Sample records for aboard international space

  1. Microgravity Science Glovebox Aboard the International Space Station

    NASA Technical Reports Server (NTRS)

    2003-01-01

    In the Destiny laboratory aboard the International Space Station (ISS), European Space Agency (ESA) astronaut Pedro Duque of Spain is seen working at the Microgravity Science Glovebox (MSG). He is working with the PROMISS experiment, which will investigate the growth processes of proteins during weightless conditions. The PROMISS is one of the Cervantes program of tests (consisting of 20 commercial experiments). The MSG is managed by NASA's Marshall Space Flight Center (MSFC).

  2. STS 129 Return Samples: Assessment of Air Quality aboard the Shuttle (STS-129) and International Space Station (ULF3)

    NASA Technical Reports Server (NTRS)

    James, John T.

    2010-01-01

    Reports on the air quality aboard the Space Shuttle (STS-129), and the International Space station (ULF3). NASA analyzed the grab sample canisters (GSCs) and the formaldehyde badges aboard both locations for carbon monoxide levels. The three surrogates: (sup 13)C-acetone, fluorobenzene, and chlorobenzene registered 109, 101, and 109% in the space shuttle and 81, 87, and 55% in the International Space Station (ISS). From these results the atmosphere in both the Space Shuttle and the International Space Station (ISS) was found to be breathable.

  3. Accomplishments in Bioastronautics Research Aboard International Space Station

    NASA Technical Reports Server (NTRS)

    Uri, John J.

    2003-01-01

    The seventh long-duration expedition crew is currently in residence aboard International Space Station (ISS), continuing a permanent human presence in space that began in October 2000. During that time, expedition crews have been operators and subjects for 16 Human Life Sciences investigations, to gain a better understanding of the effects of long-duration space flight on the crew members and of the environment in which they live. Investigations have been conducted to study the radiation environment in the station as well as during extravehicular activity (EVA); bone demineralization and muscle deconditioning; changes in neuromuscular reflexes, muscle forces and postflight mobility; causes and possible treatment of postflight orthostatic intolerance; risk of developing kidney stones; changes in pulmonary function caused by long-duration flight as well as EVA; crew and crew-ground interactions; and changes in immune function. The experiment mix has included some conducted in flight aboard ISS as well as several which collected data only pre- and postflight. The conduct of these investigations has been facilitated by the Human Research Facility (HRF). HRF Rack 1 became the first research rack on ISS when it was installed in the US laboratory module Destiny in March 2001. The rack provides a core set of experiment hardware to support investigations, as well as power, data and commanding capability, and stowage. The second HRF rack, to complement the first with additional hardware and stowage capability, will be launched once Shuttle flights resume. Future years will see additional capability to conduct human research on ISS as International Partner modules and facility racks are added to ISS . Crew availability, both as a subject count and time, will remain a major challenge to maximizing the science return from the bioastronautics research program.

  4. Carbon Dioxide Removal Troubleshooting aboard the International Space Station (ISS) during Space Shuttle (STS) Docked Operations

    NASA Technical Reports Server (NTRS)

    Matty, Christopher M.; Cover, John M.

    2009-01-01

    The International Space Station (ISS) represents a largely closed-system habitable volume which requires active control of atmospheric constituents, including removal of exhaled Carbon Dioxide (CO2). The ISS provides a unique opportunity to observe system requirements for (CO2) removal. CO2 removal is managed by the Carbon Dioxide Removal Assembly (CDRA) aboard the US segment of ISS and by Lithium Hydroxide (LiOH) aboard the Space Shuttle (STS). While the ISS and STS are docked, various methods are used to balance the CO2 levels between the two vehicles, including mechanical air handling and management of general crew locations. Over the course of ISS operation, several unexpected anomalies have occurred which have required troubleshooting, including possible compromised performance of the CDRA and LiOH systems, and possible imbalance in CO2 levels between the ISS and STS while docked. This paper will cover efforts to troubleshoot the CO2 removal systems aboard the ISS and docked STS.

  5. Accomplishments in bioastronautics research aboard International Space Station.

    PubMed

    Uri, John J; Haven, Cynthia P

    2005-01-01

    The tenth long-duration expedition crew is currently in residence aboard International Space Station (ISS), continuing a permanent human presence in space that began in October 2000. During that time, expedition crews have been operators and subjects for 18 Human Life Sciences investigations, to gain a better understanding of the effects of long-duration spaceflight on the crewmembers and of the environment in which they live. Investigations have been conducted to study: the radiation environment in the station as well as during extravehicular activity (EVA); bone demineralization and muscle deconditioning; changes in neuromuscular reflexes; muscle forces and postflight mobility; causes and possible treatment of postflight orthostatic intolerance; risk of developing kidney stones; changes in pulmonary function caused by long-duration flight as well as EVA; crew and crew-ground interactions; changes in immune function, and evaluation of imaging techniques. The experiment mix has included some conducted in flight aboard ISS as well as several which collected data only pre- and postflight. The conduct of these investigations has been facilitated by the Human Research Facility (HRF). HRF Rack 1 became the first research rack on ISS when it was installed in the US laboratory module Destiny in March 2001. The rack provides a core set of experiment hardware to support investigations, as well as power, data and commanding capability, and stowage. The second HRF rack, to complement the first with additional hardware and stowage capability, will be launched once Shuttle flights resume. Future years will see additional capability to conduct human research on ISS as International Partner modules and facility racks are added to ISS. Crew availability, both as a subject count and time, will remain a major challenge to maximizing the science return from the bioastronautics research program. c2005 Published by Elsevier Ltd.

  6. Dwarf Wheat grown aboard the International Space Station

    NASA Technical Reports Server (NTRS)

    2003-01-01

    Dwarf wheat were photographed aboard the International Space Station in April 2002. Lessons from on-orbit research on plants will have applications to terrestrial agriculture as well as for long-term space missions. Alternative agricultural systems that can efficiently produce greater quantities of high-quality crops in a small area are important for future space expeditions. Also regenerative life-support systems that include plants will be an important component of long-term space missions. Data from the Biomass Production System (BPS) and the Photosynthesis Experiment and System Testing and Operations (PESTO) will advance controlled-environment agricultural systems and will help farmers produce better, healthier crops in a small area. This same knowledge is critical to closed-loop life support systems for spacecraft. The BPS comprises a miniature environmental control system for four plant growth chambers, all in the volume of two space shuttle lockers. The experience with the BPS on orbit is providing valuable design and operational lessons that will be incorporated into the Plant Growth Units. The objective of PESTO was to flight verify the BPS hardware and to determine how the microgravity environment affects the photosynthesis and metabolic function of Super Dwarf wheat and Brassica rapa (a member of the mustard family).

  7. Successful amplification of DNA aboard the International Space Station.

    PubMed

    Boguraev, Anna-Sophia; Christensen, Holly C; Bonneau, Ashley R; Pezza, John A; Nichols, Nicole M; Giraldez, Antonio J; Gray, Michelle M; Wagner, Brandon M; Aken, Jordan T; Foley, Kevin D; Copeland, D Scott; Kraves, Sebastian; Alvarez Saavedra, Ezequiel

    2017-01-01

    As the range and duration of human ventures into space increase, it becomes imperative that we understand the effects of the cosmic environment on astronaut health. Molecular technologies now widely used in research and medicine will need to become available in space to ensure appropriate care of astronauts. The polymerase chain reaction (PCR) is the gold standard for DNA analysis, yet its potential for use on-orbit remains under-explored. We describe DNA amplification aboard the International Space Station (ISS) through the use of a miniaturized miniPCR system. Target sequences in plasmid, zebrafish genomic DNA, and bisulfite-treated DNA were successfully amplified under a variety of conditions. Methylation-specific primers differentially amplified bisulfite-treated samples as would be expected under standard laboratory conditions. Our findings establish proof of concept for targeted detection of DNA sequences during spaceflight and lay a foundation for future uses ranging from environmental monitoring to on-orbit diagnostics.

  8. The Evaluation of Methicillin Resistance in Staphylococcus aboard the International Space Station

    NASA Technical Reports Server (NTRS)

    Ott, C. M.; Bassinger, V. J.; Fontenot, S. L.; Castro, V. A.; Pierson, D. L.

    2005-01-01

    The International Space Station (ISS) represents a semi-closed environment with a high level of crewmember interaction. As community-acquired methicillin-resistant Staphylococcus aureus (MRSA) has emerged as a health concern in environments with susceptible hosts in close proximity, an evaluation of isolates of clinical and environmental Staphylococcus aureus and coagulase negative Staphylococcus was performed to determine if this trend was also present in astronauts aboard ISS or the space station itself. Rep-PCR fingerprinting analysis of archived ISS isolates confirmed our earlier studies indicating a transfer of S. aureus between crewmembers. In addition, this fingerprinting also indicated a transfer between crewmembers and their environment. While a variety of S. aureus were identified from both the crewmembers and the environment, phenotypic evaluations indicated minimal methicillin resistance. However, positive results for the Penicillin Binding Protein, indicative of the presence of the mecA gene, were detected in multiple isolates of archived Staphylococcus epidermidis and Staphylococcus haemolyticus. Phenotypic analysis of these isolates confirmed their resistance to methicillin. While MRSA has not been isolated aboard ISS, the potential exists for the transfer of the gene, mecA, from coagulase negative environmental Staphylococcus to S. aureus creating MRSA strains. This study suggests the need to expand environmental monitoring aboard long duration exploration spacecraft to include antibiotic resistance profiling.

  9. Video- Making a Film of Water Aboard the International Space Station (ISS)

    NASA Technical Reports Server (NTRS)

    2002-01-01

    Saturday Morning Science, the science of opportunity series of applied experiments and demonstrations, performed aboard the International Space Station (ISS) by Expedition 6 astronaut Dr. Don Pettit, revealed some remarkable findings. In this video, Dr. Pettit demonstrates how to make films of pure water. Watch the video to see how he does it, see his two-dimensional beaker, and marvel along with him at how tenacious the films are.

  10. Ovarian Tumor Cells Studied Aboard the International Space Station (ISS)

    NASA Technical Reports Server (NTRS)

    2001-01-01

    In August 2001, principal investigator Jeanne Becker sent human ovarian tumor cells to the International Space Station (ISS) aboard the STS-105 mission. The tumor cells were cultured in microgravity for a 14 day growth period and were analyzed for changes in the rate of cell growth and synthesis of associated proteins. In addition, they were evaluated for the expression of several proteins that are the products of oncogenes, which cause the transformation of normal cells into cancer cells. This photo, which was taken by astronaut Frank Culbertson who conducted the experiment for Dr. Becker, shows two cell culture bags containing LN1 ovarian carcinoma cell cultures.

  11. Capillary channel flow experiments aboard the International Space Station

    NASA Astrophysics Data System (ADS)

    Conrath, M.; Canfield, P. J.; Bronowicki, P. M.; Dreyer, M. E.; Weislogel, M. M.; Grah, A.

    2013-12-01

    In the near-weightless environment of orbiting spacecraft capillary forces dominate interfacial flow phenomena over unearthly large length scales. In current experiments aboard the International Space Station, partially open channels are being investigated to determine critical flow rate-limiting conditions above which the free surface collapses ingesting bubbles. Without the natural passive phase separating qualities of buoyancy, such ingested bubbles can in turn wreak havoc on the fluid transport systems of spacecraft. The flow channels under investigation represent geometric families of conduits with applications to liquid propellant acquisition, thermal fluids circulation, and water processing for life support. Present and near future experiments focus on transient phenomena and conduit asymmetries allowing capillary forces to replace the role of gravity to perform passive phase separations. Terrestrial applications are noted where enhanced transport via direct liquid-gas contact is desired.

  12. Materials International Space Station Experiment (MISSE) 5 Developed to Test Advanced Solar Cell Technology Aboard the ISS

    NASA Technical Reports Server (NTRS)

    Wilt, David M.

    2004-01-01

    The testing of new technologies aboard the International Space Station (ISS) is facilitated through the use of a passive experiment container, or PEC, developed at the NASA Langley Research Center. The PEC is an aluminum suitcase approximately 2 ft square and 5 in. thick. Inside the PEC are mounted Materials International Space Station Experiment (MISSE) plates that contain the test articles. The PEC is carried to the ISS aboard the space shuttle or a Russian resupply vehicle, where astronauts attach it to a handrail on the outer surface of the ISS and deploy the PEC, which is to say the suitcase is opened 180 deg. Typically, the PEC is left in this position for approximately 1 year, at which point astronauts close the PEC and it is returned to Earth. In the past, the PECs have contained passive experiments, principally designed to characterize the durability of materials subjected to the ultraviolet radiation and atomic oxygen present at the ISS orbit. The MISSE5 experiment is intended to characterize state-of-art (SOA) and beyond photovoltaic technologies.

  13. Draft Genome Sequence of Solibacillus kalamii, Isolated from an Air Filter Aboard the International Space Station.

    PubMed

    Seuylemezian, Arman; Singh, Nitin K; Vaishampayan, Parag; Venkateswaran, Kasthuri

    2017-08-31

    We report here the draft genome of Solibacillus kalamii ISSFR-015, isolated from a high-energy particulate arrestance filter aboard the International Space Station. The draft genome sequence of this strain contains 3,809,180 bp with an estimated G+C content of 38.61%. Copyright © 2017 Seuylemezian et al.

  14. Rapid culture-independent microbial analysis aboard the International Space Station (ISS).

    PubMed

    Maule, Jake; Wainwright, Norm; Steele, Andrew; Monaco, Lisa; Morris, Heather; Gunter, Daniel; Damon, Michael; Wells, Mark

    2009-10-01

    A new culture-independent system for microbial monitoring, called the Lab-On-a-Chip Application Development Portable Test System (LOCAD-PTS), was operated aboard the International Space Station (ISS). LOCAD-PTS was launched to the ISS aboard Space Shuttle STS-116 on December 9, 2006, and has since been used by ISS crews to monitor endotoxin on cabin surfaces. Quantitative analysis was performed within 15 minutes, and sample return to Earth was not required. Endotoxin (a marker of Gram-negative bacteria) was distributed throughout the ISS, despite previous indications that mostbacteria on ISS surfaces were Gram-positive [corrected].Endotoxin was detected at 24 out of 42 surface areas tested and at every surface site where colony-forming units (cfu) were observed, even at levels of 4-120 bacterial cfu per 100 cm(2), which is below NASA in-flight requirements (<10,000 bacterial cfu per 100 cm(2)). Absent to low levels of endotoxin (<0.24 to 1.0 EU per 100 cm(2); defined in endotoxin units, or EU) were found on 31 surface areas, including on most panels in Node 1 and the US Lab. High to moderate levels (1.01 to 14.7 EU per 100 cm(2)) were found on 11 surface areas, including at exercise, hygiene, sleeping, and dining facilities. Endotoxin was absent from airlock surfaces, except the Extravehicular Hatch Handle (>3.78 EU per 100 cm(2)). Based upon data collected from the ISS so far, new culture-independent requirements (defined in EU) are suggested, which are verifiable in flight with LOCAD-PTS yet high enough to avoid false alarms. The suggested requirements are intended to supplement current ISS requirements (defined in cfu) and would serve a dual purpose of safeguarding crew health (internal spacecraft surfaces <20 EU per 100 cm(2)) and monitoring forward contamination during Constellation missions (surfaces periodically exposed to the external environment, including the airlock and space suits, <0.24 EU per 100 cm(2)).

  15. Rapid Culture-Independent Microbial Analysis Aboard the International Space Station (ISS)

    NASA Astrophysics Data System (ADS)

    Maule, Jake; Wainwright, Norm; Steele, Andrew; Monaco, Lisa; Morris, Heather; Gunter, Daniel; Damon, Michael; Wells, Mark

    2009-10-01

    A new culture-independent system for microbial monitoring, called the Lab-On-a-Chip Application Development Portable Test System (LOCAD-PTS), was operated aboard the International Space Station (ISS). LOCAD-PTS was launched to the ISS aboard Space Shuttle STS-116 on December 9, 2006, and has since been used by ISS crews to monitor endotoxin on cabin surfaces. Quantitative analysis was performed within 15 minutes, and sample return to Earth was not required. Endotoxin (a marker of Gram-negative bacteria and fungi) was distributed throughout the ISS, despite previous indications that most bacteria on ISS surfaces were Gram-positive. Endotoxin was detected at 24 out of 42 surface areas tested and at every surface site where colony-forming units (cfu) were observed, even at levels of 4-120 bacterial cfu per 100 cm2, which is below NASA in-flight requirements (<10,000 bacterial cfu per 100 cm2). Absent to low levels of endotoxin (<0.24 to 1.0 EU per 100 cm2; defined in endotoxin units, or EU) were found on 31 surface areas, including on most panels in Node 1 and the US Lab. High to moderate levels (1.01 to 14.7 EU per 100 cm2) were found on 11 surface areas, including at exercise, hygiene, sleeping, and dining facilities. Endotoxin was absent from airlock surfaces, except the Extravehicular Hatch Handle (>3.78 EU per 100 cm2). Based upon data collected from the ISS so far, new culture-independent requirements (defined in EU) are suggested, which are verifiable in flight with LOCAD-PTS yet high enough to avoid false alarms. The suggested requirements are intended to supplement current ISS requirements (defined in cfu) and would serve a dual purpose of safeguarding crew health (internal spacecraft surfaces <20 EU per 100 cm2) and monitoring forward contamination during Constellation missions (surfaces periodically exposed to the external environment, including the airlock and space suits, <0.24 EU per 100 cm2).

  16. FAST at MACH 20: clinical ultrasound aboard the International Space Station.

    PubMed

    Sargsyan, Ashot E; Hamilton, Douglas R; Jones, Jeffrey A; Melton, Shannon; Whitson, Peggy A; Kirkpatrick, Andrew W; Martin, David; Dulchavsky, Scott A

    2005-01-01

    Focused assessment with sonography for trauma (FAST) examination has been proved accurate for diagnosing trauma when performed by nonradiologist physicians. Recent reports have suggested that nonphysicians also may be able to perform the FAST examination reliably. A multipurpose ultrasound system is installed on the International Space Station as a component of the Human Research Facility. Nonphysician crew members aboard the International Space Station receive modest training in hardware operation, sonographic techniques, and remotely guided scanning. This report documents the first FAST examination conducted in space, as part of the sustained effort to maintain the highest possible level of available medical care during long-duration space flight. An International Space Station crew member with minimal sonography training was remotely guided through a FAST examination by an ultrasound imaging expert from Mission Control Center using private real-time two-way audio and a private space-to-ground video downlink (7.5 frames/second). There was a 2-second satellite delay for both video and audio. To facilitate the real-time telemedical ultrasound examination, identical reference cards showing topologic reference points and hardware controls were available to both the crew member and the ground-based expert. A FAST examination, including four standard abdominal windows, was completed in approximately 5.5 minutes. Following commands from the Mission Control Center-based expert, the crew member acquired all target images without difficulty. The anatomic content and fidelity of the ultrasound video were excellent and would allow clinical decision making. It is possible to conduct a remotely guided FAST examination with excellent clinical results and speed, even with a significantly reduced video frame rate and a 2-second communication latency. A wider application of trauma ultrasound applications for remote medicine on earth appears to be possible and warranted.

  17. Stability of Dosage Forms in the Pharmaceutical Payload Aboard Space Missions

    NASA Technical Reports Server (NTRS)

    Du, Brian J.; Daniels, Vernie; Boyd, Jason L.; Crady, Camille; Satterfield, Rick; Younker, Diane R.; Putcha, Lakshmi

    2009-01-01

    Efficacious pharmaceuticals with adequate shelf lives are essential for successful space medical operations. Stability of pharmaceuticals, therefore, is of paramount importance for assuring the health and wellness of astronauts on future space exploration missions. Unique physical and environmental factors of space missions may contribute to the instability of pharmaceuticals, e.g., radiation, humidity and temperature variations. Degradation of pharmaceutical formulations can result in inadequate efficacy and/or untoward toxic effects, which could compromise astronaut safety and health. Methods: Four identical pharmaceutical payload kits containing 31 medications in different dosage forms (liquid, tablet, capsule, ointment and suppository) were transported to the International Space Station aboard the Space Shuttle (STS-121). One of the 4 kits was stored on the Shuttle and the other 3 were stored on the International Space Station (ISS) for return to Earth at 6-month interval aboard a pre-designated Shuttle flight for each kit. The kit stored on the Shuttle was returned to Earth aboard STS-121 and 2 kits from ISS were returned on STS 117 and STS-122. Results: Analysis of standard physical and chemical parameters of degradation was completed for pharmaceuticals returned by STS-121 after14 days, STS - 117 after11 months and STS 122 after 19 months storage aboard ISS. Analysis of all flight samples along with ground-based matching controls was completed and results were compiled. Conclusion: Evaluation of results from the shuttle (1) and ISS increments (2) indicate that the number of formulations degraded in space increased with duration of storage in space and was higher in space compared to their ground-based counterparts. Rate of degradation for some of the formulations tested was faster in space than on Earth. Additionally, some of the formulations included in the medical kits were unstable, more so in space than on the ground. These results indicate that the

  18. Materials Research Conducted Aboard the International Space Station: Facilities Overview, Operational Procedures, and Experimental Outcomes

    NASA Technical Reports Server (NTRS)

    Grugel, Richard N.; Luz, Paul; Smith, Guy; Spivey, Reggie; Jeter, Linda; Gillies, Donald; Hua, Fay; Anikumar, A. V.

    2007-01-01

    The Microgravity Science Glovebox (MSG) and Maintenance Work Area (MWA) are facilities aboard the International Space Station (ISS) that were used to successfully conduct experiments in support of, respectively, the Pore Formation and Mobility Investigation (PFMI) and the In-Space Soldering Investigation (ISSI). The capabilities of these facilities are briefly discussed and then demonstrated by presenting "real-time" and subsequently down-linked video-taped examples from the abovementioned experiments. Data interpretation, ISS telescience, some lessons learned, and the need of such facilities for conducting work in support of understanding materials behavior, particularly fluid processing and transport scenarios, in low-gravity environments is discussed.

  19. Materials Research Conducted Aboard the International Space Station: Facilities Overview, Operational Procedures, and Experimental Outcomes

    NASA Technical Reports Server (NTRS)

    Grugel, R. N.; Luz, P.; Smith, G. A.; Spivey, R.; Jeter, L.; Gillies, D. C.; Hua, F.; Anilkumar, A. V.

    2006-01-01

    The Microgravity Science Glovebox (MSG) and Maintenance Work Area (MWA) are facilities aboard the International Space Station (ISS) that were used to successfully conduct experiments in support of, respectively, the Pore Formation and Mobility Investigation (PFMI) and the In-Space Soldering Investigation (ISSI). The capabilities of these facilities are briefly discussed and then demonstrated by presenting real-time and subsequently down-linked video-taped examples from the abovementioned experiments. Data interpretation, ISS telescience, some lessons learned, and the need of such facilities for conducting work in support of understanding materials behavior, particularly fluid processing and transport scenarios, in low-gravity environments is discussed.

  20. Comparison of Directionally Solidified Samples Solidified Terrestrially and Aboard the International Space Station

    NASA Technical Reports Server (NTRS)

    Angart, S.; Lauer, M.; Tewari, S. N.; Grugel, R. N.; Poirier, D. R.

    2014-01-01

    This article reports research that has been carried out under the aegis of NASA as part of a collaboration between ESA and NASA for solidification experiments on the International Space Station (ISS). The focus has been on the effect of convection on the microstructural evolution and macrosegregation in hypoeutectic Al-Si alloys during directional solidification (DS). Terrestrial DS-experiments have been carried out at Cleveland State University (CSU) and under microgravity on the International Space Station (ISS). The thermal processing-history of the experiments is well defined for both the terrestrially processed samples and the ISS-processed samples. As of this writing, two dendritic metrics was measured: primary dendrite arm spacings and primary dendrite trunk diameters. We have observed that these dendrite-metrics of two samples grown in the microgravity environment show good agreements with models based on diffusion controlled growth and diffusion controlled ripening, respectively. The gravity-driven convection (i.e., thermosolutal convection) in terrestrially grown samples has the effect of decreasing the primary dendrite arm spacings and causes macrosegregation. Dendrite trunk diameters also show differences between the earth- and space-grown samples. In order to process DS-samples aboard the ISS, the dendritic seed crystals were partially remelted in a stationary thermal gradient before the DS was carried out. Microstructural changes and macrosegregation effects during this period are described and have modeled.

  1. The monitoring system for vibratory disturbance detection in microgravity environment aboard the international space station

    NASA Technical Reports Server (NTRS)

    Laster, Rachel M.

    2004-01-01

    Scientists in the Office of Life and Microgravity Sciences and Applications within the Microgravity Research Division oversee studies in important physical, chemical, and biological processes in microgravity environment. Research is conducted in microgravity environment because of the beneficial results that come about for experiments. When research is done in normal gravity, scientists are limited to results that are affected by the gravity of Earth. Microgravity provides an environment where solid, liquid, and gas can be observed in a natural state of free fall and where many different variables are eliminated. One challenge that NASA faces is that space flight opportunities need to be used effectively and efficiently in order to ensure that some of the most scientifically promising research is conducted. Different vibratory sources are continually active aboard the International Space Station (ISS). Some of the vibratory sources include crew exercise, experiment setup, machinery startup (life support fans, pumps, freezer/compressor, centrifuge), thruster firings, and some unknown events. The Space Acceleration Measurement System (SAMs), which acts as the hardware and carefully positioned aboard the ISS, along with the Microgravity Environment Monitoring System MEMS), which acts as the software and is located here at NASA Glenn, are used to detect these vibratory sources aboard the ISS and recognize them as disturbances. The various vibratory disturbances can sometimes be harmful to the scientists different research projects. Some vibratory disturbances are recognized by the MEMS's database and some are not. Mainly, the unknown events that occur aboard the International Space Station are the ones of major concern. To better aid in the research experiments, the unknown events are identified and verified as unknown events. Features, such as frequency, acceleration level, time and date of recognition of the new patterns are stored in an Excel database. My task is to

  2. Soyuz 25 Return Samples: Assessment of Air Quality Aboard the International Space Station

    NASA Technical Reports Server (NTRS)

    James, John T.

    2011-01-01

    Six mini-grab sample containers (m-GSCs) were returned aboard Soyuz 25. The toxicological assessment of 6 m-GSCs from the ISS is shown. The recoveries of the 3 internal standards, C-13-acetone, fluorobenzene, and chlorobenzene, from the GSCs averaged 76, 108 and 88%, respectively. Formaldehyde badges were not returned aboard Soyuz 25.

  3. Safety Aboard the International Space Station

    NASA Technical Reports Server (NTRS)

    Mintz, Shauna M.

    2004-01-01

    As with any task that NASA takes on, safety is of utmost importaqce. There are pages of safety codes and procedures that must be followed before any idea can be brought to life. Unfortunately, the International Space Station s (ISS) safety regulations and procedures are based on lg standards rather than on Og. To aide in making this space age home away from home a less hazardous environment, I worked on several projects revolving around the dangers of flammable items in microgravity. The first task I was assigned was to track flames. This involves turning eight millimeter video recordings, of tests run in the five second drop tower, into avi format on the computer. The footage is then compressed and altered so that the flame can be seen more clearly. Using another program called Spotlight, line profiles were used to collect data describing the luminescence of the flame at different points. These raw data are saved as text files and run trough a macro so that a Matlab program can analyze it. By fitting the data to a curve and determining the areas of brightest luminescence, the behavior of the flame can be recorded numerically. After entering the data into a database, researchers can come back later and easily get information on flames resulting from different gas and liquid mixtures in microgravity. I also worked on phase two of the FATE project, which deals with safety aboard the ISS. This phase involves igniting projected droplets and determining how they react with secondary materials. Such simulations represent, on a small scale, the spread of onboard fires due to the effervescence of burning primary materials. I set up existing hardware to operate these experiments and ran tests with it, photographing the results. I also made CAD drawings of the apparatus and the area available on the (SF)2 rig for it to fit into. The experiment will later be performed on the KC-135, and the results gathered will be used to reanalyze current safety standards for the ISS

  4. Communication Delays Impact Behavior and Performance Aboard the International Space Station.

    PubMed

    Kintz, Natalie M; Palinkas, Lawrence A

    Long-duration space explorations will involve significant communication delays that will likely impact individual and team outcomes. However, the extent of these impacts and the appropriate countermeasures for their mitigation remain largely unknown. This study examined the feasibility and acceptability of utilizing the International Space Station (ISS) as a research platform to assess the impacts of communication delays on individual and team behavior and performance. For this study, 3 ISS crewmembers and 18 mission support personnel performed 10 tasks identified by subject matter experts as meeting study criteria, 6 tasks without a delay in communication and 4 tasks with a 50-s one-way delay. Assessments of individual and team performance and behavior were obtained after each task. The completion rate of posttask assessments and postmission interviews with astronauts were used to assess feasibility and acceptability. Posttask assessments were completed in 100% of the instances where a crewmember was assigned to a task and in 83% where mission support personnel were involved. Qualitative analysis of postmission interviews found the study to be important and acceptable to the three astronauts. However, they also reported the study was limited in the number and type of tasks included, limitations in survey questions, and preference for open-ended to scaled items. Although the ISS is considered a high fidelity analog for long-duration space missions, future studies of communication delays on the ISS must take into considerations the constraints imposed by mission operations and subject preferences and priorities. Kintz KM, Palinkas LA. Communication delays impact behavior and performance aboard the International Space Station. Aerosp Med Hum Perform. 2017; 87(11):940-946.

  5. International Space Station (ISS)

    NASA Image and Video Library

    2001-09-16

    The setting sun and the thin blue airglow line at Earth's horizon was captured by the International Space Station's (ISS) Expedition Three crewmembers with a digital camera. Some of the Station's components are silhouetted in the foreground. The crew was launched aboard the Space Shuttle Orbiter Discovery STS-105 mission, on August 10, 2001, replacing the Expedition Two crew. After marning the orbiting ISS for 128 consecutive days, the three returned to Earth on December 17, 2001, aboard the STS-108 mission Space Shuttle Orbiter Endeavour.

  6. International Space Station (ISS)

    NASA Image and Video Library

    2003-10-25

    Aboard the International Space Station (ISS), European Space Agency astronaut Pedro Duque of Spain watches a water bubble float between a camera and himself. The bubble shows his reflection (reversed). Duque was launched aboard a Russian Soyuz TMA-3 spacecraft from the Baikonur Cosmodrome, Kazakhstan on October 18th, along with expedition-8 crew members Michael C. Foale, Mission Commander and NASA ISS Science Officer, and Cosmonaut Alexander Y. Kaleri, Soyuz Commander and flight engineer.

  7. International Space Station (ISS)

    NASA Image and Video Library

    2001-08-12

    In this photograph, Astronaut Susan Helms, Expedition Two flight engineer, is positioned near a large amount of water temporarily stored in the Unity Node aboard the International Space Station (ISS). Astronaut Helms accompanied the STS-105 crew back to Earth after having spent five months with two crewmates aboard the ISS. The 11th ISS assembly flight, the Space Shuttle Orbiter Discovery STS-105 mission was launched on August 10, 2001, and landed on August 22, 2001 at the Kennedy Space Center after the completion of the successful 12-day mission.

  8. International Space Station (ISS)

    NASA Image and Video Library

    2000-07-01

    The 45-foot, port-side (P1) truss segment flight article for the International Space Station is being transported to the Redstone Airfield, Marshall Space Flight Center. The truss will be loaded aboard NASA's Super Guppy cargo plane for shipment to the Kennedy Space Center.

  9. International Space Station (ISS)

    NASA Image and Video Library

    2003-05-03

    Expedition Seven photographed the Soyez TMA-1 Capsule through a window of the International Space Station (ISS) as it departed for Earth. Aboard were Expedition Six crew members, astronauts Kerneth D. Bowersox and Donald R. Pettit, and cosmonaut Nikolai M. Budarin. Expedition Six served a 5 and 1/2 month stay aboard the ISS, the longest stay to date.

  10. Controlled Directional Solidification of Aluminum - 7 wt Percent Silicon Alloys: Comparison Between Samples Processed on Earth and in the Microgravity Environment Aboard the International Space Station

    NASA Technical Reports Server (NTRS)

    Grugel, Richard N.; Tewari, Surendra N.; Erdman, Robert G.; Poirier, David R.

    2012-01-01

    An overview of the international "MIcrostructure Formation in CASTing of Technical Alloys" (MICAST) program is given. Directional solidification processing of metals and alloys is described, and why experiments conducted in the microgravity environment aboard the International Space Station (ISS) are expected to promote our understanding of this commercially relevant practice. Microstructural differences observed when comparing the aluminum - 7 wt% silicon alloys directionally solidified on Earth to those aboard the ISS are presented and discussed.

  11. Stability of Formulations Contained in the Pharmaceutical Payload Aboard Space Missions

    NASA Technical Reports Server (NTRS)

    Putcha, Lakshmi; Du, Brian; Daniels, Vernie; Boyd, Jason L.; Crady, Camille; Satterfield, Rick

    2008-01-01

    Efficacious pharmaceuticals with adequate shelf life are essential for successful space medical operations in support of space exploration missions. Physical and environmental factors unique to space missions such as vibration, G forces and ionizing radiation may adversely affect stability of pharmaceuticals intended for standard care of astronauts aboard space missions. Stable pharmaceuticals, therefore, are of paramount importance for assuring health and wellness of astronauts in space. Preliminary examination of stability of formulations from Shuttle and International Space Station (ISS) medical kits revealed that some of these medications showed physical and chemical degradation after flight raising concern of reduced therapeutic effectiveness with these medications in space. A research payload experiment was conducted with a select set of formulations stowed aboard a shuttle flight and on ISS. The payload consisted of four identical pharmaceutical kits containing 31 medications in different dosage forms that were transported to the International Space Station (ISS) aboard the Space Shuttle, STS 121. One of the four kits was stored on the shuttle and the other three were stored on the ISS for return to Earth at six months intervals on a pre-designated Shuttle flight for each kit; the shuttle kit was returned to Earth on the same flight. Standard stability indicating physical and chemical parameters were measured for all pharmaceuticals returned from the shuttle and from the first ISS increment payload along with ground-based matching controls. Results were compared between shuttle, ISS and ground controls. Evaluation of data from the three paradigms indicates that some of the formulations exhibited significant degradation in space compared to respective ground controls; a few formulations were unstable both on the ground and in space. An increase in the number of pharmaceuticals from ISS failing USP standards was noticed compared to those from the shuttle

  12. Evaluation of Primary Dendrite Arm Spacings from Aluminum-7wt% Silicon alloys Directionally Solidified aboard the International Space Station - Comparison with Theory

    NASA Technical Reports Server (NTRS)

    Angart, Samuel; Lauer, Mark; Poirier, David; Tewari, Surendra; Rajamure, Ravi; Grugel, Richard

    2015-01-01

    Aluminum – 7wt% silicon alloys were directionally solidified in the microgravity environment aboard the International Space Station as part of the “MIcrostructure Formation in CASTing of Technical Alloys under Diffusive and Magnetically Controlled Convective Conditions” (MICAST) European led program. Cross-sections of the sample during periods of steady-state growth were metallographically prepared from which the primary dendrite arm spacing (lambda 1) was measured. These spacings were found to be in reasonable agreement with the Hunt-Lu model which assumes a diffusion-controlled, convectionless, environment during controlled solidification. Deviation from the model was found and is attributed to gravity-independent thermocapillary convection where, over short distances, the liquid appears to have separated from the crucible wall.

  13. International Space Station (ISS)

    NASA Image and Video Library

    1997-06-01

    This Boeing photograph shows the Node 1, Unity module, Flight Article (at right) and the U.S. Laboratory module, Destiny, Flight Article for the International Space Station (ISS) being manufactured in the High Bay Clean Room of the Space Station Manufacturing Facility at the Marshall Space Flight Center. The Node 1, or Unity, serves as a cornecting passageway to Space Station modules. The U.S. built Unity module was launched aboard the orbiter Endeavour (STS-88 mission) on December 4, 1998 and connected to the Zarya, the Russian-built Functional Energy Block (FGB). The U.S. Laboratory (Destiny) module is the centerpiece of the ISS, where science experiments will be performed in the near-zero gravity of space. The U.S. Laboratory/Destiny was launched aboard the orbiter Atlantis (STS-98 mission) on February 7, 2001. The ISS is a multidisciplinary laboratory, technology test bed, and observatory that will provide unprecedented undertakings in scientific, technological, and international experimentation.

  14. Studying Planarian Regeneration Aboard the International Space Station within the Student Space Flight Experimental Program

    NASA Astrophysics Data System (ADS)

    Vista SSEP Mission 11 Team; Hagstrom, Danielle; Bartee, Christine; Collins, Eva-Maria S.

    2018-05-01

    The growing possibilities of space travel are quickly moving from science fiction to reality. However, to realize the dream of long-term space travel, we must understand how these conditions affect biological and physiological processes. Planarians are master regenerators, famous for their ability to regenerate from very small parts of the original animal. Understanding how this self-repair works may inspire regenerative therapies in humans. Two studies conducted aboard the International Space Station (ISS) showed that planarian regeneration is possible in microgravity. One study reported no regenerative defects, whereas the other study reported behavioral and microbiome alterations post-space travel and found that 1 of 15 planarians regenerated a Janus head, suggesting that microgravity exposure may not be without consequences. Given the limited number of studies and specimens, further microgravity experiments are necessary to evaluate the effects of microgravity on planarian regeneration. Such studies, however, are generally difficult and expensive to conduct. We were fortunate to be sponsored by the Student Spaceflight Experiment Program (SSEP) to investigate how microgravity affects regeneration of the planarian species Dugesia japonica on the ISS. While we were unable to successfully study planarian regeneration within the experimental constraints of our SSEP Mission, we systematically analyzed the cause for the failed experiment, leading us to propose a modified protocol. This work thus opens the door for future experiments on the effects of microgravity on planarian regeneration on SSEP Missions as well as for more advanced experiments by professional researchers.

  15. Veggie System on International Space Station

    NASA Image and Video Library

    2017-04-03

    Charles Spern, project manager on the Engineering Services Contract, communicates instructions for the Veggie system to astronaut Peggy Whitson aboard the International Space Station during the initiation of the second Chinese cabbage to be grown aboard the orbiting laboratory on April 3, 2017.

  16. International Space Station (ISS)

    NASA Image and Video Library

    2002-07-10

    This is a photo of soybeans growing in the Advanced Astroculture (ADVASC) Experiment aboard the International Space Station (ISS). The ADVASC experiment was one of the several new experiments and science facilities delivered to the ISS by Expedition Five aboard the Space Shuttle Orbiter Endeavor STS-111 mission. An agricultural seed company will grow soybeans in the ADVASC hardware to determine whether soybean plants can produce seeds in a microgravity environment. Secondary objectives include determination of the chemical characteristics of the seed in space and any microgravity impact on the plant growth cycle. Station science will also be conducted by the ever-present ground crew, with a new cadre of controllers for Expedition Five in the ISS Payload Operations Control Center (POCC) at NASA's Marshall Space Flight Center in Huntsville, Alabama. Controllers work in three shifts around the clock, 7 days a week, in the POCC, the world's primary science command post for the Space Station. The POCC links Earth-bound researchers around the world with their experiments and crew aboard the Space Station.

  17. International Space Station (ISS)

    NASA Image and Video Library

    2002-07-10

    Expedition Five crewmember and flight engineer Peggy Whitson displays the progress of soybeans growing in the Advanced Astroculture (ADVASC) Experiment aboard the International Space Station (ISS). The ADVASC experiment was one of the several new experiments and science facilities delivered to the ISS by Expedition Five aboard the Space Shuttle Orbiter Endeavor STS-111 mission. An agricultural seed company will grow soybeans in the ADVASC hardware to determine whether soybean plants can produce seeds in a microgravity environment. Secondary objectives include determination of the chemical characteristics of the seed in space and any microgravity impact on the plant growth cycle. Station science will also be conducted by the ever-present ground crew, with a new cadre of controllers for Expedition Five in the ISS Payload Operations Control Center (POCC) at NASA's Marshall Space Flight Center in Huntsville, Alabama. Controllers work in three shifts around the clock, 7 days a week, in the POCC, the world's primary science command post for the Space Station. The POCC links Earth-bound researchers around the world with their experiments and crew aboard the Space Station.

  18. Wetlab-2 - Quantitative PCR Tools for Spaceflight Studies of Gene Expression Aboard the International Space Station

    NASA Technical Reports Server (NTRS)

    Schonfeld, Julie E.

    2015-01-01

    Wetlab-2 is a research platform for conducting real-time quantitative gene expression analysis aboard the International Space Station. The system enables spaceflight genomic studies involving a wide variety of biospecimen types in the unique microgravity environment of space. Currently, gene expression analyses of space flown biospecimens must be conducted post flight after living cultures or frozen or chemically fixed samples are returned to Earth from the space station. Post-flight analysis is limited for several reasons. First, changes in gene expression can be transient, changing over a timescale of minutes. The delay between sampling on Earth can range from days to months, and RNA may degrade during this period of time, even in fixed or frozen samples. Second, living organisms that return to Earth may quickly re-adapt to terrestrial conditions. Third, forces exerted on samples during reentry and return to Earth may affect results. Lastly, follow up experiments designed in response to post-flight results must wait for a new flight opportunity to be tested.

  19. International Space Station (ISS)

    NASA Image and Video Library

    2001-02-01

    The Payload Operations Center (POC) is the science command post for the International Space Station (ISS). Located at NASA's Marshall Space Flight Center in Huntsville, Alabama, it is the focal point for American and international science activities aboard the ISS. The POC's unique capabilities allow science experts and researchers around the world to perform cutting-edge science in the unique microgravity environment of space. The POC is staffed around the clock by shifts of payload flight controllers. At any given time, 8 to 10 flight controllers are on consoles operating, plarning for, and controlling various systems and payloads. This photograph shows a Payload Rack Officer (PRO) at a work station. The PRO is linked by a computer to all payload racks aboard the ISS. The PRO monitors and configures the resources and environment for science experiments including EXPRESS Racks, multiple-payload racks designed for commercial payloads.

  20. Aboard the Space Shuttle.

    ERIC Educational Resources Information Center

    Steinberg, Florence S.

    This 32-page pamphlet contains color photographs and detailed diagrams which illustrate general descriptive comments about living conditions aboard the space shuttle. Described are details of the launch, the cabin, the condition of weightlessness, food, sleep, exercise, atmosphere, personal hygiene, medicine, going EVA (extra-vehicular activity),…

  1. Protein crystallization aboard the Space Shuttle and the Mir space station

    NASA Technical Reports Server (NTRS)

    Delbaere, Louis T. J.; Vandonselaar, Margaret; Prasad, Lata; Quail, J. W.; Birnbaum, George I.; Delucas, Lawrence J.; Moore, Karen; Bugg, Charles E.

    1993-01-01

    Two different protein crystallizations, namely ,the free Fab fragment of the Je142 monoclonal antibody and the complex of Fab fragment/HPr with antigen, were performed aboard the Discovery Space Shuttle flights and the Mir space station, respectively. Medium sized crystals of the Je142 Fab fragment were obtained. The Je142 Fab fragment/Hpr complex produced two medium-sized crystals after two months aboard the Mir space station. Microgravity was found to eliminate the tendency of these crystals to form clusters.

  2. International Space Station (ISS)

    NASA Image and Video Library

    2001-10-23

    Carrying out a flight program for the French Space Agency (CNES) under a commerial contract with the Russian Aviation and Space Agency, a Russian Soyuz spacecraft approaches the International Space Station (ISS) delivering a crew of three for an eight-day stay. Aboard the craft are Commander Victor Afanasyev, Flight Engineer Konstantin Kozeev, both representing Rosaviakosmos, and French Flight Engineer Claudie Haignere.

  3. International Space Station (ISS)

    NASA Image and Video Library

    2001-10-23

    Carrying out a flight program for the French Space Agency (CNES) under a commercial contract with the Russian Aviation and Space Agency, a Russian Soyuz spacecraft approaches the International Space Station (ISS), delivering a crew of three for an eight-day stay. Aboard the craft are Commander Victor Afanasyev, Flight Engineer Konstantin Kozeev, both representing Rosaviakosmos, and French Flight Engineer Claudie Haignere.

  4. International Space Station (ISS)

    NASA Image and Video Library

    2001-03-01

    One of the astronauts aboard the Space Shuttle Discovery took this photograph, from the aft flight deck of the Discovery, of the International Space Station (ISS) in orbit. The photo was taken after separation of the orbiter Discovery from the ISS after several days of joint activities and an important crew exchange.

  5. International Space Station (ISS)

    NASA Image and Video Library

    2001-10-23

    A Russian Soyuz spacecraft undocks from the International Space Station (ISS) with its crew of three ending an eight-day stay. Aboard the craft are Commander Victor Afanasyev, Flight Engineer Konstantin Kozeev, both representing Rosaviakosmos, and French Flight Engineer Claudie Haignere. Their mission was to carry out a flight program for the French Space Agency (CNES) under a commercial contract with the Russian Aviation and Space Agency.

  6. International Space Station (ISS)

    NASA Image and Video Library

    2001-10-23

    A Russian Soyuz spacecraft departs from the International Space Station (ISS) with its crew of three ending an eight-day stay. Aboard the craft are Commander Victor Afanasyev, Flight Engineer Konstantin Kozeev, both representing Rosaviakosmos, and French Flight Engineer Claudie Haignere. Their mission was to carry out a flight program for the French Space Agency (CNES) under a commercial contract with the Russian Aviation and Space Agency.

  7. International Space Station (ISS)

    NASA Image and Video Library

    2001-08-18

    Astronaut Patrick G. Forrester works with the the Materials International Space Station Experiment (MISSE) during extravehicular activity (EVA). MISSE would expose 750 material samples for about 18 months and collect information on how different materials weather the space environment The objective of MISSE is to develop early, low-cost, non-intrusive opportunities to conduct critical space exposure tests of space materials and components plarned for use on future spacecraft. The experiment was the first externally mounted experiment conducted on the International Space Station (ISS) and was installed on the outside of the ISS Quest Airlock. MISSE was launched on August 10, 2001 aboard the Space Shuttle Orbiter Discovery.

  8. International Space Station (ISS)

    NASA Image and Video Library

    2003-05-01

    Aboard the International Space Station (ISS), the Russian Lada greenhouse provides home to an experiment that investigates plant development and genetics. Space grown peas have dried and "gone to seed." The crew of the ISS will soon harvest the seeds. Eventually some will be replanted onboard the ISS, and some will be returned to Earth for further study.

  9. International Space Station (ISS)

    NASA Image and Video Library

    2001-02-16

    The International Space Station (ISS), with its newly attached U.S. Laboratory, Destiny, was photographed by a crew member aboard the Space Shuttle Orbiter Atlantis during a fly-around inspection after Atlantis separated from the Space Station. The Laboratory is shown in the foreground of this photograph. The American-made Destiny module is the cornerstone for space-based research aboard the orbiting platform and the centerpiece of the International Space Station (ISS), where unprecedented science experiments will be performed in the near-zero gravity of space. Destiny will also serve as the command and control center for the ISS. The aluminum module is 8.5-meters (28-feet) long and 4.3-meters (14-feet) in diameter. The laboratory consists of three cylindrical sections and two endcones with hatches that will be mated to other station components. A 50.9-centimeter (20-inch-) diameter window is located on one side of the center module segment. This pressurized module is designed to accommodate pressurized payloads. It has a capacity of 24 rack locations. Payload racks will occupy 15 locations especially designed to support experiments. The Destiny module was built by the Boeing Company under the direction of the Marshall Space Flight Center.

  10. Aboard the Space Shuttle

    NASA Technical Reports Server (NTRS)

    Steinberg, F. S.

    1980-01-01

    Livability aboard the space shuttle orbiter makes it possible for men and women scientists and technicians in reasonably good health to join superbly healthy astronauts as space travelers and workers. Features of the flight deck, the mid-deck living quarters, and the subfloor life support and house-keeping equipment are illustrated as well as the provisions for food preparation, eating, sleeping, exercising, and medical care. Operation of the personal hygiene equipment and of the air revitalization system for maintaining sea level atmosphere in space is described. Capabilities of Spacelab, the purpose and use of the remote manipulator arm, and the design of a permanent space operations center assembled on-orbit by shuttle personnel are also depicted.

  11. International Space Station (ISS)

    NASA Image and Video Library

    2001-08-17

    Backdropped by a sunrise, the newly installed Materials International Space Station Experiment (MISSE) is visible on this image. MISSE would expose 750 material samples for about 18 months and collect information on how different materials weather the space environment. The objective of MISSE is to develop early, low-cost, non-intrusive opportunities to conduct critical space exposure tests of space materials and components plarned for use on future spacecraft. The experiment was the first externally mounted experiment conducted on the International Space Station (ISS) and was installed on the outside of the ISS Quest Airlock during extravehicular activity (EVA) of the STS-105 mission. MISSE was launched on August 10, 2001 aboard the Space Shuttle Orbiter Discovery.

  12. The nutritional status of astronauts is altered after long-term space flight aboard the International Space Station

    NASA Technical Reports Server (NTRS)

    Smith, Scott M.; Zwart, Sara R.; Block, Gladys; Rice, Barbara L.; Davis-Street, Janis E.

    2005-01-01

    Defining optimal nutrient requirements is critical for ensuring crew health during long-duration space exploration missions. Data pertaining to such nutrient requirements are extremely limited. The primary goal of this study was to better understand nutritional changes that occur during long-duration space flight. We examined body composition, bone metabolism, hematology, general blood chemistry, and blood levels of selected vitamins and minerals in 11 astronauts before and after long-duration (128-195 d) space flight aboard the International Space Station. Dietary intake and limited biochemical measures were assessed during flight. Crew members consumed a mean of 80% of their recommended energy intake, and on landing day their body weight was less (P = 0.051) than before flight. Hematocrit, serum iron, ferritin saturation, and transferrin were decreased and serum ferritin was increased after flight (P < 0.05). The finding that other acute-phase proteins were unchanged after flight suggests that the changes in iron metabolism are not likely to be solely a result of an inflammatory response. Urinary 8-hydroxy-2'-deoxyguanosine concentration was greater and RBC superoxide dismutase was less after flight (P < 0.05), indicating increased oxidative damage. Despite vitamin D supplement use during flight, serum 25-hydroxycholecalciferol was decreased after flight (P < 0.01). Bone resorption was increased after flight, as indicated by several markers. Bone formation, assessed by several markers, did not consistently rise 1 d after landing. These data provide evidence that bone loss, compromised vitamin D status, and oxidative damage are among critical nutritional concerns for long-duration space travelers.

  13. International Space Station (ISS)

    NASA Image and Video Library

    2003-10-20

    In the Destiny laboratory aboard the International Space Station (ISS), European Space Agency (ESA) astronaut Pedro Duque of Spain is seen working at the Microgravity Science Glovebox (MSG). He is working with the PROMISS experiment, which will investigate the growth processes of proteins during weightless conditions. The PROMISS is one of the Cervantes program of tests (consisting of 20 commercial experiments). The MSG is managed by NASA's Marshall Space Flight Center (MSFC).

  14. Commander Bowersox Tends to Zeolite Crystal Samples Aboard Space Station

    NASA Technical Reports Server (NTRS)

    2003-01-01

    Expedition Six Commander Ken Bowersox spins Zeolite Crystal Growth sample tubes to eliminate bubbles that could affect crystal formation in preparation of a 15 day experiment aboard the International Space Station (ISS). Zeolites are hard as rock, yet are able to absorb liquids and gases like a sponge. By using the ISS microgravity environment to grow better, larger crystals, NASA and its commercial partners hope to improve petroleum manufacturing and other processes.

  15. International Space Station (ISS)

    NASA Image and Video Library

    2001-02-10

    Cosmonaut Yuri P. Gidzenko, Expedition One Soyuz commander, stands near the hatch leading from the Unity node into the newly-attached Destiny laboratory aboard the International Space Station (ISS). The Node 1, or Unity, serves as a cornecting passageway to Space Station modules. The U.S.-built Unity module was launched aboard the Orbiter Endeavour (STS-88 mission) on December 4, 1998, and connected to Zarya, the Russian-built Functional Cargo Block (FGB). The U.S. Laboratory (Destiny) module is the centerpiece of the ISS, where science experiments will be performed in the near-zero gravity in space. The Destiny Module was launched aboard the Space Shuttle Orbiter Atlantis (STS-98 mission) on February 7, 2001. The aluminum module is 8.5 meters (28 feet) long and 4.3 meters (14 feet) in diameter. The laboratory consists of three cylindrical sections and two endcones with hatches that will be mated to other station components. A 50.9-centimeter- (20-inch-) diameter window is located on one side of the center module segment. This pressurized module is designed to accommodate pressurized payloads. It has a capacity of 24 rack locations, and payload racks will occupy 13 locations especially designed to support experiments.

  16. International Space Station (ISS)

    NASA Image and Video Library

    2000-12-07

    In this image, planet Earth, some 235 statute miles away, forms the back drop for this photo of STS-97 astronaut and mission specialist Joseph R. Tanner, taken during the third of three space walks. The mission's goal was to perform the delivery, assembly, and activation of the U.S. electrical power system onboard the International Space Station (ISS). The electrical power system, which is built into a 73-meter (240-foot) long solar array structure consists of solar arrays, radiators, batteries, and electronics. The entire 15.4-metric ton (17-ton) package is called the P6 Integrated Truss Segment, and is the heaviest and largest element yet delivered to the station aboard a space shuttle. The electrical system will eventually provide the power necessary for the first ISS crews to live and work in the U.S. segment. The STS-97 crew of five launched aboard the Space Shuttle Orbiter Endeavor on November 30, 2000 for an 11 day mission.

  17. International Space Station (ISS)

    NASA Image and Video Library

    2001-05-14

    Astronaut James S. Voss, Expedition Two flight engineer, works with a series of cables on the EXPRESS Rack in the United State's Destiny laboratory on the International Space Station (ISS). The EXPRESS Rack is a standardized payload rack system that transports, stores, and supports experiments aboard the ISS. EXPRESS stands for EXpedite the PRocessing of Experiments to the Space Station, reflecting the fact that this system was developed specifically to maximize the Station's research capabilities. The EXPRESS Rack system supports science payloads in several disciplines, including biology, chemistry, physics, ecology, and medicine. With the EXPRESS Rack, getting experiments to space has never been easier or more affordable. With its standardized hardware interfaces and streamlined approach, the EXPRESS Rack enables quick, simple integration of multiple payloads aboard the ISS. The system is comprised of elements that remain on the ISS, as well as elements that travel back and forth between the ISS and Earth via the Space Shuttle.

  18. Ocular examination for trauma; clinical ultrasound aboard the International Space Station.

    PubMed

    Chiao, Leroy; Sharipov, Salizhan; Sargsyan, Ashot E; Melton, Shannon; Hamilton, Douglas R; McFarlin, Kellie; Dulchavsky, Scott A

    2005-05-01

    Ultrasound imaging is a successful modality in a broad variety of diagnostic applications including trauma. Ultrasound has been shown to be accurate when performed by non-radiologist physicians; recent reports have suggested that non-physicians can perform limited ultrasound examinations. A multipurpose ultrasound system is installed on the International Space Station (ISS) as a component of the Human Research Facility (HRF). This report documents the first ocular ultrasound examination conducted in space, which demonstrated the capability to assess physiologic alterations or pathology including trauma during long-duration space flight. An ISS crewmember with minimal sonography training was remotely guided by an imaging expert from Mission Control Center (MCC) through a comprehensive ultrasound examination of the eye. A multipurpose ultrasound imager was used in conjunction with a space-to-ground video downlink and two-way audio. Reference cards with topological reference points, hardware controls, and target images were used to facilitate the examination. Multiple views of the eye structures were obtained through a closed eyelid. Pupillary response to light was demonstrated by modifying the light exposure of the contralateral eye. A crewmember on the ISS was able to complete a comprehensive ocular examination using B- and M-mode ultrasonography with remote guidance from an expert in the MCC. Multiple anteroposterior, oblique, and coronal views of the eye clearly demonstrated the anatomic structures of both segments of the globe. The iris and pupil were readily visualized with probe manipulation. Pupillary diameter was assessed in real time in B- and M-mode displays. The anatomic detail and fidelity of ultrasound video were excellent and could be used to answer a variety of clinical and space physiologic questions. A comprehensive, high-quality ultrasound examination of the eye was performed with a multipurpose imager aboard the ISS by a non-expert operator using

  19. Ocular examination for trauma; clinical ultrasound aboard the International Space Station

    NASA Technical Reports Server (NTRS)

    Chiao, Leroy; Sharipov, Salizhan; Sargsyan, Ashot E.; Melton, Shannon; Hamilton, Douglas R.; McFarlin, Kellie; Dulchavsky, Scott A.

    2005-01-01

    BACKGROUND: Ultrasound imaging is a successful modality in a broad variety of diagnostic applications including trauma. Ultrasound has been shown to be accurate when performed by non-radiologist physicians; recent reports have suggested that non-physicians can perform limited ultrasound examinations. A multipurpose ultrasound system is installed on the International Space Station (ISS) as a component of the Human Research Facility (HRF). This report documents the first ocular ultrasound examination conducted in space, which demonstrated the capability to assess physiologic alterations or pathology including trauma during long-duration space flight. METHODS: An ISS crewmember with minimal sonography training was remotely guided by an imaging expert from Mission Control Center (MCC) through a comprehensive ultrasound examination of the eye. A multipurpose ultrasound imager was used in conjunction with a space-to-ground video downlink and two-way audio. Reference cards with topological reference points, hardware controls, and target images were used to facilitate the examination. Multiple views of the eye structures were obtained through a closed eyelid. Pupillary response to light was demonstrated by modifying the light exposure of the contralateral eye. RESULTS: A crewmember on the ISS was able to complete a comprehensive ocular examination using B- and M-mode ultrasonography with remote guidance from an expert in the MCC. Multiple anteroposterior, oblique, and coronal views of the eye clearly demonstrated the anatomic structures of both segments of the globe. The iris and pupil were readily visualized with probe manipulation. Pupillary diameter was assessed in real time in B- and M-mode displays. The anatomic detail and fidelity of ultrasound video were excellent and could be used to answer a variety of clinical and space physiologic questions. CONCLUSIONS: A comprehensive, high-quality ultrasound examination of the eye was performed with a multipurpose imager

  20. Evaluation of the MICAST #2-12 AI-7wt%Si Sample Directionally Solidified Aboard the International Space Station

    NASA Technical Reports Server (NTRS)

    Tewari, Surendra N.; Ghods, Masoud; Angart, Samuel G.; Lauer, Mark; Grugel, Richard N.; Poirier, David R.

    2016-01-01

    The US team of the European led "MIcrostructure Formation in CASTing of Technical Alloys under Diffusive and Magnetically Controlled Convective Conditions" (MICAST) program recently received a third Aluminum - 7wt% silicon alloy that was processed in the microgravity environment aboard the International Space Station. The sample, designated MICAST#2-12, was directionally solidified in the Solidification with Quench Furnace (SQF) at a constant rate of 40micometers/s through an imposed temperature gradient of 31K/cm. Procedures taken to evaluate the state of the sample prior to sectioning for metallographic analysis are reviewed and rational for measuring the microstructural constituents, in particular the primary dendrite arm spacing (Lambda (sub1)), is given. The data are presented, put in context with the earlier samples, and evaluated in view of a relevant theoretical model.

  1. Microstructure and Macrosegregation Study of Directionally Solidified Al-7Si Samples Processed Terrestrially and Aboard the International Space Station

    NASA Technical Reports Server (NTRS)

    Angart, Samuel; Erdman, R. G.; Poirier, David R.; Tewari, S.N.; Grugel, R. N.

    2014-01-01

    This talk reports research that has been carried out under the aegis of NASA as part of a collaboration between ESA and NASA for solidification experiments on the International Space Station (ISS). The focus has been on the effect of convection on the microstructural evolution and macrosegregation in hypoeutectic Al-Si alloys during directional solidification (DS). The DS-experiments have been carried out under 1-g at Cleveland State University (CSU) and under low-g on the International Space Station (ISS). The thermal processing-history of the experiments is well defined for both the terrestrially-processed samples and the ISS-processed samples. We have observed that the primary dendrite arm spacings of two samples grown in the low-g environment of the ISS show good agreement with a dendrite-growth model based on diffusion controlled growth. The gravity-driven convection (i.e., thermosolutal convection) in terrestrially grown samples has the effect of decreasing the primary dendrite arm spacings and causes macrosgregation. In order to process DS-samples aboard the ISS, dendritic-seed crystals have to partially remelted in a stationary thermal gradient before the DS is carried out. Microstructural changes and macrosegregation effects during this period are described.

  2. International Space Station (ISS)

    NASA Image and Video Library

    2000-12-07

    In this image, STS-97 astronaut and mission specialist Carlos I. Noriega waves at a crew member inside Endeavor's cabin during the mission's final session of Extravehicular Activity (EVA). Launched aboard the Space Shuttle Orbiter Endeavor on November 30, 2000, the STS-97 mission's primary objective was the delivery, assembly, and activation of the U.S. electrical power system onboard the International Space Station (ISS). The electrical power system, which is built into a 73-meter (240-foot) long solar array structure consists of solar arrays, radiators, batteries, and electronics. The entire 15.4-metric ton (17-ton) package is called the P6 Integrated Truss Segment, and is the heaviest and largest element yet delivered to the station aboard a space shuttle. The electrical system will eventually provide the power necessary for the first ISS crews to live and work in the U.S. segment.

  3. International Space Station (ISS)

    NASA Image and Video Library

    2000-12-04

    This video still depicts the recently deployed starboard and port solar arrays towering over the International Space Station (ISS). The video was recorded on STS-97's 65th orbit. Delivery, assembly, and activation of the solar arrays was the main mission objective of STS-97. The electrical power system, which is built into a 73-meter (240-foot) long solar array structure consists of solar arrays, radiators, batteries, and electronics, and will provide the power necessary for the first ISS crews to live and work in the U.S. segment. The entire 15.4-metric ton (17-ton) package is called the P6 Integrated Truss Segment, and is the heaviest and largest element yet delivered to the station aboard a space shuttle. The STS-97 crew of five launched aboard the Space Shuttle Orbiter Endeavor on November 30, 2000 for an 11 day mission.

  4. International Space Station (ISS)

    NASA Image and Video Library

    2001-02-01

    These 10 astronauts and cosmonauts represent the base STS-102 space travelers, as well as the crew members for the station crews switching out turns aboard the outpost. Those astronauts wearing orange represent the STS-102 crew members. In the top photo, from left to right are: James M. Kelly, pilot; Andrew S.W. Thomas, mission specialist; James D. Wetherbee, commander; and Paul W. Richards, mission specialist. The group pictured in the lower right portion of the portrait are STS-members as well as Expedition Two crew members (from left): mission specialist and flight engineer James S. Voss; cosmonaut Yury V. Usachev, Expedition Two Commander; and mission specialist and flight engineer Susan Helms. The lower left inset are the 3 man crew of Expedition One (pictured from left): Cosmonaut Sergei K. Krikalev, flight engineer; astronaut William M. (Bill) Shepherd, commander; and cosmonaut Yuri P. Gidzenko, Soyuz commander. The main objective of the STS-102 mission was the first Expedition Crew rotation and the primary cargo was the Leonardo, the Italian Space Agency-built Multipurpose Logistics Module (MPLM). The Leonardo MPLM is the first of three such pressurized modules that will serve as the International Space Station's (ISS') moving vans, carrying laboratory racks filled with equipment, experiments, and supplies to and from the Station aboard the Space Shuttle. NASA's 103rd overall mission and the 8th Space Station Assembly Flight, STS-102 mission launched on March 8, 2001 aboard the Space Shuttle Orbiter Discovery.

  5. Soyuz 24 Return Samples: Assessment of Air Quality Aboard the International Space Station

    NASA Technical Reports Server (NTRS)

    James, John T.

    2011-01-01

    Fifteen mini-grab sample containers (m-GSCs) were returned aboard Soyuz. This is the first time all samples were acquired with the mini-grab samplers. The toxicological assessment of 15 m-GSCs from the ISS is shown. The recoveries of the 3 internal standards, C(13)-acetone, fluorobenzene, and chlorobenzene, from the GSCs averaged 75, 97 and 79%, respectively. Formaldehyde badges were not returned on Soyuz 24

  6. International Space Station (ISS)

    NASA Image and Video Library

    2001-02-11

    This STS-98 mission photograph shows astronauts Thomas D. Jones (foreground) and Kerneth D. Cockrell floating inside the newly installed Laboratory aboard the International Space Station (ISS). The American-made Destiny module is the cornerstone for space-based research aboard the orbiting platform and the centerpiece of the ISS, where unprecedented science experiments will be performed in the near-zero gravity of space. Destiny will also serve as the command and control center for the ISS. The aluminum module is 8.5-meters (28-feet) long and 4.3-meters (14-feet) in diameter. The laboratory consists of three cylindrical sections and two endcones with hatches that will be mated to other station components. A 50.9-centimeter (20-inch-) diameter window is located on one side of the center module segment. This pressurized module is designed to accommodate pressurized payloads. It has a capacity of 24 rack locations. Payload racks will occupy 15 locations especially designed to support experiments. The Destiny module was built by the Boeing Company under the direction of the Marshall Space Flight Center.

  7. Langmuir probe measurements aboard the International Space Station

    NASA Astrophysics Data System (ADS)

    Kirov, B.; Asenovski, S.; Bachvarov, D.; Boneva, A.; Grushin, V.; Georgieva, K.; Klimov, S. I.

    2016-12-01

    In the current work we describe the Langmuir Probe (LP) and its operation on board the International Space Station. This instrument is a part of the scientific complex "Ostonovka". The main goal of the complex is to establish, on one hand how such big body as the International Space Station affects the ambient plasma and on the other how Space Weather factors influence the Station. The LP was designed and developed at BAS-SRTI. With this instrument we measure the thermal plasma parameters-electron temperature Te, electron and ion concentration, respectively Ne and Ni, and also the potential at the Station's surface. The instrument is positioned at around 1.5 meters from the surface of the Station, at the Russian module "Zvezda", located at the farthermost point of the Space Station, considering the velocity vector. The Multi- Purpose Laboratory (MLM) module is providing additional shielding for our instrument, from the oncoming plasma flow (with respect to the velocity vector). Measurements show that in this area, the plasma concentration is two orders of magnitude lower, in comparison with the unperturbed areas. The surface potential fluctuates between-3 and-25 volts with respect to the ambient plasma. Fast upsurges in the surface potential are detected when passing over the twilight zone and the Equatorial anomaly.

  8. Veggie Project - Harvesting Chinese Cabbage aboard the ISS

    NASA Image and Video Library

    2017-02-17

    At Kennedy Space Center in Florida, Veggie Project Manager Nicole Dufour instructs astronaut Peggy Whitson during the harvest of Chinese cabbage aboard the International Space Station. While the space station crew will get to eat some of the Chinese cabbage, the rest is being saved for scientific study back at Kennedy Space Center. This is the fifth crop grown aboard the station, and the first Chinese cabbage.

  9. International Space Station (ISS)

    NASA Image and Video Library

    2001-08-20

    This image of the International Space Station (ISS) was photographed by one of the crewmembers of the STS-105 mission from the Shuttle Orbiter Discovery after separating from the ISS. The STS-105 mission was the 11th ISS assembly flight and its goals were the rotation of the ISS Expedition Two crew with Expedition Three crew, and the delivery of supplies utilizing the Italian-built Multipurpose Logistic Module (MPLM) Leonardo. Aboard Leonardo were six resupply stowage racks, four resupply stowage supply platforms, and two new scientific experiment racks, EXPRESS (Expedite the Processing of Experiments to the Space Station) Racks 4 and 5, which added science capabilities to the ISS. Another payload was the Materials International Space Station Experiment (MISSE), which included materials and other types of space exposure experiments mounted on the exterior of the ISS.

  10. International Space Station (ISS)

    NASA Image and Video Library

    2000-12-05

    Astronaut Joseph R. Tanner, STS-97 mission specialist, is seen during a session of Extravehicular Activity (EVA), performing work on the International Space Station (ISS). Part of the Remote Manipulator System (RMS) arm and a section of the newly deployed solar array panel are in the background. The primary objective of the STS-97 mission was the delivery, assembly, and activation of the U.S. electrical power system on board the ISS. The electrical power system, which is built into a 73-meter (240-foot) long solar array structure consists of solar arrays, radiators, batteries, and electronics. The entire 15.4-metric ton (17-ton) package is called the P6 Integrated Truss Segment and is the heaviest and largest element yet delivered to the station aboard a space shuttle. The electrical system will eventually provide the power necessary for the first ISS crews to live and work in the U.S. segment. The STS-97 crew of five launched aboard the Space Shuttle Orbiter Endeavor on November 30, 2000 for an 11 day mission.

  11. Experiments Conducted Aboard the International Space Station: The Pore Formation and Mobility Investigation (PFMI) and the In-Space Soldering Investigation (ISSI): A Current Study of Results

    NASA Technical Reports Server (NTRS)

    Grugel, R. N.; Luz, P.; Smith, G. A.; Spivey, R.; Jeter, L.; Gillies, D. C> ; Hua, F.; Anilkumar, A. V.

    2006-01-01

    Experiments in support of the Pore Formation and Mobility Investigation (PFMI) and the In-Space Soldering Investigation (ISSI) were conducted aboard the International Space Station (ISS) with the goal of promoting our fundamental understanding of melting dynamics , solidification phenomena, and defect generation during materials processing in a microgravity environment. Through the course of many experiments a number of observations, expected and unexpected, have been directly made. These include gradient-driven bubble migration, thermocapillary flow, and novel microstructural development. The experimental results are presented and found to be in good agreement with models pertinent to a microgravity environment. Based on the space station results, and noting the futility of duplicating them in Earth s unit-gravity environment, attention is drawn to the role ISS experimentslhardware can play to provide insight to potential materials processing techniques and/or repair scenarios that might arise during long duration space transport and/or on the lunar/Mars surface.

  12. International Space Station (ISS)

    NASA Image and Video Library

    2001-02-01

    The Payload Operations Center (POC) is the science command post for the International Space Station (ISS). Located at NASA's Marshall Space Flight Center in Huntsville, Alabama, it is the focal point for American and international science activities aboard the ISS. The POC's unique capabilities allow science experts and researchers around the world to perform cutting-edge science in the unique microgravity environment of space. The POC is staffed around the clock by shifts of payload flight controllers. At any given time, 8 to 10 flight controllers are on consoles operating, plarning for, and controlling various systems and payloads. This photograph shows the Operations Controllers (OC) at their work stations. The OC coordinates the configuration of resources to enable science operations, such as power, cooling, commanding, and the availability of items like tools and laboratory equipment.

  13. NASA, Rockets, and the International Space Station

    NASA Technical Reports Server (NTRS)

    Marsell, Brandon

    2015-01-01

    General overview of NASA, Launch Services Program, and the Slosh experiment aboard the International Space Station. This presentation is designed to be presented in front of university level students in hopes of inspiring them to go into STEM careers.

  14. International Space Station (ISS)

    NASA Image and Video Library

    2000-12-07

    In this image, the five STS-97 crew members pose with the 3 members of the Expedition One crew onboard the International Space Station (ISS) for the first ever traditional onboard portrait taken in the Zvezda Service Module. On the front row, left to right, are astronauts Brent W. Jett, Jr., STS-97 commander; William M. Shepherd, Expedition One mission commander; and Joseph R. Tarner, STS-97 mission specialist. On the second row, from the left are Cosmonaut Sergei K. Krikalev, Expedition One flight engineer; astronaut Carlos I. Noriega, STS-97 mission specialist; cosmonaut Yuri P. Gidzenko, Expedition One Soyuz commander; and Michael J. Bloomfield, STS-97 pilot. Behind them is astronaut Marc Garneau, STS-97 mission specialist representing the Canadian Space Agency (CSA). The primary objective of the STS-97 mission was the delivery, assembly, and activation of the U.S. electrical power system onboard the International Space Station (ISS). The electrical power system, which is built into a 73-meter (240-foot) long solar array structure consists of solar arrays, radiators, batteries, and electronics. The entire 15.4-metric ton (17-ton) package is called the P6 Integrated Truss Segment, and is the heaviest and largest element yet delivered to the station aboard a space shuttle. The electrical system will eventually provide the power necessary for the first ISS crews to live and work in the U.S. segment. The STS-97 crew of five launched aboard the Space Shuttle Orbiter Endeavor on November 30, 2000 for an 11 day mission.

  15. International Space Station (ISS)

    NASA Image and Video Library

    2000-05-01

    This photograph depicts the International Space Station's (ISS) Joint Airlock Module undergoing exhaustive structural and systems testing in the Space Station manufacturing facility at the Marshall Space Flight Center (MSFC) prior to shipment to the Kennedy Space Center. The Airlock includes two sections. The larger equipment lock, on the left, will store spacesuits and associated gear and the narrower crewlock is on the right, from which the astronauts will exit into space for extravehicular activity. The airlock is 18 feet long and has a mass of about 13,500 pounds. It was launched to the station aboard the Space Shuttle orbiter Atlantis (STS-104 mission) on July 12, 2001. The MSFC is playing a primary role in NASA's development, manufacturing, and operations of the ISS.

  16. International Space Station (ISS)

    NASA Image and Video Library

    2001-02-16

    With its new U.S. Laboratory, Destiny, contrasted over a blue and white Earth, the International Space Station (ISS) was photographed by one of the STS-98 crew members aboard the Space Shuttle Atlantis following separation of the Shuttle and Station. The Laboratory is shown at the lower right of the Station. The American-made Destiny module is the cornerstone for space-based research aboard the orbiting platform and the centerpiece of the ISS, where unprecedented science experiments will be performed in the near-zero gravity of space. Destiny will also serve as the command and control center for the ISS. The aluminum module is 8.5- meters (28-feet) long and 4.3-meters (14-feet) in diameter. The laboratory consists of three cylindrical sections and two endcones with hatches that will be mated to other station components. A 50.9-centimeter (20-inch-) diameter window is located on one side of the center module segment. This pressurized module is designed to accommodate pressurized payloads. It has a capacity of 24 rack locations. Payload racks will occupy 15 locations especially designed to support experiments. The Destiny module was built by the Boeing Company under the direction of the Marshall Space Flight Center.

  17. International Space Station (ISS)

    NASA Image and Video Library

    2001-03-01

    A crewmember of Expedition One, cosmonaut Yuri P. Gidzenko, is dwarfed by transient hardware aboard Leonardo, the Italian Space Agency-built Multi-Purpose Logistics Module (MPLM), a primary cargo of the STS-102 mission. The Leonardo MPLM is the first of three such pressurized modules that will serve as the International Space Station's (ISS's) moving vans, carrying laboratory racks filled with equipment, experiments and supplies to and from the Space Station aboard the Space Shuttle. The cylindrical module is approximately 21-feet long and 15- feet in diameter, weighing almost 4.5 tons. It can carry up to 10 tons of cargo into 16 standard Space Station equipment racks. Of the 16 racks the module can carry, 5 can be furnished with power, data, and fluid to support refrigerators or freezers. In order to function as an attached station module as well as a cargo transport, the logistics module also includes components that provide life support, fire detection and suppression, electrical distribution, and computer functions. The eighth Shuttle mission to visit the ISS, the STS-102 mission served as a crew rotation flight. It delivered the Expedition Two crew to the Station and returned the Expedition One crew back to Earth.

  18. The Capillary Flow Experiments Aboard the International Space Station: Increments 9-15

    NASA Technical Reports Server (NTRS)

    Jenson, Ryan M.; Weislogel, Mark M.; Tavan, Noel T.; Chen, Yongkang; Semerjian, Ben; Bunnell, Charles T.; Collicott, Steven H.; Klatte, Jorg; dreyer, Michael E.

    2009-01-01

    This report provides a summary of the experimental, analytical, and numerical results of the Capillary Flow Experiment (CFE) performed aboard the International Space Station (ISS). The experiments were conducted in space beginning with Increment 9 through Increment 16, beginning August 2004 and ending December 2007. Both primary and extra science experiments were conducted during 19 operations performed by 7 astronauts including: M. Fincke, W. McArthur, J. Williams, S. Williams, M. Lopez-Alegria, C. Anderson, and P. Whitson. CFE consists of 6 approximately 1 to 2 kg handheld experiment units designed to investigate a selection of capillary phenomena of fundamental and applied importance, such as large length scale contact line dynamics (CFE-Contact Line), critical wetting in discontinuous structures (CFE-Vane Gap), and capillary flows and passive phase separations in complex containers (CFE-Interior Corner Flow). Highly quantitative video from the simply performed flight experiments provide data helpful in benchmarking numerical methods, confirming theoretical models, and guiding new model development. In an extensive executive summary, a brief history of the experiment is reviewed before introducing the science investigated. A selection of experimental results and comparisons with both analytic and numerical predictions is given. The subsequent chapters provide additional details of the experimental and analytical methods developed and employed. These include current presentations of the state of the data reduction which we anticipate will continue throughout the year and culminate in several more publications. An extensive appendix is used to provide support material such as an experiment history, dissemination items to date (CFE publication, etc.), detailed design drawings, and crew procedures. Despite the simple nature of the experiments and procedures, many of the experimental results may be practically employed to enhance the design of spacecraft engineering

  19. Analog FM/FM versus digital color TV transmission aboard space station

    NASA Technical Reports Server (NTRS)

    Hart, M. M.

    1985-01-01

    Langley Research Center is developing an integrated fault tolerant network to support data, voice, and video communications aboard Space Station. The question of transmitting the video data via dedicated analog channels or converting it to the digital domain for consistancy with the test of the data is addressed. The recommendations in this paper are based on a comparison in the signal-to-noise ratio (SNR), the type of video processing required aboard Space Station, the applicability to Space Station, and how they integrate into the network.

  20. International Space Station (ISS)

    NASA Image and Video Library

    2001-02-01

    The Payload Operations Center (POC) is the science command post for the International Space Station (ISS). Located at NASA's Marshall Space Flight Center in Huntsville, Alabama, it is the focal point for American and international science activities aboard the ISS. The POC's unique capabilities allow science experts and researchers around the world to perform cutting-edge science in the unique microgravity environment of space. The POC is staffed around the clock by shifts of payload flight controllers. At any given time, 8 to 10 flight controllers are on consoles operating, plarning for, and controlling various systems and payloads. This photograph shows the Timeline Change Officer (TCO) at a work station. The TCO maintains the daily schedule of science activities and work assignments, and works with planners at Mission Control at Johnson Space Center in Houston, Texas, to ensure payload activities are accommodated in overall ISS plans and schedules.

  1. International Space Station (ISS)

    NASA Image and Video Library

    2001-12-01

    This is the official STS-110 crew portrait. In front, from the left, are astronauts Stephen N. Frick, pilot; Ellen Ochoa, flight engineer; and Michael J. Bloomfield, mission commander; In the back, from left, are astronauts Steven L. Smith, Rex J. Walheim, Jerry L. Ross and Lee M.E. Morin, all mission specialists. Launched aboard the Space Shuttle Orbiter Atlantis on April 8, 2002, the STS-110 mission crew prepared the International Space Station (ISS) for future space walks by installing and outfitting a 43-foot-long Starboard side S0 truss and preparing the Mobile Transporter. The mission served as the 8th ISS assembly flight.

  2. International Space Station (ISS)

    NASA Image and Video Library

    2002-03-08

    Launched aboard the Space Shuttle Endeavor on June 6, 2002, these four astronauts comprised the prime crew for NASA's STS-111 mission. Astronaut Kenneth D. Cockrell (front right) was mission commander, and astronaut Paul S. Lockhart (front left) was pilot. Astronauts Philippe Perrin (rear left), representing the French Space Agency, and Franklin R. Chang-Diaz were mission specialists assigned to extravehicular activity (EVA) work on the International Space Station (ISS). In addition to the delivery and installation of the Mobile Base System (MBS), this crew dropped off the Expedition Five crew members at the orbital outpost, and brought back the Expedition Four trio at mission's end.

  3. International Space Station (ISS)

    NASA Image and Video Library

    1997-01-01

    This photograph, taken by the Boeing Company,shows Boeing technicians preparing to install one of six hatches or doors to the Node 1 (also called Unity), the first U.S. Module for the International Space Station (ISS). The Node 1, or Unity, serves as a cornecting passageway to Space Station modules and was manufactured by the Boeing Company at the Marshall Space Flight Center from 1994 to 1997. The U.S. built Unity module was launched aboard the orbiter Endeavour (STS-88 mission) on December 4, 1998 and connected to the Zarya, the Russian-built Functional Energy Block (FGB). The Zarya was launched on a Russian proton rocket prior to the launch of the Unity. The ISS is a multidisciplinary laboratory, technology test bed, and observatory that will provide unprecedented undertakings in scientific, technological, and international experimentation.

  4. International Space Station (ISS)

    NASA Image and Video Library

    1997-01-01

    This photograph, taken by the Boeing Company, shows Boeing technicians preparing to install one of six hatches or doors to the Node 1 (also called Unity), the first U.S. Module for the International Space Station (ISS). The Node 1, or Unity, serves as a cornecting passageway to Space Station modules and was manufactured by the Boeing Company at the Marshall Space Flight Center from 1994 to 1997. The U.S. built Unity module was launched aboard the orbiter Endeavour (STS-88 mission) on December 4, 1998 and connected to the Zarya, the Russian-built Functional Energy Block (FGB). The Zarya was launched on a Russian proton rocket prior to the launch of the Unity. The ISS is a multidisciplinary laboratory, technology test bed, and observatory that will provide unprecedented undertakings in scientific, technological, and international experimentation.

  5. Space-Based Reconfigurable Software Defined Radio Test Bed Aboard International Space Station

    NASA Technical Reports Server (NTRS)

    Reinhart, Richard C.; Lux, James P.

    2014-01-01

    The National Aeronautical and Space Administration (NASA) recently launched a new software defined radio research test bed to the International Space Station. The test bed, sponsored by the Space Communications and Navigation (SCaN) Office within NASA is referred to as the SCaN Testbed. The SCaN Testbed is a highly capable communications system, composed of three software defined radios, integrated into a flight system, and mounted to the truss of the International Space Station. Software defined radios offer the future promise of in-flight reconfigurability, autonomy, and eventually cognitive operation. The adoption of software defined radios offers space missions a new way to develop and operate space transceivers for communications and navigation. Reconfigurable or software defined radios with communications and navigation functions implemented in software or VHDL (Very High Speed Hardware Description Language) provide the capability to change the functionality of the radio during development or after launch. The ability to change the operating characteristics of a radio through software once deployed to space offers the flexibility to adapt to new science opportunities, recover from anomalies within the science payload or communication system, and potentially reduce development cost and risk by adapting generic space platforms to meet specific mission requirements. The software defined radios on the SCaN Testbed are each compliant to NASA's Space Telecommunications Radio System (STRS) Architecture. The STRS Architecture is an open, non-proprietary architecture that defines interfaces for the connections between radio components. It provides an operating environment to abstract the communication waveform application from the underlying platform specific hardware such as digital-to-analog converters, analog-to-digital converters, oscillators, RF attenuators, automatic gain control circuits, FPGAs, general-purpose processors, etc. and the interconnections among

  6. International Space Station (ISS)

    NASA Image and Video Library

    2000-05-01

    The Joint Airlock Module for the International Space Station (ISS) awaits shipment to the Kennedy Space Center in the Space Station manufacturing facility at the Marshall Space Flight Center in Huntsville, Alabama. The Airlock includes two sections. The larger equipment lock on the left is where crews will change into and out of their spacesuits for extravehicular activities, and store spacesuits, batteries, power tools, and other supplies. The narrower crewlock from which the astronauts will exit into space for extravehicular activities, is on the right. The airlock is 18 feet long and has a mass of about 13,500 pounds. It was launched to the station aboard the Space Shuttle orbiter Atlantis (STS-104 mission) on July 12, 2001. The MSFC is playing a primary role in NASA's development, manufacturing, and operations of the ISS.

  7. NASA Live Tweetup Event with International Space Station

    NASA Image and Video Library

    2009-10-21

    Former NASA astronaut Tom Jones shows off a sleeping bag used by astronauts living aboard the International Space Station during a NASA Tweetup event at NASA Headquarters in Washington, Wednesday, Oct. 21, 2009. Photo Credit: (NASA/Carla Cioffi)

  8. International Space Station (ISS)

    NASA Image and Video Library

    2003-10-16

    The Soyuz TMA-3 spacecraft and its booster rocket (rear view) is shown on a rail car for transport to the launch pad where it was raised to a vertical launch position at the Baikonur Cosmodrome, Kazakhstan on October 16, 2003. Liftoff occurred on October 18th, transporting a three man crew to the International Space Station (ISS). Aboard were Michael Foale, Expedition-8 Commander and NASA science officer; Alexander Kaleri, Soyuz Commander and flight engineer, both members of the Expedition-8 crew; and European Space agency (ESA) Astronaut Pedro Duque of Spain. Photo Credit: "NASA/Bill Ingalls"

  9. International Space Station (ISS)

    NASA Image and Video Library

    2003-10-16

    The Soyuz TMA-3 spacecraft and its booster rocket (front view) is shown on a rail car for transport to the launch pad where it was raised to a vertical launch position at the Baikonur Cosmodrome, Kazakhstan on October 16, 2003. Liftoff occurred on October 18th, transporting a three man crew to the International Space Station (ISS). Aboard were Michael Foale, Expedition-8 Commander and NASA science officer; Alexander Kaleri, Soyuz Commander and flight engineer, both members of the Expedition-8 crew; and European Space agency (ESA) Astronaut Pedro Duque of Spain. Photo Credit: "NASA/Bill Ingalls"

  10. International Space Station (ISS)

    NASA Image and Video Library

    2000-06-08

    Five NASA astronauts and two cosmonauts representing the Russian Aviation and Space Agency take a break in training from their scheduled September 2000 visit to the International Space Station (ISS). Astronauts Terrence W. Wilcutt (right front), and Scott D. Altman (left front) are mission commander and pilot, respectively. On the back row (from the left) are mission specialists Boris V. Morukov, cosmonaut, along with astronauts Richard A. Mastracchio, Edward T. Lu, and Daniel C. Burbank, and cosmonaut Yuri I. Malenchenko. Morukov and Malenchenko represent the Russian Aviation and Space Agency. Launched aboard the Space Shuttle Atlantis on September 8, 2000 at 7:46 a.m. (CDT), the STS-106 crew successfully prepared the International Space Station (ISS) for occupancy. Acting as plumbers, movers, installers and electricians, they installed batteries, power converters, a toilet and a treadmill on the outpost. They also delivered more than 2,993 kilograms (6,600 pounds) of supplies. Lu and Malenchenko performed a space walk to connect power, and data and communications cables to the newly arrived Zvezda Service Module and the Station.

  11. International Space Station in Orbit

    NASA Technical Reports Server (NTRS)

    2001-01-01

    This image of the International Space Station (ISS) was photographed by one of the crewmembers of the STS-105 mission from the Shuttle Orbiter Discovery after deparating from the ISS. The STS-105 mission was the 11th ISS assembly flight and its goals were the rotation of the ISS Expedition Two crew with the Expedition Three crew, and the delivery of supplies utilizing the Italian-built Multipurpose Logistics Module (MPLM) Leonardo. Aboard Leonardo were six resupply stowage racks, four resupply stowage supply platforms, and two new scientific experiment racks, EXPRESS (Expedite the Processing of Experiments to the Space Station) Racks 4 and 5, which added science capabilities to the ISS. Another payload was the Materials International Space Station Experiment (MISSE), which included materials and other types of space exposure experiments mounted on the exterior of the ISS.

  12. The effects of background noise on cognitive performance during a 70 hour simulation of conditions aboard the International Space Station.

    PubMed

    Smith, D G; Baranski, J V; Thompson, M M; Abel, S M

    2003-01-01

    A total of twenty-five subjects were cloistered for a period of 70 hours, five at a time, in a hyperbaric chamber modified to simulate the conditions aboard the International Space Station (ISS). A recording of 72 dBA background noise from the ISS service module was used to simulate noise conditions on the ISS. Two groups experienced the background noise throughout the experiment, two other groups experienced the noise only during the day, and one control group was cloistered in a quiet environment. All subjects completed a battery of cognitive tests nine times throughout the experiment. The data showed little or no effect of noise on reasoning, perceptual decision-making, memory, vigilance, mood, or subjective indices of fatigue. Our results suggest that the level of noise on the space station should not affect cognitive performance, at least over a period of several days.

  13. Comparison of Martian Radiation Environment with International Space Station

    NASA Image and Video Library

    2003-03-13

    This graphic shows the radiation dose equivalent as measured by Odyssey's Martian radiation environment experiment at Mars and by instruments aboard the International Space Station, for the 11-month period from April 2002 through February 2003. The accumulated total in Mars orbit is about two and a half times larger than that aboard the Space Station. Averaged over this time period, about 10 percent of the dose equivalent at Mars is due to solar particles, although a 30 percent contribution from solar particles was seen in July 2002, when the sun was particularly active. http://photojournal.jpl.nasa.gov/catalog/PIA04258

  14. Prospects for Interdisciplinary Science Aboard the International Space Station

    NASA Technical Reports Server (NTRS)

    Robinson, Julie A.

    2011-01-01

    The assembly of the International Space Station was completed in early 2011, and is now embarking on its first year of the coming decade of use as a laboratory. Two key types of physical science research are enabled by ISS: studies of processes that are normally masked by gravity, and instruments that take advantage of its position as a powerful platform in orbit. The absence of buoyancy-driven convection enables experiments in diverse areas such as fluids near the critical point, Marangoni convection, combustion, and coarsening of metal alloys. The positioning of such a powerful platform in orbit with robotic transfer and instrument support also provides a unique alternative platform for astronomy and physics instruments. Some of the operating or planned instruments related to fundamental physics on the International Space Station include MAXI (Monitoring all-sky X-ray Instrument for ISS), the Alpha Magnetic Spectrometer, CALET (Calorimetric Electron Telescope), and ACES (Atomic Clock Experiment in Space). The presentation will conclude with an overview of pathways for funding different types of experiments from NASA funding to the ISS National Laboratory, and highlights of the streamlining of services to help scientists implement their experiments on ISS.

  15. International Space Station (ISS)

    NASA Image and Video Library

    2001-07-22

    An Expedition Two crewmember aboard the International Space Station (ISS) captured this overhead look at the smoke and ash regurgitated from the erupting volcano Mt. Etna on the island of Sicily, Italy. At an elevation of 10,990 feet (3,350 m), the summit of the Mt. Etna volcano, one of the most active and most studied volcanoes in the world, has been active for a half-million years and has erupted hundreds of times in recorded history.

  16. International Space Station (ISS)

    NASA Image and Video Library

    2002-06-18

    This is a photo of the Hayman Fire burning in the foothills southwest of Denver, Colorado, as viewed by an Expedition Five crewmember aboard the International Space Station (ISS). Astronauts use a variety of lenses and look angles as their orbits pass over the wildfires to document the long-distance movements of smoke from the fires as well as details of the burning areas. In this view, Littleton, Chatfield Lake, and the Arkansas River are all visible.

  17. A Survey of Staphylococcus sp and its Methicillin Resistance aboard the International Space Station

    NASA Technical Reports Server (NTRS)

    Bassinger, V. J.; Fontenot, S. L.; Castro, V. A.; Ott, C.; Healy, M.; Pierson, D. L.

    2004-01-01

    Background: Within the past few years, methicillin-resistant Staphylococcus aureus has emerged in environments with susceptible hosts in close proximity, such as hospitals and nursing homes. As the International Space Station (ISS) represents a semi-closed environment with a high level of crewmember interaction, an evaluation of isolates of clinical and environmental Staphylococcus aureus and coagulase negative Staphylococcus was performed to determine if this trend was also present in astronauts occupying ISS or on surfaces of the space station itself. Methods: Identification of isolates was completed using VITEK (GPI cards, BioMerieux), 16S ribosomal DNA analysis (MicroSeq 500, ABI), and Rep-PCR DNA fingerprinting (Divemilab, Bacterial Barcodes). Susceptibility tests were performed using VITEK (GPS-105 cards, BioMerieux) and resistance characteristics were evaluated by testing for the presence of the mecA gene (PBP2' MRSA test kit, Oxoid). Results: Rep-PCR analysis indicated the transfer of S. aureus between crewmembers and between crewmembers and ISS surfaces. While a variety of S. aureus were identified from both the crewmembers and environment, evaluations of the microbial population indicated minimal methicillin resistance. Results of this study indicated that within the semi-closed ISS environment, transfer of bacteria between crewmembers and their environment has been occurring, although there was no indication of a high concentration of methicillin resistant Staphylococcus species. Conclusions: While this study suggests that the spread of methicillin resistant S. aureus is not currently a concern aboard ISS, the increasing incidence of Earth-based antibiotic resistance indicates a need for continued clinical and environmental monitoring.

  18. International Space Station (ISS)

    NASA Image and Video Library

    1997-11-26

    This photograph shows the U.S. Laboratory Module (also called Destiny) for the International Space Station (ISS), under construction in the Space Station manufacturing facility at the Marshall Space Flight Center. The U.S. Laboratory module is the centerpiece of the ISS, where science experiments will be performed in the near-zero gravity of space. The Destiny Module was launched aboard the Space Shuttle orbiter Atlantis (STS-67 mission) on February 7, 2001. The aluminum module is 8.5 meters (28 feet) long and 4.3 meters (14 feet) in diameter. The laboratory consists of three cylindrical sections and two end cones with hatches that will be mated to other station components. A 50.9-centimeter- (20-inch-) diameter window is located on one side of the center module segment. This pressurized module is designed to accommodate pressurized payloads. It has a capacity of 24 rack locations, and payload racks will occupy 13 locations especially designed to support experiments. The ISS is a multidisciplinary laboratory, technology test bed, and observatory that will provide unprecedented undertakings in scientific, technological, and international experimentation.

  19. Technology development for laser-cooled clocks on the International Space Station

    NASA Technical Reports Server (NTRS)

    Klipstein, W. M.

    2003-01-01

    The PARCS experiment will use a laser-cooled cesium atomic clock operating in the microgravity environment aboard the International Space Station to provide both advanced tests of gravitational theory to demonstrate a new cold-atom clock technology for space.

  20. International Space Station (ISS)

    NASA Image and Video Library

    2007-06-08

    Headed toward Earth orbit and a link up with the International Space Station (ISS), the Space Shuttle Atlantis lifted off from Kennedy Space Center on June 8, 2007. Aboard were STS-117 astronauts James F. Reilly II, Steven R. Swanson, Patrick G. Forrester and John D. “Danny” Olivas, all mission specialists; Frederick W. (Rick) Sturckow, commander; Lee J. Archambault, pilot; and Clayton Anderson, mission specialist who joined the Expedition 15 crew. The crew members along with the Expedition 15 crew spent 8 days resuming construction on the ISS with the installation of the second and third starboard truss segments (S3 and S4) with Photovoltaic Radiator (PVR), and retracted the P6 starboard solar array wing and radiator for later use.

  1. International Space Station (ISS)

    NASA Image and Video Library

    1998-11-01

    This photograph shows the U.S. Laboratory Module (also called Destiny) for the International Space Station (ISS), in the Space Station manufacturing facility at the Marshall Space Flight Center, being readied for shipment to the Kennedy Space Center. The U.S. Laboratory module is the centerpiece of the ISS, where science experiments will be performed in the near-zero gravity of space. The Destiny Module was launched aboard the Space Shuttle orbiter Atlantis (STS-67 mission) on February 7, 2001. The aluminum module is 8.5 meters (28 feet) long and 4.3 meters (14 feet) in diameter. The laboratory consists of three cylindrical sections and two endcones with hatches that will be mated to other station components. A 50.9-centimeter- (20-inch-) diameter window is located on one side of the center module segment. This pressurized module is designed to accommodate pressurized payloads. It has a capacity of 24 rack locations, and payload racks will occupy 13 locations especially designed to support experiments. The ISS is a multidisciplinary laboratory, technology test bed, and observatory that will provide unprecedented undertakings in scientific, technological, and international experimentation.

  2. Overview of the Development of the Temporary Sleep Station Hygiene Liner Aboard the International Space Station

    NASA Technical Reports Server (NTRS)

    Reid, Ethan A.

    2010-01-01

    Since the beginning of manned operations aboard the International Space Station (ISS), the crew had performed hygiene activities within the aisle way (the habitable volume, not including the sleep areas) of the ISS. The Crew used wet towels, re-hydrated body soap, and "no-rinse" shampoo to cleanse themselves amongst the stowage and systems hardware, referred to as "racks", even without a designated area to dry the wet items. Performing hygiene in this manner became an accepted method; no isolated location was available to the Crew. After several years of hygiene operations, some of the fabric-covered racks began to grow biological material (generically described as mold) and soon became a Crew health concern. Hygiene has one of the strongest impacts on Crew morale, and mandating changes to the Crew routine would have been met with strong resistance. The answer to the conundrum was to develop a liner to be placed within the Temporary Sleep Station (TeSS), one of the Crew s sleeping racks. This liner provided the Crew a means to perform hygiene activities within a private, enclosed area that also significantly decreased the potential to grow mold. This paper will describe the development of the TeSS Hygiene Liner, its impacts on the ISS and Crew, as well as its contribution to hygiene activities used in space today.

  3. Microgravity Science Glovebox (MSG), Space Science's Past, Present and Future Aboard the International Space Station (ISS)

    NASA Technical Reports Server (NTRS)

    Spivey, Reggie; Spearing, Scott; Jordan, Lee

    2012-01-01

    The Microgravity Science Glovebox (MSG) is a double rack facility aboard the International Space Station (ISS), which accommodates science and technology investigations in a "workbench' type environment. The MSG has been operating on the ISS since July 2002 and is currently located in the US Laboratory Module. In fact, the MSG has been used for over 10,000 hours of scientific payload operations and plans to continue for the life of ISS. The facility has an enclosed working volume that is held at a negative pressure with respect to the crew living area. This allows the facility to provide two levels of containment for small parts, particulates, fluids, and gases. This containment approach protects the crew from possible hazardous operations that take place inside the MSG work volume and allows researchers a controlled pristine environment for their needs. Research investigations operating inside the MSG are provided a large 255 liter enclosed work space, 1000 watts of dc power via a versatile supply interface (120, 28, + 12, and 5 Vdc), 1000 watts of cooling capability, video and data recording and real time downlink, ground commanding capabilities, access to ISS Vacuum Exhaust and Vacuum Resource Systems, and gaseous nitrogen supply. These capabilities make the MSG one of the most utilized facilities on ISS. MSG investigations have involved research in cryogenic fluid management, fluid physics, spacecraft fire safety, materials science, combustion, and plant growth technologies. Modifications to the MSG facility are currently under way to expand the capabilities and provide for investigations involving Life Science and Biological research. In addition, the MSG video system is being replaced with a state-of-the-art, digital video system with high definition/high speed capabilities, and with near real-time downlink capabilities. This paper will provide an overview of the MSG facility, a synopsis of the research that has already been accomplished in the MSG, and an

  4. International Space Station (ISS)

    NASA Image and Video Library

    1997-01-01

    In this photograph, the U.S. Laboratory Module (also called Destiny) for the International Space Station (ISS) is shown under construction in the West High Bay of the Space Station manufacturing facility (building 4708) at the Marshall Space Flight Center. The U.S. Laboratory module is the centerpiece of the ISS, where science experiments will be performed in the near-zero gravity of space. The Destiny Module was launched aboard the Space Shuttle orbiter Atlantis (STS-98 mission) on February 7, 2001. The aluminum module is 8.5 meters (28 feet) long and 4.3 meters (14 feet) in diameter. The laboratory consists of three cylindrical sections and two endcones with hatches that will be mated to other station components. A 50.9-centimeter- (20-inch-) diameter window is located on one side of the center module segment. This pressurized module is designed to accommodate pressurized payloads. It has a capacity of 24 rack locations, and payload racks will occupy 13 locations especially designed to support experiments. The ISS is a multidisciplinary laboratory, technology test bed, and observatory that will provide unprecedented undertakings in scientific, technological, and international experimentation.

  5. International Space Station (ISS)

    NASA Image and Video Library

    1997-11-01

    In this photograph, the U.S. Laboratory Module (also called Destiny) for the International Space Station (ISS) is shown under construction in the West High Bay of the Space Station manufacturing facility (building 4708) at the Marshall Space Flight Center. The U.S. Laboratory module is the centerpiece of the ISS, where science experiments will be performed in the near-zero gravity of space. The Destiny Module was launched aboard the Space Shuttle orbiter Atlantis (STS-98 mission) on February 7, 2001. The aluminum module is 8.5 meters (28 feet) long and 4.3 meters (14 feet) in diameter. The laboratory consists of three cylindrical sections and two endcones with hatches that will be mated to other station components. A 50.9-centimeter- (20-inch-) diameter window is located on one side of the center module segment. This pressurized module is designed to accommodate pressurized payloads. It has a capacity of 24 rack locations, and payload racks will occupy 13 locations especially designed to support experiments. The ISS is a multidisciplinary laboratory, technology test bed, and observatory that will provide unprecedented undertakings in scientific, technological, and international experimentation.

  6. International Space Station (ISS)

    NASA Image and Video Library

    2001-02-01

    The International Space Station (ISS) Payload Operations Center (POC) at NASA's Marshall Space Flight Center (MSFC) in Huntsville, Alabama, is the world's primary science command post for the International Space Station (ISS), the most ambitious space research facility in human history. The Payload Operations team is responsible for managing all science research experiments aboard the Station. The center is also home for coordination of the mission-plarning work of variety of international sources, all science payload deliveries and retrieval, and payload training and safety programs for the Station crew and all ground personnel. Within the POC, critical payload information from the ISS is displayed on a dedicated workstation, reading both S-band (low data rate) and Ku-band (high data rate) signals from a variety of experiments and procedures operated by the ISS crew and their colleagues on Earth. The POC is the focal point for incorporating research and experiment requirements from all international partners into an integrated ISS payload mission plan. This photograph is an overall view of the MSFC Payload Operations Center displaying the flags of the countries participating the ISS. The flags at the left portray The United States, Canada, France, Switzerland, Netherlands, Japan, Brazil, and Sweden. The flags at the right portray The Russian Federation, Italy, Germany, Belgium, Spain, United Kingdom, Denmark, and Norway.

  7. International Space Station (ISS)

    NASA Image and Video Library

    2002-10-12

    Astronaut David A. Wolf, STS-112 mission specialist, participates in the mission's second session of extravehicular activity (EVA), a six hour, four minute space walk, in which an exterior station television camera was installed outside of the Destiny Laboratory. Launched October 7, 2002 aboard the Space Shuttle Orbiter Atlantis, the STS-112 mission lasted 11 days and performed three EVA sessions. Its primary mission was to install the Starboard (S1) Integrated Truss Structure and Equipment Translation Aid (CETA) Cart to the International Space Station (ISS). The S1 truss provides structural support for the orbiting research facility's radiator panels, which use ammonia to cool the Station's complex power system. The S1 truss, attached to the S0 (S Zero) truss installed by the previous STS-110 mission, flows 637 pounds of anhydrous ammonia through three heat rejection radiators. The truss is 45-feet long, 15-feet wide, 10-feet tall, and weighs approximately 32,000 pounds. The CETA is the first of two human-powered carts that will ride along the International Space Station's railway providing a mobile work platform for future extravehicular activities by astronauts.

  8. Direct Signal-to-Noise Quality Comparison between an Electronic and Conventional Stethoscope aboard the International Space Station

    NASA Technical Reports Server (NTRS)

    Marshburn, Thomas; Cole, Richard; Ebert, Doug; Bauer, Pete

    2014-01-01

    Introduction: Evaluation of heart, lung, and bowel sounds is routinely performed with the use of a stethoscope to help detect a broad range of medical conditions. Stethoscope acquired information is even more valuable in a resource limited environments such as the International Space Station (ISS) where additional testing is not available. The high ambient noise level aboard the ISS poses a specific challenge to auscultation by stethoscope. An electronic stethoscope's ambient noise-reduction, greater sound amplification, recording capabilities, and sound visualization software may be an advantage to a conventional stethoscope in this environment. Methods: A single operator rated signal-to-noise quality from a conventional stethoscope (Littman 2218BE) and an electronic stethoscope (Litmann 3200). Borborygmi, pulmonic, and cardiac sound quality was ranked with both stethoscopes. Signal-to-noise rankings were preformed on a 1 to 10 subjective scale with 1 being inaudible, 6 the expected quality in an emergency department, 8 the expected quality in a clinic, and 10 the clearest possible quality. Testing took place in the Japanese Pressurized Module (JPM), Unity (Node 2), Destiny (US Lab), Tranquility (Node 3), and the Cupola of the International Space Station. All examinations were conducted at a single point in time. Results: The electronic stethoscope's performance ranked higher than the conventional stethoscope for each body sound in all modules tested. The electronic stethoscope's sound quality was rated between 7 and 10 in all modules tested. In comparison, the traditional stethoscope's sound quality was rated between 4 and 7. The signal to noise ratio of borborygmi showed the biggest difference between stethoscopes. In the modules tested, the auscultation of borborygmi was rated between 5 and 7 by the conventional stethoscope and consistently 10 by the electronic stethoscope. Discussion: This stethoscope comparison was limited to a single operator. However, we

  9. International Space Station -- Fluids and Combustion Facility

    NASA Technical Reports Server (NTRS)

    2000-01-01

    The Fluids and Combustion Facility (FCF) is a modular, multi-user facility to accommodate microgravity science experiments on board Destiny, the U.S. Laboratory Module for the International Space Station (ISS). The FCF will be a permanet facility aboard the ISS, and will be capable of accommodating up to ten science investigations per year. It will support the NASA Science and Technology Research Plans for the International Space Station (ISS) which require sustained systematic research of the effects of reduced gravity in the areas of fluid physics and combustion science. From left to right are the Combustion Integrated Rack, the Shared Rack, and the Fluids Integrated Rack. The FCF is being developed by the Microgravity Science Division (MSD) at the NASA Glenn Research Center. (Photo Credit: NASA/Marshall Space Flight Center)

  10. International Space Station (ISS)

    NASA Image and Video Library

    2002-03-20

    Astronaut Daniel W. Bursch, Expedition Four flight engineer, was delighted in capturing this image of Mt. Everest in the Himalayan Range from aboard the International Space Station (ISS). The mountain is near frame center. Because the photo was taken close to orbital sunrise, the low sun angle gave tremendous relief to the mountains. Named for Sir George Everest, the British surveyor-general of India, Mount Everest is the tallest point on earth. Standing 29,028 feet tall, it is 5 1/2 miles above sea level. Mount Everest is located half in Nepal and half in Tibet.

  11. Commercial opportunities in bioseparations and physiological testing aboard Space Station Freedom

    NASA Technical Reports Server (NTRS)

    Hymer, W. C.

    1992-01-01

    The Center for Cell Research (CCR) is a NASA Center for the Commercial Development of Space which has as its main goal encouraging industry-driven biomedical/biotechnology space projects. Space Station Freedom (SSF) will provide long duration, crew-tended microgravity environments which will enhance the opportunities for commercial biomedical/biotechnology projects in bioseparations and physiological testing. The CCR bioseparations program, known as USCEPS (for United States Commercial Electrophoresis Program in Space), is developing access for American industry to continuous-flow electrophoresis aboard SSF. In space, considerable scale-up of continuous free-flow electrophoresis is possible for cells, sub cellular particles, proteins, growth factors, and other biological products. The lack of sedemination and buoyancy-driven convection flow enhances purity of separations and the amount of material processed/time. Through the CCR's physiological testing program, commercial organizations will have access aboard SSF to physiological systems experiments (PSE's); the Penn State Biomodule; and telemicroscopy. Physiological systems experiments involve the use of live animals for pharmaceutical product testing and discovery research. The Penn State Biomodule is a computer-controlled mini lab useful for projects involving live cells or tissues and macro molecular assembly studies, including protein crystallization. Telemicroscopy will enable staff on Earth to manipulate and monitor microscopic specimens on SSF for product development and discovery research or for medical diagnosis of astronaut health problems. Space-based product processing, testing, development, and discovery research using USCEPS and CCR's physiological testing program offer new routes to improved health on Earth. Direct crew involvement-in biomedical/biotechnology projects aboard SSF will enable better experimental outcomes. The current data base shows that there is reason for considerable optimism

  12. International Space Station (ISS)

    NASA Image and Video Library

    2002-11-23

    The Space Shuttle Endeavour is pictured on a lighted launch pad at Kennedy Space Center's (KSC) Launch Complex 39 with a gibbous moon shining brightly in the night sky. Liftoff from KSC occurred at 7:49:47 p.m. (EST), November 23, 2002. The launch is the 19th for Endeavour, and the 112th flight in the Shuttle program. Mission STS-113 is the 16th assembly flight to the International Space Station (ISS), carrying another structure for the Station, the P1 integrated truss. STS-113 crew members onboard were astronauts James D. Wetherbee, commander; Paul S. Lockhart, pilot, along with astronauts Michael E. Lopez-Alegria and John B. Herrington, both mission specialists. Also onboard were the Expedition 6 crew members: Astronauts Kenneth D. Bowersox and Donald R. Pettit, along with cosmonaut Nikolai M. Budarin, who went on to replace Expedition 5 aboard the Station.

  13. International Space Station (ISS)

    NASA Image and Video Library

    2002-10-10

    Launched October 7, 2002 aboard the Space Shuttle Orbiter Atlantis, the STS-112 mission lasted 11 days and performed three sessions of Extra Vehicular Activity (EVA). Its primary mission was to install the Starboard (S1) Integrated Truss Structure and Equipment Translation Aid (CETA) Cart to the International Space Station (ISS). The S1 truss provides structural support for the orbiting research facility's radiator panels, which use ammonia to cool the Station's complex power system. The S1 truss, attached to the S0 (S Zero) truss installed by the previous STS-110 mission, flows 637 pounds of anhydrous ammonia through three heat rejection radiators. The truss is 45-feet long, 15-feet wide, 10-feet tall, and weighs approximately 32,000 pounds. The CETA is the first of two human-powered carts that will ride along the International Space Station's railway providing a mobile work platform for future extravehicular activities by astronauts. This is a view of the newly installed S1 Truss as photographed during the mission's first scheduled EVA. The Station's Canadarm2 is in the foreground. Visible are astronauts Piers J. Sellers (lower left) and David A. Wolf (upper right), both STS-112 mission specialists.

  14. International Space Station (ISS)

    NASA Image and Video Library

    2002-10-10

    Anchored to a foot restraint on the Space Station Remote Manipulator System (SSRMS) or Canadarm2, astronaut David A. Wolf, STS-112 mission specialist, participates in the mission's first session of extravehicular activity (EVA). Wolf is carrying the Starboard One (S1) outboard nadir external camera which was installed on the end of the S1 Truss on the International Space Station (ISS). Launched October 7, 2002 aboard the Space Shuttle Orbiter Atlantis, the STS-112 mission lasted 11 days and performed three EVAs. Its primary mission was to install the S1 Integrated Truss Structure and Equipment Translation Aid (CETA) Cart to the ISS. The S1 truss provides structural support for the orbiting research facility's radiator panels, which use ammonia to cool the Station's complex power system. The S1 truss, attached to the S0 (S Zero) truss installed by the previous STS-110 mission, flows 637 pounds of anhydrous ammonia through three heat rejection radiators. The truss is 45-feet long, 15-feet wide, 10-feet tall, and weighs approximately 32,000 pounds. The CETA is the first of two human-powered carts that will ride along the International Space Station's railway providing a mobile work platform for future extravehicular activities by astronauts.

  15. Pore Formation and Mobility Investigation (PPMI): Description and Initial Analysis of Experiments Conducted aboard the International Space Station

    NASA Technical Reports Server (NTRS)

    Grugel, R. N.; Anilkumar, A. V.; Lee, C. P.

    2003-01-01

    Flow visualization experiments during the controlled directional melt back and re-solidification of succinonitrile (SCN) and SCN-water mixtures were conducted using the Pore Formation and Mobility Investigation (PFMI) apparatus in the glovebox facility (GBX) aboard the International Space Station. The study samples were initially 'cast' on earth under 450 millibar of nitrogen into 1 cm ID glass sample tubes approximately 30 cm in length, containing 6 in situ thermocouples. During the Space experiments, the processing parameters and flow visualization settings are remotely monitored and manipulated from the ground Telescience Center (TSC). The ground solidified sample is first subjected to a unidirectional melt back, generally at 10 microns per second, with a constant temperature gradient ahead of the melting interface. Bubbles of different sizes are seen to initiate at the melt interface and, upon release from the melting solid, translate at different speeds in the temperature field ahead of them before coming to rest. Over a period of time these bubbles dissolve into the melt. The gas-laden liquid is then directionally solidified in a controlled manner, generally starting at a rate of 1 micron /sec. Observation and preliminary analysis of bubble formation and mobility in pure SCN samples during melt back and the subsequent structure resulting during gas generation upon re-solidification are presented and discussed.

  16. Pore Formation and Mobility Investigation (PFMI): Description and Initial Analysis of Experiments Conducted aboard the International Space Station

    NASA Technical Reports Server (NTRS)

    Grugel, R. N.; Anilkumar, A. V.; Lee, C. P.

    2002-01-01

    Flow visualization experiments during the controlled directional melt back and re-solidification of succinonitrile (SCN) and SCN-water mixtures were conducted using the Pore Formation and Mobility Investigation (PFMI) apparatus in the glovebox facility (GBX) aboard the International Space Station. The study samples were initially "cast" on earth under 450 millibar of nitrogen into 1 cm ID glass sample tubes approximately 30 cm in length, containing 6 in situ thermocouples. During the Space experiments, the processing parameters and flow visualization settings are remotely monitored and manipulated from the ground Telescience Center (TSC). The ground solidified sample is first subjected to a unidirectional melt back, generally at 10 microns per second, with a constant temperature gradient ahead of the melting interface. Bubbles of different sizes are seen to initiate at the melt interface and, upon release from the melting solid, translate at different speeds in the temperature field ahead of them before coming to rest. Over a period of time these bubbles dissolve into the melt. The gas-laden liquid is then directionally solidified in a controlled manner, generally starting at a rate of 1 micron /sec. Observation and preliminary analysis of bubble formation and mobility in pure SCN samples during melt back and the subsequent structure resulting during gas generation upon re-solidification are presented and discussed.

  17. GNSS reflectometry aboard the International Space Station: phase-altimetry simulation to detect ocean topography anomalies

    NASA Astrophysics Data System (ADS)

    Semmling, Maximilian; Leister, Vera; Saynisch, Jan; Zus, Florian; Wickert, Jens

    2016-04-01

    An ocean altimetry experiment using Earth reflected GNSS signals has been proposed to the European Space Agency (ESA). It is part of the GNSS Reflectometry Radio Occultation Scatterometry (GEROS) mission that is planned aboard the International Space Station (ISS). Altimetric simulations are presented that examine the detection of ocean topography anomalies assuming GNSS phase delay observations. Such delay measurements are well established for positioning and are possible due to a sufficient synchronization of GNSS receiver and transmitter. For altimetric purpose delays of Earth reflected GNSS signals can be observed similar to radar altimeter signals. The advantage of GNSS is the synchronized separation of transmitter and receiver that allow a significantly increased number of observation per receiver due to more than 70 GNSS transmitters currently in orbit. The altimetric concept has already been applied successfully to flight data recorded over the Mediterranean Sea. The presented altimetric simulation considers anomalies in the Agulhas current region which are obtained from the Region Ocean Model System (ROMS). Suitable reflection events in an elevation range between 3° and 30° last about 10min with ground track's length >3000km. Typical along-track footprints (1s signal integration time) have a length of about 5km. The reflection's Fresnel zone limits the footprint of coherent observations to a major axis extention between 1 to 6km dependent on the elevation. The altimetric performance depends on the signal-to-noise ratio (SNR) of the reflection. Simulation results show that precision is better than 10cm for SNR of 30dB. Whereas, it is worse than 0.5m if SNR goes down to 10dB. Precision, in general, improves towards higher elevation angles. Critical biases are introduced by atmospheric and ionospheric refraction. Corresponding correction strategies are still under investigation.

  18. Complex Plasmas under free fall conditions aboard the International Space Station

    NASA Astrophysics Data System (ADS)

    Konopka, Uwe; Thomas, Edward, Jr.; Funk, Dylan; Doyle, Brandon; Williams, Jeremiah; Knapek, Christina; Thomas, Hubertus

    2017-10-01

    Complex Plasmas are dynamically dominated by massive, highly negatively charged, micron-sized particles. They are usually strongly coupled and as a result can show fluid-like behavior or undergo phase transitions to form crystalline structures. The dynamical time scale of these systems is easily accessible in experiments because of the relatively high mass/inertia of the particles. However, the high mass also leads to sedimentation effects and as a result prevents the conduction of large scale, fully three dimensional experiments that are necessary to utilize complex plasmas as model systems in the transition to continuous media. To reduce sedimentation influences it becomes necessary to perform experiments in a free-fall (``microgravity'') environment, such as the ISS based experiment facility ``Plasma-Kristall-4'' (``PK-4''). In our paper we will present our recently started research activities to investigate the basic properties of complex plasmas by utilizing the PK-4 experiment facility aboard the ISS. We further give an overview of developments towards the next generation experiment facility ``Ekoplasma'' (formerly named ``PlasmaLab'') and discuss potential additional small-scale space-based experiment scenarios. This work was supported by the JPL/NASA (JPL-RSA 1571699), the US Dept. of Energy (DE-SC0016330) and the NSF (PHY-1613087).

  19. Primary Dendrite Arm Spacing and Trunk Diameter in Al-7-Weight-Percentage Si Alloy Directionally Solidified Aboard the International Space Station

    NASA Technical Reports Server (NTRS)

    Ghods, M.; Tewari, S. N.; Lauer, M.; Poirier, D. R.; Grugel, R. N.

    2016-01-01

    Under a NASA-ESA collaborative research project, three Al-7-weight-percentage Si samples (MICAST-6, MICAST-7 and MICAST 2-12) were directionally solidified aboard the International Space Station to determine the effect of mitigating convection on the primary dendrite array. The samples were approximately 25 centimeters in length with a diameter of 7.8 millimeter-diameter cylinders that were machined from [100] oriented terrestrially grown dendritic Al-7Si samples and inserted into alumina ampoules within the Sample Cartridge Assembly (SCA) inserts of the Low Gradient Furnace (LGF). The feed rods were partially remelted in space and directionally solidified to effect the [100] dendrite-orientation. MICAST-6 was grown at 5 microns per second for 3.75 centimeters and then at 50 microns per second for its remaining 11.2 centimeters of its length. MICAST-7 was grown at 20 microns per second for 8.5 centimeters and then at 10 microns per second for 9 centimeters of its remaining length. MICAST2-12 was grown at 40 microns per second for 11 centimeters. The thermal gradient at the liquidus temperature varied from 22 to 14 degrees Kelvin per centimeter during growth of MICAST-6, from 26 to 24 degrees Kelvin per centimeter for MICAST-7 and from 33 to 31 degrees Kelvin per centimeter for MICAST2-12. Microstructures on the transverse sections along the sample length were analyzed to determine nearest-neighbor spacing of the primary dendrite arms and trunk diameters of the primary dendrite-arrays. This was done along the lengths where steady-state growth prevailed and also during the transients associated with the speed-changes. The observed nearest-neighbor spacings during steady-state growth of the MICAST samples show a very good agreement with predictions from the Hunt-Lu primary spacing model for diffusion controlled growth. The observed primary dendrite trunk diameters during steady-state growth of these samples also agree with predictions from a coarsening-based model

  20. Facilities for Biological Research Aboard the International Space Station

    NASA Technical Reports Server (NTRS)

    Souza, Kenneth A.; Yost, Bruce D.; Berry, William E.; Johnson, Catherine C.

    1996-01-01

    A centrifuge designed as part of an integrated biological facility for installation onboard the International Space Station is presented. The requirements for the 2.5 m diameter centrifuge, which is designed for the support of biological experiments are discussed. The scientific objectives of the facility are to: provide a means of conducting fundamental studies in which gravitational acceleration is a controllable variable; provide a 1g control; determine the threshold acceleration for physiological response, and determine the value of centrifugation as a potential countermeasure for the biomedical problems associated with space flight. The implementation of the facility is reported on, and the following aspects of the facility are described: the host resources systems supply requirements such as power and data control; the habitat holding rack; the life sciences glove box; the centrifuge; the different habitats for cell culture, aquatic studies, plant research and insect research; the egg incubator, and the laboratory support equipment.

  1. International Space Station (ISS)

    NASA Image and Video Library

    2003-05-11

    Many odd looking moon photos have been captured over the years by astronauts aboard the International Space Station. Even so, this photograph, taken by the crew over Russia on May 11, 2003, must have come as a surprise. The moon which is really a quarter of a million miles away, appears to be floating inside the Earth's atmosphere. The picture is tricky because of its uneven lighting. With the sun's elevation angle at only 6 degrees, night is falling on the left side of the image while it is still broad daylight on the right side. This gradient of sunlight is the key to the illusion.

  2. International Space Station (ISS)

    NASA Image and Video Library

    2000-02-01

    The International Space Station (ISS) Payload Operations Center (POC) at NASA's Marshall Space Flight Center (MSFC) in Huntsville, Alabama, is the world's primary science command post for the (ISS), the most ambitious space research facility in human history. The Payload Operations team is responsible for managing all science research experiments aboard the Station. The center is also home for coordination of the mission-plarning work of variety of international sources, all science payload deliveries and retrieval, and payload training and safety programs for the Station crew and all ground personnel. Within the POC, critical payload information from the ISS is displayed on a dedicated workstation, reading both S-band (low data rate) and Ku-band (high data rate) signals from a variety of experiments and procedures operated by the ISS crew and their colleagues on Earth. The POC is the focal point for incorporating research and experiment requirements from all international partners into an integrated ISS payload mission plan. This photograph is an overall view of the MSFC Payload Operations Center displaying the flags of the countries participating in the ISS. The flags at the left portray The United States, Canada, France, Switzerland, Netherlands, Japan, Brazil, and Sweden. The flags at the right portray The Russian Federation, Italy, Germany, Belgium, Spain, United Kingdom, Denmark, and Norway.

  3. Pore Formation and Mobility Investigation (PFMI): Concept, Hardware Development, and Initial Analysis of Experiments Conducted Aboard the International Space Station

    NASA Technical Reports Server (NTRS)

    Grugel, Richard N.

    2003-01-01

    Porosity in the form of "bubbles and pipes" can occur during controlled directional solidification processing of metal alloys. This is a consequence that 1) precludes obtaining any meaningful scientific results and 2) is detrimental to desired material properties. Unfortunately, several Microgravity experiments have been compromised by porosity. The intent of the PFMl investigation is to conduct a systematic effort directed towards understanding porosity formation and mobility during controlled directional solidification (DS) in a microgravity environment. PFMl uses a pure transparent material, succinonitrile (SCN), as well as SCN "alloyed" with water, in conjunction with a translating temperature gradient stage so that direct observation and recording of pore generation and mobility can be made. PFMl is investigating the role of thermocapillary forces and temperature gradients in affecting bubble dynamics as well as other solidification processes in a microgravity environment. This presentation will cover the concept, hardware development, operations, and the initial results from experiments conducted aboard the International Space Station.

  4. Aboard the mid-deck of the Earth-orbiting Space Shuttle Columbia, astronaut Charles J. Brady,

    NASA Technical Reports Server (NTRS)

    1996-01-01

    STS-78 ONBOARD VIEW --- Aboard the mid-deck of the Earth-orbiting Space Shuttle Columbia, astronaut Charles J. Brady, mission specialist and a licensed amateur radio operator or ham, talks to students on Earth. Some of the crew members devoted some of their off-duty time to continue a long-standing Shuttle tradition of communicating with students and other hams between their shifts of assigned duty. Brady joined four other NASA astronauts and two international payload specialists for almost 17-days of research in support of the Life and Microgravity Spacelab (LMS-1) mission.

  5. International Space Station (ISS)

    NASA Image and Video Library

    2001-10-08

    The STS-108 crew members take a break from their training to pose for their preflight portrait. Astronauts Dominic L. Gorie right) and Mark E. Kelly, commander and pilot, respectively, are seated in front. In the rear are astronauts Linda M. Godwin and Daniel L. Tani, both mission specialists. The 12th flight to the International Space Station (ISS) and final flight of 2001, the STS-108 mission launched aboard the Space Shuttle Endeavour on December 5, 2001. They were accompanied to the ISS by the Expedition Four crew, which remained on board the orbital outpost for several months. The Expedition Three crew members returned home with the STS-108 astronauts. In addition to the Expedition crew exchange, STS-108 crew deployed the student project STARSHINE, and delivered 2.7 metric tons (3 tons) of equipment and supplies to the ISS.

  6. International Space Station (ISS)

    NASA Image and Video Library

    2002-10-16

    This image of the International Space Station (ISS) was photographed by one of the crewmembers of the STS-112 mission following separation from the Space Shuttle Orbiter Atlantis as the orbiter pulled away from the ISS. The primary payloads of this mission, International Space Station Assembly Mission 9A, were the Integrated Truss Assembly S1 (S-One), the Starboard Side Thermal Radiator Truss, and the Crew Equipment Translation Aid (CETA) cart to the ISS. The S1 truss provides structural support for the orbiting research facility's radiator panels, which use ammonia to cool the Station's complex power system. The S1 truss was attached to the S0 (S Zero) truss, which was launched on April 8, 2002 aboard the STS-110, and flows 637 pounds of anhydrous ammonia through three heat-rejection radiators. The truss is 45-feet long, 15-feet wide, 10-feet tall, and weighs approximately 32,000 pounds. The CETA cart was attached to the Mobil Transporter and will be used by assembly crews on later missions. Manufactured by the Boeing Company in Huntington Beach, California, the truss primary structure was transferred to the Marshall Space Flight Center in February 1999 for hardware installations and manufacturing acceptance testing. The launch of the STS-112 mission occurred on October 7, 2002, and its 11-day mission ended on October 18, 2002.

  7. The In-Space Soldering Investigation: To Date Analysis of Experiments Conducted on the International Space Station

    NASA Technical Reports Server (NTRS)

    Grugel, Richard N.; Gillies, D. C.; Hua, F.; Anilkumar, A.

    2006-01-01

    Soldering is a well established joining and repair process that is of particular importance in the electronics industry. Still, internal solder joint defects such as porosity are prevalent and compromise desired properties such as electrical/thermal conductivity and fatigue strength. Soldering equipment resides aboard the International Space Station (ISS) and will likely accompany Exploration Missions during transit to, as well as on, the moon and Mars. Unfortunately, detrimental porosity appears to be enhanced in lower gravity environments. To this end, the In-Space Soldering Investigation (ISSI) is being conducted in the Microgravity Workbench Area (MWA) aboard the ISS as "Saturday Science" with the goal of promoting our understanding of joining techniques, shape equilibrium, wetting phenomena, and microstructural development in a microgravity environment. The work presented here will focus on direct observation of melting dynamics and shape determination in comparison to ground-based samples, with implications made to processing in other low-gravity environments. Unexpected convection effects, masked on Earth, will also be shown as well as the value of the ISS as a research platform in support of Exploration Missions.

  8. Space-to-Ground: Genes in Space: 04/13/2018

    NASA Image and Video Library

    2018-04-12

    Can the Polymerase Chain Reaction be used to study DNA alterations on the International Space Station? NASA's Space to Ground is your weekly update on what's happening aboard the International Space Station.

  9. International Space Station (ISS)

    NASA Image and Video Library

    2001-03-10

    This in-orbit close up shows the Italian Space Agency-built multipurpose Logistics Module (MPLM), Leonardo, the primary cargo of the STS-102 mission, resting in the payload bay of the Space Shuttle Orbiter Discovery. The Leonardo MPLM is the first of three such pressurized modules that will serve as the International Space Station's (ISS') moving vans, carrying laboratory racks filled with equipment, experiments, and supplies to and from the Station aboard the Space Shuttle. The cylindrical module is approximately 21-feet long and 15- feet in diameter, weighing almost 4.5 tons. It can carry up to 10 tons of cargo in 16 standard Space Station equipment racks. Of the 16 racks the module can carry, 5 can be furnished with power, data, and fluid to support refrigerators or freezers. In order to function as an attached station module as well as a cargo transport, the logistics module also includes components that provide life support, fire detection and suppression, electrical distribution, and computer functions. The eighth station assembly flight and NASA's 103rd overall flight, STS-102 launched March 8, 2001 for an almost 13 day mission.

  10. International Space Station (ISS)

    NASA Image and Video Library

    2002-06-11

    The STS-111 mission, the 14th Shuttle mission to visit the International Space Station (ISS), was launched on June 5, 2002 aboard the Space Shuttle Orbiter Endeavour. On board were the STS-111 and Expedition Five crew members. Astronauts Kerneth D. Cockrell, commander; Paul S. Lockhart, pilot; and mission specialists Franklin R. Chang-Diaz and Philippe Perrin were the STS-111 crew members. Expedition Five crew members included Cosmonaut Valeri G. Korzun, commander; Astronaut Peggy A. Whitson and Cosmonaut Sergei Y. Treschev, flight engineers. Three space walks enabled the STS-111 crew to accomplish the delivery and installation of the Mobile Remote Servicer Base System (MBS), an important part of the Station's Mobile Servicing System that allows the robotic arm to travel the length of the Station, which is necessary for future construction tasks. In this photograph, Astronaut Philippe Perrin, representing CNES, the French Space Agency, participates in the second scheduled EVA. During the space walk, Perrin and Chang-Diaz attached power, data, and video cables from the ISS to the MBS, and used a power wrench to complete the attachment of the MBS onto the Mobile Transporter (MT).

  11. International Space Station (ISS)

    NASA Image and Video Library

    2003-03-08

    The Space Shuttle Discovery, STS-102 mission, clears launch pad 39B at the Kennedy Space Center as the sun peers over the Atlantic Ocean on March 8, 2001. STS-102's primary cargo was the Leonardo, the Italian Space Agency built Multipurpose Logistics Module (MPLM). The Leonardo MPLM is the first of three such pressurized modules that will serve as the International Space Station's (ISS') moving vans, carrying laboratory racks filled with equipment, experiments, and supplies to and from the Station aboard the Space Shuttle. The cylindrical module is approximately 21-feet long and 15- feet in diameter, weighing almost 4.5 tons. It can carry up to 10 tons of cargo in 16 standard Space Station equipment racks. Of the 16 racks the module can carry, 5 can be furnished with power, data, and fluid to support refrigerators or freezers. In order to function as an attached station module as well as a cargo transport, the logistics module also includes components that provide life support, fire detection and suppression, electrical distribution, and computer functions. NASA's 103rd overall flight and the eighth assembly flight, STS-102 was also the first flight involved with Expedition Crew rotation. The Expedition Two crew was delivered to the station while Expedition One was returned home to Earth.

  12. The International Space Station: Stepping-stone to Exploration

    NASA Technical Reports Server (NTRS)

    Gerstenmaier, William H.; Kelly, Brian K.; Kelly, Brian K.

    2005-01-01

    As the Space Shuttle returns to flight this year, major reconfiguration and assembly of the International Space Station continues as the United States and our 5 International Partners resume building and carry on operating this impressive Earth-orbiting research facility. In his January 14, 2004, speech announcing a new vision for America's space program, President Bush ratified the United States' commitment to completing construction of the ISS by 2010. The current ongoing research aboard the Station on the long-term effects of space travel on human physiology will greatly benefit human crews to venture through the vast voids of space for months at a time. The continual operation of ISS leads to new knowledge about the design, development and operation of system and hardware that will be utilized in the development of new deep-space vehicles needed to fulfill the Vision for Exploration. This paper will provide an overview of the ISS Program, including a review of the events of the past year, as well as plans for next year and the future.

  13. International Space Station (ISS)

    NASA Image and Video Library

    2002-11-28

    The 16th American assembly flight and 112th overall American flight to the International Space Station (ISS), launched on November 23, 2002 from Kennedy's launch pad 39A aboard the Space Shuttle Orbiter Endeavor STS-113. Mission objectives included the delivery of the Expedition Six Crew to the ISS, the return of Expedition Five crew back to Earth, and the installation and activation of the Port 1 Integrated Truss Assembly (P1). The first major component installed on the left side of the Station, the P1 truss provides an additional three External Thermal Control System radiators. Weighing in at 27,506 pounds, the P1 truss is 45 feet (13.7 meters) long, 15 feet (4.6 meters) wide, and 13 feet (4 meters) high. Three space walks, aided by the use of the Robotic Manipulator Systems of both the Shuttle and the Station, were performed in the installation of P1. In this photograph, astronaut and mission specialist Michael E. Lopez-Alegria works on the newly installed P1 truss during the mission's second scheduled session of extravehicular activity.

  14. International Space Station (ISS)

    NASA Image and Video Library

    2001-09-16

    Aboard the International Space Station (ISS), Cosmonaut and Expedition Three flight engineer Vladimir N. Dezhurov, representing Rosaviakosmos, talks with flight controllers from the Zvezda Service Module. Russian-built Zvezda is linked to the Functional Cargo Block (FGB), or Zarya, the first component of the ISS. Zarya was launched on a Russian Proton rocket prior to the launch of Unity. The third component of the ISS, Zvezda (Russian word for star), the primary Russian contribution to the ISS, was launched by a three-stage Proton rocket on July 12, 2000. Zvezda serves as the cornerstone for early human habitation of the Station, providing living quarters, a life support system, electrical power distribution, a data processing system, flight control system, and propulsion system. It also provides a communications system that includes remote command capabilities from ground flight controllers. The 42,000-pound module measures 43 feet in length and has a wing span of 98 feet. Similar in layout to the core module of Russia's Mir space station, it contains 3 pressurized compartments and 13 windows that allow ultimate viewing of Earth and space.

  15. The International Space Station: A Pathway to the Future

    NASA Technical Reports Server (NTRS)

    Kitmacher, Gary H.; Gerstenmaier, William H.; Bartoe, John-David F.; Mustachio, Nicholas

    2004-01-01

    Nearly six years after the launch of the first International Space Station element, and four years after its initial occupation, the United States and our 16 international partners have made great strides in operating this impressive Earth orbiting research facility. This past year we have done so in the face of the adversity of operating without the benefit of the Space Shuttle. In his January 14, 2004, speech announcing a new vision for America's space program, President Bush affirmed the United States' commitment to completing construction of the International Space Station by 2010. The President also stated that we would focus our future research aboard the Station on the longterm effects of space travel on human biology. This research will help enable human crews to venture through the vast voids of space for months at a time. In addition, ISS affords a unique opportunity to serve as an engineering test bed for hardware and operations critical to the exploration tasks. NASA looks forward to working with our partners on International Space Station research that will help open up new pathways for future exploration and discovery beyond low Earth orbit. This paper provides an overview of the International Space Station Program focusing on a review of the events of the past year, as well as plans for next year and the future.

  16. MS Lucid and Blaha with MGBX aboard the Mir space station Priroda module

    NASA Image and Video Library

    1997-03-26

    STS079-S-092 (16-26 Sept. 1996) --- Astronauts Shannon W. Lucid and John E. Blaha work at a microgravity glove box on the Priroda Module aboard Russia's Mir Space Station complex. Blaha, who flew into Earth-orbit with the STS-79 crew, and Lucid are the first participants in a series of ongoing exchanges of NASA astronauts serving time as cosmonaut guest researchers onboard Mir. Lucid went on to spend a total of 188 days in space before returning to Earth with the STS-79 crew. During the STS-79 mission, the crew used an IMAX camera to document activities aboard the Space Shuttle Atlantis and the various Mir modules, with the cooperation of the Russian Space Agency (RSA). A hand-held version of the 65mm camera system accompanied the STS-79 crew into space in Atlantis' crew cabin. NASA has flown IMAX camera systems on many Shuttle missions, including a special cargo bay camera's coverage of other recent Shuttle-Mir rendezvous and/or docking missions.

  17. International Space Station (ISS)

    NASA Image and Video Library

    2002-07-05

    Expedition Five flight engineer Peggy Whitson is shown installing the Solidification Using a Baffle in Sealed Ampoules (SUBSA) experiment in the Microgravity Science Glovebox (MSG) in the Destiny laboratory aboard the International Space Station (ISS). SUBSA examines the solidification of semiconductor crystals from a melted material. Semiconductor crystals are used for many products that touch our everyday lives. They are found in computer chips, integrated circuits, and a multitude of other electronic devices, such as sensors for medical imaging equipment and detectors of nuclear radiation. Materials scientists want to make better semiconductor crystals to be able to further reduce the size of high-tech devices. In the microgravity environment, convection and sedimentation are reduced, so fluids do not remove and deform. Thus, space laboratories provide an ideal environment of studying solidification from the melt. This investigation is expected to determine the mechanism causing fluid motion during production of semiconductors in space. It will provide insight into the role of the melt motion in production of semiconductor crystals, advancing our knowledge of the crystal growth process. This could lead to a reduction of defects in semiconductor crystals produced in space and on Earth.

  18. International Space Station (ISS)

    NASA Image and Video Library

    2002-06-01

    Backdropped against the blackness of space and the Earth's horizon, the Mobile Remote Base System (MBS) is moved by the Canadarm2 for installation on the International Space Station (ISS). Delivered by the STS-111 mission aboard the Space Shuttle Endeavour in June 2002, the MBS is an important part of the Station's Mobile Servicing System allowing the robotic arm to travel the length of the Station, which is neccessary for future construction tasks. In addition, STS-111 delivered a new crew, Expedition Five, replacing Expedition Four after remaining a record-setting 196 days in space. Three spacewalks enabled the STS-111 crew to accomplish the delivery and installation of the MBS to the Mobile Transporter on the S0 (S-zero) truss, the replacement of a wrist roll joint on the Station's robotic arm, and the task of unloading supplies and science experiments from the Leonardo Multi-Purpose Logistics Module, which made its third trip to the orbital outpost. The STS-111 mission, the 14th Shuttle mission to visit the ISS, was launched on June 5, 2002 and landed June 19, 2002.

  19. Space-to-Ground: Neuromapping: 03/16/2018

    NASA Image and Video Library

    2018-03-15

    Another science-filled week aboard the space station, and can you see the Great Wall of China from Space? NASA's Space to Ground is your weekly update on what's happening aboard the International Space Station.

  20. International Space Station (ISS)

    NASA Image and Video Library

    2001-02-01

    In the grasp of the Shuttle's Remote Manipulator System (RMS) robot arm, the U.S. Laboratory, Destiny, is moved from its stowage position in the cargo bay of the Space Shuttle Atlantis. This photograph was taken by astronaut Thomas D. Jones during his Extravehicular Activity (EVA). The American-made Destiny module is the cornerstone for space-based research aboard the orbiting platform and the centerpiece of the International Space Station (ISS), where unprecedented science experiments will be performed in the near-zero gravity of space. Destiny will also serve as the command and control center for the ISS. The aluminum module is 8.5- meters (28-feet) long and 4.3-meters (14-feet) in diameter. The laboratory consists of three cylindrical sections and two endcones with hatches that will be mated to other station components. A 50.9-centimeter (20-inch-) diameter window is located on one side of the center module segment. This pressurized module is designed to accommodate pressurized payloads. It has a capacity of 24 rack locations. Payload racks will occupy 15 locations especially designed to support experiments. The Destiny module was built by the Boeing Company under the direction of the Marshall Space Flight Center.

  1. International Space Station (ISS)

    NASA Image and Video Library

    2001-02-01

    In the grasp of the Shuttle's Remote Manipulator System (RMS) robot arm, the U.S. Laboratory, Destiny, is moved from its stowage position in the cargo bay of the Space Shuttle Atlantis. This photograph was taken by astronaut Thomas D. Jones during his Extravehicular Activity (EVA). The American-made Destiny module is the cornerstone for space-based research aboard the orbiting platform and the centerpiece of the International Space Station (ISS), where unprecedented science experiments will be performed in the near-zero gravity of space. Destiny will also serve as the command and control center for the ISS. The aluminum module is 8.5- meters (28-feet) long and 4.3-meters (14-feet) in diameter. The laboratory consists of three cylindrical sections and two endcones with hatches that will be mated to other station components. A 50.9-centimeter- (20-inch-) diameter window is located on one side of the center module segment. This pressurized module is designed to accommodate pressurized payloads. It has a capacity of 24 rack locations. Payload racks will occupy 15 locations especially designed to support experiments. The Destiny module was built by the Boeing Company under the direction of the Marshall Space Flight Center.

  2. Video-Puff of Air Hits Ball of Water in Space Onboard the International Space Station (ISS)

    NASA Technical Reports Server (NTRS)

    2003-01-01

    Saturday Morning Science, the science of opportunity series of applied experiments and demonstrations, performed aboard the International Space Station (ISS) by Expedition 6 astronaut Dr. Don Pettit, revealed some remarkable findings. In this video clip, Dr. Pettit demonstrates the phenomenon of a puff of air hitting a ball of water that is free floating in space. Watch the video to see why Dr. Pettit remarks 'I'd hate think that our planet would go through these kinds of gyrations if it got whacked by a big asteroid'.

  3. The In-Space Soldering Investigation: Research Conducted on the International Space Station in Support of NASA's Exploration Initiative

    NASA Technical Reports Server (NTRS)

    Grugel, R. N.; Fincke, M.; Sergre, P. N.; Ogle, J. A.; Funkhouser, G.; Parris, F.; Murphy, L.; Gillies, D.; Hua, F.

    2004-01-01

    Soldering is a well established joining and repair process that is of particular importance in the electronics industry. Still. internal solder joint defects such as porosity are prevalent and compromise desired properties such as electrical/thermal conductivity and fatigue strength. Soldering equipment resides aboard the International Space Station (ISS) and will likely accompany Exploration Missions during transit to, as well as on, the moon and Mars. Unfortunately, detrimental porosity appears to be enhanced in lower gravity environments. To this end, the In-Space Soldering Investigation (ISSI) is being conducted in the Microgravity Workbench Area (MWA) aboard the ISS as "Saturday Science" with the goal of promoting our understanding of joining techniques, shape equilibrium, wetting phenomena, and microstructural development in a microgravity environment. The work presented here will focus on direct observation of melting dynamics and shape determination in comparison to ground-based samples, with implications made to processing in other low-gravity environments. Unexpected convection effects, masked on Earth, will also be shown as well as the value of the ISS as a research platform in support of Exploration Missions.

  4. Ultra High Definition Video from the International Space Station (Reel 1)

    NASA Image and Video Library

    2015-06-15

    The view of life in space is getting a major boost with the introduction of 4K Ultra High-Definition (UHD) video, providing an unprecedented look at what it's like to live and work aboard the International Space Station. This important new capability will allow researchers to acquire high resolution - high frame rate video to provide new insight into the vast array of experiments taking place every day. It will also bestow the most breathtaking views of planet Earth and space station activities ever acquired for consumption by those still dreaming of making the trip to outer space.

  5. Forced Forward Smoldering Experiments Aboard The Space Shuttle

    NASA Technical Reports Server (NTRS)

    Fernandez-Pello, A. C.; Bar-Ilan, A.; Rein, G.; Urban, D. L.; Torero, J. L.

    2003-01-01

    Smoldering is a basic combustion problem that presents a fire risk because it is initiated at low temperatures and because the reaction can propagate slowly in the material interior and go undetected for long periods of time. It yields a higher conversion of fuel to toxic compounds than does flaming, and may undergo a transition to flaming. To date there have been a few minor incidents of overheated and charred cables and electrical components reported on Space Shuttle flights. With the establishment of the International Space Station, and the planning of a potential manned mission to Mars, there has been an increased interest in the study of smoldering in microgravity. The Microgravity Smoldering Combustion (MSC) experiment is part of a study of the smolder characteristics of porous combustible materials in a spacecraft environment. The aim of the experiment is to provide a better fundamental understanding of the controlling mechanisms of smoldering combustion under normal- and microgravity conditions. This in turn will aid in the prevention and control of smolder originated fires, both on earth and in spacecrafts. The microgravity smoldering experiments have to be conducted in a space-based facility because smoldering is a very slow process and consequently its study in a microgravity environment requires extended periods of time. The microgravity experiments reported here were conducted aboard the Space Shuttle. The most recent tests were conducted during the STS-105 and STS-108 missions. The results of the forward smolder experiments from these flights are reported here. In forward smolder, the reaction front propagates in the same direction as the oxidizer flow. The heat released by the heterogeneous oxidation reaction is transferred ahead of the reaction heating the unreacted fuel. The resulting increase of the virgin fuel temperature leads to the onset of the smolder reaction, and propagates through the fuel. The MSC data are compared with normal gravity

  6. International Space Station: Expedition 2000

    NASA Technical Reports Server (NTRS)

    2000-01-01

    Live footage of the International Space Station (ISS) presents an inside look at the groundwork and assembly of the ISS. Footage includes both animation and live shots of a Space Shuttle liftoff. Phil West, Engineer; Dr. Catherine Clark, Chief Scientist ISS; and Joe Edwards, Astronaut, narrate the video. The first topic of discussion is People and Communications. Good communication is a key component in our ISS endeavor. Dr. Catherine Clark uses two soup cans attached by a string to demonstrate communication. Bill Nye the Science Guy talks briefly about science aboard the ISS. Charlie Spencer, Manager of Space Station Simulators, talks about communication aboard the ISS. The second topic of discussion is Engineering. Bonnie Dunbar, Astronaut at Johnson Space Flight Center, gives a tour of the Japanese Experiment Module (JEM). She takes us inside Node 2 and the U.S. Lab Destiny. She also shows where protein crystal growth experiments are performed. Audio terminal units are used for communication in the JEM. A demonstration of solar arrays and how they are tested is shown. Alan Bell, Project Manager MRMDF (Mobile Remote Manipulator Development Facility), describes the robot arm that is used on the ISS and how it maneuvers the Space Station. The third topic of discussion is Science and Technology. Dr. Catherine Clark, using a balloon attached to a weight, drops the apparatus to the ground to demonstrate Microgravity. The bursting of the balloon is observed. Sherri Dunnette, Imaging Technologist, describes the various cameras that are used in space. The types of still cameras used are: 1) 35 mm, 2) medium format cameras, 3) large format cameras, 4) video cameras, and 5) the DV camera. Kumar Krishen, Chief Technologist ISS, explains inframetrics, infrared vision cameras and how they perform. The Short Arm Centrifuge is shown by Dr. Millard Reske, Senior Life Scientist, to subject astronauts to forces greater than 1-g. Reske is interested in the physiological effects of

  7. International Space Station (ISS)

    NASA Image and Video Library

    2001-03-08

    STS-102 astronaut and mission specialist, Andrew S.W. Thomas, gazes through an aft window of the Space Shuttle Orbiter Discovery as it approaches the docking bay of the International Space Station (ISS). Launched March 8, 2001, STS-102's primary cargo was the Leonardo, the Italian Space Agency-built Multipurpose Logistics Module (MPLM). The Leonardo MPLM is the first of three such pressurized modules that will serve as the ISS's moving vans, carrying laboratory racks filled with equipment, experiments, and supplies to and from the Station aboard the Space Shuttle. The cylindrical module is approximately 21-feet long and 15- feet in diameter, weighing almost 4.5 tons. It can carry up to 10 tons of cargo in 16 standard Space Station equipment racks. Of the 16 racks the module can carry, 5 can be furnished with power, data, and fluid to support refrigerators or freezers. In order to function as an attached station module as well as a cargo transport, the logistics module also includes components that provide life support, fire detection and suppression, electrical distribution, and computer functions. NASA's 103rd overall mission and the 8th Space Station Assembly Flight, STS-102 mission also served as a crew rotation flight. It delivered the Expedition Two crew to the Station and returned the Expedition One crew back to Earth.

  8. International Space Station (ISS)

    NASA Image and Video Library

    2001-03-01

    In this Space Shuttle STS-102 mission image, the Payload Equipment Restraint System H-Strap is shown at the left side of the U.S. Laboratory hatch and behind Astronaut James D. Weatherbee, mission specialist. PERS is an integrated modular system of components designed to assist the crew of the International Space Station (ISS) in restraining and carrying necessary payload equipment and tools in a microgravity environment. The Operations Development Group, Flight Projects Directorate at the Marshall Space Flight Center (MSFC), while providing operation support to the ISS Materials Science Research Facility (MSRF), recognized the need for an on-orbit restraint system to facilitate control of lose objects, payloads, and tools. The PERS is the offspring of that need and it helps the ISS crew manage tools and rack components that would otherwise float away in the near-zero gravity environment aboard the Space Station. The system combines Kevlar straps, mesh pockets, Velcro and a variety of cornecting devices into a portable, adjustable system. The system includes the Single Strap, the H-Strap, the Belly Pack, the Laptop Restraint Belt, and the Tool Page Case. The Single Strap and the H-Strap were flown on this mission. The PERS concept was developed by industrial design students at Auburn University and the MSFC Flight Projects Directorate.

  9. Extreme Tele-Echocardiography: Methodology for Remote Guidance of In-flight Echocardiography Aboard the International Space Station

    NASA Technical Reports Server (NTRS)

    Martin, David; Borowski, Allan; Bungo, Michael W.; Dulchavsky, Scott; Gladding, Patrick; Greenberg, Neil; Hamilton, Doug; Levine, Benjamin D.; Norwoord, Kelly; Platts, Steven H.; hide

    2011-01-01

    Echocardiography is ideally suited for cardiovascular imaging in remote environments, but the expertise to perform it is often lacking. In 2001, an ATL HDI5000 was delivered to the International Space Station (ISS). The instrument is currently being used in a study to investigate the impact of long-term microgravity on cardiovascular function. The purpose of this report is to describe the methodology for remote guidance of echocardiography in space. Methods: In the year before launch of an ISS mission, potential astronaut echocardiographic operators participate in 5 sessions to train for echo acquisitions that occur roughly monthly during the mission, including one exercise echocardiogram. The focus of training is familiarity with the study protocol and remote guidance procedures. On-orbit, real-time guidance of in-flight acquisitions is provided by a sonographer in the Telescience Center of Mission Control. Physician investigators with remote access are able to relay comments on image optimization to the sonographer. Live video feed is relayed from the ISS to the ground via the Tracking and Data Relay Satellite System with a 2 second transmission delay. The expert sonographer uses these images along with two-way audio to provide instructions and feedback. Images are stored in non-compressed DICOM format for asynchronous relay to the ground for subsequent off-line analysis. Results: Since June, 2009, a total of 19 resting echocardiograms and 4 exercise studies have been performed in-flight. Average acquisition time has been 45 minutes, reflecting 26,000 km of ISS travel per study. Image quality has been adequate in all studies, but remote guidance has proven imperative for fine-tuning imaging and prioritizing views when communication outages limit the study duration. Typical resting studies have included 12 video loops and 21 still-frame images requiring 750 MB of storage. Conclusions: Despite limited crew training, remote guidance allows research

  10. Commercial investments in Combustion research aboard ISS

    NASA Astrophysics Data System (ADS)

    Schowengerdt, F. D.

    2000-01-01

    The Center for Commercial Applications of Combustion in Space (CCACS) at the Colorado School of Mines is working with a number of companies planning commercial combustion research to be done aboard the International Space Station (ISS). This research will be conducted in two major ISS facilities, SpaceDRUMS™ and the Fluids and Combustion Facility. SpaceDRUMS™, under development by Guigne Technologies, Ltd., of St. John's Newfoundland, is a containerless processing facility employing active acoustic sample positioning. It is capable of processing the large samples needed in commercial research and development with virtually complete vibration isolation from the space station. The Fluids and Combustion Facility (FCF), being developed by NASA-Glenn Research Center in Cleveland, is a general-purpose combustion furnace designed to accommodate a wide range of scientific experiments. SpaceDRUMS™ will be the first commercial hardware to be launched to ISS. Launch is currently scheduled for UF-1 in 2001. The CCACS research to be done in SpaceDRUMS™ includes combustion synthesis of glass-ceramics and porous materials. The FCF is currently scheduled to be launched to ISS aboard UF-3 in 2002. The CCACS research to be done in the FCF includes water mist fire suppression, catalytic combustion and flame synthesis of ceramic powders. The companies currently planning to be involved in the research include Guigne International, Ltd., Technology International, Inc., Coors Ceramics Company, TDA Research, Advanced Refractory Technologies, Inc., ADA Technologies, Inc., ITN Energy Systems, Inc., Innovative Scientific Solutions, Inc., Princeton Instruments, Inc., Environmental Engineering Concepts, Inc., and Solar Turbines, Inc. Together, these companies are currently investing almost $2 million in cash and in-kind annually toward the seven commercial projects within CCACS. Total private investment in CCACS research to date is over $7 million. .

  11. International Space Station (ISS)

    NASA Image and Video Library

    2001-03-11

    STS-102 mission astronaut Susan J. Helms translates along the longerons of the Space Shuttle Discovery during the first of two space walks. During this walk, the Pressurized Mating Adapter 3 was prepared for repositioning from the Unity Module's Earth-facing berth to its port-side berth to make room for the Leonardo multipurpose Logistics Module (MPLM), supplied by the Italian Space Agency. The Leonardo MPLM is the first of three such pressurized modules that will serve as the International Space Station's (ISS') moving vans, carrying laboratory racks filled with equipment, experiments, and supplies to and from the Station aboard the Space Shuttle. The cylindrical module is approximately 21-feet long and 15- feet in diameter, weighing almost 4.5 tons. It can carry up to 10 tons of cargo in 16 standard Space Station equipment racks. Of the 16 racks the module can carry, 5 can be furnished with power, data, and fluid to support refrigerators or freezers. In order to function as an attached station module as well as a cargo transport, the logistics module also includes components that provide life support, fire detection and suppression, electrical distribution, and computer functions. NASA's 103rd overall mission and the 8th Space Station Assembly Flight, STS-102 mission also served as a crew rotation flight. It delivered the Expedition Two crew to the Station and returned the Expedition One crew back to Earth.

  12. International Space Station (ISS)

    NASA Image and Video Library

    2002-06-09

    The STS-111 mission, the 14th Shuttle mission to visit the International Space Station (ISS), was launched on June 5, 2002 aboard the Space Shuttle Orbiter Endeavour. On board were the STS-111 and Expedition Five crew members. Astronauts Kerneth D. Cockrell, commander; Paul S. Lockhart, pilot, and mission specialists Franklin R. Chang-Diaz and Philippe Perrin were the STS-111 crew members. Expedition Five crew members included Cosmonaut Valeri G. Korzun, commander, Astronaut Peggy A. Whitson and Cosmonaut Sergei Y. Treschev, flight engineers. Three space walks enabled the STS-111 crew to accomplish mission objectives: The delivery and installation of the Mobile Remote Servicer Base System (MBS), an important part of the Station's Mobile Servicing System that allows the robotic arm to travel the length of the Station, which is necessary for future construction tasks; the replacement of a wrist roll joint on the Station's robotic arm; and the task of unloading supplies and science experiments from the Leonardo multipurpose Logistics Module, which made its third trip to the orbital outpost. In this photograph, the Space Shuttle Endeavour, back dropped by the blackness of space, is docked to the pressurized Mating Adapter (PMA-2) at the forward end of the Destiny Laboratory on the ISS. Endeavour's robotic arm is in full view as it is stretched out with the S0 (S-zero) Truss at its end.

  13. The Node 1 (or Unity) Module for the International Space Station

    NASA Technical Reports Server (NTRS)

    1997-01-01

    This photograph, taken by the Boeing Company, shows Node 1 (also called Unity), the first U.S. Module for the International Space Station (ISS), with its hatch door installed. The Node 1, or Unity, serves as a cornecting passageway to Space Station modules and was manufactured by the Boeing Company at the Marshall Space Flight Center from 1994 to 1997. The U.S. built Unity module was launched aboard the orbiter Endeavour (STS-88 mission) on December 4, 1998 and connected to the Zarya, the Russian-built Functional Energy Block (FGB). The Zarya was launched on a Russian proton rocket prior to the launch of the Unity. The ISS is a multidisciplinary laboratory, technology test bed, and observatory that will provide unprecedented undertakings in scientific, technological, and international experimentation.

  14. Microgravity Science Glovebox (MSG) Space Sciences's Past, Present, and Future on the International Space Station (ISS)

    NASA Technical Reports Server (NTRS)

    Spivey, Reggie A.; Jordan, Lee P.

    2012-01-01

    The Microgravity Science Glovebox (MSG) is a double rack facility designed for microgravity investigation handling aboard the International Space Station (ISS). The unique design of the facility allows it to accommodate science and technology investigations in a "workbench" type environment. MSG facility provides an enclosed working area for investigation manipulation and observation in the ISS. Provides two levels of containment via physical barrier, negative pressure, and air filtration. The MSG team and facilities provide quick access to space for exploratory and National Lab type investigations to gain an understanding of the role of gravity in the physics associated research areas.

  15. One Year Crew Docking to the International Space Station

    NASA Image and Video Library

    2015-05-27

    This video was taken by the crew members aboard the Soyuz TMA-16M spacecraft which docked to the International Space Station at 9:33 p.m. EDT March 27, 2015. NASA astronaut Scott Kelly and Russian cosmonauts Mikhail Kornienko and Gennady Padalka arrived just six hours after launching from Baikonur, Kazakhstan, completing four orbits around the Earth before catching up with the orbiting laboratory. The vehicle docked to the Poisk module (also known as the Mini-Research Module 2) on the space-facing side of the Russian Service Module. The spinning object in view is an antenna that is part of the automatic rendezvous and docking system known as KURS.

  16. Cases in Space Medicine: Right Lower Quadrant Abdominal Pain in a Female Crewmember on the International Space Station

    NASA Technical Reports Server (NTRS)

    Hamilton, Douglas R.; Scheuring, Richard; Jones, Jeffery

    2007-01-01

    A case study of a medical emergency aboard the International Space Station is reviewed. The case involves a female crewmember who is experiencing acute abdominal pain. The interplay of the Crew Medical Officer (CMO) and the NASA Flight Surgeon is given. Possible diagnoses, and advised medical actions are reviewed. Along the case study questions are posed to the reader, and at the end answers are given.

  17. Video- Soldering Iron Inserted Through a Film of Water Onboard the International Space Station (ISS)

    NASA Technical Reports Server (NTRS)

    2003-01-01

    Saturday Morning Science, the science of opportunity series of applied experiments and demonstrations, performed aboard the International Space Station (ISS) by Expedition 6 astronaut Dr. Don Pettit, revealed some remarkable findings. In this video, Dr. Pettit demonstrates the result of inserting a soldering iron into a thin film or sheet of water in space. Dr. Pettit makes comparative comments about the differences and similarities of boiling processes in space and on Earth.

  18. Student Pave Way for First Microgravity Experiments on International Space Station

    NASA Technical Reports Server (NTRS)

    1999-01-01

    Christiane Gumera, right, a student at Stanton College Preparatory High School in Jacksonville, AL, examines a protein sample while preparing an experiment for flight on the International Space Station (ISS). Merle Myers, left, a University of California, Irvine, researcher, prepares to quick-freeze protein samples in nitrogen. The proteins are in a liquid nitrogen Dewar. Aboard the ISS, the nitrogen will be allowed to evaporated so the samples thaw and then slowly crystallize. They will be anlyzed after return to Earth. Photo credit: NASA/Marshall Space Flight Center (MSFC)

  19. Solar EUV Irradiance Measurements by the Auto-Calibrating EUV Spectrometers (SolACES) Aboard the International Space Station (ISS)

    NASA Astrophysics Data System (ADS)

    Schmidtke, G.; Nikutowski, B.; Jacobi, C.; Brunner, R.; Erhardt, C.; Knecht, S.; Scherle, J.; Schlagenhauf, J.

    2014-05-01

    SolACES is part of the ESA SOLAR ISS mission that started aboard the shuttle mission STS-122 on 7 February 2008. The instrument has recorded solar extreme ultraviolet (EUV) irradiance from 16 to 150 nm during the extended solar activity minimum and the beginning solar cycle 24 with rising solar activity and increasingly changing spectral composition. The SOLAR mission has been extended from a period of 18 months to > 8 years until the end of 2016. SolACES is operating three grazing incidence planar grating spectrometers and two three-current ionization chambers. The latter ones are considered as primary radiometric detector standards. Re-filling the ionization chambers with three different gases repeatedly and using overlapping band-pass filters, the absolute EUV fluxes are derived in these spectral intervals. This way the serious problem of continuing efficiency changes in space-borne instrumentation is overcome during the mission. Evaluating the three currents of the ionization chambers, the overlapping spectral ranges of the spectrometers and of the filters plus inter-comparing the results from the EUV photon absorption in the gases with different absorption cross sections, there are manifold instrumental possibilities to cross-check the results providing a high degree of reliability to the spectral irradiance derived. During the mission a very strong up-and-down variability of the spectrometric efficiency by orders of magnitude is observed. One of the effects involved is channeltron degradation. However, there are still open questions on other effects contributing to these changes. A survey of the measurements carried out and first results of the solar spectral irradiance (SSI) data are presented. Inter-comparison with EUV data from other space missions shows good agreement such that the international effort has started to elaborate a complete set of EUV-SSI data taking into account all data available from 2008 to 2013.

  20. SPACE STATION CREW MEMBER DISCUSSES LIFE IN SPACE WITH GEORGIA STUDENTS

    NASA Image and Video Library

    2017-06-19

    Aboard the International Space Station, Flight Engineer Jack Fischer of NASA discussed life and research aboard the orbital laboratory June 19 with students gathered at the Fayette County Public Library in Fayette, Georgia during an educational in-flight event.

  1. Space-to-Ground: Space Spinners:11/03/2017

    NASA Image and Video Library

    2017-11-02

    The crew spent this week enabling long term missions and long distance learning...and how long would a fidget spinner spin in space? Space to Ground is your weekly update on what's happening aboard the International Space Station.

  2. Science and Technology Research Directions for the International Space Station

    NASA Technical Reports Server (NTRS)

    1999-01-01

    The International Space Station (ISS) is a unique and unprecedented space research facility. Never before have scientists and engineers had access to such a robust, multidisciplinary, long-duration microgravity laboratory. To date, the research community has enjoyed success aboard such platforms as Skylab, the Space Shuttle, and the Russian Mir space station. However, these platforms were and are limited in ways that the ISS is not. Encompassing four times the volume of Mir, the ISS will support dedicated research facilities for at least a dozen scientific and engineering disciplines. Unlike the Space Shuttle, which must return to Earth after less than three weeks in space, the ISS will accommodate experiments that require many weeks even months to complete. Continual access to a microgravity laboratory will allow selected scientific disciplines to progress at a rate far greater than that obtainable with current space vehicles.

  3. International Space Station (ISS)

    NASA Image and Video Library

    2001-02-16

    The International Space Station (ISS), with the newly installed U.S. Laboratory, Destiny, is backdropped over clouds, water and land in South America. South Central Chile shows up at the bottom of the photograph. Just below the Destiny, the Chacao Charnel separates the large island of Chile from the mainland and connects the Gulf of Coronado on the Pacific side with the Gulf of Ancud, southwest of the city of Puerto Montt. The American-made Destiny module is the cornerstone for space-based research aboard the orbiting platform and the centerpiece of the ISS, where unprecedented science experiments will be performed in the near-zero gravity of space. Destiny will also serve as the command and control center for the ISS. The aluminum module is 8.5-meters (28-feet) long and 4.3-meters (14-feet) in diameter. The laboratory consists of three cylindrical sections and two endcones with hatches that will be mated to other station components. A 50.9-centimeter (20-inch-) diameter window is located on one side of the center module segment. This pressurized module is designed to accommodate pressurized payloads. It has a capacity of 24 rack locations. Payload racks will occupy 15 locations especially designed to support experiments. The Destiny module was built by the Boeing Company under the direction of the Marshall Space Flight Center.

  4. International Space Station (ISS)

    NASA Image and Video Library

    2001-03-01

    Pilot James M. Kelly (left) and Commander James D. Wetherbee for the STS-102 mission, participate in the movement of supplies inside Leonardo, the Italian Space Agency built Multipurpose Logistics Module (MPLM). In this particular photograph, the two are handling a film magazine for the IMAX cargo bay camera. The primary cargo of the STS-102 mission, the Leonardo MPLM is the first of three such pressurized modules that will serve as the International Space Station's (ISS') moving vans, carrying laboratory racks filled with equipment, experiments, and supplies to and from the Station aboard the Space Shuttle. The cylindrical module is approximately 21-feet long and 15- feet in diameter, weighing almost 4.5 tons. It can carry up to 10 tons of cargo in 16 standard Space Station equipment racks. Of the 16 racks the module can carry, 5 can be furnished with power, data, and fluid to support refrigerators or freezers. In order to function as an attached station module as well as a cargo transport, the logistics module also includes components that provide life support, fire detection and suppression, electrical distribution, and computer functions. The eighth station assembly flight, the STS-102 mission also served as a crew rotation flight. It delivered the Expedition Two crew to the Station and returned the Expedition One crew back to Earth.

  5. International Space Station (ISS)

    NASA Image and Video Library

    2002-06-09

    The STS-111 mission, the 14th Shuttle mission to visit the International Space Station (ISS), was launched on June 5, 2002 aboard the Space Shuttle Orbiter Endeavour. On board were the STS-111 and Expedition Five crew members. Astronauts Kerneth D. Cockrell, commander; Paul S. Lockhart, pilot, and mission specialists Franklin R. Chang-Diaz and Philippe Perrin were the STS-111 crew members. Expedition Five crew members included Cosmonaut Valeri G. Korzun, commander, Astronaut Peggy A. Whitson and Cosmonaut Sergei Y. Treschev, flight engineers. Three space walks enabled the STS-111 crew to accomplish the delivery and installation of the Mobile Remote Servicer Base System (MBS), an important part of the Station's Mobile Servicing System that allows the robotic arm to travel the length of the Station, which is necessary for future construction tasks; the replacement of a wrist roll joint on the Station's robotic arm; and the task of unloading supplies and science experiments from the Leonardo multipurpose Logistics Module, which made its third trip to the orbital outpost. In this photograph, the Space Shuttle Endeavour, back dropped by the blackness of space, is docked to the pressurized Mating Adapter (PMA-2) at the forward end of the Destiny Laboratory on the ISS. A portion of the Canadarm2 is visible on the right and Endeavour's robotic arm is in full view as it is stretched out with the S0 (S-zero) Truss at its end.

  6. U.S. Laboratory Module (Destiny) for the International Space Station

    NASA Technical Reports Server (NTRS)

    1997-01-01

    This photograph shows the U.S. Laboratory Module (also called Destiny) for the International Space Station (ISS), under construction in the Space Station manufacturing facility at the Marshall Space Flight Center. The U.S. Laboratory module is the centerpiece of the ISS, where science experiments will be performed in the near-zero gravity of space. The Destiny Module was launched aboard the Space Shuttle orbiter Atlantis (STS-67 mission) on February 7, 2001. The aluminum module is 8.5 meters (28 feet) long and 4.3 meters (14 feet) in diameter. The laboratory consists of three cylindrical sections and two end cones with hatches that will be mated to other station components. A 50.9-centimeter- (20-inch-) diameter window is located on one side of the center module segment. This pressurized module is designed to accommodate pressurized payloads. It has a capacity of 24 rack locations, and payload racks will occupy 13 locations especially designed to support experiments. The ISS is a multidisciplinary laboratory, technology test bed, and observatory that will provide unprecedented undertakings in scientific, technological, and international experimentation.

  7. Commercial Seed Selection and Effectiveness of Sanitization Methods in Preparation for Plant Growth Experiments on the International Space Station

    NASA Technical Reports Server (NTRS)

    Boehm, Emma

    2017-01-01

    A closed-loop food production system will be important to gain autonomy on long duration space missions. Crop growth experiments in the Veggie plant chamber aboard the International Space Station (ISS) are helping to identify methods and limitations of food production in space. Prior to flight, seeds are surface sterilized to reduce environmental and crew contamination risks.

  8. The Node 1 (or Unity) Module for the International Space Station

    NASA Technical Reports Server (NTRS)

    1997-01-01

    This photograph, taken by the Boeing Company,shows Boeing technicians preparing to install one of six hatches or doors to the Node 1 (also called Unity), the first U.S. Module for the International Space Station (ISS). The Node 1, or Unity, serves as a cornecting passageway to Space Station modules and was manufactured by the Boeing Company at the Marshall Space Flight Center from 1994 to 1997. The U.S. built Unity module was launched aboard the orbiter Endeavour (STS-88 mission) on December 4, 1998 and connected to the Zarya, the Russian-built Functional Energy Block (FGB). The Zarya was launched on a Russian proton rocket prior to the launch of the Unity. The ISS is a multidisciplinary laboratory, technology test bed, and observatory that will provide unprecedented undertakings in scientific, technological, and international experimentation.

  9. The Node 1 (or Unity) Module for the International Space Station

    NASA Technical Reports Server (NTRS)

    1997-01-01

    This photograph, taken by the Boeing Company, shows Boeing technicians preparing to install one of six hatches or doors to the Node 1 (also called Unity), the first U.S. Module for the International Space Station (ISS). The Node 1, or Unity, serves as a cornecting passageway to Space Station modules and was manufactured by the Boeing Company at the Marshall Space Flight Center from 1994 to 1997. The U.S. built Unity module was launched aboard the orbiter Endeavour (STS-88 mission) on December 4, 1998 and connected to the Zarya, the Russian-built Functional Energy Block (FGB). The Zarya was launched on a Russian proton rocket prior to the launch of the Unity. The ISS is a multidisciplinary laboratory, technology test bed, and observatory that will provide unprecedented undertakings in scientific, technological, and international experimentation.

  10. Cabin Air Quality On Board Mir and the International Space Station: A Comparison

    NASA Technical Reports Server (NTRS)

    Macatangay, Ariel; Perry, Jay L.

    2007-01-01

    The maintenance of the cabin atmosphere aboard spacecraft is critical not only to its habitability but also to its function. Ideally, air quality can be maintained by striking a proper balance between the generation and removal of contaminants. Both very dynamic processes, the balance between generation and removal can be difficult to maintain and control because the state of the cabin atmosphere is in constant evolution responding to different perturbations. Typically, maintaining a clean cabin environment on board crewed spacecraft and space habitats is the central function of the environmental control and life support (ECLS) system. While active air quality control equipment is deployed on board every vehicle to remove carbon dioxide, water vapor, and trace chemical components from the cabin atmosphere, perturbations associated with logistics, vehicle construction and maintenance, and ECLS system configuration influence the resulting cabin atmospheric quality. The air-quality data obtained from the International Space Station (ISS) and NASA-Mir programs provides a wealth of information regarding the maintenance of the cabin atmosphere aboard long-lived space habitats. A comparison of the composition of the trace chemical contaminant load is presented. Correlations between ground-based and in-flight operations that influence cabin atmospheric quality are identified and discussed, and observations on cabin atmospheric quality during the NASA-Mir expeditions and the International Space Station are explored.

  11. Space Product Development (SPD)

    NASA Image and Video Library

    2003-02-09

    This composite image shows soybean plants growing in the Advanced Astroculture experiment aboard the International Space Station during June 11-July 2, 2002. DuPont is partnering with NASA and the Wisconsin Center for Space Automation and Robotics (WCSAR) at the University of Wisconsin-Madison to grow soybeans aboard the Space Station to find out if they have improved oil, protein, carbohydrates or secondary metabolites that could benefit farmers and consumers. Principal Investigators: Dr. Tom Corbin, Pioneer Hi-Bred International Inc., a Dupont Company, with headquarters in Des Moines, Iowa, and Dr. Weijia Zhou, Wisconsin Center for Space Automation and Robotics (WCSAR), University of Wisconsin-Madison.

  12. International Space Station (ISS)

    NASA Image and Video Library

    2001-03-13

    Astronaut Paul W. Richards, STS-102 mission specialist, works in the cargo bay of the Space Shuttle Discovery during the second of two scheduled space walks. Richards, along with astronaut Andy Thomas, spent 6.5 hours outside the International Space Station (ISS), continuing work to outfit the station and prepare for delivery of its robotic arm. STS-102 delivered the first Multipurpose Logistics Modules (MPLM) named Leonardo, which was filled with equipment and supplies to outfit the U.S. Destiny Laboratory Module. The Leonardo MPLM is the first of three such pressurized modules that will serve as the ISS' moving vans, carrying laboratory racks filled with equipment, experiments, and supplies to and from the Station aboard the Space Shuttle. The cylindrical module is approximately 21-feet long and 15- feet in diameter, weighing almost 4.5 tons. It can carry up to 10 tons of cargo in 16 standard Space Station equipment racks. Of the 16 racks the module can carry, 5 can be furnished with power, data, and fluid to support refrigerators or freezers. In order to function as an attached station module as well as a cargo transport, the logistics module also includes components that provide life support, fire detection and suppression, electrical distribution, and computer functions. NASA's 103rd overall mission and the 8th Space Station Assembly Flight, STS-102 mission also served as a crew rotation flight. It delivered the Expedition Two crew to the Station and returned the Expedition One crew back to Earth.

  13. International Space Station (ISS)

    NASA Image and Video Library

    2001-03-10

    STS-102 mission astronauts James S. Voss and James D. Weatherbee share a congratulatory handshake as the Space Shuttle Orbiter Discovery successfully docks with the International Space Station (ISS). Photographed from left to right are: Astronauts Susan J. Helms, mission specialist; James S. Voss, Expedition 2 crew member; James D. Weatherbee, mission commander; Andrew S.W. Thomas, mission specialist; and nearly out of frame is James M. Kelley, Pilot. Launched March 8, 2001, STS-102's primary cargo was the Leonardo, the Italian Space Agency-built Multipurpose Logistics Module (MPLM). The Leonardo MPLM is the first of three such pressurized modules that will serve as ISS' moving vans, carrying laboratory racks filled with equipment, experiments, and supplies to and from the Station aboard the Space Shuttle. The cylindrical module is approximately 21-feet long and 15- feet in diameter, weighing almost 4.5 tons. It can carry up to 10 tons of cargo in 16 standard Space Station equipment racks. Of the 16 racks the module can carry, 5 can be furnished with power, data, and fluid to support refrigerators or freezers. In order to function as an attached station module as well as a cargo transport, the logistics module also includes components that provide life support, fire detection and suppression, electrical distribution, and computer functions. NASA's 103rd overall mission and the 8th Space Station Assembly Flight, STS-102 mission also served as a crew rotation flight. It delivered the Expedition Two crew to the Station and returned the Expedition One crew back to Earth.

  14. Microbial Diversity Aboard Spacecraft: Evaluation of the International Space Station

    NASA Technical Reports Server (NTRS)

    Castro, Victoria A.; Thrasher, Adrianna N.; Healy, Mimi; Ott, C. Mark; Pierson, Duane L.

    2003-01-01

    An evaluation of the microbial flora from air, water, and surface samples provided a baseline of microbial diversity onboard the International Space Station (ISS) to gain insight into bacterial and fungal contamination during the initial stages of construction and habitation. Using 16S genetic sequencing and rep-PeR, 63 bacterial strains were isolated for identification and fingerprinted for microbial tracking. The use of these molecular tools allowed for the identification of bacteria not previously identified using automated biochemical analysis and provided a clear indication of the source of several ISS contaminants. Fungal and bacterial data acquired during monitoring do not suggest there is a current microbial hazard to the spacecraft, nor does any trend indicate a potential health risk. Previous spacecraft environmental analysis indicated that microbial contamination will increase with time and require continued surveillance.

  15. Video-Growing Salt Crystals Onboard the International Space Station (ISS)

    NASA Technical Reports Server (NTRS)

    2003-01-01

    Saturday Morning Science, the science of opportunity series of applied experiments and demonstrations, performed aboard the International Space Station (ISS) by Expedition 6 astronaut Dr. Don Pettit, revealed some remarkable findings. Growing salt crystals in a bottle of water is a favorite science activity for kids. In space, Dr. Pettit grew salt crystals in stretched films of water so that the salt water only fed the crystals around the edges rather than from all sides, as happens in a glass of water. This video of his demonstration shows that surface tension plays a surprisingly dominant role in the crystal formation and convection is more active that one might expect.

  16. Space-to-Ground: Quick Work: 10/13/2017

    NASA Image and Video Library

    2017-10-12

    Astronauts continue maintenance outside the International Space Station...and artificial gravity on the station? Space to Ground is your weekly update on what's happening aboard the International Space Station.

  17. U.S. Laboratory Module (Destiny) for the International Space Station

    NASA Technical Reports Server (NTRS)

    1998-01-01

    This photograph shows the U.S. Laboratory Module (also called Destiny) for the International Space Station (ISS), in the Space Station manufacturing facility at the Marshall Space Flight Center, being readied for shipment to the Kennedy Space Center. The U.S. Laboratory module is the centerpiece of the ISS, where science experiments will be performed in the near-zero gravity of space. The Destiny Module was launched aboard the Space Shuttle orbiter Atlantis (STS-67 mission) on February 7, 2001. The aluminum module is 8.5 meters (28 feet) long and 4.3 meters (14 feet) in diameter. The laboratory consists of three cylindrical sections and two endcones with hatches that will be mated to other station components. A 50.9-centimeter- (20-inch-) diameter window is located on one side of the center module segment. This pressurized module is designed to accommodate pressurized payloads. It has a capacity of 24 rack locations, and payload racks will occupy 13 locations especially designed to support experiments. The ISS is a multidisciplinary laboratory, technology test bed, and observatory that will provide unprecedented undertakings in scientific, technological, and international experimentation.

  18. International Space Station (ISS)

    NASA Image and Video Library

    2001-03-11

    STS-102 mission astronaut Susan J. Helms works outside the International Space Station (ISS) while holding onto a rigid umbilical and her feet anchored to the Remote Manipulator System (RMS) robotic arm on the Space Shuttle Discovery during the first of two space walks. During this space walk, the longest to date in space shuttle history, Helms in tandem with James S. Voss (out of frame), prepared the Pressurized Mating Adapter 3 for repositioning from the Unity Module's Earth-facing berth to its port-side berth to make room for the Leonardo Multipurpose Logistics Module (MPLM) supplied by the Italian Space Agency. The Leonardo MPLM is the first of three such pressurized modules that will serve as the ISS's moving vans, carrying laboratory racks filled with equipment, experiments, and supplies to and from the Station aboard the Space Shuttle. The cylindrical module is approximately 21-feet long and 15- feet in diameter, weighing almost 4.5 tons. It can carry up to 10 tons of cargo in 16 standard Space Station equipment racks. Of the 16 racks the module can carry, 5 can be furnished with power, data, and fluid to support refrigerators or freezers. In order to function as an attached station module as well as a cargo transport, the logistics module also includes components that provide life support, fire detection and suppression, electrical distribution, and computer functions. Launched on May 8, 2001 for nearly 13 days in space, STS-102 mission was the 8th spacecraft assembly flight to the ISS and NASA's 103rd overall mission. The mission also served as a crew rotation flight. It delivered the Expedition Two crew to the Station and returned the Expedition One crew back to Earth.

  19. International Space Station (ISS)

    NASA Image and Video Library

    2001-03-11

    STS-102 astronaut and mission specialist James S. Voss works outside Destiny, the U.S. Laboratory (shown in lower frame) on the International Space Station (ISS), while anchored to the Remote Manipulator System (RMS) robotic arm on the Space Shuttle Discovery during the first of two space walks. During this space walk, the longest to date in space shuttle history, Voss in tandem with Susan Helms (out of frame), prepared the Pressurized Mating Adapter 3 for repositioning from the Unity Module's Earth-facing berth to its port-side berth to make room for the Leonardo Multipurpose Logistics Module (MPLM) supplied by the Italian Space Agency. The The Leonardo MPLM is the first of three such pressurized modules that will serve as the ISS' moving vans, carrying laboratory racks filled with equipment, experiments, and supplies to and from the Station aboard the Space Shuttle. The cylindrical module is approximately 21-feet long and 15- feet in diameter, weighing almost 4.5 tons. It can carry up to 10 tons of cargo in 16 standard Space Station equipment racks. Of the 16 racks the module can carry, 5 can be furnished with power, data, and fluid to support refrigerators or freezers. In order to function as an attached station module as well as a cargo transport, the logistics module also includes components that provide life support, fire detection and suppression, electrical distribution, and computer functions. Launched on May 8, 2001 for nearly 13 days in space, the STS-102 mission was the 8th spacecraft assembly flight to the ISS and NASA's 103rd overall mission. The mission also served as a crew rotation flight. It delivered the Expedition Two crew to the Station and returned the Expedition One crew back to Earth.

  20. Student Pave Way for First Microgravity Experiments on International Space Station

    NASA Technical Reports Server (NTRS)

    1999-01-01

    Chemist Arna Holmes, left, from the University of Alabama in Huntsville, teaches NaLonda Moorer, center, and Maricar Bana, right, both from Terry Parker High School in Jacksonville, Fl, procedures for preparing protein crystal growth samples for flight aboard the International Space Station (ISS). NASA/Marshall Space Flight Center in Huntsville, AL, is a sponsor for this educational activity. The proteins are placed in plastic tubing that is heat-sealed at the ends, then flash-frozen and preserved in a liquid nitrogen Dewar. Aborad the ISS, the nitrogen will be allowed to evaporated so the samples thaw and then slowly crystallize. They will be analyzed after return to Earth. Photo credit: NASA/Marshall Space Flight Center (MSFC)

  1. [Cell biology researches aboard the robotic space vehicles: preparation and performance].

    PubMed

    Tairbekov, M G

    2006-01-01

    The article reviews the unique aspects of preparation and performance of cell biology experiments flown on robotic space vehicles Bion and Foton, and gives an overview of key findings in researches made under the author's leadership over the past decades. Described are the criteria of selecting test objects, and the conditions required for preparation and implementation of space and control (synchronous) experiments. The present-day status and issues of researches into cell responsivity to space microgravity and other factors are discussed. Also, potentialities of equipment designed to conduct experiments with cell cultures in vitro and populations of single-celled organisms are presented, as well as some ideas for new devices and systems. Unveiled are some circumstances inherent to the development and performance of space experiments, setting up laboratory facilities at the launch and landing site, and methods of safe transportation and storage of biosamples. In conclusion, the author puts forward his view on biospecies, equipment and areas of research aboard future space vehicles.

  2. Synthetic torpor: A method for safely and practically transporting experimental animals aboard spaceflight missions to deep space.

    PubMed

    Griko, Yuri; Regan, Matthew D

    2018-02-01

    Animal research aboard the Space Shuttle and International Space Station has provided vital information on the physiological, cellular, and molecular effects of spaceflight. The relevance of this information to human spaceflight is enhanced when it is coupled with information gleaned from human-based research. As NASA and other space agencies initiate plans for human exploration missions beyond low Earth orbit (LEO), incorporating animal research into these missions is vitally important to understanding the biological impacts of deep space. However, new technologies will be required to integrate experimental animals into spacecraft design and transport them beyond LEO in a safe and practical way. In this communication, we propose the use of metabolic control technologies to reversibly depress the metabolic rates of experimental animals while in transit aboard the spacecraft. Compared to holding experimental animals in active metabolic states, the advantages of artificially inducing regulated, depressed metabolic states (called synthetic torpor) include significantly reduced mass, volume, and power requirements within the spacecraft owing to reduced life support requirements, and mitigated radiation- and microgravity-induced negative health effects on the animals owing to intrinsic physiological properties of torpor. In addition to directly benefitting animal research, synthetic torpor-inducing systems will also serve as test beds for systems that may eventually hold human crewmembers in similar metabolic states on long-duration missions. The technologies for inducing synthetic torpor, which we discuss, are at relatively early stages of development, but there is ample evidence to show that this is a viable idea and one with very real benefits to spaceflight programs. The increasingly ambitious goals of world's many spaceflight programs will be most quickly and safely achieved with the help of animal research systems transported beyond LEO; synthetic torpor may

  3. Synthetic torpor: A method for safely and practically transporting experimental animals aboard spaceflight missions to deep space

    NASA Astrophysics Data System (ADS)

    Griko, Yuri; Regan, Matthew D.

    2018-02-01

    Animal research aboard the Space Shuttle and International Space Station has provided vital information on the physiological, cellular, and molecular effects of spaceflight. The relevance of this information to human spaceflight is enhanced when it is coupled with information gleaned from human-based research. As NASA and other space agencies initiate plans for human exploration missions beyond low Earth orbit (LEO), incorporating animal research into these missions is vitally important to understanding the biological impacts of deep space. However, new technologies will be required to integrate experimental animals into spacecraft design and transport them beyond LEO in a safe and practical way. In this communication, we propose the use of metabolic control technologies to reversibly depress the metabolic rates of experimental animals while in transit aboard the spacecraft. Compared to holding experimental animals in active metabolic states, the advantages of artificially inducing regulated, depressed metabolic states (called synthetic torpor) include significantly reduced mass, volume, and power requirements within the spacecraft owing to reduced life support requirements, and mitigated radiation- and microgravity-induced negative health effects on the animals owing to intrinsic physiological properties of torpor. In addition to directly benefitting animal research, synthetic torpor-inducing systems will also serve as test beds for systems that may eventually hold human crewmembers in similar metabolic states on long-duration missions. The technologies for inducing synthetic torpor, which we discuss, are at relatively early stages of development, but there is ample evidence to show that this is a viable idea and one with very real benefits to spaceflight programs. The increasingly ambitious goals of world's many spaceflight programs will be most quickly and safely achieved with the help of animal research systems transported beyond LEO; synthetic torpor may

  4. Polarization Effects Aboard the Space Interferometry Mission

    NASA Technical Reports Server (NTRS)

    Levin, Jason; Young, Martin; Dubovitsky, Serge; Dorsky, Leonard

    2006-01-01

    For precision displacement measurements, laser metrology is currently one of the most accurate measurements. Often, the measurement is located some distance away from the laser source, and as a result, stringent requirements are placed on the laser delivery system with respect to the state of polarization. Such is the case with the fiber distribution assembly (FDA) that is slated to fly aboard the Space Interferometry Mission (SIM) next decade. This system utilizes a concatenated array of couplers, polarizers and lengthy runs of polarization-maintaining (PM) fiber to distribute linearly-polarized light from a single laser to fourteen different optical metrology measurement points throughout the spacecraft. Optical power fluctuations at the point of measurement can be traced back to the polarization extinction ration (PER) of the concatenated components, in conjunction with the rate of change in phase difference of the light along the slow and fast axes of the PM fiber.

  5. Video- Demonstration of Seltzer Tablet in Water Onboard the International Space Station (ISS)

    NASA Technical Reports Server (NTRS)

    2002-01-01

    Saturday Morning Science, the science of opportunity series of applied experiments and demonstrations, performed aboard the International Space Station (ISS) by Expedition 6 astronaut Dr. Don Pettit, revealed some remarkable findings. In this video clip, Pettit demonstrates dropping an Alka Seltzer tablet into a film of water which becomes a floating ball of activity filled water. Watch the video to see the surprising results!

  6. Research on the International Space Station - An Overview

    NASA Technical Reports Server (NTRS)

    Evans, Cynthia A.; Robinson, Julie A.; Tate-Brown, Judy M.

    2009-01-01

    The International Space Station (ISS) celebrates ten years of operations in 2008. While the station did not support permanent human crews during the first two years of operations November 1998 to November 2000 it hosted a few early science experiments months before the first international crew took up residence. Since that time and simultaneous with the complicated task of ISS construction and overcoming impacts from the tragic Columbia accident science returns from the ISS have been growing at a steady pace. As of this writing, over 162 experiments have been operated on the ISS, supporting research for hundreds of ground-based investigators from the U.S. and international partners. This report summarizes the experimental results collected to date. Today, NASA's priorities for research aboard the ISS center on understanding human health during long-duration missions, researching effective countermeasures for long-duration crewmembers, and researching and testing new technologies that can be used for future exploration crews and spacecraft. Through the U.S. National Laboratory designation, the ISS is also a platform available to other government agencies. Research on ISS supports new understandings, methods or applications relevant to life on Earth, such as understanding effective protocols to protect against loss of bone density or better methods for producing stronger metal alloys. Experiment results have already been used in applications as diverse as the manufacture of solar cell and insulation materials for new spacecraft and the verification of complex numerical models for behavior of fluids in fuel tanks. A synoptic publication of these results will be forthcoming in 2009. At the 10-year point, the scientific returns from ISS should increase at a rapid pace. During the 2008 calendar year, the laboratory space and research facilities were tripled with the addition of ESA's Columbus and JAXA's Kibo scientific modules joining NASA's Destiny Laboratory. All three

  7. U.S. Laboratory Module (Destiny) for the International Space Station

    NASA Technical Reports Server (NTRS)

    1997-01-01

    In this photograph, the U.S. Laboratory Module (also called Destiny) for the International Space Station (ISS) is shown under construction in the West High Bay of the Space Station manufacturing facility (building 4708) at the Marshall Space Flight Center. The U.S. Laboratory module is the centerpiece of the ISS, where science experiments will be performed in the near-zero gravity of space. The Destiny Module was launched aboard the Space Shuttle orbiter Atlantis (STS-98 mission) on February 7, 2001. The aluminum module is 8.5 meters (28 feet) long and 4.3 meters (14 feet) in diameter. The laboratory consists of three cylindrical sections and two endcones with hatches that will be mated to other station components. A 50.9-centimeter- (20-inch-) diameter window is located on one side of the center module segment. This pressurized module is designed to accommodate pressurized payloads. It has a capacity of 24 rack locations, and payload racks will occupy 13 locations especially designed to support experiments. The ISS is a multidisciplinary laboratory, technology test bed, and observatory that will provide unprecedented undertakings in scientific, technological, and international experimentation.

  8. Logistical and Analytical Approach to a Failure Aboard the International Space Station

    NASA Technical Reports Server (NTRS)

    McDanels, Seve; Wright, M. Clara; Salazar, Victoria; Lubas, David; Tucker, Bryan

    2009-01-01

    The starboard Solar Alpha Rotary Joint (SARJ) from the International Space Station (ISS) began exhibiting off-nominal electrical demands and vibration. Examination by spacewalking astronauts revealed metallic debris contaminating the system and damage to the outboard race of the SARJ. Samples of the contamination were returned to Earth and analyzed. Excessive friction caused the nitride region of the 15-5 PH stainless steel race to spall, generating the debris and damaging the race surface. Excessive vibration and excess power was required to operate the system as a result.

  9. Soyuz 7 Return Samples: Assessment of Air Quality Aboard the International Space Station

    NASA Technical Reports Server (NTRS)

    James, John T.

    2004-01-01

    The toxicological assessments of one grab sample canister (GSC), 6 dual sorbent tubes (DSTs), and 20 formaldehyde badges returned aboard Soyuz 7 are reported. Analytical methods have not changed from earlier reports. Surrogate standard recoveries from the GSC were 84-89%. The recoveries of the less volatile surrogates from the DSTs were 87 to 112%; however, 13C-acetone was only recovered at 53-59%. Formaldehyde recoveries from 2 lab controls were 87 and 95%; trip controls were not returned to ground.

  10. Development of a System to Assess Biofilm Formation in the International Space Station

    NASA Technical Reports Server (NTRS)

    Martin Charles, E.; Summers, Silvia M.; Roman, Monserrate C.

    1998-01-01

    The design requirements for the water treatment systems aboard the International Space Station (ISS) include and require recycling as much water as possible and to treat the water for intentional contamination (hygiene, urine distillate, condensate, etc.) and unintentional contamination in the form of biofilm and microorganisms. As part of an effort to address the latter issue, a biofilm system was developed by Marshall Space Flight Center (MSFC) to simulate the conditions aboard ISS with respect to materials, flow rates, water conditions, water content, and handling. The tubing, connectors, sensors, and fabricated parts included in the system were chosen for specific attributes as applicable to emulate an orbital water treatment system. This paper addresses the design and development process of the system, as well as the configuration, operation, and system procedures for maintenance to assure that the simulation is valid for the representative data as it applies to water degradation and biofilm/microbial growth. Preliminary biofilm/microbial results are also presented.

  11. On-Orbit Prospective Echocardiography on International Space Station

    NASA Technical Reports Server (NTRS)

    Hamilton, Douglas R.; Sargsyan, Ashot E.; Martin, David; Garcia, Kathleen M.; Melton, Shannon; Feiverson, Alan; Dulchavsky, Scott A.

    2010-01-01

    A number of echocardiographic research projects and experiments have been flown on almost every space vehicle since 1970, but validation of standard methods and the determination of Space Normal cardiac function has not been reported to date. Advanced Diagnostics in Microgravity (ADUM) -remote guided echocardiographic technique provides a novel and effective approach to on-board assessment of cardiac physiology and structure using a just-in-time training algorithm and real-time remote guidance aboard the International Space Station (ISS). The validation of remotely guided echocardiographic techniques provides the procedures and protocols to perform scientific and clinical echocardiography on the ISS and the Moon. The objectives of this study were: 1.To confirm the ability of non-physician astronaut/cosmonaut crewmembers to perform clinically relevant remotely guided echocardiography using the Human Research Facility on board the ISS. 2.To compare the preflight, postflight and in-flight echocardiographic parameters commonly used in clinical medicine.

  12. Space to Ground: Launches and Landings: 06/08/2018

    NASA Image and Video Library

    2018-06-08

    This week, one crew launched to the International Space Station, while another returned to Earth. NASA's Space to Ground is your weekly update on what's happening aboard the International Space Station.

  13. Students Pave Way for First Microgravity Experiments on International Space Station

    NASA Technical Reports Server (NTRS)

    1999-01-01

    Kim Nelson, left, of Sandalwood High School in Jacksonville, FL, helps Steven Nepowada, right, of Terry Parker High School in Jacksonville, practice loading a protein sample into a thermos-like container, known as Dewar. Students from Jacksonville worked with researchers from NASA/Marshall Space Flight Center (MSFC), as well as universities, in Huntsville, AL, on an experiment for the International Space Station (ISS). The proteins are placed in plastic tubing that is heat-sealed at the ends, then flash-frozen and preserved in a liquid nitrogen Dewar. Aboard the ISS, the nitrogen will be allowed to evaporated so the samples thaw and then slowly crystallize. They will be analyzed after return to Earth. Photo credit: NASA/Marshall Space Flight Center (MSFC)

  14. Modeling a Wireless Network for International Space Station

    NASA Technical Reports Server (NTRS)

    Alena, Richard; Yaprak, Ece; Lamouri, Saad

    2000-01-01

    This paper describes the application of wireless local area network (LAN) simulation modeling methods to the hybrid LAN architecture designed for supporting crew-computing tools aboard the International Space Station (ISS). These crew-computing tools, such as wearable computers and portable advisory systems, will provide crew members with real-time vehicle and payload status information and access to digital technical and scientific libraries, significantly enhancing human capabilities in space. A wireless network, therefore, will provide wearable computer and remote instruments with the high performance computational power needed by next-generation 'intelligent' software applications. Wireless network performance in such simulated environments is characterized by the sustainable throughput of data under different traffic conditions. This data will be used to help plan the addition of more access points supporting new modules and more nodes for increased network capacity as the ISS grows.

  15. Space station internal environmental and safety concerns

    NASA Technical Reports Server (NTRS)

    Cole, Matthew B.

    1987-01-01

    Space station environmental and safety concerns, especially those involving fires, are discussed. Several types of space station modules and the particular hazards associated with each are briefly surveyed. A brief history of fire detection and suppression aboard spacecraft is given. Microgravity fire behavior, spacecraft fire detector systems, space station fire suppression equipment and procedures, and fire safety in hyperbaric chambers are discussed.

  16. NASA Space Station Astronaut Discusses Life in Space with Washington State Students

    NASA Image and Video Library

    2017-12-12

    Aboard the International Space Station, Expedition 53 Flight Engineer Mark Vande Hei of NASA discussed life and work aboard the complex during an in-flight question and answer session Dec. 12 with a variety of students representing schools in Washington, including students from the Steve Luther Elementary School in Lakebay, Washington. Vande Hei is in the midst of a five-month mission on the station, conducting research involving hundreds of experiments from international investigators.

  17. Space-to-Ground: Some Serious Science: 02/08/2018

    NASA Image and Video Library

    2018-02-08

    With a breather between spacewalks, it was time for some serious science on the International Space Station. NASA's Space to Ground is your weekly update on what's happening aboard the International Space Station.

  18. International Space Station Sports a New Truss

    NASA Technical Reports Server (NTRS)

    2002-01-01

    This close-up view of the International Space Station (ISS), newly equipped with its new 27,000-pound S0 (S-zero) truss, was photographed by an astronaut aboard the Space Shuttle Atlantis STS-110 during its ISS flyaround mission while pulling away from the ISS. The STS-110 mission prepared the Station for future spacewalks by installing and outfitting the 43-foot-long S0 truss and preparing the first railroad in space, the Mobile Transporter. The 27,000-pound S0 truss was the first of 9 segments that will make up the Station's external framework that will eventually stretch 356 feet (109 meters), or approximately the length of a football field. This central truss segment also includes a flatcar called the Mobile Transporter and rails that will become the first 'space railroad,' which will allow the Station's robotic arm to travel up and down the finished truss for future assembly and maintenance. The completed truss structure will hold solar arrays and radiators to provide power and cooling for additional international research laboratories from Japan and Europe that will be attached to the Station. STS-110 Extravehicular Activity (EVA) marked the first use of the Station's robotic arm to maneuver spacewalkers around the Station and was the first time all of a Shuttle crew's spacewalks were based out of the Station's Quest Airlock. It was also the first Shuttle to use three Block II Main Engines. The Space Shuttle Orbiter Atlantis STS-110 mission, was launched April 8, 2002 and returned to Earth April 19, 2002.

  19. International Space Station Sports a New Truss

    NASA Technical Reports Server (NTRS)

    2002-01-01

    This close-up view of the International Space Station (ISS), newly equipped with its new 27,000- pound S0 (S-zero) truss, was photographed by an astronaut aboard the Space Shuttle Atlantis STS-110 mission following its undocking from the ISS. The STS-110 mission prepared the Station for future spacewalks by installing and outfitting the 43-foot-long S0 truss and preparing the first railroad in space, the Mobile Transporter. The 27,000 pound S0 truss was the first of 9 segments that will make up the Station's external framework that will eventually stretch 356 feet (109 meters), or approximately the length of a football field. This central truss segment also includes a flatcar called the Mobile Transporter and rails that will become the first 'space railroad,' which will allow the Station's robotic arm to travel up and down the finished truss for future assembly and maintenance. The completed truss structure will hold solar arrays and radiators to provide power and cooling for additional international research laboratories from Japan and Europe that will be attached to the Station. STS-110 Extravehicular Activity (EVA) marked the first use of the Station's robotic arm to maneuver spacewalkers around the Station and was the first time all of a shuttle crew's spacewalks were based out of the Station's Quest Airlock. It was also the first Shuttle to use three Block II Main Engines. The Space Shuttle Orbiter Atlantis STS-110 mission, was launched April 8, 2002 and returned to Earth April 19, 2002.

  20. International Space Station Sports a New Truss

    NASA Technical Reports Server (NTRS)

    2002-01-01

    This close-up view of the International Space Station (ISS), newly equipped with its new 27,000-pound S0 (S-zero) truss, was photographed by an astronaut aboard the Space Shuttle Atlantis STS-110 during its ISS flyaround mission while pulling away from the ISS. The STS-110 mission prepared the Station for future spacewalks by installing and outfitting the 43-foot-long S0 truss and preparing the first railroad in space, the Mobile Transporter. The 27,000 pound S0 truss was the first of 9 segments that will make up the Station's external framework that will eventually stretch 356 feet (109 meters), or approximately the length of a football field. This central truss segment also includes a flatcar called the Mobile Transporter and rails that will become the first 'space railroad,' which will allow the Station's robotic arm to travel up and down the finished truss for future assembly and maintenance. The completed truss structure will hold solar arrays and radiators to provide power and cooling for additional international research laboratories from Japan and Europe that will be attached to the Station. STS-110 Extravehicular Activity (EVA) marked the first use of the Station's robotic arm to maneuver spacewalkers around the Station and was the first time all of a shuttle crew's spacewalks were based out of the Station's Quest Airlock. It was also the first Shuttle to use three Block II Main Engines. The Space Shuttle Orbiter Atlantis STS-110 mission, was launched April 8, 2002 and returned to Earth April 19, 2002.

  1. International Space Station Sports a New Truss

    NASA Technical Reports Server (NTRS)

    2002-01-01

    This close-up view of the International Space Station (ISS), newly equipped with its new 27,000-pound S0 (S-zero) truss, was photographed by an astronaut aboard the Space Shuttle Atlantis STS-110 upon its ISS flyaround mission while pulling away from the ISS. The STS-110 mission prepared the Station for future spacewalks by installing and outfitting the 43-foot-long S0 truss and preparing the first railroad in space, the Mobile Transporter. The 27,000 pound S0 truss was the first of 9 segments that will make up the Station's external framework that will eventually stretch 356 feet (109 meters), or approximately the length of a football field. This central truss segment also includes a flatcar called the Mobile Transporter and rails that will become the first 'space railroad,' which will allow the Station's robotic arm to travel up and down the finished truss for future assembly and maintenance. The completed truss structure will hold solar arrays and radiators to provide power and cooling for additional international research laboratories from Japan and Europe that will be attached to the Station. STS-110 Extravehicular Activity (EVA) marked the first use of the Station's robotic arm to maneuver spacewalkers around the station and was the first time all of a Shuttle crew's spacewalks were based out of the Station's Quest Airlock. It was also the first Shuttle to use three Block II Main Engines. The Space Shuttle Orbiter Atlantis STS-110 mission, was launched April 8, 2002 and returned to Earth April 19, 2002.

  2. International Space Station Sports a New Truss

    NASA Technical Reports Server (NTRS)

    2002-01-01

    This close-up view of the International Space Station (ISS), newly equipped with its new 27,000-pound S0 (S-zero) truss, was photographed by an astronaut aboard the Space Shuttle Atlantis STS-110 mission following its undocking from the ISS. The STS-110 mission prepared the Station for future spacewalks by installing and outfitting the 43-foot-long S0 truss and preparing the first railroad in space, the Mobile Transporter. The 27,000 pound S0 truss was the first of 9 segments that will make up the Station's external framework that will eventually stretch 356 feet (109 meters), or approximately the length of a football field. This central truss segment also includes a flatcar called the Mobile Transporter and rails that will become the first 'space railroad,' which will allow the Station's robotic arm to travel up and down the finished truss for future assembly and maintenance. The completed truss structure will hold solar arrays and radiators to provide power and cooling for additional international research laboratories from Japan and Europe that will be attached to the Station. STS-110 Extravehicular Activity (EVA) marked the first use of the Station's robotic arm to maneuver spacewalkers around the Station and was the first time all of a Shuttle crew's spacewalks were based out of the Station's Quest Airlock. It was also the first Shuttle to use three Block II Main Engines. The Space Shuttle Orbiter Atlantis STS-110 mission, was launched April 8, 2002 and returned to Earth April 19, 2002.

  3. Performance Evaluation of the Operational Air Quality Monitor for Water Testing Aboard the International Space Station

    NASA Technical Reports Server (NTRS)

    Wallace, William T.; Limero, Thomas F.; Gazda, Daniel B.; Macatangay, Ariel V.; Dwivedi, Prabha; Fernandez, Facundo M.

    2014-01-01

    In the history of manned spaceflight, environmental monitoring has relied heavily on archival sampling. For short missions, this type of sample collection was sufficient; returned samples provided a snapshot of the presence of chemical and biological contaminants in the spacecraft air and water. However, with the construction of the International Space Station (ISS) and the subsequent extension of mission durations, soon to be up to one year, the need for enhanced, real-time environmental monitoring became more pressing. The past several years have seen the implementation of several real-time monitors aboard the ISS, complemented with reduced archival sampling. The station air is currently monitored for volatile organic compounds (VOCs) using gas chromatography-differential mobility spectrometry (Air Quality Monitor [AQM]). The water on ISS is analyzed to measure total organic carbon and biocide concentrations using the Total Organic Carbon Analyzer (TOCA) and the Colorimetric Water Quality Monitoring Kit (CWQMK), respectively. The current air and water monitors provide important data, but the number and size of the different instruments makes them impractical for future exploration missions. It is apparent that there is still a need for improvements in environmental monitoring capabilities. One such improvement could be realized by modifying a single instrument to analyze both air and water. As the AQM currently provides quantitative, compound-specific information for target compounds present in air samples, and many of the compounds are also targets for water quality monitoring, this instrument provides a logical starting point to evaluate the feasibility of this approach. In this presentation, we will discuss our recent studies aimed at determining an appropriate method for introducing VOCs from water samples into the gas phase and our current work, in which an electro-thermal vaporization unit has been interfaced with the AQM to analyze target analytes at the

  4. Space Station Crew Member Discusses Live in Space with Italian Prime Minister

    NASA Image and Video Library

    2017-11-06

    Aboard the International Space Station, Expedition 53 Flight Engineer Paolo Nespoli of Italy and ESA (the European Space Agency) discussed the accomplishments of his mission during an in-flight conversation Nov. 6 with Italian Prime Minister Paolo Gentiloni. Nespoli is in the final month of a five-and-a-half-month mission aboard the orbiting laboratory. The crew is scheduled to return to Earth in a Russian Soyuz spacecraft Dec. 14, landing in south central Kazakhstan.

  5. Microgravity Science Glovebox (MSG) Space Science's Past, Present, and Future on the International Space Station (ISS)

    NASA Technical Reports Server (NTRS)

    Spivey, Reggie A.; Spearing, Scott F.; Jordan, Lee P.; McDaniel S. Greg

    2012-01-01

    The Microgravity Science Glovebox (MSG) is a double rack facility designed for microgravity investigation handling aboard the International Space Station (ISS). The unique design of the facility allows it to accommodate science and technology investigations in a "workbench" type environment. MSG facility provides an enclosed working area for investigation manipulation and observation in the ISS. Provides two levels of containment via physical barrier, negative pressure, and air filtration. The MSG team and facilities provide quick access to space for exploratory and National Lab type investigations to gain an understanding of the role of gravity in the physics associated research areas. The MSG is a very versatile and capable research facility on the ISS. The Microgravity Science Glovebox (MSG) on the International Space Station (ISS) has been used for a large body or research in material science, heat transfer, crystal growth, life sciences, smoke detection, combustion, plant growth, human health, and technology demonstration. MSG is an ideal platform for gravity-dependent phenomena related research. Moreover, the MSG provides engineers and scientists a platform for research in an environment similar to the one that spacecraft and crew members will actually experience during space travel and exploration. The MSG facility is ideally suited to provide quick, relatively inexpensive access to space for National Lab type investigations.

  6. Growth of 48 built environment bacterial isolates on board the International Space Station (ISS)

    PubMed Central

    Neches, Russell Y.; Lang, Jenna M.; Brown, Wendy E.; Severance, Mark; Cavalier, Darlene

    2016-01-01

    Background. While significant attention has been paid to the potential risk of pathogenic microbes aboard crewed spacecraft, the non-pathogenic microbes in these habitats have received less consideration. Preliminary work has demonstrated that the interior of the International Space Station (ISS) has a microbial community resembling those of built environments on Earth. Here we report the results of sending 48 bacterial strains, collected from built environments on Earth, for a growth experiment on the ISS. This project was a component of Project MERCCURI (Microbial Ecology Research Combining Citizen and University Researchers on ISS). Results. Of the 48 strains sent to the ISS, 45 of them showed similar growth in space and on Earth using a relative growth measurement adapted for microgravity. The vast majority of species tested in this experiment have also been found in culture-independent surveys of the ISS. Only one bacterial strain showed significantly different growth in space. Bacillus safensis JPL-MERTA-8-2 grew 60% better in space than on Earth. Conclusions. The majority of bacteria tested were not affected by conditions aboard the ISS in this experiment (e.g., microgravity, cosmic radiation). Further work on Bacillus safensis could lead to interesting insights on why this strain grew so much better in space. PMID:27019789

  7. Growth of 48 built environment bacterial isolates on board the International Space Station (ISS).

    PubMed

    Coil, David A; Neches, Russell Y; Lang, Jenna M; Brown, Wendy E; Severance, Mark; Cavalier, Darlene; Eisen, Jonathan A

    2016-01-01

    Background. While significant attention has been paid to the potential risk of pathogenic microbes aboard crewed spacecraft, the non-pathogenic microbes in these habitats have received less consideration. Preliminary work has demonstrated that the interior of the International Space Station (ISS) has a microbial community resembling those of built environments on Earth. Here we report the results of sending 48 bacterial strains, collected from built environments on Earth, for a growth experiment on the ISS. This project was a component of Project MERCCURI (Microbial Ecology Research Combining Citizen and University Researchers on ISS). Results. Of the 48 strains sent to the ISS, 45 of them showed similar growth in space and on Earth using a relative growth measurement adapted for microgravity. The vast majority of species tested in this experiment have also been found in culture-independent surveys of the ISS. Only one bacterial strain showed significantly different growth in space. Bacillus safensis JPL-MERTA-8-2 grew 60% better in space than on Earth. Conclusions. The majority of bacteria tested were not affected by conditions aboard the ISS in this experiment (e.g., microgravity, cosmic radiation). Further work on Bacillus safensis could lead to interesting insights on why this strain grew so much better in space.

  8. Video- Demonstration of Tea and Sugar in Water Onboard the International Space Station (ISS)

    NASA Technical Reports Server (NTRS)

    2003-01-01

    Saturday Morning Science, the science of opportunity series of applied experiments and demonstrations, performed aboard the International Space Station (ISS) by Expedition 6 astronaut Dr. Don Pettit, revealed some remarkable findings. Imagine what would happen if a collection of loosely attractive particles were confined in a relatively small region in the floating environment of space. Would they self organize into a compact structure, loosely organize into a fractal, or just continue to float around in their container? In this video clip, Dr. Pettit explored the possibilities. At one point he remarks, 'These things look like pictures from the Hubble Space Telescope.' Watch the video and see what happens!

  9. Space Station Crew Member Discusses Life in Space with the Media

    NASA Image and Video Library

    2018-01-04

    Aboard the International Space Station, Expedition 54 Flight Engineer Scott Tingle of NASA discussed the initial days of his planned six-month mission on the outpost in an in-flight interview Jan. 4 with the Boston Globe. Tingle, who is a native of Massachusetts, arrived aboard the station Dec. 19 and is scheduled to remain in orbit through early June.

  10. Space-to-Ground: Night Launch: 03/23/2018

    NASA Image and Video Library

    2018-03-22

    Three more crewmembers are on their way to the International Space Station...the crew readies for a spacewalk...and can an astronaut's movement affect the station's orbit? NASA's Space to Ground is your weekly update on what's happening aboard the International Space Station.

  11. Space Station Crew Discusses Life in Space with Georgia Students

    NASA Image and Video Library

    2017-10-23

    Aboard the International Space Station, Expedition 53 Commander Randy Bresnik and Flight Engineers Joe Acaba and Mark Vande Hei of NASA discussed life and research aboard the orbital outpost during an in-flight educational event Oct. 23 with students at the New Prospect Elementary School in Alpharetta, Georgia. The crew members are in various stages of their five and a half month missions on the orbital complex.

  12. Characterization of the Protein Crystal Growth Apparatus for Microgravity Aboard the Space Station

    NASA Technical Reports Server (NTRS)

    Kundrot, Craig E.; Roeber, D.; Achari, A.; Stinson, Thomas N. (Technical Monitor)

    2002-01-01

    We have conducted experiments to determine the equilibration rates of some major precipitants used in protein crystallography aboard the International Space Station (ISS). The solutions were placed in the Protein Crystallization Apparatus for Microgravity (PCAM) which mimic Cryschem sitting drop trays. The trays were placed in cylinders. These cylinders were placed inside a Single locker Thermal Enclosure System (STES), and were activated for different durations during the flight. Bumpers pressed against elastomers seal drops in a deactivated state during pre-flight and prior to transfer to the ISS. Activation occurs while in flight on the ISS by releasing the bumpers allowing the drops to be exposed to the reservoir. PCAM was flown to the ISS on STS 100, Flight 6A, on April 19, 2001. Six series of equilibration experiments were tested for each precipitant with a small amount of Green Fluorescent Protein (GFP). Cylinder 10 was never activated, 7 was activated for 40 days, 8 was activated for 20 days, 9 was activated for 10 days, 11 was activated for 4 days and 12 was activated for 2 days. Upon the return to Earth by STS 104 on July 24,2001 the samples were transferred to Marshall Space Flight Center. The samples were then brought to the lab and the volumes of each sample were measured.

  13. International Space Station (ISS)

    NASA Image and Video Library

    2002-10-14

    Astronauts Piers J. Sellers (left ) and David A. Wolf work on the newly installed Starboard One (S1) truss to the International Space Station (ISS) during the STS-112 mission. The primary payloads of this mission, ISS Assembly Mission 9A, were the Integrated Truss Assembly S1 (S One), the starboard side thermal radiator truss, and the Crew Equipment Translation Aid (CETA) cart to the ISS. The S1 truss provides structural support for the orbiting research facility's radiator panels, which use ammonia to cool the Station's complex power system. The S1 truss was attached to the S0 (S Zero) truss, which was launched on April 8, 2002 aboard the STS-110, and flows 637 pounds of anhydrous ammonia through three heat-rejection radiators. The truss is 45-feet long, 15-feet wide, 10-feet tall, and weighs approximately 32,000 pounds. The CETA cart was attached to the Mobil Transporter and will be used by assembly crews on later missions. Manufactured by the Boeing Company in Huntington Beach, California, the truss primary structure was transferred to the Marshall Space Flight Center in February 1999 for hardware installations and manufacturing acceptance testing. The launch of the STS-112 mission occurred on October 7, 2002, and its 11-day mission ended on October 18, 2002.

  14. SpaceX Spacesuit

    NASA Image and Video Library

    2017-08-22

    The SpaceX spacesuit that will be worn by astronauts aboard its Crew Dragon spacecraft (in the background) during missions to and from the International Space Station. SpaceX is developing its Crew Dragon spacecraft and Falcon 9 rocket in partnership with NASA’s Commercial Crew Program to carry astronauts to and from the space station.

  15. Soyuz 22 Return Samples: Assessment of Air Quality Aboard the International Space Station

    NASA Technical Reports Server (NTRS)

    Jams, John T.

    2010-01-01

    Three mini-grab sample containers (m-GSCs) were returned aboard Soyuz 22 because of concerns that new air pollutants were present in the air and these were getting into the water recovery system. The Total Organic Carbon Analyzer had been giving increasing readings of total organic carbon (TOC) in the potable water, and it was postulated that an increased load into the system was responsible. The toxicological assessment of 3 m-GSCs from the ISS is shown in Table 1. The recoveries of the 3 standards (as listed above) from the GSCs averaged 103, 95 and 76%, respectively. Recovery from formaldehyde control badges were 90 and 91%.

  16. International Polar Year Observations From the International Space Station

    NASA Technical Reports Server (NTRS)

    Pettit, Donald R.; Runco, Susan; Byrne, Gregory; Willis, Kim; Heydorn, James; Stefanov, William L.; Wilkinson, M. Justin; Trenchard, Michael

    2006-01-01

    Astronauts aboard the International Space Station (ISS) have several opportunities each day to observe and document high-latitude phenomena. Although lighting conditions, ground track and other viewing parameters change with orbital precessions and season, the 51.6 degree orbital inclination and 400 km altitude of the ISS provide the crew an excellent vantage point for collecting image-based data for IPY investigators. To date, the database of imagery acquired by the Crew Earth Observations (CEO) experiment aboard the ISS (http://eol.jsc.nasa.gov) contains more than 12,000 images of high latitude (above 50 degrees) events such as aurora, mesospheric clouds, sea-ice, high-latitude plankton blooms, volcanic eruptions, and snow cover. The ISS Program will formally participate in IPY through an activity coordinated through CEO entitled Synchronized Observations of Polar Mesospheric Clouds, Aurora and Other Large-scale Polar Phenomena from the ISS and Ground Sites. The activity will augment the existing collection of Earth images taken from the ISS by focusing astronaut observations on polar phenomena. NASA s CEO experiment will solicit requests by IPY investigators for ISS observations that are coordinated with or complement ground-based polar studies. The CEO imagery website (http://eol.jsc.nasa.gov) will provide an on-line form for IPY investigators to interact with CEO scientists and define their imagery requests. This information will be integrated into daily communications with the ISS crews about their Earth Observations targets. All data collected will be cataloged and posted on the website for downloading and assimilation into IPY projects.

  17. Space Station Crew Member Discusses Life in Space with the Media

    NASA Image and Video Library

    2018-01-02

    Aboard the International Space Station, Expedition 54 Flight Engineer Scott Tingle of NASA discussed the initial days of his planned six-month mission on the outpost in a pair of in-flight interviews Jan. 2 with WTTV-TV, Indianapolis, and WFXT-TV, Boston. Tingle, who is a native of Massachusetts, arrived aboard the station Dec. 19 and is scheduled to remain in orbit through early June.

  18. The International Space Station Photographed During STS-112 Mission

    NASA Technical Reports Server (NTRS)

    2002-01-01

    This image of the International Space Station (ISS) was photographed by one of the crewmembers of the STS-112 mission following separation from the Space Shuttle Orbiter Atlantis as the orbiter pulled away from the ISS. The primary payloads of this mission, International Space Station Assembly Mission 9A, were the Integrated Truss Assembly S1 (S-One), the Starboard Side Thermal Radiator Truss, and the Crew Equipment Translation Aid (CETA) cart to the ISS. The S1 truss provides structural support for the orbiting research facility's radiator panels, which use ammonia to cool the Station's complex power system. The S1 truss was attached to the S0 (S Zero) truss, which was launched on April 8, 2002 aboard the STS-110, and flows 637 pounds of anhydrous ammonia through three heat-rejection radiators. The truss is 45-feet long, 15-feet wide, 10-feet tall, and weighs approximately 32,000 pounds. The CETA cart was attached to the Mobil Transporter and will be used by assembly crews on later missions. Manufactured by the Boeing Company in Huntington Beach, California, the truss primary structure was transferred to the Marshall Space Flight Center in February 1999 for hardware installations and manufacturing acceptance testing. The launch of the STS-112 mission occurred on October 7, 2002, and its 11-day mission ended on October 18, 2002.

  19. Space Station Commander Discusses Life in Space with Ukrainian Students

    NASA Image and Video Library

    2017-10-25

    Aboard the International Space Station, Expedition 53 Commander Randy Bresnik of NASA discussed life and research aboard the orbital laboratory during an in-flight question and answer session Oct. 25 with Ukrainian students gathered at the America House in Kiev, Ukraine and other Ukrainian students tied in to the event from other locations. Participating in the event in Kiev was the U.S. Ambassador to Ukraine, Marie Yovanovitch.

  20. Space Station Astronauts Discuss Life in Space with Virginia Students

    NASA Image and Video Library

    2017-11-08

    Aboard the International Space Station, Expedition 53 Commander Randy Bresnik and Flight Engineers Joe Acaba and Mark Vande Hei of NASA discussed life and scientific research aboard the orbital laboratory during an in-flight educational event Nov. 8 with students at the Pole Green Elementary School in Mechanicsville, Virginia. The three NASA astronauts are in various stages of their respective five-and-a-half-month missions on the complex.

  1. Space Station Crew Discusses Life in Space with West Point Cadets

    NASA Image and Video Library

    2017-11-27

    Aboard the International Space Station, Expedition 53 Commander Randy Bresnik and Flight Engineers Mark Vande Hei and Joe Acaba of NASA discussed life and research aboard the orbital outpost during an in-flight event Nov. 27 with cadets at the U.S. Military Academy in West Point, New York. Bresnik, who is a retired Marine Colonel, is in the final weeks of his five-and-a-half-month mission on the station, while Vande Hei, a former Army Colonel, and Acaba, a former Marine reservist, will remain aboard the complex until late February.

  2. Space Station Crew Members Discuss Life in Space with Military Media

    NASA Image and Video Library

    2017-11-22

    Aboard the International Space Station, Expedition 53 Commander Randy Bresnik and Flight Engineers Mark Vande Hei and Joe Acaba of NASA discussed life and research aboard the orbital outpost during a pair of in-flight interviews Nov. 22 with the Soldiers TV Network and Marines Media organization. Bresnik, who is a retired Marine Colonel, is in the final weeks of his five-and-a-half-month mission on the station, while Vande Hei, a former Army Colonel, and Acaba, a former Marine reservist, will remain aboard the complex until late February.

  3. Space-to-Ground_171_170407

    NASA Image and Video Library

    2017-04-07

    NASA's Space to Ground is your weekly update on what's happening aboard the International Space Station. Got a question or comment? Use #spacetoground to talk to us. ________________________________________ FOLLOW THE SPACE STATION! Twitter: https://twitter.com/Space_Station Facebook: https://www.facebook.com/ISS Instagram: https://instagram.com/iss/

  4. Soyuz 23 Return Samples: Assessment of Air Quality Aboard the International Space Station

    NASA Technical Reports Server (NTRS)

    James, John T.

    2011-01-01

    Six mini-grab sample containers (m-GSCs) were returned aboard Soyuz 23 because of concerns that new air pollutants had been present in the air and these were getting into the water recovery system. The Total Organic Carbon Analyzer had been giving increasing readings of total organic carbon (TOC) in the potable water, and it was postulated that an increased load into the system was responsible. The TOC began to decline in late October, 2010. The toxicological assessment of 6 m-GSCs from the ISS is shown in Table 1. The recoveries of 13C-acetone, fluorobenzene, and chlorobenzene from the GSCs averaged 73, 82, and 59%, respectively. We are working to understand the sub-optimal recovery of chlorobenzene.

  5. Aeolian processes aboard a space station: Saltation and particle trajectory analysis

    NASA Technical Reports Server (NTRS)

    White, B. R.; Greeley, R.; Iversen, J. D.; Leach, R. N.

    1986-01-01

    The Carousel wind tunnel (CWT) proposed to study aeolian processes aboard a space station consists of two concentric rotating drums. The space between the two drums comprises the wind tunnel test section. Differential rates of rotation of the two drums would provide a wind velocity with respect to either drum surface. Preliminary results of measured velocity profiles made in a CWT prototype indicate that the wall bounded boundary layer profiles are suitable to simulate flat plate turbulent boundary layer flow. The two dimensional flat plate Cartesian coordinate equations of motion of a particle moving through the air are explained. In order to assess the suitability of CWT in the analysis of the trajectories of windblown particles, a series of calculations were conducted comparing cases for gravity with those of zero gravity. Results from the calculations demonstrate that a wind tunnel of the carousel design could be fabricted to operate in a space station environment and that experiments could be conducted which would yield significant results contributing to the understanding of the physics of particle dynamics.

  6. Aeolian processes aboard a Space Station: Saltation and particle trajectory analysis

    NASA Technical Reports Server (NTRS)

    White, Bruce R.; Greeley, Ronald; Iversen, James D.; Leach, R. N.

    1987-01-01

    The Carousel Wind Tunnel (CWT) proposed to study aeolian processes aboard a Space Station consists of two concentric rotating drums. The space between the two drums comprises the wind tunnel section. Differential rates of rotation of the two drums would provide a wind velocity with respect to either drum surface. Preliminary results of measured velocity profiles made in a CWT prototype indicate that the wall bounded boundary layer profiles are suitable to simuate flat plate turbulent boundary layer flow. The two dimensional flate plate Cartesian coordinate equations of motion of a particle moving through the air are explained. In order to assess the suitability of CWT in the analysis of the trajectories of windblown particles, a series of calculations were conducted comparing cases for gravity with those of zero gravity. Results from the calculations demonstrate that a wind tunnel of the carousel design could be fabricated to operate in a space station environment and that experiments could be conducted which would yield significant results contributing to the understanding of the physics of particle dynamics.

  7. Space-to-Ground: Busy Crew: 09/22/2017

    NASA Image and Video Library

    2017-09-21

    The SpaceX Dragon returns to Earth...the crew prepares for three spacewalks...and do you get scared in space? NASA's Space to Ground is your weekly update on what's happening aboard the International Space Station.

  8. Initial characterization of the microgravity environment of the international space station: increments 2 through 4

    NASA Technical Reports Server (NTRS)

    Jules, Kenol; McPherson, Kevin; Hrovat, Kenneth; Kelly, Eric

    2004-01-01

    The primary objective of the International Space Station (ISS) is to provide a long-term quiescent environment for the conduct of scientific research for a variety of microgravity science disciplines. This paper reports to the microgravity scientific community the results of an initial characterization of the microgravity environment on the International Space Station for increments 2 through 4. During that period almost 70,000 hours of station operations and scientific experiments were conducted. 720 hours of crew research time were logged aboard the orbiting laboratory and over half a terabyte of acceleration data were recorded and much of that was analyzed. The results discussed in this paper cover both the quasi-steady and vibratory acceleration environment of the station during its first year of scientific operation. For the quasi-steady environment, results are presented and discussed for the following: the space station attitudes Torque Equilibrium Attitude and the X-Axis Perpendicular to the Orbital Plane; station docking attitude maneuvers; Space Shuttle joint operation with the station; cabin de-pressurizations and the station water dumps. For the vibratory environment, results are presented for the following: crew exercise, docking events, and the activation/de-activation of both station life support system hardware and experiment hardware. Finally, a grand summary of all the data collected aboard the station during the 1-year period is presented showing where the overall quasi-steady and vibratory acceleration magnitude levels fall over that period of time using a 95th percentile benchmark. Published by Elsevier Ltd.

  9. International Space Station Increment-2 Microgravity Environment Summary Report

    NASA Technical Reports Server (NTRS)

    Jules, Kenol; Hrovat, Kenneth; Kelly, Eric; McPherson, Kevin; Reckart, Timothy

    2002-01-01

    This summary report presents the results of some of the processed acceleration data, collected aboard the International Space Station during the period of May to August 2001, the Increment-2 phase of the station. Two accelerometer systems were used to measure the acceleration levels during activities that took place during the Increment-2 segment. However, not all of the activities were analyzed for this report due to time constraints, lack of precise information regarding some payload operations and other station activities. The National Aeronautics and Space Administration sponsors the Microgravity Acceleration Measurement System and the Space Acceleration Microgravity System to support microgravity science experiments, which require microgravity acceleration measurements. On April 19, 2001, both the Microgravity Acceleration Measurement System and the Space Acceleration Measurement System units were launched on STS-100 from the Kennedy Space Center for installation on the International Space Station. The Microgravity Acceleration Measurement System unit was flown to the station in support of science experiments requiring quasi-steady acceleration measurements, while the Space Acceleration Measurement System unit was flown to support experiments requiring vibratory acceleration measurement. Both acceleration systems are also used in support of vehicle microgravity requirements verification. The International Space Station Increment-2 reduced gravity environment analysis presented in this report uses acceleration data collected by both sets of accelerometer systems: 1) The Microgravity Acceleration Measurement System, which consists of two sensors: the Orbital Acceleration Research Experiment Sensor Subsystem, a low frequency range sensor (up to 1 Hz), is used to characterize the quasi-steady environment for payloads and the vehicle, and the High Resolution Accelerometer Package, which is used to characterize the vibratory environment up to 100 Hz. 2) The Space

  10. International Space Station Increment-3 Microgravity Environment Summary Report

    NASA Technical Reports Server (NTRS)

    Jules, Kenol; Hrovat, Kenneth; Kelly, Eric; McPherson, Kevin; Reckart, Timothy; Grodsinksy, Carlos

    2002-01-01

    This summary report presents the results of some of the processed acceleration data measured aboard the International Space Station during the period of August to December 2001. Two accelerometer systems were used to measure the acceleration levels for the activities that took place during Increment-3. However, not all of the activities were analyzed for this report due to time constraint and lack of precise timeline information regarding some payload operations and station activities. The National Aeronautics and Space Administration sponsors the Microgravity Acceleration Measurement System and the Space Acceleration Microgravity System to support microgravity science experiments which require microgravity acceleration measurements. On April 19, 2001, both the Microgravity Acceleration Measurement System and the Space Acceleration Measurement System units were launched on STS-100 from the Kennedy Space Center for installation on the International Space Station. The Microgravity Acceleration Measurement System unit was flown to the station in support of science experiments requiring quasi-steady acceleration measurements, while the Space Acceleration Measurement System unit was flown to support experiments requiring vibratory acceleration measurement. Both acceleration systems are also used in support of the vehicle microgravity requirements verification. The International Space Station Increment-3 reduced gravity environment analysis presented in this report uses acceleration data collected by both sets of accelerometer systems: (1) The Microgravity Acceleration Measurement System, which consists of two sensors: the Orbital Acceleration Research Experiment Sensor Subsystem, a low frequency range sensor (up to 1 Hz), is used to characterize the quasi-steady environment for payloads and vehicle, and the High Resolution Accelerometer Package, which is used to characterize the vibratory environment up to 100 Hz. (2) The Space Acceleration Measurement System, which is

  11. Data Analysis of the Floating Potential Measurement Unit aboard the International Space Station

    NASA Technical Reports Server (NTRS)

    Barjatya, Aroh; Swenson, Charles M.; Thompson, Donald C.; Wright, Kenneth H., Jr.

    2009-01-01

    We present data from the Floating Potential Measurement Unit (FPMU), that is deployed on the starboard (S1) truss of the International Space Station. The FPMU is a suite of instruments capable of redundant measurements of various plasma parameters. The instrument suite consists of: a Floating Potential Probe, a Wide-sweeping spherical Langmuir probe, a Narrow-sweeping cylindrical Langmuir Probe, and a Plasma Impedance Probe. This paper gives a brief overview of the instrumentation and the received data quality, and then presents the algorithm used to reduce I-V curves to plasma parameters. Several hours of data is presented from August 5th, 2006 and March 3rd, 2007. The FPMU derived plasma density and temperatures are compared with the International Reference Ionosphere (IRI) and USU-Global Assimilation of Ionospheric Measurement (USU-GAIM) models. Our results show that the derived in-situ density matches the USU-GAIM model better than the IRI, and the derived in-situ temperatures are comparable to the average temperatures given by the IRI.

  12. Change of Command aboard the Space Station

    NASA Image and Video Library

    2017-09-02

    The reins of the International Space Station were passed from Fyodor Yurchikhin of Roscosmos to Randy Bresnik of NASA during a ceremony on the orbital outpost Sept. 1. Yurchikhin is returning to Earth with his crewmates, Peggy Whitson and Jack Fischer of NASA in the Soyuz MS-04 spacecraft for a landing Sept. 3. Whitson, who has logged more days in space than any other U.S. astronaut, is completing a 10-month mission, her third long duration flight, while Yurchikhin and Fischer are completing 136 days in space.

  13. Navigating Space by the Stars

    NASA Image and Video Library

    2018-06-19

    A tool that has helped guide sailors across oceans for centuries is now being tested aboard the International Space Station as a potential emergency navigation tool for guiding future spacecraft across the cosmos. The Sextant Navigation investigation tests use of a hand-held sextant aboard the space station. Sextants have a telescope-like optical sight to take precise angle measurements between pairs of stars from land or sea, enabling navigation without computer assistance. NASA’s Gemini missions conducted the first sextant sightings from a spacecraft, and designers built a sextant into Apollo vehicles as a navigation backup in the event the crew lost communications from their spacecraft. Jim Lovell demonstrated on Apollo 8 that sextant navigation could return a space vehicle home. Astronauts conducted additional sextant experiments on Skylab. Read more about the Sextant experiment happening aboard the space station: https://www.nasa.gov/mission_pages/station/research/news/Sextant_ISS HD Download: https://archive.org/details/jsc2018m000418_Navigating_Space_by_the_Stars

  14. Astronaut Discusses Life in Space with West Virginia Students

    NASA Image and Video Library

    2018-01-25

    Aboard the International Space Station, Expedition 54 Flight Engineer Joe Acaba of NASA discussed life and scientific studies aboard the orbital complex during an in-flight educational event Jan. 25 with students gathered at the West Virginia Wesleyan College in Buckhannon, West Virginia. Acaba is in the final month of a five-and-a-half month mission aboard the outpost.

  15. Nanopore DNA Sequencing and Genome Assembly on the International Space Station.

    PubMed

    Castro-Wallace, Sarah L; Chiu, Charles Y; John, Kristen K; Stahl, Sarah E; Rubins, Kathleen H; McIntyre, Alexa B R; Dworkin, Jason P; Lupisella, Mark L; Smith, David J; Botkin, Douglas J; Stephenson, Timothy A; Juul, Sissel; Turner, Daniel J; Izquierdo, Fernando; Federman, Scot; Stryke, Doug; Somasekar, Sneha; Alexander, Noah; Yu, Guixia; Mason, Christopher E; Burton, Aaron S

    2017-12-21

    We evaluated the performance of the MinION DNA sequencer in-flight on the International Space Station (ISS), and benchmarked its performance off-Earth against the MinION, Illumina MiSeq, and PacBio RS II sequencing platforms in terrestrial laboratories. Samples contained equimolar mixtures of genomic DNA from lambda bacteriophage, Escherichia coli (strain K12, MG1655) and Mus musculus (female BALB/c mouse). Nine sequencing runs were performed aboard the ISS over a 6-month period, yielding a total of 276,882 reads with no apparent decrease in performance over time. From sequence data collected aboard the ISS, we constructed directed assemblies of the ~4.6 Mb E. coli genome, ~48.5 kb lambda genome, and a representative M. musculus sequence (the ~16.3 kb mitochondrial genome), at 100%, 100%, and 96.7% consensus pairwise identity, respectively; de novo assembly of the E. coli genome from raw reads yielded a single contig comprising 99.9% of the genome at 98.6% consensus pairwise identity. Simulated real-time analyses of in-flight sequence data using an automated bioinformatic pipeline and laptop-based genomic assembly demonstrated the feasibility of sequencing analysis and microbial identification aboard the ISS. These findings illustrate the potential for sequencing applications including disease diagnosis, environmental monitoring, and elucidating the molecular basis for how organisms respond to spaceflight.

  16. Video- Astronauts Don Pettit and Ken Bowersox Paint Water Onboard the International Space Station

    NASA Technical Reports Server (NTRS)

    2003-01-01

    Saturday Morning Science, the science of opportunity series of applied experiments and demonstrations, performed aboard the International Space Station (ISS) by Expedition 6 astronaut Dr. Don Pettit, revealed some remarkable findings. Science begets art in this video as Dr. Pettit and commander Ken Bowersox demonstrate two dimensional diffusion using food coloring in a film of water when they created an intriguing birdlike image. Dr. Pettit wonders aloud 'It makes us wonder what Matisse could do with a medium like this.'

  17. Video- Demonstration of Laminar Flow in a Liquid Onboard the International Space Station (ISS)

    NASA Technical Reports Server (NTRS)

    2003-01-01

    Saturday Morning Science, the science of opportunity series of applied experiments and demonstrations, performed aboard the International Space Station (ISS) by Expedition 6 astronaut Dr. Don Pettit, revealed some remarkable findings. In this video clip, Pettit demonstrates laminar flow in a rotating film of water. The demonstration is done by placing tracer particles in a water film held in place by a round wire loop, then stirring the system rotationally. The resulting flow clearly demonstrates laminar 2D behavior with spiraling streamlines.

  18. Remote sensing of fire and deforestation in the tropics from the International Space Station

    NASA Astrophysics Data System (ADS)

    Hoffman, James W.; Riggan, Philip J.; Brass, James A.

    2000-01-01

    In August of 1999 over 30,000 fire counts were registered by the Advanced Very High Resolution Radiometer aboard NOAA satellites over central Brazil, and an extensive smoke pall produced a health hazard and hindered commercial aviation across large portions of the states of Mato Grosso and Mato Grosso do Sul. Clearly fire was an important part of the Brazilian environment, but limitations in satellite and airborne remote sensing prevented a clear picture of what was burning, how much biomass was consumed, where the most critical resources were threatened, or exactly what was the global environmental impact. Another important problem that must be addressed is the deforestation of the rain forest by unauthorized logging operations. To detect these illegal clear cutting activities, continuous, high resolution monitoring must be initiated. The low altitude Space Station offers an ideal platform from which to monitor the tropical regions for both fires and deforestation from an equatorial orbit. A new micro-bolometer-based thermal imager, the FireMapper, has been designed to provide a solution for these problems in fire and resource monitoring. In this paper we describe potential applications of the FireMapper aboard the International Space Station for demonstration of space-borne fire detection and measurement. .

  19. Fluid Physical and Transport Phenomena Studies aboard the International Space Station: Planned Experiments

    NASA Technical Reports Server (NTRS)

    Singh, Bhim S.

    1999-01-01

    This paper provides an overview of the microgravity fluid physics and transport phenomena experiments planned for the International Spare Station. NASA's Office of Life and Microgravity Science and Applications has established a world-class research program in fluid physics and transport phenomena. This program combines the vast expertise of the world research community with NASA's unique microgravity facilities with the objectives of gaining new insight into fluid phenomena by removing the confounding effect of gravity. Due to its criticality to many terrestrial and space-based processes and phenomena, fluid physics and transport phenomena play a central role in the NASA's Microgravity Program. Through widely publicized research announcement and well established peer-reviews, the program has been able to attract a number of world-class researchers and acquired a critical mass of investigations that is now adding rapidly to this field. Currently there arc a total of 106 ground-based and 20 candidate flight principal investigators conducting research in four major thrust areas in the program: complex flows, multiphase flow and phase change, interfacial phenomena, and dynamics and instabilities. The International Space Station (ISS) to be launched in 1998, provides the microgravity research community with a unprecedented opportunity to conduct long-duration microgravity experiments which can be controlled and operated from the Principal Investigators' own laboratory. Frequent planned shuttle flights to the Station will provide opportunities to conduct many more experiments than were previously possible. NASA Lewis Research Center is in the process of designing a Fluids and Combustion Facility (FCF) to be located in the Laboratory Module of the ISS that will not only accommodate multiple users but, allow a broad range of fluid physics and transport phenomena experiments to be conducted in a cost effective manner.

  20. Astronauts of Mission STS-120 visit Stennis Space Center

    NASA Image and Video Library

    2007-12-13

    Astronaut Pam Melroy presents a commemorative collage of photos and items flown aboard space shuttle Discovery to Bob Cabana, director of NASA's Stennis Space Center in South Mississippi. Melroy commanded NASA's space shuttle mission STS-120. She and fellow crewmembers (from left) Doug Wheelock, Stephanie Wilson, George Zamka, Scott Parazynski and Paolo Nespoli visited Stennis Dec. 13, 2007, to thank employees for the reliability and safe performance of the space shuttle's main engines, which on Oct. 23 launched them aboard Discovery on their mission to the International Space Station.

  1. Astronauts of Mission STS-120 visit Stennis Space Center

    NASA Technical Reports Server (NTRS)

    2007-01-01

    Astronaut Pam Melroy presents a commemorative collage of photos and items flown aboard space shuttle Discovery to Bob Cabana, director of NASA's Stennis Space Center in South Mississippi. Melroy commanded NASA's space shuttle mission STS-120. She and fellow crewmembers (from left) Doug Wheelock, Stephanie Wilson, George Zamka, Scott Parazynski and Paolo Nespoli visited Stennis Dec. 13, 2007, to thank employees for the reliability and safe performance of the space shuttle's main engines, which on Oct. 23 launched them aboard Discovery on their mission to the International Space Station.

  2. Space-to-Ground: 2017: 12/22/2017

    NASA Image and Video Library

    2017-12-21

    We look back at a record-breaking year, and forward to what should be a transformational year on station. NASA's Space to Ground is your weekly update on what's happening aboard the International Space Station.

  3. Space-to-Ground: Releasing Dragon: 05/04/2018

    NASA Image and Video Library

    2018-05-03

    SpaceX is getting ready to wrap up another successful supply run, and how do the astronauts spend their time off together? NASA's Space to Ground is your weekly update on what's happening aboard the International Space Station.

  4. Video- Water Injected Into Bubble Onboard the International Space Station (ISS)

    NASA Technical Reports Server (NTRS)

    2003-01-01

    Saturday Morning Science, the science of opportunity series of applied experiments and demonstrations, performed aboard the International Space Station (ISS) by Expedition 6 astronaut Dr. Don Pettit, revealed some remarkable findings. In this video, Dr. Pettit demonstrates using a syringe to inject water into a bubble. The result amazed Dr. Pettit and his crew mates. They observed that the droplets may bounce around for 5 or 6 collisions within the bubble, and then may partially or all at once exchange masses with the bubble. Dr. Pettit speculates the dynamics as a possible interplay between tension forces of kinetic energy and momentum, and possibly even charged forces.

  5. Innovative Ideas for Coordinating International Space Activities: International Center for Space Medicine, International Space Authority, and other Global Youth Space Initiatives

    NASA Astrophysics Data System (ADS)

    Marshall, W.

    2002-01-01

    The Space Generation Forum SGF, at UNISPACE-III, as one of its ten formal recommendations to the United Nations in 1999, put forward the suggestion that the an international space authority should be created. Other recommendations were the establishment of an International Center for Space Medicine, creation of a global space exploration and development program, establishment of a global space (Nobel) prize, and a global space library. These projects are being further developed at the Space Generation Summit (SGS), an event at World Space Congress (WSC) which shall unite international students and young professionals to develop a youth vision and strategy for the peaceful uses of space. SGS, endorsed by the United Nations, will take place from October 11- 13th, during which the 200 delegates will discuss ongoing youth space activities, particularly those stemming from the UNISPACE-III/SGF and taken forward by the Space Generation Advisory Council. Delegates will address a variety of topics with the goal of devising new recommendations according to the theme, 'Accelerating Our Pace in Space'. The material presented here and in other technical sessions throughout WSC includes the findings of these discussions. In this paper, we present the International Space Authority idea together with recommendations on how that might be taken forward. The purpose of such an organization would be to allow: 1. Oversight and enforcement for the balanced regulation of multiple interests in space 2. Access for all peoples to the material benefits and knowledge and understanding enabled by the exploration and 3. Pooling of national and industry resources for the creation of space infrastructure, missions and enterprises for Operating principles: 1. The ISA regulatory regime would encourage commercialization and the harnessing of competitive market 2. Consistent with its charter to ensure access to all peoples, all UN member states and appropriate NGOs would 3. Close coordination with

  6. Space-to-Ground: Successful Spacewalk: 02/23/2018

    NASA Image and Video Library

    2018-02-22

    NASA's Space to Ground is your weekly update on what's happening aboard the International Space Station. For more information about STEM on Station: https://www.nasa.gov/audience/foreducators/stem_on_station/

  7. Space-to-Ground: Back to Earth: 12/15/2017

    NASA Image and Video Library

    2017-12-15

    Expedition 53 crewmembers return to Earth, while the SpaceX Dragon heads to orbit...and how does a body first react to space? NASA's Space to Ground is your weekly update on what's happening aboard the International Space Station.

  8. Space-to-Ground: Light Storm: 180216

    NASA Image and Video Library

    2018-02-16

    This week on station, a spacewalk and vehicle docking. NASA's Space to Ground is your weekly update on what's happening aboard the International Space Station. For more information about STEM on Station: https://www.nasa.gov/audience/foreducators/stem_on_station/

  9. Zero Robotics at Kennedy Space Center Visitor Complex

    NASA Image and Video Library

    2017-08-11

    Students and sponsors hear from astronauts aboard the International Space Station on a big screen in the Center for Space Education at NASA’s Kennedy Space Center in Florida. Teams from across the state of Florida were gathered at Kennedy for the finals of the Zero Robotics Middle School Summer Program national championship. The five-week program allows rising sixth- through ninth-graders to write programs for small satellites called SPHERES (Synchronized, Position, Hold, Engage, Reorient, Experimental Satellites). Finalists saw their code tested aboard the orbiting laboratory.

  10. Droplet Combustion Experiments Aboard the International Space Station

    NASA Astrophysics Data System (ADS)

    Dietrich, Daniel L.; Nayagam, Vedha; Hicks, Michael C.; Ferkul, Paul V.; Dryer, Frederick L.; Farouk, Tanvir; Shaw, Benjamin D.; Suh, Hyun Kyu; Choi, Mun Y.; Liu, Yu Cheng; Avedisian, C. Thomas; Williams, Forman A.

    2014-10-01

    This paper summarizes the first results from isolated droplet combustion experiments performed on the International Space Station (ISS). The long durations of microgravity provided in the ISS enable the measurement of droplet and flame histories over an unprecedented range of conditions. The first experiments were with heptane and methanol as fuels, initial droplet droplet diameters between 1.5 and 5.0 m m, ambient oxygen mole fractions between 0.1 and 0.4, ambient pressures between 0.7 and 3.0 a t m and ambient environments containing oxygen and nitrogen diluted with both carbon dioxide and helium. The experiments show both radiative and diffusive extinction. For both fuels, the flames exhibited pre-extinction flame oscillations during radiative extinction with a frequency of approximately 1 H z. The results revealed that as the ambient oxygen mole fraction was reduced, the diffusive-extinction droplet diameter increased and the radiative-extinction droplet diameter decreased. In between these two limiting extinction conditions, quasi-steady combustion was observed. Another important measurement that is related to spacecraft fire safety is the limiting oxygen index (LOI), the oxygen concentration below which quasi-steady combustion cannot be supported. This is also the ambient oxygen mole fraction for which the radiative and diffusive extinction diameters become equal. For oxygen/nitrogen mixtures, the LOI is 0.12 and 0.15 for methanol and heptane, respectively. The LOI increases to approximately 0.14 (0.14 O 2/0.56 N 2/0.30 C O 2) and 0.17 (0.17 O 2/0.63 N 2/0.20 C O 2) for methanol and heptane, respectively, for ambient environments that simulated dispersing an inert-gas suppressant (carbon dioxide) into a nominally air (1.0 a t m) ambient environment. The LOI is approximately 0.14 and 0.15 for methanol and heptane, respectively, when helium is dispersed into air at 1 atm. The experiments also showed unique burning behavior for large heptane droplets. After the

  11. Space to Ground: A Closer Look: 08/11/2017

    NASA Image and Video Library

    2017-08-10

    More crewmembers, more eyes on science, SpaceX Dragon to launch to station, and Fischer was featured on JSC podcast. NASA's Space to Ground is your weekly update on what's happening aboard the International Space Station.

  12. Space-to-Ground: A Learning Doubleheader: 04/06/2018

    NASA Image and Video Library

    2018-04-05

    The SpaceX Dragon arrives at the space station, more Lettuce leaves are growing onboard, and what do baseball and astronauts have in common? NASA's Space to Ground is your weekly update on what's happening aboard the International Space Station.

  13. International Space Station Research and Facilities for Life Sciences

    NASA Technical Reports Server (NTRS)

    Robinson, Julie A.; Ruttley, Tara M.

    2009-01-01

    Assembly of the International Space Station is nearing completion in fall of 2010. Although assembly has been the primary objective of its first 11 years of operation, early science returns from the ISS have been growing at a steady pace. Laboratory facilities outfitting has increased dramatically 2008-2009 with the European Space Agency s Columbus and Japanese Aerospace Exploration Agency s Kibo scientific laboratories joining NASA s Destiny laboratory in orbit. In May 2009, the ISS Program met a major milestone with an increase in crew size from 3 to 6 crewmembers, thus greatly increasing the time available to perform on-orbit research. NASA will launch its remaining research facilities to occupy all 3 laboratories in fall 2009 and winter 2010. To date, early utilization of the US Operating Segment of the ISS has fielded nearly 200 experiments for hundreds of ground-based investigators supporting international and US partner research. With a specific focus on life sciences research, this paper will summarize the science accomplishments from early research aboard the ISS- both applied human research for exploration, and research on the effects of microgravity on life. We will also look ahead to the full capabilities for life sciences research when assembly of ISS is complete in 2010.

  14. Microbial Characterization of Free Floating Condensate Aboard the Mir Space Station

    NASA Technical Reports Server (NTRS)

    Ott, C. M.; Bruce, R. J.; Pierson, D. L.

    2004-01-01

    Three samples of humidity condensate that had accumulated behind panels aboard the Russian space station Mir were collected and returned to earth for analysis. As these floating masses of liquid come into contact with the astronauts and the engineering systems, they have the potential to affect both crew health and systems performance. Using a combination of culturing techniques, a wide variety of organisms were isolated included Escherichia coli, Serratia marcescens, and a presumed Legionella species. In addition, microscopic analysis indicated the presence of protozoa, dust mites, and spirochetes. These findings suggest the need for more comprehensive microbial analysis of the environment through the use of new methodologies to allow a more thorough risk assessment of spacecraft. Copyright 2004 Springer-Verlag.

  15. Space Station Spacewalks Previewed

    NASA Image and Video Library

    2018-01-18

    On Jan. 18, a briefing was held at NASA’s Johnson Space Center to preview a pair of spacewalks scheduled to take place outside the International Space Station. American and Japanese astronauts aboard the station will conduct spacewalks on Tuesday, Jan. 23 and Monday, Jan. 29 to service the station’s robotic arm.

  16. Space-to-Ground: Rocket and Groot: 01/12/2018

    NASA Image and Video Library

    2018-01-11

    The SpaceX Dragon will depart the station...it's always growing season on ISS...and "Rocket and Groot" powers a student challenge! NASA's Space to Ground is your weekly update on what's happening aboard the International Space Station.

  17. Research experiences on materials science in space aboard Salyut and Mir

    NASA Technical Reports Server (NTRS)

    Regel, Liya L.

    1992-01-01

    From 1980 through 1991 approximately 500 materials processing experiments were performed aboard the space stations Salyut 6, Salyut 7 and Mir. This includes work on catalysts, polymers, metals and alloys, optical materials, superconductors, electronic crystals, thin film semiconductors, super ionic crystals, ceramics, and protein crystals. Often the resulting materials were surprisingly superior to those prepared on earth. The Soviets were the first to fabricate a laser (CdS) from a crystal grown in space, the first to grow a heterostructure in space, the first super ionic crystal in space, the first crystals of CdTe and its alloys, the first zeolite crystals, the first protein crystals, the first chromium disilicide glass, etc. The results were used to optimize terrestrial materials processing operations in Soviet industry. The characteristics of these three space stations are reviewed, along with the advantages of a space station for materials research, and the problems encountered by the materials scientists who used them. For example, the stations and the materials processing equipment were designed without significant input from the scientific community that would be using them. It is pointed out that successful results have been achieved also by materials processing at high gravity in large centrifuges. This research is also continuing around the world, including at Clarkson University. It is recommended that experiments be conducted in centrifuges in space, in order to investigate the acceleration regime between earth's gravity and the microgravity achieved in orbiting space stations. One cannot expect to understand the influence of gravity on materials processing from only two data points, earth's gravity and microgravity. One must also understand the influence of fluctuations in acceleration on board space stations, the so-called 'g-jitter.' This paper is presented in outline and graphical form.

  18. Space-to-Ground: Kilauea Volcano: 05/18/2018

    NASA Image and Video Library

    2018-05-17

    NASA astronauts completed another successful spacewalk, and had an opportunity to photograph a major event happening on the planet. NASA's Space to Ground is your weekly update on what's happening aboard the International Space Station.

  19. The International Space Station Photographed During the STS-112 Mission

    NASA Technical Reports Server (NTRS)

    2002-01-01

    This image of the International Space Station (ISS) was photographed by one of the crewmembers of the STS-112 mission following separation from the Space Shuttle Orbiter Atlantis as the orbiter pulled away from the ISS. The newly added S1 truss is visible in the center frame. The primary payloads of this mission, International Space Station Assembly Mission 9A, were the Integrated Truss Assembly S-1 (S-One), the Starboard Side Thermal Radiator Truss,and the Crew Equipment Translation Aid (CETA) cart to the ISS. The S1 truss provides structural support for the orbiting research facility's radiator panels, which use ammonia to cool the Station's complex power system. The S1 truss was attached to the S0 (S Zero) truss, which was launched on April 8, 2002 aboard the STS-110, and flows 637 pounds of anhydrous ammonia through three heat rejection radiators. The truss is 45-feet long, 15-feet wide, 10-feet tall, and weighs approximately 32,000 pounds. The CETA cart was attached to the Mobil Transporter and will be used by assembly crews on later missions. Manufactured by the Boeing Company in Huntington Beach, California, the truss primary structure was transferred to the Marshall Space Flight Center in February 1999 for hardware installations and manufacturing acceptance testing. The launch of the STS-112 mission occurred on October 7, 2002, and its 11-day mission ended on October 18, 2002.

  20. Space to Ground: Clearing the Cosmos: 06/22/2018

    NASA Image and Video Library

    2018-06-21

    A new experiment is looking at how to clean up the growing risk of space junk, and science on station was positively lit! NASA's Space to Ground is your weekly update on what's happening aboard the International Space Station.

  1. Space-to-Ground: Home at Last: 03/02/2018

    NASA Image and Video Library

    2018-03-01

    With one crew back home on Earth, another crew is prepping to launch to space...and what do astronauts do with the garbage? NASA's Space to Ground is your weekly update on what's happening aboard the International Space Station.

  2. Space-to-Ground: California Wildfires: 12/08/2017

    NASA Image and Video Library

    2017-12-07

    Orbital ATK's Cygnus left the station carrying a record amount, and astronauts got a harrowing view of the California wildfires. NASA's Space to Ground is your weekly update on what's happening aboard the International Space Station.

  3. International Space Station (ISS)

    NASA Image and Video Library

    2006-09-13

    These six STS 117 astronauts, assigned to launch aboard the Space Shuttle Atlantis, are (from the left) astronauts James F. Reilly II, Steven R. Swanson, mission specialists; Frederick W. (Rick) Sturckow, commander; Lee J. Archambault, pilot; and Patrick G. Forrester and John D. (Danny) Olivas, mission specialists. The crewmembers are attired in training versions of their shuttle launch and entry suits. Mission objectives include the addition of the second and third starboard truss segments (S3/S4) with Photovoltaic Radiator (PVR), the deployed third set of solar arrays. The P6 starboard solar array wing and one radiator are to be retracted.

  4. Space Station Crew Member Discusses Life in Space with Educators

    NASA Image and Video Library

    2018-02-01

    Aboard the International Space Station, Expedition 54 Flight Engineer Joe Acaba discussed life and research on the orbital outpost with several hundred educators gathered at Space Center, Houston during an in-flight question and answer session Feb. 1. The Space Educators Conference was designed to bring teachers together from around the nation to discuss topics of mutual interest. Acaba is in the final month of a five and a half month mission on the complex.

  5. Inflight-Event_JAXA-Fukui-Space-Expo

    NASA Image and Video Library

    2018-02-26

    SPACE STATION CREW MEMBER DISCUSSES LIFE IN SPACE WITH JAPANESE STUDENTS------ Aboard the International Space Station, Expedition 54 Flight Engineer Norishige Kanai of the Japan Aerospace Exploration Agency (JAXA) discussed life and research on the orbital laboratory during an in-flight educational event Feb. 23 with Japanese students attending the International Symposium of Space Technology and Science in Fukui Prefecture, Japan. Kanai, who will remain in orbit through early June, recently became the fourth Japanese astronaut in history to conduct a spacewalk.

  6. Space-to-Ground: A Unique Experience: 03/09/2018

    NASA Image and Video Library

    2018-03-08

    Science continued on the station with the Expedition 55 crew, and Scott Tingle shared a surreal training experience. NASA's Space to Ground is your weekly update on what's happening aboard the International Space Station.

  7. Space to Ground: Handoff: 06/01/2018

    NASA Image and Video Library

    2018-05-31

    This week will officially bring one expedition to a close, and welcome the beginning of another. NASA's Space to Ground is your weekly update on what's happening aboard the International Space Station. Got a question or comment? Use #spacetoground to talk to us.

  8. Automating Stowage Operations for the International Space Station

    NASA Technical Reports Server (NTRS)

    Knight, Russell; Rabideau, Gregg; Mishkin, Andrew; Lee, Young

    2013-01-01

    A challenge for any proposed mission is to demonstrate convincingly that the proposed systems will in fact deliver the science promised. Funding agencies and mission design personnel are becoming ever more skeptical of the abstractions that form the basis of the current state of the practice with respect to approximating science return. To address this, we have been using automated planning and scheduling technology to provide actual coverage campaigns that provide better predictive performance with respect to science return for a given mission design and set of mission objectives given implementation uncertainties. Specifically, we have applied an adaptation of ASPEN and SPICE to the Eagle-Eye domain that demonstrates the performance of the mission design with respect to coverage of science imaging targets that address climate change and disaster response. Eagle-Eye is an Earth-imaging telescope that has been proposed to fly aboard the International Space Station (ISS).

  9. Space-to-Ground: Upgrading the Outpost:03/30/2018

    NASA Image and Video Library

    2018-03-29

    ISS crewmembers wrapped up a spacewalk and are now getting ready for a new delivery of science and research. NASA's Space to Ground is your weekly update on what's happening aboard the International Space Station.

  10. Space-to-Ground: Tracking a Monster: 09/08/2017

    NASA Image and Video Library

    2017-09-07

    Three crew members said farewell to the station...the station had eyes on a monstrous storm...and what kind of weather can you have in space? NASA's Space to Ground is your weekly update on what's happening aboard the International Space Station.

  11. Space Shuttle Projects

    NASA Image and Video Library

    2001-08-12

    This is a view of the Space Shuttle Discovery as it approaches the International Space Station (ISS) during the STS-105 mission. Visible in the payload bay of Discovery are the Multipurpose Logistics Module (MPLM) Leonardo at right, which stores various supplies and experiments to be transferred into the ISS; at center, the Integrated Cargo Carrier (ICC) which carries the Early Ammonia Servicer (EAS); and two Materials International Space Station Experiment (MISSE) containers at left. Aboard Discovery were the ISS Expedition Three crew, who were to replace the Expedition Two crew that had been living on the ISS for the past five months.

  12. Using the Flow-3D General Moving Object Model to Simulate Coupled Liquid Slosh - Container Dynamics on the SPHERES Slosh Experiment: Aboard the International Space Station

    NASA Technical Reports Server (NTRS)

    Schulman, Richard; Kirk, Daniel; Marsell, Brandon; Roth, Jacob; Schallhorn, Paul

    2013-01-01

    The SPHERES Slosh Experiment (SSE) is a free floating experimental platform developed for the acquisition of long duration liquid slosh data aboard the International Space Station (ISS). The data sets collected will be used to benchmark numerical models to aid in the design of rocket and spacecraft propulsion systems. Utilizing two SPHERES Satellites, the experiment will be moved through different maneuvers designed to induce liquid slosh in the experiment's internal tank. The SSE has a total of twenty-four thrusters to move the experiment. In order to design slosh generating maneuvers, a parametric study with three maneuvers types was conducted using the General Moving Object (GMO) model in Flow-30. The three types of maneuvers are a translation maneuver, a rotation maneuver and a combined rotation translation maneuver. The effectiveness of each maneuver to generate slosh is determined by the deviation of the experiment's trajectory as compared to a dry mass trajectory. To fully capture the effect of liquid re-distribution on experiment trajectory, each thruster is modeled as an independent force point in the Flow-3D simulation. This is accomplished by modifying the total number of independent forces in the GMO model from the standard five to twenty-four. Results demonstrate that the most effective slosh generating maneuvers for all motions occurs when SSE thrusters are producing the highest changes in SSE acceleration. The results also demonstrate that several centimeters of trajectory deviation between the dry and slosh cases occur during the maneuvers; while these deviations seem small, they are measureable by SSE instrumentation.

  13. Occupational accidents aboard merchant ships

    PubMed Central

    Hansen, H; Nielsen, D; Frydenberg, M

    2002-01-01

    Objectives: To investigate the frequency, circumstances, and causes of occupational accidents aboard merchant ships in international trade, and to identify risk factors for the occurrence of occupational accidents as well as dangerous working situations where possible preventive measures may be initiated. Methods: The study is a historical follow up on occupational accidents among crew aboard Danish merchant ships in the period 1993–7. Data were extracted from the Danish Maritime Authority and insurance data. Exact data on time at risk were available. Results: A total of 1993 accidents were identified during a total of 31 140 years at sea. Among these, 209 accidents resulted in permanent disability of 5% or more, and 27 were fatal. The mean risk of having an occupational accident was 6.4/100 years at sea and the risk of an accident causing a permanent disability of 5% or more was 0.67/100 years aboard. Relative risks for notified accidents and accidents causing permanent disability of 5% or more were calculated in a multivariate analysis including ship type, occupation, age, time on board, change of ship since last employment period, and nationality. Foreigners had a considerably lower recorded rate of accidents than Danish citizens. Age was a major risk factor for accidents causing permanent disability. Change of ship and the first period aboard a particular ship were identified as risk factors. Walking from one place to another aboard the ship caused serious accidents. The most serious accidents happened on deck. Conclusions: It was possible to clearly identify work situations and specific risk factors for accidents aboard merchant ships. Most accidents happened while performing daily routine duties. Preventive measures should focus on workplace instructions for all important functions aboard and also on the prevention of accidents caused by walking around aboard the ship. PMID:11850550

  14. Navigating Space by the Stars - 16x9

    NASA Image and Video Library

    2018-06-18

    A tool that has helped guide sailors across oceans for centuries is now being tested aboard the International Space Station as a potential emergency navigation tool for guiding future spacecraft across the cosmos. The Sextant Navigation investigation tests use of a hand-held sextant aboard the space station. Sextants have a telescope-like optical sight to take precise angle measurements between pairs of stars from land or sea, enabling navigation without computer assistance. NASA’s Gemini missions conducted the first sextant sightings from a spacecraft, and designers built a sextant into Apollo vehicles as a navigation backup in the event the crew lost communications from their spacecraft. Jim Lovell demonstrated on Apollo 8 that sextant navigation could return a space vehicle home. Astronauts conducted additional sextant experiments on Skylab. Read more about the Sextant experiment happening aboard the space station: https://www.nasa.gov/mission_pages/station/research/news/Sextant_ISS HD Download: https://archive.org/details/jsc2018m000418_Navigating_Space_by_the_Stars

  15. Station Crew Member Discusses Life in Space with Media

    NASA Image and Video Library

    2018-01-18

    Aboard the International Space Station, Expedition 54 Flight Engineer Scott Tingle of NASA discussed life and research on the orbital complex during an in-flight interview session Jan. 18 with the ABC Digital Network and Space.com.

  16. Space-to-Ground: Russian Spacewalk: 02/02/2018

    NASA Image and Video Library

    2018-02-02

    This week on station, one spacewalk took place, and another one was moved Also, what advice would an astronaut give to students who want to be a part of the exploration of space? NASA's Space to Ground is your weekly update on what's happening aboard the International Space Station.

  17. Space-to-Ground: Prepping for a Spacewalk: 01/19/2018

    NASA Image and Video Library

    2018-01-18

    Some station science has successfully returned to Earth, and crewmembers are gearing up for a pair of spacewalks. NASA's Space to Ground is your weekly update on what's happening aboard the International Space Station.

  18. Space Station Crew Member Discusses Life in Space with Japanese Students

    NASA Image and Video Library

    2018-01-08

    Aboard the International Space Station, Expedition 54 Flight Engineer Norishige Kanai of the Japan Aerospace Exploration Agency (JAXA) discussed life and research on the complex during an in-flight educational event Jan. 8 with students gathered at the Hamagin Space Technology Museum in Japan. Kanai launched to the station last month and is in the midst of a six-month mission on the orbital laboratory.

  19. A prototype gas exchange monitor for exercise stress testing aboard NASA Space Station

    NASA Technical Reports Server (NTRS)

    Orr, Joseph A.; Westenskow, Dwayne R.; Bauer, Anne

    1989-01-01

    This paper describes an easy-to-use monitor developed to track the weightlessness deconditioning aboard the NASA Space Station, together with the results of testing of a prototype instrument. The monitor measures the O2 uptake and CO2 production, and calculates the maximum O2 uptake and anaerobic threshold during an exercise stress test. The system uses two flowmeters in series to achieve a completely automatic calibration, and uses breath-by-breath compensation for sample line-transport delay. The monitor was evaluated using two laboratory methods and was shown to be accurate. The system's block diagram and the bench test setup diagram are included.

  20. International Space Station Increment-4/5 Microgravity Environment Summary Report

    NASA Technical Reports Server (NTRS)

    Jules, Kenol; Hrovat, Kenneth; Kelly, Eric; McPherson, Kevin; Reckart, Timothy

    2003-01-01

    This summary report presents the results of some of the processed acceleration data measured aboard the International Space Station during the period of December 2001 to December 2002. Unlike the past two ISS Increment reports, which were increment specific, this summary report covers two increments: Increments 4 and 5, hereafter referred to as Increment-4/5. Two accelerometer systems were used to measure the acceleration levels for the activities that took place during Increment-4/5. Due to time constraint and lack of precise timeline information regarding some payload operations and station activities, not a11 of the activities were analyzed for this report. The National Aeronautics and Space Administration sponsors the Microgravity Acceleration Measurement System and the Space Acceleration Microgravity System to support microgravity science experiments which require microgravity acceleration measurements. On April 19, 2001, both the Microgravity Acceleration Measurement System and the Space Acceleration Measurement System units were launched on STS-100 from the Kennedy Space Center for installation on the International Space Station. The Microgravity Acceleration Measurement System supports science experiments requiring quasi-steady acceleration measurements, while the Space Acceleration Measurement System unit supports experiments requiring vibratory acceleration measurement. The International Space Station Increment-4/5 reduced gravity environment analysis presented in this report uses acceleration data collected by both sets of accelerometer systems: The Microgravity Acceleration Measurement System, which consists of two sensors: the low-frequency Orbital Acceleration Research Experiment Sensor Subsystem and the higher frequency High Resolution Accelerometer Package. The low frequency sensor measures up to 1 Hz, but is routinely trimmean filtered to yield much lower frequency acceleration data up to 0.01 Hz. This filtered data can be mapped to arbitrary

  1. Development of Sub-optimal Airway Protocols for the International Space Station (ISS) by the Medical Operation Support Team (MOST)

    NASA Technical Reports Server (NTRS)

    Polk, James D.; Parazynski, Scott; Kelly, Scott; Hurst, Victor, IV; Doerr, Harold K.

    2007-01-01

    Airway management techniques are necessary to establish and maintain a patent airway while treating a patient undergoing respiratory distress. There are situations where such settings are suboptimal, thus causing the caregiver to adapt to these suboptimal conditions. Such occurrences are no exception aboard the International Space Station (ISS). As a result, the NASA flight surgeon (FS) and NASA astronaut cohorts must be ready to adapt their optimal airway management techniques for suboptimal situations. Based on previous work conducted by the Medical Operation Support Team (MOST) and other investigators, the MOST had members of both the FS and astronaut cohorts evaluate two oral airway insertion techniques for the Intubating Laryngeal Mask Airway (ILMA) to determine whether either technique is sufficient to perform in suboptimal conditions within a microgravity environment. Methods All experiments were conducted in a simulated microgravity environment provided by parabolic flight aboard DC-9 aircraft. Each participant acted as a caregiver and was directed to attempt both suboptimal ILMA insertion techniques following a preflight instruction session on the day of the flight and a demonstration of the technique by an anesthesiologist physician in the simulated microgravity environment aboard the aircraft. Results Fourteen participants conducted 46 trials of the suboptimal ILMA insertion techniques. Overall, 43 of 46 trials (94%) conducted were properly performed based on criteria developed by the MOST and other investigators. Discussion The study demonstrated the use of airway management techniques in suboptimal conditions relating to space flight. Use of these techniques will provide a crew with options for using the ILMA to manage airway issues aboard the ISS. Although it is understood that the optimal method for patient care during space flight is to have both patient and caregiver restrained, these techniques provide a needed backup should conditions not present

  2. Space-to-Ground: Color of the Sun: 04/27/2018

    NASA Image and Video Library

    2018-04-26

    NASA has a new administrator, a facility stands out as a "MVP", and just what color is the Sun? NASA's Space to Ground is your weekly update on what's happening aboard the International Space Station.

  3. Video- Demonstrations of Stable and Unstable Solid Body Rotation on the International Space Station

    NASA Technical Reports Server (NTRS)

    2003-01-01

    Saturday Morning Science, the science of opportunity series of applied experiments and demonstrations, performed aboard the International Space Station (ISS) by Expedition 6 astronaut Dr. Don Pettit, revealed some remarkable findings. In this video clip, Pettit demonstrates stable and unstable modes for solid body rotation on the ISS. Using a hard cover textbook, he demonstrates that it will rotate stably about the longest and shortest axis, which represent the maximum and minimum movements of Inertia. Trying to rotate the book around an intermediate axis results in an unstable rotation in which the book appears to flip-flop while it rotates.

  4. Sally Ride EarthKAM: 15 Years of STEM Education and Outreach from Aboard the International Space Station

    NASA Astrophysics Data System (ADS)

    Finley, T.; Griffin, R.; Klug, T.; Harbour, S.; Au, B.; Graves, S. J.

    2016-12-01

    Sally Ride EarthKAM @ Space Camp is a digital camera payload on board the International Space Station (ISS) that allows students from around the globe to request photos of the Earth from space. Since its launch to the ISS in 2001, approximately 110,000 images have been requested by students from over 90 countries. EarthKAM provides the ultimate platform for STEM engagement in both formal and informal educational settings, as it is currently the only earth observation science payload on station completely controlled by students. Images are requested and accessed through a web portal and can be used by educators in a multitude of ways to promote interest in geosciences, math, physics, and numerous other fields. EarthKAM is currently operated out of the US Space and Rocket Center in Huntsville, Alabama and is incorporated into many Space Camp programs. Space Camp hosts nearly 25,000 students and 500 educators each year, vastly improving EarthKAM exposure. Future concepts currently in development include the ability to collect new data products such as night-time and near-infrared imagery, additional science curricula in the form of focused lesson plans and image applications, and a redesigned graphical user interface for requesting photos. The EarthKAM project, a NASA educational outreach program, is currently managed by the US Space and Rocket Center, the University of Alabama in Huntsville, and Teledyne Brown Engineering, Inc.

  5. Utilizing the Southwest Ultraviolet Imaging System (SwUIS) on the International Space Station

    NASA Astrophysics Data System (ADS)

    Schindhelm, Eric; Stern, S. Alan; Ennico-Smith, Kimberly

    2013-09-01

    We present the Southwest Ultraviolet Imaging System (SwUIS), a compact, low-cost instrument designed for remote sensing observations from a manned platform in space. It has two chief configurations; a high spatial resolution mode with a 7-inch Maksutov-Cassegrain telescope, and a large field-of-view camera mode using a lens assembly. It can operate with either an intensified CCD or an electron multiplying CCD camera. Interchangeable filters and lenses enable broadband and narrowband imaging at UV/visible/near-infrared wavelengths, over a range of spatial resolution. SwUIS has flown previously on Space Shuttle flights STS-85 and STS-93, where it recorded multiple UV images of planets, comets, and vulcanoids. We describe the instrument and its capabilities in detail. The SWUIS's broad wavelength coverage and versatile range of hardware configurations make it an attractive option for use as a facility instrument for Earth science and astronomical imaging investigations aboard the International Space Station.

  6. Evaluation of shoulder integrity in space: first report of musculoskeletal US on the International Space Station.

    PubMed

    Fincke, E Michael; Padalka, Gennady; Lee, Doohi; van Holsbeeck, Marnix; Sargsyan, Ashot E; Hamilton, Douglas R; Martin, David; Melton, Shannon L; McFarlin, Kellie; Dulchavsky, Scott A

    2005-02-01

    Investigative procedures were approved by Henry Ford Human Investigation Committee and NASA Johnson Space Center Committee for Protection of Human Subjects. Informed consent was obtained. Authors evaluated ability of nonphysician crewmember to obtain diagnostic-quality musculoskeletal ultrasonographic (US) data of the shoulder by following a just-in-time training algorithm and using real-time remote guidance aboard the International Space Station (ISS). ISS Expedition-9 crewmembers attended a 2.5-hour didactic and hands-on US training session 4 months before launch. Aboard the ISS, they completed a 1-hour computer-based Onboard Proficiency Enhancement program 7 days before examination. Crewmembers did not receive specific training in shoulder anatomy or shoulder US techniques. Evaluation of astronaut shoulder integrity was done by using a Human Research Facility US system. Crew used special positioning techniques for subject and operator to facilitate US in microgravity environment. Common anatomic reference points aided initial probe placement. Real-time US video of shoulder was transmitted to remote experienced sonologists in Telescience Center at Johnson Space Center. Probe manipulation and equipment adjustments were guided with verbal commands from remote sonologists to astronaut operators to complete rotator cuff evaluation. Comprehensive US of crewmember's shoulder included transverse and longitudinal images of biceps and supraspinatus tendons and articular cartilage surface. Total examination time required to guide astronaut operator to acquire necessary images was approximately 15 minutes. Multiple arm and probe positions were used to acquire dynamic video images that were of excellent quality to allow evaluation of shoulder integrity. Postsession download and analysis of high-fidelity US images collected onboard demonstrated additional anatomic detail that could be used to exclude subtle injury. Musculoskeletal US can be performed in space by minimally

  7. Evaluation of shoulder integrity in space: first report of musculoskeletal US on the International Space Station

    NASA Technical Reports Server (NTRS)

    Fincke, E. Michael; Padalka, Gennady; Lee, Doohi; van Holsbeeck, Marnix; Sargsyan, Ashot E.; Hamilton, Douglas R.; Martin, David; Melton, Shannon L.; McFarlin, Kellie; Dulchavsky, Scott A.

    2005-01-01

    Investigative procedures were approved by Henry Ford Human Investigation Committee and NASA Johnson Space Center Committee for Protection of Human Subjects. Informed consent was obtained. Authors evaluated ability of nonphysician crewmember to obtain diagnostic-quality musculoskeletal ultrasonographic (US) data of the shoulder by following a just-in-time training algorithm and using real-time remote guidance aboard the International Space Station (ISS). ISS Expedition-9 crewmembers attended a 2.5-hour didactic and hands-on US training session 4 months before launch. Aboard the ISS, they completed a 1-hour computer-based Onboard Proficiency Enhancement program 7 days before examination. Crewmembers did not receive specific training in shoulder anatomy or shoulder US techniques. Evaluation of astronaut shoulder integrity was done by using a Human Research Facility US system. Crew used special positioning techniques for subject and operator to facilitate US in microgravity environment. Common anatomic reference points aided initial probe placement. Real-time US video of shoulder was transmitted to remote experienced sonologists in Telescience Center at Johnson Space Center. Probe manipulation and equipment adjustments were guided with verbal commands from remote sonologists to astronaut operators to complete rotator cuff evaluation. Comprehensive US of crewmember's shoulder included transverse and longitudinal images of biceps and supraspinatus tendons and articular cartilage surface. Total examination time required to guide astronaut operator to acquire necessary images was approximately 15 minutes. Multiple arm and probe positions were used to acquire dynamic video images that were of excellent quality to allow evaluation of shoulder integrity. Postsession download and analysis of high-fidelity US images collected onboard demonstrated additional anatomic detail that could be used to exclude subtle injury. Musculoskeletal US can be performed in space by minimally

  8. Space to Ground: A Fleet of CUBESATS: 05/19/2017

    NASA Image and Video Library

    2017-05-18

    NASA's Space to Ground is your weekly update on what's happening aboard the International Space Station. Got a question or comment? Use #spacetoground to talk to us. ________________________________________ FOLLOW THE SPACE STATION! Twitter: https://twitter.com/Space_Station Facebook: https://www.facebook.com/ISS Instagram: https://instagram.com/iss/

  9. Space-to-Ground: Out the Door: 10/06/2017

    NASA Image and Video Library

    2017-10-05

    The first of three October spacewalks took place this week…it’s growing season once again onboard station…and how many airlocks are on station? NASA's Space to Ground is your weekly update on what's happening aboard the International Space Station.

  10. Space-to-Ground: Stuffed with Science: 11/17/2017

    NASA Image and Video Library

    2017-11-16

    S.S. Gene Cernan arrives to station...Experiment will examine how microgravity affects the bacteria's ability to thrive...and who answers astronauts questions about experiments? NASA's Space to Ground is your weekly update on what's happening aboard the International Space Station.

  11. Space-to-Ground: Ready for a Walk: 05/11/2018

    NASA Image and Video Library

    2018-05-10

    This week, the crew prepares for a spacewalk, worked on an experiment called ELF, and spoke to students from Houston area schools. NASA's Space to Ground is your weekly update on what's happening aboard the International Space Station.

  12. SpaceX CRS-12 "What's on Board?" Science Briefing

    NASA Image and Video Library

    2017-08-13

    Pete Hasbrook, associate program scientist for the International Space Station Program, speaks to members of social media in the Kennedy Space Center’s Press Site auditorium. The briefing focused on research planned for launch to the International Space Station. The scientific materials and supplies will be aboard a Dragon spacecraft scheduled for launch from Kennedy’s Launch Complex 39A on Aug. 14 atop a SpaceX Falcon 9 rocket on the company's 12th Commercial Resupply Services mission to the space station.

  13. Space Station Crew Members Discuss Life in Space with Country Music Legends

    NASA Image and Video Library

    2017-06-29

    Aboard the International Space Station, Expedition 52 Flight Engineers Jack Fischer and Peggy Whitson of NASA discussed life and research on the orbital outpost with country music stars Garth Brooks and Trisha Yearwood, during an in-flight chat June 29. Brooks and Yearwood placed the call during a tour of NASA’s Johnson Space Center in Houston in the wake of a social media post Fischer made prior to his launch in April that listed Brooks’ song “The River” as one of his favorites. Fischer and Whitson are scheduled to remain in orbit aboard the station until early September when they will return to Earth in a Russian Soyuz spacecraft for a parachute-assisted landing on the steppe of Kazakhstan.

  14. Space Station Cosmonauts Walk in Space to Upgrade Communications Hardware

    NASA Image and Video Library

    2018-02-02

    Aboard the International Space Station, Expedition 54 Flight Engineers Alexander Misurkin and Anton Shkaplerov of the Russian Federal Space Agency (Roscosmos) conducted a spacewalk outside the Pirs docking compartment Feb. 2 to install a new high-gain communications antenna on the aft end of the Zvezda Service Module and retrieve science experiment packages from the hull of the module. It was the 208th spacewalk in support of space station assembly and maintenance, the fourth in Misurkin’s career and the second for Shkaplerov.

  15. Space Industry. Industry Study, Spring 2008

    DTIC Science & Technology

    2008-01-01

    Northrop Grumman Space Technology, Redondo Beach, CA Jet Propulsion Laboratory , Pasadena, CA Aerospace Corporation, El Segundo, CA International... good of all men, and to become the world’s leading space-faring nation. - John F. Kennedy (Rice University, September 12, 1962) The United States...European civil space sectors delivered several important payloads in 2008. The ESA sponsored Columbus Laboratory was carried aloft aboard America’s

  16. News Conference Features with Next Space Station Crew

    NASA Image and Video Library

    2017-12-07

    A NASA news conference was held Dec. 7 at Johnson Space Center in Houston with the next crew launching to the International Space Station. NASA astronauts A.J. (Drew) Feustel, Ricky Arnold, and Oleg Artemyev of the Russian space agency Roscosmos will launch to the space station aboard a Soyuz MS-08 spacecraft in March 2018, from the Baikonur Cosmodrome in Kazakhstan.

  17. Microbiology facilities aboard Space Station Freedom (SSF)

    NASA Technical Reports Server (NTRS)

    Cioletti, L. A.; Mishra, S. K.; Richard, Elizabeth E.; Taylor, R.

    1990-01-01

    A comprehensive microbiological facility is being designed for use on board Space Station Freedom (SSF). Its purpose will be to conduct microbial surveillance of the SSF environment and to examine clinical specimens. Air, water, and internal surfaces will be periodically monitored to satisfy requirements for a safe environment. Crew health will remain a principle objective for every mission. This paper will review the Microbiology Subsystem capabilities planned for SSF application.

  18. A densitometric analysis of IIaO film flown aboard the space shuttle transportation system STS #3, 7, and 8

    NASA Technical Reports Server (NTRS)

    Hammond, Ernest C., Jr.

    1989-01-01

    Since the United States of America is moving into an age of reusable space vehicles, both electronic and photographic materials will continue to be an integral part of the recording techniques available. Film as a scientifically viable recording technique in astronomy is well documented. There is a real need to expose various types of films to the Shuttle environment. Thus, the main objective was to look at the subtle densitometric changes of canisters of IIaO film that was placed aboard the Space Shuttle 3 (STS-3).

  19. Red Aurora as Seen From the International Space Station (ISS)

    NASA Technical Reports Server (NTRS)

    2001-01-01

    Auroras are caused when high-energy electrons pour down from the Earth's magnetosphere and collide with atoms. Red aurora, as captured here by a still digital camera aboard the International Space Station (ISS), occurs from 200 km to as high as 500 km altitude and is caused by the emission of 6300 Angstrom wavelength light from oxygen atoms. The light is emitted when the atoms return to their original unexcited state. The white spot in the image is from a light on inside of the ISS that is reflected off the inside of the window. The pale blue arch on the left side of the frame is sunlight reflecting off the atmospheric limb of the Earth. At times of peaks in solar activity, there are more geomagnetic storms and this increases the auroral activity viewed on Earth and by astronauts from orbit.

  20. International Space Station

    NASA Technical Reports Server (NTRS)

    1998-01-01

    This artist's digital concept depicts the completely assembled International Space Station (ISS) passing over Florida. As a gateway to permanent human presence in space, the Space Station Program is to expand knowledge benefiting all people and nations. The ISS is a multidisciplinary laboratory, technology test bed, and observatory that will provide unprecedented undertakings in scientific, technological, and international experimentation. Experiments to be conducted in the ISS include: microgravity research, Earth science, space science, life sciences, space product development, and engineering research and technology. The sixteen countries participating the ISS are: United States, Russian Federation, Canada, Japan, United Kingdom, Germany, Italy, France, Norway, Netherlands, Belgium, Spain, Denmark, Sweden, Switzerland, and Brazil.

  1. Space-to-Ground: Teacher On Board: 10/20/2017

    NASA Image and Video Library

    2017-10-20

    The crew completed their third and final spacewalk for the month...We kicked off a year of education on station...and we talk about the importance of astronaut photography. Space to Ground is your weekly update on what's happening aboard the International Space Station.

  2. jsc2017m000462_Space-to-Ground_186_170727

    NASA Image and Video Library

    2017-07-27

    Three new crew members are scheduled to launch to the ISS. The crew worked on the Capillary Structures Experiment. And what do astronauts do when they're not working? NASA's Space to Ground is your weekly update on what's happening aboard the International Space Station.

  3. SAGE III on the International Space Station

    NASA Astrophysics Data System (ADS)

    McCormick, M. P.; Damadeo, R. P.; Hill, C. A.

    2017-12-01

    A much-improved Stratospheric Aerosol and Gas Experiment (SAGE III) instrument was launched on February 19, 2017 from NASA's Kennedy Space Center aboard the SpaceX CRS-10 Dragon Spacecraft. It subsequently docked with the International Space Station (ISS), completed commissioning on July 1, 2017, and is now in its Mission Operations phase. SAGE III-ISS will combine the experience and capabilities of its successful predecessor satellite instruments SAM II, SAGE, SAGE II, and SAGE III-Meteor-3M to measure aerosol, cloud, O3, H2O, and NO2 profiles from the upper troposphere through the stratosphere. In addition to solar and lunar occultation with vertical resolutions of about 1.0 km, SAGE III-ISS will make limb scattering measurements on the solar side of each orbit greatly expanding the measurement coverage per spacecraft orbit, and tie the very high resolution and precise solar occultation measurements with the limb scattering measurements. The programmable readout array detector enhances its measurement capability and should allow for experimental data products like BrO, and IO, and along with a single photodiode detector, the measurement of larger aerosols. The wavelengths covered by SAGE III-ISS range from 280 to 1050 nm with 1 to 2 nm spectral resolution using a grating spectrometer. The single photodiode extends measurements to 1550 nm. This talk will describe the measurement capabilities of SAGE III, and include early data and validation examples, its additional modes and increased geographical coverage, its calibration and characterization, and data archival and validation approach.

  4. Expedition54_Education_in-Flight-New_Mexico_Museum_Space_History_052_1600_620942_hires

    NASA Image and Video Library

    2018-02-21

    Aboard the International Space Station, Expedition 54 Flight Engineer Scott Tingle of NASA discussed life and work aboard the orbital outpost with New Mexico students during an in-flight education event Feb. 21 at the New Mexico Museum of Space History in Alamogordo, New Mexico. Tingle is in the midst of a five-and-a-half-month mission on the station. He is scheduled to return to Earth in early June.

  5. SpaceX CRS-11 "What's on Board?" Science Briefing

    NASA Image and Video Library

    2017-05-31

    Dr. Camille Alleyne, associate program scientist for the International Space Station (ISS) at NASA’s Johnson Space Center, speaks to members of social media in the Kennedy Space Center’s Press Site auditorium. The briefing focused on research planned for launch to the International Space Station. The scientific materials and supplies will be aboard a Dragon spacecraft scheduled for launch from Kennedy’s Launch Complex 39A on June 1 atop a SpaceX Falcon 9 rocket on the company's 11th Commercial Resupply Services mission to the space station.

  6. Preparing future space leaders - International Space University

    NASA Technical Reports Server (NTRS)

    Stone, Barbara A.; Van Reeth, George P.

    1992-01-01

    The International Space University (ISU) concept of developing a cadre of space professionals that will lead the universities and industries into space is discussed. ISU is an innovative, permanent worldwide organization for training and academic instruction in all aspects of space studies. ISU's major goal is to provide the young professional academic instruction in technical and nontechnical areas of modern space exploration and research, and a forum to exchange ideas and develop both personal and professional ties at an international level.

  7. International Space Station

    NASA Technical Reports Server (NTRS)

    1998-01-01

    This artist's concept depicts the completely assembled International Space Station (ISS) passing over the Straits of Gibraltar and the Mediterranean Sea. As a gateway to permanent human presence in space, the Space Station Program is to expand knowledge benefiting all people and nations. The ISS is a multidisciplinary laboratory, technology test bed, and observatory that will provide unprecedented undertakings in scientific, technological, and international experimentation. Experiments to be conducted in the ISS include: microgravity research, Earth science, space science, life sciences, space product development, and engineering research and technology. The sixteen countries participating the ISS are: United States, Russian Federation, Canada, Japan, United Kingdom, Germany, Italy, France, Norway, Netherlands, Belgium, Spain, Denmark, Sweden, Switzerland, and Brazil.

  8. International Space Station

    NASA Technical Reports Server (NTRS)

    1998-01-01

    This artist's concept depicts the completely assembled International Space Station (ISS) passing over Florida and the Bahamas. As a gateway to permanent human presence in space, the Space Station Program is to expand knowledge benefiting all people and nations. The ISS is a multidisciplinary laboratory, technology test bed, and observatory that will provide unprecedented undertakings in scientific, technological, and international experimentation. Experiments to be conducted in the ISS include: microgravity research, Earth science, space science, life sciences, space product development, and engineering research and technology. The sixteen countries participating in the ISS are: United States, Russian Federation, Canada, Japan, United Kingdom, Germany, Italy, France, Norway, Netherlands, Belgium, Spain, Denmark, Sweden, Switzerland, and Brazil.

  9. Space-to-Ground: A Stunning Launch: 08/04/2017

    NASA Image and Video Library

    2017-08-03

    Three new crew members are on the ISS, several crew members jumped into research mode, and with a new crew onboard, it's time to follow their mission on social media. NASA's Space to Ground is your weekly update on what's happening aboard the International Space Station.

  10. Space Station Crew Discusses Life in Space with Students in Washington, D.C.

    NASA Image and Video Library

    2017-09-27

    Aboard the International Space Station, Expedition 53 Commander Randy Bresnik of NASA discussed life and research on the orbital outpost during an educational in-flight event Sept. 27 with students gathered at the National Air and Space Museum in Washington, D.C. The so-called “STEM in 30” group of students is focused on investigations regarding station science and Bresnik’s contributions to the research being conducted in orbit.

  11. The International Space Station in Space Exploration

    NASA Technical Reports Server (NTRS)

    Gerstenmaier, William H.; McKay, Meredith M.

    2006-01-01

    The International Space Station (ISS) Program has many lessons to offer for the future of space exploration. Among these lessons of the ISS Program, three stand out as instrumental for the next generation of explorers. These include: 1) resourcefulness and the value of a strong international partnership; 2) flexibility as illustrated by the evolution of the ISS Program and 3) designing with dissimilar redundancy and simplicity of sparing. These lessons graphically demonstrate that the ISS Program can serve as a test bed for future programs. As the ISS Program builds upon the strong foundation of previous space programs, it can provide insight into the prospects for continued growth and cooperation in space exploration. As the capacity for spacefaring increases worldwide and as more nations invest in space exploration and space sector development, the potential for advancement in space exploration is unlimited. By building on its engineering and research achievements and international cooperation, the ISS Program is inspiring tomorrow s explorers today.

  12. Space Shuttle Projects

    NASA Image and Video Library

    2001-04-01

    The STS-105 crew patch symbolizes the exchange of the Expedition Two and Expedition Three crews aboard the International Space Station (ISS). The three gold stars near the ascending orbiter represent the U.S. commanded Expedition Three Crew journeying into space, while the two gold stars near the descending orbiter represent the Russian commanded Expedition Two crew on their return to Earth. The ascending and descending Orbiters form a circle that represents both the crew rotation and the continuous presence in space aboard the station. The plumes of each orbiter represent the flags of the U.S. and Russia, symbolizing the close cooperation between the two nations. The Astronaut office symbol, a star with three rays of light, depicts the unbroken link between Earth and the brightest star on the horizon, the ISS. The names of Discovery's crew of four astronauts are shown along the border of the patch while the names of the Expedition crews are shown on the chevron at the bottom of the patch.

  13. Space Station Crew Marks the 10th Anniversary of the Launching of the European Columbus Module

    NASA Image and Video Library

    2018-02-07

    Aboard the International Space Station, Expedition 54 Flight Engineers Joe Acaba and Mark Vande Hei of NASA took time to commemorate the 10th anniversary of the launching of the European Columbus module during an in-flight event Feb. 7 with European Space Agency officials gathered in Noordwijk, Netherlands. The Columbus science laboratory was launched on Feb. 7, 2008 aboard the space shuttle Atlantis on the STS-122 mission commanded by former NASA astronaut Stephen Frick.

  14. Analysis of Noise Exposure Measurements Made Onboard the International Space Station

    NASA Technical Reports Server (NTRS)

    Limardo, Jose G.; Allen, Christopher S.

    2011-01-01

    The International Space Station (ISS) is a unique workplace environment for U.S. astronauts and Russian cosmonauts to conduct research and live for a period of six months or more. Noise has been an enduring environmental physical hazard that has been a challenge for the U.S. space program since before the Apollo era. Noise exposure in ISS poses significant risks to the crewmembers, such as; hearing loss (temporary or permanent), possible disruptions of crew sleep, interference with speech intelligibility and communication, possible interference with crew task performance, and possible reduction in alarm audibility. Acoustic measurements are made aboard ISS and compared to requirements in order to assess the acoustic environment to which the crewmembers are exposed. The purpose of this paper is to describe in detail the noise exposure monitoring program as well as an assessment of the acoustic dosimeter data collected to date. The hardware currently being used for monitoring the noise exposure onboard ISS will be discussed. Acoustic data onboard ISS has been collected since the beginning of ISS (Increment 1, November 2000). Noise exposure data analysis will include acoustic dosimetry logged data from crew-worn during work and sleep periods and also fixed-location measurements from Increment 1 to present day. Noise exposure levels (8-, 16- and 24-hr), LEQ, will also be provided and discussed in this paper. Discussions related to hearing protection will also be included. Future directions and recommendations for the noise exposure monitoring program will be highlighted. This acoustic data is used to ensure a safe and healthy working and living environment for the crewmembers aboard the ISS.

  15. Science Goals for the PARCS mission on the International Space Station

    NASA Astrophysics Data System (ADS)

    Ashby, Neil; Hollberg, Leo; Jefferts, Steven; Klipstein, William; Seidel, David; Sullivan, Donald

    2003-05-01

    The PARCS (Primary Atomic Reference Clock in Space) experiment will use a laser-cooled cesium atomic clock operating in the microgravity environment aboard the International Space Station (ISS) to provide both advanced tests of gravitational theory and to demonstrate a new cold-atom clock technology for space. This presentation concentrates on the scientific goals of the PARCS mission. The microgravity space environment allows laser-cooled Cs atoms to have Ramsey times in excess of those feasible on Earth, resulting in improved clock performance. Clock stabilities of 5×10-14 at one second, and uncertainties below 10-16 are projected. The relativistic frequency shift should be measurable at least 40 times better than the previous best measurement made by Gravity Probe A. Significant improvements in testing fundamental assumptions of relativity theory, such as local position invariance (LPI), are expected. PARCS is scheduled for launch in 2007 and may very well fly with the Stanford superconducting microwave oscillator (SUMO) which will allow a Kennedy-Thorndike-type experiment with an improvement of better than three orders of magnitude compared to previous best results. PARCS will also provide a much-improved realization of the second, and a stable time reference in space. PARCS is a joint project by the National Institue of Standards and Technology (NIST), the University of Colorado (CU) and NASA's Jet Propulsion Laboratory (JPL).

  16. Proprietary rights and commercial use of space stations

    NASA Technical Reports Server (NTRS)

    Kempf, Robert F.

    1986-01-01

    The treatment of proprietary rights related to commercial activity aboard an international space station is discussed, with a focus on the relationship between the acquisition (on earth or in space) and protection of such rights. The applicable national and international law is briefly characterized, and consideration is given to patent, trade-secret, and copyright considerations. It is concluded that the provisions of present commercial law can be applied relatively straightforwardly to rights acquired on earth, while the Outer Space Treaty of 1967 and the Convention on Registration of 1976 apply to rights obtained in space.

  17. The International Space University

    NASA Technical Reports Server (NTRS)

    Davidian, Kenneth J.

    1990-01-01

    The International Space University (ISU) was founded on the premise that any major space program in the future would require international cooperation as a necessary first step toward its successful completion. ISU is devoted to being a leading center for educating future authorities in the world space industry. ISU's background, goals, current form, and future plans are described. The results and benefits of the type of education and experience gained from ISU include technical reports describing the design projects undertaken by the students, an exposure to the many different disciplines which are a part of a large space project, an awareness of the existing activities from around the world in the space community, and an international professional network which spans all aspects of space activities and covers the globe.

  18. International Space Station Increment-6/8 Microgravity Environment Summary Report November 2002 to April 2004

    NASA Technical Reports Server (NTRS)

    Jules, Kenol; Hrovat, Kenneth; Kelly, Eric; Reckart, Timothy

    2006-01-01

    This summary report presents the analysis results of some of the processed acceleration data measured aboard the International Space Station during the period of November 2002 to April 2004. Two accelerometer systems were used to measure the acceleration levels for the activities that took place during Increment-6/8. However, not all of the activities during that period were analyzed in order to keep the size of the report manageable. The National Aeronautics and Space Administration sponsors the Microgravity Acceleration Measurement System and the Space Acceleration Measurement System to support microgravity science experiments that require microgravity acceleration measurements. On April 19, 2001, both the Microgravity Acceleration Measurement System and the Space Acceleration Measurement System units were launched on STS-100 from the Kennedy Space Center for installation on the International Space Station. The Microgravity Acceleration Measurement System unit was flown to the station in support of science experiments requiring quasi-steady acceleration measurements, while the Space Acceleration Measurement System unit was flown to support experiments requiring vibratory acceleration measurement. Both acceleration systems are also used in support of the vehicle microgravity requirements verification as well as in support of the International Space Station support cadre. The International Space Station Increment-6/8 reduced gravity environment analysis presented in this report uses acceleration data collected by both sets of accelerometer systems: 1. The Microgravity Acceleration Measurement System, which consists of two sensors: the Orbital Acceleration Research Experiment Sensor Subsystem, a low frequency range sensor (up to 1 Hz), is used to characterize the quasi-steady environment for payloads and vehicle, and the High Resolution Accelerometer Package, which is used to characterize the vibratory environment up to 100 Hz. 2. The Space Acceleration Measurement

  19. International Space Station (ISS)

    NASA Image and Video Library

    1998-11-08

    Designed by the STS-88 crew members, this patch commemorates the first assembly flight to carry United States-built hardware for constructing the International Space Station (ISS). This flight's primary task was to assemble the cornerstone of the Space Station: the Node with the Functional Cargo Block (FGB). The rising sun symbolizes the dawning of a new era of international cooperation in space and the beginning of a new program: the International Space Station. The Earth scene outlines the countries of the Station Partners: the United States, Russia, those of the European Space Agency (ESA), Japan, and Canada. Along with the Pressurized Mating Adapters (PMA) and the Functional Cargo Block, the Node is shown in the final mated configuration while berthed to the Space Shuttle during the STS-88/2A mission. The Big Dipper Constellation points the way to the North Star, a guiding light for pioneers and explorers for generations. In the words of the crew, These stars symbolize the efforts of everyone, including all the countries involved in the design and construction of the International Space Station, guiding us into the future.

  20. Space Station Crew Member Discusses Life in Space with Reporters

    NASA Image and Video Library

    2018-01-05

    Aboard the International Space Station, Expedition 54 Flight Engineer Norishige Kanai of the Japan Aerospace Exploration Agency (JAXA) discussed life and research on the orbital laboratory during an in-flight question and answer session Jan. 5 with Japanese reporters gathered at JAXA’s offices in Tokyo. Kanai is in the third week of a planned six-month mission on the complex.

  1. Catastrophic Failure Modes Assessment of the International Space Station Alpha

    NASA Technical Reports Server (NTRS)

    Lutz, B. E. P.; Goodwin, C. J.

    1996-01-01

    This report summarizes a series of analyses to quantify the hazardous effects of meteoroid/debris penetration of Space Station Alpha manned module protective structures. These analyses concentrate on determining (a) the critical crack length associated with six manned module pressure wall designs that, if exceeded, would lead to unstopped crack propagation and rupture of manned modules, and (b) the likelihood of crew or station loss following penetration of unsymmetrical di-methyl hydrazine tanks aboard the proposed Russian FGB ('Tug') propulsion module and critical elements aboard the control moment gyro module (SPP-1). Results from these quantified safety analyses are useful in improving specific design areas, thereby reducing the overall likelihood of crew or station loss following orbital debris penetration.

  2. SpaceX CRS-12 "What's on Board?" Science Briefing

    NASA Image and Video Library

    2017-08-13

    Ken Shields, director of Operations for Center for the Advancement of Science in Space/ISS National Lab, left, and Pete Hasbrook, associate program scientist for the International Space Station Program, speak to members of social media in the Kennedy Space Center’s Press Site auditorium. The briefing focused on research planned for launch to the International Space Station. The scientific materials and supplies will be aboard a Dragon spacecraft scheduled for launch from Kennedy’s Launch Complex 39A on Aug. 14 atop a SpaceX Falcon 9 rocket on the company's 12th Commercial Resupply Services mission to the space station.

  3. SpaceX CRS-10 "What's On Board" Science Briefing

    NASA Image and Video Library

    2017-02-17

    Tara Ruttley, NASA associate scientist for the International Space Station Program, left, and Patrick O'Nell, Marketing and Communications manager for the Center for the Advancement of Science in Space (CASIS), speak to members of social media in the Kennedy Space Center’s Press Site auditorium. The briefing focused on research planned for launch to the International Space Station. The scientific materials and supplies will be aboard a Dragon spacecraft scheduled for launch from Kennedy’s Launch Complex 39A on Feb. 18 atop a SpaceX Falcon 9 rocket on the company's 10th Commercial Resupply Services mission to the space station.

  4. Space Station Commander Talks to South Carolina Students

    NASA Image and Video Library

    2017-10-02

    Aboard the International Space Station, Expedition 53 Commander Randy Bresnik of NASA discussed life and work aboard the orbital laboratory during an in-flight educational event Oct. 2 with students at The Citadel STEM Center at the Laing Middle School near Charleston, South Carolina. Bresnik holds a Bachelor of Arts degree in mathematics and an honorary doctorate in aeronautics from The Citadel. He launched to the station in July and will remain on board through mid-December.

  5. International Space Station (ISS)

    NASA Image and Video Library

    2007-08-01

    As the construction continued on the International Space Station (ISS), STS-118 Astronaut Dave Williams, representing the Canadian Space Agency, participated in the fourth and final session of Extra Vehicular Activity (EVA). During the 5 hour space walk, Williams and Expedition 15 engineer Clay Anderson (out of frame) installed the External Wireless Instrumentation System Antenna, attached a stand for the shuttle robotic arm extension boom, and retrieved the two Materials International Space Station Experiments (MISSE) for return to Earth. MISSE collects information on how different materials weather in the environment of space.

  6. International Space Station (ISS)

    NASA Image and Video Library

    1995-04-17

    International Cooperation Phase III: A Space Shuttle docked to the International Space Station (ISS) in this computer generated representation of the ISS in its completed and fully operational state with elements from the U.S., Europe, Canada, Japan, and Russia.

  7. SpaceX/Dragon CRS-12 What's on Board Science Briefing

    NASA Image and Video Library

    2017-08-13

    The briefing focused on research planned for launch to the International Space Station. The scientific materials and supplies will be aboard a Dragon spacecraft scheduled for launch from Kennedy’s Launch Complex 39A on Aug. 14 atop a SpaceX Falcon 9 rocket on the company's 12th Commercial Resupply Services mission to the space station.

  8. International Space Weather Initiative (ISWI)

    NASA Technical Reports Server (NTRS)

    Gopalswamy, Nat; Davila, Joseph M.

    2010-01-01

    The International Space Weather Initiative (ISWI) is an international scientific program to understand the external drivers of space weather. The science and applications of space weather has been brought to prominence because of the rapid development of space based technology that is useful for all human beings. The ISWI program has its roots in the successful International Heliophysical Year (IHY) program that ran during 2007 - 2009. The primary objective of the ISWI program is to advance the space weather science by a combination of instrument deployment, analysis and interpretation of space weather data from the deployed instruments in conjunction with space data, and communicate the results to the public and students. Like the IHY, the ISWI will be a grass roots organization with key participation from national coordinators in cooperation with an international steering committee. This talk outlines the ISWI program including its organization and proposed activities.

  9. Space Station Astronauts Return Safely to Earth on This Week @NASA – December 11, 2015

    NASA Image and Video Library

    2015-12-11

    On Dec. 11 aboard the International Space Station, NASA’s Kjell Lindgren, Russian cosmonaut Oleg Kononenko and Kimiya Yui of the Japan Aerospace Exploration Agency, bid farewell to crew members remaining on the station -- including Commander Scott Kelly, NASA’s one-year mission astronaut. The returning members of Expedition 45 then climbed aboard their Soyuz spacecraft for the trip back to Earth. They safely touched down hours later in Kazakhstan – closing out a 141-day stay in space. Also, Next space station crew prepares for launch, Supply mission arrives at space station, Quantum computing lab and more!

  10. SpaceX CRS-12 "What's on Board?" Science Briefing

    NASA Image and Video Library

    2017-08-13

    Jacob Smith of the University of Maryland speaks to members of social media in the Kennedy Space Center’s Press Site auditorium. He is operations lead for the International Space Station Cosmic Ray Energetics and Mass, or ISS-CREAM, investigation. The briefing focused on research planned for launch to the International Space Station. The scientific materials and supplies will be aboard a Dragon spacecraft scheduled for launch from Kennedy’s Launch Complex 39A on Aug. 14 atop a SpaceX Falcon 9 rocket on the company's 12th Commercial Resupply Services mission to the space station.

  11. Space Station Discusses Life in Space with the Peace Corps

    NASA Image and Video Library

    2018-02-07

    Aboard the International Space Station, Expedition 54 Flight Engineers Mark Vande Hei and Joe Acaba of NASA discussed life and research on the complex during an in-flight educational event Feb. 7 with members of the Peace Corps gathered in Washington, D.C. Vande Hei and Acaba are in the final weeks of a five and a half month mission on the orbital laboratory.

  12. STS 134, 135 and 26S Return Samples: Air Quality aboard Shuttle (STS-134) and International Space Station

    NASA Technical Reports Server (NTRS)

    James, John T.

    2011-01-01

    This is a very limited set of samples on which to perform an air quality assessment. However, based on these samples, we have no reason to believe that nominal ISS air is unsafe to breathe. We must continue to be vigilant when dealing with nominal atmospheres in ISS. New, unmanned modules require special attention when the crew first enters. Carbon Monoxide Accumulation aboard ISS: Beginning in late 2008 the nominal concentrations of CO began increasing gradually (Figure 1). The results from samples returned on this flight indicate that the CO concentrations, after dropping in late 2009, have cycled upward and then settled back to concentrations near 2 mg/m3. In any case, these changes are well below the 180-day SMAC for CO, which is17 mg/m3. There is no threat to crew health. Carbon Dioxide: This anthropogenic compound has drawn much attention recently because of the possibility that it could contribute to the effects of intracranial hypertension experienced because of spaceflight-induced fluid shifts. From now on we will maintain a plot (Figure 2) of carbon dioxide concentrations ( SD) by averaging the values found in the 3-5 mini-GSC samples taken each month in diverse locations of the ISS. This will enable us to estimate the average exposure of crewmembers to carbon dioxide during their stay aboard the ISS. In general, concentrations are being maintained below 3.5 mmHg. Figure 1

  13. International Space Station (ISS)

    NASA Image and Video Library

    2002-06-05

    Aboard the Space Shuttle Orbiter Endeavour, the STS-111 mission was launched on June 5, 2002 at 5:22 pm EDT from Kennedy's launch pad. On board were the STS-111 and Expedition Five crew members. Astronauts Kenneth D. Cockrell, commander; Paul S. Lockhart, pilot, and mission specialists Franklin R. Chang-Diaz and Philippe Perrin were the STS-111 crew members. Expedition Five crew members included Cosmonaut Valeri G. Korzun, commander, Astronaut Peggy A. Whitson and Cosmonaut Sergei Y. Treschev, flight engineers. Three space walks enabled the STS-111 crew to accomplish mission objectives: the delivery and installation of a new platform for the ISS robotic arm, the Mobile Base System (MBS) which is an important part of the Station's Mobile Servicing System allowing the robotic arm to travel the length of the Station; the replacement of a wrist roll joint on the Station's robotic arm; and unloading supplies and science experiments from the Leonardo Multi-Purpose Logistics Module, which made its third trip to the orbital outpost. Landing on June 19, 2002, the 14-day STS-111 mission was the 14th Shuttle mission to visit the ISS.

  14. International Space Station exhibit

    NASA Technical Reports Server (NTRS)

    2000-01-01

    The International Space Station (ISS) exhibit in StenniSphere at John C. Stennis Space Center in Hancock County, Miss., gives visitors an up-close look at the largest international peacetime project in history. Step inside a module of the ISS and glimpse how astronauts will live and work in space. Currently, 16 countries contribute resources and hardware to the ISS. When complete, the orbiting research facility will be larger than a football field.

  15. The Pore Formation and Mobility Investigation: A Summary of Conducted Research on the International Space Station

    NASA Technical Reports Server (NTRS)

    Grugel, R. N.; Luz, P.; Smith, G. A.; Spivey, R.; Jeter, L.; Volz, M. P.; Anilkumar, A.

    2006-01-01

    The Pore Formation and Mobility Investigation (PFMI) is being conducted in the Microgravity Science Glovebox (MSG) aboard the International Space Station (ISS) with the goal of understanding bubble generation and interactions during controlled directional solidification processing. Through the course of the experiments, beginning in September 2002, a number of key factors pertinent to solidification processing of materials in a microgravity environment have been directly observed, measured, and modeled. Though most experiments ran uninterrupted, on four separate occasions malfunctions to the PFMI hardware and software were experienced that required crew intervention, including in-space repair. Fortunately, each repair attempt was successful and restored the PFMI apparatus to a fully functional condition. Based on PFMI results and lessons learned, the intent of this presentation is to draw attention to the role ISS experiments/hardware can play in providing insight to potential fabrication processing techniques and repair scenarios that might arise during long duration space transport and/or on the lunar/Mars surface.

  16. International Space Station (ISS)

    NASA Image and Video Library

    1998-01-01

    This artist's digital concept depicts the completely assembled International Space Station (ISS) passing over Florida. As a gateway to permanent human presence in space, the Space Station Program is to expand knowledge benefiting all people and nations. The ISS is a multidisciplinary laboratory, technology test bed, and observatory that will provide unprecedented undertakings in scientific, technological, and international experimentation. Experiments to be conducted in the ISS include: microgravity research, Earth science, space science, life sciences, space product development, and engineering research and technology. The sixteen countries participating the ISS are: United States, Russian Federation, Canada, Japan, United Kingdom, Germany, Italy, France, Norway, Netherlands, Belgium, Spain, Denmark, Sweden, Switzerland, and Brazil.

  17. Thaumatin crystallization aboard the International Space Station using liquid-liquid diffusion in the Enhanced Gaseous Nitrogen Dewar (EGN).

    PubMed

    Barnes, Cindy L; Snell, Edward H; Kundrot, Craig E

    2002-05-01

    This paper reports results from the first biological crystal-growth experiment on the International Space Station (ISS). Crystals of thaumatin were grown using liquid-liquid diffusion in Tygon tubing transported in the Enhanced Gaseous Nitrogen Dewar (EGN). Different volume ratios and concentrations of protein and precipitant were used to test different adaptations of the vapor-diffusion crystallization recipe to the liquid-liquid diffusion method. The EGN warmed up from 77 to 273 K in about 4 d, about the same time it took to warm from 273 to 293 K. The temperature within the EGN was 293-297 K for the majority of the experiment. Air gaps that blocked liquid-liquid diffusion formed in the tubes. Nonetheless, crystals were grown. Synchrotron diffraction data collected from the best space-grown crystal extended to 1.28 A, comparable to previous studies of space-grown thaumatin crystals. The resolution of the best ground-control crystal was only 1.47 A. It is not clear if the difference in diffraction limit arises from factors other than crystal size. Improvements in temperature control and the elimination of air gaps are needed, but the results show that the EGN on the ISS can be used to produce space-grown crystals that diffract to high resolution.

  18. Thaumatin Crystallization Aboard the International Space Station Using Liquid-Liquid Diffusion in the Enhanced Gaseous Nitrogen Dewar (EGN)

    NASA Technical Reports Server (NTRS)

    Kundrot, Craig; Barnes, Cindy L.; Snell, Edward H.; Stinson, Thomas N. (Technical Monitor)

    2002-01-01

    This paper reports results from the first biological crystal growth experiment on the International Space Station (ISS). Crystals of thaumatin were grown using liquid-liquid diffusion in Tygon tubing transported in the Enhanced Gaseous Nitrogen Dewar (EGN). Different Volume ratios and concentrations of protein and precipitant were used to test different adaptations of the vapor diffusion crystallization recipe to the liquid-liquid diffusion method. The EGN warmed up from -196 C to 0 C in about four days, about the same time it took to warm from 0 C to 20 C. The temperature within the EGN was 20 - 24 C for the majority of the experiment. Air gaps that blocked liquid-liquid diffusion formed in the tubes. Nonetheless, crystals were grown. Synchrotron diffraction data collected from the best space grown crystal extended to 1.28 Angstroms, comparable to previous studies of space-grown thaumatin crystals. The resolution of the best ground control crystal was only 1.47 Angstroms. It is not clear if the difference in diffraction limit is due to factors other than crystal size. Improvements in temperature control and the elimination of air gaps are needed, but the results show that EGN on the ISS can be used to produce space grown crystals that diffract to high resolution.

  19. International Space Station (ISS)

    NASA Image and Video Library

    1994-12-16

    Artist's concept of the International Space Station (ISS) Alpha deployed and operational. This figure also includes the docking procedures for the Space Shuttle (shown with cargo bay open). The ISS is a multidisciplinary laboratory, technology test bed, and observatory that will provide an unprecedented undertaking in scientific, technological, and international experimentation.

  20. STS-57 Pilot Duffy uses TDS soldering tool in SPACEHAB-01 aboard OV-105

    NASA Image and Video Library

    1993-07-01

    STS057-30-021 (21 June-1 July 1993) --- Astronaut Brian Duffy, pilot, handles a soldering tool onboard the Earth-orbiting Space Shuttle Endeavour. The Soldering Experiment (SE) called for a crew member to solder on a printed circuit board containing 45 connection points, then de-solder 35 points on a similar board. The SE was part of a larger project called the Tools and Diagnostic Systems (TDS), sponsored by the Space and Life Sciences Directorate at Johnson Space Center (JSC). TDS represents a group of equipment selected from the tools and diagnostic hardware to be supported by the International Space Station program. TDS was designed to demonstrate the maintenance of experiment hardware on-orbit and to evaluate the adequacy of its design and the crew interface. Duffy and five other NASA astronauts spent almost ten days aboard the Space Shuttle Endeavour in Earth-orbit supporting the SpaceHab mission, retrieving the European Retrievable Carrier (EURECA) and conducting various experiments.

  1. Approach of SpaceX Dragon cargo craft

    NASA Image and Video Library

    2015-01-12

    ISS042E119867(01/12/2015)--- This image, photographed by one of the Expedition 42 crew members aboard the International Space Station, shows the SpaceX Dragon cargo craft approaching on Jan. 12 2015 for its grapple and berthing and the start of a month attached to the complex. Dragon carried more than 2 ½ tons of supplies and experiments to the station.

  2. Space-to-Ground: A Giant Leap: 07/21/2017

    NASA Image and Video Library

    2017-07-21

    It's been 48 years since humans first walked on the moon. Now NASA is testing its new Orion spacecraft to send crews beyond the moon and bring them back home safely. NASA's Space to Ground is your weekly update on what's happening aboard the International Space Station. Got a question or comment? Use #spacetoground to talk to us.

  3. Identification and status of design improvements to the NASA Shuttle EMU for International Space Station application.

    PubMed

    Wilde, R C; McBarron, J W; Faszcza, J J

    1997-06-01

    To meet the significant increase in EVA demand to support assembly and operations of the International Space Station (ISS), NASA and industry have improved the current Shuttle Extravehicular Mobility Unit (EMU), or "space suit", configuration to meet the unique and specific requirements of an orbital-based system. The current Shuttle EMU was designed to be maintained and serviced on the ground between frequent Shuttle flights. ISS will require the EMUs to meet increased EVAs out of the Shuttle Orbiter and to remain on orbit for up to 180 days without need for regular return to Earth for scheduled maintenance or refurbishment. Ongoing Shuttle EMU improvements have increased reliability, operational life and performance while minimizing ground and on-orbit maintenance cost and expendable inventory. Modifications to both the anthropomorphic mobility elements of the Space Suit Assembly (SSA) as well as to the Primary Life Support System (PLSS) are identified and discussed. This paper also addresses the status of on-going Shuttle EMU improvements and summarizes the approach for increasing interoperability of the U.S. and Russian space suits to be utilized aboard the ISS.

  4. Worms on the International Space Station

    NASA Technical Reports Server (NTRS)

    Szewczyk, Nate; Kirven-Brooks, Melissa; Conley, Cassie

    2002-01-01

    C. elegans was proposed as a model system for space biology studies in 1991 and has since flown on STS-42, STS-76, and STS-95. Data obtained from these flights have confirmed that C. elegans requires adequate in flight oxygenation and displays an increased rate of mutation, much like other organisms in space. Unlike vertebrates, C. elegans has been observed to successfully complete two continuous full life cycles in space without gross developmental abnormalities. These observations, could with the utility of C. elegans as a terrestrial, fully sequenced, model system make C. elegans a good candidate for long term research onboard the International Space Station (ISS). We are currently working on technology to support biological studies aboard the ISS. A component of this effort is in the development of the Space Station Biological Research Program (SSBRP) Incubator which will be able to house organisms at a constant temperature setpoint ranging from 4deg C to 45deg C. The SSBRP Incubator provides air exchange, power, data and video ports and, when placed in the collaborative NASA/NASDA 2.5M centrifuge rotor, will be capable of providing a lg gravity control. Current plans for validation of the Incubator include video monitoring and periodic sampling of C. elegans in the Incubator onboard the ISS. Once returned to earth, samples will be distributed for analysis via a specimen sharing plan and analyzed for gene expression and other parameters of growth and development in space flight. These data should provide the C. elegans research community with a baseline from which to propose studies for future flights. We have also been developing an appropriate method of culturing C. elegans in liquid media in order to remove the need for the crew to assure that strains are properly fed. Currently, we are growing strains in the chemically defined, axenic, media developed by Dr. Nancy Lu. Wild-type animals complete multiple generations and appear generally healthy after being

  5. International Space Station (ISS)

    NASA Image and Video Library

    1998-01-01

    This artist's concept depicts the completely assembled International Space Station (ISS) passing over Florida and the Bahamas. As a gateway to permanent human presence in space, the Space Station Program is to expand knowledge benefiting all people and nations. The ISS is a multidisciplinary laboratory, technology test bed, and observatory that will provide unprecedented undertakings in scientific, technological, and international experimentation. Experiments to be conducted in the ISS include: microgravity research, Earth science, space science, life sciences, space product development, and engineering research and technology. The sixteen countries participating in the ISS are: United States, Russian Federation, Canada, Japan, United Kingdom, Germany, Italy, France, Norway, Netherlands, Belgium, Spain, Denmark, Sweden, Switzerland, and Brazil.

  6. International Space Station (ISS)

    NASA Image and Video Library

    1998-01-01

    This artist's concept depicts the completely assembled International Space Station (ISS) passing over the Straits of Gibraltar and the Mediterranean Sea. As a gateway to permanent human presence in space, the Space Station Program is to expand knowledge benefiting all people and nations. The ISS is a multidisciplinary laboratory, technology test bed, and observatory that will provide unprecedented undertakings in scientific, technological, and international experimentation. Experiments to be conducted in the ISS include: microgravity research, Earth science, space science, life sciences, space product development, and engineering research and technology. The sixteen countries participating the ISS are: United States, Russian Federation, Canada, Japan, United Kingdom, Germany, Italy, France, Norway, Netherlands, Belgium, Spain, Denmark, Sweden, Switzerland, and Brazil.

  7. Space to Ground: Who Doesn't Enjoy a Good View of Planet Earth?: 02/10/2017

    NASA Image and Video Library

    2017-02-10

    NASA's Space to Ground is your weekly update on what's happening aboard the International Space Station. Got a question or comment? Use #spacetoground to talk to us. ________________________________________ FOLLOW THE SPACE STATION! Twitter: https://twitter.com/Space_Station Facebook: https://www.facebook.com/ISS Instagram: https://instagram.com/iss/

  8. Space Station Crew Discusses Life in Space with Ohio Students

    NASA Image and Video Library

    2017-11-01

    Aboard the International Space Station, Expedition 53 Flight Engineers Mark Vande Hei and Joe Acaba of NASA discussed life and research on the outpost during an in-flight educational event Nov. 1 with students at the Shaker Heights School in Cleveland, Ohio. Vande Hei and Acaba, who launched to the station together in September, are in the midst of a five-and-a-half-month mission on the orbital laboratory.

  9. Space Station Crew Discusses Life in Space with California Students

    NASA Image and Video Library

    2017-10-30

    Aboard the International Space Station, Expedition 53 Commander Randy Bresnik and Flight Engineer Joe Acaba of NASA discussed life and research on the outpost during an in-flight educational event Oct. 30 with students at the Santa Monica High School in Santa Monica, California. Acaba, who is a native of southern California, and Bresnik are in various stages of their respective five-and-a half-month missions on the orbital laboratory.

  10. SpaceX CRS-12 "What's on Board?" Science Briefing

    NASA Image and Video Library

    2017-08-13

    In the Kennedy Space Center’s Press Site auditorium, members of social media listen to a briefing focused on research planned for launch to the International Space Station. The scientific materials and supplies will be aboard a Dragon spacecraft scheduled for launch from Kennedy’s Launch Complex 39A on Aug. 14 atop a SpaceX Falcon 9 rocket on the company's 12th Commercial Resupply Services mission to the space station.

  11. Space Biosciences, Space-X, and the International Space Station

    NASA Technical Reports Server (NTRS)

    Wigley, Cecilia

    2014-01-01

    Space Biosciences Research on the International Space Station uses living organisms to study a variety of research questions. To enhance our understanding of fundamental biological processes. To develop the fundations for a safe, productive human exploration of space. To improve the quality of life on earth.

  12. International Space Station Acoustics - A Status Report

    NASA Technical Reports Server (NTRS)

    Allen, Christopher S.; Denham, Samuel A.

    2011-01-01

    It is important to control acoustic noise aboard the International Space Station (ISS) to provide a satisfactory environment for voice communications, crew productivity, and restful sleep, and to minimize the risk for temporary and permanent hearing loss. Acoustic monitoring is an important part of the noise control process on ISS, providing critical data for trend analysis, noise exposure analysis, validation of acoustic analysis and predictions, and to provide strong evidence for ensuring crew health and safety, thus allowing Flight Certification. To this purpose, sound level meter (SLM) measurements and acoustic noise dosimetry are routinely performed. And since the primary noise sources on ISS include the environmental control and life support system (fans and airflow) and active thermal control system (pumps and water flow), acoustic monitoring will indicate changes in hardware noise emissions that may indicate system degradation or performance issues. This paper provides the current acoustic levels in the ISS modules and sleep stations, and is an update to the status presented in 20031. Many new modules, and sleep stations have been added to the ISS since that time. In addition, noise mitigation efforts have reduced noise levels in some areas. As a result, the acoustic levels on the ISS have improved.

  13. Nutrititional Status Assessment of International Space Station Crew Members

    NASA Technical Reports Server (NTRS)

    Smith, S. M.; Zwart, S. R.; Block, G.; Rice, B. I.; Davis-Street, J. F.

    2005-01-01

    Defining optimal nutrient requirements is imperative to ensure crew health on long-duration space exploration missions. To date, nutrient requirement data have been extremely limited because of small sample sizes and difficulties associated with collecting biological samples. In this study, we examined changes in body composition, bone metabolism, hematology, general blood chemistry, and blood levels of selected vitamins and minerals after long-duration (128-195 d) space flight aboard the International Space Station. Crew members consumed an average of 80% of the recommended energy intakes, and on landing day their body weight had decreased (P=0.051). After flight, hematocrit was less, and serum femtin was greater than before flight (P<0.01). Serum iron, ferritin saturation, and transferrin had decreased after flight. The finding that other acute-phase proteins, including ceruloplasmin, retinol binding protein, transthyretin, and albumin were not changed after flight suggests that the changes in iron metabolism may not be strictly due to an inflammatory response. Urinary 8- hydroxy-2'-deoxyguanosine concentration was greater and superoxide dismutase was less after flight, indicating that oxidative damage had increased (P<0.05). Despite the reported use of vitamin D supplements during flight, serum 25-hydroxyvitamin D was significantly decreased after flight (P<0.01). Bone resorption was increased after flight, as indicated by several urinary markers of bone resorption. Bone formation, assessed by serum concentration of bone-specific alkaline phosphatase, was elevated only in crew members who landed in Russia, probably because of the longer time lapse between landing and sample collection. These data provide evidence that bone loss, compromised vitamin D status, and oxidative damage remain critical concerns for long-duration space flight.

  14. Behavioral Adaptations of Female Mice on the International Space Station

    NASA Technical Reports Server (NTRS)

    Strieter, I.; Moyer, E. L.; Lowe, M.; Choi, S.; Gong, C.; Cadena, Sam; Stodieck, Louis; Globus, R. K.; Ronca, A. E.

    2017-01-01

    Adult female mice were sent to the International Space Station (ISS) as part of an early life science mission utilizing NASA's Rodent Habitat. Its primary purpose was to provide further insight into the influence of a microgravity environment on various aspects of mammalian physiology and well-being as part of an ongoing program of research aimed ultimately at understanding and ameliorating the deleterious influences of space on the human body. The present study took advantage of video collected from fixed, in-flight cameras within the habitat itself, to assess behavioral adaptations observed among in-flight mice aboard the ISS and differences in behavior with respect to a control group on the ground. Data collection consisted of several behavioral measures recorded by a trained observer with the assistance of interactive behavior analysis software. Specific behavioral measures included frequencies of conspecific interactionsociability, time spent feeding and conducting hygienic behavior, and relative durations of thigmotactic behavior, which is commonly used as an index of anxiety. Data were used to test tentative hypotheses that such behaviors differ significantly across mice under microgravity versus 1g conditions, and the assumption that the novel experience of microgravity itself may represent an initially anxiogenic stimulus which an animal will eventually acclimate to, perhaps through habituation.

  15. The International Space Weather Initiative

    NASA Technical Reports Server (NTRS)

    Nat, Gopalswamy; Joseph, Davila; Barbara, Thompson

    2010-01-01

    The International Space Weather Initiative (ISWI) is a program of international cooperation aimed at understanding the external drivers of space weather. The ISWI program has its roots in the successful International Heliophysical Year (IHY) program that ran during 2007 - 2009 and will continue with those aspects that directly affect life on Earth. The primary objective of the ISWI program is to advance the space weather science by a combination of instrument deployment, analysis and interpretation of space weather data from the deployed instruments in conjunction with space data, and communicate the results to the public and students. Like the IHY, the ISWI will be a grass roots organization with key participation from national coordinators in cooperation with an international steering committee. This presentation outlines the ISWI program including its organizational aspects and proposed activities. The ISWI observatory deployment and outreach activities are highly complementary to the CAWSES II activities of SCOSTEP.

  16. KENNEDY SPACE CENTER, FLA. - The Window Observational Research Facility (WORF), seen in the Space Station Processing Facility, was designed and built by the Boeing Co. at NASA’s Marshall Space Flight Center in Huntsville, Ala. WORF will be delivered to the International Space Station and placed in the rack position in front of the Destiny lab window, providing locations for attaching cameras, multi-spectral scanners and other instruments. WORF will support a variety of scientific and commercial experiments in areas of Earth systems and processes, global ecological changes in Earth’s biosphere, lithosphere, hydrosphere and climate system, Earth resources, natural hazards, and education. After installation, it will become a permanent focal point for Earth Science research aboard the space station.

    NASA Image and Video Library

    2003-09-08

    KENNEDY SPACE CENTER, FLA. - The Window Observational Research Facility (WORF), seen in the Space Station Processing Facility, was designed and built by the Boeing Co. at NASA’s Marshall Space Flight Center in Huntsville, Ala. WORF will be delivered to the International Space Station and placed in the rack position in front of the Destiny lab window, providing locations for attaching cameras, multi-spectral scanners and other instruments. WORF will support a variety of scientific and commercial experiments in areas of Earth systems and processes, global ecological changes in Earth’s biosphere, lithosphere, hydrosphere and climate system, Earth resources, natural hazards, and education. After installation, it will become a permanent focal point for Earth Science research aboard the space station.

  17. KENNEDY SPACE CENTER, FLA. - Workers in the Space Station Processing Facility check out the Window Observational Research Facility (WORF), designed and built by the Boeing Co. at NASA’s Marshall Space Flight Center in Huntsville, Ala. WORF will be delivered to the International Space Station and placed in the rack position in front of the Destiny lab window, providing locations for attaching cameras, multi-spectral scanners and other instruments. WORF will support a variety of scientific and commercial experiments in areas of Earth systems and processes, global ecological changes in Earth’s biosphere, lithosphere, hydrosphere and climate system, Earth resources, natural hazards, and education. After installation, it will become a permanent focal point for Earth Science research aboard the space station.

    NASA Image and Video Library

    2003-09-08

    KENNEDY SPACE CENTER, FLA. - Workers in the Space Station Processing Facility check out the Window Observational Research Facility (WORF), designed and built by the Boeing Co. at NASA’s Marshall Space Flight Center in Huntsville, Ala. WORF will be delivered to the International Space Station and placed in the rack position in front of the Destiny lab window, providing locations for attaching cameras, multi-spectral scanners and other instruments. WORF will support a variety of scientific and commercial experiments in areas of Earth systems and processes, global ecological changes in Earth’s biosphere, lithosphere, hydrosphere and climate system, Earth resources, natural hazards, and education. After installation, it will become a permanent focal point for Earth Science research aboard the space station.

  18. STS-65 crewmembers work at IML-2 Rack 5 Biorack (BR) aboard Columbia, OV-102

    NASA Image and Video Library

    1994-07-23

    STS-65 Mission Specialist (MS) Leroy Chiao (top) and MS Donald A. Thomas are seen at work in the International Microgravity Laboratory 2 (IML-2) spacelab science module aboard the Space Shuttle Columbia, Orbiter Vehicle (OV) 102. The two crewmembers are conducting experiments at the IML-2 Rack 5 Biorack (BR). Chiao places a sample in the BR incubator as Thomas handles another sample inside the BR glovebox. The glovebox is used to prepare samples for BR and slow rotating centrifuge microscope (NIZEMI) experiments.

  19. STS-65 crewmembers work at IML-2 Rack 5 Biorack (BR) aboard Columbia, OV-102

    NASA Technical Reports Server (NTRS)

    1994-01-01

    STS-65 Mission Specialist (MS) Leroy Chiao (top) and MS Donald A. Thomas are seen at work in the International Microgravity Laboratory 2 (IML-2) spacelab science module aboard the Space Shuttle Columbia, Orbiter Vehicle (OV) 102. The two crewmembers are conducting experiments at the IML-2 Rack 5 Biorack (BR). Chiao places a sample in the BR incubator as Thomas handles another sample inside the BR glovebox. The glovebox is used to prepare samples for BR and slow rotating centrifuge microscope (NIZEMI) experiments.

  20. Crystallization of the collagen-like polypeptide (PPG)10 aboard the International Space Station. 1. Video observation.

    PubMed

    Vergara, Alessandro; Corvino, Ermanno; Sorrentino, Giosué; Piccolo, Chiara; Tortora, Alessandra; Carotenuto, Luigi; Mazzarella, Lelio; Zagari, Adriana

    2002-10-01

    Single chains of the collagen model polypeptide with sequence (Pro-Pro-Gly)(10), hereafter referred to as (PPG)(10), aggregate to form rod-shaped triple helices. Crystals of (PPG)(10) were grown in the Advanced Protein Crystallization Facility (APCF) both onboard the International Space Station (ISS) and on Earth. The experiments allow the direct comparison of four different crystallization environments for the first time: solution in microgravity ((g), agarose gel in (g, solution on earth, and gel on earth. Both on board and on ground, the crystal growth was monitored by a CCD video camera. The image analysis provided information on the spatial distribution of the crystals, their movement and their growth rate. The analysis of the distribution of crystals reveals that the crystallization process occurs as it does in batch conditions. Slow motions have been observed onboard the ISS. Different to Space-Shuttle experiment, the crystals onboard the ISS moved coherently and followed parallel trajectories. Growth rate and induction time are very similar both in gel and in solution, suggesting that the crystal growth rate is controlled by the kinetics at the interface under the used experimental conditions. These results provide the first data in the crystallogenesis of (PPG)(10), which is a representative member of non-globular, rod-like proteins.

  1. Astronauts Discuss Life in Space with Tennessee Students

    NASA Image and Video Library

    2017-11-20

    Aboard the International Space Station, Expedition 53 Commander Randy Bresnik and Flight Engineer Mark Vande Hei of NASA discussed life and research on the orbital laboratory during an in-flight educational event Nov. 20 with students at the Southside Elementary School in Lebanon, Tennessee.

  2. Space Shuttle Projects

    NASA Image and Video Library

    1999-11-30

    These five STS-97 crew members posed for a traditional portrait during training. On the front row, left to right, are astronauts Michael J. Bloomfield, pilot; Marc Garneau, mission specialist representing the Canadian Space Agency (CSA); and Brent W. Jett, Jr., commander. In the rear, wearing training versions of the extravehicular mobility unit (EMU) space suits, (left to right) are astronauts Carlos I. Noriega, and Joseph R. Tarner, both mission specialists. The primary objective of the STS-97 mission was the delivery, assembly, and activation of the U.S. electrical power system onboard the International Space Station (ISS). The electrical power system, which is built into a 73-meter (240-foot) long solar array structure consists of solar arrays, radiators, batteries, and electronics. The entire 15.4-metric ton (17-ton) package is called the P6 Integrated Truss Segment and is the heaviest and largest element yet delivered to the station aboard a space shuttle. The electrical system will eventually provide the power necessary for the first ISS crews to live and work in the U.S. segment. The STS-97 crew of five launched aboard the Space Shuttle Orbiter Endeavor on November 30, 2000 for an 11 day mission.

  3. Zero Robotics at Kennedy Space Center Visitor Complex

    NASA Image and Video Library

    2017-08-11

    Students and their sponsors gather for a commemorative photo in the Center for Space Education at NASA’s Kennedy Space Center in Florida after participating in the finals of the Zero Robotics Middle School Summer Program national championship. The five-week program allows rising sixth- through ninth-graders to write programs for small satellites called SPHERES (Synchronized, Position, Hold, Engage, Reorient, Experimental Satellites). Finalists saw their code tested aboard the International Space Station.

  4. Comparison of Magnetorheological Fluids on Earth and in Space

    NASA Technical Reports Server (NTRS)

    2002-01-01

    These are video microscope images of magnetorheological (MR) fluids, illuminated with a green light. Those on Earth, left, show the MR fluid forming columns or spikes structures. On the right, the fluids in microgravity aboard the International Space Station (ISS), formed broader columns.

  5. 47 CFR 25.227 - Blanket licensing provisions for Earth Stations Aboard Aircraft (ESAAs) receiving in the 10.95-11...

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... Aboard Aircraft (ESAAs) receiving in the 10.95-11.2 GHz (space-to-Earth), 11.45-11.7 GHz (space-to-Earth), and 11.7-12.2 GHz (space-to-Earth) frequency bands and transmitting in the 14.0-14.5 GHz (Earth-to... SATELLITE COMMUNICATIONS Technical Standards § 25.227 Blanket licensing provisions for Earth Stations Aboard...

  6. 47 CFR 25.227 - Blanket licensing provisions for Earth Stations Aboard Aircraft (ESAAs) receiving in the 10.95-11...

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... Aboard Aircraft (ESAAs) receiving in the 10.95-11.2 GHz (space-to-Earth), 11.45-11.7 GHz (space-to-Earth), and 11.7-12.2 GHz (space-to-Earth) frequency bands and transmitting in the 14.0-14.5 GHz (Earth-to... SATELLITE COMMUNICATIONS Technical Standards § 25.227 Blanket licensing provisions for Earth Stations Aboard...

  7. Space Station Crew Members Discuss Life in Space with Indiana Students

    NASA Image and Video Library

    2018-01-11

    Aboard the International Space Station, Expedition 54 Flight Engineers Mark Vande Hei of NASA and Norishige Kanai of the Japan Aerospace Exploration Agency (JAXA) discussed aspects of life and research during an in-flight educational event Jan. 11 with students gathered at the Children’s Museum in Indianapolis. Vande Hei is scheduled to return to Earth in late February, while Kanai will remain on station until early June.

  8. Space Station Crew Member Discusses Life in Space with Houston Students

    NASA Image and Video Library

    2018-02-13

    Aboard the International Space Station, Expedition 54 Flight Engineer Joe Acaba of NASA discussed his mission and research on the complex during an in-flight educational event Feb. 13 with students at the downtown campus of the University of Houston. Acaba is in the final weeks of a five-and-a-half-month mission on the unique microgravity laboratory, aiming for a return to Earth on Feb. 27.

  9. Space_Station_Crew_Member_Discusses_Life_in_Space_with_Texas_Students

    NASA Image and Video Library

    2018-02-14

    Aboard the International Space Station, Expedition 54 Flight Engineer Joe Acaba of NASA discussed his mission and research on the complex during an in-flight educational event Feb. 14 with students at the Briarhill Middle School in Highland Village, Texas. Acaba is in the final weeks of a five-and-a-half-month mission on the unique microgravity laboratory, aiming for a return to Earth on Feb. 27.

  10. 2017 Space Station Science in Pictures

    NASA Image and Video Library

    2018-01-02

    From molecular biology to fluid physics, life sciences and robotics, 2017 was a robust year for research aboard Earth’s only microgravity laboratory. The International Space Station hosts more than 300 experiments during a given Expedition, each working to further space exploration and/or benefit life back on Earth. Here’s a look back at just some of the science that happened on the orbiting laboratory. HD Download: https://archive.org/details/jsc2017m001167_2017_Space_Station_Science_in_Pictures _______________________________________ FOLLOW THE SPACE STATION! Twitter: https://twitter.com/Space_Station Facebook: https://www.facebook.com/ISS Instagram: https://instagram.com/iss/

  11. jsc2018m000274_Alpha-Space-Small-Business-Makes-Big-Strides_MP4

    NASA Image and Video Library

    2018-03-30

    The path to discovery and exploration is paved with determination, innovation, and most of all, big ideas. The International Space Station is home to many of those ideas and creating new ways for small businesses, entrepreneurs and researchers to test their science and technology in space every day.Formed in 2015 in response to the need for a commercial payload that would be available to private companies aboard the space station, Alpha Space is a woman- and minority-owned small business responsible for developing the Materials International Space Station Experiment Flight Facility (MISSE-FF).

  12. Simulation of Ophthalmic Alterations at the Arctic, Antarctica and the International Space Station for Long-Duration Spaceflight

    NASA Astrophysics Data System (ADS)

    De Morais Mendonca Teles, Antonio; Gonçalves, Cristiane

    2016-07-01

    Well, we propose a series of long-period medical simulations in scientific bases at the Arctic, at Antarctica and aboard the International Space Station (ISS), involving natural ophthalmic diseases such as radiation, solar and trauma retinopathy, keratoconus, cataract, glaucoma, etc., and ophthalmic alterations by accidental injuries. These natural diseases, without a previous diagnosis, specially those specific retinopathy, appear after 1 month to 1.5 year, in average. Such studies will be valuable for the human deep-space exploration because during long-duration spaceflight, such as staying at the ISS, a Moon base and a manned trip to planet Mars, requires several months within such environments, and during such periods ophthalmic diseases and accidents might eventually occur, which could seriously affect the 'round-the-clock' work schedule of the astronauts and the long-duration spaceflight manned program.

  13. MS Lucid places samples in the TEHOF aboard the Spektr module

    NASA Image and Video Library

    1997-03-26

    STS079-S-082 (16-26 Sept. 1996) --- Cosmonaut guest researcher Shannon W. Lucid and Valeri G. Korzun, her Mir-22 commander, are pictured on the Spektr Module aboard Russia's Earth-orbiting Mir Space Station. Korzun was the third of four commanders that Lucid served with during her record-setting 188 consecutive days in space. Later, Lucid returned to Earth with her fourth commander-astronaut William F. Readdy-and five other NASA astronauts to complete the STS-79 mission. During the STS-79 mission, the crew used an IMAX camera to document activities aboard the space shuttle Atlantis and the various Mir modules. A hand-held version of the 65mm camera system accompanied the STS-79 crew into space in Atlantis' crew cabin. NASA has flown IMAX camera systems on many Shuttle missions, including a special cargo bay camera's coverage of other recent Shuttle-Mir rendezvous and/or docking missions.

  14. Space Station Crew Discusses Life in Space with Idaho Students

    NASA Image and Video Library

    2018-02-08

    Aboard the International Space Station, Expedition 54 Flight Engineers Mark Vande Hei, Joe Acaba and Scott Tingle of NASA discussed life and research on the orbital laboratory during an in-flight educational event Feb. 8 with students from Boise State University in Idaho. Vande Hei and Acaba are in the final weeks of a five and a half month mission on the complex while Tingle will remain in orbit until early June.

  15. Space Station Crew Members Discuss Life in Space with Media

    NASA Image and Video Library

    2017-11-03

    Aboard the International Space Station, Expedition 53 Commander Randy Bresnik and Flight Engineers Joe Acaba and Mark Vande Hei of NASA discussed life and research on the orbital laboratory during in-flight interviews Nov. 3 with KARE-TV in Minneapolis and the “Fox and Friends” morning talk program on the Fox Network. The astronauts are in various stages of their respective five-and-a-half-month missions on the orbital outpost.

  16. Space Station Crew Discusses Life in Space with Massachusetts Media

    NASA Image and Video Library

    2018-02-05

    Aboard the International Space Station, Expedition 54 Flight Engineers Mark Vande Hei and Scott Tingle of NASA discussed life and research on the orbital outpost during a pair of in-flight interviews Feb. 5 with WHDH-TV, Boston and Bloomberg Bay State Radio. Vande Hei is in the final weeks of his five and a half month mission on the station, while Tingle, a Massachusetts native, will remain on the complex until early June.

  17. Space Rose Pleases the Senses

    NASA Technical Reports Server (NTRS)

    2002-01-01

    International Flavors and Fragrances (IFF), Inc., discovered a new scent by flying a miniature rose plant aboard NASA's Space Shuttle Discovery Flight STS-95. IFF and the Wisconsin Center for Space Automation and Robotics (WCSAR) partnered to fly the rose plant in the commercial plant research facility, ASTROCULTURE(TM), for reduced-gravity environment research. IFF commercialized the space rose note, which is now a fragrance ingredient in a perfume developed by Shiseido Cosmetics (America), Ltd. In addition to providing a light crisp scent, the oil from the space rose can also serve as a flavor enhancer. ASTROCULTURE(TM) is a trademark of the Wisconsin Center for Space Automation and Robotics.

  18. International Space Station (ISS)

    NASA Image and Video Library

    1999-01-01

    The International Space Station (ISS) is an unparalleled international scientific and technological cooperative venture that will usher in a new era of human space exploration and research and provide benefits to people on Earth. On-Orbit assembly began on November 20, 1998, with the launch of the first ISS component, Zarya, on a Russian Proton rocket. The Space Shuttle followed on December 4, 1998, carrying the U.S.-built Unity cornecting Module. Sixteen nations are participating in the ISS program: the United States, Canada, Japan, Russia, Brazil, Belgium, Denmark, France, Germany, Italy, the Netherlands, Norway, Spain, Sweden, Switzerland, and the United Kingdom. The ISS will include six laboratories and be four times larger and more capable than any previous space station. The United States provides two laboratories (United States Laboratory and Centrifuge Accommodation Module) and a habitation module. There will be two Russian research modules, one Japanese laboratory, referred to as the Japanese Experiment Module (JEM), and one European Space Agency (ESA) laboratory called the Columbus Orbital Facility (COF). The station's internal volume will be roughly equivalent to the passenger cabin volume of two 747 jets. Over five years, a total of more than 40 space flights by at least three different vehicles - the Space Shuttle, the Russian Proton Rocket, and the Russian Soyuz rocket - will bring together more than 100 different station components and the ISS crew. Astronauts will perform many spacewalks and use new robotics and other technologies to assemble ISS components in space.

  19. International Space Station Assembly

    NASA Technical Reports Server (NTRS)

    1999-01-01

    The International Space Station (ISS) is an unparalleled international scientific and technological cooperative venture that will usher in a new era of human space exploration and research and provide benefits to people on Earth. On-Orbit assembly began on November 20, 1998, with the launch of the first ISS component, Zarya, on a Russian Proton rocket. The Space Shuttle followed on December 4, 1998, carrying the U.S.-built Unity cornecting Module. Sixteen nations are participating in the ISS program: the United States, Canada, Japan, Russia, Brazil, Belgium, Denmark, France, Germany, Italy, the Netherlands, Norway, Spain, Sweden, Switzerland, and the United Kingdom. The ISS will include six laboratories and be four times larger and more capable than any previous space station. The United States provides two laboratories (United States Laboratory and Centrifuge Accommodation Module) and a habitation module. There will be two Russian research modules, one Japanese laboratory, referred to as the Japanese Experiment Module (JEM), and one European Space Agency (ESA) laboratory called the Columbus Orbital Facility (COF). The station's internal volume will be roughly equivalent to the passenger cabin volume of two 747 jets. Over five years, a total of more than 40 space flights by at least three different vehicles - the Space Shuttle, the Russian Proton Rocket, and the Russian Soyuz rocket - will bring together more than 100 different station components and the ISS crew. Astronauts will perform many spacewalks and use new robotics and other technologies to assemble ISS components in space.

  20. Histological and Transcriptomic Analysis of Adult Japanese Medaka Sampled Onboard the International Space Station

    PubMed Central

    Murata, Yasuhiko; Yasuda, Takako; Watanabe-Asaka, Tomomi; Oda, Shoji; Mantoku, Akiko; Takeyama, Kazuhiro; Chatani, Masahiro; Kudo, Akira; Uchida, Satoko; Suzuki, Hiromi; Tanigaki, Fumiaki; Shirakawa, Masaki; Fujisawa, Koichi; Hamamoto, Yoshihiko; Terai, Shuji; Mitani, Hiroshi

    2015-01-01

    To understand how humans adapt to the space environment, many experiments can be conducted on astronauts as they work aboard the Space Shuttle or the International Space Station (ISS). We also need animal experiments that can apply to human models and help prevent or solve the health issues we face in space travel. The Japanese medaka (Oryzias latipes) is a suitable model fish for studying space adaptation as evidenced by adults of the species having mated successfully in space during 15 days of flight during the second International Microgravity Laboratory mission in 1994. The eggs laid by the fish developed normally and hatched as juveniles in space. In 2012, another space experiment (“Medaka Osteoclast”) was conducted. Six-week-old male and female Japanese medaka (Cab strain osteoblast transgenic fish) were maintained in the Aquatic Habitat system for two months in the ISS. Fish of the same strain and age were used as the ground controls. Six fish were fixed with paraformaldehyde or kept in RNA stabilization reagent (n = 4) and dissected for tissue sampling after being returned to the ground, so that several principal investigators working on the project could share samples. Histology indicated no significant changes except in the ovary. However, the RNA-seq analysis of 5345 genes from six tissues revealed highly tissue-specific space responsiveness after a two-month stay in the ISS. Similar responsiveness was observed among the brain and eye, ovary and testis, and the liver and intestine. Among these six tissues, the intestine showed the highest space response with 10 genes categorized as oxidation–reduction processes (gene ontogeny term GO:0055114), and the expression levels of choriogenin precursor genes were suppressed in the ovary. Eleven genes including klf9, klf13, odc1, hsp70 and hif3a were upregulated in more than four of the tissues examined, thus suggesting common immunoregulatory and stress responses during space adaptation. PMID:26427061

  1. Histological and Transcriptomic Analysis of Adult Japanese Medaka Sampled Onboard the International Space Station.

    PubMed

    Murata, Yasuhiko; Yasuda, Takako; Watanabe-Asaka, Tomomi; Oda, Shoji; Mantoku, Akiko; Takeyama, Kazuhiro; Chatani, Masahiro; Kudo, Akira; Uchida, Satoko; Suzuki, Hiromi; Tanigaki, Fumiaki; Shirakawa, Masaki; Fujisawa, Koichi; Hamamoto, Yoshihiko; Terai, Shuji; Mitani, Hiroshi

    2015-01-01

    To understand how humans adapt to the space environment, many experiments can be conducted on astronauts as they work aboard the Space Shuttle or the International Space Station (ISS). We also need animal experiments that can apply to human models and help prevent or solve the health issues we face in space travel. The Japanese medaka (Oryzias latipes) is a suitable model fish for studying space adaptation as evidenced by adults of the species having mated successfully in space during 15 days of flight during the second International Microgravity Laboratory mission in 1994. The eggs laid by the fish developed normally and hatched as juveniles in space. In 2012, another space experiment ("Medaka Osteoclast") was conducted. Six-week-old male and female Japanese medaka (Cab strain osteoblast transgenic fish) were maintained in the Aquatic Habitat system for two months in the ISS. Fish of the same strain and age were used as the ground controls. Six fish were fixed with paraformaldehyde or kept in RNA stabilization reagent (n = 4) and dissected for tissue sampling after being returned to the ground, so that several principal investigators working on the project could share samples. Histology indicated no significant changes except in the ovary. However, the RNA-seq analysis of 5345 genes from six tissues revealed highly tissue-specific space responsiveness after a two-month stay in the ISS. Similar responsiveness was observed among the brain and eye, ovary and testis, and the liver and intestine. Among these six tissues, the intestine showed the highest space response with 10 genes categorized as oxidation-reduction processes (gene ontogeny term GO:0055114), and the expression levels of choriogenin precursor genes were suppressed in the ovary. Eleven genes including klf9, klf13, odc1, hsp70 and hif3a were upregulated in more than four of the tissues examined, thus suggesting common immunoregulatory and stress responses during space adaptation.

  2. LOCAD-PTS: Operation of a New System for Microbial Monitoring Aboard the International Space Station (ISS)

    NASA Technical Reports Server (NTRS)

    Maule, J.; Wainwright, N.; Steele, A.; Gunter, D.; Flores, G.; Effinger, M.; Danibm N,; Wells, M.; Williams, S.; Morris, H.; hide

    2008-01-01

    Microorganisms within the space stations Salyut, Mir and the International Space Station (ISS), have traditionally been monitored with culture-based techniques. These techniques involve growing environmental samples (cabin water, air or surfaces) on agar-type media for several days, followed by visualization of resulting colonies; and return of samples to Earth for ground-based analysis. This approach has provided a wealth of useful data and enhanced our understanding of the microbial ecology within space stations. However, the approach is also limited by the following: i) More than 95% microorganisms in the environment cannot grow on conventional growth media; ii) Significant time lags occur between onboard sampling and colony visualization (3-5 days) and ground-based analysis (as long as several months); iii) Colonies are often difficult to visualize due to condensation within contact slide media plates; and iv) Techniques involve growth of potentially harmful microorganisms, which must then be disposed of safely. This report describes the operation of a new culture-independent technique onboard the ISS for rapid analysis (within minutes) of endotoxin and -1, 3-glucan, found in the cell walls of gram-negative bacteria and fungi, respectively. This technique involves analysis of environmental samples with the Limulus Amebocyte Lysate (LAL) assay in a handheld device. This handheld device and sampling system is known as the Lab-On-a-Chip Application Development Portable Test System (LOCAD-PTS). A poster will be presented that describes a comparative study between LOCAD-PTS analysis and existing culture-based methods onboard the ISS; together with an exploratory survey of surface endotoxin throughout the ISS. It is concluded that while a general correlation between LOCAD-PTS and traditional culture-based methods should not necessarily be expected, a combinatorial approach can be adopted where both sets of data are used together to generate a more complete story of

  3. International Space Station Medical Projects - Full Services to Mars

    NASA Technical Reports Server (NTRS)

    Pietrzyk, R. A.; Primeaux, L. L.; Wood, S. J.; Vessay, W. B.; Platts, S. H.

    2018-01-01

    experience to guide investigators science through all aspects of mission planning, crew operations, and research integration. During this session, the ISSMP team will discuss best-practices approaches for successfully preparing and conducting studies in both the flight and analog environments. Critical tips and tricks will be shown to greatly improve your chances of successfully completing your research aboard the International Space Station and in Spaceflight Analogs.

  4. ESA Astronaut Discusses Life in Space with Aspiring Students

    NASA Image and Video Library

    2017-11-29

    Aboard the International Space Station, Expedition 53 Flight Engineer Paolo Nespoli of ESA (European Space Agency) discussed how students can aspire to be astronauts and engineers during a “Mission X” competition in-flight event Nov. 29. Mission X is an international educational challenge, focusing on fitness and nutrition that encourages students to train like an astronaut. Teams of primary school-aged students (8-12 years old) learn the principles of healthy eating and exercise, compete for points by finishing training modules, and learn about the world's future in space and educational possibilities for their own future.

  5. Utilization of the International Space Station for Crew Autonomous Scheduling Test (CAST)

    NASA Technical Reports Server (NTRS)

    Healy, Matthew; Marquez, Jesica; Hillenius, Steven; Korth, David; Bakalyar, Laure Rush; Woodbury, Neil; Larsen, Crystal M.; Bates, Shelby; Kockler, Mikayla; Rhodes, Brooke; hide

    2017-01-01

    The United States space policy is evolving toward missions beyond low Earth orbit. In an effort to meet that policy, NASA has recognized Autonomous Mission Operations (AMO) as a valuable capability. Identified within AMO capabilities is the potential for autonomous planning and replanning during human spaceflight operations. That is allowing crew members to collectively or individually participate in the development of their own schedules. Currently, dedicated mission operations planners collaborate with international partners to create daily plans for astronauts aboard the International Space Station (ISS), taking into account mission requirements, ground rules, and various vehicle and payload constraints. In future deep space operations the crew will require more independence from ground support due to communication transmission delays. Furthermore, crew members who are provided with the capability to schedule their own activities are able to leverage direct experience operating in the space environment, and possibly maximize their efficiency. CAST (Crew Autonomous Scheduling Test) is an ISS investigation designed to analyze three important hypotheses about crew autonomous scheduling. First, given appropriate inputs, the crew is able to create and execute a plan in a reasonable period of time without impacts to mission success. Second, the proximity of the planner, in this case the crew, to the planned operations increases their operational efficiency. Third, crew members are more satisfied when given a role in plan development. This paper presents the results from a single astronaut test subject who participated in five CAST sessions. The details on the operational philosophy of CAST are discussed, including the approach to crew training, selection criteria for test days, and data collection methods. CAST is a technology demonstration payload sponsored by the ISS Research Science and Technology Office, and performed by experts in Mission Operations Planning from

  6. Physiological and Growth Characteristics of Brassica rapa 'Tokyo Bekana' Grown within the International Space Station Crop Production System

    NASA Astrophysics Data System (ADS)

    Burgner, Samuel Edward

    The National Aeronautics and Space Administration (NASA) as well as many other space research organizations across the globe have advanced the idea of using plants as a method of bioregenerative life support for decades. Currently, the International Space Station (ISS) houses a small vegetable-production system named "Veggie." Veggie is equipped with a light-emitting diode (LED) cap, a reservoir that provides water to the root zone through capillary action, and adjustable bellows that enclose the growing environment allowing for controlled air circulation. However, Veggie draws air from the cabin space and ISS environmental conditions are controlled for human comfort and function as opposed to optimal plant growth conditions. During the first experiment within Veggie aboard the ISS, temperature averaged 22 ºC (+/- 0.25), relative humidity was 43.9% (+/- 3.7), and CO2 fluctuated around 2,800 ppm (+/- 678). Preliminary trials selected Chinese cabbage (Brassica rapa 'Tokyo Bekana') as the most suitable cultivar for production within Veggie based on its horticultural, organoleptic, and nutritional characteristics. Introducing this cultivar into ISS conditions (mimicked in a growth chamber) led to extensive chlorosis, necrosis, and growth inhibition. Attempts to ameliorate this observed stress by changing light spectrum, slow-release fertilizer composition, and growth substrate were unsuccessful suggesting that this issue could be attributed to environmental conditions. Analyzing effects of CO2 at 450, 900 and 1350 ppm on growth, photosynthesis, and stomatal conductance in this cultivar revealed a poor ability to acclimate to this environmental variable. In order to develop an efficient system of plant production aboard the ISS or other potential spacecraft, a more efficient CO2 regulation system must be implemented within the cabin space or within a defined plant production area and species should be screened based on their ability to thrive in such an environment.

  7. SpaceX's Environmental Control and Life Support System (ECLSS)

    NASA Image and Video Library

    2016-11-09

    The ECLSS module inside SpaceX’s headquarters and factory in Hawthorne, California. The module is the same size as the company’s Crew Dragon spacecraft and is built to test the Environmental Control and Life Support System, or ECLSS, that is being built for missions aboard the Crew Dragon including those by astronauts flying to the International Space Station on flights for NASA’s Commercial Crew Program. Photo credit: SpaceX

  8. SpaceX's Environmental Control and Life Support System (ECLSS)

    NASA Image and Video Library

    2016-11-09

    The interior of the ECLSS module inside SpaceX’s headquarters and factory in Hawthorne, California. The module is the same size as the company’s Crew Dragon spacecraft and is built to test the Environmental Control and Life Support System, or ECLSS, that is being built for missions aboard the Crew Dragon including those by astronauts flying to the International Space Station on flights for NASA’s Commercial Crew Program. Photo credit: SpaceX

  9. SpaceX's Environmental Control and Life Support System (ECLSS)

    NASA Image and Video Library

    2016-11-09

    Engineers work inside the ECLSS module at SpaceX’s headquarters and factory in Hawthorne, California. The module is the same size as the company’s Crew Dragon spacecraft and is built to test the Environmental Control and Life Support System, or ECLSS, that is being built for missions aboard the Crew Dragon including those by astronauts flying to the International Space Station on flights for NASA’s Commercial Crew Program. Photo credit: SpaceX

  10. Kennedy Space Center, Space Shuttle Processing, and International Space Station Program Overview

    NASA Technical Reports Server (NTRS)

    Higginbotham, Scott Alan

    2011-01-01

    Topics include: International Space Station assembly sequence; Electrical power substation; Thermal control substation; Guidance, navigation and control; Command data and handling; Robotics; Human and robotic integration; Additional modes of re-supply; NASA and International partner control centers; Space Shuttle ground operations.

  11. Highlights of Science Launching on SpaceX CRS-15

    NASA Image and Video Library

    2018-06-24

    A new batch of science is headed to the International Space Station aboard the SpaceX Dragon on the company’s 15th mission for commercial resupply services. Among the research being delivered is science that studies the use of artificial intelligence for crew support, plant water use all over the planet, gut health in space, more efficient drug development and the formation of inorganic structures without the influence of Earth’s gravity. The International Space Station is a convergence of science, technology and human innovation that demonstrates new technologies and enables research not possible on Earth. The space station has been occupied continuously since November 2000. In that time, more than 230 people and a variety of international and commercial spacecraft have visited the orbiting laboratory. The space station remains the springboard to NASA's next great leap in exploration, including future human missions to the Moon and eventually to Mars. Highlighted investigations shown: Mobile Companion/CIMON: https://go.nasa.gov/2JCgPRf ECOSTRESS: https://go.nasa.gov/2sT87DV Angiex Cancer Therapy: https://go.nasa.gov/2LA1Cgc Rodent Research-7: https://go.nasa.gov/2JlVQlC Chemical Gardens: https://go.nasa.gov/2JDCYie Follow updates on the science conducted aboard the space station on Twitter: https://twitter.com/iss_research For more information on how you can conduct your research in microgravity, visit https://go.nasa.gov/2q84LJj HD Download: https://archive.org/details/jsc2018m000428_Highlights_of_Science_Launching_on_SpaceX_CRS-15

  12. Space Shuttle Projects

    NASA Image and Video Library

    1992-05-06

    STS-49 Orbiter Endeavour landed at Edwards Air Force Base on May 16, 1992 after a successful nine day mission dedicated to the retrieval, repair, and redeployment of the INTELSAT VI (F-3) satellite. The communication satellite for the International Telecommunication Satellite organization had been stranded in an unusable orbit since its launch aboard the Titan rocket in March 1990. The mission marked the first time 3 astronauts worked simultaneously outside the space craft.

  13. International Space Programs. Aerospace Education III.

    ERIC Educational Resources Information Center

    Bulmer, S. B.

    This book, one in the series on Aerospace Education III, is a collection of the diverse information available regarding the international space programs. The five goals listed for the book are: to examine the Soviet space program, to understand the future of Soviet space activity, to examine other national and international space programs, to…

  14. New Crew Journeys to the Space Station on This Week @NASA – October 21, 2016

    NASA Image and Video Library

    2016-10-21

    On Oct. 19, NASA astronaut Shane Kimbrough and his Expedition 49-50 crewmates, Sergey Ryzhikov and Andrey Borisenko, of the Russian Space Agency Roscosmos, launched aboard a Soyuz spacecraft to the International Space Station from the Baikonur Cosmodrome in Kazakhstan. Two days later, when the trio arrived at the orbiting laboratory, they were welcomed aboard by station Commander Anatoly Ivanishin of Roscosmos, Kate Rubins of NASA and Takuya Onishi of the Japan Aerospace Exploration Agency – bringing the space station back to its full complement of six crew members. Also, ISS Cargo Mission Launches from Wallops, Juno Mission and Science Update, and Drone Air Traffic Management Test!

  15. SpaceX CRS-14 What's On Board Science Briefing

    NASA Image and Video Library

    2018-04-01

    From left, Pete Hasbrook, associate program scientist, International Space Station Program at NASA's Johnson Space Center in Houston; Craig Kundrot, director, NASA's Space Life and Physical Science Research and Applications; Marie Lewis, moderator, Kennedy Space Center; and Patrick O'Neill, Marketing and Communications Manager, Center for the Advancement of Science in Space, speak to members of the media in the Kennedy Space Center Press Site auditorium. The briefing focused on research planned for launch to the International Space Station. The scientific materials and supplies will be aboard a Dragon spacecraft scheduled for liftoff from Cape Canaveral Air Force Station's Space Launch Complex 40 at 4:30 p.m. EST, on April 2, 2018. The SpaceX Falcon 9 rocket will launch the company's 14th Commercial Resupply Services mission to the space station.

  16. SpaceX CRS-14 What's On Board Science Briefing

    NASA Image and Video Library

    2018-04-01

    Craig Kundrot, director, NASA's Space Life and Physical Science Research and Applications, speaks to members of the media in the Kennedy Space Center Press Site auditorium. The briefing focused on research planned for launch to the International Space Station. The scientific materials and supplies will be aboard a Dragon spacecraft scheduled for liftoff from Cape Canaveral Air Force Station's Space Launch Complex 40 at 4:30 p.m. EST, on April 2, 2018. The SpaceX Falcon 9 rocket will launch the company's 14th Commercial Resupply Services mission to the space station.

  17. STS-113 Astronauts Work on Port One (P1) Truss on International Space Station

    NASA Technical Reports Server (NTRS)

    2002-01-01

    The 16th American assembly flight and 112th overall American flight to the International Space Station (ISS) launched on November 23, 2002 from Kennedy's launch pad 39A aboard the Space Shuttle Orbiter Endeavor STS-113. Mission objectives included the delivery of the Expedition Six Crew to the ISS, the return of Expedition Five crew back to Earth, and the installation and activation of the Port 1 Integrated Truss Assembly (P1). The first major component installed on the left side of the Station, the P1 truss provides an additional three External Thermal Control System radiators. Weighing in at 27,506 pounds, the P1 truss is 45 feet (13.7 meters) long, 15 feet (4.6 meters) wide, and 13 feet (4 meters) high. Three space walks, aided by the use of the Robotic Manipulator Systems of both the Shuttle and the Station, were performed in the installation of P1. In this photograph, astronauts Michael E. Lopez-Alegria (above) and John B. Herrington (below) work on the newly installed P1 truss during the mission's second scheduled session of extravehicular activity. The space walk lasted 6 hours, 10 minutes. The end effector of the Canadarm2 or Space Station Remote Manipulator System (SSRMS) and Earth's horizon are visible in the bottom of frame.

  18. Wire Frame Holds Water-Soap Film in Space

    NASA Technical Reports Server (NTRS)

    2003-01-01

    Expedition 6 astronaut Dr. Don Pettit photographed a cube shaped wire frame supporting a thin film made from a water-soap solution during his Saturday Morning Science aboard the International Space Station's (ISS) Destiny Laboratory. Food coloring was added to several faces to observe the effects of diffusion within the film.

  19. Astronaut Catherine G. Coleman aboard KC-135 aircraft

    NASA Image and Video Library

    1994-05-28

    S94-35542 (June 1994) --- Astronaut Catherine G. Coleman, mission specialist, gets a preview of next year?s United States Microgravity Laboratory (USML-2) mission aboard the Space Shuttle Columbia. The weightless experience was afforded by a special parabolic pattern flown by NASA?s KC-135 ?zero gravity? aircraft.

  20. The Importance of the International Space Station for Life Sciences Research: Past and Future

    NASA Technical Reports Server (NTRS)

    Robinson, Julie A.; Evans, C. A.; Tate, Judy

    2008-01-01

    The International Space Station (ISS) celebrates ten years of operations in 2008. While the station did not support permanent human crews during the first two years of operations, it hosted a few early science experiments months before the first international crew took up residence in November 2000. Since that time, science returns from the ISS have been growing at a steady pace. To date, early utilization of the U.S. Operating Segment of ISS has fielded nearly 200 experiments for hundreds of ground-based investigators supporting U.S. and international partner research. This paper will summarize the life science accomplishments of early research aboard the ISS both applied human research for exploration, and research on the effects of microgravity on life. At the 10-year point, the scientific returns from ISS should increase at a rapid pace. During the 2008 calendar year, the laboratory space and research facilities (both pressurized and external) will be tripled, with multiple scientific modules that support a wide variety of research racks and science and technology experiments conducted by all of the International Partners. A milestone was reached in February 2008 with the launch and commissioning of ESA s Columbus module and in March of 2008 with the first of three components of the Japanese Kibo laboratory. Although challenges lie ahead, the realization of the international scientific partnership provides new opportunities for scientific collaboration and broadens the research disciplines engaged on ISS. As the ISS nears completion of assembly in 2010, we come to full international utilization of the facilities for research. Using the past as an indicator, we are now able to envision the multidisciplinary contributions to improving life on Earth that the ISS can make as a platform for life sciences research.

  1. Space Station Astronauts Make Safe Landing on This Week @NASA – September 11, 2015

    NASA Image and Video Library

    2015-09-11

    Aboard the International Space Station, the Expedition 45 crew – including new Commander Scott Kelly and Kjell Lindgren of NASA, said goodbye to Gennady Padalka of the Russian Federal Space Agency, Andreas Mogensen of ESA (European Space Agency) and Aidyn Aimbetov of the Kazakh Space Agency (Kazcosmos) as the trio climbed aboard their Soyuz spacecraft for the return trip to Earth. The Soyuz landed safely in Kazakhstan on Sept. 11 Eastern time, Sept. 12 in Kazakhstan -- closing out a 168-day mission for Padalka and an 8-day stay on the station for Mogensen and Aimbetov. Also, First Orion crew module segments welded, SLS Launch Vehicle Stage Adapter, New Ceres imagery, New Horizons update, 9/11 tribute and National Preparedness Month!

  2. Advanced Ionospheric Sensing using GROUP-C and LITES aboard the ISS

    NASA Astrophysics Data System (ADS)

    Budzien, S. A.; Stephan, A. W.; Chakrabarti, S.; Finn, S. C.; Cook, T.; Powell, S. P.; O'Hanlon, B.; Bishop, R. L.

    2015-12-01

    The GPS Radio Occultation and Ultraviolet Photometer Co-located (GROUP-C) and Limb-imaging Ionospheric and Thermospheric Extreme-ultraviolet Spectrograph (LITES) experiments are manifested for flight aboard the International Space Station (ISS) in 2016 as part of the Space Test Program Houston #5 payload. The two experiments provide technical development and risk-reduction for future DoD space weather sensors suitable for ionospheric specification, space situational awareness, and data products for global ionosphere assimilative models. In addition, the combined instrument complement of these two experiments offers a unique opportunity to study structures of the nighttime ionosphere. GROUP-C includes an advanced GPS receiver providing ionospheric electron density profiles and scintillation measurements and a high-sensitivity far-ultraviolet photometer measuring horizontal ionospheric gradients. LITES is an imaging spectrograph that spans 60-140 nm and will obtain high-cadence limb profiles of the ionosphere and thermosphere from 150-350 km altitude. In the nighttime ionosphere, recombination of O+ and electrons produces optically thin emissions at 91.1 and 135.6 nm that can be used to tomographically reconstruct the two-dimensional plasma distribution in the orbital plane below ISS altitudes. Ionospheric irregularities, such as plasma bubbles and blobs, are transient features of the low and middle latitude ionosphere with important implications for operational systems. Irregularity structures have been studied primarily using ground-based systems, though some spaced-based remote and in-situ sensing has been performed. An ionospheric observatory aboard the ISS would provide new capability to study low- and mid-latitude ionospheric structures on a global scale. By combining for the first time high-sensitivity in-track photometry, vertical ionospheric airglow spectrographic imagery, and recent advancements in UV tomography, high-fidelity tomographic reconstruction of

  3. Development and Performance of the Oxygen Sensor in the CSA-CP Aboard the International Space Station

    NASA Technical Reports Server (NTRS)

    Limero, Thomas; Beck, Steve; James, John T.

    2004-01-01

    A combustion products analyzer (CPA) was built for use on Shuttle in response to several thermodegradation incidents that had occurred during early flights. The CPA contained sensors that measured carbon monoxide, hydrogen chloride, hydrogen cyanide, and hydrogen fluoride. These marker compounds, monitored by the CPA, were selected based upon the likely products to be released in a spacecraft fire. When the Toxicology Laboratory group at Johnson Space Center (JSC) began to assess the air quality monitoring needs for the International Space Station (ISS), the CPA was the starting point for design of an instrument to monitor the atmosphere following a thermodegradation event. The final product was significantly different from the CPA and was named the compound specific analyzer-combustion products (CSA-CP). The major change from the CPA that will be the focus of this paper was the replacement of an unreliable hydrogen fluoride (HF) sensor with an oxygen sensor. A reliable HF sensor was not commercially available, but as the toxicology group reviewed the overall monitoring strategy for ISS, it appeared that a portable oxygen sensor to backup the major constituent analyzer was needed. Therefore, an oxygen sensor replaced the HF sensor in the new instrument. This paper will describe the development, deployment, and performance of the CSA-CP oxygen sensor on both Shuttle and ISS. Also, data for CSA-CP oxygen sensor accuracy at nominal and reduced pressures will be presented.

  4. Space Shuttle Projects

    NASA Image and Video Library

    1996-04-01

    STS-79 was the fourth in a series of NASA docking missions to the Russian Mir Space Station, leading up to the construction and operation of the International Space Station (ISS). As the first flight of the Spacehab Double Module, STS-79 encompassed research, test and evaluation of ISS, as well as logistics resupply for the Mir Space Station. STS-79 was also the first NASA-Mir American crew member exchange mission, with John E. Blaha (NASA-Mir-3) replacing Shannon W. Lucid (NASA-Mir-2) aboard the Mir Space Station. The lettering of their names either up or down denotes transport up to the Mir Space Station or return to Earth on STS-79. The patch is in the shape of the Space Shuttle’s airlock hatch, symbolizing the gateway to international cooperation in space. The patch illustrates the historic cooperation between the United States and Russia in space. With the flags of Russia and the United States as a backdrop, the handshake of Extravehicular Mobility Unit (EMU) which are suited crew members symbolizes mission teamwork, not only of the crew members but also the teamwork between both countries space personnel in science, engineering, medicine and logistics.

  5. International Space Station Acoustics - A Status Report

    NASA Technical Reports Server (NTRS)

    Allen, Christopher S.

    2015-01-01

    It is important to control acoustic noise aboard the International Space Station (ISS) to provide a satisfactory environment for voice communications, crew productivity, alarm audibility, and restful sleep, and to minimize the risk for temporary and permanent hearing loss. Acoustic monitoring is an important part of the noise control process on ISS, providing critical data for trend analysis, noise exposure analysis, validation of acoustic analyses and predictions, and to provide strong evidence for ensuring crew health and safety, thus allowing Flight Certification. To this purpose, sound level meter (SLM) measurements and acoustic noise dosimetry are routinely performed. And since the primary noise sources on ISS include the environmental control and life support system (fans and airflow) and active thermal control system (pumps and water flow), acoustic monitoring will reveal changes in hardware noise emissions that may indicate system degradation or performance issues. This paper provides the current acoustic levels in the ISS modules and sleep stations and is an update to the status presented in 2011. Since this last status report, many payloads (science experiment hardware) have been added and a significant number of quiet ventilation fans have replaced noisier fans in the Russian Segment. Also, noise mitigation efforts are planned to reduce the noise levels of the T2 treadmill and levels in Node 3, in general. As a result, the acoustic levels on the ISS continue to improve.

  6. International Space Station (ISS)

    NASA Image and Video Library

    2000-02-01

    A section of the International Space Station truss assembly arrived at the Marshall Space Flight Center on NASA's Super Guppy cargo plane for structural and design testing as well as installation of critical flight hardware.

  7. SpaceX CRS-13 "What's on Board?" Mission Science Briefing

    NASA Image and Video Library

    2017-12-11

    Cheryl Warner of NASA Communications, left, Kirt Costello, deputy chief scientist for the International Space Station Program at NASA’s Johnson Space Center in Houston, center, and Patrick O'Neill, Marketing and Communications manager at the Center of Advancement of Science in Space (CASIS), speak to members of social media in the Kennedy Space Center’s Press Site auditorium. The briefing focused on research planned for launch to the International Space Station. The scientific materials and supplies will be aboard a Dragon spacecraft scheduled for liftoff from Cape Canaveral Air Force Station's Space Launch Complex 40 at 11:46 a.m. EST, on Dec. 12, 2017. The SpaceX Falcon 9 rocket will launch the company's 13th Commercial Resupply Services mission to the space station.

  8. International Space Station (ISS)

    NASA Image and Video Library

    1997-07-20

    Photograph shows the International Space Station Laboratory Module under fabrication at Marshall Space Flight Center (MSFC), Building 4708 West High Bay. Although management of the U.S. elements for the Station were consolidated in 1994, module and node development continued at MSFC by Boeing Company, the prime contractor for the Space Station.

  9. Astronauts Jeffrey A. Hoffman (left) and Maurizio Cheli, representing European Space Agency (ESA),

    NASA Technical Reports Server (NTRS)

    1996-01-01

    STS-75 ONBOARD VIEW --- Astronauts Jeffrey A. Hoffman (left) and Maurizio Cheli, representing European Space Agency (ESA), set up an experiment at the glovebox on the Space Shuttle Columbias mid-deck. The two mission specialists joined three other astronauts and an international payload specialist for more than 16 days of research aboard Columbia.

  10. Zero Robotics at Kennedy Space Center Visitor Complex

    NASA Image and Video Library

    2017-08-11

    NASA Kennedy Space Center Associate Director Kelvin Manning speaks to students and sponsors in the spaceport’s Center for Space Education. Teams from across the state of Florida were gathered at Kennedy for the finals of the Zero Robotics Middle School Summer Program national championship. The five-week program allows rising sixth- through ninth-graders to write programs for small satellites called SPHERES (Synchronized, Position, Hold, Engage, Reorient, Experimental Satellites). Finalists saw their code tested aboard the International Space Station.

  11. Ending Year in Space: NASA Goddard Network Maintains Communications from Space to Ground

    NASA Image and Video Library

    2016-03-01

    NASA's Goddard Space Flight Center in Greenbelt, Maryland, will monitor the landing of NASA Astronaut Scott Kelly and Russian Cosmonaut Mikhail Kornienko from their #YearInSpace Mission. Goddard's Networks Integration Center, pictured above, leads all coordination for space-to-ground communications support for the International Space Station and provides contingency support for the Soyuz TMA-18M 44S spacecraft, ensuring complete communications coverage through NASA's Space Network. The Soyuz 44S spacecraft will undock at 8:02 p.m. EST this evening from the International Space Station. It will land approximately three and a half hours later, at 11:25 p.m. EST in Kazakhstan. Both Kelly and Kornienko have spent 340 days aboard the International Space Station, preparing humanity for long duration missions and exploration into deep space. Read more: www.nasa.gov/feature/goddard/2016/ending-year-in-space-na... Credit: NASA/Goddard/Rebecca Roth NASA image use policy. NASA Goddard Space Flight Center enables NASA’s mission through four scientific endeavors: Earth Science, Heliophysics, Solar System Exploration, and Astrophysics. Goddard plays a leading role in NASA’s accomplishments by contributing compelling scientific knowledge to advance the Agency’s mission. Follow us on Twitter Like us on Facebook Find us on Instagram

  12. Ending Year in Space: NASA Goddard Network Maintains Communications from Space to Ground

    NASA Image and Video Library

    2017-12-08

    NASA's Goddard Space Flight Center in Greenbelt, Maryland, will monitor the landing of NASA Astronaut Scott Kelly and Russian Cosmonaut Mikhail Kornienko from their #YearInSpace Mission. Goddard's Networks Integration Center, pictured above, leads all coordination for space-to-ground communications support for the International Space Station and provides contingency support for the Soyuz TMA-18M 44S spacecraft, ensuring complete communications coverage through NASA's Space Network. The Soyuz 44S spacecraft will undock at 8:02 p.m. EST this evening from the International Space Station. It will land approximately three and a half hours later, at 11:25 p.m. EST in Kazakhstan. Both Kelly and Kornienko have spent 340 days aboard the International Space Station, preparing humanity for long duration missions and exploration into deep space. Read more: www.nasa.gov/feature/goddard/2016/ending-year-in-space-na... Credit: NASA/Goddard/Rebecca Roth NASA image use policy. NASA Goddard Space Flight Center enables NASA’s mission through four scientific endeavors: Earth Science, Heliophysics, Solar System Exploration, and Astrophysics. Goddard plays a leading role in NASA’s accomplishments by contributing compelling scientific knowledge to advance the Agency’s mission. Follow us on Twitter Like us on Facebook Find us on Instagram

  13. International Cooperation of Space Science and Application in Chinese Manned Space Program

    NASA Astrophysics Data System (ADS)

    Gao, Ming; Guo, Jiong; Yang, Yang

    Early in China Manned Space Program, lots of space science and application projects have been carried out by utilizing the SZ series manned spaceships and the TG-1 spacelab, and remarkable achievements have been attained with the efforts of international partners. Around 2020, China is going to build its space station and carry out space science and application research of larger scale. Along with the scientific utilization plan for Chinese space station, experiment facilities are considered especially for international scientific cooperation, and preparations on international cooperation projects management are made as well. This paper briefs the international scientific cooperation history and achievement in the previous missions of China Manned Space Program. The general resources and facilities that will support potential cooperation projects are then presented. Finally, the international cooperation modes and approaches for utilizing Chinese Space Station are discussed.

  14. Camera aboard 'Friendship 7' photographs John Glenn during spaceflight

    NASA Technical Reports Server (NTRS)

    1962-01-01

    A camera aboard the 'Friendship 7' Mercury spacecraft photographs Astronaut John H. Glenn Jr. during the Mercury-Atlas 6 spaceflight (00302-3); Photographs Glenn as he uses a photometer to view the sun during sunsent on the MA-6 space flight (00304).

  15. NASA and Russian Space Agency sign agreement for additional Space Shuttle/Mir missions

    PubMed

    Huff, W

    1994-01-01

    On December 16, 1993 NASA Administrator Daniel S. Goldin [correction of Golden] and the Russian Space Agency (RSA) director Yuri Koptev signed a protocol agreeing to up to 10 Shuttle flights to Mir with a total of 24 months time aboard Mir for U.S. astronants, a program of scientific and technological research, and the upgrade and extension of the Mir lifetime during the period 1995-1997. This is the first of a three-phase program in human spaceflight cooperation which may culminate in the construction of an international Space Station. This agreement starts joint development of spacecraft environmental control and life support systems and potential common space suit.

  16. SpaceX CRS-12 "What's on Board?" Science Briefing

    NASA Image and Video Library

    2017-08-13

    Ken Shields, director of Operations for Center for the Advancement of Science in Space/ISS National Lab, speaks to members of social media in the Kennedy Space Center’s Press Site auditorium. The briefing focused on research planned for launch to the International Space Station. The scientific materials and supplies will be aboard a Dragon spacecraft scheduled for launch from Kennedy’s Launch Complex 39A on Aug. 14 atop a SpaceX Falcon 9 rocket on the company's 12th Commercial Resupply Services mission to the space station.

  17. SpaceX CRS-11 "What's on Board?" Science Briefing

    NASA Image and Video Library

    2017-05-31

    Ken Shields, director of Operations for the Center for the Advancement of Science in Space (CASIS)/ISS National Lab, speaks to members of social media in the Kennedy Space Center’s Press Site auditorium. The briefing focused on research planned for launch to the International Space Station. The scientific materials and supplies will be aboard a Dragon spacecraft scheduled for launch from Kennedy’s Launch Complex 39A on June 1 atop a SpaceX Falcon 9 rocket on the company's 11th Commercial Resupply Services mission to the space station.

  18. SpaceX CRS-12 "What's on Board?" Science Briefing

    NASA Image and Video Library

    2017-08-13

    Chip Hardy, Kestrel Eye program manager for the U.S. Army Space and Missile Defense Command, speaks to members of social media in the Kennedy Space Center’s Press Site auditorium. The briefing focused on research planned for launch to the International Space Station. The scientific materials and supplies will be aboard a Dragon spacecraft scheduled for launch from Kennedy’s Launch Complex 39A on Aug. 14 atop a SpaceX Falcon 9 rocket on the company's 12th Commercial Resupply Services mission to the space station.

  19. International Space Station (ISS)

    NASA Image and Video Library

    1994-09-21

    Artist's concept of the final configuration of the International Space Station (ISS) Alpha. The ISS is a multidisciplinary laboratory, technology test bed, and observatory that will provide an unprecedented undertaking in scientific, technological, and international experimentation.

  20. International Space Station (ISS)

    NASA Image and Video Library

    1994-04-20

    An artist's concept of a fully deployed International Space Station (ISS) Alpha. The ISS-A is a multidisciplinary laboratory, technology test bed, and observatory that will provide an unprecedented undertaking in scientific, technological, and international experiments.

  1. International Standard Payload Rack volume

    NASA Technical Reports Server (NTRS)

    2001-01-01

    Outer dimensions of the International Standard Payload Rack (ISPR) that will be used on the International Space Station (ISS) sets the envelope for scientists designing hardware for experiments in biological and physical sciences aboard ISS. The ISPR includes attachments to ISS utilities (electrical power, heating and cooling, data, fluids, vacuum, etc.) through standoffs that hold the racks in place in the lab modules. Usage will range from facilities that take entire racks to specialized drawers occupying a portion of a rack.

  2. Status: Crewmember Noise Exposures on the International Space Station

    NASA Technical Reports Server (NTRS)

    Limardo-Rodriguez, Jose G.; Allen, Christopher S.; Danielson, Richard W.

    2015-01-01

    The International Space Station (ISS) provides a unique environment where crewmembers from the US and our international partners work and live for as long as 6 to 12 consecutive months. During these long-durations ISS missions, noise exposures from onboard equipment are posing concerns for human factors and crewmember health risks, such as possible reductions in hearing sensitivity, disruptions of crew sleep, interference with speech intelligibility and voice communications, interference with crew task performance, and reduced alarm audibility. It is crucial to control acoustical noise aboard ISS to acceptable noise exposure levels during the work-time period, and to also provide a restful sleep environment during the sleep-time period. Acoustic dosimeter measurements, obtained when the crewmember wears the dosimeter for 24-hour periods, are conducted onboard ISS every 60 days and compared to ISS flight rules. NASA personnel then assess the acoustic environment to which the crewmembers are exposed, and provide recommendations for hearing protection device usage. The purpose of this paper is to provide an update on the status of ISS noise exposure monitoring and hearing conservation strategies, as well as to summarize assessments of acoustic dosimeter data collected since the Increment 36 mission (April 2013). A description of the updated noise level constraints flight rule, as well as the Noise Exposure Estimation Tool and the Noise Hazard Inventory implementation for predicting crew noise exposures and recommending to ISS crewmembers when hearing protection devices are required, will be described.

  3. Space Shuttle Projects

    NASA Image and Video Library

    1991-11-01

    The STS-42 crew portrait includes from left to right: Stephen S. Oswald, pilot; Roberta L. Bondar, payload specialist 1; Norman E. Thagard, mission specialist 1; Ronald J. Grabe, commander; David C. Hilmers, mission specialist 2; Ulf D. Merbold, payload specialist 2; and William F. Readdy, mission specialist 3. Launched aboard the Space Shuttle Discovery on January 22, 1992 at 9:52:33 am (EST), the STS-42 served as the International Microgravity Laboratory-1 (ML-1 ) mission.

  4. Vice President Pence Visits NASA's Marshall Space Flight Center

    NASA Image and Video Library

    2017-09-25

    Vice President Mike Pence offered his thanks Monday to employees working on NASA’s human spaceflight programs during a tour of the agency’s Marshall Space Flight Center in Huntsville, Alabama. The Vice President saw the progress being made on NASA’s Space Launch System (SLS), the world’s most powerful deep space rocket, that will send astronauts on missions around the Moon and ultimately to Mars. He also visited Marshall’s Payload Operations Integration Center, where the agency manages all research aboard the International Space Station.

  5. SpaceX CRS-12 "What's on Board?" Science Briefing

    NASA Image and Video Library

    2017-08-13

    Boy Scouts of America Troop 209 members Andrew Frank, left, and Elliot Lee speak to members of social media in the Kennedy Space Center’s Press Site auditorium. The briefing focused on research planned for launch to the International Space Station. The scientific materials and supplies will be aboard a Dragon spacecraft scheduled for launch from Kennedy’s Launch Complex 39A on Aug. 14 atop a SpaceX Falcon 9 rocket on the company's 12th Commercial Resupply Services mission to the space station.

  6. SpaceX CRS-10 What's on Board Science Briefing

    NASA Image and Video Library

    2017-02-17

    During the SpaceX CRS-10 "What's On Board?" Science Briefing inside the Press Site Auditorium, members of social media learned about the science aboard the Dragon spacecraft. The briefing focused on growth of crystals in microgravity planned for the International Space Station following the arrival of a Dragon spacecraft. The Dragon is scheduled to be launched from Kennedy’s Launch Complex 39A on Feb. 18 atop a SpaceX Falcon 9 rocket on the company's 10th Commercial Resupply Services mission to the space station.

  7. Microbiology operations and facilities aboard restructured Space Station Freedom

    NASA Technical Reports Server (NTRS)

    Cioletti, Louis A.; Mishra, S. K.; Pierson, Duane L.

    1992-01-01

    With the restructure and funding changes for Space Station Freedom, the Environmental Health System (EHS)/Microbiology Subsystem revised its scheduling and operational requirements for component hardware. The function of the Microbiology Subsystem is to monitor the environmental quality of air, water, and internal surfaces and, in part, crew health on board Space Station. Its critical role shall be the identification of microbial contaminants in the environment that may cause system degradation, produce unsanitary or pathogenic conditions, or reduce crew and mission effectiveness. EHS/Microbiology operations and equipment shall be introduced in concert with a phased assembly sequence, from Man Tended Capability (MTC) through Permanently Manned Capability (PMC). Effective Microbiology operations and subsystem components will assure a safe, habitable, and useful spacecraft environment for life sciences research and long-term manned exploration.

  8. Space Shuttle Atlantis Landing / STS-129 Mission

    NASA Image and Video Library

    2009-11-27

    PHOTO CREDIT: NASA or National Aeronautics and Space Administration CAPE CANAVERAL, Fla. - Space shuttle Atlantis touches down on Runway 33 at the Shuttle Landing Facility at NASA's Kennedy Space Center in Florida after 11 days in space, completing the 4.5-million mile STS-129 mission on orbit 171. Main gear touchdown was at 9:44:23 a.m. EDT. Nose gear touchdown was at 9:44:36 a.m., and wheels stop was at 9:45:05 a.m. Aboard Atlantis are Commander Charles O. Hobaugh; Pilot Barry E. Wilmore; Mission Specialists Leland Melvin, Randy Bresnik, Mike Foreman and Robert L. Satcher Jr.; and Expedition 20 and 21 Flight Engineer Nicole Stott who spent 87 days aboard the International Space Station. STS-129 is the final space shuttle Expedition crew rotation flight on the manifest. On STS-129, the crew delivered 14 tons of cargo to the orbiting laboratory, including two ExPRESS Logistics Carriers containing spare parts to sustain station operations after the shuttles are retired next year. For information on the STS-129 mission and crew, visit http://www.nasa.gov/mission_pages/shuttle/shuttlemissions/sts129/index.html. Photo credit: NASA/Jim Grossmann

  9. ROSA Transfer (for SpaceX CRS-11)

    NASA Image and Video Library

    2017-04-12

    Inside the Space Station Processing Facility high bay at NASA's Kennedy Space Center in Florida, the Roll-Out Solar Array, or ROSA, is being prepared for transfer out of the high bay. ROSA will be delivered to the International Space Station aboard the SpaceX Dragon cargo carrier on the company’s 11th commercial resupply services mission to the space station. ROSA is a new type of solar panel that rolls open in space and is more compact than current rigid panel designs. The ROSA investigation will test deployment and retraction, shape changes when the Earth blocks the sun, and other physical challenges to determine the array's strength and durability.

  10. Space Shuttle Projects

    NASA Image and Video Library

    1997-12-08

    The STS-90 crew patch reflects the dedication of the mission to neuroscience in celebration of the decade of the brain. Earth is revealed through a neuron-shaped window, which symbolizes new perspectives in the understanding of nervous system development, structure and function, both here on Earth and in the microgravity environment of space. The Space Shuttle Columbia is depicted with its open payload bay doors revealing the Spacelab within. An integral component of the mission, the laboratory/science module provided by the European Space Agency (ESA), signifies the strong international involvement in the mission. The seven crew members and two alternate payload specialists, Chiaki Naito-Mukai and Alexander W. Dunlap, are represented by the nine major stars of the constellation Cetus (the whale) in recognition of the International Year of the Ocean. The distant stars illustrate the far reaching implications of the mission science to the many sponsoring agencies, helping prepare for long-duration space flight aboard the International Space Station (ISS). The moon and Mars are depicted to reflect the crew's recognition that those two celestial bodies will be the next great challenges in human exploration of space and represent the key role that life science research will play in supporting such missions.

  11. Space Station Crew Members Discuss Life in Space with the Media

    NASA Image and Video Library

    2018-01-03

    Aboard the International Space Station, Expedition 54 Flight Engineers Mark Vande Hei and Scott Tingle of NASA and Flight Engineer Norishige Kanai of the Japan Aerospace Exploration Agency (JAXA) discussed life and research on the complex during a pair of in-flight interviews Jan. 3 with KMSP-TV, Minneapolis and the Voice of America. Vande Hei has been on board the station since September, while Tingle and Kanai are in the third week of a planned six-month mission.

  12. International Space Station as Analog of Interplanetary Transit Vehicle For Biomedical Research

    NASA Technical Reports Server (NTRS)

    Charles, John B.

    2012-01-01

    Astronaut missions lasting up to six months aboard the International Space Station (ISS) have much in common with interplanetary flights, especially the outbound, Earth-to-Mars transit portion of a Mars mission. Utilization of ISS and other appropriate platforms to prepare for crewed expeditions to planetary destinations including Mars has been the work of NASA's Human Research Program (HRP) since 2005. HRP is charged specifically to understand and reduced the risks to astronaut health and performance in space exploration missions: everything HRP does and has done is directly related to that responsibility. Two major categories of human research have capitalized on ISS capabilities. The first category centers on the biomedical aspects of long-duration exposure to spaceflight factors, including prolonged weightlessness, radiation exposure, isolation and confinement, and actual risk to life and limb. These studies contribute to astronaut safety, health and efficiency on any long-duration missions, whether in low Earth orbit (LEO) or beyond. Qualitatively, weightlessness is weightlessness, whether in LEO or en route to Mars. The HRP sponsors investigations into losses in muscle and bone integrity, cardiovascular function, sensory-motor capability, immune capacity and psychosocial health, and development and demonstration of appropriate treatments and preventative measures. The second category includes studies that are focused on planetary expeditions beyond LEO. For these, ISS offers a high fidelity analog to investigate the combined effects of spaceflight factors (described above) plus the isolation and autonomy associated with simulated increasing distance from Earth. Investigations address crew cohesion, performance and workload, and mission control performance. The behavioral health and performance and space human factors aspects of planetary missions dominate this category. Work has already begun on a new investigation in this category which will examine the

  13. 14 CFR 1214.402 - International Space Station crewmember responsibilities.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 14 Aeronautics and Space 5 2010-01-01 2010-01-01 false International Space Station crewmember... SPACE FLIGHT International Space Station Crew § 1214.402 International Space Station crewmember responsibilities. (a) All NASA-provided International Space Station crewmembers are subject to specified standards...

  14. 14 CFR 1214.402 - International Space Station crewmember responsibilities.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... 14 Aeronautics and Space 5 2012-01-01 2012-01-01 false International Space Station crewmember... SPACE FLIGHT International Space Station Crew § 1214.402 International Space Station crewmember responsibilities. (a) All NASA-provided International Space Station crewmembers are subject to specified standards...

  15. Apex-4 for SpaceX CRS-10

    NASA Image and Video Library

    2017-02-16

    APEX-04, or Advanced Plant EXperiments-04, is being prepared in a cold room in the Kennedy Space Center Processing Facility for SpaceX-10. Dr. Anna Lisa Paul of the University of Florida is the principal investigator for APEX-04. Apex-04 is an experiment involving Arabidopsis in petri plates inside the Veggie facility aboard the International Space Station. Since Arabidopsis is the genetic model of the plant world, it is a perfect sample organism for performing genetic studies in spaceflight. The experiment is the result of a grant from NASA’s Space Life and Physical Sciences division.

  16. Expedition 52-52 Launches to the Space Station on This Week @NASA - April 21, 2017

    NASA Image and Video Library

    2017-04-21

    On April 20, Expedition 51-52 Flight Engineer Jack Fischer of NASA and Soyuz Commander Fyodor Yurchikhin of the Russian Space Agency, Roscosmos launched to the International Space Station aboard a Soyuz spacecraft, from the Baikonur Cosmodrome in Kazakhstan. About six-hours later, the pair arrived at the orbital outpost and were greeted by station Commander Peggy Whitson of NASA and other members of the crew. Fischer and Yurchikhin will spend four and a half months conducting research aboard the station. Also, U.S. Resupply Mission Heads to the Space Station, Time Magazine Recognizes Planet-Hunting Scientists, Landslides on Ceres Reflect Ice Content, Mars Rover Opportunity Leaves 'Tribulation', and Earth Day in the Nation’s Capital!

  17. Human Factors Research Under Ground-Based and Space Conditions. Part 1

    NASA Technical Reports Server (NTRS)

    1997-01-01

    Session TP2 includes short reports concerning: (1) Human Factors Engineering of the International space Station Human Research Facility; (2) Structured Methods for Identifying and Correcting Potential Human Errors in Space operation; (3) An Improved Procedure for Selecting Astronauts for Extended Space Missions; (4) The NASA Performance Assessment Workstation: Cognitive Performance During Head-Down Bedrest; (5) Cognitive Performance Aboard the Life and Microgravity Spacelab; and (6) Psychophysiological Reactivity Under MIR-Simulation and Real Micro-G.

  18. SpaceX CRS-14 What's On Board Science Briefing

    NASA Image and Video Library

    2018-04-01

    Patrick O'Neill, Marketing and Communications Manager, Center for the Advancement of Science in Space, speaks to members of the media in the Kennedy Space Center Press Site auditorium. The briefing focused on research planned for launch to the International Space Station. The scientific materials and supplies will be aboard a Dragon spacecraft scheduled for liftoff from Cape Canaveral Air Force Station's Space Launch Complex 40 at 4:30 p.m. EST, on April 2, 2018. The SpaceX Falcon 9 rocket will launch the company's 14th Commercial Resupply Services mission to the space station.

  19. Public school teachers in the U.S. evaluate the educational impact of student space experiments launched by expendable vehicles, aboard Skylab, and aboard Space Shuttle.

    PubMed

    Burkhalter, B B; McLean, J E; Curtis, J P; James, G S

    1991-12-01

    Space education is a discipline that has evolved at an unprecedented rate over the past 25 years. Although program proceedings, research literature, and historical documentation have captured fragmented pieces of information about student space experiments, the field lacks a valid comprehensive study that measures the educational impact of sounding rockets, Skylab, Ariane, AMSAT, and Space Shuttle. The lack of this information is a problem for space educators worldwide which led to a national study with classroom teachers. Student flown experiments continue to offer a unique experiential approach to teach students thinking and reasoning skills that are imperative in the current international competitive environment in which they live and will work. Understanding the history as well as the current status and educational spin-offs of these experimental programs strengthens the teaching capacity of educators throughout the world to develop problem solving skills and various higher mental processes in the schools. These skills and processes enable students to use their knowledge more effectively and efficiently long after they leave the classroom. This paper focuses on student space experiments as a means of motivating students to meet this educational goal successfully.

  20. SpaceX CRS-12 "What's on Board?" Science Briefing

    NASA Image and Video Library

    2017-08-13

    Michael Delp of Florida State University in Tallahassee, speaks to members of social media in the Kennedy Space Center’s Press Site auditorium. He is principal investigator for the Rodent Research-9 experiment. The briefing focused on research planned for launch to the International Space Station. The scientific materials and supplies will be aboard a Dragon spacecraft scheduled for launch from Kennedy’s Launch Complex 39A on Aug. 14 atop a SpaceX Falcon 9 rocket on the company's 12th Commercial Resupply Services mission to the space station.

  1. SpaceX CRS-12 "What's on Board?" Science Briefing

    NASA Image and Video Library

    2017-08-13

    Sebastian Mathea of the University of Oxford in England, speaks to members of social media in the Kennedy Space Center’s Press Site auditorium. Mathea is principal investigator for the Crystallization of LRRK2 Under Microgravity Conditions experiment. The briefing focused on research planned for launch to the International Space Station. The scientific materials and supplies will be aboard a Dragon spacecraft scheduled for launch from Kennedy’s Launch Complex 39A on Aug. 14 atop a SpaceX Falcon 9 rocket on the company's 12th Commercial Resupply Services mission to the space station.

  2. SpaceX CRS-12 "What's on Board?" Science Briefing

    NASA Image and Video Library

    2017-08-13

    Boy Scouts of America Troop 209 members Andrew Frank, left, Elliot Lee center, and team leader Norman McFarland speak to members of social media in the Kennedy Space Center’s Press Site auditorium. The briefing focused on research planned for launch to the International Space Station. The scientific materials and supplies will be aboard a Dragon spacecraft scheduled for launch from Kennedy’s Launch Complex 39A on Aug. 14 atop a SpaceX Falcon 9 rocket on the company's 12th Commercial Resupply Services mission to the space station.

  3. Survival of Antarctic Cryptoendolithic Fungi in Simulated Martian Conditions On Board the International Space Station.

    PubMed

    Onofri, Silvano; de Vera, Jean-Pierre; Zucconi, Laura; Selbmann, Laura; Scalzi, Giuliano; Venkateswaran, Kasthuri J; Rabbow, Elke; de la Torre, Rosa; Horneck, Gerda

    2015-12-01

    Dehydrated Antarctic cryptoendolithic communities and colonies of the rock inhabitant black fungi Cryomyces antarcticus (CCFEE 515) and Cryomyces minteri (CCFEE 5187) were exposed as part of the Lichens and Fungi Experiment (LIFE) for 18 months in the European Space Agency's EXPOSE-E facility to simulated martian conditions aboard the International Space Station (ISS). Upon sample retrieval, survival was proved by testing colony-forming ability, and viability of cells (as integrity of cell membrane) was determined by the propidium monoazide (PMA) assay coupled with quantitative PCR tests. Although less than 10% of the samples exposed to simulated martian conditions were able to proliferate and form colonies, the PMA assay indicated that more than 60% of the cells and rock communities had remained intact after the "Mars exposure." Furthermore, a high stability of the DNA in the cells was demonstrated. The results contribute to assessing the stability of resistant microorganisms and biosignatures on the surface of Mars, data that are valuable information for further search-for-life experiments on Mars. Endoliths-Eukaryotes-Extremophilic microorganisms-Mars-Radiation resistance.

  4. Implementation of Satellite Formation Flight Algorithms Using SPHERES Aboard the International Space Station

    NASA Technical Reports Server (NTRS)

    Mandy, Christophe P.; Sakamoto, Hiraku; Saenz-Otero, Alvar; Miller, David W.

    2007-01-01

    The MIT's Space Systems Laboratory developed the Synchronized Position Hold Engage and Reorient Experimental Satellites (SPHERES) as a risk-tolerant spaceborne facility to develop and mature control, estimation, and autonomy algorithms for distributed satellite systems for applications such as satellite formation flight. Tests performed study interferometric mission-type formation flight maneuvers in deep space. These tests consist of having the satellites trace a coordinated trajectory under tight control that would allow simulated apertures to constructively interfere observed light and measure the resulting increase in angular resolution. This paper focuses on formation initialization (establishment of a formation using limited field of view relative sensors), formation coordination (synchronization of the different satellite s motion) and fuel-balancing among the different satellites.

  5. Space radiation dosimetry in low-Earth orbit and beyond.

    PubMed

    Benton, E R; Benton, E V

    2001-09-01

    Space radiation dosimetry presents one of the greatest challenges in the discipline of radiation protection. This is a result of both the highly complex nature of the radiation fields encountered in low-Earth orbit (LEO) and interplanetary space and of the constraints imposed by spaceflight on instrument design. This paper reviews the sources and composition of the space radiation environment in LEO as well as beyond the Earth's magnetosphere. A review of much of the dosimetric data that have been gathered over the last four decades of human space flight is presented. The different factors affecting the radiation exposures of astronauts and cosmonauts aboard the International Space Station (ISS) are emphasized. Measurements made aboard the Mir Orbital Station have highlighted the importance of both secondary particle production within the structure of spacecraft and the effect of shielding on both crew dose and dose equivalent. Roughly half the dose on ISS is expected to come from trapped protons and half from galactic cosmic rays (GCRs). The dearth of neutron measurements aboard LEO spacecraft and the difficulty inherent in making such measurements have led to large uncertainties in estimates of the neutron contribution to total dose equivalent. Except for a limited number of measurements made aboard the Apollo lunar missions, no crew dosimetry has been conducted beyond the Earth's magnetosphere. At the present time we are forced to rely on model-based estimates of crew dose and dose equivalent when planning for interplanetary missions, such as a mission to Mars. While space crews in LEO are unlikely to exceed the exposure limits recommended by such groups as the NCRP, dose equivalents of the same order as the recommended limits are likely over the course of a human mission to Mars. c2001 Elsevier Science B.V. All rights reserved.

  6. International Space Station (ISS)

    NASA Image and Video Library

    2001-03-01

    Backdropped against water and clouds, the International Space Station was separated from the Space Shuttle Discovery after several days of joint activities and an important crew exchange. This photograph was taken by one of the crew of this mission from the aft flight deck of Discovery.

  7. Inspiring the Next Generation: Student Experiments and Educational Activities on the International Space Station, 2000-2006

    NASA Technical Reports Server (NTRS)

    Thomas, Donald A.; Robinson, Julie A.; Tate, Judy; Thumm, Tracy

    2006-01-01

    One important objective of NASA has always been to inspire the next generation. NASA and human space flight have a unique ability to capture the imaginations of both students and teachers. The presence of humans onboard the International Space Station (ISS) for more than five years now has provided a foundation for numerous educational activities aimed at capturing the interest and motivating study in the sciences, technology, engineering, and mathematics. Yet even before the Expedition 1 crew arrived at station in November 2000, experiments with student participation were being conducted onboard ISS in support of NASA missions. One of NASA's protein crystal growth experiments had been delivered to station by the shuttle Atlantis during STS-106 in September 2000 and was returned to Earth six weeks later aboard the shuttle Discovery during the STS-92 mission. From very early on it was recognized that students would have a strong interest in the ISS, and that this would provide a unique opportunity for them to get involved and participate in science and engineering projects on ISS. It should be noted that participation is not limited to U.S. students but involves the 16 International Partner countries and various other countries under special commercial agree

  8. 14 CFR 1214.402 - International Space Station crewmember responsibilities.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 14 Aeronautics and Space 5 2011-01-01 2010-01-01 true International Space Station crewmember responsibilities. 1214.402 Section 1214.402 Aeronautics and Space NATIONAL AERONAUTICS AND SPACE ADMINISTRATION SPACE FLIGHT International Space Station Crew § 1214.402 International Space Station crewmember...

  9. 14 CFR 1214.402 - International Space Station crewmember responsibilities.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... 14 Aeronautics and Space 5 2013-01-01 2013-01-01 false International Space Station crewmember responsibilities. 1214.402 Section 1214.402 Aeronautics and Space NATIONAL AERONAUTICS AND SPACE ADMINISTRATION SPACE FLIGHT International Space Station Crew § 1214.402 International Space Station crewmember...

  10. 78 FR 67309 - Earth Stations Aboard Aircraft

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-11-12

    ... Communications Act of 1934, as amended, 47 U.S.C. 154(i), 154(j), 157(a), 302(a), 303(c), 303(e), 303(f), 303(g... Commission's Earth Station Aboard Aircraft, Report and Order (Order), which adopted licensing and service...-orbit space stations operating in the 10.95-11.2 GHz, 11.45-11.7 GHz, 11.7-12.2 GHz and 14.0-14.5 GHz...

  11. Evaluating the Medical Kit System for the International Space Station(ISS) - A Paradigm Revisited

    NASA Technical Reports Server (NTRS)

    Hailey, Melinda J.; Urbina, Michelle C.; Hughlett, Jessica L.; Gilmore, Stevan; Locke, James; Reyna, Baraquiel; Smith, Gwyn E.

    2010-01-01

    Medical capabilities aboard the International Space Station (ISS) have been packaged to help astronaut crew medical officers (CMO) mitigate both urgent and non-urgent medical issues during their 6-month expeditions. Two ISS crewmembers are designated as CMOs for each 3-crewmember mission and are typically not physicians. In addition, the ISS may have communication gaps of up to 45 minutes during each orbit, necessitating medical equipment that can be reliably operated autonomously during flight. The retirement of the space shuttle combined with ten years of manned ISS expeditions led the Space Medicine Division at the NASA Johnson Space Center to reassess the current ISS Medical Kit System. This reassessment led to the system being streamlined to meet future logistical considerations with current Russian space vehicles and future NASA/commercial space vehicle systems. Methods The JSC Space Medicine Division coordinated the development of requirements, fabrication of prototypes, and conducted usability testing for the new ISS Medical Kit System in concert with implementing updated versions of the ISS Medical Check List and associated in-flight software applications. The teams constructed a medical kit system with the flexibility for use on the ISS, and resupply on the Russian Progress space vehicle and future NASA/commercial space vehicles. Results Prototype systems were developed, reviewed, and tested for implementation. Completion of Preliminary and Critical Design Reviews resulted in a streamlined ISS Medical Kit System that is being used for training by ISS crews starting with Expedition 27 (June 2011). Conclusions The team will present the process for designing, developing, , implementing, and training with this new ISS Medical Kit System.

  12. International Collaboration in Space Weather Situational Awareness

    NASA Astrophysics Data System (ADS)

    Boteler, David; Trichtchenko, Larisa; Danskin, Donald

    Space weather is a global phenomena so interntional collaboration is necessary to maintain awareness of potentially dangerous conditions. The Regional Warning Centres (RWCs) of the International Space Environment Service were set up during the International Geophysical Year to alert the scientific community to conditions requiring special measurements. The information sharing continues to this day with URSIGRAM messages exchanged between RWCs to help them produce space weather forecasts. Venturing into space, especially with manned missions, created a need to know about the space environment and particularly radiation dangers to man in space. Responding to this need led to the creation of a network of stations around the world to provide continuous monitoring of solar activity. Solar wind monitoring is now provided by the ACE satellite, operated by one country, but involving international collaborators to bring the information down in real time. Disturbances in the Earth's magnetic field are monitored by many magnetic observatories that are collaborating through INTERMAGNET to provide reliable data. Space weather produces effects on the ionosphere that can interfere with a variety of systems: the International GNSS Service provides information about effects on positioning systems, and the International Space Environment Service is providing information about iono-spheric absorption, particularly for trans-polar airline operations. The increasing availability of internet access, even at remote locations, is making it easier to obtain the raw information. The challenge now is how to integrate that information to provide effective international situational awareness of space weather.

  13. University Research-1 Payload for SpaceX Launch

    NASA Image and Video Library

    2014-03-12

    CAPE CANAVERAL, Fla. - In the Space Station Processing Facility at NASA's Kennedy Space Center in Florida, the University Research-1 payload developed by Texas Southern University in Houston is being prepared for loading aboard the SpaceX Dragon spacecraft for launch to the International Space Station. The experiment involves an investigation of countermeasures involving research into the efficacy of benzofuran-2-carboxylic acid derivatives as pharmacological countermeasures in mitigating the adverse effects of space flight and the International Space Station radiation environment on the immune system. Scheduled for launch on March 16 atop a Falcon 9 rocket, Dragon will be marking its fourth trip to the space station. The SpaceX-3 mission is the third of 12 flights contracted by NASA to resupply the orbiting laboratory. For more information, visit http://www.nasa.gov/mission_pages/station/structure/launch/index.html Photo credit: NASA/Kim Shiflett

  14. International Space Station (ISS)

    NASA Image and Video Library

    2004-04-15

    Pictured is an artist's concept of the International Space Station (ISS) with solar panels fully deployed. In addition to the use of solar energy, the ISS will employ at least three types of propulsive support systems for its operation. The first type is to reboost the Station to correct orbital altitude to offset the effects of atmospheric and other drag forces. The second function is to maneuver the ISS to avoid collision with oribting bodies (space junk). The third is for attitude control to position the Station in the proper attitude for various experiments, temperature control, reboost, etc. The ISS, a gateway to permanent human presence in space, is a multidisciplinary laboratory, technology test bed, and observatory that will provide an unprecedented undertaking in scientific, technological, and international experimentation by cooperation of sixteen countries.

  15. International Space Station Water Balance Operations

    NASA Technical Reports Server (NTRS)

    Tobias, Barry; Garr, John D., II; Erne, Meghan

    2011-01-01

    In November 2008, the Water Regenerative System racks were launched aboard Space Shuttle flight, STS-126 (ULF2) and installed and activated on the International Space Station (ISS). These racks, consisting of the Water Processor Assembly (WPA) and Urine Processor Assembly (UPA), completed the installation of the Regenerative (Regen) Environmental Control and Life Support Systems (ECLSS), which includes the Oxygen Generation Assembly (OGA) that was launched 2 years prior. With the onset of active water management on the US segment of the ISS, a new operational concept was required, that of water balance . In November of 2010, the Sabatier system, which converts H2 and CO2 into water and methane, was brought on line. The Regen ECLSS systems accept condensation from the atmosphere, urine from crew, and processes that fluid via various means into potable water, which is used for crew drinking, building up skip-cycle water inventory, and water for electrolysis to produce oxygen. Specification (spec) rates of crew urine output, condensate output, O2 requirements, toilet flush water, and drinking needs are well documented and used as the best guess planning rates when Regen ECLSS came online. Spec rates are useful in long term planning, however, daily or weekly rates are dependent upon a number of variables. The constantly changing rates created a new challenge for the ECLSS flight controllers, who are responsible for operating the ECLSS systems onboard ISS from Mission Control in Houston. This paper reviews the various inputs to water planning, rate changes, and dynamic events, including but not limited to: crew personnel makeup, Regen ECLSS system operability, vehicle traffic, water storage availability, and Carbon Dioxide Removal Assembly (CDRA), Sabatier, and OGA capability. Along with the inputs that change the various rates, the paper will review the different systems, their constraints, and finally the operational challenges and means by which flight controllers

  16. Space Station Crew Discusses Life in Space with a Media Outlet

    NASA Image and Video Library

    2017-12-26

    Aboard the International Space Station, Expedition 54 Flight Engineers Mark Vande Hei, Joe Acaba and Scott Tingle of NASA and Flight Engineer Norishige Kanai of the Japan Aerospace Exploration Agency (JAXA) discussed their mission and life and research on orbit during an in-flight interview Dec. 26 with the online media outlet, Mic. Tingle ad Kanai recently arrived at the station for a six-month mission, joining Vande Hei and Acaba, who have lived on the orbital laboratory since September.

  17. A Year in Space: Early Results and Lessons Learned from the First Year-Long Expedition Aboard the International Space Station

    NASA Technical Reports Server (NTRS)

    Charles, J. B.; Bogomolov, V. V.

    2016-01-01

    Two ISS crewmembers recently completed the first year-long orbital stay in two decades. International cooperation was central to the success of Mikhail Kornienko from Russia and Scott Kelly from the United States. Their expedition leveraged current mission experience and capitalized on recent advances in health monitoring technology. This unique effort began in 2012 when the program managers of the ISS partner nations adopted two separate goals: greater multilateral cooperation to increase efficiency of inflight research and a year-long expedition to gain familiarity with in-flight durations approaching that required for a Mars mission. These goals were unified when a set of bilateral Russian and American human research investigations was assigned to the year-long mission, augmented by additional investigations from Europe and Japan. For example, Kelly was assigned 18 investigations (twice the complement on standard six-month missions) including two joint U.S.-Russian studies, and two Russian and two Japanese studies. The core set of American investigations was a repetition of six studies Kelly had done on his previous six-month ISS mission, to allow a direct comparison of physiological and behavioral responses of the longer and shorter durations in this single individual. The remainder of his assignments plus those of Kornienko were drawn from currently active national investigations documenting human adaptation to long-duration spaceflight factors or effectiveness of countermeasures against known deleterious adaptations. The two joint U.S.-Russian investigations were the flagship biomedical studies of the year-long expedition. The "Fluid Shifts" study collocated American research equipment alongside a Russian operational stressor device to document the pattern and impacts of the headward fluid shift long known to occur in weightlessness, including its role in ocular changes recently observed in some astronauts. The "Field Test" study investigated the ability of

  18. International Space Station (ISS)

    NASA Image and Video Library

    1994-07-20

    An artist's conception of what the final configuration of the International Space Station (ISS) will look like when it is fully built and deployed. The ISS is a multidisciplinary laboratory, technology test bed, and observatory that will provide an unprecedented undertaking in scientific, technological, and international experimentation.

  19. Space Station Crew Holds an Out of this World Audience with the Pope

    NASA Image and Video Library

    2017-10-26

    Aboard the International Space Station, Expedition 53 Commander Randy Bresnik and Flight Engineers Joe Acaba and Mark Vande Hei of NASA and Flight Engineer and Italian astronaut Paolo Nespoli of the European Space Agency discussed life and work in space and the spirit of international cooperation during a question and answer session Oct. 26 with Pope Francis at the Vatican. The pope also discussed the crew members’ view of the Earth from orbit and praised the crew for its accomplishments in demonstrating the value of international collaboration for peaceful purposes. The crewmembers are in various stages of their respective five and a half month missions on the outpost.

  20. Transformation of Air Quality Monitor Data from the International Space Station into Toxicological Effect Groups

    NASA Technical Reports Server (NTRS)

    James, John T.; Zalesak, Selina M.

    2011-01-01

    The primary reason for monitoring air quality aboard the International Space Station (ISS) is to determine whether air pollutants have collectively reached a concentration where the crew could experience adverse health effects. These effects could be near-real-time (e.g. headache, respiratory irritation) or occur late in the mission or even years later (e.g. cancer, liver toxicity). Secondary purposes for monitoring include discovery that a potentially harmful compound has leaked into the atmosphere or that air revitalization system performance has diminished. Typical ISS atmospheric trace pollutants consist of alcohols, aldehydes, aromatic compounds, halo-carbons, siloxanes, and silanols. Rarely, sulfur-containing compounds and alkanes are found at trace levels. Spacecraft Maximum Allowable Concentrations (SMACs) have been set in cooperation with a subcommittee of the National Research Council Committee on Toxicology. For each compound and time of exposure, the limiting adverse effect(s) has been identified. By factoring the analytical data from the Air Quality Monitor (AQM), which is in use as a prototype instrument aboard the ISS, through the array of compounds and SMACs, the risk of 16 specific adverse effects can be estimated. Within each adverse-effect group, we have used an additive model proportioned to each applicable 180-day SMAC to estimate risk. In the recent past this conversion has been performed using archival data, which can be delayed for months after an air sample is taken because it must be returned to earth for analysis. But with the AQM gathering in situ data each week, NASA is in a position to follow toxic-effect groups and correlate these with any reported crew symptoms. The AQM data are supplemented with data from real-time CO2 instruments aboard the ISS and from archival measurements of formaldehyde, which the AQM cannot detect.

  1. Zero Robotics at Kennedy Space Center Visitor Complex

    NASA Image and Video Library

    2017-08-11

    Darth Vader and other Star Wars characters from the 501st Legion address students and sponsors in the Center for Space Education at NASA’s Kennedy Space Center in Florida. Teams from across the state of Florida were gathered at Kennedy for the finals of the Zero Robotics Middle School Summer Program national championship. The five-week program allows rising sixth- through ninth-graders to write programs for small satellites called SPHERES (Synchronized, Position, Hold, Engage, Reorient, Experimental Satellites). Finalists saw their code tested aboard the International Space Station.

  2. Zero Robotics at Kennedy Space Center Visitor Complex

    NASA Image and Video Library

    2017-08-11

    A middle-school student high-fives a Star Wars character from the 501st Legion in the Center for Space Education at NASA’s Kennedy Space Center in Florida. Teams from across the state of Florida were gathered at Kennedy for the finals of the Zero Robotics Middle School Summer Program national championship. The five-week program allows rising sixth- through ninth-graders to write programs for small satellites called SPHERES (Synchronized, Position, Hold, Engage, Reorient, Experimental Satellites). Finalists saw their code tested aboard the International Space Station.

  3. International Space Station (ISS)

    NASA Image and Video Library

    2000-10-29

    The Soyuz TM-31 launch vehicle is shown in the vertical position for its launch from Baikonur, carrying the first resident crew to the International Space Station. The Russian Soyuz launch vehicle is an expendable spacecraft that evolved out of the original Class A (Sputnik). From the early 1960s until today, the Soyuz launch vehicle has been the backbone of Russia's marned and unmanned space launch fleet. Today, the Soyuz launch vehicle is marketed internationally by a joint Russian/French consortium called STARSEM. As of August 2001, there have been ten Soyuz missions under the STARSEM banner.

  4. International Space Station (ISS)

    NASA Image and Video Library

    2000-10-29

    The Soyuz TM-31 launch vehicle, which carried the first resident crew to the International Space Station, moves toward the launch pad at the Baikonur complex in Kazakhstan. The Russian Soyuz launch vehicle is an expendable spacecraft that evolved out of the original Class A (Sputnik). From the early 1960' until today, the Soyuz launch vehicle has been the backbone of Russia's marned and unmanned space launch fleet. Today, the Soyuz launch vehicle is marketed internationally by a joint Russian/French consortium called STARSEM. As of August 2001, there have been ten Soyuz missions under the STARSEM banner.

  5. Launch of Space Shuttle Atlantis / STS-129 Mission

    NASA Image and Video Library

    2009-11-16

    CAPE CANAVERAL, Fla. - Space shuttle Atlantis launches through the clouds from Launch Pad 39A on a balmy Florida afternoon at NASA's Kennedy Space Center. Liftoff on its STS-129 mission came at 2:28 p.m. EST Nov. 16. Aboard are crew members Commander Charles O. Hobaugh; Pilot Barry E. Wilmore; and Mission Specialists Leland Melvin, Randy Bresnik, Mike Foreman and Robert L. Satcher Jr. On STS-129, the crew will deliver two Express Logistics Carriers to the International Space Station, the largest of the shuttle's cargo carriers, containing 15 spare pieces of equipment including two gyroscopes, two nitrogen tank assemblies, two pump modules, an ammonia tank assembly and a spare latching end effector for the station's robotic arm. Atlantis will return to Earth a station crew member, Nicole Stott, who has spent more than two months aboard the orbiting laboratory. STS-129 is slated to be the final space shuttle Expedition crew rotation flight. For information on the STS-129 mission and crew, visit http://www.nasa.gov/mission_pages/shuttle/shuttlemissions/sts129/index.html. Photo credit: NASA/Jim Grossmann

  6. Launch of Space Shuttle Atlantis / STS-129 Mission

    NASA Image and Video Library

    2009-11-16

    CAPE CANAVERAL, Fla. - Space shuttle Atlantis cuts its way through the blue skies over Launch Pad 39A at NASA's Kennedy Space Center in Florida. Liftoff on its STS-129 mission came at 2:28 p.m. EST Nov. 16. Aboard are crew members Commander Charles O. Hobaugh; Pilot Barry E. Wilmore; and Mission Specialists Leland Melvin, Randy Bresnik, Mike Foreman and Robert L. Satcher Jr. On STS-129, the crew will deliver two Express Logistics Carriers to the International Space Station, the largest of the shuttle's cargo carriers, containing 15 spare pieces of equipment including two gyroscopes, two nitrogen tank assemblies, two pump modules, an ammonia tank assembly and a spare latching end effector for the station's robotic arm. Atlantis will return to Earth a station crew member, Nicole Stott, who has spent more than two months aboard the orbiting laboratory. STS-129 is slated to be the final space shuttle Expedition crew rotation flight. For information on the STS-129 mission and crew, visit http://www.nasa.gov/mission_pages/shuttle/shuttlemissions/sts129/index.html. Photo credit: NASA/Jim Grossmann

  7. Installation of the S1 Truss to the International Space Station

    NASA Technical Reports Server (NTRS)

    2002-01-01

    Astronauts Piers J. Sellers (left ) and David A. Wolf work on the newly installed Starboard One (S1) truss to the International Space Station (ISS) during the STS-112 mission. The primary payloads of this mission, ISS Assembly Mission 9A, were the Integrated Truss Assembly S1 (S One), the starboard side thermal radiator truss, and the Crew Equipment Translation Aid (CETA) cart to the ISS. The S1 truss provides structural support for the orbiting research facility's radiator panels, which use ammonia to cool the Station's complex power system. The S1 truss was attached to the S0 (S Zero) truss, which was launched on April 8, 2002 aboard the STS-110, and flows 637 pounds of anhydrous ammonia through three heat-rejection radiators. The truss is 45-feet long, 15-feet wide, 10-feet tall, and weighs approximately 32,000 pounds. The CETA cart was attached to the Mobil Transporter and will be used by assembly crews on later missions. Manufactured by the Boeing Company in Huntington Beach, California, the truss primary structure was transferred to the Marshall Space Flight Center in February 1999 for hardware installations and manufacturing acceptance testing. The launch of the STS-112 mission occurred on October 7, 2002, and its 11-day mission ended on October 18, 2002.

  8. Stability of Pharmaceuticals in Space

    NASA Technical Reports Server (NTRS)

    Nguyen, Y-Uyen

    2009-01-01

    Stability testing is a tool used to access shelf life and effects of storage conditions for pharmaceutical formulations. Early research from the International Space Station (ISS) revealed that some medications may have degraded while in space. This potential loss of medication efficacy would be very dangerous to Crew health. The aim of this research project, Stability of Pharmacotherapeutic Compounds, is to study how the stability of pharmaceutical compounds is affected by environmental conditions in space. Four identical pharmaceutical payload kits containing medications in different dosage forms (liquid for injection, tablet, capsule, ointment and suppository) were transported to the ISS aboard a Space Shuttle. One of the four kits was stored on that Shuttle and the other three were stored on the ISS for return to Earth at various time intervals aboard a pre-designated Shuttle flight. The Pharmacotherapeutics laboratory used stability test as defined by the United States Pharmacopeia (USP), to access the degree of degradation to the Payload kit medications that may have occurred during space flight. Once these medications returned, the results of stability test performed on them were compared to those from the matching ground controls stored on Earth. Analyses of the results obtained from physical and chemical stability assessments on these payload medications will provide researchers additional tools to promote safe and efficacious medications for space exploration.

  9. International Space Station (ISS)

    NASA Image and Video Library

    2001-07-01

    Astronaut Michael L. Gernhardt, STS-104 mission specialist, participates in one of three STS-104 space walks while holding on to the end effector of the Canadarm on the Space Shuttle Atlantis. Gernhardt was joined on the extravehicular activity (EVA) by astronaut James F. Reilly (out of frame). The major objective of the mission was to install and activate the Joint Airlock, which completed the second phase of construction on the International Space Station (ISS). The airlock accommodates both United States and Russian space suits and was designed and built at the Marshall Space Flight Center by the Boeing Company.

  10. Zero Robotics at Kennedy Space Center Visitor Complex

    NASA Image and Video Library

    2017-08-11

    NASA Kennedy Space Center's Trent Smith conducts a quantum levitation demonstration, using liquid nitrogen, metal and a magnetic track, for students and their sponsors in the Center for Space Education at NASA’s Kennedy Space Center in Florida. Teams from across the state of Florida were gathered at Kennedy for the finals of the Zero Robotics Middle School Summer Program national championship. The five-week program allows rising sixth- through ninth-graders to write programs for small satellites called SPHERES (Synchronized, Position, Hold, Engage, Reorient, Experimental Satellites). Finalists saw their code tested aboard the International Space Station.

  11. Expedition 50/51 Launches to Space Station on This Week @NASA – November 18, 2016

    NASA Image and Video Library

    2016-11-18

    The Expedition 50/51 crew, including NASA astronaut Peggy Whitson, launched aboard a Soyuz spacecraft from the Baikonur Cosmodrome in Kazakhstan Nov. 17 eastern time, to begin a two-day flight to the International Space Station. Whitson, Oleg Novitskiy of the Russian space agency Roscosmos and Thomas Pesquet of ESA (European Space Agency) are scheduled to join Expedition 50 commander Shane Kimbrough of NASA and Roscosmos cosmonauts Sergey Ryzhikov and Andrey Borisenko, who all have been aboard the orbiting laboratory since October. Whitson will assume command of the station in February – making her the first woman to command the space station twice. Whitson and her Expedition 50 crewmates are scheduled to return to Earth next spring. Also, Supermoon Shines Bright, Newman Participates in Operation IceBridge, and Advanced Weather Satellite Mission Previewed!

  12. International Space Station (ISS)

    NASA Image and Video Library

    2007-08-13

    Back dropped by the blue and white Earth is a Materials International Space Station Experiment (MISSE) on the exterior of the Station. The photograph was taken during the second bout of STS-118 Extra Vehicular Activity (EVA). MISSE collects information on how different materials weather in the environment of space.

  13. ROSA Transfer (for SpaceX CRS-11)

    NASA Image and Video Library

    2017-04-12

    Outside the Space Station Processing Facility high bay at NASA's Kennedy Space Center in Florida, a technician uses a Hyster forklift to carry the Roll-Out Solar Array, or ROSA, to the loading dock. ROSA will be delivered to the International Space Station aboard the SpaceX Dragon cargo carrier on the company’s 11th commercial resupply services mission to the space station. ROSA is a new type of solar panel that rolls open in space and is more compact than current rigid panel designs. The ROSA investigation will test deployment and retraction, shape changes when the Earth blocks the sun, and other physical challenges to determine the array's strength and durability.

  14. ROSA Transfer (for SpaceX CRS-11)

    NASA Image and Video Library

    2017-04-12

    At the loading dock outside the Space Station Processing Facility high bay at NASA's Kennedy Space Center in Florida, a technician uses a Hyster forklift to load the Roll-Out Solar Array, or ROSA, into a truck. ROSA will be delivered to the International Space Station aboard the SpaceX Dragon cargo carrier on the company’s 11th commercial resupply services mission to the space station. ROSA is a new type of solar panel that rolls open in space and is more compact than current rigid panel designs. The ROSA investigation will test deployment and retraction, shape changes when the Earth blocks the sun, and other physical challenges to determine the array's strength and durability.

  15. International Space Station (ISS)

    NASA Image and Video Library

    2007-08-11

    As the construction continued on the International Space Station (ISS), STS-118 Astronaut Rick Mastracchio and Canada Space Agency's Dave Williams (out of frame), participated in the first session of Extra Vehicular Activity (EVA) for the mission. During the 6 hour, 17 minute space walk, the two attached the Starboard 5 (S5) segment of truss, retracted the forward heat rejecting radiator from the Port 6 (P6) truss, and performed several get ahead tasks.

  16. Expedition_55_Education_In-flight_Interview_Tulsa_Air_&_Space_Museum_2018_134_1435_652763

    NASA Image and Video Library

    2018-05-14

    SPACE STATION CREW DISCUSSES LIFE IN SPACE WITH OKLAHOMA STUDENTS----- Aboard the International Space Station, Expedition 55 NASA Flight Engineers Drew Feustel and Ricky Arnold discussed life and research on the complex during an in-flight educational event May 14 with students gathered at the Tulsa Air and Space Museum in Tulsa, Oklahoma. Feustel and Arnold are in the midst of a six and a half month mission on the orbital outpost.

  17. Lab-on-a-Chip: From Astrobiology to the International Space Station

    NASA Technical Reports Server (NTRS)

    Maule, Jake; Wainwright, Nor; Steele, Andrew; Gunter, Dan; Monaco, Lisa A.; Wells, Mark E.; Morris, Heather C.; Boudreaux, Mark E.

    2008-01-01

    The continual and long-term habitation of enclosed environments, such as Antarctic stations, nuclear submarines and space stations, raises unique engineering, medical and operational challenges. There is no easy way out and no easy way to get supplies in. This situation elevates the importance of monitoring technology that can rapidly detect events within the habitat that affect crew safety such as fire, release of toxic chemicals and hazardous microorganisms. Traditional methods to monitor microorganisms on the International Space Station (ISS) have consisted of culturing samples for 3-5 days and eventual sample return to Earth. To augment these culture methods with new, rapid molecular techniques, we developed the Lab-on-a-Chip Application Development - Portable Test System (LOCAD-PTS). The system consists of a hand-held spectrophotometer, a series of interchangeable cartridges and a surface sampling/dilution kit that enables crew to collect samples and detect a range of biological molecules, all within 15 minutes. LOCAD-PTS was launched to the ISS aboard Space Shuttle Discovery in December 2006, where it was operated for the first time during March-May 2007. The surfaces of five separate sites in the US Lab and Node 1 of ISS were analyzed for endotoxin, using cartridges that employ the Limulus Amebocyte Lysate (LAL) assay; results of these tests will be presented. LOCAD-PTS will remain permanently onboard ISS with new cartridges scheduled for launch in February and October of 2008 for the detection of fungi (Beta-glucan) and Gram-positive bacteria (lipoteichoic acid), respectively.

  18. A Year of Education on the Space Station Highlighted During In-Fight Event

    NASA Image and Video Library

    2017-10-16

    Aboard the International Space Station, Expedition 53 Flight Engineers Joe Acaba of NASA, a former educator, and Paolo Nespoli of the European Space Agency discussed the value of education aboard the orbital complex during a Facebook Live question and answer session Oct. 16. Joined by ISS Program Manager Kirk Shireman on the ground from the Johnson Space Center in Houston, Acaba and Nespoli fielded questions about their life and work in orbit and how it can stimulate students to pursue careers in mathematics, science and engineering. Acaba and another former educator, NASA astronaut Ricky Arnold who will launch to the station next March, are conducting back-to-back missions on the station to contribute their educator skills in a year’s worth of interaction with students around the world.

  19. SpaceX CRS-14 What's On Board Science Briefing

    NASA Image and Video Library

    2018-04-01

    During the SpaceX CRS-14 "What's On Board?" Science Briefing inside the Kennedy Space Center Press Site Auditorium, members of the media learned about the research headed to the International Space Station aboard the Dragon spacecraft. The briefing focused on several science projects including the Metabolic Tracking experiment; Atmosphere-Space Interactions Monitor (ASIM); Multi-purpose Variable-g Platform (MVP), and Veggie PONDS Validation. The Dragon spacecraft is scheduled to be launched from Space Launch Complex 40 at Cape Canaveral Air Force Station in Florida atop a SpaceX Falcon 9 rocket on the company's 14th Commercial Resupply Services mission to the space station.

  20. SpaceX CRS-13 "What's on Board?" Mission Science Briefing

    NASA Image and Video Library

    2017-12-11

    Andrew Rush, president and chief executive officer of Made in Space, discusses his company's Fiber Optics payload, with members of social media in the Kennedy Space Center’s Press Site auditorium. The briefing focused on research planned for launch to the International Space Station. The scientific materials and supplies will be aboard a Dragon spacecraft scheduled for liftoff from Cape Canaveral Air Force Station's Space Launch Complex 40 at 11:46 a.m. EST, on Dec. 12, 2017. The SpaceX Falcon 9 rocket will launch the company's 13th Commercial Resupply Services mission to the space station.

  1. Apex-4 for SpaceX CRS-10

    NASA Image and Video Library

    2017-02-16

    Drs. Rob Ferl and Anna-Lisa Paul in a cold room in the Kennedy Space Center Processing Facility with the petri plates they prepped at the University of Florida for APEX-04. Paul is the principal investigator (PI) and Ferl is co-PI. Apex-04 is an experiment involving Arabidopsis in petri plates inside the Veggie facility aboard the International Space Station. Since Arabidopsis is the genetic model of the plant world, it is a perfect sample organism for performing genetic studies in spaceflight. The experiment is the result of a grant from NASA’s Space Life and Physical Sciences division.

  2. Apex-4 for SpaceX CRS-10

    NASA Image and Video Library

    2017-02-16

    APEX-04, or Advanced Plant EXperiments-04, is being prepared in a cold room in the Kennedy Space Center Processing Facility for SpaceX-10. The three science kits are weighed prior to flight. Dr. Anna Lisa Paul of the University of Florida is the principal investigator for APEX-04. Apex-04 is an experiment involving Arabidopsis in petri plates inside the Veggie facility aboard the International Space Station. Since Arabidopsis is the genetic model of the plant world, it is a perfect sample organism for performing genetic studies in spaceflight. The experiment is the result of a grant from NASA’s Space Life and Physical Sciences division.

  3. Space Shuttle Atlantis Landing / STS-129 Mission

    NASA Image and Video Library

    2009-11-27

    PHOTO CREDIT: NASA or National Aeronautics and Space Administration CAPE CANAVERAL, Fla. - With landing gear down, space shuttle Atlantis approaches landing on Runway 33 at the Shuttle Landing Facility at NASA's Kennedy Space Center in Florida after 11 days in space, completing the 4.5-million mile STS-129 mission on orbit 171. Main gear touchdown was at 9:44:23 a.m. EDT. Nose gear touchdown was at 9:44:36 a.m., and wheels stop was at 9:45:05 a.m. Aboard Atlantis are Commander Charles O. Hobaugh; Pilot Barry E. Wilmore; Mission Specialists Leland Melvin, Randy Bresnik, Mike Foreman and Robert L. Satcher Jr.; and Expedition 20 and 21 Flight Engineer Nicole Stott who spent 87 days aboard the International Space Station. STS-129 is the final space shuttle Expedition crew rotation flight on the manifest. On STS-129, the crew delivered 14 tons of cargo to the orbiting laboratory, including two ExPRESS Logistics Carriers containing spare parts to sustain station operations after the shuttles are retired next year. For information on the STS-129 mission and crew, visit http://www.nasa.gov/mission_pages/shuttle/shuttlemissions/sts129/index.html. Photo credit: NASA/Kim Shiflett

  4. Space Shuttle Atlantis Landing / STS-129 Mission

    NASA Image and Video Library

    2009-11-27

    PHOTO CREDIT: NASA or National Aeronautics and Space Administration CAPE CANAVERAL, Fla. - With drag chute unfurled, space shuttle Atlantis lands on Runway 33 at the Shuttle Landing Facility at NASA's Kennedy Space Center in Florida after 11 days in space, completing the 4.5-million mile STS-129 mission on orbit 171. Main gear touchdown was at 9:44:23 a.m. EDT. Nose gear touchdown was at 9:44:36 a.m., and wheels stop was at 9:45:05 a.m. Aboard Atlantis are Commander Charles O. Hobaugh; Pilot Barry E. Wilmore; Mission Specialists Leland Melvin, Randy Bresnik, Mike Foreman and Robert L. Satcher Jr.; and Expedition 20 and 21 Flight Engineer Nicole Stott who spent 87 days aboard the International Space Station. STS-129 is the final space shuttle Expedition crew rotation flight on the manifest. On STS-129, the crew delivered 14 tons of cargo to the orbiting laboratory, including two ExPRESS Logistics Carriers containing spare parts to sustain station operations after the shuttles are retired next year. For information on the STS-129 mission and crew, visit http://www.nasa.gov/mission_pages/shuttle/shuttlemissions/sts129/index.html. Photo credit: NASA/Kim Shiflett

  5. Space Shuttle Atlantis Landing / STS-129 Mission

    NASA Image and Video Library

    2009-11-27

    PHOTO CREDIT: NASA or National Aeronautics and Space Administration CAPE CANAVERAL, Fla. - The drag chute unfurls to slow space shuttle Atlantis for landing on Runway 33 at the Shuttle Landing Facility at NASA's Kennedy Space Center in Florida after 11 days in space, completing the 4.5-million mile STS-129 mission on orbit 171. Main gear touchdown was at 9:44:23 a.m. EDT. Nose gear touchdown was at 9:44:36 a.m., and wheels stop was at 9:45:05 a.m. Aboard Atlantis are Commander Charles O. Hobaugh; Pilot Barry E. Wilmore; Mission Specialists Leland Melvin, Randy Bresnik, Mike Foreman and Robert L. Satcher Jr.; and Expedition 20 and 21 Flight Engineer Nicole Stott who spent 87 days aboard the International Space Station. STS-129 is the final space shuttle Expedition crew rotation flight on the manifest. On STS-129, the crew delivered 14 tons of cargo to the orbiting laboratory, including two ExPRESS Logistics Carriers containing spare parts to sustain station operations after the shuttles are retired next year. For information on the STS-129 mission and crew, visit http://www.nasa.gov/mission_pages/shuttle/shuttlemissions/sts129/index.html. Photo credit: NASA/Sandra Joseph

  6. Space Shuttle Atlantis Landing / STS-129 Mission

    NASA Image and Video Library

    2009-11-27

    PHOTO CREDIT: NASA or National Aeronautics and Space Administration CAPE CANAVERAL, Fla. - The drag chute unfurls as space shuttle Atlantis lands on Runway 33 at the Shuttle Landing Facility at NASA's Kennedy Space Center in Florida after 11 days in space, completing the 4.5-million mile STS-129 mission on orbit 171. Main gear touchdown was at 9:44:23 a.m. EDT. Nose gear touchdown was at 9:44:36 a.m., and wheels stop was at 9:45:05 a.m. Aboard Atlantis are Commander Charles O. Hobaugh; Pilot Barry E. Wilmore; Mission Specialists Leland Melvin, Randy Bresnik, Mike Foreman and Robert L. Satcher Jr.; and Expedition 20 and 21 Flight Engineer Nicole Stott who spent 87 days aboard the International Space Station. STS-129 is the final space shuttle Expedition crew rotation flight on the manifest. On STS-129, the crew delivered 14 tons of cargo to the orbiting laboratory, including two ExPRESS Logistics Carriers containing spare parts to sustain station operations after the shuttles are retired next year. For information on the STS-129 mission and crew, visit http://www.nasa.gov/mission_pages/shuttle/shuttlemissions/sts129/index.html. Photo credit: NASA/Kim Shiflett

  7. Space Shuttle Atlantis Landing / STS-129 Mission

    NASA Image and Video Library

    2009-11-27

    PHOTO CREDIT: NASA or National Aeronautics and Space Administration CAPE CANAVERAL, Fla. - The drag chute unfurls to slow space shuttle Atlantis for landing on Runway 33 at the Shuttle Landing Facility at NASA's Kennedy Space Center in Florida after 11 days in space, completing the 4.5-million mile STS-129 mission on orbit 171. Main gear touchdown was at 9:44:23 a.m. EDT. Nose gear touchdown was at 9:44:36 a.m., and wheels stop was at 9:45:05 a.m. Aboard Atlantis are Commander Charles O. Hobaugh; Pilot Barry E. Wilmore; Mission Specialists Leland Melvin, Randy Bresnik, Mike Foreman and Robert L. Satcher Jr.; and Expedition 20 and 21 Flight Engineer Nicole Stott who spent 87 days aboard the International Space Station. STS-129 is the final space shuttle Expedition crew rotation flight on the manifest. On STS-129, the crew delivered 14 tons of cargo to the orbiting laboratory, including two ExPRESS Logistics Carriers containing spare parts to sustain station operations after the shuttles are retired next year. For information on the STS-129 mission and crew, visit http://www.nasa.gov/mission_pages/shuttle/shuttlemissions/sts129/index.html. Photo credit: NASA/Jim Grossmann

  8. Space Shuttle Atlantis Landing / STS-129 Mission

    NASA Image and Video Library

    2009-11-27

    PHOTO CREDIT: NASA or National Aeronautics and Space Administration CAPE CANAVERAL, Fla. - Space shuttle Atlantis kicks up dust as it touches down on Runway 33 at the Shuttle Landing Facility at NASA's Kennedy Space Center in Florida after 11 days in space, completing the 4.5-million mile STS-129 mission on orbit 171. Main gear touchdown was at 9:44:23 a.m. EDT. Nose gear touchdown was at 9:44:36 a.m., and wheels stop was at 9:45:05 a.m. Aboard Atlantis are Commander Charles O. Hobaugh; Pilot Barry E. Wilmore; Mission Specialists Leland Melvin, Randy Bresnik, Mike Foreman and Robert L. Satcher Jr.; and Expedition 20 and 21 Flight Engineer Nicole Stott who spent 87 days aboard the International Space Station. STS-129 is the final space shuttle Expedition crew rotation flight on the manifest. On STS-129, the crew delivered 14 tons of cargo to the orbiting laboratory, including two ExPRESS Logistics Carriers containing spare parts to sustain station operations after the shuttles are retired next year. For information on the STS-129 mission and crew, visit http://www.nasa.gov/mission_pages/shuttle/shuttlemissions/sts129/index.html. Photo credit: NASA/Kim Shiflett

  9. Space Shuttle Atlantis Landing / STS-129 Mission

    NASA Image and Video Library

    2009-11-27

    PHOTO CREDIT: NASA or National Aeronautics and Space Administration CAPE CANAVERAL, Fla. - Streams of smoke trail from the main landing gear tires as space shuttle Atlantis touches down on Runway 33 at the Shuttle Landing Facility at NASA's Kennedy Space Center in Florida after 11 days in space, completing the 4.5-million-mile STS-129 mission on orbit 171. Main gear touchdown was at 9:44:23 a.m. EDT. Nose gear touchdown was at 9:44:36 a.m., and wheels stop was at 9:45:05 a.m. Aboard Atlantis are Commander Charles O. Hobaugh; Pilot Barry E. Wilmore; Mission Specialists Leland Melvin, Randy Bresnik, Mike Foreman and Robert L. Satcher Jr.; and Expedition 20 and 21 Flight Engineer Nicole Stott who spent 87 days aboard the International Space Station. STS-129 is the final space shuttle Expedition crew rotation flight on the manifest. On STS-129, the crew delivered 14 tons of cargo to the orbiting laboratory, including two ExPRESS Logistics Carriers containing spare parts to sustain station operations after the shuttles are retired next year. For information on the STS-129 mission and crew, visit http://www.nasa.gov/mission_pages/shuttle/shuttlemissions/sts129/index.html. Photo credit: NASA/Jim Grossmann

  10. Space Shuttle Atlantis Landing / STS-129 Mission

    NASA Image and Video Library

    2009-11-27

    PHOTO CREDIT: NASA or National Aeronautics and Space Administration CAPE CANAVERAL, Fla. - A fire and rescue truck is in place beside Runway 33 if needed to support the landing of space shuttle Atlantis at the Shuttle Landing Facility at NASA's Kennedy Space Center in Florida. After 11 days in space, Atlantis completed the 4.5-million mile STS-129 mission on orbit 171. Main gear touchdown was at 9:44:23 a.m. EDT. Nose gear touchdown was at 9:44:36 a.m., and wheels stop was at 9:45:05 a.m. Aboard Atlantis are Commander Charles O. Hobaugh; Pilot Barry E. Wilmore; Mission Specialists Leland Melvin, Randy Bresnik, Mike Foreman and Robert L. Satcher Jr.; and Expedition 20 and 21 Flight Engineer Nicole Stott who spent 87 days aboard the International Space Station. STS-129 is the final space shuttle Expedition crew rotation flight on the manifest. On STS-129, the crew delivered 14 tons of cargo to the orbiting laboratory, including two ExPRESS Logistics Carriers containing spare parts to sustain station operations after the shuttles are retired next year. For information on the STS-129 mission and crew, visit http://www.nasa.gov/mission_pages/shuttle/shuttlemissions/sts129/index.html. Photo credit: NASA/Jack Pfaller

  11. Recent Successes and Future Plans for NASA's Space Communications and Navigation Testbed on the International Space Station

    NASA Technical Reports Server (NTRS)

    Reinhart, Richard C.; Sankovic, John M.; Johnson, Sandra K.; Lux, James P.; Chelmins, David T.

    2014-01-01

    Flexible and extensible space communications architectures and technology are essential to enable future space exploration and science activities. NASA has championed the development of the Space Telecommunications Radio System (STRS) software defined radio (SDR) standard and the application of SDR technology to reduce the costs and risks of using SDRs for space missions, and has developed an on-orbit testbed to validate these capabilities. The Space Communications and Navigation (SCaN) Testbed (previously known as the Communications, Navigation, and Networking reConfigurable Testbed (CoNNeCT)) is advancing SDR, on-board networking, and navigation technologies by conducting space experiments aboard the International Space Station. During its first year(s) on-orbit, the SCaN Testbed has achieved considerable accomplishments to better understand SDRs and their applications. The SDR platforms and software waveforms on each SDR have over 1500 hours of operation and are performing as designed. The Ka-band SDR on the SCaN Testbed is NASAs first space Ka-band transceiver and is NASA's first Ka-band mission using the Space Network. This has provided exciting opportunities to operate at Ka-band and assist with on-orbit tests of NASA newest Tracking and Data Relay Satellites (TDRS). During its first year, SCaN Testbed completed its first on-orbit SDR reconfigurations. SDR reconfigurations occur when implementing new waveforms on an SDR. SDR reconfigurations allow a radio to change minor parameters, such as data rate, or complete functionality. New waveforms which provide new capability and are reusable across different missions provide long term value for reconfigurable platforms such as SDRs. The STRS Standard provides guidelines for new waveform development by third parties. Waveform development by organizations other than the platform provider offers NASA the ability to develop waveforms itself and reduce its dependence and costs on the platform developer. Each of these

  12. International Space Station (ISS)

    NASA Image and Video Library

    2007-08-11

    As the construction continued on the International Space Station (ISS), STS-118 Astronaut Rick Mastracchio and Canada Space Agency representative Dave Williams (out of frame), participated in the first session of Extra Vehicular Activity (EVA) for the mission. During the 6 hour, 17 minute space walk, the two attached the Starboard 5 (S5) segment of truss, retracted the forward heat rejecting radiator from the Port 6 (P6) truss, and performed several get ahead tasks.

  13. Vice President Mike Pence Visits Kennedy Space Center - Tour of

    NASA Image and Video Library

    2018-02-21

    Vice President Mike Pence, left, tours the SpaceX hangar at Launch Complex 39A, at NASA's Kennedy Space Center in Florida, on Feb. 21, 2018. SpaceX officials, along with NASA astronauts Suni Williams and Bob Behnken, examine the type of pressure suit helmet to be worn as crews travel to the International Space Station aboard the company's Crew Dragon spacecraft. During his visit, Pence chaired a meeting of the National Space Council in the high bay of the center's Space Station Processing Facility. The council's role is to advise the president regarding national space policy and strategy, and review the nation's long-range goals for space activities.

  14. SpaceX CRS-12 "What's on Board?" Science Briefing

    NASA Image and Video Library

    2017-08-13

    John London, an engineer for the U.S. Army Space and Missile Defense Command, left, and Chip Hardy, Kestrel Eye program manager for the U.S. Army Space and Missile Defense Command, speak to members of social media in the Kennedy Space Center’s Press Site auditorium. The briefing focused on research planned for launch to the International Space Station. The scientific materials and supplies will be aboard a Dragon spacecraft scheduled for launch from Kennedy’s Launch Complex 39A on Aug. 14 atop a SpaceX Falcon 9 rocket on the company's 12th Commercial Resupply Services mission to the space station.

  15. The Pore Formation and Mobility Investigation: A Case Study for Conducting Research on the International Space Station in Support of Exploration

    NASA Technical Reports Server (NTRS)

    Grugel, R. N.; Luz, P.; Smith, G. A.; Spivey, R.; Mingo, C.; Jeter, L.; Volz, M. P.

    2005-01-01

    The Pore Formation and Mobility Investigation (PFMI) is being conducted in the Microgravity Science Glovebox (MSG) aboard the International Space Station (ISS) with the goal of understanding bubble generation and interactions during controlled directional solidification processing. Through the course of the experiments, beginning in September 2002, a number of key factors pertinent to solidification processing of materials in a microgravity environment have been directly observed, measured, and modeled. Though most experiments ran uninterrupted, on four separate occasions malfunctions to the PFMI hardware and software were experienced that required crew intervention, including in-space repair. Fortunately, each repair attempt was successful and restored the PFMI apparatus to a fully functional condition. Based on PFMI results and lessons learned, the intent of this presentation is to draw attention to the role ISS experiments/hardware can play in providing insight to potential fabrication processing techniques and repair scenarios that might arise during long duration space transport and/or on the lunar/Mars surface.

  16. NICER Packaging for SpaceX CRS-11

    NASA Image and Video Library

    2017-04-06

    Inside the Space Station Processing Facility high bay at NASA's Kennedy Space Center in Florida, technicians prepare the Neutron star Interior Composition Explorer, or NICER, payload for final packaging. NICER will be delivered to the International Space Station aboard the SpaceX Dragon cargo carrier on the company’s 11th commercial resupply services mission to the space station. NICER will study neutron stars through soft X-ray timing. NICER will enable rotation-resolved spectroscopy of the thermal and non-thermal emissions of neutron stars in the soft X-ray band with unprecedented sensitivity, probing interior structure, the origins of dynamic phenomena and the mechanisms that underlie the most powerful cosmic particle accelerators known.

  17. NICER Packaging for SpaceX CRS-11

    NASA Image and Video Library

    2017-04-06

    Inside the Space Station Processing Facility high bay at NASA's Kennedy Space Center in Florida, the Neutron star Interior Composition Explorer, or NICER, payload is secured on a special test stand. NICER will be delivered to the International Space Station aboard the SpaceX Dragon cargo carrier on the company’s 11th commercial resupply services mission to the space station. NICER will study neutron stars through soft X-ray timing. NICER will enable rotation-resolved spectroscopy of the thermal and non-thermal emissions of neutron stars in the soft X-ray band with unprecedented sensitivity, probing interior structure, the origins of dynamic phenomena and the mechanisms that underlie the most powerful cosmic particle accelerators known.

  18. NICER Packaging for SpaceX CRS-11

    NASA Image and Video Library

    2017-04-06

    Inside the Space Station Processing Facility high bay at NASA's Kennedy Space Center in Florida, a technician prepares the Neutron star Interior Composition Explorer, or NICER, payload for final packaging. NICER will be delivered to the International Space Station aboard the SpaceX Dragon cargo carrier on the company’s 11th commercial resupply services mission to the space station. NICER will study neutron stars through soft X-ray timing. NICER will enable rotation-resolved spectroscopy of the thermal and non-thermal emissions of neutron stars in the soft X-ray band with unprecedented sensitivity, probing interior structure, the origins of dynamic phenomena and the mechanisms that underlie the most powerful cosmic particle accelerators known.

  19. NICER Packaging for SpaceX CRS-11

    NASA Image and Video Library

    2017-04-06

    Inside the Space Station Processing Facility high bay at NASA's Kennedy Space Center in Florida, the Neutron star Interior Composition Explorer, or NICER, payload is being prepared for final packaging. NICER will be delivered to the International Space Station aboard the SpaceX Dragon cargo carrier on the company’s 11th commercial resupply services mission to the space station. NICER will study neutron stars through soft X-ray timing. NICER will enable rotation-resolved spectroscopy of the thermal and non-thermal emissions of neutron stars in the soft X-ray band with unprecedented sensitivity, probing interior structure, the origins of dynamic phenomena and the mechanisms that underlie the most powerful cosmic particle accelerators known.

  20. NICER Transfer (for SpaceX CRS-11)

    NASA Image and Video Library

    2017-04-12

    Inside the Space Station Processing Facility high bay at NASA's Kennedy Space Center in Florida, the Neutron star Interior Composition Explorer, or NICER, payload is secured inside a protective container. NICER will be delivered to the International Space Station aboard the SpaceX Dragon cargo carrier on the company’s 11th commercial resupply services mission to the space station. NICER will study neutron stars through soft X-ray timing. NICER will enable rotation-resolved spectroscopy of the thermal and non-thermal emissions of neutron stars in the soft X-ray band with unprecedented sensitivity, probing interior structure, the origins of dynamic phenomena and the mechanisms that underlie the most powerful cosmic particle accelerators known.