Sample records for aboard space station

  1. Protein crystallization aboard the Space Shuttle and the Mir space station

    NASA Technical Reports Server (NTRS)

    Delbaere, Louis T. J.; Vandonselaar, Margaret; Prasad, Lata; Quail, J. W.; Birnbaum, George I.; Delucas, Lawrence J.; Moore, Karen; Bugg, Charles E.

    1993-01-01

    Two different protein crystallizations, namely ,the free Fab fragment of the Je142 monoclonal antibody and the complex of Fab fragment/HPr with antigen, were performed aboard the Discovery Space Shuttle flights and the Mir space station, respectively. Medium sized crystals of the Je142 Fab fragment were obtained. The Je142 Fab fragment/Hpr complex produced two medium-sized crystals after two months aboard the Mir space station. Microgravity was found to eliminate the tendency of these crystals to form clusters.

  2. Analog FM/FM versus digital color TV transmission aboard space station

    NASA Technical Reports Server (NTRS)

    Hart, M. M.

    1985-01-01

    Langley Research Center is developing an integrated fault tolerant network to support data, voice, and video communications aboard Space Station. The question of transmitting the video data via dedicated analog channels or converting it to the digital domain for consistancy with the test of the data is addressed. The recommendations in this paper are based on a comparison in the signal-to-noise ratio (SNR), the type of video processing required aboard Space Station, the applicability to Space Station, and how they integrate into the network.

  3. Microgravity Science Glovebox Aboard the International Space Station

    NASA Technical Reports Server (NTRS)

    2003-01-01

    In the Destiny laboratory aboard the International Space Station (ISS), European Space Agency (ESA) astronaut Pedro Duque of Spain is seen working at the Microgravity Science Glovebox (MSG). He is working with the PROMISS experiment, which will investigate the growth processes of proteins during weightless conditions. The PROMISS is one of the Cervantes program of tests (consisting of 20 commercial experiments). The MSG is managed by NASA's Marshall Space Flight Center (MSFC).

  4. STS 129 Return Samples: Assessment of Air Quality aboard the Shuttle (STS-129) and International Space Station (ULF3)

    NASA Technical Reports Server (NTRS)

    James, John T.

    2010-01-01

    Reports on the air quality aboard the Space Shuttle (STS-129), and the International Space station (ULF3). NASA analyzed the grab sample canisters (GSCs) and the formaldehyde badges aboard both locations for carbon monoxide levels. The three surrogates: (sup 13)C-acetone, fluorobenzene, and chlorobenzene registered 109, 101, and 109% in the space shuttle and 81, 87, and 55% in the International Space Station (ISS). From these results the atmosphere in both the Space Shuttle and the International Space Station (ISS) was found to be breathable.

  5. Accomplishments in Bioastronautics Research Aboard International Space Station

    NASA Technical Reports Server (NTRS)

    Uri, John J.

    2003-01-01

    The seventh long-duration expedition crew is currently in residence aboard International Space Station (ISS), continuing a permanent human presence in space that began in October 2000. During that time, expedition crews have been operators and subjects for 16 Human Life Sciences investigations, to gain a better understanding of the effects of long-duration space flight on the crew members and of the environment in which they live. Investigations have been conducted to study the radiation environment in the station as well as during extravehicular activity (EVA); bone demineralization and muscle deconditioning; changes in neuromuscular reflexes, muscle forces and postflight mobility; causes and possible treatment of postflight orthostatic intolerance; risk of developing kidney stones; changes in pulmonary function caused by long-duration flight as well as EVA; crew and crew-ground interactions; and changes in immune function. The experiment mix has included some conducted in flight aboard ISS as well as several which collected data only pre- and postflight. The conduct of these investigations has been facilitated by the Human Research Facility (HRF). HRF Rack 1 became the first research rack on ISS when it was installed in the US laboratory module Destiny in March 2001. The rack provides a core set of experiment hardware to support investigations, as well as power, data and commanding capability, and stowage. The second HRF rack, to complement the first with additional hardware and stowage capability, will be launched once Shuttle flights resume. Future years will see additional capability to conduct human research on ISS as International Partner modules and facility racks are added to ISS . Crew availability, both as a subject count and time, will remain a major challenge to maximizing the science return from the bioastronautics research program.

  6. The Evaluation of Methicillin Resistance in Staphylococcus aboard the International Space Station

    NASA Technical Reports Server (NTRS)

    Ott, C. M.; Bassinger, V. J.; Fontenot, S. L.; Castro, V. A.; Pierson, D. L.

    2005-01-01

    The International Space Station (ISS) represents a semi-closed environment with a high level of crewmember interaction. As community-acquired methicillin-resistant Staphylococcus aureus (MRSA) has emerged as a health concern in environments with susceptible hosts in close proximity, an evaluation of isolates of clinical and environmental Staphylococcus aureus and coagulase negative Staphylococcus was performed to determine if this trend was also present in astronauts aboard ISS or the space station itself. Rep-PCR fingerprinting analysis of archived ISS isolates confirmed our earlier studies indicating a transfer of S. aureus between crewmembers. In addition, this fingerprinting also indicated a transfer between crewmembers and their environment. While a variety of S. aureus were identified from both the crewmembers and the environment, phenotypic evaluations indicated minimal methicillin resistance. However, positive results for the Penicillin Binding Protein, indicative of the presence of the mecA gene, were detected in multiple isolates of archived Staphylococcus epidermidis and Staphylococcus haemolyticus. Phenotypic analysis of these isolates confirmed their resistance to methicillin. While MRSA has not been isolated aboard ISS, the potential exists for the transfer of the gene, mecA, from coagulase negative environmental Staphylococcus to S. aureus creating MRSA strains. This study suggests the need to expand environmental monitoring aboard long duration exploration spacecraft to include antibiotic resistance profiling.

  7. Commander Bowersox Tends to Zeolite Crystal Samples Aboard Space Station

    NASA Technical Reports Server (NTRS)

    2003-01-01

    Expedition Six Commander Ken Bowersox spins Zeolite Crystal Growth sample tubes to eliminate bubbles that could affect crystal formation in preparation of a 15 day experiment aboard the International Space Station (ISS). Zeolites are hard as rock, yet are able to absorb liquids and gases like a sponge. By using the ISS microgravity environment to grow better, larger crystals, NASA and its commercial partners hope to improve petroleum manufacturing and other processes.

  8. Accomplishments in bioastronautics research aboard International Space Station.

    PubMed

    Uri, John J; Haven, Cynthia P

    2005-01-01

    The tenth long-duration expedition crew is currently in residence aboard International Space Station (ISS), continuing a permanent human presence in space that began in October 2000. During that time, expedition crews have been operators and subjects for 18 Human Life Sciences investigations, to gain a better understanding of the effects of long-duration spaceflight on the crewmembers and of the environment in which they live. Investigations have been conducted to study: the radiation environment in the station as well as during extravehicular activity (EVA); bone demineralization and muscle deconditioning; changes in neuromuscular reflexes; muscle forces and postflight mobility; causes and possible treatment of postflight orthostatic intolerance; risk of developing kidney stones; changes in pulmonary function caused by long-duration flight as well as EVA; crew and crew-ground interactions; changes in immune function, and evaluation of imaging techniques. The experiment mix has included some conducted in flight aboard ISS as well as several which collected data only pre- and postflight. The conduct of these investigations has been facilitated by the Human Research Facility (HRF). HRF Rack 1 became the first research rack on ISS when it was installed in the US laboratory module Destiny in March 2001. The rack provides a core set of experiment hardware to support investigations, as well as power, data and commanding capability, and stowage. The second HRF rack, to complement the first with additional hardware and stowage capability, will be launched once Shuttle flights resume. Future years will see additional capability to conduct human research on ISS as International Partner modules and facility racks are added to ISS. Crew availability, both as a subject count and time, will remain a major challenge to maximizing the science return from the bioastronautics research program. c2005 Published by Elsevier Ltd.

  9. Carbon Dioxide Removal Troubleshooting aboard the International Space Station (ISS) during Space Shuttle (STS) Docked Operations

    NASA Technical Reports Server (NTRS)

    Matty, Christopher M.; Cover, John M.

    2009-01-01

    The International Space Station (ISS) represents a largely closed-system habitable volume which requires active control of atmospheric constituents, including removal of exhaled Carbon Dioxide (CO2). The ISS provides a unique opportunity to observe system requirements for (CO2) removal. CO2 removal is managed by the Carbon Dioxide Removal Assembly (CDRA) aboard the US segment of ISS and by Lithium Hydroxide (LiOH) aboard the Space Shuttle (STS). While the ISS and STS are docked, various methods are used to balance the CO2 levels between the two vehicles, including mechanical air handling and management of general crew locations. Over the course of ISS operation, several unexpected anomalies have occurred which have required troubleshooting, including possible compromised performance of the CDRA and LiOH systems, and possible imbalance in CO2 levels between the ISS and STS while docked. This paper will cover efforts to troubleshoot the CO2 removal systems aboard the ISS and docked STS.

  10. Commercial opportunities in bioseparations and physiological testing aboard Space Station Freedom

    NASA Technical Reports Server (NTRS)

    Hymer, W. C.

    1992-01-01

    The Center for Cell Research (CCR) is a NASA Center for the Commercial Development of Space which has as its main goal encouraging industry-driven biomedical/biotechnology space projects. Space Station Freedom (SSF) will provide long duration, crew-tended microgravity environments which will enhance the opportunities for commercial biomedical/biotechnology projects in bioseparations and physiological testing. The CCR bioseparations program, known as USCEPS (for United States Commercial Electrophoresis Program in Space), is developing access for American industry to continuous-flow electrophoresis aboard SSF. In space, considerable scale-up of continuous free-flow electrophoresis is possible for cells, sub cellular particles, proteins, growth factors, and other biological products. The lack of sedemination and buoyancy-driven convection flow enhances purity of separations and the amount of material processed/time. Through the CCR's physiological testing program, commercial organizations will have access aboard SSF to physiological systems experiments (PSE's); the Penn State Biomodule; and telemicroscopy. Physiological systems experiments involve the use of live animals for pharmaceutical product testing and discovery research. The Penn State Biomodule is a computer-controlled mini lab useful for projects involving live cells or tissues and macro molecular assembly studies, including protein crystallization. Telemicroscopy will enable staff on Earth to manipulate and monitor microscopic specimens on SSF for product development and discovery research or for medical diagnosis of astronaut health problems. Space-based product processing, testing, development, and discovery research using USCEPS and CCR's physiological testing program offer new routes to improved health on Earth. Direct crew involvement-in biomedical/biotechnology projects aboard SSF will enable better experimental outcomes. The current data base shows that there is reason for considerable optimism

  11. Successful amplification of DNA aboard the International Space Station.

    PubMed

    Boguraev, Anna-Sophia; Christensen, Holly C; Bonneau, Ashley R; Pezza, John A; Nichols, Nicole M; Giraldez, Antonio J; Gray, Michelle M; Wagner, Brandon M; Aken, Jordan T; Foley, Kevin D; Copeland, D Scott; Kraves, Sebastian; Alvarez Saavedra, Ezequiel

    2017-01-01

    As the range and duration of human ventures into space increase, it becomes imperative that we understand the effects of the cosmic environment on astronaut health. Molecular technologies now widely used in research and medicine will need to become available in space to ensure appropriate care of astronauts. The polymerase chain reaction (PCR) is the gold standard for DNA analysis, yet its potential for use on-orbit remains under-explored. We describe DNA amplification aboard the International Space Station (ISS) through the use of a miniaturized miniPCR system. Target sequences in plasmid, zebrafish genomic DNA, and bisulfite-treated DNA were successfully amplified under a variety of conditions. Methylation-specific primers differentially amplified bisulfite-treated samples as would be expected under standard laboratory conditions. Our findings establish proof of concept for targeted detection of DNA sequences during spaceflight and lay a foundation for future uses ranging from environmental monitoring to on-orbit diagnostics.

  12. Dwarf Wheat grown aboard the International Space Station

    NASA Technical Reports Server (NTRS)

    2003-01-01

    Dwarf wheat were photographed aboard the International Space Station in April 2002. Lessons from on-orbit research on plants will have applications to terrestrial agriculture as well as for long-term space missions. Alternative agricultural systems that can efficiently produce greater quantities of high-quality crops in a small area are important for future space expeditions. Also regenerative life-support systems that include plants will be an important component of long-term space missions. Data from the Biomass Production System (BPS) and the Photosynthesis Experiment and System Testing and Operations (PESTO) will advance controlled-environment agricultural systems and will help farmers produce better, healthier crops in a small area. This same knowledge is critical to closed-loop life support systems for spacecraft. The BPS comprises a miniature environmental control system for four plant growth chambers, all in the volume of two space shuttle lockers. The experience with the BPS on orbit is providing valuable design and operational lessons that will be incorporated into the Plant Growth Units. The objective of PESTO was to flight verify the BPS hardware and to determine how the microgravity environment affects the photosynthesis and metabolic function of Super Dwarf wheat and Brassica rapa (a member of the mustard family).

  13. Video- Making a Film of Water Aboard the International Space Station (ISS)

    NASA Technical Reports Server (NTRS)

    2002-01-01

    Saturday Morning Science, the science of opportunity series of applied experiments and demonstrations, performed aboard the International Space Station (ISS) by Expedition 6 astronaut Dr. Don Pettit, revealed some remarkable findings. In this video, Dr. Pettit demonstrates how to make films of pure water. Watch the video to see how he does it, see his two-dimensional beaker, and marvel along with him at how tenacious the films are.

  14. International Space Station (ISS)

    NASA Image and Video Library

    2002-07-10

    This is a photo of soybeans growing in the Advanced Astroculture (ADVASC) Experiment aboard the International Space Station (ISS). The ADVASC experiment was one of the several new experiments and science facilities delivered to the ISS by Expedition Five aboard the Space Shuttle Orbiter Endeavor STS-111 mission. An agricultural seed company will grow soybeans in the ADVASC hardware to determine whether soybean plants can produce seeds in a microgravity environment. Secondary objectives include determination of the chemical characteristics of the seed in space and any microgravity impact on the plant growth cycle. Station science will also be conducted by the ever-present ground crew, with a new cadre of controllers for Expedition Five in the ISS Payload Operations Control Center (POCC) at NASA's Marshall Space Flight Center in Huntsville, Alabama. Controllers work in three shifts around the clock, 7 days a week, in the POCC, the world's primary science command post for the Space Station. The POCC links Earth-bound researchers around the world with their experiments and crew aboard the Space Station.

  15. International Space Station (ISS)

    NASA Image and Video Library

    2002-07-10

    Expedition Five crewmember and flight engineer Peggy Whitson displays the progress of soybeans growing in the Advanced Astroculture (ADVASC) Experiment aboard the International Space Station (ISS). The ADVASC experiment was one of the several new experiments and science facilities delivered to the ISS by Expedition Five aboard the Space Shuttle Orbiter Endeavor STS-111 mission. An agricultural seed company will grow soybeans in the ADVASC hardware to determine whether soybean plants can produce seeds in a microgravity environment. Secondary objectives include determination of the chemical characteristics of the seed in space and any microgravity impact on the plant growth cycle. Station science will also be conducted by the ever-present ground crew, with a new cadre of controllers for Expedition Five in the ISS Payload Operations Control Center (POCC) at NASA's Marshall Space Flight Center in Huntsville, Alabama. Controllers work in three shifts around the clock, 7 days a week, in the POCC, the world's primary science command post for the Space Station. The POCC links Earth-bound researchers around the world with their experiments and crew aboard the Space Station.

  16. MS Lucid and Blaha with MGBX aboard the Mir space station Priroda module

    NASA Image and Video Library

    1997-03-26

    STS079-S-092 (16-26 Sept. 1996) --- Astronauts Shannon W. Lucid and John E. Blaha work at a microgravity glove box on the Priroda Module aboard Russia's Mir Space Station complex. Blaha, who flew into Earth-orbit with the STS-79 crew, and Lucid are the first participants in a series of ongoing exchanges of NASA astronauts serving time as cosmonaut guest researchers onboard Mir. Lucid went on to spend a total of 188 days in space before returning to Earth with the STS-79 crew. During the STS-79 mission, the crew used an IMAX camera to document activities aboard the Space Shuttle Atlantis and the various Mir modules, with the cooperation of the Russian Space Agency (RSA). A hand-held version of the 65mm camera system accompanied the STS-79 crew into space in Atlantis' crew cabin. NASA has flown IMAX camera systems on many Shuttle missions, including a special cargo bay camera's coverage of other recent Shuttle-Mir rendezvous and/or docking missions.

  17. Aeolian processes aboard a space station: Saltation and particle trajectory analysis

    NASA Technical Reports Server (NTRS)

    White, B. R.; Greeley, R.; Iversen, J. D.; Leach, R. N.

    1986-01-01

    The Carousel wind tunnel (CWT) proposed to study aeolian processes aboard a space station consists of two concentric rotating drums. The space between the two drums comprises the wind tunnel test section. Differential rates of rotation of the two drums would provide a wind velocity with respect to either drum surface. Preliminary results of measured velocity profiles made in a CWT prototype indicate that the wall bounded boundary layer profiles are suitable to simulate flat plate turbulent boundary layer flow. The two dimensional flat plate Cartesian coordinate equations of motion of a particle moving through the air are explained. In order to assess the suitability of CWT in the analysis of the trajectories of windblown particles, a series of calculations were conducted comparing cases for gravity with those of zero gravity. Results from the calculations demonstrate that a wind tunnel of the carousel design could be fabricted to operate in a space station environment and that experiments could be conducted which would yield significant results contributing to the understanding of the physics of particle dynamics.

  18. Aeolian processes aboard a Space Station: Saltation and particle trajectory analysis

    NASA Technical Reports Server (NTRS)

    White, Bruce R.; Greeley, Ronald; Iversen, James D.; Leach, R. N.

    1987-01-01

    The Carousel Wind Tunnel (CWT) proposed to study aeolian processes aboard a Space Station consists of two concentric rotating drums. The space between the two drums comprises the wind tunnel section. Differential rates of rotation of the two drums would provide a wind velocity with respect to either drum surface. Preliminary results of measured velocity profiles made in a CWT prototype indicate that the wall bounded boundary layer profiles are suitable to simuate flat plate turbulent boundary layer flow. The two dimensional flate plate Cartesian coordinate equations of motion of a particle moving through the air are explained. In order to assess the suitability of CWT in the analysis of the trajectories of windblown particles, a series of calculations were conducted comparing cases for gravity with those of zero gravity. Results from the calculations demonstrate that a wind tunnel of the carousel design could be fabricated to operate in a space station environment and that experiments could be conducted which would yield significant results contributing to the understanding of the physics of particle dynamics.

  19. Ovarian Tumor Cells Studied Aboard the International Space Station (ISS)

    NASA Technical Reports Server (NTRS)

    2001-01-01

    In August 2001, principal investigator Jeanne Becker sent human ovarian tumor cells to the International Space Station (ISS) aboard the STS-105 mission. The tumor cells were cultured in microgravity for a 14 day growth period and were analyzed for changes in the rate of cell growth and synthesis of associated proteins. In addition, they were evaluated for the expression of several proteins that are the products of oncogenes, which cause the transformation of normal cells into cancer cells. This photo, which was taken by astronaut Frank Culbertson who conducted the experiment for Dr. Becker, shows two cell culture bags containing LN1 ovarian carcinoma cell cultures.

  20. International Space Station (ISS)

    NASA Image and Video Library

    2001-09-16

    The setting sun and the thin blue airglow line at Earth's horizon was captured by the International Space Station's (ISS) Expedition Three crewmembers with a digital camera. Some of the Station's components are silhouetted in the foreground. The crew was launched aboard the Space Shuttle Orbiter Discovery STS-105 mission, on August 10, 2001, replacing the Expedition Two crew. After marning the orbiting ISS for 128 consecutive days, the three returned to Earth on December 17, 2001, aboard the STS-108 mission Space Shuttle Orbiter Endeavour.

  1. 78 FR 67309 - Earth Stations Aboard Aircraft

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-11-12

    ... Communications Act of 1934, as amended, 47 U.S.C. 154(i), 154(j), 157(a), 302(a), 303(c), 303(e), 303(f), 303(g... Commission's Earth Station Aboard Aircraft, Report and Order (Order), which adopted licensing and service...-orbit space stations operating in the 10.95-11.2 GHz, 11.45-11.7 GHz, 11.7-12.2 GHz and 14.0-14.5 GHz...

  2. Capillary channel flow experiments aboard the International Space Station

    NASA Astrophysics Data System (ADS)

    Conrath, M.; Canfield, P. J.; Bronowicki, P. M.; Dreyer, M. E.; Weislogel, M. M.; Grah, A.

    2013-12-01

    In the near-weightless environment of orbiting spacecraft capillary forces dominate interfacial flow phenomena over unearthly large length scales. In current experiments aboard the International Space Station, partially open channels are being investigated to determine critical flow rate-limiting conditions above which the free surface collapses ingesting bubbles. Without the natural passive phase separating qualities of buoyancy, such ingested bubbles can in turn wreak havoc on the fluid transport systems of spacecraft. The flow channels under investigation represent geometric families of conduits with applications to liquid propellant acquisition, thermal fluids circulation, and water processing for life support. Present and near future experiments focus on transient phenomena and conduit asymmetries allowing capillary forces to replace the role of gravity to perform passive phase separations. Terrestrial applications are noted where enhanced transport via direct liquid-gas contact is desired.

  3. FAST at MACH 20: clinical ultrasound aboard the International Space Station.

    PubMed

    Sargsyan, Ashot E; Hamilton, Douglas R; Jones, Jeffrey A; Melton, Shannon; Whitson, Peggy A; Kirkpatrick, Andrew W; Martin, David; Dulchavsky, Scott A

    2005-01-01

    Focused assessment with sonography for trauma (FAST) examination has been proved accurate for diagnosing trauma when performed by nonradiologist physicians. Recent reports have suggested that nonphysicians also may be able to perform the FAST examination reliably. A multipurpose ultrasound system is installed on the International Space Station as a component of the Human Research Facility. Nonphysician crew members aboard the International Space Station receive modest training in hardware operation, sonographic techniques, and remotely guided scanning. This report documents the first FAST examination conducted in space, as part of the sustained effort to maintain the highest possible level of available medical care during long-duration space flight. An International Space Station crew member with minimal sonography training was remotely guided through a FAST examination by an ultrasound imaging expert from Mission Control Center using private real-time two-way audio and a private space-to-ground video downlink (7.5 frames/second). There was a 2-second satellite delay for both video and audio. To facilitate the real-time telemedical ultrasound examination, identical reference cards showing topologic reference points and hardware controls were available to both the crew member and the ground-based expert. A FAST examination, including four standard abdominal windows, was completed in approximately 5.5 minutes. Following commands from the Mission Control Center-based expert, the crew member acquired all target images without difficulty. The anatomic content and fidelity of the ultrasound video were excellent and would allow clinical decision making. It is possible to conduct a remotely guided FAST examination with excellent clinical results and speed, even with a significantly reduced video frame rate and a 2-second communication latency. A wider application of trauma ultrasound applications for remote medicine on earth appears to be possible and warranted.

  4. Draft Genome Sequence of Solibacillus kalamii, Isolated from an Air Filter Aboard the International Space Station.

    PubMed

    Seuylemezian, Arman; Singh, Nitin K; Vaishampayan, Parag; Venkateswaran, Kasthuri

    2017-08-31

    We report here the draft genome of Solibacillus kalamii ISSFR-015, isolated from a high-energy particulate arrestance filter aboard the International Space Station. The draft genome sequence of this strain contains 3,809,180 bp with an estimated G+C content of 38.61%. Copyright © 2017 Seuylemezian et al.

  5. Materials International Space Station Experiment (MISSE) 5 Developed to Test Advanced Solar Cell Technology Aboard the ISS

    NASA Technical Reports Server (NTRS)

    Wilt, David M.

    2004-01-01

    The testing of new technologies aboard the International Space Station (ISS) is facilitated through the use of a passive experiment container, or PEC, developed at the NASA Langley Research Center. The PEC is an aluminum suitcase approximately 2 ft square and 5 in. thick. Inside the PEC are mounted Materials International Space Station Experiment (MISSE) plates that contain the test articles. The PEC is carried to the ISS aboard the space shuttle or a Russian resupply vehicle, where astronauts attach it to a handrail on the outer surface of the ISS and deploy the PEC, which is to say the suitcase is opened 180 deg. Typically, the PEC is left in this position for approximately 1 year, at which point astronauts close the PEC and it is returned to Earth. In the past, the PECs have contained passive experiments, principally designed to characterize the durability of materials subjected to the ultraviolet radiation and atomic oxygen present at the ISS orbit. The MISSE5 experiment is intended to characterize state-of-art (SOA) and beyond photovoltaic technologies.

  6. International Space Station (ISS)

    NASA Image and Video Library

    2001-02-01

    These 10 astronauts and cosmonauts represent the base STS-102 space travelers, as well as the crew members for the station crews switching out turns aboard the outpost. Those astronauts wearing orange represent the STS-102 crew members. In the top photo, from left to right are: James M. Kelly, pilot; Andrew S.W. Thomas, mission specialist; James D. Wetherbee, commander; and Paul W. Richards, mission specialist. The group pictured in the lower right portion of the portrait are STS-members as well as Expedition Two crew members (from left): mission specialist and flight engineer James S. Voss; cosmonaut Yury V. Usachev, Expedition Two Commander; and mission specialist and flight engineer Susan Helms. The lower left inset are the 3 man crew of Expedition One (pictured from left): Cosmonaut Sergei K. Krikalev, flight engineer; astronaut William M. (Bill) Shepherd, commander; and cosmonaut Yuri P. Gidzenko, Soyuz commander. The main objective of the STS-102 mission was the first Expedition Crew rotation and the primary cargo was the Leonardo, the Italian Space Agency-built Multipurpose Logistics Module (MPLM). The Leonardo MPLM is the first of three such pressurized modules that will serve as the International Space Station's (ISS') moving vans, carrying laboratory racks filled with equipment, experiments, and supplies to and from the Station aboard the Space Shuttle. NASA's 103rd overall mission and the 8th Space Station Assembly Flight, STS-102 mission launched on March 8, 2001 aboard the Space Shuttle Orbiter Discovery.

  7. International Space Station (ISS)

    NASA Image and Video Library

    1997-06-01

    This Boeing photograph shows the Node 1, Unity module, Flight Article (at right) and the U.S. Laboratory module, Destiny, Flight Article for the International Space Station (ISS) being manufactured in the High Bay Clean Room of the Space Station Manufacturing Facility at the Marshall Space Flight Center. The Node 1, or Unity, serves as a cornecting passageway to Space Station modules. The U.S. built Unity module was launched aboard the orbiter Endeavour (STS-88 mission) on December 4, 1998 and connected to the Zarya, the Russian-built Functional Energy Block (FGB). The U.S. Laboratory (Destiny) module is the centerpiece of the ISS, where science experiments will be performed in the near-zero gravity of space. The U.S. Laboratory/Destiny was launched aboard the orbiter Atlantis (STS-98 mission) on February 7, 2001. The ISS is a multidisciplinary laboratory, technology test bed, and observatory that will provide unprecedented undertakings in scientific, technological, and international experimentation.

  8. Space Station Spacewalks Previewed

    NASA Image and Video Library

    2018-01-18

    On Jan. 18, a briefing was held at NASA’s Johnson Space Center to preview a pair of spacewalks scheduled to take place outside the International Space Station. American and Japanese astronauts aboard the station will conduct spacewalks on Tuesday, Jan. 23 and Monday, Jan. 29 to service the station’s robotic arm.

  9. International Space Station (ISS)

    NASA Image and Video Library

    2001-05-14

    Astronaut James S. Voss, Expedition Two flight engineer, works with a series of cables on the EXPRESS Rack in the United State's Destiny laboratory on the International Space Station (ISS). The EXPRESS Rack is a standardized payload rack system that transports, stores, and supports experiments aboard the ISS. EXPRESS stands for EXpedite the PRocessing of Experiments to the Space Station, reflecting the fact that this system was developed specifically to maximize the Station's research capabilities. The EXPRESS Rack system supports science payloads in several disciplines, including biology, chemistry, physics, ecology, and medicine. With the EXPRESS Rack, getting experiments to space has never been easier or more affordable. With its standardized hardware interfaces and streamlined approach, the EXPRESS Rack enables quick, simple integration of multiple payloads aboard the ISS. The system is comprised of elements that remain on the ISS, as well as elements that travel back and forth between the ISS and Earth via the Space Shuttle.

  10. Microbial Characterization of Free Floating Condensate Aboard the Mir Space Station

    NASA Technical Reports Server (NTRS)

    Ott, C. M.; Bruce, R. J.; Pierson, D. L.

    2004-01-01

    Three samples of humidity condensate that had accumulated behind panels aboard the Russian space station Mir were collected and returned to earth for analysis. As these floating masses of liquid come into contact with the astronauts and the engineering systems, they have the potential to affect both crew health and systems performance. Using a combination of culturing techniques, a wide variety of organisms were isolated included Escherichia coli, Serratia marcescens, and a presumed Legionella species. In addition, microscopic analysis indicated the presence of protozoa, dust mites, and spirochetes. These findings suggest the need for more comprehensive microbial analysis of the environment through the use of new methodologies to allow a more thorough risk assessment of spacecraft. Copyright 2004 Springer-Verlag.

  11. International Space Station (ISS)

    NASA Image and Video Library

    2001-02-10

    Cosmonaut Yuri P. Gidzenko, Expedition One Soyuz commander, stands near the hatch leading from the Unity node into the newly-attached Destiny laboratory aboard the International Space Station (ISS). The Node 1, or Unity, serves as a cornecting passageway to Space Station modules. The U.S.-built Unity module was launched aboard the Orbiter Endeavour (STS-88 mission) on December 4, 1998, and connected to Zarya, the Russian-built Functional Cargo Block (FGB). The U.S. Laboratory (Destiny) module is the centerpiece of the ISS, where science experiments will be performed in the near-zero gravity in space. The Destiny Module was launched aboard the Space Shuttle Orbiter Atlantis (STS-98 mission) on February 7, 2001. The aluminum module is 8.5 meters (28 feet) long and 4.3 meters (14 feet) in diameter. The laboratory consists of three cylindrical sections and two endcones with hatches that will be mated to other station components. A 50.9-centimeter- (20-inch-) diameter window is located on one side of the center module segment. This pressurized module is designed to accommodate pressurized payloads. It has a capacity of 24 rack locations, and payload racks will occupy 13 locations especially designed to support experiments.

  12. International Space Station (ISS)

    NASA Image and Video Library

    2001-03-01

    A crewmember of Expedition One, cosmonaut Yuri P. Gidzenko, is dwarfed by transient hardware aboard Leonardo, the Italian Space Agency-built Multi-Purpose Logistics Module (MPLM), a primary cargo of the STS-102 mission. The Leonardo MPLM is the first of three such pressurized modules that will serve as the International Space Station's (ISS's) moving vans, carrying laboratory racks filled with equipment, experiments and supplies to and from the Space Station aboard the Space Shuttle. The cylindrical module is approximately 21-feet long and 15- feet in diameter, weighing almost 4.5 tons. It can carry up to 10 tons of cargo into 16 standard Space Station equipment racks. Of the 16 racks the module can carry, 5 can be furnished with power, data, and fluid to support refrigerators or freezers. In order to function as an attached station module as well as a cargo transport, the logistics module also includes components that provide life support, fire detection and suppression, electrical distribution, and computer functions. The eighth Shuttle mission to visit the ISS, the STS-102 mission served as a crew rotation flight. It delivered the Expedition Two crew to the Station and returned the Expedition One crew back to Earth.

  13. International Space Station (ISS)

    NASA Image and Video Library

    2001-02-16

    The International Space Station (ISS), with its newly attached U.S. Laboratory, Destiny, was photographed by a crew member aboard the Space Shuttle Orbiter Atlantis during a fly-around inspection after Atlantis separated from the Space Station. The Laboratory is shown in the foreground of this photograph. The American-made Destiny module is the cornerstone for space-based research aboard the orbiting platform and the centerpiece of the International Space Station (ISS), where unprecedented science experiments will be performed in the near-zero gravity of space. Destiny will also serve as the command and control center for the ISS. The aluminum module is 8.5-meters (28-feet) long and 4.3-meters (14-feet) in diameter. The laboratory consists of three cylindrical sections and two endcones with hatches that will be mated to other station components. A 50.9-centimeter (20-inch-) diameter window is located on one side of the center module segment. This pressurized module is designed to accommodate pressurized payloads. It has a capacity of 24 rack locations. Payload racks will occupy 15 locations especially designed to support experiments. The Destiny module was built by the Boeing Company under the direction of the Marshall Space Flight Center.

  14. International Space Station (ISS)

    NASA Image and Video Library

    2003-10-25

    Aboard the International Space Station (ISS), European Space Agency astronaut Pedro Duque of Spain watches a water bubble float between a camera and himself. The bubble shows his reflection (reversed). Duque was launched aboard a Russian Soyuz TMA-3 spacecraft from the Baikonur Cosmodrome, Kazakhstan on October 18th, along with expedition-8 crew members Michael C. Foale, Mission Commander and NASA ISS Science Officer, and Cosmonaut Alexander Y. Kaleri, Soyuz Commander and flight engineer.

  15. Materials Research Conducted Aboard the International Space Station: Facilities Overview, Operational Procedures, and Experimental Outcomes

    NASA Technical Reports Server (NTRS)

    Grugel, Richard N.; Luz, Paul; Smith, Guy; Spivey, Reggie; Jeter, Linda; Gillies, Donald; Hua, Fay; Anikumar, A. V.

    2007-01-01

    The Microgravity Science Glovebox (MSG) and Maintenance Work Area (MWA) are facilities aboard the International Space Station (ISS) that were used to successfully conduct experiments in support of, respectively, the Pore Formation and Mobility Investigation (PFMI) and the In-Space Soldering Investigation (ISSI). The capabilities of these facilities are briefly discussed and then demonstrated by presenting "real-time" and subsequently down-linked video-taped examples from the abovementioned experiments. Data interpretation, ISS telescience, some lessons learned, and the need of such facilities for conducting work in support of understanding materials behavior, particularly fluid processing and transport scenarios, in low-gravity environments is discussed.

  16. Materials Research Conducted Aboard the International Space Station: Facilities Overview, Operational Procedures, and Experimental Outcomes

    NASA Technical Reports Server (NTRS)

    Grugel, R. N.; Luz, P.; Smith, G. A.; Spivey, R.; Jeter, L.; Gillies, D. C.; Hua, F.; Anilkumar, A. V.

    2006-01-01

    The Microgravity Science Glovebox (MSG) and Maintenance Work Area (MWA) are facilities aboard the International Space Station (ISS) that were used to successfully conduct experiments in support of, respectively, the Pore Formation and Mobility Investigation (PFMI) and the In-Space Soldering Investigation (ISSI). The capabilities of these facilities are briefly discussed and then demonstrated by presenting real-time and subsequently down-linked video-taped examples from the abovementioned experiments. Data interpretation, ISS telescience, some lessons learned, and the need of such facilities for conducting work in support of understanding materials behavior, particularly fluid processing and transport scenarios, in low-gravity environments is discussed.

  17. International Space Station (ISS)

    NASA Image and Video Library

    2000-07-01

    The 45-foot, port-side (P1) truss segment flight article for the International Space Station is being transported to the Redstone Airfield, Marshall Space Flight Center. The truss will be loaded aboard NASA's Super Guppy cargo plane for shipment to the Kennedy Space Center.

  18. International Space Station (ISS)

    NASA Image and Video Library

    2003-05-03

    Expedition Seven photographed the Soyez TMA-1 Capsule through a window of the International Space Station (ISS) as it departed for Earth. Aboard were Expedition Six crew members, astronauts Kerneth D. Bowersox and Donald R. Pettit, and cosmonaut Nikolai M. Budarin. Expedition Six served a 5 and 1/2 month stay aboard the ISS, the longest stay to date.

  19. The opportunities for space biology research on the Space Station

    NASA Technical Reports Server (NTRS)

    Ballard, Rodney W.; Souza, Kenneth A.

    1987-01-01

    The goals of space biology research to be conducted aboard the Space Station in 1990s include long-term studies of reproduction, development, growth, physiology, behavior, and aging in both animals and plants. They also include studies of the mechanisms by which gravitational stimuli are sensed, processed, and transmitted to a responsive site, and of the effect of microgravity on each component. The Space Station configuration will include a life sciences research facility, where experiment cyles will be on a 90-day basis (since the Space Station missions planned for the 1990s call for 90-day intervals). A modular approach is taken to accomodate animal habitats, plant growth chambers, and other specimen holding facilities; the modular habitats would be transportable between the launch systems, habitat racks, a workbench, and a variable-gravity centrifuge (included for providing artificial gravity and accurately controlled acceleration levels aboard Space Station).

  20. Comparison of Directionally Solidified Samples Solidified Terrestrially and Aboard the International Space Station

    NASA Technical Reports Server (NTRS)

    Angart, S.; Lauer, M.; Tewari, S. N.; Grugel, R. N.; Poirier, D. R.

    2014-01-01

    This article reports research that has been carried out under the aegis of NASA as part of a collaboration between ESA and NASA for solidification experiments on the International Space Station (ISS). The focus has been on the effect of convection on the microstructural evolution and macrosegregation in hypoeutectic Al-Si alloys during directional solidification (DS). Terrestrial DS-experiments have been carried out at Cleveland State University (CSU) and under microgravity on the International Space Station (ISS). The thermal processing-history of the experiments is well defined for both the terrestrially processed samples and the ISS-processed samples. As of this writing, two dendritic metrics was measured: primary dendrite arm spacings and primary dendrite trunk diameters. We have observed that these dendrite-metrics of two samples grown in the microgravity environment show good agreements with models based on diffusion controlled growth and diffusion controlled ripening, respectively. The gravity-driven convection (i.e., thermosolutal convection) in terrestrially grown samples has the effect of decreasing the primary dendrite arm spacings and causes macrosegregation. Dendrite trunk diameters also show differences between the earth- and space-grown samples. In order to process DS-samples aboard the ISS, the dendritic seed crystals were partially remelted in a stationary thermal gradient before the DS was carried out. Microstructural changes and macrosegregation effects during this period are described and have modeled.

  1. International Space Station (ISS)

    NASA Image and Video Library

    2001-08-12

    In this photograph, Astronaut Susan Helms, Expedition Two flight engineer, is positioned near a large amount of water temporarily stored in the Unity Node aboard the International Space Station (ISS). Astronaut Helms accompanied the STS-105 crew back to Earth after having spent five months with two crewmates aboard the ISS. The 11th ISS assembly flight, the Space Shuttle Orbiter Discovery STS-105 mission was launched on August 10, 2001, and landed on August 22, 2001 at the Kennedy Space Center after the completion of the successful 12-day mission.

  2. Wetlab-2 - Quantitative PCR Tools for Spaceflight Studies of Gene Expression Aboard the International Space Station

    NASA Technical Reports Server (NTRS)

    Schonfeld, Julie E.

    2015-01-01

    Wetlab-2 is a research platform for conducting real-time quantitative gene expression analysis aboard the International Space Station. The system enables spaceflight genomic studies involving a wide variety of biospecimen types in the unique microgravity environment of space. Currently, gene expression analyses of space flown biospecimens must be conducted post flight after living cultures or frozen or chemically fixed samples are returned to Earth from the space station. Post-flight analysis is limited for several reasons. First, changes in gene expression can be transient, changing over a timescale of minutes. The delay between sampling on Earth can range from days to months, and RNA may degrade during this period of time, even in fixed or frozen samples. Second, living organisms that return to Earth may quickly re-adapt to terrestrial conditions. Third, forces exerted on samples during reentry and return to Earth may affect results. Lastly, follow up experiments designed in response to post-flight results must wait for a new flight opportunity to be tested.

  3. International Space Station (ISS)

    NASA Image and Video Library

    2001-02-16

    With its new U.S. Laboratory, Destiny, contrasted over a blue and white Earth, the International Space Station (ISS) was photographed by one of the STS-98 crew members aboard the Space Shuttle Atlantis following separation of the Shuttle and Station. The Laboratory is shown at the lower right of the Station. The American-made Destiny module is the cornerstone for space-based research aboard the orbiting platform and the centerpiece of the ISS, where unprecedented science experiments will be performed in the near-zero gravity of space. Destiny will also serve as the command and control center for the ISS. The aluminum module is 8.5- meters (28-feet) long and 4.3-meters (14-feet) in diameter. The laboratory consists of three cylindrical sections and two endcones with hatches that will be mated to other station components. A 50.9-centimeter (20-inch-) diameter window is located on one side of the center module segment. This pressurized module is designed to accommodate pressurized payloads. It has a capacity of 24 rack locations. Payload racks will occupy 15 locations especially designed to support experiments. The Destiny module was built by the Boeing Company under the direction of the Marshall Space Flight Center.

  4. Communication Delays Impact Behavior and Performance Aboard the International Space Station.

    PubMed

    Kintz, Natalie M; Palinkas, Lawrence A

    Long-duration space explorations will involve significant communication delays that will likely impact individual and team outcomes. However, the extent of these impacts and the appropriate countermeasures for their mitigation remain largely unknown. This study examined the feasibility and acceptability of utilizing the International Space Station (ISS) as a research platform to assess the impacts of communication delays on individual and team behavior and performance. For this study, 3 ISS crewmembers and 18 mission support personnel performed 10 tasks identified by subject matter experts as meeting study criteria, 6 tasks without a delay in communication and 4 tasks with a 50-s one-way delay. Assessments of individual and team performance and behavior were obtained after each task. The completion rate of posttask assessments and postmission interviews with astronauts were used to assess feasibility and acceptability. Posttask assessments were completed in 100% of the instances where a crewmember was assigned to a task and in 83% where mission support personnel were involved. Qualitative analysis of postmission interviews found the study to be important and acceptable to the three astronauts. However, they also reported the study was limited in the number and type of tasks included, limitations in survey questions, and preference for open-ended to scaled items. Although the ISS is considered a high fidelity analog for long-duration space missions, future studies of communication delays on the ISS must take into considerations the constraints imposed by mission operations and subject preferences and priorities. Kintz KM, Palinkas LA. Communication delays impact behavior and performance aboard the International Space Station. Aerosp Med Hum Perform. 2017; 87(11):940-946.

  5. 78 FR 14952 - Earth Stations Aboard Aircraft Communicating with Fixed-Satellite Service Geostationary-Orbit...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-03-08

    ... Aboard Aircraft Communicating with Fixed-Satellite Service Geostationary-Orbit Space Stations AGENCY... geostationary satellites in the fixed-satellite service on a primary basis. This proposed footnote would grant... licensees and operators, and thus are unable to estimate the number of geostationary space station licensees...

  6. A prototype gas exchange monitor for exercise stress testing aboard NASA Space Station

    NASA Technical Reports Server (NTRS)

    Orr, Joseph A.; Westenskow, Dwayne R.; Bauer, Anne

    1989-01-01

    This paper describes an easy-to-use monitor developed to track the weightlessness deconditioning aboard the NASA Space Station, together with the results of testing of a prototype instrument. The monitor measures the O2 uptake and CO2 production, and calculates the maximum O2 uptake and anaerobic threshold during an exercise stress test. The system uses two flowmeters in series to achieve a completely automatic calibration, and uses breath-by-breath compensation for sample line-transport delay. The monitor was evaluated using two laboratory methods and was shown to be accurate. The system's block diagram and the bench test setup diagram are included.

  7. Langmuir probe measurements aboard the International Space Station

    NASA Astrophysics Data System (ADS)

    Kirov, B.; Asenovski, S.; Bachvarov, D.; Boneva, A.; Grushin, V.; Georgieva, K.; Klimov, S. I.

    2016-12-01

    In the current work we describe the Langmuir Probe (LP) and its operation on board the International Space Station. This instrument is a part of the scientific complex "Ostonovka". The main goal of the complex is to establish, on one hand how such big body as the International Space Station affects the ambient plasma and on the other how Space Weather factors influence the Station. The LP was designed and developed at BAS-SRTI. With this instrument we measure the thermal plasma parameters-electron temperature Te, electron and ion concentration, respectively Ne and Ni, and also the potential at the Station's surface. The instrument is positioned at around 1.5 meters from the surface of the Station, at the Russian module "Zvezda", located at the farthermost point of the Space Station, considering the velocity vector. The Multi- Purpose Laboratory (MLM) module is providing additional shielding for our instrument, from the oncoming plasma flow (with respect to the velocity vector). Measurements show that in this area, the plasma concentration is two orders of magnitude lower, in comparison with the unperturbed areas. The surface potential fluctuates between-3 and-25 volts with respect to the ambient plasma. Fast upsurges in the surface potential are detected when passing over the twilight zone and the Equatorial anomaly.

  8. Veggie System on International Space Station

    NASA Image and Video Library

    2017-04-03

    Charles Spern, project manager on the Engineering Services Contract, communicates instructions for the Veggie system to astronaut Peggy Whitson aboard the International Space Station during the initiation of the second Chinese cabbage to be grown aboard the orbiting laboratory on April 3, 2017.

  9. Safety Aboard the International Space Station

    NASA Technical Reports Server (NTRS)

    Mintz, Shauna M.

    2004-01-01

    As with any task that NASA takes on, safety is of utmost importaqce. There are pages of safety codes and procedures that must be followed before any idea can be brought to life. Unfortunately, the International Space Station s (ISS) safety regulations and procedures are based on lg standards rather than on Og. To aide in making this space age home away from home a less hazardous environment, I worked on several projects revolving around the dangers of flammable items in microgravity. The first task I was assigned was to track flames. This involves turning eight millimeter video recordings, of tests run in the five second drop tower, into avi format on the computer. The footage is then compressed and altered so that the flame can be seen more clearly. Using another program called Spotlight, line profiles were used to collect data describing the luminescence of the flame at different points. These raw data are saved as text files and run trough a macro so that a Matlab program can analyze it. By fitting the data to a curve and determining the areas of brightest luminescence, the behavior of the flame can be recorded numerically. After entering the data into a database, researchers can come back later and easily get information on flames resulting from different gas and liquid mixtures in microgravity. I also worked on phase two of the FATE project, which deals with safety aboard the ISS. This phase involves igniting projected droplets and determining how they react with secondary materials. Such simulations represent, on a small scale, the spread of onboard fires due to the effervescence of burning primary materials. I set up existing hardware to operate these experiments and ran tests with it, photographing the results. I also made CAD drawings of the apparatus and the area available on the (SF)2 rig for it to fit into. The experiment will later be performed on the KC-135, and the results gathered will be used to reanalyze current safety standards for the ISS

  10. International Space Station (ISS)

    NASA Image and Video Library

    2000-12-07

    In this image, planet Earth, some 235 statute miles away, forms the back drop for this photo of STS-97 astronaut and mission specialist Joseph R. Tanner, taken during the third of three space walks. The mission's goal was to perform the delivery, assembly, and activation of the U.S. electrical power system onboard the International Space Station (ISS). The electrical power system, which is built into a 73-meter (240-foot) long solar array structure consists of solar arrays, radiators, batteries, and electronics. The entire 15.4-metric ton (17-ton) package is called the P6 Integrated Truss Segment, and is the heaviest and largest element yet delivered to the station aboard a space shuttle. The electrical system will eventually provide the power necessary for the first ISS crews to live and work in the U.S. segment. The STS-97 crew of five launched aboard the Space Shuttle Orbiter Endeavor on November 30, 2000 for an 11 day mission.

  11. The monitoring system for vibratory disturbance detection in microgravity environment aboard the international space station

    NASA Technical Reports Server (NTRS)

    Laster, Rachel M.

    2004-01-01

    Scientists in the Office of Life and Microgravity Sciences and Applications within the Microgravity Research Division oversee studies in important physical, chemical, and biological processes in microgravity environment. Research is conducted in microgravity environment because of the beneficial results that come about for experiments. When research is done in normal gravity, scientists are limited to results that are affected by the gravity of Earth. Microgravity provides an environment where solid, liquid, and gas can be observed in a natural state of free fall and where many different variables are eliminated. One challenge that NASA faces is that space flight opportunities need to be used effectively and efficiently in order to ensure that some of the most scientifically promising research is conducted. Different vibratory sources are continually active aboard the International Space Station (ISS). Some of the vibratory sources include crew exercise, experiment setup, machinery startup (life support fans, pumps, freezer/compressor, centrifuge), thruster firings, and some unknown events. The Space Acceleration Measurement System (SAMs), which acts as the hardware and carefully positioned aboard the ISS, along with the Microgravity Environment Monitoring System MEMS), which acts as the software and is located here at NASA Glenn, are used to detect these vibratory sources aboard the ISS and recognize them as disturbances. The various vibratory disturbances can sometimes be harmful to the scientists different research projects. Some vibratory disturbances are recognized by the MEMS's database and some are not. Mainly, the unknown events that occur aboard the International Space Station are the ones of major concern. To better aid in the research experiments, the unknown events are identified and verified as unknown events. Features, such as frequency, acceleration level, time and date of recognition of the new patterns are stored in an Excel database. My task is to

  12. Space station internal environmental and safety concerns

    NASA Technical Reports Server (NTRS)

    Cole, Matthew B.

    1987-01-01

    Space station environmental and safety concerns, especially those involving fires, are discussed. Several types of space station modules and the particular hazards associated with each are briefly surveyed. A brief history of fire detection and suppression aboard spacecraft is given. Microgravity fire behavior, spacecraft fire detector systems, space station fire suppression equipment and procedures, and fire safety in hyperbaric chambers are discussed.

  13. Space Station Crew Member Discusses Life in Space with the Media

    NASA Image and Video Library

    2018-01-04

    Aboard the International Space Station, Expedition 54 Flight Engineer Scott Tingle of NASA discussed the initial days of his planned six-month mission on the outpost in an in-flight interview Jan. 4 with the Boston Globe. Tingle, who is a native of Massachusetts, arrived aboard the station Dec. 19 and is scheduled to remain in orbit through early June.

  14. International Space Station (ISS)

    NASA Image and Video Library

    2001-02-01

    The Payload Operations Center (POC) is the science command post for the International Space Station (ISS). Located at NASA's Marshall Space Flight Center in Huntsville, Alabama, it is the focal point for American and international science activities aboard the ISS. The POC's unique capabilities allow science experts and researchers around the world to perform cutting-edge science in the unique microgravity environment of space. The POC is staffed around the clock by shifts of payload flight controllers. At any given time, 8 to 10 flight controllers are on consoles operating, plarning for, and controlling various systems and payloads. This photograph shows a Payload Rack Officer (PRO) at a work station. The PRO is linked by a computer to all payload racks aboard the ISS. The PRO monitors and configures the resources and environment for science experiments including EXPRESS Racks, multiple-payload racks designed for commercial payloads.

  15. International Space Station (ISS)

    NASA Image and Video Library

    2000-12-07

    In this image, STS-97 astronaut and mission specialist Carlos I. Noriega waves at a crew member inside Endeavor's cabin during the mission's final session of Extravehicular Activity (EVA). Launched aboard the Space Shuttle Orbiter Endeavor on November 30, 2000, the STS-97 mission's primary objective was the delivery, assembly, and activation of the U.S. electrical power system onboard the International Space Station (ISS). The electrical power system, which is built into a 73-meter (240-foot) long solar array structure consists of solar arrays, radiators, batteries, and electronics. The entire 15.4-metric ton (17-ton) package is called the P6 Integrated Truss Segment, and is the heaviest and largest element yet delivered to the station aboard a space shuttle. The electrical system will eventually provide the power necessary for the first ISS crews to live and work in the U.S. segment.

  16. International Space Station (ISS)

    NASA Image and Video Library

    2000-12-04

    This video still depicts the recently deployed starboard and port solar arrays towering over the International Space Station (ISS). The video was recorded on STS-97's 65th orbit. Delivery, assembly, and activation of the solar arrays was the main mission objective of STS-97. The electrical power system, which is built into a 73-meter (240-foot) long solar array structure consists of solar arrays, radiators, batteries, and electronics, and will provide the power necessary for the first ISS crews to live and work in the U.S. segment. The entire 15.4-metric ton (17-ton) package is called the P6 Integrated Truss Segment, and is the heaviest and largest element yet delivered to the station aboard a space shuttle. The STS-97 crew of five launched aboard the Space Shuttle Orbiter Endeavor on November 30, 2000 for an 11 day mission.

  17. International Space Station (ISS)

    NASA Image and Video Library

    2000-05-01

    This photograph depicts the International Space Station's (ISS) Joint Airlock Module undergoing exhaustive structural and systems testing in the Space Station manufacturing facility at the Marshall Space Flight Center (MSFC) prior to shipment to the Kennedy Space Center. The Airlock includes two sections. The larger equipment lock, on the left, will store spacesuits and associated gear and the narrower crewlock is on the right, from which the astronauts will exit into space for extravehicular activity. The airlock is 18 feet long and has a mass of about 13,500 pounds. It was launched to the station aboard the Space Shuttle orbiter Atlantis (STS-104 mission) on July 12, 2001. The MSFC is playing a primary role in NASA's development, manufacturing, and operations of the ISS.

  18. 2017 Space Station Science in Pictures

    NASA Image and Video Library

    2018-01-02

    From molecular biology to fluid physics, life sciences and robotics, 2017 was a robust year for research aboard Earth’s only microgravity laboratory. The International Space Station hosts more than 300 experiments during a given Expedition, each working to further space exploration and/or benefit life back on Earth. Here’s a look back at just some of the science that happened on the orbiting laboratory. HD Download: https://archive.org/details/jsc2017m001167_2017_Space_Station_Science_in_Pictures _______________________________________ FOLLOW THE SPACE STATION! Twitter: https://twitter.com/Space_Station Facebook: https://www.facebook.com/ISS Instagram: https://instagram.com/iss/

  19. Working aboard the Mir space station.

    PubMed

    Reiter, T

    1996-11-01

    For more than ten years, the Mir station has been the World's only permanently manned laboratory in low earth orbit. With an orbital inclination of 51.6 degrees, its ground track covers more than 85% of the Earth's surface, where approximately 95% of the population lives. For the transfer of up to three crew members per trip to and from Mir, the 6.9 t Soyuz spacecraft is used. In general, the station's crew is changed every six months, with an overlap during the exchange of between one and two weeks. A Progress spacecraft (an unmanned derivative of the Soyuz vehicle) visits the station every three months to resupply it, with up to 2.1 t of payload, and to reboost it to maintain its nominal orbital altitude. The station's core module, injected into orbit in February 1986, contains the central control post for most onboard systems, the computer for attitude control, and the telemetry and communications system. It also contains the station's largest work space, which is 7.0 m long and varies in width between 1.5 and 2.5 m.

  20. Overview of the Development of the Temporary Sleep Station Hygiene Liner Aboard the International Space Station

    NASA Technical Reports Server (NTRS)

    Reid, Ethan A.

    2010-01-01

    Since the beginning of manned operations aboard the International Space Station (ISS), the crew had performed hygiene activities within the aisle way (the habitable volume, not including the sleep areas) of the ISS. The Crew used wet towels, re-hydrated body soap, and "no-rinse" shampoo to cleanse themselves amongst the stowage and systems hardware, referred to as "racks", even without a designated area to dry the wet items. Performing hygiene in this manner became an accepted method; no isolated location was available to the Crew. After several years of hygiene operations, some of the fabric-covered racks began to grow biological material (generically described as mold) and soon became a Crew health concern. Hygiene has one of the strongest impacts on Crew morale, and mandating changes to the Crew routine would have been met with strong resistance. The answer to the conundrum was to develop a liner to be placed within the Temporary Sleep Station (TeSS), one of the Crew s sleeping racks. This liner provided the Crew a means to perform hygiene activities within a private, enclosed area that also significantly decreased the potential to grow mold. This paper will describe the development of the TeSS Hygiene Liner, its impacts on the ISS and Crew, as well as its contribution to hygiene activities used in space today.

  1. SPACE STATION CREW MEMBER DISCUSSES LIFE IN SPACE WITH GEORGIA STUDENTS

    NASA Image and Video Library

    2017-06-19

    Aboard the International Space Station, Flight Engineer Jack Fischer of NASA discussed life and research aboard the orbital laboratory June 19 with students gathered at the Fayette County Public Library in Fayette, Georgia during an educational in-flight event.

  2. Space Station Crew Member Discusses Life in Space with the Media

    NASA Image and Video Library

    2018-01-02

    Aboard the International Space Station, Expedition 54 Flight Engineer Scott Tingle of NASA discussed the initial days of his planned six-month mission on the outpost in a pair of in-flight interviews Jan. 2 with WTTV-TV, Indianapolis, and WFXT-TV, Boston. Tingle, who is a native of Massachusetts, arrived aboard the station Dec. 19 and is scheduled to remain in orbit through early June.

  3. International Space Station (ISS)

    NASA Image and Video Library

    2001-08-18

    Astronaut Patrick G. Forrester works with the the Materials International Space Station Experiment (MISSE) during extravehicular activity (EVA). MISSE would expose 750 material samples for about 18 months and collect information on how different materials weather the space environment The objective of MISSE is to develop early, low-cost, non-intrusive opportunities to conduct critical space exposure tests of space materials and components plarned for use on future spacecraft. The experiment was the first externally mounted experiment conducted on the International Space Station (ISS) and was installed on the outside of the ISS Quest Airlock. MISSE was launched on August 10, 2001 aboard the Space Shuttle Orbiter Discovery.

  4. International Space Station (ISS)

    NASA Image and Video Library

    2001-03-01

    One of the astronauts aboard the Space Shuttle Discovery took this photograph, from the aft flight deck of the Discovery, of the International Space Station (ISS) in orbit. The photo was taken after separation of the orbiter Discovery from the ISS after several days of joint activities and an important crew exchange.

  5. International Space Station (ISS)

    NASA Image and Video Library

    2001-10-23

    Carrying out a flight program for the French Space Agency (CNES) under a commerial contract with the Russian Aviation and Space Agency, a Russian Soyuz spacecraft approaches the International Space Station (ISS) delivering a crew of three for an eight-day stay. Aboard the craft are Commander Victor Afanasyev, Flight Engineer Konstantin Kozeev, both representing Rosaviakosmos, and French Flight Engineer Claudie Haignere.

  6. International Space Station (ISS)

    NASA Image and Video Library

    2001-10-23

    Carrying out a flight program for the French Space Agency (CNES) under a commercial contract with the Russian Aviation and Space Agency, a Russian Soyuz spacecraft approaches the International Space Station (ISS), delivering a crew of three for an eight-day stay. Aboard the craft are Commander Victor Afanasyev, Flight Engineer Konstantin Kozeev, both representing Rosaviakosmos, and French Flight Engineer Claudie Haignere.

  7. Space Station Crew Discusses Life in Space with West Point Cadets

    NASA Image and Video Library

    2017-11-27

    Aboard the International Space Station, Expedition 53 Commander Randy Bresnik and Flight Engineers Mark Vande Hei and Joe Acaba of NASA discussed life and research aboard the orbital outpost during an in-flight event Nov. 27 with cadets at the U.S. Military Academy in West Point, New York. Bresnik, who is a retired Marine Colonel, is in the final weeks of his five-and-a-half-month mission on the station, while Vande Hei, a former Army Colonel, and Acaba, a former Marine reservist, will remain aboard the complex until late February.

  8. Space Station Crew Members Discuss Life in Space with Military Media

    NASA Image and Video Library

    2017-11-22

    Aboard the International Space Station, Expedition 53 Commander Randy Bresnik and Flight Engineers Mark Vande Hei and Joe Acaba of NASA discussed life and research aboard the orbital outpost during a pair of in-flight interviews Nov. 22 with the Soldiers TV Network and Marines Media organization. Bresnik, who is a retired Marine Colonel, is in the final weeks of his five-and-a-half-month mission on the station, while Vande Hei, a former Army Colonel, and Acaba, a former Marine reservist, will remain aboard the complex until late February.

  9. Rapid culture-independent microbial analysis aboard the International Space Station (ISS).

    PubMed

    Maule, Jake; Wainwright, Norm; Steele, Andrew; Monaco, Lisa; Morris, Heather; Gunter, Daniel; Damon, Michael; Wells, Mark

    2009-10-01

    A new culture-independent system for microbial monitoring, called the Lab-On-a-Chip Application Development Portable Test System (LOCAD-PTS), was operated aboard the International Space Station (ISS). LOCAD-PTS was launched to the ISS aboard Space Shuttle STS-116 on December 9, 2006, and has since been used by ISS crews to monitor endotoxin on cabin surfaces. Quantitative analysis was performed within 15 minutes, and sample return to Earth was not required. Endotoxin (a marker of Gram-negative bacteria) was distributed throughout the ISS, despite previous indications that mostbacteria on ISS surfaces were Gram-positive [corrected].Endotoxin was detected at 24 out of 42 surface areas tested and at every surface site where colony-forming units (cfu) were observed, even at levels of 4-120 bacterial cfu per 100 cm(2), which is below NASA in-flight requirements (<10,000 bacterial cfu per 100 cm(2)). Absent to low levels of endotoxin (<0.24 to 1.0 EU per 100 cm(2); defined in endotoxin units, or EU) were found on 31 surface areas, including on most panels in Node 1 and the US Lab. High to moderate levels (1.01 to 14.7 EU per 100 cm(2)) were found on 11 surface areas, including at exercise, hygiene, sleeping, and dining facilities. Endotoxin was absent from airlock surfaces, except the Extravehicular Hatch Handle (>3.78 EU per 100 cm(2)). Based upon data collected from the ISS so far, new culture-independent requirements (defined in EU) are suggested, which are verifiable in flight with LOCAD-PTS yet high enough to avoid false alarms. The suggested requirements are intended to supplement current ISS requirements (defined in cfu) and would serve a dual purpose of safeguarding crew health (internal spacecraft surfaces <20 EU per 100 cm(2)) and monitoring forward contamination during Constellation missions (surfaces periodically exposed to the external environment, including the airlock and space suits, <0.24 EU per 100 cm(2)).

  10. Rapid Culture-Independent Microbial Analysis Aboard the International Space Station (ISS)

    NASA Astrophysics Data System (ADS)

    Maule, Jake; Wainwright, Norm; Steele, Andrew; Monaco, Lisa; Morris, Heather; Gunter, Daniel; Damon, Michael; Wells, Mark

    2009-10-01

    A new culture-independent system for microbial monitoring, called the Lab-On-a-Chip Application Development Portable Test System (LOCAD-PTS), was operated aboard the International Space Station (ISS). LOCAD-PTS was launched to the ISS aboard Space Shuttle STS-116 on December 9, 2006, and has since been used by ISS crews to monitor endotoxin on cabin surfaces. Quantitative analysis was performed within 15 minutes, and sample return to Earth was not required. Endotoxin (a marker of Gram-negative bacteria and fungi) was distributed throughout the ISS, despite previous indications that most bacteria on ISS surfaces were Gram-positive. Endotoxin was detected at 24 out of 42 surface areas tested and at every surface site where colony-forming units (cfu) were observed, even at levels of 4-120 bacterial cfu per 100 cm2, which is below NASA in-flight requirements (<10,000 bacterial cfu per 100 cm2). Absent to low levels of endotoxin (<0.24 to 1.0 EU per 100 cm2; defined in endotoxin units, or EU) were found on 31 surface areas, including on most panels in Node 1 and the US Lab. High to moderate levels (1.01 to 14.7 EU per 100 cm2) were found on 11 surface areas, including at exercise, hygiene, sleeping, and dining facilities. Endotoxin was absent from airlock surfaces, except the Extravehicular Hatch Handle (>3.78 EU per 100 cm2). Based upon data collected from the ISS so far, new culture-independent requirements (defined in EU) are suggested, which are verifiable in flight with LOCAD-PTS yet high enough to avoid false alarms. The suggested requirements are intended to supplement current ISS requirements (defined in cfu) and would serve a dual purpose of safeguarding crew health (internal spacecraft surfaces <20 EU per 100 cm2) and monitoring forward contamination during Constellation missions (surfaces periodically exposed to the external environment, including the airlock and space suits, <0.24 EU per 100 cm2).

  11. International Space Station (ISS)

    NASA Image and Video Library

    2000-05-01

    The Joint Airlock Module for the International Space Station (ISS) awaits shipment to the Kennedy Space Center in the Space Station manufacturing facility at the Marshall Space Flight Center in Huntsville, Alabama. The Airlock includes two sections. The larger equipment lock on the left is where crews will change into and out of their spacesuits for extravehicular activities, and store spacesuits, batteries, power tools, and other supplies. The narrower crewlock from which the astronauts will exit into space for extravehicular activities, is on the right. The airlock is 18 feet long and has a mass of about 13,500 pounds. It was launched to the station aboard the Space Shuttle orbiter Atlantis (STS-104 mission) on July 12, 2001. The MSFC is playing a primary role in NASA's development, manufacturing, and operations of the ISS.

  12. 78 FR 19172 - Earth Stations Aboard Aircraft Communicating with Fixed-Satellite Service Geostationary-Orbit...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-03-29

    ... FEDERAL COMMUNICATIONS COMMISSION 47 CFR Parts 2 and 25 [IB Docket No. 12-376; FCC 12-161] Earth Stations Aboard Aircraft Communicating with Fixed-Satellite Service Geostationary-Orbit Space Stations AGENCY: Federal Communications Commission. ACTION: Proposed rule; correction. SUMMARY: The Federal...

  13. International Space Station (ISS)

    NASA Image and Video Library

    2001-02-11

    This STS-98 mission photograph shows astronauts Thomas D. Jones (foreground) and Kerneth D. Cockrell floating inside the newly installed Laboratory aboard the International Space Station (ISS). The American-made Destiny module is the cornerstone for space-based research aboard the orbiting platform and the centerpiece of the ISS, where unprecedented science experiments will be performed in the near-zero gravity of space. Destiny will also serve as the command and control center for the ISS. The aluminum module is 8.5-meters (28-feet) long and 4.3-meters (14-feet) in diameter. The laboratory consists of three cylindrical sections and two endcones with hatches that will be mated to other station components. A 50.9-centimeter (20-inch-) diameter window is located on one side of the center module segment. This pressurized module is designed to accommodate pressurized payloads. It has a capacity of 24 rack locations. Payload racks will occupy 15 locations especially designed to support experiments. The Destiny module was built by the Boeing Company under the direction of the Marshall Space Flight Center.

  14. 47 CFR 97.11 - Stations aboard ships or aircraft.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 47 Telecommunication 5 2011-10-01 2011-10-01 false Stations aboard ships or aircraft. 97.11... SERVICES AMATEUR RADIO SERVICE General Provisions § 97.11 Stations aboard ships or aircraft. (a) The installation and operation of an amateur station on a ship or aircraft must be approved by the master of the...

  15. 47 CFR 97.11 - Stations aboard ships or aircraft.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 47 Telecommunication 5 2010-10-01 2010-10-01 false Stations aboard ships or aircraft. 97.11... SERVICES AMATEUR RADIO SERVICE General Provisions § 97.11 Stations aboard ships or aircraft. (a) The installation and operation of an amateur station on a ship or aircraft must be approved by the master of the...

  16. 47 CFR 97.11 - Stations aboard ships or aircraft.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 47 Telecommunication 5 2013-10-01 2013-10-01 false Stations aboard ships or aircraft. 97.11... SERVICES AMATEUR RADIO SERVICE General Provisions § 97.11 Stations aboard ships or aircraft. (a) The installation and operation of an amateur station on a ship or aircraft must be approved by the master of the...

  17. 47 CFR 97.11 - Stations aboard ships or aircraft.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... 47 Telecommunication 5 2014-10-01 2014-10-01 false Stations aboard ships or aircraft. 97.11... SERVICES AMATEUR RADIO SERVICE General Provisions § 97.11 Stations aboard ships or aircraft. (a) The installation and operation of an amateur station on a ship or aircraft must be approved by the master of the...

  18. 47 CFR 97.11 - Stations aboard ships or aircraft.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... 47 Telecommunication 5 2012-10-01 2012-10-01 false Stations aboard ships or aircraft. 97.11... SERVICES AMATEUR RADIO SERVICE General Provisions § 97.11 Stations aboard ships or aircraft. (a) The installation and operation of an amateur station on a ship or aircraft must be approved by the master of the...

  19. International Space Station (ISS)

    NASA Image and Video Library

    2003-05-01

    Aboard the International Space Station (ISS), the Russian Lada greenhouse provides home to an experiment that investigates plant development and genetics. Space grown peas have dried and "gone to seed." The crew of the ISS will soon harvest the seeds. Eventually some will be replanted onboard the ISS, and some will be returned to Earth for further study.

  20. International Space Station (ISS)

    NASA Image and Video Library

    2001-10-23

    A Russian Soyuz spacecraft undocks from the International Space Station (ISS) with its crew of three ending an eight-day stay. Aboard the craft are Commander Victor Afanasyev, Flight Engineer Konstantin Kozeev, both representing Rosaviakosmos, and French Flight Engineer Claudie Haignere. Their mission was to carry out a flight program for the French Space Agency (CNES) under a commercial contract with the Russian Aviation and Space Agency.

  1. International Space Station (ISS)

    NASA Image and Video Library

    2001-10-23

    A Russian Soyuz spacecraft departs from the International Space Station (ISS) with its crew of three ending an eight-day stay. Aboard the craft are Commander Victor Afanasyev, Flight Engineer Konstantin Kozeev, both representing Rosaviakosmos, and French Flight Engineer Claudie Haignere. Their mission was to carry out a flight program for the French Space Agency (CNES) under a commercial contract with the Russian Aviation and Space Agency.

  2. The manned space station

    NASA Astrophysics Data System (ADS)

    Kovit, B.

    The development and establishment of a manned space station represents the next major U.S. space program after the Space Shuttle. If all goes according to plan, the space station could be in orbit around the earth by 1992. A 'power tower' station configuration has been selected as a 'reference' design. This configuration involves a central truss structure to which various elements are attached. An eight-foot-square truss forms the backbone of a structure about 400 feet long. At its lower end, nearest the earth, are attached pressurized manned modules. These modules include two laboratory modules and two so-called 'habitat/command' modules, which provide living and working space for the projected crew of six persons. Later, the station's pressurized space would be expanded to accommodate up to 18 persons. By comparison, the Soviets will provide habitable space for 12 aboard a 300-ton station which they are expected to place in orbit. According to current plans the six U.S. astronauts will work in two teams of three persons each. A ninety-day tour of duty is considered.

  3. International Space Station (ISS)

    NASA Image and Video Library

    2001-08-17

    Backdropped by a sunrise, the newly installed Materials International Space Station Experiment (MISSE) is visible on this image. MISSE would expose 750 material samples for about 18 months and collect information on how different materials weather the space environment. The objective of MISSE is to develop early, low-cost, non-intrusive opportunities to conduct critical space exposure tests of space materials and components plarned for use on future spacecraft. The experiment was the first externally mounted experiment conducted on the International Space Station (ISS) and was installed on the outside of the ISS Quest Airlock during extravehicular activity (EVA) of the STS-105 mission. MISSE was launched on August 10, 2001 aboard the Space Shuttle Orbiter Discovery.

  4. International Space Station (ISS)

    NASA Image and Video Library

    2000-12-05

    Astronaut Joseph R. Tanner, STS-97 mission specialist, is seen during a session of Extravehicular Activity (EVA), performing work on the International Space Station (ISS). Part of the Remote Manipulator System (RMS) arm and a section of the newly deployed solar array panel are in the background. The primary objective of the STS-97 mission was the delivery, assembly, and activation of the U.S. electrical power system on board the ISS. The electrical power system, which is built into a 73-meter (240-foot) long solar array structure consists of solar arrays, radiators, batteries, and electronics. The entire 15.4-metric ton (17-ton) package is called the P6 Integrated Truss Segment and is the heaviest and largest element yet delivered to the station aboard a space shuttle. The electrical system will eventually provide the power necessary for the first ISS crews to live and work in the U.S. segment. The STS-97 crew of five launched aboard the Space Shuttle Orbiter Endeavor on November 30, 2000 for an 11 day mission.

  5. Stability of Dosage Forms in the Pharmaceutical Payload Aboard Space Missions

    NASA Technical Reports Server (NTRS)

    Du, Brian J.; Daniels, Vernie; Boyd, Jason L.; Crady, Camille; Satterfield, Rick; Younker, Diane R.; Putcha, Lakshmi

    2009-01-01

    Efficacious pharmaceuticals with adequate shelf lives are essential for successful space medical operations. Stability of pharmaceuticals, therefore, is of paramount importance for assuring the health and wellness of astronauts on future space exploration missions. Unique physical and environmental factors of space missions may contribute to the instability of pharmaceuticals, e.g., radiation, humidity and temperature variations. Degradation of pharmaceutical formulations can result in inadequate efficacy and/or untoward toxic effects, which could compromise astronaut safety and health. Methods: Four identical pharmaceutical payload kits containing 31 medications in different dosage forms (liquid, tablet, capsule, ointment and suppository) were transported to the International Space Station aboard the Space Shuttle (STS-121). One of the 4 kits was stored on the Shuttle and the other 3 were stored on the International Space Station (ISS) for return to Earth at 6-month interval aboard a pre-designated Shuttle flight for each kit. The kit stored on the Shuttle was returned to Earth aboard STS-121 and 2 kits from ISS were returned on STS 117 and STS-122. Results: Analysis of standard physical and chemical parameters of degradation was completed for pharmaceuticals returned by STS-121 after14 days, STS - 117 after11 months and STS 122 after 19 months storage aboard ISS. Analysis of all flight samples along with ground-based matching controls was completed and results were compiled. Conclusion: Evaluation of results from the shuttle (1) and ISS increments (2) indicate that the number of formulations degraded in space increased with duration of storage in space and was higher in space compared to their ground-based counterparts. Rate of degradation for some of the formulations tested was faster in space than on Earth. Additionally, some of the formulations included in the medical kits were unstable, more so in space than on the ground. These results indicate that the

  6. Evaluation of Primary Dendrite Arm Spacings from Aluminum-7wt% Silicon alloys Directionally Solidified aboard the International Space Station - Comparison with Theory

    NASA Technical Reports Server (NTRS)

    Angart, Samuel; Lauer, Mark; Poirier, David; Tewari, Surendra; Rajamure, Ravi; Grugel, Richard

    2015-01-01

    Aluminum – 7wt% silicon alloys were directionally solidified in the microgravity environment aboard the International Space Station as part of the “MIcrostructure Formation in CASTing of Technical Alloys under Diffusive and Magnetically Controlled Convective Conditions” (MICAST) European led program. Cross-sections of the sample during periods of steady-state growth were metallographically prepared from which the primary dendrite arm spacing (lambda 1) was measured. These spacings were found to be in reasonable agreement with the Hunt-Lu model which assumes a diffusion-controlled, convectionless, environment during controlled solidification. Deviation from the model was found and is attributed to gravity-independent thermocapillary convection where, over short distances, the liquid appears to have separated from the crucible wall.

  7. News Conference Features with Next Space Station Crew

    NASA Image and Video Library

    2017-12-07

    A NASA news conference was held Dec. 7 at Johnson Space Center in Houston with the next crew launching to the International Space Station. NASA astronauts A.J. (Drew) Feustel, Ricky Arnold, and Oleg Artemyev of the Russian space agency Roscosmos will launch to the space station aboard a Soyuz MS-08 spacecraft in March 2018, from the Baikonur Cosmodrome in Kazakhstan.

  8. International Space Station (ISS)

    NASA Image and Video Library

    2003-10-20

    In the Destiny laboratory aboard the International Space Station (ISS), European Space Agency (ESA) astronaut Pedro Duque of Spain is seen working at the Microgravity Science Glovebox (MSG). He is working with the PROMISS experiment, which will investigate the growth processes of proteins during weightless conditions. The PROMISS is one of the Cervantes program of tests (consisting of 20 commercial experiments). The MSG is managed by NASA's Marshall Space Flight Center (MSFC).

  9. Ohio Senator John Glenn tours the Space Station Processing Facility at KSC

    NASA Technical Reports Server (NTRS)

    1998-01-01

    Ohio Senator John Glenn, at right, enjoys a tour of the Space Station Processing Facility at Kennedy Space Center. With Senator Glenn is Stephen Francois, director, Space Station and Shuttle Payloads, NASA. Senator Glenn arrived at KSC on Jan. 20 to tour KSC operational areas and to view the launch of STS-89. Glenn, who made history in 1962 as the first American to orbit the Earth, completing three orbits in a five-hour flight aboard Friendship 7, will fly his second space mission aboard Space Shuttle Discovery this October. Glenn is retiring from the Senate at the end of this year and will be a payload specialist aboard STS-95.

  10. NASA Space Station Astronaut Discusses Life in Space with Washington State Students

    NASA Image and Video Library

    2017-12-12

    Aboard the International Space Station, Expedition 53 Flight Engineer Mark Vande Hei of NASA discussed life and work aboard the complex during an in-flight question and answer session Dec. 12 with a variety of students representing schools in Washington, including students from the Steve Luther Elementary School in Lakebay, Washington. Vande Hei is in the midst of a five-month mission on the station, conducting research involving hundreds of experiments from international investigators.

  11. International Space Station (ISS)

    NASA Image and Video Library

    2001-08-20

    This image of the International Space Station (ISS) was photographed by one of the crewmembers of the STS-105 mission from the Shuttle Orbiter Discovery after separating from the ISS. The STS-105 mission was the 11th ISS assembly flight and its goals were the rotation of the ISS Expedition Two crew with Expedition Three crew, and the delivery of supplies utilizing the Italian-built Multipurpose Logistic Module (MPLM) Leonardo. Aboard Leonardo were six resupply stowage racks, four resupply stowage supply platforms, and two new scientific experiment racks, EXPRESS (Expedite the Processing of Experiments to the Space Station) Racks 4 and 5, which added science capabilities to the ISS. Another payload was the Materials International Space Station Experiment (MISSE), which included materials and other types of space exposure experiments mounted on the exterior of the ISS.

  12. Space Station-based deep-space optical communication experiments

    NASA Technical Reports Server (NTRS)

    Chen, Chien-Chung; Schwartz, Jon A.

    1988-01-01

    A series of three experiments proposed for advanced optical deep-space communications is described. These proposed experiments would be carried out aboard the Space Station to test and evaluate the capability of optical instruments to conduct data communication and spacecraft navigation for deep-space missions. Techniques for effective data communication, precision spacecraft ranging, and accurate angular measurements will be developed and evaluated in a spaceborne environment.

  13. Change of Command aboard the Space Station

    NASA Image and Video Library

    2017-09-02

    The reins of the International Space Station were passed from Fyodor Yurchikhin of Roscosmos to Randy Bresnik of NASA during a ceremony on the orbital outpost Sept. 1. Yurchikhin is returning to Earth with his crewmates, Peggy Whitson and Jack Fischer of NASA in the Soyuz MS-04 spacecraft for a landing Sept. 3. Whitson, who has logged more days in space than any other U.S. astronaut, is completing a 10-month mission, her third long duration flight, while Yurchikhin and Fischer are completing 136 days in space.

  14. 47 CFR 25.227 - Blanket licensing provisions for Earth Stations Aboard Aircraft (ESAAs) receiving in the 10.95-11...

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... Aboard Aircraft (ESAAs) receiving in the 10.95-11.2 GHz (space-to-Earth), 11.45-11.7 GHz (space-to-Earth), and 11.7-12.2 GHz (space-to-Earth) frequency bands and transmitting in the 14.0-14.5 GHz (Earth-to... SATELLITE COMMUNICATIONS Technical Standards § 25.227 Blanket licensing provisions for Earth Stations Aboard...

  15. 47 CFR 25.227 - Blanket licensing provisions for Earth Stations Aboard Aircraft (ESAAs) receiving in the 10.95-11...

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... Aboard Aircraft (ESAAs) receiving in the 10.95-11.2 GHz (space-to-Earth), 11.45-11.7 GHz (space-to-Earth), and 11.7-12.2 GHz (space-to-Earth) frequency bands and transmitting in the 14.0-14.5 GHz (Earth-to... SATELLITE COMMUNICATIONS Technical Standards § 25.227 Blanket licensing provisions for Earth Stations Aboard...

  16. Studying Planarian Regeneration Aboard the International Space Station within the Student Space Flight Experimental Program

    NASA Astrophysics Data System (ADS)

    Vista SSEP Mission 11 Team; Hagstrom, Danielle; Bartee, Christine; Collins, Eva-Maria S.

    2018-05-01

    The growing possibilities of space travel are quickly moving from science fiction to reality. However, to realize the dream of long-term space travel, we must understand how these conditions affect biological and physiological processes. Planarians are master regenerators, famous for their ability to regenerate from very small parts of the original animal. Understanding how this self-repair works may inspire regenerative therapies in humans. Two studies conducted aboard the International Space Station (ISS) showed that planarian regeneration is possible in microgravity. One study reported no regenerative defects, whereas the other study reported behavioral and microbiome alterations post-space travel and found that 1 of 15 planarians regenerated a Janus head, suggesting that microgravity exposure may not be without consequences. Given the limited number of studies and specimens, further microgravity experiments are necessary to evaluate the effects of microgravity on planarian regeneration. Such studies, however, are generally difficult and expensive to conduct. We were fortunate to be sponsored by the Student Spaceflight Experiment Program (SSEP) to investigate how microgravity affects regeneration of the planarian species Dugesia japonica on the ISS. While we were unable to successfully study planarian regeneration within the experimental constraints of our SSEP Mission, we systematically analyzed the cause for the failed experiment, leading us to propose a modified protocol. This work thus opens the door for future experiments on the effects of microgravity on planarian regeneration on SSEP Missions as well as for more advanced experiments by professional researchers.

  17. Space Station Crew Discusses Life in Space with Georgia Students

    NASA Image and Video Library

    2017-10-23

    Aboard the International Space Station, Expedition 53 Commander Randy Bresnik and Flight Engineers Joe Acaba and Mark Vande Hei of NASA discussed life and research aboard the orbital outpost during an in-flight educational event Oct. 23 with students at the New Prospect Elementary School in Alpharetta, Georgia. The crew members are in various stages of their five and a half month missions on the orbital complex.

  18. International Space Station (ISS)

    NASA Image and Video Library

    2001-03-10

    This in-orbit close up shows the Italian Space Agency-built multipurpose Logistics Module (MPLM), Leonardo, the primary cargo of the STS-102 mission, resting in the payload bay of the Space Shuttle Orbiter Discovery. The Leonardo MPLM is the first of three such pressurized modules that will serve as the International Space Station's (ISS') moving vans, carrying laboratory racks filled with equipment, experiments, and supplies to and from the Station aboard the Space Shuttle. The cylindrical module is approximately 21-feet long and 15- feet in diameter, weighing almost 4.5 tons. It can carry up to 10 tons of cargo in 16 standard Space Station equipment racks. Of the 16 racks the module can carry, 5 can be furnished with power, data, and fluid to support refrigerators or freezers. In order to function as an attached station module as well as a cargo transport, the logistics module also includes components that provide life support, fire detection and suppression, electrical distribution, and computer functions. The eighth station assembly flight and NASA's 103rd overall flight, STS-102 launched March 8, 2001 for an almost 13 day mission.

  19. Space Station Crew Member Discusses Life in Space with Japanese Students

    NASA Image and Video Library

    2018-01-08

    Aboard the International Space Station, Expedition 54 Flight Engineer Norishige Kanai of the Japan Aerospace Exploration Agency (JAXA) discussed life and research on the complex during an in-flight educational event Jan. 8 with students gathered at the Hamagin Space Technology Museum in Japan. Kanai launched to the station last month and is in the midst of a six-month mission on the orbital laboratory.

  20. Space Station Commander Talks to South Carolina Students

    NASA Image and Video Library

    2017-10-02

    Aboard the International Space Station, Expedition 53 Commander Randy Bresnik of NASA discussed life and work aboard the orbital laboratory during an in-flight educational event Oct. 2 with students at The Citadel STEM Center at the Laing Middle School near Charleston, South Carolina. Bresnik holds a Bachelor of Arts degree in mathematics and an honorary doctorate in aeronautics from The Citadel. He launched to the station in July and will remain on board through mid-December.

  1. International Space Station (ISS)

    NASA Image and Video Library

    2000-12-07

    In this image, the five STS-97 crew members pose with the 3 members of the Expedition One crew onboard the International Space Station (ISS) for the first ever traditional onboard portrait taken in the Zvezda Service Module. On the front row, left to right, are astronauts Brent W. Jett, Jr., STS-97 commander; William M. Shepherd, Expedition One mission commander; and Joseph R. Tarner, STS-97 mission specialist. On the second row, from the left are Cosmonaut Sergei K. Krikalev, Expedition One flight engineer; astronaut Carlos I. Noriega, STS-97 mission specialist; cosmonaut Yuri P. Gidzenko, Expedition One Soyuz commander; and Michael J. Bloomfield, STS-97 pilot. Behind them is astronaut Marc Garneau, STS-97 mission specialist representing the Canadian Space Agency (CSA). The primary objective of the STS-97 mission was the delivery, assembly, and activation of the U.S. electrical power system onboard the International Space Station (ISS). The electrical power system, which is built into a 73-meter (240-foot) long solar array structure consists of solar arrays, radiators, batteries, and electronics. The entire 15.4-metric ton (17-ton) package is called the P6 Integrated Truss Segment, and is the heaviest and largest element yet delivered to the station aboard a space shuttle. The electrical system will eventually provide the power necessary for the first ISS crews to live and work in the U.S. segment. The STS-97 crew of five launched aboard the Space Shuttle Orbiter Endeavor on November 30, 2000 for an 11 day mission.

  2. Space Station Cosmonauts Walk in Space to Upgrade Communications Hardware

    NASA Image and Video Library

    2018-02-02

    Aboard the International Space Station, Expedition 54 Flight Engineers Alexander Misurkin and Anton Shkaplerov of the Russian Federal Space Agency (Roscosmos) conducted a spacewalk outside the Pirs docking compartment Feb. 2 to install a new high-gain communications antenna on the aft end of the Zvezda Service Module and retrieve science experiment packages from the hull of the module. It was the 208th spacewalk in support of space station assembly and maintenance, the fourth in Misurkin’s career and the second for Shkaplerov.

  3. Space Station Commander Discusses Life in Space with Ukrainian Students

    NASA Image and Video Library

    2017-10-25

    Aboard the International Space Station, Expedition 53 Commander Randy Bresnik of NASA discussed life and research aboard the orbital laboratory during an in-flight question and answer session Oct. 25 with Ukrainian students gathered at the America House in Kiev, Ukraine and other Ukrainian students tied in to the event from other locations. Participating in the event in Kiev was the U.S. Ambassador to Ukraine, Marie Yovanovitch.

  4. Space Station Astronauts Discuss Life in Space with Virginia Students

    NASA Image and Video Library

    2017-11-08

    Aboard the International Space Station, Expedition 53 Commander Randy Bresnik and Flight Engineers Joe Acaba and Mark Vande Hei of NASA discussed life and scientific research aboard the orbital laboratory during an in-flight educational event Nov. 8 with students at the Pole Green Elementary School in Mechanicsville, Virginia. The three NASA astronauts are in various stages of their respective five-and-a-half-month missions on the complex.

  5. International Space Station (ISS)

    NASA Image and Video Library

    2003-03-08

    The Space Shuttle Discovery, STS-102 mission, clears launch pad 39B at the Kennedy Space Center as the sun peers over the Atlantic Ocean on March 8, 2001. STS-102's primary cargo was the Leonardo, the Italian Space Agency built Multipurpose Logistics Module (MPLM). The Leonardo MPLM is the first of three such pressurized modules that will serve as the International Space Station's (ISS') moving vans, carrying laboratory racks filled with equipment, experiments, and supplies to and from the Station aboard the Space Shuttle. The cylindrical module is approximately 21-feet long and 15- feet in diameter, weighing almost 4.5 tons. It can carry up to 10 tons of cargo in 16 standard Space Station equipment racks. Of the 16 racks the module can carry, 5 can be furnished with power, data, and fluid to support refrigerators or freezers. In order to function as an attached station module as well as a cargo transport, the logistics module also includes components that provide life support, fire detection and suppression, electrical distribution, and computer functions. NASA's 103rd overall flight and the eighth assembly flight, STS-102 was also the first flight involved with Expedition Crew rotation. The Expedition Two crew was delivered to the station while Expedition One was returned home to Earth.

  6. Comparison of Martian Radiation Environment with International Space Station

    NASA Image and Video Library

    2003-03-13

    This graphic shows the radiation dose equivalent as measured by Odyssey's Martian radiation environment experiment at Mars and by instruments aboard the International Space Station, for the 11-month period from April 2002 through February 2003. The accumulated total in Mars orbit is about two and a half times larger than that aboard the Space Station. Averaged over this time period, about 10 percent of the dose equivalent at Mars is due to solar particles, although a 30 percent contribution from solar particles was seen in July 2002, when the sun was particularly active. http://photojournal.jpl.nasa.gov/catalog/PIA04258

  7. International Space Station (ISS)

    NASA Image and Video Library

    2000-06-08

    Five NASA astronauts and two cosmonauts representing the Russian Aviation and Space Agency take a break in training from their scheduled September 2000 visit to the International Space Station (ISS). Astronauts Terrence W. Wilcutt (right front), and Scott D. Altman (left front) are mission commander and pilot, respectively. On the back row (from the left) are mission specialists Boris V. Morukov, cosmonaut, along with astronauts Richard A. Mastracchio, Edward T. Lu, and Daniel C. Burbank, and cosmonaut Yuri I. Malenchenko. Morukov and Malenchenko represent the Russian Aviation and Space Agency. Launched aboard the Space Shuttle Atlantis on September 8, 2000 at 7:46 a.m. (CDT), the STS-106 crew successfully prepared the International Space Station (ISS) for occupancy. Acting as plumbers, movers, installers and electricians, they installed batteries, power converters, a toilet and a treadmill on the outpost. They also delivered more than 2,993 kilograms (6,600 pounds) of supplies. Lu and Malenchenko performed a space walk to connect power, and data and communications cables to the newly arrived Zvezda Service Module and the Station.

  8. Space Station Crew Member Discusses Live in Space with Italian Prime Minister

    NASA Image and Video Library

    2017-11-06

    Aboard the International Space Station, Expedition 53 Flight Engineer Paolo Nespoli of Italy and ESA (the European Space Agency) discussed the accomplishments of his mission during an in-flight conversation Nov. 6 with Italian Prime Minister Paolo Gentiloni. Nespoli is in the final month of a five-and-a-half-month mission aboard the orbiting laboratory. The crew is scheduled to return to Earth in a Russian Soyuz spacecraft Dec. 14, landing in south central Kazakhstan.

  9. International Space Station (ISS)

    NASA Image and Video Library

    2001-03-08

    STS-102 astronaut and mission specialist, Andrew S.W. Thomas, gazes through an aft window of the Space Shuttle Orbiter Discovery as it approaches the docking bay of the International Space Station (ISS). Launched March 8, 2001, STS-102's primary cargo was the Leonardo, the Italian Space Agency-built Multipurpose Logistics Module (MPLM). The Leonardo MPLM is the first of three such pressurized modules that will serve as the ISS's moving vans, carrying laboratory racks filled with equipment, experiments, and supplies to and from the Station aboard the Space Shuttle. The cylindrical module is approximately 21-feet long and 15- feet in diameter, weighing almost 4.5 tons. It can carry up to 10 tons of cargo in 16 standard Space Station equipment racks. Of the 16 racks the module can carry, 5 can be furnished with power, data, and fluid to support refrigerators or freezers. In order to function as an attached station module as well as a cargo transport, the logistics module also includes components that provide life support, fire detection and suppression, electrical distribution, and computer functions. NASA's 103rd overall mission and the 8th Space Station Assembly Flight, STS-102 mission also served as a crew rotation flight. It delivered the Expedition Two crew to the Station and returned the Expedition One crew back to Earth.

  10. Controlled Directional Solidification of Aluminum - 7 wt Percent Silicon Alloys: Comparison Between Samples Processed on Earth and in the Microgravity Environment Aboard the International Space Station

    NASA Technical Reports Server (NTRS)

    Grugel, Richard N.; Tewari, Surendra N.; Erdman, Robert G.; Poirier, David R.

    2012-01-01

    An overview of the international "MIcrostructure Formation in CASTing of Technical Alloys" (MICAST) program is given. Directional solidification processing of metals and alloys is described, and why experiments conducted in the microgravity environment aboard the International Space Station (ISS) are expected to promote our understanding of this commercially relevant practice. Microstructural differences observed when comparing the aluminum - 7 wt% silicon alloys directionally solidified on Earth to those aboard the ISS are presented and discussed.

  11. International Space Station (ISS)

    NASA Image and Video Library

    2002-11-23

    The Space Shuttle Endeavour is pictured on a lighted launch pad at Kennedy Space Center's (KSC) Launch Complex 39 with a gibbous moon shining brightly in the night sky. Liftoff from KSC occurred at 7:49:47 p.m. (EST), November 23, 2002. The launch is the 19th for Endeavour, and the 112th flight in the Shuttle program. Mission STS-113 is the 16th assembly flight to the International Space Station (ISS), carrying another structure for the Station, the P1 integrated truss. STS-113 crew members onboard were astronauts James D. Wetherbee, commander; Paul S. Lockhart, pilot, along with astronauts Michael E. Lopez-Alegria and John B. Herrington, both mission specialists. Also onboard were the Expedition 6 crew members: Astronauts Kenneth D. Bowersox and Donald R. Pettit, along with cosmonaut Nikolai M. Budarin, who went on to replace Expedition 5 aboard the Station.

  12. International Space Station in Orbit

    NASA Technical Reports Server (NTRS)

    2001-01-01

    This image of the International Space Station (ISS) was photographed by one of the crewmembers of the STS-105 mission from the Shuttle Orbiter Discovery after deparating from the ISS. The STS-105 mission was the 11th ISS assembly flight and its goals were the rotation of the ISS Expedition Two crew with the Expedition Three crew, and the delivery of supplies utilizing the Italian-built Multipurpose Logistics Module (MPLM) Leonardo. Aboard Leonardo were six resupply stowage racks, four resupply stowage supply platforms, and two new scientific experiment racks, EXPRESS (Expedite the Processing of Experiments to the Space Station) Racks 4 and 5, which added science capabilities to the ISS. Another payload was the Materials International Space Station Experiment (MISSE), which included materials and other types of space exposure experiments mounted on the exterior of the ISS.

  13. International Space Station (ISS)

    NASA Image and Video Library

    1997-11-26

    This photograph shows the U.S. Laboratory Module (also called Destiny) for the International Space Station (ISS), under construction in the Space Station manufacturing facility at the Marshall Space Flight Center. The U.S. Laboratory module is the centerpiece of the ISS, where science experiments will be performed in the near-zero gravity of space. The Destiny Module was launched aboard the Space Shuttle orbiter Atlantis (STS-67 mission) on February 7, 2001. The aluminum module is 8.5 meters (28 feet) long and 4.3 meters (14 feet) in diameter. The laboratory consists of three cylindrical sections and two end cones with hatches that will be mated to other station components. A 50.9-centimeter- (20-inch-) diameter window is located on one side of the center module segment. This pressurized module is designed to accommodate pressurized payloads. It has a capacity of 24 rack locations, and payload racks will occupy 13 locations especially designed to support experiments. The ISS is a multidisciplinary laboratory, technology test bed, and observatory that will provide unprecedented undertakings in scientific, technological, and international experimentation.

  14. International Space Station (ISS)

    NASA Image and Video Library

    2001-03-11

    STS-102 mission astronaut Susan J. Helms translates along the longerons of the Space Shuttle Discovery during the first of two space walks. During this walk, the Pressurized Mating Adapter 3 was prepared for repositioning from the Unity Module's Earth-facing berth to its port-side berth to make room for the Leonardo multipurpose Logistics Module (MPLM), supplied by the Italian Space Agency. The Leonardo MPLM is the first of three such pressurized modules that will serve as the International Space Station's (ISS') moving vans, carrying laboratory racks filled with equipment, experiments, and supplies to and from the Station aboard the Space Shuttle. The cylindrical module is approximately 21-feet long and 15- feet in diameter, weighing almost 4.5 tons. It can carry up to 10 tons of cargo in 16 standard Space Station equipment racks. Of the 16 racks the module can carry, 5 can be furnished with power, data, and fluid to support refrigerators or freezers. In order to function as an attached station module as well as a cargo transport, the logistics module also includes components that provide life support, fire detection and suppression, electrical distribution, and computer functions. NASA's 103rd overall mission and the 8th Space Station Assembly Flight, STS-102 mission also served as a crew rotation flight. It delivered the Expedition Two crew to the Station and returned the Expedition One crew back to Earth.

  15. Experiments Conducted Aboard the International Space Station: The Pore Formation and Mobility Investigation (PFMI) and the In-Space Soldering Investigation (ISSI): A Current Study of Results

    NASA Technical Reports Server (NTRS)

    Grugel, R. N.; Luz, P.; Smith, G. A.; Spivey, R.; Jeter, L.; Gillies, D. C> ; Hua, F.; Anilkumar, A. V.

    2006-01-01

    Experiments in support of the Pore Formation and Mobility Investigation (PFMI) and the In-Space Soldering Investigation (ISSI) were conducted aboard the International Space Station (ISS) with the goal of promoting our fundamental understanding of melting dynamics , solidification phenomena, and defect generation during materials processing in a microgravity environment. Through the course of many experiments a number of observations, expected and unexpected, have been directly made. These include gradient-driven bubble migration, thermocapillary flow, and novel microstructural development. The experimental results are presented and found to be in good agreement with models pertinent to a microgravity environment. Based on the space station results, and noting the futility of duplicating them in Earth s unit-gravity environment, attention is drawn to the role ISS experimentslhardware can play to provide insight to potential materials processing techniques and/or repair scenarios that might arise during long duration space transport and/or on the lunar/Mars surface.

  16. Space Station Astronauts Return Safely to Earth on This Week @NASA – December 11, 2015

    NASA Image and Video Library

    2015-12-11

    On Dec. 11 aboard the International Space Station, NASA’s Kjell Lindgren, Russian cosmonaut Oleg Kononenko and Kimiya Yui of the Japan Aerospace Exploration Agency, bid farewell to crew members remaining on the station -- including Commander Scott Kelly, NASA’s one-year mission astronaut. The returning members of Expedition 45 then climbed aboard their Soyuz spacecraft for the trip back to Earth. They safely touched down hours later in Kazakhstan – closing out a 141-day stay in space. Also, Next space station crew prepares for launch, Supply mission arrives at space station, Quantum computing lab and more!

  17. International Space Station (ISS)

    NASA Image and Video Library

    2001-02-01

    The Payload Operations Center (POC) is the science command post for the International Space Station (ISS). Located at NASA's Marshall Space Flight Center in Huntsville, Alabama, it is the focal point for American and international science activities aboard the ISS. The POC's unique capabilities allow science experts and researchers around the world to perform cutting-edge science in the unique microgravity environment of space. The POC is staffed around the clock by shifts of payload flight controllers. At any given time, 8 to 10 flight controllers are on consoles operating, plarning for, and controlling various systems and payloads. This photograph shows the Operations Controllers (OC) at their work stations. The OC coordinates the configuration of resources to enable science operations, such as power, cooling, commanding, and the availability of items like tools and laboratory equipment.

  18. Space Station Crew Members Discuss Life in Space with Country Music Legends

    NASA Image and Video Library

    2017-06-29

    Aboard the International Space Station, Expedition 52 Flight Engineers Jack Fischer and Peggy Whitson of NASA discussed life and research on the orbital outpost with country music stars Garth Brooks and Trisha Yearwood, during an in-flight chat June 29. Brooks and Yearwood placed the call during a tour of NASA’s Johnson Space Center in Houston in the wake of a social media post Fischer made prior to his launch in April that listed Brooks’ song “The River” as one of his favorites. Fischer and Whitson are scheduled to remain in orbit aboard the station until early September when they will return to Earth in a Russian Soyuz spacecraft for a parachute-assisted landing on the steppe of Kazakhstan.

  19. Veggie Project - Harvesting Chinese Cabbage aboard the ISS

    NASA Image and Video Library

    2017-02-17

    At Kennedy Space Center in Florida, Veggie Project Manager Nicole Dufour instructs astronaut Peggy Whitson during the harvest of Chinese cabbage aboard the International Space Station. While the space station crew will get to eat some of the Chinese cabbage, the rest is being saved for scientific study back at Kennedy Space Center. This is the fifth crop grown aboard the station, and the first Chinese cabbage.

  20. International Space Station (ISS)

    NASA Image and Video Library

    2002-06-01

    Backdropped against the blackness of space and the Earth's horizon, the Mobile Remote Base System (MBS) is moved by the Canadarm2 for installation on the International Space Station (ISS). Delivered by the STS-111 mission aboard the Space Shuttle Endeavour in June 2002, the MBS is an important part of the Station's Mobile Servicing System allowing the robotic arm to travel the length of the Station, which is neccessary for future construction tasks. In addition, STS-111 delivered a new crew, Expedition Five, replacing Expedition Four after remaining a record-setting 196 days in space. Three spacewalks enabled the STS-111 crew to accomplish the delivery and installation of the MBS to the Mobile Transporter on the S0 (S-zero) truss, the replacement of a wrist roll joint on the Station's robotic arm, and the task of unloading supplies and science experiments from the Leonardo Multi-Purpose Logistics Module, which made its third trip to the orbital outpost. The STS-111 mission, the 14th Shuttle mission to visit the ISS, was launched on June 5, 2002 and landed June 19, 2002.

  1. International Space Station (ISS)

    NASA Image and Video Library

    2002-10-12

    Astronaut David A. Wolf, STS-112 mission specialist, participates in the mission's second session of extravehicular activity (EVA), a six hour, four minute space walk, in which an exterior station television camera was installed outside of the Destiny Laboratory. Launched October 7, 2002 aboard the Space Shuttle Orbiter Atlantis, the STS-112 mission lasted 11 days and performed three EVA sessions. Its primary mission was to install the Starboard (S1) Integrated Truss Structure and Equipment Translation Aid (CETA) Cart to the International Space Station (ISS). The S1 truss provides structural support for the orbiting research facility's radiator panels, which use ammonia to cool the Station's complex power system. The S1 truss, attached to the S0 (S Zero) truss installed by the previous STS-110 mission, flows 637 pounds of anhydrous ammonia through three heat rejection radiators. The truss is 45-feet long, 15-feet wide, 10-feet tall, and weighs approximately 32,000 pounds. The CETA is the first of two human-powered carts that will ride along the International Space Station's railway providing a mobile work platform for future extravehicular activities by astronauts.

  2. Aiming Instruments On The Space Station

    NASA Technical Reports Server (NTRS)

    Estus, Jay M.; Laskin, Robert; Lin, Yu-Hwan

    1989-01-01

    Report discusses capabilities and requirements for aiming scientific instruments carried aboard proposed Space Station. Addresses two issues: whether system envisioned for pointing instruments at celestial targets offers sufficiently low jitter, high accuracy, and high stability to meet scientific requirements; whether it can do so even in presence of many vibrations and other disturbances on Space Station. Salient conclusion of study, recommendation to develop pointing-actuator system including mechanical/fluid base isolator underneath reactionaless gimbal subsystem. This kind of system offers greatest promise of high performance, cost-effectiveness, and modularity for job at hand.

  3. Stability of Formulations Contained in the Pharmaceutical Payload Aboard Space Missions

    NASA Technical Reports Server (NTRS)

    Putcha, Lakshmi; Du, Brian; Daniels, Vernie; Boyd, Jason L.; Crady, Camille; Satterfield, Rick

    2008-01-01

    Efficacious pharmaceuticals with adequate shelf life are essential for successful space medical operations in support of space exploration missions. Physical and environmental factors unique to space missions such as vibration, G forces and ionizing radiation may adversely affect stability of pharmaceuticals intended for standard care of astronauts aboard space missions. Stable pharmaceuticals, therefore, are of paramount importance for assuring health and wellness of astronauts in space. Preliminary examination of stability of formulations from Shuttle and International Space Station (ISS) medical kits revealed that some of these medications showed physical and chemical degradation after flight raising concern of reduced therapeutic effectiveness with these medications in space. A research payload experiment was conducted with a select set of formulations stowed aboard a shuttle flight and on ISS. The payload consisted of four identical pharmaceutical kits containing 31 medications in different dosage forms that were transported to the International Space Station (ISS) aboard the Space Shuttle, STS 121. One of the four kits was stored on the shuttle and the other three were stored on the ISS for return to Earth at six months intervals on a pre-designated Shuttle flight for each kit; the shuttle kit was returned to Earth on the same flight. Standard stability indicating physical and chemical parameters were measured for all pharmaceuticals returned from the shuttle and from the first ISS increment payload along with ground-based matching controls. Results were compared between shuttle, ISS and ground controls. Evaluation of data from the three paradigms indicates that some of the formulations exhibited significant degradation in space compared to respective ground controls; a few formulations were unstable both on the ground and in space. An increase in the number of pharmaceuticals from ISS failing USP standards was noticed compared to those from the shuttle

  4. International Space Station (ISS)

    NASA Image and Video Library

    1998-11-01

    This photograph shows the U.S. Laboratory Module (also called Destiny) for the International Space Station (ISS), in the Space Station manufacturing facility at the Marshall Space Flight Center, being readied for shipment to the Kennedy Space Center. The U.S. Laboratory module is the centerpiece of the ISS, where science experiments will be performed in the near-zero gravity of space. The Destiny Module was launched aboard the Space Shuttle orbiter Atlantis (STS-67 mission) on February 7, 2001. The aluminum module is 8.5 meters (28 feet) long and 4.3 meters (14 feet) in diameter. The laboratory consists of three cylindrical sections and two endcones with hatches that will be mated to other station components. A 50.9-centimeter- (20-inch-) diameter window is located on one side of the center module segment. This pressurized module is designed to accommodate pressurized payloads. It has a capacity of 24 rack locations, and payload racks will occupy 13 locations especially designed to support experiments. The ISS is a multidisciplinary laboratory, technology test bed, and observatory that will provide unprecedented undertakings in scientific, technological, and international experimentation.

  5. International Space Station (ISS)

    NASA Image and Video Library

    2001-03-13

    Astronaut Paul W. Richards, STS-102 mission specialist, works in the cargo bay of the Space Shuttle Discovery during the second of two scheduled space walks. Richards, along with astronaut Andy Thomas, spent 6.5 hours outside the International Space Station (ISS), continuing work to outfit the station and prepare for delivery of its robotic arm. STS-102 delivered the first Multipurpose Logistics Modules (MPLM) named Leonardo, which was filled with equipment and supplies to outfit the U.S. Destiny Laboratory Module. The Leonardo MPLM is the first of three such pressurized modules that will serve as the ISS' moving vans, carrying laboratory racks filled with equipment, experiments, and supplies to and from the Station aboard the Space Shuttle. The cylindrical module is approximately 21-feet long and 15- feet in diameter, weighing almost 4.5 tons. It can carry up to 10 tons of cargo in 16 standard Space Station equipment racks. Of the 16 racks the module can carry, 5 can be furnished with power, data, and fluid to support refrigerators or freezers. In order to function as an attached station module as well as a cargo transport, the logistics module also includes components that provide life support, fire detection and suppression, electrical distribution, and computer functions. NASA's 103rd overall mission and the 8th Space Station Assembly Flight, STS-102 mission also served as a crew rotation flight. It delivered the Expedition Two crew to the Station and returned the Expedition One crew back to Earth.

  6. Microstructure and Macrosegregation Study of Directionally Solidified Al-7Si Samples Processed Terrestrially and Aboard the International Space Station

    NASA Technical Reports Server (NTRS)

    Angart, Samuel; Erdman, R. G.; Poirier, David R.; Tewari, S.N.; Grugel, R. N.

    2014-01-01

    This talk reports research that has been carried out under the aegis of NASA as part of a collaboration between ESA and NASA for solidification experiments on the International Space Station (ISS). The focus has been on the effect of convection on the microstructural evolution and macrosegregation in hypoeutectic Al-Si alloys during directional solidification (DS). The DS-experiments have been carried out under 1-g at Cleveland State University (CSU) and under low-g on the International Space Station (ISS). The thermal processing-history of the experiments is well defined for both the terrestrially-processed samples and the ISS-processed samples. We have observed that the primary dendrite arm spacings of two samples grown in the low-g environment of the ISS show good agreement with a dendrite-growth model based on diffusion controlled growth. The gravity-driven convection (i.e., thermosolutal convection) in terrestrially grown samples has the effect of decreasing the primary dendrite arm spacings and causes macrosgregation. In order to process DS-samples aboard the ISS, dendritic-seed crystals have to partially remelted in a stationary thermal gradient before the DS is carried out. Microstructural changes and macrosegregation effects during this period are described.

  7. Station Crew Member Discusses Life in Space with Media

    NASA Image and Video Library

    2018-01-18

    Aboard the International Space Station, Expedition 54 Flight Engineer Scott Tingle of NASA discussed life and research on the orbital complex during an in-flight interview session Jan. 18 with the ABC Digital Network and Space.com.

  8. Microbiology facilities aboard Space Station Freedom (SSF)

    NASA Technical Reports Server (NTRS)

    Cioletti, L. A.; Mishra, S. K.; Richard, Elizabeth E.; Taylor, R.

    1990-01-01

    A comprehensive microbiological facility is being designed for use on board Space Station Freedom (SSF). Its purpose will be to conduct microbial surveillance of the SSF environment and to examine clinical specimens. Air, water, and internal surfaces will be periodically monitored to satisfy requirements for a safe environment. Crew health will remain a principle objective for every mission. This paper will review the Microbiology Subsystem capabilities planned for SSF application.

  9. International Space Station (ISS)

    NASA Image and Video Library

    2001-03-01

    Pilot James M. Kelly (left) and Commander James D. Wetherbee for the STS-102 mission, participate in the movement of supplies inside Leonardo, the Italian Space Agency built Multipurpose Logistics Module (MPLM). In this particular photograph, the two are handling a film magazine for the IMAX cargo bay camera. The primary cargo of the STS-102 mission, the Leonardo MPLM is the first of three such pressurized modules that will serve as the International Space Station's (ISS') moving vans, carrying laboratory racks filled with equipment, experiments, and supplies to and from the Station aboard the Space Shuttle. The cylindrical module is approximately 21-feet long and 15- feet in diameter, weighing almost 4.5 tons. It can carry up to 10 tons of cargo in 16 standard Space Station equipment racks. Of the 16 racks the module can carry, 5 can be furnished with power, data, and fluid to support refrigerators or freezers. In order to function as an attached station module as well as a cargo transport, the logistics module also includes components that provide life support, fire detection and suppression, electrical distribution, and computer functions. The eighth station assembly flight, the STS-102 mission also served as a crew rotation flight. It delivered the Expedition Two crew to the Station and returned the Expedition One crew back to Earth.

  10. International Space Station (ISS)

    NASA Image and Video Library

    2001-02-01

    The Payload Operations Center (POC) is the science command post for the International Space Station (ISS). Located at NASA's Marshall Space Flight Center in Huntsville, Alabama, it is the focal point for American and international science activities aboard the ISS. The POC's unique capabilities allow science experts and researchers around the world to perform cutting-edge science in the unique microgravity environment of space. The POC is staffed around the clock by shifts of payload flight controllers. At any given time, 8 to 10 flight controllers are on consoles operating, plarning for, and controlling various systems and payloads. This photograph shows the Timeline Change Officer (TCO) at a work station. The TCO maintains the daily schedule of science activities and work assignments, and works with planners at Mission Control at Johnson Space Center in Houston, Texas, to ensure payload activities are accommodated in overall ISS plans and schedules.

  11. Space station automation study-satellite servicing, volume 2

    NASA Technical Reports Server (NTRS)

    Meissinger, H. F.

    1984-01-01

    Technology requirements for automated satellite servicing operations aboard the NASA space station were studied. The three major tasks addressed: (1) servicing requirements (satellite and space station elements) and the role of automation; (2) assessment of automation technology; and (3) conceptual design of servicing facilities on the space station. It is found that many servicing functions cloud benefit from automation support; and the certain research and development activities on automation technologies for servicing should start as soon as possible. Also, some advanced automation developments for orbital servicing could be effectively applied to U.S. industrial ground based operations.

  12. Next Space Station Crew Previews Mission

    NASA Image and Video Library

    2017-10-11

    NASA astronaut Scott Tingle and crewmates Anton Shkaplerov of the Russian space agency Roscosmos and Norishege Kanai of the Japan Aerospace Exploration Agency (JAXA) discussed their upcoming mission to the International Space Station in a news conference on Oct. 11 at NASA’s Johnson Space Center in Houston. Tingle, Shkaplerov and Kanai will launch to the space station aboard the Soyuz MS-07 spacecraft on Dec. 17 from the Baikonur Cosmodrome in Kazakhstan. They will join the station’s Expedition 54 crew, and return to Earth in April 2018 as members of Expedition 55. During a planned four-month mission, the station crew members will take part in about 250 research investigations and technology demonstrations not possible on Earth in order to advance scientific knowledge of Earth, space, physical and biological sciences. Science conducted on the space station continues to yield benefits for humanity and will enable future long-duration human and robotic exploration into deep space, including missions past the Moon and Mars. This will be the first spaceflight for Tingle and Kanai, and the third for Shkaplerov.

  13. The effects of background noise on cognitive performance during a 70 hour simulation of conditions aboard the International Space Station.

    PubMed

    Smith, D G; Baranski, J V; Thompson, M M; Abel, S M

    2003-01-01

    A total of twenty-five subjects were cloistered for a period of 70 hours, five at a time, in a hyperbaric chamber modified to simulate the conditions aboard the International Space Station (ISS). A recording of 72 dBA background noise from the ISS service module was used to simulate noise conditions on the ISS. Two groups experienced the background noise throughout the experiment, two other groups experienced the noise only during the day, and one control group was cloistered in a quiet environment. All subjects completed a battery of cognitive tests nine times throughout the experiment. The data showed little or no effect of noise on reasoning, perceptual decision-making, memory, vigilance, mood, or subjective indices of fatigue. Our results suggest that the level of noise on the space station should not affect cognitive performance, at least over a period of several days.

  14. NASA, Rockets, and the International Space Station

    NASA Technical Reports Server (NTRS)

    Marsell, Brandon

    2015-01-01

    General overview of NASA, Launch Services Program, and the Slosh experiment aboard the International Space Station. This presentation is designed to be presented in front of university level students in hopes of inspiring them to go into STEM careers.

  15. International Space Station (ISS)

    NASA Image and Video Library

    1997-01-01

    This photograph, taken by the Boeing Company,shows Boeing technicians preparing to install one of six hatches or doors to the Node 1 (also called Unity), the first U.S. Module for the International Space Station (ISS). The Node 1, or Unity, serves as a cornecting passageway to Space Station modules and was manufactured by the Boeing Company at the Marshall Space Flight Center from 1994 to 1997. The U.S. built Unity module was launched aboard the orbiter Endeavour (STS-88 mission) on December 4, 1998 and connected to the Zarya, the Russian-built Functional Energy Block (FGB). The Zarya was launched on a Russian proton rocket prior to the launch of the Unity. The ISS is a multidisciplinary laboratory, technology test bed, and observatory that will provide unprecedented undertakings in scientific, technological, and international experimentation.

  16. International Space Station (ISS)

    NASA Image and Video Library

    1997-01-01

    This photograph, taken by the Boeing Company, shows Boeing technicians preparing to install one of six hatches or doors to the Node 1 (also called Unity), the first U.S. Module for the International Space Station (ISS). The Node 1, or Unity, serves as a cornecting passageway to Space Station modules and was manufactured by the Boeing Company at the Marshall Space Flight Center from 1994 to 1997. The U.S. built Unity module was launched aboard the orbiter Endeavour (STS-88 mission) on December 4, 1998 and connected to the Zarya, the Russian-built Functional Energy Block (FGB). The Zarya was launched on a Russian proton rocket prior to the launch of the Unity. The ISS is a multidisciplinary laboratory, technology test bed, and observatory that will provide unprecedented undertakings in scientific, technological, and international experimentation.

  17. Space Station Crew Discusses Life in Space with Ohio Students

    NASA Image and Video Library

    2017-11-01

    Aboard the International Space Station, Expedition 53 Flight Engineers Mark Vande Hei and Joe Acaba of NASA discussed life and research on the outpost during an in-flight educational event Nov. 1 with students at the Shaker Heights School in Cleveland, Ohio. Vande Hei and Acaba, who launched to the station together in September, are in the midst of a five-and-a-half-month mission on the orbital laboratory.

  18. MS Wisoff in the Mir space station Base Block

    NASA Image and Video Library

    1997-02-20

    STS081-347-031 (12-22 Jan. 1997) --- Astronaut Peter J. K. (Jeff) Wisoff, is pictured with a small sampling of supplies moved from the Spacehab Double Module (DM) aboard the Space Shuttle Atlantis to Russia's Mir Space Station.

  19. International Space Station (ISS)

    NASA Image and Video Library

    1997-01-01

    In this photograph, the U.S. Laboratory Module (also called Destiny) for the International Space Station (ISS) is shown under construction in the West High Bay of the Space Station manufacturing facility (building 4708) at the Marshall Space Flight Center. The U.S. Laboratory module is the centerpiece of the ISS, where science experiments will be performed in the near-zero gravity of space. The Destiny Module was launched aboard the Space Shuttle orbiter Atlantis (STS-98 mission) on February 7, 2001. The aluminum module is 8.5 meters (28 feet) long and 4.3 meters (14 feet) in diameter. The laboratory consists of three cylindrical sections and two endcones with hatches that will be mated to other station components. A 50.9-centimeter- (20-inch-) diameter window is located on one side of the center module segment. This pressurized module is designed to accommodate pressurized payloads. It has a capacity of 24 rack locations, and payload racks will occupy 13 locations especially designed to support experiments. The ISS is a multidisciplinary laboratory, technology test bed, and observatory that will provide unprecedented undertakings in scientific, technological, and international experimentation.

  20. International Space Station (ISS)

    NASA Image and Video Library

    1997-11-01

    In this photograph, the U.S. Laboratory Module (also called Destiny) for the International Space Station (ISS) is shown under construction in the West High Bay of the Space Station manufacturing facility (building 4708) at the Marshall Space Flight Center. The U.S. Laboratory module is the centerpiece of the ISS, where science experiments will be performed in the near-zero gravity of space. The Destiny Module was launched aboard the Space Shuttle orbiter Atlantis (STS-98 mission) on February 7, 2001. The aluminum module is 8.5 meters (28 feet) long and 4.3 meters (14 feet) in diameter. The laboratory consists of three cylindrical sections and two endcones with hatches that will be mated to other station components. A 50.9-centimeter- (20-inch-) diameter window is located on one side of the center module segment. This pressurized module is designed to accommodate pressurized payloads. It has a capacity of 24 rack locations, and payload racks will occupy 13 locations especially designed to support experiments. The ISS is a multidisciplinary laboratory, technology test bed, and observatory that will provide unprecedented undertakings in scientific, technological, and international experimentation.

  1. International Space Station (ISS)

    NASA Image and Video Library

    2002-06-11

    The STS-111 mission, the 14th Shuttle mission to visit the International Space Station (ISS), was launched on June 5, 2002 aboard the Space Shuttle Orbiter Endeavour. On board were the STS-111 and Expedition Five crew members. Astronauts Kerneth D. Cockrell, commander; Paul S. Lockhart, pilot; and mission specialists Franklin R. Chang-Diaz and Philippe Perrin were the STS-111 crew members. Expedition Five crew members included Cosmonaut Valeri G. Korzun, commander; Astronaut Peggy A. Whitson and Cosmonaut Sergei Y. Treschev, flight engineers. Three space walks enabled the STS-111 crew to accomplish the delivery and installation of the Mobile Remote Servicer Base System (MBS), an important part of the Station's Mobile Servicing System that allows the robotic arm to travel the length of the Station, which is necessary for future construction tasks. In this photograph, Astronaut Philippe Perrin, representing CNES, the French Space Agency, participates in the second scheduled EVA. During the space walk, Perrin and Chang-Diaz attached power, data, and video cables from the ISS to the MBS, and used a power wrench to complete the attachment of the MBS onto the Mobile Transporter (MT).

  2. Space Station Crew Discusses Life in Space with Students in Washington, D.C.

    NASA Image and Video Library

    2017-09-27

    Aboard the International Space Station, Expedition 53 Commander Randy Bresnik of NASA discussed life and research on the orbital outpost during an educational in-flight event Sept. 27 with students gathered at the National Air and Space Museum in Washington, D.C. The so-called “STEM in 30” group of students is focused on investigations regarding station science and Bresnik’s contributions to the research being conducted in orbit.

  3. The nutritional status of astronauts is altered after long-term space flight aboard the International Space Station

    NASA Technical Reports Server (NTRS)

    Smith, Scott M.; Zwart, Sara R.; Block, Gladys; Rice, Barbara L.; Davis-Street, Janis E.

    2005-01-01

    Defining optimal nutrient requirements is critical for ensuring crew health during long-duration space exploration missions. Data pertaining to such nutrient requirements are extremely limited. The primary goal of this study was to better understand nutritional changes that occur during long-duration space flight. We examined body composition, bone metabolism, hematology, general blood chemistry, and blood levels of selected vitamins and minerals in 11 astronauts before and after long-duration (128-195 d) space flight aboard the International Space Station. Dietary intake and limited biochemical measures were assessed during flight. Crew members consumed a mean of 80% of their recommended energy intake, and on landing day their body weight was less (P = 0.051) than before flight. Hematocrit, serum iron, ferritin saturation, and transferrin were decreased and serum ferritin was increased after flight (P < 0.05). The finding that other acute-phase proteins were unchanged after flight suggests that the changes in iron metabolism are not likely to be solely a result of an inflammatory response. Urinary 8-hydroxy-2'-deoxyguanosine concentration was greater and RBC superoxide dismutase was less after flight (P < 0.05), indicating increased oxidative damage. Despite vitamin D supplement use during flight, serum 25-hydroxycholecalciferol was decreased after flight (P < 0.01). Bone resorption was increased after flight, as indicated by several markers. Bone formation, assessed by several markers, did not consistently rise 1 d after landing. These data provide evidence that bone loss, compromised vitamin D status, and oxidative damage are among critical nutritional concerns for long-duration space travelers.

  4. International Space Station (ISS)

    NASA Image and Video Library

    2001-03-10

    STS-102 mission astronauts James S. Voss and James D. Weatherbee share a congratulatory handshake as the Space Shuttle Orbiter Discovery successfully docks with the International Space Station (ISS). Photographed from left to right are: Astronauts Susan J. Helms, mission specialist; James S. Voss, Expedition 2 crew member; James D. Weatherbee, mission commander; Andrew S.W. Thomas, mission specialist; and nearly out of frame is James M. Kelley, Pilot. Launched March 8, 2001, STS-102's primary cargo was the Leonardo, the Italian Space Agency-built Multipurpose Logistics Module (MPLM). The Leonardo MPLM is the first of three such pressurized modules that will serve as ISS' moving vans, carrying laboratory racks filled with equipment, experiments, and supplies to and from the Station aboard the Space Shuttle. The cylindrical module is approximately 21-feet long and 15- feet in diameter, weighing almost 4.5 tons. It can carry up to 10 tons of cargo in 16 standard Space Station equipment racks. Of the 16 racks the module can carry, 5 can be furnished with power, data, and fluid to support refrigerators or freezers. In order to function as an attached station module as well as a cargo transport, the logistics module also includes components that provide life support, fire detection and suppression, electrical distribution, and computer functions. NASA's 103rd overall mission and the 8th Space Station Assembly Flight, STS-102 mission also served as a crew rotation flight. It delivered the Expedition Two crew to the Station and returned the Expedition One crew back to Earth.

  5. Evaluation of the MICAST #2-12 AI-7wt%Si Sample Directionally Solidified Aboard the International Space Station

    NASA Technical Reports Server (NTRS)

    Tewari, Surendra N.; Ghods, Masoud; Angart, Samuel G.; Lauer, Mark; Grugel, Richard N.; Poirier, David R.

    2016-01-01

    The US team of the European led "MIcrostructure Formation in CASTing of Technical Alloys under Diffusive and Magnetically Controlled Convective Conditions" (MICAST) program recently received a third Aluminum - 7wt% silicon alloy that was processed in the microgravity environment aboard the International Space Station. The sample, designated MICAST#2-12, was directionally solidified in the Solidification with Quench Furnace (SQF) at a constant rate of 40micometers/s through an imposed temperature gradient of 31K/cm. Procedures taken to evaluate the state of the sample prior to sectioning for metallographic analysis are reviewed and rational for measuring the microstructural constituents, in particular the primary dendrite arm spacing (Lambda (sub1)), is given. The data are presented, put in context with the earlier samples, and evaluated in view of a relevant theoretical model.

  6. A Survey of Staphylococcus sp and its Methicillin Resistance aboard the International Space Station

    NASA Technical Reports Server (NTRS)

    Bassinger, V. J.; Fontenot, S. L.; Castro, V. A.; Ott, C.; Healy, M.; Pierson, D. L.

    2004-01-01

    Background: Within the past few years, methicillin-resistant Staphylococcus aureus has emerged in environments with susceptible hosts in close proximity, such as hospitals and nursing homes. As the International Space Station (ISS) represents a semi-closed environment with a high level of crewmember interaction, an evaluation of isolates of clinical and environmental Staphylococcus aureus and coagulase negative Staphylococcus was performed to determine if this trend was also present in astronauts occupying ISS or on surfaces of the space station itself. Methods: Identification of isolates was completed using VITEK (GPI cards, BioMerieux), 16S ribosomal DNA analysis (MicroSeq 500, ABI), and Rep-PCR DNA fingerprinting (Divemilab, Bacterial Barcodes). Susceptibility tests were performed using VITEK (GPS-105 cards, BioMerieux) and resistance characteristics were evaluated by testing for the presence of the mecA gene (PBP2' MRSA test kit, Oxoid). Results: Rep-PCR analysis indicated the transfer of S. aureus between crewmembers and between crewmembers and ISS surfaces. While a variety of S. aureus were identified from both the crewmembers and environment, evaluations of the microbial population indicated minimal methicillin resistance. Results of this study indicated that within the semi-closed ISS environment, transfer of bacteria between crewmembers and their environment has been occurring, although there was no indication of a high concentration of methicillin resistant Staphylococcus species. Conclusions: While this study suggests that the spread of methicillin resistant S. aureus is not currently a concern aboard ISS, the increasing incidence of Earth-based antibiotic resistance indicates a need for continued clinical and environmental monitoring.

  7. Space Station Crew Member Discusses Life in Space with Educators

    NASA Image and Video Library

    2018-02-01

    Aboard the International Space Station, Expedition 54 Flight Engineer Joe Acaba discussed life and research on the orbital outpost with several hundred educators gathered at Space Center, Houston during an in-flight question and answer session Feb. 1. The Space Educators Conference was designed to bring teachers together from around the nation to discuss topics of mutual interest. Acaba is in the final month of a five and a half month mission on the complex.

  8. International Space Station (ISS)

    NASA Image and Video Library

    2002-10-10

    Launched October 7, 2002 aboard the Space Shuttle Orbiter Atlantis, the STS-112 mission lasted 11 days and performed three sessions of Extra Vehicular Activity (EVA). Its primary mission was to install the Starboard (S1) Integrated Truss Structure and Equipment Translation Aid (CETA) Cart to the International Space Station (ISS). The S1 truss provides structural support for the orbiting research facility's radiator panels, which use ammonia to cool the Station's complex power system. The S1 truss, attached to the S0 (S Zero) truss installed by the previous STS-110 mission, flows 637 pounds of anhydrous ammonia through three heat rejection radiators. The truss is 45-feet long, 15-feet wide, 10-feet tall, and weighs approximately 32,000 pounds. The CETA is the first of two human-powered carts that will ride along the International Space Station's railway providing a mobile work platform for future extravehicular activities by astronauts. This is a view of the newly installed S1 Truss as photographed during the mission's first scheduled EVA. The Station's Canadarm2 is in the foreground. Visible are astronauts Piers J. Sellers (lower left) and David A. Wolf (upper right), both STS-112 mission specialists.

  9. International Space Station (ISS)

    NASA Image and Video Library

    2002-10-10

    Anchored to a foot restraint on the Space Station Remote Manipulator System (SSRMS) or Canadarm2, astronaut David A. Wolf, STS-112 mission specialist, participates in the mission's first session of extravehicular activity (EVA). Wolf is carrying the Starboard One (S1) outboard nadir external camera which was installed on the end of the S1 Truss on the International Space Station (ISS). Launched October 7, 2002 aboard the Space Shuttle Orbiter Atlantis, the STS-112 mission lasted 11 days and performed three EVAs. Its primary mission was to install the S1 Integrated Truss Structure and Equipment Translation Aid (CETA) Cart to the ISS. The S1 truss provides structural support for the orbiting research facility's radiator panels, which use ammonia to cool the Station's complex power system. The S1 truss, attached to the S0 (S Zero) truss installed by the previous STS-110 mission, flows 637 pounds of anhydrous ammonia through three heat rejection radiators. The truss is 45-feet long, 15-feet wide, 10-feet tall, and weighs approximately 32,000 pounds. The CETA is the first of two human-powered carts that will ride along the International Space Station's railway providing a mobile work platform for future extravehicular activities by astronauts.

  10. Space Station Crew Discusses Life in Space with Massachusetts Media

    NASA Image and Video Library

    2018-02-05

    Aboard the International Space Station, Expedition 54 Flight Engineers Mark Vande Hei and Scott Tingle of NASA discussed life and research on the orbital outpost during a pair of in-flight interviews Feb. 5 with WHDH-TV, Boston and Bloomberg Bay State Radio. Vande Hei is in the final weeks of his five and a half month mission on the station, while Tingle, a Massachusetts native, will remain on the complex until early June.

  11. International Space Station (ISS)

    NASA Image and Video Library

    2002-11-28

    The 16th American assembly flight and 112th overall American flight to the International Space Station (ISS), launched on November 23, 2002 from Kennedy's launch pad 39A aboard the Space Shuttle Orbiter Endeavor STS-113. Mission objectives included the delivery of the Expedition Six Crew to the ISS, the return of Expedition Five crew back to Earth, and the installation and activation of the Port 1 Integrated Truss Assembly (P1). The first major component installed on the left side of the Station, the P1 truss provides an additional three External Thermal Control System radiators. Weighing in at 27,506 pounds, the P1 truss is 45 feet (13.7 meters) long, 15 feet (4.6 meters) wide, and 13 feet (4 meters) high. Three space walks, aided by the use of the Robotic Manipulator Systems of both the Shuttle and the Station, were performed in the installation of P1. In this photograph, astronaut and mission specialist Michael E. Lopez-Alegria works on the newly installed P1 truss during the mission's second scheduled session of extravehicular activity.

  12. International Space Station (ISS)

    NASA Image and Video Library

    2001-09-16

    Aboard the International Space Station (ISS), Cosmonaut and Expedition Three flight engineer Vladimir N. Dezhurov, representing Rosaviakosmos, talks with flight controllers from the Zvezda Service Module. Russian-built Zvezda is linked to the Functional Cargo Block (FGB), or Zarya, the first component of the ISS. Zarya was launched on a Russian Proton rocket prior to the launch of Unity. The third component of the ISS, Zvezda (Russian word for star), the primary Russian contribution to the ISS, was launched by a three-stage Proton rocket on July 12, 2000. Zvezda serves as the cornerstone for early human habitation of the Station, providing living quarters, a life support system, electrical power distribution, a data processing system, flight control system, and propulsion system. It also provides a communications system that includes remote command capabilities from ground flight controllers. The 42,000-pound module measures 43 feet in length and has a wing span of 98 feet. Similar in layout to the core module of Russia's Mir space station, it contains 3 pressurized compartments and 13 windows that allow ultimate viewing of Earth and space.

  13. International Space Station (ISS)

    NASA Image and Video Library

    2002-06-09

    The STS-111 mission, the 14th Shuttle mission to visit the International Space Station (ISS), was launched on June 5, 2002 aboard the Space Shuttle Orbiter Endeavour. On board were the STS-111 and Expedition Five crew members. Astronauts Kerneth D. Cockrell, commander; Paul S. Lockhart, pilot, and mission specialists Franklin R. Chang-Diaz and Philippe Perrin were the STS-111 crew members. Expedition Five crew members included Cosmonaut Valeri G. Korzun, commander, Astronaut Peggy A. Whitson and Cosmonaut Sergei Y. Treschev, flight engineers. Three space walks enabled the STS-111 crew to accomplish mission objectives: The delivery and installation of the Mobile Remote Servicer Base System (MBS), an important part of the Station's Mobile Servicing System that allows the robotic arm to travel the length of the Station, which is necessary for future construction tasks; the replacement of a wrist roll joint on the Station's robotic arm; and the task of unloading supplies and science experiments from the Leonardo multipurpose Logistics Module, which made its third trip to the orbital outpost. In this photograph, the Space Shuttle Endeavour, back dropped by the blackness of space, is docked to the pressurized Mating Adapter (PMA-2) at the forward end of the Destiny Laboratory on the ISS. Endeavour's robotic arm is in full view as it is stretched out with the S0 (S-zero) Truss at its end.

  14. International Space Station (ISS)

    NASA Image and Video Library

    2001-12-01

    This is the official STS-110 crew portrait. In front, from the left, are astronauts Stephen N. Frick, pilot; Ellen Ochoa, flight engineer; and Michael J. Bloomfield, mission commander; In the back, from left, are astronauts Steven L. Smith, Rex J. Walheim, Jerry L. Ross and Lee M.E. Morin, all mission specialists. Launched aboard the Space Shuttle Orbiter Atlantis on April 8, 2002, the STS-110 mission crew prepared the International Space Station (ISS) for future space walks by installing and outfitting a 43-foot-long Starboard side S0 truss and preparing the Mobile Transporter. The mission served as the 8th ISS assembly flight.

  15. International Space Station (ISS)

    NASA Image and Video Library

    2002-03-08

    Launched aboard the Space Shuttle Endeavor on June 6, 2002, these four astronauts comprised the prime crew for NASA's STS-111 mission. Astronaut Kenneth D. Cockrell (front right) was mission commander, and astronaut Paul S. Lockhart (front left) was pilot. Astronauts Philippe Perrin (rear left), representing the French Space Agency, and Franklin R. Chang-Diaz were mission specialists assigned to extravehicular activity (EVA) work on the International Space Station (ISS). In addition to the delivery and installation of the Mobile Base System (MBS), this crew dropped off the Expedition Five crew members at the orbital outpost, and brought back the Expedition Four trio at mission's end.

  16. Ocular examination for trauma; clinical ultrasound aboard the International Space Station.

    PubMed

    Chiao, Leroy; Sharipov, Salizhan; Sargsyan, Ashot E; Melton, Shannon; Hamilton, Douglas R; McFarlin, Kellie; Dulchavsky, Scott A

    2005-05-01

    Ultrasound imaging is a successful modality in a broad variety of diagnostic applications including trauma. Ultrasound has been shown to be accurate when performed by non-radiologist physicians; recent reports have suggested that non-physicians can perform limited ultrasound examinations. A multipurpose ultrasound system is installed on the International Space Station (ISS) as a component of the Human Research Facility (HRF). This report documents the first ocular ultrasound examination conducted in space, which demonstrated the capability to assess physiologic alterations or pathology including trauma during long-duration space flight. An ISS crewmember with minimal sonography training was remotely guided by an imaging expert from Mission Control Center (MCC) through a comprehensive ultrasound examination of the eye. A multipurpose ultrasound imager was used in conjunction with a space-to-ground video downlink and two-way audio. Reference cards with topological reference points, hardware controls, and target images were used to facilitate the examination. Multiple views of the eye structures were obtained through a closed eyelid. Pupillary response to light was demonstrated by modifying the light exposure of the contralateral eye. A crewmember on the ISS was able to complete a comprehensive ocular examination using B- and M-mode ultrasonography with remote guidance from an expert in the MCC. Multiple anteroposterior, oblique, and coronal views of the eye clearly demonstrated the anatomic structures of both segments of the globe. The iris and pupil were readily visualized with probe manipulation. Pupillary diameter was assessed in real time in B- and M-mode displays. The anatomic detail and fidelity of ultrasound video were excellent and could be used to answer a variety of clinical and space physiologic questions. A comprehensive, high-quality ultrasound examination of the eye was performed with a multipurpose imager aboard the ISS by a non-expert operator using

  17. Ocular examination for trauma; clinical ultrasound aboard the International Space Station

    NASA Technical Reports Server (NTRS)

    Chiao, Leroy; Sharipov, Salizhan; Sargsyan, Ashot E.; Melton, Shannon; Hamilton, Douglas R.; McFarlin, Kellie; Dulchavsky, Scott A.

    2005-01-01

    BACKGROUND: Ultrasound imaging is a successful modality in a broad variety of diagnostic applications including trauma. Ultrasound has been shown to be accurate when performed by non-radiologist physicians; recent reports have suggested that non-physicians can perform limited ultrasound examinations. A multipurpose ultrasound system is installed on the International Space Station (ISS) as a component of the Human Research Facility (HRF). This report documents the first ocular ultrasound examination conducted in space, which demonstrated the capability to assess physiologic alterations or pathology including trauma during long-duration space flight. METHODS: An ISS crewmember with minimal sonography training was remotely guided by an imaging expert from Mission Control Center (MCC) through a comprehensive ultrasound examination of the eye. A multipurpose ultrasound imager was used in conjunction with a space-to-ground video downlink and two-way audio. Reference cards with topological reference points, hardware controls, and target images were used to facilitate the examination. Multiple views of the eye structures were obtained through a closed eyelid. Pupillary response to light was demonstrated by modifying the light exposure of the contralateral eye. RESULTS: A crewmember on the ISS was able to complete a comprehensive ocular examination using B- and M-mode ultrasonography with remote guidance from an expert in the MCC. Multiple anteroposterior, oblique, and coronal views of the eye clearly demonstrated the anatomic structures of both segments of the globe. The iris and pupil were readily visualized with probe manipulation. Pupillary diameter was assessed in real time in B- and M-mode displays. The anatomic detail and fidelity of ultrasound video were excellent and could be used to answer a variety of clinical and space physiologic questions. CONCLUSIONS: A comprehensive, high-quality ultrasound examination of the eye was performed with a multipurpose imager

  18. Characterization of the Protein Crystal Growth Apparatus for Microgravity Aboard the Space Station

    NASA Technical Reports Server (NTRS)

    Kundrot, Craig E.; Roeber, D.; Achari, A.; Stinson, Thomas N. (Technical Monitor)

    2002-01-01

    We have conducted experiments to determine the equilibration rates of some major precipitants used in protein crystallography aboard the International Space Station (ISS). The solutions were placed in the Protein Crystallization Apparatus for Microgravity (PCAM) which mimic Cryschem sitting drop trays. The trays were placed in cylinders. These cylinders were placed inside a Single locker Thermal Enclosure System (STES), and were activated for different durations during the flight. Bumpers pressed against elastomers seal drops in a deactivated state during pre-flight and prior to transfer to the ISS. Activation occurs while in flight on the ISS by releasing the bumpers allowing the drops to be exposed to the reservoir. PCAM was flown to the ISS on STS 100, Flight 6A, on April 19, 2001. Six series of equilibration experiments were tested for each precipitant with a small amount of Green Fluorescent Protein (GFP). Cylinder 10 was never activated, 7 was activated for 40 days, 8 was activated for 20 days, 9 was activated for 10 days, 11 was activated for 4 days and 12 was activated for 2 days. Upon the return to Earth by STS 104 on July 24,2001 the samples were transferred to Marshall Space Flight Center. The samples were then brought to the lab and the volumes of each sample were measured.

  19. Space Station Crew Members Discuss Life in Space with Indiana Students

    NASA Image and Video Library

    2018-01-11

    Aboard the International Space Station, Expedition 54 Flight Engineers Mark Vande Hei of NASA and Norishige Kanai of the Japan Aerospace Exploration Agency (JAXA) discussed aspects of life and research during an in-flight educational event Jan. 11 with students gathered at the Children’s Museum in Indianapolis. Vande Hei is scheduled to return to Earth in late February, while Kanai will remain on station until early June.

  20. Next Space Station Crew Prepares for Mission

    NASA Image and Video Library

    2017-12-01

    B-roll footage includes various pre-launch training activities of Expedition 54-55, featuring Soyuz Commander Anton Shkaplerov of Roscosmos and Flight Engineers Scott Tingle of NASA and Norishige Kanai of the Japan Aerospace Exploration Agency (JAXA), as they prepare for their mission to the International Space Station. The trio will launch to the station aboard a Soyuz spacecraft on Dec. 17 from the Baikonur Cosmodrome in Kazakhstan.

  1. NASA Live Tweetup Event with International Space Station

    NASA Image and Video Library

    2009-10-21

    Former NASA astronaut Tom Jones shows off a sleeping bag used by astronauts living aboard the International Space Station during a NASA Tweetup event at NASA Headquarters in Washington, Wednesday, Oct. 21, 2009. Photo Credit: (NASA/Carla Cioffi)

  2. Microbiology operations and facilities aboard restructured Space Station Freedom

    NASA Technical Reports Server (NTRS)

    Cioletti, Louis A.; Mishra, S. K.; Pierson, Duane L.

    1992-01-01

    With the restructure and funding changes for Space Station Freedom, the Environmental Health System (EHS)/Microbiology Subsystem revised its scheduling and operational requirements for component hardware. The function of the Microbiology Subsystem is to monitor the environmental quality of air, water, and internal surfaces and, in part, crew health on board Space Station. Its critical role shall be the identification of microbial contaminants in the environment that may cause system degradation, produce unsanitary or pathogenic conditions, or reduce crew and mission effectiveness. EHS/Microbiology operations and equipment shall be introduced in concert with a phased assembly sequence, from Man Tended Capability (MTC) through Permanently Manned Capability (PMC). Effective Microbiology operations and subsystem components will assure a safe, habitable, and useful spacecraft environment for life sciences research and long-term manned exploration.

  3. International Space Station (ISS)

    NASA Image and Video Library

    2003-10-16

    The Soyuz TMA-3 spacecraft and its booster rocket (rear view) is shown on a rail car for transport to the launch pad where it was raised to a vertical launch position at the Baikonur Cosmodrome, Kazakhstan on October 16, 2003. Liftoff occurred on October 18th, transporting a three man crew to the International Space Station (ISS). Aboard were Michael Foale, Expedition-8 Commander and NASA science officer; Alexander Kaleri, Soyuz Commander and flight engineer, both members of the Expedition-8 crew; and European Space agency (ESA) Astronaut Pedro Duque of Spain. Photo Credit: "NASA/Bill Ingalls"

  4. International Space Station (ISS)

    NASA Image and Video Library

    2003-10-16

    The Soyuz TMA-3 spacecraft and its booster rocket (front view) is shown on a rail car for transport to the launch pad where it was raised to a vertical launch position at the Baikonur Cosmodrome, Kazakhstan on October 16, 2003. Liftoff occurred on October 18th, transporting a three man crew to the International Space Station (ISS). Aboard were Michael Foale, Expedition-8 Commander and NASA science officer; Alexander Kaleri, Soyuz Commander and flight engineer, both members of the Expedition-8 crew; and European Space agency (ESA) Astronaut Pedro Duque of Spain. Photo Credit: "NASA/Bill Ingalls"

  5. Expedition 52-52 Launches to the Space Station on This Week @NASA - April 21, 2017

    NASA Image and Video Library

    2017-04-21

    On April 20, Expedition 51-52 Flight Engineer Jack Fischer of NASA and Soyuz Commander Fyodor Yurchikhin of the Russian Space Agency, Roscosmos launched to the International Space Station aboard a Soyuz spacecraft, from the Baikonur Cosmodrome in Kazakhstan. About six-hours later, the pair arrived at the orbital outpost and were greeted by station Commander Peggy Whitson of NASA and other members of the crew. Fischer and Yurchikhin will spend four and a half months conducting research aboard the station. Also, U.S. Resupply Mission Heads to the Space Station, Time Magazine Recognizes Planet-Hunting Scientists, Landslides on Ceres Reflect Ice Content, Mars Rover Opportunity Leaves 'Tribulation', and Earth Day in the Nation’s Capital!

  6. International Space Station (ISS)

    NASA Image and Video Library

    2001-07-22

    An Expedition Two crewmember aboard the International Space Station (ISS) captured this overhead look at the smoke and ash regurgitated from the erupting volcano Mt. Etna on the island of Sicily, Italy. At an elevation of 10,990 feet (3,350 m), the summit of the Mt. Etna volcano, one of the most active and most studied volcanoes in the world, has been active for a half-million years and has erupted hundreds of times in recorded history.

  7. International Space Station (ISS)

    NASA Image and Video Library

    2002-06-18

    This is a photo of the Hayman Fire burning in the foothills southwest of Denver, Colorado, as viewed by an Expedition Five crewmember aboard the International Space Station (ISS). Astronauts use a variety of lenses and look angles as their orbits pass over the wildfires to document the long-distance movements of smoke from the fires as well as details of the burning areas. In this view, Littleton, Chatfield Lake, and the Arkansas River are all visible.

  8. International Space Station (ISS)

    NASA Image and Video Library

    2001-03-11

    STS-102 mission astronaut Susan J. Helms works outside the International Space Station (ISS) while holding onto a rigid umbilical and her feet anchored to the Remote Manipulator System (RMS) robotic arm on the Space Shuttle Discovery during the first of two space walks. During this space walk, the longest to date in space shuttle history, Helms in tandem with James S. Voss (out of frame), prepared the Pressurized Mating Adapter 3 for repositioning from the Unity Module's Earth-facing berth to its port-side berth to make room for the Leonardo Multipurpose Logistics Module (MPLM) supplied by the Italian Space Agency. The Leonardo MPLM is the first of three such pressurized modules that will serve as the ISS's moving vans, carrying laboratory racks filled with equipment, experiments, and supplies to and from the Station aboard the Space Shuttle. The cylindrical module is approximately 21-feet long and 15- feet in diameter, weighing almost 4.5 tons. It can carry up to 10 tons of cargo in 16 standard Space Station equipment racks. Of the 16 racks the module can carry, 5 can be furnished with power, data, and fluid to support refrigerators or freezers. In order to function as an attached station module as well as a cargo transport, the logistics module also includes components that provide life support, fire detection and suppression, electrical distribution, and computer functions. Launched on May 8, 2001 for nearly 13 days in space, STS-102 mission was the 8th spacecraft assembly flight to the ISS and NASA's 103rd overall mission. The mission also served as a crew rotation flight. It delivered the Expedition Two crew to the Station and returned the Expedition One crew back to Earth.

  9. International Space Station (ISS)

    NASA Image and Video Library

    2001-03-11

    STS-102 astronaut and mission specialist James S. Voss works outside Destiny, the U.S. Laboratory (shown in lower frame) on the International Space Station (ISS), while anchored to the Remote Manipulator System (RMS) robotic arm on the Space Shuttle Discovery during the first of two space walks. During this space walk, the longest to date in space shuttle history, Voss in tandem with Susan Helms (out of frame), prepared the Pressurized Mating Adapter 3 for repositioning from the Unity Module's Earth-facing berth to its port-side berth to make room for the Leonardo Multipurpose Logistics Module (MPLM) supplied by the Italian Space Agency. The The Leonardo MPLM is the first of three such pressurized modules that will serve as the ISS' moving vans, carrying laboratory racks filled with equipment, experiments, and supplies to and from the Station aboard the Space Shuttle. The cylindrical module is approximately 21-feet long and 15- feet in diameter, weighing almost 4.5 tons. It can carry up to 10 tons of cargo in 16 standard Space Station equipment racks. Of the 16 racks the module can carry, 5 can be furnished with power, data, and fluid to support refrigerators or freezers. In order to function as an attached station module as well as a cargo transport, the logistics module also includes components that provide life support, fire detection and suppression, electrical distribution, and computer functions. Launched on May 8, 2001 for nearly 13 days in space, the STS-102 mission was the 8th spacecraft assembly flight to the ISS and NASA's 103rd overall mission. The mission also served as a crew rotation flight. It delivered the Expedition Two crew to the Station and returned the Expedition One crew back to Earth.

  10. International Space Station (ISS)

    NASA Image and Video Library

    2001-02-01

    The International Space Station (ISS) Payload Operations Center (POC) at NASA's Marshall Space Flight Center (MSFC) in Huntsville, Alabama, is the world's primary science command post for the International Space Station (ISS), the most ambitious space research facility in human history. The Payload Operations team is responsible for managing all science research experiments aboard the Station. The center is also home for coordination of the mission-plarning work of variety of international sources, all science payload deliveries and retrieval, and payload training and safety programs for the Station crew and all ground personnel. Within the POC, critical payload information from the ISS is displayed on a dedicated workstation, reading both S-band (low data rate) and Ku-band (high data rate) signals from a variety of experiments and procedures operated by the ISS crew and their colleagues on Earth. The POC is the focal point for incorporating research and experiment requirements from all international partners into an integrated ISS payload mission plan. This photograph is an overall view of the MSFC Payload Operations Center displaying the flags of the countries participating the ISS. The flags at the left portray The United States, Canada, France, Switzerland, Netherlands, Japan, Brazil, and Sweden. The flags at the right portray The Russian Federation, Italy, Germany, Belgium, Spain, United Kingdom, Denmark, and Norway.

  11. International Space Station (ISS)

    NASA Image and Video Library

    2002-06-09

    The STS-111 mission, the 14th Shuttle mission to visit the International Space Station (ISS), was launched on June 5, 2002 aboard the Space Shuttle Orbiter Endeavour. On board were the STS-111 and Expedition Five crew members. Astronauts Kerneth D. Cockrell, commander; Paul S. Lockhart, pilot, and mission specialists Franklin R. Chang-Diaz and Philippe Perrin were the STS-111 crew members. Expedition Five crew members included Cosmonaut Valeri G. Korzun, commander, Astronaut Peggy A. Whitson and Cosmonaut Sergei Y. Treschev, flight engineers. Three space walks enabled the STS-111 crew to accomplish the delivery and installation of the Mobile Remote Servicer Base System (MBS), an important part of the Station's Mobile Servicing System that allows the robotic arm to travel the length of the Station, which is necessary for future construction tasks; the replacement of a wrist roll joint on the Station's robotic arm; and the task of unloading supplies and science experiments from the Leonardo multipurpose Logistics Module, which made its third trip to the orbital outpost. In this photograph, the Space Shuttle Endeavour, back dropped by the blackness of space, is docked to the pressurized Mating Adapter (PMA-2) at the forward end of the Destiny Laboratory on the ISS. A portion of the Canadarm2 is visible on the right and Endeavour's robotic arm is in full view as it is stretched out with the S0 (S-zero) Truss at its end.

  12. New Crew Journeys to the Space Station on This Week @NASA – October 21, 2016

    NASA Image and Video Library

    2016-10-21

    On Oct. 19, NASA astronaut Shane Kimbrough and his Expedition 49-50 crewmates, Sergey Ryzhikov and Andrey Borisenko, of the Russian Space Agency Roscosmos, launched aboard a Soyuz spacecraft to the International Space Station from the Baikonur Cosmodrome in Kazakhstan. Two days later, when the trio arrived at the orbiting laboratory, they were welcomed aboard by station Commander Anatoly Ivanishin of Roscosmos, Kate Rubins of NASA and Takuya Onishi of the Japan Aerospace Exploration Agency – bringing the space station back to its full complement of six crew members. Also, ISS Cargo Mission Launches from Wallops, Juno Mission and Science Update, and Drone Air Traffic Management Test!

  13. Prospects for Interdisciplinary Science Aboard the International Space Station

    NASA Technical Reports Server (NTRS)

    Robinson, Julie A.

    2011-01-01

    The assembly of the International Space Station was completed in early 2011, and is now embarking on its first year of the coming decade of use as a laboratory. Two key types of physical science research are enabled by ISS: studies of processes that are normally masked by gravity, and instruments that take advantage of its position as a powerful platform in orbit. The absence of buoyancy-driven convection enables experiments in diverse areas such as fluids near the critical point, Marangoni convection, combustion, and coarsening of metal alloys. The positioning of such a powerful platform in orbit with robotic transfer and instrument support also provides a unique alternative platform for astronomy and physics instruments. Some of the operating or planned instruments related to fundamental physics on the International Space Station include MAXI (Monitoring all-sky X-ray Instrument for ISS), the Alpha Magnetic Spectrometer, CALET (Calorimetric Electron Telescope), and ACES (Atomic Clock Experiment in Space). The presentation will conclude with an overview of pathways for funding different types of experiments from NASA funding to the ISS National Laboratory, and highlights of the streamlining of services to help scientists implement their experiments on ISS.

  14. Space Station Crew Members Discuss Life in Space with the Media

    NASA Image and Video Library

    2018-01-03

    Aboard the International Space Station, Expedition 54 Flight Engineers Mark Vande Hei and Scott Tingle of NASA and Flight Engineer Norishige Kanai of the Japan Aerospace Exploration Agency (JAXA) discussed life and research on the complex during a pair of in-flight interviews Jan. 3 with KMSP-TV, Minneapolis and the Voice of America. Vande Hei has been on board the station since September, while Tingle and Kanai are in the third week of a planned six-month mission.

  15. Speculations on future opportunities to evolve Brayton powerplants aboard the space station

    NASA Technical Reports Server (NTRS)

    English, Robert E.

    1987-01-01

    The Space Station provides a unique, low-risk environment in which to evolve new capabilities. In this way, the Space Station will grow in capacity, in its range of capabilities, and its economy of operation as a laboratory and as a center for space operations. Although both Rankine and Brayton cycles, two concepts for solar dynamic power generation, now compete to power the station, this paper confines its attention to the Brayton cycle using a mixture of He and Xe as its working fluid. Such a Brayton powerplant to supply the station's increasing demands for both electric power and heat has the potential to gradually evolve higher and higher performance by exploiting already-evolved materials (ASTAR-811C and molten-Li heat storage), its peak cycle temperature rising ultimately to 1500 K. Adapting the station to exploit long tethers (200 to 300 km long) could yield increases in payloads to LEO, to GEO, and to distant destinations in the solar system. Such tethering of the Space Station would not only require additional power for electric propulsion but also would so increase nuclear safety that nuclear powerplants might provide this power. From an 8000-kWt SP-100 reactor, thermoelectric power generation could produce 300 kWe, or adapted solar-Brayton cycle, 2400 to 2800 kWe.

  16. Development of a Space Station Operations Management System

    NASA Technical Reports Server (NTRS)

    Brandli, A. E.; Mccandless, W. T.

    1988-01-01

    To enhance the productivity of operations aboard the Space Station, a means must be provided to augment, and frequently to supplant, human effort in support of mission operations and management, both on the ground and onboard. The Operations Management System (OMS), under development at the Johnson Space Center, is one such means. OMS comprises the tools and procedures to facilitate automation of station monitoring, control, and mission planning tasks. OMS mechanizes, and hence rationalizes, execution of tasks traditionally performed by mission planners, the mission control center team, onboard System Management software, and the flight crew.

  17. Development of a Space Station Operations Management System

    NASA Astrophysics Data System (ADS)

    Brandli, A. E.; McCandless, W. T.

    To enhance the productivity of operations aboard the Space Station, a means must be provided to augment, and frequently to supplant, human effort in support of mission operations and management, both on the ground and onboard. The Operations Management System (OMS), under development at the Johnson Space Center, is one such means. OMS comprises the tools and procedures to facilitate automation of station monitoring, control, and mission planning tasks. OMS mechanizes, and hence rationalizes, execution of tasks traditionally performed by mission planners, the mission control center team, onboard System Management software, and the flight crew.

  18. Catastrophic Failure Modes Assessment of the International Space Station Alpha

    NASA Technical Reports Server (NTRS)

    Lutz, B. E. P.; Goodwin, C. J.

    1996-01-01

    This report summarizes a series of analyses to quantify the hazardous effects of meteoroid/debris penetration of Space Station Alpha manned module protective structures. These analyses concentrate on determining (a) the critical crack length associated with six manned module pressure wall designs that, if exceeded, would lead to unstopped crack propagation and rupture of manned modules, and (b) the likelihood of crew or station loss following penetration of unsymmetrical di-methyl hydrazine tanks aboard the proposed Russian FGB ('Tug') propulsion module and critical elements aboard the control moment gyro module (SPP-1). Results from these quantified safety analyses are useful in improving specific design areas, thereby reducing the overall likelihood of crew or station loss following orbital debris penetration.

  19. A Year of Education on the Space Station Highlighted During In-Fight Event

    NASA Image and Video Library

    2017-10-16

    Aboard the International Space Station, Expedition 53 Flight Engineers Joe Acaba of NASA, a former educator, and Paolo Nespoli of the European Space Agency discussed the value of education aboard the orbital complex during a Facebook Live question and answer session Oct. 16. Joined by ISS Program Manager Kirk Shireman on the ground from the Johnson Space Center in Houston, Acaba and Nespoli fielded questions about their life and work in orbit and how it can stimulate students to pursue careers in mathematics, science and engineering. Acaba and another former educator, NASA astronaut Ricky Arnold who will launch to the station next March, are conducting back-to-back missions on the station to contribute their educator skills in a year’s worth of interaction with students around the world.

  20. Technology development for laser-cooled clocks on the International Space Station

    NASA Technical Reports Server (NTRS)

    Klipstein, W. M.

    2003-01-01

    The PARCS experiment will use a laser-cooled cesium atomic clock operating in the microgravity environment aboard the International Space Station to provide both advanced tests of gravitational theory to demonstrate a new cold-atom clock technology for space.

  1. Project EGRESS: Earthbound Guaranteed Reentry from Space Station. the Design of an Assured Crew Recovery Vehicle for the Space Station

    NASA Technical Reports Server (NTRS)

    1990-01-01

    Unlike previously designed space-based working environments, the shuttle orbiter servicing the space station will not remain docked the entire time the station is occupied. While an Apollo capsule was permanently available on Skylab, plans for Space Station Freedom call for a shuttle orbiter to be docked at the space station for no more than two weeks four times each year. Consideration of crew safety inspired the design of an Assured Crew Recovery Vehicle (ACRV). A conceptual design of an ACRV was developed. The system allows the escape of one or more crew members from Space Station Freedom in case of emergency. The design of the vehicle addresses propulsion, orbital operations, reentry, landing and recovery, power and communication, and life support. In light of recent modifications in space station design, Project EGRESS (Earthbound Guaranteed ReEntry from Space Station) pays particular attention to its impact on space station operations, interfaces and docking facilities, and maintenance needs. A water-landing medium-lift vehicle was found to best satisfy project goals of simplicity and cost efficiency without sacrificing safety and reliability requirements. One or more seriously injured crew members could be returned to an earth-based health facility with minimal pilot involvement. Since the craft is capable of returning up to five crew members, two such permanently docked vehicles would allow a full evacuation of the space station. The craft could be constructed entirely with available 1990 technology, and launched aboard a shuttle orbiter.

  2. International Space Station: Expedition 2000

    NASA Technical Reports Server (NTRS)

    2000-01-01

    Live footage of the International Space Station (ISS) presents an inside look at the groundwork and assembly of the ISS. Footage includes both animation and live shots of a Space Shuttle liftoff. Phil West, Engineer; Dr. Catherine Clark, Chief Scientist ISS; and Joe Edwards, Astronaut, narrate the video. The first topic of discussion is People and Communications. Good communication is a key component in our ISS endeavor. Dr. Catherine Clark uses two soup cans attached by a string to demonstrate communication. Bill Nye the Science Guy talks briefly about science aboard the ISS. Charlie Spencer, Manager of Space Station Simulators, talks about communication aboard the ISS. The second topic of discussion is Engineering. Bonnie Dunbar, Astronaut at Johnson Space Flight Center, gives a tour of the Japanese Experiment Module (JEM). She takes us inside Node 2 and the U.S. Lab Destiny. She also shows where protein crystal growth experiments are performed. Audio terminal units are used for communication in the JEM. A demonstration of solar arrays and how they are tested is shown. Alan Bell, Project Manager MRMDF (Mobile Remote Manipulator Development Facility), describes the robot arm that is used on the ISS and how it maneuvers the Space Station. The third topic of discussion is Science and Technology. Dr. Catherine Clark, using a balloon attached to a weight, drops the apparatus to the ground to demonstrate Microgravity. The bursting of the balloon is observed. Sherri Dunnette, Imaging Technologist, describes the various cameras that are used in space. The types of still cameras used are: 1) 35 mm, 2) medium format cameras, 3) large format cameras, 4) video cameras, and 5) the DV camera. Kumar Krishen, Chief Technologist ISS, explains inframetrics, infrared vision cameras and how they perform. The Short Arm Centrifuge is shown by Dr. Millard Reske, Senior Life Scientist, to subject astronauts to forces greater than 1-g. Reske is interested in the physiological effects of

  3. Space-Based Reconfigurable Software Defined Radio Test Bed Aboard International Space Station

    NASA Technical Reports Server (NTRS)

    Reinhart, Richard C.; Lux, James P.

    2014-01-01

    The National Aeronautical and Space Administration (NASA) recently launched a new software defined radio research test bed to the International Space Station. The test bed, sponsored by the Space Communications and Navigation (SCaN) Office within NASA is referred to as the SCaN Testbed. The SCaN Testbed is a highly capable communications system, composed of three software defined radios, integrated into a flight system, and mounted to the truss of the International Space Station. Software defined radios offer the future promise of in-flight reconfigurability, autonomy, and eventually cognitive operation. The adoption of software defined radios offers space missions a new way to develop and operate space transceivers for communications and navigation. Reconfigurable or software defined radios with communications and navigation functions implemented in software or VHDL (Very High Speed Hardware Description Language) provide the capability to change the functionality of the radio during development or after launch. The ability to change the operating characteristics of a radio through software once deployed to space offers the flexibility to adapt to new science opportunities, recover from anomalies within the science payload or communication system, and potentially reduce development cost and risk by adapting generic space platforms to meet specific mission requirements. The software defined radios on the SCaN Testbed are each compliant to NASA's Space Telecommunications Radio System (STRS) Architecture. The STRS Architecture is an open, non-proprietary architecture that defines interfaces for the connections between radio components. It provides an operating environment to abstract the communication waveform application from the underlying platform specific hardware such as digital-to-analog converters, analog-to-digital converters, oscillators, RF attenuators, automatic gain control circuits, FPGAs, general-purpose processors, etc. and the interconnections among

  4. Space Station Crew Member Discusses Life in Space with Reporters

    NASA Image and Video Library

    2018-01-05

    Aboard the International Space Station, Expedition 54 Flight Engineer Norishige Kanai of the Japan Aerospace Exploration Agency (JAXA) discussed life and research on the orbital laboratory during an in-flight question and answer session Jan. 5 with Japanese reporters gathered at JAXA’s offices in Tokyo. Kanai is in the third week of a planned six-month mission on the complex.

  5. International Space Station (ISS)

    NASA Image and Video Library

    2007-06-08

    Headed toward Earth orbit and a link up with the International Space Station (ISS), the Space Shuttle Atlantis lifted off from Kennedy Space Center on June 8, 2007. Aboard were STS-117 astronauts James F. Reilly II, Steven R. Swanson, Patrick G. Forrester and John D. “Danny” Olivas, all mission specialists; Frederick W. (Rick) Sturckow, commander; Lee J. Archambault, pilot; and Clayton Anderson, mission specialist who joined the Expedition 15 crew. The crew members along with the Expedition 15 crew spent 8 days resuming construction on the ISS with the installation of the second and third starboard truss segments (S3 and S4) with Photovoltaic Radiator (PVR), and retracted the P6 starboard solar array wing and radiator for later use.

  6. Space Station Crew Discusses Life in Space with a Media Outlet

    NASA Image and Video Library

    2017-12-26

    Aboard the International Space Station, Expedition 54 Flight Engineers Mark Vande Hei, Joe Acaba and Scott Tingle of NASA and Flight Engineer Norishige Kanai of the Japan Aerospace Exploration Agency (JAXA) discussed their mission and life and research on orbit during an in-flight interview Dec. 26 with the online media outlet, Mic. Tingle ad Kanai recently arrived at the station for a six-month mission, joining Vande Hei and Acaba, who have lived on the orbital laboratory since September.

  7. High current/high power beam experiments from the space station

    NASA Technical Reports Server (NTRS)

    Cohen, Herbert A.

    1986-01-01

    In this overview, on the possible uses of high power beams aboard the space station, the advantages of the space station as compared to previous space vehicles are considered along with the kind of intense beams that could be generated, the possible scientific uses of these beams and associated problems. This order was delibrately chosen to emphasize that the means, that is, the high power particle ejection devices, will lead towards the possible ends, scientific measurements in the Earth's upper atmosphere using large fluxes of energetic particles.

  8. Experiments to ensure Space Station fire safety - A challenge

    NASA Technical Reports Server (NTRS)

    Youngblood, W. W.; Seiser, K. M.

    1988-01-01

    Three experiments have been formulated in order to address prominent fire safety requirements aboard the NASA Space Shuttle; these experiments are to be conducted as part of a Space Station-based Technology Development Mission for the growth phase of Space Station construction and operation. The experiments are: (1) an investigation of the flame-spread rate and combustion-product evolution in the burning of typical spacecraft materials in low gravity; (2) an evaluation of the interaction of fires and candidate fire extinguishers in low gravity; and (3) an investigation of the persistence and propagation of smoldering and deep-seated combustion in low gravity.

  9. International Space Station (ISS)

    NASA Image and Video Library

    2002-10-16

    This image of the International Space Station (ISS) was photographed by one of the crewmembers of the STS-112 mission following separation from the Space Shuttle Orbiter Atlantis as the orbiter pulled away from the ISS. The primary payloads of this mission, International Space Station Assembly Mission 9A, were the Integrated Truss Assembly S1 (S-One), the Starboard Side Thermal Radiator Truss, and the Crew Equipment Translation Aid (CETA) cart to the ISS. The S1 truss provides structural support for the orbiting research facility's radiator panels, which use ammonia to cool the Station's complex power system. The S1 truss was attached to the S0 (S Zero) truss, which was launched on April 8, 2002 aboard the STS-110, and flows 637 pounds of anhydrous ammonia through three heat-rejection radiators. The truss is 45-feet long, 15-feet wide, 10-feet tall, and weighs approximately 32,000 pounds. The CETA cart was attached to the Mobil Transporter and will be used by assembly crews on later missions. Manufactured by the Boeing Company in Huntington Beach, California, the truss primary structure was transferred to the Marshall Space Flight Center in February 1999 for hardware installations and manufacturing acceptance testing. The launch of the STS-112 mission occurred on October 7, 2002, and its 11-day mission ended on October 18, 2002.

  10. Expedition 50/51 Launches to Space Station on This Week @NASA – November 18, 2016

    NASA Image and Video Library

    2016-11-18

    The Expedition 50/51 crew, including NASA astronaut Peggy Whitson, launched aboard a Soyuz spacecraft from the Baikonur Cosmodrome in Kazakhstan Nov. 17 eastern time, to begin a two-day flight to the International Space Station. Whitson, Oleg Novitskiy of the Russian space agency Roscosmos and Thomas Pesquet of ESA (European Space Agency) are scheduled to join Expedition 50 commander Shane Kimbrough of NASA and Roscosmos cosmonauts Sergey Ryzhikov and Andrey Borisenko, who all have been aboard the orbiting laboratory since October. Whitson will assume command of the station in February – making her the first woman to command the space station twice. Whitson and her Expedition 50 crewmates are scheduled to return to Earth next spring. Also, Supermoon Shines Bright, Newman Participates in Operation IceBridge, and Advanced Weather Satellite Mission Previewed!

  11. Space Station Discusses Life in Space with the Peace Corps

    NASA Image and Video Library

    2018-02-07

    Aboard the International Space Station, Expedition 54 Flight Engineers Mark Vande Hei and Joe Acaba of NASA discussed life and research on the complex during an in-flight educational event Feb. 7 with members of the Peace Corps gathered in Washington, D.C. Vande Hei and Acaba are in the final weeks of a five and a half month mission on the orbital laboratory.

  12. The Capillary Flow Experiments Aboard the International Space Station: Increments 9-15

    NASA Technical Reports Server (NTRS)

    Jenson, Ryan M.; Weislogel, Mark M.; Tavan, Noel T.; Chen, Yongkang; Semerjian, Ben; Bunnell, Charles T.; Collicott, Steven H.; Klatte, Jorg; dreyer, Michael E.

    2009-01-01

    This report provides a summary of the experimental, analytical, and numerical results of the Capillary Flow Experiment (CFE) performed aboard the International Space Station (ISS). The experiments were conducted in space beginning with Increment 9 through Increment 16, beginning August 2004 and ending December 2007. Both primary and extra science experiments were conducted during 19 operations performed by 7 astronauts including: M. Fincke, W. McArthur, J. Williams, S. Williams, M. Lopez-Alegria, C. Anderson, and P. Whitson. CFE consists of 6 approximately 1 to 2 kg handheld experiment units designed to investigate a selection of capillary phenomena of fundamental and applied importance, such as large length scale contact line dynamics (CFE-Contact Line), critical wetting in discontinuous structures (CFE-Vane Gap), and capillary flows and passive phase separations in complex containers (CFE-Interior Corner Flow). Highly quantitative video from the simply performed flight experiments provide data helpful in benchmarking numerical methods, confirming theoretical models, and guiding new model development. In an extensive executive summary, a brief history of the experiment is reviewed before introducing the science investigated. A selection of experimental results and comparisons with both analytic and numerical predictions is given. The subsequent chapters provide additional details of the experimental and analytical methods developed and employed. These include current presentations of the state of the data reduction which we anticipate will continue throughout the year and culminate in several more publications. An extensive appendix is used to provide support material such as an experiment history, dissemination items to date (CFE publication, etc.), detailed design drawings, and crew procedures. Despite the simple nature of the experiments and procedures, many of the experimental results may be practically employed to enhance the design of spacecraft engineering

  13. Space Station Crew Discusses Their Mission with Michigan Students

    NASA Image and Video Library

    2017-10-06

    Aboard the International Space Station, Expedition 53 Commander Randy Bresnik and Flight Engineer Joe Acaba of NASA discussed life and research on the orbital outpost during an in-flight educational event Oct. 6 with students at the Gaylord St. Mary Cathedral School in Gaylord, Michigan. Bresnik launched to the station in July and is scheduled to be on station through mid-December, while Acaba is in the first month of a planned five-and-a-half month mission on the laboratory.

  14. International Space Station (ISS)

    NASA Image and Video Library

    2002-06-05

    Aboard the Space Shuttle Orbiter Endeavour, the STS-111 mission was launched on June 5, 2002 at 5:22 pm EDT from Kennedy's launch pad. On board were the STS-111 and Expedition Five crew members. Astronauts Kenneth D. Cockrell, commander; Paul S. Lockhart, pilot, and mission specialists Franklin R. Chang-Diaz and Philippe Perrin were the STS-111 crew members. Expedition Five crew members included Cosmonaut Valeri G. Korzun, commander, Astronaut Peggy A. Whitson and Cosmonaut Sergei Y. Treschev, flight engineers. Three space walks enabled the STS-111 crew to accomplish mission objectives: the delivery and installation of a new platform for the ISS robotic arm, the Mobile Base System (MBS) which is an important part of the Station's Mobile Servicing System allowing the robotic arm to travel the length of the Station; the replacement of a wrist roll joint on the Station's robotic arm; and unloading supplies and science experiments from the Leonardo Multi-Purpose Logistics Module, which made its third trip to the orbital outpost. Landing on June 19, 2002, the 14-day STS-111 mission was the 14th Shuttle mission to visit the ISS.

  15. International Space Station (ISS)

    NASA Image and Video Library

    2001-02-01

    In the grasp of the Shuttle's Remote Manipulator System (RMS) robot arm, the U.S. Laboratory, Destiny, is moved from its stowage position in the cargo bay of the Space Shuttle Atlantis. This photograph was taken by astronaut Thomas D. Jones during his Extravehicular Activity (EVA). The American-made Destiny module is the cornerstone for space-based research aboard the orbiting platform and the centerpiece of the International Space Station (ISS), where unprecedented science experiments will be performed in the near-zero gravity of space. Destiny will also serve as the command and control center for the ISS. The aluminum module is 8.5- meters (28-feet) long and 4.3-meters (14-feet) in diameter. The laboratory consists of three cylindrical sections and two endcones with hatches that will be mated to other station components. A 50.9-centimeter (20-inch-) diameter window is located on one side of the center module segment. This pressurized module is designed to accommodate pressurized payloads. It has a capacity of 24 rack locations. Payload racks will occupy 15 locations especially designed to support experiments. The Destiny module was built by the Boeing Company under the direction of the Marshall Space Flight Center.

  16. International Space Station (ISS)

    NASA Image and Video Library

    2001-02-01

    In the grasp of the Shuttle's Remote Manipulator System (RMS) robot arm, the U.S. Laboratory, Destiny, is moved from its stowage position in the cargo bay of the Space Shuttle Atlantis. This photograph was taken by astronaut Thomas D. Jones during his Extravehicular Activity (EVA). The American-made Destiny module is the cornerstone for space-based research aboard the orbiting platform and the centerpiece of the International Space Station (ISS), where unprecedented science experiments will be performed in the near-zero gravity of space. Destiny will also serve as the command and control center for the ISS. The aluminum module is 8.5- meters (28-feet) long and 4.3-meters (14-feet) in diameter. The laboratory consists of three cylindrical sections and two endcones with hatches that will be mated to other station components. A 50.9-centimeter- (20-inch-) diameter window is located on one side of the center module segment. This pressurized module is designed to accommodate pressurized payloads. It has a capacity of 24 rack locations. Payload racks will occupy 15 locations especially designed to support experiments. The Destiny module was built by the Boeing Company under the direction of the Marshall Space Flight Center.

  17. Space Station Astronauts Make Safe Landing on This Week @NASA – September 11, 2015

    NASA Image and Video Library

    2015-09-11

    Aboard the International Space Station, the Expedition 45 crew – including new Commander Scott Kelly and Kjell Lindgren of NASA, said goodbye to Gennady Padalka of the Russian Federal Space Agency, Andreas Mogensen of ESA (European Space Agency) and Aidyn Aimbetov of the Kazakh Space Agency (Kazcosmos) as the trio climbed aboard their Soyuz spacecraft for the return trip to Earth. The Soyuz landed safely in Kazakhstan on Sept. 11 Eastern time, Sept. 12 in Kazakhstan -- closing out a 168-day mission for Padalka and an 8-day stay on the station for Mogensen and Aimbetov. Also, First Orion crew module segments welded, SLS Launch Vehicle Stage Adapter, New Ceres imagery, New Horizons update, 9/11 tribute and National Preparedness Month!

  18. Crewmember activity in the middeck and Mir Space Station Base Block

    NASA Image and Video Library

    2016-08-24

    STS091-361-034 (2-12 June 1998) --- Andrew S.W. Thomas signs a plaque containing the names of all the visitors to Russia's Mir space station. Thomas is the final of seven NASA astronauts to serve as a guest cosmonaut researcher aboard Mir as part of International Space Station (ISS) Phase I. Looking on in the background are astronauts Franklin R. Chang-Diaz, payload commander; and Janet L. Kavandi, mission specialist.

  19. Space Station Crew Members Discuss Life in Space with Massachusetts Students

    NASA Image and Video Library

    2018-01-19

    Aboard the International Space Station, Expedition 54 Flight Engineers Joe Acaba and Scott Tingle of NASA and Norishige Kanai of the Japan Aerospace Exploration Agency (JAXA) discussed life and research on the complex during an in-flight educational event Jan. 19 with students gathered at the Christa McAuliffe Challenger Center at Framingham State University in Massachusetts. Acaba is scheduled to return to Earth in late February to wrap up a five-and-a-half month mission, while Tingle and Kanai will remain on the station until early June.

  20. Space Station Crew Discusses Life in Space with California Students

    NASA Image and Video Library

    2017-10-30

    Aboard the International Space Station, Expedition 53 Commander Randy Bresnik and Flight Engineer Joe Acaba of NASA discussed life and research on the outpost during an in-flight educational event Oct. 30 with students at the Santa Monica High School in Santa Monica, California. Acaba, who is a native of southern California, and Bresnik are in various stages of their respective five-and-a half-month missions on the orbital laboratory.

  1. View of the Skylab space station cluster photographed against black sky

    NASA Image and Video Library

    1973-07-28

    SL3-114-1682 (28 July 1973) --- A close-up view of the Skylab Space Station photographed against an Earth background from the Skylab 3 Command and Service Modules (CSM) during station-keeping maneuvers prior to docking. Aboard the Command Module (CM) were astronauts Alan L. Bean, Owen K. Garriott and Jack R. Lousma, who remained with the Skylab Space Station in Earth orbit for 59 days. This picture was taken with a hand-held 70mm Hasselblad camera using a 100mm lens and SO-368 medium speed Ektachrome film. Photo credit: NASA

  2. International Space Station -- Fluids and Combustion Facility

    NASA Technical Reports Server (NTRS)

    2000-01-01

    The Fluids and Combustion Facility (FCF) is a modular, multi-user facility to accommodate microgravity science experiments on board Destiny, the U.S. Laboratory Module for the International Space Station (ISS). The FCF will be a permanet facility aboard the ISS, and will be capable of accommodating up to ten science investigations per year. It will support the NASA Science and Technology Research Plans for the International Space Station (ISS) which require sustained systematic research of the effects of reduced gravity in the areas of fluid physics and combustion science. From left to right are the Combustion Integrated Rack, the Shared Rack, and the Fluids Integrated Rack. The FCF is being developed by the Microgravity Science Division (MSD) at the NASA Glenn Research Center. (Photo Credit: NASA/Marshall Space Flight Center)

  3. Research experiences on materials science in space aboard Salyut and Mir

    NASA Technical Reports Server (NTRS)

    Regel, Liya L.

    1992-01-01

    From 1980 through 1991 approximately 500 materials processing experiments were performed aboard the space stations Salyut 6, Salyut 7 and Mir. This includes work on catalysts, polymers, metals and alloys, optical materials, superconductors, electronic crystals, thin film semiconductors, super ionic crystals, ceramics, and protein crystals. Often the resulting materials were surprisingly superior to those prepared on earth. The Soviets were the first to fabricate a laser (CdS) from a crystal grown in space, the first to grow a heterostructure in space, the first super ionic crystal in space, the first crystals of CdTe and its alloys, the first zeolite crystals, the first protein crystals, the first chromium disilicide glass, etc. The results were used to optimize terrestrial materials processing operations in Soviet industry. The characteristics of these three space stations are reviewed, along with the advantages of a space station for materials research, and the problems encountered by the materials scientists who used them. For example, the stations and the materials processing equipment were designed without significant input from the scientific community that would be using them. It is pointed out that successful results have been achieved also by materials processing at high gravity in large centrifuges. This research is also continuing around the world, including at Clarkson University. It is recommended that experiments be conducted in centrifuges in space, in order to investigate the acceleration regime between earth's gravity and the microgravity achieved in orbiting space stations. One cannot expect to understand the influence of gravity on materials processing from only two data points, earth's gravity and microgravity. One must also understand the influence of fluctuations in acceleration on board space stations, the so-called 'g-jitter.' This paper is presented in outline and graphical form.

  4. Proprietary rights and commercial use of space stations

    NASA Technical Reports Server (NTRS)

    Kempf, Robert F.

    1986-01-01

    The treatment of proprietary rights related to commercial activity aboard an international space station is discussed, with a focus on the relationship between the acquisition (on earth or in space) and protection of such rights. The applicable national and international law is briefly characterized, and consideration is given to patent, trade-secret, and copyright considerations. It is concluded that the provisions of present commercial law can be applied relatively straightforwardly to rights acquired on earth, while the Outer Space Treaty of 1967 and the Convention on Registration of 1976 apply to rights obtained in space.

  5. International Space Station (ISS)

    NASA Image and Video Library

    2000-02-01

    The International Space Station (ISS) Payload Operations Center (POC) at NASA's Marshall Space Flight Center (MSFC) in Huntsville, Alabama, is the world's primary science command post for the (ISS), the most ambitious space research facility in human history. The Payload Operations team is responsible for managing all science research experiments aboard the Station. The center is also home for coordination of the mission-plarning work of variety of international sources, all science payload deliveries and retrieval, and payload training and safety programs for the Station crew and all ground personnel. Within the POC, critical payload information from the ISS is displayed on a dedicated workstation, reading both S-band (low data rate) and Ku-band (high data rate) signals from a variety of experiments and procedures operated by the ISS crew and their colleagues on Earth. The POC is the focal point for incorporating research and experiment requirements from all international partners into an integrated ISS payload mission plan. This photograph is an overall view of the MSFC Payload Operations Center displaying the flags of the countries participating in the ISS. The flags at the left portray The United States, Canada, France, Switzerland, Netherlands, Japan, Brazil, and Sweden. The flags at the right portray The Russian Federation, Italy, Germany, Belgium, Spain, United Kingdom, Denmark, and Norway.

  6. International Space Station (ISS)

    NASA Image and Video Library

    2002-03-20

    Astronaut Daniel W. Bursch, Expedition Four flight engineer, was delighted in capturing this image of Mt. Everest in the Himalayan Range from aboard the International Space Station (ISS). The mountain is near frame center. Because the photo was taken close to orbital sunrise, the low sun angle gave tremendous relief to the mountains. Named for Sir George Everest, the British surveyor-general of India, Mount Everest is the tallest point on earth. Standing 29,028 feet tall, it is 5 1/2 miles above sea level. Mount Everest is located half in Nepal and half in Tibet.

  7. An expert system for simulating electric loads aboard Space Station Freedom

    NASA Technical Reports Server (NTRS)

    Kukich, George; Dolce, James L.

    1990-01-01

    Space Station Freedom will provide an infrastructure for space experimentation. This environment will feature regulated access to any resources required by an experiment. Automated systems are being developed to manage the electric power so that researchers can have the flexibility to modify their experiment plan for contingencies or for new opportunities. To define these flexible power management characteristics for Space Station Freedom, a simulation is required that captures the dynamic nature of space experimentation; namely, an investigator is allowed to restructure his experiment and to modify its execution. This changes the energy demands for the investigator's range of options. An expert system competent in the domain of cryogenic fluid management experimentation was developed. It will be used to help design and test automated power scheduling software for Freedom's electric power system. The expert system allows experiment planning and experiment simulation. The former evaluates experimental alternatives and offers advice on the details of the experiment's design. The latter provides a real-time simulation of the experiment replete with appropriate resource consumption.

  8. International Space Station (ISS)

    NASA Image and Video Library

    2001-03-01

    In this Space Shuttle STS-102 mission image, the Payload Equipment Restraint System H-Strap is shown at the left side of the U.S. Laboratory hatch and behind Astronaut James D. Weatherbee, mission specialist. PERS is an integrated modular system of components designed to assist the crew of the International Space Station (ISS) in restraining and carrying necessary payload equipment and tools in a microgravity environment. The Operations Development Group, Flight Projects Directorate at the Marshall Space Flight Center (MSFC), while providing operation support to the ISS Materials Science Research Facility (MSRF), recognized the need for an on-orbit restraint system to facilitate control of lose objects, payloads, and tools. The PERS is the offspring of that need and it helps the ISS crew manage tools and rack components that would otherwise float away in the near-zero gravity environment aboard the Space Station. The system combines Kevlar straps, mesh pockets, Velcro and a variety of cornecting devices into a portable, adjustable system. The system includes the Single Strap, the H-Strap, the Belly Pack, the Laptop Restraint Belt, and the Tool Page Case. The Single Strap and the H-Strap were flown on this mission. The PERS concept was developed by industrial design students at Auburn University and the MSFC Flight Projects Directorate.

  9. International Space Station Sports a New Truss

    NASA Technical Reports Server (NTRS)

    2002-01-01

    This close-up view of the International Space Station (ISS), newly equipped with its new 27,000-pound S0 (S-zero) truss, was photographed by an astronaut aboard the Space Shuttle Atlantis STS-110 during its ISS flyaround mission while pulling away from the ISS. The STS-110 mission prepared the Station for future spacewalks by installing and outfitting the 43-foot-long S0 truss and preparing the first railroad in space, the Mobile Transporter. The 27,000-pound S0 truss was the first of 9 segments that will make up the Station's external framework that will eventually stretch 356 feet (109 meters), or approximately the length of a football field. This central truss segment also includes a flatcar called the Mobile Transporter and rails that will become the first 'space railroad,' which will allow the Station's robotic arm to travel up and down the finished truss for future assembly and maintenance. The completed truss structure will hold solar arrays and radiators to provide power and cooling for additional international research laboratories from Japan and Europe that will be attached to the Station. STS-110 Extravehicular Activity (EVA) marked the first use of the Station's robotic arm to maneuver spacewalkers around the Station and was the first time all of a Shuttle crew's spacewalks were based out of the Station's Quest Airlock. It was also the first Shuttle to use three Block II Main Engines. The Space Shuttle Orbiter Atlantis STS-110 mission, was launched April 8, 2002 and returned to Earth April 19, 2002.

  10. International Space Station Sports a New Truss

    NASA Technical Reports Server (NTRS)

    2002-01-01

    This close-up view of the International Space Station (ISS), newly equipped with its new 27,000- pound S0 (S-zero) truss, was photographed by an astronaut aboard the Space Shuttle Atlantis STS-110 mission following its undocking from the ISS. The STS-110 mission prepared the Station for future spacewalks by installing and outfitting the 43-foot-long S0 truss and preparing the first railroad in space, the Mobile Transporter. The 27,000 pound S0 truss was the first of 9 segments that will make up the Station's external framework that will eventually stretch 356 feet (109 meters), or approximately the length of a football field. This central truss segment also includes a flatcar called the Mobile Transporter and rails that will become the first 'space railroad,' which will allow the Station's robotic arm to travel up and down the finished truss for future assembly and maintenance. The completed truss structure will hold solar arrays and radiators to provide power and cooling for additional international research laboratories from Japan and Europe that will be attached to the Station. STS-110 Extravehicular Activity (EVA) marked the first use of the Station's robotic arm to maneuver spacewalkers around the Station and was the first time all of a shuttle crew's spacewalks were based out of the Station's Quest Airlock. It was also the first Shuttle to use three Block II Main Engines. The Space Shuttle Orbiter Atlantis STS-110 mission, was launched April 8, 2002 and returned to Earth April 19, 2002.

  11. International Space Station Sports a New Truss

    NASA Technical Reports Server (NTRS)

    2002-01-01

    This close-up view of the International Space Station (ISS), newly equipped with its new 27,000-pound S0 (S-zero) truss, was photographed by an astronaut aboard the Space Shuttle Atlantis STS-110 during its ISS flyaround mission while pulling away from the ISS. The STS-110 mission prepared the Station for future spacewalks by installing and outfitting the 43-foot-long S0 truss and preparing the first railroad in space, the Mobile Transporter. The 27,000 pound S0 truss was the first of 9 segments that will make up the Station's external framework that will eventually stretch 356 feet (109 meters), or approximately the length of a football field. This central truss segment also includes a flatcar called the Mobile Transporter and rails that will become the first 'space railroad,' which will allow the Station's robotic arm to travel up and down the finished truss for future assembly and maintenance. The completed truss structure will hold solar arrays and radiators to provide power and cooling for additional international research laboratories from Japan and Europe that will be attached to the Station. STS-110 Extravehicular Activity (EVA) marked the first use of the Station's robotic arm to maneuver spacewalkers around the Station and was the first time all of a shuttle crew's spacewalks were based out of the Station's Quest Airlock. It was also the first Shuttle to use three Block II Main Engines. The Space Shuttle Orbiter Atlantis STS-110 mission, was launched April 8, 2002 and returned to Earth April 19, 2002.

  12. International Space Station Sports a New Truss

    NASA Technical Reports Server (NTRS)

    2002-01-01

    This close-up view of the International Space Station (ISS), newly equipped with its new 27,000-pound S0 (S-zero) truss, was photographed by an astronaut aboard the Space Shuttle Atlantis STS-110 upon its ISS flyaround mission while pulling away from the ISS. The STS-110 mission prepared the Station for future spacewalks by installing and outfitting the 43-foot-long S0 truss and preparing the first railroad in space, the Mobile Transporter. The 27,000 pound S0 truss was the first of 9 segments that will make up the Station's external framework that will eventually stretch 356 feet (109 meters), or approximately the length of a football field. This central truss segment also includes a flatcar called the Mobile Transporter and rails that will become the first 'space railroad,' which will allow the Station's robotic arm to travel up and down the finished truss for future assembly and maintenance. The completed truss structure will hold solar arrays and radiators to provide power and cooling for additional international research laboratories from Japan and Europe that will be attached to the Station. STS-110 Extravehicular Activity (EVA) marked the first use of the Station's robotic arm to maneuver spacewalkers around the station and was the first time all of a Shuttle crew's spacewalks were based out of the Station's Quest Airlock. It was also the first Shuttle to use three Block II Main Engines. The Space Shuttle Orbiter Atlantis STS-110 mission, was launched April 8, 2002 and returned to Earth April 19, 2002.

  13. International Space Station Sports a New Truss

    NASA Technical Reports Server (NTRS)

    2002-01-01

    This close-up view of the International Space Station (ISS), newly equipped with its new 27,000-pound S0 (S-zero) truss, was photographed by an astronaut aboard the Space Shuttle Atlantis STS-110 mission following its undocking from the ISS. The STS-110 mission prepared the Station for future spacewalks by installing and outfitting the 43-foot-long S0 truss and preparing the first railroad in space, the Mobile Transporter. The 27,000 pound S0 truss was the first of 9 segments that will make up the Station's external framework that will eventually stretch 356 feet (109 meters), or approximately the length of a football field. This central truss segment also includes a flatcar called the Mobile Transporter and rails that will become the first 'space railroad,' which will allow the Station's robotic arm to travel up and down the finished truss for future assembly and maintenance. The completed truss structure will hold solar arrays and radiators to provide power and cooling for additional international research laboratories from Japan and Europe that will be attached to the Station. STS-110 Extravehicular Activity (EVA) marked the first use of the Station's robotic arm to maneuver spacewalkers around the Station and was the first time all of a Shuttle crew's spacewalks were based out of the Station's Quest Airlock. It was also the first Shuttle to use three Block II Main Engines. The Space Shuttle Orbiter Atlantis STS-110 mission, was launched April 8, 2002 and returned to Earth April 19, 2002.

  14. Space Station Crew Discusses Life in Space with Idaho Students

    NASA Image and Video Library

    2018-02-08

    Aboard the International Space Station, Expedition 54 Flight Engineers Mark Vande Hei, Joe Acaba and Scott Tingle of NASA discussed life and research on the orbital laboratory during an in-flight educational event Feb. 8 with students from Boise State University in Idaho. Vande Hei and Acaba are in the final weeks of a five and a half month mission on the complex while Tingle will remain in orbit until early June.

  15. Space Station Crew Members Discuss Life in Space with Media

    NASA Image and Video Library

    2017-11-03

    Aboard the International Space Station, Expedition 53 Commander Randy Bresnik and Flight Engineers Joe Acaba and Mark Vande Hei of NASA discussed life and research on the orbital laboratory during in-flight interviews Nov. 3 with KARE-TV in Minneapolis and the “Fox and Friends” morning talk program on the Fox Network. The astronauts are in various stages of their respective five-and-a-half-month missions on the orbital outpost.

  16. Ultra High Definition Video from the International Space Station (Reel 1)

    NASA Image and Video Library

    2015-06-15

    The view of life in space is getting a major boost with the introduction of 4K Ultra High-Definition (UHD) video, providing an unprecedented look at what it's like to live and work aboard the International Space Station. This important new capability will allow researchers to acquire high resolution - high frame rate video to provide new insight into the vast array of experiments taking place every day. It will also bestow the most breathtaking views of planet Earth and space station activities ever acquired for consumption by those still dreaming of making the trip to outer space.

  17. Astronaut Jack Lousma seen outside Skylab space station during EVA

    NASA Image and Video Library

    1973-08-06

    S73-31976 (5 Aug. 1973) --- Astronaut Jack R. Lousma, Skylab 3 pilot, is seen outside the Skylab space station in Earth orbit during the Aug. 5, 1973 Skylab 3 extravehicular activity (EVA) in this photographic reproduction taken from a television transmission made by a color TV camera aboard the space station. Scientist-astronaut Owen K. Garriott, Skylab 3 science pilot, participated in the EVA with Lousma. During the EVA the two crewmen deployed the twin pole solar shield to help shade the Orbital Workshop. Photo credit: NASA

  18. Space Station Crew Member Discusses Life in Space with Houston Students

    NASA Image and Video Library

    2018-02-13

    Aboard the International Space Station, Expedition 54 Flight Engineer Joe Acaba of NASA discussed his mission and research on the complex during an in-flight educational event Feb. 13 with students at the downtown campus of the University of Houston. Acaba is in the final weeks of a five-and-a-half-month mission on the unique microgravity laboratory, aiming for a return to Earth on Feb. 27.

  19. Space_Station_Crew_Member_Discusses_Life_in_Space_with_Texas_Students

    NASA Image and Video Library

    2018-02-14

    Aboard the International Space Station, Expedition 54 Flight Engineer Joe Acaba of NASA discussed his mission and research on the complex during an in-flight educational event Feb. 14 with students at the Briarhill Middle School in Highland Village, Texas. Acaba is in the final weeks of a five-and-a-half-month mission on the unique microgravity laboratory, aiming for a return to Earth on Feb. 27.

  20. Automating security monitoring and analysis for Space Station Freedom's electric power system

    NASA Technical Reports Server (NTRS)

    Dolce, James L.; Sobajic, Dejan J.; Pao, Yoh-Han

    1990-01-01

    Operating a large, space power system requires classifying the system's status and analyzing its security. Conventional algorithms are used by terrestrial electric utilities to provide such information to their dispatchers, but their application aboard Space Station Freedom will consume too much processing time. A new approach for monitoring and analysis using adaptive pattern techniques is presented. This approach yields an on-line security monitoring and analysis algorithm that is accurate and fast; and thus, it can free the Space Station Freedom's power control computers for other tasks.

  1. Automating security monitoring and analysis for Space Station Freedom's electric power system

    NASA Technical Reports Server (NTRS)

    Dolce, James L.; Sobajic, Dejan J.; Pao, Yoh-Han

    1990-01-01

    Operating a large, space power system requires classifying the system's status and analyzing its security. Conventional algorithms are used by terrestrial electric utilities to provide such information to their dispatchers, but their application aboard Space Station Freedom will consume too much processing time. A novel approach for monitoring and analysis using adaptive pattern techniques is presented. This approach yields an on-line security monitoring and analysis algorithm that is accurate and fast; and thus, it can free the Space Station Freedom's power control computers for other tasks.

  2. Conceptual design and integration of a space station resistojet propulsion assembly

    NASA Technical Reports Server (NTRS)

    Tacina, Robert R.

    1987-01-01

    The resistojet propulsion module is designed as a simple, long life, low risk system offering operational flexibility to the space station program. It can dispose of a wide variety of typical space station waste fluids by using them as propellants for orbital maintenance. A high temperature mode offers relatively high specific impulse with long life while a low temperature mode can propulsively dispose of mixtures that contain oxygen or hydrocarbons without reducing thruster life or generating particulates in the plume. A low duty cycle and a plume that is confined to a small aft region minimizes the impacts on the users. Simple interfaces with other space station systems facilitate integration. It is concluded that there are no major obstacles and many advantages to developing, installing, and operating a resistojet propulsion module aboard the Initial Operational Capability (IOC) space station.

  3. International Space Station (ISS)

    NASA Image and Video Library

    2003-05-11

    Many odd looking moon photos have been captured over the years by astronauts aboard the International Space Station. Even so, this photograph, taken by the crew over Russia on May 11, 2003, must have come as a surprise. The moon which is really a quarter of a million miles away, appears to be floating inside the Earth's atmosphere. The picture is tricky because of its uneven lighting. With the sun's elevation angle at only 6 degrees, night is falling on the left side of the image while it is still broad daylight on the right side. This gradient of sunlight is the key to the illusion.

  4. Node 2 and Japanese Experimental Module (JEM) In Space Station Processing Facility

    NASA Technical Reports Server (NTRS)

    2003-01-01

    Lining the walls of the Space Station Processing Facility at the Kennedy Space Center (KSC) are the launch awaiting U.S. Node 2 (lower left). and the first pressurized module of the Japanese Experimental Module (JEM) (upper right), named 'Kibo' (Hope). Node 2, the 'utility hub' and second of three connectors between International Space Station (ISS) modules, was built in the Torino, Italy facility of Alenia Spazio, an International contractor based in Rome. Japan's major contribution to the station, the JEM, was built by the Space Development Agency of Japan (NASDA) at the Tsukuba Space Center near Tokyo and will expand research capabilities aboard the station. Both were part of an agreement between NASA and the European Space Agency (ESA). The Node 2 will be the next pressurized module installed on the Station. Once the Japanese and European laboratories are attached to it, the resulting roomier Station will expand from the equivalent space of a 3-bedroom house to a 5-bedroom house. The Marshall Space Center in Huntsville, Alabama manages the Node program for NASA.

  5. International Space Station (ISS)

    NASA Image and Video Library

    2001-02-16

    The International Space Station (ISS), with the newly installed U.S. Laboratory, Destiny, is backdropped over clouds, water and land in South America. South Central Chile shows up at the bottom of the photograph. Just below the Destiny, the Chacao Charnel separates the large island of Chile from the mainland and connects the Gulf of Coronado on the Pacific side with the Gulf of Ancud, southwest of the city of Puerto Montt. The American-made Destiny module is the cornerstone for space-based research aboard the orbiting platform and the centerpiece of the ISS, where unprecedented science experiments will be performed in the near-zero gravity of space. Destiny will also serve as the command and control center for the ISS. The aluminum module is 8.5-meters (28-feet) long and 4.3-meters (14-feet) in diameter. The laboratory consists of three cylindrical sections and two endcones with hatches that will be mated to other station components. A 50.9-centimeter (20-inch-) diameter window is located on one side of the center module segment. This pressurized module is designed to accommodate pressurized payloads. It has a capacity of 24 rack locations. Payload racks will occupy 15 locations especially designed to support experiments. The Destiny module was built by the Boeing Company under the direction of the Marshall Space Flight Center.

  6. Aboard the Space Shuttle.

    ERIC Educational Resources Information Center

    Steinberg, Florence S.

    This 32-page pamphlet contains color photographs and detailed diagrams which illustrate general descriptive comments about living conditions aboard the space shuttle. Described are details of the launch, the cabin, the condition of weightlessness, food, sleep, exercise, atmosphere, personal hygiene, medicine, going EVA (extra-vehicular activity),…

  7. Space Station Crew Marks the 10th Anniversary of the Launching of the European Columbus Module

    NASA Image and Video Library

    2018-02-07

    Aboard the International Space Station, Expedition 54 Flight Engineers Joe Acaba and Mark Vande Hei of NASA took time to commemorate the 10th anniversary of the launching of the European Columbus module during an in-flight event Feb. 7 with European Space Agency officials gathered in Noordwijk, Netherlands. The Columbus science laboratory was launched on Feb. 7, 2008 aboard the space shuttle Atlantis on the STS-122 mission commanded by former NASA astronaut Stephen Frick.

  8. The International Space Station: A Pathway to the Future

    NASA Technical Reports Server (NTRS)

    Kitmacher, Gary H.; Gerstenmaier, William H.; Bartoe, John-David F.; Mustachio, Nicholas

    2004-01-01

    Nearly six years after the launch of the first International Space Station element, and four years after its initial occupation, the United States and our 16 international partners have made great strides in operating this impressive Earth orbiting research facility. This past year we have done so in the face of the adversity of operating without the benefit of the Space Shuttle. In his January 14, 2004, speech announcing a new vision for America's space program, President Bush affirmed the United States' commitment to completing construction of the International Space Station by 2010. The President also stated that we would focus our future research aboard the Station on the longterm effects of space travel on human biology. This research will help enable human crews to venture through the vast voids of space for months at a time. In addition, ISS affords a unique opportunity to serve as an engineering test bed for hardware and operations critical to the exploration tasks. NASA looks forward to working with our partners on International Space Station research that will help open up new pathways for future exploration and discovery beyond low Earth orbit. This paper provides an overview of the International Space Station Program focusing on a review of the events of the past year, as well as plans for next year and the future.

  9. International Space Station (ISS)

    NASA Image and Video Library

    2001-10-08

    The STS-108 crew members take a break from their training to pose for their preflight portrait. Astronauts Dominic L. Gorie right) and Mark E. Kelly, commander and pilot, respectively, are seated in front. In the rear are astronauts Linda M. Godwin and Daniel L. Tani, both mission specialists. The 12th flight to the International Space Station (ISS) and final flight of 2001, the STS-108 mission launched aboard the Space Shuttle Endeavour on December 5, 2001. They were accompanied to the ISS by the Expedition Four crew, which remained on board the orbital outpost for several months. The Expedition Three crew members returned home with the STS-108 astronauts. In addition to the Expedition crew exchange, STS-108 crew deployed the student project STARSHINE, and delivered 2.7 metric tons (3 tons) of equipment and supplies to the ISS.

  10. Space shuttle Atlantis preparing to dock with Mir space station

    NASA Image and Video Library

    1995-06-28

    NM18-309-018 (28 June 1995) --- The Space Shuttle Atlantis orbits Earth at a point above Iraq as photographed by one of the Mir-18 crew members aboard Russia's Mir Space Station. The image was photographed prior to rendezvous and docking of the two spacecraft. The Spacelab science module and the tunnel connecting it to the crew cabin, as well as the added mechanism for interface with the Mir's docking system can be easily seen. The geography pictured is 60 miles northwest of Baghdad. The Buhayrat Ath Tharthar (reservoir) is the widest body of water visible. Also seen are the Tigris and Euphrates Rivers.

  11. The space station integrated refuse management system

    NASA Technical Reports Server (NTRS)

    Anderson, Loren A.

    1988-01-01

    The design and development of an Integrated Refuse Management System for the proposed International Space Station was performed. The primary goal was to make use of any existing potential energy or material properties that refuse may possess. The secondary goal was based on the complete removal or disposal of those products that could not, in any way, benefit astronauts' needs aboard the Space Station. The design of a continuous living and experimental habitat in space has spawned the need for a highly efficient and effective refuse management system capable of managing nearly forty-thousand pounds of refuse annually. To satisfy this need, the following four integrable systems were researched and developed: collection and transfer; recycle and reuse; advance disposal; and propulsion assist in disposal. The design of a Space Station subsystem capable of collecting and transporting refuse from its generation site to its disposal and/or recycling site was accomplished. Several methods of recycling or reusing refuse in the space environment were researched. The optimal solution was determined to be the method of pyrolysis. The objective of removing refuse from the Space Station environment, subsequent to recycling, was fulfilled with the design of a jettison vehicle. A number of jettison vehicle launch scenarios were analyzed. Selection of a proper disposal site and the development of a system to propel the vehicle to that site were completed. Reentry into the earth atmosphere for the purpose of refuse incineration was determined to be the most attractive solution.

  12. Science and Technology Research Directions for the International Space Station

    NASA Technical Reports Server (NTRS)

    1999-01-01

    The International Space Station (ISS) is a unique and unprecedented space research facility. Never before have scientists and engineers had access to such a robust, multidisciplinary, long-duration microgravity laboratory. To date, the research community has enjoyed success aboard such platforms as Skylab, the Space Shuttle, and the Russian Mir space station. However, these platforms were and are limited in ways that the ISS is not. Encompassing four times the volume of Mir, the ISS will support dedicated research facilities for at least a dozen scientific and engineering disciplines. Unlike the Space Shuttle, which must return to Earth after less than three weeks in space, the ISS will accommodate experiments that require many weeks even months to complete. Continual access to a microgravity laboratory will allow selected scientific disciplines to progress at a rate far greater than that obtainable with current space vehicles.

  13. Microgravity Science Glovebox (MSG), Space Science's Past, Present and Future Aboard the International Space Station (ISS)

    NASA Technical Reports Server (NTRS)

    Spivey, Reggie; Spearing, Scott; Jordan, Lee

    2012-01-01

    The Microgravity Science Glovebox (MSG) is a double rack facility aboard the International Space Station (ISS), which accommodates science and technology investigations in a "workbench' type environment. The MSG has been operating on the ISS since July 2002 and is currently located in the US Laboratory Module. In fact, the MSG has been used for over 10,000 hours of scientific payload operations and plans to continue for the life of ISS. The facility has an enclosed working volume that is held at a negative pressure with respect to the crew living area. This allows the facility to provide two levels of containment for small parts, particulates, fluids, and gases. This containment approach protects the crew from possible hazardous operations that take place inside the MSG work volume and allows researchers a controlled pristine environment for their needs. Research investigations operating inside the MSG are provided a large 255 liter enclosed work space, 1000 watts of dc power via a versatile supply interface (120, 28, + 12, and 5 Vdc), 1000 watts of cooling capability, video and data recording and real time downlink, ground commanding capabilities, access to ISS Vacuum Exhaust and Vacuum Resource Systems, and gaseous nitrogen supply. These capabilities make the MSG one of the most utilized facilities on ISS. MSG investigations have involved research in cryogenic fluid management, fluid physics, spacecraft fire safety, materials science, combustion, and plant growth technologies. Modifications to the MSG facility are currently under way to expand the capabilities and provide for investigations involving Life Science and Biological research. In addition, the MSG video system is being replaced with a state-of-the-art, digital video system with high definition/high speed capabilities, and with near real-time downlink capabilities. This paper will provide an overview of the MSG facility, a synopsis of the research that has already been accomplished in the MSG, and an

  14. Direct Signal-to-Noise Quality Comparison between an Electronic and Conventional Stethoscope aboard the International Space Station

    NASA Technical Reports Server (NTRS)

    Marshburn, Thomas; Cole, Richard; Ebert, Doug; Bauer, Pete

    2014-01-01

    Introduction: Evaluation of heart, lung, and bowel sounds is routinely performed with the use of a stethoscope to help detect a broad range of medical conditions. Stethoscope acquired information is even more valuable in a resource limited environments such as the International Space Station (ISS) where additional testing is not available. The high ambient noise level aboard the ISS poses a specific challenge to auscultation by stethoscope. An electronic stethoscope's ambient noise-reduction, greater sound amplification, recording capabilities, and sound visualization software may be an advantage to a conventional stethoscope in this environment. Methods: A single operator rated signal-to-noise quality from a conventional stethoscope (Littman 2218BE) and an electronic stethoscope (Litmann 3200). Borborygmi, pulmonic, and cardiac sound quality was ranked with both stethoscopes. Signal-to-noise rankings were preformed on a 1 to 10 subjective scale with 1 being inaudible, 6 the expected quality in an emergency department, 8 the expected quality in a clinic, and 10 the clearest possible quality. Testing took place in the Japanese Pressurized Module (JPM), Unity (Node 2), Destiny (US Lab), Tranquility (Node 3), and the Cupola of the International Space Station. All examinations were conducted at a single point in time. Results: The electronic stethoscope's performance ranked higher than the conventional stethoscope for each body sound in all modules tested. The electronic stethoscope's sound quality was rated between 7 and 10 in all modules tested. In comparison, the traditional stethoscope's sound quality was rated between 4 and 7. The signal to noise ratio of borborygmi showed the biggest difference between stethoscopes. In the modules tested, the auscultation of borborygmi was rated between 5 and 7 by the conventional stethoscope and consistently 10 by the electronic stethoscope. Discussion: This stethoscope comparison was limited to a single operator. However, we

  15. Initial characterization of the microgravity environment of the international space station: increments 2 through 4

    NASA Technical Reports Server (NTRS)

    Jules, Kenol; McPherson, Kevin; Hrovat, Kenneth; Kelly, Eric

    2004-01-01

    The primary objective of the International Space Station (ISS) is to provide a long-term quiescent environment for the conduct of scientific research for a variety of microgravity science disciplines. This paper reports to the microgravity scientific community the results of an initial characterization of the microgravity environment on the International Space Station for increments 2 through 4. During that period almost 70,000 hours of station operations and scientific experiments were conducted. 720 hours of crew research time were logged aboard the orbiting laboratory and over half a terabyte of acceleration data were recorded and much of that was analyzed. The results discussed in this paper cover both the quasi-steady and vibratory acceleration environment of the station during its first year of scientific operation. For the quasi-steady environment, results are presented and discussed for the following: the space station attitudes Torque Equilibrium Attitude and the X-Axis Perpendicular to the Orbital Plane; station docking attitude maneuvers; Space Shuttle joint operation with the station; cabin de-pressurizations and the station water dumps. For the vibratory environment, results are presented for the following: crew exercise, docking events, and the activation/de-activation of both station life support system hardware and experiment hardware. Finally, a grand summary of all the data collected aboard the station during the 1-year period is presented showing where the overall quasi-steady and vibratory acceleration magnitude levels fall over that period of time using a 95th percentile benchmark. Published by Elsevier Ltd.

  16. Development of an atmospheric monitoring plan for space station

    NASA Technical Reports Server (NTRS)

    Casserly, Dennis M.

    1989-01-01

    An environmental health monitoring plan for Space Station will ensure crew health during prolonged habitation. The Space Station, Freedom, will operate for extended periods, 90+ days, without resupply. A regenerative, closed loop life support system will be utilized in order to minimize resupply logistics and costs. Overboard disposal of wastes and venting of gases to space will be minimal. All waste material will be treated and recycled. The concentrated wastes will be stabilized and stored for ground disposal. The expected useful life of the station (decades) and the diversity of materials brought aboard for experimental or manufacturing purposes, increases the likelihood of cabin contamination. Processes by which cabin contamination can occur include: biological waste production, material off-gassing, process leakage, accidental containment breach, and accumulation due to poor removal efficiencies of the purification units. An industrial hygiene approach was taken to rationalize monitoring needs and to identify the substances likely to be present, the amount, and their hazard.

  17. Study of industry requirements that can be fulfilled by combustion experimentation aboard space station

    NASA Technical Reports Server (NTRS)

    Priem, Richard J.

    1988-01-01

    The purpose of this study is to define the requirements of commercially motivated microgravity combustion experiments and the optimal way for space station to accommodate these requirements. Representatives of commercial organizations, universities and government agencies were contacted. Interest in and needs for microgravity combustion studies are identified for commercial/industrial groups involved in fire safety with terrestrial applications, fire safety with space applications, propulsion and power, industrial burners, or pollution control. From these interests and needs experiments involving: (1) no flow with solid or liquid fuels; (2) homogeneous mixtures of fuel and air; (3) low flow with solid or liquid fuels; (4) low flow with gaseous fuel; (5) high pressure combustion; and (6) special burner systems are described and space station resource requirements for each type of experiment provided. Critical technologies involving the creation of a laboratory environment and methods for combining experimental needs into one experiment in order to obtain effective use of space station are discussed. Diagnostic techniques for monitoring combustion process parameters are identified.

  18. Facilities for Biological Research Aboard the International Space Station

    NASA Technical Reports Server (NTRS)

    Souza, Kenneth A.; Yost, Bruce D.; Berry, William E.; Johnson, Catherine C.

    1996-01-01

    A centrifuge designed as part of an integrated biological facility for installation onboard the International Space Station is presented. The requirements for the 2.5 m diameter centrifuge, which is designed for the support of biological experiments are discussed. The scientific objectives of the facility are to: provide a means of conducting fundamental studies in which gravitational acceleration is a controllable variable; provide a 1g control; determine the threshold acceleration for physiological response, and determine the value of centrifugation as a potential countermeasure for the biomedical problems associated with space flight. The implementation of the facility is reported on, and the following aspects of the facility are described: the host resources systems supply requirements such as power and data control; the habitat holding rack; the life sciences glove box; the centrifuge; the different habitats for cell culture, aquatic studies, plant research and insect research; the egg incubator, and the laboratory support equipment.

  19. The International Space Station: Stepping-stone to Exploration

    NASA Technical Reports Server (NTRS)

    Gerstenmaier, William H.; Kelly, Brian K.; Kelly, Brian K.

    2005-01-01

    As the Space Shuttle returns to flight this year, major reconfiguration and assembly of the International Space Station continues as the United States and our 5 International Partners resume building and carry on operating this impressive Earth-orbiting research facility. In his January 14, 2004, speech announcing a new vision for America's space program, President Bush ratified the United States' commitment to completing construction of the ISS by 2010. The current ongoing research aboard the Station on the long-term effects of space travel on human physiology will greatly benefit human crews to venture through the vast voids of space for months at a time. The continual operation of ISS leads to new knowledge about the design, development and operation of system and hardware that will be utilized in the development of new deep-space vehicles needed to fulfill the Vision for Exploration. This paper will provide an overview of the ISS Program, including a review of the events of the past year, as well as plans for next year and the future.

  20. Aboard the Space Shuttle

    NASA Technical Reports Server (NTRS)

    Steinberg, F. S.

    1980-01-01

    Livability aboard the space shuttle orbiter makes it possible for men and women scientists and technicians in reasonably good health to join superbly healthy astronauts as space travelers and workers. Features of the flight deck, the mid-deck living quarters, and the subfloor life support and house-keeping equipment are illustrated as well as the provisions for food preparation, eating, sleeping, exercising, and medical care. Operation of the personal hygiene equipment and of the air revitalization system for maintaining sea level atmosphere in space is described. Capabilities of Spacelab, the purpose and use of the remote manipulator arm, and the design of a permanent space operations center assembled on-orbit by shuttle personnel are also depicted.

  1. U.S. Laboratory Module (Destiny) for the International Space Station

    NASA Technical Reports Server (NTRS)

    1997-01-01

    This photograph shows the U.S. Laboratory Module (also called Destiny) for the International Space Station (ISS), under construction in the Space Station manufacturing facility at the Marshall Space Flight Center. The U.S. Laboratory module is the centerpiece of the ISS, where science experiments will be performed in the near-zero gravity of space. The Destiny Module was launched aboard the Space Shuttle orbiter Atlantis (STS-67 mission) on February 7, 2001. The aluminum module is 8.5 meters (28 feet) long and 4.3 meters (14 feet) in diameter. The laboratory consists of three cylindrical sections and two end cones with hatches that will be mated to other station components. A 50.9-centimeter- (20-inch-) diameter window is located on one side of the center module segment. This pressurized module is designed to accommodate pressurized payloads. It has a capacity of 24 rack locations, and payload racks will occupy 13 locations especially designed to support experiments. The ISS is a multidisciplinary laboratory, technology test bed, and observatory that will provide unprecedented undertakings in scientific, technological, and international experimentation.

  2. International Space Station (ISS)

    NASA Image and Video Library

    2002-07-05

    Expedition Five flight engineer Peggy Whitson is shown installing the Solidification Using a Baffle in Sealed Ampoules (SUBSA) experiment in the Microgravity Science Glovebox (MSG) in the Destiny laboratory aboard the International Space Station (ISS). SUBSA examines the solidification of semiconductor crystals from a melted material. Semiconductor crystals are used for many products that touch our everyday lives. They are found in computer chips, integrated circuits, and a multitude of other electronic devices, such as sensors for medical imaging equipment and detectors of nuclear radiation. Materials scientists want to make better semiconductor crystals to be able to further reduce the size of high-tech devices. In the microgravity environment, convection and sedimentation are reduced, so fluids do not remove and deform. Thus, space laboratories provide an ideal environment of studying solidification from the melt. This investigation is expected to determine the mechanism causing fluid motion during production of semiconductors in space. It will provide insight into the role of the melt motion in production of semiconductor crystals, advancing our knowledge of the crystal growth process. This could lead to a reduction of defects in semiconductor crystals produced in space and on Earth.

  3. Space Station

    NASA Image and Video Library

    1991-01-01

    In 1982, the Space Station Task Force was formed, signaling the initiation of the Space Station Freedom Program, and eventually resulting in the Marshall Space Flight Center's responsibilities for Space Station Work Package 1.

  4. U.S. Laboratory Module (Destiny) for the International Space Station

    NASA Technical Reports Server (NTRS)

    1998-01-01

    This photograph shows the U.S. Laboratory Module (also called Destiny) for the International Space Station (ISS), in the Space Station manufacturing facility at the Marshall Space Flight Center, being readied for shipment to the Kennedy Space Center. The U.S. Laboratory module is the centerpiece of the ISS, where science experiments will be performed in the near-zero gravity of space. The Destiny Module was launched aboard the Space Shuttle orbiter Atlantis (STS-67 mission) on February 7, 2001. The aluminum module is 8.5 meters (28 feet) long and 4.3 meters (14 feet) in diameter. The laboratory consists of three cylindrical sections and two endcones with hatches that will be mated to other station components. A 50.9-centimeter- (20-inch-) diameter window is located on one side of the center module segment. This pressurized module is designed to accommodate pressurized payloads. It has a capacity of 24 rack locations, and payload racks will occupy 13 locations especially designed to support experiments. The ISS is a multidisciplinary laboratory, technology test bed, and observatory that will provide unprecedented undertakings in scientific, technological, and international experimentation.

  5. Pore Formation and Mobility Investigation (PPMI): Description and Initial Analysis of Experiments Conducted aboard the International Space Station

    NASA Technical Reports Server (NTRS)

    Grugel, R. N.; Anilkumar, A. V.; Lee, C. P.

    2003-01-01

    Flow visualization experiments during the controlled directional melt back and re-solidification of succinonitrile (SCN) and SCN-water mixtures were conducted using the Pore Formation and Mobility Investigation (PFMI) apparatus in the glovebox facility (GBX) aboard the International Space Station. The study samples were initially 'cast' on earth under 450 millibar of nitrogen into 1 cm ID glass sample tubes approximately 30 cm in length, containing 6 in situ thermocouples. During the Space experiments, the processing parameters and flow visualization settings are remotely monitored and manipulated from the ground Telescience Center (TSC). The ground solidified sample is first subjected to a unidirectional melt back, generally at 10 microns per second, with a constant temperature gradient ahead of the melting interface. Bubbles of different sizes are seen to initiate at the melt interface and, upon release from the melting solid, translate at different speeds in the temperature field ahead of them before coming to rest. Over a period of time these bubbles dissolve into the melt. The gas-laden liquid is then directionally solidified in a controlled manner, generally starting at a rate of 1 micron /sec. Observation and preliminary analysis of bubble formation and mobility in pure SCN samples during melt back and the subsequent structure resulting during gas generation upon re-solidification are presented and discussed.

  6. Pore Formation and Mobility Investigation (PFMI): Description and Initial Analysis of Experiments Conducted aboard the International Space Station

    NASA Technical Reports Server (NTRS)

    Grugel, R. N.; Anilkumar, A. V.; Lee, C. P.

    2002-01-01

    Flow visualization experiments during the controlled directional melt back and re-solidification of succinonitrile (SCN) and SCN-water mixtures were conducted using the Pore Formation and Mobility Investigation (PFMI) apparatus in the glovebox facility (GBX) aboard the International Space Station. The study samples were initially "cast" on earth under 450 millibar of nitrogen into 1 cm ID glass sample tubes approximately 30 cm in length, containing 6 in situ thermocouples. During the Space experiments, the processing parameters and flow visualization settings are remotely monitored and manipulated from the ground Telescience Center (TSC). The ground solidified sample is first subjected to a unidirectional melt back, generally at 10 microns per second, with a constant temperature gradient ahead of the melting interface. Bubbles of different sizes are seen to initiate at the melt interface and, upon release from the melting solid, translate at different speeds in the temperature field ahead of them before coming to rest. Over a period of time these bubbles dissolve into the melt. The gas-laden liquid is then directionally solidified in a controlled manner, generally starting at a rate of 1 micron /sec. Observation and preliminary analysis of bubble formation and mobility in pure SCN samples during melt back and the subsequent structure resulting during gas generation upon re-solidification are presented and discussed.

  7. Space-to-Ground: Neuromapping: 03/16/2018

    NASA Image and Video Library

    2018-03-15

    Another science-filled week aboard the space station, and can you see the Great Wall of China from Space? NASA's Space to Ground is your weekly update on what's happening aboard the International Space Station.

  8. Next space station crew discusses mission on This Week @NASA – September 25, 2015

    NASA Image and Video Library

    2015-09-25

    A news conference was held on Sept. 24 at NASA’s Johnson Space Center with the next crew launching to the International Space Station, including NASA astronaut Tim Kopra. ESA astronaut Timothy Peake, cosmonaut Yuri Malenchenko of the Russian Federal Space Agency and Kopra will launch to the station aboard a Soyuz spacecraft on Dec. 15 from the Baikonur Cosmodrome in Kazakhstan. They’re currently scheduled to return to Earth in May 2016. Also, The rich colors of Pluto, Anniversary of MAVEN’s arrival at Mars, Fall IceBridge missions at both poles, New aviation technology and Robotics team on Capitol Hill!

  9. GNSS reflectometry aboard the International Space Station: phase-altimetry simulation to detect ocean topography anomalies

    NASA Astrophysics Data System (ADS)

    Semmling, Maximilian; Leister, Vera; Saynisch, Jan; Zus, Florian; Wickert, Jens

    2016-04-01

    An ocean altimetry experiment using Earth reflected GNSS signals has been proposed to the European Space Agency (ESA). It is part of the GNSS Reflectometry Radio Occultation Scatterometry (GEROS) mission that is planned aboard the International Space Station (ISS). Altimetric simulations are presented that examine the detection of ocean topography anomalies assuming GNSS phase delay observations. Such delay measurements are well established for positioning and are possible due to a sufficient synchronization of GNSS receiver and transmitter. For altimetric purpose delays of Earth reflected GNSS signals can be observed similar to radar altimeter signals. The advantage of GNSS is the synchronized separation of transmitter and receiver that allow a significantly increased number of observation per receiver due to more than 70 GNSS transmitters currently in orbit. The altimetric concept has already been applied successfully to flight data recorded over the Mediterranean Sea. The presented altimetric simulation considers anomalies in the Agulhas current region which are obtained from the Region Ocean Model System (ROMS). Suitable reflection events in an elevation range between 3° and 30° last about 10min with ground track's length >3000km. Typical along-track footprints (1s signal integration time) have a length of about 5km. The reflection's Fresnel zone limits the footprint of coherent observations to a major axis extention between 1 to 6km dependent on the elevation. The altimetric performance depends on the signal-to-noise ratio (SNR) of the reflection. Simulation results show that precision is better than 10cm for SNR of 30dB. Whereas, it is worse than 0.5m if SNR goes down to 10dB. Precision, in general, improves towards higher elevation angles. Critical biases are introduced by atmospheric and ionospheric refraction. Corresponding correction strategies are still under investigation.

  10. Pore Formation and Mobility Investigation (PFMI): Concept, Hardware Development, and Initial Analysis of Experiments Conducted Aboard the International Space Station

    NASA Technical Reports Server (NTRS)

    Grugel, Richard N.

    2003-01-01

    Porosity in the form of "bubbles and pipes" can occur during controlled directional solidification processing of metal alloys. This is a consequence that 1) precludes obtaining any meaningful scientific results and 2) is detrimental to desired material properties. Unfortunately, several Microgravity experiments have been compromised by porosity. The intent of the PFMl investigation is to conduct a systematic effort directed towards understanding porosity formation and mobility during controlled directional solidification (DS) in a microgravity environment. PFMl uses a pure transparent material, succinonitrile (SCN), as well as SCN "alloyed" with water, in conjunction with a translating temperature gradient stage so that direct observation and recording of pore generation and mobility can be made. PFMl is investigating the role of thermocapillary forces and temperature gradients in affecting bubble dynamics as well as other solidification processes in a microgravity environment. This presentation will cover the concept, hardware development, operations, and the initial results from experiments conducted aboard the International Space Station.

  11. Solar dynamic power systems for space station

    NASA Technical Reports Server (NTRS)

    Irvine, Thomas B.; Nall, Marsha M.; Seidel, Robert C.

    1986-01-01

    The Parabolic Offset Linearly Actuated Reflector (POLAR) solar dynamic module was selected as the baseline design for a solar dynamic power system aboard the space station. The POLAR concept was chosen over other candidate designs after extensive trade studies. The primary advantages of the POLAR concept are the low mass moment of inertia of the module about the transverse boom and the compactness of the stowed module which enables packaging of two complete modules in the Shuttle orbiter payload bay. The fine pointing control system required for the solar dynamic module has been studied and initial results indicate that if disturbances from the station are allowed to back drive the rotary alpha joint, pointing errors caused by transient loads on the space station can be minimized. This would allow pointing controls to operate in bandwidths near system structural frequencies. The incorporation of the fine pointing control system into the solar dynamic module is fairly straightforward for the three strut concentrator support structure. However, results of structural analyses indicate that this three strut support is not optimum. Incorporation of a vernier pointing system into the proposed six strut support structure is being studied.

  12. International Space Station (ISS)

    NASA Image and Video Library

    2002-10-14

    Astronauts Piers J. Sellers (left ) and David A. Wolf work on the newly installed Starboard One (S1) truss to the International Space Station (ISS) during the STS-112 mission. The primary payloads of this mission, ISS Assembly Mission 9A, were the Integrated Truss Assembly S1 (S One), the starboard side thermal radiator truss, and the Crew Equipment Translation Aid (CETA) cart to the ISS. The S1 truss provides structural support for the orbiting research facility's radiator panels, which use ammonia to cool the Station's complex power system. The S1 truss was attached to the S0 (S Zero) truss, which was launched on April 8, 2002 aboard the STS-110, and flows 637 pounds of anhydrous ammonia through three heat-rejection radiators. The truss is 45-feet long, 15-feet wide, 10-feet tall, and weighs approximately 32,000 pounds. The CETA cart was attached to the Mobil Transporter and will be used by assembly crews on later missions. Manufactured by the Boeing Company in Huntington Beach, California, the truss primary structure was transferred to the Marshall Space Flight Center in February 1999 for hardware installations and manufacturing acceptance testing. The launch of the STS-112 mission occurred on October 7, 2002, and its 11-day mission ended on October 18, 2002.

  13. Space Station

    NASA Image and Video Library

    1972-01-01

    This is an artist's concept of a modular space station. In 1970 the Marshall Space Flight Center arnounced the completion of a study concerning a modular space station that could be launched by the planned-for reusable Space Shuttle. The study envisioned a space station composed of cylindrical sections 14 feet in diameter and of varying lengths joined to form any one of a number of possible shapes. The sections were restricted to 14 feet in diameter and 58 feet in length to be consistent with a shuttle cargo bay size of 15 by 60 feet. Center officials said that the first elements of the space station could be in orbit by about 1978 and could be manned by three or six men. This would be an interim space station with sections that could be added later to form a full 12-man station by the early 1980s.

  14. Space Station

    NASA Technical Reports Server (NTRS)

    Anderton, D. A.

    1985-01-01

    The official start of a bold new space program, essential to maintain the United States' leadership in space was signaled by a Presidential directive to move aggressively again into space by proceeding with the development of a space station. Development concepts for a permanently manned space station are discussed. Reasons for establishing an inhabited space station are given. Cost estimates and timetables are also cited.

  15. U.S. Laboratory Module (Destiny) for the International Space Station

    NASA Technical Reports Server (NTRS)

    1997-01-01

    In this photograph, the U.S. Laboratory Module (also called Destiny) for the International Space Station (ISS) is shown under construction in the West High Bay of the Space Station manufacturing facility (building 4708) at the Marshall Space Flight Center. The U.S. Laboratory module is the centerpiece of the ISS, where science experiments will be performed in the near-zero gravity of space. The Destiny Module was launched aboard the Space Shuttle orbiter Atlantis (STS-98 mission) on February 7, 2001. The aluminum module is 8.5 meters (28 feet) long and 4.3 meters (14 feet) in diameter. The laboratory consists of three cylindrical sections and two endcones with hatches that will be mated to other station components. A 50.9-centimeter- (20-inch-) diameter window is located on one side of the center module segment. This pressurized module is designed to accommodate pressurized payloads. It has a capacity of 24 rack locations, and payload racks will occupy 13 locations especially designed to support experiments. The ISS is a multidisciplinary laboratory, technology test bed, and observatory that will provide unprecedented undertakings in scientific, technological, and international experimentation.

  16. The Node 1 (or Unity) Module for the International Space Station

    NASA Technical Reports Server (NTRS)

    1997-01-01

    This photograph, taken by the Boeing Company, shows Node 1 (also called Unity), the first U.S. Module for the International Space Station (ISS), with its hatch door installed. The Node 1, or Unity, serves as a cornecting passageway to Space Station modules and was manufactured by the Boeing Company at the Marshall Space Flight Center from 1994 to 1997. The U.S. built Unity module was launched aboard the orbiter Endeavour (STS-88 mission) on December 4, 1998 and connected to the Zarya, the Russian-built Functional Energy Block (FGB). The Zarya was launched on a Russian proton rocket prior to the launch of the Unity. The ISS is a multidisciplinary laboratory, technology test bed, and observatory that will provide unprecedented undertakings in scientific, technological, and international experimentation.

  17. Video-Puff of Air Hits Ball of Water in Space Onboard the International Space Station (ISS)

    NASA Technical Reports Server (NTRS)

    2003-01-01

    Saturday Morning Science, the science of opportunity series of applied experiments and demonstrations, performed aboard the International Space Station (ISS) by Expedition 6 astronaut Dr. Don Pettit, revealed some remarkable findings. In this video clip, Dr. Pettit demonstrates the phenomenon of a puff of air hitting a ball of water that is free floating in space. Watch the video to see why Dr. Pettit remarks 'I'd hate think that our planet would go through these kinds of gyrations if it got whacked by a big asteroid'.

  18. Coordinated study of Solar-Terrestrial Observatory (STO) payloads on space station

    NASA Technical Reports Server (NTRS)

    Wu, S. T.

    1988-01-01

    Since the publication of the final report of the science study group in October 1984 on the Solar Terrestrial Observatory (STO), its science goals and objectives have been clearly defined and a conceptual design and analysis was carried out by MSFC/NASA. Plans for the possible placing of the STO aboard the Space Station were made. A series of meetings for the STO science study group were held to review the instruments to be placed on the initial STO at Space Station IOC, and the placement of these instruments on the manned space station, polar platform, and the co-orbiting platform. A summary of these initial STO instruments is presented in Section 2. A brief description of the initial plan for the placement of STO instruments is included in Section 3. Finally, in Section 4, the scenario for the operation of the STO is discussed. These results were obtained from the report of the Solar Terrestrial Observatory mini-workshop held at MSFC on 6 June 1985.

  19. Project EGRESS: The design of an assured crew return vehicle for the space station

    NASA Technical Reports Server (NTRS)

    1990-01-01

    Keeping preliminary studies by NASA in mind, an Assured Crew Return Vehicle (ACRV) was developed. The system allows the escape of one or more crew members from Space Station Freedom in case of emergency. The design of the vehicle addresses propulsion, orbital operations, reentry, landing and recovery, power and communication, and life support. In light of recent modifications in Space Station design, Project EGRESS (Earthbound Guaranteed ReEntry from Space Station) pays particular attention to its impact on Space Station operations, interfaces and docking facilities, and maintenance needs. A water landing, medium lift vehicle was found to best satisfy project goals of simplicity and cost efficiency without sacrificing the safety and reliability requirements. With a single vehicle, one injured crew member could be returned to Earth with minimal pilot involvement. Since the craft is capable of returning up to five crew members, two such permanently docked vehicles would allow full evacuation of the Space Station. The craft could be constructed entirely with available 1990 technology and launched aboard a shuttle orbiter.

  20. Expedition 50-51 Arrives Safely at the Space Station on This Week @NASA – November 25, 2016

    NASA Image and Video Library

    2016-11-25

    On Nov. 19 Eastern time, two days after launching aboard a Soyuz spacecraft from the Baikonur Cosmodrome in Kazakhstan, the Expedition 50-51 crew, including NASA astronaut Peggy Whitson arrived safely at the International Space Station. A few hours after docking, Whitson and Expedition 50-51 crewmates, Oleg Novitskiy of the Russian space agency Roscosmos, and Thomas Pesquet of the European Space Agency, were greeted by space station Commander Shane Kimbrough of NASA and Sergey Ryzhikov and Andrey Borisenko of Roscosmos. The arriving crew members, who are scheduled to remain on the space station until next spring, will contribute to more than 250 research experiments while onboard the orbital laboratory. Also, Cygnus Cargo Spacecraft Leaves the Space Station, Advanced Weather Satellite Launched into Orbit, SLS Hardware Installed in Test Stand, C-Level Platforms Installed in Vehicle Assembly Building, and Giving Thanks from Space!

  1. IVA the robot: Design guidelines and lessons learned from the first space station laboratory manipulation system

    NASA Technical Reports Server (NTRS)

    Konkel, Carl R.; Powers, Allen K.; Dewitt, J. Russell

    1991-01-01

    The first interactive Space Station Freedom (SSF) lab robot exhibit was installed at the Space and Rocket Center in Huntsville, AL, and has been running daily since. IntraVehicular Activity (IVA) the robot is mounted in a full scale U.S. Lab (USL) mockup to educate the public on possible automation and robotic applications aboard the SSF. Responding to audio and video instructions at the Command Console, exhibit patrons may prompt IVA to perform a housekeeping task or give a speaking tour of the module. Other exemplary space station tasks are simulated and the public can even challenge IVA to a game of tic tac toe. In anticipation of such a system being built for the Space Station, a discussion is provided of the approach taken, along with suggestions for applicability to the Space Station Environment.

  2. Soyuz 25 Return Samples: Assessment of Air Quality Aboard the International Space Station

    NASA Technical Reports Server (NTRS)

    James, John T.

    2011-01-01

    Six mini-grab sample containers (m-GSCs) were returned aboard Soyuz 25. The toxicological assessment of 6 m-GSCs from the ISS is shown. The recoveries of the 3 internal standards, C-13-acetone, fluorobenzene, and chlorobenzene, from the GSCs averaged 76, 108 and 88%, respectively. Formaldehyde badges were not returned aboard Soyuz 25.

  3. Plant and animal accommodation for Space Station Laboratory

    NASA Technical Reports Server (NTRS)

    Olson, Richard L.; Gustan, Edith A.; Wiley, Lowell F.

    1986-01-01

    An extended study has been conducted with the goals of defining and analyzing relevant parameters and significant tradeoffs for the accommodation of nonhuman research aboard the NASA Space Station, as well as conducting tradeoff analyses for orbital reconfiguring or reoutfitting of the laboratory facility and developing laboratory designs and program plans. The two items exerting the greatest influence on nonhuman life sciences research were identified as the centrifuge and the specimen environmental control and life support system; both should be installed on the ground rather than in orbit.

  4. Primary Dendrite Arm Spacing and Trunk Diameter in Al-7-Weight-Percentage Si Alloy Directionally Solidified Aboard the International Space Station

    NASA Technical Reports Server (NTRS)

    Ghods, M.; Tewari, S. N.; Lauer, M.; Poirier, D. R.; Grugel, R. N.

    2016-01-01

    Under a NASA-ESA collaborative research project, three Al-7-weight-percentage Si samples (MICAST-6, MICAST-7 and MICAST 2-12) were directionally solidified aboard the International Space Station to determine the effect of mitigating convection on the primary dendrite array. The samples were approximately 25 centimeters in length with a diameter of 7.8 millimeter-diameter cylinders that were machined from [100] oriented terrestrially grown dendritic Al-7Si samples and inserted into alumina ampoules within the Sample Cartridge Assembly (SCA) inserts of the Low Gradient Furnace (LGF). The feed rods were partially remelted in space and directionally solidified to effect the [100] dendrite-orientation. MICAST-6 was grown at 5 microns per second for 3.75 centimeters and then at 50 microns per second for its remaining 11.2 centimeters of its length. MICAST-7 was grown at 20 microns per second for 8.5 centimeters and then at 10 microns per second for 9 centimeters of its remaining length. MICAST2-12 was grown at 40 microns per second for 11 centimeters. The thermal gradient at the liquidus temperature varied from 22 to 14 degrees Kelvin per centimeter during growth of MICAST-6, from 26 to 24 degrees Kelvin per centimeter for MICAST-7 and from 33 to 31 degrees Kelvin per centimeter for MICAST2-12. Microstructures on the transverse sections along the sample length were analyzed to determine nearest-neighbor spacing of the primary dendrite arms and trunk diameters of the primary dendrite-arrays. This was done along the lengths where steady-state growth prevailed and also during the transients associated with the speed-changes. The observed nearest-neighbor spacings during steady-state growth of the MICAST samples show a very good agreement with predictions from the Hunt-Lu primary spacing model for diffusion controlled growth. The observed primary dendrite trunk diameters during steady-state growth of these samples also agree with predictions from a coarsening-based model

  5. Space Station Crew Member Discusses Robotics with Puerto Rican Students

    NASA Image and Video Library

    2018-01-12

    Aboard the International Space Station, Expedition 54 Flight Engineer Joe Acaba of NASA discussed various elements of robotic hardware and robotic work on the orbital laboratory during an in-flight educational event Jan. 12 with students gathered at the Puerto Rico Institute of Robotics in San Juan, Puerto Rico. Acaba, who has roots in Puerto Rico, is scheduled to return to Earth in late February to complete a five-and-a-half month mission.

  6. Space Station

    NASA Image and Video Library

    1969-01-01

    This picture illustrates a concept of a 33-Foot-Diameter Space Station Leading to a Space Base. In-house work of the Marshall Space Flight Center, as well as a Phase B contract with the McDornel Douglas Astronautics Company, resulted in a preliminary design for a space station in 1969 and l970. The Marshall-McDonnel Douglas approach envisioned the use of two common modules as the core configuration of a 12-man space station. Each common module was 33 feet in diameter and 40 feet in length and provided the building blocks, not only for the space station, but also for a 50-man space base. Coupled together, the two modules would form a four-deck facility: two decks for laboratories and two decks for operations and living quarters. Zero-gravity would be the normal mode of operation, although the station would have an artificial gravity capability. This general-purpose orbital facility was to provide wide-ranging research capabilities. The design of the facility was driven by the need to accommodate a broad spectrum of activities in support of astronomy, astrophysics, aerospace medicine, biology, materials processing, space physics, and space manufacturing. To serve the needs of Earth observations, the station was to be placed in a 242-nautical-mile orbit at a 55-degree inclination. An Intermediate-21 vehicle (comprised of Saturn S-IC and S-II stages) would have launched the station in 1977.

  7. International Space Station Increment-2 Microgravity Environment Summary Report

    NASA Technical Reports Server (NTRS)

    Jules, Kenol; Hrovat, Kenneth; Kelly, Eric; McPherson, Kevin; Reckart, Timothy

    2002-01-01

    This summary report presents the results of some of the processed acceleration data, collected aboard the International Space Station during the period of May to August 2001, the Increment-2 phase of the station. Two accelerometer systems were used to measure the acceleration levels during activities that took place during the Increment-2 segment. However, not all of the activities were analyzed for this report due to time constraints, lack of precise information regarding some payload operations and other station activities. The National Aeronautics and Space Administration sponsors the Microgravity Acceleration Measurement System and the Space Acceleration Microgravity System to support microgravity science experiments, which require microgravity acceleration measurements. On April 19, 2001, both the Microgravity Acceleration Measurement System and the Space Acceleration Measurement System units were launched on STS-100 from the Kennedy Space Center for installation on the International Space Station. The Microgravity Acceleration Measurement System unit was flown to the station in support of science experiments requiring quasi-steady acceleration measurements, while the Space Acceleration Measurement System unit was flown to support experiments requiring vibratory acceleration measurement. Both acceleration systems are also used in support of vehicle microgravity requirements verification. The International Space Station Increment-2 reduced gravity environment analysis presented in this report uses acceleration data collected by both sets of accelerometer systems: 1) The Microgravity Acceleration Measurement System, which consists of two sensors: the Orbital Acceleration Research Experiment Sensor Subsystem, a low frequency range sensor (up to 1 Hz), is used to characterize the quasi-steady environment for payloads and the vehicle, and the High Resolution Accelerometer Package, which is used to characterize the vibratory environment up to 100 Hz. 2) The Space

  8. The Node 1 (or Unity) Module for the International Space Station

    NASA Technical Reports Server (NTRS)

    1997-01-01

    This photograph, taken by the Boeing Company,shows Boeing technicians preparing to install one of six hatches or doors to the Node 1 (also called Unity), the first U.S. Module for the International Space Station (ISS). The Node 1, or Unity, serves as a cornecting passageway to Space Station modules and was manufactured by the Boeing Company at the Marshall Space Flight Center from 1994 to 1997. The U.S. built Unity module was launched aboard the orbiter Endeavour (STS-88 mission) on December 4, 1998 and connected to the Zarya, the Russian-built Functional Energy Block (FGB). The Zarya was launched on a Russian proton rocket prior to the launch of the Unity. The ISS is a multidisciplinary laboratory, technology test bed, and observatory that will provide unprecedented undertakings in scientific, technological, and international experimentation.

  9. The Node 1 (or Unity) Module for the International Space Station

    NASA Technical Reports Server (NTRS)

    1997-01-01

    This photograph, taken by the Boeing Company, shows Boeing technicians preparing to install one of six hatches or doors to the Node 1 (also called Unity), the first U.S. Module for the International Space Station (ISS). The Node 1, or Unity, serves as a cornecting passageway to Space Station modules and was manufactured by the Boeing Company at the Marshall Space Flight Center from 1994 to 1997. The U.S. built Unity module was launched aboard the orbiter Endeavour (STS-88 mission) on December 4, 1998 and connected to the Zarya, the Russian-built Functional Energy Block (FGB). The Zarya was launched on a Russian proton rocket prior to the launch of the Unity. The ISS is a multidisciplinary laboratory, technology test bed, and observatory that will provide unprecedented undertakings in scientific, technological, and international experimentation.

  10. One Year Crew Docking to the International Space Station

    NASA Image and Video Library

    2015-05-27

    This video was taken by the crew members aboard the Soyuz TMA-16M spacecraft which docked to the International Space Station at 9:33 p.m. EDT March 27, 2015. NASA astronaut Scott Kelly and Russian cosmonauts Mikhail Kornienko and Gennady Padalka arrived just six hours after launching from Baikonur, Kazakhstan, completing four orbits around the Earth before catching up with the orbiting laboratory. The vehicle docked to the Poisk module (also known as the Mini-Research Module 2) on the space-facing side of the Russian Service Module. The spinning object in view is an antenna that is part of the automatic rendezvous and docking system known as KURS.

  11. Space-to-Ground: Genes in Space: 04/13/2018

    NASA Image and Video Library

    2018-04-12

    Can the Polymerase Chain Reaction be used to study DNA alterations on the International Space Station? NASA's Space to Ground is your weekly update on what's happening aboard the International Space Station.

  12. Student Pave Way for First Microgravity Experiments on International Space Station

    NASA Technical Reports Server (NTRS)

    1999-01-01

    Christiane Gumera, right, a student at Stanton College Preparatory High School in Jacksonville, AL, examines a protein sample while preparing an experiment for flight on the International Space Station (ISS). Merle Myers, left, a University of California, Irvine, researcher, prepares to quick-freeze protein samples in nitrogen. The proteins are in a liquid nitrogen Dewar. Aboard the ISS, the nitrogen will be allowed to evaporated so the samples thaw and then slowly crystallize. They will be anlyzed after return to Earth. Photo credit: NASA/Marshall Space Flight Center (MSFC)

  13. Space Station

    NASA Image and Video Library

    1991-01-01

    This artist's concept depicts the Space Station Freedom as it would look orbiting the Earth, illustrated by Marshall Space Flight Center artist, Tom Buzbee. Scheduled to be completed in late 1999, this smaller configuration of the Space Station featured a horizontal truss structure that supported U.S., European, and Japanese Laboratory Modules; the U.S. Habitation Module; and three sets of solar arrays. The Space Station Freedom was an international, permanently marned, orbiting base to be assembled in orbit by a series of Space Shuttle missions that were to begin in the mid-1990's.

  14. Space Station

    NASA Image and Video Library

    1991-01-01

    This artist's concept depicts the Space Station Freedom as it would look orbiting the Earth; illustrated by Marshall Space Flight Center artist, Tom Buzbee. Scheduled to be completed in late 1999, this smaller configuration of the Space Station features a horizontal truss structure that supported U.S., European, and Japanese Laboratory Modules; the U.S. Habitation Module; and three sets of solar arrays. The Space Station Freedom was an international, permanently marned, orbiting base to be assembled in orbit by a series of Space Shuttle missions that were to begin in the mid-1990's.

  15. Space Station

    NASA Image and Video Library

    1952-01-01

    This is a von Braun 1952 space station concept. In a 1952 series of articles written in Collier's, Dr. Wernher von Braun, then Technical Director of the Army Ordnance Guided Missiles Development Group at Redstone Arsenal, wrote of a large wheel-like space station in a 1,075-mile orbit. This station, made of flexible nylon, would be carried into space by a fully reusable three-stage launch vehicle. Once in space, the station's collapsible nylon body would be inflated much like an automobile tire. The 250-foot-wide wheel would rotate to provide artificial gravity, an important consideration at the time because little was known about the effects of prolonged zero-gravity on humans. Von Braun's wheel was slated for a number of important missions: a way station for space exploration, a meteorological observatory and a navigation aid. This concept was illustrated by artist Chesley Bonestell.

  16. Space Station

    NASA Image and Video Library

    1970-01-01

    This is an illustration of the Space Base concept. In-house work of the Marshall Space Flight Center, as well as a Phase B contract with the McDornel Douglas Astronautics Company, resulted in a preliminary design for a space station in 1969 and l970. The Marshall-McDonnel Douglas approach envisioned the use of two common modules as the core configuration of a 12-man space station. Each common module was 33 feet in diameter and 40 feet in length and provided the building blocks, not only for the space station, but also for a 50-man space base. Coupled together, the two modules would form a four-deck facility: two decks for laboratories and two decks for operations and living quarters. Zero-gravity would be the normal mode of operation, although the station would have an artificial-gravity capability. This general-purpose orbital facility was to provide wide-ranging research capabilities. The design of the facility was driven by the need to accommodate a broad spectrum of activities in support of astronomy, astrophysics, aerospace medicine, biology, materials processing, space physics, and space manufacturing. To serve the needs of Earth observations, the station was to be placed in a 242-nautical-mile orbit at a 55-degree inclination. An Intermediate-21 vehicle (comprised of Saturn S-IC and S-II stages) would have launched the station in 1977.

  17. Space station microscopy: Beyond the box

    NASA Technical Reports Server (NTRS)

    Hunter, N. R.; Pierson, Duane L.; Mishra, S. K.

    1993-01-01

    Microscopy aboard Space Station Freedom poses many unique challenges for in-flight investigations. Disciplines such as material processing, plant and animal research, human reseach, enviromental monitoring, health care, and biological processing have diverse microscope requirements. The typical microscope not only does not meet the comprehensive needs of these varied users, but also tends to require excessive crew time. To assess user requirements, a comprehensive survey was conducted among investigators with experiments requiring microscopy. The survey examined requirements such as light sources, objectives, stages, focusing systems, eye pieces, video accessories, etc. The results of this survey and the application of an Intelligent Microscope Imaging System (IMIS) may address these demands for efficient microscopy service in space. The proposed IMIS can accommodate multiple users with varied requirements, operate in several modes, reduce crew time needed for experiments, and take maximum advantage of the restrictive data/ instruction transmission environment on Freedom.

  18. Video- Soldering Iron Inserted Through a Film of Water Onboard the International Space Station (ISS)

    NASA Technical Reports Server (NTRS)

    2003-01-01

    Saturday Morning Science, the science of opportunity series of applied experiments and demonstrations, performed aboard the International Space Station (ISS) by Expedition 6 astronaut Dr. Don Pettit, revealed some remarkable findings. In this video, Dr. Pettit demonstrates the result of inserting a soldering iron into a thin film or sheet of water in space. Dr. Pettit makes comparative comments about the differences and similarities of boiling processes in space and on Earth.

  19. Cases in Space Medicine: Right Lower Quadrant Abdominal Pain in a Female Crewmember on the International Space Station

    NASA Technical Reports Server (NTRS)

    Hamilton, Douglas R.; Scheuring, Richard; Jones, Jeffery

    2007-01-01

    A case study of a medical emergency aboard the International Space Station is reviewed. The case involves a female crewmember who is experiencing acute abdominal pain. The interplay of the Crew Medical Officer (CMO) and the NASA Flight Surgeon is given. Possible diagnoses, and advised medical actions are reviewed. Along the case study questions are posed to the reader, and at the end answers are given.

  20. Performance Evaluation of the Operational Air Quality Monitor for Water Testing Aboard the International Space Station

    NASA Technical Reports Server (NTRS)

    Wallace, William T.; Limero, Thomas F.; Gazda, Daniel B.; Macatangay, Ariel V.; Dwivedi, Prabha; Fernandez, Facundo M.

    2014-01-01

    In the history of manned spaceflight, environmental monitoring has relied heavily on archival sampling. For short missions, this type of sample collection was sufficient; returned samples provided a snapshot of the presence of chemical and biological contaminants in the spacecraft air and water. However, with the construction of the International Space Station (ISS) and the subsequent extension of mission durations, soon to be up to one year, the need for enhanced, real-time environmental monitoring became more pressing. The past several years have seen the implementation of several real-time monitors aboard the ISS, complemented with reduced archival sampling. The station air is currently monitored for volatile organic compounds (VOCs) using gas chromatography-differential mobility spectrometry (Air Quality Monitor [AQM]). The water on ISS is analyzed to measure total organic carbon and biocide concentrations using the Total Organic Carbon Analyzer (TOCA) and the Colorimetric Water Quality Monitoring Kit (CWQMK), respectively. The current air and water monitors provide important data, but the number and size of the different instruments makes them impractical for future exploration missions. It is apparent that there is still a need for improvements in environmental monitoring capabilities. One such improvement could be realized by modifying a single instrument to analyze both air and water. As the AQM currently provides quantitative, compound-specific information for target compounds present in air samples, and many of the compounds are also targets for water quality monitoring, this instrument provides a logical starting point to evaluate the feasibility of this approach. In this presentation, we will discuss our recent studies aimed at determining an appropriate method for introducing VOCs from water samples into the gas phase and our current work, in which an electro-thermal vaporization unit has been interfaced with the AQM to analyze target analytes at the

  1. International Space Station Increment-3 Microgravity Environment Summary Report

    NASA Technical Reports Server (NTRS)

    Jules, Kenol; Hrovat, Kenneth; Kelly, Eric; McPherson, Kevin; Reckart, Timothy; Grodsinksy, Carlos

    2002-01-01

    This summary report presents the results of some of the processed acceleration data measured aboard the International Space Station during the period of August to December 2001. Two accelerometer systems were used to measure the acceleration levels for the activities that took place during Increment-3. However, not all of the activities were analyzed for this report due to time constraint and lack of precise timeline information regarding some payload operations and station activities. The National Aeronautics and Space Administration sponsors the Microgravity Acceleration Measurement System and the Space Acceleration Microgravity System to support microgravity science experiments which require microgravity acceleration measurements. On April 19, 2001, both the Microgravity Acceleration Measurement System and the Space Acceleration Measurement System units were launched on STS-100 from the Kennedy Space Center for installation on the International Space Station. The Microgravity Acceleration Measurement System unit was flown to the station in support of science experiments requiring quasi-steady acceleration measurements, while the Space Acceleration Measurement System unit was flown to support experiments requiring vibratory acceleration measurement. Both acceleration systems are also used in support of the vehicle microgravity requirements verification. The International Space Station Increment-3 reduced gravity environment analysis presented in this report uses acceleration data collected by both sets of accelerometer systems: (1) The Microgravity Acceleration Measurement System, which consists of two sensors: the Orbital Acceleration Research Experiment Sensor Subsystem, a low frequency range sensor (up to 1 Hz), is used to characterize the quasi-steady environment for payloads and vehicle, and the High Resolution Accelerometer Package, which is used to characterize the vibratory environment up to 100 Hz. (2) The Space Acceleration Measurement System, which is

  2. Microgravity Science Glovebox (MSG) Space Sciences's Past, Present, and Future on the International Space Station (ISS)

    NASA Technical Reports Server (NTRS)

    Spivey, Reggie A.; Jordan, Lee P.

    2012-01-01

    The Microgravity Science Glovebox (MSG) is a double rack facility designed for microgravity investigation handling aboard the International Space Station (ISS). The unique design of the facility allows it to accommodate science and technology investigations in a "workbench" type environment. MSG facility provides an enclosed working area for investigation manipulation and observation in the ISS. Provides two levels of containment via physical barrier, negative pressure, and air filtration. The MSG team and facilities provide quick access to space for exploratory and National Lab type investigations to gain an understanding of the role of gravity in the physics associated research areas.

  3. The International Space Station Photographed During STS-112 Mission

    NASA Technical Reports Server (NTRS)

    2002-01-01

    This image of the International Space Station (ISS) was photographed by one of the crewmembers of the STS-112 mission following separation from the Space Shuttle Orbiter Atlantis as the orbiter pulled away from the ISS. The primary payloads of this mission, International Space Station Assembly Mission 9A, were the Integrated Truss Assembly S1 (S-One), the Starboard Side Thermal Radiator Truss, and the Crew Equipment Translation Aid (CETA) cart to the ISS. The S1 truss provides structural support for the orbiting research facility's radiator panels, which use ammonia to cool the Station's complex power system. The S1 truss was attached to the S0 (S Zero) truss, which was launched on April 8, 2002 aboard the STS-110, and flows 637 pounds of anhydrous ammonia through three heat-rejection radiators. The truss is 45-feet long, 15-feet wide, 10-feet tall, and weighs approximately 32,000 pounds. The CETA cart was attached to the Mobil Transporter and will be used by assembly crews on later missions. Manufactured by the Boeing Company in Huntington Beach, California, the truss primary structure was transferred to the Marshall Space Flight Center in February 1999 for hardware installations and manufacturing acceptance testing. The launch of the STS-112 mission occurred on October 7, 2002, and its 11-day mission ended on October 18, 2002.

  4. Cabin Air Quality On Board Mir and the International Space Station: A Comparison

    NASA Technical Reports Server (NTRS)

    Macatangay, Ariel; Perry, Jay L.

    2007-01-01

    The maintenance of the cabin atmosphere aboard spacecraft is critical not only to its habitability but also to its function. Ideally, air quality can be maintained by striking a proper balance between the generation and removal of contaminants. Both very dynamic processes, the balance between generation and removal can be difficult to maintain and control because the state of the cabin atmosphere is in constant evolution responding to different perturbations. Typically, maintaining a clean cabin environment on board crewed spacecraft and space habitats is the central function of the environmental control and life support (ECLS) system. While active air quality control equipment is deployed on board every vehicle to remove carbon dioxide, water vapor, and trace chemical components from the cabin atmosphere, perturbations associated with logistics, vehicle construction and maintenance, and ECLS system configuration influence the resulting cabin atmospheric quality. The air-quality data obtained from the International Space Station (ISS) and NASA-Mir programs provides a wealth of information regarding the maintenance of the cabin atmosphere aboard long-lived space habitats. A comparison of the composition of the trace chemical contaminant load is presented. Correlations between ground-based and in-flight operations that influence cabin atmospheric quality are identified and discussed, and observations on cabin atmospheric quality during the NASA-Mir expeditions and the International Space Station are explored.

  5. KENNEDY SPACE CENTER, FLA. - The Window Observational Research Facility (WORF), seen in the Space Station Processing Facility, was designed and built by the Boeing Co. at NASA’s Marshall Space Flight Center in Huntsville, Ala. WORF will be delivered to the International Space Station and placed in the rack position in front of the Destiny lab window, providing locations for attaching cameras, multi-spectral scanners and other instruments. WORF will support a variety of scientific and commercial experiments in areas of Earth systems and processes, global ecological changes in Earth’s biosphere, lithosphere, hydrosphere and climate system, Earth resources, natural hazards, and education. After installation, it will become a permanent focal point for Earth Science research aboard the space station.

    NASA Image and Video Library

    2003-09-08

    KENNEDY SPACE CENTER, FLA. - The Window Observational Research Facility (WORF), seen in the Space Station Processing Facility, was designed and built by the Boeing Co. at NASA’s Marshall Space Flight Center in Huntsville, Ala. WORF will be delivered to the International Space Station and placed in the rack position in front of the Destiny lab window, providing locations for attaching cameras, multi-spectral scanners and other instruments. WORF will support a variety of scientific and commercial experiments in areas of Earth systems and processes, global ecological changes in Earth’s biosphere, lithosphere, hydrosphere and climate system, Earth resources, natural hazards, and education. After installation, it will become a permanent focal point for Earth Science research aboard the space station.

  6. KENNEDY SPACE CENTER, FLA. - Workers in the Space Station Processing Facility check out the Window Observational Research Facility (WORF), designed and built by the Boeing Co. at NASA’s Marshall Space Flight Center in Huntsville, Ala. WORF will be delivered to the International Space Station and placed in the rack position in front of the Destiny lab window, providing locations for attaching cameras, multi-spectral scanners and other instruments. WORF will support a variety of scientific and commercial experiments in areas of Earth systems and processes, global ecological changes in Earth’s biosphere, lithosphere, hydrosphere and climate system, Earth resources, natural hazards, and education. After installation, it will become a permanent focal point for Earth Science research aboard the space station.

    NASA Image and Video Library

    2003-09-08

    KENNEDY SPACE CENTER, FLA. - Workers in the Space Station Processing Facility check out the Window Observational Research Facility (WORF), designed and built by the Boeing Co. at NASA’s Marshall Space Flight Center in Huntsville, Ala. WORF will be delivered to the International Space Station and placed in the rack position in front of the Destiny lab window, providing locations for attaching cameras, multi-spectral scanners and other instruments. WORF will support a variety of scientific and commercial experiments in areas of Earth systems and processes, global ecological changes in Earth’s biosphere, lithosphere, hydrosphere and climate system, Earth resources, natural hazards, and education. After installation, it will become a permanent focal point for Earth Science research aboard the space station.

  7. Importance of biological systems in industrial waste treatment potential application to the space station

    NASA Technical Reports Server (NTRS)

    Revis, Nathaniel; Holdsworth, George

    1990-01-01

    In addition to having applications for waste management issues on planet Earth, microbial systems have application in reducing waste volumes aboard spacecraft. A candidate for such an application is the space station. Many of the planned experiments generate aqueous waste. To recycle air and water the contaminants from previous experiments must be removed before the air and water can be used for other experiments. This can be achieved using microorganisms in a bioreactor. Potential bioreactors (inorganics, organics, and etchants) are discussed. Current technologies that may be applied to waste treatment are described. Examples of how biological systems may be used in treating waste on the space station.

  8. Space Station alpha joint bearing

    NASA Technical Reports Server (NTRS)

    Everman, Michael R.; Jones, P. Alan; Spencer, Porter A.

    1987-01-01

    Perhaps the most critical structural system aboard the Space Station is the Solar Alpha Rotary Joint which helps align the power generation system with the sun. The joint must provide structural support and controlled rotation to the outboard transverse booms as well as power and data transfer across the joint. The Solar Alpha Rotary Joint is composed of two transition sections and an integral, large diameter bearing. Alpha joint bearing design presents a particularly interesting problem because of its large size and need for high reliability, stiffness, and on orbit maintability. The discrete roller bearing developed is a novel refinement to cam follower technology. It offers thermal compensation and ease of on-orbit maintenance that are not found in conventional rolling element bearings. How the bearing design evolved is summarized. Driving requirements are reviewed, alternative concepts assessed, and the selected design is described.

  9. Video-Growing Salt Crystals Onboard the International Space Station (ISS)

    NASA Technical Reports Server (NTRS)

    2003-01-01

    Saturday Morning Science, the science of opportunity series of applied experiments and demonstrations, performed aboard the International Space Station (ISS) by Expedition 6 astronaut Dr. Don Pettit, revealed some remarkable findings. Growing salt crystals in a bottle of water is a favorite science activity for kids. In space, Dr. Pettit grew salt crystals in stretched films of water so that the salt water only fed the crystals around the edges rather than from all sides, as happens in a glass of water. This video of his demonstration shows that surface tension plays a surprisingly dominant role in the crystal formation and convection is more active that one might expect.

  10. Complex Plasmas under free fall conditions aboard the International Space Station

    NASA Astrophysics Data System (ADS)

    Konopka, Uwe; Thomas, Edward, Jr.; Funk, Dylan; Doyle, Brandon; Williams, Jeremiah; Knapek, Christina; Thomas, Hubertus

    2017-10-01

    Complex Plasmas are dynamically dominated by massive, highly negatively charged, micron-sized particles. They are usually strongly coupled and as a result can show fluid-like behavior or undergo phase transitions to form crystalline structures. The dynamical time scale of these systems is easily accessible in experiments because of the relatively high mass/inertia of the particles. However, the high mass also leads to sedimentation effects and as a result prevents the conduction of large scale, fully three dimensional experiments that are necessary to utilize complex plasmas as model systems in the transition to continuous media. To reduce sedimentation influences it becomes necessary to perform experiments in a free-fall (``microgravity'') environment, such as the ISS based experiment facility ``Plasma-Kristall-4'' (``PK-4''). In our paper we will present our recently started research activities to investigate the basic properties of complex plasmas by utilizing the PK-4 experiment facility aboard the ISS. We further give an overview of developments towards the next generation experiment facility ``Ekoplasma'' (formerly named ``PlasmaLab'') and discuss potential additional small-scale space-based experiment scenarios. This work was supported by the JPL/NASA (JPL-RSA 1571699), the US Dept. of Energy (DE-SC0016330) and the NSF (PHY-1613087).

  11. Commercial Seed Selection and Effectiveness of Sanitization Methods in Preparation for Plant Growth Experiments on the International Space Station

    NASA Technical Reports Server (NTRS)

    Boehm, Emma

    2017-01-01

    A closed-loop food production system will be important to gain autonomy on long duration space missions. Crop growth experiments in the Veggie plant chamber aboard the International Space Station (ISS) are helping to identify methods and limitations of food production in space. Prior to flight, seeds are surface sterilized to reduce environmental and crew contamination risks.

  12. Microbial Diversity Aboard Spacecraft: Evaluation of the International Space Station

    NASA Technical Reports Server (NTRS)

    Castro, Victoria A.; Thrasher, Adrianna N.; Healy, Mimi; Ott, C. Mark; Pierson, Duane L.

    2003-01-01

    An evaluation of the microbial flora from air, water, and surface samples provided a baseline of microbial diversity onboard the International Space Station (ISS) to gain insight into bacterial and fungal contamination during the initial stages of construction and habitation. Using 16S genetic sequencing and rep-PeR, 63 bacterial strains were isolated for identification and fingerprinted for microbial tracking. The use of these molecular tools allowed for the identification of bacteria not previously identified using automated biochemical analysis and provided a clear indication of the source of several ISS contaminants. Fungal and bacterial data acquired during monitoring do not suggest there is a current microbial hazard to the spacecraft, nor does any trend indicate a potential health risk. Previous spacecraft environmental analysis indicated that microbial contamination will increase with time and require continued surveillance.

  13. Space Station

    NASA Image and Video Library

    1985-12-01

    Skylab's success proved that scientific experimentation in a low gravity environment was essential to scientific progress. A more permanent structure was needed to provide this space laboratory. President Ronald Reagan, on January 25, 1984, during his State of the Union address, claimed that the United States should exploit the new frontier of space, and directed NASA to build a permanent marned space station within a decade. The idea was that the space station would not only be used as a laboratory for the advancement of science and medicine, but would also provide a staging area for building a lunar base and manned expeditions to Mars and elsewhere in the solar system. President Reagan invited the international community to join with the United States in this endeavour. NASA and several countries moved forward with this concept. By December 1985, the first phase of the space station was well underway with the design concept for the crew compartments and laboratories. Pictured are two NASA astronauts, at Marshall Space Flight Center's (MSFC) Neutral Buoyancy Simulator (NBS), practicing construction techniques they later used to construct the space station after it was deployed.

  14. Video- Demonstration of Seltzer Tablet in Water Onboard the International Space Station (ISS)

    NASA Technical Reports Server (NTRS)

    2002-01-01

    Saturday Morning Science, the science of opportunity series of applied experiments and demonstrations, performed aboard the International Space Station (ISS) by Expedition 6 astronaut Dr. Don Pettit, revealed some remarkable findings. In this video clip, Pettit demonstrates dropping an Alka Seltzer tablet into a film of water which becomes a floating ball of activity filled water. Watch the video to see the surprising results!

  15. Student Pave Way for First Microgravity Experiments on International Space Station

    NASA Technical Reports Server (NTRS)

    1999-01-01

    Chemist Arna Holmes, left, from the University of Alabama in Huntsville, teaches NaLonda Moorer, center, and Maricar Bana, right, both from Terry Parker High School in Jacksonville, Fl, procedures for preparing protein crystal growth samples for flight aboard the International Space Station (ISS). NASA/Marshall Space Flight Center in Huntsville, AL, is a sponsor for this educational activity. The proteins are placed in plastic tubing that is heat-sealed at the ends, then flash-frozen and preserved in a liquid nitrogen Dewar. Aborad the ISS, the nitrogen will be allowed to evaporated so the samples thaw and then slowly crystallize. They will be analyzed after return to Earth. Photo credit: NASA/Marshall Space Flight Center (MSFC)

  16. Remote sensing of fire and deforestation in the tropics from the International Space Station

    NASA Astrophysics Data System (ADS)

    Hoffman, James W.; Riggan, Philip J.; Brass, James A.

    2000-01-01

    In August of 1999 over 30,000 fire counts were registered by the Advanced Very High Resolution Radiometer aboard NOAA satellites over central Brazil, and an extensive smoke pall produced a health hazard and hindered commercial aviation across large portions of the states of Mato Grosso and Mato Grosso do Sul. Clearly fire was an important part of the Brazilian environment, but limitations in satellite and airborne remote sensing prevented a clear picture of what was burning, how much biomass was consumed, where the most critical resources were threatened, or exactly what was the global environmental impact. Another important problem that must be addressed is the deforestation of the rain forest by unauthorized logging operations. To detect these illegal clear cutting activities, continuous, high resolution monitoring must be initiated. The low altitude Space Station offers an ideal platform from which to monitor the tropical regions for both fires and deforestation from an equatorial orbit. A new micro-bolometer-based thermal imager, the FireMapper, has been designed to provide a solution for these problems in fire and resource monitoring. In this paper we describe potential applications of the FireMapper aboard the International Space Station for demonstration of space-borne fire detection and measurement. .

  17. Navigating Space by the Stars

    NASA Image and Video Library

    2018-06-19

    A tool that has helped guide sailors across oceans for centuries is now being tested aboard the International Space Station as a potential emergency navigation tool for guiding future spacecraft across the cosmos. The Sextant Navigation investigation tests use of a hand-held sextant aboard the space station. Sextants have a telescope-like optical sight to take precise angle measurements between pairs of stars from land or sea, enabling navigation without computer assistance. NASA’s Gemini missions conducted the first sextant sightings from a spacecraft, and designers built a sextant into Apollo vehicles as a navigation backup in the event the crew lost communications from their spacecraft. Jim Lovell demonstrated on Apollo 8 that sextant navigation could return a space vehicle home. Astronauts conducted additional sextant experiments on Skylab. Read more about the Sextant experiment happening aboard the space station: https://www.nasa.gov/mission_pages/station/research/news/Sextant_ISS HD Download: https://archive.org/details/jsc2018m000418_Navigating_Space_by_the_Stars

  18. Extreme Tele-Echocardiography: Methodology for Remote Guidance of In-flight Echocardiography Aboard the International Space Station

    NASA Technical Reports Server (NTRS)

    Martin, David; Borowski, Allan; Bungo, Michael W.; Dulchavsky, Scott; Gladding, Patrick; Greenberg, Neil; Hamilton, Doug; Levine, Benjamin D.; Norwoord, Kelly; Platts, Steven H.; hide

    2011-01-01

    Echocardiography is ideally suited for cardiovascular imaging in remote environments, but the expertise to perform it is often lacking. In 2001, an ATL HDI5000 was delivered to the International Space Station (ISS). The instrument is currently being used in a study to investigate the impact of long-term microgravity on cardiovascular function. The purpose of this report is to describe the methodology for remote guidance of echocardiography in space. Methods: In the year before launch of an ISS mission, potential astronaut echocardiographic operators participate in 5 sessions to train for echo acquisitions that occur roughly monthly during the mission, including one exercise echocardiogram. The focus of training is familiarity with the study protocol and remote guidance procedures. On-orbit, real-time guidance of in-flight acquisitions is provided by a sonographer in the Telescience Center of Mission Control. Physician investigators with remote access are able to relay comments on image optimization to the sonographer. Live video feed is relayed from the ISS to the ground via the Tracking and Data Relay Satellite System with a 2 second transmission delay. The expert sonographer uses these images along with two-way audio to provide instructions and feedback. Images are stored in non-compressed DICOM format for asynchronous relay to the ground for subsequent off-line analysis. Results: Since June, 2009, a total of 19 resting echocardiograms and 4 exercise studies have been performed in-flight. Average acquisition time has been 45 minutes, reflecting 26,000 km of ISS travel per study. Image quality has been adequate in all studies, but remote guidance has proven imperative for fine-tuning imaging and prioritizing views when communication outages limit the study duration. Typical resting studies have included 12 video loops and 21 still-frame images requiring 750 MB of storage. Conclusions: Despite limited crew training, remote guidance allows research

  19. Space Station Freedom coupling tasks: An evaluation of their space operational compatibility

    NASA Technical Reports Server (NTRS)

    Sampaio, Carlos E.; Bierschwale, John M.; Fleming, Terence F.; Stuart, Mark A.

    1991-01-01

    The development of the Space Station Freedom tasks that are compatible with both telerobotic as well as extravehicular activity is a necessary redundancy in order to insure successful day to day operation. One task to be routinely performed aboard Freedom will be the changeout of various quick disconnect fluid connectors. In an attempt to resolve these potentially contradictory issues of compatibility, mock-ups of couplings suitable to both extravehicular as well as telerobotic activity were designed and built. An evaluation performed at the Remote Operator Interaction Laboratory at NASA's Johnson Space Center is discussed, which assessed the prototype couplings as well as three standard coupling designs. Data collected during manual and telerobotic manipulation of the couplings indicated that the custom coupling was in fact shown to be faster to operate and generally preferred over the standard coupling designs.

  20. The In-Space Soldering Investigation: To Date Analysis of Experiments Conducted on the International Space Station

    NASA Technical Reports Server (NTRS)

    Grugel, Richard N.; Gillies, D. C.; Hua, F.; Anilkumar, A.

    2006-01-01

    Soldering is a well established joining and repair process that is of particular importance in the electronics industry. Still, internal solder joint defects such as porosity are prevalent and compromise desired properties such as electrical/thermal conductivity and fatigue strength. Soldering equipment resides aboard the International Space Station (ISS) and will likely accompany Exploration Missions during transit to, as well as on, the moon and Mars. Unfortunately, detrimental porosity appears to be enhanced in lower gravity environments. To this end, the In-Space Soldering Investigation (ISSI) is being conducted in the Microgravity Workbench Area (MWA) aboard the ISS as "Saturday Science" with the goal of promoting our understanding of joining techniques, shape equilibrium, wetting phenomena, and microstructural development in a microgravity environment. The work presented here will focus on direct observation of melting dynamics and shape determination in comparison to ground-based samples, with implications made to processing in other low-gravity environments. Unexpected convection effects, masked on Earth, will also be shown as well as the value of the ISS as a research platform in support of Exploration Missions.

  1. Space Station

    NASA Image and Video Library

    1971-01-01

    This is an artist's concept of the Research and Applications Modules (RAM). Evolutionary growth was an important consideration in space station plarning, and another project was undertaken in 1971 to facilitate such growth. The RAM study, conducted through a Marshall Space Flight Center contract with General Dynamics Convair Aerospace, resulted in the conceptualization of a series of RAM payload carrier-sortie laboratories, pallets, free-flyers, and payload and support modules. The study considered two basic manned systems. The first would use RAM hardware for sortie mission, where laboratories were carried into space and remained attached to the Shuttle for operational periods up to 7 days. The second envisioned a modular space station capability that could be evolved by mating RAM modules to the space station core configuration. The RAM hardware was to be built by Europeans, thus fostering international participation in the space program.

  2. Logistical and Analytical Approach to a Failure Aboard the International Space Station

    NASA Technical Reports Server (NTRS)

    McDanels, Seve; Wright, M. Clara; Salazar, Victoria; Lubas, David; Tucker, Bryan

    2009-01-01

    The starboard Solar Alpha Rotary Joint (SARJ) from the International Space Station (ISS) began exhibiting off-nominal electrical demands and vibration. Examination by spacewalking astronauts revealed metallic debris contaminating the system and damage to the outboard race of the SARJ. Samples of the contamination were returned to Earth and analyzed. Excessive friction caused the nitride region of the 15-5 PH stainless steel race to spall, generating the debris and damaging the race surface. Excessive vibration and excess power was required to operate the system as a result.

  3. Space Station Freedom Utilization Conference

    NASA Technical Reports Server (NTRS)

    1992-01-01

    The topics addressed in Space Station Freedom Utilization Conference are: (1) space station freedom overview and research capabilities; (2) space station freedom research plans and opportunities; (3) life sciences research on space station freedom; (4) technology research on space station freedom; (5) microgravity research and biotechnology on space station freedom; and (6) closing plenary.

  4. Madrid space station

    NASA Technical Reports Server (NTRS)

    Fahnestock, R. J.; Renzetti, N. A.

    1975-01-01

    The Madrid space station, operated under bilateral agreements between the governments of the United States and Spain, is described in both Spanish and English. The space station utilizes two tracking and data acquisition networks: the Deep Space Network (DSN) of the National Aeronautics and Space Administration and the Spaceflight Tracking and Data Network (STDN) operated under the direction of the Goddard Space Flight Center. The station, which is staffed by Spanish employees, comprises four facilities: Robledo 1, Cebreros, and Fresnedillas-Navalagamella, all with 26-meter-diameter antennas, and Robledo 2, with a 64-meter antenna.

  5. On-Orbit Prospective Echocardiography on International Space Station

    NASA Technical Reports Server (NTRS)

    Hamilton, Douglas R.; Sargsyan, Ashot E.; Martin, David; Garcia, Kathleen M.; Melton, Shannon; Feiverson, Alan; Dulchavsky, Scott A.

    2010-01-01

    A number of echocardiographic research projects and experiments have been flown on almost every space vehicle since 1970, but validation of standard methods and the determination of Space Normal cardiac function has not been reported to date. Advanced Diagnostics in Microgravity (ADUM) -remote guided echocardiographic technique provides a novel and effective approach to on-board assessment of cardiac physiology and structure using a just-in-time training algorithm and real-time remote guidance aboard the International Space Station (ISS). The validation of remotely guided echocardiographic techniques provides the procedures and protocols to perform scientific and clinical echocardiography on the ISS and the Moon. The objectives of this study were: 1.To confirm the ability of non-physician astronaut/cosmonaut crewmembers to perform clinically relevant remotely guided echocardiography using the Human Research Facility on board the ISS. 2.To compare the preflight, postflight and in-flight echocardiographic parameters commonly used in clinical medicine.

  6. Modeling a Wireless Network for International Space Station

    NASA Technical Reports Server (NTRS)

    Alena, Richard; Yaprak, Ece; Lamouri, Saad

    2000-01-01

    This paper describes the application of wireless local area network (LAN) simulation modeling methods to the hybrid LAN architecture designed for supporting crew-computing tools aboard the International Space Station (ISS). These crew-computing tools, such as wearable computers and portable advisory systems, will provide crew members with real-time vehicle and payload status information and access to digital technical and scientific libraries, significantly enhancing human capabilities in space. A wireless network, therefore, will provide wearable computer and remote instruments with the high performance computational power needed by next-generation 'intelligent' software applications. Wireless network performance in such simulated environments is characterized by the sustainable throughput of data under different traffic conditions. This data will be used to help plan the addition of more access points supporting new modules and more nodes for increased network capacity as the ISS grows.

  7. Space-to-Ground: Quick Work: 10/13/2017

    NASA Image and Video Library

    2017-10-12

    Astronauts continue maintenance outside the International Space Station...and artificial gravity on the station? Space to Ground is your weekly update on what's happening aboard the International Space Station.

  8. Science and payload options for animal and plant research accommodations aboard the early Space Station

    NASA Technical Reports Server (NTRS)

    Hilchey, John D.; Arno, Roger D.; Gustan, Edith; Rudiger, C. E.

    1986-01-01

    The resources to be allocated for the development of the Initial Operational Capability (IOC) Space Station Animal and Plant Research Facility and the Growth Station Animal and Plant Vivarium and Laboratory may be limited; also, IOC accommodations for animal and plant research may be limited. An approach is presented for the development of Initial Research Capability Minilabs for animal and plant studies, which in appropriate combination and sequence can meet requirements for an evolving program of research within available accommodations and anticipated budget constraints.

  9. Binary Colloidal Alloy Test-3 (BCAT-3) Tabletop Space Station Experiment Continues

    NASA Technical Reports Server (NTRS)

    Meyer, William V.

    2005-01-01

    "As above, so below," thus begins the Emerald Tablet that was inscribed in 300 B.C., long before we could look into the heavens and see a space station that might serve as a platform for exploring other worlds and for exploring the natural ways that order arises out of chaos. To raze the ancient intent of this quote (and lift it out of context), we note that the effects of gravity would be balanced (removed) at the center of the Earth (below) and that this is also the case aboard the International Space Station (above). Yet, those of us on Earth are caught in the middle, where the effects of gravity are profound and disturbing for observers wanting to study nature s self-organizing tendencies, tendencies that are masked by sedimentation and convection on Earth.

  10. Students Pave Way for First Microgravity Experiments on International Space Station

    NASA Technical Reports Server (NTRS)

    1999-01-01

    Kim Nelson, left, of Sandalwood High School in Jacksonville, FL, helps Steven Nepowada, right, of Terry Parker High School in Jacksonville, practice loading a protein sample into a thermos-like container, known as Dewar. Students from Jacksonville worked with researchers from NASA/Marshall Space Flight Center (MSFC), as well as universities, in Huntsville, AL, on an experiment for the International Space Station (ISS). The proteins are placed in plastic tubing that is heat-sealed at the ends, then flash-frozen and preserved in a liquid nitrogen Dewar. Aboard the ISS, the nitrogen will be allowed to evaporated so the samples thaw and then slowly crystallize. They will be analyzed after return to Earth. Photo credit: NASA/Marshall Space Flight Center (MSFC)

  11. Survival of pathogenic bacteria under nutrient starvation conditions. [aboard orbiting space stations

    NASA Technical Reports Server (NTRS)

    Boyle, Michael; Ford, Tim; Mitchell, Ralph; Maki, James

    1990-01-01

    The survival of opportunistic pathogenic microorganisms in water, under nutrient-limiting conditions, has been investigated in order to ascertain whether human pathogens can survive within a water-distribution system of the kind proposed for the NASA Space Station. Cultures of a strain of pseudomonas aeruginosa and two strains of staphylococcus aureus were incubated at 10, 25, or 37 C, and samples at 1 day, 1 week, 1 month, and six weeks. While neither of the staphylococcus strains tested were detected after 1 week of starvation, the pseudomonas strain can survive in deionized water at all three temperatures.

  12. Space-to-Ground_171_170407

    NASA Image and Video Library

    2017-04-07

    NASA's Space to Ground is your weekly update on what's happening aboard the International Space Station. Got a question or comment? Use #spacetoground to talk to us. ________________________________________ FOLLOW THE SPACE STATION! Twitter: https://twitter.com/Space_Station Facebook: https://www.facebook.com/ISS Instagram: https://instagram.com/iss/

  13. Space Station

    NASA Image and Video Library

    1989-08-01

    In response to President Reagan's directive to NASA to develop a permanent marned Space Station within a decade, part of the State of the Union message to Congress on January 25, 1984, NASA and the Administration adopted a phased approach to Station development. This approach provided an initial capability at reduced costs, to be followed by an enhanced Space Station capability in the future. This illustration depicts the baseline configuration, which features a 110-meter-long horizontal boom with four pressurized modules attached in the middle. Located at each end are four photovoltaic arrays generating a total of 75-kW of power. Two attachment points for external payloads are provided along this boom. The four pressurized modules include the following: A laboratory and habitation module provided by the United States; two additional laboratories, one each provided by the European Space Agency (ESA) and Japan; and an ESA-provided Man-Tended Free Flyer, a pressurized module capable of operations both attached to and separate from the Space Station core. Canada was expected to provide the first increment of a Mobile Serving System.

  14. Fluid Physical and Transport Phenomena Studies aboard the International Space Station: Planned Experiments

    NASA Technical Reports Server (NTRS)

    Singh, Bhim S.

    1999-01-01

    This paper provides an overview of the microgravity fluid physics and transport phenomena experiments planned for the International Spare Station. NASA's Office of Life and Microgravity Science and Applications has established a world-class research program in fluid physics and transport phenomena. This program combines the vast expertise of the world research community with NASA's unique microgravity facilities with the objectives of gaining new insight into fluid phenomena by removing the confounding effect of gravity. Due to its criticality to many terrestrial and space-based processes and phenomena, fluid physics and transport phenomena play a central role in the NASA's Microgravity Program. Through widely publicized research announcement and well established peer-reviews, the program has been able to attract a number of world-class researchers and acquired a critical mass of investigations that is now adding rapidly to this field. Currently there arc a total of 106 ground-based and 20 candidate flight principal investigators conducting research in four major thrust areas in the program: complex flows, multiphase flow and phase change, interfacial phenomena, and dynamics and instabilities. The International Space Station (ISS) to be launched in 1998, provides the microgravity research community with a unprecedented opportunity to conduct long-duration microgravity experiments which can be controlled and operated from the Principal Investigators' own laboratory. Frequent planned shuttle flights to the Station will provide opportunities to conduct many more experiments than were previously possible. NASA Lewis Research Center is in the process of designing a Fluids and Combustion Facility (FCF) to be located in the Laboratory Module of the ISS that will not only accommodate multiple users but, allow a broad range of fluid physics and transport phenomena experiments to be conducted in a cost effective manner.

  15. The space station

    NASA Technical Reports Server (NTRS)

    Munoz, Abraham

    1988-01-01

    Conceived since the beginning of time, living in space is no longer a dream but rather a very near reality. The concept of a Space Station is not a new one, but a redefined one. Many investigations on the kinds of experiments and work assignments the Space Station will need to accommodate have been completed, but NASA specialists are constantly talking with potential users of the Station to learn more about the work they, the users, want to do in space. Present configurations are examined along with possible new ones.

  16. [STEM on Station Education

    NASA Technical Reports Server (NTRS)

    Lundebjerg, Kristen

    2016-01-01

    The STEM on Station team is part of Education which is part of the External Relations organization (ERO). ERO has traditional goals based around BHAG (Big Hairy Audacious Goal). The BHAG model is simplified to a saying: Everything we do stimulates actions by others to advance human space exploration. The STEM on Station education initiate is a project focused on bringing off the earth research and learning into classrooms. Educational resources such as lesson plans, activities to connect with the space station and STEM related contests are available and hosted by the STEM on Station team along with their partners such as Texas Instruments. These educational activities engage teachers and students in the current happenings aboard the international space station, inspiring the next generation of space explorers.

  17. Space station, 1959 to . .

    NASA Astrophysics Data System (ADS)

    Butler, G. V.

    1981-04-01

    Early space station designs are considered, taking into account Herman Oberth's first space station, the London Daily Mail Study, the first major space station design developed during the moon mission, and the Manned Orbiting Laboratory Program of DOD. Attention is given to Skylab, new space station studies, the Shuttle and Spacelab, communication satellites, solar power satellites, a 30 meter diameter radiometer for geological measurements and agricultural assessments, the mining of the moons, and questions of international cooperation. It is thought to be very probable that there will be very large space stations at some time in the future. However, for the more immediate future a step-by-step development that will start with Spacelab stations of 3-4 men is envisaged.

  18. The Capabilities of Space Stations

    NASA Technical Reports Server (NTRS)

    1995-01-01

    Over the past two years the U.S. space station program has evolved to a three-phased international program, with the first phase consisting of the use of the U.S. Space Shuttle and the upgrading and use of the Russian Mir Space Station, and the second and third phases consisting of the assembly and use of the new International Space Station. Projected capabilities for research, and plans for utilization, have also evolved and it has been difficult for those not directly involved in the design and engineering of these space stations to learn and understand their technical details. The Committee on the Space Station of the National Research Council, with the concurrence of NASA, undertook to write this short report in order to provide concise and objective information on space stations and platforms -- with emphasis on the Mir Space Station and International Space Station -- and to supply a summary of the capabilities of previous, existing, and planned space stations. In keeping with the committee charter and with the task statement for this report, the committee has summarized the research capabilities of five major space platforms: the International Space Station, the Mir Space Station, the Space Shuttle (with a Spacelab or Spacehab module in its cargo bay), the Space Station Freedom (which was redesigned to become the International Space Station in 1993 and 1994), and Skylab. By providing the summary, together with brief descriptions of the platforms, the committee hopes to assist interested readers, including scientists and engineers, government officials, and the general public, in evaluating the utility of each system to meet perceived user needs.

  19. Space teleoperations technology for Space Station evolution

    NASA Technical Reports Server (NTRS)

    Reuter, Gerald J.

    1990-01-01

    Viewgraphs on space teleoperations technology for space station evolution are presented. Topics covered include: shuttle remote manipulator system; mobile servicing center functions; mobile servicing center technology; flight telerobotic servicer-telerobot; flight telerobotic servicer technology; technologies required for space station assembly; teleoperation applications; and technology needs for space station evolution.

  20. Space Station Crew Holds an Out of this World Audience with the Pope

    NASA Image and Video Library

    2017-10-26

    Aboard the International Space Station, Expedition 53 Commander Randy Bresnik and Flight Engineers Joe Acaba and Mark Vande Hei of NASA and Flight Engineer and Italian astronaut Paolo Nespoli of the European Space Agency discussed life and work in space and the spirit of international cooperation during a question and answer session Oct. 26 with Pope Francis at the Vatican. The pope also discussed the crew members’ view of the Earth from orbit and praised the crew for its accomplishments in demonstrating the value of international collaboration for peaceful purposes. The crewmembers are in various stages of their respective five and a half month missions on the outpost.

  1. KENNEDY SPACE CENTER, FLA. - STS-114 Mission Specialist Soichi Noguchi arrives at KSC aboard a T-38 jet aircraft. He and other crew members are at the Center for familiarization activities with equipment. The mission is Logistics Flight 1, scheduled to deliver the Multi-Purpose Logistics Module carrying supplies and equipment to the Space Station and the external stowage platform.

    NASA Image and Video Library

    2004-03-05

    KENNEDY SPACE CENTER, FLA. - STS-114 Mission Specialist Soichi Noguchi arrives at KSC aboard a T-38 jet aircraft. He and other crew members are at the Center for familiarization activities with equipment. The mission is Logistics Flight 1, scheduled to deliver the Multi-Purpose Logistics Module carrying supplies and equipment to the Space Station and the external stowage platform.

  2. KENNEDY SPACE CENTER, FLA. - STS-114 Mission Specialist Stephen Robinson arrives at KSC aboard a T-38 jet aircraft. He and other crew members are at the Center for familiarization activities with equipment. The mission is Logistics Flight 1, scheduled to deliver the Multi-Purpose Logistics Module carrying supplies and equipment to the Space Station and the external stowage platform.

    NASA Image and Video Library

    2004-03-05

    KENNEDY SPACE CENTER, FLA. - STS-114 Mission Specialist Stephen Robinson arrives at KSC aboard a T-38 jet aircraft. He and other crew members are at the Center for familiarization activities with equipment. The mission is Logistics Flight 1, scheduled to deliver the Multi-Purpose Logistics Module carrying supplies and equipment to the Space Station and the external stowage platform.

  3. KENNEDY SPACE CENTER, FLA. - STS-114 Mission Specialist Charles Camarda arrives at KSC aboard a T-38 jet aircraft. He and other crew members are at the Center for familiarization activities with equipment. The mission is Logistics Flight 1, scheduled to deliver the Multi-Purpose Logistics Module carrying supplies and equipment,to the Space Station, and the external stowage platform.

    NASA Image and Video Library

    2004-03-05

    KENNEDY SPACE CENTER, FLA. - STS-114 Mission Specialist Charles Camarda arrives at KSC aboard a T-38 jet aircraft. He and other crew members are at the Center for familiarization activities with equipment. The mission is Logistics Flight 1, scheduled to deliver the Multi-Purpose Logistics Module carrying supplies and equipment,to the Space Station, and the external stowage platform.

  4. Development of a System to Assess Biofilm Formation in the International Space Station

    NASA Technical Reports Server (NTRS)

    Martin Charles, E.; Summers, Silvia M.; Roman, Monserrate C.

    1998-01-01

    The design requirements for the water treatment systems aboard the International Space Station (ISS) include and require recycling as much water as possible and to treat the water for intentional contamination (hygiene, urine distillate, condensate, etc.) and unintentional contamination in the form of biofilm and microorganisms. As part of an effort to address the latter issue, a biofilm system was developed by Marshall Space Flight Center (MSFC) to simulate the conditions aboard ISS with respect to materials, flow rates, water conditions, water content, and handling. The tubing, connectors, sensors, and fabricated parts included in the system were chosen for specific attributes as applicable to emulate an orbital water treatment system. This paper addresses the design and development process of the system, as well as the configuration, operation, and system procedures for maintenance to assure that the simulation is valid for the representative data as it applies to water degradation and biofilm/microbial growth. Preliminary biofilm/microbial results are also presented.

  5. The International Space Station Photographed During the STS-112 Mission

    NASA Technical Reports Server (NTRS)

    2002-01-01

    This image of the International Space Station (ISS) was photographed by one of the crewmembers of the STS-112 mission following separation from the Space Shuttle Orbiter Atlantis as the orbiter pulled away from the ISS. The newly added S1 truss is visible in the center frame. The primary payloads of this mission, International Space Station Assembly Mission 9A, were the Integrated Truss Assembly S-1 (S-One), the Starboard Side Thermal Radiator Truss,and the Crew Equipment Translation Aid (CETA) cart to the ISS. The S1 truss provides structural support for the orbiting research facility's radiator panels, which use ammonia to cool the Station's complex power system. The S1 truss was attached to the S0 (S Zero) truss, which was launched on April 8, 2002 aboard the STS-110, and flows 637 pounds of anhydrous ammonia through three heat rejection radiators. The truss is 45-feet long, 15-feet wide, 10-feet tall, and weighs approximately 32,000 pounds. The CETA cart was attached to the Mobil Transporter and will be used by assembly crews on later missions. Manufactured by the Boeing Company in Huntington Beach, California, the truss primary structure was transferred to the Marshall Space Flight Center in February 1999 for hardware installations and manufacturing acceptance testing. The launch of the STS-112 mission occurred on October 7, 2002, and its 11-day mission ended on October 18, 2002.

  6. Space Station Human Factors Research Review. Volume 3: Space Station Habitability and Function: Architectural Research

    NASA Technical Reports Server (NTRS)

    Cohen, Marc M. (Editor); Eichold, Alice (Editor); Heers, Susan (Editor)

    1987-01-01

    Articles are presented on a space station architectural elements model study, space station group activities habitability module study, full-scale architectural simulation techniques for space stations, and social factors in space station interiors.

  7. Space-to-Ground: Light Storm: 180216

    NASA Image and Video Library

    2018-02-16

    This week on station, a spacewalk and vehicle docking. NASA's Space to Ground is your weekly update on what's happening aboard the International Space Station. For more information about STEM on Station: https://www.nasa.gov/audience/foreducators/stem_on_station/

  8. International Space Station Acoustics - A Status Report

    NASA Technical Reports Server (NTRS)

    Allen, Christopher S.; Denham, Samuel A.

    2011-01-01

    It is important to control acoustic noise aboard the International Space Station (ISS) to provide a satisfactory environment for voice communications, crew productivity, and restful sleep, and to minimize the risk for temporary and permanent hearing loss. Acoustic monitoring is an important part of the noise control process on ISS, providing critical data for trend analysis, noise exposure analysis, validation of acoustic analysis and predictions, and to provide strong evidence for ensuring crew health and safety, thus allowing Flight Certification. To this purpose, sound level meter (SLM) measurements and acoustic noise dosimetry are routinely performed. And since the primary noise sources on ISS include the environmental control and life support system (fans and airflow) and active thermal control system (pumps and water flow), acoustic monitoring will indicate changes in hardware noise emissions that may indicate system degradation or performance issues. This paper provides the current acoustic levels in the ISS modules and sleep stations, and is an update to the status presented in 20031. Many new modules, and sleep stations have been added to the ISS since that time. In addition, noise mitigation efforts have reduced noise levels in some areas. As a result, the acoustic levels on the ISS have improved.

  9. Space Station Crew Bids Farewell to U.S. Commercial Cargo Spaceship

    NASA Image and Video Library

    2017-12-06

    Aboard the International Space Station, Expedition 53 Flight Engineers Mark Vande Hei and Joe Acaba of NASA used the Canadian-built robotic arm to release the Orbital ATK Cygnus resupply spacecraft three weeks after its arrival to bring some three tons of supplies and experiments to the orbital complex. Dubbed the "SS Gene Cernan," the Cygnus cargo ship will remain in orbit for almost two weeks conducting engineering tests before it is deorbited on Dec. 18 to burn up harmlessly in the Earth's atmosphere over the Pacific Ocean.

  10. Microgravity Science Glovebox (MSG) Space Science's Past, Present, and Future on the International Space Station (ISS)

    NASA Technical Reports Server (NTRS)

    Spivey, Reggie A.; Spearing, Scott F.; Jordan, Lee P.; McDaniel S. Greg

    2012-01-01

    The Microgravity Science Glovebox (MSG) is a double rack facility designed for microgravity investigation handling aboard the International Space Station (ISS). The unique design of the facility allows it to accommodate science and technology investigations in a "workbench" type environment. MSG facility provides an enclosed working area for investigation manipulation and observation in the ISS. Provides two levels of containment via physical barrier, negative pressure, and air filtration. The MSG team and facilities provide quick access to space for exploratory and National Lab type investigations to gain an understanding of the role of gravity in the physics associated research areas. The MSG is a very versatile and capable research facility on the ISS. The Microgravity Science Glovebox (MSG) on the International Space Station (ISS) has been used for a large body or research in material science, heat transfer, crystal growth, life sciences, smoke detection, combustion, plant growth, human health, and technology demonstration. MSG is an ideal platform for gravity-dependent phenomena related research. Moreover, the MSG provides engineers and scientists a platform for research in an environment similar to the one that spacecraft and crew members will actually experience during space travel and exploration. The MSG facility is ideally suited to provide quick, relatively inexpensive access to space for National Lab type investigations.

  11. The In-Space Soldering Investigation: Research Conducted on the International Space Station in Support of NASA's Exploration Initiative

    NASA Technical Reports Server (NTRS)

    Grugel, R. N.; Fincke, M.; Sergre, P. N.; Ogle, J. A.; Funkhouser, G.; Parris, F.; Murphy, L.; Gillies, D.; Hua, F.

    2004-01-01

    Soldering is a well established joining and repair process that is of particular importance in the electronics industry. Still. internal solder joint defects such as porosity are prevalent and compromise desired properties such as electrical/thermal conductivity and fatigue strength. Soldering equipment resides aboard the International Space Station (ISS) and will likely accompany Exploration Missions during transit to, as well as on, the moon and Mars. Unfortunately, detrimental porosity appears to be enhanced in lower gravity environments. To this end, the In-Space Soldering Investigation (ISSI) is being conducted in the Microgravity Workbench Area (MWA) aboard the ISS as "Saturday Science" with the goal of promoting our understanding of joining techniques, shape equilibrium, wetting phenomena, and microstructural development in a microgravity environment. The work presented here will focus on direct observation of melting dynamics and shape determination in comparison to ground-based samples, with implications made to processing in other low-gravity environments. Unexpected convection effects, masked on Earth, will also be shown as well as the value of the ISS as a research platform in support of Exploration Missions.

  12. Containerless high-pressure petrology experiments in the microgravity environment of the Space Station

    NASA Technical Reports Server (NTRS)

    Boynton, W. V.; DRAKE; HILDEBRAND; JONES; LEWIS; TREIMAN; WARK

    1987-01-01

    The genesis of igneous rocks on terrestrial planets can only be understood through experiments at pressures corresponding to those in planetary mantles (10 to 50 kbar). Such experiments typically require a piston-cylinder apparatus, and an apparatus that has the advantage of controllable pressure and temperature, adequate sample volume, rapid sample quench, and minimal danger of catastrophic failure. It is proposed to perform high-pressure and high-temperature piston-cylinder experiments aboard the Space Station. The microgravity environment in the Space Station will minimize settling due to density contrasts and may, thus, allow experiments of moderate duration to be performed without a platinoid capsule and without the sample having to touch the container walls. The ideal pressure medium would have the same temperatures. It is emphasized, however, that this proposed experimental capability requires technological advances and innovations not currently available.

  13. International Space Station (ISS)

    NASA Image and Video Library

    1997-07-20

    Photograph shows the International Space Station Laboratory Module under fabrication at Marshall Space Flight Center (MSFC), Building 4708 West High Bay. Although management of the U.S. elements for the Station were consolidated in 1994, module and node development continued at MSFC by Boeing Company, the prime contractor for the Space Station.

  14. Science in space with the Space Station

    NASA Technical Reports Server (NTRS)

    Banks, Peter M.

    1987-01-01

    The potential of the Space Station as a versatile scientific laboratory is discussed, reviewing plans under consideration by the NASA Task Force on Scientific Uses of the Space Station. The special advantages offered by the Station for expanding the scope of 'space science' beyond astrophysics, geophysics, and terrestrial remote sensing are stressed. Topics examined include the advantages of a manned presence, the scientific value and cost effectiveness of smaller, more quickly performable experiments, improved communications for ground control of Station experiments, the international nature of the Station, the need for more scientist astronauts for the Station crew, Station on-orbit maintenance and repair services for coorbiting platforms, and the need for Shuttle testing of proposed Station laboratory equipment and procedures.

  15. Space Station transition through Spacelab

    NASA Technical Reports Server (NTRS)

    Craft, Harry G., Jr.; Wicks, Thomas G.

    1990-01-01

    It is appropriate that NASA's Office of Space Science and Application's science management structures and processes that have proven successful on Spacelab be applied and extrapolated to Space Station utilization, wherever practical. Spacelab has many similarities and complementary aspects to Space Station Freedom. An understanding of the similarities and differences between Spacelab and Space Station is necessary in order to understand how to transition from Spacelab to Space Station. These relationships are discussed herein as well as issues which must be dealt with and approaches for transition and evolution from Spacelab to Space Station.

  16. Navigating Space by the Stars - 16x9

    NASA Image and Video Library

    2018-06-18

    A tool that has helped guide sailors across oceans for centuries is now being tested aboard the International Space Station as a potential emergency navigation tool for guiding future spacecraft across the cosmos. The Sextant Navigation investigation tests use of a hand-held sextant aboard the space station. Sextants have a telescope-like optical sight to take precise angle measurements between pairs of stars from land or sea, enabling navigation without computer assistance. NASA’s Gemini missions conducted the first sextant sightings from a spacecraft, and designers built a sextant into Apollo vehicles as a navigation backup in the event the crew lost communications from their spacecraft. Jim Lovell demonstrated on Apollo 8 that sextant navigation could return a space vehicle home. Astronauts conducted additional sextant experiments on Skylab. Read more about the Sextant experiment happening aboard the space station: https://www.nasa.gov/mission_pages/station/research/news/Sextant_ISS HD Download: https://archive.org/details/jsc2018m000418_Navigating_Space_by_the_Stars

  17. STS-113 Astronauts Work on Port One (P1) Truss on International Space Station

    NASA Technical Reports Server (NTRS)

    2002-01-01

    The 16th American assembly flight and 112th overall American flight to the International Space Station (ISS) launched on November 23, 2002 from Kennedy's launch pad 39A aboard the Space Shuttle Orbiter Endeavor STS-113. Mission objectives included the delivery of the Expedition Six Crew to the ISS, the return of Expedition Five crew back to Earth, and the installation and activation of the Port 1 Integrated Truss Assembly (P1). The first major component installed on the left side of the Station, the P1 truss provides an additional three External Thermal Control System radiators. Weighing in at 27,506 pounds, the P1 truss is 45 feet (13.7 meters) long, 15 feet (4.6 meters) wide, and 13 feet (4 meters) high. Three space walks, aided by the use of the Robotic Manipulator Systems of both the Shuttle and the Station, were performed in the installation of P1. In this photograph, astronauts Michael E. Lopez-Alegria (above) and John B. Herrington (below) work on the newly installed P1 truss during the mission's second scheduled session of extravehicular activity. The space walk lasted 6 hours, 10 minutes. The end effector of the Canadarm2 or Space Station Remote Manipulator System (SSRMS) and Earth's horizon are visible in the bottom of frame.

  18. Video- Demonstration of Tea and Sugar in Water Onboard the International Space Station (ISS)

    NASA Technical Reports Server (NTRS)

    2003-01-01

    Saturday Morning Science, the science of opportunity series of applied experiments and demonstrations, performed aboard the International Space Station (ISS) by Expedition 6 astronaut Dr. Don Pettit, revealed some remarkable findings. Imagine what would happen if a collection of loosely attractive particles were confined in a relatively small region in the floating environment of space. Would they self organize into a compact structure, loosely organize into a fractal, or just continue to float around in their container? In this video clip, Dr. Pettit explored the possibilities. At one point he remarks, 'These things look like pictures from the Hubble Space Telescope.' Watch the video and see what happens!

  19. SpaceX Spacesuit

    NASA Image and Video Library

    2017-08-22

    The SpaceX spacesuit that will be worn by astronauts aboard its Crew Dragon spacecraft (in the background) during missions to and from the International Space Station. SpaceX is developing its Crew Dragon spacecraft and Falcon 9 rocket in partnership with NASA’s Commercial Crew Program to carry astronauts to and from the space station.

  20. Space Station Food System

    NASA Technical Reports Server (NTRS)

    Thurmond, Beverly A.; Gillan, Douglas J.; Perchonok, Michele G.; Marcus, Beth A.; Bourland, Charles T.

    1986-01-01

    A team of engineers and food scientists from NASA, the aerospace industry, food companies, and academia are defining the Space Station Food System. The team identified the system requirements based on an analysis of past and current space food systems, food systems from isolated environment communities that resemble Space Station, and the projected Space Station parameters. The team is resolving conflicts among requirements through the use of trade-off analyses. The requirements will give rise to a set of specifications which, in turn, will be used to produce concepts. Concept verification will include testing of prototypes, both in 1-g and microgravity. The end-item specification provides an overall guide for assembling a functional food system for Space Station.

  1. Space-to-Ground: Successful Spacewalk: 02/23/2018

    NASA Image and Video Library

    2018-02-22

    NASA's Space to Ground is your weekly update on what's happening aboard the International Space Station. For more information about STEM on Station: https://www.nasa.gov/audience/foreducators/stem_on_station/

  2. October Spacewalks Aboard the Space Station on This Week @NASA – October 13, 2017

    NASA Image and Video Library

    2017-10-13

    The Oct. 10th spacewalk outside the International Space Station was the second in less than a week by NASA’s Randy Bresnik and Mark Vande Hei – and one of three U.S. spacewalks planned for October. The astronauts lubricated the new latching end effector they installed on the Canadarm2 robotic arm on Oct. 5. They also replaced a faulty camera system and completed several other tasks. Joe Acaba will join Bresnik for the next spacewalk – currently scheduled for Oct. 20. Also, California Wildfires Seen from Space, NASA Pinpoints Cause of Earth’s Record CO2 Levels, Send Your Name to Mars, Celebrating the First Piloted Supersonic Flight, and Potential Asteroid Warning Network Tested!

  3. KENNEDY SPACE CENTER, FLA. - In the Space Station Processing Facility, Center Director Roy Bridges (left), Program Manager of the International Space Station (ISS) Randy Brinkley (second from left) and STS-98 Commander Ken Cockrell (right) applaud the unveiling of the name "Destiny" for the U.S. Laboratory module. The lab, which is behnd them on a workstand, is scheduled to be launched on STS-98 on Space Shuttle Endeavour in early 2000. It will become the centerpiece of scientific research on the ISS. The Shuttle will spend six days docked to the Station while the laboratory is attached and three spacewalks are conducted to compete its assembly. The laboratory will be launched with five equipment racks aboard, which will provide essential functions for Station systems, including high data-rate communications, and maintain the Station's orientation using control gyroscopes launched earlier. Additional equipment and research racks will be installed in the laboratory on subsequent Shuttle flights.

    NASA Image and Video Library

    1998-12-01

    KENNEDY SPACE CENTER, FLA. - In the Space Station Processing Facility, Center Director Roy Bridges (left), Program Manager of the International Space Station (ISS) Randy Brinkley (second from left) and STS-98 Commander Ken Cockrell (right) applaud the unveiling of the name "Destiny" for the U.S. Laboratory module. The lab, which is behnd them on a workstand, is scheduled to be launched on STS-98 on Space Shuttle Endeavour in early 2000. It will become the centerpiece of scientific research on the ISS. The Shuttle will spend six days docked to the Station while the laboratory is attached and three spacewalks are conducted to compete its assembly. The laboratory will be launched with five equipment racks aboard, which will provide essential functions for Station systems, including high data-rate communications, and maintain the Station's orientation using control gyroscopes launched earlier. Additional equipment and research racks will be installed in the laboratory on subsequent Shuttle flights.

  4. Space-to-Ground: Space Spinners:11/03/2017

    NASA Image and Video Library

    2017-11-02

    The crew spent this week enabling long term missions and long distance learning...and how long would a fidget spinner spin in space? Space to Ground is your weekly update on what's happening aboard the International Space Station.

  5. Affordable Space Tourism: SpaceStationSim

    NASA Technical Reports Server (NTRS)

    2006-01-01

    For over 5 years, people have been living and working in space on the International Space Station (ISS), a state-of-the-art laboratory complex orbiting high above the Earth. Offering a large, sustained microgravity environment that cannot be duplicated on Earth, the ISS furthers humankind s knowledge of science and how the body functions for extended periods of time in space all of which will prove vital on long-duration missions to Mars. On-orbit construction of the station began in November 1998, with the launch of the Russian Zarya Control Module, which provided battery power and fuel storage. This module was followed by additional components and supplies over the course of several months. In November 2000, the first ISS Expedition crew moved in. Since then, the ISS has continued to change and evolve. The space station is currently 240 feet wide, measured across the solar arrays, and 171 feet long, from the NASA Destiny Laboratory to the Russian Zvezda Habitation Module. It is 90 feet tall, and it weighs approximately 404,000 pounds. Crews inhabit a living space of about 15,000 cubic feet. To date, 90 scientific investigations have been conducted on the space station. New results from space station research, from basic science to exploration research, are being published each month, and more breakthroughs are likely to come. It is not all work on the space station, though. The orbiting home affords many of the comforts one finds on Earth. There is a weightless "weight room" and even a musical keyboard alongside research facilities. Holidays are observed, and with them, traditional foods such as turkey and cobbler are eaten, with lemonade to wash them down

  6. Tether applications for space station

    NASA Technical Reports Server (NTRS)

    Nobles, W.

    1986-01-01

    A wide variety of space station applications for tethers were reviewed. Many will affect the operation of the station itself while others are in the category of research or scientific platforms. One of the most expensive aspects of operating the space station will be the continuing shuttle traffic to transport logistic supplies and payloads to the space station. If a means can be found to use tethers to improve the efficiency of that transportation operation, it will increase the operating efficiency of the system and reduce the overall cost of the space station. The concept studied consists of using a tether to lower the shuttle from the space station. This results in a transfer of angular momentum and energy from the orbiter to the space station. The consequences of this transfer is studied and how beneficial use can be made of it.

  7. Space station propulsion requirements study

    NASA Technical Reports Server (NTRS)

    Wilkinson, C. L.; Brennan, S. M.

    1985-01-01

    Propulsion system requirements to support Low Earth Orbit (LEO) manned space station development and evolution over a wide range of potential capabilities and for a variety of STS servicing and space station operating strategies are described. The term space station and the overall space station configuration refers, for the purpose of this report, to a group of potential LEO spacecraft that support the overall space station mission. The group consisted of the central space station at 28.5 deg or 90 deg inclinations, unmanned free-flying spacecraft that are both tethered and untethered, a short-range servicing vehicle, and a longer range servicing vehicle capable of GEO payload transfer. The time phasing for preferred propulsion technology approaches is also investigated, as well as the high-leverage, state-of-the-art advancements needed, and the qualitative and quantitative benefits of these advancements on STS/space station operations. The time frame of propulsion technologies applicable to this study is the early 1990's to approximately the year 2000.

  8. The partnership: Space shuttle, space science, and space station

    NASA Technical Reports Server (NTRS)

    Culbertson, Philip E.; Freitag, Robert F.

    1989-01-01

    An overview of the NASA Space Station Program functions, design, and planned implementation is presented. The discussed functions for the permanently manned space facility include: (1) development of new technologies and related commercial products; (2) observations of the Earth and the universe; (3) provision of service facilities for resupply, maintenance, upgrade and repair of payloads and spacecraft; (4) provision of a transportation node for stationing, processing and dispatching payloads and vehicles; (5) provision of manufacturing and assembly facilities; (6) provision of a storage depot for parts and payloads; and (7) provision of a staging base for future space endeavors. The fundamental concept for the Space Station, as given, is that it be designed, operated, and evolved in response to a broad variety of scientific, technological, and commercial user interests. The Space Shuttle's role as the principal transportation system for the construction and maintenance of the Space Station and the servicing and support of the station crew is also discussed.

  9. Alkaline RFC Space Station prototype - 'Next step Space Station'. [Regenerative Fuel Cells

    NASA Technical Reports Server (NTRS)

    Hackler, I. M.

    1986-01-01

    The regenerative fuel cell, a candidate technology for the Space Station's energy storage system, is described. An advanced development program was initiated to design, manufacture, and integrate a regenerative fuel cell Space Station prototype (RFC SSP). The RFC SSP incorporates long-life fuel cell technology, increased cell area for the fuel cells, and high voltage cell stacks for both units. The RFC SSP's potential for integration with the Space Station's life support and propulsion systems is discussed.

  10. Space Product Development (SPD)

    NASA Image and Video Library

    2003-02-09

    This composite image shows soybean plants growing in the Advanced Astroculture experiment aboard the International Space Station during June 11-July 2, 2002. DuPont is partnering with NASA and the Wisconsin Center for Space Automation and Robotics (WCSAR) at the University of Wisconsin-Madison to grow soybeans aboard the Space Station to find out if they have improved oil, protein, carbohydrates or secondary metabolites that could benefit farmers and consumers. Principal Investigators: Dr. Tom Corbin, Pioneer Hi-Bred International Inc., a Dupont Company, with headquarters in Des Moines, Iowa, and Dr. Weijia Zhou, Wisconsin Center for Space Automation and Robotics (WCSAR), University of Wisconsin-Madison.

  11. Sally Ride EarthKAM: 15 Years of STEM Education and Outreach from Aboard the International Space Station

    NASA Astrophysics Data System (ADS)

    Finley, T.; Griffin, R.; Klug, T.; Harbour, S.; Au, B.; Graves, S. J.

    2016-12-01

    Sally Ride EarthKAM @ Space Camp is a digital camera payload on board the International Space Station (ISS) that allows students from around the globe to request photos of the Earth from space. Since its launch to the ISS in 2001, approximately 110,000 images have been requested by students from over 90 countries. EarthKAM provides the ultimate platform for STEM engagement in both formal and informal educational settings, as it is currently the only earth observation science payload on station completely controlled by students. Images are requested and accessed through a web portal and can be used by educators in a multitude of ways to promote interest in geosciences, math, physics, and numerous other fields. EarthKAM is currently operated out of the US Space and Rocket Center in Huntsville, Alabama and is incorporated into many Space Camp programs. Space Camp hosts nearly 25,000 students and 500 educators each year, vastly improving EarthKAM exposure. Future concepts currently in development include the ability to collect new data products such as night-time and near-infrared imagery, additional science curricula in the form of focused lesson plans and image applications, and a redesigned graphical user interface for requesting photos. The EarthKAM project, a NASA educational outreach program, is currently managed by the US Space and Rocket Center, the University of Alabama in Huntsville, and Teledyne Brown Engineering, Inc.

  12. Space station user's handbook

    NASA Technical Reports Server (NTRS)

    1972-01-01

    A user's handbook for the modular space station concept is presented. The document is designed to acquaint science personnel with the overall modular space station program, the general nature and capabilities of the station itself, some of the scientific opportunities presented by the station, the general policy governing its operation, and the relationship between the program and participants from the scientific community.

  13. Space Station evolution

    NASA Technical Reports Server (NTRS)

    Black, David C.

    1987-01-01

    The Space Station that will be launched and made operational in the early 1990s should be viewed as a beginning, a facility that will evolve with the passing of time to better meet the needs and requirements of a diverse set of users. Evolution takes several forms, ranging from simple growth through addition of infrastructure elements to upgrading of system capability through inclusion of advanced technologies. Much of the early considerations of Space Station evolution focused on physical growth. However, a series of recent workshops have revealed that the more likely mode of Space Station evolution will not be through growth but rather through a process known as 'branching'.

  14. Space-to-Ground: Night Launch: 03/23/2018

    NASA Image and Video Library

    2018-03-22

    Three more crewmembers are on their way to the International Space Station...the crew readies for a spacewalk...and can an astronaut's movement affect the station's orbit? NASA's Space to Ground is your weekly update on what's happening aboard the International Space Station.

  15. Modular space station mass properties

    NASA Technical Reports Server (NTRS)

    1972-01-01

    An update of the space station mass properties is presented. Included are the final status update of the Initial Space Station (ISS) modules and logistic module plus incorporation of the Growth Space Station (GSS) module additions.

  16. Space station: Cost and benefits

    NASA Technical Reports Server (NTRS)

    1983-01-01

    Costs for developing, producing, operating, and supporting the initial space station, a 4 to 8 man space station, and a 4 to 24 man space station are estimated and compared. These costs include contractor hardware; space station assembly and logistics flight costs; and payload support elements. Transportation system options examined include orbiter modules; standard and extended duration STS fights; reusable spacebased perigee kick motor OTV; and upper stages. Space station service charges assessed include crew hours; energy requirements; payload support module storage; pressurized port usage; and OTV service facility. Graphs show costs for science missions, space processing research, small communication satellites; large GEO transportation; OVT launch costs; DOD payload costs, and user costs.

  17. Growth of 48 built environment bacterial isolates on board the International Space Station (ISS)

    PubMed Central

    Neches, Russell Y.; Lang, Jenna M.; Brown, Wendy E.; Severance, Mark; Cavalier, Darlene

    2016-01-01

    Background. While significant attention has been paid to the potential risk of pathogenic microbes aboard crewed spacecraft, the non-pathogenic microbes in these habitats have received less consideration. Preliminary work has demonstrated that the interior of the International Space Station (ISS) has a microbial community resembling those of built environments on Earth. Here we report the results of sending 48 bacterial strains, collected from built environments on Earth, for a growth experiment on the ISS. This project was a component of Project MERCCURI (Microbial Ecology Research Combining Citizen and University Researchers on ISS). Results. Of the 48 strains sent to the ISS, 45 of them showed similar growth in space and on Earth using a relative growth measurement adapted for microgravity. The vast majority of species tested in this experiment have also been found in culture-independent surveys of the ISS. Only one bacterial strain showed significantly different growth in space. Bacillus safensis JPL-MERTA-8-2 grew 60% better in space than on Earth. Conclusions. The majority of bacteria tested were not affected by conditions aboard the ISS in this experiment (e.g., microgravity, cosmic radiation). Further work on Bacillus safensis could lead to interesting insights on why this strain grew so much better in space. PMID:27019789

  18. Growth of 48 built environment bacterial isolates on board the International Space Station (ISS).

    PubMed

    Coil, David A; Neches, Russell Y; Lang, Jenna M; Brown, Wendy E; Severance, Mark; Cavalier, Darlene; Eisen, Jonathan A

    2016-01-01

    Background. While significant attention has been paid to the potential risk of pathogenic microbes aboard crewed spacecraft, the non-pathogenic microbes in these habitats have received less consideration. Preliminary work has demonstrated that the interior of the International Space Station (ISS) has a microbial community resembling those of built environments on Earth. Here we report the results of sending 48 bacterial strains, collected from built environments on Earth, for a growth experiment on the ISS. This project was a component of Project MERCCURI (Microbial Ecology Research Combining Citizen and University Researchers on ISS). Results. Of the 48 strains sent to the ISS, 45 of them showed similar growth in space and on Earth using a relative growth measurement adapted for microgravity. The vast majority of species tested in this experiment have also been found in culture-independent surveys of the ISS. Only one bacterial strain showed significantly different growth in space. Bacillus safensis JPL-MERTA-8-2 grew 60% better in space than on Earth. Conclusions. The majority of bacteria tested were not affected by conditions aboard the ISS in this experiment (e.g., microgravity, cosmic radiation). Further work on Bacillus safensis could lead to interesting insights on why this strain grew so much better in space.

  19. International Space Station (ISS)

    NASA Image and Video Library

    1998-11-08

    Designed by the STS-88 crew members, this patch commemorates the first assembly flight to carry United States-built hardware for constructing the International Space Station (ISS). This flight's primary task was to assemble the cornerstone of the Space Station: the Node with the Functional Cargo Block (FGB). The rising sun symbolizes the dawning of a new era of international cooperation in space and the beginning of a new program: the International Space Station. The Earth scene outlines the countries of the Station Partners: the United States, Russia, those of the European Space Agency (ESA), Japan, and Canada. Along with the Pressurized Mating Adapters (PMA) and the Functional Cargo Block, the Node is shown in the final mated configuration while berthed to the Space Shuttle during the STS-88/2A mission. The Big Dipper Constellation points the way to the North Star, a guiding light for pioneers and explorers for generations. In the words of the crew, These stars symbolize the efforts of everyone, including all the countries involved in the design and construction of the International Space Station, guiding us into the future.

  20. A customer-friendly Space Station

    NASA Technical Reports Server (NTRS)

    Pivirotto, D. S.

    1984-01-01

    This paper discusses the relationship of customers to the Space Station Program currently being defined by NASA. Emphasis is on definition of the Program such that the Space Station will be conducive to use by customers, that is by people who utilize the services provided by the Space Station and its associated platforms and vehicles. Potential types of customers are identified. Scenarios are developed for ways in which different types of customers can utilize the Space Station. Both management and technical issues involved in making the Station 'customer friendly' are discussed.

  1. Introduction to Space Station Freedom

    NASA Technical Reports Server (NTRS)

    Kohrs, Richard

    1992-01-01

    NASA field centers and contractors are organized to develop 'work packages' for Space Station Freedom. Marshall Space Flight Center and Boeing are building the U.S. laboratory and habitation modules, nodes, and environmental control and life support system; Johnson Space Center and McDonnell Douglas are responsible for truss structure, data management, propulsion systems, thermal control, and communications and guidance; Lewis Research Center and Rocketdyne are developing the power system. The Canadian Space Agency (CSA) is contributing a Mobile Servicing Center, Special Dextrous Manipulator, and Mobile Servicing Center Maintenance Depot. The National Space Development Agency of Japan (NASDA) is contributing a Japanese Experiment Module (JEM), which includes a pressurized module, logistics module, and exposed experiment facility. The European Space Agency (ESA) is contributing the Columbus laboratory module. NASA ground facilities, now in various stages of development to support Space Station Freedom, include: Marshall Space Flight Center's Payload Operations Integration Center and Payload Training Complex (Alabama), Johnson Space Center's Space Station Control Center and Space Station Training Facility (Texas), Lewis Research Center's Power System Facility (Ohio), and Kennedy Space Center's Space Station Processing Facility (Florida). Budget appropriations impact the development of the Space Station. In Fiscal Year 1988, Congress appropriated only half of the funds that NASA requested for the space station program ($393 million vs. $767 million). In FY 89, NASA sought $967 million for the program, and Congress appropriated $900 million. NASA's FY 90 request was $2.05 billion compared to an appropriation of $1.75 billion; the FY 91 request was $2.45 billion, and the appropriation was $1.9 billion. After NASA restructured the Space Station Freedom program in response to directions from Congress, the agency's full budget request of $2.029 billion for Space Station

  2. International Space Station Increment-4/5 Microgravity Environment Summary Report

    NASA Technical Reports Server (NTRS)

    Jules, Kenol; Hrovat, Kenneth; Kelly, Eric; McPherson, Kevin; Reckart, Timothy

    2003-01-01

    This summary report presents the results of some of the processed acceleration data measured aboard the International Space Station during the period of December 2001 to December 2002. Unlike the past two ISS Increment reports, which were increment specific, this summary report covers two increments: Increments 4 and 5, hereafter referred to as Increment-4/5. Two accelerometer systems were used to measure the acceleration levels for the activities that took place during Increment-4/5. Due to time constraint and lack of precise timeline information regarding some payload operations and station activities, not a11 of the activities were analyzed for this report. The National Aeronautics and Space Administration sponsors the Microgravity Acceleration Measurement System and the Space Acceleration Microgravity System to support microgravity science experiments which require microgravity acceleration measurements. On April 19, 2001, both the Microgravity Acceleration Measurement System and the Space Acceleration Measurement System units were launched on STS-100 from the Kennedy Space Center for installation on the International Space Station. The Microgravity Acceleration Measurement System supports science experiments requiring quasi-steady acceleration measurements, while the Space Acceleration Measurement System unit supports experiments requiring vibratory acceleration measurement. The International Space Station Increment-4/5 reduced gravity environment analysis presented in this report uses acceleration data collected by both sets of accelerometer systems: The Microgravity Acceleration Measurement System, which consists of two sensors: the low-frequency Orbital Acceleration Research Experiment Sensor Subsystem and the higher frequency High Resolution Accelerometer Package. The low frequency sensor measures up to 1 Hz, but is routinely trimmean filtered to yield much lower frequency acceleration data up to 0.01 Hz. This filtered data can be mapped to arbitrary

  3. Technology for space station

    NASA Astrophysics Data System (ADS)

    Colladay, R. S.; Carlisle, R. F.

    1984-10-01

    Some of the most significant advances made in the space station discipline technology program are examined. Technological tasks and advances in the areas of systems/operations, environmental control and life support systems, data management, power, thermal considerations, attitude control and stabilization, auxiliary propulsion, human capabilities, communications, and structures, materials, and mechanisms are discussed. An overview of NASA technology planning to support the initial space station and the evolutionary growth of the space station is given.

  4. Evaluation of prototype air/fluid separator for Space Station Freedom Health Maintenance Facility

    NASA Technical Reports Server (NTRS)

    Billica, Roger; Smith, Maureen; Murphy, Linda; Kizzee, Victor D.

    1991-01-01

    A prototype air/fluid separator suction apparatus proposed as a possible design for use with the Health Maintenance Facility aboard Space Station Freedom (SSF) was evaluated. A KC-135 parabolic flight test was performed for this purpose. The flights followed the standard 40 parabola profile with 20 to 25 seconds of near-zero gravity in each parabola. A protocol was prepared to evaluate the prototype device in several regulator modes (or suction force), using three fluids of varying viscosity, and using either continuous or intermittent suction. It was felt that a matrixed approach would best approximate the range of utilization anticipated for medical suction on SSF. The protocols were performed in one-gravity in a lab setting to familiarize the team with procedures and techniques. Identical steps were performed aboard the KC-135 during parabolic flight.

  5. Space Station Biological Research Project Habitat: Incubator

    NASA Technical Reports Server (NTRS)

    Nakamura, G. J.; Kirven-Brooks, M.; Scheller, N. M.

    2001-01-01

    Developed as part of the suite of Space Station Biological Research Project (SSBRP) hardware to support research aboard the International Space Station (ISS), the Incubator is a temperature-controlled chamber, for conducting life science research with small animal, plant and microbial specimens. The Incubator is designed for use only on the ISS and is transported to/from the ISS, unpowered and without specimens, in the Multi-Purpose Logistics Module (MPLM) of the Shuttle. The Incubator interfaces with the three SSBRP Host Systems; the Habitat Holding Racks (HHR), the Life Sciences Glovebox (LSG) and the 2.5 m Centrifuge Rotor (CR), providing investigators with the ability to conduct research in microgravity and at variable gravity levels of up to 2-g. The temperature within the Specimen Chamber can be controlled between 4 and 45 C. Cabin air is recirculated within the Specimen Chamber and can be exchanged with the ISS cabin at a rate of approximately equal 50 cc/min. The humidity of the Specimen Chamber is monitored. The Specimen Chamber has a usable volume of approximately equal 19 liters and contains two (2) connectors at 28v dc, (60W) for science equipment; 5 dedicated thermometers for science; ports to support analog and digital signals from experiment unique sensors or other equipment; an Ethernet port; and a video port. It is currently manifested for UF-3 and will be launched integrated within the first SSBRP Habitat Holding Rack.

  6. Space Station fluid management logistics

    NASA Technical Reports Server (NTRS)

    Dominick, Sam M.

    1990-01-01

    Viewgraphs and discussion on space station fluid management logistics are presented. Topics covered include: fluid management logistics - issues for Space Station Freedom evolution; current fluid logistics approach; evolution of Space Station Freedom fluid resupply; launch vehicle evolution; ELV logistics system approach; logistics carrier configuration; expendable fluid/propellant carrier description; fluid carrier design concept; logistics carrier orbital operations; carrier operations at space station; summary/status of orbital fluid transfer techniques; Soviet progress tanker system; and Soviet propellant resupply system observations.

  7. Space to Ground: Launches and Landings: 06/08/2018

    NASA Image and Video Library

    2018-06-08

    This week, one crew launched to the International Space Station, while another returned to Earth. NASA's Space to Ground is your weekly update on what's happening aboard the International Space Station.

  8. Quality factor and dose equivalent investigations aboard the Soviet Space Station Mir

    NASA Astrophysics Data System (ADS)

    Bouisset, P.; Nguyen, V. D.; Parmentier, N.; Akatov, Ia. A.; Arkhangel'Skii, V. V.; Vorozhtsov, A. S.; Petrov, V. M.; Kovalev, E. E.; Siegrist, M.

    1992-07-01

    Since Dec 1988, date of the French-Soviet joint space mission 'ARAGATZ', the CIRCE device, had recorded dose equivalent and quality factor values inside the Mir station (380-410 km, 51.5 deg). After the initial gas filling two years ago, the low pressure tissue equivalent proportional counter is still in good working conditions. Some results of three periods are presented. The average dose equivalent rates measured are respectively 0.6, 0.8 and 0.6 mSv/day with a quality factor equal to 1.9. Some detailed measurements show the increasing of the dose equivalent rates through the SAA and near polar horns. The real time determination of the quality factors allows to point out high linear energy transfer events with quality factors in the range 10-20.

  9. KENNEDY SPACE CENTER, FLA. - STS-114 Mission Specialist Soichi Noguchi is happy to be back at KSC after arriving aboard a T-38 jet aircraft. He and other crew members are at the Center for familiarization activities with equipment. The mission is Logistics Flight 1, scheduled to deliver the Multi-Purpose Logistics Module carrying supplies and equipment to the Space Station and the external stowage platform.

    NASA Image and Video Library

    2004-03-05

    KENNEDY SPACE CENTER, FLA. - STS-114 Mission Specialist Soichi Noguchi is happy to be back at KSC after arriving aboard a T-38 jet aircraft. He and other crew members are at the Center for familiarization activities with equipment. The mission is Logistics Flight 1, scheduled to deliver the Multi-Purpose Logistics Module carrying supplies and equipment to the Space Station and the external stowage platform.

  10. KENNEDY SPACE CENTER, FLA. - STS-114 Mission Commander Eileen Collins is pleased to be back at KSC after arriving aboard a T-38 jet aircraft. She and other crew members are at the Center for familiarization activities with equipment. The mission is Logistics Flight 1, scheduled to deliver to the Space Station the external stowage platform and the Multi-Purpose Logistics Module with supplies and equipment.

    NASA Image and Video Library

    2004-03-05

    KENNEDY SPACE CENTER, FLA. - STS-114 Mission Commander Eileen Collins is pleased to be back at KSC after arriving aboard a T-38 jet aircraft. She and other crew members are at the Center for familiarization activities with equipment. The mission is Logistics Flight 1, scheduled to deliver to the Space Station the external stowage platform and the Multi-Purpose Logistics Module with supplies and equipment.

  11. KENNEDY SPACE CENTER, FLA. - STS-114 Pilot Jim Kelly is pleased to be back at KSC after arriving aboard a T-38 jet aircraft. He and other crew members are at the Center for familiarization activities with equipment. The mission is Logistics Flight 1, scheduled to deliver the Multi-Purpose Logistics Module carrying supplies and equipment to the Space Station and the external stowage platform.

    NASA Image and Video Library

    2004-03-05

    KENNEDY SPACE CENTER, FLA. - STS-114 Pilot Jim Kelly is pleased to be back at KSC after arriving aboard a T-38 jet aircraft. He and other crew members are at the Center for familiarization activities with equipment. The mission is Logistics Flight 1, scheduled to deliver the Multi-Purpose Logistics Module carrying supplies and equipment to the Space Station and the external stowage platform.

  12. KENNEDY SPACE CENTER, FLA. - STS-114 Mission Specialist Andrew Thomas is pleased to be back at KSC after arriving aboard a T-38 jet aircraft. He and other crew members are at the Center for familiarization activities with equipment. The mission is Logistics Flight 1, scheduled to deliver to the Space Station the external stowage platform and the Multi-Purpose Logistics Module with supplies and equipment.

    NASA Image and Video Library

    2004-03-05

    KENNEDY SPACE CENTER, FLA. - STS-114 Mission Specialist Andrew Thomas is pleased to be back at KSC after arriving aboard a T-38 jet aircraft. He and other crew members are at the Center for familiarization activities with equipment. The mission is Logistics Flight 1, scheduled to deliver to the Space Station the external stowage platform and the Multi-Purpose Logistics Module with supplies and equipment.

  13. KENNEDY SPACE CENTER, FLA. - STS-114 Mission Specialist Wendy Lawrence is pleased to be back at KSC after arriving aboard a T-38 jet aircraft. She and other crew members are at the Center for familiarization activities with equipment. The mission is Logistics Flight 1, scheduled to deliver the Multi-Purpose Logistics Module carrying supplies and equipment to the Space Station and the external stowage platform.

    NASA Image and Video Library

    2004-03-05

    KENNEDY SPACE CENTER, FLA. - STS-114 Mission Specialist Wendy Lawrence is pleased to be back at KSC after arriving aboard a T-38 jet aircraft. She and other crew members are at the Center for familiarization activities with equipment. The mission is Logistics Flight 1, scheduled to deliver the Multi-Purpose Logistics Module carrying supplies and equipment to the Space Station and the external stowage platform.

  14. A regenerative fuel cell system for modular space station integrated electrical power.

    NASA Technical Reports Server (NTRS)

    Wynveen, R. A.; Schubert, F. H.

    1973-01-01

    A regenerative fuel cell system (RFCS) for energy storage aboard the Modular Space Station (MSS) was selected over the battery technique because of lower cost, lower launch weight, lower required solar array area, and its ability to be integrated into the station's reaction control and environmental control and life support subsystems in addition to the electrical power subsystem. The total MSS energy storage requirement was met by dividing it into four equal modular RFCSs, each made up of a fuel cell subsystem, a water electrolysis subsystem, a gas accumulator subassembly, and a water tank subassembly. The weight of each of the four RFCSs varied from 4000 to 7000 lb with the latter being a more maintainable design. The specific energy ranged between 5.6 to 9.4 watt-hr/lb.

  15. Space-to-Ground: Tracking a Monster: 09/08/2017

    NASA Image and Video Library

    2017-09-07

    Three crew members said farewell to the station...the station had eyes on a monstrous storm...and what kind of weather can you have in space? NASA's Space to Ground is your weekly update on what's happening aboard the International Space Station.

  16. International Space Station

    NASA Technical Reports Server (NTRS)

    1998-01-01

    This artist's digital concept depicts the completely assembled International Space Station (ISS) passing over Florida. As a gateway to permanent human presence in space, the Space Station Program is to expand knowledge benefiting all people and nations. The ISS is a multidisciplinary laboratory, technology test bed, and observatory that will provide unprecedented undertakings in scientific, technological, and international experimentation. Experiments to be conducted in the ISS include: microgravity research, Earth science, space science, life sciences, space product development, and engineering research and technology. The sixteen countries participating the ISS are: United States, Russian Federation, Canada, Japan, United Kingdom, Germany, Italy, France, Norway, Netherlands, Belgium, Spain, Denmark, Sweden, Switzerland, and Brazil.

  17. Build Your Own Space Station

    NASA Technical Reports Server (NTRS)

    Bolinger, Allison

    2016-01-01

    This presentation will be used to educate elementary students on the purposes and components of the International Space Station and then allow them to build their own space stations with household objects and then present details on their space stations to the rest of the group.

  18. Video- Astronauts Don Pettit and Ken Bowersox Paint Water Onboard the International Space Station

    NASA Technical Reports Server (NTRS)

    2003-01-01

    Saturday Morning Science, the science of opportunity series of applied experiments and demonstrations, performed aboard the International Space Station (ISS) by Expedition 6 astronaut Dr. Don Pettit, revealed some remarkable findings. Science begets art in this video as Dr. Pettit and commander Ken Bowersox demonstrate two dimensional diffusion using food coloring in a film of water when they created an intriguing birdlike image. Dr. Pettit wonders aloud 'It makes us wonder what Matisse could do with a medium like this.'

  19. Video- Demonstration of Laminar Flow in a Liquid Onboard the International Space Station (ISS)

    NASA Technical Reports Server (NTRS)

    2003-01-01

    Saturday Morning Science, the science of opportunity series of applied experiments and demonstrations, performed aboard the International Space Station (ISS) by Expedition 6 astronaut Dr. Don Pettit, revealed some remarkable findings. In this video clip, Pettit demonstrates laminar flow in a rotating film of water. The demonstration is done by placing tracer particles in a water film held in place by a round wire loop, then stirring the system rotationally. The resulting flow clearly demonstrates laminar 2D behavior with spiraling streamlines.

  20. Space Station Induced Monitoring

    NASA Technical Reports Server (NTRS)

    Spann, James F. (Editor); Torr, Marsha R. (Editor)

    1988-01-01

    This report contains the results of a conference convened May 10-11, 1988, to review plans for monitoring the Space Station induced environment, to recommend primary components of an induced environment monitoring package, and to make recommendations pertaining to suggested modifications of the Space Station External Contamination Control Requirements Document JSC 30426. The contents of this report are divided as Follows: Monitoring Induced Environment - Space Station Work Packages Requirements, Neutral Environment, Photon Emission Environment, Particulate Environment, Surface Deposition/Contamination; and Contamination Control Requirements.

  1. Space station data flow

    NASA Technical Reports Server (NTRS)

    1972-01-01

    The results of the space station data flow study are reported. Conceived is a low cost interactive data dissemination system for space station experiment data that includes facility and personnel requirements and locations, phasing requirements and implementation costs. Each of the experiments identified by the operating schedule is analyzed and the support characteristics identified in order to determine data characteristics. Qualitative and quantitative comparison of candidate concepts resulted in a proposed data system configuration baseline concept that includes a data center which combines the responsibility of reprocessing, archiving, and user services according to the various agencies and their responsibility assignments. The primary source of data is the space station complex which provides through the Tracking Data Relay Satellite System (TDRS) and by space shuttle delivery data from experiments in free flying modules and orbiting shuttles as well as from the experiments in the modular space station itself.

  2. Space-to-Ground: Some Serious Science: 02/08/2018

    NASA Image and Video Library

    2018-02-08

    With a breather between spacewalks, it was time for some serious science on the International Space Station. NASA's Space to Ground is your weekly update on what's happening aboard the International Space Station.

  3. International Space Station (ISS)

    NASA Image and Video Library

    2001-04-23

    The STS-100 mission launched for the International Space Station (ISS) on April 19, 2001 as the sixth station assembly flight. Main objectives included the delivery and installation of the Canadian-built Space Station Remote Manipulator System (SSRMS), or Canadarm2, the installation of a UHF anterna for space-to-space communications for U.S. based space walks, and the delivery of supplies via the Italian Multipurpose Logistics Module (MPLM) "Raffaello". This is an STS-110 onboard photo of Astronaut James S. Voss, Expedition Two flight engineer, peering into the pressurized Mating Adapter (PMA-2) prior hatch opening. The picture was taken by one of the STS-100 crew members inside the PMA.

  4. Space-to-Ground: 2017: 12/22/2017

    NASA Image and Video Library

    2017-12-21

    We look back at a record-breaking year, and forward to what should be a transformational year on station. NASA's Space to Ground is your weekly update on what's happening aboard the International Space Station.

  5. Video- Water Injected Into Bubble Onboard the International Space Station (ISS)

    NASA Technical Reports Server (NTRS)

    2003-01-01

    Saturday Morning Science, the science of opportunity series of applied experiments and demonstrations, performed aboard the International Space Station (ISS) by Expedition 6 astronaut Dr. Don Pettit, revealed some remarkable findings. In this video, Dr. Pettit demonstrates using a syringe to inject water into a bubble. The result amazed Dr. Pettit and his crew mates. They observed that the droplets may bounce around for 5 or 6 collisions within the bubble, and then may partially or all at once exchange masses with the bubble. Dr. Pettit speculates the dynamics as a possible interplay between tension forces of kinetic energy and momentum, and possibly even charged forces.

  6. International Space Station

    NASA Technical Reports Server (NTRS)

    1998-01-01

    This artist's concept depicts the completely assembled International Space Station (ISS) passing over the Straits of Gibraltar and the Mediterranean Sea. As a gateway to permanent human presence in space, the Space Station Program is to expand knowledge benefiting all people and nations. The ISS is a multidisciplinary laboratory, technology test bed, and observatory that will provide unprecedented undertakings in scientific, technological, and international experimentation. Experiments to be conducted in the ISS include: microgravity research, Earth science, space science, life sciences, space product development, and engineering research and technology. The sixteen countries participating the ISS are: United States, Russian Federation, Canada, Japan, United Kingdom, Germany, Italy, France, Norway, Netherlands, Belgium, Spain, Denmark, Sweden, Switzerland, and Brazil.

  7. International Space Station

    NASA Technical Reports Server (NTRS)

    1998-01-01

    This artist's concept depicts the completely assembled International Space Station (ISS) passing over Florida and the Bahamas. As a gateway to permanent human presence in space, the Space Station Program is to expand knowledge benefiting all people and nations. The ISS is a multidisciplinary laboratory, technology test bed, and observatory that will provide unprecedented undertakings in scientific, technological, and international experimentation. Experiments to be conducted in the ISS include: microgravity research, Earth science, space science, life sciences, space product development, and engineering research and technology. The sixteen countries participating in the ISS are: United States, Russian Federation, Canada, Japan, United Kingdom, Germany, Italy, France, Norway, Netherlands, Belgium, Spain, Denmark, Sweden, Switzerland, and Brazil.

  8. International Space Station (ISS)

    NASA Image and Video Library

    2001-07-15

    At the control of Expedition Two Flight Engineer Susan B. Helms, the newly-installed Canadian-built Canadarm2, Space Station Remote Manipulator System (SSRMS) maneuvers the Quest Airlock into the proper position to be mated onto the starboard side of the Unity Node I during the first of three extravehicular activities (EVA) of the STS-104 mission. The Quest Airlock makes it easier to perform space walks, and allows both Russian and American spacesuits to be worn when the Shuttle is not docked with the International Space Station (ISS). American suits will not fit through Russion airlocks at the Station. The Boeing Company, the space station prime contractor, built the 6.5-ton (5.8 metric ton) airlock and several other key components at the Marshall Space Flight Center (MSFC), in the same building where the Saturn V rocket was built. Installation activities were supported by the development team from the Payload Operations Control Center (POCC) located at the MSFC and the Mission Control Center at NASA's Johnson Space Flight Center in Houston, Texas.

  9. Forced Forward Smoldering Experiments Aboard The Space Shuttle

    NASA Technical Reports Server (NTRS)

    Fernandez-Pello, A. C.; Bar-Ilan, A.; Rein, G.; Urban, D. L.; Torero, J. L.

    2003-01-01

    Smoldering is a basic combustion problem that presents a fire risk because it is initiated at low temperatures and because the reaction can propagate slowly in the material interior and go undetected for long periods of time. It yields a higher conversion of fuel to toxic compounds than does flaming, and may undergo a transition to flaming. To date there have been a few minor incidents of overheated and charred cables and electrical components reported on Space Shuttle flights. With the establishment of the International Space Station, and the planning of a potential manned mission to Mars, there has been an increased interest in the study of smoldering in microgravity. The Microgravity Smoldering Combustion (MSC) experiment is part of a study of the smolder characteristics of porous combustible materials in a spacecraft environment. The aim of the experiment is to provide a better fundamental understanding of the controlling mechanisms of smoldering combustion under normal- and microgravity conditions. This in turn will aid in the prevention and control of smolder originated fires, both on earth and in spacecrafts. The microgravity smoldering experiments have to be conducted in a space-based facility because smoldering is a very slow process and consequently its study in a microgravity environment requires extended periods of time. The microgravity experiments reported here were conducted aboard the Space Shuttle. The most recent tests were conducted during the STS-105 and STS-108 missions. The results of the forward smolder experiments from these flights are reported here. In forward smolder, the reaction front propagates in the same direction as the oxidizer flow. The heat released by the heterogeneous oxidation reaction is transferred ahead of the reaction heating the unreacted fuel. The resulting increase of the virgin fuel temperature leads to the onset of the smolder reaction, and propagates through the fuel. The MSC data are compared with normal gravity

  10. Research on the International Space Station - An Overview

    NASA Technical Reports Server (NTRS)

    Evans, Cynthia A.; Robinson, Julie A.; Tate-Brown, Judy M.

    2009-01-01

    The International Space Station (ISS) celebrates ten years of operations in 2008. While the station did not support permanent human crews during the first two years of operations November 1998 to November 2000 it hosted a few early science experiments months before the first international crew took up residence. Since that time and simultaneous with the complicated task of ISS construction and overcoming impacts from the tragic Columbia accident science returns from the ISS have been growing at a steady pace. As of this writing, over 162 experiments have been operated on the ISS, supporting research for hundreds of ground-based investigators from the U.S. and international partners. This report summarizes the experimental results collected to date. Today, NASA's priorities for research aboard the ISS center on understanding human health during long-duration missions, researching effective countermeasures for long-duration crewmembers, and researching and testing new technologies that can be used for future exploration crews and spacecraft. Through the U.S. National Laboratory designation, the ISS is also a platform available to other government agencies. Research on ISS supports new understandings, methods or applications relevant to life on Earth, such as understanding effective protocols to protect against loss of bone density or better methods for producing stronger metal alloys. Experiment results have already been used in applications as diverse as the manufacture of solar cell and insulation materials for new spacecraft and the verification of complex numerical models for behavior of fluids in fuel tanks. A synoptic publication of these results will be forthcoming in 2009. At the 10-year point, the scientific returns from ISS should increase at a rapid pace. During the 2008 calendar year, the laboratory space and research facilities were tripled with the addition of ESA's Columbus and JAXA's Kibo scientific modules joining NASA's Destiny Laboratory. All three

  11. Space station propulsion technology

    NASA Technical Reports Server (NTRS)

    Briley, G. L.

    1986-01-01

    The progress on the Space Station Propulsion Technology Program is described. The objectives are to provide a demonstration of hydrogen/oxygen propulsion technology readiness for the Initial Operating Capability (IOC) space station application, specifically gaseous hydrogen/oxygen and warm hydrogen thruster concepts, and to establish a means for evolving from the IOC space station propulsion to that required to support and interface with advanced station functions. The evaluation of concepts was completed. The accumulator module of the test bed was completed and, with the microprocessor controller, delivered to NASA-MSFC. An oxygen/hydrogen thruster was modified for use with the test bed and successfully tested at mixture ratios from 4:1 to 8:1.

  12. Assembling, maintaining and servicing Space Station

    NASA Technical Reports Server (NTRS)

    Doetsch, K. H.; Werstiuk, H.; Creasy, W.; Browning, R.

    1987-01-01

    The assembly, maintenance, and servicing of the Space Station and its facilities are discussed. The tools and facilities required for the assembly, maintenance, and servicing of the Station are described; the ground and transportation infrastructures needed for the Space Station are examined. The roles of automation and robotics in reducing the EVAs of the crew, minimizing disturbances to the Space Station environment, and enhancing user friendliness are investigated. Servicing/maintenance tasks are categorized based on: (1) urgency, (2) location of servicing/maintenance, (3) environmental control, (4) dexterity, (5) transportation, (6) crew interactions, (7) equipment interactions, and (8) Space Station servicing architecture. An example of a servicing mission by the Space Station for the Hubble Space Telescope is presented.

  13. LOCAD-PTS: Operation of a New System for Microbial Monitoring Aboard the International Space Station (ISS)

    NASA Technical Reports Server (NTRS)

    Maule, J.; Wainwright, N.; Steele, A.; Gunter, D.; Flores, G.; Effinger, M.; Danibm N,; Wells, M.; Williams, S.; Morris, H.; hide

    2008-01-01

    Microorganisms within the space stations Salyut, Mir and the International Space Station (ISS), have traditionally been monitored with culture-based techniques. These techniques involve growing environmental samples (cabin water, air or surfaces) on agar-type media for several days, followed by visualization of resulting colonies; and return of samples to Earth for ground-based analysis. This approach has provided a wealth of useful data and enhanced our understanding of the microbial ecology within space stations. However, the approach is also limited by the following: i) More than 95% microorganisms in the environment cannot grow on conventional growth media; ii) Significant time lags occur between onboard sampling and colony visualization (3-5 days) and ground-based analysis (as long as several months); iii) Colonies are often difficult to visualize due to condensation within contact slide media plates; and iv) Techniques involve growth of potentially harmful microorganisms, which must then be disposed of safely. This report describes the operation of a new culture-independent technique onboard the ISS for rapid analysis (within minutes) of endotoxin and -1, 3-glucan, found in the cell walls of gram-negative bacteria and fungi, respectively. This technique involves analysis of environmental samples with the Limulus Amebocyte Lysate (LAL) assay in a handheld device. This handheld device and sampling system is known as the Lab-On-a-Chip Application Development Portable Test System (LOCAD-PTS). A poster will be presented that describes a comparative study between LOCAD-PTS analysis and existing culture-based methods onboard the ISS; together with an exploratory survey of surface endotoxin throughout the ISS. It is concluded that while a general correlation between LOCAD-PTS and traditional culture-based methods should not necessarily be expected, a combinatorial approach can be adopted where both sets of data are used together to generate a more complete story of

  14. Space Station commercial user development

    NASA Technical Reports Server (NTRS)

    1984-01-01

    The commercial utilization of the space station is investigated. The interest of nonaerospace firms in the use of the space station is determined. The user requirements are compared to the space station's capabilities and a feasibility analysis of a commercial firm acting as an intermediary between NASA and the private sector to reduce costs is presented.

  15. Space to Ground: A Closer Look: 08/11/2017

    NASA Image and Video Library

    2017-08-10

    More crewmembers, more eyes on science, SpaceX Dragon to launch to station, and Fischer was featured on JSC podcast. NASA's Space to Ground is your weekly update on what's happening aboard the International Space Station.

  16. Space-to-Ground: A Learning Doubleheader: 04/06/2018

    NASA Image and Video Library

    2018-04-05

    The SpaceX Dragon arrives at the space station, more Lettuce leaves are growing onboard, and what do baseball and astronauts have in common? NASA's Space to Ground is your weekly update on what's happening aboard the International Space Station.

  17. International Space Station (ISS)

    NASA Image and Video Library

    2002-06-07

    Pictured here is the forward docking port on the International Space Station's (ISS) Destiny Laboratory as seen by one of the STS-111 crewmembers from the Space Shuttle Orbiter Endeavour just prior to docking. In June 2002, STS-111 provided the Space Station with a new crew, Expedition Five, replacing Expedition Four after remaining a record-setting 196 days in space. Three spacewalks enabled the STS-111 crew to accomplish additional mission objectives: the delivery and installation of a new platform for the ISS robotic arm, the Mobile Base System (MBS) which is an important part of the Station's Mobile Servicing System allowing the robotic arm to travel the length of the Station; the replacement of a wrist roll joint on the Station's robotic arm; and unloading supplies and science experiments form the Leonardo Multi-Purpose Logistics Module, which made its third trip to the orbital outpost. The STS-111 mission, the 14th Shuttle mission to visit the ISS, was launched on June 5, 2002 and landed June 19, 2002.

  18. Space to Ground: A Fleet of CUBESATS: 05/19/2017

    NASA Image and Video Library

    2017-05-18

    NASA's Space to Ground is your weekly update on what's happening aboard the International Space Station. Got a question or comment? Use #spacetoground to talk to us. ________________________________________ FOLLOW THE SPACE STATION! Twitter: https://twitter.com/Space_Station Facebook: https://www.facebook.com/ISS Instagram: https://instagram.com/iss/

  19. Space Station Freedom operations planning

    NASA Technical Reports Server (NTRS)

    Smith, Kevin J.

    1988-01-01

    This paper addresses the development of new planning methodologies which will evolve to serve the Space Station Freedom program; these planning processes will focus on the complex task of effectively managing the resources provided by the Space Station Freedom and will be made available to the diverse international community of space station users in support of their ongoing investigative activities.

  20. Space Station: Leadership for the Future

    NASA Technical Reports Server (NTRS)

    Martin, Franklin D.; Finn, Terence T.

    1987-01-01

    No longer limited to occasional spectaculars, space has become an essential, almost commonplace dimension of national life. Among other things, space is an arena of competition with our allies and adversaries, a place of business, a field of research, and an avenue of cooperation with our allies. The space station will play a critical role in each of these endeavors. Perhaps the most significant feature of the space station, essential to its utility for science, commerce, and technology, is the permanent nature of its crew. The space station will build upon the tradition of employing new capabilities to explore further and question deeper, and by providing a permanent presence, the station should significantly increase the opportunities for conducting research in space. Economic productivity is, in part, a function of technical innovation. A major thrust of the station design effort is devoted to enhancing performance through advanced technology. The space station represents the commitment of the United States to a future in space. Perhaps most importantly, as recovery from the loss of Challenger and its crew continues, the space station symbolizes the national determination to remain undeterred by tragedy and to continue exploring the frontiers of space.

  1. Space Station fluid resupply

    NASA Technical Reports Server (NTRS)

    Winters, AL

    1990-01-01

    Viewgraphs on space station fluid resupply are presented. Space Station Freedom is resupplied with supercritical O2 and N2 for the ECLSS and USL on a 180 day resupply cycle. Resupply fluids are stored in the subcarriers on station between resupply cycles and transferred to the users as required. ECLSS contingency fluids (O2 and N2) are supplied and stored on station in a gaseous state. Efficiency and flexibility are major design considerations. Subcarrier approach allows multiple manifest combinations. Growth is achieved by adding modular subcarriers.

  2. Space Station Program implications from the viewpoint of the Space Station Operations Task Force

    NASA Technical Reports Server (NTRS)

    Paules, Granville E.; Lyman, Peter; Shelley, Carl B.

    1987-01-01

    An operational concept for the Space Station which has been developed by the Space Station Operations Task Force is described. The operations functions are described, and the relationships of these functions to the overall framework for operations are defined. Product flows for the recommended framework are discussed, and the roles and responsibilities for the proposed operations organization during both the development and the mature operations phases of the Space Station Program are examined.

  3. Soyuz 24 Return Samples: Assessment of Air Quality Aboard the International Space Station

    NASA Technical Reports Server (NTRS)

    James, John T.

    2011-01-01

    Fifteen mini-grab sample containers (m-GSCs) were returned aboard Soyuz. This is the first time all samples were acquired with the mini-grab samplers. The toxicological assessment of 15 m-GSCs from the ISS is shown. The recoveries of the 3 internal standards, C(13)-acetone, fluorobenzene, and chlorobenzene, from the GSCs averaged 75, 97 and 79%, respectively. Formaldehyde badges were not returned on Soyuz 24

  4. Space-to-Ground: Rocket and Groot: 01/12/2018

    NASA Image and Video Library

    2018-01-11

    The SpaceX Dragon will depart the station...it's always growing season on ISS...and "Rocket and Groot" powers a student challenge! NASA's Space to Ground is your weekly update on what's happening aboard the International Space Station.

  5. Space station integrated propulsion and fluid systems study. Space station program fluid management systems databook

    NASA Technical Reports Server (NTRS)

    Bicknell, B.; Wilson, S.; Dennis, M.; Lydon, M.

    1988-01-01

    Commonality and integration of propulsion and fluid systems associated with the Space Station elements are being evaluated. The Space Station elements consist of the core station, which includes habitation and laboratory modules, nodes, airlocks, and trusswork; and associated vehicles, platforms, experiments, and payloads. The program is being performed as two discrete tasks. Task 1 investigated the components of the Space Station architecture to determine the feasibility and practicality of commonality and integration among the various propulsion elements. This task was completed. Task 2 is examining integration and commonality among fluid systems which were identified by the Phase B Space Station contractors as being part of the initial operating capability (IOC) and growth Space Station architectures. Requirements and descriptions for reference fluid systems were compiled from Space Station documentation and other sources. The fluid systems being examined are: an experiment gas supply system, an oxygen/hydrogen supply system, an integrated water system, the integrated nitrogen system, and the integrated waste fluids system. Definitions and descriptions of alternate systems were developed, along with analyses and discussions of their benefits and detriments. This databook includes fluid systems descriptions, requirements, schematic diagrams, component lists, and discussions of the fluid systems. In addition, cost comparison are used in some cases to determine the optimum system for a specific task.

  6. Nanopore DNA Sequencing and Genome Assembly on the International Space Station.

    PubMed

    Castro-Wallace, Sarah L; Chiu, Charles Y; John, Kristen K; Stahl, Sarah E; Rubins, Kathleen H; McIntyre, Alexa B R; Dworkin, Jason P; Lupisella, Mark L; Smith, David J; Botkin, Douglas J; Stephenson, Timothy A; Juul, Sissel; Turner, Daniel J; Izquierdo, Fernando; Federman, Scot; Stryke, Doug; Somasekar, Sneha; Alexander, Noah; Yu, Guixia; Mason, Christopher E; Burton, Aaron S

    2017-12-21

    We evaluated the performance of the MinION DNA sequencer in-flight on the International Space Station (ISS), and benchmarked its performance off-Earth against the MinION, Illumina MiSeq, and PacBio RS II sequencing platforms in terrestrial laboratories. Samples contained equimolar mixtures of genomic DNA from lambda bacteriophage, Escherichia coli (strain K12, MG1655) and Mus musculus (female BALB/c mouse). Nine sequencing runs were performed aboard the ISS over a 6-month period, yielding a total of 276,882 reads with no apparent decrease in performance over time. From sequence data collected aboard the ISS, we constructed directed assemblies of the ~4.6 Mb E. coli genome, ~48.5 kb lambda genome, and a representative M. musculus sequence (the ~16.3 kb mitochondrial genome), at 100%, 100%, and 96.7% consensus pairwise identity, respectively; de novo assembly of the E. coli genome from raw reads yielded a single contig comprising 99.9% of the genome at 98.6% consensus pairwise identity. Simulated real-time analyses of in-flight sequence data using an automated bioinformatic pipeline and laptop-based genomic assembly demonstrated the feasibility of sequencing analysis and microbial identification aboard the ISS. These findings illustrate the potential for sequencing applications including disease diagnosis, environmental monitoring, and elucidating the molecular basis for how organisms respond to spaceflight.

  7. Space station executive summary

    NASA Technical Reports Server (NTRS)

    1972-01-01

    An executive summary of the modular space station study is presented. The subjects discussed are: (1) design characteristics, (2) experiment program, (3) operations, (4) program description, and (5) research implications. The modular space station is considered a candidate payload for the low cost shuttle transportation system.

  8. Space Station Software Recommendations

    NASA Technical Reports Server (NTRS)

    Voigt, S. (Editor)

    1985-01-01

    Four panels of invited experts and NASA representatives focused on the following topics: software management, software development environment, languages, and software standards. Each panel deliberated in private, held two open sessions with audience participation, and developed recommendations for the NASA Space Station Program. The major thrusts of the recommendations were as follows: (1) The software management plan should establish policies, responsibilities, and decision points for software acquisition; (2) NASA should furnish a uniform modular software support environment and require its use for all space station software acquired (or developed); (3) The language Ada should be selected for space station software, and NASA should begin to address issues related to the effective use of Ada; and (4) The space station software standards should be selected (based upon existing standards where possible), and an organization should be identified to promulgate and enforce them. These and related recommendations are described in detail in the conference proceedings.

  9. International Space Station (ISS)

    NASA Image and Video Library

    2002-06-07

    Backdropped against the blackness of space is the International Space Station (ISS), as viewed from the approching Space Shuttle Orbiter Endeavour, STS-111 mission, in June 2002. Expedition Five replaced Expedition Four crew after remaining a record-setting 196 days in space. Three spacewalks enabled the STS-111 crew to accomplish the delivery and installation of the Mobile Remote Servicer Base System (MBS), an important part of the Station's Mobile Servicing System that allows the robotic arm to travel the length of the Station, which is necessary for future construction tasks; the replacement of a wrist roll joint on the Station's robotic arm, and the task of unloading supplies and science experiments from the Leonardo Multi-Purpose Logistics Module, which made its third trip to the orbital outpost. The STS-111 mission, the 14th Shuttle mission to visit the ISS, was launched on June 5, 2002 and landed June 19, 2002.

  10. Space Station technology testbed: 2010 deep space transport

    NASA Technical Reports Server (NTRS)

    Holt, Alan C.

    1993-01-01

    A space station in a crew-tended or permanently crewed configuration will provide major R&D opportunities for innovative, technology and materials development and advanced space systems testing. A space station should be designed with the basic infrastructure elements required to grow into a major systems technology testbed. This space-based technology testbed can and should be used to support the development of technologies required to expand our utilization of near-Earth space, the Moon and the Earth-to-Jupiter region of the Solar System. Space station support of advanced technology and materials development will result in new techniques for high priority scientific research and the knowledge and R&D base needed for the development of major, new commercial product thrusts. To illustrate the technology testbed potential of a space station and to point the way to a bold, innovative approach to advanced space systems' development, a hypothetical deep space transport development and test plan is described. Key deep space transport R&D activities are described would lead to the readiness certification of an advanced, reusable interplanetary transport capable of supporting eight crewmembers or more. With the support of a focused and highly motivated, multi-agency ground R&D program, a deep space transport of this type could be assembled and tested by 2010. Key R&D activities on a space station would include: (1) experimental research investigating the microgravity assisted, restructuring of micro-engineered, materials (to develop and verify the in-space and in-situ 'tuning' of materials for use in debris and radiation shielding and other protective systems), (2) exposure of microengineered materials to the space environment for passive and operational performance tests (to develop in-situ maintenance and repair techniques and to support the development, enhancement, and implementation of protective systems, data and bio-processing systems, and virtual reality and

  11. Space to Ground: Clearing the Cosmos: 06/22/2018

    NASA Image and Video Library

    2018-06-21

    A new experiment is looking at how to clean up the growing risk of space junk, and science on station was positively lit! NASA's Space to Ground is your weekly update on what's happening aboard the International Space Station.

  12. International Space Station (ISS)

    NASA Image and Video Library

    2007-08-01

    As the construction continued on the International Space Station (ISS), STS-118 Astronaut Dave Williams, representing the Canadian Space Agency, participated in the fourth and final session of Extra Vehicular Activity (EVA). During the 5 hour space walk, Williams and Expedition 15 engineer Clay Anderson (out of frame) installed the External Wireless Instrumentation System Antenna, attached a stand for the shuttle robotic arm extension boom, and retrieved the two Materials International Space Station Experiments (MISSE) for return to Earth. MISSE collects information on how different materials weather in the environment of space.

  13. Space-to-Ground: California Wildfires: 12/08/2017

    NASA Image and Video Library

    2017-12-07

    Orbital ATK's Cygnus left the station carrying a record amount, and astronauts got a harrowing view of the California wildfires. NASA's Space to Ground is your weekly update on what's happening aboard the International Space Station.

  14. Commercial investments in Combustion research aboard ISS

    NASA Astrophysics Data System (ADS)

    Schowengerdt, F. D.

    2000-01-01

    The Center for Commercial Applications of Combustion in Space (CCACS) at the Colorado School of Mines is working with a number of companies planning commercial combustion research to be done aboard the International Space Station (ISS). This research will be conducted in two major ISS facilities, SpaceDRUMS™ and the Fluids and Combustion Facility. SpaceDRUMS™, under development by Guigne Technologies, Ltd., of St. John's Newfoundland, is a containerless processing facility employing active acoustic sample positioning. It is capable of processing the large samples needed in commercial research and development with virtually complete vibration isolation from the space station. The Fluids and Combustion Facility (FCF), being developed by NASA-Glenn Research Center in Cleveland, is a general-purpose combustion furnace designed to accommodate a wide range of scientific experiments. SpaceDRUMS™ will be the first commercial hardware to be launched to ISS. Launch is currently scheduled for UF-1 in 2001. The CCACS research to be done in SpaceDRUMS™ includes combustion synthesis of glass-ceramics and porous materials. The FCF is currently scheduled to be launched to ISS aboard UF-3 in 2002. The CCACS research to be done in the FCF includes water mist fire suppression, catalytic combustion and flame synthesis of ceramic powders. The companies currently planning to be involved in the research include Guigne International, Ltd., Technology International, Inc., Coors Ceramics Company, TDA Research, Advanced Refractory Technologies, Inc., ADA Technologies, Inc., ITN Energy Systems, Inc., Innovative Scientific Solutions, Inc., Princeton Instruments, Inc., Environmental Engineering Concepts, Inc., and Solar Turbines, Inc. Together, these companies are currently investing almost $2 million in cash and in-kind annually toward the seven commercial projects within CCACS. Total private investment in CCACS research to date is over $7 million. .

  15. 47 CFR 97.211 - Space telecommand station.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... 47 Telecommunication 5 2014-10-01 2014-10-01 false Space telecommand station. 97.211 Section 97... AMATEUR RADIO SERVICE Special Operations § 97.211 Space telecommand station. (a) Any amateur station designated by the licensee of a space station is eligible to transmit as a telecommand station for that space...

  16. 47 CFR 97.211 - Space telecommand station.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 47 Telecommunication 5 2013-10-01 2013-10-01 false Space telecommand station. 97.211 Section 97... AMATEUR RADIO SERVICE Special Operations § 97.211 Space telecommand station. (a) Any amateur station designated by the licensee of a space station is eligible to transmit as a telecommand station for that space...

  17. 47 CFR 97.211 - Space telecommand station.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 47 Telecommunication 5 2010-10-01 2010-10-01 false Space telecommand station. 97.211 Section 97... AMATEUR RADIO SERVICE Special Operations § 97.211 Space telecommand station. (a) Any amateur station designated by the licensee of a space station is eligible to transmit as a telecommand station for that space...

  18. 47 CFR 97.211 - Space telecommand station.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... 47 Telecommunication 5 2012-10-01 2012-10-01 false Space telecommand station. 97.211 Section 97... AMATEUR RADIO SERVICE Special Operations § 97.211 Space telecommand station. (a) Any amateur station designated by the licensee of a space station is eligible to transmit as a telecommand station for that space...

  19. 47 CFR 97.211 - Space telecommand station.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 47 Telecommunication 5 2011-10-01 2011-10-01 false Space telecommand station. 97.211 Section 97... AMATEUR RADIO SERVICE Special Operations § 97.211 Space telecommand station. (a) Any amateur station designated by the licensee of a space station is eligible to transmit as a telecommand station for that space...

  20. Space Station Upgrades Continue on This Week @NASA – March 31, 2017

    NASA Image and Video Library

    2017-03-31

    Work continues aboard the International Space Station on upgrades to prepare it for future operational activities. Ground controllers, using the station’s robotic arm, moved the Pressurized Mating Adapter-3 (PMA-3) from the Tranquility module to the station’s Harmony module March 26. PMA-3 will be outfitted with one of two International Docking Adapters to accommodate U.S. commercial spacecraft carrying astronauts on future missions. Four days after the PMA-3 move, NASA’s Shane Kimbrough and Peggy Whitson conducted the second in a series of three planned spacewalks to complete work related to the upgrades. The third spacewalk is planned in April. Also, James Webb Space Telescope Completes Acoustic and Vibration Tests, MAVEN Data Helps Measure Loss of Mars’ Atmosphere, Getting Excited About STEM, and New NASA App for Amazon Fire TV!

  1. Space Station

    NASA Image and Video Library

    1986-08-01

    In response to President Reagan's directive to NASA to develop a permanent marned Space Station within a decade, part of the State of the Union message to Congress on January 25, 1984, NASA and the Administration adopted a phased approach to Station development. This approach provided an initial capability at reduced costs, to be followed by an enhanced Space Station capability in the future. This illustration depicts a configuration with enhanced capabilities. It builds on the horizontal boom and module pattern of the revised baseline. This configuration would feature dual keels, two vertical spines 105-meters long joined by upper and lower booms. The structure carrying the modules would become a transverse boom of a basically rectangular structure. The two new booms, 45-meters in length, would provide extensive accommodations for attached payloads, and would offer a wide field of view. Power would be increased significantly, with the addition if a 50-kW solar dynamic power system.

  2. Space station proposed

    NASA Astrophysics Data System (ADS)

    In his State of the Union address on January 25, President Ronald Reagan announced that he was directing the National Aeronautics and Space Administration (NASA) to “develop a permanently manned space station, and to do it within a decade.”Included in the NASA budget proposal sent to Congress the following week was $150 million for the station. This is the first request of many; expected costs will total roughly $8 billion by the early 1990's.

  3. Space station operations management

    NASA Technical Reports Server (NTRS)

    Cannon, Kathleen V.

    1989-01-01

    Space Station Freedom operations management concepts must be responsive to the unique challenges presented by the permanently manned international laboratory. Space Station Freedom will be assembled over a three year period where the operational environment will change as significant capability plateaus are reached. First Element Launch, Man-Tended Capability, and Permanent Manned Capability, represent milestones in operational capability that is increasing toward mature operations capability. Operations management concepts are being developed to accomodate the varying operational capabilities during assembly, as well as the mature operational environment. This paper describes operations management concepts designed to accomodate the uniqueness of Space Station Freedoom, utilizing tools and processes that seek to control operations costs.

  4. 33-Foot-Diameter Space Station Leading to Space Base

    NASA Technical Reports Server (NTRS)

    1969-01-01

    This picture illustrates a concept of a 33-Foot-Diameter Space Station Leading to a Space Base. In-house work of the Marshall Space Flight Center, as well as a Phase B contract with the McDornel Douglas Astronautics Company, resulted in a preliminary design for a space station in 1969 and l970. The Marshall-McDonnel Douglas approach envisioned the use of two common modules as the core configuration of a 12-man space station. Each common module was 33 feet in diameter and 40 feet in length and provided the building blocks, not only for the space station, but also for a 50-man space base. Coupled together, the two modules would form a four-deck facility: two decks for laboratories and two decks for operations and living quarters. Zero-gravity would be the normal mode of operation, although the station would have an artificial gravity capability. This general-purpose orbital facility was to provide wide-ranging research capabilities. The design of the facility was driven by the need to accommodate a broad spectrum of activities in support of astronomy, astrophysics, aerospace medicine, biology, materials processing, space physics, and space manufacturing. To serve the needs of Earth observations, the station was to be placed in a 242-nautical-mile orbit at a 55-degree inclination. An Intermediate-21 vehicle (comprised of Saturn S-IC and S-II stages) would have launched the station in 1977.

  5. International Space Station (ISS)

    NASA Image and Video Library

    2007-08-13

    Back dropped by the blue and white Earth is a Materials International Space Station Experiment (MISSE) on the exterior of the Station. The photograph was taken during the second bout of STS-118 Extra Vehicular Activity (EVA). MISSE collects information on how different materials weather in the environment of space.

  6. Hey! What's Space Station Freedom?

    NASA Technical Reports Server (NTRS)

    Vonehrenfried, Dutch

    1992-01-01

    This video, 'Hey! What's Space Station Freedom?', has been produced as a classroom tool geared toward middle school children. There are three segments to this video. Segment One is a message to teachers presented by Dr. Jeannine Duane, New Jersey, 'Teacher in Space'. Segment Two is a brief Social Studies section and features a series of Presidential Announcements by President John F. Kennedy (May 1961), President Ronald Reagan (July 1982), and President George Bush (July 1989). These historical announcements are speeches concerning the present and future objectives of the United States' space programs. In the last segment, Charlie Walker, former Space Shuttle astronaut, teaches a group of middle school children, through models, computer animation, and actual footage, what Space Station Freedom is, who is involved in its construction, how it is to be built, what each of the modules on the station is for, and how long and in what sequence this construction will occur. There is a brief animation segment where, through the use of cartoons, the children fly up to Space Station Freedom as astronauts, perform several experiments and are given a tour of the station, and fly back to Earth. Space Station Freedom will take four years to build and will have three lab modules, one from ESA and another from Japan, and one habitation module for the astronauts to live in.

  7. Hey] What's Space Station Freedom?

    NASA Astrophysics Data System (ADS)

    Vonehrenfried, Dutch

    This video, 'Hey] What's Space Station Freedom?', has been produced as a classroom tool geared toward middle school children. There are three segments to this video. Segment One is a message to teachers presented by Dr. Jeannine Duane, New Jersey, 'Teacher in Space'. Segment Two is a brief Social Studies section and features a series of Presidential Announcements by President John F. Kennedy (May 1961), President Ronald Reagan (July 1982), and President George Bush (July 1989). These historical announcements are speeches concerning the present and future objectives of the United States' space programs. In the last segment, Charlie Walker, former Space Shuttle astronaut, teaches a group of middle school children, through models, computer animation, and actual footage, what Space Station Freedom is, who is involved in its construction, how it is to be built, what each of the modules on the station is for, and how long and in what sequence this construction will occur. There is a brief animation segment where, through the use of cartoons, the children fly up to Space Station Freedom as astronauts, perform several experiments and are given a tour of the station, and fly back to Earth. Space Station Freedom will take four years to build and will have three lab modules, one from ESA and another from Japan, and one habitation module for the astronauts to live in.

  8. Main medical results of extended flights on space station Mir in 1986-1990

    NASA Astrophysics Data System (ADS)

    Grigoriev, A. I.; Bugrov, S. A.; Bogomolov, V. V.; Egorov, A. D.; Polyakov, V. V.; Tarasov, I. K.; Shulzhenko, E. B.

    During 1986-1990 seven prime spacecrews (16 cosmonauts) have flow on-board the Mir orbital complex. The longest space mission duration was 366 days. The principal objectives of the medical tasks were the maintenance of good health and performance of the spacecrews and conducting medical research programs which included study of the cardiovascular, motor, endocrine, blood, immune, and metabolic systems. Results obtained point to the ability of humans to readily adapt to a year-long stay in space and maintain good health and performance. Readaptation had a similar course as after other previous long-term space flights of up to 8 months in duration. Primary body system changes were not qualitatively different from findings after flights aboard the Salyut 6 and 7 space stations. In this case, during and after an 11-12 month flight, body system alterations were even less severe which was a result of adequate countermeasure use, their systematic and creative employment and maintenance of required environments to support life and work in space.

  9. Space-to-Ground: A Unique Experience: 03/09/2018

    NASA Image and Video Library

    2018-03-08

    Science continued on the station with the Expedition 55 crew, and Scott Tingle shared a surreal training experience. NASA's Space to Ground is your weekly update on what's happening aboard the International Space Station.

  10. Modular space station

    NASA Technical Reports Server (NTRS)

    1972-01-01

    The modular space station comprising small, shuttle-launched modules, and characterized by low initial cost and incremental manning, is described. The initial space station is designed to be delivered into orbit by three space shuttles and assembled in space. The three sections are the power/subsystems module, the crew/operations module, and the general purpose laboratory module. It provides for a crew of six. Subsequently duplicate/crew/operations and power/subsystems modules will be mated to the original modules, and provide for an additional six crewmen. A total of 17 research and applications modules is planned, three of which will be free-flying modules. Details are given on the program plan, modular characteristics, logistics, experiment support capability and requirements, operations analysis, design support analyses, and shuttle interfaces.

  11. Concrete: Potential material for Space Station

    NASA Technical Reports Server (NTRS)

    Lin, T. D.

    1992-01-01

    To build a permanent orbiting space station in the next decade is NASA's most challenging and exciting undertaking. The space station will serve as a center for a vast number of scientific products. As a potential material for the space station, reinforced concrete was studied, which has many material and structural merits for the proposed space station. Its cost-effectiveness depends on the availability of lunar materials. With such materials, only 1 percent or less of the mass of a concrete space structure would have to be transported from earth.

  12. Space station contamination modeling

    NASA Technical Reports Server (NTRS)

    Gordon, T. D.

    1989-01-01

    Current plans for the operation of Space Station Freedom allow the orbit to decay to approximately an altitude of 200 km before reboosting to approximately 450 km. The Space Station will encounter dramatically increasing ambient and induced environmental effects as the orbit decays. Unfortunately, Shuttle docking, which has been of concern as a high contamination period, will likely occur during the time when the station is in the lowest orbit. The combination of ambient and induced environments along with the presence of the docked Shuttle could cause very severe contamination conditions at the lower orbital altitudes prior to Space Station reboost. The purpose here is to determine the effects on the induced external environment of Space Station Freedom with regard to the proposed changes in altitude. The change in the induced environment will be manifest in several parameters. The ambient density buildup in front of ram facing surfaces will change. The source of such contaminants can be outgassing/offgassing surfaces, leakage from the pressurized modules or experiments, purposeful venting, and thruster firings. The third induced environment parameter with altitude dependence is the glow. In order to determine the altitude dependence of the induced environment parameters, researchers used the integrated Spacecraft Environment Model (ISEM) which was developed for Marshall Space Flight Center. The analysis required numerous ISEM runs. The assumptions and limitations for the ISEM runs are described.

  13. MS Lucid places samples in the TEHOF aboard the Spektr module

    NASA Image and Video Library

    1997-03-26

    STS079-S-082 (16-26 Sept. 1996) --- Cosmonaut guest researcher Shannon W. Lucid and Valeri G. Korzun, her Mir-22 commander, are pictured on the Spektr Module aboard Russia's Earth-orbiting Mir Space Station. Korzun was the third of four commanders that Lucid served with during her record-setting 188 consecutive days in space. Later, Lucid returned to Earth with her fourth commander-astronaut William F. Readdy-and five other NASA astronauts to complete the STS-79 mission. During the STS-79 mission, the crew used an IMAX camera to document activities aboard the space shuttle Atlantis and the various Mir modules. A hand-held version of the 65mm camera system accompanied the STS-79 crew into space in Atlantis' crew cabin. NASA has flown IMAX camera systems on many Shuttle missions, including a special cargo bay camera's coverage of other recent Shuttle-Mir rendezvous and/or docking missions.

  14. Lab-on-a-Chip: From Astrobiology to the International Space Station

    NASA Technical Reports Server (NTRS)

    Maule, Jake; Wainwright, Nor; Steele, Andrew; Gunter, Dan; Monaco, Lisa A.; Wells, Mark E.; Morris, Heather C.; Boudreaux, Mark E.

    2008-01-01

    The continual and long-term habitation of enclosed environments, such as Antarctic stations, nuclear submarines and space stations, raises unique engineering, medical and operational challenges. There is no easy way out and no easy way to get supplies in. This situation elevates the importance of monitoring technology that can rapidly detect events within the habitat that affect crew safety such as fire, release of toxic chemicals and hazardous microorganisms. Traditional methods to monitor microorganisms on the International Space Station (ISS) have consisted of culturing samples for 3-5 days and eventual sample return to Earth. To augment these culture methods with new, rapid molecular techniques, we developed the Lab-on-a-Chip Application Development - Portable Test System (LOCAD-PTS). The system consists of a hand-held spectrophotometer, a series of interchangeable cartridges and a surface sampling/dilution kit that enables crew to collect samples and detect a range of biological molecules, all within 15 minutes. LOCAD-PTS was launched to the ISS aboard Space Shuttle Discovery in December 2006, where it was operated for the first time during March-May 2007. The surfaces of five separate sites in the US Lab and Node 1 of ISS were analyzed for endotoxin, using cartridges that employ the Limulus Amebocyte Lysate (LAL) assay; results of these tests will be presented. LOCAD-PTS will remain permanently onboard ISS with new cartridges scheduled for launch in February and October of 2008 for the detection of fungi (Beta-glucan) and Gram-positive bacteria (lipoteichoic acid), respectively.

  15. The centrifuge facility - A life sciences research laboratory for Space Station Freedom

    NASA Technical Reports Server (NTRS)

    Fuller, Charles A.; Johnson, Catherine C.; Hargens, Alan R.

    1991-01-01

    The paper describes the centrifugal facility that is presently being developed by NASA for studies aboard the Space Station Freedom on the role of gravity, or its absence, at varying intensities for varying periods of time and with multiple model systems. Special attention is given to the design of the centrifuge system, the habitats designed to hold plants and animals, the glovebox system designed for experimental manipulations of the specimens, and the service unit. Studies planned for the facility will include experiments in the following disciplines: cell and developmental biology, plant biology, regulatory physiology, musculoskeletal physiology, behavior and performance, neurosciences, cardiopulmonary physiology, and environmental health and radiation.

  16. Automating Stowage Operations for the International Space Station

    NASA Technical Reports Server (NTRS)

    Knight, Russell; Rabideau, Gregg; Mishkin, Andrew; Lee, Young

    2013-01-01

    A challenge for any proposed mission is to demonstrate convincingly that the proposed systems will in fact deliver the science promised. Funding agencies and mission design personnel are becoming ever more skeptical of the abstractions that form the basis of the current state of the practice with respect to approximating science return. To address this, we have been using automated planning and scheduling technology to provide actual coverage campaigns that provide better predictive performance with respect to science return for a given mission design and set of mission objectives given implementation uncertainties. Specifically, we have applied an adaptation of ASPEN and SPICE to the Eagle-Eye domain that demonstrates the performance of the mission design with respect to coverage of science imaging targets that address climate change and disaster response. Eagle-Eye is an Earth-imaging telescope that has been proposed to fly aboard the International Space Station (ISS).

  17. International Space Station (ISS)

    NASA Image and Video Library

    2001-04-28

    A Canadian "handshake" in space occurred on April 28, 2001, as the Canadian-built space station robotic arm (Canadarm2) transferred its launch cradle over to Endeavour's robotic arm. Pictured is astronaut James S. Voss, Expedition Two flight engineer, working the controls of the new robotic arm. Marning the controls from the shuttle's aft flight deck, Canadian Mission Specialist Chris A. Hadfield of the Canadian Space Agency (CSA) was instrumental in the activity. The Space lab pallet that carried the Canadarm2 robotic arm to the station was developed at the Marshall Space Flight Center (MSFC) in Huntsville, Alabama.

  18. Space Station Habitability Research

    NASA Technical Reports Server (NTRS)

    Clearwater, Yvonne A.

    1988-01-01

    The purpose and scope of the Habitability Research Group within the Space Human Factors Office at the NASA/Ames Research Center is described. Both near-term and long-term research objectives in the space human factors program pertaining to the U.S. manned Space Station are introduced. The concept of habitability and its relevancy to the U.S. space program is defined within a historical context. The relationship of habitability research to the optimization of environmental and operational determinants of productivity is discussed. Ongoing habitability research efforts pertaining to living and working on the Space Station are described.

  19. Space Station habitability research

    NASA Technical Reports Server (NTRS)

    Clearwater, Y. A.

    1986-01-01

    The purpose and scope of the Habitability Research Group within the Space Human Factors Office at the NASA/Ames Research Cente is described. Both near-term and long-term research objectives in the space human factors program pertaining to the U.S. manned Space Station are introduced. The concept of habitability and its relevancy to the U.S. space program is defined within a historical context. The relationship of habitability research to the optimization of environmental and operational determinants of productivity is discussed. Ongoing habitability research efforts pertaining to living and working on the Space Station are described.

  20. Space Station habitability research.

    PubMed

    Clearwater, Y A

    1988-02-01

    The purpose and scope of the Habitability Research Group within the Space Human Factors Office at the NASA/Ames Research Center is described. Both near-term and long-term research objectives in the space human factors program pertaining to the U.S. manned Space Station are introduced. The concept of habitability and its relevancy to the U.S. space program is defined within a historical context. The relationship of habitability research to the optimization of environmental and operational determinants of productivity is discussed. Ongoing habitability research efforts pertaining to living and working on the Space Station are described.

  1. Space Station galley design

    NASA Technical Reports Server (NTRS)

    Trabanino, Rudy; Murphy, George L.; Yakut, M. M.

    1986-01-01

    An Advanced Food Hardware System galley for the initial operating capability (IOC) Space Station is discussed. Space Station will employ food hardware items that have never been flown in space, such as a dishwasher, microwave oven, blender/mixer, bulk food and beverage dispensers, automated food inventory management, a trash compactor, and an advanced technology refrigerator/freezer. These new technologies and designs are described and the trades, design, development, and testing associated with each are summarized.

  2. International Space Station (ISS)

    NASA Image and Video Library

    1999-01-01

    The International Space Station (ISS) is an unparalleled international scientific and technological cooperative venture that will usher in a new era of human space exploration and research and provide benefits to people on Earth. On-Orbit assembly began on November 20, 1998, with the launch of the first ISS component, Zarya, on a Russian Proton rocket. The Space Shuttle followed on December 4, 1998, carrying the U.S.-built Unity cornecting Module. Sixteen nations are participating in the ISS program: the United States, Canada, Japan, Russia, Brazil, Belgium, Denmark, France, Germany, Italy, the Netherlands, Norway, Spain, Sweden, Switzerland, and the United Kingdom. The ISS will include six laboratories and be four times larger and more capable than any previous space station. The United States provides two laboratories (United States Laboratory and Centrifuge Accommodation Module) and a habitation module. There will be two Russian research modules, one Japanese laboratory, referred to as the Japanese Experiment Module (JEM), and one European Space Agency (ESA) laboratory called the Columbus Orbital Facility (COF). The station's internal volume will be roughly equivalent to the passenger cabin volume of two 747 jets. Over five years, a total of more than 40 space flights by at least three different vehicles - the Space Shuttle, the Russian Proton Rocket, and the Russian Soyuz rocket - will bring together more than 100 different station components and the ISS crew. Astronauts will perform many spacewalks and use new robotics and other technologies to assemble ISS components in space.

  3. International Space Station Assembly

    NASA Technical Reports Server (NTRS)

    1999-01-01

    The International Space Station (ISS) is an unparalleled international scientific and technological cooperative venture that will usher in a new era of human space exploration and research and provide benefits to people on Earth. On-Orbit assembly began on November 20, 1998, with the launch of the first ISS component, Zarya, on a Russian Proton rocket. The Space Shuttle followed on December 4, 1998, carrying the U.S.-built Unity cornecting Module. Sixteen nations are participating in the ISS program: the United States, Canada, Japan, Russia, Brazil, Belgium, Denmark, France, Germany, Italy, the Netherlands, Norway, Spain, Sweden, Switzerland, and the United Kingdom. The ISS will include six laboratories and be four times larger and more capable than any previous space station. The United States provides two laboratories (United States Laboratory and Centrifuge Accommodation Module) and a habitation module. There will be two Russian research modules, one Japanese laboratory, referred to as the Japanese Experiment Module (JEM), and one European Space Agency (ESA) laboratory called the Columbus Orbital Facility (COF). The station's internal volume will be roughly equivalent to the passenger cabin volume of two 747 jets. Over five years, a total of more than 40 space flights by at least three different vehicles - the Space Shuttle, the Russian Proton Rocket, and the Russian Soyuz rocket - will bring together more than 100 different station components and the ISS crew. Astronauts will perform many spacewalks and use new robotics and other technologies to assemble ISS components in space.

  4. Worms on the International Space Station

    NASA Technical Reports Server (NTRS)

    Szewczyk, Nate; Kirven-Brooks, Melissa; Conley, Cassie

    2002-01-01

    C. elegans was proposed as a model system for space biology studies in 1991 and has since flown on STS-42, STS-76, and STS-95. Data obtained from these flights have confirmed that C. elegans requires adequate in flight oxygenation and displays an increased rate of mutation, much like other organisms in space. Unlike vertebrates, C. elegans has been observed to successfully complete two continuous full life cycles in space without gross developmental abnormalities. These observations, could with the utility of C. elegans as a terrestrial, fully sequenced, model system make C. elegans a good candidate for long term research onboard the International Space Station (ISS). We are currently working on technology to support biological studies aboard the ISS. A component of this effort is in the development of the Space Station Biological Research Program (SSBRP) Incubator which will be able to house organisms at a constant temperature setpoint ranging from 4deg C to 45deg C. The SSBRP Incubator provides air exchange, power, data and video ports and, when placed in the collaborative NASA/NASDA 2.5M centrifuge rotor, will be capable of providing a lg gravity control. Current plans for validation of the Incubator include video monitoring and periodic sampling of C. elegans in the Incubator onboard the ISS. Once returned to earth, samples will be distributed for analysis via a specimen sharing plan and analyzed for gene expression and other parameters of growth and development in space flight. These data should provide the C. elegans research community with a baseline from which to propose studies for future flights. We have also been developing an appropriate method of culturing C. elegans in liquid media in order to remove the need for the crew to assure that strains are properly fed. Currently, we are growing strains in the chemically defined, axenic, media developed by Dr. Nancy Lu. Wild-type animals complete multiple generations and appear generally healthy after being

  5. Space Station crew safety alternatives study. Volume 5: Space Station safety plan

    NASA Technical Reports Server (NTRS)

    Mead, G. H.; Peercy, R. L., Jr.; Raasch, R. F.

    1985-01-01

    The Space Station Safety Plan has been prepared as an adjunct to the subject contract final report, suggesting the tasks and implementation procedures to ensure that threats are addressed and resolution strategy options identified and incorporated into the space station program. The safety program's approach is to realize minimum risk exposure without levying undue design and operational constraints. Safety objectives and risk acceptances are discussed.

  6. Space Station-Baseline Configuration

    NASA Technical Reports Server (NTRS)

    1989-01-01

    In response to President Reagan's directive to NASA to develop a permanent marned Space Station within a decade, part of the State of the Union message to Congress on January 25, 1984, NASA and the Administration adopted a phased approach to Station development. This approach provided an initial capability at reduced costs, to be followed by an enhanced Space Station capability in the future. This illustration depicts the baseline configuration, which features a 110-meter-long horizontal boom with four pressurized modules attached in the middle. Located at each end are four photovoltaic arrays generating a total of 75-kW of power. Two attachment points for external payloads are provided along this boom. The four pressurized modules include the following: A laboratory and habitation module provided by the United States; two additional laboratories, one each provided by the European Space Agency (ESA) and Japan; and an ESA-provided Man-Tended Free Flyer, a pressurized module capable of operations both attached to and separate from the Space Station core. Canada was expected to provide the first increment of a Mobile Serving System.

  7. Human factors in space station architecture 1: Space station program implications for human factors research

    NASA Technical Reports Server (NTRS)

    Cohen, M. M.

    1985-01-01

    The space station program is based on a set of premises on mission requirements and the operational capabilities of the space shuttle. These premises will influence the human behavioral factors and conditions on board the space station. These include: launch in the STS Orbiter payload bay, orbital characteristics, power supply, microgravity environment, autonomy from the ground, crew make-up and organization, distributed command control, safety, and logistics resupply. The most immediate design impacts of these premises will be upon the architectural organization and internal environment of the space station.

  8. International Space Station (ISS)

    NASA Image and Video Library

    2005-07-28

    Launched on July 26 2005 from the Kennedy Space Center in Florida, STS-114 was classified as Logistics Flight 1. Among the Station-related activities of the mission were the delivery of new supplies and the replacement of one of the orbital outpost's Control Moment Gyroscopes (CMGs). STS-114 also carried the Raffaello Multi-Purpose Logistics Module (MPLM) and the External Stowage Platform-2. Back dropped by popcorn-like clouds, the MPLM can be seen in the cargo bay as Discovery undergoes rendezvous and docking operations. Cosmonaut Sergei K. Kriklev, Expedition 11 Commander, and John L. Phillips, NASA Space Station officer and flight engineer photographed the spacecraft from the International Space Station (ISS).

  9. International Space Station (ISS)

    NASA Image and Video Library

    2005-07-28

    Launched on July 26, 2005 from the Kennedy Space Center in Florida, STS-114 was classified as Logistics Flight 1. Among the Station-related activities of the mission were the delivery of new supplies and the replacement of one of the orbital outpost's Control Moment Gyroscopes (CMGs). STS-114 also carried the Raffaello Multi-Purpose Logistics Module (MPLM) and the External Stowage Platform-2. Back dropped by popcorn-like clouds, the MPLM can be seen in the cargo bay as Discovery undergoes rendezvous and docking operations. Cosmonaut Sergei K. Kriklev, Expedition 11 Commander, and John L. Phillips, NASA Space Station officer and flight engineer photographed the spacecraft from the International Space Station (ISS).

  10. International Space Station (ISS)

    NASA Image and Video Library

    2007-08-13

    As the construction continued on the International Space Station (ISS), STS-118 astronaut and mission specialist Rick Mastracchio participated in the second session of Extra Vehicular Activity (EVA) for the mission. Assisting Mastracchio was Canadian Space Agency representative Dave Williams (out of frame). During the 6 hour, 28 minute space walk, the two removed a faulty control moment gyroscope (CMG-3) and installed a new CMG into the Z1 truss. The failed CMG will remain in its temporary stowage location on the exterior of the station until it is returned to Earth on a later Shuttle mission. The new gyroscope is one of four CMGs that are used to control the orbital attitude of the station.

  11. International Space Station Increment-6/8 Microgravity Environment Summary Report November 2002 to April 2004

    NASA Technical Reports Server (NTRS)

    Jules, Kenol; Hrovat, Kenneth; Kelly, Eric; Reckart, Timothy

    2006-01-01

    This summary report presents the analysis results of some of the processed acceleration data measured aboard the International Space Station during the period of November 2002 to April 2004. Two accelerometer systems were used to measure the acceleration levels for the activities that took place during Increment-6/8. However, not all of the activities during that period were analyzed in order to keep the size of the report manageable. The National Aeronautics and Space Administration sponsors the Microgravity Acceleration Measurement System and the Space Acceleration Measurement System to support microgravity science experiments that require microgravity acceleration measurements. On April 19, 2001, both the Microgravity Acceleration Measurement System and the Space Acceleration Measurement System units were launched on STS-100 from the Kennedy Space Center for installation on the International Space Station. The Microgravity Acceleration Measurement System unit was flown to the station in support of science experiments requiring quasi-steady acceleration measurements, while the Space Acceleration Measurement System unit was flown to support experiments requiring vibratory acceleration measurement. Both acceleration systems are also used in support of the vehicle microgravity requirements verification as well as in support of the International Space Station support cadre. The International Space Station Increment-6/8 reduced gravity environment analysis presented in this report uses acceleration data collected by both sets of accelerometer systems: 1. The Microgravity Acceleration Measurement System, which consists of two sensors: the Orbital Acceleration Research Experiment Sensor Subsystem, a low frequency range sensor (up to 1 Hz), is used to characterize the quasi-steady environment for payloads and vehicle, and the High Resolution Accelerometer Package, which is used to characterize the vibratory environment up to 100 Hz. 2. The Space Acceleration Measurement

  12. International Space Station (ISS)

    NASA Image and Video Library

    2002-06-01

    Pictured here is the Space Shuttle Orbiter Endeavour, STS-111 mission insignia. The International Space Station (ISS) recieved a new crew, Expedition Five, replacing Expedition Four after a record-setting 196 days in space, when STS-111 visited in June 2002. Three spacewalks enabled the STS-111 crew to accomplish additional mission objectives: the delivery and installation of a new platform for the ISS robotic arm, the Mobile Base System (MBS) which is an important part of the Station's Mobile Servicing System allowing the robotic arm to travel the length of the Station; the replacement of a wrist roll joint on the Station's robotic arm; and unloading supplies and science experiments from the Leonardo Multi-Purpose Logistics Module, which made its third trip to the orbital outpost. The STS-111 mission, the 14th Shuttle mission to visit the ISS, was launched on June 5, 2002 and landed June 19, 2002.

  13. The NORSTAR Program: Space shuttle to space station

    NASA Technical Reports Server (NTRS)

    Fortunato, Ronald C.

    1988-01-01

    The development of G-325, the first high school student-run space flight project, is updated. An overview is presented of a new international program, which involves students from space station countries who will be utilizing Get Away Special technology to cooperatively develop a prototype experiment for controlling a space station research module environment.

  14. International Space Station (ISS)

    NASA Image and Video Library

    1998-01-01

    This artist's digital concept depicts the completely assembled International Space Station (ISS) passing over Florida. As a gateway to permanent human presence in space, the Space Station Program is to expand knowledge benefiting all people and nations. The ISS is a multidisciplinary laboratory, technology test bed, and observatory that will provide unprecedented undertakings in scientific, technological, and international experimentation. Experiments to be conducted in the ISS include: microgravity research, Earth science, space science, life sciences, space product development, and engineering research and technology. The sixteen countries participating the ISS are: United States, Russian Federation, Canada, Japan, United Kingdom, Germany, Italy, France, Norway, Netherlands, Belgium, Spain, Denmark, Sweden, Switzerland, and Brazil.

  15. Space-to-Ground: Prepping for a Spacewalk: 01/19/2018

    NASA Image and Video Library

    2018-01-18

    Some station science has successfully returned to Earth, and crewmembers are gearing up for a pair of spacewalks. NASA's Space to Ground is your weekly update on what's happening aboard the International Space Station.

  16. Space-to-Ground: Russian Spacewalk: 02/02/2018

    NASA Image and Video Library

    2018-02-02

    This week on station, one spacewalk took place, and another one was moved Also, what advice would an astronaut give to students who want to be a part of the exploration of space? NASA's Space to Ground is your weekly update on what's happening aboard the International Space Station.

  17. International Space Station Acoustics - A Status Report

    NASA Technical Reports Server (NTRS)

    Allen, Christopher S.

    2015-01-01

    It is important to control acoustic noise aboard the International Space Station (ISS) to provide a satisfactory environment for voice communications, crew productivity, alarm audibility, and restful sleep, and to minimize the risk for temporary and permanent hearing loss. Acoustic monitoring is an important part of the noise control process on ISS, providing critical data for trend analysis, noise exposure analysis, validation of acoustic analyses and predictions, and to provide strong evidence for ensuring crew health and safety, thus allowing Flight Certification. To this purpose, sound level meter (SLM) measurements and acoustic noise dosimetry are routinely performed. And since the primary noise sources on ISS include the environmental control and life support system (fans and airflow) and active thermal control system (pumps and water flow), acoustic monitoring will reveal changes in hardware noise emissions that may indicate system degradation or performance issues. This paper provides the current acoustic levels in the ISS modules and sleep stations and is an update to the status presented in 2011. Since this last status report, many payloads (science experiment hardware) have been added and a significant number of quiet ventilation fans have replaced noisier fans in the Russian Segment. Also, noise mitigation efforts are planned to reduce the noise levels of the T2 treadmill and levels in Node 3, in general. As a result, the acoustic levels on the ISS continue to improve.

  18. Role of Space Station: The how of space industrialization

    NASA Technical Reports Server (NTRS)

    Marshall, W. R.

    1984-01-01

    The roles of the Space Station, as an R&D facility, as part of an industrial system which support space industralization, and as a transportation node for space operations are considered. Industrial opportunities relative to these roles are identified and space station concepts responsive to these roles are discussed.

  19. Ground-based simulation of telepresence for materials science experiments. [remote viewing and control of processes aboard Space Station

    NASA Technical Reports Server (NTRS)

    Johnston, James C.; Rosenthal, Bruce N.; Bonner, Mary JO; Hahn, Richard C.; Herbach, Bruce

    1989-01-01

    A series of ground-based telepresence experiments have been performed to determine the minimum video frame rate and resolution required for the successive performance of materials science experiments in space. The approach used is to simulate transmission between earth and space station with transmission between laboratories on earth. The experiments include isothermal dendrite growth, physical vapor transport, and glass melting. Modifications of existing apparatus, software developed, and the establishment of an inhouse network are reviewed.

  20. Astrophysical payload accommodation on the space station

    NASA Technical Reports Server (NTRS)

    Woods, B. P.

    1985-01-01

    Surveys of potential space station astrophysics payload requirements and existing point mount design concepts were performed to identify potential design approaches for accommodating astrophysics instruments from space station. Most existing instrument pointing systems were designed for operation from the space shuttle and it is unlikely that they will sustain their performance requirements when exposed to the space station disturbance environment. The technology exists or is becoming available so that precision pointing can be provided from the space station manned core. Development of a disturbance insensitive pointing mount is the key to providing a generic system for space station. It is recommended that the MSFC Suspended Experiment Mount concept be investigated for use as part of a generic pointing mount for space station. Availability of a shirtsleeve module for instrument change out, maintenance and repair is desirable from the user's point of view. Addition of a shirtsleeve module on space station would require a major program commitment.

  1. International Space Station (ISS)

    NASA Image and Video Library

    2000-12-01

    This image of the International Space Station in orbit was taken from the Space Shuttle Endeavour prior to docking. Most of the Station's components are clearly visible in this photograph. They are the Node 1 or Unity Module docked with the Functional Cargo Block or Zarya (top) that is linked to the Zvezda Service Module. The Soyuz spacecraft is at the bottom.

  2. Implications of privacy needs and interpersonal distancing mechanisms for space station design

    NASA Technical Reports Server (NTRS)

    Harrison, A. A.; Sommer, R.; Struthers, N.; Hoyt, K.

    1985-01-01

    Privacy needs, or the need of people to regulate their degree of contact with one another, and interpersonal distancing mechanisms, which serve to satisfy these needs, are common in all cultures. Isolation, confinement, and other conditions accociated with space flight may at once accentuate privacy needs and limit the availability of certain common interpersonal contact. Loneliness occurs when people have less contact with one another than they desire. Crowding occurs when people have more contact with one another than they desire. Crowding, which is considered the greater threat to members of isolated and confined groups, can contribute to stress, a low quality of life, and poor performance. Drawing on the general literature on privacy, personal space, and interpersonal distancing, and on specialized literature on life aboard spacecraft and in spacecraft-analogous environments, a quantitative model for understanding privacy, interpersonal distancing, loneliness, and crowding was developed and the practical implications of this model for space station design were traced.

  3. Soyuz 7 Return Samples: Assessment of Air Quality Aboard the International Space Station

    NASA Technical Reports Server (NTRS)

    James, John T.

    2004-01-01

    The toxicological assessments of one grab sample canister (GSC), 6 dual sorbent tubes (DSTs), and 20 formaldehyde badges returned aboard Soyuz 7 are reported. Analytical methods have not changed from earlier reports. Surrogate standard recoveries from the GSC were 84-89%. The recoveries of the less volatile surrogates from the DSTs were 87 to 112%; however, 13C-acetone was only recovered at 53-59%. Formaldehyde recoveries from 2 lab controls were 87 and 95%; trip controls were not returned to ground.

  4. Space station structures development

    NASA Technical Reports Server (NTRS)

    Teller, V. B.

    1986-01-01

    A study of three interrelated tasks focusing on deployable Space Station truss structures is discussed. Task 1, the development of an alternate deployment system for linear truss, resulted in the preliminary design of an in-space reloadable linear motor deployer. Task 2, advanced composites deployable truss development, resulted in the testing and evaluation of composite materials for struts used in a deployable linear truss. Task 3, assembly of structures in space/erectable structures, resulted in the preliminary design of Space Station pressurized module support structures. An independent, redundant support system was developed for the common United States modules.

  5. The challenge of the US Space Station

    NASA Technical Reports Server (NTRS)

    Beggs, J. M.

    1985-01-01

    The U.S. Space Station program is described. The objectives of the present national space policy are reviewed. International involvement and commercial use of space are the two strategies involved in the development of the Space Station. The Space Station is to be a multifunctional, modular, permanent facility with manned and unmanned platforms. The functions of the Space Station for space research projects, such as material processing and electrophoresis, are examined. The infrastructure required for commercialization of space is analyzed. NASA's space policy aimed at stimulating space commerce is discussed. NASA's plans to reduce the financial, institutional, and technical risks of space research are studied.

  6. Space station interior noise analysis program

    NASA Technical Reports Server (NTRS)

    Stusnick, E.; Burn, M.

    1987-01-01

    Documentation is provided for a microcomputer program which was developed to evaluate the effect of the vibroacoustic environment on speech communication inside a space station. The program, entitled Space Station Interior Noise Analysis Program (SSINAP), combines a Statistical Energy Analysis (SEA) prediction of sound and vibration levels within the space station with a speech intelligibility model based on the Modulation Transfer Function and the Speech Transmission Index (MTF/STI). The SEA model provides an effective analysis tool for predicting the acoustic environment based on proposed space station design. The MTF/STI model provides a method for evaluating speech communication in the relatively reverberant and potentially noisy environments that are likely to occur in space stations. The combinations of these two models provides a powerful analysis tool for optimizing the acoustic design of space stations from the point of view of speech communications. The mathematical algorithms used in SSINAP are presented to implement the SEA and MTF/STI models. An appendix provides an explanation of the operation of the program along with details of the program structure and code.

  7. International Space Station (ISS)

    NASA Image and Video Library

    1999-09-01

    This image shows the Integrated Truss Assembly S-1 (S-One), the Starboard Side Thermal Radiator Truss, for the International Space Station (ISS) undergoing final construction in the Space Station manufacturing facility at the Marshall Space Flight Center. The S1 truss provides structural support for the orbiting research facility's radiator panels, which use ammonia to cool the Station's complex power system. Delivered and installed by the STS-112 mission, the S1 truss, attached to the S0 (S Zero) truss installed by the previous STS-110 mission, flows 637 pounds of anhydrous ammonia through three heat rejection radiators. The truss is 45-feet long, 15-feet wide, 10-feet tall, and weighs approximately 32,000 pounds. Manufactured by the Boeing Company in Huntington Beach, California, the truss primary structure was transferred to the Marshall Space Flight Center in February 1999 for hardware installations and manufacturing acceptance testing.

  8. Space station mobile transporter

    NASA Technical Reports Server (NTRS)

    Renshall, James; Marks, Geoff W.; Young, Grant L.

    1988-01-01

    The first quarter of the next century will see an operational space station that will provide a permanently manned base for satellite servicing, multiple strategic scientific and commercial payload deployment, and Orbital Maneuvering Vehicle/Orbital Transfer Vehicle (OMV/OTV) retrieval replenishment and deployment. The space station, as conceived, is constructed in orbit and will be maintained in orbit. The construction, servicing, maintenance and deployment tasks, when coupled with the size of the station, dictate that some form of transportation and manipulation device be conceived. The Transporter described will work in conjunction with the Orbiter and an Assembly Work Platform (AWP) to construct the Work Station. The Transporter will also work in conjunction with the Mobile Remote Servicer to service and install payloads, retrieve, service and deploy satellites, and service and maintain the station itself. The Transporter involved in station construction when mounted on the AWP and later supporting a maintenance or inspection task with the Mobile Remote Servicer and the Flight Telerobotic Servicer is shown.

  9. Space Station Freedom as an engineering experiment station: An overview

    NASA Technical Reports Server (NTRS)

    Rose, M. Frank

    1992-01-01

    In this presentation, the premise that Space Station Freedom has great utility as an engineering experiment station will be explored. There are several modes in which it can be used for this purpose. The most obvious are space qualification, process development, in space satellite repair, and materials engineering. The range of engineering experiments which can be done at Space Station Freedom run the gamut from small process oriented experiments to full exploratory development models. A sampling of typical engineering experiments are discussed in this session. First and foremost, Space Station Freedom is an elaborate experiment itself, which, if properly instrumented, will provide engineering guidelines for even larger structures which must surely be built if humankind is truly 'outward bound.' Secondly, there is the test, evaluation and space qualification of advanced electric thruster concepts, advanced power technology and protective coatings which must of necessity be tested in the vacuum of space. The current approach to testing these technologies is to do exhaustive laboratory simulation followed by shuttle or unmanned flights. Third, the advanced development models of life support systems intended for future space stations, manned mars missions, and lunar colonies can be tested for operation in a low gravity environment. Fourth, it will be necessary to develop new protective coatings, establish construction techniques, evaluate new materials to be used in the upgrading and repair of Space Station Freedom. Finally, the industrial sector, if it is ever to build facilities for the production of commercial products, must have all the engineering aspects of the process evaluated in space prior to a commitment to such a facility.

  10. Space station functional relationships analysis

    NASA Technical Reports Server (NTRS)

    Tullis, Thomas S.; Bied, Barbra R.

    1988-01-01

    A systems engineering process is developed to assist Space Station designers to understand the underlying operational system of the facility so that it can be physically arranged and configured to support crew productivity. The study analyzes the operational system proposed for the Space Station in terms of mission functions, crew activities, and functional relationships in order to develop a quantitative model for evaluation of interior layouts, configuration, and traffic analysis for any Station configuration. Development of the model involved identification of crew functions, required support equipment, criteria of assessing functional relationships, and tools for analyzing functional relationship matrices, as well as analyses of crew transition frequency, sequential dependencies, support equipment requirements, potential for noise interference, need for privacy, and overall compatability of functions. The model can be used for analyzing crew functions for the Initial Operating Capability of the Station and for detecting relationships among these functions. Note: This process (FRA) was used during Phase B design studies to test optional layouts of the Space Station habitat module. The process is now being automated as a computer model for use in layout testing of the Space Station laboratory modules during Phase C.

  11. Space Station Freedom

    NASA Technical Reports Server (NTRS)

    Keyes, Gilbert

    1991-01-01

    Information is given in viewgraph form on Space Station Freedom. Topics covered include future evolution, man-tended capability, permanently manned capability, standard payload rack dimensions, the Crystals by Vapor Transport Experiment (CVTE), commercial space projects interfaces, and pricing policy.

  12. International Space Station (ISS)

    NASA Image and Video Library

    2000-09-08

    This is the insignia for STS-98, which marks a major milestone in assembly of the International Space Station (ISS). Atlantis' crew delivered the United States Laboratory, Destiny, to the ISS. Destiny will be the centerpiece of the ISS, a weightless laboratory where expedition crews will perform unprecedented research in the life sciences, materials sciences, Earth sciences, and microgravity sciences. The laboratory is also the nerve center of the Station, performing guidance, control, power distribution, and life support functions. With Destiny's arrival, the Station will begin to fulfill its promise of returning the benefits of space research to Earth's citizens. The crew patch depicts the Space Shuttle with Destiny held high above the payload bay just before its attachment to the ISS. Red and white stripes, with a deep blue field of white stars, border the Shuttle and Destiny to symbolize the continuing contribution of the United States to the ISS. The constellation Hercules, seen just below Destiny, captures the Shuttle and Station's team efforts in bringing the promise of orbital scientific research to life. The reflection of Earth in Destiny's window emphasizes the connection between space exploration and life on Earth.

  13. Artificial magnetic field for the space station (Protecting space stations in future space missions)

    NASA Astrophysics Data System (ADS)

    Ahmadi Tara, Miss

    Problem Explanation Strong solar storms and cosmic rays make great disturbances for equip-ment outside the magnetosphere. Also these disturbances are so harmful for biological process of living cells. If one decides to stay more outside the Earth, one's healthy is in a great danger. To investigate space station situation against strong solar storms, 5 recent strong solar storms have been selected. Dst of these storms are more than -300 nT. Each one of these storms has an accurate danger percentage. These data has been shown in Tab I. Tab I. strong solar storms during 1989-2003 and their danger percentage for space equipments and astronauts on outside the magnetic field As has been shown in Tab I. these strong storms are so dangerous and make problem for human outside the Earth layers. Basic on [13] solar activities in next century will be more than this century. That paper shows that the average number of sunspots in this century is less than 77 and this average will be more than 150 sunspots in a century. So we have only 70 years to prepare a suitable space station in other wise building this centre wills has many problem such as health security and long travels. Method explanation Only method to face with energetic particles is magnetic field. Space station is bereft of strong magnetic field to protect herself from energetic particles that released from the Sun and other types of stars in other galaxies (cosmic rays). Therefore the existence of an artificial magnetic field is necessary, this is not important that this field will be for the space station or its inner space because this field performs as magnetosphere. It does not allow energetic particles to enter the field. Also this field loads up to solar magnetic field as magnetosphere. Position of this artificial field is not important because basic on the simulations this field could repulse 85.6Modeling Important feature of this artificial field is its situation against solar magnetic field, i.e. these

  14. Space Station Freedom food management

    NASA Technical Reports Server (NTRS)

    Whitehurst, Troy N., Jr.; Bourland, Charles T.

    1992-01-01

    This paper summarizes the specification requirements for the Space Station Food System, and describes the system that is being designed and developed to meet those requirements. Space Station Freedom will provide a mix of frozen, refrigerated, rehydratable, and shelf stable foods. The crew will pre-select preferred foods from an approved list, to the extent that proper nutrition balance is maintained. A galley with freezers, refrigerators, trash compactor, and combination microwave and convection ovens will improve crew efficiency and productivity during the long Space Station Freedom (SSF) missions.

  15. Space Station Freedom user's guide

    NASA Technical Reports Server (NTRS)

    1992-01-01

    This guide is intended to inform prospective users of the accommodations and resources provided by the Space Station Freedom program. Using this information, they can determine if Space Station Freedom is an appropriate laboratory or facility for their research objectives. The steps that users must follow to fly a payload on Freedom are described. This guide covers the accommodations and resources available on the Space Station during the Man-Tended Capability (MTC) period, scheduled to begin the end of 1996, and a Permanently Manned Capability (PMC) beginning in late 1999.

  16. Biotechnology opportunities on Space Station

    NASA Technical Reports Server (NTRS)

    Deming, Jess; Henderson, Keith; Phillips, Robert W.; Dickey, Bernistine; Grounds, Phyllis

    1987-01-01

    Biotechnology applications which could be implemented on the Space Station are examined. The advances possible in biotechnology due to the favorable microgravity environment are discussed. The objectives of the Space Station Life Sciences Program are: (1) the study of human diseases, (2) biopolymer processing, and (3) the development of cryoprocessing and cryopreservation methods. The use of the microgravity environment for crystal growth, cell culturing, and the separation of biological materials is considered. The proposed Space Station research could provide benefits to the fields of medicine, pharmaceuticals, genetics, agriculture, and industrial waste management.

  17. Droplet Combustion Experiments Aboard the International Space Station

    NASA Astrophysics Data System (ADS)

    Dietrich, Daniel L.; Nayagam, Vedha; Hicks, Michael C.; Ferkul, Paul V.; Dryer, Frederick L.; Farouk, Tanvir; Shaw, Benjamin D.; Suh, Hyun Kyu; Choi, Mun Y.; Liu, Yu Cheng; Avedisian, C. Thomas; Williams, Forman A.

    2014-10-01

    This paper summarizes the first results from isolated droplet combustion experiments performed on the International Space Station (ISS). The long durations of microgravity provided in the ISS enable the measurement of droplet and flame histories over an unprecedented range of conditions. The first experiments were with heptane and methanol as fuels, initial droplet droplet diameters between 1.5 and 5.0 m m, ambient oxygen mole fractions between 0.1 and 0.4, ambient pressures between 0.7 and 3.0 a t m and ambient environments containing oxygen and nitrogen diluted with both carbon dioxide and helium. The experiments show both radiative and diffusive extinction. For both fuels, the flames exhibited pre-extinction flame oscillations during radiative extinction with a frequency of approximately 1 H z. The results revealed that as the ambient oxygen mole fraction was reduced, the diffusive-extinction droplet diameter increased and the radiative-extinction droplet diameter decreased. In between these two limiting extinction conditions, quasi-steady combustion was observed. Another important measurement that is related to spacecraft fire safety is the limiting oxygen index (LOI), the oxygen concentration below which quasi-steady combustion cannot be supported. This is also the ambient oxygen mole fraction for which the radiative and diffusive extinction diameters become equal. For oxygen/nitrogen mixtures, the LOI is 0.12 and 0.15 for methanol and heptane, respectively. The LOI increases to approximately 0.14 (0.14 O 2/0.56 N 2/0.30 C O 2) and 0.17 (0.17 O 2/0.63 N 2/0.20 C O 2) for methanol and heptane, respectively, for ambient environments that simulated dispersing an inert-gas suppressant (carbon dioxide) into a nominally air (1.0 a t m) ambient environment. The LOI is approximately 0.14 and 0.15 for methanol and heptane, respectively, when helium is dispersed into air at 1 atm. The experiments also showed unique burning behavior for large heptane droplets. After the

  18. Neutral Buoyancy Simulator - Space Station

    NASA Technical Reports Server (NTRS)

    1985-01-01

    Skylab's success proved that scientific experimentation in a low gravity environment was essential to scientific progress. A more permanent structure was needed to provide this space laboratory. President Ronald Reagan, on January 25, 1984, during his State of the Union address, claimed that the United States should exploit the new frontier of space, and directed NASA to build a permanent marned space station within a decade. The idea was that the space station would not only be used as a laboratory for the advancement of science and medicine, but would also provide a staging area for building a lunar base and manned expeditions to Mars and elsewhere in the solar system. President Reagan invited the international community to join with the United States in this endeavour. NASA and several countries moved forward with this concept. By December 1985, the first phase of the space station was well underway with the design concept for the crew compartments and laboratories. Pictured are two NASA astronauts, at Marshall Space Flight Center's (MSFC) Neutral Buoyancy Simulator (NBS), practicing construction techniques they later used to construct the space station after it was deployed.

  19. International Space Station (ISS)

    NASA Image and Video Library

    1998-01-01

    This artist's concept depicts the completely assembled International Space Station (ISS) passing over Florida and the Bahamas. As a gateway to permanent human presence in space, the Space Station Program is to expand knowledge benefiting all people and nations. The ISS is a multidisciplinary laboratory, technology test bed, and observatory that will provide unprecedented undertakings in scientific, technological, and international experimentation. Experiments to be conducted in the ISS include: microgravity research, Earth science, space science, life sciences, space product development, and engineering research and technology. The sixteen countries participating in the ISS are: United States, Russian Federation, Canada, Japan, United Kingdom, Germany, Italy, France, Norway, Netherlands, Belgium, Spain, Denmark, Sweden, Switzerland, and Brazil.

  20. International Space Station (ISS)

    NASA Image and Video Library

    1998-01-01

    This artist's concept depicts the completely assembled International Space Station (ISS) passing over the Straits of Gibraltar and the Mediterranean Sea. As a gateway to permanent human presence in space, the Space Station Program is to expand knowledge benefiting all people and nations. The ISS is a multidisciplinary laboratory, technology test bed, and observatory that will provide unprecedented undertakings in scientific, technological, and international experimentation. Experiments to be conducted in the ISS include: microgravity research, Earth science, space science, life sciences, space product development, and engineering research and technology. The sixteen countries participating the ISS are: United States, Russian Federation, Canada, Japan, United Kingdom, Germany, Italy, France, Norway, Netherlands, Belgium, Spain, Denmark, Sweden, Switzerland, and Brazil.

  1. Software for Remote Monitoring of Space-Station Payloads

    NASA Technical Reports Server (NTRS)

    Schneider, Michelle; Lippincott, Jeff; Chubb, Steve; Whitaker, Jimmy; Gillis, Robert; Sellers, Donna; Sims, Chris; Rice, James

    2003-01-01

    Telescience Resource Kit (TReK) is a suite of application programs that enable geographically dispersed users to monitor scientific payloads aboard the International Space Station (ISS). TReK provides local ground support services that can simultaneously receive, process, record, playback, and display data from multiple sources. TReK also provides interfaces to use the remote services provided by the Payload Operations Integration Center which manages all ISS payloads. An application programming interface (API) allows for payload users to gain access to all data processed by TReK and allows payload-specific tools and programs to be built or integrated with TReK. Used in conjunction with other ISS-provided tools, TReK provides the ability to integrate payloads with the operational ground system early in the lifecycle. This reduces the potential for operational problems and provides "cradle-to-grave" end-to-end operations. TReK contains user guides and self-paced tutorials along with training applications to allow the user to become familiar with the system.

  2. Video- Demonstrations of Stable and Unstable Solid Body Rotation on the International Space Station

    NASA Technical Reports Server (NTRS)

    2003-01-01

    Saturday Morning Science, the science of opportunity series of applied experiments and demonstrations, performed aboard the International Space Station (ISS) by Expedition 6 astronaut Dr. Don Pettit, revealed some remarkable findings. In this video clip, Pettit demonstrates stable and unstable modes for solid body rotation on the ISS. Using a hard cover textbook, he demonstrates that it will rotate stably about the longest and shortest axis, which represent the maximum and minimum movements of Inertia. Trying to rotate the book around an intermediate axis results in an unstable rotation in which the book appears to flip-flop while it rotates.

  3. Space-to-Ground: Out the Door: 10/06/2017

    NASA Image and Video Library

    2017-10-05

    The first of three October spacewalks took place this week…it’s growing season once again onboard station…and how many airlocks are on station? NASA's Space to Ground is your weekly update on what's happening aboard the International Space Station.

  4. Space-to-Ground: Stuffed with Science: 11/17/2017

    NASA Image and Video Library

    2017-11-16

    S.S. Gene Cernan arrives to station...Experiment will examine how microgravity affects the bacteria's ability to thrive...and who answers astronauts questions about experiments? NASA's Space to Ground is your weekly update on what's happening aboard the International Space Station.

  5. International Space Station (ISS)

    NASA Image and Video Library

    2004-04-15

    Pictured is an artist's concept of the International Space Station (ISS) with solar panels fully deployed. In addition to the use of solar energy, the ISS will employ at least three types of propulsive support systems for its operation. The first type is to reboost the Station to correct orbital altitude to offset the effects of atmospheric and other drag forces. The second function is to maneuver the ISS to avoid collision with oribting bodies (space junk). The third is for attitude control to position the Station in the proper attitude for various experiments, temperature control, reboost, etc. The ISS, a gateway to permanent human presence in space, is a multidisciplinary laboratory, technology test bed, and observatory that will provide an unprecedented undertaking in scientific, technological, and international experimentation by cooperation of sixteen countries.

  6. International Space Station (ISS)

    NASA Image and Video Library

    2007-08-13

    As the construction continued on the International Space Station (ISS), STS-118 astronaut and mission specialist, Dave Williams, representing the Canadian Space Agency, was anchored on the foot restraint of the Canadarm2 as he participated in the second session of Extra Vehicular Activity (EVA) for the mission. Assisting Williams was Rick Mastracchio (out of frame). During the 6 hour, 28 minute space walk, the two removed a faulty control moment gyroscope (CMG-3) and installed a new CMG into the Z1 truss. The failed CMG will remain in its temporary stowage location on the exterior of the station until it is returned to Earth on a later Shuttle mission. The new gyroscope is one of four CMGs that are used to control the orbital attitude of the station.

  7. International Space Station (ISS)

    NASA Image and Video Library

    2007-11-05

    Back dropped by the blackness of space and Earth's horizon is the International Space Station (ISS) as seen from Space Shuttle Discovery as the two spacecraft begin their relative separation. The latest configuration of the ISS includes the Italian-built U.S. Node 2, named Harmony, and the P6 truss segment installed over 11 days of cooperative work onboard the shuttle and station by the STS-120 and Expedition 16 crews. Undocking of the two spacecraft occurred at 4:32 a.m. (CST) on Nov. 5, 2007.

  8. A new marketplace in space: the International Space Station

    NASA Astrophysics Data System (ADS)

    Belingheri, M.

    2001-08-01

    This article discusses the potential markets for the Station, the potential customers, why they might want to be in space and what they need from the Agency in order to get there. It also outlines ESA's strategy for making the Space Station a new marketplace in space.

  9. Canadian Space Agency Space Station Freedom utilization plans

    NASA Technical Reports Server (NTRS)

    Faulkner, James; Wilkinson, Ron

    1992-01-01

    Under the terms of the NASA/CSA Memorandum of Understanding, Canada will contribute the Mobile Servicing System and be entitled to use 3 percent of all Space Station utilization resources and user accommodations over the 30 year life of the Station. Equally importantly Canada, like NASA, can begin to exploit these benefits as soon as the Man-Tended Capability (MTC) phase begins, in early 1997. Canada has been preparing its scientific community to fully utilize the Space Station for the past five years; most specifically by encouraging, and providing funding, in the area of Materials Science and Applications, and in the area of Space Life Sciences. The goal has been to develop potential applications and an experienced and proficient Canadian community able to effectively utilize microgravity environment facilities such as Space Station Freedom. In addition, CSA is currently supporting four facilities; a Laser Test System, a Large Motion Isolation Mount, a Canadian Float Zone Furnace, and a Canadian Protein Crystallization Apparatus. In late April of this year CSA sent out a Solicitation of Interest (SOI) to potential Canadian user from universities, industry, and government. The intent of the SOI was to determine who was interested, and the type of payloads which the community at large intended to propose. The SOI will be followed by the release of an Announcement of Opportunity (AO) following governmental approval of the Long Term Space plan later this year, or early next year. Responses to the AO will be evaluated and prioritized in a fair and impartial payload selection process, within the guidelines set by our international partners and the Canadian Government. Payload selection is relatively simple compared to the development and qualification process. An end-to-end user support program is therefore also being defined. Much of this support will be provided at the new headquarters currently being built in St. Hubert, Quebec. It is recognized that utilizing the

  10. Canadian Space Agency Space Station Freedom utilization plans

    NASA Astrophysics Data System (ADS)

    Faulkner, James; Wilkinson, Ron

    Under the terms of the NASA/CSA Memorandum of Understanding, Canada will contribute the Mobile Servicing System and be entitled to use 3 percent of all Space Station utilization resources and user accommodations over the 30 year life of the Station. Equally importantly Canada, like NASA, can begin to exploit these benefits as soon as the Man-Tended Capability (MTC) phase begins, in early 1997. Canada has been preparing its scientific community to fully utilize the Space Station for the past five years; most specifically by encouraging, and providing funding, in the area of Materials Science and Applications, and in the area of Space Life Sciences. The goal has been to develop potential applications and an experienced and proficient Canadian community able to effectively utilize microgravity environment facilities such as Space Station Freedom. In addition, CSA is currently supporting four facilities; a Laser Test System, a Large Motion Isolation Mount, a Canadian Float Zone Furnace, and a Canadian Protein Crystallization Apparatus. In late April of this year CSA sent out a Solicitation of Interest (SOI) to potential Canadian user from universities, industry, and government. The intent of the SOI was to determine who was interested, and the type of payloads which the community at large intended to propose. The SOI will be followed by the release of an Announcement of Opportunity (AO) following governmental approval of the Long Term Space plan later this year, or early next year. Responses to the AO will be evaluated and prioritized in a fair and impartial payload selection process, within the guidelines set by our international partners and the Canadian Government. Payload selection is relatively simple compared to the development and qualification process. An end-to-end user support program is therefore also being defined. Much of this support will be provided at the new headquarters currently being built in St. Hubert, Quebec. It is recognized that utilizing the

  11. Space Station crew workload - Station operations and customer accommodations

    NASA Technical Reports Server (NTRS)

    Shinkle, G. L.

    1985-01-01

    The features of the Space Station which permit crew members to utilize work time for payload operations are discussed. The user orientation, modular design, nonstressful flight regime, in space construction, on board control, automation and robotics, and maintenance and servicing of the Space Station are examined. The proposed crew size, skills, and functions as station operator and mission specialists are described. Mission objectives and crew functions, which include performing material processing, life science and astronomy experiments, satellite and payload equipment servicing, systems monitoring and control, maintenance and repair, Orbital Maneuvering Vehicle and Mobile Remote Manipulator System operations, on board planning, housekeeping, and health maintenance and recreation, are studied.

  12. Space station: A step into the future

    NASA Technical Reports Server (NTRS)

    Stofan, Andrew J.

    1989-01-01

    The Space Station is an essential element of NASA's ongoing program to recover from the loss of the Challenger and to regain for the United States its position of leadership in space. The Space Station Program has made substantial progress and some of the major efforts undertaken are discussed briefly. A few of the Space Station policies which have shaped the program are reviewed. NASA is dedicated to building a Station that, in serving science, technology, and commerce assured the United States a future in space as exciting and rewarding as the past. In cooperation with partners in the industry and abroad, the intent is to develop a Space Station that is intellectually productive, technically demanding, and genuinely useful.

  13. International Space Station (ISS)

    NASA Image and Video Library

    2007-06-19

    Eight days of construction resumed on the International Space Station (ISS), as STS-117 astronauts and mission specialists and the Expedition 15 crew completed installation of the second and third starboard truss segments (S3 and S4). Back dropped by the blackness of space, its newly expanded configuration is revealed as pilot Lee Archambault conducts a fly around upon departure from the station on June 19, 2007.

  14. Space Station Redesign Team: Final report to the Advisory Committee on the Redesign of the Space Station

    NASA Technical Reports Server (NTRS)

    1993-01-01

    This report is the result of the Space Station Redesign Team's activity. Its purpose is to present without bias, and in appropriate detail, the characteristics and cost of three design and management approaches for the Space Station Freedom. It was presented to the Advisory Committee on the Redesign of the Space Station on 7 Jun. 1993, in Washington, D.C.

  15. EOS production on the Space Station. [Electrophoresis Operations/Space

    NASA Technical Reports Server (NTRS)

    Runge, F. C.; Gleason, M.

    1986-01-01

    The paper discusses a conceptual integration of the equipment for EOS (Electrophoresis Operations/Space) on the Space Station in the early 1990s. Electrophoresis is a fluid-constituent separation technique which uses forces created by an electrical field. Aspects covered include EOS equipment and operations, and Space Station installations involving a pressurized module, a resupply module, utility provisions and umbilicals and crew involvement. Accommodation feasibility is generally established, and interfaces are defined. Space Station production of EOS-derived pharmaceuticals will constitute a significant increase in capability compared to precursor flights on the Shuttle in the 1980s.

  16. Space Station program status and research capabilities

    NASA Technical Reports Server (NTRS)

    Holt, Alan C.

    1995-01-01

    Space Station will be a permanent orbiting laboratory in space which will provide researchers with unprecedented opportunities for access to the space environment. Space Station is designed to provide essential resources of volume, crew, power, data handling and communications to accommodate experiments for long-duration studies in technology, materials and the life sciences. Materials and coatings for exposure research will be supported by Space Station, providing new knowledge for applications in Earthbased technology and future space missions. Space Station has been redesigned at the direction of the President. The redesign was performed to significantly reduce development, operations and utilization costs while achieving many of the original goals for long duration scientific research. An overview of the Space Station Program and capabilities for research following the redesign is presented below. Accommodations for pressurized and external payloads are described.

  17. Fuzzy Control/Space Station automation

    NASA Technical Reports Server (NTRS)

    Gersh, Mark

    1990-01-01

    Viewgraphs on fuzzy control/space station automation are presented. Topics covered include: Space Station Freedom (SSF); SSF evolution; factors pointing to automation & robotics (A&R); astronaut office inputs concerning A&R; flight system automation and ground operations applications; transition definition program; and advanced automation software tools.

  18. Synthetic torpor: A method for safely and practically transporting experimental animals aboard spaceflight missions to deep space.

    PubMed

    Griko, Yuri; Regan, Matthew D

    2018-02-01

    Animal research aboard the Space Shuttle and International Space Station has provided vital information on the physiological, cellular, and molecular effects of spaceflight. The relevance of this information to human spaceflight is enhanced when it is coupled with information gleaned from human-based research. As NASA and other space agencies initiate plans for human exploration missions beyond low Earth orbit (LEO), incorporating animal research into these missions is vitally important to understanding the biological impacts of deep space. However, new technologies will be required to integrate experimental animals into spacecraft design and transport them beyond LEO in a safe and practical way. In this communication, we propose the use of metabolic control technologies to reversibly depress the metabolic rates of experimental animals while in transit aboard the spacecraft. Compared to holding experimental animals in active metabolic states, the advantages of artificially inducing regulated, depressed metabolic states (called synthetic torpor) include significantly reduced mass, volume, and power requirements within the spacecraft owing to reduced life support requirements, and mitigated radiation- and microgravity-induced negative health effects on the animals owing to intrinsic physiological properties of torpor. In addition to directly benefitting animal research, synthetic torpor-inducing systems will also serve as test beds for systems that may eventually hold human crewmembers in similar metabolic states on long-duration missions. The technologies for inducing synthetic torpor, which we discuss, are at relatively early stages of development, but there is ample evidence to show that this is a viable idea and one with very real benefits to spaceflight programs. The increasingly ambitious goals of world's many spaceflight programs will be most quickly and safely achieved with the help of animal research systems transported beyond LEO; synthetic torpor may

  19. Synthetic torpor: A method for safely and practically transporting experimental animals aboard spaceflight missions to deep space

    NASA Astrophysics Data System (ADS)

    Griko, Yuri; Regan, Matthew D.

    2018-02-01

    Animal research aboard the Space Shuttle and International Space Station has provided vital information on the physiological, cellular, and molecular effects of spaceflight. The relevance of this information to human spaceflight is enhanced when it is coupled with information gleaned from human-based research. As NASA and other space agencies initiate plans for human exploration missions beyond low Earth orbit (LEO), incorporating animal research into these missions is vitally important to understanding the biological impacts of deep space. However, new technologies will be required to integrate experimental animals into spacecraft design and transport them beyond LEO in a safe and practical way. In this communication, we propose the use of metabolic control technologies to reversibly depress the metabolic rates of experimental animals while in transit aboard the spacecraft. Compared to holding experimental animals in active metabolic states, the advantages of artificially inducing regulated, depressed metabolic states (called synthetic torpor) include significantly reduced mass, volume, and power requirements within the spacecraft owing to reduced life support requirements, and mitigated radiation- and microgravity-induced negative health effects on the animals owing to intrinsic physiological properties of torpor. In addition to directly benefitting animal research, synthetic torpor-inducing systems will also serve as test beds for systems that may eventually hold human crewmembers in similar metabolic states on long-duration missions. The technologies for inducing synthetic torpor, which we discuss, are at relatively early stages of development, but there is ample evidence to show that this is a viable idea and one with very real benefits to spaceflight programs. The increasingly ambitious goals of world's many spaceflight programs will be most quickly and safely achieved with the help of animal research systems transported beyond LEO; synthetic torpor may

  20. International Space Station Medical Projects - Full Services to Mars

    NASA Technical Reports Server (NTRS)

    Pietrzyk, R. A.; Primeaux, L. L.; Wood, S. J.; Vessay, W. B.; Platts, S. H.

    2018-01-01

    experience to guide investigators science through all aspects of mission planning, crew operations, and research integration. During this session, the ISSMP team will discuss best-practices approaches for successfully preparing and conducting studies in both the flight and analog environments. Critical tips and tricks will be shown to greatly improve your chances of successfully completing your research aboard the International Space Station and in Spaceflight Analogs.