauges fail at higher pressures because of calibration difficulties and obscuring effects in the diamonds. The nanoshell gauge does not face this issue since its optical spectrum can be engineered by altering the thickness of its layers. Furthermore their properties are measured by broad band optical transmission spectroscopy leading to a very large signal-to-noise ratio even in the multi-megabar pressure regime where ruby measurements become challenging. Theoretical calculations based on the Maxwell equations in a spherical geometry combined with the Vinet equation of state show that a three-layer geometry (SiO2-Au-SiO2) indeed has a measurable pressure-dependent optical response desirable for gauges.

  14. Dynamism or Disorder at High Pressures?

    NASA Astrophysics Data System (ADS)

    Angel, R. J.; Bismayer, U.; Marshall, W. G.

    2002-12-01

    Phase transitions in minerals at elevated temperatures typically involve dynamics as a natural consequence of the increase in thermal energy available to the system. Classic examples include quartz, cristobalite, and carbonates in which the high-temperature, high symmetry phase is dynamically disordered. This disorder has important thermodynamic consequences, including displacement and curvature of phase boundaries (e.g. calcite-aragonite). In other minerals such as clinopyroxenes and anorthite feldspar, the dynamic behaviour is restricted to the neighbourhood of the phase transition. The fundamental question is whether increasing pressure generally suppresses such dynamic behaviour (as in anorthite; Angel, 1988), or not. In the latter case it must be included in thermodynamic models of high-pressure phase equilibria and seismological modelling of the mantle; the potential dynamics and softening in stishovite may provide the critical observational constraint on the presence or otherwise of free silica in the lower mantle. We have continued to use the lead phosphate as a prototype ferroelastic in which to understand dynamic behaviour, simply because its dynamics and transition behaviour is far better characterised than any mineral. Furthermore, the phase transition is at a pressure where experimental difficulties do not dominate the experimental results. Our previous neutron diffraction study (Angel et al., 2001) revealed that some disorder, either dynamic or static, is retained in the high-symmetry, high-pressure phase just above the phase transition. New neutron diffraction data on the pure material now suggests that this disorder slowly decreases with increasing pressure until at twice the transition pressure it is ordered. Further data for doped material provides insights into the nature of this disorder. Angel (1988) Amer. Mineral. 73:1114. Angel et al (2001) J PhysC 13: 5353.

  15. Right ventricular pressure response to exercise in adults with isolated ventricular septal defect closed in early childhood.

    PubMed

    Moller, Thomas; Lindberg, Harald; Lund, May Brit; Holmstrom, Henrik; Dohlen, Gaute; Thaulow, Erik

    2018-06-01

    We previously demonstrated an abnormally high right ventricular systolic pressure response to exercise in 50% of adolescents operated on for isolated ventricular septal defect. The present study investigated the prevalence of abnormal right ventricular systolic pressure response in 20 adult (age 30-45 years) patients who underwent surgery for early ventricular septal defect closure and its association with impaired ventricular function, pulmonary function, or exercise capacity. The patients underwent cardiopulmonary tests, including exercise stress echocardiography. Five of 19 patients (26%) presented an abnormal right ventricular systolic pressure response to exercise ⩾ 52 mmHg. Right ventricular systolic function was mixed, with normal tricuspid annular plane systolic excursion and fractional area change, but abnormal tricuspid annular systolic motion velocity (median 6.7 cm/second) and isovolumetric acceleration (median 0.8 m/second2). Left ventricular systolic and diastolic function was normal at rest as measured by the peak systolic velocity of the lateral wall and isovolumic acceleration, early diastolic velocity, and ratio of early diastolic flow to tissue velocity, except for ejection fraction (median 53%). The myocardial performance index was abnormal for both the left and right ventricle. Peak oxygen uptake was normal (mean z score -0.4, 95% CI -2.8-0.3). There was no association between an abnormal right ventricular systolic pressure response during exercise and right or left ventricular function, pulmonary function, or exercise capacity. Abnormal right ventricular pressure response is not more frequent in adult patients compared with adolescents. This does not support the theory of progressive pulmonary vascular disease following closure of left-to-right shunts.

  16. Network Mechanisms Generating Abnormal and Normal Hippocampal High-Frequency Oscillations: A Computational Analysis1,2,3

    PubMed Central

    Catoni, Nicholas

    2015-01-01

    Abstract High-frequency oscillations (HFOs) are an intriguing potential biomarker for epilepsy, typically categorized according to peak frequency as either ripples (100–250 Hz) or fast ripples (>250 Hz). In the hippocampus, fast ripples were originally thought to be more specific to epileptic tissue, but it is still very difficult to distinguish which HFOs are caused by normal versus pathological brain activity. In this study, we use a computational model of hippocampus to investigate possible network mechanisms underpinning normal ripples, pathological ripples, and fast ripples. Our results unify several prior findings regarding HFO mechanisms, and also make several new predictions regarding abnormal HFOs. We show that HFOs are generic, emergent phenomena whose characteristics reflect a wide range of connectivity and network input. Although produced by different mechanisms, both normal and abnormal HFOs generate similar ripple frequencies, underscoring that peak frequency is unable to distinguish the two. Abnormal ripples are generic phenomena that arise when input to pyramidal cells overcomes network inhibition, resulting in high-frequency, uncoordinated firing. In addition, fast ripples transiently and sporadically arise from the precise conditions that produce abnormal ripples. Lastly, we show that such abnormal conditions do not require any specific network structure to produce coherent HFOs, as even completely asynchronous activity is capable of producing abnormal ripples and fast ripples in this manner. These results provide a generic, network-based explanation for the link between pathological ripples and fast ripples, and a unifying description for the entire spectrum from normal ripples to pathological fast ripples. PMID:26146658

  17. A Graphene-Based Resistive Pressure Sensor with Record-High Sensitivity in a Wide Pressure Range

    PubMed Central

    Tian, He; Shu, Yi; Wang, Xue-Feng; Mohammad, Mohammad Ali; Bie, Zhi; Xie, Qian-Yi; Li, Cheng; Mi, Wen-Tian; Yang, Yi; Ren, Tian-Ling

    2015-01-01

    Pressure sensors are a key component in electronic skin (e-skin) sensing systems. Most reported resistive pressure sensors have a high sensitivity at low pressures (<5 kPa) to enable ultra-sensitive detection. However, the sensitivity drops significantly at high pressures (>5 kPa), which is inadequate for practical applications. For example, actions like a gentle touch and object manipulation have pressures below 10 kPa, and 10–100 kPa, respectively. Maintaining a high sensitivity in a wide pressure range is in great demand. Here, a flexible, wide range and ultra-sensitive resistive pressure sensor with a foam-like structure based on laser-scribed graphene (LSG) is demonstrated. Benefitting from the large spacing between graphene layers and the unique v-shaped microstructure of the LSG, the sensitivity of the pressure sensor is as high as 0.96 kPa−1 in a wide pressure range (0 ~ 50 kPa). Considering both sensitivity and pressure sensing range, the pressure sensor developed in this work is the best among all reported pressure sensors to date. A model of the LSG pressure sensor is also established, which agrees well with the experimental results. This work indicates that laser scribed flexible graphene pressure sensors could be widely used for artificial e-skin, medical-sensing, bio-sensing and many other areas. PMID:25721159

  18. Menopause and High Blood Pressure: What's the Connection?

    MedlinePlus

    ... pattern of blood pressure in postmenopausal women with hypertension in Nigeria. Ethiopian Journal of Health Sciences. 2014;24:153. April 28, 2016 Original article: http://www.mayoclinic.org/diseases-conditions/high-blood-pressure/expert-answers/menopause-and-high-blood-pressure/FAQ- ...

  19. HIGH PRESSURE GAS REGULATOR

    DOEpatents

    Ramage, R.W.

    1962-05-01

    A gas regulator operating on the piston and feedback principle is described. The device is particularly suitable for the delicate regulation of high pressure, i.e., 10,000 psi and above, gas sources, as well as being perfectly adaptable for use on gas supplies as low as 50 psi. The piston is adjustably connected to a needle valve and the movement of the piston regulates the flow of gas from the needle valve. The gas output is obtained from the needle valve. Output pressure is sampled by a piston feedback means which, in turn, regulates the movement of the main piston. When the output is other than the desired value, the feedback system initiates movement of the main piston to allow the output pressure to be corrected or to remain constant. (AEC)

  20. Carbon in iron phases under high pressure

    NASA Astrophysics Data System (ADS)

    Huang, L.; Skorodumova, N. V.; Belonoshko, A. B.; Johansson, B.; Ahuja, R.

    2005-11-01

    The influence of carbon impurities on the properties of iron phases (bcc, hcp, dhcp, fcc) has been studied using the first-principles projector augmented-wave (PAW) method for a wide pressure range. It is shown that the presence of ~6 at. % of interstitial carbon has a little effect on the calculated structural sequence of the iron phases under high pressure. The bcc -> hcp transition both for pure iron and iron containing carbon takes place around 9 GPa. According to the enthalpies comparison, the solubility of carbon into the iron solid is decreased by high pressure. The coexistence of iron carbide (Fe3C) + pure hcp Fe is most stable phase at high pressure compared with other phases. Based on the analysis of the pressure-density dependences for Fe3C and hcp Fe, we suggest that there might be some fraction of iron carbide present in the core.

  1. High-pressure-assisted synthesis of high-volume ZnGeP2 polycrystalline

    NASA Astrophysics Data System (ADS)

    Huang, Changbao; Wu, Haixin; Xiao, Ruichun; Chen, Shijing; Ma, Jiaren

    2018-06-01

    The pnictide and chalcogenide semiconductors are promising materials for the applications in the field of photoelectric. High-purity and high-volume polycrystalline required in the real-world applications is hard to be synthesized due to the high vapor pressure of phosphorus and sulfur components at high temperature. A new high-pressure-resisted method was used to investigate the synthesis of the nonlinear-optical semiconductor ZnGeP2. The high-purity ZnGeP2 polycrystalline material of approximately 500 g was synthesized in one run, which enables the preparation of nominally stoichiometric material. Since increasing internal pressure resistance of quartz crucible and reducing the reaction space, the high-pressure-resisted method can be used to rapidly synthesize other pnictide and chalcogenide semiconductors and control the components ratio.

  2. Pressure ratio effects on self-similar scalar mixing of high-pressure turbulent jets in a pressurized volume

    NASA Astrophysics Data System (ADS)

    Ruggles, Adam; Pickett, Lyle; Frank, Jonathan

    2014-11-01

    Many real world combustion devices model fuel scalar mixing by assuming the self-similar argument established in atmospheric free jets. This allows simple prediction of the mean and rms fuel scalar fields to describe the mixing. This approach has been adopted in super critical liquid injections found in diesel engines where the liquid behaves as a dense fluid. The effect of pressure ratio (injection to ambient) when the ambient is greater than atmospheric pressure, upon the self-similar collapse has not been well characterized, particularly the effect upon mixing constants, jet spreading rates, and virtual origins. Changes in these self-similar parameters control the reproduction of the scalar mixing statistics. This experiment investigates the steady state mixing of high pressure ethylene jets in a pressurized pure nitrogen environment for various pressure ratios and jet orifice diameters. Quantitative laser Rayleigh scattering imaging was performed utilizing a calibration procedure to account for the pressure effects upon scattering interference within the high-pressure vessel.

  3. Association of left ventricular structural and functional abnormalities with aortic and brachial blood pressure variability in hypertensive patients: the SAFAR study.

    PubMed

    Chi, C; Yu, S-K; Auckle, R; Argyris, A A; Nasothimiou, E; Tountas, C; Aissopou, E; Blacher, J; Safar, M E; Sfikakis, P P; Zhang, Y; Protogerou, A D

    2017-10-01

    Both brachial blood pressure (BP) level and its variability (BPV) significantly associate with left ventricular (LV) structure and function. Recent studies indicate that aortic BP is superior to brachial BP in the association with LV abnormalities. However, it remains unknown whether aortic BPV better associate with LV structural and functional abnormalities. We therefore aimed to investigate and compare aortic versus brachial BPV, in terms of the identification of LV abnormalities. Two hundred and three participants who underwent echocardiography were included in this study. Twenty-four-hour aortic and brachial ambulatory BP was measured simultaneously by a validated BP monitor (Mobil-O-Graph, Stolberg, Germany) and BPV was calculated with validated formulae. LV mass and LV diastolic dysfunction (LVDD) were evaluated by echocardiography. The prevalence of LV hypertrophy (LVH) and LVDD increased significantly with BPV indices (P⩽0.04) in trend tests. After adjustment to potential confounders, only aortic average real variability (ARV), but not brachial ARV or weighted s.d. (wSD, neither aortic nor brachial) significantly associated with LV mass index (P=0.02). Similar results were observed in logistic regression. After adjustment, only aortic ARV significantly associated with LVH (odds ratio (OR) and 95% confidence interval (CI): 2.28 (1.08, 4.82)). As for LVDD, neither the brachial nor the aortic 24-hour wSD, but the aortic and brachial ARV, associated with LVDD significantly, with OR=2.28 (95% CI: (1.03, 5.02)) and OR=2.36 (95% CI: (1.10, 5.05)), respectively. In summary, aortic BPV, especially aortic ARV, seems to be superior to brachial BPV in the association of LV structural and functional abnormalities.

  4. Characteristics of low-and high-fat beef patties: effect of high hydrostatic pressure.

    PubMed

    Carballo, J; Fernandez, P; Carrascosa, A V; Solas, M T; Colmenero, F J

    1997-01-01

    The purpose of this study was to analyze the consequences of applying high pressures (100 and 300 MPa for 5 or 20 min) on characteristics such as water- and fat-binding properties, texture, color, microstructure, and microbiology of low-fat (9.2%) and high-fat (20.3%) beef patties. In nonpressurized patties, the low-fat product exhibited significantly poorer (P < 0.05) binding properties and higher (P < 0.05) Kramer shear force and Kramer energy than did high-fat patties. Although high pressure did not clearly influence the binding properties of low- and high-fat beef patties, it did produce a rise in the Kramer shear force and energy which were more pronounced at 300 MPa. High pressures altered patty color, the extent of alteration depending on fat content, pressure, and pressurizing time. Pressurizing high- and low-fat beef patties at 300 MPa not only produced a lethal effect (P < 0.05) on microorganisms, but caused sublethal damage as well.

  5. Logical Issues With the Pressure Natriuresis Theory of Chronic Hypertension

    PubMed Central

    DiCarlo, Stephen E.; Morris, R. Curtis

    2016-01-01

    Abstract The term “abnormal pressure natriuresis” refers to a subnormal effect of a given level of blood pressure (BP) on sodium excretion. It is widely believed that abnormal pressure natriuresis causes an initial increase in BP to be sustained. We refer to this view as the “pressure natriuresis theory of chronic hypertension.” The proponents of the theory contend that all forms of chronic hypertension are sustained by abnormal pressure natriuresis, irrespective of how hypertension is initiated. This theory would appear to follow from “the three laws of long-term arterial pressure regulation” stated by Guyton and Coleman more than 3 decades ago. These “laws” articulate the concept that for a given level of salt intake, the relationship between arterial pressure and sodium excretion determines the chronic level of BP. Here, we review and examine the recent assertion by Beard that these “laws” of long-term BP control amount to nothing more than a series of tautologies. Our analysis supports Beard’s assertion, and also indicates that contemporary investigators often use tautological reasoning in support of the pressure natriuresis theory of chronic hypertension. Although the theory itself is not a tautology, it does not appear to be testable because it holds that abnormal pressure natriuresis causes salt-induced hypertension to be sustained through abnormal increases in cardiac output that are too small to be detected. PMID:28637271

  6. High-pressure, High-temperature Deformation Experiment Using the New Generation Griggs-type Apparatus

    PubMed Central

    Précigout, Jacques; Stünitz, Holger; Pinquier, Yves; Champallier, Rémi; Schubnel, Alexandre

    2018-01-01

    In order to address geological processes at great depths, rock deformation should ideally be tested at high pressure (> 0.5 GPa) and high temperature (> 300 °C). However, because of the low stress resolution of current solid-pressure-medium apparatuses, high-resolution measurements are today restricted to low-pressure deformation experiments in the gas-pressure-medium apparatus. A new generation of solid-medium piston-cylinder ("Griggs-type") apparatus is here described. Able to perform high-pressure deformation experiments up to 5 GPa and designed to adapt an internal load cell, such a new apparatus offers the potential to establish a technological basis for high-pressure rheology. This paper provides video-based detailed documentation of the procedure (using the "conventional" solid-salt assembly) to perform high-pressure, high-temperature experiments with the newly designed Griggs-type apparatus. A representative result of a Carrara marble sample deformed at 700 °C, 1.5 GPa and 10-5 s-1 with the new press is also given. The related stress-time curve illustrates all steps of a Griggs-type experiment, from increasing pressure and temperature to sample quenching when deformation is stopped. Together with future developments, the critical steps and limitations of the Griggs apparatus are then discussed. PMID:29683444

  7. Rheological assessment of nanofluids at high pressure high temperature

    NASA Astrophysics Data System (ADS)

    Kanjirakat, Anoop; Sadr, Reza

    2013-11-01

    High pressure high temperature (HPHT) fluids are commonly encountered in industry, for example in cooling and/or lubrications applications. Nanofluids, engineered suspensions of nano-sized particles dispersed in a base fluid, have shown prospective as industrial cooling fluids due to their enhanced rheological and heat transfer properties. Nanofluids can be potentially utilized in oil industry for drilling fluids and for high pressure water jet cooling/lubrication in machining. In present work rheological characteristics of oil based nanofluids are investigated at HPHT condition. Nanofluids used in this study are prepared by dispersing commercially available SiO2 nanoparticles (~20 nm) in a mineral oil. The basefluid and nanofluids with two concentrations, namely 1%, and 2%, by volume, are considered in this investigation. The rheological characteristics of base fluid and the nanofluids are measured using an industrial HPHT viscometer. Viscosity values of the nanofluids are measured at pressures of 100 kPa to 42 MPa and temperatures ranging from 25°C to 140°C. The viscosity values of both nanofluids as well as basefluid are observed to have increased with the increase in pressure. Funded by Qatar National Research Fund (NPRP 08-574-2-239).

  8. Experimental investigation on pressurization performance of cryogenic tank during high-temperature helium pressurization process

    NASA Astrophysics Data System (ADS)

    Lei, Wang; Yanzhong, Li; Yonghua, Jin; Yuan, Ma

    2015-03-01

    Sufficient knowledge of thermal performance and pressurization behaviors in cryogenic tanks during rocket launching period is of importance to the design and optimization of a pressurization system. In this paper, ground experiments with liquid oxygen (LO2) as the cryogenic propellant, high-temperature helium exceeding 600 K as the pressurant gas, and radial diffuser and anti-cone diffuser respectively at the tank inlet were performed. The pressurant gas requirements, axial and radial temperature distributions, and energy distributions inside the propellant tank were obtained and analyzed to evaluate the comprehensive performance of the pressurization system. It was found that the pressurization system with high-temperature helium as the pressurant gas could work well that the tank pressure was controlled within a specified range and a stable discharging liquid rate was achieved. For the radial diffuser case, the injected gas had a direct impact on the tank inner wall. The severe gas-wall heat transfer resulted in about 59% of the total input energy absorbed by the tank wall. For the pressurization case with anti-cone diffuser, the direct impact of high-temperature gas flowing toward the liquid surface resulted in a greater deal of energy transferred to the liquid propellant, and the percentage even reached up to 38%. Moreover, both of the two cases showed that the proportion of energy left in ullage to the total input energy was quite small, and the percentage was only about 22-24%. This may indicate that a more efficient diffuser should be developed to improve the pressurization effect. Generally, the present experimental results are beneficial to the design and optimization of the pressurization system with high-temperature gas supplying the pressurization effect.

  9. High-pressure crystallography of periodic and aperiodic crystals

    PubMed Central

    Hejny, Clivia; Minkov, Vasily S.

    2015-01-01

    More than five decades have passed since the first single-crystal X-ray diffraction experiments at high pressure were performed. These studies were applied historically to geochemical processes occurring in the Earth and other planets, but high-pressure crystallography has spread across different fields of science including chemistry, physics, biology, materials science and pharmacy. With each passing year, high-pressure studies have become more precise and comprehensive because of the development of instrumentation and software, and the systems investigated have also become more complicated. Starting with crystals of simple minerals and inorganic compounds, the interests of researchers have shifted to complicated metal–organic frameworks, aperiodic crystals and quasicrystals, molecular crystals, and even proteins and viruses. Inspired by contributions to the microsymposium ‘High-Pressure Crystallography of Periodic and Aperiodic Crystals’ presented at the 23rd IUCr Congress and General Assembly, the authors have tried to summarize certain recent results of single-crystal studies of molecular and aperiodic structures under high pressure. While the selected contributions do not cover the whole spectrum of high-pressure research, they demonstrate the broad diversity of novel and fascinating results and may awaken the reader’s interest in this topic. PMID:25866659

  10. A reactor for high-throughput high-pressure nuclear magnetic resonance spectroscopy

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Beach, N. J.; Knapp, S. M. M.; Landis, C. R., E-mail: landis@chem.wisc.edu

    The design of a reactor for operando nuclear magnetic resonance (NMR) monitoring of high-pressure gas-liquid reactions is described. The Wisconsin High Pressure NMR Reactor (WiHP-NMRR) design comprises four modules: a sapphire NMR tube with titanium tube holder rated for pressures as high as 1000 psig (68 atm) and temperatures ranging from −90 to 90 °C, a gas circulation system that maintains equilibrium concentrations of dissolved gases during gas-consuming or gas-releasing reactions, a liquid injection apparatus that is capable of adding measured amounts of solutions to the reactor under high pressure conditions, and a rapid wash system that enables the reactor tomore » be cleaned without removal from the NMR instrument. The WiHP-NMRR is compatible with commercial 10 mm NMR probes. Reactions performed in the WiHP-NMRR yield high quality, information-rich, and multinuclear NMR data over the entire reaction time course with rapid experimental turnaround.« less

  11. New developments in high pressure x-ray spectroscopy beamline at High Pressure Collaborative Access Team

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Xiao, Y. M., E-mail: yxiao@carnegiescience.edu; Chow, P.; Boman, G.

    The 16 ID-D (Insertion Device - D station) beamline of the High Pressure Collaborative Access Team at the Advanced Photon Source is dedicated to high pressure research using X-ray spectroscopy techniques typically integrated with diamond anvil cells. The beamline provides X-rays of 4.5-37 keV, and current available techniques include X-ray emission spectroscopy, inelastic X-ray scattering, and nuclear resonant scattering. The recent developments include a canted undulator upgrade, 17-element analyzer array for inelastic X-ray scattering, and an emission spectrometer using a polycapillary half-lens. Recent development projects and future prospects are also discussed.

  12. 10 Ways to Control High Blood Pressure without Medication

    MedlinePlus

    10 ways to control high blood pressure without medication By making these 10 lifestyle changes, you can lower your blood pressure and reduce ... treating your high blood pressure. If you successfully control your blood pressure with a healthy lifestyle, you ...

  13. High-pressure mechanical instability in rocks

    USGS Publications Warehouse

    Byerlee, J.D.; Brace, W.F.

    1969-01-01

    At a confining pressure of a few kilobars, deformation of many sedimentary rocks, altered mafic rocks, porous volcanic rocks, and sand is ductile, in that instabilities leading to audible elastic shocks are absent. At pressures of 7 to 10 kilobars, however, unstable faulting and stick-slip in certain of these rocks was observed. This high pressure-low temperature instability might be responsible for earthquakes in deeply buried sedimentary or volcanic sequences.

  14. High-pressure mechanical instability in rocks.

    PubMed

    Byerlee, J D; Brace, W F

    1969-05-09

    At a confining pressure of a few kilobars, deformation of many sedimentary rocks, altered mafic rocks, porous volcanic rocks, and sand is ductile, in that instabilities leading to audible elastic shocks are absent. At pressures of 7 to 10 kilobars, however, unstable faulting and stick-slip in certain of these rocks was observed. This high pressure-low temperature instability might be responsible for earthquakes in deeply buried sedimentary or volcanic sequences.

  15. High-pressure portable pneumatic drive unit.

    PubMed

    Hete, B F; Savage, M; Batur, C; Smith, W A; Golding, L A; Nosé, Y

    1989-12-01

    The left ventricular assist device (LVAD) of the Cleveland Clinic Foundation (CCF) is a single-chamber assist pump, driven by a high-pressure pneumatic cylinder. A low-cost, portable driver that will allow cardiac care patients, with a high-pressure pneumatic ventricle assist, more freedom of movement has been developed. The compact and light-weight configuration can provide periods of 2 h of freedom from a fixed position driver and does not use exotic technology.

  16. Microstructures define melting of molybdenum at high pressures

    NASA Astrophysics Data System (ADS)

    Hrubiak, Rostislav; Meng, Yue; Shen, Guoyin

    2017-03-01

    High-pressure melting anchors the phase diagram of a material, revealing the effect of pressure on the breakdown of the ordering of atoms in the solid. An important case is molybdenum, which has long been speculated to undergo an exceptionally steep increase in melting temperature when compressed. On the other hand, previous experiments showed nearly constant melting temperature as a function of pressure, in large discrepancy with theoretical expectations. Here we report a high-slope melting curve in molybdenum by synchrotron X-ray diffraction analysis of crystalline microstructures, generated by heating and subsequently rapidly quenching samples in a laser-heated diamond anvil cell. Distinct microstructural changes, observed at pressures up to 130 gigapascals, appear exclusively after melting, thus offering a reliable melting criterion. In addition, our study reveals a previously unsuspected transition in molybdenum at high pressure and high temperature, which yields highly textured body-centred cubic nanograins above a transition temperature.

  17. Microstructures define melting of molybdenum at high pressures

    PubMed Central

    Hrubiak, Rostislav; Meng, Yue; Shen, Guoyin

    2017-01-01

    High-pressure melting anchors the phase diagram of a material, revealing the effect of pressure on the breakdown of the ordering of atoms in the solid. An important case is molybdenum, which has long been speculated to undergo an exceptionally steep increase in melting temperature when compressed. On the other hand, previous experiments showed nearly constant melting temperature as a function of pressure, in large discrepancy with theoretical expectations. Here we report a high-slope melting curve in molybdenum by synchrotron X-ray diffraction analysis of crystalline microstructures, generated by heating and subsequently rapidly quenching samples in a laser-heated diamond anvil cell. Distinct microstructural changes, observed at pressures up to 130 gigapascals, appear exclusively after melting, thus offering a reliable melting criterion. In addition, our study reveals a previously unsuspected transition in molybdenum at high pressure and high temperature, which yields highly textured body-centred cubic nanograins above a transition temperature. PMID:28248309

  18. Development of a gas-pressurized high-pressure μSR setup at the RIKEN-RAL Muon Facility

    NASA Astrophysics Data System (ADS)

    Watanabe, I.; Ishii, Y.; Kawamata, T.; Suzuki, T.; Pratt, F. L.; Done, R.; Chowdhury, M.; Goodway, C.; Dreyer, J.; Smith, C.; Southern, M.

    2009-04-01

    The development and testing of a gas-pressurized μSR setup for the RIKEN-RAL Muon Facility is reported. In collaboration with the high-pressure group of the ISIS Facility at the Rutherford Appleton Laboratory, a gas-pressurized setup for a pulsed muon beam at the RIKEN-RAL Muon Facility has been constructed in 2008. The sample is pressurized by helium gas and the designed maximum pressure is 6.4 kbar. The high-pressure cell can be cooled down to 2 K using an existing cryostat. Tests were made injecting the double-pulsed muon beam into a high-purity sample of Sn powder, which confirmed that the maximum pressure achieved at 2 K was close to the designed pressure.

  19. Contribution of autonomic dysfunction to abnormal exercise blood pressure in type 2 diabetes mellitus.

    PubMed

    Weston, Kassia S; Sacre, Julian W; Jellis, Christine L; Coombes, Jeff S

    2013-01-01

    The purpose of this study was to compare the presence and severity of autonomic dysfunction in type 2 diabetes mellitus patients, with and without exaggerated blood pressure responses to exercise. We performed a cross-sectional analysis of 98 patients with type 2 diabetes mellitus (aged 59±9). Both time (standard deviation of RR intervals, root-mean-square of successive RR interval differences) and frequency (total spectral power, high frequency, low frequency, very low frequency) domains of heart rate variability were analysed in a 5 min recording at rest and 20 min after a maximal treadmill test. An exaggerated blood pressure response to exercise was identified by peak blood pressure ≥190/105 mmHg (women) or ≥210/105 mmHg (men). Each group of either exaggerated exercise blood pressure response or normal blood pressure response consisted of 49 patients. At rest there were no significant differences between groups for all time and frequency domain parameters of heart rate variability. Post-exercise, there was a significant (p<0.05) reduction in the SDNN, RMSSD and TP in the exaggerated exercise blood pressure group. Independent correlates (p<0.01) of exercise systolic blood pressure included post-exercise TP, resting systolic blood pressure, cardiac autonomic neuropathy and beta-blockers (beta=-0.28, adj. R² = 0.32, p<0.001). Reduced post-exercise heart rate variability in patients with type 2 diabetes mellitus, with an exaggerated exercise blood pressure response suggests preclinical autonomic dysfunction characterized by impaired vagal modulation. Copyright © 2012 Sports Medicine Australia. Published by Elsevier Ltd. All rights reserved.

  20. Microstructural characteristics of Hadfield steel solidified under high pressure

    NASA Astrophysics Data System (ADS)

    Zhang, Yuzi; Li, Yanguo; Han, Bo; Zhang, Fucheng; Qian, Lihe

    2011-12-01

    Samples of Hadfield steel, high manganese austenite steel with 13 wt% manganese and 1.2 wt% carbon, were solidified under a pressure of 6 GPa. The microstructures of the samples were analyzed by metallography and X-ray diffraction. The results indicate that the solidification microstructure of the Hadfield steel was remarkably refined under high pressure. Additionally, the carbide of M23C6 was obtained in the Hadfield steel solidified under high pressure was different from the carbide of M3C obtained by solidification under normal pressure. Furthermore, high pressure promoted the formation of orientational solidified microstructure of the Hadfield steel.

  1. Amorphization of Serpentine at High Pressure and High Temperature

    PubMed

    Irifune; Kuroda; Funamori; Uchida; Yagi; Inoue; Miyajima

    1996-06-07

    Pressure-induced amorphization of serpentine was observed at temperatures of 200° to 300°C and pressures of 14 to 27 gigapascals with a combination of a multianvil apparatus and synchrotron radiation. High-pressure phases then crystallized rapidly when the temperature was increased to 400°C. These results suggest that amorphization of serpentine is an unlikely mechanism for generating deep-focus earthquakes, as the temperatures of subducting slabs are significantly higher than those of the rapid crystallization regime.

  2. High pressure processing of fresh seafoods.

    PubMed

    Simpson, B K

    1998-01-01

    Crude proteolytic enzyme extracts were prepared from the muscle tissues of two fish species, bluefish and sheephead, and subjected to high hydrostatic pressure treatments (from 1,000-3,000 atm), and monitored for residual activity for cathepsin C, collagenase, chymotrypsin-like and trypsin-like enzymes versus homologous enzymes from bovine. The fish enzymes were more sensitive to hydrostatic pressure than the mammalian enzymes. The extent of enzyme inactivation achieved depended on both the amount of pressure applied, the duration of pressurization, and on the source material. Pressure treatment of fresh fish flesh formed products whose color deteriorated (cooked appearance) with increasing pressure as well as holding time. Application of pressure also improved tissue firmness or strength of fresh fish up to 2,000 atm and a holding time of 10 min, beyond which texture generally deteriorated. The combined use of pressure in combination with the broad spectrum protease inhibitor, alpha 2-macroglobulin, enhanced the capacity of the hydrostatic pressure technology to achieve a more lasting inactivation of endogenous enzymes to form stable fish gels.

  3. Cryogenic Transport of High-Pressure-System Recharge Gas

    NASA Technical Reports Server (NTRS)

    Ungar, Eugene K,; Ruemmele, Warren P.; Bohannon, Carl

    2010-01-01

    A method of relatively safe, compact, efficient recharging of a high-pressure room-temperature gas supply has been proposed. In this method, the gas would be liquefied at the source for transport as a cryogenic fluid at or slightly above atmospheric pressure. Upon reaching the destination, a simple heating/expansion process would be used to (1) convert the transported cryogenic fluid to the room-temperature, high-pressure gaseous form in which it is intended to be utilized and (2) transfer the resulting gas to the storage tank of the system to be recharged. In conventional practice for recharging high-pressure-gas systems, gases are transported at room temperature in high-pressure tanks. For recharging a given system to a specified pressure, a transport tank must contain the recharge gas at a much higher pressure. At the destination, the transport tank is connected to the system storage tank to be recharged, and the pressures in the transport tank and the system storage tank are allowed to equalize. One major disadvantage of the conventional approach is that the high transport pressure poses a hazard. Another disadvantage is the waste of a significant amount of recharge gas. Because the transport tank is disconnected from the system storage tank when it is at the specified system recharge pressure, the transport tank still contains a significant amount of recharge gas (typically on the order of half of the amount transported) that cannot be used. In the proposed method, the cryogenic fluid would be transported in a suitably thermally insulated tank that would be capable of withstanding the recharge pressure of the destination tank. The tank would be equipped with quick-disconnect fluid-transfer fittings and with a low-power electric heater (which would not be used during transport). In preparation for transport, a relief valve would be attached via one of the quick-disconnect fittings (see figure). During transport, the interior of the tank would be kept at a near

  4. Energetic metastable high-pressure phases of CO

    NASA Astrophysics Data System (ADS)

    Barbee, Troy W., III

    1996-03-01

    First-row elements present some of the best possibilities for storing chemical energy in metastable structures because of their strong bonding and light mass. Recent calculations have predicted(Mailhiot, Yang, and McMahan, Phys. Rev. B 46), 14419 (1992). that under pressure, molecular nitrogen should undergo a transition to a polymeric structure which should be metastable and energetic at ambient pressure. Because carbon monoxide is isoelectronic to N_2, the phase diagram of CO is quite similar to that of nitrogen. Observations of chemical reactions in solid CO under pressure have been made,(Katz, Schiferl, and Mills, J. Phys. Chem. 88), 3176 (1984). and the products (C_3O_2) have been recovered at ambient pressure. I will present calculations of the high-pressure stability and metastability for several candidate structures for CO at high pressure, as well as the energy stored in the metastable C_3O2 at ambient pressure. This work was performed under the auspices of the U.S. DOE by LLNL under contract No. W--7405--ENG--48.

  5. Combustion of liquid sprays at high pressures

    NASA Technical Reports Server (NTRS)

    Shearer, A. J.; Faeth, G. M.

    1977-01-01

    The combustion of pressure atomized fuel sprays in high pressure stagnant air was studied. Measurements were made of flame and spray boundaries at pressures in the range 0.1-9 MPa for methanol and n-pentane. At the higher test pressure levels, critical phenomena are important. The experiments are compared with theoretical predictions based on a locally homogeneous two-phase flow model. The theory correctly predicted the trends of the data, but underestimates flame and spray boundaries by 30-50 percent, indicating that slip is still important for the present experiments (Sauter mean diameters of 30 microns at atmospheric pressure under cold flow conditions). Since the sprays are shorter at high pressures, slip effects are still important even though the density ratio of the phases approach one another as the droplets heat up. The model indicates the presence of a region where condensed water is present within the spray and provides a convenient means of treating supercritical phenomena.

  6. Structure and stability of hydrous minerals at high pressure

    NASA Technical Reports Server (NTRS)

    Duffy, T. S.; Fei, Y.; Meade, C.; Hemley, R. J.; Mao, H. K.

    1994-01-01

    The presence of even small amounts of hydrogen in the Earth's deep interior may have profound effects on mantle melting, rheology, and electrical conductivity. The recent discovery of a large class of high-pressure H-bearing silicates further underscores the potentially important role for hydrous minerals in the Earth's mantle. Hydrogen may also be a significant component of the Earth's core, as has been recently documented by studies of iron hydride at high pressure. In this study, we explore the role of H in crystal structures at high pressure through detailed Raman spectroscopic and x ray diffraction studies of hydrous minerals compressed in diamond anvil cells. Brucite, Mg(OH)2, has a simple structure and serves as an analogue for the more complex hydrous silicates. Over the past five years, this material has been studied at high pressure using shock-compression, powder x ray diffraction, infrared spectroscopy, Raman spectroscopy, and neutron diffraction. In addition, we have recently carried out single-crystal synchrotron x-ray diffraction on Mg(OH)2 and Raman spectroscopy on Mg(OD)2 at elevated pressure. From all these studies, an interesting picture of the crystal chemical behavior of this material at high pressure is beginning to emerge. Some of the primary conclusions are as follows: First, hydrogen bonding is enhanced by the application of pressure. Second, layered minerals which are elastically anisotropic at low pressure may not be so at high pressure. Furthermore, the brucite data place constraints on the effect of hydrogen on seismic velocities and density at very high pressure. Third, the stability of hydrous minerals may be enhanced at high P by subtle structural rearrangements that are difficult to detect using traditional probes and require detailed spectroscopic analyses. Finally, brucite appears to be unique in that it undergoes pressure-induced disordering that is confined solely to the H-containing layers of the structure.

  7. Curved and conformal high-pressure vessel

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Croteau, Paul F.; Kuczek, Andrzej E.; Zhao, Wenping

    A high-pressure vessel is provided. The high-pressure vessel may comprise a first chamber defined at least partially by a first wall, and a second chamber defined at least partially by the first wall. The first chamber and the second chamber may form a curved contour of the high-pressure vessel. A modular tank assembly is also provided, and may comprise a first mid tube having a convex geometry. The first mid tube may be defined by a first inner wall, a curved wall extending from the first inner wall, and a second inner wall extending from the curved wall. The firstmore » inner wall may be disposed at an angle relative to the second inner wall. The first mid tube may further be defined by a short curved wall opposite the curved wall and extending from the second inner wall to the first inner wall.« less

  8. Noninvasive beat-to-beat finger arterial pressure monitoring during orthostasis: a comprehensive review of normal and abnormal responses at different ages.

    PubMed

    van Wijnen, V K; Finucane, C; Harms, M P M; Nolan, H; Freeman, R L; Westerhof, B E; Kenny, R A; Ter Maaten, J C; Wieling, W

    2017-12-01

    Over the past 30 years, noninvasive beat-to-beat blood pressure (BP) monitoring has provided great insight into cardiovascular autonomic regulation during standing. Although traditional sphygmomanometric measurement of BP may be sufficient for detection of sustained orthostatic hypotension, it fails to capture the complexity of the underlying dynamic BP and heart rate responses. With the emerging use of noninvasive beat-to-beat BP monitoring for the assessment of orthostatic BP control in clinical and population studies, various definitions for abnormal orthostatic BP patterns have been used. Here, age-related changes in cardiovascular control in healthy subjects will be reviewed to define the spectrum of the most important abnormal orthostatic BP patterns within the first 180 s of standing. Abnormal orthostatic BP responses can be defined as initial orthostatic hypotension (a transient systolic BP fall of >40 mmHg within 15 s of standing), delayed BP recovery (an inability of systolic BP to recover to a value of >20 mmHg below baseline at 30 s after standing) and sustained orthostatic hypotension (a sustained decline in systolic BP of ≥20 mmHg occurring 60-180 s after standing). In the evaluation of patients with light-headedness, pre(syncope), (unexplained) falls or suspected autonomic dysfunction, it is essential to distinguish between normal cardiovascular autonomic regulation and these abnormal orthostatic BP responses. The prevalence, clinical relevance and underlying pathophysiological mechanisms of these patterns differ significantly across the lifespan. Initial orthostatic hypotension is important for identifying causes of syncope in younger adults, whereas delayed BP recovery and sustained orthostatic hypotension are essential for evaluating the risk of falls in older adults. © 2017 The Authors Journal of Internal Medicine published by John Wiley & Sons Ltd on behalf of Association for Publication of The Journal of Internal Medicine.

  9. High-Pressure High-Temperature Phase Diagram of the Organic Crystal Paracetamol

    NASA Astrophysics Data System (ADS)

    Smith, Spencer; Montgomery, Jeffrey; Vohra, Yogesh

    High-pressure high-temperature (HPHT) Raman spectroscopy studies have been performed on the organic crystal paracetamol in a diamond anvil cell utilizing boron-doped diamond as heating anvil. The HPHT data obtained from boron-doped diamond heater is cross-checked with data obtained using a standard block heater diamond anvil cell. Isobaric measurements were conducted at pressures up to 8.5 GPa and temperature up to 520 K in a number of different experiments. Solid state phase transitions from monoclinic Form I --> orthorhombic Form II were observed at various pressures and temperatures as well as transitions from Form II --> unknown Form IV. The melting temperature for paracetamol was observed to increase with increasing pressures to 8.5 GPa. Our previous angle dispersive x-ray diffraction studies at the Advanced Photon Source has confirmed the existence of two unknown crystal structures Form IV and Form V of paracetamol at high pressure and ambient temperature. The phase transformation from Form II to Form IV occurs at ~8.5 GPa and from Form IV to Form V occurs at ~11 GPa at ambient temperature. Our new data is combined with the previous ambient temperature high-pressure Raman and X- ray diffraction data to create the first HPHT phase diagram of paracetamol. Doe-NNSA Carnegie DOE Alliance Center (CDAC) under Grant Number DE-NA0002006.

  10. High-pressure behavior of CaMo O4

    NASA Astrophysics Data System (ADS)

    Panchal, V.; Garg, N.; Poswal, H. K.; Errandonea, D.; Rodríguez-Hernández, P.; Muñoz, A.; Cavalli, E.

    2017-09-01

    We report a high-pressure study of tetragonal scheelite-type CaMo O4 up to 29 GPa. In order to characterize its high-pressure behavior, we have combined Raman and optical-absorption measurements with density functional theory calculations. We have found evidence of a pressure-induced phase transition near 15 GPa. Experiments and calculations agree in assigning the high-pressure phase to a monoclinic fergusonite-type structure. The reported results are consistent with previous powder x-ray-diffraction experiments, but are in contradiction with the conclusions obtained from earlier Raman measurements, which support the existence of more than one phase transition in the pressure range covered by our studies. The observed scheelite-fergusonite transition induces significant changes in the electronic band gap and phonon spectrum of CaMo O4 . We have determined the pressure evolution of the band gap for the low- and high-pressure phases as well as the frequencies and pressure dependencies of the Raman-active and infrared-active modes. In addition, based on calculations of the phonon dispersion of the scheelite phase, carried out at a pressure higher than the transition pressure, we propose a possible mechanism for the reported phase transition. Furthermore, from the calculations we determined the pressure dependence of the unit-cell parameters and atomic positions of the different phases and their room-temperature equations of state. These results are compared with previous experiments showing a very good agreement. Finally, information on bond compressibility is reported and correlated with the macroscopic compressibility of CaMo O4 . The reported results are of interest for the many technological applications of this oxide.

  11. Abnormal troponin I levels in a thalassemia major patient with high ferritin concentration, permanent atrial fibrillation and without acute coronary syndrome.

    PubMed

    Patanè, Salvatore; Marte, Filippo

    2010-01-21

    Thalassemia is a congenital hemoglobinopathy leading to anemia because of impaired erythropoiesis and peripheral hemolysis. Thalassemia major patients are transfusion dependent and it results in iron accumulation. The heart is one of the major organs affected with iron overload and iron induced cardiac dysfunction (pump and conduction abnormalities) remains the number one cause of death among thalassemia major patients. It has been reported that a high ferritin concentration is related to high troponin levels in hemodialysis patients receiving more intravenous iron sucrose. Abnormal troponin I levels have also been reported without acute coronary syndrome. We present a case of abnormal troponin I levels in Thalassemia major patient with high ferritin concentration, permanent atrial fibrillation and without acute coronary syndrome. To our knowledge, this is the first report of abnormal troponin I levels in a Thalassemia major patient with high ferritin concentration and without acute coronary syndrome and also this case focuses attention on the importance of the correct evaluation of abnormal troponin I levels. Copyright (c) 2008 Elsevier Ireland Ltd. All rights reserved.

  12. A high-temperature wideband pressure transducer

    NASA Technical Reports Server (NTRS)

    Zuckerwar, A. J.

    1975-01-01

    Progress in the development of a pressure transducer for measurement of the pressure fluctuations in the high temperature environment of a jet exhaust is reported. A condenser microphone carrier system was adapted to meet the specifications. A theoretical analysis is presented which describes the operation of the condenser microphone in terms of geometry, materials, and other physical properties. The analysis was used as the basis for design of a prototype high temperature microphone. The feasibility of connecting the microphone to a converter over a high temperature cable operating as a half-wavelength transmission line was also examined.

  13. Miniature microwave plasmas generated in high pressure argon

    NASA Astrophysics Data System (ADS)

    Inoue, Kenichi; Stauss, Sven; Kim, Jaeho; Ito, Tsuyohito; Terashima, Kazuo

    2018-05-01

    Miniature microwave plasmas with diameters of approximately 1 mm were generated in high-pressure argon (0.1–5.0 MPa) using a microgap electrode. The microwave power required to sustain plasmas was 1–10 W, depending on the pressure. Strong electron-neutral bremsstrahlung emission, indicating an electron temperature of approximately 12000 K, was observed at high pressures (>1 MPa), and electron densities estimated from Stark broadening revealed high values on the order of 1023 m‑3. The analysis confirmed that the coefficient for the pressure shift of the Ar I line at 696.5 nm reported by Copley and Camm can be extended to 5 MPa.

  14. Pressure sensor for high-temperature liquids

    DOEpatents

    Forster, George A.

    1978-01-01

    A pressure sensor for use in measuring pressures in liquid at high temperatures, especially such as liquid sodium or liquid potassium, comprises a soft diaphragm in contact with the liquid. The soft diaphragm is coupled mechanically to a stiff diaphragm. Pressure is measured by measuring the displacment of both diaphragms, typically by measuring the capacitance between the stiff diaphragm and a fixed plate when the stiff diaphragm is deflected in response to the measured pressure through mechanical coupling from the soft diaphragm. Absolute calibration is achieved by admitting gas under pressure to the region between diaphragms and to the region between the stiff diaphragm and the fixed plate, breaking the coupling between the soft and stiff diaphragms. The apparatus can be calibrated rapidly and absolutely.

  15. High-pressure oxidation of ethane

    DOE PAGES

    Hashemi, Hamid; Jacobsen, Jon G.; Rasmussen, Christian T.; ...

    2017-05-02

    Here, ethane oxidation at intermediate temperatures and high pressures has been investigated in both a laminar flow reactor and a rapid compression machine (RCM). The flow-reactor measurements at 600–900 K and 20–100 bar showed an onset temperature for oxidation of ethane between 700 and 825 K, depending on pressure, stoichiometry, and residence time. Measured ignition delay times in the RCM at pressures of 10–80 bar and temperatures of 900–1025 K decreased with increasing pressure and/or temperature. A detailed chemical kinetic model was developed with particular attention to the peroxide chemistry. Rate constants for reactions on the C 2H 5O 2more » potential energy surface were adopted from the recent theoretical work of Klippenstein. In the present work, the internal H-abstraction in CH 3CH 2OO to form CH 2CH 2OOH was treated in detail. Modeling predictions were in good agreement with data from the present work as well as results at elevated pressure from literature. The experimental results and the modeling predictions do not support occurrence of NTC behavior in ethane oxidation. Even at the high-pressure conditions of the present work where the C 2H 5 + O 2 reaction yields ethylperoxyl rather than C 2H 4 + HO 2, the chain branching sequence CH 3CH 2OO → CH 2CH 2OOH → +O2 OOCH 2CH 2OOH → branching is not competitive, because the internal H-atom transfer in CH 3CH 2OO to CH 2CH 2OOH is too slow compared to thermal dissociation to C 2H 4 and HO 2.« less

  16. Investigation of Abnormal Heat Transfer and Flow in a VHTR Reactor Core

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kawaji, Masahiro; Valentin, Francisco I.; Artoun, Narbeh

    2015-12-21

    The main objective of this project was to identify and characterize the conditions under which abnormal heat transfer phenomena would occur in a Very High Temperature Reactor (VHTR) with a prismatic core. High pressure/high temperature experiments have been conducted to obtain data that could be used for validation of VHTR design and safety analysis codes. The focus of these experiments was on the generation of benchmark data for design and off-design heat transfer for forced, mixed and natural circulation in a VHTR core. In particular, a flow laminarization phenomenon was intensely investigated since it could give rise to hot spotsmore » in the VHTR core.« less

  17. Quenching ilmenite with a high-temperature and high-pressure phase using super-high-energy ball milling.

    PubMed

    Hashishin, Takeshi; Tan, Zhenquan; Yamamoto, Kazuhiro; Qiu, Nan; Kim, Jungeum; Numako, Chiya; Naka, Takashi; Valmalette, Jean Christophe; Ohara, Satoshi

    2014-04-25

    The mass production of highly dense oxides with high-temperature and high-pressure phases allows us to discover functional properties that have never been developed. To date, the quenching of highly dense materials at the gramme-level at ambient atmosphere has never been achieved. Here, we provide evidence of the formation of orthorhombic Fe2TiO4 from trigonal FeTiO3 as a result of the high-temperature (>1250 K) and high-pressure (>23 GPa) condition induced by the high collision energy of 150 gravity generated between steel balls. Ilmenite was steeply quenched by the surrounding atmosphere, when iron-rich ilmenite (Fe2TiO4) with a high-temperature and high-pressure phase was formed by planetary collisions and was released from the collision points between the balls. Our finding allows us to infer that such intense planetary collisions induced by high-energy ball milling contribute to the mass production of a high-temperature and high-pressure phase.

  18. Quenching ilmenite with a high-temperature and high-pressure phase using super-high-energy ball milling

    PubMed Central

    Hashishin, Takeshi; Tan, Zhenquan; Yamamoto, Kazuhiro; Qiu, Nan; Kim, Jungeum; Numako, Chiya; Naka, Takashi; Valmalette, Jean Christophe; Ohara, Satoshi

    2014-01-01

    The mass production of highly dense oxides with high-temperature and high-pressure phases allows us to discover functional properties that have never been developed. To date, the quenching of highly dense materials at the gramme-level at ambient atmosphere has never been achieved. Here, we provide evidence of the formation of orthorhombic Fe2TiO4 from trigonal FeTiO3 as a result of the high-temperature (>1250 K) and high-pressure (>23 GPa) condition induced by the high collision energy of 150 gravity generated between steel balls. Ilmenite was steeply quenched by the surrounding atmosphere, when iron-rich ilmenite (Fe2TiO4) with a high-temperature and high-pressure phase was formed by planetary collisions and was released from the collision points between the balls. Our finding allows us to infer that such intense planetary collisions induced by high-energy ball milling contribute to the mass production of a high-temperature and high-pressure phase. PMID:24763088

  19. High resolution manometry findings in patients with esophageal epiphrenic diverticula.

    PubMed

    Vicentine, Fernando P P; Herbella, Fernando A M; Silva, Luciana C; Patti, Marco G

    2011-12-01

    The pathophysiology of esophageal epiphrenic diverticula is still uncertain even though a concomitant motility disorder is found in the majority of patients in different series. High resolution manometry may allow detection of motor abnormalities in a higher number of patients with esophageal epiphrenic diverticula compared with conventional manometry. This study aims to evaluate the high resolution manometry findings in patients with esophageal epiphrenic diverticula. Nine individuals (mean age 63 ± 10 years, 4 females) with esophageal epiphrenic diverticula underwent high resolution manometry. A single diverticulum was observed in eight patients and multiple diverticula in one. Visual analysis of conventional tracings and color pressure plots for identification of segmental abnormalities was performed by two researchers experienced in high resolution manometry. Upper esophageal sphincter was normal in all patients. Esophageal body was abnormal in eight patients; lower esophageal sphincter was abnormal in seven patients. Named esophageal motility disorders were found in seven patients: achalasia in six, diffuse esophageal spasm in one. In one patient, a segmental hypercontractile zone was noticed with pressure of 196 mm Hg. High resolution manometry demonstrated motor abnormalities in all patients with esophageal epiphrenic diverticula.

  20. Efficient High-Pressure State Equations

    NASA Technical Reports Server (NTRS)

    Harstad, Kenneth G.; Miller, Richard S.; Bellan, Josette

    1997-01-01

    A method is presented for a relatively accurate, noniterative, computationally efficient calculation of high-pressure fluid-mixture equations of state, especially targeted to gas turbines and rocket engines. Pressures above I bar and temperatures above 100 K are addressed The method is based on curve fitting an effective reference state relative to departure functions formed using the Peng-Robinson cubic state equation Fit parameters for H2, O2, N2, propane, methane, n-heptane, and methanol are given.

  1. Decomposition of silicon carbide at high pressures and temperatures

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Daviau, Kierstin; Lee, Kanani K. M.

    We measure the onset of decomposition of silicon carbide, SiC, to silicon and carbon (e.g., diamond) at high pressures and high temperatures in a laser-heated diamond-anvil cell. We identify decomposition through x-ray diffraction and multiwavelength imaging radiometry coupled with electron microscopy analyses on quenched samples. We find that B3 SiC (also known as 3C or zinc blende SiC) decomposes at high pressures and high temperatures, following a phase boundary with a negative slope. The high-pressure decomposition temperatures measured are considerably lower than those at ambient, with our measurements indicating that SiC begins to decompose at ~ 2000 K at 60more » GPa as compared to ~ 2800 K at ambient pressure. Once B3 SiC transitions to the high-pressure B1 (rocksalt) structure, we no longer observe decomposition, despite heating to temperatures in excess of ~ 3200 K. The temperature of decomposition and the nature of the decomposition phase boundary appear to be strongly influenced by the pressure-induced phase transitions to higher-density structures in SiC, silicon, and carbon. The decomposition of SiC at high pressure and temperature has implications for the stability of naturally forming moissanite on Earth and in carbon-rich exoplanets.« less

  2. Stress and High Blood Pressure: What's the Connection?

    MedlinePlus

    Stress and high blood pressure: What's the connection? Stress and long-term high blood pressure may not be linked, but taking steps to reduce your stress can improve your general health, including your blood ...

  3. High blood pressure - what to ask your doctor

    MedlinePlus

    What to ask your doctor about high blood pressure; Hypertension - what to ask your doctor ... problems? What medicines am I taking to treat high blood pressure? Do they have any side effects? What should ...

  4. Reversible stalling of transcription elongation complexes by high pressure.

    PubMed

    Erijman, L; Clegg, R M

    1998-07-01

    We have investigated the effect of high hydrostatic pressure on the stability of RNA polymerase molecules during transcription. RNA polymerase molecules participating in stalled or active ternary transcribing complexes do not dissociate from the template DNA and nascent RNA at pressures up to 180 MPa. A lower limit for the free energy of stabilization of an elongating ternary complex relative to the quaternary structure of the free RNAP molecules is estimated to be 20 kcal/mol. The rate of elongation decreases at high pressure; transcription completely halts at sufficiently high pressure. The overall rate of elongation has an apparent activation volume (DeltaVdouble dagger) of 55-65 ml . mol-1 (at 35 degrees C). The pressure-stalled transcripts are stable and resume elongation at the prepressure rate upon decompression. The efficiency of termination decreases at the rho-independent terminator tR2 after the transcription reaction has been exposed to high pressure. This suggests that high pressure modifies the ternary complex such that termination is affected in a manner different from that of elongation. The solvent and temperature dependence of the pressure-induced inhibition show evidence for major conformational changes in the core polymerase enzyme during RNA synthesis. It is proposed that the inhibition of the elongation phase of the transcription reaction at elevated pressures is related to a reduction of the partial specific volume of the RNA polymerase molecule; under high pressure, the RNA polymerase molecule does not have the necessary structural flexibility required for the protein to translocate.

  5. Effect of high pressure on physicochemical properties of meat.

    PubMed

    Buckow, Roman; Sikes, Anita; Tume, Ron

    2013-01-01

    The application of high pressure offers some interesting opportunities in the processing of muscle-based food products. It is well known that high-pressure processing can prolong the shelf life of meat products in addition to chilling but the pressure-labile nature of protein systems limits the commercial range of applications. High pressure can affect the texture and gel-forming properties of myofibrillar proteins and, hence, has been suggested as a physical and additive-free alternative to tenderize and soften or restructure meat and fish products. However, the rate and magnitude at which pressure and temperature effects take place in muscles are variable and depend on a number of circumstances and conditions that are still not precisely known. This review provides an overview of the current knowledge of the effects of high pressure on muscle tissue over a range of temperatures as it relates to meat texture, microstructure, color, enzymes, lipid oxidation, and pressure-induced gelation of myofibrillar proteins.

  6. High-pressure needle interface for thermoplastic microfluidics.

    PubMed

    Chen, C F; Liu, J; Hromada, L P; Tsao, C W; Chang, C C; DeVoe, D L

    2009-01-07

    A robust and low dead volume world-to-chip interface for thermoplastic microfluidics has been developed. The high pressure fluidic port employs a stainless steel needle inserted into a mating hole aligned to an embedded microchannel, with an interference fit used to increase pressure resistance. Alternately, a self-tapping threaded needle screwed into a mating hole is also demonstrated. In both cases, the flat bottom needle ports seat directly against the microchannel substrate, ensuring low interfacial dead volumes. Low dispersion is observed for dye bands passing the interfaces. The needle ports offer sufficient pull-out forces for applications such as liquid chromatography that require high internal fluid pressures, with the epoxy-free interfaces compatible with internal microchannel pressures above 40 MPa.

  7. High-Pressure Design of Advanced BN-Based Materials.

    PubMed

    Kurakevych, Oleksandr O; Solozhenko, Vladimir L

    2016-10-20

    The aim of the present review is to highlight the state of the art in high-pressure design of new advanced materials based on boron nitride. Recent experimental achievements on the governing phase transformation, nanostructuring and chemical synthesis in the systems containing boron nitride at high pressures and high temperatures are presented. All these developments allowed discovering new materials, e.g., ultrahard nanocrystalline cubic boron nitride (nano-cBN) with hardness comparable to diamond, and superhard boron subnitride B 13 N₂. Thermodynamic and kinetic aspects of high-pressure synthesis are described based on the data obtained by in situ and ex situ methods. Mechanical and thermal properties (hardness, thermoelastic equations of state, etc.) are discussed. New synthetic perspectives, combining both soft chemistry and extreme pressure-temperature conditions are considered.

  8. High pressure study of acetophenone azine

    NASA Astrophysics Data System (ADS)

    Tang, X. D.; Ding, Z. J.; Zhang, Z. M.

    2009-02-01

    High pressure Raman spectra of acetophenone azine (APA) have been measured up to 17.7 GPa with a diamond anvil cell. Two crystalline-to-crystalline phase transformations are found at pressures about 3.6 and 5.8 GPa. A disappearance of external modes and the C-H vibration at pressures higher than 8.7 GPa suggests that the sample undergoes a phase transition to amorphous or orientationally disordered (plastic) state, and the amorphization was completed at about 12.1 GPa. The disordered state is unstable and, then, a polymerization transformation reaction occurs with a further pressure increase. After the pressure has been released, the polymerization state can remain at the ambient condition, indicating that the virgin crystalline state is not recovered. The results show that the phenomenon underlying the pressure induced phase transition of APA may involve profound changes in the coordination environments of the symmetric aromatic azine.

  9. High pressure generation using scaled-up Kawai-cell

    NASA Astrophysics Data System (ADS)

    Shatskiy, A.; Katsura, T.; Litasov, K. D.; Shcherbakova, A. V.; Borzdov, Y. M.; Yamazaki, D.; Yoneda, A.; Ohtani, E.; Ito, E.

    2011-11-01

    A scaled-up version of a 6-8 Kawai-type multianvil apparatus equipped with 47-mm WC anvils has been developed at the Institute for the Study of the Earth's Interior for operation over pressure ranging up to 19 and 24 GPa using the conventional system with larger compressional volumes between 1.2 and 0.4 cm 3, respectively. This system is used under uniaxial compression along cube diagonal of the Kawai-cell up to the press load of 19 MN. Experiments are performed using octahedral pressure media (PM) made of MgO- and ZrO 2-based semi-sintered ceramics and unfired pyrophyllite gaskets. In this study we used "Toshiba-F" grade WC anvils allowing pressure generation up to 24 GPa. We perform pressure calibrations at room and high temperatures, with octahedron/anvil truncation edge-length ratios ( a0/ b, mm) of 12.2/6, 14/6, 14/7, 16/7, 18/7, 18/9, and 18/10. Different configurations show that an increase in edge-length ratio of a0/b permits the achievement of higher pressure, which agrees with the results of Frost at al. (Frost, D.J., Poe, B.T., Tronnes, R.G., Liebske, C., Duba, A., Rubie, D.C., 2004. A new large-volume multianvil system. Phys. Earth Planet. Inter. 143, 507). However, it also shifts the pressure maximum to higher press loads, in some cases exceeding the capacity of a press. Our and Frost et al. (2004) data reveal that the 14/6, 18/8, and 18/10 assemblies are the most suitable in generating pressures of up to 19-24 GPa at 19 MN press load limits. The assemblies with a low a0/ b ratio have a lower upper pressure limit; however, they exhibit a systematically higher efficiency in pressure generation at low press loads. Consequently, assemblages with high and low a0/ b ratios should be used in high and low pressure experiments, respectively. For example, the 18/12 assembly is suitable for 5-11 GPa pressure range (Stoyanov, E., Haussermann, U., Leinenweber, K., 2010. Large-volume multianvil cells designed for chemical synthesis at high pressures. High Pressure

  10. High Precision Pressure Measurement with a Funnel

    ERIC Educational Resources Information Center

    Lopez-Arias, T.; Gratton, L. M.; Oss, S.

    2008-01-01

    A simple experimental device for high precision differential pressure measurements is presented. Its working mechanism recalls that of a hydraulic press, where pressure is supplied by insufflating air under a funnel. As an application, we measure air pressure inside a soap bubble. The soap bubble is inflated and connected to a funnel which is…

  11. Under pressure: progressively enlarging facial mass following high-pressure paint injection injury.

    PubMed

    Mushtaq, Jameel; Walker, Abigail; Hunter, Ben

    2016-01-19

    High-pressure paint injection injuries are relatively rare industrial accidents and almost exclusively occur on the non-dominant hand. A rarely documented complication of these injuries is the formation of a foreign body granuloma. We report a case of a 33-year-old man presenting with extensive facial scarring and progressive right paranasal swelling 7 years after a high-pressure paint injury. After imaging investigations, an excision of the mass and revision of scarring was performed. Access to the mass was gained indirectly through existing scarring over the nose to ensure an aesthetic result. Histological analysis revealed a florid granulomatous foreign body reaction to retained paint. To the best of our knowledge, this is the first reported case of a facial high-pressure paint injury with consequent formation of a foreign body granuloma. 2016 BMJ Publishing Group Ltd.

  12. Research at Very High Pressures and High Temperatures

    ERIC Educational Resources Information Center

    Bundy, Francis P.

    1977-01-01

    Reviews research and apparatus utilized in the study of the states and characteristics of materials at very high temperatures and pressures. Includes three examples of the research being conducted. (SL)

  13. Differential high pressure survival in stationary-phase Escherichia coli MG1655

    NASA Astrophysics Data System (ADS)

    Griffin, Patrick L.; Kish, Adrienne; Steele, Andrew; Hemley, Russell J.

    2011-06-01

    Hydrostatic pressure exerts a profound influence on nearly all facets of cellular structure and function with exposures to sufficiently high pressure leading to microbial inactivation. We report the first observation of a persistent, pressure-resistant subpopulation within stationary-phase samples of Escherichia coli MG1655, a mesophilic bacterium adapted to surface pressure. This high pressure-resistant subpopulation exhibits pressure survival ranging from 0.6 to 2.0 orders of magnitude greater survival than high pressure treatments at pressures of 225-400 MPa. We also examine some aspects of pressure treatment protocol that may influence the measurements of high pressure survival.

  14. Churches as High Blood Pressure Control Centers

    PubMed Central

    Kong, B. Wayne; Miller, Joseph M.; Smoot, Roland T.

    1982-01-01

    High blood pressure, a severe medical problem in the black community, can be controlled to a significant degree by proper medication. Discovery of hypertension and continuing thereapy, however, are difficult. The establishment of churches as high blood pressure control centers is a promising approach to overcome these deficits. The initial experiences with the creation of such a program are presented.

  15. Abnormal findings in peers during skills learning.

    PubMed

    Wearn, Andy; Nakatsuji, Miriam; Bhoopatkar, Harsh

    2017-02-01

    Peer physical examination (PPE), where students examine each other, is common in contemporary clinical skills learning. A range of benefits and risks have been explored in the literature. One persistent concern has been the identification and management of abnormal physical findings. Two previous studies have attempted to quantify the risk, one through the discussion of two exemplar cases and the other with a retrospective student survey. Here, we report the first prospective study of the number and type of abnormalities encountered as part of early clinical skills learning in a medical programme. We have a formal written consent process for PPE, which includes the management of abnormal findings through the completion of an event form. Our data come from cohorts undertaking years 2 and 3 of the programme between 2003 and 2014. One persistent concern (of PPE) has been the identification and management of abnormal physical findings RESULTS: Nineteen event forms were completed over this period. The incidence rates per year ranged from 0.23 to 1.05 per cent. Abnormal findings included raised blood pressure, heart murmur, abnormal bedside test values, and eye and skin conditions. The low event rate, along with a feasible process for dealing with this issue, goes some way to reassuring those with concerns. We acknowledge that some abnormalities may have been missed, and that some data may have been lost as a result of incorrect process; however, even the highest annual rate is low in absolute terms. We recommend a formal process for managing abnormalities. Ideally this would be part of an overall PPE written policy, communicated to students, enacted by tutors and approved by the local ethics committee. © 2016 John Wiley & Sons Ltd.

  16. Recent progress in high pressure metrology in Europe

    NASA Astrophysics Data System (ADS)

    Sabuga, Wladimir; Pražák, Dominik; Rabault, Thierry

    2014-08-01

    Five European national metrology institutes in collaboration with a university, a research institute and five industrial companies are working on a joint research project within a framework of the European Metrology Research Programme aimed at development of 1.6 GPa primary and 1.5 GPa transfer pressure standards. Two primary pressure standards were realised as pressure-measuring multipliers, each consisting of a low pressure and a high pressure (HP) piston-cylinder assembly (PCA). A special design of the HP PCAs was developed in which a tungsten carbide cylinder is supported by two thermally shrunk steel sleeves and, additionally, by jacket pressure applied to the outside of the outer sleeve. Stress-strain finite element analysis (FEA) was performed to predict behaviour of the multipliers and a pressure generation system. With FEA, the pressure distortion coefficient was determined, taking into account irregularities of the piston-cylinder gap. Transfer pressure standards up to 1.5 GPa are developed on the basis of modern 1.5 GPa pressure transducers. This project shall solve a discrepancy between the growing needs of the industry demanding precise traceable calibrations of the high pressure transducers and the absence of adequate primary standards for pressures higher than 1 GPa in the European Union today.

  17. Strain engineered pyrochlore at high pressure

    DOE PAGES

    Rittman, Dylan R.; Turner, Katlyn M.; Park, Sulgiye; ...

    2017-05-22

    Strain engineering is a promising method for next-generation materials processing techniques. Here, we use mechanical milling and annealing followed by compression in diamond anvil cell to tailor the intrinsic and extrinsic strain in pyrochlore, Dy 2Ti 2O 7 and Dy 2Zr 2O 7. Raman spectroscopy, X-ray pair distribution function analysis, and X-ray diffraction were used to characterize atomic order over short-, medium-, and long-range spatial scales, respectively, under ambient conditions. Raman spectroscopy and X-ray diffraction were further employed to interrogate the material in situ at high pressure. High-pressure behavior is found to depend on the species and concentration of defectsmore » in the sample at ambient conditions. Overall, we show that defects can be engineered to lower the phase transformation onset pressure by ~50% in the ordered pyrochlore Dy 2Ti 2O 7, and lower the phase transformation completion pressure by ~20% in the disordered pyrochlore Dy 2Zr 2O 7. Lastly, these improvements are achieved without significantly sacrificing mechanical integrity, as characterized by bulk modulus.« less

  18. High-pressure water facility

    NASA Technical Reports Server (NTRS)

    2006-01-01

    NASA Test Operations Group employees, from left, Todd Pearson, Tim Delcuze and Rodney Wilkinson maintain a water pump in Stennis Space Center's high-pressure water facility. The three were part of a group of employees who rode out Hurricane Katrina at the facility and helped protect NASA's rocket engine test complex.

  19. High-pressure water facility

    NASA Image and Video Library

    2006-02-15

    NASA Test Operations Group employees, from left, Todd Pearson, Tim Delcuze and Rodney Wilkinson maintain a water pump in Stennis Space Center's high-pressure water facility. The three were part of a group of employees who rode out Hurricane Katrina at the facility and helped protect NASA's rocket engine test complex.

  20. In Situ Observation of Gypsum-Anhydrite Transition at High Pressure and High Temperature

    NASA Astrophysics Data System (ADS)

    Liu, Chuan-Jiang; Zheng, Hai-Fei

    2012-04-01

    An in-situ Raman spectroscopic study of gypsum-anhydrite transition under a saturated water condition at high pressure and high temperature is performed using a hydrothermal diamond anvil cell (HDAC). The experimental results show that gypsum dissolvs in water at ambient temperature and above 496 MPa. With increasing temperature, the anhydrite (CaSO4) phase precipitates at 250-320°C in the pressure range of 1.0-1.5GPa, indicating that under a saturated water condition, both stable conditions of pressure and temperature and high levels of Ca and SO4 ion concentrations in aqueous solution are essential for the formation of anhydrite. A linear relationship between the pressure and temperature for the precipitation of anhydrite is established as P(GPa) = 0.0068T-0.7126 (250°C<=T<=320°C). Anhydrite remained stable during rapid cooling of the sample chamber, showing that the gypsum-anhydrite transition involving both dissolution and precipitation processes is irreversible at high pressure and high temperature.

  1. High pressure water jet mining machine

    DOEpatents

    Barker, Clark R.

    1981-05-05

    A high pressure water jet mining machine for the longwall mining of coal is described. The machine is generally in the shape of a plowshare and is advanced in the direction in which the coal is cut. The machine has mounted thereon a plurality of nozzle modules each containing a high pressure water jet nozzle disposed to oscillate in a particular plane. The nozzle modules are oriented to cut in vertical and horizontal planes on the leading edge of the machine and the coal so cut is cleaved off by the wedge-shaped body.

  2. Sample injector for high pressure liquid chromatography

    DOEpatents

    Paul, Phillip H.; Arnold, Don W.; Neyer, David W.

    2001-01-01

    Apparatus and method for driving a sample, having a well-defined volume, under pressure into a chromatography column. A conventional high pressure sampling valve is replaced by a sample injector composed of a pair of injector components connected in series to a common junction. The injector components are containers of porous dielectric material constructed so as to provide for electroosmotic flow of a sample into the junction. At an appropriate time, a pressure pulse from a high pressure source, that can be an electrokinetic pump, connected to the common junction, drives a portion of the sample, whose size is determined by the dead volume of the common junction, into the chromatographic column for subsequent separation and analysis. The apparatus can be fabricated on a substrate for microanalytical applications.

  3. Exotic stable cesium polynitrides at high pressure

    DOE PAGES

    Peng, Feng; Han, Yunxia; Liu, Hanyu; ...

    2015-11-19

    New polynitrides containing metastable forms of nitrogen are actively investigated as potential high energy-density materials. Using a structure search method based on the CALYPSO methodology, we investigated the stable stoichiometries and structures of cesium polynitrides at high pressures. Along with the CsN 3, we identified five new stoichiometric compounds (Cs 3N, Cs 2N, CsN, CsN 2, and CsN 5) with interesting structures that may be experimentally synthesizable at modest pressures (i.e., less than 50 GPa). Nitrogen species in the predicted structures have various structural forms ranging from single atom (N) to highly endothermic molecules (N 2, N 3 , Nmore » 4, N 5, N 6) and chains (N ∞). Polymeric chains of nitrogen were found in the high-pressure C2/c phase of CsN 2. This structure contains a substantially high content of single N-N bonds that exceeds the previously known nitrogen chains in pure forms, and also exhibit metastability at ambient conditions. We also identified a very interesting CsN crystal that contains novel N 4 4- anion. In conclusion, to our best knowledge, this is the first time a charged N 4 species being reported. Results of the present study suggest that it is possible to obtain energetic polynitrogens in main-group nitrides under high pressure.« less

  4. Exotic stable cesium polynitrides at high pressure

    PubMed Central

    Peng, Feng; Han, Yunxia; Liu, Hanyu; Yao, Yansun

    2015-01-01

    New polynitrides containing metastable forms of nitrogen are actively investigated as potential high-energy-density materials. Using a structure search method based on the CALYPSO methodology, we investigated the stable stoichiometries and structures of cesium polynitrides at high pressures. Along with the CsN3, we identified five new stoichiometric compounds (Cs3N, Cs2N, CsN, CsN2, and CsN5) with interesting structures that may be experimentally synthesizable at modest pressures (i.e., less than 50 GPa). Nitrogen species in the predicted structures have various structural forms ranging from single atom (N) to highly endothermic molecules (N2, N3, N4, N5, N6) and chains (N∞). Polymeric chains of nitrogen were found in the high-pressure C2/c phase of CsN2. This structure contains a substantially high content of single N-N bonds that exceeds the previously known nitrogen chains in pure forms, and also exhibit metastability at ambient conditions. We also identified a very interesting CsN crystal that contains novel N44− anion. To our best knowledge, this is the first time a charged N4 species being reported. Results of the present study suggest that it is possible to obtain energetic polynitrogens in main-group nitrides under high pressure. PMID:26581175

  5. A survey of compatibility of materials with high pressure oxygen service

    NASA Technical Reports Server (NTRS)

    Hust, J. G.; Clark, A. F.

    1972-01-01

    The available information on the compatibility of materials with oxygen as applied to the production, transport, and applications experience of high pressure liquid and gaseous oxygen is compiled. High pressure is defined as about 2000 to 3000 psia. Since high pressure projections sometimes can be made from lower pressure data, some low pressure data are also included. Low pressure data are included if they are considered helpful to a better understanding of the behavior at high pressures.

  6. How High Blood Pressure Can Lead to Stroke

    MedlinePlus

    ... Artery Disease Venous Thromboembolism Aortic Aneurysm More How High Blood Pressure Can Lead to Stroke Updated:Jan 29,2018 ... stroke This content was last reviewed October 2016. High Blood Pressure • Home • Get the Facts About HBP • Know Your ...

  7. How Potassium Can Help Control High Blood Pressure

    MedlinePlus

    ... Aortic Aneurysm More How Potassium Can Help Control High Blood Pressure Updated:Jan 29,2018 Understanding the heart-healthy ... tips . This content was last reviewed October 2016. High Blood Pressure • Home • Get the Facts About HBP • Know Your ...

  8. A Manganin Thin Film Ultra-High Pressure Sensor for Microscale Detonation Pressure Measurement

    PubMed Central

    Zhang, Guodong; Zhao, Yulong; Zhao, Yun; Wang, Xinchen; Ren, Wei; Li, Hui; Zhao, You

    2018-01-01

    With the development of energetic materials (EMs) and microelectromechanical systems (MEMS) initiating explosive devices, the measurement of detonation pressure generated by EMs in the microscale has become a pressing need. This paper develops a manganin thin film ultra-high pressure sensor based on MEMS technology for measuring the output pressure from micro-detonator. A reliable coefficient is proposed for designing the sensor’s sensitive element better. The sensor employs sandwich structure: the substrate uses a 0.5 mm thick alumina ceramic, the manganin sensitive element with a size of 0.2 mm × 0.1 mm × 2 μm and copper electrodes of 2 μm thick are sputtered sequentially on the substrate, and a 25 μm thick insulating layer of polyimide is wrapped on the sensitive element. The static test shows that the piezoresistive coefficient of manganin thin film is 0.0125 GPa−1. The dynamic experiment indicates that the detonation pressure of micro-detonator is 12.66 GPa, and the response time of the sensor is 37 ns. In a word, the sensor developed in this study is suitable for measuring ultra-high pressure in microscale and has a shorter response time than that of foil-like manganin gauges. Simultaneously, this study could be beneficial to research on ultra-high-pressure sensors with smaller size. PMID:29494519

  9. High-pressure synthesis, amorphization, and decomposition of silane.

    PubMed

    Hanfland, Michael; Proctor, John E; Guillaume, Christophe L; Degtyareva, Olga; Gregoryanz, Eugene

    2011-03-04

    By compressing elemental silicon and hydrogen in a diamond anvil cell, we have synthesized polymeric silicon tetrahydride (SiH(4)) at 124 GPa and 300 K. In situ synchrotron x-ray diffraction reveals that the compound forms the insulating I4(1)/a structure previously proposed from ab initio calculations for the high-pressure phase of silane. From a series of high-pressure experiments at room and low temperature on silane itself, we find that its tetrahedral molecules break up, while silane undergoes pressure-induced amorphization at pressures above 60 GPa, recrystallizing at 90 GPa into the polymeric crystal structures.

  10. Behaviors of Zn2GeO4 under high pressure and high temperature

    NASA Astrophysics Data System (ADS)

    Shu-Wen, Yang; Fang, Peng; Wen-Tao, Li; Qi-Wei, Hu; Xiao-Zhi, Yan; Li, Lei; Xiao-Dong, Li; Duan-Wei, He

    2016-07-01

    The structural stability of Zn2GeO4 was investigated by in-situ synchrotron radiation angle dispersive x-ray diffraction. The pressure-induced amorphization is observed up to 10 GPa at room temperature. The high-pressure and high-temperature sintering experiments and the Raman spectrum measurement firstly were performed to suggest that the amorphization is caused by insufficient thermal energy and tilting Zn-O-Ge and Ge-O-Ge bond angles with increasing pressure, respectively. The calculated bulk modulus of Zn2GeO4 is 117.8 GPa from the pressure-volume data. In general, insights into the mechanical behavior and structure evolution of Zn2GeO4 will shed light on the micro-mechanism of the materials variation under high pressure and high temperature. Project supported by the Joint Fund of the National Natural Science Foundation of China and Chinese Academy of Sciences (Grant No. U1332104).

  11. High pressure synthesis of amorphous TiO2 nanotubes

    NASA Astrophysics Data System (ADS)

    Li, Quanjun; Liu, Ran; Wang, Tianyi; Xu, Ke; Dong, Qing; Liu, Bo; Liu, Jing; Liu, Bingbing

    2015-09-01

    Amorphous TiO2 nanotubes with diameters of 8-10 nm and length of several nanometers were synthesized by high pressure treatment of anatase TiO2 nanotubes. The structural phase transitions of anatase TiO2 nanotubes were investigated by using in-situ high-pressure synchrotron X-ray diffraction (XRD) method. The starting anatase structure is stable up to ˜20GPa, and transforms into a high-density amorphous (HDA) form at higher pressure. Pressure-modified high- to low-density transition was observed in the amorphous form upon decompression. The pressure-induced amorphization and polyamorphism are in good agreement with the previous results in ultrafine TiO2 nanoparticles and nanoribbons. The relationship between the LDA form and α-PbO2 phase was revealed by high-resolution transmission electron microscopy (HRTEM) study. In addition, the bulk modulus (B0 = 158 GPa) of the anatase TiO2 nanotubes is smaller than those of the corresponding bulks and nanoparticles (180-240 GPa). We suggest that the unique open-ended nanotube morphology and nanosize play important roles in the high pressure phase transition of TiO2 nanotubes.

  12. Optimization of a high-pressure pore water extraction device.

    PubMed

    Cyr, Martin; Daidié, Alain

    2007-02-01

    High-pressure squeezing is a technique used for the extraction of the pore water of porous materials such as sediments, soils, rocks, and concrete. The efficiency of extraction depends on the maximum pressures on the materials. This article presents the design of a high-pressure device reaching an axial pressure of 1000 MPa which has been developed to improve the efficiency of extraction. The increase in squeezing pressure implies high stresses inside the chamber, so specialized expertise was required to design a safe, functional device that could withstand pressures significantly higher than common laboratory equipment. The design includes finite element calculations, selection of appropriate materials, and descriptive construction details for the apparatus. It also includes an experimental study of the performance of the apparatus in terms of extraction efficiency.

  13. Water-soluble CdTe nanocrystals under high pressure

    NASA Astrophysics Data System (ADS)

    Lin, Yan-Cheng

    2015-02-01

    The application of static high pressure provides a method for precisely controlling and investigating many fundamental and unique properties of semiconductor nanocrystals (NCs). This study systematically investigates the high-pressure photoluminescence (PL) and time-resolved carrier dynamics of thiol-capped CdTe NCs of different sizes, at different concentrations, and in various stress environments. The zincblende-to-rocksalt phase transition in thiol-capped CdTe NCs is observed at a pressure far in excess of the bulk phase transition pressure. Additionally, the process of transformation depends strongly on NC size, and the phase transition pressure increases with NC size. These peculiar phenomena are attributed to the distinctive bonding of thiols to the NC surface. In a nonhydrostatic environment, considerable flattening of the PL energy of CdTe NCs powder is observed above 3.0 GPa. Furthermore, asymmetric and double-peak PL emissions are obtained from a concentrated solution of CdTe NCs under hydrostatic pressure, implying the feasibility of pressure-induced interparticle coupling.

  14. High pressure phase transitions in tetrahedrally coordinated semiconducting compounds

    NASA Technical Reports Server (NTRS)

    Yu, S. C.; Spain, I. L.; Skelton, E. F.

    1978-01-01

    New experimental results are reported for structural transitions at high pressure in several III-V compounds and two II-VI compounds. These data, together with earlier results, are then compared with the predictions of model calculations of Van Vechten. Experimental transition pressures are often at variance with calculated values. However, his calculation assumes that the high pressure phase is metallic, with the beta-Sn structure. The present results show that several compounds assume an ionic NaCl structure at high pressure, while others have neither the beta-Sn nor NaCl structure.

  15. Medications for High Blood Pressure

    MedlinePlus

    ... Consumers Home For Consumers Consumer Updates Medications for High Blood Pressure Share Tweet Linkedin Pin it More sharing options Linkedin Pin it Email Print Hypertension tends to worsen with age and you cannot ...

  16. High Blood Pressure and Sex: Overcome the Challenges

    MedlinePlus

    High blood pressure and sex: Overcome the challenges Treatment for high blood pressure and satisfaction with sex can go hand in hand — if you're ... signs or symptoms. But the impact on your sex life may be obvious. Although sexual activity is ...

  17. Raman study of opal at high pressure

    NASA Astrophysics Data System (ADS)

    Farfan, G.; Wang, S.; Mao, W. L.

    2011-12-01

    More commonly known for their beauty and lore as gemstones, opals are also intriguing geological materials which may have potential for materials science applications. Opal lacks a definite crystalline structure, and is composed of an amorphous packing of hydrated silica (SiO2) spheroids, which provides us with a unique nano-scaled mineraloid with properties unlike those of other amorphous materials like glass. Opals from different localities were studied at high pressure using a diamond anvil cell to apply pressure and Raman spectroscopy to look at changes in bonding as pressure was increased. We first tested different samples from Virgin Valley, NV, Spencer, ID, Juniper Ridge, OR, and Australia, which contain varying amounts of water at ambient conditions, using Raman spectroscopy to determine if they were opal-CT (semicrystalline cristobalite-trydimite volcanic origin) or opal-A (amorphous sedimentary origin). We then used x-ray diffraction and Raman spectroscopy in a diamond anvil cell to see how their bonding and structure changed under compression and to determine what effect water content had on their high pressure behavior. Comparison of our results on opal to other high pressure studies of amorphous materials like glass has implications from a geological and materials science standpoint.

  18. High pressure effects on allergen food proteins.

    PubMed

    Somkuti, Judit; Smeller, László

    2013-12-15

    There are several proteins, which can cause allergic reaction if they are inhaled or ingested. Our everyday food can also contain such proteins. Food allergy is an IgE-mediated immune disorder, a growing health problem of great public concern. High pressure is known to affect the structure of proteins; typically few hundred MPa pressure can lead to denaturation. That is why several trials have been performed to alter the structure of the allergen proteins by high pressure, in order to reduce its allergenicity. Studies have been performed both on simple protein solutions and on complex food systems. Here we review those allergens which have been investigated under or after high pressure treatment by methods capable of detecting changes in the secondary and tertiary structure of the proteins. We focus on those allergenic proteins, whose structural changes were investigated by spectroscopic methods under pressure in correlation with the observed allergenicity (IgE binding) changes. According to this criterion we selected the following allergen proteins: Mal d 1 and Mal d 3 (apple), Bos d 5 (milk), Dau c 1 (carrot), Gal d 2 (egg), Ara h 2 and Ara h 6 (peanut), and Gad m 1 (cod). Copyright © 2013 Elsevier B.V. All rights reserved.

  19. High pressure electrical insulated feed thru connector

    DOEpatents

    Oeschger, Joseph E.; Berkeland, James E.

    1979-11-13

    A feed-thru type hermetic electrical connector including at least one connector pin feeding through an insulator block within the metallic body of the connector shell. A compression stop arrangement coaxially disposed about the insulator body is brazed to the shell, and the shoulder on the insulator block bears against this top in a compression mode, the high pressure or internal connector being at the opposite end of the shell. Seals between the pin and an internal bore at the high pressure end of the insulator block and between the insulator block and the metallic shell at the high pressure end are hermetically brazed in place, the first of these also functioning to transfer the axial compressive load without permitting appreciable shear action between the pin and insulator block.

  20. High-pressure NaCl-phase of tetrahedral compounds

    NASA Astrophysics Data System (ADS)

    Soma, T.; -Matsuo Kagaya, H.

    1984-04-01

    The phase transition of tetrahedral compounds such as GaP, InP, ZnS, ZnSe, ZnTe and CdTe under pressure is investigated from the electronic theory of solids by using our recently presented binding force, which includes mainly covalent interactions in the pseudopotential formalism and partially ionic interactions. The partially ionic forces give the important contributions to the high-pressure phase and stabilize the NaCl-type structure for the high-pressure phase of these compounds, although not reported for GaP experimentally. Then, the numerical results such as the transition pressure, the volume-discontinuity, the transition heat with respect to the pressure-induced phase transition from the zinc-blende-to the NaCl-type lattice are obtained theoretically.

  1. Germination of vegetable seeds exposed to very high pressure

    NASA Astrophysics Data System (ADS)

    Mori, Y.; Yokota, S.; Ono, F.

    2012-07-01

    Effects of high hydrostatic pressure were investigated on vegetable seeds in the GPa range to examine the potentialities of breed improvement by high-pressure processing. Specimens of several seeds of broccoli (Brassica oleracea var. italica), Turnip leaf (Brassica rapa var. perviridis) and Potherb Mustard (Brassica rapa var. nipposinica) were put in a teflon capsule with liquid high pressure medium, fluorinate, and inserted into a pyrophillite cube. By using a cubic anvil press a hydrostatic pressure of 5.5 GP a was applied to these seeds for 15 minutes. After being brought back to ambient pressure, they were seeded on humid soil in a plant pot. Many of these vegetable seeds began to germinate within 6 days after seeded.

  2. Small, high-pressure liquid hydrogen turbopump

    NASA Technical Reports Server (NTRS)

    Csomor, A.; Sutton, R.

    1977-01-01

    A high pressure, liquid hydrogen turbopump was designed, fabricated, and tested to a maximum speed of 9739 rad/s and a maximum pump discharge pressure of 2861 N/sq. cm. The approaches used in the analysis and design of the turbopump are described, and fabrication methods are discussed. Data obtained from gas generator tests, turbine performance calibration, and turbopump testing are presented.

  3. New treatment of vertigo caused by jugular bulb abnormalities.

    PubMed

    Hitier, Martin; Barbier, Charlotte; Marie-Aude, Thenint; Moreau, Sylvain; Courtheoux, Patrick; Patron, Vincent

    2014-08-01

    Jugular bulb abnormalities can induce tinnitus, hearing loss, or vertigo. Vertigo can be very disabling and may need surgical treatments with risk of hearing loss, major bleeding or facial palsy. Hence, we have developed a new treatment for vertigo caused by jugular bulb anomalies, using an endovascular technique. Three patients presented with severe vertigos mostly induced by high venous pressure. One patient showed downbeat vertical nystagmus during the Valsalva maneuver. The temporal-bone computed tomography scan showed a high rising jugular bulb or a jugular bulb diverticulum with dehiscence and compression of the vestibular aqueduct in all cases. We plugged the upper part of the bulb with coils, and we used a stent to maintain the coils and preserving the venous permeability. After 12- to 24-month follow-up, those patients experienced no more vertigo, allowing return to work. The 3-month arteriographs showed good permeability of the sigmoid sinus and jugular bulb through the stent, with complete obstruction of the upper part of the bulb in all cases. Disabling vertigo induced by jugular bulb abnormalities can be effectively treated by an endovascular technique. This technique is minimally invasive with a probable greater benefit/risk ratio compare with surgery. © The Author(s) 2013.

  4. High pressure xenon ionization detector

    DOEpatents

    Markey, J.K.

    1989-11-14

    A method is provided for detecting ionization comprising allowing particles that cause ionization to contact high pressure xenon maintained at or near its critical point and measuring the amount of ionization. An apparatus is provided for detecting ionization, the apparatus comprising a vessel containing a ionizable medium, the vessel having an inlet to allow high pressure ionizable medium to enter the vessel, a means to permit particles that cause ionization of the medium to enter the vessel, an anode, a cathode, a grid and a plurality of annular field shaping rings, the field shaping rings being electrically isolated from one another, the anode, cathode, grid and field shaping rings being electrically isolated from one another in order to form an electric field between the cathode and the anode, the electric field originating at the anode and terminating at the cathode, the grid being disposed between the cathode and the anode, the field shaping rings being disposed between the cathode and the grid, the improvement comprising the medium being xenon and the vessel being maintained at a pressure of 50 to 70 atmospheres and a temperature of 0 to 30 C. 2 figs.

  5. High pressure xenon ionization detector

    DOEpatents

    Markey, John K.

    1989-01-01

    A method is provided for detecting ionization comprising allowing particles that cause ionization to contact high pressure xenon maintained at or near its critical point and measuring the amount of ionization. An apparatus is provided for detecting ionization, the apparatus comprising a vessel containing a ionizable medium, the vessel having an inlet to allow high pressure ionizable medium to enter the vessel, a means to permit particles that cause ionization of the medium to enter the vessel, an anode, a cathode, a grid and a plurality of annular field shaping rings, the field shaping rings being electrically isolated from one another, the anode, cathode, grid and field shaping rings being electrically isolated from one another in order to form an electric field between the cathode and the anode, the electric field originating at the anode and terminating at the cathode, the grid being disposed between the cathode and the anode, the field shaping rings being disposed between the cathode and the grid, the improvement comprising the medium being xenon and the vessel being maintained at a pressure of 50 to 70 atmospheres and a temperature of 0.degree. to 30.degree. C.

  6. How do leaf hydraulics limit stomatal conductance at high water vapour pressure deficits?

    PubMed

    Bunce, James A

    2006-08-01

    A reduction in leaf stomatal conductance (g) with increasing leaf-to-air difference in water vapour pressure (D) is nearly ubiquitous. Ecological comparisons of sensitivity have led to the hypothesis that the reduction in g with increasing D serves to maintain leaf water potentials above those that would cause loss of hydraulic conductance. A reduction in leaf water potential is commonly hypothesized to cause stomatal closure at high D. The importance of these particular hydraulic factors was tested by exposing Abutilon theophrasti, Glycine max, Gossypium hirsutum and Xanthium strumarium to D high enough to reduce g and then decreasing ambient carbon dioxide concentration ([CO2]), and observing the resulting changes in g, transpiration rate and leaf water potential, and their reversibility. Reducing the [CO2] at high D increased g and transpiration rate and lowered leaf water potential. The abnormally high transpiration rates did not result in reductions in hydraulic conductance. Results indicate that low water potential effects on g at high D could be overcome by low [CO2], and that even lower leaf water potentials did not cause a reduction in hydraulic conductance in these well-watered plants. Reduced g at high D in these species resulted primarily from increased stomatal sensitivity to [CO2] at high D, and this increased sensitivity may mediate stomatal responses to leaf hydraulics at high D.

  7. Ultrasonic Sound Velocity of Diopside Liquid Under High Pressure and High Temperature Conditions

    NASA Astrophysics Data System (ADS)

    Xu, M.; Jing, Z.; Chantel, J.; Yu, T.; Wang, Y.; Jiang, P.

    2017-12-01

    The equation of state (EOS) of silicate liquids is of great significance to the understanding of the dynamics and differentiation of the magmatic systems in Earth and other terrestrial planets. Sound velocity of silicate liquids measured at high pressure can provide direct information on the bulk modulus and its pressure derivative and hence tightly constrain the EOS of silicate liquids. In addition, the sound velocity data can be directly compared to seismic observations to infer the presence of melts in the mantle. While the sound velocity for silicate liquids at ambient pressure has been well established, the high-pressure sound velocity data are still lacking due to experimental challenges. In this study, we successfully determined the sound velocities of diopside (CaMgSi2O6) liquid in a multi-anvil apparatus under high pressure-high temperature conditions from 1 to 4 GPa and 1973 to 2473 K by the ultrasonic interferometry in conjunction with synchrotron X-ray techniques. Diopside was chosen to study because it is not only one of the most important phases in the Earth's upper mantle, but also an end-member composition of model basalt. It is thus an ideal simplified melt composition in the upper mantle. Besides, diopside liquid has been studied by ambient-pressure ultrasonic measurements (e.g., Ai and Lange, 2008) and shock-wave experiments at much higher pressure (e.g., Asimow and Ahrens, 2010), which allows comparison with our results over a large pressure range. Our high-pressure results on the sound velocity of Di liquid are consistent with the ambient-pressure data and show an increase of velocity with pressure (from 3039 m/s at 0.1 GPa to 4215 m/s at 3.5 GPa). Fitting to the Murnaghan EOS gives an isentropic bulk modulus (Ks) of 24.8 GPa and its pressure dependence (K'S) of 7.8. These are consistent with the results from shock-wave experiments on Di liquid (Asimow and Ahrens, 2010), indicating that the technique used in this study is capable to accurately

  8. Stress distribution and pressure-bearing capacity of a high-pressure split-cylinder die with prism cavity

    NASA Astrophysics Data System (ADS)

    Zhao, Liang; Li, Mingzhe; Wang, Liyan; Qu, Erhu; Yi, Zhuo

    2018-03-01

    A novel high-pressure belt-type die with a split-type cylinder is investigated with respect to extending its lifetime and improving its pressure bearing capacity. Specifically, a tungsten carbide cylinder is split into several parts along the radial direction with a prism-type cavity. In this paper, the cylinders with different split numbers are chosen to study the stress distribution and compare them with the traditional belt-type die. The simulation results indicate that the split cylinder has much smaller stress than those in the belt-type cylinder, and the statistical analysis reveals that the split-pressure cylinder is able to bear higher pressure. Experimental tests also show that the high-pressure die with a split cylinder and prism cavity has a stronger pressure-bearing capacity than a belt-type die. The split cylinder has advantages of easy manufacturing, high pressure bearing capacity, and replaceable performance.

  9. Development of High-Pressure Structural and Cellular Biophysics at Miami University

    NASA Astrophysics Data System (ADS)

    Urayama, Paul

    2004-04-01

    Pressures found in the biosphere (up to 1200 atm) have large effects on enzyme specificity and activity, molecular associations, protein folding, viral infectivity, and cellular morphology. The importance of pressure in pharmaceuticals, medical, and biomaterials sciences is beginning to be appreciated. Enzyme reactions under high pressure or in supercritical fluids may be promising in the synthesis of pharmaceuticals. High pressure processing of biopolymer networks may be important in producing matrices for biomaterials applications. In medicine, herpes, immunodeficiency viruses, and certain prion proteins are inactivated by pressure, which may be useful in the ex vivo treatment of blood. Even physiologically generated pressures, such as during colon peristalsis, have biological effects, for example, on the adhesion properties of epithelial cells in colon cancer. This presentation describes a new high-pressure structural and cellular biophysics laboratory under development at Miami University. Applications of specific methods, including high-pressure time-resolved fluorescence spectroscopy; high-pressure fluorescence microscopy; and high-pressure x-ray macromolecular crystallography will be discussed.

  10. Solids, liquids, and gases under high pressure

    NASA Astrophysics Data System (ADS)

    Mao, Ho-Kwang; Chen, Xiao-Jia; Ding, Yang; Li, Bing; Wang, Lin

    2018-01-01

    Pressure has long been recognized as a fundamental thermodynamic variable but its application was previously limited by the available pressure vessels and probes. The development of megabar diamond anvil cells and a battery of associated in-laboratory and synchrotron techniques at the turn of the century have opened a vast new window of opportunities. With the addition of the pressure dimension, we are facing a new world with an order of magnitude more materials to be discovered than all that have been explored at ambient pressure. Pressure drastically and categorically alters all elastic, electronic, magnetic, structural, and chemical properties, and pushes materials across conventional barriers between insulators and superconductors, amorphous and crystalline solids, ionic and covalent compounds, vigorously reactive and inert chemicals, etc. In the process, it reveals surprising high-pressure physics and chemistry and creates novel materials. This review describes the principles and methodology used to reach ultrahigh static pressure: the in situ probes, the physical phenomena to be investigated, the long-pursued goals, the surprising discoveries, and the vast potential opportunities. Exciting examples include the quest for metallic hydrogen, the record-breaking superconducting temperature of 203 K in HnS , the complication of "free-electron gas" alkali metals, the magnetic collapse in 3 d transition elements, the pressure-induced superconductivity from topological insulators, the novel stoichiometry in simple compounds, the interaction of nanoscience, the accomplishment of 750 GPa pressure, etc. These highlights are the integral results of technological achievements, specific measurements, and theoretical advancement; therefore, the same highlights will appear in different sections corresponding to these different aspects. Overall, this review demonstrates that high-pressure research is a new dimension in condensed-matter physics.

  11. High Pressure Strength Study on NaCl

    NASA Astrophysics Data System (ADS)

    Mi, Z.; Shieh, S. R.; High Pressure Mineral Physics Group

    2010-12-01

    Yield strength is regarded as one important property related to rheological characteristics of minerals in the Earth’s interior. The strength study of NaCl, a popular pressure medium in static high pressure experiments, has been carried out under non-hydrostatic conditions in a diamond anvil cell up to 43 GPa at room temperature using radial energy dispersive X-ray diffraction technique. Phase transformation from B1 (rock salt structure) to B2 (CsCl structure) starts at 29.4 GPa, and is complete at 32.1 GPa. Bulk modulus obtained by third order Birch-Manurgham equation of state is 25.5 GPa with pressure derivative 4.6 for B1 phase, and 30.78 GPa with pressure derivative 4.32 GPa for B2 phase, which are in a good agreement with previous studies. The differential stress of NaCl B1 phase shows very gentle increase with pressure, which indicates that NaCl is a very good pressure-transmitting medium at pressure below 30 GPa. However, the differential stress increases more abruptly for B2 phase and this may imply that NaCl can no longer be regarded as a “soft” pressure medium at very high pressures. For B1 phase, (111) is the strongest plane and (200) is the weakest plane, while (200) becomes the strongest plane in B2 phase. Pure NaCl is weaker than mixture MgO and NaCl, which indicates that soft material become stronger when mixed with hard material. The yield strength of B2 obtained through energy dispersive X-ray diffraction technique increase linearly, while the value derived by pressure gradient method shows jagged trend.

  12. The potential impact of NIPT as a second-tier screen on the outcomes of high-risk pregnancies with rare chromosomal abnormalities.

    PubMed

    Maxwell, Susannah; Dickinson, Jan E; Murch, Ashleigh; O'Leary, Peter

    2015-10-01

    To describe the potential impact of using noninvasive prenatal testing (NIPT) as a second-tier test, on the diagnosis and outcomes of pregnancies identified as high risk through first trimester screening (FTS) in a cohort of real pregnancies. Western Australian FTS and diagnostic data (2007-2009) were linked to pregnancy outcomes. Karyotype results from invasive prenatal testing in high-risk women were analysed. The outcomes of abnormal results that would not be detected by NIPT, assuming a panel of trisomy 21/18/13 and sex chromosome aneuploidies, and the likelihood of diagnosis in a screening model using NIPT as a second-tier test are described. Abnormal karyotype results were reported in 224 of 1488 (15%) women with high-risk pregnancies having invasive diagnostic testing. NIPT potentially would have identified 85%. The 33 abnormalities unidentifiable by NIPT were triploidies (n = 7, 21%), balanced (n = 8, 24%) and unbalanced rearrangements (n = 10, 30%) and level III mosaicisms (n = 8, 24%). For conditions not identifiable by NIPT, fetal sonographic appearance was likely to have led to invasive testing for 10 of 17 (59%) pathogenic abnormalities. If a policy was adopted recommending invasive testing for FTS risk >1:50 and/or ultrasound detected abnormality, the residual risk of an unidentified pathogenic chromosomal abnormality in those without a diagnosis would have been 0.33% (95% CI 0.01-0.65%). A screening model with NIPT as a second-tier for high-risk pregnancies would be unlikely to have changed the outcome for the majority of pregnancies. Optimising the diagnosis of rare pathogenic abnormalities requires clear indicators for invasive testing over NIPT. © 2015 The Royal Australian and New Zealand College of Obstetricians and Gynaecologists.

  13. High Pressure Industrial Water Facility

    NASA Technical Reports Server (NTRS)

    1992-01-01

    In conjunction with Space Shuttle Main Engine testing at Stennis, the Nordberg Water Pumps at the High Pressure Industrial Water Facility provide water for cooling the flame deflectors at the test stands during test firings.

  14. Superelastic carbon spheres under high pressure

    NASA Astrophysics Data System (ADS)

    Li, Meifen; Guo, Junjie; Xu, Bingshe

    2013-03-01

    We report a superelastic deformation behavior of carbon spheres by the in situ Raman spectroscopy in a high-pressure diamond anvil cell. The carbon spheres produced by arc discharging in toluene have a mean diameter of 200 nm and an onion-like multilayer graphitic structure. We find that the elastic coefficients, during both the compression and decompression processes, remain a constant up to 10 GPa, indicating a superior high-pressure structural stability. Such superelastic behavior is related to the isotropic and concentric configuration of carbon spheres and provides additional insight into improving the microscopic mechanical properties of small-scale particles.

  15. Quantitative PLIF Imaging in High-Pressure Combustion

    NASA Technical Reports Server (NTRS)

    Hanson, R. K.

    1997-01-01

    This is the final report for a research project aimed at developing planar laser-induced fluorescence (PLIF) techniques for quantitative 2-D species imaging in fuel-lean, high-pressure combustion gases, relevant to modem aircraft gas turbine combustors. The program involved both theory and experiment. The theoretical activity led to spectroscopic models that allow calculation of the laser-induced fluorescence produced in OH, NO and 02 for arbitrary excitation wavelength, pressure, temperature, gas mixture and laser linewidth. These spectroscopic models incorporate new information on line- broadening, energy transfer and electronic quench rates. Extensive calculations have been made with these models in order to identify optimum excitation strategies, particularly for detecting low levels (ppm) of NO in the presence of large 02 mole fractions (10% is typical for the fuel-lean combustion of interest). A promising new measurement concept has emerged from these calculations, namely that excitation at specific wavelengths, together with detection of fluorescence in multiple spectral bands, promises to enable simultaneous detection of both NO (at ppm levels) and 02 or possibly NO, 02 and temperature. Calculations have been made to evaluate the expected performance of such a diagnostic for a variety of conditions and choices of excitation and detection wavelengths. The experimental effort began with assembly of a new high-pressure combustor to provide controlled high-temperature and high-pressure combustion products. The non-premixed burner enables access to postflame gases at high temperatures (to 2000 K) and high pressures (to 13 atm), and a range of fuel-air equivalence ratios. The chamber also allowed use of a sampling probe, for chemiluminescent detection of NO/NO2, and thermocouples for measurement of gas temperature. Experiments were conducted to confirm the spectroscopic models for OH, NO and 02.

  16. Strong environmental tolerance of Artemia under very high pressure

    NASA Astrophysics Data System (ADS)

    Minami, K.; Ono, F.; Mori, Y.; Takarabe, K.; Saigusa, M.; Matsushima, Y.; Saini, N. L.; Yamashita, M.

    2010-03-01

    It was shown by the present authors group that a tardigrade in its tun-state can survive after exposed to 7.5 GPa for 13 hours. We have extended this experiment to other tiny animals searching for lives under extreme conditions of high hydrostatic pressure. Artemia, a kind of planktons, in its dried egg-state have strong environmental tolerance. Dozens of Artemia eggs were sealed in a small Teflon capsule together with a liquid pressure medium, and exposed to the high hydrostatic pressure of 7.5 GPa. After the pressure was released, they were soaked in seawater to observe hatching rate. It was proved that 80-90% of the Artemia eggs were alive and hatched into Nauplii after exposed to the maximum pressure of 7.5 GPa for up to 48 hours. Comparing with Tardigrades, Artemia are four-times stronger against high pressure.

  17. 49 CFR 192.197 - Control of the pressure of gas delivered from high-pressure distribution systems.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 49 Transportation 3 2010-10-01 2010-10-01 false Control of the pressure of gas delivered from high-pressure distribution systems. 192.197 Section 192.197 Transportation Other Regulations Relating to... STANDARDS Design of Pipeline Components § 192.197 Control of the pressure of gas delivered from high...

  18. Design principles for high-pressure force fields: Aqueous TMAO solutions from ambient to kilobar pressures.

    PubMed

    Hölzl, Christoph; Kibies, Patrick; Imoto, Sho; Frach, Roland; Suladze, Saba; Winter, Roland; Marx, Dominik; Horinek, Dominik; Kast, Stefan M

    2016-04-14

    Accurate force fields are one of the major pillars on which successful molecular dynamics simulations of complex biomolecular processes rest. They have been optimized for ambient conditions, whereas high-pressure simulations become increasingly important in pressure perturbation studies, using pressure as an independent thermodynamic variable. Here, we explore the design of non-polarizable force fields tailored to work well in the realm of kilobar pressures--while avoiding complete reparameterization. Our key is to first compute the pressure-induced electronic and structural response of a solute by combining an integral equation approach to include pressure effects on solvent structure with a quantum-chemical treatment of the solute within the embedded cluster reference interaction site model (EC-RISM) framework. Next, the solute's response to compression is taken into account by introducing pressure-dependence into selected parameters of a well-established force field. In our proof-of-principle study, the full machinery is applied to N,N,N-trimethylamine-N-oxide (TMAO) in water being a potent osmolyte that counteracts pressure denaturation. EC-RISM theory is shown to describe well the charge redistribution upon compression of TMAO(aq) to 10 kbar, which is then embodied in force field molecular dynamics by pressure-dependent partial charges. The performance of the high pressure force field is assessed by comparing to experimental and ab initio molecular dynamics data. Beyond its broad usefulness for designing non-polarizable force fields for extreme thermodynamic conditions, a good description of the pressure-response of solutions is highly recommended when constructing and validating polarizable force fields.

  19. High-pressure microscopy for tracking dynamic properties of molecular machines.

    PubMed

    Nishiyama, Masayoshi

    2017-12-01

    High-pressure microscopy is one of the powerful techniques to visualize the effects of hydrostatic pressures on research targets. It could be used for monitoring the pressure-induced changes in the structure and function of molecular machines in vitro and in vivo. This review focuses on the dynamic properties of the assemblies and machines, analyzed by means of high-pressure microscopy measurement. We developed a high-pressure microscope that is optimized both for the best image formation and for the stability to hydrostatic pressure up to 150 MPa. Application of pressure could change polymerization and depolymerization processes of the microtubule cytoskeleton, suggesting a modulation of the intermolecular interaction between tubulin molecules. A novel motility assay demonstrated that high hydrostatic pressure induces counterclockwise (CCW) to clockwise (CW) reversals of the Escherichia coli flagellar motor. The present techniques could be extended to study how molecular machines in complicated systems respond to mechanical stimuli. Copyright © 2017 Elsevier B.V. All rights reserved.

  20. High blood pressure in acute ischemic stroke and clinical outcome

    PubMed Central

    Manabe, Yasuhiro; Kono, Syoichiro; Tanaka, Tomotaka; Narai, Hisashi; Omori, Nobuhiko

    2009-01-01

    This study aimed to evaluate the prognostic value of acute phase blood pressure in patients with acute ischemic stroke by determining whether or not it contributes to clinical outcome. We studied 515 consecutive patients admitted within the first 48 hours after the onset of ischemic strokes, employing systolic and diastolic blood pressure measurements recorded within 36 hours after admission. High blood pressure was defined when the mean of at least 2 blood pressure measurements was ≥200 mmHg systolic and/or ≥110 mmHg diastolic at 6 to 24 hours after admission or ≥180 mmHg systolic and/or ≥105 mmHg diastolic at 24 to 36 hours after admission. The high blood pressure group was found to include 16% of the patients. Age, sex, diabetes mellitus, hypercholesterolemia, atrial fibrillation, ischemic heart disease, stroke history, carotid artery stenosis, leukoaraiosis, NIH Stroke Scale (NIHSS) on admission and mortality were not significantly correlated with either the high blood pressure or non-high blood pressure group. High blood pressure on admission was significantly associated with a past history of hypertension, kidney disease, the modified Rankin Scale (mRS) on discharge and the length of stay. On logistic regression analysis, with no previous history of hypertension, diabetes mellitus, atrial fibrillation, and kidney disease were independent risk factors associated with the presence of high blood pressure [odds ratio (OR), 1.85 (95% confidence interval (CI): 1.06–3.22), 1.89 (95% CI: 1.11–3.22), and 3.31 (95% CI: 1.36–8.04), respectively]. Multi-organ injury may be presented in acute stroke patients with high blood pressure. Patients with high blood pressure had a poor functional outcome after acute ischemic stroke. PMID:21577346

  1. Soft x-ray spectroscopy of high pressure liquid.

    PubMed

    Qiao, Ruimin; Xia, Yujian; Feng, Xuefei; Macdougall, James; Pepper, John; Armitage, Kevin; Borsos, Jason; Knauss, Kevin G; Lee, Namhey; Allézy, Arnaud; Gilbert, Benjamin; MacDowell, Alastair A; Liu, Yi-Sheng; Glans, Per-Anders; Sun, Xuhui; Chao, Weilun; Guo, Jinghua

    2018-01-01

    We describe a new experimental technique that allows for soft x-ray spectroscopy studies (∼100-1000 eV) of high pressure liquid (∼100 bars). We achieve this through a liquid cell with a 100 nm-thick Si 3 N 4 membrane window, which is sandwiched by two identical O-rings for vacuum sealing. The thin Si 3 N 4 membrane allows soft x-rays to penetrate, while separating the high-pressure liquid under investigation from the vacuum required for soft x-ray transmission and detection. The burst pressure of the Si 3 N 4 membrane increases with decreasing size and more specifically is inversely proportional to the side length of the square window. It also increases proportionally with the membrane thickness. Pressures > 60 bars could be achieved for 100 nm-thick square Si 3 N 4 windows that are smaller than 65 μm. However, above a certain pressure, the failure of the Si wafer becomes the limiting factor. The failure pressure of the Si wafer is sensitive to the wafer thickness. Moreover, the deformation of the Si 3 N 4 membrane is quantified using vertical scanning interferometry. As an example of the performance of the high-pressure liquid cell optimized for total-fluorescence detected soft x-ray absorption spectroscopy (sXAS), the sXAS spectra at the Ca L edge (∼350 eV) of a CaCl 2 aqueous solution are collected under different pressures up to 41 bars.

  2. Soft x-ray spectroscopy of high pressure liquid

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Qiao, Ruimin; Xia, Yujian; Feng, Xuefei

    Here, we describe a new experimental technique that allows for soft x-ray spectroscopy studies (~100-1000 eV) of high pressure liquid (~100 bars). We achieve this through a liquid cell with a 100 nm-thick Si 3N 4 membrane window, which is sandwiched by two identical O-rings for vacuum sealing. The thin Si 3N 4 membrane allows soft x-rays to penetrate, while separating the high-pressure liquid under investigation from the vacuum required for soft x-ray transmission and detection. The burst pressure of the Si 3N 4 membrane increases with decreasing size and more specifically is inversely proportional to the side length ofmore » the square window. It also increases proportionally with the membrane thickness. Pressures > 60 bars could be achieved for 100 nm-thick square Si 3N 4 windows that are smaller than 65 μm. However, above a certain pressure, the failure of the Si wafer becomes the limiting factor. The failure pressure of the Si wafer is sensitive to the wafer thickness. Moreover, the deformation of the Si 3N 4 membrane is quantified using vertical scanning interferometry. As an example of the performance of the high-pressure liquid cell optimized for total-fluorescence detected soft x-ray absorption spectroscopy (sXAS), the sXAS spectra at the Ca L edge (~350 eV) of a CaCl 2 aqueous solution are collected under different pressures up to 41 bars.« less

  3. Soft x-ray spectroscopy of high pressure liquid

    DOE PAGES

    Qiao, Ruimin; Xia, Yujian; Feng, Xuefei; ...

    2018-01-01

    Here, we describe a new experimental technique that allows for soft x-ray spectroscopy studies (~100-1000 eV) of high pressure liquid (~100 bars). We achieve this through a liquid cell with a 100 nm-thick Si 3N 4 membrane window, which is sandwiched by two identical O-rings for vacuum sealing. The thin Si 3N 4 membrane allows soft x-rays to penetrate, while separating the high-pressure liquid under investigation from the vacuum required for soft x-ray transmission and detection. The burst pressure of the Si 3N 4 membrane increases with decreasing size and more specifically is inversely proportional to the side length ofmore » the square window. It also increases proportionally with the membrane thickness. Pressures > 60 bars could be achieved for 100 nm-thick square Si 3N 4 windows that are smaller than 65 μm. However, above a certain pressure, the failure of the Si wafer becomes the limiting factor. The failure pressure of the Si wafer is sensitive to the wafer thickness. Moreover, the deformation of the Si 3N 4 membrane is quantified using vertical scanning interferometry. As an example of the performance of the high-pressure liquid cell optimized for total-fluorescence detected soft x-ray absorption spectroscopy (sXAS), the sXAS spectra at the Ca L edge (~350 eV) of a CaCl 2 aqueous solution are collected under different pressures up to 41 bars.« less

  4. Temperature compensated high-temperature/high-pressure Merrill--Bassett diamond anvil cell

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Schiferl, D.

    1987-07-01

    A Merrill--Bassett diamond anvil cell for high-temperature/high-pressure studies up to 5 GPa at 1000 K and 13 GPa at 725 K is described. To maintain uniform, well-characterized temperatures, and to protect the diamond anvils from oxidation and graphitization, the entire cell is heated in a vacuum oven. The materials are chosen so that the pressure remains constant to within +-10% over the entire temperature range.

  5. Design guide for high pressure oxygen systems

    NASA Technical Reports Server (NTRS)

    Bond, A. C.; Pohl, H. O.; Chaffee, N. H.; Guy, W. W.; Allton, C. S.; Johnston, R. L.; Castner, W. L.; Stradling, J. S.

    1983-01-01

    A repository for critical and important detailed design data and information, hitherto unpublished, along with significant data on oxygen reactivity phenomena with metallic and nonmetallic materials in moderate to very high pressure environments is documented. This data and information provide a ready and easy to use reference for the guidance of designers of propulsion, power, and life support systems for use in space flight. The document is also applicable to designs for industrial and civilian uses of high pressure oxygen systems. The information presented herein are derived from data and design practices involving oxygen usage at pressures ranging from about 20 psia to 8000 psia equal with thermal conditions ranging from room temperatures up to 500 F.

  6. Waist circumference, body mass index, serum uric acid, blood sugar, and triglyceride levels are important risk factors for abnormal liver function tests in the Taiwanese population.

    PubMed

    Hsieh, Meng-Hsuan; Lin, Wen-Yi; Chien, Hsu-Han; Chien, Li-Ho; Huang, Chao-Kuan; Yang, Jeng-Fu; Chang, Ning-Chia; Huang, Chung-Feng; Wang, Chao-Ling; Chuang, Wan-Long; Yu, Ming-Lung; Dai, Chia-Yen; Ho, Chi-Kung

    2012-09-01

    Several studies have found that metabolic syndrome and uric acid level are related to abnormal liver function test results. The aim of this study was to explore the associations of risk factors [including blood pressure, blood sugar, total cholesterol, triglyceride, uric acid, waist circumference and body mass index (BMI) measurements] with abnormal liver function in the Taiwanese population.In total, 11,411 Taiwanese adults were enrolled in this study. Blood pressure was assessed according to the Seventh Report of the Joint National Committee on Prevention, Detection, Evaluation, and Treatment of High Blood Pressure criteria, fasting blood sugar level according to the Bureau of Health Promotion, Department of Health, R.O.C., criteria, total cholesterol and triglyceride levels according to the Third Report of the National Cholesterol Education Program Adult Treatment Panel III criteria, BMI according to the Asia-Pacific criteria, and waist circumference according to the Revised Diagnostic Criteria of Metabolic Syndrome in Taiwan. The prevalence of a past history of hypertension and diabetes mellitus was 17.7% and 6.5%, respectively, and the rates of abnormal measurements of blood pressure, BMI, waist circumference, fasting blood sugar, triglyceride, total cholesterol, uric acid (male/female), aspartate aminotransferase (AST), and alanine aminotransferase (ALT) were 76.2%, 67.6%, 40.0%, 28.6%, 30.6%, 57.3%, 37.9%/21.9%, 14.6% and 21.3%, respectively. Multivariate analysis showed that waist circumference, BMI, serum uric acid, blood sugar, and triglyceride levels were related to abnormal AST and ALT (p<0.05), but the odds ratio for waist circumference was larger than that for BMI. In conclusion, waist circumference, BMI, serum uric acid, blood sugar, and triglyceride levels are important risk factors for abnormal AST and ALT readings in Taiwanese adults. Waist circumference might be a better indicator of risk of abnormal liver function than BMI. Copyright © 2012

  7. Increased intracranial pressure elicits hypertension, increased sympathetic activity, electrocardiographic abnormalities and myocardial damage in rats.

    PubMed

    Shanlin, R J; Sole, M J; Rahimifar, M; Tator, C H; Factor, S M

    1988-09-01

    Intracranial pressure was increased in 59 rats by inflating a subdural balloon to a total mass volume of 0.3 ml. The increase in intracranial pressure ranged from 75 to greater than 500 mm Hg. With few exceptions, mean arterial pressure increased to as high as 227 mm Hg during the increase in intracranial pressure. Significant increases in plasma catecholamines, major electrocardiographic changes and a considerably shortened survival time were observed only in the rats that demonstrated an increase in mean arterial pressure greater than 50 mm Hg. A perfusion study with liquid silicone rubber (Microfil) revealed dilated irregular myocardial vessels with areas of focal constriction consistent with microvascular spasm. Histologic examination of the myocardium revealed widespread patches of contraction band necrosis and occasional contraction bands in the smooth muscle media of large coronary arteries. These observations suggest that myocardial damage after suddenly increased intracranial pressure resulted both from exposure to toxic levels of catecholamines and from myocardial reperfusion. Extension of these studies to humans suggests that a detailed assessment of myocardial function should be performed in victims of severe brain injury. Myocardial dysfunction may be a major determinant of the patient's prognosis or may render the heart unsuitable for transplantation.

  8. Underground storage systems for high-pressure air and gases

    NASA Technical Reports Server (NTRS)

    Beam, B. H.; Giovannetti, A.

    1975-01-01

    This paper is a discussion of the safety and cost of underground high-pressure air and gas storage systems based on recent experience with a high-pressure air system installed at Moffett Field, California. The system described used threaded and coupled oil well casings installed vertically to a depth of 1200 ft. Maximum pressure was 3000 psi and capacity was 500,000 lb of air. A failure mode analysis is presented, and it is shown that underground storage offers advantages in avoiding catastrophic consequences from pressure vessel failure. Certain problems such as corrosion, fatigue, and electrolysis are discussed in terms of the economic life of such vessels. A cost analysis shows that where favorable drilling conditions exist, the cost of underground high-pressure storage is approximately one-quarter that of equivalent aboveground storage.

  9. A High Pressure Flowing Oil Switch For Gigawatt, Repetitive Applications

    DTIC Science & Technology

    2005-06-01

    for testing the high pressure switch concept under repetitive pulse conditions is a 4.8 Ω, 70 ns water pulse forming line (PFL). The water PFL is...Cox Instruments. A pair of Hedland variable area flow sensors monitored relative flow rates in the two oil lines that fed the high pressure switch . High... pressure switch was tested under both single shot and repetitive conditions over a range of pressures, flow rates and temperatures. The primary

  10. Uranyl peroxide nanoclusters at high-pressure

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Turner, Katlyn M.; Szymanowski, Jennifer E. S.; Zhang, Fuxiang

    Here, U 60 ([UO 2(O 2)(OH)] 60 60– in water) is a uranyl peroxide nanocluster with a fullerene topology and O h symmetry. U 60 clusters can exist in crystalline solids or in liquids; however, little is known of their behavior at high pressures. We compressed the U 60-bearing material: Li 68K 12(OH) 20[UO 2(O 2)(OH)] 60(H 2O) 310 ( Fm3¯; a = 37.884 Å) in a diamond anvil cell to determine its response to increasing pressure. Three length scales and corresponding structural features contribute to the compression response: uranyl peroxide bonds (<0.5 nm), isolated single nanoclusters (2.5 nm), andmore » the long-range periodicity of nanoclusters within the solid (>3.7 nm). Li 68K 12(OH) 20[UO 2(O 2)(OH)] 60(H 2O) 310 transformed to a tetragonal structure below 2 GPa and irreversibly amorphized between 9.6 and 13 GPa. The bulk modulus of the tetragonal U 60-bearing material was 25 ± 2 GPa. The pressure-induced amorphous phase contained intact U 60 clusters, which were preserved beyond the loss of long-range periodicity. The persistence of U 60 clusters at high pressure may have been enhanced by the interaction between U 60 nanoclusters and the alcohol pressure medium. Once formed, U 60 nanoclusters persist regardless of their associated long-range ordering—in crystals, amorphous solids, or solutions.« less

  11. Uranyl peroxide nanoclusters at high-pressure

    DOE PAGES

    Turner, Katlyn M.; Szymanowski, Jennifer E. S.; Zhang, Fuxiang; ...

    2017-08-14

    Here, U 60 ([UO 2(O 2)(OH)] 60 60– in water) is a uranyl peroxide nanocluster with a fullerene topology and O h symmetry. U 60 clusters can exist in crystalline solids or in liquids; however, little is known of their behavior at high pressures. We compressed the U 60-bearing material: Li 68K 12(OH) 20[UO 2(O 2)(OH)] 60(H 2O) 310 ( Fm3¯; a = 37.884 Å) in a diamond anvil cell to determine its response to increasing pressure. Three length scales and corresponding structural features contribute to the compression response: uranyl peroxide bonds (<0.5 nm), isolated single nanoclusters (2.5 nm), andmore » the long-range periodicity of nanoclusters within the solid (>3.7 nm). Li 68K 12(OH) 20[UO 2(O 2)(OH)] 60(H 2O) 310 transformed to a tetragonal structure below 2 GPa and irreversibly amorphized between 9.6 and 13 GPa. The bulk modulus of the tetragonal U 60-bearing material was 25 ± 2 GPa. The pressure-induced amorphous phase contained intact U 60 clusters, which were preserved beyond the loss of long-range periodicity. The persistence of U 60 clusters at high pressure may have been enhanced by the interaction between U 60 nanoclusters and the alcohol pressure medium. Once formed, U 60 nanoclusters persist regardless of their associated long-range ordering—in crystals, amorphous solids, or solutions.« less

  12. Chlorine-trapped CVD bilayer graphene for resistive pressure sensor with high detection limit and high sensitivity

    NASA Astrophysics Data System (ADS)

    Phuong Pham, Viet; Triet Nguyen, Minh; Park, Jin Woo; Kwak, Sung Soo; Nguyen, Dieu Hien Thi; Kyeom Mun, Mu; Danh Phan, Hoang; San Kim, Doo; Kim, Ki Hyun; Lee, Nae-Eung; Yeom, Geun Young

    2017-06-01

    Pressure sensing is one of the key functions for smart electronics. Considerably more effort is required to achieve the fabrication of pressure sensors that can imitate and overcome the sophisticated pressure sensing characteristics in nature and industry, especially in the innovation of materials and structures. Almost all of the pressure sensors reported until now have a high sensitivity at a low-pressure detection limit (<10 kPa). While the exploration of a pressure sensor with a high sensitivity and a high responsivity at a high-pressure is challenging, it is required for next generation smart electronics. Here, we report an exotic heterostructure pressure sensor based on ZnO/chlorine radical-trap doped bilayer graphene (ZGClG) as an ideal channel for pressure sensors. Using this ZGClG as the channel, this study shows the possibility of forming a pressure sensor with a high sensitivity (0.19 kPa-1) and a high responsivity (0.575 s) at V  =  1 V on glass substrate. Further, the pressure detection limit of this device was as high as 98 kPa. The investigation of the sensing mechanism under pressure has revealed that the significant improved sensing effect is related to the heavy p-type chlorine trap doping in the channel graphene with chlorine radicals without damaging the graphene. This work indicates that the ZGClG channel used for the pressure sensing device could also provide a simple and essential sensing platform for chemical-, medical-, and biological-sensing for future smart electronics.

  13. Utility of microelectrodes in high-pressure experiments

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Golas, J.; Drickamer, H.G.; Faulkner, L.R.

    1991-11-28

    A method for preparing platinum cylindrical microelectrodes for applications in high-pressure measurements is described. Advantages of microelectrodes of this geometry are illustrated with voltammetric and chonoamperometric experiments performed at pressures of 1-8,000 bar. Quantitative data on the pressure dependence of diffusion coefficients of K[sub 3]Fe(CN)[sub 6] and O[sub 2] in 0.1 M KCl solutions are presented together with qualitative remarks on the behavior of these systems at higher pressure. The results for microelectrodes are compared to those obtained at large cylindrical Pt electrodes under the same experimental conditions.

  14. A novel high pressure, high temperature vessel used to conduct long-term stability measurements of silicon MEMS pressure transducers

    NASA Astrophysics Data System (ADS)

    Wisniewiski, David

    2014-03-01

    The need to quantify and to improve long-term stability of pressure transducers is a persistent requirement from the aerospace sector. Specifically, the incorporation of real-time pressure monitoring in aircraft landing gear, as exemplified in Tire Pressure Monitoring Systems (TPMS), has placed greater demand on the pressure transducer for improved performance and increased reliability which is manifested in low lifecycle cost and minimal maintenance downtime through fuel savings and increased life of the tire. Piezoresistive (PR) silicon MEMS pressure transducers are the primary choice as a transduction method for this measurement owing to their ability to be designed for the harsh environment seen in aircraft landing gear. However, these pressure transducers are only as valuable as the long-term stability they possess to ensure reliable, real-time monitoring over tens of years. The "heart" of the pressure transducer is the silicon MEMS element, and it is at this basic level where the long-term stability is established and needs to be quantified. A novel High Pressure, High Temperature (HPHT) vessel has been designed and constructed to facilitate this critical measurement of the silicon MEMS element directly through a process of mechanically "floating" the silicon MEMS element while being subjected to the extreme environments of pressure and temperature, simultaneously. Furthermore, the HPHT vessel is scalable to permit up to fifty specimens to be tested at one time to provide a statistically significant data population on which to draw reasonable conclusions on long-term stability. With the knowledge gained on the silicon MEMS element, higher level assembly to the pressure transducer envelope package can also be quantified as to the build-effects contribution to long-term stability in the same HPHT vessel due to its accommodating size. Accordingly, a HPHT vessel offering multiple levels of configurability and robustness in data measurement is presented, along

  15. Small, high-pressure, liquid oxygen turbopump

    NASA Technical Reports Server (NTRS)

    Csomor, A.

    1978-01-01

    A small, high-pressure, LOX turbopump was designed, fabricated, and tested. The pump was of a single-stage, centrifugal type; power to the pump was supplied by a single-stage, partial-admission, axial-impulse turbine. Design conditions included an operating speed of 7330 rad/sec (70,000 rpm) pump discharge pressure of 2977 N/sq cm (4318 psia), and a pump flowrate of 16.4 kg/s (36.21 lb/sec). The turbine was propelled by LOX/LH2 combustion products at 1041 K (1874 R) inlet temperature, and at a design pressure ratio of 1.424. Test data obtained with the turbopump are presented and mechanical performance is discussed.

  16. Elasticity of methane hydrate phases at high pressure.

    PubMed

    Beam, Jennifer; Yang, Jing; Liu, Jin; Liu, Chujie; Lin, Jung-Fu

    2016-04-21

    Determination of the full elastic constants (cij) of methane hydrates (MHs) at extreme pressure-temperature environments is essential to our understanding of the elastic, thermodynamic, and mechanical properties of methane in MH reservoirs on Earth and icy satellites in the solar system. Here, we have investigated the elastic properties of singe-crystal cubic MH-sI, hexagonal MH-II, and orthorhombic MH-III phases at high pressures in a diamond anvil cell. Brillouin light scattering measurements, together with complimentary equation of state (pressure-density) results from X-ray diffraction and methane site occupancies in MH from Raman spectroscopy, were used to derive elastic constants of MH-sI, MH-II, and MH-III phases at high pressures. Analysis of the elastic constants for MH-sI and MH-II showed intriguing similarities and differences between the phases' compressional wave velocity anisotropy and shear wave velocity anisotropy. Our results show that these high-pressure MH phases can exhibit distinct elastic, thermodynamic, and mechanical properties at relevant environments of their respective natural reservoirs. These results provide new insight into the determination of how much methane exists in MH reservoirs on Earth and on icy satellites elsewhere in the solar system and put constraints on the pressure and temperature conditions of their environment.

  17. A System for Incubations at High Gas Partial Pressure

    PubMed Central

    Sauer, Patrick; Glombitza, Clemens; Kallmeyer, Jens

    2012-01-01

    High-pressure is a key feature of deep subsurface environments. High partial pressure of dissolved gasses plays an important role in microbial metabolism, because thermodynamic feasibility of many reactions depends on the concentration of reactants. For gases, this is controlled by their partial pressure, which can exceed 1 MPa at in situ conditions. Therefore, high hydrostatic pressure alone is not sufficient to recreate true deep subsurface in situ conditions, but the partial pressure of dissolved gasses has to be controlled as well. We developed an incubation system that allows for incubations at hydrostatic pressure up to 60 MPa, temperatures up to 120°C, and at high gas partial pressure. The composition and partial pressure of gasses can be manipulated during the experiment. To keep costs low, the system is mainly made from off-the-shelf components with only very few custom-made parts. A flexible and inert PVDF (polyvinylidene fluoride) incubator sleeve, which is almost impermeable for gases, holds the sample and separates it from the pressure fluid. The flexibility of the incubator sleeve allows for sub-sampling of the medium without loss of pressure. Experiments can be run in both static and flow-through mode. The incubation system described here is usable for versatile purposes, not only the incubation of microorganisms and determination of growth rates, but also for chemical degradation or extraction experiments under high gas saturation, e.g., fluid–gas–rock-interactions in relation to carbon dioxide sequestration. As an application of the system we extracted organic compounds from sub-bituminous coal using H2O as well as a H2O–CO2 mixture at elevated temperature (90°C) and pressure (5 MPa). Subsamples were taken at different time points during the incubation and analyzed by ion chromatography. Furthermore we demonstrated the applicability of the system for studies of microbial activity, using samples from the Isis mud volcano. We could

  18. [Influence of coke oven emissions on workers' blood pressure and electrocardiographic findings].

    PubMed

    Liang, J J; Yi, G L; Mao, G S; Wang, D M; Dai, X Y

    2016-09-20

    Objective: To investigate the influence of coke oven emissions on workers' blood pressure and electrocardiographic findings, and to provide a basis for the prevention and treatment of cardiovascular diseases. Methods: The concentration of coke oven emissions at the bottom, side, and top of coke ovens was determined in a coking plant. A total of 406 coke oven workers were enrolled as exposure group and 201 office staff members were enrolled as control group. Blood pressure and electrocardiographic findings were compared between the two groups, and the multivariate logistic regression analysis was performed to analyze the influencing factors for hypertension and abnormal electrocardiographic findings. Results: The concentration of coke oven emissions was the highest at the top of coke ovens, followed by the side and bottom of coke ovens, and there was a significant difference between the exposure group and the control group ( P <0.01). The exposure group had significantly higher detection rates of hypertension, abnormal electrocardiographic findings, and abnormal chest X-ray findings than the control group ( P <0.05). The logistic regression analysis showed that high concentration of coke oven emission and age were risk factors for hypertension and abnormal electrocardiographic findings ( P <0.05). The workers exposed to high-concentration coke oven emissions were more likely to experience hypertension and abnormal electrocardiographic findings than those exposed to low-concentration coke oven emissions ( OR =1.7 and 1.9). Conclusion: Besides lung injury, coke oven emissions also have adverse effects on the cardiovascular system. Therefore, more effective measures are needed to protect the health of coke oven workers.

  19. Sounding experiments of high pressure gas discharge

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Biele, Joachim K.

    A high pressure discharge experiment (200 MPa, 5{center_dot}10{sup 21} molecules/cm{sup 3}, 3000 K) has been set up to study electrically induced shock waves. The apparatus consists of the combustion chamber (4.2 cm{sup 3}) to produce high pressure gas by burning solid propellant grains to fill the electrical pump chamber (2.5 cm{sup 3}) containing an insulated coaxial electrode. Electrical pump energy up to 7.8 kJ at 10 kV, which is roughly three times of the gas energy in the pump chamber, was delivered by a capacitor bank. From the current-voltage relationship the discharge develops at rapidly decreasing voltage. Pressure at themore » combustion chamber indicating significant underpressure as well as overpressure peaks is followed by an increase of static pressure level. These data are not yet completely understood. However, Lorentz forces are believed to generate pinching with subsequent pinch heating, resulting in fast pressure variations to be propagated as rarefaction and shock waves, respectively. Utilizing pure axisymmetric electrode initiation rather than often used exploding wire technology in the pump chamber, repeatable experiments were achieved.« less

  20. High-pressure Irreversible Amorphization of La1/3NbO3

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    I Halevy; A Hen; A Broide

    2011-12-31

    The crystallographic structure of La{sub 1/3}NbO{sub 3} perovskite was studied at high pressures using a diamond-anvil cell and synchrotron radiation. High-pressure energy dispersive (EDS) x-ray diffraction and high-pressure angle dispersive (ADS) x-ray diffraction revealed an irreversible amorphization at {approx}10 GPa. A large change in the bulk modulus accompanied the high-pressure amorphization.

  1. High temperature- and high pressure-processed garlic improves lipid profiles in rats fed high cholesterol diets.

    PubMed

    Sohn, Chan Wok; Kim, Hyunae; You, Bo Ram; Kim, Min Jee; Kim, Hyo Jin; Lee, Ji Yeon; Sok, Dai-Eun; Kim, Jin Hee; Lee, Kun Jong; Kim, Mee Ree

    2012-05-01

    Garlic protects against degenerative diseases such as hyperlipidemia and cardiovascular diseases. However, raw garlic has a strong pungency, which is unpleasant. In this study, we examined the effect of high temperature/high pressure-processed garlic on plasma lipid profiles in rats. Sprague-Dawley rats were fed a normal control diet, a high cholesterol (0.5% cholesterol) diet (HCD) only, or a high cholesterol diet supplemented with 0.5% high temperature/high pressure-processed garlic (HCP) or raw garlic (HCR) for 10 weeks. The body weights of the rats fed the garlic-supplemented diets decreased, mostly because of reduced fat pad weights. Plasma levels of total cholesterol (TC), low-density lipoprotein cholesterol, and triglyceride (TG) in the HCP and HCR groups decreased significantly compared with those in the HCD group. Additionally, fecal TC and TG increased significantly in the HCP and HCR groups. It is notable that no significant differences in plasma or fecal lipid profiles were observed between the HCP and HCR groups. High temperature/high pressure-processed garlic contained a higher amount of S-allyl cysteine than raw garlic (P<.05). The results suggest that high temperature/high pressure-processed garlic may be useful as a functional food to improve lipid profiles.

  2. High Temperature- and High Pressure-Processed Garlic Improves Lipid Profiles in Rats Fed High Cholesterol Diets

    PubMed Central

    Sohn, Chan Wok; Kim, Hyunae; You, Bo Ram; Kim, Min Jee; Kim, Hyo Jin; Lee, Ji Yeon; Sok, Dai-Eun; Kim, Jin Hee; Lee, Kun Jong

    2012-01-01

    Abstract Garlic protects against degenerative diseases such as hyperlipidemia and cardiovascular diseases. However, raw garlic has a strong pungency, which is unpleasant. In this study, we examined the effect of high temperature/high pressure-processed garlic on plasma lipid profiles in rats. Sprague–Dawley rats were fed a normal control diet, a high cholesterol (0.5% cholesterol) diet (HCD) only, or a high cholesterol diet supplemented with 0.5% high temperature/high pressure-processed garlic (HCP) or raw garlic (HCR) for 10 weeks. The body weights of the rats fed the garlic-supplemented diets decreased, mostly because of reduced fat pad weights. Plasma levels of total cholesterol (TC), low-density lipoprotein cholesterol, and triglyceride (TG) in the HCP and HCR groups decreased significantly compared with those in the HCD group. Additionally, fecal TC and TG increased significantly in the HCP and HCR groups. It is notable that no significant differences in plasma or fecal lipid profiles were observed between the HCP and HCR groups. High temperature/high pressure-processed garlic contained a higher amount of S-allyl cysteine than raw garlic (P<.05). The results suggest that high temperature/high pressure-processed garlic may be useful as a functional food to improve lipid profiles. PMID:22404600

  3. Remotely operated high pressure valve protects test personnel

    NASA Technical Reports Server (NTRS)

    Howland, B. T.

    1967-01-01

    High pressure valve used in testing certain spacecraft systems is safely opened and closed by a remotely stationed operator. The valve is self-regulating in that if the incoming pressure drops below a desired value the valve will automatically close, warning the operator that the testing pressure has dropped to an undesired level.

  4. High-pressure tolerance of earthworm fibrinolytic and digestive enzymes.

    PubMed

    Akazawa, Shin-Ichi; Tokuyama, Haruka; Sato, Shunsuke; Watanabe, Toshinori; Shida, Yosuke; Ogasawara, Wataru

    2018-02-01

    Earthworms contain several digestive and therapeutic enzymes that are beneficial to our health and useful for biomass utilization. Specifically, earthworms contain potent fibrinolytic enzymes called lumbrokinases, which are highly stable even at room temperature and remain active in dried earthworm powder. However, the high-temperature sterilization method leads to the inactivation of enzymes. Therefore, we investigated the effect of high-pressure treatment (HPT) (from 0.1 MPa to 500 MPa at 25°C and 50°C) on the enzymatic activity of lumbrokinase (LK), α-amylase (AMY), endoglucanase (EG), β-glucosidase (BGL), and lipase (LP) of the earthworm Eisenia fetida, Waki strain, and its sterilization ability in producing dietary supplement. LK showed thermo- and high-pressure tolerance. In addition, HPT may have resulted in pressure-induced stabilization and activation of LK. Although AMY activity was maintained up to 400 MPa at 25°C, the apparent activity decreased slightly at 50°C with HPT. EG showed almost the same pattern as AMY. However, it is possible that the effects of temperature and pressure compensated each other under 100 MPa at 50°C. BGL was shown to be a pressure- and temperature-sensitive enzyme, and LP showed a thermo- and high-pressure tolerance. The slight decrease in apparent activity occurred under 200 MPa at both temperatures. Furthermore, the low-temperature and pressure treatment completely sterilized the samples. These results provide a basis for the development of a novel earthworm dietary supplement with fibrinolytic and digestive activity and of high-pressure-tolerant enzymes to be used for biomass pretreatment. Copyright © 2017 The Society for Biotechnology, Japan. Published by Elsevier B.V. All rights reserved.

  5. [Obesity, body morphology, and blood pressure in urban and rural population groups of Yucatan].

    PubMed

    Arroyo, Pedro; Fernández, Victoria; Loría, Alvar; Pardío, Jeannette; Laviada, Hugo; Vargas-Ancona, Lizardo; Ward, Ryk

    2007-01-01

    To characterize body morphology and blood pressure of adults of the Mexican state of Yucatan. Rural-urban differences in weight, height, waist, and hip circumferences, and blood pressure were analyzed in 313 urban and 271 rural subjects. No rural-urban differences in prevalence of obesity and overweight were found. Hypertension was marginally higher in urban subjects. Rural abnormal waist circumference was higher in young men and young women. Comparison with two national surveys and a survey in the aboriginal population (rural mixtecos) showed similar prevalence of obesity as ENSA-2000 and higher than mixtecos and ENEC-1993. Abnormal waist circumference was intermediate between ENSANUT-2006 and mixtecos and hypertension was intermediate between ENEC and mixtecos. The Maya and mestizo population of Yucatan showed a high prevalence of obesity and abnormal waist circumference not accompanied by a comparable higher hypertension frequency. This finding requires further confirmation.

  6. Pulmonary Arterial Hypertension With Abnormal V/Q Single-Photon Emission Computed Tomography.

    PubMed

    Chan, Kenneth; Ioannidis, Stefanos; Coghlan, John G; Hall, Margaret; Schreiber, Benjamin E

    2017-10-16

    This study aimed to evaluate the incidence and clinical outcomes of abnormal ventilation/perfusion (V/Q) single-photon emission computed tomography (SPECT) without thromboembolism, especially in patients with group I pulmonary arterial hypertension (PAH). American Heart Association/American College of Cardiology and European Society of Cardiology guidelines recommend V/Q scan for screening for chronic thromboembolic pulmonary hypertension. The significance of patients with abnormal V/Q SPECT findings but no thromboembolism demonstrated in further investigations remained unclear. A distinct pattern of global patchy changes not typical of thromboembolism is recognized, but guidelines for reporting these in the context of PAH are lacking. A total of 136 patients who underwent V/Q SPECT and right-sided heart catheterization showing mean pulmonary arterial pressure ≥25 mm Hg were included. V/Q SPECT findings were reported using European Association of Nuclear Medicine criteria for pulmonary embolism followed by computed tomography pulmonary angiography screening for positive thromboembolism and further invasive pulmonary angiography for distal thromboembolism. The abnormal V/Q SPECT images were further analyzed according to perfusion pattern into focal or global perfusion defects. V/Q SPECT showed thromboembolic disease in 44 patients, but 19 of these patients had no thromboembolism demonstrated by pulmonary angiography. Among these patients, 15 of 19 (78.9%) had group I PAH, and the majority had diffuse, patchy perfusion defects. After redefining V/Q SPECT images according to the perfusion pattern, those patients with global perfusion defects had higher mean pulmonary arterial pressure compared with patients with focal perfusion defects and normal scans (mean difference +13.9 and +6.2 mm Hg, respectively; p = 0.0002), as well as higher pulmonary vascular resistance (mean difference +316.6 and +226.3 absolute resistance units, respectively; p = 0

  7. Do high blood folate concentrations exacerbate metabolic abnormalities in people with low vitamin B-12 status?123

    PubMed Central

    Mills, James L; Carter, Tonia C; Scott, John M; Troendle, James F; Gibney, Eileen R; Shane, Barry; Kirke, Peadar N; Ueland, Per M; Brody, Lawrence C; Molloy, Anne M

    2011-01-01

    Background: In elderly individuals with low serum vitamin B-12, those who have high serum folate have been reported to have greater abnormalities in the following biomarkers for vitamin B-12 deficiency: low hemoglobin and elevated total homocysteine (tHcy) and methylmalonic acid (MMA). This suggests that folate exacerbates vitamin B-12–related metabolic abnormalities. Objective: We determined whether high serum folate in individuals with low serum vitamin B-12 increases the deleterious effects of low vitamin B-12 on biomarkers of vitamin B-12 cellular function. Design: In this cross-sectional study, 2507 university students provided data on medical history and exposure to folic acid and vitamin B-12 supplements. Blood was collected to measure serum and red blood cell folate (RCF), hemoglobin, plasma tHcy, and MMA, holotranscobalamin, and ferritin in serum. Results: In subjects with low vitamin B-12 concentrations (<148 pmol/L), those who had high folate concentrations (>30 nmol/L; group 1) did not show greater abnormalities in vitamin B-12 cellular function in any area than did those with lower folate concentrations (≤30 nmol/L; group 2). Group 1 had significantly higher holotranscobalamin and RCF, significantly lower tHcy, and nonsignificantly lower (P = 0.057) MMA concentrations than did group 2. The groups did not differ significantly in hemoglobin or ferritin. Compared with group 2, group 1 had significantly higher mean intakes of folic acid and vitamin B-12 from supplements and fortified food. Conclusions: In this young adult population, high folate concentrations did not exacerbate the biochemical abnormalities related to vitamin B-12 deficiency. These results provide reassurance that folic acid in fortified foods and supplements does not interfere with vitamin B-12 metabolism at the cellular level in a healthy population. PMID:21653798

  8. Modeling conductive heat transfer during high-pressure thawing processes: determination of latent heat as a function of pressure.

    PubMed

    Denys, S; Van Loey, A M; Hendrickx, M E

    2000-01-01

    A numerical heat transfer model for predicting product temperature profiles during high-pressure thawing processes was recently proposed by the authors. In the present work, the predictive capacity of the model was considerably improved by taking into account the pressure dependence of the latent heat of the product that was used (Tylose). The effect of pressure on the latent heat of Tylose was experimentally determined by a series of freezing experiments conducted at different pressure levels. By combining a numerical heat transfer model for freezing processes with a least sum of squares optimization procedure, the corresponding latent heat at each pressure level was estimated, and the obtained pressure relation was incorporated in the original high-pressure thawing model. Excellent agreement with the experimental temperature profiles for both high-pressure freezing and thawing was observed.

  9. New Experimental Setup for High-Pressure High-Temperature Gigahertz Ultrasonic Interferometry

    NASA Astrophysics Data System (ADS)

    Kantor, A. P.; Kantor, I. Y.; Dubrovinsky, L. S.; Jacobsen, S. D.

    2005-12-01

    The only direct information about Earth's interior comes from seismological observations of sound wave velocities. In order to create compositional and mineralogical model from seismological data knowledge of the elastic properties and crystal chemistry of minerals is necessary. Gigahertz ultrasonic interferometry (GUI) is a relatively new tool used to measure single-crystal compressional and shear-wave travel times, which are converted to sound velocities and elastic moduli for direct application to problems in geophysics. Although possibility of simultaneous high-pressure and high-temperature GUI measurements in diamond anvil cell was demonstrated before up to temperature of 250°C, in situ pressure measurements were not possible. We developed new experimental setup for simultaneous GUI and pressure determination using a ruby fluorescence gouge. A diamond anvil cell is equipped with a miniature internal resistive heater with thermocouple fixed at a very small distance from the sample chamber. DAC is mounted at the rotating stage with 5 degrees of freedom (XYZ and two tilting degrees), that can be fixed in three different positions: on top of a P-buffer rod for compressional wave velocities measurement, on top of S-buffer rod for shear wave velocities measurement and under the microscope, equipped with laser and portable high-resolution spectrometer for ruby fluorescence measurement. DAC under high temperature could be moved between these three positions, and independent pressure, temperature, S and P wave velocities measurements could be done simultaneously at each data point. In addition to single-crystal elasticity measurements, ability of GUI for elasticity measurements of liquids was demonstrated. Compressional wave velocities in liquid argon were measured at high pressures and temperatures, showing the ability of GUI for studies equation of state of a liquid.

  10. Intra-ocular pressure normalization technique and equipment

    NASA Technical Reports Server (NTRS)

    Mcgannon, W. J. (Inventor)

    1980-01-01

    A method and apparatus for safely reducing abnormally high intraocular pressure in an eye during a predetermined time interval is presented. This allows maintenance of normal intraocular pressure during glaucoma surgery. According to the invention, a pressure regulator of the spring biased diaphragm type is provided with additional bias by a column of liquid. The height of the column of liquid is selected such that the pressure at a hypodermic needle connected to the output of the pressure regulator is equal to the measured pressure of the eye. The hypodermic needle can then be safely inserted into the anterior chamber of the eye. Liquid is then bled out of the column to reduce the bias on the diaphragm of the pressure regulator and, consequently, the output pressure of the regulator. This lowering pressure of the regulator also occurs in the eye by means of a small second bleed path provided between the pressure regulator and the hypodermic needle. Alternately, a second hypodermic needle may be inserted into the eye to provide a controlled leak off path for excessive pressure and clouded fluid from the anterior chamber.

  11. Semicircular Canal Pressure Changes During High-intensity Acoustic Stimulation.

    PubMed

    Maxwell, Anne K; Banakis Hartl, Renee M; Greene, Nathaniel T; Benichoux, Victor; Mattingly, Jameson K; Cass, Stephen P; Tollin, Daniel J

    2017-08-01

    Acoustic stimulation generates measurable sound pressure levels in the semicircular canals. High-intensity acoustic stimuli can cause hearing loss and balance disruptions. To examine the propagation of acoustic stimuli to the vestibular end-organs, we simultaneously measured fluid pressure in the cochlea and semicircular canals during both air- and bone-conducted sound presentation. Five full-cephalic human cadaveric heads were prepared bilaterally with a mastoidectomy and extended facial recess. Vestibular pressures were measured within the superior, lateral, and posterior semicircular canals, and referenced to intracochlear pressure within the scala vestibuli with fiber-optic pressure probes. Pressures were measured concurrently with laser Doppler vibrometry measurements of stapes velocity during stimulation with both air- and bone-conduction. Stimuli were pure tones between 100 Hz and 14 kHz presented with custom closed-field loudspeakers for air-conducted sounds and via commercially available bone-anchored device for bone-conducted sounds. Pressures recorded in the superior, lateral, and posterior semicircular canals in response to sound stimulation were equal to or greater in magnitude than those recorded in the scala vestibuli (up to 20 dB higher). The pressure magnitudes varied across canals in a frequency-dependent manner. High sound pressure levels were recorded in the semicircular canals with sound stimulation, suggesting that similar acoustical energy is transmitted to the semicircular canals and the cochlea. Since these intralabyrinthine pressures exceed intracochlear pressure levels, our results suggest that the vestibular end-organs may also be at risk for injury during exposure to high-intensity acoustic stimuli known to cause trauma in the auditory system.

  12. Applications of High and Ultra High Pressure Homogenization for Food Safety.

    PubMed

    Patrignani, Francesca; Lanciotti, Rosalba

    2016-01-01

    Traditionally, the shelf-life and safety of foods have been achieved by thermal processing. Low temperature long time and high temperature short time treatments are the most commonly used hurdles for the pasteurization of fluid foods and raw materials. However, the thermal treatments can reduce the product quality and freshness. Consequently, some non-thermal pasteurization process have been proposed during the last decades, including high hydrostatic pressure, pulsed electric field, ultrasound (US), and high pressure homogenization (HPH). This last technique has been demonstrated to have a great potential to provide "fresh-like" products with prolonged shelf-life. Moreover, the recent developments in high-pressure-homogenization technology and the design of new homogenization valves able to withstand pressures up to 350-400 MPa have opened new opportunities to homogenization processing in the food industries and, consequently, permitted the development of new products differentiated from traditional ones by sensory and structural characteristics or functional properties. For this, this review deals with the principal mechanisms of action of HPH against microorganisms of food concern in relation to the adopted homogenizer and process parameters. In addition, the effects of homogenization on foodborne pathogenic species inactivation in relation to the food matrix and food chemico-physical and process variables will be reviewed. Also the combined use of this alternative technology with other non-thermal technologies will be considered.

  13. Applications of High and Ultra High Pressure Homogenization for Food Safety

    PubMed Central

    Patrignani, Francesca; Lanciotti, Rosalba

    2016-01-01

    Traditionally, the shelf-life and safety of foods have been achieved by thermal processing. Low temperature long time and high temperature short time treatments are the most commonly used hurdles for the pasteurization of fluid foods and raw materials. However, the thermal treatments can reduce the product quality and freshness. Consequently, some non-thermal pasteurization process have been proposed during the last decades, including high hydrostatic pressure, pulsed electric field, ultrasound (US), and high pressure homogenization (HPH). This last technique has been demonstrated to have a great potential to provide “fresh-like” products with prolonged shelf-life. Moreover, the recent developments in high-pressure-homogenization technology and the design of new homogenization valves able to withstand pressures up to 350–400 MPa have opened new opportunities to homogenization processing in the food industries and, consequently, permitted the development of new products differentiated from traditional ones by sensory and structural characteristics or functional properties. For this, this review deals with the principal mechanisms of action of HPH against microorganisms of food concern in relation to the adopted homogenizer and process parameters. In addition, the effects of homogenization on foodborne pathogenic species inactivation in relation to the food matrix and food chemico-physical and process variables will be reviewed. Also the combined use of this alternative technology with other non-thermal technologies will be considered. PMID:27536270

  14. Preconcentrator with high volume chiller for high vapor pressure particle detection

    DOEpatents

    Linker, Kevin L

    2013-10-22

    Apparatus and method for collecting particles of both high and low vapor pressure target materials entrained in a large volume sample gas stream. Large volume active cooling provides a cold air supply which is mixed with the sample gas stream to reduce the vapor pressure of the particles. In embodiments, a chiller cools air from ambient conditions to 0-15.degree. C. with the volumetric flow rate of the cold air supply being at least equal to the volumetric flow rate of the sample gas stream. In further embodiments an adsorption media is heated in at least two stages, a first of which is below a threshold temperature at which decomposition products of the high vapor pressure particle are generated.

  15. In situ high-pressure measurement of crystal solubility by using neutron diffraction

    NASA Astrophysics Data System (ADS)

    Chen, Ji; Hu, Qiwei; Fang, Leiming; He, Duanwei; Chen, Xiping; Xie, Lei; Chen, Bo; Li, Xin; Ni, Xiaolin; Fan, Cong; Liang, Akun

    2018-05-01

    Crystal solubility is one of the most important thermo-physical properties and plays a key role in industrial applications, fundamental science, and geoscientific research. However, high-pressure in situ measurements of crystal solubility remain very challenging. Here, we present a method involving high-pressure neutron diffraction for making high-precision in situ measurements of crystal solubility as a function of pressure over a wide range of pressures. For these experiments, we designed a piston-cylinder cell with a large chamber volume for high-pressure neutron diffraction. The solution pressures are continuously monitored in situ based on the equation of state of the sample crystal. The solubility at a high pressure can be obtained by applying a Rietveld quantitative multiphase analysis. To evaluate the proposed method, we measured the high-pressure solubility of NaCl in water up to 610 MPa. At a low pressure, the results are consistent with the previous results measured ex situ. At a higher pressure, more reliable data could be provided by using an in situ high-pressure neutron diffraction method.

  16. High Blood Pressure and Cold Remedies: Which Are Safe?

    MedlinePlus

    ... counter cold remedies safe for people who have high blood pressure? Answers from Sheldon G. Sheps, M.D. Over- ... remedies aren't off-limits if you have high blood pressure, but it's important to make careful choices. Among ...

  17. Spontaneous Raman Scattering Diagnostics for High-pressure Gaseous Flames

    NASA Technical Reports Server (NTRS)

    Kojima, Jun; Nguyen, Quang-Viet; Reddy, D. R. (Technical Monitor)

    2002-01-01

    A high-pressure (up to 60 atm) gaseous burner facility with optical access that provides steady, reproducible flames with high precision, and the ability to use multiple fuel/oxidizer combinations has been developed. In addition, a high-performance spontaneous Raman scattering system for use in the above facility has also been developed. Together, the two systems will be used to acquire and establish a comprehensive Raman scattering spectral database for use as a quantitative high-pressure calibration of single-shot Raman scattering measurements in high-pressure combustion systems. Using these facilities, the Raman spectra of H2-Air flames were successfully measured at pressures up to 20 atm. The spectra demonstrated clear rotational and ro-vibrational Raman features of H2, N2, and H2O. theoretical Raman spectra of pure rotational H2, vibrational H2, and vibrational N2 were calculated using a classical harmonic-oscillator model with pressure broadening effects and fitted to the data. At a gas temperature of 1889 K for a phi = 1.34 H2-Air flame, the model and the data showed good agreement, confirming a ro-vibrational equilibrium temperature.

  18. Generalization of low pressure, gas-liquid, metastable sound speed to high pressures

    NASA Technical Reports Server (NTRS)

    Bursik, J. W.; Hall, R. M.

    1981-01-01

    A theory is developed for isentropic metastable sound propagation in high pressure gas-liquid mixtures. Without simplification, it also correctly predicts the minimum speed for low pressure air-water measurements where other authors are forced to postulate isothermal propagation. This is accomplished by a mixture heat capacity ratio which automatically adjusts from its single phase values to approximately the isothermal value of unity needed for the minimum speed. Computations are made for the pure components parahydrogen and nitrogen, with emphasis on the latter. With simplifying assumptions, the theory reduces to a well known approximate formula limited to low pressure.

  19. How to Prevent High Blood Pressure: MedlinePlus Health Topic

    MedlinePlus

    ... Be Part of a Healthy Diet? (American Heart Association) Can Whole-Grain Foods Lower Blood Pressure? (Mayo Foundation for Medical Education and Research) Also in Spanish Changes You Can Make to Manage High Blood Pressure (American Heart ... Common High Blood Pressure Myths (American Heart Association) ...

  20. Semiconductor nanomembrane-based sensors for high frequency pressure measurements

    NASA Astrophysics Data System (ADS)

    Ruan, Hang; Kang, Yuhong; Homer, Michelle; Claus, Richard O.; Mayo, David; Sibold, Ridge; Jones, Tyler; Ng, Wing

    2017-04-01

    This paper demonstrates improvements on semiconductor nanomembrane based high frequency pressure sensors that utilize silicon on insulator techniques in combination with nanocomposite materials. The low-modulus, conformal nanomembrane sensor skins with integrated interconnect elements and electronic devices could be applied to vehicles or wind tunnel models for full spectrum pressure analysis. Experimental data demonstrates that: 1) silicon nanomembrane may be used as single pressure sensor transducers and elements in sensor arrays, 2) the arrays may be instrumented to map pressure over the surfaces of test articles over a range of Reynolds numbers, temperature and other environmental conditions, 3) in the high frequency range, the sensor is comparable to the commercial high frequency sensor, and 4) in the low frequency range, the sensor is much better than the commercial sensor. This supports the claim that nanomembrane pressure sensors may be used for wide bandwidth flow analysis.

  1. High Blood Pressure, Afib and Your Risk of Stroke

    MedlinePlus

    ... Peripheral Artery Disease Venous Thromboembolism Aortic Aneurysm More High Blood Pressure, AFib and Your Risk of Stroke Updated:Aug ... have a stroke for the first time have high blood pressure . And an irregular atrial heart rhythm — a condition ...

  2. High Pressure Hydrogen Pressure Relief Devices: Accelerated Life Testing and Application Best Practices

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Burgess, Robert M.; Post, Matthew B.; Buttner, William J.

    Pressure relief devices (PRDs ) are used to protect high pressure systems from burst failure caused by overpressurization. Codes and standards require the use of PRDs for the safe design of many pressurized systems. These systems require high reliability due to the risks associated with a burst failure. Hydrogen service can increase the risk of PRD failure due to material property degradation caused by hydrogen attack. The National Renewable Energy Laboratory (NREL) has conducted an accelerated life test on a conventional spring loaded PRD. Based on previous failures in the field, the nozzles specific to these PRDs are of particularmore » interest. A nozzle in a PRD is a small part that directs the flow of fluid toward the sealing surface to maintain the open state of the valve once the spring force is overcome. The nozzle in this specific PRD is subjected to the full tensile force of the fluid pressure. These nozzles are made from 440C material, which is a type of hardened steel that is commonly chosen for high pressure applications because of its high strength properties. In a hydrogen environment, however, 440C is considered a worst case material since hydrogen attack results in a loss of almost all ductility and thus 440C is prone to fatigue and material failure. Accordingly, 440C is not recommended for hydrogen service. Conducting an accelerated life test on a PRD with 440C material provides information on necessary and sufficient conditions required to produce crack initiation and failure. The accelerated life test also provides information on other PRD failure modes that are somewhat statistically random in nature.« less

  3. Confinement of hydrogen at high pressure in carbon nanotubes

    DOEpatents

    Lassila, David H [Aptos, CA; Bonner, Brian P [Livermore, CA

    2011-12-13

    A high pressure hydrogen confinement apparatus according to one embodiment includes carbon nanotubes capped at one or both ends thereof with a hydrogen-permeable membrane to enable the high pressure confinement of hydrogen and release of the hydrogen therethrough. A hydrogen confinement apparatus according to another embodiment includes an array of multi-walled carbon nanotubes each having first and second ends, the second ends being capped with palladium (Pd) to enable the high pressure confinement of hydrogen and release of the hydrogen therethrough as a function of palladium temperature, wherein the array of carbon nanotubes is capable of storing hydrogen gas at a pressure of at least 1 GPa for greater than 24 hours. Additional apparatuses and methods are also presented.

  4. High Frequency of Neuroimaging Abnormalities Among Pediatric Patients With Sepsis Who Undergo Neuroimaging.

    PubMed

    Sandquist, Mary K; Clee, Mark S; Patel, Smruti K; Howard, Kelli A; Yunger, Toni; Nagaraj, Usha D; Jones, Blaise V; Fei, Lin; Vadivelu, Sudhakar; Wong, Hector R

    2017-07-01

    = 0.016) and oncologic diagnosis/organ transplantation (odds ratio, 2.207; p = 0.001) and was negatively associated with early timing of neuroimaging (odds ratio, 0.575; p = 0.037). The majority of pediatric patients with sepsis and concurrent or subsequent neuroimaging have abnormal neuroimaging findings. The implications of this high incidence for long-term neurologic outcomes and follow-up require further exploration.

  5. Effect of high hydrostatic pressure and high dynamic pressure on stability and rheological properties of model oil-in-water emulsions

    NASA Astrophysics Data System (ADS)

    Bigikocin, Erman; Mert, Behic; Alpas, Hami

    2011-09-01

    Both static and dynamic high pressure applications provide interesting modifications in food structures which lead to new product formulations. In this study, the effects of two different treatments, high hydrostatic pressure (HHP) and high dynamic pressure (HDP), on oil-in-water emulsions were identified and compared. Microfluidization was selected from among the HDP homogenization techniques. The performance of each process was analyzed in terms of rheological modifications and emulsion stability improvements compared with the coarse emulsions. The stability of the emulsions was determined comparatively by using an analytical photo-centrifuge device employing novel analysis technology. Whey protein isolate (WPI) in combination with a food polysaccharide (xanthan gum, guar gum or locust bean gum) were used as emulsifying and stabilizing ingredients. The effective disruption of oil droplets and the degradation of polysaccharides by the shear forces under high pressure in HDP microfluidization yielded finer emulsions with lower viscosities, leading to distinctive improvements in emulsion stability. On the other hand, improvements in stability obtained with HHP treatment were due to the thickening of the emulsions mainly induced by protein unfolding. The corresponding increases in viscosity were intensified in emulsion formulations containing higher oil content. Apart from these, HHP treatment was found to be relatively more contributive to the enhancements in viscoelastic properties.

  6. Abnormal splenic artery diameter/hepatic artery diameter ratio in cirrhosis-induced portal hypertension

    PubMed Central

    Zeng, Dao-Bing; Dai, Chuan-Zhou; Lu, Shi-Chun; He, Ning; Wang, Wei; Li, Hong-Jun

    2013-01-01

    AIM: To determine an optimal cutoff value for abnormal splenic artery diameter/proper hepatic artery diameter (S/P) ratio in cirrhosis-induced portal hypertension. METHODS: Patients with cirrhosis and portal hypertension (n = 770) and healthy volunteers (n = 31) underwent volumetric computed tomography three-dimensional vascular reconstruction to measure the internal diameters of the splenic artery and proper hepatic artery to calculate the S/P ratio. The cutoff value for abnormal S/P ratio was determined using receiver operating characteristic curve analysis, and the prevalence of abnormal S/P ratio and associations between abnormal S/P ratio and major complications of portal hypertension were studied using logistic regression. RESULTS: The receiver operating characteristic analysis showed that the cutoff points for abnormal splenic artery internal diameter and S/P ratio were > 5.19 mm and > 1.40, respectively. The sensitivity, specificity, positive predictive value, and negative predictive value were 74.2%, 45.2%, 97.1%, and 6.6%, respectively. The prevalence of an abnormal S/P ratio in the patients with cirrhosis and portal hypertension was 83.4%. Patients with a higher S/P ratio had a lower risk of developing ascites [odds ratio (OR) = 0.708, 95%CI: 0.508-0.986, P = 0.041] and a higher risk of developing esophageal and gastric varices (OR = 1.483, 95%CI: 1.010-2.175, P = 0.044) and forming collateral circulation (OR = 1.518, 95%CI: 1.033-2.230, P = 0.034). After splenectomy, the portal venous pressure and maximum and mean portal venous flow velocities were reduced, while the flow rate and maximum and minimum flow velocities of the hepatic artery were increased (P < 0.05). CONCLUSION: The prevalence of an abnormal S/P ratio is high in patients with cirrhosis and portal hypertension, and it can be used as an important marker of splanchnic hemodynamic disturbances. PMID:23483462

  7. Antibodies under pressure: A Small-Angle X-ray Scattering study of Immunoglobulin G under high hydrostatic pressure.

    PubMed

    König, Nico; Paulus, Michael; Julius, Karin; Schulze, Julian; Voetz, Matthias; Tolan, Metin

    2017-12-01

    In the present work two subclasses of the human antibody Immunoglobulin G (IgG) have been investigated by Small-Angle X-ray Scattering under high hydrostatic pressures up to 5kbar. It is shown that IgG adopts a symmetric T-shape in solution which differs significantly from available crystal structures. Moreover, high-pressure experiments verify the high stability of the IgG molecule. It is not unfolded by hydrostatic pressures of up to 5kbar but a slight increase of the radius of gyration was observed at elevated pressures. Copyright © 2017 Elsevier B.V. All rights reserved.

  8. Development of a high temperature capacitive pressure transducer

    NASA Technical Reports Server (NTRS)

    Egger, R. L.

    1977-01-01

    High temperature pressure transducers capable of continuous operation while exposed to 650 C were developed and evaluated over a full-scale differential pressure range of + or - 69 kPa. The design of the pressure transducers was based on the use of a diaphragm to respond to pressure, variable capacitive elements arranged to operate as a differential capacitor to measure diaphragm response and on the use of fused silica for the diaphragm and its supporting assembly. The uncertainty associated with measuring + or - 69 kPa pressures between 20C and 650C was less than + or - 6%.

  9. Adapter assembly prevents damage to tubing during high pressure tests

    NASA Technical Reports Server (NTRS)

    Stinett, L. L.

    1965-01-01

    Portable adapter assembly prevents damage to tubing and injury to personnel when pressurizing a system or during high pressure tests. The assembly is capable of withstanding high pressure. It is securely attached to the tubing stub end and may be removed without brazing, cutting or cleaning the tube.

  10. Research on viscosity of metal at high pressure

    NASA Astrophysics Data System (ADS)

    Li, Y.; Liu, F.; Ma, X.; Zhang, M.

    2016-11-01

    A new experimental technique, the flyer-impact method, is proposed in this article to investigate the viscosity coefficient of shocked metals. In this technique, a shock wave with a sinusoidal perturbation on the front is induced by the sinusoidal profile of the impact surface of the sample by use of a two-stage light-gas gun, and the oscillatory damping process of the perturbation amplitude is monitored by electric pins. The damping processes of aluminum at 78 and 101 GPa and iron at 159 and 103 GPa are obtained by this technique, which supplement the existing data by measuring the viscosity coefficient via a dynamic high-pressure method. Applying the formula of Miller and Ahrens to fit the experimental data, the shear viscosity coefficients of aluminum at 78 and 101 GPa are 1350 ± 500 and 1200 ± 500 Pa s, respectively, and those of iron at 159 and 103 GPa are 1150 ± 1000 and 4800 ± 1000 Pa s, respectively. The values measured by the flyer-impact method, approximately 103 Pa s, are consistent with those measured by Sakharov's method, while still greatly differing from those measured by static high-pressure methods. In dynamic high-pressure experiments, the shear viscosity is related to dislocation motion in the solid material, while that in static high-pressure experiments is related to the diffusion motion of atoms or molecules in liquids. Therefore, there are different physical meanings of shear viscosity in dynamic and static high-pressure experiments, and there is no comparability among these results.

  11. Anomalous perovskite PbRuO3 stabilized under high pressure

    PubMed Central

    Cheng, J.-G.; Kweon, K. E.; Zhou, J.-S.; Alonso, J. A.; Kong, P.-P.; Liu, Y.; Jin, Changqing; Wu, Junjie; Lin, Jung-Fu; Larregola, S. A.; Yang, Wenge; Shen, Guoyin; MacDonald, A. H.; Manthiram, Arumugam; Hwang, G. S.; Goodenough, John B.

    2013-01-01

    Perovskite oxides ABO3 are important materials used as components in electronic devices. The highly compact crystal structure consists of a framework of corner-shared BO6 octahedra enclosing the A-site cations. Because of these structural features, forming a strong bond between A and B cations is highly unlikely and has not been reported in the literature. Here we report a pressure-induced first-order transition in PbRuO3 from a common orthorhombic phase (Pbnm) to an orthorhombic phase (Pbn21) at 32 GPa by using synchrotron X-ray diffraction. This transition has been further verified with resistivity measurements and Raman spectra under high pressure. In contrast to most well-studied perovskites under high pressure, the Pbn21 phase of PbRuO3 stabilized at high pressure is a polar perovskite. More interestingly, the Pbn21 phase has the most distorted octahedra and a shortest Pb—Ru bond length relative to the average Pb—Ru bond length that has ever been reported in a perovskite structure. We have also simulated the behavior of the PbRuO3 perovskite under high pressure by first principles calculations. The calculated critical pressure for the phase transition and evolution of lattice parameters under pressure match the experimental results quantitatively. Our calculations also reveal that the hybridization between a Ru:t2g orbital and an sp hybrid on Pb increases dramatically in the Pbnm phase under pressure. This pressure-induced change destabilizes the Pbnm phase to give a phase transition to the Pbn21 phase where electrons in the overlapping orbitals form bonding and antibonding states along the shortest Ru—Pb direction at P > Pc. PMID:24277807

  12. Nursing Education in High Blood Pressure Control. Report of the Task Force on the Role of Nursing in High Blood Pressure Control.

    ERIC Educational Resources Information Center

    National Institutes of Health (DHEW), Bethesda, MD. High Blood Pressure Information Center.

    This curriculum guide on high blood pressure (hypertension) for nursing educators has five sections: (1) Introduction and Objectives provides information regarding the establishment and objectives of the National Task Force on the Role of Nursing in High Blood Pressure Control and briefly discusses nursing's role in hypertension control; (2) Goals…

  13. Ignition of contaminants by impact of high-pressure oxygen

    NASA Technical Reports Server (NTRS)

    Pedley, Michael D.; Pao, Jenn-Hai; Bamford, Larry; Williams, Ralph E.; Plante, Barry

    1988-01-01

    The ignition of oil-film contaminants in high-pressure gaseous oxygen systems, caused by rapid pressurization, was investigated using the NASA/White Sands Test Facility's large-volume pneumatic impact test system. The test section consisted of stainless steel lines, contaminated on the inside surface with known amounts of Mobil DTE 24 oil and closed at one end, which was attached to a high-pressure oxygen system; the test section was pressurized to 48 MPa by opening a high-speed valve. Ignition of the oil was detected by a photocell attached to the closed end of the line. It was found that the frequency of ignition increased as a function of both the concentration of oil and of the pressure of the impacting oxygen. The threshold of ignition was between 25 and 65 mg/sq m. The results were correlated with the present NASA and Compressed Gas Association requirements for maximum levels of organic contaminants.

  14. Development of high pressure-high vacuum-high conductance piston valve for gas-filled radiation detectors

    NASA Astrophysics Data System (ADS)

    Prasad, D. N.; Ayyappan, R.; Kamble, L. P.; Singh, J. P.; Muralikrishna, L. V.; Alex, M.; Balagi, V.; Mukhopadhyay, P. K.

    2008-05-01

    Gas-filled radiation detectors need gas filling at pressures that range from few cms of mercury to as high as 25kg/cm2 at room temperature. Before gas-filling these detectors require evacuation to a vacuum of the order of ~1 × 10-5 mbar. For these operations of evacuation and gas filling a system consisting of a vacuum pump with a high vacuum gauge, gas cylinder with a pressure gauge and a valve is used. The valve has to meet the three requirements of compatibility with high-pressure and high vacuum and high conductance. A piston valve suitable for the evacuation and gas filling of radiation detectors has been designed and fabricated to meet the above requirements. The stainless steel body (80mm×160mm overall dimensions) valve with a piston arrangement has a 1/2 inch inlet/outlet opening, neoprene/viton O-ring at piston face & diameter for sealing and a knob for opening and closing the valve. The piston movement mechanism is designed to have minimum wear of sealing O-rings. The valve has been hydrostatic pressure tested up to 75bars and has Helium leak rate of less than 9.6×10-9 m bar ltr/sec in vacuum mode and 2×10-7 mbar ltr/sec in pressure mode. As compared to a commercial diaphragm valve, which needed 3 hours to evacuate a 7 litre chamber to 2.5×10-5 mbar, the new valve achieved vacuum 7.4×10-6mbar in the same time under the same conditions.

  15. The spectrum of motor function abnormalities in gastroesophageal reflux disease and Barrett's esophagus.

    PubMed

    Ang, D; Blondeau, K; Sifrim, D; Tack, J

    2009-01-01

    Barrett's esophagus has traditionally been regarded as the most severe end of the spectrum of gastroesophageal reflux disease and is of great clinical importance in view of the association with esophageal adenocarcinoma. Studies have documented high levels of esophageal acid exposure in Barrett's esophagus. Various pathogenetic mechanisms underlie this phenomenon. These include abnormalities in esophageal peristalsis, defective lower esophageal sphincter pressures, gastric dysmotility and bile reflux. Whilst these factors provide evidence for an acquired cause of Barrett's esophagus, an underlying genetic predisposition cannot be ruled out. Although the past decade has brought about many new discoveries in the pathogenesis of Barrett's esophagus, it has also added further controversy to this complex disorder. A detailed analysis of the gastrointestinal motor abnormalities occurring in Barrett's esophagus follows, with a review of the currently available literature and an update on this condition that continues to be of interest to the gastroenterologist.

  16. Maintenance of breast milk Immunoglobulin A after high-pressure processing.

    PubMed

    Permanyer, M; Castellote, C; Ramírez-Santana, C; Audí, C; Pérez-Cano, F J; Castell, M; López-Sabater, M C; Franch, A

    2010-03-01

    Human milk is considered the optimal nutritional source for infants. Banked human milk is processed using low-temperature, long-time pasteurization, which assures microbial safety but involves heat denaturation of some desirable milk components such as IgA. High-pressure processing technology, the subject of the current research, has shown minimal destruction of food macromolecules. The objective of this study was to investigate the influence of pressure treatments on IgA content. Moreover, bacterial load was evaluated after pressure treatments. The effects of high-pressure processing on milk IgA content were compared with those of low-temperature, long-time pasteurization. Mature human milk samples were heat treated at 62.5 degrees C for 30min or pressure processed at 400, 500, or 600MPa for 5min at 12 degrees C. An indirect ELISA was used to measure IgA in human milk whey obtained after centrifugation at 800xg for 10min at 4 degrees C. All 3 high-pressure treatments were as effective as low-temperature, long-time pasteurization in reducing the bacterial population of the human milk samples studied. After human milk pressure processing at 400MPa, 100% of IgA content was preserved in milk whey, whereas only 72% was retained in pasteurized milk whey. The higher pressure conditions of 500 and 600MPa produced IgA retention of 87.9 and 69.3%, respectively. These results indicate that high-pressure processing at 400MPa for 5min at 12 degrees C maintains the immunological protective capacity associated with IgA antibodies. This preliminary study suggests that high-pressure processing may be a promising alternative to pasteurization in human milk banking.

  17. The Effect of Job Strain on Nighttime Blood Pressure Dipping among Men and Women with High Blood Pressure

    PubMed Central

    Fan, Lin-bo; Blumenthal, James A.; Hinderliter, Alan L.; Sherwood, Andrew

    2013-01-01

    Objectives Blunted nighttime blood pressure dipping is an established cardiovascular risk factor. This study examined the effect of job strain on nighttime blood pressure dipping among men and women with high blood pressure. Methods The sample consisted of 122 blue collar and white collar workers (men=72, women=50). Job psychological demands, job control and social support were measured by the Job Content Questionnaire. Job strain was assessed by the ratio of job demands/job control. Nighttime blood pressure dipping was evaluated from 24-hour ambulatory blood pressure monitoring performed on three workdays. Results Men with high job strain had a 5.4 mm Hg higher sleep systolic blood pressure (P=0.03) and 3.5 mm Hg higher sleep pulse pressure (P=0.02) compared to men with low job strain. Men with high job strain had a smaller fall in systolic blood pressure and pulse pressure from awake to sleep than those with low job strain (P<0.05). Hierarchical analyses showed that job strain was an independent determinant of systolic blood pressure dipping (P=0.03) among men after adjusting for ethnicity, body mass index, anxiety and depression symptoms, current smoking status, and alcohol consumption. Further exploratory analyses indicated that job control was the salient component of job strain associated with blood pressure dipping (p=.03). Conclusions High job strain is associated with a blunting of the normal diurnal variation in blood pressure and pulse pressure, which may contribute to the relationship between job strain and cardiovascular disease. PMID:22460541

  18. High pressure transport and structural studies on Nb 3Ga superconductor

    DOE PAGES

    Mkrtcheyan, Vahe; Kumar, Ravhi; Baker, Jason; ...

    2014-11-24

    We investigated the crystal structure of A-15 superconductor Nb 3Ga with a critical temperature T c = 16.5 K by high pressure x-ray diffraction (HPXRD) using synchrotron x-rays and a diamond anvil cell under Ne pressure medium. Furthermore, the high pressure structural results indicate that Nb 3Ga is stable up to 41 GPa. The P-V plot shows an anomaly around 15 GPa even though there are no pressure induced structural transitions are observed. High pressure resistance measurements were performed up to 0.5 GPa to understand the variation of T c under pressure. Finally, our results show a positive pressure effectmore » on T c.« less

  19. High pressure extraction of phenolic compounds from citrus peels†

    NASA Astrophysics Data System (ADS)

    Casquete, R.; Castro, S. M.; Villalobos, M. C.; Serradilla, M. J.; Queirós, R. P.; Saraiva, J. A.; Córdoba, M. G.; Teixeira, P.

    2014-10-01

    This study evaluated the effect of high pressure processing on the recovery of high added value compounds from citrus peels. Overall, the total phenolic content in orange peel was significantly (P < .05) higher than that in lemon peel, except when pressure treated at 500 MPa. However, lemon peel demonstrated more antioxidant activity than orange peel. Pressure-treated samples (300 MPa, 10 min; 500 MPa, 3 min) demonstrated higher phenolic content and antioxidant activity comparatively to the control samples. For more severe treatments (500 MPa, 10 min), the phenolic content and antioxidant activity decreased in both lemon and orange peels. This paper was presented at the 8th International Conference on High Pressure Bioscience & Biotechnology (HPBB 2014), in Nantes (France), 15-18 July 2014.

  20. Diamond anvil cell for spectroscopic investigation of materials at high temperature, high pressure and shear

    DOEpatents

    Westerfield, Curtis L.; Morris, John S.; Agnew, Stephen F.

    1997-01-01

    Diamond anvil cell for spectroscopic investigation of materials at high temperature, high pressure and shear. A cell is described which, in combination with Fourier transform IR spectroscopy, permits the spectroscopic investigation of boundary layers under conditions of high temperature, high pressure and shear.

  1. High Temperature Dynamic Pressure Measurements Using Silicon Carbide Pressure Sensors

    NASA Technical Reports Server (NTRS)

    Okojie, Robert S.; Meredith, Roger D.; Chang, Clarence T.; Savrun, Ender

    2014-01-01

    Un-cooled, MEMS-based silicon carbide (SiC) static pressure sensors were used for the first time to measure pressure perturbations at temperatures as high as 600 C during laboratory characterization, and subsequently evaluated in a combustor rig operated under various engine conditions to extract the frequencies that are associated with thermoacoustic instabilities. One SiC sensor was placed directly in the flow stream of the combustor rig while a benchmark commercial water-cooled piezoceramic dynamic pressure transducer was co-located axially but kept some distance away from the hot flow stream. In the combustor rig test, the SiC sensor detected thermoacoustic instabilities across a range of engine operating conditions, amplitude magnitude as low as 0.5 psi at 585 C, in good agreement with the benchmark piezoceramic sensor. The SiC sensor experienced low signal to noise ratio at higher temperature, primarily due to the fact that it was a static sensor with low sensitivity.

  2. High pressure and multiferroics materials: a happy marriage

    PubMed Central

    Gilioli, Edmondo; Ehm, Lars

    2014-01-01

    The community of material scientists is strongly committed to the research area of multiferroic materials, both for the understanding of the complex mechanisms supporting the multiferroism and for the fabrication of new compounds, potentially suitable for technological applications. The use of high pressure is a powerful tool in synthesizing new multiferroic, in particular magneto-electric phases, where the pressure stabilization of otherwise unstable perovskite-based structural distortions may lead to promising novel metastable compounds. The in situ investigation of the high-pressure behavior of multiferroic materials has provided insight into the complex interplay between magnetic and electronic properties and the coupling to structural instabilities. PMID:25485138

  3. Digital pressure transducer for use at high temperatures

    DOEpatents

    Karplus, Henry H. B.

    1981-01-01

    A digital pressure sensor for measuring fluid pressures at relatively high temperatures includes an electrically conducting fiber coupled to the fluid by a force disc that causes tension in the fiber to be a function of fluid pressure. The tension causes changes in the mechanical resonant frequency of the fiber, which is caused to vibrate in a magnetic field to produce an electrical signal from a positive-feedback amplifier at the resonant frequency. A count of this frequency provides a measure of the fluid pressure.

  4. Digital pressure transducer for use at high temperatures

    DOEpatents

    Karplus, H.H.B.

    A digital pressure sensor for measuring fluid pressures at relatively high temperatures includes an electrically conducting fiber coupled to the fluid by a force disc that causes tension in the fiber to be a function of fluid pressure. The tension causes changes in the mechanical resonant frequency of the fiber, which is caused to vibrate in a magnetic field to produce an electrical signal from a positive-feedback amplifier at the resonant frequency. A count of this frequency provides a measure of the fluid pressure.

  5. Devices and process for high-pressure magic angle spinning nuclear magnetic resonance

    DOEpatents

    Hoyt, David W; Sears, Jr., Jesse A; Turcu, Romulus V.F.; Rosso, Kevin M; Hu, Jian Zhi

    2014-04-08

    A high-pressure magic angle spinning (MAS) rotor is detailed that includes a high-pressure sample cell that maintains high pressures exceeding 150 bar. The sample cell design minimizes pressure losses due to penetration over an extended period of time.

  6. Devices and process for high-pressure magic angle spinning nuclear magnetic resonance

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hoyt, David W.; Sears, Jesse A.; Turcu, Romulus V. F.

    A high-pressure magic angle spinning (MAS) rotor is detailed that includes a high-pressure sample cell that maintains high pressures exceeding 150 bar. The sample cell design minimizes pressure losses due to penetration over an extended period of time.

  7. Adolescent obesity adversely affects blood pressure and resting heart rate.

    PubMed

    Baba, Reizo; Koketsu, Masaaki; Nagashima, Masami; Inasaka, Hiroshi; Yoshinaga, Masao; Yokota, Mitsuhiro

    2007-05-01

    Obesity is associated with hypertension (HT) and high resting heart rate (HR), as well as metabolic disturbances. However, little is known about how strongly these hemodynamic abnormalities are associated with the degree of obesity in adolescents. Height, body weight, resting HR, and systolic and diastolic blood pressures were measured in 20,165 male and 19,683 female high-school students. Adiposity levels were classified into 6 groups by body mass index: group 1 (<20th percentile), group 2 (20th-39.9th percentile), group 3 (40th-59.9th percentile), group 4 (60th-79.9th percentile), group 5 (80th-98.9th percentile), and group 6 (> or =99th percentile). Systolic and diastolic hypertensions were defined as > or =140 mmHg and > or =85 mmHg, respectively. Resting tachycardia was defined as the corresponding 95th percentile or greater. Resting HR and systolic and diastolic blood pressures increased with adiposity level in both sexes (p<0.0001). Both systolic HT and diastolic HT were associated with high resting HR, and the clustering of these unfavorable conditions increased with the degree of obesity. Hemodynamic abnormalities, such as HT and a high resting HR, are closely associated with adolescent obesity and are probably explained by impaired autonomic nerve function.

  8. Petrogenesis of high-Ti and low-Ti basalts: high-pressure and high-temperature experimental study

    NASA Astrophysics Data System (ADS)

    Yang, J.; WANG, C.; Jin, Z.

    2017-12-01

    Geochemical and petrological studies have revealed the existence of high-Ti and low-Ti basalts in large igneous provinces. However, the petrogenesis of them are still under debate. Several different mechanisms have been proposed: (1) the high-Ti basalts are formed by the melting of mantle plume containing recycled oceanic crust or delaminated lower crust (Spandler et al., 2008) while low-Ti basalts are formed by the melting of subcontinental lithospheric mantle (Xiao et al., 2004); (2) both of them are from mantle plume or asthenospheric source, but the production of high-Ti basalts are associated with the thick lithosphere and relevant low degrees of melting while the low-Ti basalts are controlled by the thin lithosphere with high degrees of melting (Arndt et al., 1993; Xu et al., 2001). Almost all authors emphasize the role of partial melting but less discuss the crystallization differentiation process. The low Mg# (< 0.7) of these basalts provides that they are far away from direct melting of mantle peridotite. In addition, seismic data indicate unusually high seismic velocities bodies beneath LIPs which explained by the fractionated cumulates from picritic magmas (Farnetani et al., 1996). Therefore, we believed that the crystallization differentiation process might play a more significant role in the genesis of high-Ti and low-Ti basalts. In order to investigate the generation of these basalts, a series of high pressure and high temperature partial crystallization experiments were performed by using piston-cylinder and multi-anvil press at pressures of 1.5, 3.0 and 5.0 GPa and a temperature range of 1200-1700°. Two synthetic picrite glass with different chemical compositions were used as starting materials. Our experimental results show that Ti is preferred to be concentrated in the residual melt during crystallization differentiation. For the same melt fraction, the residual melt of higher pressure experiments has relatively higher TiO2 concentration and

  9. Photoconductivity of CdS under high pressure

    NASA Astrophysics Data System (ADS)

    Savić, Pavle; Urošević, Vladeta

    1987-04-01

    The photoconductivity of the high-pressure (rocksalt) phase of CdS has been investigated over the 30-120 kbar pressure range. A decrease of the photo-threshold from 1.60 eV (at 30 kbar) to 1.49 eV (at 120 kbar) indicates an indirect gap semiconductor. The values obtained have been compared with the Savić-Kašanin theory.

  10. BCOR Overexpression Is a Highly Sensitive Marker in Round Cell Sarcomas With BCOR Genetic Abnormalities.

    PubMed

    Kao, Yu-Chien; Sung, Yun-Shao; Zhang, Lei; Jungbluth, Achim A; Huang, Shih-Chiang; Argani, Pedram; Agaram, Narasimhan P; Zin, Angelica; Alaggio, Rita; Antonescu, Cristina R

    2016-12-01

    With the advent of next-generation sequencing, an increasing number of novel gene fusions and other abnormalities have emerged recently in the spectrum of EWSR1-negative small blue round cell tumors (SBRCTs). In this regard, a subset of SBRCTs harboring either BCOR gene fusions (BCOR-CCNB3, BCOR-MAML3), BCOR internal tandem duplications (ITD), or YWHAE-NUTM2B share a transcriptional signature including high BCOR mRNA expression, as well as similar histologic features. Furthermore, other tumors such as clear cell sarcoma of kidney (CCSK) and primitive myxoid mesenchymal tumor of infancy also demonstrate BCOR ITDs and high BCOR gene expression. The molecular diagnosis of these various BCOR genetic alterations requires an elaborate methodology including custom BAC fluorescence in situ hybridization (FISH) probes and reverse transcription polymerase chain reaction assays. As these tumors show high level of BCOR overexpression regardless of the genetic mechanism involved, either conventional gene fusion or ITD, we sought to investigate the performance of an anti-BCOR monoclonal antibody clone C-10 (sc-514576) as an immunohistochemical marker for sarcomas with BCOR gene abnormalities. Thus we assessed the BCOR expression in a pathologically and genetically well-characterized cohort of 25 SBRCTs, spanning various BCOR-related fusions and ITDs and YWHAE-NUTM2B fusion. In addition, we included related pathologic entities such as 8 CCSKs and other sarcomas with BCOR gene fusions. As a control group we included 20 SBRCTs with various (non-BCOR) genetic abnormalities, 10 fusion-negative SBRCTs, 74 synovial sarcomas, 29 rhabdomyosarcomas, and other sarcoma types. In addition, we evaluated the same study group for SATB2 immunoreactivity, as these tumors also showed SATB2 mRNA upregulation. All SBRCTs with BCOR-MAML3 and BCOR-CCNB3 fusions, as well as most with BCOR ITD (93%), and all CCSKs showed strong and diffuse nuclear BCOR immunoreactivity. Furthermore, all SBRCTs with

  11. High- and low-temperature-stable thermite composition for producing high-pressure, high-velocity gases

    DOEpatents

    Halcomb, Danny L.; Mohler, Jonathan H.

    1990-10-16

    A high- and low-temperature-stable thermite composition for producing high-pressure and high-velocity gases comprises an oxidizable metal, an oxidizing reagent, and a high-temperature-stable gas-producing additive selected from the group consisting of metal carbides and metal nitrides.

  12. Raising the Bar: Increased Hydraulic Pressure Allows Unprecedented High Power Densities in Pressure-Retarded Osmosis

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Straub, AP; Yip, NY; Elimelech, M

    2014-01-01

    Pressure-retarded osmosis (PRO) has the potential to generate sustainable energy from salinity gradients. PRO is typically considered for operation with river water and seawater, but a far greater energy of mixing can be harnessed from hypersaline solutions. This study investigates the power density that can be obtained in PRO from such concentrated solutions. Thin-film composite membranes with an embedded woven mesh were supported by tricot fabric feed spacers in a specially designed crossflow cell to maximize the operating pressure of the system, reaching a stable applied hydraulic pressure of 48 bar (700 psi) for more than 10 h. Operation atmore » this increased hydraulic pressure allowed unprecedented power densities, up to 60 W/m(2) with a 3 M (180 g/L) NaCl draw solution. Experimental power densities demonstrate reasonable agreement with power densities modeled using measured membrane properties, indicating high-pressure operation does not drastically alter membrane performance. Our findings exhibit the promise of the generation of power from high-pressure PRO with concentrated solutions.« less

  13. Prediction of superconducting iron–bismuth intermetallic compounds at high pressure

    PubMed Central

    Amsler, Maximilian; Naghavi, S. Shahab

    2017-01-01

    The synthesis of materials in high-pressure experiments has recently attracted increasing attention, especially since the discovery of record breaking superconducting temperatures in the sulfur–hydrogen and other hydrogen-rich systems. Commonly, the initial precursor in a high pressure experiment contains constituent elements that are known to form compounds at ambient conditions, however the discovery of high-pressure phases in systems immiscible under ambient conditions poses an additional materials design challenge. We performed an extensive multi component ab initio structural search in the immiscible Fe–Bi system at high pressure and report on the surprising discovery of two stable compounds at pressures above ≈36 GPa, FeBi2 and FeBi3. According to our predictions, FeBi2 is a metal at the border of magnetism with a conventional electron–phonon mediated superconducting transition temperature of T c = 1.3 K at 40 GPa. PMID:28507678

  14. HIGH PRESSURE DIES

    DOEpatents

    Wilson, W.B.

    1960-05-31

    A press was invented for subjecting specimens of bismuth, urania, yttria, or thoria to high pressures and temperatures. The press comprises die parts enclosing a space in which is placed an electric heater thermally insulated from the die parts so as not to damage them by heat. The die parts comprise two opposed inner frustoconical parts and an outer part having a double frustoconical recess receiving the inner parts. The die space decreases in size as the inner die parts move toward one another against the outer part and the inner parts, though very hard, do not fracture because of the mode of support provided by the outer part.

  15. Ultrasonic level sensors for liquids under high pressure

    NASA Technical Reports Server (NTRS)

    Zuckerwar, A. J.; Mazel, D. S.; Hodges, D. Y.

    1986-01-01

    An ultrasonic level sensor of novel design continuously measures the level of a liquid subjected to a high pressure (up to about 40 MPa), as is sometimes required for the effective transfer of the liquid. The sensor operates as a composite resonator fabricated from a standard high-pressure plug. A flat-bottom hole is machined into the plug along its center line. An ultrasonic transducer is bonded rigidly to the interior surface of the bottom wall, while the exterior surface is in contact with the liquid. Although the bottom wall is designed to satisfy the pressure code, it is still sufficiently thin to permit ready excitation of the axisymmetric plate modes of vibration. The liquid level is measured by a conventional pulse-echo technique. A prototype sensor was tested successfully in a 2300-l water vessel at pressures up to about 37 MPa. A spectral analysis of the transmitted pulse reveals that the flexural, extensional, thickness-shear, and radial plate modes are excited into vibration, but none of these appears to be significantly affected by the pressurization of the liquid.

  16. EPA AND ERDA HIGH-TEMPERATURE/HIGH-PRESSURE PARTICULATE CONTROL PROGRAMS

    EPA Science Inventory

    The report describes and compares current projects sponsored by EPA and the U.S. Energy Research and Development Administration (ERDA), relating to the control of particulate matter in fuel gas streams at high temperatures (1000 to 2000F) and high pressures (5 atm and greater). T...

  17. Density and structure of jadeite melt at high pressure and high temperature

    NASA Astrophysics Data System (ADS)

    Sakamaki, T.; Yu, T.; Jing, Z.; Park, C.; Shen, G.; Wang, Y.

    2011-12-01

    Knowledge of density of magma is important for understanding magma-related processes such as volcanic activity and differentiation in the Earth's early history. Since these processes take place in Earth's interior, we need to measure the density of magma in situ at high pressures. It is also necessary to relate the density with the structure of silicate melts at high pressure and temperature and further understand the densification mechanism of magma with pressure. Here we report the density and structural data for jadeite melt up to 7 GPa,. The density measurements were carried out using a DIA-type cubic press at the 13-BM-D beamline at APS using monochromatic radiation tuned to the desired energy (~20 keV) with a Si (111) double-crystal monochromator. Intensities of the incident and transmitted X-rays were measured by two ion chambers placed before and after the press for X-ray absorption measurements. Incident and transmitted X-ray intensities were obtained by moving the incident slits perpendicular to the X-ray beam direction at 0.010 mm steps crosses the sample. Lambert-Beer law was then applied to the normalized intensities as a function of the sample position across the assembly. Density of jadeite melt was determined up to 7 GPa and 2300 K. For structural determination, high-pressure and high-temperature energy-dispersive XRD experiments were carried out by using a Paris-Edinburgh press installed at the 16-BM-B of APS. Incident X-rays were collimated by a vertical slit (0.5 mm) and a horizontal slit (0.1 mm) to irradiate the sample. Diffracted X-rays were detected by a Ge solid state detector with a 4k multi-channel analyzer, through a collimator and 5.0mm (V) by and 0.1mm (H) receiving slits. Diffraction patterns were collected until the highest intensity reached 2000 counts, at 12 angles (2theta=3, 4, 5, 7, 9, 11, 15, 20, 25, 30, 35, 39.5 degrees). The structural measurements were carried out in the pressure range from 1 to 5 GPa and at 1600 to 2000 K

  18. Low-Cost High-Pressure Hydrogen Generator

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Cropley, Cecelia C.; Norman, Timothy J.

    Electrolysis of water, particularly in conjunction with renewable energy sources, is potentially a cost-effective and environmentally friendly method of producing hydrogen at dispersed forecourt sites, such as automotive fueling stations. The primary feedstock for an electrolyzer is electricity, which could be produced by renewable sources such as wind or solar that do not produce carbon dioxide or other greenhouse gas emissions. However, state-of-the-art electrolyzer systems are not economically competitive for forecourt hydrogen production due to their high capital and operating costs, particularly the cost of the electricity used by the electrolyzer stack. In this project, Giner Electrochemical Systems, LLC (GES)more » developed a low cost, high efficiency proton-exchange membrane (PEM) electrolysis system for hydrogen production at moderate pressure (300 to 400 psig). The electrolyzer stack operates at differential pressure, with hydrogen produced at moderate pressure while oxygen is evolved at near-atmospheric pressure, reducing the cost of the water feed and oxygen handling subsystems. The project included basic research on catalysts and membranes to improve the efficiency of the electrolysis reaction as well as development of advanced materials and component fabrication methods to reduce the capital cost of the electrolyzer stack and system. The project culminated in delivery of a prototype electrolyzer module to the National Renewable Energy Laboratory for testing at the National Wind Technology Center. Electrolysis cell efficiency of 72% (based on the lower heating value of hydrogen) was demonstrated using an advanced high-strength membrane developed in this project. This membrane would enable the electrolyzer system to exceed the DOE 2012 efficiency target of 69%. GES significantly reduced the capital cost of a PEM electrolyzer stack through development of low cost components and fabrication methods, including a 60% reduction in stack parts count

  19. Evolution of Abnormally Low Pressure at Bravo Dome and its Implications for Carbon Capture and Storage (CCS)

    NASA Astrophysics Data System (ADS)

    Akhbari, D.; Hesse, M. A.

    2015-12-01

    Carbon capture and storage allows reductions of the rapidly rising CO2 from fossil fuel-based power generation, if large storage rates and capacities can be achieved. The injection of large fluid volumes at high rates leads to a build-up of pore-pressure in the storage formation that may induce seismicity and compromise the storage security. Many natural CO2 fields in midcontinent US, in contrast, are under-pressured rather than over-pressured suggesting that natural processes reduce initial over-pressures and generate significant under-pressures. The question is therefore to understand the sequence of process(es) that allow the initial over-pressure to be eliminated and the under-pressure to be maintained over geological periods of time. We therefore look into pressure evolution in Bravo Dome, one of the largest natural CO2 accumulations in North America, which stores 1.3 Gt of CO2. Bravo Dome is only 580-900 m deep and is divided into several compartments with near gas-static pressure (see Figure). The pre-production gas pressures in the two main compartments that account for 70% of the mass of CO2 stored at Bravo Dome are more than 6 MPa below hydrostatic pressure. Here we show that the under-pressure in the Bravo Dome CO2 reservoir is maintained by hydrological compartmentalization over millennial timescales and generated by a combination of processes including cooling, erosional unloading, limited leakage into overlying formations, and CO2 dissolution into brine. Herein, we introduce CO2 dissolution into brine as a new process that reduce gas pressure in a compartmentalized reservoir and our results suggest that it may contribute significantly to reduce the initial pressure build-up due to injection. Bravo Dome is the first documented case of pressure drop due to CO2 dissolution. To have an accurate prediction of pressure evolution in Bravo Dome, our models must include geomechanics and thermodynamics for the reservoir while they account for the pressure

  20. Diamond anvil cell for spectroscopic investigation of materials at high temperature, high pressure and shear

    DOEpatents

    Westerfield, C.L.; Morris, J.S.; Agnew, S.F.

    1997-01-14

    Diamond anvil cell is described for spectroscopic investigation of materials at high temperature, high pressure and shear. A cell is described which, in combination with Fourier transform IR spectroscopy, permits the spectroscopic investigation of boundary layers under conditions of high temperature, high pressure and shear. 4 figs.

  1. Microscopic Analysis of Bacterial Motility at High Pressure

    PubMed Central

    Nishiyama, Masayoshi; Sowa, Yoshiyuki

    2012-01-01

    The bacterial flagellar motor is a molecular machine that converts an ion flux to the rotation of a helical flagellar filament. Counterclockwise rotation of the filaments allows them to join in a bundle and propel the cell forward. Loss of motility can be caused by environmental factors such as temperature, pH, and solvation. Hydrostatic pressure is also a physical inhibitor of bacterial motility, but the detailed mechanism of this inhibition is still unknown. Here, we developed a high-pressure microscope that enables us to acquire high-resolution microscopic images, regardless of applied pressures. We also characterized the pressure dependence of the motility of swimming Escherichia coli cells and the rotation of single flagellar motors. The fraction and speed of swimming cells decreased with increased pressure. At 80 MPa, all cells stopped swimming and simply diffused in solution. After the release of pressure, most cells immediately recovered their initial motility. Direct observation of the motility of single flagellar motors revealed that at 80 MPa, the motors generate torque that should be sufficient to join rotating filaments in a bundle. The discrepancy in the behavior of free swimming cells and individual motors could be due to the applied pressure inhibiting the formation of rotating filament bundles that can propel the cell body in an aqueous environment. PMID:22768943

  2. High pressure water jet cutting and stripping

    NASA Technical Reports Server (NTRS)

    Hoppe, David T.; Babai, Majid K.

    1991-01-01

    High pressure water cutting techniques have a wide range of applications to the American space effort. Hydroblasting techniques are commonly used during the refurbishment of the reusable solid rocket motors. The process can be controlled to strip a thermal protective ablator without incurring any damage to the painted surface underneath by using a variation of possible parameters. Hydroblasting is a technique which is easily automated. Automation removes personnel from the hostile environment of the high pressure water. Computer controlled robots can perform the same task in a fraction of the time that would be required by manual operation.

  3. [High-grade pressure sores in frail older high-risk persons. A retrospective postmortem case-control-study].

    PubMed

    Von Renteln-Kruse, W; Krause, T; Anders, J; Kühl, M; Heinemann, A; Püschel, K

    2004-04-01

    Some old persons at risk do develop, but others, at comparable risk, do not develop high-grade pressure sores. To evaluate potentially different risk factors, we performed a post mortem case-control study in old persons who developed high-grade pressure sores within six months until 14 days before death. Consecutive cases with pressure sores grade >/=3 and potential controls at comparably high risk for pressure sores were examined before cremation. After written informed consent had been obtained by the next relatives, all available nursing and medical records of the deceased were thoroughly evaluated. Cases and controls were matched according to age, gender, immobility, and cachexia.A total of 100 cases with 71 pressure sores grade 3 and 29 pressure sores grade 4 were compared to 100 controls with 27 pressure sores grade high degree of disablement and immobility, in particular, are risk factors for high-grade pressure sores in frail older high-risk persons. Sedative drug effects and impaired patient compliance with preventive and therapeutic measures may also be associated with the development of high-grade pressure sores in old persons at high risk.

  4. Constitutive and damage material modeling in a high pressure hydrogen environment

    NASA Technical Reports Server (NTRS)

    Russell, D. A.; Fritzemeier, L. G.

    1991-01-01

    Numerous components in reusable space propulsion systems such as the SSME are exposed to high pressure gaseous hydrogen environments. Flow areas and passages in the fuel turbopump, fuel and oxidizer preburners, main combustion chamber, and injector assembly contain high pressure hydrogen either high in purity or as hydrogen rich steam. Accurate constitutive and damage material models applicable to high pressure hydrogen environments are therefore needed for engine design and analysis. Existing constitutive and cyclic crack initiation models were evaluated only for conditions of oxidizing environments. The main objective is to evaluate these models for applicability to high pressure hydrogen environments.

  5. Small, high-pressure liquid oxygen turbopump

    NASA Technical Reports Server (NTRS)

    Csomor, A.; Sutton, R.

    1977-01-01

    A small, high-pressure, liquid oxygen turbopump was designed, fabricated, and tested. The pump was of a single-stage, centrifugal type; power to the pump was supplied by a single-stage, partial emission, axial-impulse turbine. Design conditions included an operating speed of 70,000 rpm, pump discharge pressure of 2977 N/sq cm (4318 psia), and a pump flowrate of 16.4 kg/s (36.21 lb/sec). The turbine was propelled by LO2/LH2 combustion products at 1041 K (1874 R) inlet temperature, and at a design pressure ratio of 1.424. The approaches used in the detail analysis and design of the turbopump are described, and fabrication methods are discussed. Data obtained from gas generator tests, turbine performance calibration, and turbopump testing are presented.

  6. Study of CT Scan Flooding System at High Temperature and Pressure

    NASA Astrophysics Data System (ADS)

    Chen, X. Y.

    2017-12-01

    CT scan flooding experiment can scan micro-pore in different flooding stages by the use of CT scan technology, without changing the external morphology and internal structure of the core, and observe the distribution characterization in pore medium of different flooding fluid under different pressure.thus,it can rebuilt the distribution images of oil-water distribution in different flooding stages. However,under extreme high pressure and temperature conditions,the CT scan system can not meet the requirements. Container of low density materials or thin shell can not resist high pressure,while high density materials or thick shell will cause attenuation and scattering of X-ray. The experiment uses a simple Ct scanning systems.X ray from a point light source passing trough a micro beryllium shell on High pressure stainless steal container,continuously irradiates the core holder that can continuously 360° rotate along the core axis. A rare earth intensifying screen behind the core holder emitting light when irradiated with X ray can show the core X ray section image. An optical camera record the core X ray images through a transparency high pressure glazing that placed on the High pressure stainless steal container.Thus,multiple core X ray section images can reconstruct the 3D core reconstruction after a series of data processing.The experiment shows that both the micro beryllium shell and rare earth intensifying screen can work in high temperature and high pressure environment in the stainless steal container. This way that X-ray passes through a thin layer of micro beryllium shell , not high pressure stainless steal shell,avoid the attenuation and scattering of X-ray from the container shell,while improving the high-pressure experiment requirements.

  7. High pressure rinsing system comparison

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    D. Sertore; M. Fusetti; P. Michelato

    2007-06-01

    High pressure rinsing (HPR) is a key process for the surface preparation of high field superconducting cavities. A portable apparatus for the water jet characterization, based on the transferred momentum between the water jet and a load cell, has been used in different laboratories. This apparatus allows to collected quantitative parameters that characterize the HPR water jet. In this paper, we present a quantitative comparison of the different water jet produced by various nozzles routinely used in different laboratories for the HPR process

  8. High-performance fiber/epoxy composite pressure vessels

    NASA Technical Reports Server (NTRS)

    Chiao, T. T.; Hamstad, M. A.; Jessop, E. S.; Toland, R. H.

    1978-01-01

    Activities described include: (1) determining the applicability of an ultrahigh-strength graphite fiber to composite pressure vessels; (2) defining the fatigue performance of thin-titanium-lined, high-strength graphite/epoxy pressure vessel; (3) selecting epoxy resin systems suitable for filament winding; (4) studying the fatigue life potential of Kevlar 49/epoxy pressure vessels; and (5) developing polymer liners for composite pressure vessels. Kevlar 49/epoxy and graphite fiber/epoxy pressure vessels, 10.2 cm in diameter, some with aluminum liners and some with alternation layers of rubber and polymer were fabricated. To determine liner performance, vessels were subjected to gas permeation tests, fatigue cycling, and burst tests, measuring composite performance, fatigue life, and leak rates. Both the metal and the rubber/polymer liner performed well. Proportionately larger pressure vessels (20.3 and 38 cm in diameter) were made and subjected to the same tests. In these larger vessels, line leakage problems with both liners developed the causes of the leaks were identified and some solutions to such liner problems are recommended.

  9. Microorganisms under high pressure--adaptation, growth and biotechnological potential.

    PubMed

    Mota, Maria J; Lopes, Rita P; Delgadillo, Ivonne; Saraiva, Jorge A

    2013-12-01

    Hydrostatic pressure is a well-known physical parameter which is now considered an important variable of life, since organisms have the ability to adapt to pressure changes, by the development of resistance against this variable. In the past decades a huge interest in high hydrostatic pressure (HHP) technology is increasingly emerging among food and biosciences researchers. Microbial specific stress responses to HHP are currently being investigated, through the evaluation of pressure effects on biomolecules, cell structure, metabolic behavior, growth and viability. The knowledge development in this field allows a better comprehension of pressure resistance mechanisms acquired at sub-lethal pressures. In addition, new applications of HHP could arise from these studies, particularly in what concerns to biotechnology. For instance, the modulation of microbial metabolic pathways, as a response to different pressure conditions, may lead to the production of novel compounds with potential biotechnological and industrial applications. Considering pressure as an extreme life condition, this review intends to present the main findings so far reported in the scientific literature, focusing on microorganisms with the ability to withstand and to grow in high pressure conditions, whether they have innated or acquired resistance, and show the potential of the application of HHP technology for microbial biotechnology. © 2013.

  10. DEVELOPMENT OF A HIGH-TEMPERATURE/HIGH-PRESSURE ELECTROSTATIC PRECIPITATOR

    EPA Science Inventory

    The report gives results of a laboratory test demonstrating the feasibility of electrostatic precipitation at high temperatures (to 1366 K) and pressures (to 3550 kPa): corona currents were stable at all temperatures. Detailed current/voltage characteristics under negative and po...

  11. The high-pressure phase transitions of hydroxides

    NASA Astrophysics Data System (ADS)

    Nishi, M.; Kuwayama, Y.; Tsuchiya, J.; Tsuchiya, T.; Irifune, T.

    2017-12-01

    The discovery of new high-pressure hydrous minerals has important implications for understanding the structure, dynamics, and evolution of the Earth, since hydrogen significantly affects the physical properties and stabilities of Earth's constituent minerals. Whereas hydrous minerals commonly dehydrate under pressures of around a few tens of gigapascals (GPa) and at temperature around 1,500 K, those with CaCl2-type crystal structure, MgSiO4H2 phase H, δ-AlOOH and ɛ-FeOOH, are known to be stable at pressures corresponding to the lower mantle. However, although the CaCl2-type hydroxides were suggested to form a solid solution owing to their similar crystal structure, there are few experimental studies on the stability of the hydroxide in such multicomponent. Moreover, ab initio calculations have predicted that some CaCl2-type hydroxides transform to pyrite-type structure at higher pressures. Here, we conducted high pressure-temperature experiments on pure AlOOH, FeOOH, and their solid solutions, with the aid of these first-principles predictions. We use in situ X-ray measurements in conjunction with a multi-anvil apparatus to study the high-pressure behaviour of hydroxides in the multicomponent system under middle lower mantle conditions. Solid solutions in wide compositional ranges between CaCl2-type δ-AlOOH and ɛ-FeOOH were recognized from X-ray diffraction patterns. Also, unit cell volume of FeOOH and (Al,Fe)OOH significantly decreased accompanied with the spin transition of iron at 50 GPa. Thus, the wide compositional ranges in CaCl2-type hydroxide are maintained beyond the depth of the middle lower mantle, where the spin transition of iron occurs. We used a laser-heated diamond anvil cell in order to study the stability of AlOOH and FeOOH at higher pressures above 70 GPa. We observed that ɛ-FeOOH transforms to the pyrite-type structure at above 80 GPa, which is consistent with the theoretical prediction. At conditions above 190 GPa and 2,500 K, we observed

  12. Thermal and high pressure inactivation kinetics of blueberry peroxidase.

    PubMed

    Terefe, Netsanet Shiferaw; Delon, Antoine; Versteeg, Cornelis

    2017-10-01

    This study for the first time investigated the stability and inactivation kinetics of blueberry peroxidase in model systems (McIlvaine buffer, pH=3.6, the typical pH of blueberry juice) during thermal (40-80°C) and combined high pressure-thermal processing (0.1-690MPa, 30-90°C). At 70-80°C, the thermal inactivation kinetics was best described by a biphasic model with ∼61% labile and ∼39% stable fractions at temperature between 70 and 75°C. High pressure inhibited the inactivation of the enzyme with no inactivation at pressures as high as 690MPa and temperatures less than 50°C. The inactivation kinetics of the enzyme at 60-70°C, and pressures higher than 500MPa was best described by a first order biphasic model with ∼25% labile fraction and 75% stable fraction. The activation energy values at atmospheric pressure were 548.6kJ/mol and 324.5kJ/mol respectively for the stable and the labile fractions. Crown Copyright © 2017. Published by Elsevier Ltd. All rights reserved.

  13. High Pressure Angle Gears: Comparison to Typical Gear Designs

    NASA Technical Reports Server (NTRS)

    Handschuh, Robert F.; Zabrajsek, Andrew J.

    2010-01-01

    A preliminary study has been completed to determine the feasibility of using high-pressure angle gears in aeronautic and space applications. Tests were conducted in the NASA Glenn Research Center (GRC) Spur Gear Test Facility at speeds up to 10,000 rpm and 73 N*m (648 in.*lb) for 3.18, 2.12, and 1.59 module gears (8, 12, and 16 diametral pitch gears), all designed to operate in the same test facility. The 3.18 module (8-diametral pitch), 28 tooth, 20deg pressure angle gears are the GRC baseline test specimen. Also, 2.12 module (12-diametral pitch), 42 tooth, 25deg pressure angle gears were tested. Finally 1.59 module (16-diametral pitch), 56 tooth, 35deg pressure angle gears were tested. The high-pressure angle gears were the most efficient when operated in the high-speed aerospace mode (10,000 rpm, lubricated with a synthetic turbine engine oil), and produced the lowest wear rates when tested with a perfluoroether-based grease. The grease tests were conducted at 150 rpm and 71 N*m (630 in.*lb).

  14. High pressure and Multiferroics materials. A happy marriage

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gilioli, Edmondo; Ehm, Lars

    2014-10-31

    We found that the community of material scientists is strongly committed to the research area of multiferroic materials, both for the understanding of the complex mechanisms supporting the multiferroism and for the fabrication of new compounds, potentially suitable for technological applications. The use of high pressure is a powerful tool in synthesizing new multiferroic, in particular magneto-electric phases, where the pressure stabilization of otherwise unstable perovskite-based structural distortions may lead to promising novel metastable compounds. Moreover, the in situ investigation of the high-pressure behavior of multiferroic materials has provided insight into the complex interplay between magnetic and electronic properties andmore » the coupling to structural instabilities.« less

  15. Effect of high hydrostatic pressure on overall quality parameters of watermelon juice.

    PubMed

    Liu, Y; Zhao, X Y; Zou, L; Hu, X S

    2013-06-01

    High hydrostatic pressure as a kind of non-thermal processing might maintain the quality of thermo-sensitive watermelon juice. So, the effect of high hydrostatic pressure treatment on enzymes and quality of watermelon juice was investigated. After high hydrostatic pressure treatment, the activities of polyphenol oxidase, peroxidase, and pectin methylesterase of juice decreased significantly with the pressure (P < 0.05). Inactivation of polyphenol oxidase and peroxidase could be fitted by two-fraction model and that of pectin methylesterase could be described by first-order reaction model. Titratable acidity, pH, and total soluble solid of juice did not change significantly (P > 0.05). No significant difference was observed in lycopene and total phenolics after high hydrostatic pressure treatment when compared to the control (P > 0.05). Cloudiness and viscosity increased with pressure (P < 0.05) but did not change significantly with treatment time (P > 0.05). a*- and b*-value both unchanged after high hydrostatic pressure treatment (P > 0.05) while L*-value increased but the values had no significant difference among treated juices. Browning degree after high hydrostatic pressure treatment decreased with increase in pressure and treatment time (P < 0.05). Through the comparison of total color difference values, high hydrostatic pressure had little effect on color of juice. The results of this study demonstrated the efficacy of high hydrostatic pressure in inactivating enzymes and maintaining the quality of watermelon juice.

  16. Electrocardiographic abnormalities in opiate addicts.

    PubMed

    Wallner, Christina; Stöllberger, Claudia; Hlavin, Anton; Finsterer, Josef; Hager, Isabella; Hermann, Peter

    2008-12-01

    To determine in a cross-sectional study the prevalence of electrocardiographic (ECG) abnormalities in opiate addicts who were therapy-seeking and its association with demographic, clinical and drug-specific parameters. In consecutive therapy-seeking opiate addicts, a 12-lead ECG was registered within 24 hours after admission and evaluated according to a pre-set protocol between October 2004 and August 2006. Additionally, demographic, clinical and drug-specific parameters were recorded. Included were 511 opiate-addicts, 25% female, with a mean age of 29 years (range 17-59 years). One or more ECG abnormalities were found in 314 patients (61%). In the 511 patients we found most commonly ST abnormalities (19%), QTc prolongation (13%), tall R- and/or S-waves (11%) and missing R progression (10%). ECG abnormalities were more common in males than in females (64 versus 54%, P < 0.05), and in patients with positive than negative urine findings for cannabis (68 versus 57%, P < 0.05). Patients with ST abnormalities were more often males than females (21 versus 11%, P < 0.05), had a history of seizures less often (16 versus 27%, P < 0.05), had positive than negative urine findings for cannabis more often (26 versus 15%, P < 0.01) and had negative than positive urine findings for methadone more often (21 versus 11%, P < 0.05). QTc prolongation was more frequent in patients with high dosages of maintenance drugs than in patients with medium or low dosages (27 versus 12 versus 10%, P < 0.05) and in patients whose urine findings were positive than negative for methadone (23 versus 11%, P < 0.001) as well as for benzodiazepines (17 versus 9%, P < 0.05). Limitations of the data are that in most cases other risk factors for the cardiac abnormalities were not known. ECG abnormalities are frequent in opiate addicts. The most frequent ECG abnormalities are ST abnormalities, QTc prolongation and tall R- and/or S-waves. ST abnormalities are associated with cannabis, and QTc prolongation

  17. High Blood Pressure

    MedlinePlus

    ... also make blood pressure rise. Eating too much sodium Unhealthy eating patterns, particularly eating too much sodium, ... you an adult who is curious about how sodium affects your blood pressure? This study is testing ...

  18. Prediction of superconducting iron–bismuth intermetallic compounds at high pressure

    DOE PAGES

    Amsler, Maximilian; Naghavi, S. Shahab; Wolverton, Chris

    2016-12-07

    The synthesis of materials in high-pressure experiments has recently attracted increasing attention, especially since the discovery of record breaking superconducting temperatures in the sulfur–hydrogen and other hydrogen-rich systems. Commonly, the initial precursor in a high pressure experiment contains constituent elements that are known to form compounds at ambient conditions, however the discovery of high-pressure phases in systems immiscible under ambient conditions poses an additional materials design challenge. We performed an extensive multi component ab initio structural search in the immiscible Fe–Bi system at high pressure and report on the surprising discovery of two stable compounds at pressures above ≈36 GPa,more » FeBi 2 and FeBi 3. According to our predictions, FeBi 2 is a metal at the border of magnetism with a conventional electron–phonon mediated superconducting transition temperature of T c = 1.3 K at 40 GPa.« less

  19. Casein micelle dissociation in skim milk during high-pressure treatment: effects of pressure, pH, and temperature.

    PubMed

    Orlien, V; Boserup, L; Olsen, K

    2010-01-01

    The effect of pH (from 5.5 to 7.5) and temperature (from 5 to 40 degrees C) on the turbidity of reconstituted skim milk powder was investigated at ambient pressure and in situ under pressure (up to 500MPa) by measurement of light scattering. High-pressure treatment reduced the turbidity of milk for all combinations of pH and temperature due to micelle dissociation. The turbidity profiles had a characteristic sigmoidal shape in which almost no effect on turbidity was observed at low pressures (100MPa), followed by a stronger pressure dependency over a pressure range of 150MPa during which turbidity decreased extremely. From the turbidity profiles, the threshold pressure for disruption of micelle integrity was determined and ranged from 150MPa at low pH to 350-400MPa at high pH. The threshold pressure diagram clearly showed a relationship between the barostability of casein micelles and pH, whereas almost no effect of temperature was shown. This remarkable pH effect was a consequence of pressure-induced changes in the electrostatic interactions between colloidal calcium phosphate and the caseins responsible for maintaining micellar structure and was explained by a shift in the calcium phosphate balance in the micelle-serum system. Accordingly, a mechanism for high pressure-induced disruption of micelle integrity is suggested in which the state of calcium plays a crucial role in the micelle dissociation process. Copyright 2010 American Dairy Science Association. Published by Elsevier Inc. All rights reserved.

  20. Pressurized metallurgy for high performance special steels and alloys

    NASA Astrophysics Data System (ADS)

    Jiang, Z. H.; Zhu, H. C.; Li, H. B.; Li, Y.; Liu, F. B.

    2016-07-01

    The pressure is one of the basic parameters which greatly influences the metallurgical reaction process and solidification of steels and alloys. In this paper the history and present situation of research and application of pressurized metallurgy, especially pressurized metallurgy for special steels and alloys have been briefly reviewed. In the following part the physical chemistry of pressurized metallurgy is summarized. It is shown that pressurizing may change the conditions of chemical reaction in thermodynamics and kinetics due to the pressure effect on gas volume, solubility of gas and volatile element in metal melt, activity or activity coefficient of components, and change the physical and chemical properties of metal melt, heat transfer coefficient between mould and ingot, thus greatly influencing phase transformation during the solidification process and the solidification structure, such as increasing the solidification nucleation rate, reducing the critical nucleation radius, accelerating the solidification speed and significant macro/micro-structure refinement, and eliminating shrinkage, porosity and segregation and other casting defects. In the third part the research works of pressured metallurgy performed by the Northeastern University including establishment of pressurized induction melting (PIM) and pressurized electroslag remelting (PESR) equipments and development of high nitrogen steels under pressure are described in detail. Finally, it is considered in the paper that application of pressurized metallurgy in manufacture of high performance special steels and alloys is a relatively new research area, and its application prospects will be very broad and bright.

  1. High pressure studies on group VI metal hexacarbonyl molecular solids

    NASA Astrophysics Data System (ADS)

    Garimella, Subrahmanyam Venkata

    Group VI metal hexacarbonyls, M(CO)6 (M = Cr, Mo and W), are of extreme importance as catalysts in industry and also of fundamental interest due to the established charge transfer mechanism between the carbon monoxide and the metal. They condense to molecular solids at ambient conditions retaining the octahedral (Oh) symmetry of gas phase and have been extensively investigated by previous workers to understand their fundamental chemical bonding and possible industrial applications. However little is known about their behavior at high pressures which is the focus of this dissertation. Metal hexacarbonyls were subjected to high pressures in Diamond-Anvil cells to understand the pressure effect on chemical bonding using Raman scattering in situ. The high-pressure results on each of the three metal hexacarbonyls are presented and are followed by a critical analysis of the entire family. The Raman study was conducted at pressures up to 45 GPa and X-ray up to 58 GPa. This is followed by a discussion on infra red spectra in conjunction with Raman and X-ray analysis to provide a rationale for polymerization. Finally the probable synthesis of extremely reactive species under high-pressures and as identified via Raman is discussed. The high-pressure Raman scattering, up to 30 GPa, demonstrated the absence of pi-backbonding. The disappearance of parental Raman spectra for (M = Cr, Mo and W) at 29.6, 23.3 and 22.2 GPa respectively was attributed to the total collapse of the Oh symmetry. This collapse under high-pressure lead to metal-mediated polymeric phase characterized by Raman active delta(OCO) feature, originating from intermolecular vibrational coupling in the parent sample. Further increase in pressures up to 45 GPa, did not affect this feature. The pressure quenched Raman spectra, revealed various chemical groups non-characteristic of the parent sample and adsorption of CO in addition to the characteristic delta(OCO) feature. The thus recorded Raman, complemented with

  2. High-pressure resistivity technique for quasi-hydrostatic compression experiments.

    PubMed

    Rotundu, C R; Ćuk, T; Greene, R L; Shen, Z-X; Hemley, Russell J; Struzhkin, V V

    2013-06-01

    Diamond anvil cell techniques are now well established and powerful methods for measuring materials properties to very high pressure. However, high pressure resistivity measurements are challenging because the electrical contacts attached to the sample have to survive to extreme stress conditions. Until recently, experiments in a diamond anvil cell were mostly limited to non-hydrostatic or quasi-hydrostatic pressure media other than inert gases. We present here a solution to the problem by using focused ion beam ultrathin lithography for a diamond anvil cell loaded with inert gas (Ne) and show typical resistivity data. These ultrathin leads are deposited on the culet of the diamond and are attaching the sample to the anvil mechanically, therefore allowing for measurements in hydrostatic or nearly hydrostatic conditions of pressure using noble gases like Ne or He as pressure transmitting media.

  3. Exercise: A Drug-Free Approach to Lowering High Blood Pressure

    MedlinePlus

    Exercise: A drug-free approach to lowering high blood pressure Having high blood pressure and not getting enough exercise are closely related. Discover how small changes in your daily routine can make a ...

  4. Zeeman Effect in Ruby at High Pressures

    NASA Astrophysics Data System (ADS)

    Dan, Ioana

    2012-02-01

    We have developed a versatile fiber-coupled system for magneto-optical spectroscopy measurements at high pressure. The system is based on a miniature Cu-alloy Diamond Anvil Cell (from D'Anvils, Ltd) fitted with a custom-designed He gas-actuated membrane for in-situ pressure control, and coupled with a He transfer cryostat incorporating a superconducting magnet (from Quantum Designs). This system allows optical measurements (Raman, photoluminescence, reflectivity) within wide ranges of pressures (up to 100GPa), temperatures (4.2-300K) and magnetic fields (0-9T). We employ this system to examine the effect of pressure and non-hydrostatic stress on the Zeeman split d-d transitions of Cr^3+ in ruby (Al2O3: Cr^3+). We determine the effect of pressure and non-hydrostaticity on the trigonal crystal field in this material, and discuss the use of the Zeman-split ruby fluorescence as a possible probe for deviatoric stresses in diamond anvil cell experiments.

  5. Acarbose, the α-glucosidase inhibitor, attenuates the blood pressure and splanchnic blood flow responses to meal in elderly patients with postprandial hypotension concomitant with abnormal glucose metabolism.

    PubMed

    Qiao, Wei; Li, Jing; Li, Ying; Qian, Duan; Chen, Lei; Wei, Xiansen; Jin, Jiangli; Wang, Yong

    2016-02-01

    Postprandial hypotension (PPH) is a unique clinical phenomenon in the elderly, but its underlying pathogenesis has not been completely elucidated, and drug treatment is still in clinical exploratory stage. The aim of the study was to evaluate the relationship between the fall in postprandial blood pressure and splanchnic blood flow, and to provide a theoretical basis for the treatment of PPH by taking acarbose. The study included 20 elderly inpatients diagnosed with PPH concomitant with abnormal glucose metabolism at stable condition. They were treated with 50 mg acarbose with their meal to observe the changes in blood pressure, heart rate, and blood glucose level, and to monitor the hemodynamics of the superior mesenteric artery (SMA) before and after treatment. Without acarbose treatment, patients after a meal had significantly decreased systolic and diastolic blood pressure, faster postprandial heart rate, higher postprandial glucose level at each period, and increased postprandial SMA blood flow compared with that at fasting state (P<0.05). Acarbose treatment significantly attenuated the decrease of postprandial systolic blood pressures from 35.50±12.66 to 22.25±6.90 mmHg (P=0.000), the increase of heart rate from 9.67±5.94 to 5.33±3.20 beats/min (P=0.016), the increase of postprandial blood glucose from 3.55±1.69 to 2.28±1.61 mmol/l (P=0.000), the increase of postprandial SMA blood flow from 496.80±147.15 to 374.55±97.89 ml/min (P=0.031), and the incidence of PPH, syncope, falls, dizziness, weakness, and angina pectoris (P<0.05). The maximal decrease of postprandial systolic blood pressure was positively associated with the maximal increase in postprandial SMA blood flow (r=0.351, P=0.026). Acarbose treatment showed no significant side effects. The increase in postprandial splanchnic perfusion is one of the reasons for PPH formation. Acarbose may exert its role in PPH treatment by reducing postprandial gastrointestinal blood perfusion. Giving

  6. Apparatus for testing high pressure injector elements

    NASA Technical Reports Server (NTRS)

    Myers, William Neill (Inventor); Scott, Ewell M. (Inventor); Forbes, John C. (Inventor); Shadoan, Michael D. (Inventor)

    1995-01-01

    An apparatus for testing and evaluating the spray pattern of high pressure fuel injector elements for use in supplying fuel to combustion engines is presented. Prior art fuel injector elements were normally tested by use of low pressure apparatuses which did not provide a purge to prevent mist from obscuring the injector element or to prevent frosting of the view windows; could utilize only one fluid during each test; and had their viewing ports positioned one hundred eighty (180 deg) apart, thus preventing optimum use of laser diagnostics. The high pressure fluid injector test apparatus includes an upper hub, an upper weldment or housing, a first clamp and stud/nut assembly for securing the upper hub to the upper weldment, a standoff assembly within the upper weldment, a pair of window housings having view glasses within the upper weldment, an injector block assembly and purge plate within the upper weldment for holding an injector element to be tested and evaluated, a lower weldment or housing, a second clamp and stud/nut assembly for securing the lower weldment to the upper hub, a third clamp and stud/nut assembly for securing the lower hub to the lower weldment, mechanisms for introducing fluid under high pressure for testing an injector element, and mechanisms for purging the apparatus to prevent frosting of view glasses within the window housings and to permit unobstructed viewing of the injector element.

  7. Apparatus for testing high pressure injector elements

    NASA Technical Reports Server (NTRS)

    Myers, William Neill (Inventor); Scott, Ewell M. (Inventor); Forbes, John C. (Inventor); Shadoan, Michael D. (Inventor)

    1993-01-01

    An apparatus for testing and evaluating the spray pattern of high pressure fuel injector elements for use in supplying fuel to combustion engines is presented. Prior art fuel injector elements were normally tested by use of low pressure apparatuses which did not provide a purge to prevent mist from obscuring the injector element or to prevent frosting of the view windows; could utilize only one fluid during each test; and had their viewing ports positioned one hundred eighty (180 deg) apart, thus preventing optimum use of laser diagnostics. The high pressure fluid injector test apparatus includes an upper hub, an upper weldment or housing, a first clamp and stud/nut assembly for securing the upper hub to the upper weldment, a standoff assembly within the upper weldment, a pair of window housings having view glasses within the upper weldment, an injector block assembly and purge plate within the upper weldment for holding an injector element to be tested and evaluated, a lower weldment or housing, a second clamp and stud/nut assembly for securing the lower weldment to the upper weldment, a lower hub, a third clamp and stud/nut assembly for securing the lower hub to the lower weldment, mechanisms for introducing fluid under high pressure for testing an injector element, and mechanisms for purging the apparatus to prevent frosting of view glasses within the window housings and to permit unobstructed viewing of the injector element.

  8. Modification of enzymes by use of high-pressure homogenization.

    PubMed

    Dos Santos Aguilar, Jessika Gonçalves; Cristianini, Marcelo; Sato, Helia Harumi

    2018-07-01

    High-pressure is an emerging and relatively new technology that can modify various molecules. High-pressure homogenization (HPH) has been used in several studies on protein modification, especially in enzymes used or found in food, from animal, plant or microbial resources. According to the literature, the enzymatic activity can be modulated under pressure causing inactivation, stabilization or activation of the enzymes, which, depending on the point of view could be very useful. Homogenization can generate changes in the structure of the enzyme modifying various chemical bonds (mainly weak bonds) causing different denaturation levels and, consequently, affecting the catalytic activity. This review aims to describe the various alterations due to HPH treatment in enzymes, to show the influence of high-pressure on proteins and to report the HPH effects on the enzymatic activity of different enzymes employed in the food industry and research. Copyright © 2018 Elsevier Ltd. All rights reserved.

  9. Ionic High-Pressure Form of Elemental Boron

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Oganov, A.; Chen, J; Gatti, C

    2009-01-01

    This Letter presents the results of high-pressure experiments and ab initio evolutionary crystal structure predictions, and found a new boron phase that we named gamma-B28. This phase is comprised of icosahedral B12 clusters and B2 pairs in a NaCl-type arrangement, stable between 19 and 89 GPa, and exhibits evidence for charge transfer (for which our best estimate is delta approximately 0.48) between the constituent clusters to give (B2)delta+(B12)delta-. We have recently found that the same high-pressure boron phase may have given rise to the Bragg reflections reported by Wentorf in 1965 (ref. 1), although the chemical composition was not analysedmore » and the data (subsequently deleted from the Powder Diffraction File database) seems to not have been used to propose a structure model. We also note that although we used the terms 'partially ionic' and 'ionic' to emphasize the polar nature of the high-pressure boron phase and the influence this polarity has on several physical properties of the elemental phase, the chemical bonding in gamma-B28 is predominantly covalent.« less

  10. High pressure study of a highly energetic nitrogen-rich carbon nitride, cyanuric triazide

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Laniel, Dominique; Desgreniers, Serge; Downie, Laura E.

    Cyanuric triazide (CTA), a nitrogen-rich energetic material, was compressed in a diamond anvil cell up to 63.2 GPa. Samples were characterized by x-ray diffraction, Raman, and infrared spectroscopy. A phase transition occurring between 29.8 and 30.7 GPa was found by all three techniques. The bulk modulus and its pressure derivative of the low pressure phase were determined by fitting the 300 K isothermal compression data to the Birch-Murnaghan equation of state. Due to the strong photosensitivity of CTA, synchrotron generated x-rays and visible laser radiation both lead to the progressive conversion of CTA into a two dimensional amorphous C=N network,more » starting from 9.2 GPa. As a result of the conversion, increasingly weak and broad x-ray diffraction lines were recorded from crystalline CTA as a function of pressure. Hence, a definite structure could not be obtained for the high pressure phase of CTA. Results from infrared spectroscopy carried out to 40.5 GPa suggest the high pressure formation of a lattice built of tri-tetrazole molecular units. The decompression study showed stability of the high pressure phase down to 13.9 GPa. Finally, two CTA samples, one loaded with neon and the other with nitrogen, used as pressure transmitting media, were laser-heated to approximately 1100 K and 1500 K while compressed at 37.7 GPa and 42.0 GPa, respectively. In both cases CTA decomposed resulting in amorphous compounds, as recovered at ambient conditions.« less

  11. Measurement of intraosseous pressures generated by the Wand, high-pressure periodontal ligament syringe, and the Stabident system.

    PubMed

    Shepherd, P A; Eleazer, P D; Clark, S J; Scheetz, J P

    2001-06-01

    Intraosseous pressure generated by the use of three anesthetic systems-the Wand; a hand-operated high-pressure periodontal ligament (PDL) syringe; and the Stabident system-were studied in fresh mandibles of 14 large swine. The mandibles were drilled and tapped in one area of both the right and left posterior molar regions. Pressure gauges were attached via threaded fittings. Pressures during injection were recorded for the Wand first, then the PDL syringe, and finally Stabident. Results showed averages of 8.3 mm Hg generated by the Wand, 16.3 mm Hg with the high-pressure PDL syringe, and 43.7 mm Hg from the Stabident system. Results were corroborated with data from three human cadaver mandibles.

  12. Pressure Amplification Off High Impedance Barriers in DDT

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Heatwole, Eric Mann; Broilo, Robert M.; Kistle, Trevin Joseph

    The Deflagration-to-Detonation Transition (DDT) in one-dimensional porous explosive, where combustion in an explosive transitions to detonation, can be described by the following model. This simplified model proceeds in five steps, as follows: 1) Ignition of the explosive, surface burning. 2) Convective burning, with the flame front penetrating through the porous network of the explosive. This proceeds until the pressure grows high enough to result in choked flow in the pores restricting the convective burn. 3) The choked flow results in the formation of a high-density compact of explosive. This compact is driven into undisturbed material by the pressure of themore » burning explosive. See Figure1. 4) The compression of the undisturbed porous explosive by the compact leads to the ignition of a compressive burn. This builds in pressure until a supported shock forms. 5) The shock builds in pressure until detonation occurs. See Figure 2 for an overview streak of the proceeding steps.« less

  13. High nitrogen pressure solution growth of GaN

    NASA Astrophysics Data System (ADS)

    Bockowski, Michal

    2014-10-01

    Results of GaN growth from gallium solution under high nitrogen pressure are presented. Basic of the high nitrogen pressure solution (HNPS) growth method is described. A new approach of seeded growth, multi-feed seed (MFS) configuration, is demonstrated. The use of two kinds of seeds: free-standing hydride vapor phase epitaxy GaN (HVPE-GaN) obtained from metal organic chemical vapor deposition (MOCVD)-GaN/sapphire templates and free-standing HVPE-GaN obtained from the ammonothermally grown GaN crystals, is shown. Depending on the seeds’ structural quality, the differences in the structural properties of pressure grown material are demonstrated and analyzed. The role and influence of impurities, like oxygen and magnesium, on GaN crystals grown from gallium solution in the MFS configuration is presented. The properties of differently doped GaN crystals are discussed. An application of the pressure grown GaN crystals as substrates for electronic and optoelectronic devices is reported.

  14. High pressure rotary piston coal feeder for coal gasification applications

    DOEpatents

    Gencsoy, Hasan T.

    1977-05-24

    The subject development is directed to an apparatus for feeding pulverized coal into a coal gasifier operating at relatively high pressures and elevated temperatures. This apparatus is a rotary piston feeder which comprises a circular casing having a coal loading opening therein diametrically opposed from a coal discharge and contains a rotatable discoid rotor having a cylinder in which a reciprocateable piston is disposed. The reciprocation of the piston within the cylinder is provided by a stationary conjugate cam arrangement whereby the pulverized coal from a coal hopper at atmospheric pressure can be introduced into the cylinder cavity and then discharged therefrom into the high-pressure gasifier without the loss of high pressure gases from within the latter.

  15. Cryogenic x-ray diffraction microscopy utilizing high-pressure cryopreservation

    NASA Astrophysics Data System (ADS)

    Lima, Enju; Chushkin, Yuriy; van der Linden, Peter; Kim, Chae Un; Zontone, Federico; Carpentier, Philippe; Gruner, Sol M.; Pernot, Petra

    2014-10-01

    We present cryo x-ray diffraction microscopy of high-pressure-cryofixed bacteria and report high-convergence imaging with multiple image reconstructions. Hydrated D. radiodurans cells were cryofixed at 200 MPa pressure into ˜10-μm-thick water layers and their unstained, hydrated cellular environments were imaged by phasing diffraction patterns, reaching sub-30-nm resolutions with hard x-rays. Comparisons were made with conventional ambient-pressure-cryofixed samples, with respect to both coherent small-angle x-ray scattering and the image reconstruction. The results show a correlation between the level of background ice signal and phasing convergence, suggesting that phasing difficulties with frozen-hydrated specimens may be caused by high-background ice scattering.

  16. Equation of state of liquid Indium under high pressure

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Li, Huaming, E-mail: huamingli@gatech.edu, E-mail: mo.li@gatech.edu; Li, Mo, E-mail: huamingli@gatech.edu, E-mail: mo.li@gatech.edu; School of Materials Science and Engineering, Georgia Institute of Technology, Atlanta, GA 30332

    2015-09-15

    We apply an equation of state of a power law form to liquid Indium to study its thermodynamic properties under high temperature and high pressure. Molar volume of molten indium is calculated along the isothermal line at 710K within good precision as compared with the experimental data in an externally heated diamond anvil cell. Bulk modulus, thermal expansion and internal pressure are obtained for isothermal compression. Other thermodynamic properties are also calculated along the fitted high pressure melting line. While our results suggest that the power law form may be a better choice for the equation of state of liquids,more » these detailed predictions are yet to be confirmed by further experiment.« less

  17. Abnormal aortic arch morphology in Turner syndrome patients is a risk factor for hypertension.

    PubMed

    De Groote, Katya; Devos, Daniël; Van Herck, Koen; Demulier, Laurent; Buysse, Wesley; De Schepper, Jean; De Wolf, Daniël

    2015-09-01

    Hypertension in Turner syndrome (TS) is a multifactorial, highly prevalent and significant problem that warrants timely diagnosis and rigorous treatment. The objective of this study was to investigate the association between abnormal aortic arch morphology and hypertension in adult TS patients. This was a single centre retrospective study in 74 adult TS patients (age 29.41 ± 8.91 years) who underwent a routine cardiac MRI. Patients were assigned to the hypertensive group (N = 31) if blood pressure exceeded 140/90 mmHg and/or if they were treated with antihypertensive medication. Aortic arch morphology was evaluated on MRI images and initially assigned as normal (N = 54) or abnormal (N = 20), based on the curve of the transverse arch and the distance between the left common carotid-left subclavian artery. We additionally used a new more objective method to describe aortic arch abnormality in TS by determination of the relative position of the highest point of the transverse arch (AoHP). Logistic regression analysis showed that hypertension is significantly and independently associated with age, BMI and abnormal arch morphology, with a larger effect size for the new AoHP method than for the classical method. TS patients with hypertension and abnormal arch morphology more often had dilatation of the ascending aorta. There is a significant association between abnormal arch morphology and hypertension in TS patients, independent of age and BMI, and not related to other structural heart disease. We suggest that aortic arch morphology should be included in the risk stratification for hypertension in TS and propose a new quantitative method to express aortic arch morphology.

  18. Intermittently-fed high-pressure gasifier process

    DOEpatents

    Bailey, J.M.; Zadoks, A.L.

    1993-11-30

    An improved gasifier is described which is adapted for gasifying a predetermined charge of non-gaseous fuel into fuel gas. Each charge of non-gaseous fuel, which may have optional conditioning materials added to it, is intermittently fed to a gasifier chamber where each charge is partially burned with high-pressure air supplied thereto. High-pressure and temperature fuel gas is produced which is cleansed prior to passing out of the gasifier chamber. After gasification of the charge of fuel is ended, the gasifier chamber is vented. The residue of the burned charge in the gasifier chamber is removed, along with the contaminated or reacted conditioning materials, and replaced by a fresh charge. The subject invention provides a feasible way of continuously fueling an internal combustion engine with gasified fuel and is compact enough to be practical for even mobile applications. 3 figures.

  19. Intermittently-fed high-pressure gasifier process

    DOEpatents

    Bailey, John M.; Zadoks, Abraham L.

    1993-11-30

    An improved gasifier adapted for gasifying a predetermined charge of non-gaseous fuel into fuel gas. Each charge of non-gaseous fuel, which may have optional conditioning materials added to it, is intermittently fed to a gasifier chamber where each charge is partially burned with high-pressure air supplied thereto. High-pressure and temperature fuel gas is produced which is cleansed prior to passing out of the gasifier chamber. After gasification of the charge of fuel is is ended, the gasifier chamber is vented. The residue of the burned charge in the gasifier chamber is removed, along with the contaminated or reacted conditioning materials, and replaced by a fresh charge. The subject invention provides a feasible way of continuously fueling an internal combustion engine with gasified fuel and is compact enough to be practical for even mobile applications.

  20. Energy efficient engine high-pressure turbine supersonic cascade technology report

    NASA Technical Reports Server (NTRS)

    Kopper, F. C.; Milano, R.; Davis, R. L.; Dring, R. P.; Stoeffler, R. C.

    1981-01-01

    The performance of two vane endwall geometries and three blade sections for the high-pressure turbine was evaluated in terms of the efficiency requirements of the Energy Efficient Engine high-pressure turbine component. The van endwall designs featured a straight wall and S-wall configuration. The blade designs included a base blade, straightback blade, and overcambered blade. Test results indicated that the S-wall vane configuration and the base blade configuration offered the most promising performance characteristics for the Energy Efficient Engine high-pressure turbine component.

  1. Deviation of tracheal pressure from airway opening pressure during high-frequency oscillatory ventilation in a porcine lung model.

    PubMed

    Johannes, Amélie; Zollhoefer, Bernd; Eujen, Ulrike; Kredel, Markus; Rauch, Stefan; Roewer, Norbert; Muellenbach, Ralf M

    2013-04-01

    Oxygenation during high-frequency oscillatory ventilation is secured by a high level of mean airway pressure. Our objective was to identify a pressure difference between the airway opening of the respiratory circuit and the trachea during application of different oscillatory frequencies. Six female Pietrain pigs (57.1 ± 3.6 kg) were first ventilated in a conventional mechanical ventilation mode. Subsequently, the animals were switched to high-frequency oscillatory ventilation by setting mean airway opening pressure 5 cmH(2)O above the one measured during controlled mechanical ventilation. Measurements at the airway opening and at tracheal levels were performed in healthy lungs and after induction of acute lung injury by surfactant depletion. During high-frequency oscillatory ventilation, the airway opening pressure was set at a constant level. The pressure amplitude was fixed at 90 cmH(2)O. Starting from an oscillatory frequency of 3 Hz, the frequency was increased in steps of 3 Hz to 15 Hz and then decreased accordingly. At each frequency, measurements were performed in the trachea through a side-lumen of the endotracheal tube and the airway opening pressure was recorded. The pressure difference was calculated. At every oscillatory frequency, a pressure loss towards the trachea could be shown. This pressure difference increased with higher oscillatory frequencies (3 Hz 2.2 ± 2.1 cmH(2)O vs. 15 Hz 7.5 ± 1.8 cmH(2)O). The results for healthy and injured lungs were similar. Tracheal pressures decreased with higher oscillatory frequencies. This may lead to pulmonary derecruitment. This has to be taken into consideration when increasing oscillatory frequencies and differentiated pressure settings are mandatory.

  2. Possible association of first and high birth order of pregnant women with the risk of isolated congenital abnormalities in Hungary - a population-based case-matched control study.

    PubMed

    Csermely, Gyula; Susánszky, Éva; Czeizel, Andrew E; Veszprémi, Béla

    2014-08-01

    In epidemiological studies at the estimation of risk factors in the origin of specified congenital abnormalities in general birth order (parity) is considered as confounder. The aim of this study was to analyze the possible association of first and high (four or more) birth order with the risk of congenital abnormalities in a population-based case-matched control data set. The large dataset of the Hungarian Case-Control Surveillance of Congenital Abnormalities included 21,494 cases with different isolated congenital abnormality and their 34,311 matched controls. First the distribution of birth order was compared of 24 congenital abnormality groups and their matched controls. In the second step the possible association of first and high birth order with the risk of congenital abnormalities was estimated. Finally some subgroups of neural-tube defects, congenital heart defects and abdominal wall's defects were evaluated separately. A higher risk of spina bifida aperta/cystica, esophageal atresia/stenosis and clubfoot was observed in the offspring of primiparous mothers. Of 24 congenital abnormality groups, 14 had mothers with larger proportion of high birth order. Ear defects, congenital heart defects, cleft lip± palate and obstructive defects of urinary tract had a linear trend from a lower proportion of first born cases to the larger proportion of high birth order. Birth order showed U-shaped distribution of neural-tube defects and clubfoot, i.e. both first and high birth order had a larger proportion in cases than in their matched controls. Birth order is a contributing factor in the origin of some isolated congenital abnormalities. The higher risk of certain congenital abnormalities in pregnant women with first or high birth order is worth considering in the clinical practice, e.g. ultrasound scanning. Copyright © 2014 Elsevier Ireland Ltd. All rights reserved.

  3. Viscosity and compressibility of diacylglycerol under high pressure

    NASA Astrophysics Data System (ADS)

    Malanowski, Aleksander; Rostocki, A. J.; Kiełczyński, P.; Szalewski, M.; Balcerzak, A.; Kościesza, R.; Tarakowski, R.; Ptasznik, S.; Siegoczyński, R. M.

    2013-03-01

    The influence of high pressure on viscosity and compressibility of diacylglycerol (DAG) oil has been presented in this paper. The investigated DAG oil was composed of 82% of DAGs and 18% TAGs (triacylglycerols). The dynamic viscosity of DAG was investigated as a function of the pressure up to 400 MPa. The viscosity was measured by means of the surface acoustic wave method, where the acoustic waveguides were used as sensing elements. As the pressure was rising, the larger ultrasonic wave attenuation was observed, whereas amplitude decreased with the liquid viscosity augmentation. Measured changes of physical properties were most significant in the pressure range near the phase transition. Deeper understanding of DAG viscosity and compressibility changes versus pressure could shed more light on thermodynamic properties of edible oils.

  4. Development of Designer Diamond Technology for High Pressure High Temperature Experiments in Support of Stockpile Stewardship Program

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Vohra, Yogesh, K.

    The role of nitrogen in the fabrication of designer diamond was systematically investigated by adding controlled amount of nitrogen in hydrogen/methane/oxygen plasma. This has led to a successful recipe for reproducible fabrication of designer diamond anvils for high-pressure high-temperature research in support of stockpile stewardship program. In the three-year support period, several designer diamonds fabricated with this new growth chemistry were utilized in high-pressure experiments at UAB and Lawrence Livermore National Laboratory. The designer diamond anvils were utilized in high-pressure studies on heavy rare earth metals, high pressure melting studies on metals, and electrical resistance measurements on iron-based layered superconductorsmore » under high pressures. The growth chemistry developed under NNSA support can be adapted for commercial production of designer diamonds.« less

  5. Studies on droplet evaporation and combustion in high pressures

    NASA Technical Reports Server (NTRS)

    Sato, J.

    1993-01-01

    High pressure droplet evaporation and combustion have been studied up to 15 MPa under normal and microgravity fields. From the evaporation studies, it has been found that in the supercritical environments, the droplet evaporation rate and lifetime take a maximum and a minimum at an ambient pressure over the critical pressure. Its maximum and minimum points move toward the lower ambient pressures if the ambient temperature is increased. It has been found from the combustion studies that the burning life time takes a minimum at an ambient pressure being equal to the critical pressure. It is attributable to both the pressure dependency of the diffusion rate and the droplet evaporation characteristics described above.

  6. Tolerance of budding yeast Saccharomyces cerevisiae to ultra high pressure

    NASA Astrophysics Data System (ADS)

    Ono, Fumihisa; Shibata, Michiko; Torigoe, Motoki; Matsumoto, Yuta; Yamamoto, Shinsuke; Takizawa, Noboru; Hada, Yoshio; Mori, Yoshihisa; Takarabe, Kenichi

    2013-06-01

    In our previous studies on the tolerance of small plants and animals to the high hydrostatic pressure of 7.5 GPa, it was shown that all the living samples could be borne at this high pressure, which is more than one order of magnitude higher than the proteinic denaturation pressure. To make this inconsistency clear, we have extended these studies to a smaller sized fungus, budding yeast Saccharomyces cerevisiae. A several pieces of budding yeast (dry yeast) were sealed in a small teflon capsule with a liquid pressure medium fluorinate (PC72, Sumitomo 3M), and exposed to 7.5 GPa by using a cubic anvil press. The pressure was kept constant for various duration of time from 2 to 24 h. After the pressure was released, the specimens were brought out from the teflon capsule, and they were cultivated on a potato dextrose agar (PDA). It was found that the budding yeast exposed to 7.5 GPa for up to 6 h showed multiplication. However, those exposed to 7.5 GPa for 12 and 24 h were found dead. The high pressure tolerance of budding yeast is weaker than that of tardigrades.

  7. High pressure processing's potential to inactivate norovirus and other fooodborne viruses

    USDA-ARS?s Scientific Manuscript database

    High pressure processing (HPP) can inactivate human norovirus. However, all viruses are not equally susceptible to HPP. Pressure treatment parameters such as required pressure levels, initial pressurization temperatures, and pressurization times substantially affect inactivation. How food matrix ...

  8. Glassy selenium at high pressure: Le Chatelier's principle still works

    NASA Astrophysics Data System (ADS)

    Brazhkin, V. V.; Tsiok, O. B.

    2017-10-01

    Selenium is the only easily vitrified elementary substance. Numerous experimental studies of glassy Se (g -Se) at high pressures show a large spread in the data on the compressibility and electrical resistivity of g -Se. Furthermore, H. Liu et al. [Proc. Natl. Acad. Sci. USA 105, 13229 (2008), 10.1073/pnas.0806857105] have arrived at the surprising conclusion that the volume of glass increases during pressure-induced crystallization. We have performed high-precision measurements of the specific volume and electrical resistivity of glassy selenium (g -Se) at high hydrostatic pressures up to 9 GPa. The measured bulk modulus at normal pressure is B =(9.0 5 ±0.15 ) GPa and its pressure derivative is BP'=6.4 ±0.2 . In the pressure range P <3 GPa, glassy selenium has an anomalously large negative second derivative of the bulk modulus. The electrical resistivity of g -Se decreases almost exponentially with increasing pressure and reaches 20 Ω cm at a pressure of 8.75 GPa. The inelastic behavior and weak relaxation of the volume for g -Se begin at pressures above 3.5 GPa; the volume and logarithm of the electrical resistivity relax significantly (logarithmically with the time) at pressures above 8 GPa. Bulk measurements certainly indicate that the volume of g -Se glass in the crystallization pressure range is larger than the volumes of both appearing crystalline phases (by 2% and 4%). Therefore, the "volume expansion phenomenon" suggested in [H. Liu et al., Proc. Natl. Acad. Sci. USA 105, 13229 (2008), 10.1073/pnas.0806857105] is not observed, and the pressure-induced crystallization of glassy selenium is consistent with the laws of thermodynamics.

  9. Spent fuel behavior under abnormal thermal transients during dry storage

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Stahl, D.; Landow, M.P.; Burian, R.J.

    1986-01-01

    This study was performed to determine the effects of abnormally high temperatures on spent fuel behavior. Prior to testing, calculations using the CIRFI3 code were used to determine the steady-state fuel and cask component temperatures. The TRUMP code was used to determine transient heating rates under postulated abnormal events during which convection cooling of the cask surfaces was obstructed by a debris bed covering the cask. The peak rate of temperature rise during the first 6 h was calculated to be about 15/sup 0/C/h, followed by a rate of about 1/sup 0/C/h. A Turkey Point spent fuel rod segment wasmore » heated to approx. 800/sup 0/C. The segment deformed uniformly with an average strain of 17% at failure and a local strain of 60%. Pretest characterization of the spent fuel consisted of visual examination, profilometry, eddy-current examination, gamma scanning, fission gas collection, void volume measurement, fission gas analysis, hydrogen analysis of the cladding, burnup analysis, cladding metallography, and fuel ceramography. Post-test characterization showed that the failure was a pinhole cladding breach. The results of the tests showed that spent fuel temperatures in excess of 700/sup 0/C are required to produce a cladding breach in fuel rods pressurized to 500 psing (3.45 MPa) under postulated abnormal thermal transient cask conditions. The pinhole cladding breach that developed would be too small to compromise the confinement of spent fuel particles during an abnormal event or after normal cooling conditions are restored. This behavior is similar to that found in other slow ramp tests with irradiated and nonirradiated rod sections and nonirradiated whole rods under conditions that bracketed postulated abnormal heating rates. This similarity is attributed to annealing of the irradiation-strengthened Zircaloy cladding during heating. In both cases, the failure was a benign, ductile pinhole rupture.« less

  10. Abnormal intra-aural pressure waves associated with death in African children with acute nontraumatic coma.

    PubMed

    Gwer, Samson; Kazungu, Michael; Chengo, Eddie; Ohuma, Eric O; Idro, Richard; Birch, Tony; Marchbanks, Robert; Kirkham, Fenella J; Newton, Charles R

    2015-07-01

    We explored the relationship between tympanic membrane displacement (TMD) measurements, a tool to monitor intracranial pressure noninvasively, and clinical features and death in children with acute coma in Kilifi, Kenya. Between November 2007 and September 2009, we made serial TMD measurements and clinical observations on children with acute coma (Blantyre coma score (BCS) ≤ 2) on the pediatric high dependency unit of Kilifi District Hospital, and on well children presenting to the hospital's outpatient department for routine follow-up. We examined middle ear function using tympanometry and measured cardiac pulse (CPA) and respiratory pulse pressure amplitudes (RPA) using the TMD analyzer. We recruited 75 children (32 (43%) females; median age 3.3 (IQR: 2.0, 4.3) years). Twenty-one (28%) children died. Higher TMD measurements predicted death. Adjusting for diagnosis, every 50 nl rise in both semirecumbent and recumbent CPA was associated with increased odds of death associated with intracranial herniation (OR: 1.61, 95% confidence interval (CI): 1.07, 2.41; P = 0.02 and OR: 1.35, 95% CI: 1.10, 1.66; P ≤ 0.01 respectively). Raised TMD pulse pressure measurements are associated with death and may be useful in detecting and monitoring risk of intracranial herniation and intracranial pressure in childhood coma.

  11. High-flow oxygen therapy: pressure analysis in a pediatric airway model.

    PubMed

    Urbano, Javier; del Castillo, Jimena; López-Herce, Jesús; Gallardo, José A; Solana, María J; Carrillo, Ángel

    2012-05-01

    The mechanism of high-flow oxygen therapy and the pressures reached in the airway have not been defined. We hypothesized that the flow would generate a low continuous positive pressure, and that elevated flow rates in this model could produce moderate pressures. The objective of this study was to analyze the pressure generated by a high-flow oxygen therapy system in an experimental model of the pediatric airway. An experimental in vitro study was performed. A high-flow oxygen therapy system was connected to 3 types of interface (nasal cannulae, nasal mask, and oronasal mask) and applied to 2 types of pediatric manikin (infant and neonatal). The pressures generated in the circuit, in the airway, and in the pharynx were measured at different flow rates (5, 10, 15, and 20 L/min). The experiment was conducted with and without a leak (mouth sealed and unsealed). Linear regression analyses were performed for each set of measurements. The pressures generated with the different interfaces were very similar. The maximum pressure recorded was 4 cm H(2)O with a flow of 20 L/min via nasal cannulae or nasal mask. When the mouth of the manikin was held open, the pressures reached in the airway and pharynxes were undetectable. Linear regression analyses showed a similar linear relationship between flow and pressures measured in the pharynx (pressure = -0.375 + 0.138 × flow) and in the airway (pressure = -0.375 + 0.158 × flow) with the closed mouth condition. According to our hypothesis, high-flow oxygen therapy systems produced a low-level CPAP in an experimental pediatric model, even with the use of very high flow rates. Linear regression analyses showed similar linear relationships between flow and pressures measured in the pharynx and in the airway. This finding suggests that, at least in part, the effects may be due to other mechanisms.

  12. A Harsh Environment Wireless Pressure Sensing Solution Utilizing High Temperature Electronics

    PubMed Central

    Yang, Jie

    2013-01-01

    Pressure measurement under harsh environments, especially at high temperatures, is of great interest to many industries. The applicability of current pressure sensing technologies in extreme environments is limited by the embedded electronics which cannot survive beyond 300 °C ambient temperature as of today. In this paper, a pressure signal processing and wireless transmission module based on the cutting-edge Silicon Carbide (SiC) devices is designed and developed, for a commercial piezoresistive MEMS pressure sensor from Kulite Semiconductor Products, Inc. Equipped with this advanced high-temperature SiC electronics, not only the sensor head, but the entire pressure sensor suite is capable of operating at 450 °C. The addition of wireless functionality also makes the pressure sensor more flexible in harsh environments by eliminating the costly and fragile cable connections. The proposed approach was verified through prototype fabrication and high temperature bench testing from room temperature up to 450 °C. This novel high-temperature pressure sensing technology can be applied in real-time health monitoring of many systems involving harsh environments, such as military and commercial turbine engines. PMID:23447006

  13. A harsh environment wireless pressure sensing solution utilizing high temperature electronics.

    PubMed

    Yang, Jie

    2013-02-27

    Pressure measurement under harsh environments, especially at high temperatures, is of great interest to many industries. The applicability of current pressure sensing technologies in extreme environments is limited by the embedded electronics which cannot survive beyond 300 °C ambient temperature as of today. In this paper, a pressure signal processing and wireless transmission module based on the cutting-edge Silicon Carbide (SiC) devices is designed and developed, for a commercial piezoresistive MEMS pressure sensor from Kulite Semiconductor Products, Inc. Equipped with this advanced high-temperature SiC electronics, not only the sensor head, but the entire pressure sensor suite is capable of operating at 450 °C. The addition of wireless functionality also makes the pressure sensor more flexible in harsh environments by eliminating the costly and fragile cable connections. The proposed approach was verified through prototype fabrication and high temperature bench testing from room temperature up to 450 °C. This novel high-temperature pressure sensing technology can be applied in real-time health monitoring of many systems involving harsh environments, such as military and commercial turbine engines.

  14. High Pressure and Temperature Effects in Polymers

    NASA Astrophysics Data System (ADS)

    Bucknall, David; Arrighi, Valeria; Johnston, Kim; Condie, Iain

    Elastomers are widely exploited as the basis for seals in gas and fluid pipelines. The underlying behaviour of these elastomer at the high pressure, elevated temperatures they experience in operation is poorly understood. Consequently, the duty cycle of these materials is often deliberately limited to a few hours, and in order to prevent failure, production is stopped in order to change the seals in critical joints. The result is significant time lost due to bringing down production to change the seals as well as knock on financial costs. In order to address the fundamental nature of the elastomers at their intended operating conditions, we are studying the gas permeation behaviour of hydrogenated natural butyl rubber (HNBR) and fluorinated elastomers (FKM) at a high pressure and elevated temperature. We have developed a pressure system that permits gas permeation studies at gas pressures of up to 5000 psi and operating temperatures up to 150° C. In this paper, we will discuss the nature of the permeation behaviour at these extreme operating conditions, and how this relates to the changes in the polymer structure. We will also discuss the use of graphene-polymer thin layer coatings to modify the gas permeation behaviour of the elastomers.

  15. High pressure common rail injection system modeling and control.

    PubMed

    Wang, H P; Zheng, D; Tian, Y

    2016-07-01

    In this paper modeling and common-rail pressure control of high pressure common rail injection system (HPCRIS) is presented. The proposed mathematical model of high pressure common rail injection system which contains three sub-systems: high pressure pump sub-model, common rail sub-model and injector sub-model is a relative complicated nonlinear system. The mathematical model is validated by the software Matlab and a virtual detailed simulation environment. For the considered HPCRIS, an effective model free controller which is called Extended State Observer - based intelligent Proportional Integral (ESO-based iPI) controller is designed. And this proposed method is composed mainly of the referred ESO observer, and a time delay estimation based iPI controller. Finally, to demonstrate the performances of the proposed controller, the proposed ESO-based iPI controller is compared with a conventional PID controller and ADRC. Copyright © 2016 ISA. Published by Elsevier Ltd. All rights reserved.

  16. Does bacteremia occur during high pressure lavage of contaminated wounds?

    PubMed

    Tabor, O B; Bosse, M J; Hudson, M C; Greene, K G; Nousiainen, M T; Meyer, R A; Sims, S H; Kellam, J F

    1998-02-01

    The risk of bacteremia secondary to high pressure lavage of contaminated wounds was assessed. Twenty canines were divided randomly into four treatment groups. A 10-cm incision was made over the left shoulder of each dog. The deltoideus muscle was disrupted and traumatized. Groups A and B (n = 8) had wound contamination with 1.4 x 10(9) Staphylococcus aureus followed 75 minutes later by high pressure lavage or bulb syringe irrigation, respectively. Groups C and D (n = 2) had no contamination, followed by the same treatment. Bacterial counts were obtained before and after wound irrigation. Blood cultures were obtained before, during, and 15 minutes after irrigation. Positive control cultures were obtained during injection of bacteria into the antecubital vein. A detectable bacteremia did not occur during or after high pressure lavage or bulb syringe irrigation of acute contaminated wounds but did occur in 18 of 20 positive controls. Bacterial levels were reduced by an average of 70% +/- 10% by high pressure lavage and 44% +/- 50% by bulb irrigation. Reduction of wound bacteria was achieved more consistently with high pressure lavage than with bulb syringe irrigation.

  17. High-sugar intake does not exacerbate metabolic abnormalities or cardiac dysfunction in genetic cardiomyopathy.

    PubMed

    Hecker, Peter A; Galvao, Tatiana F; O'Shea, Karen M; Brown, Bethany H; Henderson, Reney; Riggle, Heather; Gupte, Sachin A; Stanley, William C

    2012-05-01

    A high-sugar intake increases heart disease risk in humans. In animals, sugar intake accelerates heart failure development by increased reactive oxygen species (ROS). Glucose-6-phosphate dehydrogenase (G6PD) can fuel ROS production by providing reduced nicotinamide adenine dinucleotide phosphate (NADPH) for superoxide generation by NADPH oxidase. Conversely, G6PD also facilitates ROS scavenging using the glutathione pathway. We hypothesized that a high-sugar intake would increase flux through G6PD to increase myocardial NADPH and ROS and accelerate cardiac dysfunction and death. Six-week-old TO-2 hamsters, a non-hypertensive model of genetic cardiomyopathy caused by a δ-sarcoglycan mutation, were fed a long-term diet of high starch or high sugar (57% of energy from sucrose plus fructose). After 24 wk, the δ-sarcoglycan-deficient animals displayed expected decreases in survival and cardiac function associated with cardiomyopathy (ejection fraction: control 68.7 ± 4.5%, TO-2 starch 46.1 ± 3.7%, P < 0.05 for TO-2 starch versus control; TO-2 sugar 58.0 ± 4.2%, NS, versus TO-2 starch or control; median survival: TO-2 starch 278 d, TO-2 sugar 318 d, P = 0.133). Although the high-sugar intake was expected to exacerbate cardiomyopathy, surprisingly, there was no further decrease in ejection fraction or survival with high sugar compared with starch in cardiomyopathic animals. Cardiomyopathic animals had systemic and cardiac metabolic abnormalities (increased serum lipids and glucose and decreased myocardial oxidative enzymes) that were unaffected by diet. The high-sugar intake increased myocardial superoxide, but NADPH and lipid peroxidation were unaffected. A sugar-enriched diet did not exacerbate ventricular function, metabolic abnormalities, or survival in heart failure despite an increase in superoxide production. Copyright © 2012 Elsevier Inc. All rights reserved.

  18. Flow Field Measurements of Methane-Oxygen Turbulent Nonpremixed Flames at High Pressure

    NASA Astrophysics Data System (ADS)

    Iino, Kimio; Kikkawa, Hoshitaka; Akamatsu, Fumiteru; Katsuki, Masashi

    We carried out the flow field measurement of methane-oxygen turbulent nonpremixed flame in non-combusting and combusting situations at high pressures using LDV. The main objectives are to study the influences of combustion on the turbulence structure at high pressures and to provide detailed data on which numerical predictions on such flows can rely. Direct observation and CH* chemiluminescence detection are conducted at high pressures up to 1.0MPa. It was found that the flame length at elevated pressures became constant. From flow field measurements, the following features of flames at elevated pressure were found: (1) the existence of flame suppressed turbulence in the upstream region of the jet and enhanced it in the downstream region with increasing pressure; (2) Turbulence in the flame was more anisotropic than in the corresponding cold jet in all regions of the flow with increasing pressure; (3) Reynolds shear stresses did not change at elevated pressure; (4) Combustion processes had a marked influence on the turbulence macroscale under high pressures, however, the turbulence macroscale was not changed even with the increase in pressure.

  19. High-pressure microhydraulic actuator

    DOEpatents

    Mosier, Bruce P [San Francisco, CA; Crocker, Robert W [Fremont, CA; Patel, Kamlesh D [Dublin, CA

    2008-06-10

    Electrokinetic ("EK") pumps convert electric to mechanical work when an electric field exerts a body force on ions in the Debye layer of a fluid in a packed bed, which then viscously drags the fluid. Porous silica and polymer monoliths (2.5-mm O.D., and 6-mm to 10-mm length) having a narrow pore size distribution have been developed that are capable of large pressure gradients (250-500 psi/mm) when large electric fields (1000-1500 V/cm) are applied. Flowrates up to 200 .mu.L/min and delivery pressures up to 1200 psi have been demonstrated. Forces up to 5 lb-force at 0.5 mm/s (12 mW) have been demonstrated with a battery-powered DC-DC converter. Hydraulic power of 17 mW (900 psi@ 180 uL/min) has been demonstrated with wall-powered high voltage supplies. The force and stroke delivered by an actuator utilizing an EK pump are shown to exceed the output of solenoids, stepper motors, and DC motors of similar size, despite the low thermodynamic efficiency.

  20. High Pressure Electrolyzer System Evaluation

    NASA Technical Reports Server (NTRS)

    Prokopius, Kevin; Coloza, Anthony

    2010-01-01

    This report documents the continuing efforts to evaluate the operational state of a high pressure PEM based electrolyzer located at the NASA Glenn Research Center. This electrolyzer is a prototype system built by General Electric and refurbished by Hamilton Standard (now named Hamilton Sunstrand). It is capable of producing hydrogen and oxygen at an output pressure of 3000 psi. The electrolyzer has been in storage for a number of years. Evaluation and testing was performed to determine the state of the electrolyzer and provide an estimate of the cost for refurbishment. Pressure testing was performed using nitrogen gas through the oxygen ports to ascertain the status of the internal membranes and seals. It was determined that the integrity of the electrolyzer stack was good as there were no appreciable leaks in the membranes or seals within the stack. In addition to the integrity testing, an itemized list and part cost estimate was produced for the components of the electrolyzer system. An evaluation of the system s present state and an estimate of the cost to bring it back to operational status was also produced.

  1. A high pressure modulated molecular beam mass spectrometric sampling system

    NASA Technical Reports Server (NTRS)

    Stearns, C. A.; Kohl, F. J.; Fryburg, G. C.; Miller, R. A.

    1977-01-01

    The current state of understanding of free-jet high pressure sampling is critically reviewed and modifications of certain theoretical and empirical considerations are presented. A high pressure, free-jet expansion, modulated molecular beam, mass spectrometric sampling apparatus was constructed and this apparatus is described in detail. Experimental studies have demonstrated that the apparatus can be used to sample high temperature systems at pressures up to one atmosphere. Condensible high temperature gaseous species have been routinely sampled and the mass spectrometric detector has provided direct identification of sampled species. System sensitivity is better than one tenth of a part per million. Experimental results obtained with argon and nitrogen beams are presented and compared to theoretical predictions. These results and the respective comparison are taken to indicate acceptable performance of the sampling apparatus. Results are also given for two groups of experiments related to hot corrosion studies. The formation of gaseous sodium sulfate in doped methane-oxygen flames was characterized and the oxidative vaporization of metals was studied in an atmospheric pressure flowing gas system to which gaseous salt partial pressures were added.

  2. A High-Pressure Bi-Directional Cycloid Rotor Flowmeter

    PubMed Central

    Liu, Shuo; Ding, Fan; Ding, Chuan; Man, Zaipeng

    2014-01-01

    The measurement of the flow rate of various liquids and gases is critical in industrial automation. Rotary positive displacement meters (rotary PD meters) are highly accurate flowmeters that are widely employed in engineering applications, especially in custody transfer operations and hydraulic control systems. This paper presents a high pressure rotary PD meter containing a pair of internal cycloid rotors. It has the advantages of concise structure, low pressure loss, high accuracy and low noise. The curve of the internal rotor is designed as an equidistant curtate epicycloid curve with the external rotor curve as its conjugate. The calculation method used to determine the displacement of the cycloid rotor flowmeter is discussed. A prototype was fabricated, and experiments were performed to confirm measurements over a flow range of 1–100 L/min with relative errors of less than ±0.5%. The pressure loss through the flowmeter was about 3 bar at a flow rate of 100 L/min. PMID:25196162

  3. Behavior of magnesium at high pressures and high temperatures

    NASA Astrophysics Data System (ADS)

    Cynn, H.; Evans, W.; Yoo, C. S.; Ohishi, Y.; Sata, N.; Shimomura, O.

    2004-03-01

    Structural stability relationship manifested by 3-, 4-, 5d-electron transition metals also appears in so-called nearly free electron metal, magnesium as exampled by HCP to BCC structure change at high pressures. This transition has been examined by theory and confirmed by experiment. Recently, HCP to DHCP crystal structure change has been reported at high temperatures below 20 GPa. However, this type of structure change is rather common in 4f-electron lanthanides. In this study, we used synchrotron x-ray diffraction to find out the relationship between BCC and DHCP employing a diamond anvil cell technique coupled with external and laser heating methods. We also examined pressure gradient effects in relation with the existence of DHCP. This work has been supported by PDRP program at the Lawrence Livermore National Laboratory, University of California under the auspices of the U.S. Department of Energy under Contract No. W-7405-ENG-48

  4. High pressure effects on a trimetallic Mn(II/III) SMM.

    PubMed

    Prescimone, Alessandro; Sanchez-Benitez, Javier; Kamenev, Konstantin V; Moggach, Stephen A; Lennie, Alistair R; Warren, John E; Murrie, Mark; Parsons, Simon; Brechin, Euan K

    2009-09-28

    A combined study of the high pressure crystallography and high pressure magnetism of the complex [Mn3(Hcht)2(bpy)4](ClO4)3.Et2O.2MeCN (1.Et2O.2MeCN) (H3cht is cis,cis-1,3,5-cyclohexanetriol) is presented in an attempt to observe and correlate pressure induced changes in its structural and physical properties. At 0.16 GPa the complex 1.Et2O.2MeCN loses all associated solvent in the crystal lattice, becoming 1. At higher pressures structural distortions occur changing the distances between the metal centres and the bridging oxygen atoms making the magnetic exchange between the manganese ions weaker. No significant variations are observed in the Jahn-Teller axis of the only Mn(III) present in the structure. High pressure dc chiMT plots display a gradual decrease in both the low temperature value and slope. Simulations show a decrease in J with increasing pressure although the ground state is preserved. Magnetisation data do not show any change in |D|.

  5. Superconductivity under high pressure in the binary compound CaLi2

    NASA Astrophysics Data System (ADS)

    Debessai, M.; Matsuoka, T.; Hamlin, J. J.; Gangopadhyay, A. K.; Schilling, J. S.; Shimizu, K.; Ohishi, Y.

    2008-12-01

    Feng predicted for CaLi2 highly anomalous properties with possible superconductivity under very high pressures, including for the hcp polymorph a significant lattice bifurcation at pressures above 47 GPa. More recently, however, Feng suggested that for pressures exceeding 20 GPa CaLi2 may dissociate into elemental Ca and Li. Here we present for hcp CaLi2 measurements of the electrical resistivity and ac susceptibility to low temperatures under pressures as high as 81 GPa. Pressure-induced superconductivity is observed in the pressure range of 11-81 GPa, with Tc reaching values as high as 13 K. X-ray diffraction studies to 54 GPa at 150 K reveal that hcp CaLi2 undergoes a structural phase transition above 23 GPa to orthorhombic but does not dissociate into elemental Ca and Li. In the hcp phase a fit of the equation of state with the Murnaghan equation yields the bulk modulus Bo=15(2)GPa and dBo/dP=3.2(6) .

  6. High pressure far infrared spectroscopy of ionic solids

    NASA Technical Reports Server (NTRS)

    Lowndes, R. P.

    1974-01-01

    A high-pressure far-infrared cell operating at up to truly hydrostatic pressures of 8 kbar is described and used to determine the anharmonic self-energies associated with the transverse optic modes of ionic solids in which q approximately equals zero. The cell allows far-infrared studies in the spectral range below 120 reciprocal cm. The transverse optic modes were investigated to determine their mode Gruneisen constants and the pressure dependence of their inverse lifetimes in RbI, CsI, and TlCl.

  7. Static high pressure studies on Nd and Sc

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Akella, J.; Xu, J.; Smith, G.S.

    1985-06-24

    We have investigated the crystal structural transformations in neodymium and scandium up to 4.0 GPa pressure and at room temperature, in a diamond-anvil high pressure apparatus. Nd has a double hexagonal-close packed (dhcp) structure at ambient pressure and temperature. Then it transforms to a face-centered cubic (fcc) structure at 3.8 GPa, which further transforms to a triple hexagonal-close packed structure (thcp) at about 18.0 GPa. In scandium we observed only one transformation from the hexagonal-close packed (hcp) structure at room temperature to a tetragonal structure. This transformation occurs between 19.0 and 23.2 GPa pressure.

  8. High Pressure Behavior of Zircon at Room Temperature

    NASA Astrophysics Data System (ADS)

    Reichmann, H. J.; Rocholl, A.

    2016-12-01

    Zircon, ZrSiO4, is an ubiquitous mineral in the Earth's crust, forming under a wide range of metamorphic and igneous conditions. Its high content in certain trace elements (REE, Hf, Th, U) and due to its isotopic information, together with its chemical and physical robustness makes zircon an unique geochemical tool and geochronometer. Despite its geological importance there is a disagreement regarding the responds of zircon to elevated pressure, especially about the commencement of a pressure - induced structural phase transition. At elevated pressure zircon (I41/amd) undergoes a pressure induced phase transition to the scheelite structure (I41/a) . In the low pressure and high pressure phase, the (SiO4)4- tetrahedral units are present. However, the onset of the phase transition at room temperature is not well defined: zircon - scheelite transitions have been reported in a pressure regime ranging from 20 to 30 GPa (e.g. Ono et al., 2004). To clarify this issue, we performed Raman spectroscopy measurement up to 60 GPa on a non-metamict single crystal zircon sample (reference material 91500; Wiedenbeck et al., 1995; Wiedenbeck et al., 2004). A closer look at the external lattice modes at 201 cm-1 shows a decreasing of the wavenumbers with increasing pressure up to 21 GPa followed by a steep increase. The lattice modes at 213 and 224 cm-1 also exhibit a subtle kink in this pressure range. This pressure coincides with that one reported for the zircon - scheelite transition (van Westrenen et al., 2004). Another interesting issue is the behavior of the internal modes at higher pressures. The ν3 stretching modes at about 1000 cm-1show distinct discontinuities at 31 GPa accompanied by the emerging of new features in the Raman spectrum suggesting another, pressure triggered modification in the zircon structure. References: Ono, Funakoshi, Nakajima, Tange, and Katsura (2004) Contr. Mineral. Petrol., 147, 505-509. Van Westrenen, Frank, Hanchar, Fei, Finch, and Zha (2004

  9. What You Should Know About High Blood Pressure and Medications

    MedlinePlus

    ... Aortic Aneurysm More What You Should Know About High Blood Pressure and Medications Updated:Jan 18,2017 Is medication ... resources . This content was last reviewed October 2016. High Blood Pressure • Home • Get the Facts About HBP • Know Your ...

  10. Performance of multimirror quartzline lamps in a high-pressure, underwater environment

    NASA Technical Reports Server (NTRS)

    Slater, Howard A.

    1988-01-01

    Multimirror Quartzline Lamps are extremely versatile and effective for nonconventional imaging requirements such as high-speed photo and video instrumentation and high-magnification imaging. The lamps' versatility though, is not limited to conventional environments. Many research experiments and projects require a high pressure environment. Continuous photographic data acquisition in a high-pressure vessel requires wall penetrations and creates design problems as well as potential failure sites. Underwater photography adds the extra consideration of a liquid. This report expands upon the basic research presented in, Performance of Multimirror Quartzline Lamps in High-Pressure Environments, (NASA-TM-83793, Ernie Walker and Howard Slater, 1984). The report provides information to professional industrial, scientific, and technical photographers as well as research personnel on the survivability of lighting a multimirror quartzline lamp in a nonconventional high-pressure underwater environment. Test results of lighted ELH 300 W multimirror quartzline lamps under high-pressure conditions are documented and general information on the lamps' intensity (footcandle output), cone of light coverage, approximate color temperature is provided. Continuous lighting considerations in liquids are also discussed.

  11. Colloquium: High pressure and road to room temperature superconductivity

    NASA Astrophysics Data System (ADS)

    Gor'kov, Lev P.; Kresin, Vladimir Z.

    2018-01-01

    This Colloquium is concerned with the superconducting state of new high-Tc compounds containing hydrogen ions (hydrides). Recently superconductivity with the record-setting transition temperature of Tc=203 K was reported for sulfur hydrides under high pressure. In general, high pressure serves as a path finding tool toward novel structures, including those with very high Tc . The field has a rich and interesting history. Currently, it is broadly recognized that superconductivity in sulfur hydrides owes its origin to the phonon mechanism. However, the picture differs from the conventional one in important ways. The phonon spectrum in sulfur hydride is both broad and has a complex structure. Superconductivity arises mainly due to strong coupling to the high-frequency optical modes, although the acoustic phonons also make a noticeable contribution. A new approach is described, which generalizes the standard treatment of the phonon mechanism and makes it possible to obtain an analytical expression for Tc in this phase. It turns out that, unlike in the conventional case, the value of the isotope coefficient (for the deuterium-hydrogen substitution) varies with the pressure and reflects the impact of the optical modes. The phase diagram, that is the pressure dependence of Tc , is rather peculiar. A crucial feature is that increasing pressure results in a series of structural transitions, including the one which yields the superconducting phase with the record Tc of 203 K. In a narrow region near P ≈150 GPa the critical temperature rises sharply from Tc≈120 to ≈200 K . It seems that the sharp structural transition, which produces the high-Tc phase, is a first-order phase transition caused by interaction between the order parameter and lattice deformations. A remarkable feature of the electronic spectrum in the high-Tc phase is the appearance of small pockets at the Fermi level. Their presence leads to a two-gap spectrum, which can, in principle, be observed with the

  12. Xenon excimer emission from pulsed high-pressure capillary microdischarges

    NASA Astrophysics Data System (ADS)

    Lee, Byung-Joon; Rahaman, Hasibur; Petzenhauser, Isfried; Frank, Klaus; Giapis, Konstantinos P.

    2007-06-01

    Intense xenon vacuum ultraviolet (VUV) emission is observed from a high-pressure capillary cathode microdischarge in direct current operation, by superimposing a high-voltage pulse of 50ns duration. Under stagnant gas conditions, the total VUV light intensity increases linearly with pressure from 400 to 1013mbar for a fixed voltage pulse. At fixed pressure, however, the VUV light intensity increases superlinearly with voltage pulse height ranging from 08to2.8kV. Gains in emission intensity are obtained by inducing gas flow through the capillary cathode, presumably because of excimer dimer survival due to gas cooling.

  13. Left-Hemispheric Microstructural Abnormalities in Children With High Functioning Autism Spectrum Disorder

    PubMed Central

    Peterson, Daniel; Mahajan, Rajneesh; Crocetti, Deana; Mejia, Amanda; Mostofsky, Stewart

    2014-01-01

    Current theories of the neurobiological basis of Autism Spectrum Disorder (ASD) posit an altered pattern of connectivity in large-scale brain networks. Here we used Diffusion Tensor Imaging to investigate the microstructural properties of the white matter that mediates inter-regional connectivity in 36 high-functioning children with ASD (HF-ASD), as compared to 37 controls. By employing an atlas-based analysis using LDDMM registration, a widespread, but left-lateralized pattern of abnormalities was revealed. The Mean Diffusivity (MD) of water in the white matter of HF-ASD children was significantly elevated throughout the left hemisphere, particularly in the outer-zone cortical white matter. Across diagnostic groups there was a significant effect of age on left hemisphere MD, with a similar reduction in MD during childhood in both TD and HF-ASD children. The increased MD in children with HF-ASD suggests hypomyelination, and may reflect increased short-range cortico-cortical connections subsequent to early white matter overgrowth. These findings also highlight left hemispheric connectivity as relevant to the pathophysiology of ASD, and indicate that the spatial distribution of microstructural abnormalities in HF-ASD is widespread, and left-lateralized. This altered left-hemispheric connectivity may contribute to deficits in communication and praxis observed in ASD. PMID:25256103

  14. High-pressure minerals in eucrite suggest a small source crater on Vesta

    PubMed Central

    Pang, Run-Lian; Zhang, Ai-Cheng; Wang, Shu-Zhou; Wang, Ru-Cheng; Yurimoto, Hisayoshi

    2016-01-01

    High-pressure minerals in meteorites are important records of shock events that have affected the surfaces of planets and asteroids. A widespread distribution of impact craters has been observed on the Vestan surface. However, very few high-pressure minerals have been discovered in Howardite-Eucrite-Diogenite (HED) meteorites. Here we present the first evidence of tissintite, vacancy-rich clinopyroxene, and super-silicic garnet in the eucrite Northwest Africa (NWA) 8003. Combined with coesite and stishovite, the presence of these high-pressure minerals and their chemical compositions reveal that solidification of melt veins in NWA 8003 began at a pressure of >~10 GPa and ceased when the pressure dropped to <~8.5 GPa. The shock temperature in the melt veins exceeded 1900 °C. Simulation results show that shock events that create impact craters of ~3 km in diameter (subject to a factor of 2 uncertainty) are associated with sufficiently high pressures to account for the occurrence of the high-pressure minerals observed in NWA 8003. This indicates that HED meteorites containing similar high-pressure minerals should be observed more frequently than previously thought. PMID:27181381

  15. Signal processing in urodynamics: towards high definition urethral pressure profilometry.

    PubMed

    Klünder, Mario; Sawodny, Oliver; Amend, Bastian; Ederer, Michael; Kelp, Alexandra; Sievert, Karl-Dietrich; Stenzl, Arnulf; Feuer, Ronny

    2016-03-22

    Urethral pressure profilometry (UPP) is used in the diagnosis of stress urinary incontinence (SUI) which is a significant medical, social, and economic problem. Low spatial pressure resolution, common occurrence of artifacts, and uncertainties in data location limit the diagnostic value of UPP. To overcome these limitations, high definition urethral pressure profilometry (HD-UPP) combining enhanced UPP hardware and signal processing algorithms has been developed. In this work, we present the different signal processing steps in HD-UPP and show experimental results from female minipigs. We use a special microtip catheter with high angular pressure resolution and an integrated inclination sensor. Signals from the catheter are filtered and time-correlated artifacts removed. A signal reconstruction algorithm processes pressure data into a detailed pressure image on the urethra's inside. Finally, the pressure distribution on the urethra's outside is calculated through deconvolution. A mathematical model of the urethra is contained in a point-spread-function (PSF) which is identified depending on geometric and material properties of the urethra. We additionally investigate the PSF's frequency response to determine the relevant frequency band for pressure information on the urinary sphincter. Experimental pressure data are spatially located and processed into high resolution pressure images. Artifacts are successfully removed from data without blurring other details. The pressure distribution on the urethra's outside is reconstructed and compared to the one on the inside. Finally, the pressure images are mapped onto the urethral geometry calculated from inclination and position data to provide an integrated image of pressure distribution, anatomical shape, and location. With its advanced sensing capabilities, the novel microtip catheter collects an unprecedented amount of urethral pressure data. Through sequential signal processing steps, physicians are provided with

  16. Temperature effects for high pressure processing of Picornaviruses

    USDA-ARS?s Scientific Manuscript database

    Investigation of the effects of pre-pressurization temperature on the high pressure inactivation for single strains of aichivirus (AiV), coxsackievirus A9 (CAV9) and B5 (CBV5) viruses, as well as human parechovirus -1 (HPeV), was performed. For CAV9, an average 1.99 log10 greater inactivation was ...

  17. Inner-shell chemistry under high pressure

    NASA Astrophysics Data System (ADS)

    Miao, Maosheng; Botana, Jorge; Pravica, Michael; Sneed, Daniel; Park, Changyong

    2017-05-01

    Chemistry at ambient conditions has implicit boundaries rooted in the atomic shell structure: the inner-shell electrons and the unoccupied outer-shell orbitals do not contribute as the major component to chemical reactions and in chemical bonds. These general rules govern our understanding of chemical structures and reactions. We review the recent progresses in high-pressure chemistry demonstrating that the above rules can be violated under extreme conditions. Using a first principles computation method and crystal structure search algorithm, we demonstrate that stable compounds involving inner shell electrons such as CsF3, CsF5, HgF3, and HgF4 can form under high external pressure and may present exotic properties. We also discuss experimental studies that have sought to confirm these predictions. Employing our recently developed hard X-ray photochemistry methods in a diamond anvil cell, we show promising early results toward realizing inner shell chemistry experimentally.

  18. Dew-point measurements at high water vapour pressure

    NASA Astrophysics Data System (ADS)

    Lomperski, S.; Dreier, J.

    1996-05-01

    A dew-point meter capable of measuring humidity at high vapour pressure and high temperature has been constructed and tested. Humidity measurements in pure steam were made over the temperature range 100 - 1500957-0233/7/5/003/img1C and a vapour pressure range of 1 - 4 bar. The dew-point meter performance was assessed by comparing measurements with a pressure transmitter and agreement between the two was within 0957-0233/7/5/003/img2% relative humidity. Humidity measurements in steam - air mixtures were also made and the dew-point meter readings were compared to those of a zirconia oxygen sensor. For these tests the dew-point meter readings were generally within 0957-0233/7/5/003/img2% relative humidity of the oxygen sensor measurements.

  19. Clozapine-induced EEG abnormalities and clinical response to clozapine.

    PubMed

    Risby, E D; Epstein, C M; Jewart, R D; Nguyen, B V; Morgan, W N; Risch, S C; Thrivikraman, K V; Lewine, R L

    1995-01-01

    The authors hypothesized that patients who develop gross EEG abnormalities during clozapine treatment would have a less favorable outcome than patients who did not develop abnormal EEGs. The clinical EEGs and the Brief Psychiatric Rating Scale (BPRS) scores of 12 patients with schizophrenia and 4 patients with schizoaffective disorder were compared before and during treatment with clozapine. Eight patients developed significant EEG abnormalities on clozapine; 1 showed worsening of an abnormal pre-clozapine EEG; none of these subjects had clinical seizures. BPRS scores improved significantly in the group of patients who developed abnormal EEGs but not in the group who did not. Findings are consistent with previous reports of a high incidence of clozapine-induced EEG abnormalities and a positive association between these abnormalities and clinical improvement.

  20. 15. VIEW OF MODULE H, THE HIGH PRESSURE ASSEMBLY AREA. ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    15. VIEW OF MODULE H, THE HIGH PRESSURE ASSEMBLY AREA. PROCESSES IN THIS MODULE OCCURRED UNDER HIGH PRESSURES AND TEMPERATURES. (5/70) - Rocky Flats Plant, Plutonium Manufacturing Facility, North-central section of Plant, just south of Building 776/777, Golden, Jefferson County, CO

  1. High-temperature, high-pressure optical cell

    NASA Technical Reports Server (NTRS)

    Harris, R. P. (Inventor); Holland, L. R. (Inventor); Smith, R. E. (Inventor)

    1986-01-01

    The invention is an optical cell for containment of chemicals under conditions of high temperature and high pressure. The cell is formed of a vitreous silica tube, two optical windows comprising a vitreous silica rod inserted into the ends of a tube, and fused into position in the tube ends. Windows are spaced apart to form a cavity enclosed by the tube and the windows. A hole is drilled radially through the tube and into the cavity. Another vitreous silica tube is fused to the silica tube around the hole to form the stem, which is perpendicular to the long axis of the tube. The open end of the stem is used to load chemicals into the cavity. Then the stem may be sealed, and if desired, it may be shortened in order to reduce the volume of the cavity, which extends into the stem.

  2. Longitudinal assessment of high blood pressure in children with nonalcoholic fatty liver disease.

    PubMed

    Schwimmer, Jeffrey B; Zepeda, Anne; Newton, Kimberly P; Xanthakos, Stavra A; Behling, Cynthia; Hallinan, Erin K; Donithan, Michele; Tonascia, James

    2014-01-01

    Nonalcoholic fatty liver disease (NAFLD) affects 9.6% of children and may put these children at elevated risk of high blood pressure and subsequent cardiovascular morbidity and mortality. Therefore, we sought to determine the prevalence of and risk factors for high blood pressure in children with NAFLD. Cohort study performed by the NIDDK NASH Clinical Research Network. There were 484 children with NAFLD ages 2 to 17 at enrollment; 382 children were assessed both at enrollment and 48 weeks afterwards. The main outcomes were high blood pressure at baseline and persistent high blood pressure at both baseline and 48 weeks. Prevalence of high blood pressure at baseline was 35.8% and prevalence of persistent high blood pressure was 21.4%. Children with high blood pressure were significantly more likely to have worse steatosis than children without high blood pressure (mild 19.8% vs. 34.2%, moderate 35.0% vs. 30.7%, severe 45.2% vs. 35.1%; P = 0.003). Higher body mass index, low-density lipoprotein, and uric acid were independent risk factors for high blood pressure (Odds Ratios: 1.10 per kg/m2, 1.09 per 10 mg/dL, 1.25 per mg/dL, respectively). Compared to boys, girls with NAFLD were significantly more likely to have persistent high blood pressure (28.4% vs.18.9%; P = 0.05). In conclusion, NAFLD is a common clinical problem that places children at substantial risk for high blood pressure, which may often go undiagnosed. Thus blood pressure evaluation, control, and monitoring should be an integral component of the clinical management of children with NAFLD.

  3. Longitudinal Assessment of High Blood Pressure in Children with Nonalcoholic Fatty Liver Disease

    PubMed Central

    Schwimmer, Jeffrey B.; Zepeda, Anne; Newton, Kimberly P.; Xanthakos, Stavra A.; Behling, Cynthia; Hallinan, Erin K.; Donithan, Michele; Tonascia, James

    2014-01-01

    Objective Nonalcoholic fatty liver disease (NAFLD) affects 9.6% of children and may put these children at elevated risk of high blood pressure and subsequent cardiovascular morbidity and mortality. Therefore, we sought to determine the prevalence of and risk factors for high blood pressure in children with NAFLD. Methods Cohort study performed by the NIDDK NASH Clinical Research Network. There were 484 children with NAFLD ages 2 to 17 at enrollment; 382 children were assessed both at enrollment and 48 weeks afterwards. The main outcomes were high blood pressure at baseline and persistent high blood pressure at both baseline and 48 weeks. Results Prevalence of high blood pressure at baseline was 35.8% and prevalence of persistent high blood pressure was 21.4%. Children with high blood pressure were significantly more likely to have worse steatosis than children without high blood pressure (mild 19.8% vs. 34.2%, moderate 35.0% vs. 30.7%, severe 45.2% vs. 35.1%; P = 0.003). Higher body mass index, low-density lipoprotein, and uric acid were independent risk factors for high blood pressure (Odds Ratios: 1.10 per kg/m2, 1.09 per 10 mg/dL, 1.25 per mg/dL, respectively). Compared to boys, girls with NAFLD were significantly more likely to have persistent high blood pressure (28.4% vs.18.9%; P = 0.05). Conclusions In conclusion, NAFLD is a common clinical problem that places children at substantial risk for high blood pressure, which may often go undiagnosed. Thus blood pressure evaluation, control, and monitoring should be an integral component of the clinical management of children with NAFLD. PMID:25419656

  4. High impact pressure regulator withstands impacts of over 15,000 g

    NASA Technical Reports Server (NTRS)

    Biles, J. E., Jr.; Floyd, E. L.; Topits, A. N., Jr.

    1967-01-01

    High impact pressure regulator used with a high impact gas scannograph withstands impacts of over 15,000 g. By the passage of fluid through the first and second chambers of the regulator, the pressure of the scannograph is regulated from a specific input valve to the desired output pressure valve.

  5. International Space Station (ISS) Oxygen High Pressure Storage Management

    NASA Technical Reports Server (NTRS)

    Lewis, John R.; Dake, Jason; Cover, John; Leonard, Dan; Bohannon, Carl

    2004-01-01

    High pressure oxygen onboard the ISS provides support for Extra Vehicular Activities (EVA) and contingency metabolic support for the crew. This high pressure 02 is brought to the ISS by the Space Shuttle and is transferred using the Oxygen Recharge Compressor Assembly (ORCA). There are several drivers that must be considered in managing the available high pressure 02 on the ISS. The amount of O2 the Shuttle can fly up is driven by manifest mass limitations, launch slips, and on orbit Shuttle power requirements. The amount of 02 that is used from the ISS high pressure gas tanks (HPGT) is driven by the number of Shuttle docked and undocked EVAs, the type of EVA prebreath protocol that is used and contingency use of O2 for metabolic support. Also, the use of the ORCA must be managed to optimize its life on orbit and assure that it will be available to transfer the planned amount of O2 from the Shuttle. Management of this resource has required long range planning and coordination between Shuttle manifest on orbit plans. To further optimize the situation hardware options have been pursued.

  6. Mechanically recovered poultry meat sausages manufactured with high hydrostatic pressure.

    PubMed

    Yuste, J; Mor-Mur, M; Capellas, M; Guamis, B; Pla, R

    1999-06-01

    The effect of high pressure processing at high temperature on texture and color of frankfurter-type sausages made with different contents of mechanically recovered poultry meat (MRPM) was evaluated and compared with that of a standard cooking process. Five types of sausages containing 100, 75, 50, 25, and 0% MRPM and 0, 25, 50, 75, and 100% of minced pork meat (MPM), respectively, were manufactured. They were pressurized at 500 MPa for 30 min at 50, 60, 70, and 75 C or cooked at 75 C for 30 min. Pressure-treated sausages were less springy and firm, but more cohesive. Moreover, color of pressurized sausages was lighter and more yellow than that of conventionally cooked sausages. Addition of MPM increased cohesiveness, hardness, and force at 80% compression. Minced pork meat also caused the appearance of sausages to be lighter, less red, and less yellow. Cooked sausages made with MRPM can have an attractive appearance and texture via high pressure processing.

  7. Effect of ultra-high pressure on small animals, tardigrades and Artemia

    NASA Astrophysics Data System (ADS)

    Ono, Fumihisa; Mori, Yoshihisa; Takarabe, Kenichi; Fujii, Akiko; Saigusa, Masayuki; Matsushima, Yasushi; Yamazaki, Daisuke; Ito, Eiji; Galas, Simon; Saini, Naurang L.

    2016-12-01

    This research shows that small animals, tardigrades (Milnesium tardigradum) in tun (dehydrated) state and Artemia salina cists (dried eggs) can tolerate the very high hydrostatic pressure of 7.5 GPa. It was really surprising that living organisms can survive after exposure to such a high pressure. We extended these studies to the extremely high pressure of 20 GPa by using a Kawai-type octahedral anvil press. After exposure to this pressure for 30 min, the tardigrades were soaked in pure water and investigated under a microscope. Their bodies regained metabolic state and no serious injury could be seen. But they were not alive. A few of Artemia eggs went part of the way to hatching after soaked in sea water, but they never grew any further. Comparing with the case of blue-green alga, these animals are weaker under ultra-high pressure.

  8. Nonenzymatic modification of Ubiquitin under high-pressure and -temperature treatment: mass spectrometric studies.

    PubMed

    Kijewska, Monika; Radziszewska, Karolina; Kielmas, Martyna; Stefanowicz, Piotr; Szewczuk, Zbigniew

    2015-01-21

    The effect of high-pressure and/or high-temperature on the glycation of a model protein (ubiquitin) was investigated by mass spectrometry. This paper reports the impact of high pressure (up to 1200 MPa) on the modification of a ubiquitin using ESI-MS measurements. The application of glucose labeled with stable isotope allows a quantitative assessment of modification under the conditions of high-pressure (HPG) and high-temperature (HTG) glycation. A higher degree of modification was observed for the sample heated at 80 °C for 25 min under atmospheric pressure than for sample treated under high pressure. In samples treated at pressure below 400 MPa an insignificant increase of glycation level was observed, whereas high pressure (>600 MPa) has only a minor effect on the number of hexose moieties (Fru) attached to the lysine residue side chain.

  9. Multipurpose high-pressure high-temperature diamond-anvil cell with a novel high-precision guiding system and a dual-mode pressurization device

    NASA Astrophysics Data System (ADS)

    Pippinger, Thomas; Miletich, Ronald; Burchard, Michael

    2011-09-01

    A novel diamond-anvil cell (DAC) design has been constructed and tested for in situ applications at high-pressure (HP) operations and has proved to be suitable even for HP sample environments at non-ambient temperature conditions. The innovative high-precision guiding mechanism, comparable to a dog clutch, consists of perpendicular planar sliding-plane elements and is integrated directly into the base body of the cylindrically shaped DAC. The combination of two force-generating devices, i.e., mechanical screws and an inflatable gas membrane, allows the user to choose independently between, and to apply individually, two different forcing mechanisms for pressure generation. Both mechanisms are basically independent of each other, but can also be operated simultaneously. The modularity of the DAC design allows for an easy exchange of functional core-element groups optimized not only for various analytical in situ methods but also for HP operation with or without high-temperature (HT) application. For HP-HT experiments a liquid cooling circuit inside the specific inner modular groups has been implemented to obtain a controlled and limited heat distribution within the outer DAC body.

  10. High pressure system for 3-D study of elastic anisotropy

    NASA Astrophysics Data System (ADS)

    Lokajicek, T.; Pros, Z.; Klima, K.

    2003-04-01

    New high pressure system was designed for the study of elastic anisotropy of condensed matter under high confining pressure up to 700 MPa. Simultaneously could be measured dynamic and static parameters: a) dynamic parameters by ultrasonic sounding, b) static parameters by measuring of spherical sample deformation. The measurement is carried out on spherical samples diameter 50 +/- 0.01 mm. Higher value of confining pressure was reached due to the new construction of sample positioning unit. The positioning unit is equipped with two Portecap step motors, which are located inside the vessel and make possible to rotate with the sphere and couple of piezoceramic transducers. Sample deformation is measured in the same direction as ultrasonic signal travel time. Only electric leads connects inner part of high pressure vessel with surrounding environment. Experimental set up enables: - simultaneous P-wave ultrasonic sounding, - measurement of current sample deformation at sounding points, - measurement of current value of confining pressure and - measurement of current stress media temperature. Air driven high pressure pump Haskel is used to produce high value of confining pressure up to 700 MPa. Ultrasonic signals are recorded by digital scope Agilent 54562 with sampling frequency 100 MHz. Control and measuring software was developed under Agilent VEE software environment working under MS Win 2000 operating system. Measuring set up was tested by measurement of monomineral spherical samples of quartz and corundum. Both of them have trigonal symmetry. The measurement showed that the P-wave velocity range of quartz was between 5.7-7.0 km/sec. and velocity range of corundum was between 9.7-10.9 km/sec. High pressure resistant LVDT transducers Mesing together with Intronix electronic unit were used to monitor sample deformation. Sample deformation is monitored with the accuracy of 0.1 micron. All test measurements proved the good accuracy of the whole measuring set up. This

  11. Processing Raman Spectra of High-Pressure Hydrogen Flames

    NASA Technical Reports Server (NTRS)

    Nguyen, Quang-Viet; Kojima, Jun

    2006-01-01

    The Raman Code automates the analysis of laser-Raman-spectroscopy data for diagnosis of combustion at high pressure. On the basis of the theory of molecular spectroscopy, the software calculates the rovibrational and pure rotational Raman spectra of H2, O2, N2, and H2O in hydrogen/air flames at given temperatures and pressures. Given a set of Raman spectral data from measurements on a given flame and results from the aforementioned calculations, the software calculates the thermodynamic temperature and number densities of the aforementioned species. The software accounts for collisional spectral-line-broadening effects at pressures up to 60 bar (6 MPa). The line-broadening effects increase with pressure and thereby complicate the analysis. The software also corrects for spectral interference ("cross-talk") among the various chemical species. In the absence of such correction, the cross-talk is a significant source of error in temperatures and number densities. This is the first known comprehensive computer code that, when used in conjunction with a spectral calibration database, can process Raman-scattering spectral data from high-pressure hydrogen/air flames to obtain temperatures accurate to within 10 K and chemical-species number densities accurate to within 2 percent.

  12. Influence of low and high pressure baroreceptors on plasma renin activity in humans

    NASA Technical Reports Server (NTRS)

    Mark, A. L.; Abboud, F. M.; Fitz, A. E.

    1977-01-01

    The effects of low and high pressure baroreceptors on plasma renin activity (immunoassay) were evaluated using graded lower body suction (LBS) in six healthy men. LBS at -10 and -20 mmHg for 10 min decreased central venous pressure without changing arterial pressure and thereby presumably reduced low but not high pressure baroreceptor inhibition of renin release. LBS at these levels produced forearm vasoconstriction, but did not increase renin. LBS at -40 mmHG decreased central venous and arterial pulse pressure and thus reduced both low and high pressure baroreceptor inhibition. LBS at this level produced forearm vasoconstriction and tachycardia and increased renin. In summary, reduction in low pressure baroreceptor inhibition in humans did not increase renin in the presence of physiological tonic inhibition from high pressure baroreceptors. Increases in renin did not occur until there was combined reduction of high and low pressure baroreceptor inhibition on plasma renin activity.

  13. Metastable high-pressure transformations of orthoferrosilite Fs82

    NASA Astrophysics Data System (ADS)

    Dera, Przemyslaw; Finkelstein, Gregory J.; Duffy, Thomas S.; Downs, Robert T.; Meng, Yue; Prakapenka, Vitali; Tkachev, Sergey

    2013-08-01

    High-pressure single-crystal X-ray diffraction experiments with natural ferrosilite Fs82 (Fe2+0.82Mg0.16Al0.01Ca0.01)(Si0.99Al0.01)O3 orthopyroxene (opx) reveal that at ambient temperature the sample does not transform to the clinopyroxene (cpx) structure, as reported earlier for a synthetic Fs100 end-member (Hugh-Jones et al., 1996), but instead undergoes a series of two polymorphic transitions, first above 10.1(1) GPa, to the monoclinic P21/c phase β-opx (distinctly different from both P21/c and C2/c cpx), also observed in natural enstatite (Zhang et al., 2012), and then, above 12.3(1) GPa to a high-pressure orthorhombic Pbca phase γ-opx, predicted for MgSiO3 by atomistic simulations (Jahn, 2008). The structures of phases α, β and γ have been determined from the single-crystal data at pressures of 2.3(1), 11.1(1), and 14.6(1) GPa, respectively. The two new high-pressure transitions, very similar in their character to the P21/c-C2/c transformation of cpx, make opx approximately as dense as cpx above 12.3(1) GPa and significantly change the elastic anisotropy of the crystal, with the [1 0 0] direction becoming almost twice as stiff as in the ambient α-opx phase. Both transformations involve mainly tetrahedral rotation, are reversible and are not expected to leave microstructural evidence that could be used as a geobarometric proxy. The high Fe2+ content in Fs82 shifts the α-β transition to slightly lower pressure, compared to MgSiO3, and has a very dramatic effect on reducing the (meta) stability range of the β-phase.

  14. An in situ tensile test apparatus for polymers in high pressure hydrogen

    DOE PAGES

    Alvine, Kyle J.; Kafentzis, Tyler A.; Pitman, Stan G.; ...

    2014-10-31

    Degradation of material properties by high-pressure hydrogen is an important factor in determining the safety and reliability of materials used in high-pressure hydrogen storage and delivery. Hydrogen damage mechanisms have a time dependence that is linked to hydrogen outgassing after exposure to the hydrogen atmosphere that makes ex situ measurements of mechanical properties problematic. Designing in situ measurement instruments for high-pressure hydrogen is challenging due to known hydrogen incompatibility with many metals and standard high-power motor materials like Nd. Here we detail the design and operation of a solenoid based in situ tensile tester under high-pressure hydrogen environments up tomore » 5,000 psi. Here, modulus data from high-density polyethylene (HDPE) samples tested under high-pressure hydrogen are also reported as compared to baseline measurements taken in air.« less

  15. Feeling Abnormal: Simulation of Deviancy in Abnormal and Exceptionality Courses.

    ERIC Educational Resources Information Center

    Fernald, Charles D.

    1980-01-01

    Describes activity in which student in abnormal psychology and psychology of exceptional children classes personally experience being judged abnormal. The experience allows the students to remember relevant research, become sensitized to the feelings of individuals classified as deviant, and use caution in classifying individuals as abnormal.…

  16. Abnormal blood pressure circadian rhythm in acute ischaemic stroke: are lacunar strokes really different?

    PubMed

    Castilla-Guerra, L; Espino-Montoro, A; Fernández-Moreno, M C; López-Chozas, J M

    2009-08-01

    A pathologically reduced or abolished circadian blood pressure variation has been described in acute stroke. However, studies on alterations of circadian blood pressure patterns after stroke and stroke subtypes are scarce. The objective of this study was to evaluate the changes in circadian blood pressure patterns in patients with acute ischaemic stroke and their relation to the stroke subtype. We studied 98 consecutive patients who were admitted within 24 h after ischaemic stroke onset. All patients had a detailed clinical examination, laboratory studies and a CT scan study of the brain on admission. To study the circadian rhythm of blood pressure, a continuous blood pressure monitor (Spacelab 90217) was used. Patients were classified according to the percentage fall in the mean systolic blood pressure or diastolic blood pressure at night compared with during the day as: dippers (fall> or =10-20%); extreme dippers (> or =20%); nondipper (<10%); and reverse dippers (<0%, that is, an increase in the mean nocturnal blood pressure compared with the mean daytime blood pressure). Data were separated and analysed in two groups: lacunar and nonlacunar infarctions. Statistical testing was conducted using the SSPS 12.0. Methods We studied 60 males and 38 females, mean age: 70.5+/-11 years. The patient population consisted of 62 (63.2%) lacunar strokes and 36 (36.8%) nonlacunar strokes. Hypertension was the most common risk factor (67 patients, 68.3%). Other risk factors included hypercholesterolaemia (44 patients, 44.8%), diabetes mellitus (38 patients, 38.7%), smoking (24 patients, 24.8%) and atrial fibrillation (19 patients, 19.3%). The patients with lacunar strokes were predominantly men (P=0.037) and had a lower frequency of atrial fibrillation (P=0.016) as compared with nonlacunar stroke patients. In the acute phase, the mean systolic blood pressure was 136+/-20 mmHg and diastolic blood pressure was 78.7+/-11.8. Comparing stroke subtypes, there were no differences in

  17. Group-III elements under high pressure.

    NASA Astrophysics Data System (ADS)

    Simak, S. I.; Haussermann, U.; Ahuja, R.; Johansson, B.

    2000-03-01

    At ambient conditions the Group-III elements Ga and In attain unusual open ground-state crystal structures. Recent experiments have discovered that Ga under high pressure transforms into the face-centered (fcc) cubic close-packed structure, while such a transition for In has so far not been observed. We offer a simple explanation for such different behavior based on results from first principles calculations. We predict a so far undiscovered transition of In to the fcc structure at extreme pressures and show that the structure determining mechanism originates from the degree of s-p mixing of the valence orbitals. A unified bonding picture for the Group-III elements is discussed.

  18. High-pressure melting of MgSiO3.

    PubMed

    Belonoshko, A B; Skorodumova, N V; Rosengren, A; Ahuja, R; Johansson, B; Burakovsky, L; Preston, D L

    2005-05-20

    The melting curve of MgSiO(3) perovskite has been determined by means of ab initio molecular dynamics complemented by effective pair potentials, and a new phenomenological model of melting. Using first principles ground state calculations, we find that the MgSiO(3) perovskite phase transforms into post perovskite at pressures above 100 GPa, in agreement with recent theoretical and experimental studies. We find that the melting curve of MgSiO(3), being very steep at pressures below 60 GPa, rapidly flattens on increasing pressure. The experimental controversy on the melting of the MgSiO(3) perovskite at high pressures is resolved, confirming the data by Zerr and Boehler.

  19. High-pressure protein crystallography of hen egg-white lysozyme

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yamada, Hiroyuki; Nagae, Takayuki; Watanabe, Nobuhisa, E-mail: nobuhisa@nagoya-u.jp

    The crystal structure of hen egg-white lysozyme (HEWL) was analyzed under pressures of up to 950 MPa. The high pressure modified the conformation of the molecule and induced a novel phase transition in the tetragonal crystal of HEWL. Crystal structures of hen egg-white lysozyme (HEWL) determined under pressures ranging from ambient pressure to 950 MPa are presented. From 0.1 to 710 MPa, the molecular and internal cavity volumes are monotonically compressed. However, from 710 to 890 MPa the internal cavity volume remains almost constant. Moreover, as the pressure increases to 950 MPa, the tetragonal crystal of HEWL undergoes a phasemore » transition from P4{sub 3}2{sub 1}2 to P4{sub 3}. Under high pressure, the crystal structure of the enzyme undergoes several local and global changes accompanied by changes in hydration structure. For example, water molecules penetrate into an internal cavity neighbouring the active site and induce an alternate conformation of one of the catalytic residues, Glu35. These phenomena have not been detected by conventional X-ray crystal structure analysis and might play an important role in the catalytic activity of HEWL.« less

  20. Abnormal Uterine Bleeding

    MedlinePlus

    ... abnormal uterine bleeding? Abnormal uterine bleeding is any heavy or unusual bleeding from the uterus (through your ... one symptom of abnormal uterine bleeding. Having extremely heavy bleeding during your period can also be considered ...

  1. 21 CFR 862.2260 - High pressure liquid chromatography system for clinical use.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 21 Food and Drugs 8 2011-04-01 2011-04-01 false High pressure liquid chromatography system for... Clinical Laboratory Instruments § 862.2260 High pressure liquid chromatography system for clinical use. (a) Identification. A high pressure liquid chromatography system for clinical use is a device intended to separate...

  2. 21 CFR 862.2260 - High pressure liquid chromatography system for clinical use.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... 21 Food and Drugs 8 2014-04-01 2014-04-01 false High pressure liquid chromatography system for... Clinical Laboratory Instruments § 862.2260 High pressure liquid chromatography system for clinical use. (a) Identification. A high pressure liquid chromatography system for clinical use is a device intended to separate...

  3. 21 CFR 862.2260 - High pressure liquid chromatography system for clinical use.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... 21 Food and Drugs 8 2012-04-01 2012-04-01 false High pressure liquid chromatography system for... Clinical Laboratory Instruments § 862.2260 High pressure liquid chromatography system for clinical use. (a) Identification. A high pressure liquid chromatography system for clinical use is a device intended to separate...

  4. 21 CFR 862.2260 - High pressure liquid chromatography system for clinical use.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... 21 Food and Drugs 8 2013-04-01 2013-04-01 false High pressure liquid chromatography system for... Clinical Laboratory Instruments § 862.2260 High pressure liquid chromatography system for clinical use. (a) Identification. A high pressure liquid chromatography system for clinical use is a device intended to separate...

  5. 21 CFR 862.2260 - High pressure liquid chromatography system for clinical use.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 21 Food and Drugs 8 2010-04-01 2010-04-01 false High pressure liquid chromatography system for... Clinical Laboratory Instruments § 862.2260 High pressure liquid chromatography system for clinical use. (a) Identification. A high pressure liquid chromatography system for clinical use is a device intended to separate...

  6. High-resolution X-ray crystal structure of bovine H-protein using the high-pressure cryocooling method.

    PubMed

    Higashiura, Akifumi; Ohta, Kazunori; Masaki, Mika; Sato, Masaru; Inaka, Koji; Tanaka, Hiroaki; Nakagawa, Atsushi

    2013-11-01

    Recently, many technical improvements in macromolecular X-ray crystallography have increased the number of structures deposited in the Protein Data Bank and improved the resolution limit of protein structures. Almost all high-resolution structures have been determined using a synchrotron radiation source in conjunction with cryocooling techniques, which are required in order to minimize radiation damage. However, optimization of cryoprotectant conditions is a time-consuming and difficult step. To overcome this problem, the high-pressure cryocooling method was developed (Kim et al., 2005) and successfully applied to many protein-structure analyses. In this report, using the high-pressure cryocooling method, the X-ray crystal structure of bovine H-protein was determined at 0.86 Å resolution. Structural comparisons between high- and ambient-pressure cryocooled crystals at ultra-high resolution illustrate the versatility of this technique. This is the first ultra-high-resolution X-ray structure obtained using the high-pressure cryocooling method.

  7. Combined pressure and cosolvent effects on enzyme activity - a high-pressure stopped-flow kinetic study on α-chymotrypsin.

    PubMed

    Luong, Trung Quan; Winter, Roland

    2015-09-21

    We investigated the combined effects of cosolvents and pressure on the hydrolysis of a model peptide catalysed by α-chymotrypsin. The enzymatic activity was measured in the pressure range from 0.1 to 200 MPa using a high-pressure stopped-flow systems with 10 ms time resolution. A kosmotropic (trimethalymine-N-oxide, TMAO) and chaotropic (urea) cosolvent and mixtures thereof were used as cosolvents. High pressure enhances the hydrolysis rate as a consequence of a negative activation volume, ΔV(#), which, depending on the cosolvent system, amounts to -2 to -4 mL mol(-1). A more negative activation volume can be explained by a smaller compression of the ES complex relative to the transition state. Kinetic constants, such as kcat and the Michaelis constant KM, were determined for all solution conditions as a function of pressure. With increasing pressure, kcat increases by about 35% and its pressure dependence by a factor of 1.9 upon addition of 2 M urea, whereas 1 M TMAO has no significant effect on kcat and its pressure dependence. Similarly, KM increases upon addition of urea 6-fold. Addition of TMAO compensates the urea-effect on kcat and KM to some extent. The maximum rate of the enzymatic reaction increases with increasing pressure in all solutions except in the TMAO : urea 1 : 2 mixture, where, remarkably, pressure is found to have no effect on the rate of the enzymatic reaction anymore. Our data clearly show that compatible solutes can easily override deleterious effects of harsh environmental conditions, such as high hydrostatic pressures in the 100 MPa range, which is the maximum pressure encountered in the deep biosphere on Earth.

  8. High-resolution thermal expansion measurements under helium-gas pressure

    NASA Astrophysics Data System (ADS)

    Manna, Rudra Sekhar; Wolf, Bernd; de Souza, Mariano; Lang, Michael

    2012-08-01

    We report on the realization of a capacitive dilatometer, designed for high-resolution measurements of length changes of a material for temperatures 1.4 K ⩽ T ⩽ 300 K and hydrostatic pressure P ⩽ 250 MPa. Helium (4He) is used as a pressure-transmitting medium, ensuring hydrostatic-pressure conditions. Special emphasis has been given to guarantee, to a good approximation, constant-pressure conditions during temperature sweeps. The performance of the dilatometer is demonstrated by measurements of the coefficient of thermal expansion at pressures P ≃ 0.1 MPa (ambient pressure) and 104 MPa on a single crystal of azurite, Cu3(CO3)2(OH)2, a quasi-one-dimensional spin S = 1/2 Heisenberg antiferromagnet. The results indicate a strong effect of pressure on the magnetic interactions in this system.

  9. Effect of high-pressure homogenization on different matrices of food supplements.

    PubMed

    Martínez-Sánchez, Ascensión; Tarazona-Díaz, Martha Patricia; García-González, Antonio; Gómez, Perla A; Aguayo, Encarna

    2016-12-01

    There is a growing demand for food supplements containing high amounts of vitamins, phenolic compounds and mineral content that provide health benefits. Those functional compounds have different solubility properties, and the maintenance of their compounds and the guarantee of their homogenic properties need the application of novel technologies. The quality of different drinkable functional foods after thermal processing (0.1 MPa) or high-pressure homogenization under two different conditions (80 MPa, 33 ℃ and 120 MPa, 43 ℃) was studied. Physicochemical characteristics and sensory qualities were evaluated throughout the six months of accelerated storage at 40 ℃ and 75% relative humidity (RH). Aroma and color were better maintained in high-pressure homogenization-treated samples than the thermally treated ones, which contributed significantly to extending their shelf life. The small particle size obtained after high-pressure homogenization treatments caused differences in turbidity and viscosity with respect to heat-treated samples. The use of high-pressure homogenization, more specifically, 120 MPa, provided active ingredient homogeneity to ensure uniform content in functional food supplements. Although the effect of high-pressure homogenization can be affected by the food matrix, high-pressure homogenization can be implemented as an alternative to conventional heat treatments in a commercial setting within the functional food supplement or pharmaceutical industry. © The Author(s) 2016.

  10. Maintaining viability of white clover under very high pressure

    NASA Astrophysics Data System (ADS)

    Nishihira, N.; Iwasaki, T.; Shinpou, R.; Hara, A.; Ono, F.; Hada, Y.; Mori, Y.; Takarabe, K.; Saigusa, M.; Matsushima, Y.; Saini, N. L.; Yamashita, M.

    2012-06-01

    The high pressure technique developed in physics may give a new possibility if it is applied to a biological study. We have been studying the tolerance of small living samples such as planktons and mosses, and found that all of them were alive after exposed to extremely high hydrostatic pressure of 7.5 GPa. This technique has been extended to a higher plant Trifolium lepens L. (white clover). A few seeds of white clover were exposed to 7.5 GPa for up to 6 days. After the pressure was released, they were seeded on agar, or directly on sowing soil. Seventeen out of the total 22 seeds exposed to the high pressure were found to be alive. Those exposed for up to 1 day and seeded on agar germinated roots. Those exposed for up to 1 h and seeded on soil germinated stems and leaves. The present technique has the possibility of being applied to improve breed of plants and to discover a very strong species that stands against very severe environmental conditions.

  11. High-pressure phase transitions - Examples of classical predictability

    NASA Astrophysics Data System (ADS)

    Celebonovic, Vladan

    1992-09-01

    The applicability of the Savic and Kasanin (1962-1967) classical theory of dense matter to laboratory experiments requiring estimates of high-pressure phase transitions was examined by determining phase transition pressures for a set of 19 chemical substances (including elements, hydrocarbons, metal oxides, and salts) for which experimental data were available. A comparison between experimental and transition points and those predicted by the Savic-Kasanin theory showed that the theory can be used for estimating values of transition pressures. The results also support conclusions obtained in previous astronomical applications of the Savic-Kasanin theory.

  12. High pressure versus high intensity noninvasive ventilation in stable hypercapnic chronic obstructive pulmonary disease: a randomized crossover trial.

    PubMed

    Murphy, Patrick B; Brignall, Kate; Moxham, John; Polkey, Michael I; Davidson, A Craig; Hart, Nicholas

    2012-01-01

    High-intensity (high-pressure and high backup rate) noninvasive ventilation has recently been advocated for the management of stable hypercapnic chronic obstructive pulmonary disease (COPD). However, the relative contributions of high inspiratory pressure and high backup rate to ventilator adherence and physiological outcome have not been investigated. Patients with stable hypercapnic COPD (daytime PaCO(2) > 6 kPa) and nocturnal hypoventilation were enrolled. Patients were randomly allocated to high-pressure and high backup rate (high-intensity) and high-pressure and low backup rate (high-pressure) for a 6-week period. At the end of the first treatment period, patients were switched to the alternative treatment. The primary outcome measure was mean nightly ventilator usage. Twelve patients were recruited, with seven completing the 12-week trial protocol. The mean patient age was 71 ± 8 years, with a forced expiratory volume in one second (FEV(1))/forced vital capacity (FVC) of 50% ± 13% and FEV(1) of 32% ± 12%. The baseline PaCO(2) and PaO(2) were 8.6 ± 1.7 kPa and 7.3 ± 1.4 kPa, respectively. There was no significant difference demonstrated in mean nightly ventilator usage between the high-intensity and high-pressure groups (difference of 4 minutes; 95% confidence interval -45 to 53; P = 0.9). Furthermore, there were no differences in any of the secondary endpoints, with the exception of the respiratory domain of the Severe Respiratory Insufficiency questionnaire, which was lower in the high-intensity arm than in the high-pressure arm (57 ± 11 versus 69 ± 16; P < 0.05). There was no additional benefit, in terms of night-time ventilator adherence or any of the other measured parameters, demonstrated by addition of a high backup rate to high-pressure noninvasive ventilation. These data suggest that it is the high-pressure component of the high-intensity noninvasive ventilation approach that plays the important therapeutic role in the management of hypercapnic

  13. Harwell high pressure heat transfer loop

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bennett, A.W.; Keeys, R.K.F.

    1967-12-15

    A detailed description is presented of the Harwell (Chemical Engineering and Process Technology Division) high pressure, steam-water heat transfer loop; this description is aimed at supplementing the information given in reports on individual experiments. The operating instructions for the loop are given in an appendix. (auth)

  14. Surface-initiated phase transition in solid hydrogen under the high-pressure compression

    NASA Astrophysics Data System (ADS)

    Lei, Haile; Lin, Wei; Wang, Kai; Li, Xibo

    2018-03-01

    The large-scale molecular dynamics simulations have been performed to understand the microscopic mechanism governing the phase transition of solid hydrogen under the high-pressure compression. These results demonstrate that the face-centered-cubic-to-hexagonal close-packed phase transition is initiated first at the surfaces at a much lower pressure than in the volume and then extends gradually from the surface to volume in the solid hydrogen. The infrared spectra from the surface are revealed to exhibit a different pressure-dependent feature from those of the volume during the high-pressure compression. It is thus deduced that the weakening intramolecular H-H bonds are always accompanied by hardening surface phonons through strengthening the intermolecular H2-H2 coupling at the surfaces with respect to the counterparts in the volume at high pressures. This is just opposite to the conventional atomic crystals, in which the surface phonons are softening. The high-pressure compression has further been predicted to force the atoms or molecules to spray out of surface to degrade the pressure. These results provide a glimpse of structural properties of solid hydrogen at the early stage during the high-pressure compression.

  15. Highly compressible fluorescent particles for pressure sensing in liquids

    NASA Astrophysics Data System (ADS)

    Cellini, F.; Peterson, S. D.; Porfiri, M.

    2017-05-01

    Pressure sensing in liquids is important for engineering applications ranging from industrial processing to naval architecture. Here, we propose a pressure sensor based on highly compressible polydimethylsiloxane foam particles embedding fluorescent Nile Red molecules. The particles display pressure sensitivities as low as 0.0018 kPa-1, which are on the same order of magnitude of sensitivities reported in commercial pressure-sensitive paints for air flows. We envision the application of the proposed sensor in particle image velocimetry toward an improved understanding of flow kinetics in liquids.

  16. High-pressure structures of yttrium hydrides

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Liu, Lu -Lu; Sun, Hui -Juan; Wang, C. Z.

    2017-07-14

    In this study, the crystal structures of YH 3 and YH 4 at high pressure (100–250 GPa) have been explored using a genetic algorithm combined with first-principles calculations. New structures of YH 3 with space group symmetries of P21/m and I4/mmm were predicted. The electronic structures and the phonon dispersion properties of various YH 3 and YH 4 structures at different temperatures and pressures were investigated. Among YH 3 phases, the P21/m structure of YH 3 was found to have a relatively high superconducting transformation temperature T c of 19 K at 120 GPa, which is reduced to 9 Kmore » at 200 GPa. Other YH 3 structures have much lower T cs. Compared with YH 3, the T c of the YH 4 compound is much higher, i.e. 94 K at 120 GPa and 55 K at 200 GPa.« less

  17. High pressure-resistant nonincendive emulsion explosive

    DOEpatents

    Ruhe, Thomas C.; Rao, Pilaka P.

    1994-01-01

    An improved emulsion explosive composition including hollow microspheres/bulking agents having high density and high strength. The hollow microspheres/bulking agents have true particle densities of about 0.2 grams per cubic centimeter or greater and include glass, siliceous, ceramic and synthetic resin microspheres, expanded minerals, and mixtures thereof. The preferred weight percentage of hollow microspheres/bulking agents in the composition ranges from 3.0 to 10.0 A chlorinated paraffin oil, also present in the improved emulsion explosive composition, imparts a higher film strength to the oil phase in the emulsion. The emulsion is rendered nonincendive by the production of sodium chloride in situ via the decomposition of sodium nitrate, a chlorinated paraffin oil, and sodium perchlorate. The air-gap sensitivity is improved by the in situ formation of monomethylamine perchlorate from dissolved monomethylamine nitrate and sodium perchlorate. The emulsion explosive composition can withstand static pressures to 139 bars and dynamic pressure loads on the order of 567 bars.

  18. Thermodynamic properties of OsB under high temperature and high pressure

    NASA Astrophysics Data System (ADS)

    Chen, Hai-Hua; Li, Zuo; Cheng, Yan; Bi, Yan; Cai, Ling-Cang

    2011-09-01

    The energy-volume curves of OsB have been obtained using the first-principles plane-wave ultrasoft-pseudopotential density functional theory (DFT) within the generalized gradient approximation (GGA) and local density approximation (LDA). Using the quasi-harmonic Debye model we first analyze the specific heat, the coefficients of thermal expansion as well as the thermodynamic Grüneisen parameter of OsB in a wide temperature range at high pressure. At temperature 300 K, the coefficients of thermal expansion αV by LDA and GGA calculations are 1.67×10 -5 1/K and 2.01×10 -5 1/K, respectively. The specific heat of OsB at constant pressure (volume) is also calculated. Meanwhile, we find that the Debye temperature of OsB increases monotonically with increasing pressure. The present study leads to a better understanding of how the OsB materials respond to pressure and temperature.

  19. X-ray imaging for studying behavior of liquids at high pressures and high temperatures using Paris-Edinburgh press

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kono, Yoshio; Kenney-Benson, Curtis; Park, Changyong

    2015-07-15

    Several X-ray techniques for studying structure, elastic properties, viscosity, and immiscibility of liquids at high pressures have been integrated using a Paris-Edinburgh press at the 16-BM-B beamline of the Advanced Photon Source. Here, we report the development of X-ray imaging techniques suitable for studying behavior of liquids at high pressures and high temperatures. White X-ray radiography allows for imaging phase separation and immiscibility of melts at high pressures, identified not only by density contrast but also by phase contrast imaging in particular for low density contrast liquids such as silicate and carbonate melts. In addition, ultrafast X-ray imaging, at framemore » rates up to ∼10{sup 5} frames/second (fps) in air and up to ∼10{sup 4} fps in Paris-Edinburgh press, enables us to investigate dynamics of liquids at high pressures. Very low viscosities of melts similar to that of water can be reliably measured. These high-pressure X-ray imaging techniques provide useful tools for understanding behavior of liquids or melts at high pressures and high temperatures.« less

  20. X-ray imaging for studying behavior of liquids at high pressures and high temperatures using Paris-Edinburgh press.

    PubMed

    Kono, Yoshio; Kenney-Benson, Curtis; Shibazaki, Yuki; Park, Changyong; Wang, Yanbin; Shen, Guoyin

    2015-07-01

    Several X-ray techniques for studying structure, elastic properties, viscosity, and immiscibility of liquids at high pressures have been integrated using a Paris-Edinburgh press at the 16-BM-B beamline of the Advanced Photon Source. Here, we report the development of X-ray imaging techniques suitable for studying behavior of liquids at high pressures and high temperatures. White X-ray radiography allows for imaging phase separation and immiscibility of melts at high pressures, identified not only by density contrast but also by phase contrast imaging in particular for low density contrast liquids such as silicate and carbonate melts. In addition, ultrafast X-ray imaging, at frame rates up to ∼10(5) frames/second (fps) in air and up to ∼10(4) fps in Paris-Edinburgh press, enables us to investigate dynamics of liquids at high pressures. Very low viscosities of melts similar to that of water can be reliably measured. These high-pressure X-ray imaging techniques provide useful tools for understanding behavior of liquids or melts at high pressures and high temperatures.

  1. Theory of anomalous critical-cluster content in high-pressure binary nucleation.

    PubMed

    Kalikmanov, V I; Labetski, D G

    2007-02-23

    Nucleation experiments in binary (a-b) mixtures, when component a is supersaturated and b (carrier gas) is undersaturated, reveal that for some mixtures at high pressures the a content of the critical cluster dramatically decreases with pressure contrary to expectations based on classical nucleation theory. We show that this phenomenon is a manifestation of the dominant role of the unlike interactions at high pressures resulting in the negative partial molar volume of component a in the vapor phase beyond the compensation pressure. The analysis is based on the pressure nucleation theorem for multicomponent systems which is invariant to a nucleation model.

  2. Acquired tracheoesophageal fistula due to high intracuff pressure.

    PubMed

    Hameed, Akmal A; Mohamed, Hasan; Al-Mansoori, Motasem

    2008-01-01

    High-compliance endotracheal tube cuffs are used to prevent gas leak and also pulmonary aspiration in mechanically ventilated patients. However, the use of the usual cuff inflation volumes may cause tracheal damage and lead to tracheoesophageal fistula.Tracheostomy tube cuffs seal against the tracheal wall and prevent leakage of air around the tube, assuring that the tidal volume is delivered to the lungs. In the past, high-pressure cuffs were used, but these contributed to tracheal injury and have been replaced by high-volume, low-pressure cuffs. For long-term applications, some newer tubes have low-profile (tight to shaft) cuffs that facilitate the tracheostomy tube changes by eliminating the lip that forms when standard cuffs are deflated.

  3. Cavity closure arrangement for high pressure vessels

    DOEpatents

    Amtmann, Hans H.

    1981-01-01

    A closure arrangement for a pressure vessel such as the pressure vessel of a high temperature gas-cooled reactor wherein a liner is disposed within a cavity penetration in the reactor vessel and defines an access opening therein. A closure is adapted for sealing relation with an annular mounting flange formed on the penetration liner and has a plurality of radially movable locking blocks thereon having outer serrations adapted for releasable interlocking engagement with serrations formed internally of the upper end of the penetration liner so as to effect high strength closure hold-down. In one embodiment, ramping surfaces are formed on the locking block serrations to bias the closure into sealed relation with the mounting flange when the locking blocks are actuated to locking positions.

  4. Equilibria of oligomeric proteins under high pressure - A theoretical description.

    PubMed

    Ingr, Marek; Kutálková, Eva; Hrnčiřík, Josef; Lange, Reinhard

    2016-12-21

    High pressure methods have become a useful tool for studying protein structure and stability. Using them, various physico-chemical processes including protein unfolding, aggregation, oligomer dissociation or enzyme-activity decrease were studied on many different proteins. Oligomeric protein dissociation is a process that can perfectly utilize the potential of high-pressure techniques, as the high pressure shifts the equilibria to higher concentrations making them better observable by spectroscopic methods. This can be especially useful when the oligomeric form is highly stable at atmospheric pressure. These applications may be, however, hindered by less intensive experimental response as well as interference of the oligomerization equilibria with unfolding or aggregation of the subunits, but also by more complex theoretical description. In this study we develop mathematical models describing different kinds of oligomerization equilibria, both closed (equilibrium of monomer and the highest possible oligomer without any intermediates) and consecutive. Closed homooligomer equilibria are discussed for any oligomerization degree, while the more complex heterooligomer equilibria and the consecutive equilibria in both homo- and heterooligomers are taken into account only for dimers and trimers. In all the cases, fractions of all the relevant forms are evaluated as functions of pressure and concentration. Significant points (inflection points and extremes) of the resulting transition curves, that can be determined experimentally, are evaluated as functions of pressure and/or concentration. These functions can be further used in order to evaluate the thermodynamic parameters of the system, i.e. atmospheric-pressure equilibrium constants and volume changes of the individual steps of the oligomer-dissociation processes. Copyright © 2016 Elsevier Ltd. All rights reserved.

  5. Chemical Vapor Deposition at High Pressure in a Microgravity Environment

    NASA Technical Reports Server (NTRS)

    McCall, Sonya; Bachmann, Klaus; LeSure, Stacie; Sukidi, Nkadi; Wang, Fuchao

    1999-01-01

    In this paper we present an evaluation of critical requirements of organometallic chemical vapor deposition (OMCVD) at elevated pressure for a channel flow reactor in a microgravity environment. The objective of using high pressure is to maintain single-phase surface composition for materials that have high thermal decomposition pressure at their optimum growth temperature. Access to microgravity is needed to maintain conditions of laminar flow, which is essential for process analysis. Based on ground based observations we present an optimized reactor design for OMCVD at high pressure and reduced gravity. Also, we discuss non-intrusive real-time optical monitoring of flow dynamics coupled to homogeneous gas phase reactions, transport and surface processes. While suborbital flights may suffice for studies of initial stages of heteroepitaxy experiments in space are essential for a complete evaluation of steady-state growth.

  6. High temperature pressure coupled ultrasonic waveguide

    DOEpatents

    Caines, Michael J.

    1983-01-01

    A pressure coupled ultrasonic waveguide is provided to which one end may be attached a transducer and at the other end a high temperature material for continuous ultrasonic testing of the material. The ultrasonic signal is coupled from the waveguide into the material through a thin, dry copper foil.

  7. High-temperature pressure-coupled ultrasonic waveguide

    DOEpatents

    Caines, M.J.

    1981-02-11

    A pressure coupled ultrasonic waveguide is provided to which one end may be attached a transducer and at the other end a high temperature material for continuous ultrasonic testing of the material. The ultrasonic signal is coupled from the waveguide into the material through a thin, dry copper foil.

  8. High pressure capillary connector

    DOEpatents

    Renzi, Ronald F.

    2005-08-09

    A high pressure connector capable of operating at pressures of 40,000 psi or higher is provided. This connector can be employed to position a first fluid-bearing conduit that has a proximal end and a distal end to a second fluid-bearing conduit thereby providing fluid communication between the first and second fluid-bearing conduits. The connector includes (a) an internal fitting assembly having a body cavity with (i) a lower segment that defines a lower segment aperture and (ii) an interiorly threaded upper segment, (b) a first member having a first member aperture that traverses its length wherein the first member aperture is configured to accommodate the first fluid-bearing conduit and wherein the first member is positioned in the lower segment of the internal fitting assembly, and (c) a second member having a second member aperture that traverses its length wherein the second member is positioned in the upper segment of the fitting assembly and wherein a lower surface of the second member is in contact with an upper surface of the first member to assert a compressive force onto the first member and wherein the first member aperture and the second member aperture are coaxial.

  9. High-pressure phases of Mg2Si from first principles

    NASA Astrophysics Data System (ADS)

    Huan, Tran Doan; Tuoc, Vu Ngoc; Le, Nam Ba; Minh, Nguyen Viet; Woods, Lilia M.

    2016-03-01

    First-principles calculations are presented to resolve the possible pressure-dependent phases of Mg2Si . Although previous reports show that Mg2Si is characterized by the cubic antifluorite F m 3 ¯m structure at low pressures, the situation at higher pressures is less clear with many contradicting results. Here we utilize several methods to examine the stability, electron, phonon, and transport properties of this material as a function of pressure and temperature. We find that Mg2Si is thermodynamically stable at low and high pressures. Between 6 and 24 GPa, Mg2Si can transform into Mg9Si5 , a defected compound, and vice versa, without energy cost. Perhaps this result is related to the aforementioned inconsistency in the structures reported for Mg2Si within this pressure range. Focusing solely on Mg2Si , we find a new monoclinic C 2 /m structure of Mg2Si , which is stable at high pressures within thermodynamical considerations. The calculated electrical conductivity and Seebeck coefficient taking into account results from the electronic structure calculations help us understand better how transport can be affected in this material by modulating pressure and temperature.

  10. High-pressure and high-temperature study of the phase transition in anhydrite

    NASA Astrophysics Data System (ADS)

    Ma, Y. M.; Zhou, Q.; He, Z.; Li, F. F.; Yang, K. F.; Cui, Q. L.; Zou, G. T.

    2007-10-01

    The high-pressure and high-temperature behaviors of anhydrite (CaSO4) are studied up to 53.5 GPa and 1800 K using double-sided laser heating Raman spectroscopy and x-ray diffraction in diamond anvil cells. The evidence of phase transition from an anhydrite structure to the monazite type was observed at about 2 GPa under cold compression. Another phase transition and a change in color of the sample from transparent to black have been also observed at a pressure of 33.2 GPa after laser heating. The new phase after laser heating persists to 53.5 GPa and 1800 K.

  11. Effect of High-Pressure Treatment on Catalytic and Physicochemical Properties of Pepsin.

    PubMed

    Wang, Jianan; Bai, Tenghui; Ma, Yaping; Ma, Hanjun

    2017-10-11

    For a long time, high-pressure treatment has been used to destroy the compact structures of natural proteins in order to promote subsequent enzymatic hydrolysis. However, there are few reports evaluating the feasibility of directly improving the catalytic capability of proteases by using high-pressure treatments. In this study, the effects of high-pressure treatment on the catalytic capacity and structure of pepsin were investigated, and the relationship between its catalytic properties and changes in its physicochemical properties was explored. It was found that high-pressure treatment could lead to changes of the sulfhydryl group/disulfide bond content, hydrophobicity, hydrodynamic radius, intrinsic viscosity, and subunit composition of pepsin, and the conformational change of pepsin resulted in improvement to its enzymatic activity and hydrolysis efficiency, which had an obvious relationship with the high-pressure treatment conditions.

  12. High-pressure behavior of methylammonium lead iodide (MAPbI3) hybrid perovskite

    NASA Astrophysics Data System (ADS)

    Capitani, Francesco; Marini, Carlo; Caramazza, Simone; Postorino, Paolo; Garbarino, Gaston; Hanfland, Michael; Pisanu, Ambra; Quadrelli, Paolo; Malavasi, Lorenzo

    2016-05-01

    In this paper we provide an accurate high-pressure structural and optical study of the MAPbI3 hybrid perovskite. Structural data show the presence of a phase transition toward an orthorhombic structure around 0.3 GPa followed by full amorphization of the system above 3 GPa. After releasing the pressure, the system keeps the high-pressure orthorhombic phase. The occurrence of these structural transitions is further confirmed by pressure induced variations of the photoluminescence signal at high pressure. These variations clearly indicate that the bandgap value and the electronic structure of MAPI change across the phase transition.

  13. A functional Magnetic Resonance Imaging study of neurohemodynamic abnormalities during emotion processing in subjects at high risk for schizophrenia

    PubMed Central

    Venkatasubramanian, Ganesan; Puthumana, Dawn Thomas K.; Jayakumar, Peruvumba N.; Gangadhar, B. N.

    2010-01-01

    Background: Emotion processing abnormalities are considered among the core deficits in schizophrenia. Subjects at high risk (HR) for schizophrenia also show these deficits. Structural neuroimaging studies examining unaffected relatives at high risk for schizophrenia have demonstrated neuroanatomical abnormalities involving neo-cortical and sub-cortical brain regions related to emotion processing. The brain functional correlates of emotion processing in these HR subjects in the context of ecologically valid, real-life dynamic images using functional Magnetic Resonance Imaging (fMRI) has not been examined previously. Aim: To examine the neurohemodynamic abnormalities during emotion processing in unaffected subjects at high risk for schizophrenia in comparison with age-, sex-, handedness- and education-matched healthy controls, using fMRI. Materials and Methods: HR subjects for schizophrenia (n=17) and matched healthy controls (n=16) were examined. The emotion processing of fearful facial expression was examined using a culturally appropriate and valid tool for Indian subjects. The fMRI was performed in a 1.5-T scanner during an implicit emotion processing paradigm. The fMRI analyses were performed using the Statistical Parametric Mapping 2 (SPM2) software. Results: HR subjects had significantly reduced brain activations in left insula, left medial frontal gyrus, left inferior frontal gyrus, right cingulate gyrus, right precentral gyrus and right inferior parietal lobule. Hypothesis-driven region-of-interest analysis revealed hypoactivation of right amygdala in HR subjects. Conclusions: Study findings suggest that neurohemodynamic abnormalities involving limbic and frontal cortices could be potential indicators for increased vulnerability toward schizophrenia. The clinical utility of these novel findings in predicting the development of psychosis needs to be evaluated. PMID:21267363

  14. Epstein-Barr virus, high-risk human papillomavirus and abnormal cervical cytology in a prospective cohort of African female sex workers.

    PubMed

    Cameron, Jennifer E; Rositch, Anne F; Vielot, Nadja A; Mugo, Nelly R; Kwatampora, Jessie K L; Waweru, Wairimu; Gilliland, Aubrey E; Hagensee, Michael E; Smith, Jennifer S

    2018-04-17

    High oncogenic-risk human papillomavirus (hrHPV) is necessary, although insufficient, to promote cervical cancer. Like HPV, Epstein-Barr virus (EBV) is a common pathogen with the capacity to promote epithelial neoplasms. We examined the association between cervical EBV, hrHPV, and cytology in female sex workers in Nairobi, Kenya. Women (n=332) with known cervical cytology and hrHPV mRNA results were evaluated for cervical EBV DNA by conventional PCR. Prevalence ratios (PR) were calculated to assess the relationships between EBV, hrHPV and cervical cytology. Prospective analyses utilized risk ratios (RR) and time-to-event analyses to determine the association of EBV with hrHPV clearance and abnormal cytology outcomes. Baseline prevalence of hrHPV and EBV was 29% and 19%, respectively. Higher EBV prevalence was found among women with older age, HIV, hrHPV, abnormal cytology, Mycoplasma genitalium infection, smoking habits, younger age at sexual debut and less frequent condom use. At baseline, women with EBV had a higher prevalence of hrHPV infection than EBV-negative women (52% versus 24%; HIV-adjusted PR [95% CI]: 1.8 [1.3, 2.6]). EBV-positive women had a higher prevalence than EBV-negative women of high-grade precancer (15% versus 2%), and abnormal cytology (37% versus 15%), although HIV- and hrHPV-adjusted associations were not significant (high-grade precancer - PR: 2.0 [0.7, 5.9]; abnormal cytology - PR: 1.4 [0.9, 2.2]). In prospective analyses, a marginal association was observed between baseline EBV detection and delayed hrHPV clearance. Our data support a possible role for EBV as a high-risk marker or co-factor for HPV-mediated cervical cancer development.

  15. Revealing nanoparticle assembly under high pressure.

    NASA Astrophysics Data System (ADS)

    Fan, Hongyou

    Precise control of structural parameters through nanoscale engineering to improve optical and electronic properties of functional nanoparticles continuously remains an outstanding challenge. Previous work on nanoparticle assembly has been conducted largely at ambient pressure. Here I will present a new Stress-Induced Fabrication method in which we applied high pressure or stress to nanoparticle arrays to induce structural phase transition and to consolidate new nanomaterials with precisely controlled structures and tunable properties. By manipulating nanoparticle coupling through external pressure, a reversible change in their assemblies and properties can be achieved and demonstrated. In addition, over a certain threshold, the external pressure will force these nanoparticles into contact, thereby allowing the formation and consolidation of one- to three-dimensional nanostructures. Through stress induced nanoparticle assembly, materials engineering and synthesis become remarkably flexible without relying on traditional crystallization process where atoms/ions are locked in a specific crystal structure. Therefore, morphology or architecture can be readily tuned to produce desirable properties for practical applications. Sandia National Laboratories is a multi-mission laboratory managed and operated by Sandia Corporation, a wholly owned subsidiary of Lockheed Martin Corporation, for the U.S. Department of Energy's National Nuclear Security Administration under contract DE-AC04-94AL85000.

  16. Strong environmental tolerance of moss Venturiella under very high pressure

    NASA Astrophysics Data System (ADS)

    Ono, F.; Mori, Y.; Takarabe, K.; Nishihira, N.; Shindo, A.; Saigusa, M.; Matsushima, Y.; Saini, N. L.; Yamashita, M.

    2010-03-01

    It was shown by the present authors group that tardigrade can survive under high pressure of 7.5 GPa. In the case of land plants, however, no result of such experiment has been reported. We have extended our experiments to moss searching for lives under very high pressure. Spore placentas of moss Venturiella were sealed in a small Teflon capsule together with a liquid pressure medium. The capsule was put in the center of a pyrophillite cube, and the maximum pressure of 7.5 GPa was applied using a two-stage cubic anvil press. The pressure was kept constant at the maximum pressure for12, 24, 72 and 144 hours. After the pressure was released, the spores were seeded on a ager medium, and incubated for one week and more longer at 25°C with white light of 2000 lux. It was proved that 70-90% of the spores were alive and germinated after exposed to the maximum pressure of 7.5 GPa for up to 72 hours. However, after exposed to 7.5 GPa for 6 days, only 4 individuals in a hundred were germinated. The pressure tolerance of moss Venturiella is found to be stronger than a small animal, tardigrade.

  17. Measuring high pressure baroreceptor sensitivity in the rat.

    PubMed

    Shiry, L J; Hamlin, R L

    2011-01-01

    The high pressure baroreceptor reflex rapidly buffers changes in systemic arterial pressure in response to postural changes, altered gravitational conditions, diseases, and pharmacological agents. Drug-induced exaggeration of changes in heart rate and in systemic arterial pressure is a leading cause of adverse events and of patients terminating use of drugs, particularly in the aging population. This paper presents a facile method for monitoring the high pressure baroreceptor reflex in rats, and presents an alternative to quantifying the magnitude of this reflex using 2 dependent variables, heart rate and systemic arterial pressure, rather than merely change in heart rate. Twenty-four rats were allocated to 3 groups: group I anesthetized with 100mg/kg thiopental, group II anesthetized with 2% isoflurane given by inhalation, group III anesthetized with thiopental but pretreated for 2weeks with 2μg/kg aldosterone given SQ bid. After induction to anesthesia, hair was clipped from the ventral aspect of the neck, and petrolatum was applied to the skin to permit an air-tight seal with a glass funnel attached to a source of variable and controllable negative pressure. Systemic arterial pressure, ECG, heart rate, and a force of suction applied to the neck were all recorded continuously. After baseline recordings, a force of -20mmHg was applied for 20s over the carotid artery. In rats receiving thiopental, the average changes in heart rate and systemic arterial pressure following the application of -20mmHg neck suction were 30±11bpm and 45±14mmHg, respectively. The ratios of change in heart and change in systemic arterial pressure to application of negative force over the carotid sinus are 1.5±0.6bpm/mmHg and 0.7±04mmHg/mmHg, respectively. Mean values for heart rate and for mean systemic arterial pressure during baseline and after application of neck suction for 20s showed little to no decrease (i.e., blunting) in rats anesthetized with isoflurane or pretreated with

  18. High Pressure X-Ray Diffraction Studies of Nanocrystalline Materials

    NASA Technical Reports Server (NTRS)

    Palosz, B.; Stel'makh, S.; Grzanka, E.; Gierlotka, S.; Palosz, W.

    2004-01-01

    Experimental evidence obtained for a variety of nanocrystalline materials suggest that the crystallographic structure of a very small size particle deviates from that in the bulk crystals. In this paper we show the effect of the surface of nanocrystals on their structure by the analysis of generation and distribution of macro- and micro-strains at high pressures and their dependence on the grain size in nanocrystalline powders of Sic. We studied the structure of Sic nanocrystals by in-situ high-pressure powder diffraction technique using synchrotron and neutron sources and hydrostatic or isostatic pressure conditions. The diffraction measurements were done in HASYLAB at DESY using a Diamond Anvil Cell (DAC) in the energy dispersive geometry in the diffraction vector range up to 3.5 - 4/A and under pressures up to 50 GPa at room temperature. In-situ high pressure neutron diffraction measurements were done at LANSCE in Los Alamos National Laboratory using the HIPD and HIPPO diffractometers with the Paris-Edinburgh and TAP-98 cells, respectively, in the diffraction vector range up to 26 Examination of the response of the material to external stresses requires nonstandard methodology of the materials characterization and description. Although every diffraction pattern contains a complete information on macro- and micro-strains, a high pressure experiment can reveal only those factors which contribute to the characteristic diffraction patterns of the crystalline phases present in the sample. The elastic properties of powders with the grain size from several nm to micrometers were examined using three methodologies: (l), the analysis of positions and widths of individual Bragg reflections (used for calculating macro- and micro-strains generated during densification) [I], (2). the analysis of the dependence of the experimental apparent lattice parameter, alp, on the diffraction vector Q [2], and (3), the atomic Pair Distribution Function (PDF) technique [3]. The results

  19. High-pressure liquid chromatography of aromatic amines

    NASA Technical Reports Server (NTRS)

    Young, P. R.

    1979-01-01

    Analysis made on commercially available liquid chromatograph demonstrates high-pressure liquid chromatographic conditions for separation of approximately 50 aromatic amines ranging from simple aniline derivatives to complex multiring di- and tri-amines.

  20. Rotordynamic stability problems and solutions in high pressure turbocompressors

    NASA Technical Reports Server (NTRS)

    Schmied, J.

    1989-01-01

    The stability of a high pressure compressor is investigated with special regard to the self-exciting effects in oil seals and labyrinths. It is shown how to stabilize a rotor in spite of these effects and even increase its stability with increasing pressure.

  1. Electrical Resistivity of natural Marcasite at High-pressures

    NASA Astrophysics Data System (ADS)

    Parthasarathy, Gopalakrishnarao

    2013-06-01

    Marcasite is considered to be a common iron sulfide in reducing Martian sediments and may enclose microbial remains during growth and hence study of marcasite may have significance in the search for fossil life on Mars. The high-pressure phase stability investigations of marcasite are useful in understanding the sulfide mineralogy of Martian surface, affected by meteorite impacts. The sulfides were characterized by electron microprobe micro analyses (EPMA), powder X-ray diffraction, DTA, and FTIR spectroscopic measurements. The samples were powdered using a porcelain mortar and pestle. The chemical composition of the sample was determined by an electron probe micro-analyzer (EPMA). High-pressure electrical resistivity measurements were carried out on natural marcasite, and marcasite rich samples (Marcasite 95 mol % pyrite 5 mol %) up to 7 GPa. Marcasite sample shows a discontinuous decrease in the electrical resistivity at 5. 2 (+/- 0.5) GPa indicating a first order phase transition. The Differential thermal analyses and the Fourier transform infrared spectroscopic measurements on the pressure quenched sample shows the characteristics of pyrite, indicating the pressure induced marcasite-to -pyrite transition of the natural marcasite at 5. 2 (+/- 0.5) GPa. The observation of marcasite to pyrite phase transition may be useful in estimating the pressure experienced by shock events on the Martian surface as well as the meteorites where marcasite- pyrite phases coexist. Financial support from CSIR-SHORE-PSC0205.

  2. High-pressure polymorphism of acetylsalicylic acid (aspirin): Raman spectroscopy

    NASA Astrophysics Data System (ADS)

    Crowell, Ethan L.; Dreger, Zbigniew A.; Gupta, Yogendra M.

    2015-02-01

    Micro-Raman spectroscopy was used to elucidate the high-pressure polymorphic behavior of acetylsalicylic acid (ASA), an important pharmaceutical compound known as aspirin. Using a diamond anvil cell (DAC), single crystals of the two polymorphic phases of aspirin existing at ambient conditions (ASA-I and ASA-II) were compressed to 10 GPa. We found that ASA-I does not transform to ASA-II, but instead transforms to a new phase (ASA-III) above ∼2 GPa. It is demonstrated that this transformation primarily introduces structural changes in the bonding and arrangement of the acetyl groups and is reversible upon the release of pressure. In contrast, a less dense ASA-II shows no transition in the pressure range studied, though it appears to exhibit a disordered structure above 7 GPa. Our results suggest that ASA-III is the most stable polymorph of aspirin at high pressures.

  3. Capillary toroid cavity detector for high pressure NMR

    DOEpatents

    Gerald, II, Rex E.; Chen, Michael J.; Klingler, Robert J.; Rathke, Jerome W.; ter Horst, Marc

    2007-09-11

    A Toroid Cavity Detector (TCD) is provided for implementing nuclear magnetic resonance (NMR) studies of chemical reactions under conditions of high pressures and temperatures. A toroid cavity contains an elongated central conductor extending within the toroid cavity. The toroid cavity and central conductor generate an RF magnetic field for NMR analysis. A flow-through capillary sample container is located within the toroid cavity adjacent to the central conductor to subject a sample material flowing through the capillary to a static magnetic field and to enable NMR spectra to be recorded of the material in the capillary under a temperature and high pressure environment.

  4. Thermally induced coloration of KBr at high pressures

    NASA Astrophysics Data System (ADS)

    Arveson, Sarah M.; Kiefer, Boris; Deng, Jie; Liu, Zhenxian; Lee, Kanani K. M.

    2018-03-01

    Laser-heated diamond-anvil cell (LHDAC) experiments reveal electronic changes in KBr at pressures between ˜13 -81 GPa when heated to high temperatures that cause runaway heating to temperatures in excess of ˜5000 K . The drastic changes in absorption behavior of KBr are interpreted as rapid formation of high-pressure F-center defects. The defects are localized to the heated region and thus do not change the long-range crystalline order of KBr. The results have significant consequences for temperature measurements in LHDAC experiments and extend the persistence of F centers in alkali halides to at least 81 GPa.

  5. Iterative Boltzmann plot method for temperature and pressure determination in a xenon high pressure discharge lamp

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zalach, J.; Franke, St.

    2013-01-28

    The Boltzmann plot method allows to calculate plasma temperatures and pressures if absolutely calibrated emission coefficients of spectral lines are available. However, xenon arcs are not very well suited to be analyzed this way, as there are only a limited number of lines with atomic data available. These lines have high excitation energies in a small interval between 9.8 and 11.5 eV. Uncertainties in the experimental method and in the atomic data further limit the accuracy of the evaluation procedure. This may result in implausible values of temperature and pressure with inadmissible uncertainty. To omit these shortcomings, an iterative schememore » is proposed that is making use of additional information about the xenon fill pressure. This method is proved to be robust against noisy data and significantly reduces the uncertainties. Intentionally distorted synthetic data are used to illustrate the performance of the method, and measurements performed on a laboratory xenon high pressure discharge lamp are analyzed resulting in reasonable temperatures and pressures with significantly reduced uncertainties.« less

  6. A possible molecular mechanism for the pressure reversal of general anaesthetics: Aggregation of halothane in POPC bilayers at high pressure

    NASA Astrophysics Data System (ADS)

    Tu, K. M.; Matubayasi, N.; Liang, K. K.; Todorov, I. T.; Chan, S. L.; Chau, P.-L.

    2012-08-01

    We placed halothane, a general anaesthetic, inside palmitoyloleoylphosphatidylcholine (POPC) bilayers and performed molecular dynamics simulations at atmospheric and raised pressures. We demonstrated that halothane aggregated inside POPC membranes at 20 MPa but not at 40 MPa. The pressure range of aggregation matches that of pressure reversal in whole animals, and strongly suggests that this could be the mechanism for this effect. Combining these results with previous experimental data, we describe a testable hypothesis of how aggregation of general anaesthetics at high pressure can lead to pressure reversal, the effect whereby these drugs lose the efficacy at high pressure.

  7. Abiotic formation of valine peptides under conditions of high temperature and high pressure.

    PubMed

    Furukawa, Yoshihiro; Otake, Tsubasa; Ishiguro, Takato; Nakazawa, Hiromoto; Kakegawa, Takeshi

    2012-12-01

    We investigated the oligomerization of solid valine and the stabilities of valine and valine peptides under conditions of high temperature (150-200 °C) and high pressure (50-150 MPa). Experiments were performed under non-aqueous condition in order to promote dehydration reaction. After prolonged exposure of monomeric valine to elevated temperatures and pressures, the products were analyzed by liquid chromatography mass spectrometry comparing their retention times and masses. We identified linear peptides that ranged in size from dimer to hexamer, as well as a cyclic dimer. Previous studies that attempted abiotic oligomerization of valine in the absence of a catalyst have never reported valine peptides larger than a dimer. Increased reaction temperature increased the dissociative decomposition of valine and valine peptides to products such as glycine, β-alanine, ammonia, and amines by processes such as deamination, decarboxylation, and cracking. The amount of residual valine and peptide yields was greater at higher pressures at a given temperature, pressure, and reaction time. This suggests that dissociative decomposition of valine and valine peptides is reduced by pressure. Our findings are relevant to the investigation of diagenetic processes in prebiotic marine sediments where similar pressures occur under water-poor conditions. These findings also suggest that amino acids, such as valine, could have been polymerized to peptides in deep prebiotic marine sediments within a few hundred million years.

  8. High-pressure structural study of MnF 2

    DOE PAGES

    Stavrou, Elissaios; Yao, Yansun; Goncharov, Alexander F.; ...

    2015-02-01

    In this study, manganese fluoride (MnF 2) with the tetragonal rutile-type structure has been studied using a synchrotron angle-dispersive powder x-ray diffraction and Raman spectroscopy in a diamond anvil cell up to 60 GPa at room temperature combined with first-principles density functional calculations. The experimental data reveal two pressure-induced structural phase transitions with the following sequence: rutile → SrI 2 type (3 GPa)→ α–PbCl 2 type (13 GPa). Complete structural information, including interatomic distances, has been determined in the case of MnF 2 including the exact structure of the debated first high-pressure phase. First-principles density functional calculations confirm this phasemore » transition sequence, and the two calculated transition pressures are in excellent agreement with the experiment. Lattice dynamics calculations also reproduce the experimental Raman spectra measured for the ambient and high-pressure phases. The results are discussed in line with the possible practical use of rutile-type fluorides in general and specifically MnF 2 as a model compound to reveal the HP structural behavior of rutile-type SiO 2 (Stishovite).« less

  9. High pressure hydrogen stabilised by quantum nuclear motion

    NASA Astrophysics Data System (ADS)

    Needs, Richard; Monserrat, Bartomeu; Pickard, Chris

    Hydrogen under extreme pressures is of fundamental interest, as it might exhibit exotic physical phenomena, and of practical interest, as it is a major component of many astrophysical objects. Structure searches have been successful at identifying promising candidates for the known phases of high pressure hydrogen. However, these searches have so far been restricted to the location of minima of the potential energy landscape. In this talk, we will describe a new structure searching method, ``saddle-point ab initio random structure searching'' (sp-AIRSS), that allows us to identify structures associated with saddle points of the potential energy landscape. Using sp-AIRSS, we find two new high-pressure hydrogen structures that exhibit a harmonic dynamical instability, but quantum and thermal anharmonic motion render them dynamically stable. These structures are formed by mixed layers of strongly and softly bound hydrogen molecules, and become thermodynamically competitive at the highest pressures reached in experiment. The experimental implications of these new structures will also be discussed. BM is supported by Robinson College, Cambridge, and the Cambridge Philosophical Society. RJN and CJP are supported by the Engineering and Physical Sciences Research Council (EPSRC) of the UK.

  10. Frequency of metabolic abnormalities in urinary stones patients.

    PubMed

    Ahmad, Iftikhar; Pansota, Mudassar Saeed; Tariq, Muhammad; Tabassum, Shafqat Ali

    2013-11-01

    To determine the frequency of metabolic abnormalities in the serum and urine of patients with urinary stones disease. Two hundred patients with either multiple or recurrent urolithiasis diagnosed on ultrasonography and intravenous urography were included in this study. 24 hour urine sample were collected from each patient and sent for PH, specific gravity, Creatinine, uric acid, calcium, phosphate, oxalate, citrate and magnesium. In addition, blood sample of each patient was also sent for serum levels of urea, creatinine, uric acid, phosphate and calcium. Mean age of patients was 38 ± 7.75 years with male to female ratio of 2:1. The main presenting complaint was lumber pain and 82.5% patients were found to have calcium oxalate stones on chemical analysis. Metabolic abnormalities were found in 90.5% patients, whereas there were no metabolic abnormalities in 19 (9.5%) patients. Forty patients (21.5%) only had one metabolic abnormality and 157 (78.5%) patients had multiple metabolic abnormalities. Hyperoxaluria was the most commonly observed metabolic abnormality and was found in 64.5% patients. Other significant metabolic abnormalities were hypercalciuria, Hypercalcemia, hypocitraturia and hyperuricemia. This study concludes that frequency of metabolic abnormalities is very high in patients with urolithiasis and hyperoxaluria, hypercalciuria and hypocitraturia are the most important metabolic abnormalities observed in these patients.

  11. Characteristics of a high pressure gas proportional counter filled with xenon

    NASA Technical Reports Server (NTRS)

    Sakurai, H.; Ramsey, B. D.

    1991-01-01

    The characteristics of a conventional cylindrical geometry proportional counter filled with high pressure xenon gas up to 10 atm. were fundamentally investigated for use as a detector in hard X-ray astronomy. With a 2 percent methane gas mixture the energy resolutions at 10 atm. were 9.8 percent and 7.3 percent for 22 keV and 60 keV X-rays, respectively. From calculations of the Townsend ionization coefficient, it is shown that proportional counters at high pressure operate at weaker reduced electric field than low pressure counters. The characteristics of a parallel grid proportional counter at low pressure showed similar pressure dependence. It is suggested that this is the fundamental reason for the degradation of resolution observed with increasing pressure.

  12. Phytotherapy of High Blood Pressure in Three Phytogeographic Regions of Cameroon

    PubMed Central

    Tsabang, Nole; Yedjou, Clement G; Tchounwou, Paul B

    2017-01-01

    Objective High blood pressure is a public health challenge worldwide. According to World Health Organization, 30% of men and 50% of women 65 to 75 years old are suffering from high blood pressure. The number of hypertensive patients in the world will attain 1.56 billion of people, with 60% increase in prevalence. The incidence of high blood pressure increases with age, but nowadays, is being noticed an increasing incidence in young people. The socio-cultural medicine may provide new solutions in the management of this pathology. Therefore this study was carried out to record and document plants used against high blood pressure in socio-cultural medicine for future drugs discovery worldwide. Methods An ethno botanical survey was realized between 2002 and 2016 to identify manifold plants used to fight against high blood pressure. This survey was carried out in three phytogeographic regions of Cameroon. Amongst people living in those regions, 1131 randomly screened interviewees distributed in 58 socio-cultural groups were involved in this study. Results This survey reveals that about 70% of interviewees don't know high blood pressure which is a symptomless disease. A total of 28 species of plants were recorded. These plants belong to 25 genera and 24 families. They were used to prepare 28 herbal remedies for the treatment of high blood pressure. In the morphological point of view about 10/28 (36%) plants are herbs; 9/28 (32%) plants are trees and 9/28 (32%) plants are shrubs. Only 3/28 plants (11%) used including Allium sativum, Aloe barteri and Aloe buttneri) are cultivated. This means that the plants used in this study don't usually have some form of protection through cultivation which is encouraging in terms of their conservation. Conclusion The uncontrolled use of a hypotensive plants can provoke a fatal hypotension in hypertensive patients. Therefore the use of hypotensive plants needs to be controlled by physician or by a patient verification using a blood

  13. Bilateral Sensory Abnormalities in Patients with Unilateral Neuropathic Pain; A Quantitative Sensory Testing (QST) Study

    PubMed Central

    Konopka, Karl-Heinz; Harbers, Marten; Houghton, Andrea; Kortekaas, Rudie; van Vliet, Andre; Timmerman, Wia; den Boer, Johan A.; Struys, Michel M.R.F.; van Wijhe, Marten

    2012-01-01

    In patients who experience unilateral chronic pain, abnormal sensory perception at the non-painful side has been reported. Contralateral sensory changes in these patients have been given little attention, possibly because they are regarded as clinically irrelevant. Still, bilateral sensory changes in these patients could become clinically relevant if they challenge the correct identification of their sensory dysfunction in terms of hyperalgesia and allodynia. Therefore, we have used the standardized quantitative sensory testing (QST) protocol of the German Research Network on Neuropathic Pain (DFNS) to investigate somatosensory function at the painful side and the corresponding non-painful side in unilateral neuropathic pain patients using gender- and age-matched healthy volunteers as a reference cohort. Sensory abnormalities were observed across all QST parameters at the painful side, but also, to a lesser extent, at the contralateral, non-painful side. Similar relative distributions regarding sensory loss/gain for non-nociceptive and nociceptive stimuli were found for both sides. Once a sensory abnormality for a QST parameter at the affected side was observed, the prevalence of an abnormality for the same parameter at the non-affected side was as high as 57% (for Pressure Pain Threshold). Our results show that bilateral sensory dysfunction in patients with unilateral neuropathic pain is more rule than exception. Therefore, this phenomenon should be taken into account for appropriate diagnostic evaluation in clinical practice. This is particularly true for mechanical stimuli where the 95% Confidence Interval for the prevalence of sensory abnormalities at the non-painful side ranges between 33% and 50%. PMID:22629414

  14. Recovery of tobacco BY-2 cells after high hydrostatic pressure treatment.

    PubMed

    Kusube, Masataka; Nishino, Takumi; Nishikawa, Yuki; Goto, Masaki; Matsuki, Hitoshi; Iwahashi, Hitoshi

    2010-02-01

    The recovery of Nicotiana tabacum L. cv. Bright Yellow 2 (BY-2) cells in Linsmaire and Skoog medium after treatment at high hydrostatic pressure was investigated using an Evans Blue staining method to discriminate live from dead cells. The survival of BY-2 cells just after the high-pressure treatment at 5 degrees C and 25 degrees C decreased abruptly at pressures higher than 50 MPa and 100 MPa, respectively. Furthermore, almost all of the BY-2 cells treated at 5 degrees C and 25 degrees C recovered pressures below 25 MPa and 75 MPa, respectively. However, no BY-2 cells recovered at pressures above 100 MPa at either temperature.

  15. Managing Stress to Control High Blood Pressure

    MedlinePlus

    ... Venous Thromboembolism Aortic Aneurysm More Managing Stress to Control High Blood Pressure Updated:Jan 29,2018 The ... limits. Reduce stress by recognizing where you have control You can’t control all the outside events ...

  16. High Pressure Microwave Powered UV Light Sources

    NASA Astrophysics Data System (ADS)

    Cekic, M.; Frank, J. D.; Popovic, S.; Wood, C. H.

    1997-10-01

    Industrial microwave powered (*electrodeless*) light sources have been limited to quiescent pressures of 300 Torr of buffer gas and metal- halide fills. Recently developed multi-atmospheric electronegative bu lb fills (noble gas-halide excimers, metal halide) require electric field s for ionization that are often large multiples of the breakdown voltage for air. For these fills an auxiliary ignition system is necessary. The most successful scheme utilizes a high voltage pulse power supply and a novel field emission source. Acting together they create localized condition of pressure reduction and high free electron density. This allows the normal microwave fields to drive this small region into avalanche, ignite the bulb, and heat the plasma to it's operating poin t Standard diagnostic techniques of high density discharges are inapplicable to the excimer bulbs, because of the ionic molecular exci ted state structure and absence of self-absorption. The method for temperature determination is based on the equilibrium population of certain vibrational levels of excimer ionic excited states. Electron d ensity was determined from the measurements of Stark profiles of H_β radiation from a small amount of hydrogen mixed with noble gas and halogens. At the present time, high pressure (Te 0.5eV, ne 3 x 10^17 cm-3) production bulbs produce over 900W of radiation in a 30nm band, centered at 30nm. Similarly, these prototypes when loaded with metal-halide bulb fills produce 1 kW of radiation in 30nm wide bands, centered about the wavelength of interest.

  17. High Blood Pressure and Chronic Kidney Disease in Children: A Guide for Parents

    MedlinePlus

    ... Events Advocacy Donate A to Z Health Guide High Blood Pressure and Kidney Disease in Children Print Email High ... such as the heart and brain. What is high blood pressure? Blood pressure is the force of your blood ...

  18. Energy-Based Tetrahedron Sensor for High-Temperature, High-Pressure Environments

    NASA Technical Reports Server (NTRS)

    Gee, Kent L.; Sommerfeldt, Scott D.; Blotter, Jonathan D.

    2012-01-01

    An acoustic energy-based probe has been developed that incorporates multiple acoustic sensing elements in order to obtain the acoustic pressure and three-dimensional acoustic particle velocity. With these quantities, the user can obtain various energy-based quantities, including acoustic energy density, acoustic intensity, and acoustic impedance. In this specific development, the probe has been designed to operate in an environment characterized by high temperatures and high pressures as is found in the close vicinity of rocket plumes. Given these capabilities, the probe is designed to be used to investigate the acoustic conditions within the plume of a rocket engine or jet engine to facilitate greater understanding of the noise generation mechanisms in those plumes. The probe features sensors mounted inside a solid sphere. The associated electronics for the probe are contained within the sphere and the associated handle for the probe. More importantly, the design of the probe has desirable properties that reduce the bias errors associated with determining the acoustic pressure and velocity using finite sum and difference techniques. The diameter of the probe dictates the lower and upper operating frequencies for the probe, where accurate measurements can be acquired. The current probe design implements a sphere diameter of 1 in. (2.5 cm), which limits the upper operating frequency to about 4.5 kHz. The sensors are operational up to much higher frequencies, and could be used to acquire pressure data at higher frequencies, but the energy-based measurements are limited to that upper frequency. Larger or smaller spherical probes could be designed to go to lower or higher frequency range

  19. High pressure effects in high-field asymmetric waveform ion mobility spectrometry.

    PubMed

    Wang, Yonghuan; Wang, Xiaozhi; Li, Lingfen; Chen, Chilai; Xu, Tianbai; Wang, Tao; Luo, Jikui

    2016-08-30

    High-Field Asymmetric Waveform Ion Mobility Spectrometry (FAIMS) is an analytical technique based on the principle of non-linear electric field dependence of coefficient of mobility of ions for separation that was originally conceived in the Soviet Union in the early 1980s. Being well developed over the past decades, FAIMS has become an efficient method for the separation and characterization of gas-phase ions at ambient pressure, often in air, to detect trace amounts of chemical species including explosives, toxic chemicals, chemical warfare agents and other compounds. However the resolution of FAIMS and ion separation capability need to be improved for more applications of the technique. The effects of above-ambient pressure varying from 1 to 3 atm on peak position, resolving power, peak width, and peak intensity are investigated theoretically and experimentally using micro-fabricated planar FAIMS in purified air. Peak positions, varying with pressure in a way as a function of dispersion voltage, could be simplified by expressing both compensation and dispersion fields in Townsend units for E/N, the ratio of electric field intensity (E) to the gas number density (N). It is demonstrated that ion Townsend-scale peak positions remain unchanged for a range of pressures investigated, implying that the higher the pressure is, stronger compensation and separation fields are needed within limits of air breakdown field. Increase in pressure is found to separate ions that could not be distinguished in ambient pressure, which could be interpreted as the differentials of ions' peak compensation voltage expanded wider than the dilation of peak widths leading to resolving power enhancement with pressure. Increase in pressure can also result in an increase in peak intensity. Copyright © 2016 John Wiley & Sons, Ltd.

  20. High-Pressure Minerals in Meteorites: Constraints on Shock Conditions and Duration

    NASA Technical Reports Server (NTRS)

    Sharp, Thomas G.

    2004-01-01

    The objective of this research was to better understand the conditions and duration of shock metamorphism in meteorites through microstructural and microanalytical characterization of high-pressure minerals. A) Continue to investigate the mineralogy and microstructures of melt-veins in a suite of chondritic samples ranging from shock grades S3 through S6 to determine how the mineral assemblages that crystallize at high-pressure and are related to shock grade. B) Investigate the chemical, mineralogical, and microstructural heterogeneities that occur across melt veins to interpret crystallization histories. C) Use static high-pressure experiments to simulate crystallization of melt veins for mineralogical and textural comparisons with the melt veins of naturally shocked samples. D) Characterize the compositions and defect microstructures of polycrystalline ringwoodite, wadsleyite, majorite, (Mg,Fe)Si03-ilmenite and (Mg,Fe)SiO3-perovskite in S6 samples to understand the mechanisms of phase transformations that occur during shock. These results will combined with kinetic data to constrain the time scales of kinetic processes. E) Investigate the transformations of metastable high-pressure minerals back to low- pressure forms to constrain post-shock temperatures and estimates of the peak shock pressure. Of these objectives, we have obtained publishable data on A, B and D. I am currently doing difficult high-pressure melting and quench experiments on an L chondrite known as Mbale. These experiments will provide additional constraints on the mineral assemblages that are produced during rapid quench of an L chondrite at pressures of 16 to 25 GPa. Results from published or nearly published research is presented below. Lists of theses, dissertations and publications are given below.