Sample records for above-ground dry matter

  1. The effect of freezing and drying on leaching of DOM from above ground vascular plant material from the Alaskan Arctic

    NASA Astrophysics Data System (ADS)

    Khosh, M. S.; McClelland, J. W.

    2014-12-01

    Our understanding of the seasonal dynamics of fluvial dissolved organic matter (DOM) concentrations and fluxes in Arctic catchments has increased substantially during recent years, especially during the spring, which historically has been an under-sampled time period. While a number of studies have observed peaks in both DOM concentrations and fluxes during the spring snowmelt, our knowledge of the mechanisms that control these observations are still lacking. During the initial snowmelt period, frozen ground and the snow matrix act to constrain melt-water to the soil surface. We hypothesize that restriction of flow during this time facilitates leaching of DOM from senescent above ground vegetation and detritus contributing to the high DOM concentrations observed during the spring melt. This study focuses on the effect of freezing and drying on the leaching of dissolved organic carbon and nitrogen (DOC and DON) from above ground vascular plant material. Specifically, we examined the treatment effects of freezing, drying, and freeze-drying on three genera of common Alaskan Arctic vascular plants; Eriophorum (spp.), Carex (spp.), and Salix (spp.). Frozen and freeze-dried plant material released more DOC over the experimental 96 hour leaching period compared to plant material that was only dried. Qualitatively, these patterns were similar among the different plant types, while quantitatively Salix leached more DOC than either Eriophorum or Carex in all treatments. Similar patterns were also seen for DON between the different treatments and among the different plant types. Compositionally, DOM that was leached from frozen and freeze-dried material had higher C:N ratios than material that was only dried. Comparatively, DOM leached from Salix had much higher C:N ratios than either Eriophorum or Carex. During the first 24 hours of leaching, C:N ratios tended to increase followed by a subsequent leveling or decrease, suggesting that the composition of leached DOM varied

  2. Remote sensing of total dry-matter accumulation in winter wheat

    NASA Technical Reports Server (NTRS)

    Tucker, C. J.; Holben, B. N.; Elgin, J. H., Jr.; Mcmurtrey, J. E., III (Principal Investigator)

    1980-01-01

    The author has identified the following significant results. Red and photographic-infrared spectral data collected on 21 dates over the growing season with a hand-held radiometer was quantitatively correlated with total dry-matter accumulation in winter wheat. The spectral data were found to be highly related to vigor and condition of the plant canopy. Two periods of drought stress and subsequent recovery from it were readily apparent in the spectral data. Simple ratios of the spectral data compensated for variations in solar intensities and, when integrated over the growing season, explained 79% of the variation in total above-ground accumulation of dry matter.

  3. Long-term residual dry matter mapping for monitoring California hardwood rangelands

    Treesearch

    Norman R. Harris; William E. Frost; Neil K. McDougald; Melvin R. George; Donald L. Nielsen

    2002-01-01

    Long-term residual dry matter mapping on the San Joaquin Experimental Range provides a working example of this monitoring technique for grazing management and research. Residual dry matter (RDM) is the amount of old plant material left on the ground at the beginning of a new growing season. RDM indicates the previous season’s use and can be used to describe the health...

  4. Below-ground herbivory limits induction of extrafloral nectar by above-ground herbivores

    PubMed Central

    Huang, Wei; Siemann, Evan; Carrillo, Juli; Ding, Jianqing

    2015-01-01

    Background and Aims Many plants produce extrafloral nectar (EFN), and increase production following above-ground herbivory, presumably to attract natural enemies of the herbivores. Below-ground herbivores, alone or in combination with those above ground, may also alter EFN production depending on the specificity of this defence response and the interactions among herbivores mediated through plant defences. To date, however, a lack of manipulative experiments investigating EFN production induced by above- and below-ground herbivory has limited our understanding of how below-ground herbivory mediates indirect plant defences to affect above-ground herbivores and their natural enemies. Methods In a greenhouse experiment, seedlings of tallow tree (Triadica sebifera) were subjected to herbivory by a specialist flea beetle (Bikasha collaris) that naturally co-occurs as foliage-feeding adults and root-feeding larvae. Seedlings were subjected to above-ground adults and/or below-ground larvae herbivory, and EFN production was monitored. Key Results Above- and/or below-ground herbivory significantly increased the percentage of leaves with active nectaries, the volume of EFN and the mass of soluble solids within the nectar. Simultaneous above- and below-ground herbivory induced a higher volume of EFN and mass of soluble solids than below-ground herbivory alone, but highest EFN production was induced by above-ground herbivory when below-ground herbivores were absent. Conclusions The induction of EFN production by below-ground damage suggests that systemic induction underlies some of the EFN response. The strong induction by above-ground herbivory in the absence of below-ground herbivory points to specific induction based on above- and below-ground signals that may be adaptive for this above-ground indirect defence. PMID:25681822

  5. Below-ground herbivory limits induction of extrafloral nectar by above-ground herbivores.

    PubMed

    Huang, Wei; Siemann, Evan; Carrillo, Juli; Ding, Jianqing

    2015-04-01

    Many plants produce extrafloral nectar (EFN), and increase production following above-ground herbivory, presumably to attract natural enemies of the herbivores. Below-ground herbivores, alone or in combination with those above ground, may also alter EFN production depending on the specificity of this defence response and the interactions among herbivores mediated through plant defences. To date, however, a lack of manipulative experiments investigating EFN production induced by above- and below-ground herbivory has limited our understanding of how below-ground herbivory mediates indirect plant defences to affect above-ground herbivores and their natural enemies. In a greenhouse experiment, seedlings of tallow tree (Triadica sebifera) were subjected to herbivory by a specialist flea beetle (Bikasha collaris) that naturally co-occurs as foliage-feeding adults and root-feeding larvae. Seedlings were subjected to above-ground adults and/or below-ground larvae herbivory, and EFN production was monitored. Above- and/or below-ground herbivory significantly increased the percentage of leaves with active nectaries, the volume of EFN and the mass of soluble solids within the nectar. Simultaneous above- and below-ground herbivory induced a higher volume of EFN and mass of soluble solids than below-ground herbivory alone, but highest EFN production was induced by above-ground herbivory when below-ground herbivores were absent. The induction of EFN production by below-ground damage suggests that systemic induction underlies some of the EFN response. The strong induction by above-ground herbivory in the absence of below-ground herbivory points to specific induction based on above- and below-ground signals that may be adaptive for this above-ground indirect defence. © The Author 2015. Published by Oxford University Press on behalf of the Annals of Botany Company. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

  6. Dry Weight of Several Piedmont Hardwoods

    Treesearch

    Bobby G. Blackmon; Charles W. Ralston

    1968-01-01

    Forty-four sample hardwood trees felled on 24 plots were separated into three above-ground components- stem, branches, and leaves--and weighed for dry matter content. Tree, stand, and site variables were tested for significant relationships with dry weight of tree parts. Weight increase of stems was a logarithmic function ,of both stem diameter and height, whereas for...

  7. 49 CFR 195.254 - Above ground components.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 49 Transportation 3 2010-10-01 2010-10-01 false Above ground components. 195.254 Section 195.254 Transportation Other Regulations Relating to Transportation (Continued) PIPELINE AND HAZARDOUS MATERIALS SAFETY... PIPELINE Construction § 195.254 Above ground components. (a) Any component may be installed above ground in...

  8. 49 CFR 195.254 - Above ground components.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 49 Transportation 3 2011-10-01 2011-10-01 false Above ground components. 195.254 Section 195.254 Transportation Other Regulations Relating to Transportation (Continued) PIPELINE AND HAZARDOUS MATERIALS SAFETY... PIPELINE Construction § 195.254 Above ground components. (a) Any component may be installed above ground in...

  9. LINE-ABOVE-GROUND ATTENUATOR

    DOEpatents

    Wilds, R.B.; Ames, J.R.

    1957-09-24

    The line-above-ground attenuator provides a continuously variable microwave attenuator for a coaxial line that is capable of high attenuation and low insertion loss. The device consists of a short section of the line-above- ground plane type transmission lime, a pair of identical rectangular slabs of lossy material like polytron, whose longitudinal axes are parallel to and indentically spaced away from either side of the line, and a geared mechanism to adjust amd maintain this spaced relationship. This device permits optimum fineness and accuracy of attenuator control which heretofore has been difficult to achieve.

  10. Model analysis of grazing effect on above-ground biomass and above-ground net primary production of a Mongolian grassland ecosystem

    NASA Astrophysics Data System (ADS)

    Chen, Yuxiang; Lee, Gilzae; Lee, Pilzae; Oikawa, Takehisa

    2007-01-01

    In this study, we have analyzed the productivity of a grassland ecosystem in Kherlenbayan-Ulaan (KBU), Mongolia under non-grazing and grazing conditions using a new simulation model, Sim-CYCLE grazing. The model was obtained by integrating the Sim-CYCLE [Ito, A., Oikawa, T., 2002. A simulation model of carbon cycle in land ecosystems (Sim-CYCLE): a description based on dry-matter production theory and plot-scale validation. Ecological Modeling, 151, pp. 143-176] and a defoliation formulation [Seligman, N.G., Cavagnaro, J.B., Horno, M.E., 1992. Simulation of defoliation effects on primary production of warm-season, semiarid perennial- species grassland. Ecological Modelling, 60, pp. 45-61]. The results from the model have been validated against a set of field data obtained at KBU showing that both above-ground biomass (AB) and above-ground net primary production ( Np,a) decrease with increasing grazing intensity. The simulated maximum AB for a year maintains a nearly constant value of 1.15 Mg DM ha -1 under non-grazing conditions. The AB decreases and then reaches equilibrium under a stocking rate ( Sr) of 0.4 sheep ha -1 and 0.7 sheep ha -1. The AB decreases all the time if Sr is greater than 0.7 sheep ha -1. These results suggest that the maximum sustainable Sr is 0.7 sheep ha -1. A similar trend is also observed for the simulated Np,a. The annual Np,a is about 1.25 Mg DM ha -1 year -1 and this value is also constant under non-grazing conditions. The annual Np,a decreases and then reaches equilibrium under an Sr of 0.4 sheep ha -1 and 0.7 sheep ha -1, but the Np,a decreases all the time when Sr is greater than 0.7 sheep ha -1. It also indicates that the maximum sustainable Sr is 0.7 sheep ha -1. Transpiration ( ET) and evaporation ( EE) rates were determined by the Penman-Monteith method. Simulated results show that ET decreases with increasing Sr, while EE increases with increasing Sr. At equilibrium, the annual mean evapotranspiration ( E) is 189.11 mm year -1

  11. 30 CFR 77.807-1 - High-voltage powerlines; clearances above ground.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... ground. 77.807-1 Section 77.807-1 Mineral Resources MINE SAFETY AND HEALTH ADMINISTRATION, DEPARTMENT OF...; clearances above ground. High-voltage powerlines located above driveways, haulageways, and railroad tracks... feet above ground. ...

  12. 30 CFR 77.807-1 - High-voltage powerlines; clearances above ground.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... ground. 77.807-1 Section 77.807-1 Mineral Resources MINE SAFETY AND HEALTH ADMINISTRATION, DEPARTMENT OF...; clearances above ground. High-voltage powerlines located above driveways, haulageways, and railroad tracks... feet above ground. ...

  13. Dry matter intake and digestibility of rations replacing concentrates with graded levels of Enterolobium cyclocarpum in Pelibuey lambs.

    PubMed

    Piñeiro-Vázquez, Angel Trinidad; Ayala-Burgos, Armín Javier; Chay-Canul, Alfonso Juventino; Ku-Vera, Juan Carlos

    2013-02-01

    The aim of the study was to evaluate the effect of graded levels of Enterolobium cyclocarpum pods in the ration on feed intake and digestibility by Pelibuey lambs. Five dietary treatments were imposed where ground pods replaced concentrate diet at 0, 20, 30, 40 and 50 % of dry matter (DM), respectively. The concentrate portion was composed of ground sorghum, soybean meal, cane molasses and minerals. Five entire Pelibuey lambs with initial bodyweight 34 ± 2 kg were allocated in the treatments in a 5 × 5 Latin square design. Values of dry matter intake (DMI) and dry matter (DMD) and organic matter (OMD) digestibility were measured and metabolisable energy intake (MEI) estimated. Rumen degradation constants for E. cyclocarpum were also measured. There were no differences (P > 0.05) in average DMI (86.6 g/kg(0.75)) and OMI (81.2 g/kg(0.75)) among treatments. As the level of incorporation of E. cyclocarpum pods increased, voluntary DMI and OMI increased, whereas apparent DMD and OMD decreased linearly. Average digestible DM (65 g/kg(0.75)) and OM (61 g/kg(0.75)) intakes were similar (P > 0.05) among treatments. Similarly, MEI (0.976 MJ ME kg(0.75)/day) was not different (P > 0.05) among treatments. The potential rumen degradation (A + B) of ground pods of E. cyclocarpum was 866.4 g/kg DM. Ground pods of E. cyclocarpum can be employed for lamb feeding up to 50 % of the ration, without affecting DMI, DM apparent digestibility and MEI.

  14. 37 CFR 2.176 - Consideration of above matters.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... matters. 2.176 Section 2.176 Patents, Trademarks, and Copyrights UNITED STATES PATENT AND TRADEMARK OFFICE... Consideration of above matters. The matters in §§ 2.171 to 2.175 will be considered in the first instance by the... examiner within six months of the date of issuance, the matter will be considered abandoned. [73 FR 67774...

  15. 37 CFR 2.176 - Consideration of above matters.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... matters. 2.176 Section 2.176 Patents, Trademarks, and Copyrights UNITED STATES PATENT AND TRADEMARK OFFICE... Consideration of above matters. The matters in §§ 2.171 to 2.175 will be considered in the first instance by the... examiner within six months of the date of issuance, the matter will be considered abandoned. [73 FR 67774...

  16. 37 CFR 2.176 - Consideration of above matters.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... matters. 2.176 Section 2.176 Patents, Trademarks, and Copyrights UNITED STATES PATENT AND TRADEMARK OFFICE... Consideration of above matters. The matters in §§ 2.171 to 2.175 will be considered in the first instance by the... examiner within six months of the date of issuance, the matter will be considered abandoned. [73 FR 67774...

  17. The role of moisture content in above-ground leaching

    Treesearch

    Stan Lebow; Patricia Lebow

    2007-01-01

    This paper reviews previous reports on the moisture content of wood exposed above ground and compares those values to moisture contents obtained using simulated rainfall and immersion methods. Laboratory leaching trials with CCA-treated specimens were also conducted and the results compared to published values for leaching of CCA-treated specimens exposed above ground...

  18. Facilitation and inhibition: changes in plant nitrogen and secondary metabolites mediate interactions between above-ground and below-ground herbivores.

    PubMed

    Huang, Wei; Siemann, Evan; Yang, Xuefang; Wheeler, Gregory S; Ding, Jianqing

    2013-09-22

    To date, it remains unclear how herbivore-induced changes in plant primary and secondary metabolites impact above-ground and below-ground herbivore interactions. Here, we report effects of above-ground (adult) and below-ground (larval) feeding by Bikasha collaris on nitrogen and secondary chemicals in shoots and roots of Triadica sebifera to explain reciprocal above-ground and below-ground insect interactions. Plants increased root tannins with below-ground herbivory, but above-ground herbivory prevented this increase and larval survival doubled. Above-ground herbivory elevated root nitrogen, probably contributing to increased larval survival. However, plants increased foliar tannins with above-ground herbivory and below-ground herbivory amplified this increase, and adult survival decreased. As either foliar or root tannins increased, foliar flavonoids decreased, suggesting a trade-off between these chemicals. Together, these results show that plant chemicals mediate contrasting effects of conspecific larval and adult insects, whereas insects may take advantage of plant responses to facilitate their offspring performance, which may influence population dynamics.

  19. Facilitation and inhibition: changes in plant nitrogen and secondary metabolites mediate interactions between above-ground and below-ground herbivores

    PubMed Central

    Huang, Wei; Siemann, Evan; Yang, Xuefang; Wheeler, Gregory S.; Ding, Jianqing

    2013-01-01

    To date, it remains unclear how herbivore-induced changes in plant primary and secondary metabolites impact above-ground and below-ground herbivore interactions. Here, we report effects of above-ground (adult) and below-ground (larval) feeding by Bikasha collaris on nitrogen and secondary chemicals in shoots and roots of Triadica sebifera to explain reciprocal above-ground and below-ground insect interactions. Plants increased root tannins with below-ground herbivory, but above-ground herbivory prevented this increase and larval survival doubled. Above-ground herbivory elevated root nitrogen, probably contributing to increased larval survival. However, plants increased foliar tannins with above-ground herbivory and below-ground herbivory amplified this increase, and adult survival decreased. As either foliar or root tannins increased, foliar flavonoids decreased, suggesting a trade-off between these chemicals. Together, these results show that plant chemicals mediate contrasting effects of conspecific larval and adult insects, whereas insects may take advantage of plant responses to facilitate their offspring performance, which may influence population dynamics. PMID:23902902

  20. The secret life of ground squirrels: accelerometry reveals sex-dependent plasticity in above-ground activity

    PubMed Central

    Wilsterman, Kathryn; Zhang, Victor; Moore, Jeanette; Barnes, Brian M.; Buck, C. Loren

    2016-01-01

    The sexes differ in how and when they allocate energy towards reproduction, but how this influences phenotypic plasticity in daily activity patterns is unclear. Here, we use collar-mounted light loggers and triaxial accelerometers to examine factors that affect time spent above ground and overall dynamic body acceleration (ODBA), an index of activity-specific energy expenditure, across the active season of free-living, semi-fossorial arctic ground squirrels (Urocitellus parryii). We found high day-to-day variability in time spent above ground and ODBA with most of the variance explained by environmental conditions known to affect thermal exchange. In both years, females spent more time below ground compared with males during parturition and early lactation; however, this difference was fourfold larger in the second year, possibly, because females were in better body condition. Daily ODBA positively correlated with time spent above ground in both sexes, but females were more active per unit time above ground. Consequently, daily ODBA did not differ between the sexes when females were early in lactation, even though females were above ground three to six fewer hours each day. Further, on top of having the additional burden of milk production, ODBA data indicate females also had fragmented rest patterns and were more active during late lactation. Our results indicate that sex differences in reproductive requirements can have a substantial influence on activity patterns, but the size of this effect may be dependent on capital resources accrued during gestation. PMID:27703706

  1. Above-ground biomass of mangrove species. I. Analysis of models

    NASA Astrophysics Data System (ADS)

    Soares, Mário Luiz Gomes; Schaeffer-Novelli, Yara

    2005-10-01

    This study analyzes the above-ground biomass of Rhizophora mangle and Laguncularia racemosa located in the mangroves of Bertioga (SP) and Guaratiba (RJ), Southeast Brazil. Its purpose is to determine the best regression model to estimate the total above-ground biomass and compartment (leaves, reproductive parts, twigs, branches, trunk and prop roots) biomass, indirectly. To do this, we used structural measurements such as height, diameter at breast-height (DBH), and crown area. A combination of regression types with several compositions of independent variables generated 2.272 models that were later tested. Subsequent analysis of the models indicated that the biomass of reproductive parts, branches, and prop roots yielded great variability, probably because of environmental factors and seasonality (in the case of reproductive parts). It also indicated the superiority of multiple regression to estimate above-ground biomass as it allows researchers to consider several aspects that affect above-ground biomass, specially the influence of environmental factors. This fact has been attested to the models that estimated the biomass of crown compartments.

  2. The Influence of Tractor-Seat Height above the Ground on Lateral Vibrations

    PubMed Central

    Gomez-Gil, Jaime; Gomez-Gil, Francisco Javier; Martin-de-Leon, Rebeca

    2014-01-01

    Farmers experience whole-body vibrations when they drive tractors. Among the various factors that influence the vibrations to which the driver is exposed are terrain roughness, tractor speed, tire type and pressure, rear axle width, and tractor seat height above the ground. In this paper the influence of tractor seat height above the ground on the lateral vibrations to which the tractor driver is exposed is studied by means of a geometrical and an experimental analysis. Both analyses show that: (i) lateral vibrations experienced by a tractor driver increase linearly with tractor-seat height above the ground; (ii) lateral vibrations to which the tractor driver is exposed can equal or exceed vertical vibrations; (iii) in medium-size tractors, a feasible 30 cm reduction in the height of the tractor seat, which represents only 15% of its current height, will reduce the lateral vibrations by around 20%; and (iv) vertical vibrations are scarcely influenced by tractor-seat height above the ground. The results suggest that manufacturers could increase the comfort of tractors by lowering tractor-seat height above the ground, which will reduce lateral vibrations. PMID:25340448

  3. The influence of tractor-seat height above the ground on lateral vibrations.

    PubMed

    Gomez-Gil, Jaime; Gomez-Gil, Francisco Javier; Martin-de-Leon, Rebeca

    2014-10-22

    Farmers experience whole-body vibrations when they drive tractors. Among the various factors that influence the vibrations to which the driver is exposed are terrain roughness, tractor speed, tire type and pressure, rear axle width, and tractor seat height above the ground. In this paper the influence of tractor seat height above the ground on the lateral vibrations to which the tractor driver is exposed is studied by means of a geometrical and an experimental analysis. Both analyses show that: (i) lateral vibrations experienced by a tractor driver increase linearly with tractor-seat height above the ground; (ii) lateral vibrations to which the tractor driver is exposed can equal or exceed vertical vibrations; (iii) in medium-size tractors, a feasible 30 cm reduction in the height of the tractor seat, which represents only 15% of its current height, will reduce the lateral vibrations by around 20%; and (iv) vertical vibrations are scarcely influenced by tractor-seat height above the ground. The results suggest that manufacturers could increase the comfort of tractors by lowering tractor-seat height above the ground, which will reduce lateral vibrations.

  4. Cadmium uptake in above-ground parts of lettuce (Lactuca sativa L.).

    PubMed

    Tang, Xiwang; Pang, Yan; Ji, Puhui; Gao, Pengcheng; Nguyen, Thanh Hung; Tong, Yan'an

    2016-03-01

    Because of its high Cd uptake and translocation, lettuce is often used in Cd contamination studies. However, there is a lack of information on Cd accumulation in the above-ground parts of lettuce during the entire growing season. In this study, a field experiment was carried out in a Cd-contaminated area. Above-ground lettuce parts were sampled, and the Cd content was measured using a flame atomic absorption spectrophotometer (AAS). The results showed that the Cd concentration in the above-ground parts of lettuce increased from 2.70 to 3.62mgkg(-1) during the seedling stage, but decreased from 3.62 to 2.40mgkg(-1) during organogenesis and from 2.40 to 1.64mgkg(-1) during bolting. The mean Cd concentration during the seedling stage was significantly higher than that during organogenesis (a=0.05) and bolting (a=0.01). The Cd accumulation in the above-ground parts of an individual lettuce plant could be described by a sigmoidal curve. Cadmium uptake during organogenesis was highest (80% of the total), whereas that during bolting was only 4.34%. This research further reveals that for Rome lettuce: (1) the highest Cd content of above-ground parts occurred at the end of the seedling phase; (2) the best harvest time with respect to Cd phytoaccumulation is at the end of the organogenesis stage; and (3) the organogenesis stage is the most suitable time to enhance phytoaccumulation efficiency by adjusting the root:shoot ratio. Copyright © 2015 Elsevier Inc. All rights reserved.

  5. Accumulation and Distribution of Dry Matter and Nutrients in Aigeiros Poplar Plantations

    Treesearch

    G. L. Switzer; L. E. Nelson; James B. Baker

    1976-01-01

    Patterns of accumulation of dry matter and nutrients through 20 years in Aigeiros poplar plantations are strongly influenced by mode of plantation culture. Accumulation of both dry matter and nutrients in closely spaced thinned plantations is linear through age 12 to 14, after which accumulation declines and then stabilizes. In contrast, dry matter and nutrient...

  6. High Throughput Determination of Plant Height, Ground Cover, and Above-Ground Biomass in Wheat with LiDAR

    PubMed Central

    Jimenez-Berni, Jose A.; Deery, David M.; Rozas-Larraondo, Pablo; Condon, Anthony (Tony) G.; Rebetzke, Greg J.; James, Richard A.; Bovill, William D.; Furbank, Robert T.; Sirault, Xavier R. R.

    2018-01-01

    Crop improvement efforts are targeting increased above-ground biomass and radiation-use efficiency as drivers for greater yield. Early ground cover and canopy height contribute to biomass production, but manual measurements of these traits, and in particular above-ground biomass, are slow and labor-intensive, more so when made at multiple developmental stages. These constraints limit the ability to capture these data in a temporal fashion, hampering insights that could be gained from multi-dimensional data. Here we demonstrate the capacity of Light Detection and Ranging (LiDAR), mounted on a lightweight, mobile, ground-based platform, for rapid multi-temporal and non-destructive estimation of canopy height, ground cover and above-ground biomass. Field validation of LiDAR measurements is presented. For canopy height, strong relationships with LiDAR (r2 of 0.99 and root mean square error of 0.017 m) were obtained. Ground cover was estimated from LiDAR using two methodologies: red reflectance image and canopy height. In contrast to NDVI, LiDAR was not affected by saturation at high ground cover, and the comparison of both LiDAR methodologies showed strong association (r2 = 0.92 and slope = 1.02) at ground cover above 0.8. For above-ground biomass, a dedicated field experiment was performed with destructive biomass sampled eight times across different developmental stages. Two methodologies are presented for the estimation of biomass from LiDAR: 3D voxel index (3DVI) and 3D profile index (3DPI). The parameters involved in the calculation of 3DVI and 3DPI were optimized for each sample event from tillering to maturity, as well as generalized for any developmental stage. Individual sample point predictions were strong while predictions across all eight sample events, provided the strongest association with biomass (r2 = 0.93 and r2 = 0.92) for 3DPI and 3DVI, respectively. Given these results, we believe that application of this system will provide new opportunities to

  7. High Throughput Determination of Plant Height, Ground Cover, and Above-Ground Biomass in Wheat with LiDAR.

    PubMed

    Jimenez-Berni, Jose A; Deery, David M; Rozas-Larraondo, Pablo; Condon, Anthony Tony G; Rebetzke, Greg J; James, Richard A; Bovill, William D; Furbank, Robert T; Sirault, Xavier R R

    2018-01-01

    Crop improvement efforts are targeting increased above-ground biomass and radiation-use efficiency as drivers for greater yield. Early ground cover and canopy height contribute to biomass production, but manual measurements of these traits, and in particular above-ground biomass, are slow and labor-intensive, more so when made at multiple developmental stages. These constraints limit the ability to capture these data in a temporal fashion, hampering insights that could be gained from multi-dimensional data. Here we demonstrate the capacity of Light Detection and Ranging (LiDAR), mounted on a lightweight, mobile, ground-based platform, for rapid multi-temporal and non-destructive estimation of canopy height, ground cover and above-ground biomass. Field validation of LiDAR measurements is presented. For canopy height, strong relationships with LiDAR ( r 2 of 0.99 and root mean square error of 0.017 m) were obtained. Ground cover was estimated from LiDAR using two methodologies: red reflectance image and canopy height. In contrast to NDVI, LiDAR was not affected by saturation at high ground cover, and the comparison of both LiDAR methodologies showed strong association ( r 2 = 0.92 and slope = 1.02) at ground cover above 0.8. For above-ground biomass, a dedicated field experiment was performed with destructive biomass sampled eight times across different developmental stages. Two methodologies are presented for the estimation of biomass from LiDAR: 3D voxel index (3DVI) and 3D profile index (3DPI). The parameters involved in the calculation of 3DVI and 3DPI were optimized for each sample event from tillering to maturity, as well as generalized for any developmental stage. Individual sample point predictions were strong while predictions across all eight sample events, provided the strongest association with biomass ( r 2 = 0.93 and r 2 = 0.92) for 3DPI and 3DVI, respectively. Given these results, we believe that application of this system will provide new

  8. How much older are Appalachian oaks below-ground than above-ground?

    Treesearch

    Daniel J. Heggenstaller; Eric K. Zenner; Patrick H. Brose; Jerilynn E. Peck

    2012-01-01

    Young oaks (Quercus spp.) are known to invest more in early root growth than shoot growth, enabling seedlings to tolerate stem die-back and resprouting. The resulting disparity in age between above- and below-ground tissues has been previously demonstrated for seedling-sized stems, but not for successful canopy-ascending trees. We compared the age of stem cross...

  9. Quantifying above- and below-ground growth responses of the western Australian oil mallee, Eucalyptus kochii subsp. plenissima, to contrasting decapitation regimes.

    PubMed

    Wildy, Dan T; Pate, John S

    2002-08-01

    Resprouting in the oil mallee, Eucalyptus kochii Maiden & Blakely subsp. plenissima Gardner (Brooker), involves generation of new shoots from preformed meristematic foci on the lignotuber. Numbers of such foci escalated from 200 per lignotuber in trees aged 1 year to 3,000 on 4- to 5-year-old trees. Removal of shoot biomass by decapitation 5 cm above ground in summer (February) or spring (October) resulted in initiation of 140-170 new shoots, but approx. 400 shoots were induced to form if crops of new shoots were successively removed until sprouting ceased and rootstocks senesced. Initially, the new shoot biomass of regenerating coppices increased slowly and the root biomass failed to increase appreciably until 1.7-2.5 years after cutting. Newly cut trees showed loss of fine root biomass, and structural roots failed to secondarily thicken to the extent shown by uncut trees. After 2 years, the biomass of shoots of coppiced plants was only one-third that of uncut control trees and shoot:root dry mass ratios of coppiced plants were still low (1.5-2.0) compared with those of the controls (average ratio of 3.1). Spring cutting promoted quicker and greater biomass recovery than summer cutting. Starch in below-ground biomass fell quickly following decapitation and remained low for a 12-18 month period. Utilization of starch reserves in naturally regenerating coppices was estimated to provide only a small proportion of the dry matter accumulated in new shoots. Results are discussed in relation to their impact on coppicing ability of the species under natural conditions or when successively coppiced for shoot biomass production.

  10. Dry matter and energy partitioning in plants under climatic stress

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bolhar-Nordenkampf, H.R.; Postl, W.F.; Meister, M.H.

    1996-12-31

    During ontogenesis plants distribute assimilates quite differently among their organs depending on the environmental conditions. In case of high sink capacity energetically cheap storing compounds such as carbohydrates and/or organic acids are formed, whereas during periods with low demand proteins and lipids may be accumulated. Besides ontogenesis, drought and increased CO{sub 2} are able to modify sink capacity and by this transients in the partitioning pattern of carbon are induced. Plants, well adapted to several dry seasons during the year are able to allocate carbon predominantly to below ground organs. During this period many leaves become senescent. In any casemore » stems and remaining green leaves will loose dry matter and energy. With 80% of plants under investigation CO{sub 2} enrichment was shown to induce an enforced allocation of carbon to below ground organs. Roots and Rhizomes, beets and tubers act as a sink for the additionally fixed carbon. It was demonstrated that sink capacity is controlling photosynthetic activity. With respect to agricultural production, to ecosystems and to single plants, climatic change will modify productivity and plants distribution pattern as a consequence of quite different metabolic changes. These responses are depending on the effect of natural and anthropogenic stress factors on the use of enhanced CO{sub 2} and on the allocation of additionally formed assimilates.« less

  11. Final Harvest of Above-Ground Biomass and Allometric Analysis of the Aspen FACE Experiment

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mark E. Kubiske

    The Aspen FACE experiment, located at the US Forest Service Harshaw Research Facility in Oneida County, Wisconsin, exposes the intact canopies of model trembling aspen forests to increased concentrations of atmospheric CO2 and O3. The first full year of treatments was 1998 and final year of elevated CO2 and O3 treatments is scheduled for 2009. This proposal is to conduct an intensive, analytical harvest of the above-ground parts of 24 trees from each of the 12, 30 m diameter treatment plots (total of 288 trees) during June, July & August 2009. This above-ground harvest will be carefully coordinated with themore » below-ground harvest proposed by D.F. Karnosky et al. (2008 proposal to DOE). We propose to dissect harvested trees according to annual height growth increment and organ (main stem, branch orders, and leaves) for calculation of above-ground biomass production and allometric comparisons among aspen clones, species, and treatments. Additionally, we will collect fine root samples for DNA fingerprinting to quantify biomass production of individual aspen clones. This work will produce a thorough characterization of above-ground tree and stand growth and allocation above ground, and, in conjunction with the below ground harvest, total tree and stand biomass production, allocation, and allometry.« less

  12. Effects of Insect-Proof Net Cultivation, Rice-Duck Farming, and Organic Matter Return on Rice Dry Matter Accumulation and Nitrogen Utilization

    PubMed Central

    Liu, Xin; Xu, Guochun; Wang, Qiangsheng; Hang, Yuhao

    2017-01-01

    Insect-proof net cultivation (IPN), rice-duck farming (RD), and organic matter return (OM) are important methods to realize sustainable development of rice production. A split-plot field experiment was performed to study the effects of IPN, RD, and OM on the rice yield, dry matter accumulation and N utilization. Results showed that compared to inorganic N fertilizer (IN), wheat straw return, and biogas residue return increased the rice yield by 2.11–4.28 and 4.78–7.67%, respectively, and also improved dry matter and N accumulation after the elongation stage (EG), dry matter and N translocation, and N recovery efficiency (NRE). These results attributed to an increase in leaf SPAD values and net photosynthetic rate (Pn) after the EG. Compared to conventional rice farming (CR), RD promoted the rice yield by 1.52–3.74%, and contributed to higher the leaf photosynthesis, dry matter and N accumulation, dry matter and N translocation, and NRE. IPN decreased the intensity of sun radiation in the nets due to the coverage of the insect-proof nets, which declined the leaf Pn, dry matter accumulation and translocation, N absorption and translocation, and NRE compared to open field cultivation (OFC). The rice yield of IPN were 2.48–4.98% lower than that of OFC. Compared to the interaction between CR and IN, the interaction between RD and OM improved the rice yield by 5.26–9.33%, and increased dry matter and N accumulation after the EG, dry matter and N translocation, and NRE. These results indicated that OM, RD and the interaction between RD and OM could promote dry matter accumulation and N utilization, which was beneficial to improve the rice yield. PMID:28174589

  13. Maize (Zea mays) seeds can detect above-ground weeds; thiamethoxam alters the view.

    PubMed

    Afifi, Maha; Lee, Elizabeth; Lukens, Lewis; Swanton, Clarence

    2015-09-01

    Far red light is known to penetrate soil and delay seed germination. Thiamethoxam as a seed treatment has been observed to enhance seed germination. No previous work has explored the effect of thiamethoxam on the physiological response of buried maize seed when germinating in the presence of above-ground weeds. We hypothesised that the changes in red:far red reflected from above-ground weeds would be detected by maize seed phytochrome and delay seed germination by decreasing the level of GA and increasing ABA. We further hypothesised that thiamethoxam would overcome this delay in germination. Thiamethoxam enhanced seed germination in the presence of above-ground weeds by increasing GA signalling and downregulating DELLA protein and ABA signalling genes. An increase in amylase activity and a degradation of starch were also observed. Far red reflected from the above-ground weeds was capable of penetrating below the soil surface and was detected by maize seed phytochrome. Thiamethoxam altered the effect of far red on seed germination by stimulating GA and inhibiting ABA synthesis. This is the first study to suggest that the mode of action of thiamethoxam involves both GA synthesis and ABA inhibition. © 2014 Society of Chemical Industry.

  14. Colorado Wind Resource at 50 Meters Above Ground Level

    Science.gov Websites

    Meters Above Ground Level Geospatial_Data_Presentation_Form: vector digital data Description: Abstract . Supplemental_Information: This data set has been validated by NREL and wind energy meteorological consultants. However, the data is not suitable for micro-siting potential development projects. This shapefile was generated from

  15. Below and above-ground carbon distribution along a rainfall gradient. A case of the Zambezi teak forests, Zambia

    NASA Astrophysics Data System (ADS)

    Ngoma, Justine; Moors, Eddy; Kruijt, Bart; Speer, James H.; Vinya, Royd; Chidumayo, Emmanuel N.; Leemans, Rik

    2018-02-01

    Understanding carbon (C) stocks or biomass in forests is important to examine how forests mitigate climate change. To estimate biomass in stems, branches and roots takes intensive fieldwork to uproot, cut and weigh the mass of each component. Different models or equations are also required. Our research focussed on the dry tropical Zambezi teak forests and we studied their structure at three sites following a rainfall gradient in Zambia. We sampled 3558 trees at 42 plots covering a combined area of 15ha. Using data from destructive tree samples, we developed mixed-species biomass models to estimate above ground biomass for small (<5 cm diameter at breast height (DBH, 1.3 m above-ground)) and large (≥5 cm DBH) trees involving 90 and 104 trees respectively, that belonged to 12 species. A below-ground biomass model was developed from seven trees of three species (16-44 cm DBH) whose complete root systems were excavated. Three stump models were also derived from these uprooted trees. Finally, we determined the C fractions from 194 trees that belonged to 12 species. The analysis revealed that DBH was the only predictor that significantly correlated to both above-ground and below-ground biomass. We found a mean root-to-shoot ratio of 0.38:0.62. The C fraction in leaves ranged from 39% to 42%, while it varied between 41% and 46% in wood. The C fraction was highest at the Kabompo site that received the highest rainfall, and lowest at the intermediate Namwala site. The C stocks varied between 15 and 36 ton C ha-1 and these stocks where highest at the wetter Kabompo site and lowest at the drier Sesheke site. Our results indicate that the projected future rainfall decrease for southern Africa, will likely reduce the C storage potential of the Zambezi teak forests, thereby adversely affecting their mitigating role in climate change.

  16. Calculations of lightning return stroke electric and magnetic fields above ground

    NASA Technical Reports Server (NTRS)

    Master, M. J.; Uman, M. A.; Ling, Y. T.; Standler, R. B.

    1981-01-01

    Lin et al., (1980) presented a lightning return stroke model with which return stroke electric and magnetic fields measured at ground level could be reproduced. This model and a modified version of it, in which the initial current peak decays with height above ground, are used to compute waveforms for altitudes from 0-10 km and at ranges of 20 m to 10 km. Both the original and modified models gave accurate predictions of measured ground-based fields. The use of the calculated fields in calibrating airborne field measurements from simultaneous ground and airborne data is discussed.

  17. Species richness alters spatial nutrient heterogeneity effects on above-ground plant biomass.

    PubMed

    Xi, Nianxun; Zhang, Chunhui; Bloor, Juliette M G

    2017-12-01

    Previous studies have suggested that spatial nutrient heterogeneity promotes plant nutrient capture and growth. However, little is known about how spatial nutrient heterogeneity interacts with key community attributes to affect plant community production. We conducted a meta-analysis to investigate how nitrogen heterogeneity effects vary with species richness and plant density. Effect size was calculated using the natural log of the ratio in plant biomass between heterogeneous and homogeneous conditions. Effect sizes were significantly above zero, reflecting positive effects of spatial nutrient heterogeneity on community production. However, species richness decreased the magnitude of heterogeneity effects on above-ground biomass. The magnitude of heterogeneity effects on below-ground biomass did not vary with species richness. Moreover, we detected no modification in heterogeneity effects with plant density. Our results highlight the importance of species richness for ecosystem function. Asynchrony between above- and below-ground responses to spatial nutrient heterogeneity and species richness could have significant implications for biotic interactions and biogeochemical cycling in the long term. © 2017 The Author(s).

  18. Dry Stream Reaches in Carbonate Terranes: Surface Indicators of Ground-Water Reservoirs

    USGS Publications Warehouse

    Brahana, J.V.; Hollyday, E.F.

    1988-01-01

    In areas where dry stream reaches occur, subsurface drainage successfully competes with surface drainage, and sheet-like dissolution openings have developed parallel to bedding creating the ground-water reservoir. Union Hollow in south-central Tennessee is the setting for a case study that illustrates the application of the dry stream reach technique. In this technique, dry stream reach identification is based on two types of readily acquired information: remotely sensed black and white infrared aerial photography; and surface reconnaissance of stream channel characteristics. Test drilling in Union Hollow subsequent to identification of the dry reach proved that a localized ground-water reservoir was present.

  19. Extraction and textural characterization of above-ground areas from aerial stereo pairs: a quality assessment

    NASA Astrophysics Data System (ADS)

    Baillard, C.; Dissard, O.; Jamet, O.; Maître, H.

    Above-ground analysis is a key point to the reconstruction of urban scenes, but it is a difficult task because of the diversity of the involved objects. We propose a new method to above-ground extraction from an aerial stereo pair, which does not require any assumption about object shape or nature. A Digital Surface Model is first produced by a stereoscopic matching stage preserving discontinuities, and then processed by a region-based Markovian classification algorithm. The produced above-ground areas are finally characterized as man-made or natural according to the grey level information. The quality of the results is assessed and discussed.

  20. Algorithm theoretical basis for GEDI level-4A footprint above ground biomass density.

    NASA Astrophysics Data System (ADS)

    Kellner, J. R.; Armston, J.; Blair, J. B.; Duncanson, L.; Hancock, S.; Hofton, M. A.; Luthcke, S. B.; Marselis, S.; Tang, H.; Dubayah, R.

    2017-12-01

    The Global Ecosystem Dynamics Investigation is a NASA Earth-Venture-2 mission that will place a multi-beam waveform lidar instrument on the International Space Station. GEDI data will provide globally representative measurements of vertical height profiles (waveforms) and estimates of above ground carbon stocks throughout the planet's temperate and tropical regions. Here we describe the current algorithm theoretical basis for the L4A footprint above ground biomass data product. The L4A data product is above ground biomass density (AGBD, Mg · ha-1) at the scale of individual GEDI footprints (25 m diameter). Footprint AGBD is derived from statistical models that relate waveform height metrics to field-estimated above ground biomass. The field estimates are from long-term permanent plot inventories in which all free-standing woody plants greater than a diameter size threshold have been identified and mapped. We simulated GEDI waveforms from discrete-return airborne lidar data using the GEDI waveform simulator. We associated height metrics from simulated waveforms with field-estimated AGBD at 61 sites in temperate and tropical regions of North and South America, Europe, Africa, Asia and Australia. We evaluated the ability of empirical and physically-based regression and machine learning models to predict AGBD at the footprint level. Our analysis benchmarks the performance of these models in terms of site and region-specific accuracy and transferability using a globally comprehensive calibration and validation dataset.

  1. Estimating Above-Ground Carbon Biomass in a Newly Restored Coastal Plain Wetland Using Remote Sensing

    PubMed Central

    Riegel, Joseph B.; Bernhardt, Emily; Swenson, Jennifer

    2013-01-01

    Developing accurate but inexpensive methods for estimating above-ground carbon biomass is an important technical challenge that must be overcome before a carbon offset market can be successfully implemented in the United States. Previous studies have shown that LiDAR (light detection and ranging) is well-suited for modeling above-ground biomass in mature forests; however, there has been little previous research on the ability of LiDAR to model above-ground biomass in areas with young, aggrading vegetation. This study compared the abilities of discrete-return LiDAR and high resolution optical imagery to model above-ground carbon biomass at a young restored forested wetland site in eastern North Carolina. We found that the optical imagery model explained more of the observed variation in carbon biomass than the LiDAR model (adj-R2 values of 0.34 and 0.18 respectively; root mean squared errors of 0.14 Mg C/ha and 0.17 Mg C/ha respectively). Optical imagery was also better able to predict high and low biomass extremes than the LiDAR model. Combining both the optical and LiDAR improved upon the optical model but only marginally (adj-R2 of 0.37). These results suggest that the ability of discrete-return LiDAR to model above-ground biomass may be rather limited in areas with young, small trees and that high spatial resolution optical imagery may be the better tool in such areas. PMID:23840837

  2. Modelling Growth and Partitioning of Annual Above-Ground Vegetative and Reproductive Biomass of Grapevine

    NASA Astrophysics Data System (ADS)

    Meggio, Franco; Vendrame, Nadia; Maniero, Giovanni; Pitacco, Andrea

    2014-05-01

    In the current climate change scenarios, both agriculture and forestry inherently may act as carbon sinks and consequently can play a key role in limiting global warming. An urgent need exists to understand which land uses and land resource types have the greatest potential to mitigate greenhouse gas (GHG) emissions contributing to global change. A common believe is that agricultural fields cannot be net carbon sinks due to many technical inputs and repeated disturbances of upper soil layers that all contribute to a substantial loss both of the old and newly-synthesized organic matter. Perennial tree crops (vineyards and orchards), however, can behave differently: they grow a permanent woody structure, stand undisturbed in the same field for decades, originate a woody pruning debris, and are often grass-covered. In this context, reliable methods for quantifying and modelling emissions and carbon sequestration are required. Carbon stock changes are calculated by multiplying the difference in oven dry weight of biomass increments and losses with the appropriate carbon fraction. These data are relatively scant, and more information is needed on vineyard management practices and how they impact vineyard C sequestration and GHG emissions in order to generate an accurate vineyard GHG footprint. During the last decades, research efforts have been made for estimating the vineyard carbon budget and its allocation pattern since it is crucial to better understand how grapevines control the distribution of acquired resources in response to variation in environmental growth conditions and agronomic practices. The objective of the present study was to model and compare the dynamics of current year's above-ground biomass among four grapevine varieties. Trials were carried out over three growing seasons in field conditions. The non-linear extra-sums-of-squares method demonstrated to be a feasible way of growth models comparison to statistically assess significant differences among

  3. Height-diameter allometry and above ground biomass in tropical montane forests: Insights from the Albertine Rift in Africa

    PubMed Central

    Boyemba, Faustin; Lewis, Simon; Nabahungu, Nsharwasi Léon; Calders, Kim; Zapfack, Louis; Riera, Bernard; Balegamire, Clarisse; Cuni-Sanchez, Aida

    2017-01-01

    Tropical montane forests provide an important natural laboratory to test ecological theory. While it is well-known that some aspects of forest structure change with altitude, little is known on the effects of altitude on above ground biomass (AGB), particularly with regard to changing height-diameter allometry. To address this we investigate (1) the effects of altitude on height-diameter allometry, (2) how different height-diameter allometric models affect above ground biomass estimates; and (3) how other forest structural, taxonomic and environmental attributes affect above ground biomass using 30 permanent sample plots (1-ha; all trees ≥ 10 cm diameter measured) established between 1250 and 2600 m asl in Kahuzi Biega National Park in eastern Democratic Republic of Congo. Forest structure and species composition differed with increasing altitude, with four forest types identified. Different height-diameter allometric models performed better with the different forest types, as trees got smaller with increasing altitude. Above ground biomass ranged from 168 to 290 Mg ha-1, but there were no significant differences in AGB between forests types, as tree size decreased but stem density increased with increasing altitude. Forest structure had greater effects on above ground biomass than forest diversity. Soil attributes (K and acidity, pH) also significantly affected above ground biomass. Results show how forest structural, taxonomic and environmental attributes affect above ground biomass in African tropical montane forests. They particularly highlight that the use of regional height-diameter models introduces significant biases in above ground biomass estimates, and that different height-diameter models might be preferred for different forest types, and these should be considered in future studies. PMID:28617841

  4. Height-diameter allometry and above ground biomass in tropical montane forests: Insights from the Albertine Rift in Africa.

    PubMed

    Imani, Gérard; Boyemba, Faustin; Lewis, Simon; Nabahungu, Nsharwasi Léon; Calders, Kim; Zapfack, Louis; Riera, Bernard; Balegamire, Clarisse; Cuni-Sanchez, Aida

    2017-01-01

    Tropical montane forests provide an important natural laboratory to test ecological theory. While it is well-known that some aspects of forest structure change with altitude, little is known on the effects of altitude on above ground biomass (AGB), particularly with regard to changing height-diameter allometry. To address this we investigate (1) the effects of altitude on height-diameter allometry, (2) how different height-diameter allometric models affect above ground biomass estimates; and (3) how other forest structural, taxonomic and environmental attributes affect above ground biomass using 30 permanent sample plots (1-ha; all trees ≥ 10 cm diameter measured) established between 1250 and 2600 m asl in Kahuzi Biega National Park in eastern Democratic Republic of Congo. Forest structure and species composition differed with increasing altitude, with four forest types identified. Different height-diameter allometric models performed better with the different forest types, as trees got smaller with increasing altitude. Above ground biomass ranged from 168 to 290 Mg ha-1, but there were no significant differences in AGB between forests types, as tree size decreased but stem density increased with increasing altitude. Forest structure had greater effects on above ground biomass than forest diversity. Soil attributes (K and acidity, pH) also significantly affected above ground biomass. Results show how forest structural, taxonomic and environmental attributes affect above ground biomass in African tropical montane forests. They particularly highlight that the use of regional height-diameter models introduces significant biases in above ground biomass estimates, and that different height-diameter models might be preferred for different forest types, and these should be considered in future studies.

  5. Effects of a wax organogel and alginate gel complex on holy basil (Ocimum sanctum) in vitro ruminal dry matter disappearance and gas production.

    PubMed

    Templeman, James R; Rogers, Michael A; Cant, John P; McBride, Brian W; Osborne, Vern R

    2018-02-20

    The objectives of this study were to: (a) select an ideal organogel for the oil phase of a novel gel encapsulation technology, (b) optimize the formulation of an organogel and sodium alginate-based gel complex, and (c) examine the rumen protective ability of the gel by measuring 48-h in vitro ruminal dry matter disappearance and gas production from encapsulated dried and ground holy basil leaves. A rice-bran wax and canola oil organogel was selected for the oil phase of the gel complex as this combination had a 48-h dry matter disappearance of 6%, the lowest of all organogels analyzed. The gel complex was formulated by homogenizing the organogel with a sodium alginate solution to create a low-viscosity oil-in-water emulsion. Average dry matter disappearance of gel-encapsulated holy basil was 19%, compared to 42% for the free, unprotected holy basil. However, gel encapsulation of holy basil stimulated gas production. Specifically, gas production of encapsulated holy basil was four times higher than the treatment with holy basil added on top of the gel prior to incubation rather than encapsulated within the gel. Although the gel itself was highly degradable, it is speculated encapsulation thwarted holy basil's antimicrobial activity. © 2018 Society of Chemical Industry. © 2018 Society of Chemical Industry.

  6. Above-ground biomass and structure of 260 African tropical forests

    PubMed Central

    Lewis, Simon L.; Sonké, Bonaventure; Sunderland, Terry; Begne, Serge K.; Lopez-Gonzalez, Gabriela; van der Heijden, Geertje M. F.; Phillips, Oliver L.; Affum-Baffoe, Kofi; Baker, Timothy R.; Banin, Lindsay; Bastin, Jean-François; Beeckman, Hans; Boeckx, Pascal; Bogaert, Jan; De Cannière, Charles; Chezeaux, Eric; Clark, Connie J.; Collins, Murray; Djagbletey, Gloria; Djuikouo, Marie Noël K.; Droissart, Vincent; Doucet, Jean-Louis; Ewango, Cornielle E. N.; Fauset, Sophie; Feldpausch, Ted R.; Foli, Ernest G.; Gillet, Jean-François; Hamilton, Alan C.; Harris, David J.; Hart, Terese B.; de Haulleville, Thales; Hladik, Annette; Hufkens, Koen; Huygens, Dries; Jeanmart, Philippe; Jeffery, Kathryn J.; Kearsley, Elizabeth; Leal, Miguel E.; Lloyd, Jon; Lovett, Jon C.; Makana, Jean-Remy; Malhi, Yadvinder; Marshall, Andrew R.; Ojo, Lucas; Peh, Kelvin S.-H.; Pickavance, Georgia; Poulsen, John R.; Reitsma, Jan M.; Sheil, Douglas; Simo, Murielle; Steppe, Kathy; Taedoumg, Hermann E.; Talbot, Joey; Taplin, James R. D.; Taylor, David; Thomas, Sean C.; Toirambe, Benjamin; Verbeeck, Hans; Vleminckx, Jason; White, Lee J. T.; Willcock, Simon; Woell, Hannsjorg; Zemagho, Lise

    2013-01-01

    We report above-ground biomass (AGB), basal area, stem density and wood mass density estimates from 260 sample plots (mean size: 1.2 ha) in intact closed-canopy tropical forests across 12 African countries. Mean AGB is 395.7 Mg dry mass ha−1 (95% CI: 14.3), substantially higher than Amazonian values, with the Congo Basin and contiguous forest region attaining AGB values (429 Mg ha−1) similar to those of Bornean forests, and significantly greater than East or West African forests. AGB therefore appears generally higher in palaeo- compared with neotropical forests. However, mean stem density is low (426 ± 11 stems ha−1 greater than or equal to 100 mm diameter) compared with both Amazonian and Bornean forests (cf. approx. 600) and is the signature structural feature of African tropical forests. While spatial autocorrelation complicates analyses, AGB shows a positive relationship with rainfall in the driest nine months of the year, and an opposite association with the wettest three months of the year; a negative relationship with temperature; positive relationship with clay-rich soils; and negative relationships with C : N ratio (suggesting a positive soil phosphorus–AGB relationship), and soil fertility computed as the sum of base cations. The results indicate that AGB is mediated by both climate and soils, and suggest that the AGB of African closed-canopy tropical forests may be particularly sensitive to future precipitation and temperature changes. PMID:23878327

  7. Exploring multi-scale forest above ground biomass estimation with optical remote sensing imageries

    NASA Astrophysics Data System (ADS)

    Koju, U.; Zhang, J.; Gilani, H.

    2017-02-01

    Forest shares 80% of total exchange of carbon between the atmosphere and the terrestrial ecosystem. Due to this monitoring of forest above ground biomass (as carbon can be calculated as 0.47 part of total biomass) has become very important. Forest above ground biomass as being the major portion of total forest biomass should be given a very careful consideration in its estimation. It is hoped to be useful in addressing the ongoing problems of deforestation and degradation and to gain carbon mitigation benefits through mechanisms like Reducing Emissions from Deforestation and Forest Degradation (REDD+). Many methods of above ground biomass estimation are in used ranging from use of optical remote sensing imageries of very high to very low resolution to SAR data and LIDAR. This paper describes a multi-scale approach for assessing forest above ground biomass, and ultimately carbon stocks, using very high imageries, open source medium resolution and medium resolution satellite datasets with a very limited number of field plots. We found this method is one of the most promising method for forest above ground biomass estimation with higher accuracy and low cost budget. Pilot study was conducted in Chitwan district of Nepal on the estimation of biomass using this technique. The GeoEye-1 (0.5m), Landsat (30m) and Google Earth (GE) images were used remote sensing imageries. Object-based image analysis (OBIA) classification technique was done on Geo-eye imagery for the tree crown delineation at the watershed level. After then, crown projection area (CPA) vs. biomass model was developed and validated at the watershed level. Open source GE imageries were used to calculate the CPA and biomass from virtual plots at district level. Using data mining technique, different parameters from Landsat imageries along with the virtual sample biomass were used for upscaling biomass estimation at district level. We found, this approach can considerably reduce field data requirements for

  8. Ground state of high-density matter

    NASA Technical Reports Server (NTRS)

    Copeland, ED; Kolb, Edward W.; Lee, Kimyeong

    1988-01-01

    It is shown that if an upper bound to the false vacuum energy of the electroweak Higgs potential is satisfied, the true ground state of high-density matter is not nuclear matter, or even strange-quark matter, but rather a non-topological soliton where the electroweak symmetry is exact and the fermions are massless. This possibility is examined in the standard SU(3) sub C tensor product SU(2) sub L tensor product U(1) sub Y model. The bound to the false vacuum energy is satisfied only for a narrow range of the Higgs boson masses in the minimal electroweak model (within about 10 eV of its minimum allowed value of 6.6 GeV) and a somewhat wider range for electroweak models with a non-minimal Higgs sector.

  9. Evaluation of a microwave method for dry matter determination in faecal samples from weaned pigs with or without clinical diarrhoea.

    PubMed

    Pedersen, Ken Steen; Stege, Helle; Nielsen, Jens Peter

    2011-07-01

    Microwave drying as a procedure for determination of faecal dry matter in weaned pigs was evaluated and clinical relevant cut-off values between faecal consistency scores were determined. Repeatability and reproducibility were evaluated. Overall coefficient of variation was 0.03. The 95% confidence limits for any future faecal subsample examined by any operator in any replica were ± 0.85% faecal dry matter. Robustness in relation to weight of wet faeces was evaluated. The weight categories were 0.5, 1.0, 1.5, 2.0 and 3.0 g. Samples of 0.5 g gave significantly different mean faecal dry matter content compared to weighing of 1.0-3.0 g. Agreement with freeze-drying was evaluated. Lin's concordance correlation coefficient was 0.94. On average the faecal dry matter values was 1.7% (SD=1.99%) higher in freeze dried compared to micro waved samples. Non-parametric ROC analyses were used to determine optimal faecal dry matter cut-off values for clinical faecal consistency scores. The 4 consistency scores were score 1=firm and shaped, score 2=soft and shaped, score 3=loose and score 4=watery. The cut-off values were score 1: faecal dry matter content >19.5%, score 2: faecal dry matter content ≤ 19.5% and >18.0%, score 3: faecal dry matter content ≤ 18.0% and >11.3%, score 4: faecal dry matter content ≤ 11.3%. In conclusion, the microwave procedure has an acceptable repeatability/reproducibility and good agreement with freeze drying can be expected. A minimum of 1.0 g of wet faeces must be used for analyses. Faecal dry matter cut-off values between 4 different clinical consistency scores were determined. © 2011 Elsevier B.V. All rights reserved.

  10. A New Method for Non-destructive Measurement of Biomass, Growth Rates, Vertical Biomass Distribution and Dry Matter Content Based on Digital Image Analysis

    PubMed Central

    Tackenberg, Oliver

    2007-01-01

    Background and Aims Biomass is an important trait in functional ecology and growth analysis. The typical methods for measuring biomass are destructive. Thus, they do not allow the development of individual plants to be followed and they require many individuals to be cultivated for repeated measurements. Non-destructive methods do not have these limitations. Here, a non-destructive method based on digital image analysis is presented, addressing not only above-ground fresh biomass (FBM) and oven-dried biomass (DBM), but also vertical biomass distribution as well as dry matter content (DMC) and growth rates. Methods Scaled digital images of the plants silhouettes were taken for 582 individuals of 27 grass species (Poaceae). Above-ground biomass and DMC were measured using destructive methods. With image analysis software Zeiss KS 300, the projected area and the proportion of greenish pixels were calculated, and generalized linear models (GLMs) were developed with destructively measured parameters as dependent variables and parameters derived from image analysis as independent variables. A bootstrap analysis was performed to assess the number of individuals required for re-calibration of the models. Key Results The results of the developed models showed no systematic errors compared with traditionally measured values and explained most of their variance (R2 ≥ 0·85 for all models). The presented models can be directly applied to herbaceous grasses without further calibration. Applying the models to other growth forms might require a re-calibration which can be based on only 10–20 individuals for FBM or DMC and on 40–50 individuals for DBM. Conclusions The methods presented are time and cost effective compared with traditional methods, especially if development or growth rates are to be measured repeatedly. Hence, they offer an alternative way of determining biomass, especially as they are non-destructive and address not only FBM and DBM, but also vertical

  11. Decay of wood and wood-based products above ground in buildings

    Treesearch

    Charles G. Carll; Terry L. Highley

    1999-01-01

    This paper is an overview of what we know about occurrence of wood decay above ground within buildings. It presents information concerning under what conditions decay may become established. In laboratory tests involving optimum moisture and temperature conditions for decay fungi, and direct contact with large quantities of specific well-developed decay...

  12. Ground Monitoring Neotropical Dry Forests: A Sensor Network for Forest and Microclimate Dynamics in Semi-Arid Environments (Enviro-Net°)

    NASA Astrophysics Data System (ADS)

    Rankine, C. J.; Sánchez-Azofeifa, G.

    2011-12-01

    In the face of unprecedented global change driven by anthropogenic pressure on natural systems it has become imperative to monitor and better understand potential shifts in ecosystem functioning and services from local to global scales. The utilization of automated sensors technologies offers numerous advantages over traditional on-site ecosystem surveying techniques and, as a result, sensor networks are becoming a powerful tool in environmental monitoring programs. Tropical forests, renowned for their biodiversity, are important regulators of land-atmosphere fluxes yet the seasonally dry tropical forests, which account for 40% of forested ecosystems in the American tropics, have been severely degraded over the past several decades and not much is known of their capacity to recover. With less than 1% of these forests protected, our ability to monitor the dynamics and quantify changes in the remaining primary and recovering secondary tropical dry forests is vital to understanding mechanisms of ecosystem stress responses and climate feedback with respect to annual productivity and desertification processes in the tropics. The remote sensing component of the Tropi-Dry: Human and Biophysical Dimensions of Tropical Dry Forests in the Americas research network supports a network of long-term tropical ecosystem monitoring platforms which focus on the dynamics of seasonally dry tropical forests in the Americas. With over 25 sensor station deployments operating across a latitudinal gradient in Mexico, Costa Rica, Brazil, and Argentina continuously collecting hyper-temporal sensory input based on standardized deployment parameters, this monitoring system is unique among tropical environments. Technologies used in the network include optical canopy phenology towers, understory wireless sensing networks, above and below ground microclimate stations, and digital cameras. Sensory data streams are uploaded to a cyber-infrastructure initiative, denominated Enviro-Net°, for data

  13. An analysis of using entomopathogenic nematodes against above-ground pests.

    PubMed

    Arthurs, S; Heinz, K M; Prasifka, J R

    2004-08-01

    Applications of entomopathogenic nematodes in the families Steinernematidae and Heterorhabditidae have traditionally been targeted against soil insects. Nonetheless, research over the last two decades highlights the potential of such agents against above-ground pests under certain circumstances. A general linear model was used to test for patterns in efficacy among 136 published trials with Steinernema carpocapsae Weiser, the most common species applied against foliar and other above-ground pests. The focus was on field and greenhouse assessments, rather than laboratory assays where relevant ecological barriers to infection are typically removed. The model showed differences in nematode treatment efficacy depending on the pests' target habitat (bore holes > cryptic foliage > exposed foliage) and trial location (greenhouse > field studies). Relative humidity and temperature during and up to 8 h post-application were also predicted to influence rates of nematode infection obtained. Conversely, spray adjuvants (both wetting agents and anti-desiccants) and nematode dosage applied (both concentration and use of consecutive applications 3-4 days apart) did not explain a significant amount of variance in nematode performance. With reference to case studies the model is used to discuss the relative importance of different factors on nematode efficacy and highlight priorities for workers considering using entomopathogenic nematodes to target pests in novel environments.

  14. [Characteristics of dry matter production and nitrogen accumulation in barley genotypes with high nitrogen utilization efficiency].

    PubMed

    Huang, Yi; Li, Ting-Xuan; Zhang, Xi-Zhou; Ji, Lin

    2014-07-01

    A pot experiment was conducted under low (125 mg x kg-1) and normal (250 mg x kg(-1)) nitrogen treatments. The nitrogen uptake and utilization efficiency of 22 barley cultivars were investigated, and the characteristics of dry matter production and nitrogen accumulation in barley were analyzed. The results showed that nitrogen uptake and utilization efficiency were different for barley under two nitrogen levels. The maximal values of grain yield, nitrogen utilization efficiency for grain and nitrogen harvest index were 2.87, 2.91 and 2.47 times as those of the lowest under the low nitrogen treatment. Grain yield and nitrogen utilization efficiency for grain and nitrogen harvest index of barley genotype with high nitrogen utilization efficiency were significantly greater than low nitrogen utilization efficiency, and the parameters of high nitrogen utilization efficiency genotype were 82.1%, 61.5% and 50.5% higher than low nitrogen utilization efficiency genotype under the low nitrogen treatment. Dry matter mass and nitrogen utilization of high nitrogen utilization efficiency was significantly higher than those of low nitrogen utilization efficiency. A peak of dry matter mass of high nitrogen utilization efficiency occurred during jointing to heading stage, while that of nitrogen accumulation appeared before jointing. Under the low nitrogen treatment, dry matter mass of DH61 and DH121+ was 34.4% and 38.3%, and nitrogen accumulation was 54. 8% and 58.0% higher than DH80, respectively. Dry matter mass and nitrogen accumulation seriously affected yield before jointing stage, and the contribution rates were 47.9% and 54.7% respectively under the low nitrogen treatment. The effect of dry matter and nitrogen accumulation on nitrogen utilization efficiency for grain was the largest during heading to mature stages, followed by sowing to jointing stages, with the contribution rate being 29.5% and 48.7%, 29.0% and 15.8%, respectively. In conclusion, barley genotype with high

  15. Implications of genetic selection on yolk proportion on the dry matter content of eggs in a White Leghorn population.

    PubMed

    Icken, W; Looft, C; Schellander, K; Cavero, D; Blanco, A; Schmutz, M; Preisinger, R

    2014-01-01

    1. The responses to genetic selection on yolk proportion as a technique for increasing egg dry matter content, an important criterion for the egg-product industry, was investigated in a pedigree flock of White Leghorn hens. 2. Parents were preselected on high and low yolk proportion from a base population. The absolute estimated breeding value for yolk proportion of both groups differed by 3%. The realised selection difference in dry matter content of eggs between groups was more than 1% in the analysed offspring population. 3. Heritability estimates were moderate and dry matter had a lower heritability (h(2) = 0.39) than yolk proportion (h(2) = 0.44). 4. The genetic correlation between yolk proportion and dry matter content was highly positive (rg = 0.91). Genetic correlations with egg weight were negative and would have to be compensated for in a breeding programme (rg = -0.76 with yolk proportion and rg = -0.64 with dry matter content). The genetic correlation between the laying performance and yolk proportion was rg = 0.28 and close to zero (rg = -0.05) for dry matter content. 5. Easy recording and lower undesirable correlations make yolk proportion more suitable for commercial selection compared with egg dry matter content in layer breeding.

  16. Characteristics of train noise in above-ground and underground stations with side and island platforms

    NASA Astrophysics Data System (ADS)

    Shimokura, Ryota; Soeta, Yoshiharu

    2011-04-01

    Railway stations can be principally classified by their locations, i.e., above-ground or underground stations, and by their platform styles, i.e., side or island platforms. However, the effect of the architectural elements on the train noise in stations is not well understood. The aim of the present study is to determine the different acoustical characteristics of the train noise for each station style. The train noise was evaluated by (1) the A-weighted equivalent continuous sound pressure level ( LAeq), (2) the amplitude of the maximum peak of the interaural cross-correlation function (IACC), (3) the delay time ( τ1) and amplitude ( ϕ1) of the first maximum peak of the autocorrelation function. The IACC, τ1 and ϕ1 are related to the subjective diffuseness, pitch and pitch strength, respectively. Regarding the locations, the LAeq in the underground stations was 6.4 dB higher than that in the above-ground stations, and the pitch in the underground stations was higher and stronger. Regarding the platform styles, the LAeq on the side platforms was 3.3 dB higher than on the island platforms of the above-ground stations. For the underground stations, the LAeq on the island platforms was 3.3 dB higher than that on the side platforms when a train entered the station. The IACC on the island platforms of the above-ground stations was higher than that in the other stations.

  17. Dewatering treatments to increase dry matter content of the brown seaweed, kelp (Laminaria digitata ((Hudson) JV Lamouroux)).

    PubMed

    Gallagher, Joe A; Turner, Lesley B; Adams, Jessica M M; Dyer, Philip W; Theodorou, Michael K

    2017-01-01

    Macroalgal water content is an on-going problem for the use of readily accessible seaweeds in sustainable biorefining, including fuel production. Silage is a reduced-water, compactable, easily stored, transportable material. Ensiling could establish a non-seasonal supply of preserved algal biomass, but requires high initial dry matter content to mitigate environmental pollution risks from effluent. This study investigated potential dewatering methods for kelp harvested throughout the year. Treatments included air-drying, osmotic media and acids. Significant interactions between treatment and harvest-time were observed for traits of interest. Fresh weight loss during treatment was composed of changes in water and dry matter content. Air-drying gave reliable increase in final dry matter content; in summer and autumn 30% dry matter content was reached after 24h. Dilute hydrochloric acid reduced stickiness and rendered material suitable for dewatering by screw-pressing; it may be possible to use the consequent pH reduction to promote efficient preservation. Copyright © 2016 The Authors. Published by Elsevier Ltd.. All rights reserved.

  18. Structural Health Monitoring of Above-Ground Storage Tank Floors by Ultrasonic Guided Wave Excitation on the Tank Wall.

    PubMed

    Lowe, Premesh S; Duan, Wenbo; Kanfoud, Jamil; Gan, Tat-Hean

    2017-11-04

    There is an increasing interest in using ultrasonic guided waves to assess the structural degradation of above-ground storage tank floors. This is a non-invasive and economically viable means of assessing structural degradation. Above-ground storage tank floors are ageing assets which need to be inspected periodically to avoid structural failure. At present, normal-stress type transducers are bonded to the tank annular chime to generate a force field in the thickness direction of the floor and excite fundamental symmetric and asymmetric Lamb modes. However, the majority of above-ground storage tanks in use have no annular chime due to a simplified design and/or have a degraded chime due to corrosion. This means that transducers cannot be mounted on the chime to assess structural health according to the present technology, and the market share of structural health monitoring of above-ground storage tank floors using ultrasonic guided wave is thus limited. Therefore, the present study investigates the potential of using the tank wall to bond the transducer instead of the tank annular chime. Both normal and shear type transducers were investigated numerically, and results were validated using a 4.1 m diameter above-ground storage tank. The study results show shear mode type transducers bonded to the tank wall can be used to assess the structural health of the above-ground tank floors using an ultrasonic guided wave. It is also shown that for the cases studied there is a 7.4 dB signal-to-noise ratio improvement at 45 kHz for the guided wave excitation on the tank wall using shear mode transducers.

  19. Structural Health Monitoring of Above-Ground Storage Tank Floors by Ultrasonic Guided Wave Excitation on the Tank Wall

    PubMed Central

    Kanfoud, Jamil; Gan, Tat-Hean

    2017-01-01

    There is an increasing interest in using ultrasonic guided waves to assess the structural degradation of above-ground storage tank floors. This is a non-invasive and economically viable means of assessing structural degradation. Above-ground storage tank floors are ageing assets which need to be inspected periodically to avoid structural failure. At present, normal-stress type transducers are bonded to the tank annular chime to generate a force field in the thickness direction of the floor and excite fundamental symmetric and asymmetric Lamb modes. However, the majority of above-ground storage tanks in use have no annular chime due to a simplified design and/or have a degraded chime due to corrosion. This means that transducers cannot be mounted on the chime to assess structural health according to the present technology, and the market share of structural health monitoring of above-ground storage tank floors using ultrasonic guided wave is thus limited. Therefore, the present study investigates the potential of using the tank wall to bond the transducer instead of the tank annular chime. Both normal and shear type transducers were investigated numerically, and results were validated using a 4.1 m diameter above-ground storage tank. The study results show shear mode type transducers bonded to the tank wall can be used to assess the structural health of the above-ground tank floors using an ultrasonic guided wave. It is also shown that for the cases studied there is a 7.4 dB signal-to-noise ratio improvement at 45 kHz for the guided wave excitation on the tank wall using shear mode transducers. PMID:29113058

  20. Chapter 6: Above Ground Deterioration of Wood and Wood-Based Materials

    Treesearch

    Grant Kirker; Jerrold Winandy

    2014-01-01

    Wood as a material has unique properties that make it ideal for above ground exposure in a wide range of structural and non-strucutral applications. However, no material is without limitations. Wood is a bio-polymer which is subject to degradative processes, both abiotic and biotic. This chapter is a general summary of the abiotic and biotic factors that impact service...

  1. Global inorganic nitrogen dry deposition inferred from ground- and space-based measurements.

    PubMed

    Jia, Yanlong; Yu, Guirui; Gao, Yanni; He, Nianpeng; Wang, Qiufeng; Jiao, Cuicui; Zuo, Yao

    2016-01-27

    Atmospheric nitrogen (N) dry deposition is an important component in total N deposition. However, uncertainty exists in the assessment of global dry deposition. Here, we develop empirical models for estimating ground N concentrations using NO2 satellite measurements from the Ozone Monitoring Instrument (OMI) and ground measurements from 555 monitoring sites. Global patterns and trends in the fluxes of NO2, HNO3, NH4(+), and NO3(-) were assessed for 2005-2014. Moreover, we estimated global NH3 dry deposition directly using data from 267 monitoring sites. Our results showed that East Asia, the United States, and Europe were important regions of N deposition, and the total annual amount of global inorganic N deposition was 34.26 Tg N. The dry deposition fluxes were low in Africa and South America, but because of their large area, the total amounts in these regions were comparable to those in Europe and North America. In the past decade, the western United States and Eurasia, particularly eastern China, experienced the largest increases in dry deposition, whereas the eastern United States, Western Europe, and Japan experienced clear decreases through control of NOx and NH3 emissions. These findings provide a scientific background for policy-makers and future research into global changes.

  2. Global inorganic nitrogen dry deposition inferred from ground- and space-based measurements

    PubMed Central

    Jia, Yanlong; Yu, Guirui; Gao, Yanni; He, Nianpeng; Wang, Qiufeng; Jiao, Cuicui; Zuo, Yao

    2016-01-01

    Atmospheric nitrogen (N) dry deposition is an important component in total N deposition. However, uncertainty exists in the assessment of global dry deposition. Here, we develop empirical models for estimating ground N concentrations using NO2 satellite measurements from the Ozone Monitoring Instrument (OMI) and ground measurements from 555 monitoring sites. Global patterns and trends in the fluxes of NO2, HNO3, NH4+, and NO3− were assessed for 2005–2014. Moreover, we estimated global NH3 dry deposition directly using data from 267 monitoring sites. Our results showed that East Asia, the United States, and Europe were important regions of N deposition, and the total annual amount of global inorganic N deposition was 34.26 Tg N. The dry deposition fluxes were low in Africa and South America, but because of their large area, the total amounts in these regions were comparable to those in Europe and North America. In the past decade, the western United States and Eurasia, particularly eastern China, experienced the largest increases in dry deposition, whereas the eastern United States, Western Europe, and Japan experienced clear decreases through control of NOx and NH3 emissions. These findings provide a scientific background for policy-makers and future research into global changes. PMID:26813440

  3. Above-ground sulfur cycling in adjacent coniferous and deciduous forest and watershed sulfur retention in the Georgia Piedmont, U.S.A.

    USGS Publications Warehouse

    Cappellato, R.; Peters, N.E.; Meyers, T.P.

    1998-01-01

    Atmospheric deposition and above-ground cycling of sulfur (S) were evaluated in adjacent deciduous and coniferous forests at the Panola Mountain Research Watershed (PMRW), Georgia U.S.A. Total atmospheric S deposition (wet plus dry) was 12.9 and 12.7 kg ha-1 yr-1 for the deciduous and coniferous forests, respectively, from October 1987 through November 1989. Dry deposition contributes more than 40% to the total atmospheric S deposition, and SO2 is the major source (~55%) of total dry S deposition. Dry deposition to these canopies is similar to regional estimates suggesting that 60-km proximity to emission sources does not noticeably impact dry deposition at PMRW. Below-canopy S fluxes (throughfall plus stemflow) in each forest are 37% higher annually in the deciduous forest than in the coniferous forest. An excess in below-canopy S flux in the deciduous forest is attributed to leaching and higher dry deposition than in the coniferous forest. Total S deposition to the forest floor by throughfall, stemflow and litterfall was 2.4 and 2.8 times higher in the deciduous and coniferous forests, respectively, than annual S growth requirement for foliage and wood. Although A deposition exceeds growth requirement, more than 95% of the total atmospheric S deposition was retained by the watershed in 1988 and 1989. The S retention at PMRW is primarily due to SO2+4 adsorption by iron oxides and hydroxides in watershed soils. The S content in while oak and loblolly pine boles have increased more than 200% in the last 20 yr, possibly reflecting increases in emissions.

  4. Results for the Aboveground Configuration of the Boiling Water Reactor Dry Cask Simulator

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Durbin, Samuel G.; Lindgren, Eric R.

    The thermal performance of commercial nuclear spent fuel dry storage casks is evaluated through detailed numerical analysis. These modeling efforts are completed by the vendor to demonstrate performance and regulatory compliance. The calculations are then independently verified by the Nuclear Regulatory Commission (NRC). Carefully measured data sets generated from testing of full-sized casks or smaller cask analogs are widely recognized as vital for validating these models. Recent advances in dry storage cask designs have significantly increased the maximum thermal load allowed in a cask, in part by increasing the efficiency of internal conduction pathways, and also by increasing the internalmore » convection through greater canister helium pressure. These same canistered cask systems rely on ventilation between the canister and the overpack to convect heat away from the canister to the environment for both above- and below-ground configurations. While several testing programs have been previously conducted, these earlier validation attempts did not capture the effects of elevated helium pressures or accurately portray the external convection of above-ground and below-ground canistered dry cask systems. The purpose of the current investigation was to produce data sets that can be used to test the validity of the assumptions associated with the calculations used to determine steady-state cladding temperatures in modern dry casks that utilize elevated helium pressure in the sealed canister in an above-ground configuration.« less

  5. Modeling Water and Nutrient Transport through the Soil-Root-Canopy Continuum: Explicitly Linking the Below- and Above-Ground Processes

    NASA Astrophysics Data System (ADS)

    Kumar, P.; Quijano, J. C.; Drewry, D.

    2010-12-01

    Vegetation roots provide a fundamental link between the below ground water and nutrient dynamics and above ground canopy processes such as photosynthesis, evapotranspiration and energy balance. The “hydraulic architecture” of roots, consisting of the structural organization of the root system and the flow properties of the conduits (xylem) as well as interfaces with the soil and the above ground canopy, affect stomatal conductance thereby directly linking them to the transpiration. Roots serve as preferential pathways for the movement of moisture from wet to dry soil layers during the night, both from upper soil layer to deeper layers during the wet season (‘hydraulic descent’) and vice-versa (‘hydraulic lift’) as determined by the moisture gradients. The conductivities of transport through the root system are significantly, often orders of magnitude, larger than that of the surrounding soil resulting in movement of soil-moisture at rates that are substantially larger than that through the soil. This phenomenon is called hydraulic redistribution (HR). The ability of the deep-rooted vegetation to “bank” the water through hydraulic descent during wet periods for utilization during dry periods provides them with a competitive advantage. However, during periods of hydraulic lift these deep-rooted trees may facilitate the growth of understory vegetation where the understory scavenges the hydraulically lifted soil water. In other words, understory vegetation with relatively shallow root systems have access to the banked deep-water reservoir. These inter-dependent root systems have a significant influence on water cycle and ecosystem productivity. HR induced available moisture may support rhizosphere microbial and mycorrhizal fungi activities and enable utilization of heterogeneously distributed water and nutrient resources To capture this complex inter-dependent nutrient and water transport through the soil-root-canopy continuum we present modeling

  6. Genome-Wide Association Mapping of Correlated Traits in Cassava: Dry Matter and Total Carotenoid Content.

    PubMed

    Rabbi, Ismail Y; Udoh, Lovina I; Wolfe, Marnin; Parkes, Elizabeth Y; Gedil, Melaku A; Dixon, Alfred; Ramu, Punna; Jannink, Jean-Luc; Kulakow, Peter

    2017-11-01

    Cassava is a starchy root crop cultivated in the tropics for fresh consumption and commercial processing. Primary selection objectives in cassava breeding include dry matter content and micronutrient density, particularly provitamin A carotenoids. These traits are negatively correlated in the African germplasm. This study aimed at identifying genetic markers associated with these traits and uncovering whether linkage and/or pleiotropy were responsible for observed negative correlation. A genome-wide association mapping using 672 clones genotyped at 72,279 single nucleotide polymorphism (SNP) loci was performed. Root yellowness was used indirectly to assess variation in carotenoid content. Two major loci for root yellowness were identified on chromosome 1 at positions 24.1 and 30.5 Mbp. A single locus for dry matter content that colocated with the 24.1 Mbp peak for carotenoids was identified. Haplotypes at these loci explained 70 and 37% of the phenotypic variability for root yellowness and dry matter content, respectively. Evidence of megabase-scale linkage disequilibrium (LD) around the major loci of the two traits and detection of the major dry matter locus in independent analysis for the white- and yellow-root subpopulations suggests that physical linkage rather that pleiotropy is more likely to be the cause of the negative correlation between the target traits. Moreover, candidate genes for carotenoid () and starch biosynthesis ( and ) occurred in the vicinity of the identified locus at 24.1 Mbp. These findings elucidate the genetic architecture of carotenoids and dry matter in cassava and provide an opportunity to accelerate breeding of these traits. Copyright © 2017 Crop Science Society of America.

  7. A comparison of above-ground dry-biomass estimators for trees in the Northeastern United States

    Treesearch

    James A. Westfall

    2012-01-01

    In the northeastern United States, both component and total aboveground tree dry-biomass estimates are available from several sources. In this study, comparisons were made among four methods to promote understanding of the similarities and differences in live-tree biomass estimators. The methods use various equations developed from biomass data collected in the United...

  8. Modelling the pressurization induced by solar radiation on above ground installations of LPG pipeline systems

    NASA Astrophysics Data System (ADS)

    Leporini, M.; Terenzi, A.; Marchetti, B.; Giacchetta, G.; Polonara, F.; Corvaro, F.; Cocci Grifoni, R.

    2017-11-01

    Pipelining Liquefied Petroleum Gas (LPG) is a mode of LPG transportation more environmentally-friendly than others due to the lower energy consumption and exhaust emissions. Worldwide, there are over 20000 kilometers of LPG pipelines. There are a number of codes that industry follows for the design, fabrication, construction and operation of liquid LPG pipelines. However, no standards exist to modelling particular critical phenomena which can occur on these lines due to external environmental conditions like the solar radiation pressurization. In fact, the solar radiation can expose above ground pipeline sections at pressure values above the maximum Design Pressure with resulting risks and problems. The present work presents an innovative practice suitable for the Oil & Gas industry to modelling the pressurization induced by the solar radiation on above ground LPG pipeline sections with the application to a real case.

  9. Photoperiod and growing degree days effect on dry matter partitioning in Jerusalem artichoke

    USDA-ARS?s Scientific Manuscript database

    The effect of photoperiod and growing degree days (GDD) on dry matter and dry partitioning in Jerusalem artichoke was investigated during 2008-09 and 2009-10. Three Jerusalem artichoke genotypes (CN-52867, JA-89 and HEL-65) were planted in 15 day-intervals between with thirteen different dates (Sep...

  10. Estimates of natural ground-water discharge and characterization of water quality in Dry Valley, Washoe County, West-Central Nevada, 2002-2003

    USGS Publications Warehouse

    Berger, David L.; Maurer, Douglas K.; Lopes, Thomas J.; Halford, Keith J.

    2004-01-01

    The Dry Valley Hydrographic Area is being considered as a potential source area for additional water supplies for the Reno-Sparks area, which is about 25 miles south of Dry Valley. Current estimates of annual ground-water recharge to Dry Valley have a considerable range. In undeveloped valleys, such as Dry Valley, long-term ground-water discharge can be assumed the same as long-term ground-water recharge. Because estimating ground-water discharge has more certainty than estimating ground-water recharge from precipitation, the U.S. Geological Survey, in cooperation with Washoe County, began a three-year study to re-evaluate the ground-water resources by estimating natural ground-water discharge and characterize ground-water quality in Dry Valley. In Dry Valley, natural ground-water discharge occurs as subsurface outflow and by ground-water evapotranspiration. The amount of subsurface outflow from the upper part of Dry Valley to Winnemucca and Honey Lake Valleys likely is small. Subsurface outflow from Dry Valley westward to Long Valley, California was estimated using Darcy's Law. Analysis of two aquifer tests show the transmissivity of poorly sorted sediments near the western side of Dry Valley is 1,200 to 1,500 square feet per day. The width of unconsolidated sediments is about 4,000 feet between exposures of tuffaceous deposits along the State line, and decreases to about 1,500 feet (0.5 mile) west of the State line. The hydraulic gradient east and west of the State line ranges from 0.003 to 0.005 foot per foot. Using these values, subsurface outflow to Long Valley is estimated to be 50 to 250 acre-feet per year. Areas of ground-water evapotranspiration were field mapped and partitioned into zones of plant cover using relations derived from Landsat imagery acquired July 8, 2002. Evapotranspiration rates for each plant-cover zone were multiplied by the corresponding area and summed to estimate annual ground-water evapotranspiration. About 640 to 790 acre-feet per

  11. Evaluation of Sentinel-1A Data For Above Ground Biomass Estimation in Different Forests in India

    NASA Technical Reports Server (NTRS)

    Vadrevu, Krishna Prasad

    2017-01-01

    Use of remote sensing data for mapping and monitoring of forest biomass across large spatial scales can aid in addressing uncertainties in carbon cycle. Earlier, several researchers reported on the use of Synthetic Aperture Radar (SAR) data for characterizing forest structural parameters and the above ground biomass estimation. However, these studies cannot be generalized and the algorithms cannot be applied to all types of forests without additional information on the forest physiognomy, stand structure and biomass characteristics. The radar backscatter signal also saturates as forest parameters such as biomass and the tree height increase. It is also not clear how different polarizations (VV versus VH) impact the backscatter retrievals in different forested regions. Thus, it is important to evaluate the potential of SAR data in different landscapes for characterizing forest structural parameters. In this study, the SAR data from Sentinel-1A has been used to characterize forest structural parameters including the above ground biomass from tropical forests of India. Ground based data on tree density, basal area and above ground biomass data from thirty-eight different forested sites has been collected to relate to SAR data. After the pre-processing of Sentinel 1-A data for radiometric calibration, geo-correction, terrain correction and speckle filtering, the variability in the backscatter signal in relation tree density, basal area and above biomass density has been investigated. Results from the curve fitting approach suggested exponential model between the Sentinel-1A backscatter versus tree density and above ground biomass whereas the relationship was almost linear with the basal area in the VV polarization mode. Of the different parameters, tree density could explain most of the variations in backscatter. Both VV and VH backscatter signals could explain only thirty and thirty three percent of variation in above biomass in different forest sites of India

  12. Below- and above-ground effects of deadwood and termites in plantation forests

    Treesearch

    Michael D. Ulyshen; Richard Shefferson; Scott Horn; Melanie K. Taylor; Bryana Bush; Cavell Brownie; Sebastian Seibold; Michael S. Strickland

    2017-01-01

    Deadwood is an important legacy structure in managed forests, providing continuity in shelter and resource availability for many organisms and acting as a vehicle by which nutrients can be passed from one stand to the next following a harvest. Despite existing at the interface between below- and above-ground systems, however, much remains unknown about the role woody...

  13. Measurement of high-energy neutron flux above ground utilizing a spallation based multiplicity technique

    DOE PAGES

    Roecker, Caleb; Bernstein, Adam; Marleau, Peter; ...

    2016-11-14

    Cosmogenic high-energy neutrons are a ubiquitous, difficult to shield, poorly measured background. Above ground the high-energy neutron energy-dependent flux has been measured, with significantly varying results. Below ground, high-energy neutron fluxes are largely unmeasured. Here we present a reconstruction algorithm to unfold the incident neutron energy-dependent flux measured using the Multiplicity and Recoil Spectrometer (MARS), simulated test cases to verify the algorithm, and provide a new measurement of the above ground high-energy neutron energy-dependent flux with a detailed systematic uncertainty analysis. Uncertainty estimates are provided based upon the measurement statistics, the incident angular distribution, the surrounding environment of the Montemore » Carlo model, and the MARS triggering efficiency. Quantified systematic uncertainty is dominated by the assumed incident neutron angular distribution and surrounding environment of the Monte Carlo model. The energy-dependent neutron flux between 90 MeV and 400 MeV is reported. Between 90 MeV and 250 MeV the MARS results are comparable to previous Bonner sphere measurements. Over the total energy regime measured, the MARS result are located within the span of previous measurements. Lastly, these results demonstrate the feasibility of future below ground measurements with MARS.« less

  14. Measurement of high-energy neutron flux above ground utilizing a spallation based multiplicity technique

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Roecker, Caleb; Bernstein, Adam; Marleau, Peter

    Cosmogenic high-energy neutrons are a ubiquitous, difficult to shield, poorly measured background. Above ground the high-energy neutron energy-dependent flux has been measured, with significantly varying results. Below ground, high-energy neutron fluxes are largely unmeasured. Here we present a reconstruction algorithm to unfold the incident neutron energy-dependent flux measured using the Multiplicity and Recoil Spectrometer (MARS), simulated test cases to verify the algorithm, and provide a new measurement of the above ground high-energy neutron energy-dependent flux with a detailed systematic uncertainty analysis. Uncertainty estimates are provided based upon the measurement statistics, the incident angular distribution, the surrounding environment of the Montemore » Carlo model, and the MARS triggering efficiency. Quantified systematic uncertainty is dominated by the assumed incident neutron angular distribution and surrounding environment of the Monte Carlo model. The energy-dependent neutron flux between 90 MeV and 400 MeV is reported. Between 90 MeV and 250 MeV the MARS results are comparable to previous Bonner sphere measurements. Over the total energy regime measured, the MARS result are located within the span of previous measurements. Lastly, these results demonstrate the feasibility of future below ground measurements with MARS.« less

  15. Long-term above-ground biomass production in a red oak-pecan agroforestry system

    USDA-ARS?s Scientific Manuscript database

    Agroforestry systems have widely been recognized for their potential to foster long-term carbon sequestration in woody perennials. This study aims to determine the above-ground biomass in a 16-year-old red oak (Quercus rubra) - pecan (Carya illinoinensis) silvopastoral planting (141 and 53 trees ha-...

  16. Effects of Saccharomyces cerevisiae fermentation product on ruminal starch digestion are dependent upon dry matter intake for lactating cows.

    PubMed

    Allen, M S; Ying, Y

    2012-11-01

    This experiment was conducted to evaluate ruminal digestion responses to Saccharomyces cerevisiae fermentation product (SCFP) supplementation and to determine if responses are influenced by voluntary feed intake. Fifteen ruminally and duodenally cannulated Holstein cows with a wide range in preliminary dry matter intake (pDMI; 20.1 to 31.0 kg/d) measured during a 14-d preliminary period were used in a crossover design experiment. Treatments were SCFP and control (a mix of dry ground corn and soybean meal), top-dressed at the rate of 56 g/d per head. The base diet contained 28% NDF, 30% starch, and 16.5% CP and included corn silage, alfalfa silage, high-moisture corn, protein supplement, and a mineral and vitamin supplement. Treatment periods were 28 d, with the final 8d used for sample and data collection. Voluntary dry matter intake was determined during the last 4d of the preliminary period. Ruminal digestion kinetics were determined using the pool-and-flux method. Main effects of SCFP treatment and their interaction with pDMI were tested by ANOVA. An interaction was detected between SCFP treatment and pDMI for ruminal digestion rate of starch; SCFP increased the rate of starch digestion compared with the control for cows with pDMI below 26 kg/d and decreased it for cows with higher pDMI. This resulted in an interaction between treatment and pDMI for turnover rate of starch in the rumen and true and apparent ruminal starch digestibility because passage rate of starch from the rumen was not affected by treatment (mean=24.3%/h). Ruminal pH (mean=6.0), dry matter intake, milk yield and component percentages were not affected by treatment or its interaction with pDMI. Supplementation of SCFP reduced the rate of ruminal starch digestion for cows with higher feed intake, which could help stabilize the ruminal environment when large amounts of starch are consumed to support higher milk production. Copyright © 2012 American Dairy Science Association. Published by

  17. Successful range-expanding plants experience less above-ground and below-ground enemy impact.

    PubMed

    Engelkes, Tim; Morriën, Elly; Verhoeven, Koen J F; Bezemer, T Martijn; Biere, Arjen; Harvey, Jeffrey A; McIntyre, Lauren M; Tamis, Wil L M; van der Putten, Wim H

    2008-12-18

    Many species are currently moving to higher latitudes and altitudes. However, little is known about the factors that influence the future performance of range-expanding species in their new habitats. Here we show that range-expanding plant species from a riverine area were better defended against shoot and root enemies than were related native plant species growing in the same area. We grew fifteen plant species with and without non-coevolved polyphagous locusts and cosmopolitan, polyphagous aphids. Contrary to our expectations, the locusts performed more poorly on the range-expanding plant species than on the congeneric native plant species, whereas the aphids showed no difference. The shoot herbivores reduced the biomass of the native plants more than they did that of the congeneric range expanders. Also, the range-expanding plants developed fewer pathogenic effects in their root-zone soil than did the related native species. Current predictions forecast biodiversity loss due to limitations in the ability of species to adjust to climate warming conditions in their range. Our results strongly suggest that the plants that shift ranges towards higher latitudes and altitudes may include potential invaders, as the successful range expanders may experience less control by above-ground or below-ground enemies than the natives.

  18. Test Plan for the Boiling Water Reactor Dry Cask Simulator

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Durbin, Samuel; Lindgren, Eric R.

    The thermal performance of commercial nuclear spent fuel dry storage casks are evaluated through detailed numerical analysis . These modeling efforts are completed by the vendor to demonstrate performance and regulatory compliance. The calculations are then independently verified by the Nuclear Regulatory Commission (NRC). Carefully measured data sets generated from testing of full sized casks or smaller cask analogs are widely recognized as vital for validating these models. Recent advances in dry storage cask designs have significantly increased the maximum thermal load allowed in a cask in part by increasing the efficiency of internal conduction pathways and by increasing themore » internal convection through greater canister helium pressure. These same vertical, canistered cask systems rely on ventilation between the canister and the overpack to convect heat away from the canister to the environment for both above and below-ground configurations. While several testing programs have been previously conducted, these earlier validation attempts did not capture the effects of elevated helium pressures or accurately portray the external convection of above-ground and below-ground canistered dry cask systems. The purpose of the investigation described in this report is to produce a data set that can be used to test the validity of the assumptions associated with the calculations presently used to determine steady-state cladding temperatures in modern vertical, canistered dry cask systems. The BWR cask simulator (BCS) has been designed in detail for both the above-ground and below-ground venting configurations. The pressure vessel representing the canister has been designed, fabricated, and pressure tested for a maximum allowable pressure (MAWP) rating of 24 bar at 400 deg C. An existing electrically heated but otherwise prototypic BWR Incoloy-clad test assembly is being deployed inside of a representative storage basket and cylindrical pressure vessel that

  19. Improvement of dry matter digestibility of water hyacinth by solid state fermentation using white rot fungi.

    PubMed

    Mukherjee, R; Ghosh, M; Nandi, B

    2004-08-01

    Feeding value of water hyacinth biomass colonized by three species of white rot fungi during solid-state fermentation was investigated. All three organisms proved to be efficient degraders and enhanced dry matter digestibility. Loss of organic matter was maximum (23.6+/-0.1% dry wt) after 48 days by P. ostreatus. C. indica showed maximum cellulose degradation (18.5+/-0.1% dry wt) than other two fungi after 48 days of incubation. In all cases, an extensive removal of hemicellulose at the initial growth period and a delayed degradation of lignin were observed. Hemicellulolysis was maximum (46.3+/-0.1% dry wt) by C. indica, but delignification (14.2+/-0.2% dry wt) by P. sajor-caju after 48 days. The amount of reducing sugar in the degraded biomass decreased at early stages, but increased as degradation progressed in all three cases (maximum 1.1+/-0.05% dry wt after 48 days by C. indica). Soluble nitrogen content increased only during 16-32 days of incubation (highest 1.1+/-0.1% dry wt after 32 days by P. sajor-caju). Crude protein of the bioconverted biomass increased gradually up to 32 days but decreased thereafter (maximum 10.3+/-0.1% dry wt after 32 days by P. sajor - caju). Per cent change in in vitro dry matter digestibility of degraded substrates enhanced gradually after 8 days and reached maximum after 32 days but thereafter decreased (highest + 20.4+/-0.3% dry wt by P. sajor-caju). The results demonstrated the efficient degrading capacity of the test fungi and their potential use in conversion of water hyacinth biomass into mycoprotein-rich ruminant feed, more so by P. sajor-caju.

  20. Above Ground Field Evaluation and GC-MS Analysis of Naturally Durable Wood Species

    Treesearch

    G.T. Kirker; A.B. Blodgett; S.T. Lebow; C.A. Clausen

    2012-01-01

    Nine wood species are being evaluated in above ground field studies in Mississippi and Wisconsin. Candidate naturally durable wood (NDW) species are being rated at yearly intervals for resistance to decay, cupping, and checking. Field ratings after 12 months exposure are presented. To date, Paulownia tomentosa (PAW) and southern yellow pine (SYP)...

  1. Microbial Community Analysis of Naturally Durable Wood in an Above Ground Field Test

    Treesearch

    G.T. Kirker; S.V. Diehl; P.K. Lebow

    2014-01-01

    This paper presents preliminary results of an above ground field test wherein eight naturally durable wood species were exposed concurrently at two sites in North America. Surface samples were taken at regular intervals from non-durable controls and compared to their more durable counterparts. Terminal Restriction Fragment Length Polymorphism was performed to...

  2. Land-use type and intensity differentially filter traits in above- and below-ground arthropod communities.

    PubMed

    Birkhofer, Klaus; Gossner, Martin M; Diekötter, Tim; Drees, Claudia; Ferlian, Olga; Maraun, Mark; Scheu, Stefan; Weisser, Wolfgang W; Wolters, Volkmar; Wurst, Susanne; Zaitsev, Andrey S; Smith, Henrik G

    2017-05-01

    Along with the global decline of species richness goes a loss of ecological traits. Associated biotic homogenization of animal communities and narrowing of trait diversity threaten ecosystem functioning and human well-being. High management intensity is regarded as an important ecological filter, eliminating species that lack suitable adaptations. Below-ground arthropods are assumed to be less sensitive to such effects than above-ground arthropods. Here, we compared the impact of management intensity between (grassland vs. forest) and within land-use types (local management intensity) on the trait diversity and composition in below- and above-ground arthropod communities. We used data on 722 arthropod species living above-ground (Auchenorrhyncha and Heteroptera), primarily in soil (Chilopoda and Oribatida) or at the interface (Araneae and Carabidae). Our results show that trait diversity of arthropod communities is not primarily reduced by intense local land use, but is rather affected by differences between land-use types. Communities of Auchenorrhyncha and Chilopoda had significantly lower trait diversity in grassland habitats as compared to forests. Carabidae showed the opposite pattern with higher trait diversity in grasslands. Grasslands had a lower proportion of large Auchenorrhyncha and Carabidae individuals, whereas Chilopoda and Heteroptera individuals were larger in grasslands. Body size decreased with land-use intensity across taxa, but only in grasslands. The proportion of individuals with low mobility declined with land-use intensity in Araneae and Auchenorrhyncha, but increased in Chilopoda and grassland Heteroptera. The proportion of carnivorous individuals increased with land-use intensity in Heteroptera in forests and in Oribatida and Carabidae in grasslands. Our results suggest that gradients in management intensity across land-use types will not generally reduce trait diversity in multiple taxa, but will exert strong trait filtering within

  3. Use of neural image analysis methods in the process to determine the dry matter content in the compost

    NASA Astrophysics Data System (ADS)

    Wojcieszak, D.; Przybył, J.; Lewicki, A.; Ludwiczak, A.; Przybylak, A.; Boniecki, P.; Koszela, K.; Zaborowicz, M.; Przybył, K.; Witaszek, K.

    2015-07-01

    The aim of this research was investigate the possibility of using methods of computer image analysis and artificial neural networks for to assess the amount of dry matter in the tested compost samples. The research lead to the conclusion that the neural image analysis may be a useful tool in determining the quantity of dry matter in the compost. Generated neural model may be the beginning of research into the use of neural image analysis assess the content of dry matter and other constituents of compost. The presented model RBF 19:19-2-1:1 characterized by test error 0.092189 may be more efficient.

  4. Above- and below-ground effects of aspen clonal regeneration and succession to conifers

    Treesearch

    Wayne D. Shepperd; Dale L. Bartos; Stephen A. Mata

    2001-01-01

    Above- and below-ground characteristics were measured and compared for six sets of paired trembling aspen (Populus tremuloides Michx.) clones on the Fishlake National Forest in central Utah. Three self-regenerating clones were compared with three non-regenerating clones and three pure aspen stands were compared with three mixed aspen-conifer stands. Regenerating clones...

  5. Above ground drip application practices alter water productivity of Malbec grapevines under sustained deficit

    USDA-ARS?s Scientific Manuscript database

    The influence of irrigation event frequency on water productivity, yield components, and berry maturity under two severities of sustained deficit irrigation was evaluated in field grown Malbec grapevines (Vitis vinifera L.) over three growing seasons. Above ground drip was used to supply vines with ...

  6. A Comparison of Two Above-Ground Biomass Estimation Techniques Integrating Satellite-Based Remotely Sensed Data and Ground Data for Tropical and Semiarid Forests in Puerto Rico

    EPA Science Inventory

    Two above-ground forest biomass estimation techniques were evaluated for the United States Territory of Puerto Rico using predictor variables acquired from satellite based remotely sensed data and ground data from the U.S. Department of Agriculture Forest Inventory Analysis (FIA)...

  7. Environmental Controls on Above-Ground Biomass in the Taita Hills, Kenya

    NASA Astrophysics Data System (ADS)

    Adhikari, H.; Heiskanen, J.; Siljander, M.; Maeda, E. E.; Heikinheimo, V.; Pellikka, P.

    2016-12-01

    Tropical forests are globally significant ecosystems which maintain high biodiversity and provide valuable ecosystem services, including carbon sink, climate change mitigation and adaptation. This ecosystem has been severely degraded for decades. However, the magnitude and spatial patterns of the above ground biomass (AGB) in the tropical forest-agriculture landscapes is highly variable, even under the same climatic condition and land use. This work aims 1) to generate wall-to-wall map of AGB density for the Taita Hills in Kenya based on field measurements and airborne laser scanning (ALS) and 2) to examine environmental controls on AGB using geospatial data sets on topography, soils, climate and land use, and statistical modelling. The study area (67000 ha) is located in the northernmost part of the Eastern Arc Mountains of Kenya and Tanzania, and the highest hilltops reach over 2200 m in elevation. Most of the forest area has been cleared for croplands and agroforestry, and hills are surrounded by the semi-arid scrublands and dry savannah at an elevation of 600-900 m a.s.l. As a result, the current land cover is a mosaic of various types of land cover and land use. The field measurements were carried out in total of 216 plots in 2013-2015 for AGB computations and ALS flights were conducted in 2014-2015. AGB map at 30 m x 30 m resolution was implemented using multiple linear regression based on ALS variables derived from the point cloud, namely canopy cover and 25 percentile height of ALS returns (R2 = 0.88). Boosted regression trees (BRT) was used for examining the relationship between AGB and explanatory variables, which were derived from ALS-based high resolution DEM (2 m resolution), soil database, downscaled climate data and land cover/use maps based on satellite image analysis. The results of these analyses will be presented in the conference.

  8. [Effects of different colored plastic film mulching and planting density on dry matter accumulation and yield of spring maize.

    PubMed

    Zhang, Lin Lin; Sun, Shi Jun; Chen, Zhi Jun; Jiang, Hao; Zhang, Xu Dong; Chi, Dao Cai

    2018-01-01

    In order to investigate the effect of different colored plastic film mulching and planting density on spring maize dry matter accumulation and yield in the rain-fed area of the Northeast China, a complete combination field experiment which was comprised by three types of mulching (non-mulching, transparent plastic film mulching and black plastic film mulching) and five densities (60000, 67500, 75000, 82500 and 90000 plants·hm -2 ), was conducted to analyze the water and heat effect, dry matter accumulation and yield of spring maize (Liangyu 99). The results showed that, compared with the other mulching treatments, the black plastic film mulching treatment significantly increased the maize dry matter accumulation and maize biomass by 3.2%-8.2%. In mature stage, the biomass increased firstly and then decreased with the increasing plant density. When planting density was 82500 plants·hm -2 , the biomass was the highest, which was 5.2%-28.3% higher than that of other plant density treatments. The mean soil temperature in prophase of transparent plastic film mulching treatment was 0.4-2.7 ℃ higher than that of other treatments, which accelerated the maize growth process and augmented the dry matter transportation amount (T), dry matter transportation efficiency (TE) and contribution rate of dry matter transportation to the grain yield (TC) of maize stalk and leaf. The T, TE, TC of leaf and leaf-stalk under 60000 plants·hm -2 treatment were the highest. The highest T, TE, TC of stalk were observed under 75000 plants·hm -2 treatment. In heading period, the water consumption and daily water consumption intensity of maize under the treatment of black film mulching were the largest, which were 9.4%-10.6% and 10.6%-24.5% higher than that of other mulching treatments, respectively. The highest water consumption and daily water consumption intensity were both obtained under 90000 plants·hm -2 treatment, which increased by 6.8%-15.7% and 7.0%-20.0% compared with other

  9. Comparison and Intercalibration of Vegetation Indices from Different Sensors for Monitoring Above-Ground Plant Nitrogen Uptake in Winter Wheat

    PubMed Central

    Yao, Xinfeng; Yao, Xia; Jia, Wenqing; Tian, Yongchao; Ni, Jun; Cao, Weixing; Zhu, Yan

    2013-01-01

    Various sensors have been used to obtain the canopy spectral reflectance for monitoring above-ground plant nitrogen (N) uptake in winter wheat. Comparison and intercalibration of spectral reflectance and vegetation indices derived from different sensors are important for multi-sensor data fusion and utilization. In this study, the spectral reflectance and its derived vegetation indices from three ground-based sensors (ASD Field Spec Pro spectrometer, CropScan MSR 16 and GreenSeeker RT 100) in six winter wheat field experiments were compared. Then, the best sensor (ASD) and its normalized difference vegetation index (NDVI (807, 736)) for estimating above-ground plant N uptake were determined (R2 of 0.885 and RMSE of 1.440 g·N·m−2 for model calibration). In order to better utilize the spectral reflectance from the three sensors, intercalibration models for vegetation indices based on different sensors were developed. The results indicated that the vegetation indices from different sensors could be intercalibrated, which should promote application of data fusion and make monitoring of above-ground plant N uptake more precise and accurate. PMID:23462622

  10. Entanglement entropy for 2D gauge theories with matters

    NASA Astrophysics Data System (ADS)

    Aoki, Sinya; Iizuka, Norihiro; Tamaoka, Kotaro; Yokoya, Tsuyoshi

    2017-08-01

    We investigate the entanglement entropy in 1 +1 -dimensional S U (N ) gauge theories with various matter fields using the lattice regularization. Here we use extended Hilbert space definition for entanglement entropy, which contains three contributions; (1) classical Shannon entropy associated with superselection sector distribution, where sectors are labeled by irreducible representations of boundary penetrating fluxes, (2) logarithm of the dimensions of their representations, which is associated with "color entanglement," and (3) EPR Bell pairs, which give "genuine" entanglement. We explicitly show that entanglement entropies (1) and (2) above indeed appear for various multiple "meson" states in gauge theories with matter fields. Furthermore, we employ transfer matrix formalism for gauge theory with fundamental matter field and analyze its ground state using hopping parameter expansion (HPE), where the hopping parameter K is roughly the inverse square of the mass for the matter. We evaluate the entanglement entropy for the ground state and show that all (1), (2), (3) above appear in the HPE, though the Bell pair part (3) appears in higher order than (1) and (2) do. With these results, we discuss how the ground state entanglement entropy in the continuum limit can be understood from the lattice ground state obtained in the HPE.

  11. Impact of mild heat stress on dry matter intake, milk yield and milk composition in mid-lactation Holstein dairy cows in a temperate climate.

    PubMed

    Gorniak, Tobias; Meyer, Ulrich; Südekum, Karl-Heinz; Dänicke, Sven

    2014-01-01

    The aim of the present study was to evaluate the impact of summer temperatures in a temperate climate on mid-lactation Holstein dairy cows. Therefore, a data set was examined comprising five trials with dairy cows conducted at the experimental station of the Friedrich-Loeffler-Institute in Braunschweig, Germany. The temperature-humidity index (THI) was calculated using temperature and humidity data from the barns recorded between January 2010 and July 2012. By using a generalised additive mixed model, the impact of increasing THI on dry matter intake, milk yield and milk composition was evaluated. Dry matter intake and milk yield decreased when THI rose above 60, whilst water intake increased in a linear manner beyond THI 30. Furthermore, milk protein and milk fat content decreased continuously with increasing THI. The present results revealed that heat stress exists in Lower Saxony, Germany. However, further research is necessary to describe the mode of action of heat stress. Especially, mild heat stress has to be investigated in more detail and appropriate heat stress thresholds for temperate climates have to be developed.

  12. Balance between salt stress and endogenous hormones influence dry matter accumulation in Jerusalem artichoke.

    PubMed

    Shao, Tianyun; Li, Lingling; Wu, Yawen; Chen, Manxia; Long, Xiaohua; Shao, Hongbo; Liu, Zhaopu; Rengel, Zed

    2016-10-15

    Salinity is one of the most serious environmental stresses limiting agricultural production. Production of Jerusalem artichoke on saline land is strategically important for using saline land resources. The interaction between plant hormones and salinity stress in governing Jerusalem artichoke (Helianthus tuberosus) growth is unclear. Jerusalem artichoke (variety Nanyu-1) was grown under variable salinity stress in the field, and a role of endogenous hormones [zeatin (ZT), auxins (IAA), gibberellins (GA3) and abscisic acid (ABA)] in regulating sugar and dry matter accumulation in tubers was characterized. Under mild salt stress (≤2.2gNaClkg(-1) soil), Nanyu-1 grew well with no significant alteration of dry matter distribution to stems and tubers. In contrast, under moderate salt stress (2.7gNaClkg(-1) soil), the distribution to stem decreased and to tubers decreased significantly. Mild salt stress induced sugar accumulation in tubers at the beginning of the tuber-expansion period, but significantly inhibited (i) transfer of non-reducing sugars to tubers, and (ii) polymerization and accumulation of fructan during the tuber-expansion stage. Under different salinity stress, before the stolon growth, the ratio of IAA/ABA in leaves increased significantly and that of GA3/ABA increased slightly; during tuber development, these ratios continued to decrease and reached the minimum late in the tuber-expansion period. While, salt stress inhibited (i) underground dry matter accumulation, (ii) tuber dry matter accumulation efficiency, (iii) transport of non-reducing sugars to tubers, and (iv) fructan accumulation efficiency during the tuber-expansion period; these effects were accompanied by significantly decreased tuber yield with an increase in salinity. With soil salinity increasing, the synthesis of IAA and GA3 was inhibited in leaves and tubers, while ABA synthesis was stimulated. In brief, tuber yield would significantly decreased with the increase of salinity

  13. The Development of Project Orion Ground Safety Requirements

    NASA Technical Reports Server (NTRS)

    Kirkpatrick, Paul; Condzella, Bill; Williams, Jeff

    2011-01-01

    In spite of a very compressed schedule, Project Orion's AFT safety team was able to pull together a comprehensive set of ground safety requirements using existing requirements and subject matter experts. These requirements will serve as the basis for the design of GSE and ground operations. Using the above lessons as a roadmap, new Projects can produce the same results. A rigorous set of ground safety requirements is required to assure ground support equipment (GSE) and associated flight hardware ground operations are conducted safety

  14. Above- and below-ground characteristics associated with wind toppling in a young Populus plantation.

    Treesearch

    Constance A. Harrington; Dean S. DeBell

    1996-01-01

    Damage from a dormant-season windstorm in a 3-year-old Populus research trial differed among four clones and three spacings and between monoclonal and polyclonal plots. Clonal differences in susceptibility to toppling (or leaning) were associated with both above and below-ground characteristics. Susceptible clones had less taper in the lower stem...

  15. Dry Matter Losses and Greenhouse Gas Emissions From Outside Storage of Short Rotation Coppice Willow Chip.

    PubMed

    Whittaker, Carly; Yates, Nicola E; Powers, Stephen J; Misselbrook, Tom; Shield, Ian

    This study examined the dry matter losses and the greenhouse gas (GHG) concentrations within two short rotation coppice (SRC) willow wood chip storage heaps. One heap was built on a grassland area (East Midlands) and the other (Rothamsted) on a concrete hard standing. A series of 1- and 3-m probes were embedded in the heaps in order to retrieve gas samples for analysis, and pre-weighed net bags were positioned in the core of the heap to detect dry matter losses. The bagged samples showed dry matter losses of 18 and 19 % in the East Midlands and Rothamsted heaps after 210 and 97 days storage, respectively. The Rothamsted heap showed a whole-heap dry matter loss of 21 %. During this time, the wood chips dried from 54 to 39 % moisture content in the East Midlands heap and 50 to 43 % at Rothamsted. The results from analysing the whole Rothamsted heap indicated an overall loss of 1.5 GJ per tonne stored, although measurements from bagged samples in the core suggested that the chips dried sufficiently to have a minimal energy loss from storage. The process of mixing the heap, however, led to incorporation of wet outer layers and hence the average moisture content was higher in an average sample of chip. After establishment of the heaps, the temperature rose rapidly and this correlated with a peak in carbon dioxide (CO 2 ) concentration within the heap. A peak in methane (CH 4 ) concentration was also detected in both heaps, though more noticeably in the East Midlands heap after around 55 days. In both instances, the peak CH 4 concentration occurred as CO 2 concentrations dropped, suggesting that after an active period of aerobic decomposition in the first 2 months of storage, the conditions in the heap became anaerobic. The results from this study suggest that outside wood chip storage is not an efficient method of storing biomass, though this may be location-specific as there are some studies showing lower dry matter losses. It is necessary to explore other

  16. 18O Spatial Patterns of Vein Xylem Water, Leaf Water, and Dry Matter in Cotton Leaves

    PubMed Central

    Gan, Kim Suan; Wong, Suan Chin; Yong, Jean Wan Hong; Farquhar, Graham Douglas

    2002-01-01

    Three leaf water models (two-pool model, Péclet effect, and string-of-lakes) were assessed for their robustness in predicting leaf water enrichment and its spatial heterogeneity. This was achieved by studying the 18O spatial patterns of vein xylem water, leaf water, and dry matter in cotton (Gossypium hirsutum) leaves grown at different humidities using new experimental approaches. Vein xylem water was collected from intact transpiring cotton leaves by pressurizing the roots in a pressure chamber, whereas the isotopic content of leaf water was determined without extracting it from fresh leaves with the aid of a purpose-designed leaf punch. Our results indicate that veins have a significant degree of lateral exchange with highly enriched leaf water. Vein xylem water is thus slightly, but progressively enriched in the direction of water flow. Leaf water enrichment is dependent on the relative distances from major veins, with water from the marginal and intercostal regions more enriched and that next to veins and near the leaf base more depleted than the Craig-Gordon modeled enrichment of water at the sites of evaporation. The spatial pattern of leaf water enrichment varies with humidity, as expected from the string-of-lakes model. This pattern is also reflected in leaf dry matter. All three models are realistic, but none could fully account for all of the facets of leaf water enrichment. Our findings acknowledge the presence of capacitance in the ground tissues of vein ribs and highlight the essential need to incorporate Péclet effects into the string-of-lakes model when applying it to leaves. PMID:12376664

  17. Arctic ecosystem functional zones: identification and quantification using an above and below ground monitoring strategy

    NASA Astrophysics Data System (ADS)

    Hubbard, Susan S.; Ajo-Franklin, Jonathan B.; Dafflon, Baptiste; Dou, Shan; Kneafsey, Tim J.; Peterson, John E.; Tas, Neslihan; Torn, Margaret S.; Phuong Tran, Anh; Ulrich, Craig; Wainwright, Haruko; Wu, Yuxin; Wullschleger, Stan

    2015-04-01

    Although accurate prediction of ecosystem feedbacks to climate requires characterization of the properties that influence terrestrial carbon cycling, performing such characterization is challenging due to the disparity of scales involved. This is particularly true in vulnerable Arctic ecosystems, where microbial activities leading to the production of greenhouse gasses are a function of small-scale hydrological, geochemical, and thermal conditions influenced by geomorphology and seasonal dynamics. As part of the DOE Next-Generation Ecosystem Experiment (NGEE-Arctic), we are advancing two approaches to improve the characterization of complex Arctic ecosystems, with an initial application to an ice-wedge polygon dominated tundra site near Barrow, AK, USA. The first advance focuses on developing a new strategy to jointly monitor above- and below- ground properties critical for carbon cycling in the tundra. The strategy includes co-characterization of properties within the three critical ecosystem compartments: land surface (vegetation, water inundation, snow thickness, and geomorphology); active layer (peat thickness, soil moisture, soil texture, hydraulic conductivity, soil temperature, and geochemistry); and permafrost (mineral soil and ice content, nature, and distribution). Using a nested sampling strategy, a wide range of measurements have been collected at the study site over the past three years, including: above-ground imagery (LiDAR, visible, near infrared, NDVI) from various platforms, surface geophysical datasets (electrical, electromagnetic, ground penetrating radar, seismic), and point measurements (such as CO2 and methane fluxes, soil properties, microbial community composition). A subset of the coincident datasets is autonomously collected daily. Laboratory experiments and new inversion approaches are used to improve interpretation of the field geophysical datasets in terms of ecosystem properties. The new strategy has significantly advanced our ability

  18. Leaf mass per area, not total leaf area, drives differences in above-ground biomass distribution among woody plant functional types.

    PubMed

    Duursma, Remko A; Falster, Daniel S

    2016-10-01

    Here, we aim to understand differences in biomass distribution between major woody plant functional types (PFTs) (deciduous vs evergreen and gymnosperm vs angiosperm) in terms of underlying traits, in particular the leaf mass per area (LMA) and leaf area per unit stem basal area. We used a large compilation of plant biomass and size observations, including observations of 21 084 individuals on 656 species. We used a combination of semiparametric methods and variance partitioning to test the influence of PFT, plant height, LMA, total leaf area, stem basal area and climate on above-ground biomass distribution. The ratio of leaf mass to above-ground woody mass (MF /MS ) varied strongly among PFTs. We found that MF /MS at a given plant height was proportional to LMA across PFTs. As a result, the PFTs did not differ in the amount of leaf area supported per unit above-ground biomass or per unit stem basal area. Climate consistently explained very little additional variation in biomass distribution at a given plant size. Combined, these results demonstrate consistent patterns in above-ground biomass distribution and leaf area relationships among major woody PFTs, which can be used to further constrain global vegetation models. © 2016 The Authors. New Phytologist © 2016 New Phytologist Trust.

  19. Underground and ground-level particulate matter concentrations in an Italian metro system

    NASA Astrophysics Data System (ADS)

    Cartenì, Armando; Cascetta, Furio; Campana, Stefano

    2015-01-01

    All around the world, many studies and experimental results have assessed elevated concentrations of Particulate Matter (PM) in underground metro systems, with non-negligible implications for human health due to protracted exposure to fine particles. Starting from this consideration, an intensive particulate sampling campaign was carried out in January 2014 measuring the PM concentrations in the Naples (Italy) Metro Line 1, both at station platforms and inside trains. Naples Metro Line 1 is about 18 km long, with 17 stations (3 ground-level and 14 below-ground ones). Experimental results show that the average PM10 concentrations measured in the underground station platforms range between 172 and 262 μg/m3 whilst the average PM2.5 concentrations range between 45 and 60 μg/m3. By contrast, in ground-level stations no significant difference between stations platforms and urban environment measurements was observed. Furthermore, a direct correlation between trains passage and PM concentrations was observed, with an increase up to 42% above the average value. This correlation is possibly caused by the re-suspension of the particles due to the turbulence induced by trains. The main original finding was the real-time estimations of PM levels inside the trains travelling both in ground-level and underground sections of Line 1. The results show that high concentrations of both PM10 (average values between 58 μg/m3 and 138 μg/m3) and PM2.5 (average values between 18 μg/m3 and 36 μg/m3) were also measured inside trains. Furthermore, measurements show that windows left open on trains caused the increase in PM concentrations inside trains in the underground section, while in the ground-level section the clean air entering the trains produced an environmental "washing effect". Finally, it was estimated that every passenger spends on average about 70 min per day exposed to high levels of PM.

  20. Pasting and rheological properties of oat products dry-blended with ground chia seeds

    USDA-ARS?s Scientific Manuscript database

    Oat products containing ß-glucan are documented for lowering blood cholesterol that could be beneficial for preventing coronary heart disease. Oat products (oat flour, oat bran concentrate, and Nutrim) were dry-blended with ground chia (Salvia hispanica L.) that contains omega-3 polyunsaturated fatt...

  1. Non-pulp utilization of above-ground biomass of mixed-species forests of small trees

    Treesearch

    P. Koch

    1982-01-01

    This soulution propose to rehabilitate annually- by clear felling, site preparation, and planting- 25,000 acres of level to rolling land averaging about490 cubic feet per acre of stemwood in small hardwood trees 5 inches in diameter at breast height (dbh) and larger, and of many species, plus all equal volume of above-ground biomass in stembark and tops, and in trees...

  2. Disease ecology across soil boundaries: effects of below-ground fungi on above-ground host–parasite interactions

    PubMed Central

    Tao, Leiling; Gowler, Camden D.; Ahmad, Aamina; Hunter, Mark D.; de Roode, Jacobus C.

    2015-01-01

    Host–parasite interactions are subject to strong trait-mediated indirect effects from other species. However, it remains unexplored whether such indirect effects may occur across soil boundaries and connect spatially isolated organisms. Here, we demonstrate that, by changing plant (milkweed Asclepias sp.) traits, arbuscular mycorrhizal fungi (AMF) significantly affect interactions between a herbivore (the monarch butterfly Danaus plexippus) and its protozoan parasite (Ophryocystis elektroscirrha), which represents an interaction across four biological kingdoms. In our experiment, AMF affected parasite virulence, host resistance and host tolerance to the parasite. These effects were dependent on both the density of AMF and the identity of milkweed species: AMF indirectly increased disease in monarchs reared on some species, while alleviating disease in monarchs reared on other species. The species-specificity was driven largely by the effects of AMF on both plant primary (phosphorus) and secondary (cardenolides; toxins in milkweeds) traits. Our study demonstrates that trait-mediated indirect effects in disease ecology are extensive, such that below-ground interactions between AMF and plant roots can alter host–parasite interactions above ground. In general, soil biota may play an underappreciated role in the ecology of many terrestrial host–parasite systems. PMID:26468247

  3. Disease ecology across soil boundaries: effects of below-ground fungi on above-ground host-parasite interactions.

    PubMed

    Tao, Leiling; Gowler, Camden D; Ahmad, Aamina; Hunter, Mark D; de Roode, Jacobus C

    2015-10-22

    Host-parasite interactions are subject to strong trait-mediated indirect effects from other species. However, it remains unexplored whether such indirect effects may occur across soil boundaries and connect spatially isolated organisms. Here, we demonstrate that, by changing plant (milkweed Asclepias sp.) traits, arbuscular mycorrhizal fungi (AMF) significantly affect interactions between a herbivore (the monarch butterfly Danaus plexippus) and its protozoan parasite (Ophryocystis elektroscirrha), which represents an interaction across four biological kingdoms. In our experiment, AMF affected parasite virulence, host resistance and host tolerance to the parasite. These effects were dependent on both the density of AMF and the identity of milkweed species: AMF indirectly increased disease in monarchs reared on some species, while alleviating disease in monarchs reared on other species. The species-specificity was driven largely by the effects of AMF on both plant primary (phosphorus) and secondary (cardenolides; toxins in milkweeds) traits. Our study demonstrates that trait-mediated indirect effects in disease ecology are extensive, such that below-ground interactions between AMF and plant roots can alter host-parasite interactions above ground. In general, soil biota may play an underappreciated role in the ecology of many terrestrial host-parasite systems. © 2015 The Author(s).

  4. Dry matter yields and quality of forages derived from grass species and organic production methods (year 111).

    PubMed

    Pholsen, S; Rodchum, P; Higgs, D E B

    2014-07-01

    This third year work was carried on at Khon Kaen University during the 2008-2009 to investigate dry matter yields of grass, grass plus legumes, grown on Korat soil series (Oxic Paleustults). The experiment consisted of twelve-treatment combinations of a 3x4 factorial arranged in a Randomized Complete Block Design (RCBD) with four replications. The results showed that Dry Matter Yields (DMY) of Ruzi and Guinea grass were similar with mean values of 6,585 and 6,130 kg ha(-1) whilst Napier gave the lowest (884 kg ha(-1)). With grass plus legume, grass species and production methods gave highly significant dry matter yields where Guinea and Ruzi gave dry matter yields of 7,165 and 7,181 kg ha(-1), respectively and Napier was the least (2,790 kg ha(-1)). The production methods with the use of cattle manure gave the highest DMY (grass alone) of 10,267 kg ha(-1) followed by Wynn and Verano with values of 6,064 and 3,623 kg ha(-1), respectively. Guinea plus cattle manure gave the highest DMY of 14,599 kg ha(-1) whilst Ruzi gave 12,977 kg ha(-1). Guinea plus Wynn gave DMY of 7,082 kg ha(-1). Ruzi plus Verano gave DMY of 6,501 kg ha(-1). Forage qualities of crude protein were highest with those grown with grass plus legumes. Some prospects in improving production were discussed.

  5. A comparison of two above-ground biomass estimation techniques integrating satellite-based remotely sensed data and ground data for tropical and semiarid forests in Puerto Rico

    NASA Astrophysics Data System (ADS)

    Iiames, J. S.; Riegel, J.; Lunetta, R.

    2013-12-01

    Two above-ground forest biomass estimation techniques were evaluated for the United States Territory of Puerto Rico using predictor variables acquired from satellite based remotely sensed data and ground data from the U.S. Department of Agriculture Forest Inventory Analysis (FIA) program. The U.S. Environmental Protection Agency (EPA) estimated above-ground forest biomass implementing methodology first posited by the Woods Hole Research Center developed for conterminous United States (National Biomass and Carbon Dataset [NBCD2000]). For EPA's effort, spatial predictor layers for above-ground biomass estimation included derived products from the U.S. Geologic Survey (USGS) National Land Cover Dataset 2001 (NLCD) (landcover and canopy density), the USGS Gap Analysis Program (forest type classification), the USGS National Elevation Dataset, and the NASA Shuttle Radar Topography Mission (tree heights). In contrast, the U.S. Forest Service (USFS) biomass product integrated FIA ground-based data with a suite of geospatial predictor variables including: (1) the Moderate Resolution Imaging Spectrometer (MODIS)-derived image composites and percent tree cover; (2) NLCD land cover proportions; (3) topographic variables; (4) monthly and annual climate parameters; and (5) other ancillary variables. Correlations between both data sets were made at variable watershed scales to test level of agreement. Notice: This work is done in support of EPA's Sustainable Healthy Communities Research Program. The U.S EPA funded and conducted the research described in this paper. Although this work was reviewed by the EPA and has been approved for publication, it may not necessarily reflect official Agency policy. Mention of any trade names or commercial products does not constitute endorsement or recommendation for use.

  6. Dry deposition of PM2.5 sulfate above a hilly forest using relaxed eddy accumulation

    NASA Astrophysics Data System (ADS)

    Matsuda, Kazuhide; Watanabe, Ichiro; Mizukami, Kou; Ban, Satomi; Takahashi, Akira

    2015-04-01

    Sulfur compounds continue to be an important component of atmospheric deposition in East Asia. In order to better understand the dry deposition of PM2.5 sulfate, which is one of the most significant transboundary air pollutants in this region, we measured the dry deposition flux of PM2.5 sulfate above a hilly forest of the Field Museum Tamakyuryo (FM Tama) site in suburban Tokyo. We used the relaxed eddy accumulation (REA) method and took measurements during the summer, from 26 July to 2 August 2013, and the autumn, from 18 to 22 November 2013. We primarily focused on the evaluation of dry deposition above a forest on complex terrain. The total flux and 80% of the runs showed downward flux. The deposition velocities measured by the REA method during times when the wind direction was from a relatively uniform sloping surface over the forest were more reasonable than those measured when the wind direction was from a more complex surface. Using a resistance model that includes the effect of growth of hygroscopic aerosols, we inferred the deposition velocities during two experimental periods. When the fluxes were averaged for a long time (i.e., about 2 weeks) the inferred fluxes and deposition velocities were in reasonable agreement with the measurements. Although averages over long periods showed good agreement, the measured deposition velocities were distributed in a wider range than those inferred by the model. An increased range of deposition velocities was associated with flux footprints from complex terrain. It is possible that the agreements between measured and inferred fluxes or deposition velocities at the site are because the depositions of sulfate are largely controlled by surface factors rather than aerodynamic resistance.

  7. Emergent Ising degrees of freedom above a double-stripe magnetic ground state

    NASA Astrophysics Data System (ADS)

    Zhang, Guanghua; Flint, Rebecca

    2017-12-01

    Double-stripe magnetism [Q =(π /2 ,π /2 )] has been proposed as the magnetic ground state for both the iron-telluride and BaTi2Sb2O families of superconductors. Double-stripe order is captured within a J1-J2-J3 Heisenberg model in the regime J3≫J2≫J1 . Intriguingly, besides breaking spin-rotational symmetry, the ground-state manifold has three additional Ising degrees of freedom associated with bond ordering. Via their coupling to the lattice, they give rise to an orthorhombic distortion and to two nonuniform lattice distortions with wave vector (π ,π ) . Because the ground state is fourfold degenerate, modulo rotations in spin space, only two of these Ising bond order parameters are independent. Here, we introduce an effective field theory to treat all Ising order parameters, as well as magnetic order, and solve it within a large-N limit. All three transitions, corresponding to the condensations of two Ising bond order parameters and one magnetic order parameter are simultaneous and first order in three dimensions, but lower dimensionality, or equivalently weaker interlayer coupling, and weaker magnetoelastic coupling can split the three transitions, and in some cases allows for two separate Ising phase transitions above the magnetic one.

  8. Above- and below-ground carbon stocks in an indigenous tree (Mytilaria laosensis) plantation chronosequence in subtropical China.

    PubMed

    Ming, Angang; Jia, Hongyan; Zhao, Jinlong; Tao, Yi; Li, Yuanfa

    2014-01-01

    More than 60% of the total area of tree plantations in China is in subtropical, and over 70% of subtropical plantations consist of pure stands of coniferous species. Because of the poor ecosystem services provided by pure coniferous plantations and the ecological instability of these stands, a movement is under way to promote indigenous broadleaf plantation cultivation as a promising alternative. However, little is known about the carbon (C) stocks in indigenous broadleaf plantations and their dependence on stand age. Thus, we studied above- and below-ground biomass and C stocks in a chronosequence of Mytilaria laosensis plantations in subtropical China; stands were 7, 10, 18, 23, 29 and 33 years old. Our assessments included tree, shrub, herb and litter layers. We used plot-level inventories and destructive tree sampling to determine vegetation C stocks. We also measured soil C stocks by analyses of soil profiles to 100 cm depth. C stocks in the tree layer dominated the above-ground ecosystem C pool across the chronosequence. C stocks increased with age from 7 to 29 years and plateaued thereafter due to a reduction in tree growth rates. Minor C stocks were found in the shrub and herb layers of all six plantations and their temporal fluctuations were relatively small. C stocks in the litter and soil layers increased with stand age. Total above-ground ecosystem C also increased with stand age. Most increases in C stocks in below-ground and total ecosystems were attributable to increases in soil C content and tree biomass. Therefore, considerations of C sequestration potential in indigenous broadleaf plantations must take stand age into account.

  9. Above- and Below-Ground Carbon Stocks in an Indigenous Tree (Mytilaria laosensis) Plantation Chronosequence in Subtropical China

    PubMed Central

    Zhao, Jinlong; Tao, Yi

    2014-01-01

    More than 60% of the total area of tree plantations in China is in subtropical, and over 70% of subtropical plantations consist of pure stands of coniferous species. Because of the poor ecosystem services provided by pure coniferous plantations and the ecological instability of these stands, a movement is under way to promote indigenous broadleaf plantation cultivation as a promising alternative. However, little is known about the carbon (C) stocks in indigenous broadleaf plantations and their dependence on stand age. Thus, we studied above- and below-ground biomass and C stocks in a chronosequence of Mytilaria laosensis plantations in subtropical China; stands were 7, 10, 18, 23, 29 and 33 years old. Our assessments included tree, shrub, herb and litter layers. We used plot-level inventories and destructive tree sampling to determine vegetation C stocks. We also measured soil C stocks by analyses of soil profiles to 100 cm depth. C stocks in the tree layer dominated the above-ground ecosystem C pool across the chronosequence. C stocks increased with age from 7 to 29 years and plateaued thereafter due to a reduction in tree growth rates. Minor C stocks were found in the shrub and herb layers of all six plantations and their temporal fluctuations were relatively small. C stocks in the litter and soil layers increased with stand age. Total above-ground ecosystem C also increased with stand age. Most increases in C stocks in below-ground and total ecosystems were attributable to increases in soil C content and tree biomass. Therefore, considerations of C sequestration potential in indigenous broadleaf plantations must take stand age into account. PMID:25343446

  10. A comparison of the optical pulse characteristics of intracloud and cloud-to-ground lightning as observed above clouds

    NASA Technical Reports Server (NTRS)

    Goodman, Steven J.; Christian, Hugh J.; Rust, W. David

    1988-01-01

    The optical-pulse characteristics of intracloud (IC) and cloud-to-ground (CG) lightning flashes were investigated. The time-resolved optical waveforms at 777.4 nm and electric-field changes produced by lightning flashes were measured aboard a U2 aircraft flying above clouds at the same time that ground-based lightning measurements were carried out. The pulse shapes and intensities of IC and CG flashes, as viewed from above cloud, were found to exhibit remarkably similar waveshapes, radiances, and radiant energy densities. The median radiance at cloud top was found to be about 0.007 W/sq m per sr, and the median energy density about 0.000003 J/sq m per sr.

  11. Comparison of buried soil sensors, surface chambers and above ground measurements of carbon dioxide fluxes

    USDA-ARS?s Scientific Manuscript database

    Soil carbon dioxide (CO2) flux is an important component of the terrestrial carbon cycle. Accurate measurements of soil CO2 flux aids determinations of carbon budgets. In this study, we investigated soil CO2 fluxes with time and depth and above ground CO2 fluxes in a bare field. CO2 concentrations w...

  12. Dry matter losses and quality changes during short rotation coppice willow storage in chip or rod form.

    PubMed

    Whittaker, Carly; Yates, Nicola E; Powers, Stephen J; Misselbrook, Tom; Shield, Ian

    2018-05-01

    This study compares dry matter losses and quality changes during the storage of SRC willow as chips and as rods. A wood chip stack consisting of approximately 74 tonnes of fresh biomass, or 31 tonnes dry matter (DM) was built after harvesting in the spring. Three weeks later, four smaller stacks of rods with an average weight of 0.8 tonnes, or 0.4 tonnes DM were built. During the course of the experiment temperature recorders placed in the stacks found that the wood chip pile reached 60 °C within 10 days of construction, but the piles of rods remained mostly at ambient temperatures. Dry matter losses were calculated by using pre-weighed independent samples within the stacks and by weighing the whole stack before and after storage. After 6 months the wood chip stack showed a DM loss of between 19.8 and 22.6%, and mean losses of 23.1% were measured from the 17 independent samples. In comparison, the rod stacks showed an average stack DM loss of between 0 and 9%, and between 1.4% and 10.6% loss from the independent samples. Analysis of the stored material suggests that storing willow in small piles of rods produces a higher quality fuel in terms of lower moisture and ash content; however, it has a higher fine content compared to storage in chip form. Therefore, according to the two storage methods tested here, there may be a compromise between maximising the net dry matter yield from SRC willow and the final fine content of the fuel.

  13. Initial assessment on the use of cocoa pulp in complete feed formulation: in vitro dry matter and organic matter digestibility

    NASA Astrophysics Data System (ADS)

    Natsir, A.; Mujnisa, A.; Mide, M. Z.; Purnomo, N.; Saade, M. F.

    2018-05-01

    Cocoa pulp is a by-product from cocoa industry which is produced in large quantity, but very limited study has been carried out in utilizing it as energy source in animal feed. The purpose of this study was to assess the in vitro dry matter (IVDMD) and in vitro organic matter digestibility (IVOMD) of complete feed containing different levels of cocoa pulp. The experiment was carried out according to completely randomised design consisting of four treatments and three replications. The treatments were P0 = Complete feed containing 0% cocoa pulp, P1 = Complete feed containing 5% cocoa pulp, P2 = Complete feed containing 10% cocoa pulp, and P3 = Complete feed containing 15% cocoa pulp on dry matter basis. The results of the study indicated that the average IVDMD was 567, 538, 566, and 526 g kg-1 DM, while the average IVOMD was 522, 491, 502, and 461 g/kg DM, respectively for treatment P0, P1, P2, and P3. Statistical analysis indicated that increasing levels of coca pulp in the feed significantly affected (P<0.05) the IVDMD and IVOMD of the feed. In conclusion, cocoa pulp is potential to be used up to 10% in complete feed with corn cobs as the fibre source.

  14. Examining spectral properties of Landsat 8 OLI for predicting above-ground carbon of Labanan Forest, Berau

    NASA Astrophysics Data System (ADS)

    Suhardiman, A.; Tampubolon, B. A.; Sumaryono, M.

    2018-04-01

    Many studies revealed significant correlation between satellite image properties and forest data attributes such as stand volume, biomass or carbon stock. However, further study is still relevant due to advancement of remote sensing technology as well as improvement on methods of data analysis. In this study, the properties of three vegetation indices derived from Landsat 8 OLI were tested upon above-ground carbon stock data from 50 circular sample plots (30-meter radius) from ground survey in PT. Inhutani I forest concession in Labanan, Berau, East Kalimantan. Correlation analysis using Pearson method exhibited a promising results when the coefficient of correlation (r-value) was higher than 0.5. Further regression analysis was carried out to develop mathematical model describing the correlation between sample plots data and vegetation index image using various mathematical models.Power and exponential model were demonstrated a good result for all vegetation indices. In order to choose the most adequate mathematical model for predicting Above-ground Carbon (AGC), the Bayesian Information Criterion (BIC) was applied. The lowest BIC value (i.e. -376.41) shown by Transformed Vegetation Index (TVI) indicates this formula, AGC = 9.608*TVI21.54, is the best predictor of AGC of study area.

  15. Dry matter production and nutrient content of longan grown on an acid Ultisol

    USDA-ARS?s Scientific Manuscript database

    Little is known about the adaptability of longan (Dimocarpus longan) to acidic soils high in aluminum (Al). A 2-year field study was conducted to determine the effects of various levels of soil Al on dry matter production, plant growth, and nutrient content in shoots of four cultivars of longan. S...

  16. Emergent Ising degrees of freedom above a double-stripe magnetic ground state [Emergent Ising degrees of freedom above double-stripe magnetism

    DOE PAGES

    Zhang, Guanghua; Flint, Rebecca

    2017-12-27

    Here, double-stripe magnetism [Q=(π/2,π/2)] has been proposed as the magnetic ground state for both the iron-telluride and BaTi 2Sb 2O families of superconductors. Double-stripe order is captured within a J 1–J 2–J 3 Heisenberg model in the regime J 3 >> J 2 >> J 1. Intriguingly, besides breaking spin-rotational symmetry, the ground-state manifold has three additional Ising degrees of freedom associated with bond ordering. Via their coupling to the lattice, they give rise to an orthorhombic distortion and to two nonuniform lattice distortions with wave vector (π,π). Because the ground state is fourfold degenerate, modulo rotations in spin space,more » only two of these Ising bond order parameters are independent. Here, we introduce an effective field theory to treat all Ising order parameters, as well as magnetic order, and solve it within a large-N limit. All three transitions, corresponding to the condensations of two Ising bond order parameters and one magnetic order parameter are simultaneous and first order in three dimensions, but lower dimensionality, or equivalently weaker interlayer coupling, and weaker magnetoelastic coupling can split the three transitions, and in some cases allows for two separate Ising phase transitions above the magnetic one.« less

  17. Emergent Ising degrees of freedom above a double-stripe magnetic ground state [Emergent Ising degrees of freedom above double-stripe magnetism

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zhang, Guanghua; Flint, Rebecca

    Here, double-stripe magnetism [Q=(π/2,π/2)] has been proposed as the magnetic ground state for both the iron-telluride and BaTi 2Sb 2O families of superconductors. Double-stripe order is captured within a J 1–J 2–J 3 Heisenberg model in the regime J 3 >> J 2 >> J 1. Intriguingly, besides breaking spin-rotational symmetry, the ground-state manifold has three additional Ising degrees of freedom associated with bond ordering. Via their coupling to the lattice, they give rise to an orthorhombic distortion and to two nonuniform lattice distortions with wave vector (π,π). Because the ground state is fourfold degenerate, modulo rotations in spin space,more » only two of these Ising bond order parameters are independent. Here, we introduce an effective field theory to treat all Ising order parameters, as well as magnetic order, and solve it within a large-N limit. All three transitions, corresponding to the condensations of two Ising bond order parameters and one magnetic order parameter are simultaneous and first order in three dimensions, but lower dimensionality, or equivalently weaker interlayer coupling, and weaker magnetoelastic coupling can split the three transitions, and in some cases allows for two separate Ising phase transitions above the magnetic one.« less

  18. Impacts of an Invasive Non-Native Annual Weed, Impatiens glandulifera, on Above- and Below-Ground Invertebrate Communities in the United Kingdom

    PubMed Central

    Tanner, Robert A.; Varia, Sonal; Eschen, René; Wood, Suzy; Murphy, Sean T.; Gange, Alan C.

    2013-01-01

    Vegetation community composition and the above- and below-ground invertebrate communities are linked intrinsically, though few studies have assessed the impact of non-native plants on both these parts of the community together. We evaluated the differences in the above- (foliage- and ground-dwelling) and below-ground invertebrate communities in nine uninvaded plots and nine plots invaded by the annual invasive species Impatiens glandulifera, in the UK during 2007 and 2008. Over 139,000 invertebrates were identified into distinct taxa and categorised into functional feeding groups. The impact of I. glandulifera on the vegetation and invertebrate community composition was evaluated using multivariate statistics including principal response curves (PRC) and redundancy analysis (RDA). In the foliage-dwelling community, all functional feeding groups were less abundant in the invaded plots, and the species richness of Coleoptera and Heteroptera was significantly reduced. In the ground-dwelling community, herbivores, detritivores, and predators were all significantly less abundant in the invaded plots. In contrast, these functional groups in the below-ground community appeared to be largely unaffected, and even positively associated with the presence of I. glandulifera. Although the cover of I. glandulifera decreased in the invaded plots in the second year of the study, only the below-ground invertebrate community showed a significant response. These results indicate that the above- and below-ground invertebrate communities respond differently to the presence of I. glandulifera, and these community shifts can potentially lead to a habitat less biologically diverse than surrounding native communities; which could have negative impacts on higher trophic levels and ecosystem functioning. PMID:23840648

  19. Allocation, morphology, physiology, architecture: the multiple facets of plant above- and below-ground responses to resource stress.

    PubMed

    Freschet, Grégoire T; Violle, Cyrille; Bourget, Malo Y; Scherer-Lorenzen, Michael; Fort, Florian

    2018-06-01

    Plants respond to resource stress by changing multiple aspects of their biomass allocation, morphology, physiology and architecture. To date, we lack an integrated view of the relative importance of these plastic responses in alleviating resource stress and of the consistency/variability of these responses among species. We subjected nine species (legumes, forbs and graminoids) to nitrogen and/or light shortages and measured 11 above-ground and below-ground trait adjustments critical in the alleviation of these stresses (plus several underlying traits). Nine traits out of 11 showed adjustments that improved plants' potential capacity to acquire the limiting resource at a given time. Above ground, aspects of plasticity in allocation, morphology, physiology and architecture all appeared important in improving light capture, whereas below ground, plasticity in allocation and physiology were most critical to improving nitrogen acquisition. Six traits out of 11 showed substantial heterogeneity in species plasticity, with little structuration of these differences within trait covariation syndromes. Such comprehensive assessment of the complex nature of phenotypic responses of plants to multiple stress factors, and the comparison of plant responses across multiple species, makes a clear case for the high (but largely overlooked) diversity of potential plastic responses of plants, and for the need to explore the potential rules structuring them. © 2018 The Authors. New Phytologist © 2018 New Phytologist Trust.

  20. Mapping above- and below-ground carbon pools in boreal forests: The case for airborne lidar

    Treesearch

    Terje Kristensen; Erik Naesset; Mikael Ohlson; Paul V. Bolstad; Randall Kolka

    2015-01-01

    A large and growing body of evidence has demonstrated that airborne scanning light detection and ranging (lidar) systems can be an effective tool in measuring and monitoring above-ground forest tree biomass. However, the potential of lidar as an all-round tool for assisting in assessment of carbon (C) stocks in soil and non-tree vegetation components of the forest...

  1. Genetic analysis and association of simple sequence repeat markers with storage root yield, dry matter, starch and β-carotene content in sweetpotato.

    PubMed

    Yada, Benard; Brown-Guedira, Gina; Alajo, Agnes; Ssemakula, Gorrettie N; Owusu-Mensah, Eric; Carey, Edward E; Mwanga, Robert O M; Yencho, G Craig

    2017-03-01

    Molecular markers are needed for enhancing the development of elite sweetpotato ( Ipomoea batatas (L.) Lam) cultivars with a wide range of commercially important traits in sub-Saharan Africa. This study was conducted to estimate the heritability and determine trait correlations of storage root yield, dry matter, starch and β-carotene content in a cross between 'New Kawogo' × 'Beauregard'. The study was also conducted to identify simple sequence repeat (SSR) markers associated with these traits. A total of 287 progeny and the parents were evaluated for two seasons at three sites in Uganda and genotyped with 250 SSR markers. Broad sense heritability (H 2 ) for storage root yield, dry matter, starch and β-carotene content were 0.24, 0.68, 0.70 and 0.90, respectively. Storage root β-carotene content was negatively correlated with dry matter (r = -0.59, P < 0.001) and starch (r = -0.93, P < 0.001) content, while storage root yield was positively correlated with dry matter (r = 0.57, P = 0.029) and starch (r = 0.41, P = 0.008) content. Through logistic regression, a total of 12, 4, 6 and 8 SSR markers were associated with storage root yield, dry matter, starch and β-carotene content, respectively. The SSR markers used in this study may be useful for quantitative trait loci analysis and selection for these traits in future.

  2. Sensory evaluation of dry-fermented sausage containing ground deodorized yellow mustard.

    PubMed

    Li, Shuliu; Aliani, Michel; Holley, Richard A

    2013-10-01

    Ground deodorized yellow mustard is used as a binder and meat protein substitute in cooked processed meat products. Recent studies have shown that it has the potential to be used in uncooked processed meat products because of its natural antimicrobial properties. In the present study, ground deodorized yellow mustard was added to uncooked dry-fermented sausage during manufacture at 1% to 4% (w/w) and analyzed for its effects on starter cultures, physico-chemical properties, and consumer acceptability. Mustard had a nondose-dependent inhibitory effect on the Staphylococcus starter culture, had no effect on water activity or instrumental texture, and tended to accelerate sausage pH reduction. At 3% and 4% mustard, consumer scores on all sensory attributes as well as overall acceptability were significantly lower. The appearance and color of 3% and 4% mustard-treated sausages were liked slightly, whereas flavor, texture, and overall acceptability scores were reduced. The control without mustard and 1% mustard-treated sausages had similar sensory properties and were the most acceptable, while 2% mustard-treated sausages were given "like moderately" and "like slightly" descriptors. Sensory results mean that at concentrations necessary for mandated regulatory control of Escherichia coli O157:H7 in dry sausages, mustard may have a negative effect on consumer acceptance. © 2013 Institute of Food Technologists®

  3. Response of barley to grasshopper defoliation in interior Alaska: dry matter and grain yield.

    PubMed

    Begna, Sultan H; Fielding, Dennis J

    2005-12-01

    Barley, Hordeum vulgare L., is well adapted to subarctic Alaska growing conditions, but little is known about its response to grasshopper defoliation. A field experiment was conducted to study dry matter and grain yield in response to a combination of grasshopper defoliation and weeds in 2002 and 2003 near Delta Junction, AK (63 degrees 55' N, 145 degrees 20' W). Barley plants at third to fourth leaf stage were exposed to a combination of two levels of weeds (present or absent) and four densities of grasshoppers (equivalent to 0, 25, 50, and 75 grasshoppers per m2) of third to fourth instars of Melanoplus sanguinipes (F). Dry matter accumulation by the barley plants was determined at three times during the growing seasons: approximately 10 d after introduction of the grasshoppers, shortly after anthesis, and at maturity. Dry matter accumulation and grain yield were much lower in 2003 than in 2002, probably due to very low levels of soil moisture early in the growing season of 2003. Head clipping accounted for a greater portion of yield loss in 2003 than in 2002. The percentage of reduction in harvestable yield due to grasshoppers remained fairly constant between years (1.9 and 1.4 g per grasshopper per m2 in 2002 and 2003, respectively) despite a large difference in overall yield. Examination of the yield components suggest that yields were reduced by the early season drought in 2003 primarily through fewer seeds per head, whereas grasshoppers in both years reduced average seed weight, but not numbers of seeds.

  4. De-coupling seasonal changes in water content and dry matter to predict live conifer foliar moisture content

    Treesearch

    W. Matt Jolly; Ann M. Hadlow; Kathleen Huguet

    2014-01-01

    Live foliar moisture content (LFMC) significantly influences wildland fire behaviour. However, characterising variations in LFMC is difficult because both foliar mass and dry mass can change throughout the season. Here we quantify the seasonal changes in both plant water status and dry matter partitioning. We collected new and old foliar samples from Pinus contorta for...

  5. Contribution of above- and below-ground plant traits to the structure and function of grassland soil microbial communities

    PubMed Central

    Legay, N.; Baxendale, C.; Grigulis, K.; Krainer, U.; Kastl, E.; Schloter, M.; Bardgett, R. D.; Arnoldi, C.; Bahn, M.; Dumont, M.; Poly, F.; Pommier, T.; Clément, J. C.; Lavorel, S.

    2014-01-01

    Background and Aims Abiotic properties of soil are known to be major drivers of the microbial community within it. Our understanding of how soil microbial properties are related to the functional structure and diversity of plant communities, however, is limited and largely restricted to above-ground plant traits, with the role of below-ground traits being poorly understood. This study investigated the relative contributions of soil abiotic properties and plant traits, both above-ground and below-ground, to variations in microbial processes involved in grassland nitrogen turnover. Methods In mountain grasslands distributed across three European sites, a correlative approach was used to examine the role of a large range of plant functional traits and soil abiotic factors on microbial variables, including gene abundance of nitrifiers and denitrifiers and their potential activities. Key Results Direct effects of soil abiotic parameters were found to have the most significant influence on the microbial groups investigated. Indirect pathways via plant functional traits contributed substantially to explaining the relative abundance of fungi and bacteria and gene abundances of the investigated microbial communities, while they explained little of the variance in microbial activities. Gene abundances of nitrifiers and denitrifiers were most strongly related to below-ground plant traits, suggesting that they were the most relevant traits for explaining variation in community structure and abundances of soil microbes involved in nitrification and denitrification. Conclusions The results suggest that consideration of plant traits, and especially below-ground traits, increases our ability to describe variation in the abundances and the functional characteristics of microbial communities in grassland soils. PMID:25122656

  6. Compatible above-ground biomass equations and carbon stock estimation for small diameter Turkish pine (Pinus brutia Ten.).

    PubMed

    Sakici, Oytun Emre; Kucuk, Omer; Ashraf, Muhammad Irfan

    2018-04-15

    Small trees and saplings are important for forest management, carbon stock estimation, ecological modeling, and fire management planning. Turkish pine (Pinus brutia Ten.) is a common coniferous species and comprises 25.1% of total forest area of Turkey. Turkish pine is also important due to its flammable fuel characteristics. In this study, compatible above-ground biomass equations were developed to predict needle, branch, stem wood, and above-ground total biomass, and carbon stock assessment was also described for Turkish pine which is smaller than 8 cm diameter at breast height or shorter than breast height. Compatible biomass equations are useful for biomass prediction of small diameter individuals of Turkish pine. These equations will also be helpful in determining fire behavior characteristics and calculating their carbon stock. Overall, present study will be useful for developing ecological models, forest management plans, silvicultural plans, and fire management plans.

  7. Mapping the spatial pattern of temperate forest above ground biomass by integrating airborne lidar with Radarsat-2 imagery via geostatistical models

    NASA Astrophysics Data System (ADS)

    Li, Wang; Niu, Zheng; Gao, Shuai; Wang, Cheng

    2014-11-01

    Light Detection and Ranging (LiDAR) and Synthetic Aperture Radar (SAR) are two competitive active remote sensing techniques in forest above ground biomass estimation, which is important for forest management and global climate change study. This study aims to further explore their capabilities in temperate forest above ground biomass (AGB) estimation by emphasizing the spatial auto-correlation of variables obtained from these two remote sensing tools, which is a usually overlooked aspect in remote sensing applications to vegetation studies. Remote sensing variables including airborne LiDAR metrics, backscattering coefficient for different SAR polarizations and their ratio variables for Radarsat-2 imagery were calculated. First, simple linear regression models (SLR) was established between the field-estimated above ground biomass and the remote sensing variables. Pearson's correlation coefficient (R2) was used to find which LiDAR metric showed the most significant correlation with the regression residuals and could be selected as co-variable in regression co-kriging (RCoKrig). Second, regression co-kriging was conducted by choosing the regression residuals as dependent variable and the LiDAR metric (Hmean) with highest R2 as co-variable. Third, above ground biomass over the study area was estimated using SLR model and RCoKrig model, respectively. The results for these two models were validated using the same ground points. Results showed that both of these two methods achieved satisfactory prediction accuracy, while regression co-kriging showed the lower estimation error. It is proved that regression co-kriging model is feasible and effective in mapping the spatial pattern of AGB in the temperate forest using Radarsat-2 data calibrated by airborne LiDAR metrics.

  8. Encapsulation of antioxidant phenolic compounds extracted from spent coffee grounds by freeze-drying and spray-drying using different coating materials.

    PubMed

    Ballesteros, Lina F; Ramirez, Monica J; Orrego, Carlos E; Teixeira, José A; Mussatto, Solange I

    2017-12-15

    Freeze-drying and spray-drying techniques were evaluated for encapsulation of phenolic compounds (PC) extracted from spent coffee grounds. Additionally, the use of maltodextrin, gum arabic and a mixture of these components (ratio 1:1) as wall material to retain the PC and preserve their antioxidant activity was also assessed. The contents of PC and flavonoids (FLA), as well as the antioxidant activity of the encapsulated samples were determined in order to verify the efficiency of each studied condition. Additional analyses for characterization of the samples were also performed. Both the technique and the coating material greatly influenced the encapsulation of antioxidant PC. The best results were achieved when PC were encapsulated by freeze-drying using maltodextrin as wall material. Under these conditions, the amount of PC and FLA retained in the encapsulated sample corresponded to 62% and 73%, respectively, and 73-86% of the antioxidant activity present in the original extract was preserved. Copyright © 2017 Elsevier Ltd. All rights reserved.

  9. Influence of diesel contamination in soil on growth and dry matter partitioning of Lactuca sativa and Ipomoea batatas.

    PubMed

    Fatokun, Kayode; Zharare, Godfrey Elijah

    2015-09-01

    Phytotoxic effect of diesel contaminated soil was investigated on growth and dry matter partitioning in Lactuca sativa and Ipomoea batatas in greenhouse pot experiment at two concentration range (0-30 ml and 0-6 ml diesel kg(-1) soil) for 14 weeks. The results indicated thatwhole plant biomass, stem length, root length, number of leaves and leaf chlorophyll in two plants were negatively correlated with increasing diesel concentrations. The critical concentration of diesel associated with 10% decrease in plant growth was 0.33 ml for lettuce and 1.50 ml for sweet potato. Thus, growth of lettuce in diesel contaminated soil was more sensitive than sweet potato. The pattern of dry matter partitioning between root and shoot in both plants were similar. In 0-6 ml diesel contamination range, allocation of dry matter to shoot system was favoured resulting in high shoot: root ratio of 4.54 and 12.91 for lettuce and sweet potato respectively. However, in 0-30 ml diesel contamination range, allocation of dry matter to root was favoured, which may have been an adaptive mechanism in which the root system was used for storage in addition to increasing the capacity for foraging for mineral nutrients and water. Although lettuce accumulated more metals in its tissue than sweet potato, the tissue mineral nutrients in both species did not vary to great extent. The critical diesel concentration for toxicity suggested that the cause of mortality and poor growth of sweet potato and lettuce grown in diesel contaminated soil was due to presence of hydrocarbons in diesel.

  10. Evaluation of hyperspectral reflectance for estimating dry matter and sugar concentration in processing potatoes

    USDA-ARS?s Scientific Manuscript database

    The measurement of sugar concentration and dry matter in processing potatoes is a time and resource intensive activity, cannot be performed in the field, and does not easily measure within tuber variation. A proposed method to improve the phenotyping of processing potatoes is to employ hyperspectral...

  11. Effect of tree shelters on above-ground stem biomass leaf numbers and size, and height growth

    Treesearch

    Douglas O. Lantagne; Gregory Kowalewski

    1997-01-01

    Tree shelters have been tested and shown to be effective in several circumstances regarding hardwood regeneration, especially with northern red oak (Quercus rubra L.). A study was initiated to quantify how tree shelters affected quantity, size and biomass of leaves, the number of growth flushes, and the above ground stem biomass of planted northern...

  12. A comparison of fecal percent dry matter and number of Cryptosporidium parvum oocysts shed to observational fecal consistency scoring in dairy calves.

    PubMed

    Bellosa, Mary L; Nydam, Daryl V; Liotta, Janice L; Zambriski, Jennifer A; Linden, Thomas C; Bowman, Dwight D

    2011-04-01

    Evaluation of dairy calf feces is often used in research and for clinical decision making to assess severity of diarrhea. However, this has not been validated for agreement between dry matter content and observed fecal consistency. Therefore, a comparison of observed fecal consistency score to fecal percent dry matter and Cryptosporidium parvum oocyst shedding was performed to assess the accuracy of observational scoring as a measure of diarrhea and its association with number of oocysts shed. Fecal samples from 20 dairy calves experimentally infected with C. parvum oocysts were collected daily post-infection and scored on a scale from 1 to 4, with 1 being normal feces to 4 being severe diarrhea. An aliquot of each sample was analyzed for percent dry matter and Cryptosporidium oocyst counts by using immunofluorescent microscopy. Fecal consistency scores of 1, 2, 3, and 4 had median percent dry matter of 20.9, 16.3, 9.6, and 5.8, respectively. Using percent dry matter assessed by fecal consistency scoring were significantly different from each other (P < 0.001). A higher fecal consistency score also was associated with a greater number of Cryptosporidium oocysts shed (P < 0 .0001). Scores of 1, 2, 3, and 4 had median oocyst counts of 0, 0, 1.3 × 10⁶, and 2.8 × 10⁶, respectively. These results suggest that observational scoring is a useful proxy to assess diarrhea in dairy calves.

  13. Genetic analysis and association of simple sequence repeat markers with storage root yield, dry matter, starch and β-carotene content in sweetpotato

    PubMed Central

    Yada, Benard; Brown-Guedira, Gina; Alajo, Agnes; Ssemakula, Gorrettie N.; Owusu-Mensah, Eric; Carey, Edward E.; Mwanga, Robert O.M.; Yencho, G. Craig

    2017-01-01

    Molecular markers are needed for enhancing the development of elite sweetpotato (Ipomoea batatas (L.) Lam) cultivars with a wide range of commercially important traits in sub-Saharan Africa. This study was conducted to estimate the heritability and determine trait correlations of storage root yield, dry matter, starch and β-carotene content in a cross between ‘New Kawogo’ × ‘Beauregard’. The study was also conducted to identify simple sequence repeat (SSR) markers associated with these traits. A total of 287 progeny and the parents were evaluated for two seasons at three sites in Uganda and genotyped with 250 SSR markers. Broad sense heritability (H2) for storage root yield, dry matter, starch and β-carotene content were 0.24, 0.68, 0.70 and 0.90, respectively. Storage root β-carotene content was negatively correlated with dry matter (r = −0.59, P < 0.001) and starch (r = −0.93, P < 0.001) content, while storage root yield was positively correlated with dry matter (r = 0.57, P = 0.029) and starch (r = 0.41, P = 0.008) content. Through logistic regression, a total of 12, 4, 6 and 8 SSR markers were associated with storage root yield, dry matter, starch and β-carotene content, respectively. The SSR markers used in this study may be useful for quantitative trait loci analysis and selection for these traits in future. PMID:28588391

  14. Continuous monitoring of a mountain snowpack in the Austrian Alps by above-ground neutron sensing

    NASA Astrophysics Data System (ADS)

    Schattan, Paul; Baroni, Gabriele; Oswald, Sascha E.; Schöber, Johannes; Fey, Christine; Francke, Till; Huttenlau, Matthias; Achleitner, Stefan

    2017-04-01

    In alpine catchments the knowledge of the spatially and temporally heterogeneous dynamics of snow accumulation and depletion is crucial for modelling and managing water resources. While snow covered area can be retrieved operationally from remote sensing data, continuous measurements of other snow state variables like snow depth (SD) or snow water equivalent (SWE) remain challenging. Existing methods of retrieving both variables in alpine terrain face severe issues like a lack of spatial representativeness, labour-intensity or discontinuity in time. Recently, promising new measurement techniques combining a larger support with low maintenance cost like above-ground gamma-ray scintillators, GPS interferometric reflectometry or above-ground cosmic-ray neutron sensors (CRNS) have been suggested. While CRNS has proven its potential for monitoring soil moisture in a wide range of environments and applications, the empirical knowledge of using CRNS for snowpack monitoring is still very limited and restricted to shallow snowpacks with rather uniform evolution. The characteristics of an above-ground cosmic-ray neutron sensor (CRNS) were therefore evaluated for monitoring a mountain snowpack in the Austrian Alps (Kaunertal, Tyrol) during three winter seasons. The measurement campaign included a number of measurements during the period from 03/2014 to 06/2016: (i) neutron count measurements by CRNS, (ii) continuous point-scale SD and SWE measurements from an automatic weather station and (iii) 17 Terrestrial Laser Scanning (TLS) with simultaneous SD and SWE surveys. The highest accumulation in terms of SWE was found in 04/2014 with 600 mm. Neutron counts were compared to all available snow data. While previous studies suggested a signal saturation at around 100 mm of SWE, no complete signal saturation was found. A strong non-linear relation was found for both SD and SWE with best fits for spatially distributed TLS based snow data. Initially slightly different shapes were

  15. Lidar-Based Estimates of Above-Ground Biomass in the Continental US and Mexico Using Ground, Airborne, and Satellite Observations

    NASA Technical Reports Server (NTRS)

    Nelson, Ross; Margolis, Hank; Montesano, Paul; Sun, Guoqing; Cook, Bruce; Corp, Larry; Andersen, Hans-Erik; DeJong, Ben; Pellat, Fernando Paz; Fickel, Thaddeus; hide

    2016-01-01

    Existing national forest inventory plots, an airborne lidar scanning (ALS) system, and a space profiling lidar system (ICESat-GLAS) are used to generate circa 2005 estimates of total aboveground dry biomass (AGB) in forest strata, by state, in the continental United States (CONUS) and Mexico. The airborne lidar is used to link ground observations of AGB to space lidar measurements. Two sets of models are generated, the first relating ground estimates of AGB to airborne laser scanning (ALS) measurements and the second set relating ALS estimates of AGB (generated using the first model set) to GLAS measurements. GLAS then, is used as a sampling tool within a hybrid estimation framework to generate stratum-, state-, and national-level AGB estimates. A two-phase variance estimator is employed to quantify GLAS sampling variability and, additively, ALS-GLAS model variability in this current, three-phase (ground-ALS-space lidar) study. The model variance component characterizes the variability of the regression coefficients used to predict ALS-based estimates of biomass as a function of GLAS measurements. Three different types of predictive models are considered in CONUS to determine which produced biomass totals closest to ground-based national forest inventory estimates - (1) linear (LIN), (2) linear-no-intercept (LNI), and (3) log-linear. For CONUS at the national level, the GLAS LNI model estimate (23.95 +/- 0.45 Gt AGB), agreed most closely with the US national forest inventory ground estimate, 24.17 +/- 0.06 Gt, i.e., within 1%. The national biomass total based on linear ground-ALS and ALS-GLAS models (25.87 +/- 0.49 Gt) overestimated the national ground-based estimate by 7.5%. The comparable log-linear model result (63.29 +/-1.36 Gt) overestimated ground results by 261%. All three national biomass GLAS estimates, LIN, LNI, and log-linear, are based on 241,718 pulses collected on 230 orbits. The US national forest inventory (ground) estimates are based on 119

  16. Plant carnivory beyond bogs: reliance on prey feeding in Drosophyllum lusitanicum (Drosophyllaceae) in dry Mediterranean heathland habitats

    PubMed Central

    Gil-Cabeza, E.; Ojeda, F.

    2017-01-01

    Background and Aims In a cost–benefit framework, plant carnivory is hypothesized to be an adaptation to nutrient-poor soils in sunny, wetland habitats. However, apparent exceptions to this cost–benefit model exist, although they have been rarely studied. One of these exceptions is the carnivorous subshrub Drosophyllum lusitanicum, which thrives in Mediterranean heathlands on dry sandstone soils and has relatively well-developed, xeromorphic roots. Here, the roles of leaf (carnivory) and root (soil) nutrient uptake in growth promotion of this particular species were assessed. Methods In a greenhouse experiment, plants were fed with laboratory-reared fruit flies (Drosophila virilis) and received two concentrations of soil nutrients in a factorial design. Above-ground plant growth and final above- and below-ground dry biomass after 13 weeks were recorded. Nutrient uptake via roots was also evaluated, using stable nitrogen isotope analysis. Key Results Insect feeding resulted in significantly higher growth and above- and below-ground biomass compared with soil fertilization. No additional benefits of fertilization were discernable when plants were insect-fed, indicating that roots were not efficient in nutrient absorption. Conclusions The first evidence of strong reliance on insect prey feeding in a dry-soil carnivorous plant with well-developed roots is provided, suggesting that carnivory per se does not preclude persistence in dry habitats. Instead, the combination of carnivory and xeromorphic root features allows Drosophyllum to thrive on non-waterlogged soils. New evidence is added to recent research emphasizing the role of root systems of carnivorous plants in explaining their distribution, partly challenging the cost–benefit hypothesis. PMID:28065921

  17. 75 FR 62420 - In the Matter of: Certain Ground Fault Circuit Interrupters and Products Containing Same; Notice...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-10-08

    ... INTERNATIONAL TRADE COMMISSION [Inv. No. 337-TA-739] In the Matter of: Certain Ground Fault..., the sale for importation, and the sale within the United States after importation of certain ground... certain ground fault circuit interrupters and products containing same that infringe one or more of claims...

  18. The impact of forest structure and spatial scale on the relationship between ground plot above ground biomass and GEDI lidar waveforms

    NASA Astrophysics Data System (ADS)

    Armston, J.; Marselis, S.; Hancock, S.; Duncanson, L.; Tang, H.; Kellner, J. R.; Calders, K.; Disney, M.; Dubayah, R.

    2017-12-01

    The NASA Global Ecosystem Dynamics Investigation (GEDI) will place a multi-beam waveform lidar instrument on the International Space Station (ISS) to provide measurements of forest vertical structure globally. These measurements of structure will underpin empirical modelling of above ground biomass density (AGBD) at the scale of individual GEDI lidar footprints (25m diameter). The GEDI pre-launch calibration strategy for footprint level models relies on linking AGBD estimates from ground plots with GEDI lidar waveforms simulated from coincident discrete return airborne laser scanning data. Currently available ground plot data have variable and often large uncertainty at the spatial resolution of GEDI footprints due to poor colocation, allometric model error, sample size and plot edge effects. The relative importance of these sources of uncertainty partly depends on the quality of ground measurements and region. It is usually difficult to know the magnitude of these uncertainties a priori so a common approach to mitigate their influence on model training is to aggregate ground plot and waveform lidar data to a coarser spatial scale (0.25-1ha). Here we examine the impacts of these principal sources of uncertainty using a 3D simulation approach. Sets of realistic tree models generated from terrestrial laser scanning (TLS) data or parametric modelling matched to tree inventory data were assembled from four contrasting forest plots across tropical rainforest, deciduous temperate forest, and sclerophyll eucalypt woodland sites. These tree models were used to simulate geometrically explicit 3D scenes with variable tree density, size class and spatial distribution. GEDI lidar waveforms are simulated over ground plots within these scenes using monte carlo ray tracing, allowing the impact of varying ground plot and waveform colocation error, forest structure and edge effects on the relationship between ground plot AGBD and GEDI lidar waveforms to be directly assessed. We

  19. Studies on mycorrhizal inoculation on dry matter yield and root colonization of some medicinal plants grown in stress and forest soils.

    PubMed

    Chandra, K K; Kumar, Neeraj; Chand, Gireesh

    2010-11-01

    Five medicinal plants viz. Abelmoschatus moschatus Linn., Clitoria tematea L., Plumbagozeylanica L., Psorolea corylifolia L. and Withania sominifera L. were grown in a polypot experiment in five soils representing coal mine soil, coppermine soil, fly ash, skeletal soil and forest soil with and without mycorrhizal inoculations in a completely randomized block design. Dry matter yield and mycorrhizal root colonization of plants varied both in uninoculated and inoculated conditions. The forest soil rendered highest dry matter due to higher yield of A. moschatus, P. zeylanica and P corylifolia while fly ash showed lowest dry matter without any inoculants. P. cematea were best in coalmine soil and W. sominifera in copper mine soil without mycorrhizal inoculation. The mycorrhiza was found to enhance the dry matter yield. This contributed minimum 0.19% to maximum up to 422.0% in different soils as compared to uninoculated plants. The mycorrhizal dependency was noticed maximum in plants grown in fly ash followed by coal mine soil, copper mine soil, skeletal soil and forest soil. The mycorrhizal response was increased maximum in W. sominifera due to survival in fly ash after inoculation followed by P corylifolia and P cematea. Percent root colonization in inoculated plant was increased minimum of 1.10 fold to maximum of 12.0 folds in comparison to un-inoculated plants . The native mycorrhiza fungi were also observed to colonize 4.0 to 32.0% roots in plants understudy. This study suggests that mycorrhizal inoculation increased the dry matter yield of medicinal plants in all soils under study. It also helps in survival of W. sominifera in fly ash.

  20. Dry Matter Production and Leaf Elemental Concentrations of Rambutan Grown on an Acid Ultisol

    USDA-ARS?s Scientific Manuscript database

    Little is known about the adaptability of rambutan (Nephelium lappaceum) to highly acidic soils rich in aluminum (Al). A 2-yr field study was conducted to determine the effects of various levels of soil Al on dry matter production, plant growth, and nutrient concentration in the leaves of four cult...

  1. Dry matter production and nutrient content of mamey sapote grown on an acid ultisol

    USDA-ARS?s Scientific Manuscript database

    Little is known about the adaptability of mamey sapote (Pouteria sapota) to acidic soils high in aluminum (Al). A two-year field study was conducted to determine the effects of various levels of soil Al on dry matter production, stem diameter and nutrient concentration in tissues of four clones of ...

  2. Dry matter and nitrogen accumulation are not affected by superoptimal concentration of ammonium in flowing solution culture with pH control

    NASA Technical Reports Server (NTRS)

    Rideout, J. W.; Raper, C. D. Jr; Raper CD, J. r. (Principal Investigator)

    1994-01-01

    While it is known that superoptimal concentrations of the nitrate (NO3-) ion in solution culture do not increase NO3- uptake or dry matter accumulation, the same is not known for the ammonium (NH4+) ion. An experiment was conducted utilizing flowing solution culture with pH control to investigate the influence of superoptimal NH4+ concentrations on dry matter, nitrogen (N), potassium (K), calcium (Ca), and magnesium (Mg) accumulation by nonnodulated soybean plants. Increasing the NH4+ concentration in solution from 1 to 10 mM did not affect dry matter or N accumulation. Accumulations of K, Ca, and Mg were slightly decreased with increased NH4+ concentration. The NH4+ uptake system, which is saturated at less than 1mM NH4+, is able to regulate uptake of NH4+ at concentrations as high as 10 mM.

  3. Impact of deforestation and climate on the Amazon Basin's above-ground biomass during 1993-2012.

    PubMed

    Exbrayat, Jean-François; Liu, Yi Y; Williams, Mathew

    2017-11-15

    Since the 1960s, large-scale deforestation in the Amazon Basin has contributed to rising global CO 2 concentrations and to climate change. Recent advances in satellite observations enable estimates of gross losses of above-ground biomass (AGB) stocks due to deforestation. However, because of simultaneous regrowth, the net contribution of deforestation emissions to rising atmospheric CO 2 concentrations is poorly quantified. Climate change may also reduce the potential for forest regeneration in previously disturbed regions. Here, we address these points of uncertainty with a machine-learning approach that combines satellite observations of AGB with climate data across the Amazon Basin to reconstruct annual maps of potential AGB during 1993-2012, the above-ground C storage potential of the undisturbed landscape. We derive a 2.2 Pg C loss of AGB over the study period, and, for the regions where these losses occur, we estimate a 0.7 Pg C reduction in potential AGB. Thus, climate change has led to a decline of ~1/3 in the capacity of these disturbed forests to recover and recapture the C lost in disturbances during 1993-2012. Our approach further shows that annual variations in land use change mask the natural relationship between the El Niño/Southern Oscillation and AGB stocks in disturbed regions.

  4. Evaluating Naturally Durable Wood Species for Repair and Rehabilitation of Above-Ground Components of Covered Bridges

    Treesearch

    Grant T. Kirker; Carol A. Clausen; A. B Blodgett; Stan T. Lebow

    2013-01-01

    More than 1,500 covered bridges remain in the United States. They are a unique part of our history; thus, replacement of bridge components is an equally important part of preserving this uncommon style of craftsmanship. The goal of this project was to evaluate seven wood species for their durability in above-ground field exposure. Chemical analysis was also conducted...

  5. [Drying characteristics and apparent change of sludge granules during drying].

    PubMed

    Ma, Xue-Wen; Weng, Huan-Xin; Zhang, Jin-Jun

    2011-08-01

    Three different weight grades of sludge granules (2.5, 5, 10 g) were dried at constant temperature of 100, 200, 300, 400 and 500 degrees C, respectively. Then characteristics of weight loss and change of apparent form during sludge drying were analyzed. Results showed that there were three stages during sludge drying at 100-200 degrees C: acceleration phase, constant-rate phase, and falling-rate phase. At 300-500 degrees C, there were no constant-rate phase, but due to lots of cracks generated at sludge surface, average drying rates were still high. There was a quadratic nonlinear relationship between average drying rate and drying temperature. At 100-200 degrees C, drying processes of different weight grade sludge granules were similar. At 300-500 degrees C, drying processes of same weight grade of sludge granules were similar. Little organic matter decomposed till sludge burning at 100-300 degrees C, while some organic matter began to decompose at the beginning of sludge drying at 400-500 degrees C.

  6. Above-ground Antineutrino Detection for Nuclear Reactor Monitoring

    DOE PAGES

    Sweany, Melinda; Brennan, James S.; Cabrera-Palmer, Belkis; ...

    2014-08-01

    Antineutrino monitoring of nuclear reactors has been demonstrated many times, however the technique has not as of yet been developed into a useful capability for treaty verification purposes. The most notable drawback is the current requirement that detectors be deployed underground, with at least several meters-water-equivalent of shielding from cosmic radiation. In addition, the deployment of liquid-based detector media presents a challenge in reactor facilities. We are currently developing a detector system that has the potential to operate above ground and circumvent deployment problems associated with a liquid detection media: the system is composed of segments of plastic scintillator surroundedmore » by 6LiF/ZnS:Ag. ZnS:Ag is a radio-luminescent phosphor used to detect the neutron capture products of lithium-6. Because of its long decay time compared to standard plastic scintillators, pulse-shape discrimination can be used to distinguish positron and neutron interactions resulting from the inverse beta decay (IBD) of antineutrinos within the detector volume, reducing both accidental and correlated backgrounds. Segmentation further reduces backgrounds by identifying the positron’s annihilation gammas, which are absent for most correlated and uncorrelated backgrounds. This work explores different configurations in order to maximize the size of the detector segments without reducing the intrinsic neutron detection efficiency. We believe this technology will ultimately be applicable to potential safeguards scenarios such as those recently described.« less

  7. Development of equations to predict dry matter intake of lactating cows using animal factors

    USDA-ARS?s Scientific Manuscript database

    Our objective was to model dry matter intake (DMI, kg) in Holstein dairy cows based on milk energy (MilkE, Mcal/d), energy required for maintenance, change in body weight (DeltaBW, kg/d), body condition score (BCS, scale 1 to 5), height (Htcm, cm), and parity. The database contained weekly DMI of 4,...

  8. Divergent host preferences of above- and below-ground Culex pipiens mosquitoes and their hybrid offspring.

    PubMed

    Fritz, M L; Walker, E D; Miller, J R; Severson, D W; Dworkin, I

    2015-06-01

    Culex pipiens form pipiens and Cx. pipiens form molestus (Diptera: Culicidae) belong to a cosmopolitan taxonomic group known as the Pipiens Assemblage. Hybridization between these forms is thought to contribute to human transmission of West Nile virus (WNV) in North America. Complementary choice and no-choice landing assays were developed to examine host acceptance by North American Cx. pipiens in the laboratory. Populations collected from above- and below-ground sites in suburban Chicago were identified as forms pipiens and molestus using a polymerase chain reaction-based assay. Avian and human host acceptance was then quantified for the two populations, as well as for their hybrid and backcross offspring. No-choice tests were used to demonstrate that both the pipiens and molestus forms were capable of feeding on human and avian hosts. Choice tests were used to demonstrate that form pipiens females were strongly avian-seeking; an individual's probability of accepting the chick host was 85%. Form molestus females were more likely to accept the human host (87%). Rates of host acceptance by F1 and backcross progeny were intermediate to those of their parents. The results suggest that host preferences in Cx. pipiens are genetically determined, and that ongoing hybridization between above- and below-ground populations is an important contributor to epizootic transmission of WNV in North America. © 2015 The Royal Entomological Society.

  9. ENVIROMETAL TECHNOLOGIES, INC. - METAL-ENHANCED DECHLORINATION OF VOLATILE ORGANIC COMPOUNDS USING AN ABOVE-GROUND REACTOR, INNOVATIVE TECHNOLOGY EVALUATION REPORT

    EPA Science Inventory

    EnviroMetal Technology's metal-enhanced dechlorination technology employs an electrochemical process that involves oxidation of iron and reductive dehalogenation of halogenated VOCs in aqueous media. The process can be operated as an above ground reactor or can alternatively perf...

  10. Mapping Above- and Below-Ground Carbon Pools in Boreal Forests: The Case for Airborne Lidar

    PubMed Central

    Kristensen, Terje; Næsset, Erik; Ohlson, Mikael; Bolstad, Paul V.; Kolka, Randall

    2015-01-01

    A large and growing body of evidence has demonstrated that airborne scanning light detection and ranging (lidar) systems can be an effective tool in measuring and monitoring above-ground forest tree biomass. However, the potential of lidar as an all-round tool for assisting in assessment of carbon (C) stocks in soil and non-tree vegetation components of the forest ecosystem has been given much less attention. Here we combine the use airborne small footprint scanning lidar with fine-scale spatial C data relating to vegetation and the soil surface to describe and contrast the size and spatial distribution of C pools within and among multilayered Norway spruce (Picea abies) stands. Predictor variables from lidar derived metrics delivered precise models of above- and below-ground tree C, which comprised the largest C pool in our study stands. We also found evidence that lidar canopy data correlated well with the variation in field layer C stock, consisting mainly of ericaceous dwarf shrubs and herbaceous plants. However, lidar metrics derived directly from understory echoes did not yield significant models. Furthermore, our results indicate that the variation in both the mosses and soil organic layer C stock plots appears less influenced by differences in stand structure properties than topographical gradients. By using topographical models from lidar ground returns we were able to establish a strong correlation between lidar data and the organic layer C stock at a stand level. Increasing the topographical resolution from plot averages (~2000 m2) towards individual grid cells (1 m2) did not yield consistent models. Our study demonstrates a connection between the size and distribution of different forest C pools and models derived from airborne lidar data, providing a foundation for future research concerning the use of lidar for assessing and monitoring boreal forest C. PMID:26426532

  11. Mapping Above- and Below-Ground Carbon Pools in Boreal Forests: The Case for Airborne Lidar.

    PubMed

    Kristensen, Terje; Næsset, Erik; Ohlson, Mikael; Bolstad, Paul V; Kolka, Randall

    2015-01-01

    A large and growing body of evidence has demonstrated that airborne scanning light detection and ranging (lidar) systems can be an effective tool in measuring and monitoring above-ground forest tree biomass. However, the potential of lidar as an all-round tool for assisting in assessment of carbon (C) stocks in soil and non-tree vegetation components of the forest ecosystem has been given much less attention. Here we combine the use airborne small footprint scanning lidar with fine-scale spatial C data relating to vegetation and the soil surface to describe and contrast the size and spatial distribution of C pools within and among multilayered Norway spruce (Picea abies) stands. Predictor variables from lidar derived metrics delivered precise models of above- and below-ground tree C, which comprised the largest C pool in our study stands. We also found evidence that lidar canopy data correlated well with the variation in field layer C stock, consisting mainly of ericaceous dwarf shrubs and herbaceous plants. However, lidar metrics derived directly from understory echoes did not yield significant models. Furthermore, our results indicate that the variation in both the mosses and soil organic layer C stock plots appears less influenced by differences in stand structure properties than topographical gradients. By using topographical models from lidar ground returns we were able to establish a strong correlation between lidar data and the organic layer C stock at a stand level. Increasing the topographical resolution from plot averages (~2000 m2) towards individual grid cells (1 m2) did not yield consistent models. Our study demonstrates a connection between the size and distribution of different forest C pools and models derived from airborne lidar data, providing a foundation for future research concerning the use of lidar for assessing and monitoring boreal forest C.

  12. Cumulative ventilation air drying potential as an indication of dry mass content in wastewater sludge in a thin-layer solar drying facility

    NASA Astrophysics Data System (ADS)

    Krawczyk, Piotr

    2013-12-01

    Controlling low-temperature drying facilities which utilise nonprepared air is quite difficult, due to very large variability of ventilation air parameters - both in daily and seasonal cycles. The paper defines the concept of cumulative drying potential of ventilation air and presents experimental evidence that there is a relation between this parameter and condition of the dried matter (sewage sludge). Knowledge on current dry mass content in the dried matter (sewage sludge) provides new possibilities for controlling such systems. Experimental data analysed in the paper was collected in early 2012 during operation of a test solar drying facility in a sewage treatment plant in Błonie near Warsaw, Poland.

  13. [Effects of nitrogen application rate on light interception and dry matter distribution at diffe-rent layers in wheat canopy under supplemental irrigation based on measuring soil moisture.

    PubMed

    Zheng, Xue Jiao; Yu, Zhen Wen; Zhang, Yong Li; Shi, Yu

    2018-02-01

    With the large-spike wheat cultivar Shannong 23 as test material,a field experiment was conducted by increasing the relative soil moisture content to 70% and 65% at jointing and anthesis stages. Four nitrogen levels,0 (N 0 ), 180 (N 1 ), 240 (N 2 ) and 300 kg·hm -2 (N 3 ), were designed to examine the effects of nitrogen application rates on the interception of photosynthetic active radiation (PAR) and dry matter distribution of wheat at different canopy layers. The results showed that the total stem number of wheat population at anthesis stage, the leaf area index at 10, 20 and 30 days after anthesis, PAR capture ratio at upper and middle layers and total PAR capture ratio in wheat canopy on day 20 after anthesis of treatment N 2 were significantly higher than those in the treatments of both N 0 and N 1 . Those indexes showed no significant increase when the application rate increased to 300 kg·hm -2 (N 3 ). The vegetative organ dry matter accumulation of all layers at maturity stage of treatment N 2 were significantly higher than N 0 and N 1 . Compared with treatment N 0 and N 1 , N 2 increased the grain and total dry matter accumulation by 36.7% and 35.4%, 9.5% and 10.2%, respectively, but had no significant difference with treatment N 3 . The vegetative organ dry matter accumulation at all layers, grain and total dry matter accumulation were significantly and positively correlated with PAR capture ratio at upper and middle layers, and had no significant correlation with that at lower layer. The vegetative organ dry matter accumulation at all layers was significantly and positively correlated with grain dry matter accumulation. The application rate at 240 kg·hm -2 (N 2 ) would be the optimum treatment under the present experimental condition.

  14. Above-ground antineutrino detection for nuclear reactor monitoring

    NASA Astrophysics Data System (ADS)

    Sweany, M.; Brennan, J.; Cabrera-Palmer, B.; Kiff, S.; Reyna, D.; Throckmorton, D.

    2015-01-01

    Antineutrino monitoring of nuclear reactors has been demonstrated many times (Klimov et al., 1994 [1]; Bowden et al., 2009 [2]; Oguri et al., 2014 [3]), however the technique has not as of yet been developed into a useful capability for treaty verification purposes. The most notable drawback is the current requirement that detectors be deployed underground, with at least several meters-water-equivalent of shielding from cosmic radiation. In addition, the deployment of liquid-based detection media presents a challenge in reactor facilities. We are currently developing a detector system that has the potential to operate above ground and circumvent deployment problems associated with a liquid detection media: the system is composed of segments of plastic scintillator surrounded by 6LiF/ZnS:Ag. ZnS:Ag is a radio-luminescent phosphor used to detect the neutron capture products of 6Li. Because of its long decay time compared to standard plastic scintillators, pulse-shape discrimination can be used to distinguish positron and neutron interactions resulting from the inverse beta decay (IBD) of antineutrinos within the detector volume, reducing both accidental and correlated backgrounds. Segmentation further reduces backgrounds by identifying the positron's annihilation gammas, a signature that is absent for most correlated and uncorrelated backgrounds. This work explores different configurations in order to maximize the size of the detector segments without reducing the intrinsic neutron detection efficiency. We believe that this technology will ultimately be applicable to potential safeguards scenarios such as those recently described by Huber et al. (2014) [4,5].

  15. Terrestrial laser scanning to quantify above-ground biomass of structurally complex coastal wetland vegetation

    NASA Astrophysics Data System (ADS)

    Owers, Christopher J.; Rogers, Kerrylee; Woodroffe, Colin D.

    2018-05-01

    Above-ground biomass represents a small yet significant contributor to carbon storage in coastal wetlands. Despite this, above-ground biomass is often poorly quantified, particularly in areas where vegetation structure is complex. Traditional methods for providing accurate estimates involve harvesting vegetation to develop mangrove allometric equations and quantify saltmarsh biomass in quadrats. However broad scale application of these methods may not capture structural variability in vegetation resulting in a loss of detail and estimates with considerable uncertainty. Terrestrial laser scanning (TLS) collects high resolution three-dimensional point clouds capable of providing detailed structural morphology of vegetation. This study demonstrates that TLS is a suitable non-destructive method for estimating biomass of structurally complex coastal wetland vegetation. We compare volumetric models, 3-D surface reconstruction and rasterised volume, and point cloud elevation histogram modelling techniques to estimate biomass. Our results show that current volumetric modelling approaches for estimating TLS-derived biomass are comparable to traditional mangrove allometrics and saltmarsh harvesting. However, volumetric modelling approaches oversimplify vegetation structure by under-utilising the large amount of structural information provided by the point cloud. The point cloud elevation histogram model presented in this study, as an alternative to volumetric modelling, utilises all of the information within the point cloud, as opposed to sub-sampling based on specific criteria. This method is simple but highly effective for both mangrove (r2 = 0.95) and saltmarsh (r2 > 0.92) vegetation. Our results provide evidence that application of TLS in coastal wetlands is an effective non-destructive method to accurately quantify biomass for structurally complex vegetation.

  16. Diversity and above-ground biomass patterns of vascular flora induced by flooding in the drawdown area of China's Three Gorges Reservoir.

    PubMed

    Wang, Qiang; Yuan, Xingzhong; Willison, J H Martin; Zhang, Yuewei; Liu, Hong

    2014-01-01

    Hydrological alternation can dramatically influence riparian environments and shape riparian vegetation zonation. However, it was difficult to predict the status in the drawdown area of the Three Gorges Reservoir (TGR), because the hydrological regime created by the dam involves both short periods of summer flooding and long-term winter impoundment for half a year. In order to examine the effects of hydrological alternation on plant diversity and biomass in the drawdown area of TGR, twelve sites distributed along the length of the drawdown area of TGR were chosen to explore the lateral pattern of plant diversity and above-ground biomass at the ends of growing seasons in 2009 and 2010. We recorded 175 vascular plant species in 2009 and 127 in 2010, indicating that a significant loss of vascular flora in the drawdown area of TGR resulted from the new hydrological regimes. Cynodon dactylon and Cyperus rotundus had high tolerance to short periods of summer flooding and long-term winter flooding. Almost half of the remnant species were annuals. Species richness, Shannon-Wiener Index and above-ground biomass of vegetation exhibited an increasing pattern along the elevation gradient, being greater at higher elevations subjected to lower submergence stress. Plant diversity, above-ground biomass and species distribution were significantly influenced by the duration of submergence relative to elevation in both summer and previous winter. Several million tonnes of vegetation would be accumulated on the drawdown area of TGR in every summer and some adverse environmental problems may be introduced when it was submerged in winter. We conclude that vascular flora biodiversity in the drawdown area of TGR has dramatically declined after the impoundment to full capacity. The new hydrological condition, characterized by long-term winter flooding and short periods of summer flooding, determined vegetation biodiversity and above-ground biomass patterns along the elevation gradient in

  17. Diversity and Above-Ground Biomass Patterns of Vascular Flora Induced by Flooding in the Drawdown Area of China's Three Gorges Reservoir

    PubMed Central

    Wang, Qiang; Yuan, Xingzhong; Willison, J.H.Martin; Zhang, Yuewei; Liu, Hong

    2014-01-01

    Hydrological alternation can dramatically influence riparian environments and shape riparian vegetation zonation. However, it was difficult to predict the status in the drawdown area of the Three Gorges Reservoir (TGR), because the hydrological regime created by the dam involves both short periods of summer flooding and long-term winter impoundment for half a year. In order to examine the effects of hydrological alternation on plant diversity and biomass in the drawdown area of TGR, twelve sites distributed along the length of the drawdown area of TGR were chosen to explore the lateral pattern of plant diversity and above-ground biomass at the ends of growing seasons in 2009 and 2010. We recorded 175 vascular plant species in 2009 and 127 in 2010, indicating that a significant loss of vascular flora in the drawdown area of TGR resulted from the new hydrological regimes. Cynodon dactylon and Cyperus rotundus had high tolerance to short periods of summer flooding and long-term winter flooding. Almost half of the remnant species were annuals. Species richness, Shannon-Wiener Index and above-ground biomass of vegetation exhibited an increasing pattern along the elevation gradient, being greater at higher elevations subjected to lower submergence stress. Plant diversity, above-ground biomass and species distribution were significantly influenced by the duration of submergence relative to elevation in both summer and previous winter. Several million tonnes of vegetation would be accumulated on the drawdown area of TGR in every summer and some adverse environmental problems may be introduced when it was submerged in winter. We conclude that vascular flora biodiversity in the drawdown area of TGR has dramatically declined after the impoundment to full capacity. The new hydrological condition, characterized by long-term winter flooding and short periods of summer flooding, determined vegetation biodiversity and above-ground biomass patterns along the elevation gradient in

  18. 76 FR 2708 - In the Matter of Certain Ground Fault Circuit Interrupters and Products Containing Same; Notice...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-01-14

    ... INTERNATIONAL TRADE COMMISSION [Investigation No. 337-TA-739] In the Matter of Certain Ground Fault Circuit Interrupters and Products Containing Same; Notice of Commission Determination Not To... importation, and the sale within the United States after importation of certain ground fault circuit...

  19. 76 FR 17670 - In the Matter of Certain Ground Fault Circuit Interrupters and Products Containing Same; Notice...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-03-30

    ... INTERNATIONAL TRADE COMMISSION [Investigation No. 337-TA-615] In the Matter of Certain Ground Fault Circuit Interrupters and Products Containing Same; Notice of Commission Determination To Rescind... for importation, and the sale within the United States after importation of certain ground fault...

  20. Colloquium: Zoo of quantum-topological phases of matter

    NASA Astrophysics Data System (ADS)

    Wen, Xiao-Gang

    2017-10-01

    What are topological phases of matter? First, they are phases of matter at zero temperature. Second, they have a nonzero energy gap for the excitations above the ground state. Third, they are disordered liquids that seem to have no feature. But those disordered liquids actually can have rich patterns of many-body entanglement representing new kinds of order. This Colloquium gives a simple introduction and a brief survey of topological phases of matter. First topological phases with topological order (i.e., with long-range entanglement) are discussed. Then topological phases without topological order (i.e., with short-range entanglement) are covered.

  1. Effect of incorporation of walnut cake (Juglans regia) in concentrate mixture on degradation of dry matter, organic matter and production of microbial biomass in vitro in goat

    PubMed Central

    Mir, Mohsin Ahmad; Sharma, R. K.; Rastogi, Ankur; Barman, Keshab

    2015-01-01

    Aim: This study was carried out to investigate the effect of incorporation of different level of walnut cake in concentrate mixture on in vitro dry matter degradation in order to determine its level of supplementation in ruminant ration. Materials and Methods: Walnut cake was used @ 0, 10, 15, 20, 25 and 30% level to formulate an iso-nitrogenous concentrate mixtures and designated as T1, T2, T3, T4, T5 and T6 respectively. The different formulae of concentrate mixtures were used for in vitro gas production studies using goat rumen liquor with wheat straw in 40:60 ratio. Proximate composition, fiber fractionation and calcium and phosphrous content of walnut cake were estimated. Result: The per cent IVDMD value of T1 and T2 diets was 68.42 ± 1.20 and 67.25 ± 1.37 respectively which was found highest (P<0.05) T3, T4, T5 and T6. Similar trend was also found for TDOM and MBP. Inclusion of walnut cake at 10% level in the concentrate mixture does not affect in vitro dry matter digestibility (IVDMD), truly degradable organic matter (TDOM, mg/200 mg DM), total gas production, microbial biomass production (MBP) and efficiency of microbial biomass production (EMP). Conclusion: It is concluded that walnut cake incorporation up to 10% level in the iso -nitrogenous concentrate mixture has no any negative effect on in vitro digestibility of dry matter (DM), TDOM, MBP, EMP and total gas production in goat. PMID:27047013

  2. The Effect of Elevated Ozone Concentrations with Varying Shading on Dry Matter Loss in a Winter Wheat-Producing Region in China.

    PubMed

    Xu, Jingxin; Zheng, Youfei; He, Yuhong; Wu, Rongjun; Mai, Boru; Kang, Hanqing

    2016-01-01

    Surface-level ozone pollution causes crop production loss by directly reducing healthy green leaf area available for carbon fixation. Ozone and its precursors also affect crop photosynthesis indirectly by decreasing solar irradiance. Pollutants are reported to have become even more severe in Eastern China over the last ten years. In this study, we investigated the effect of a combination of elevated ozone concentrations and reduced solar irradiance on a popular winter wheat Yangmai13 (Triticum aestivum L.) at field and regional levels in China. Winter wheat was grown in artificial shading and open-top-chamber environments. Treatment 1 (T1, i.e., 60% shading with an enhanced ozone of 100±9 ppb), Treatment 2 (T2, i.e., 20% shading with an enhanced ozone of 100±9 ppb), and Control Check Treatment (CK, i.e., no shading with an enhanced ozone of 100±9 ppb), with two plots under each, were established to investigate the response of winter wheat under elevated ozone concentrations and varying solar irradiance. At the field level, linear temporal relationships between dry matter loss and cumulative stomatal ozone uptake were first established through a parameterized stomatal-flux model. At the regional level, ozone concentrations and meteorological variables, including solar irradiance, were simulated using the WRF-CMAQ model (i.e., a meteorology and air quality modeling system). These variables were then used to estimate cumulative stomatal ozone uptake for the four major winter wheat-growing provinces. The regional-level cumulative ozone uptake was then used as the independent variable in field data-based regression models to predict dry matter loss over space and time. Field-level results showed that over 85% (T1: R(2) = 0.85 & T2: R(2) = 0.89) of variation in dry matter loss was explained by cumulative ozone uptake. Dry matter was reduced by 3.8% in T1 and 2.2% in T2 for each mmol O3·m(-2) of cumulative ozone uptake. At the regional level, dry matter loss in winter

  3. The Effect of Elevated Ozone Concentrations with Varying Shading on Dry Matter Loss in a Winter Wheat-Producing Region in China

    PubMed Central

    Xu, Jingxin; Zheng, Youfei; He, Yuhong; Wu, Rongjun; Mai, Boru; Kang, Hanqing

    2016-01-01

    Surface-level ozone pollution causes crop production loss by directly reducing healthy green leaf area available for carbon fixation. Ozone and its precursors also affect crop photosynthesis indirectly by decreasing solar irradiance. Pollutants are reported to have become even more severe in Eastern China over the last ten years. In this study, we investigated the effect of a combination of elevated ozone concentrations and reduced solar irradiance on a popular winter wheat Yangmai13 (Triticum aestivum L.) at field and regional levels in China. Winter wheat was grown in artificial shading and open-top-chamber environments. Treatment 1 (T1, i.e., 60% shading with an enhanced ozone of 100±9 ppb), Treatment 2 (T2, i.e., 20% shading with an enhanced ozone of 100±9 ppb), and Control Check Treatment (CK, i.e., no shading with an enhanced ozone of 100±9 ppb), with two plots under each, were established to investigate the response of winter wheat under elevated ozone concentrations and varying solar irradiance. At the field level, linear temporal relationships between dry matter loss and cumulative stomatal ozone uptake were first established through a parameterized stomatal-flux model. At the regional level, ozone concentrations and meteorological variables, including solar irradiance, were simulated using the WRF-CMAQ model (i.e., a meteorology and air quality modeling system). These variables were then used to estimate cumulative stomatal ozone uptake for the four major winter wheat-growing provinces. The regional-level cumulative ozone uptake was then used as the independent variable in field data-based regression models to predict dry matter loss over space and time. Field-level results showed that over 85% (T1: R2 = 0.85 & T2: R2 = 0.89) of variation in dry matter loss was explained by cumulative ozone uptake. Dry matter was reduced by 3.8% in T1 and 2.2% in T2 for each mmol O3·m-2 of cumulative ozone uptake. At the regional level, dry matter loss in winter wheat

  4. Effects of above- and below-ground competition from shrubs on photosynthesis, transpiration and growth in Quercus robur L

    Treesearch

    Anna M. Jensen; Magnus Lof; Emile S. Gardiner

    2011-01-01

    For a tree seedling to successfully establish in dense shrubbery, it must maintain function under heterogeneous resource availability. We evaluated leaf-level acclimation in photosynthetic capacity, seedling-level transpiration, and seedling morphology and growth to gain an understanding of the effects of above- and below-ground competition on Quercus robur seedlings....

  5. Dry matter, lipids, and proteins of canola seeds as affected by germination and seedling growth under illuminated and dark environments.

    PubMed

    Zhang, Haiyan; Vasanthan, Thava; Wettasinghe, Mahinda

    2004-12-29

    The effect of germination and growth under illuminated and dark environments on canola seed reserves was investigated. Depletion of proteins and lipids in whole seedlings and their top (leaf/cotyledons) and bottom parts (stem/roots/seed coat) was independent of light, whereas the protein solubility increased at a faster rate under an illuminated environment than in the dark. A rapid increase in free fatty acids but a net decrease of dry matter content in seedlings grown in the dark environment was observed. The dry matter content of seedlings grown in the illuminated environment increased due to photosynthetic biomass accumulation.

  6. Ground Node

    DTIC Science & Technology

    2009-09-30

    Node deployment. Original plans were to deploy directly to Fort Jefferson on Dry Tortugas (near Key West, FL). Current plans are to initially deploy...to the USCG Station on Ismoralda Key for training operations; then deploy at a to-be- determined date to Fort Jefferson on Dry Tortugas . During FY09...Dry Tortugas . NRL expects to deliver the Ground Node to Ismoralda Key in October 2009. FY09 continued the third year of providing Ground

  7. Geosynthetic Reinforcement of Sand-Mat Layer above Soft Ground

    PubMed Central

    Park, Jong-Beom; Park, Hyun-Soo; Kim, Daehyeon

    2013-01-01

    In order to improve the bearing capacity of soft ground for the purpose of getting trafficability of construction vehicles, the reinforcement of geosynthetics for sand-mat layers on soft ground has often been used. As the strength of the geosynthetics increases, and the sand-mat system becomes stronger, the bearing capacity of sand-mat systems will be increased. The depths of geosynthetics, reinforced in sand-mat layers, were varied with respect to the width of footing. The tensile strengths of geosynthetics were also varied to evaluate the effect of reinforcement on the bearing capacity of soft ground. The dispersion angles, with varying sand-mat thicknesses, were also determined in consideration of the tensile strength of geosynthetics and the depths of reinforcement installations. The bearing capacity ratios, with the variation of footing width and reinforced embedment depth, were determined for the geosynthetics-only, reinforced soft ground, 1-layer sand-mat system and 2-layer sand-mat system against the non-reinforced soft ground. From the test results of various models, a principle that better explains the concept of geosynthetic reinforcement has been found. On the basis of this principle, a new bearing capacity equation for practical use in the design of geosynthetically reinforced soft ground has been proposed by modifying Yamanouchi’s equation. PMID:28788392

  8. Robustness of Tomato Quality Evaluation Using a Portable Vis-SWNIRS for Dry Matter and Colour

    PubMed Central

    Subedi, P. P.; Walsh, K. B.

    2017-01-01

    The utility of a handheld visible-short wave near infrared spectrophotometer utilising an interactance optical geometry was assessed in context of the noninvasive determination of intact tomato dry matter content, as an index of final ripe soluble solids content, and colouration, as an index of maturation to guide a decision to harvest. Partial least squares regression model robustness was demonstrated through the use of populations of different harvest dates or growing conditions for calibration and prediction. Dry matter predictions of independent populations of fruit achieved R2 ranging from 0.86 to 0.92 and bias from −0.14 to 0.03%. For a CIE a⁎ colour model, prediction R2 ranged from 0.85 to 0.96 and bias from −1.18 to −0.08. Updating the calibration model with new samples to extend range in the attribute of interest and in sample matrix is key to better prediction performance. The handheld spectrometry system is recommended for practical implementation in tomato cultivation. PMID:29333161

  9. Effects of Grazing on Above- vs. Below-Ground Biomass Allocation of Alpine Grasslands on the Northern Tibetan Plateau

    PubMed Central

    Zeng, Chaoxu; Wu, Jianshuang; Zhang, Xianzhou

    2015-01-01

    Biomass allocation is an essential concept for understanding above- vs. below-ground functions and for predicting the dynamics of community structure and ecosystem service under ongoing climate change. There is rare available knowledge of grazing effects on biomass allocation in multiple zonal alpine grassland types along climatic gradients across the Northern Tibetan Plateau. We collected the peak above- and below-ground biomass (AGB and BGB) values at 106 pairs of well-matched grazed vs. fenced sites during summers of 2010–2013, of which 33 pairs were subject to meadow, 52 to steppe and 21 to desert-steppe. The aboveground net primary productivity (ANPP) was represented by the peak AGB while the belowground net primary productivity (BNPP) was estimated from ANPP, the ratio of living vs. dead BGB, and the root turnover rate. Two-ways analyses of variance (ANOVA) and paired samples comparisons with t-test were applied to examine the effects of pasture managements (PMS, i.e., grazed vs. fenced) and zonal grassland types on both ANPP and BNPP. Allometric and isometric allocation hypotheses were also tested between logarithmically transformed ANPP and BNPP using standardized major axis (SMA) analyses across grazed, fenced and overall sites. In our study, a high community-dependency was observed to support the allometric biomass allocation hypothesis, in association with decreased ANPP and a decreasing-to-increasing BNPP proportions with increasing aridity across the Northern Tibetan Plateau. Grazing vs. fencing seemed to have a trivial effect on ANPP compared to the overwhelming influence of different zonal grassland types. Vegetation links above- and below-ground ecological functions through integrated meta-population adaptive strategies to the increasing severity of habitat conditions. Therefore, more detailed studies on functional diversity are essentially to achieve conservation and sustainability goals under ongoing climatic warming and intensifying human

  10. Urinary purine derivatives as a tool to estimate dry matter intake in cattle: a meta-analysis

    USDA-ARS?s Scientific Manuscript database

    The objectives of this study were: 1) to investigate the relationship between dry matter intake (DMI) and urinary purine derivatives (PD) excretion in order to develop equations to predict DMI, and 2) to determine the endogenous excretion of PD for beef and dairy cattle using a meta-analytic approac...

  11. Competitive responses of seedlings and understory plants in longleaf pine woodlands: separating canopy influences above and below ground

    Treesearch

    Stephen D. Pecot; Robert J. Mitchell; Brian J. Palik; Barry Moser; J. Kevin Hiers

    2007-01-01

    A trenching study was used to investigate above- and below-ground competition in a longleaf pine (Pinus palustris P. Mill.) woodland. Trenched and nontrenched plots were replicated in the woodland matrix, at gap edges, and in gap centers representing a range of overstory stocking. One-half of each plot received a herbicide treatment to remove the...

  12. Spatial relationships among species, above-ground biomass, N, and P in degraded grasslands in Ordus Plateau, northwestern China

    Treesearch

    X. Cheng; S. An; J. chen; B. Li; Y. Liu; S. Liu

    2007-01-01

    We chose five communities, representing a mild to severe gradient of grassland desertification in a semi-arid area of Ordos Plateau, northwestern China, to explore the spatial relationships among plant species, above-ground biomass (AGB), and plant nutrients (N and P). Community 1 (Cl) was dominated by Stipa bungeana; community 2 (C2) by a mix of S...

  13. Regional heritability mapping provides insights into dry matter (DM) content in African white and yellow cassava populations

    USDA-ARS?s Scientific Manuscript database

    The HarvestPlus program for cassava (Manihot esculenta Crantz) fortifies cassava with beta-carotene by breeding for carotene-rich tubers (yellow cassava). However, a negative correlation between yellowness and dry matter (DM) content has been identified. Here, we investigated the genetic control of ...

  14. Effects of sawdust bedding dry matter on lying behavior of dairy cows: a dose-dependent response.

    PubMed

    Reich, L J; Weary, D M; Veira, D M; von Keyserlingk, M A G

    2010-04-01

    The objective was to determine the effect of sawdust bedding dry matter on the lying behavior of Holstein cows. Dry matter (DM) was varied systematically over 5 treatment levels to test how cows respond to damp bedding. This experiment was repeated during summer and winter to test if the effects of damp bedding varied with season. The 5 bedding treatments averaged (+/-SD) 89.8+/-3.7, 74.2+/-6.4, 62.2+/-6.3, 43.9+/-4.0, and 34.7+/-3.8% DM. Over the course of the trial, minimum and maximum temperatures in the barn were 2.6+/-2.0 and 6.8+/-2.2 degrees C in the winter and 13.3+/-2.5 and 22.6+/-4.1 degrees C in the summer. In both seasons, 5 groups of 3 nonlactating cows were housed in free stalls bedded with sawdust. Following a 5-d acclimation period on dry bedding, groups were exposed to the 5 bedding treatments in a 5 x 5 Latin square. Each treatment lasted 4 d, followed by 1 d when the cows were provided with dry bedding. Stall usage was assessed by 24-h video scanned at 5-min intervals. Responses were analyzed within group (n=5) as the observational unit. Bedding DM affected lying time, averaging 10.4+/-0.4 h/d on the wettest treatment and increasing to 11.5+/-0.4 h/d on the driest bedding. Lying time varied with season, averaging 12.1+/-0.4 h/d across treatments during the winter and 9.9+/-0.6 h/d during the summer, but season and bedding DM did not interact. These results indicate that access to dry bedding is important for dairy cows. Copyright (c) 2010 American Dairy Science Association. Published by Elsevier Inc. All rights reserved.

  15. Climate change effects on above- and below-ground interactions in a dryland ecosystem.

    PubMed

    González-Megías, Adela; Menéndez, Rosa

    2012-11-19

    Individual species respond to climate change by altering their abundance, distribution and phenology. Less is known, however, about how climate change affects multitrophic interactions, and its consequences for food-web dynamics. Here, we investigate the effect of future changes in rainfall patterns on detritivore-plant-herbivore interactions in a semiarid region in southern Spain by experimentally manipulating rainfall intensity and frequency during late spring-early summer. Our results show that rain intensity changes the effect of below-ground detritivores on both plant traits and above-ground herbivore abundance. Enhanced rain altered the interaction between detritivores and plants affecting flower and fruit production, and also had a direct effect on fruit and seed set. Despite this finding, there was no net effect on plant reproductive output. This finding supports the idea that plants will be less affected by climatic changes than by other trophic levels. Enhanced rain also affected the interaction between detritivores and free-living herbivores. The effect, however, was apparent only for generalist and not for specialist herbivores, demonstrating a differential response to climate change within the same trophic level. The complex responses found in this study suggest that future climate change will affect trophic levels and their interactions differentially, making extrapolation from individual species' responses and from one ecosystem to another very difficult.

  16. Impact of fugitive sources and meteorological parameters on vertical distribution of particulate matter over the industrial agglomeration.

    PubMed

    Štrbová, Kristína; Raclavská, Helena; Bílek, Jiří

    2017-12-01

    The aim of the study was to characterize vertical distribution of particulate matter, in an area well known by highest air pollution levels in Europe. A balloon filled with helium with measuring instrumentation was used for vertical observation of air pollution over the fugitive sources in Moravian-Silesian metropolitan area during spring and summer. Synchronously, selected meteorological parameters were recorded together with particulate matter for exploration its relationship with particulate matter. Concentrations of particulate matter in the vertical profile were significantly higher in the spring than in the summer. Significant effect of fugitive sources was observed up to the altitude ∼255 m (∼45 m above ground) in both seasons. The presence of inversion layer was observed at the altitude ∼350 m (120-135 m above ground) at locations with major source traffic load. Both particulate matter concentrations and number of particles for the selected particle sizes decreased with increasing height. Strong correlation of particulate matter with meteorological parameters was not observed. The study represents the first attempt to assess the vertical profile over the fugitive emission sources - old environmental burdens in industrial region. Copyright © 2017 Elsevier Ltd. All rights reserved.

  17. Towards ground-truthing of spaceborne estimates of above-ground biomass and leaf area index in tropical rain forests

    NASA Astrophysics Data System (ADS)

    Köhler, P.; Huth, A.

    2010-05-01

    The canopy height of forests is a key variable which can be obtained using air- or spaceborne remote sensing techniques such as radar interferometry or lidar. If new allometric relationships between canopy height and the biomass stored in the vegetation can be established this would offer the possibility for a global monitoring of the above-ground carbon content on land. In the absence of adequate field data we use simulation results of a tropical rain forest growth model to propose what degree of information might be generated from canopy height and thus to enable ground-truthing of potential future satellite observations. We here analyse the correlation between canopy height in a tropical rain forest with other structural characteristics, such as above-ground biomass (AGB) (and thus carbon content of vegetation) and leaf area index (LAI). The process-based forest growth model FORMIND2.0 was applied to simulate (a) undisturbed forest growth and (b) a wide range of possible disturbance regimes typically for local tree logging conditions for a tropical rain forest site on Borneo (Sabah, Malaysia) in South-East Asia. It is found that for undisturbed forest and a variety of disturbed forests situations AGB can be expressed as a power-law function of canopy height h (AGB=a·hb) with an r2~60% for a spatial resolution of 20 m×20 m (0.04 ha, also called plot size). The regression is becoming significant better for the hectare wide analysis of the disturbed forest sites (r2=91%). There seems to exist no functional dependency between LAI and canopy height, but there is also a linear correlation (r2~60%) between AGB and the area fraction in which the canopy is highly disturbed. A reasonable agreement of our results with observations is obtained from a comparison of the simulations with permanent sampling plot data from the same region and with the large-scale forest inventory in Lambir. We conclude that the spaceborne remote sensing techniques have the potential to

  18. Feeding fat from distillers dried grains with solubles to dairy heifers: I. Effects on growth performance and total-tract digestibility of nutrients.

    PubMed

    Anderson, J L; Kalscheur, K F; Garcia, A D; Schingoethe, D J

    2015-08-01

    The objective of this study was to determine if increased dietary fat from dried distillers grains with solubles (DDGS) in diets of growing heifers affected dry matter intake, average daily gain (ADG), growth performance, and nutrient digestibility. Thirty-three Holstein heifers (133±18 d old) were used in a 24-wk randomized complete block design. Treatments were (1) control (CON) containing ground corn and soybean products, (2) low-fat (LFDG) containing low-fat, high-protein DDGS and ground corn, and (3) high-fat (HFDG) with traditional DDGS. All diets contained 39.8% grass hay, 24.8% corn silage, and 1.5% vitamins and minerals. The HFDG diet was formulated to contain 4.8% fat compared with 2.8% in the CON and LFDG diets, which were greater in nonfibrous carbohydrate. Diets had a net energy gain of 1.0Mcal/kg of dry matter and were limit-fed at 2.45% of body weight. Heifers were weighed every 2wk and rations were adjusted accordingly. Heart girth, hip and wither heights, body length, and body condition score were recorded every 2wk. Total-tract digestion of nutrients was evaluated during wk16 using fecal grab sampling and an external marker. No treatments by time interactions were found. Dry matter intakes, body weights, ADG, and gain-to-feed ratio were similar among treatments; however, ADG averaged 0.96kg/d among treatments, which is greater than recommended. All body frame measurements and body condition scores were similar among treatments. Total-tract digestibilities of dry matter and organic matter were not different among treatments. However, crude protein and neutral detergent fiber digestibility were increased in the HFDG diet compared with the CON and LFDG diets. These results demonstrate that using DDGS or low-fat DDGS with corn in growing heifer rations can maintain performance. Utilizing the fat in DDGS as a dietary energy source in replacement of starch from corn did not influence growth performance or negatively affect nutrient digestion. Copyright

  19. [Effects of field border length for irrigation on photosynthetic characteristics, dry matter accumulation and water use efficiency of wheat].

    PubMed

    Ma, Shang-Yu; Yu, Zhen-Wen; Shi, Yu; Zhao, Jun-Ye; Zhang, Yong-Li

    2014-04-01

    With the high-yielding winter wheat cultivar Jimai 22 as test material, a three-year field experiment was conducted to examine the effects of border length for irrigation on flag leaf water potential, photosynthetic characteristics, dry matter accumulation and distribution of wheat. In the 2010-2011 growing season, six treatments were installed, i. e., the field border length was designed as 10 m (L10), 20 m (L20), 40 m (L40), 60 m (L60), 80 m (L80) and 100 m (L100). In the 2011-2012 and 2012-2013 growing seasons, the field border length was designed as 40 m (L40), 60 m (L60), 80 m (L80) and 100 m (L100). The results showed that the average relative soil water content of the 0-200 cm soil layer was presented as L80, L60>L100>L40>L20>L10 at anthesis in the 2010-2011 growing season and as L80, L60>L100>L40 in the 2011-2012 and 2012-2013 growing seasons. At 11 d and 21 d after anthesis, the water potential, net photosynthetic rate and transpiration rate of flag leaf were presented as L80, L100>L60>L40>L20, L10, and as L80>L60, L100>L40, L20, L10 at 31 d after anthesis. The coefficients of variability both of the dry matter accumulation at anthesis and maturity and of grain yield in different regions of L80 field were lower than those of L100. The average dry matter accumulation, dry matter accumulation after anthesis and the contribution to grain of L80 were dramatically higher than those of L100, L40, L20 and L10. L80 had the highest average grain yield and water use efficiency, being the best treatment for irrigation in our study.

  20. Chromophoric and fluorescent dissolved organic matter in and above the oxygen minimum zone off Peru

    NASA Astrophysics Data System (ADS)

    Loginova, A. N.; Thomsen, S.; Engel, A.

    2016-11-01

    As a result of nutrient upwelling, the Peruvian coastal system is one of the most productive regions in the ocean. Sluggish ventilation of intermediate waters, characteristic for the Eastern Tropical South Pacific (ETSP) and microbial degradation of a high organic matter load promotes deoxygenation at depth. Dissolved organic matter (DOM) plays a key role in microbial respiration and carbon cycling, but little is known on DOM distribution and cycling in the ETSP. DOM optical properties give important insights on DOM sources, structure and biogeochemical reactivity. Here, we present data and a conceptual view on distribution and cycling of chromophoric (CDOM) and fluorescent (FDOM) DOM in and above the oxygen minimum zone (OMZ) off Peru. Five fluorescent components were identified during PARAFAC analysis. Highest intensities of CDOM and of the amino acid-like fluorescent component (C3) occurred above the OMZ and coincided with maximum chl a concentrations, suggesting phytoplankton productivity as major source. High intensities of a marine humic-like fluorescent component (C1), observed in subsurface waters, indicated in situ microbial reworking of DOM. FDOM release from inner shelf sediment was determined by seawater analysis and continuous glider sensor measurement and included a humic-like component (C2) with a signature typical for terrestrially derived humic acids. Upwelling supplied humic-like substances to the euphotic zone. Photo-reactions were likely involved in the production of a humic-like fluorescent component (C5). Our data show that variable biological and physical processes need to be considered for understanding DOM cycling in a highly dynamic coastal upwelling system like the ETSP off Peru.

  1. Predicting above-ground density and distribution of small mammal prey species at large spatial scales

    PubMed Central

    2017-01-01

    Grassland and shrub-steppe ecosystems are increasingly threatened by anthropogenic activities. Loss of native habitats may negatively impact important small mammal prey species. Little information, however, is available on the impact of habitat variability on density of small mammal prey species at broad spatial scales. We examined the relationship between small mammal density and remotely-sensed environmental covariates in shrub-steppe and grassland ecosystems in Wyoming, USA. We sampled four sciurid and leporid species groups using line transect methods, and used hierarchical distance-sampling to model density in response to variation in vegetation, climate, topographic, and anthropogenic variables, while accounting for variation in detection probability. We created spatial predictions of each species’ density and distribution. Sciurid and leporid species exhibited mixed responses to vegetation, such that changes to native habitat will likely affect prey species differently. Density of white-tailed prairie dogs (Cynomys leucurus), Wyoming ground squirrels (Urocitellus elegans), and leporids correlated negatively with proportion of shrub or sagebrush cover and positively with herbaceous cover or bare ground, whereas least chipmunks showed a positive correlation with shrub cover and a negative correlation with herbaceous cover. Spatial predictions from our models provide a landscape-scale metric of above-ground prey density, which will facilitate the development of conservation plans for these taxa and their predators at spatial scales relevant to management. PMID:28520757

  2. Structural effects of liana presence in secondary tropical dry forests using ground LiDAR

    NASA Astrophysics Data System (ADS)

    Sánchez-Azofeifa, A.; Portillo-Quintero, C.; Durán, S. M.

    2015-10-01

    Lianas, woody vines, are a key component of tropical forest because they may reduce carbon storage potential. Lianas are increasing in density and biomass in tropical forests, but it is unknown what the potential consequences of these increases are for forest dynamics. Lianas may proliferate in disturbed areas, such as regenerating forests, but little is known about the role of lianas in secondary succession. In this study, we evaluated the potential of the ground LiDAR to detect differences in the vertical structure of stands of different ages with and without lianas in tropical dry forests. Specifically, we used a terrestrial laser scanner called VEGNET to assess whether liana presence influences the vertical signature of stands of different ages, and whether successional trajectories as detected by the VEGNET could be altered by liana presence. We deployed the VEGNET ground LiDAR system in 15 secondary forests of different ages early (21 years old since land abandonment), intermediate (32-35 years old) and late stages (> 80 years old) with and without lianas. We compared laser-derived vegetation components such as Plant Area Index (PAI), plant area volume density (PAVD), and the radius of gyration (RG) across forest stands between liana and no-liana treatments. In general forest stands without lianas show a clearer distinction of vertical strata and the vertical height of accumulated PAVD. A significant increase of PAI was found from intermediate to late stages in stands without lianas, but in stands where lianas were present there was not a significant trend. This suggests that lianas may be influencing successional trajectories in secondary forests, and these effects can be captured by terrestrial laser scanners such as the VEGNET. This research contributes to estimate the potential effects of lianas in secondary dry forests and highlight the role of ground LiDAR to monitor structural changes in tropical forests due to liana presence.

  3. Relationship between dry matter content at harvest and maturity index and post-harvest quality of "Fuji" apples

    USDA-ARS?s Scientific Manuscript database

    Two experiments were carried out to evaluate the relationship between dry matter content (DMC) and maturity index of ‘Fuji’ apple fruit sports (‘Mishima’, ‘Fuji Select’ and ‘Fuji Suprema’) during the final stage of fruit growth, and the relationship between DMC at harvest and the post-harvest fruit ...

  4. A New Curve of Critical Nitrogen Concentration Based on Spike Dry Matter for Winter Wheat in Eastern China.

    PubMed

    Zhao, Ben; Ata-Ui-Karim, Syed Tahir; Yao, Xia; Tian, YongChao; Cao, WeiXing; Zhu, Yan; Liu, XiaoJun

    2016-01-01

    Diagnosing the status of crop nitrogen (N) helps to optimize crop yield, improve N use efficiency, and reduce the risk of environmental pollution. The objectives of the present study were to develop a critical N (Nc) dilution curve for winter wheat (based on spike dry matter [SDM] during the reproductive growth period), to compare this curve with the existing Nc dilution curve (based on plant dry matter [DM] of winter wheat), and to explore its ability to reliably estimate the N status of winter wheat. Four field experiments, using varied N fertilizer rates (0-375 kg ha-1) and six cultivars (Yangmai16, Ningmai13, Ningmai9, Aikang58, Yangmai12, Huaimai 17), were conducted in the Jiangsu province of eastern China. Twenty plants from each plot were sampled to determine the SDM and spike N concentration (SNC) during the reproductive growth period. The spike Nc curve was described by Nc = 2.85×SDM-0.17, with SDM ranging from 0.752 to 7.233 t ha-1. The newly developed curve was lower than the Nc curve based on plant DM. The N nutrition index (NNI) for spike dry matter ranged from 0.62 to 1.1 during the reproductive growth period across the seasons. Relative yield (RY) increased with increasing NNI; however, when NNI was greater than 0.96, RY plateaued and remained stable. The spike Nc dilution curve can be used to correctly identify the N nutrition status of winter wheat to support N management during the reproductive growth period for winter wheat in eastern China.

  5. A New Curve of Critical Nitrogen Concentration Based on Spike Dry Matter for Winter Wheat in Eastern China

    PubMed Central

    Zhao, Ben; Ata-UI-Karim, Syed Tahir; Yao, Xia; Tian, YongChao; Cao, WeiXing; Zhu, Yan; Liu, XiaoJun

    2016-01-01

    Diagnosing the status of crop nitrogen (N) helps to optimize crop yield, improve N use efficiency, and reduce the risk of environmental pollution. The objectives of the present study were to develop a critical N (Nc) dilution curve for winter wheat (based on spike dry matter [SDM] during the reproductive growth period), to compare this curve with the existing Nc dilution curve (based on plant dry matter [DM] of winter wheat), and to explore its ability to reliably estimate the N status of winter wheat. Four field experiments, using varied N fertilizer rates (0–375 kg ha-1) and six cultivars (Yangmai16, Ningmai13, Ningmai9, Aikang58, Yangmai12, Huaimai 17), were conducted in the Jiangsu province of eastern China. Twenty plants from each plot were sampled to determine the SDM and spike N concentration (SNC) during the reproductive growth period. The spike Nc curve was described by Nc = 2.85×SDM-0.17, with SDM ranging from 0.752 to 7.233 t ha-1. The newly developed curve was lower than the Nc curve based on plant DM. The N nutrition index (NNI) for spike dry matter ranged from 0.62 to 1.1 during the reproductive growth period across the seasons. Relative yield (RY) increased with increasing NNI; however, when NNI was greater than 0.96, RY plateaued and remained stable. The spike Nc dilution curve can be used to correctly identify the N nutrition status of winter wheat to support N management during the reproductive growth period for winter wheat in eastern China. PMID:27732634

  6. Pesticides in ground water: Do atrazine metabolites matter?

    USGS Publications Warehouse

    Liu, S.; Yen, S.T.; Kolpin, D.W.

    1996-01-01

    Atrazine and atrazine-residue (atrazine + two metabolites - deethylatrazine and deisopropylatrazine) concentrations were examined to determine if consideration of these atrazine metabolites substantially adds to our understanding of the distribution of this pesticide in groundwater of the midcontinental United States. The mean of atrazine.residue concentrations was 53 percent greater than that of atrazine alone for those observations above the detection limit (> 0.05 μg/l). Furthermore, a censored regression analysis using atrazine-residue concentrations revealed significant factors not identified when only atrazine concentrations were used. Thus, knowledge of concentrations of these atrazine metabolites is required to obtain a true estimation of risk of using these aquifers as sources for drinking water, and such knowledge also provides information that ultimately may be important for future management policies designed to reduce atrazine concentrations in ground water.

  7. Forest above ground biomass estimation and forest/non-forest classification for Odisha, India, using L-band Synthetic Aperture Radar (SAR) data

    NASA Astrophysics Data System (ADS)

    Suresh, M.; Kiran Chand, T. R.; Fararoda, R.; Jha, C. S.; Dadhwal, V. K.

    2014-11-01

    Tropical forests contribute to approximately 40 % of the total carbon found in terrestrial biomass. In this context, forest/non-forest classification and estimation of forest above ground biomass over tropical regions are very important and relevant in understanding the contribution of tropical forests in global biogeochemical cycles, especially in terms of carbon pools and fluxes. Information on the spatio-temporal biomass distribution acts as a key input to Reducing Emissions from Deforestation and forest Degradation Plus (REDD+) action plans. This necessitates precise and reliable methods to estimate forest biomass and to reduce uncertainties in existing biomass quantification scenarios. The use of backscatter information from a host of allweather capable Synthetic Aperture Radar (SAR) systems during the recent past has demonstrated the potential of SAR data in forest above ground biomass estimation and forest / nonforest classification. In the present study, Advanced Land Observing Satellite (ALOS) / Phased Array L-band Synthetic Aperture Radar (PALSAR) data along with field inventory data have been used in forest above ground biomass estimation and forest / non-forest classification over Odisha state, India. The ALOSPALSAR 50 m spatial resolution orthorectified and radiometrically corrected HH/HV dual polarization data (digital numbers) for the year 2010 were converted to backscattering coefficient images (Schimada et al., 2009). The tree level measurements collected during field inventory (2009-'10) on Girth at Breast Height (GBH at 1.3 m above ground) and height of all individual trees at plot (plot size 0.1 ha) level were converted to biomass density using species specific allometric equations and wood densities. The field inventory based biomass estimations were empirically integrated with ALOS-PALSAR backscatter coefficients to derive spatial forest above ground biomass estimates for the study area. Further, The Support Vector Machines (SVM) based Radial

  8. Modeling Above-Ground Biomass Across Multiple Circum-Arctic Tundra Sites Using High Spatial Resolution Remote Sensing

    NASA Astrophysics Data System (ADS)

    Räsänen, Aleksi; Juutinen, Sari; Aurela, Mika; Virtanen, Tarmo

    2017-04-01

    Biomass is one of the central bio-geophysical variables in Earth observation for tracking plant productivity, and flow of carbon, nutrients, and water. Most of the satellite based biomass mapping exercises in Arctic environments have been performed by using rather coarse spatial resolution data, e.g. Landsat and AVHRR which have spatial resolutions of 30 m and >1 km, respectively. While the coarse resolution images have high temporal resolution, they are incapable of capturing the fragmented nature of tundra environment and fine-scale changes in vegetation and carbon exchange patterns. Very high spatial resolution (VHSR, spatial resolution 0.5-2 m) satellite images have the potential to detect environmental variables with an ecologically sound spatial resolution. The usage of VHSR images has, nevertheless, been modest so far in biomass modeling in the Arctic. Our objectives were to use VHSR for predicting above ground biomass in tundra landscapes, evaluate whether a common predictive model can be applied across circum-Arctic tundra and peatland sites having different types of vegetation, and produce knowledge on distribution of plant functional types (PFT) in these sites. Such model development is dependent on ground-based surveys of vegetation with the same spatial resolution and extent with the VHSR images. In this study, we conducted ground-based surveys of vegetation composition and biomass in four different arctic tundra or peatland areas located in Russia, Canada, and Finland. First, we sorted species into PFTs and developed PFT-specific models to predict biomass on the basis of non-destructive measurements (cover, height). Second, we predicted overall biomass on landscape scale by combinations of single bands and vegetation indices of very high resolution satellite images (QuickBird or WorldView-2 images of the eight sites). We compared area-specific empirical regression models and common models that were applied across all sites. We found that NDVI was

  9. Partial Replacement of Ground Corn with Glycerol in Beef Cattle Diets: Intake, Digestibility, Performance, and Carcass Characteristics

    PubMed Central

    Del Bianco Benedeti, Pedro; Paulino, Pedro Veiga Rodrigues; Marcondes, Marcos Inácio; Maciel, Ivan França Smith; da Silva, Matheus Custódio; Faciola, Antonio Pinheiro

    2016-01-01

    The objective of this study was to evaluate the effects of replacing dry ground corn with crude glycerol on intake, apparent digestibility, performance, and carcass characteristics of finishing beef bulls. A completely randomized block design experiment with 25 d for adaptation and 100 d for data collection was conducted, in which 3,640 Nellore bulls (367 ± 36.8 kg; 18 ± 3 mo) were blocked by body weight and assigned to 20 pens. Bulls were randomly assigned to one of four treatments: 0, 5, 10, and 15% (dry matter basis) of crude glycerol in the diet. Initially, 20 bulls were slaughtered to serve as a reference to estimate initial empty body weight, which allowed for carcass gain calculation. Bulls were weighed at the beginning, at two-thirds, and at the end of the experiment for performance calculations. Carcass measurements were obtained by ultrasound. Fecal output was estimated using indigestible neutral detergent fiber as an internal marker. Data were analyzed using the mixed procedures in SAS 9.2 (SAS Institute Inc., Cary, NC). Intake of dry matter, organic matter, and neutral detergent fiber decreased linearly (P < 0.05) with crude glycerol inclusion. However, crude glycerol levels did not affect (P > 0.05) intakes of crude protein, non-fiber carbohydrates, and total digestible nutrients. Digestibility of dry matter, organic matter, neutral detergent fiber, and total digestible nutrients increased quadratically (P < 0.05) with the inclusion of crude glycerol in the diet. Crude glycerol inclusion did not change the intake of digestible dry matter, average daily gain, final body weight, carcass gain, carcass dressing, gain-to-feed ratio, Longissimus thoracis muscle area, and back and rump fat thicknesses (P > 0.05). These results suggest that crude glycerol may be included in finishing beef diets at levels up to 15% without impairing performance and carcass characteristics. PMID:26820725

  10. Above-Ground Dimensions and Acclimation Explain Variation in Drought Mortality of Scots Pine Seedlings from Various Provenances

    PubMed Central

    Seidel, Hannes; Menzel, Annette

    2016-01-01

    Seedling establishment is a critical part of the life cycle, thus seedling survival might be even more important for forest persistence under recent and future climate change. Scots pine forests have been disproportionally more affected by climate change triggered forest-dieback. Nevertheless, some Scots pine provenances might prove resilient to future drought events because of the species’ large distributional range, genetic diversity, and adaptation potential. However, there is a lack of knowledge on provenance-specific survival under severe drought events and on how acclimation alters survival rates in Scots pine seedlings. We therefore conducted two drought-induced mortality experiments with potted Scots pine seedlings in a greenhouse. In the first experiment, 760 three-year-old seedlings from 12 different provenances of the south-western distribution range were subjected to the same treatment followed by the mortality experiment in 2014. In the second experiment, we addressed the question of whether acclimation to re-occurring drought stress events and to elevated temperature might decrease mortality rates. Thus, 139 four-year-old seedlings from France, Germany, and Poland were subjected to different temperature regimes (2012–2014) and drought treatments (2013–2014) before the mortality experiment in 2015. Provenances clearly differed in their hazard of drought-induced mortality, which was only partly related to the climate of their origin. Drought acclimation decreased the hazard of drought-induced mortality. Above-ground dry weight and height were the main determinants for the hazard of mortality, i.e., heavier and taller seedlings were more prone to mortality. Consequently, Scots pine seedlings exhibit a considerable provenance-specific acclimation potential against drought mortality and the selection of suitable provenances might thus facilitate seedling establishment and the persistence of Scots pine forest. PMID:27458477

  11. Dried, ground banana plant leaves (Musa spp.) for the control of Haemonchus contortus and Trichostrongylus colubriformis infections in sheep.

    PubMed

    Gregory, L; Yoshihara, E; Ribeiro, B L M; Silva, L K F; Marques, E C; Meira, E B S; Rossi, R S; Sampaio, P H; Louvandini, H; Hasegawa, M Y

    2015-12-01

    To evaluate the anthelmintic effect of Musa spp. leaves, 12 animals were artificially infected with Haemonchus contortus, and another 12 animals were infected with Trichostrongylus colubriformis. Then, both treatment groups were offered 400 g of dried ground banana plant leaves, and the control animals were offered only 1000 g of coast cross hay. During the trials, the animals received weekly physical examinations. The methods used to evaluate the efficiency of this treatment were packed cell volume, total plasma protein and faecal egg counts, and egg hatchability tests were performed on days -2, +3, +6, +9, +13 and +15. Coproculture tests were performed on day -2 to confirm monospecific infections. In the FEC and EHT, a statistically significant difference (0.04, 0.005; p < 0.05) was noted for T. colubriformis. There were no statistically significant differences (p > 0.05) for Haemochus contortus group in all tests. Our results confirmed previous findings suggesting that dried ground banana plant leaves possess anthelmintic activity.

  12. Preliminary Studies to Characterize the Temporal Variation of Micronutrient Composition of the Above Ground Organs of Maize and Correlated Uptake Rates

    PubMed Central

    Martins, Karla Vilaça; Dourado-Neto, Durval; Reichardt, Klaus; de Jong van Lier, Quirijn; Favarin, José Laércio; Sartori, Felipe Fadel; Felisberto, Guilherme; Mello, Simone da Costa

    2017-01-01

    The improvement of agronomic practices and the use of high technology in field crops contributes for significant increases in maize productivity, and may have altered the dynamics of nutrient uptake and partition by the plant. Official recommendations for fertilizer applications to the maize crop in Brazil and in many countries are based on critical soil nutrient contents and are relatively outdated. Since the factors that interact in an agricultural production system are dynamic, mathematical modeling of the growth process turns out to be an appropriate tool for these studies. Agricultural modeling can expand our knowledge about the interactions prevailing in the soil-plant-atmosphere system. The objective of this study is to propose a methodology for characterizing the micronutrient composition of different organs and their extraction, and export during maize crop development, based on modeling nutrient uptake, crop potential evapotranspiration and micronutrient partitioning in the plant, considering the production environment. This preliminary characterization study (experimental growth analysis) considers the temporal variation of the micronutrient uptake rate in the aboveground organs, which defines crop needs and the critical nutrient content of the soil solution. The methodology allowed verifying that, initially, the highest fraction of dry matter, among aboveground organs, was assigned to the leaves. After the R1 growth stage, the largest part of dry matter was partitioned to the stalk, which in this growth stage is the main storage organ of the maize plant. During the reproductive phase, the highest fraction of dry matter was conferred to the reproductive organs, due to the high demand for carbohydrates for grain filling. The micronutrient (B, Cu, Fe, Mn, and Zn) content follows a power model, with higher values for the initial growth stages of development and leveling off to minimum values at the R6 growth stage. The proposed model allows to verify that

  13. An alternative approach for estimating above ground biomass using Resourcesat-2 satellite data and artificial neural network in Bundelkhand region of India.

    PubMed

    Deb, Dibyendu; Singh, J P; Deb, Shovik; Datta, Debajit; Ghosh, Arunava; Chaurasia, R S

    2017-10-20

    Determination of above ground biomass (AGB) of any forest is a longstanding scientific endeavor, which helps to estimate net primary productivity, carbon stock and other biophysical parameters of that forest. With advancement of geospatial technology in last few decades, AGB estimation now can be done using space-borne and airborne remotely sensed data. It is a well-established, time saving and cost effective technique with high precision and is frequently applied by the scientific community. It involves development of allometric equations based on correlations of ground-based forest biomass measurements with vegetation indices derived from remotely sensed data. However, selection of the best-fit and explanatory models of biomass estimation often becomes a difficult proposition with respect to the image data resolution (spatial and spectral) as well as the sensor platform position in space. Using Resourcesat-2 satellite data and Normalized Difference Vegetation Index (NDVI), this pilot scale study compared traditional linear and nonlinear models with an artificial intelligence-based non-parametric technique, i.e. artificial neural network (ANN) for formulation of the best-fit model to determine AGB of forest of the Bundelkhand region of India. The results confirmed the superiority of ANN over other models in terms of several statistical significance and reliability assessment measures. Accordingly, this study proposed the use of ANN instead of traditional models for determination of AGB and other bio-physical parameters of any dry deciduous forest of tropical sub-humid or semi-arid area. In addition, large numbers of sampling sites with different quadrant sizes for trees, shrubs, and herbs as well as application of LiDAR data as predictor variable were recommended for very high precision modelling in ANN for a large scale study.

  14. Infrared Drying as a Quick Preparation Method for Dried Tangerine Peel

    PubMed Central

    Xu, Mingyue; Zhao, Chengying; Ahmad, Aftab; Zhang, Huijuan; Xiao, Hang

    2017-01-01

    To establish the most convenient and effective method to dry tangerine peels, different methods (sun drying, hot-air drying, freeze drying, vacuum drying, and medium- and short-wave infrared drying) were exploited. Our results indicated that medium- and short-wave infrared drying was the best method to preserve nutraceutical components; for example, vitamin C was raised to 6.77 mg/g (D.W.) from 3.39 mg/g (sun drying). Moreover, the drying time can be shortened above 96% compared with sun drying. Importantly, the efficiency of DPPH radical scavenging was enhanced from 26.66% to 55.92%. These findings would provide a reliable and time-saving methodology to produce high-quality dried tangerine peels. PMID:29348752

  15. Towards ground-truthing of spaceborne estimates of above-ground life biomass and leaf area index in tropical rain forests

    NASA Astrophysics Data System (ADS)

    Köhler, P.; Huth, A.

    2010-08-01

    The canopy height h of forests is a key variable which can be obtained using air- or spaceborne remote sensing techniques such as radar interferometry or LIDAR. If new allometric relationships between canopy height and the biomass stored in the vegetation can be established this would offer the possibility for a global monitoring of the above-ground carbon content on land. In the absence of adequate field data we use simulation results of a tropical rain forest growth model to propose what degree of information might be generated from canopy height and thus to enable ground-truthing of potential future satellite observations. We here analyse the correlation between canopy height in a tropical rain forest with other structural characteristics, such as above-ground life biomass (AGB) (and thus carbon content of vegetation) and leaf area index (LAI) and identify how correlation and uncertainty vary for two different spatial scales. The process-based forest growth model FORMIND2.0 was applied to simulate (a) undisturbed forest growth and (b) a wide range of possible disturbance regimes typically for local tree logging conditions for a tropical rain forest site on Borneo (Sabah, Malaysia) in South-East Asia. In both undisturbed and disturbed forests AGB can be expressed as a power-law function of canopy height h (AGB = a · hb) with an r2 ~ 60% if data are analysed in a spatial resolution of 20 m × 20 m (0.04 ha, also called plot size). The correlation coefficient of the regression is becoming significant better in the disturbed forest sites (r2 = 91%) if data are analysed hectare wide. There seems to exist no functional dependency between LAI and canopy height, but there is also a linear correlation (r2 ~ 60%) between AGB and the area fraction of gaps in which the canopy is highly disturbed. A reasonable agreement of our results with observations is obtained from a comparison of the simulations with permanent sampling plot (PSP) data from the same region and with the

  16. Evaluation of ground-based particulate matter in association with measurements from space

    NASA Astrophysics Data System (ADS)

    Nakata, Makiko; Yoshida, Akihito; Sano, Itaru; Mukai, Sonoyo

    2017-10-01

    Air pollution is problem of deep concern to human health. In Japan, the air pollution levels experienced during the recent period of rapid economic growth have been reduced. However, fine particulate matter (PM2.5) has not yet reached the environmental standards at many monitoring stations. The Japanese environmental quality standard for PM2.5 that was ratified in 2009 lags about four decades behind other air pollutants, including sulfur dioxide, nitrogen dioxide, carbon monoxide, photochemical oxidants, and suspended particulate matter. Recently, trans-national air pollutants have been observed to cause high concentrations of PM2.5 in Japan. To obtain wide distribution of PM2.5, the satellite based PM2.5 products are extremely useful. We investigate PM2.5 concentrations measured using ground samplers in Japan and the satellite based PM2.5 products, taking into consideration various geographical and weather conditions.

  17. The effect of harvest time, dry matter content and mechanical pretreatments on anaerobic digestion and enzymatic hydrolysis of miscanthus.

    PubMed

    Frydendal-Nielsen, Susanne; Hjorth, Maibritt; Baby, Sanmohan; Felby, Claus; Jørgensen, Uffe; Gislum, René

    2016-10-01

    Miscanthus x giganteus was harvested as both green and mature biomass and the dry matter content of the driest harvest was artificially decreased by adding water in two subsamples, giving a total of five dry matter contents. All five biomass types were mechanically pretreated by roller-milling, extrusion or grinding and accumulated methane production and enzymatically-accessible sugars were measured. Accumulated methane production was studied using sigmoid curves that allowed comparison among the treatments of the rate of the methane production and ultimate methane yield. The green biomass gave the highest methane yield and highest levels of enzymatically-accessible cellulose. The driest biomass gave the best effect from extrusion but with the highest energy consumption, whereas roller-milling was most efficient on wet biomass. The addition of water to the last harvest improved the effect of roller-milling and equalled extrusion of the samples in efficiency. Copyright © 2016 Elsevier Ltd. All rights reserved.

  18. Economic analysis of using above ground gas storage devices for compressed air energy storage system

    NASA Astrophysics Data System (ADS)

    Liu, Jinchao; Zhang, Xinjing; Xu, Yujie; Chen, Zongyan; Chen, Haisheng; Tan, Chunqing

    2014-12-01

    Above ground gas storage devices for compressed air energy storage (CAES) have three types: air storage tanks, gas cylinders, and gas storage pipelines. A cost model of these gas storage devices is established on the basis of whole life cycle cost (LCC) analysis. The optimum parameters of the three types are determined by calculating the theoretical metallic raw material consumption of these three devices and considering the difficulties in manufacture and the influence of gas storage device number. The LCCs of the three types are comprehensively analyzed and compared. The result reveal that the cost of the gas storage pipeline type is lower than that of the other two types. This study may serve as a reference for designing large-scale CAES systems.

  19. [Effects of irrigation and planting pattern on winter wheat water consumption characteristics and dry matter production].

    PubMed

    Dong, Hao; Chen, Yu-Hai; Zhou, Xun-Bo

    2013-07-01

    Taking high-yield winter wheat cultivar 'Jimai 22' as test material, a field experiment was conducted in 2008-2010 to study the effects of different irrigation and planting modes on the water consumption characteristics and dry matter accumulation and distribution of winter wheat. Three planting patterns (uniform row, wide-narrow row, and furrow) and four irrigation schedules (no irrigation, W0; irrigation at jointing stage, W1; irrigation at jointing and anthesis stages, W2; and irrigation at jointing, anthesis, and milking stages, W3; with 60 mm per irrigation) were installed. With increasing amount of irrigation, the total water consumption and the ratio of irrigation water to total water consumption under different planting patterns all increased, while the soil water consumption and its ratio to total water consumption decreased significantly. As compared with W0, the other three irrigation schedules had a higher dry matter accumulation after anthesis and a higher grain yield, but a lower water use efficiency (WUE). Under the same irrigation schedules, furrow pattern had higher water consumption ratio, grain yield, and WUE. Taking the grain yield and WUE into consideration, furrow pattern combined with irrigation at jointing and anthesis stages would be the optimal water-saving and planting modes for the winter wheat production in North China Plain.

  20. Effects of Manipulated Above- and Belowground Organic Matter Input on Soil Respiration in a Chinese Pine Plantation

    PubMed Central

    Zhao, Bo; Wu, Lianhai; Zhang, Chunyu; Zhao, Xiuhai; Gadow, Klaus v.

    2015-01-01

    Alteration in the amount of soil organic matter input can have profound effect on carbon dynamics in forest soils. The objective of our research was to determine the response in soil respiration to above- and belowground organic matter manipulation in a Chinese pine (Pinus tabulaeformis) plantation. Five organic matter treatments were applied during a 2-year experiment: both litter removal and root trenching (LRRT), only litter removal (LR), control (CK), only root trenching (RT) and litter addition (LA). We found that either aboveground litter removal or root trenching decreased soil respiration. On average, soil respiration rate was significantly decreased in the LRRT treatment, by about 38.93% ± 2.01% compared to the control. Soil respiration rate in the LR treatment was 30.65% ± 1.87% and in the RT treatment 17.65% ± 1.95% lower than in the control. Litter addition significantly increased soil respiration rate by about 25.82% ± 2.44% compared to the control. Soil temperature and soil moisture were the main factors affecting seasonal variation in soil respiration. Up to the 59.7% to 82.9% seasonal variation in soil respiration is explained by integrating soil temperature and soil moisture within each of the various organic matter treatments. The temperature sensitivity parameter, Q 10, was higher in the RT (2.72) and LA (3.19) treatments relative to the control (2.51), but lower in the LRRT (1.52) and LR treatments (1.36). Our data suggest that manipulation of soil organic matter input can not only alter soil CO2 efflux, but also have profound effect on the temperature sensitivity of organic carbon decomposition in a temperate pine forest. PMID:25970791

  1. Effects of manipulated above- and belowground organic matter input on soil respiration in a Chinese pine plantation.

    PubMed

    Fan, Juan; Wang, Jinsong; Zhao, Bo; Wu, Lianhai; Zhang, Chunyu; Zhao, Xiuhai; Gadow, Klaus V

    2015-01-01

    Alteration in the amount of soil organic matter input can have profound effect on carbon dynamics in forest soils. The objective of our research was to determine the response in soil respiration to above- and belowground organic matter manipulation in a Chinese pine (Pinus tabulaeformis) plantation. Five organic matter treatments were applied during a 2-year experiment: both litter removal and root trenching (LRRT), only litter removal (LR), control (CK), only root trenching (RT) and litter addition (LA). We found that either aboveground litter removal or root trenching decreased soil respiration. On average, soil respiration rate was significantly decreased in the LRRT treatment, by about 38.93% ± 2.01% compared to the control. Soil respiration rate in the LR treatment was 30.65% ± 1.87% and in the RT treatment 17.65% ± 1.95% lower than in the control. Litter addition significantly increased soil respiration rate by about 25.82% ± 2.44% compared to the control. Soil temperature and soil moisture were the main factors affecting seasonal variation in soil respiration. Up to the 59.7% to 82.9% seasonal variation in soil respiration is explained by integrating soil temperature and soil moisture within each of the various organic matter treatments. The temperature sensitivity parameter, Q10, was higher in the RT (2.72) and LA (3.19) treatments relative to the control (2.51), but lower in the LRRT (1.52) and LR treatments (1.36). Our data suggest that manipulation of soil organic matter input can not only alter soil CO2 efflux, but also have profound effect on the temperature sensitivity of organic carbon decomposition in a temperate pine forest.

  2. [Effects of controlled release nitrogen fertilizer application on dry matter accumulation and nitrogen balance of summer maize].

    PubMed

    Si, Dong-Xia; Cui, Zhen-Ling; Chen, Xin-Ping; Lü, Fu-Tang

    2014-06-01

    Effects of four controlled release nitrogen (N) fertilizers, including two kinds of polyester coated urea (Ncau, CRU) and phosphate (NhnP) and humic acid (NhnF) coated urea on assimilates accumulation and nitrogen balance of summer maize were investigated in a mode of one-time fertilization at the regional N recommended rate. The results showed that the N release curves of the two controlled release fertilizers CRU and Ncau matched well with the summer maize N uptake. Compared with the regional N recommendation rate, CRU could increase maize yield by 4.2% and Ncau could maintain the same yield level. CRU significantly increased the dry matter accumulation rate after anthesis of summer maize, but Ncau markedly increased the dry matter accumulated ratio before anthesis. Meanwhile, CRU could reduce the apparent N losses by 19 kg N x hm(-2) in the case of large precipitation. However, NhnF and NhnP caused the yield losses by 0.1%-8.9%, and enhanced the apparent N losses. Therefore, both CRU and Ncau with one-time fertilization could be a simplified alternative to the "total control, staging regulation" fertilization technique at the regional N recommended rate for summer maize production.

  3. Heavy metals in atmospheric surrogate dry deposition

    PubMed

    Morselli; Cecchini; Grandi; Iannuccilli; Barilli; Olivieri

    1999-02-01

    This paper describes a methodological approach for the assessment of the amount of surrogate dry deposition of several toxic heavy metals (Cd, Cr, Cu, Ni, Pb, V, Zn) associated with atmospheric particulate matter at ground level. The objectives of the study were twofold: i) the evaluation of several techniques for the digestion of dry deposition samples for trace metal analysis; ii) the comparison of the results from two samplers with different collecting surfaces. A dry solid surface sampler (DRY sampler, Andersen--USA) and a water layer surface sampler (DAS sampler--MTX Italy) were employed. The samples were collected over a one-year period in an urban site of Bologna (northern Italy). A description is given of the complete procedure, from sampling to data elaboration, including sample storage, digestion and analytical methods. According to the results obtained with three different digestion techniques (Teflon bomb, microwave digester and Teflon flask with vapour cooling system), the highest recovery rate was achieved by the Teflon bomb procedure employing an NBS 1648 Standard Reference Material; 90-95% of the elements considered were recovered by dissolution in a pressurized Teflon bomb with an HNO3-HF mixture. Given these results, the technique was adopted for dry deposition sample digestion. On the basis of the amount of heavy metals measured as monthly deposition fluxes (microg/m2), the collecting efficiency of the DAS sampler for a number of elements was found to be as much as two to three times greater than that of the DRY sampler.

  4. A terrestrial biosphere model optimized to atmospheric CO2 concentration and above ground woody biomass

    NASA Astrophysics Data System (ADS)

    Saito, M.; Ito, A.; Maksyutov, S. S.

    2013-12-01

    This study documents an optimization of a prognostic biosphere model (VISIT; Vegetation Integrative Similator for Trace gases) to observations of atmospheric CO2 concentration and above ground woody biomass by using a Bayesian inversion method combined with an atmospheric tracer transport model (NIES-TM; National Institute for Environmental Studies / Frontier Research Center for Global Change (NIES/FRCGC) off-line global atmospheric tracer transport model). The assimilated observations include 74 station records of surface atmospheric CO2 concentration and aggregated grid data sets of above ground woody biomass (AGB) and net primary productivity (NPP) over the globe. Both the biosphere model and the atmospheric transport model are used at a horizontal resolution of 2.5 deg x 2.5 deg grid with temporal resolutions of a day and an hour, respectively. The atmospheric transport model simulates atmospheric CO2 concentration with nine vertical levels using daily net ecosystem CO2 exchange rate (NEE) from the biosphere model, oceanic CO2 flux, and fossil fuel emission inventory. The models are driven by meteorological data from JRA-25 (Japanese 25-year ReAnalysis) and JCDAS (JMA Climate Data Assimilation System). Statistically optimum physiological parameters in the biosphere model are found by iterative minimization of the corresponding Bayesian cost function. We select thirteen physiological parameter with high sensitivity to NEE, NPP, and AGB for the minimization. Given the optimized physiological parameters, the model shows error reductions in seasonal variation of the CO2 concentrations especially in the northern hemisphere due to abundant observation stations, while errors remain at a few stations that are located in coastal coastal area and stations in the southern hemisphere. The model also produces moderate estimates of the mean magnitudes and probability distributions in AGB and NPP for each biome. However, the model fails in the simulation of the terrestrial

  5. Survival of Salmonella during Drying of Fresh Ginger Root (Zingiber officinale) and Storage of Ground Ginger.

    PubMed

    Gradl, Dana R; Sun, Lingxiang; Larkin, Emily L; Chirtel, Stuart J; Keller, Susanne E

    2015-11-01

    The survival of Salmonella on fresh ginger root (Zingiber officinale) during drying was examined using both a laboratory oven at 51 and 60°C with two different fan settings and a small commercially available food dehydrator. The survival of Salmonella in ground ginger stored at 25 and 37°C at 33% (low) and 97% (high) relative humidity (RH) was also examined. To inoculate ginger, a four-serovar cocktail of Salmonella was collected by harvesting agar lawn cells. For drying experiments, ginger slices (1 ± 0.5 mm thickness) were surface inoculated at a starting level of approximately 9 log CFU/g. Higher temperature (60°C) coupled with a slow fan speed (nonstringent condition) to promote a slower reduction in the water activity (aw) of the ginger resulted in a 3- to 4-log reduction in Salmonella populations in the first 4 to 6 h with an additional 2- to 3-log reduction by 24 h. Higher temperature with a higher fan speed (stringent condition) resulted in significantly less destruction of Salmonella throughout the 24-h period (P < 0.001). Survival appeared related to the rate of reduction in the aw. The aw also influenced Salmonella survival during storage of ground ginger. During storage at 97% RH, the maximum aw values were 0.85 at 25°C and 0.87 at 37°C; Salmonella was no longer detected after 25 and 5 days of storage, respectively, under these conditions. At 33% RH, the aw stabilized to approximately 0.35 at 25°C and 0.31 at 37°C. Salmonella levels remained relatively constant throughout the 365-day and 170-day storage periods for the respective temperatures. These results indicate a relationship between temperature and aw and the survival of Salmonella during both drying and storage of ginger.

  6. Quantitative Estimation of Above Ground Crop Biomass using Ground-based, Airborne and Spaceborne Low Frequency Polarimetric Synthetic Aperture Radar

    NASA Astrophysics Data System (ADS)

    Koyama, C.; Watanabe, M.; Shimada, M.

    2016-12-01

    Estimation of crop biomass is one of the important challenges in environmental remote sensing related to agricultural as well as hydrological and meteorological applications. Usually passive optical data (photographs, spectral data) operating in the visible and near-infrared bands is used for such purposes. The virtue of optical remote sensing for yield estimation, however, is rather limited as the visible light can only provide information about the chemical characteristics of the canopy surface. Low frequency microwave signals with wavelength longer 20 cm have the potential to penetrate through the canopy and provide information about the whole vertical structure of vegetation from the top of the canopy down to the very soil surface. This phenomenon has been well known and exploited to detect targets under vegetation in the military radar application known as FOPEN (foliage penetration). With the availability of polarimetric interferometric SAR data the use PolInSAR techniques to retrieve vertical vegetation structures has become an attractive tool. However, PolInSAR is still highly experimental and suitable data is not yet widely available. In this study we focus on the use of operational dual-polarization L-band (1.27 GHz) SAR which is since the launch of Japan's Advanced Land Observing Satellite (ALOS, 2006-2011) available worldwide. Since 2014 ALOS-2 continues to deliver such kind of partial polarimetric data for the entire land surface. In addition to these spaceborne data sets we use airborne L-band SAR data acquired by the Japanese Pi-SAR-L2 as well as ultra-wideband (UWB) ground based SAR data operating in the frequency range from 1-4 GHz. By exploiting the complex dual-polarization [C2] Covariance matrix information, the scattering contributions from the canopy can be well separated from the ground reflections allowing for the establishment of semi-empirical relationships between measured radar reflectivity and the amount of fresh-weight above-ground

  7. Predictive modeling of hazardous waste landfill total above-ground biomass using passive optical and LIDAR remotely sensed data

    NASA Astrophysics Data System (ADS)

    Hadley, Brian Christopher

    This dissertation assessed remotely sensed data and geospatial modeling technique(s) to map the spatial distribution of total above-ground biomass present on the surface of the Savannah River National Laboratory's (SRNL) Mixed Waste Management Facility (MWMF) hazardous waste landfill. Ordinary least squares (OLS) regression, regression kriging, and tree-structured regression were employed to model the empirical relationship between in-situ measured Bahia (Paspalum notatum Flugge) and Centipede [Eremochloa ophiuroides (Munro) Hack.] grass biomass against an assortment of explanatory variables extracted from fine spatial resolution passive optical and LIDAR remotely sensed data. Explanatory variables included: (1) discrete channels of visible, near-infrared (NIR), and short-wave infrared (SWIR) reflectance, (2) spectral vegetation indices (SVI), (3) spectral mixture analysis (SMA) modeled fractions, (4) narrow-band derivative-based vegetation indices, and (5) LIDAR derived topographic variables (i.e. elevation, slope, and aspect). Results showed that a linear combination of the first- (1DZ_DGVI), second- (2DZ_DGVI), and third-derivative of green vegetation indices (3DZ_DGVI) calculated from hyperspectral data recorded over the 400--960 nm wavelengths of the electromagnetic spectrum explained the largest percentage of statistical variation (R2 = 0.5184) in the total above-ground biomass measurements. In general, the topographic variables did not correlate well with the MWMF biomass data, accounting for less than five percent of the statistical variation. It was concluded that tree-structured regression represented the optimum geospatial modeling technique due to a combination of model performance and efficiency/flexibility factors.

  8. A comparison of the beetle (Coleoptera) fauna captured at two heights above the ground in a North American temperate deciduous forest

    Treesearch

    Michael D. Ulyshen; James L. Hanula

    2007-01-01

    We compared the beetle fauna captured in 12 pairs of flight intercept traps suspended at two different heights above the ground ($15 m and 0.5 m) in a temperate deciduous forest in the southeastern United States to better understand how the abundance, species richness, diversity and composition of insect communities differ among forest strata. A total of 15,012 beetle...

  9. A comparison of the Beetle (Coleoptera) Fauna Captured at two heights above the ground in a North American temperate deciduous forest

    Treesearch

    Michael Ulyshen; James Hanula

    2007-01-01

    We compared the beetle fauna captured in 12 pairs of flight intercept traps suspended at two different heights above the ground ($15 m and 0.5 m) in a temperate deciduous forest in the southeastern United States to better understand how the abundance, species richness, diversity and composition of insect communities differ among forest strata. A total of 15,012 beetle...

  10. Dry Particulate Nitrate Deposition in China.

    PubMed

    Liu, Lei; Zhang, Xiuying; Zhang, Yan; Xu, Wen; Liu, Xuejun; Zhang, Xiaomin; Feng, Junlan; Chen, Xinrui; Zhang, Yuehan; Lu, Xuehe; Wang, Shanqian; Zhang, Wuting; Zhao, Limin

    2017-05-16

    A limited number of ground measurements of dry particulate nitrate deposition (NO 3 - ) makes it difficult and challenging to fully know the status of the spatial and temporal variations of dry NO 3 - depositions over China. This study tries to expand the ground measurements of NO 3 - concentrations at monitoring sites to a national scale, based on the Ozone Monitoring Instrument (OMI) NO 2 columns, NO 2 profiles from an atmospheric chemistry transport model (Model for Ozone and Related chemical Tracers, version 4, MOZART-4) and monitor-based sources, and then estimates the NO 3 - depositions on a regional scale based on an inferred model. The ground NO 2 concentrations were first derived from NO 2 columns and the NO 2 profiles, and then the ground NO 3 - concentrations were derived from the ground NO 2 concentrations and the relationship between NO 2 and NO 3 - based on Chinese Nationwide Nitrogen Deposition Monitoring Network (NNDMN). This estimated dry NO 3 - depositions over China will be helpful in determining the magnitude and pollution status in regions without ground measurements, supporting the construction plan of environmental monitoring in future.

  11. The endogenous plant hormones and ratios regulate sugar and dry matter accumulation in Jerusalem artichoke in salt-soil.

    PubMed

    Li, Lingling; Shao, Tianyun; Yang, Hui; Chen, Manxia; Gao, Xiumei; Long, Xiaohua; Shao, Hongbo; Liu, Zhaopu; Rengel, Zed

    2017-02-01

    The changes in content of endogenous hormones in stolons and tubers of Jerusalem artichoke (Helianthus tuberosus L.) regulate tuber growth, but the specific knowledge about the importance of balance among the endogenous hormones is lacking. Two varieties of Jerusalem artichoke (NY-1 and QY-2) were tested for the endogenous zeatin (ZT), auxins (IAA), gibberellins (GA 3 ) and abscisic acid (ABA) in regulating sugar and dry matter accumulation in tubers. The dry matter content and sugar accumulation in tubers were correlated positively with endogenous ZT and negatively with GA 3 content and GA 3 /ABA and IAA/ABA content ratios. Throughout the tuber formation, ZT content was higher in NY-1 than QY-2 tubers, whereas ABA content was higher in QY-2 than NY-1 tubers. The content ratios GA 3 /ABA and IAA/ABA were greater in NY-1 than QY-2 before tuber initiation, but QY-2 surpassed NY-1 during the tuber growth stage. The GA 3 /ABA and IAA/ABA content ratios declined during tuber growth. The results suggested that a dynamic balance of endogenous hormones played an important role in tuber development. Copyright © 2016 Elsevier B.V. All rights reserved.

  12. Root growth dynamics linked to above-ground growth in walnut (Juglans regia).

    PubMed

    Contador, Maria Loreto; Comas, Louise H; Metcalf, Samuel G; Stewart, William L; Porris Gomez, Ignacio; Negron, Claudia; Lampinen, Bruce D

    2015-07-01

    Examination of plant growth below ground is relatively scant compared with that above ground, and is needed to understand whole-plant responses to the environment. This study examines whether the seasonal timing of fine root growth and the spatial distribution of this growth through the soil profile varies in response to canopy manipulation and soil temperature. Plasticity in the seasonal timing and vertical distribution of root production in response to canopy and soil water manipulation was analysed in field-grown walnut (Juglans regia 'Chandler') using minirhizotron techniques. Root production in walnuts followed a unimodal curve, with one marked flush of root growth starting in mid-May, with a peak in mid-June. Root production declined later in the season, corresponding to increased soil temperature, as well as to the period of major carbohydrate allocation to reproduction. Canopy and soil moisture manipulation did not influence the timing of root production, but did influence the vertical distribution of roots through the soil profile. Water deficit appeared to promote root production in deeper soil layers for mining soil water. Canopy removal appeared to promote shallow root production. The findings of this study add to growing evidence that root growth in many ecosystems follows a unimodal curve with one marked flush of root growth in coordination with the initial leaf flush of the season. Root vertical distribution appeared to have greater plasticity than timing of root production in this system, with temperature and/or carbohydrate competition constraining the timing of root growth. Effects on root distribution can have serious impacts on trees, with shallow rooting having negative impacts in years with limited soil water or positive impacts in years with wet springs, and deep rooting having positive impacts on soil water mining from deeper soil layers but negative impacts in years with wet springs. © The Author 2015. Published by Oxford University Press

  13. The impact of drought on ozone dry deposition over eastern Texas

    NASA Astrophysics Data System (ADS)

    Huang, Ling; McDonald-Buller, Elena C.; McGaughey, Gary; Kimura, Yosuke; Allen, David T.

    2016-02-01

    Dry deposition represents a critical pathway through which ground-level ozone is removed from the atmosphere. Understanding the effects of drought on ozone dry deposition is essential for air quality modeling and management in regions of the world with recurring droughts. This work applied the widely used Zhang dry deposition algorithm to examine seasonal and interannual changes in estimated ozone dry deposition velocities and component resistances/conductances over eastern Texas during years with drought (2006 and 2011) as well as a year with slightly cooler temperatures and above average rainfall (2007). Simulated area-averaged daytime ozone dry deposition velocities ranged between 0.26 and 0.47 cm/s. Seasonal patterns reflected the combined seasonal variations in non-stomatal and stomatal deposition pathways. Daytime ozone dry deposition velocities during the growing season were consistently larger during 2007 compared to 2006 and 2011. These differences were associated with differences in stomatal conductances and were most pronounced in forested areas. Reductions in stomatal conductances under drought conditions were highly sensitive to increases in vapor pressure deficit and warmer temperatures in Zhang's algorithm. Reductions in daytime ozone deposition velocities and deposition mass during drought years were associated with estimates of higher surface ozone concentrations.

  14. Is Forest Ground and Soil a Net Source or Sink for HONO?

    NASA Astrophysics Data System (ADS)

    Kim, T.; Kim, K.; Zhou, X.

    2017-12-01

    Ambient measurements and chamber experiments were conducted at the PROPHET site during the PROPHET-AMOS 2016 field campaign, to investigate the exchange of nitrous acid (HONO) between the forest ground and the atmosphere. HONO concentrations measured at 1.3 m and 10 cm above the ground surface consistently showed positive gradients with height, suggesting that the ground surface was a net sink for HONO. The HONO concentration gradients were significantly more pronounced during rainy and foggy periods than during dry periods, indicating an enhancement of HONO deposition onto the wet ground surface. Significant loss of HONO from the gas phase to the ground surface in an open-bottom chamber supports the argument that forest ground is a net HONO sink via deposition. Despite the ground surface was not a net HONO source, HONO was found to accumulate in the atmosphere within the forest canopy during the first half of the night. Heterogeneous reactions of NO2 on the surfaces of tree trunks and branches is proposed to be responsible for the observed nighttime HONO production.

  15. Nutrient cycling and Above- and Below-ground Interactions in a Runoff Agroforestry System Applied with Composted Tree Trimmings

    NASA Astrophysics Data System (ADS)

    Ilani, Talli; Ephrath, Jhonathan; Silberbush, Moshe; Berliner, Pedro

    2014-05-01

    The primary production in arid zones is limited due to shortage of water and nutrients. Conveying flood water and storing it in plots surrounded by embankments allows their cropping. The efficient exploitation of the stored water can be achieved through an agroforestry system, in which two crops are grown simultaneously: annual crops with a shallow root system and trees with a deeper root system. We posit that the long-term productivity of this system can be maintained by intercropping symbiotic N fixing shrubs with annual crops, and applying the pruned and composted shrub leaves to the soil, thus ensuring an adequate nitrogen level (a limiting factor in drylands) in the soil. To test our hypothesis we carried a two year trial in which fast-growing acacia (A. saligna) trees were the woody component and maize (Zea mays L.) the intercrop. Ten treatments were applied over two maize growth seasons to examine the below- and above-ground effects of tree pruning, compost application and interactions. The addition of compost in the first growth season led to an increase of the soil organic matter reservoir, which was the main N source for the maize during the following growth season. In the second growth season the maize yield was significantly higher in the plots to which compost was applied. Pruning the tree's canopies changed the trees spatial and temporal root development, allowing the annual crop to develop between the trees. The roots of pruned trees intercropped with maize penetrated deeper in the soil. The intercropping of maize within pruned trees and implementing compost resulted in a higher water use efficiency of the water stored in the soil when compared to the not composted and monoculture treatments. The results presented suggest that the approach used in this study can be the basis for achieving sustainable agricultural production under arid conditions.

  16. The relationship between rumen bacterial growth, intake of dry matter, digestible organic matter and volatile fatty acid production in buffalo (Bos bubalis) calves.

    PubMed

    Singh, U B; Verma, D N; Varma, A; Ranjhan, S K

    1977-11-01

    1. The production rates of bacteria in the rumen of buffalo (Bos bubalis) calves were estimated using an isotope-dilution technique. A series of fifteen experiments was done with animals given green maize and nine experiments with animals given cowpea (Vigna unguiculata). 2. The turnover time ranged from 205 to 567 min in the group given green maize and from 330 to 648 min in animals offered cowpea. The production rates of bacteria were (mean +/- SE; g/d) 145.77 +/- 7.240 and 237.09 +/- 11.847 in animals given green maize and cowpea respectively. 3. There was a significant correlation between bacterial production rates and dry matter intake, digestible organic matter and total volatile fatty acids formed in the rumen. 4. Regression equations obtained for the two foodstuffs were different suggesting that the bacterial growth rate may vary depending upon the quantity and quality of foodstuff digested and possibly the ratio nitrogen:energy of the foodstuff.

  17. Dry deposition of O3 and SO2 estimated from gradient measurements above a temperate mixed forest.

    PubMed

    Wu, Zhiyong; Staebler, Ralf; Vet, Robert; Zhang, Leiming

    2016-03-01

    Vertical profiles of O3 and SO2 concentrations were monitored at the Borden Forest site in southern Ontario, Canada from May 2008 to April 2013. A modified gradient method (MGM) was applied to estimate O3 and SO2 dry deposition fluxes using concentration gradients between a level above and a level below the canopy top. The calculated five-year mean (median) dry deposition velocity (Vd) were 0.35 (0.27) and 0.59 (0.54) cm s(-1), respectively, for O3 and SO2. Vd(O3) exhibited large seasonal variations with the highest monthly mean of 0.68 cm s(-1) in August and the lowest of 0.09 cm s(-1) in February. In contrast, seasonal variations of Vd(SO2) were smaller with monthly means ranging from 0.48 (May) to 0.81 cm s(-1) (December). The different seasonal variations between O3 and SO2 were caused by the enhanced SO2 uptake by snow surfaces in winter. Diurnal variations showed a peak value of Vd in early morning in summer months for both O3 and SO2. Canopy wetness increased the non-stomatal uptake of O3 while decreasing the stomatal uptake. This also applied to SO2, but additional factors such as surface acidity also played an important role on the overall uptake. Crown Copyright © 2015. Published by Elsevier Ltd. All rights reserved.

  18. [Effects of applying nitrogen fertilizer at different stages in ploughed furrow on dry matter production and yield of rice].

    PubMed

    Shi, Kun; Hao, Shufeng; Xie, Hongtu; Zhang, Xudong

    2002-12-01

    The effects of applying nitrogen fertilizer in ploughed furrow at different stages on dry matter production and yield of rice were studied in a field experiment in 1999. The results showed that applying N fertilizer at booting stage (BS) had better effects on dry weight (2.9 g.hill-1) of leaf, stem and whole plant than at panicle primordia formation stage (PPFS), tillering stage (TS) and regular N fertilization (RF). Meanwhile, the dry weight of leaf and sheath as well as the leaf area index (LAI, 8.9) could be maintained at a high level for a relative long time in BS treatment, compared with PPFS, TS and RF treatments. Similar phenomenon was observed in the growth velocity (0.73 g.d-1.hill-1) of stem and whole plant, and the dry weight (10434 kg.hm-2) of seed. The grain yield of rice followed the sequence of BS > or = PPFS > TS > or = RF. Thus, the optimum stage of applying N fertilizer in ploughed furrow was the booting stage.

  19. Effect of diet grinding and pelleting fed either dry or liquid feed on dry matter and pH in the stomach of pigs and the development of gastric ulcers.

    PubMed

    Mösseler, A; Wintermann, M; Sander, S J; Kamphues, J

    2012-12-01

    The physical form of diets has a marked impact on the development of gastric ulcers in pigs. Earlier studies showed effects of fine grinding and pelleting on the integrity of gastric mucosa as well as on local intragastric milieu. This study was conducted to evaluate the effects of dry or liquid feeding on intragastric milieu (DM and pH) in pigs. The 23 piglets were housed individually and fed with test diets and water ad lib for 6 wk. Both experimental diets [coarsely ground diet fed as mash (CM) vs. finely ground pelleted diet (FP)] were identical in ingredients (39.5% wheat, 34% barley, 20% soybean meal) and chemical composition and were either offered dry or in liquid (25% DM) form. At the end of the trial the animals were slaughtered; the stomach was removed and samples were taken from different localizations. Feeding diets dry or liquid had no effect on the pH (P > 0.05). The diet noticeably affected the gastric content. The FP diets resulted in a more liquid chyme (P < 0.05), and the intragastric pH did not differ between regions. Feeding CM caused marked effects of localization regarding pH (highest values: pars nonglandularis; lowest values: fundus). None of the pigs fed CM showed signs of gastric ulcers, but the score was markedly higher (P < 0.05) when pigs were fed FP. Therefore the predominant factor for development of gastric ulcers seems to be the structure (particle size) of the diet.

  20. Effect of K-N-humates on dry matter production and nutrient use efficiency of maize in Sarawak, Malaysia.

    PubMed

    Petrus, Auldry Chaddy; Ahmed, Osumanu Haruna; Muhamad, Ab Majid Nik; Nasir, Hassan Mohammad; Jiwan, Make

    2010-07-06

    Agricultural waste, such as sago waste (SW), is one of the sources of pollution to streams and rivers in Sarawak, particularly those situated near sago processing plants. In addition, unbalanced and excessive use of chemical fertilizers can cause soil and water pollution. Humic substances can be used as organic fertilizers, which reduce pollution. The objectives of this study were to produce K- and ammonium-based organic fertilizer from composted SW and to determine the efficiency of the organic-based fertilizer produced. Humic substances were isolated using standard procedures. Liquid fertilizers were formulated except for T2 (NPK fertilizer), which was in solid form. There were six treatments with three replications. Organic fertilizers were applied to soil in pots on the 10th day after sowing (DAS), but on the 28th DAS, only plants of T2 were fertilized. The plant samples were harvested on the 57th DAS during the tassel stage. The dry matter of plant parts (leaves, stems, and roots) were determined and analyzed for N, P, and K using standard procedures. Soil of every treatment was also analyzed for exchangeable K, Ca, Mg, and Na, organic matter, organic carbon, available P, pH, total N, P, nitrate and ammonium contents using standard procedures. Treatments with humin (T5 and T6) showed remarkable results on dry matter production; N, P, and K contents; their uptake; as well as their use efficiency by maize. The inclusion of humin might have loosened the soil and increased the soil porosity, hence the better growth of the plants. Humin plus inorganic fertilizer provided additional nutrients for the plants. The addition of inorganic fertilizer into compost is a combination of quick and slow release sources, which supplies N throughout the crop growth period. Common fertilization by surface application of T2 without any additives (acidic and high CEC materials) causes N and K to be easily lost. High Ca in the soil may have reacted with phosphate from fertilizer to

  1. Modelling above Ground Biomass of Mangrove Forest Using SENTINEL-1 Imagery

    NASA Astrophysics Data System (ADS)

    Labadisos Argamosa, Reginald Jay; Conferido Blanco, Ariel; Balidoy Baloloy, Alvin; Gumbao Candido, Christian; Lovern Caboboy Dumalag, John Bart; Carandang Dimapilis, Lee, , Lady; Camero Paringit, Enrico

    2018-04-01

    Many studies have been conducted in the estimation of forest above ground biomass (AGB) using features from synthetic aperture radar (SAR). Specifically, L-band ALOS/PALSAR (wavelength 23 cm) data is often used. However, few studies have been made on the use of shorter wavelengths (e.g., C-band, 3.75 cm to 7.5 cm) for forest mapping especially in tropical forests since higher attenuation is observed for volumetric objects where energy propagated is absorbed. This study aims to model AGB estimates of mangrove forest using information derived from Sentinel-1 C-band SAR data. Combinations of polarisations (VV, VH), its derivatives, grey level co-occurrence matrix (GLCM), and its principal components were used as features for modelling AGB. Five models were tested with varying combinations of features; a) sigma nought polarisations and its derivatives; b) GLCM textures; c) the first five principal components; d) combination of models a-c; and e) the identified important features by Random Forest variable importance algorithm. Random Forest was used as regressor to compute for the AGB estimates to avoid over fitting caused by the introduction of too many features in the model. Model e obtained the highest r2 of 0.79 and an RMSE of 0.44 Mg using only four features, namely, σ°VH GLCM variance, σ°VH GLCM contrast, PC1, and PC2. This study shows that Sentinel-1 C-band SAR data could be used to produce acceptable AGB estimates in mangrove forest to compensate for the unavailability of longer wavelength SAR.

  2. [Influence of an elevation of the temperature of water on the digestibility of dry matter, nitrogen and energy of food distributed to the rainbow trout (Salmo gairdneri Rich)].

    PubMed

    Choubert, G; Fauconneau, B; Luquet, P

    1982-01-01

    Rainbow trout adapted to a water temperature of 10 degrees C were subjected to an abrupt rise in temperature (from 10 to 18 degrees C) in a 24-h period. Fish maintained in recirculated water were fed to satiation twice a day and their feed intakes were recorded. Changes in dry matter, nitrogen and energy digestibility were measured each day at 10 degrees C and during the course of acclimatation to 18 degrees C. Low water temperature (10 degrees C) was characterized by a feed intake of 1.84 g (DM)/fish/day; digestibility values were as follows: dry matter 62.15 p. 100, nitrogen 86.91 p. 100, energy 70.60 p. 100. High water temperature (18 degrees C) was characterized by a feed intake of 3.75 g (DM)/fish/day; digestibility values were as follows: dry matter 66.08 p. 100, nitrogen 89.57 p. 100, energy 73.52 p. 100. The daily patterns in digestibility were affected by the rise in temperature. The digestibility values were stabilized by day 7 after the positive thermal shock.

  3. Changes in ground beetle assemblages above and below the treeline of the Dolomites after almost 30 years (1980/2009).

    PubMed

    Pizzolotto, Roberto; Gobbi, Mauro; Brandmayr, Pietro

    2014-04-01

    Very little is known about the changes of ground beetle assemblages in the last few decades in the Alps, and different responses to climate change of animal populations living above and below the treeline have not been estimated yet. This study focuses on an altitudinal habitat sequence from subalpine spruce forest to alpine grassland in a low disturbance area of the southeastern Dolomites in Italy, the Paneveggio Regional Park. We compared the ground beetle (Carabidae) populations sampled in 1980 in six stands below and above the treeline (1650-2250 m a.s.l.) with those sampled in the same sites almost 30 years later (2008/9). Quantitative data (species richness and abundance) have been compared by means of several diversity indexes and with a new index, the Index of Rank-abundance Change (IRC). Our work shows that species richness and abundance have changed after almost 30 years as a consequence of local extinctions, uphill increment of abundance and uphill shift of distribution range. The overall species number dropped from 36 to 27, while in the sites above the treeline, species richness and abundance changed more than in the forest sites. Two microtherm characteristic species of the pioneer cushion grass mats, Nebria germari and Trechus dolomitanus, became extinct or showed strong abundance reduction. In Nardetum pastures, several hygrophilic species disappeared, and xerophilic zoophytophagous elements raised their population density. In forest ecosystems, the precipitation reduction caused deep soil texture and watering changes, driving a transformation from Sphagnum-rich (peaty) to humus-rich soil, and as a consequence, soil invertebrate biomass strongly increased and thermophilic carabids enriched the species structure. In three decades, Carabid assemblages changed consistently with the hypothesis that climate change is one of the main factors triggering natural environment modifications. Furthermore, the level of human disturbance could enhance the

  4. Nondestructive determination of dry matter and soluble solids content in dehydrator onions and garlics using a handheld visible and near infrared instrument

    USDA-ARS?s Scientific Manuscript database

    A non-destructive method based on visible and near-infrared spectroscopy was investigated for determining the dry matter and soluble solids contents of dehydrator onions at the base, equatorial, and shoulder locations and of garlic cloves at the equatorial location. The interactance spectrum (400-10...

  5. Comparison of machine-learning methods for above-ground biomass estimation based on Landsat imagery

    NASA Astrophysics Data System (ADS)

    Wu, Chaofan; Shen, Huanhuan; Shen, Aihua; Deng, Jinsong; Gan, Muye; Zhu, Jinxia; Xu, Hongwei; Wang, Ke

    2016-07-01

    Biomass is one significant biophysical parameter of a forest ecosystem, and accurate biomass estimation on the regional scale provides important information for carbon-cycle investigation and sustainable forest management. In this study, Landsat satellite imagery data combined with field-based measurements were integrated through comparisons of five regression approaches [stepwise linear regression, K-nearest neighbor, support vector regression, random forest (RF), and stochastic gradient boosting] with two different candidate variable strategies to implement the optimal spatial above-ground biomass (AGB) estimation. The results suggested that RF algorithm exhibited the best performance by 10-fold cross-validation with respect to R2 (0.63) and root-mean-square error (26.44 ton/ha). Consequently, the map of estimated AGB was generated with a mean value of 89.34 ton/ha in northwestern Zhejiang Province, China, with a similar pattern to the distribution mode of local forest species. This research indicates that machine-learning approaches associated with Landsat imagery provide an economical way for biomass estimation. Moreover, ensemble methods using all candidate variables, especially for Landsat images, provide an alternative for regional biomass simulation.

  6. Effects of pregrazing herbage mass in late spring on enteric methane emissions, dry matter intake, and milk production of dairy cows.

    PubMed

    Muñoz, C; Letelier, P A; Ungerfeld, E M; Morales, J M; Hube, S; Pérez-Prieto, L A

    2016-10-01

    Few studies have examined the effects of fresh forage quality on enteric methane (CH4) emissions of dairy cows under grazing conditions. The aim of the current study was to evaluate the effects of 2 contrasting forage qualities induced by different pregrazing herbage masses in late spring on enteric CH4 emissions and milk production of grazing dairy cows. The experiment was conducted as a crossover design with 24 lactating Holstein Friesian dairy cows randomly assigned to 1 of 2 treatments in 2 experimental periods. Each period had a duration of 3wk (2wk for diet adaptation and 1wk for measurements), and the interval between them was 2wk. Treatments consisted of 2 target pregrazing herbage masses [2,200 and 5,000kg of dry matter (DM)/ha above 3cm], generated by different regrowth periods, corresponding to low (LHM) and high (HHM) herbage mass treatments, respectively. Daily herbage allowance (Lolium perenne) for both treatments was 20kg of DM per cow measured above 3cm. Enteric CH4 emissions were individually determined during the last week of each period using the sulfur hexafluoride tracer technique. Daily herbage intakes by individual cows during the CH4 measurement weeks were estimated using the n-alkanes technique. During the CH4 measurement weeks, milk yield and body mass were determined twice daily, whereas milk composition was determined once in the week. The LHM pasture had a higher crude protein concentration, lower neutral detergent fiber and acid detergent fiber concentrations, and higher in vitro digestibility, with a lower proportion of ryegrass pseudostems, than the HHM pasture. Cows offered the LHM pasture had greater herbage (+13%) and total DM (+12%) intakes, increased milk (+13%) and energy-corrected milk (+11%) yields, and tendencies toward higher milk protein (+4.5%) and higher milk urea nitrogen (+15%) concentrations than their counterparts offered the HHM pasture. No differences were found between treatments in total daily CH4 production

  7. 7 CFR 993.53 - Above parity situations.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... 7 Agriculture 8 2013-01-01 2013-01-01 false Above parity situations. 993.53 Section 993.53 Agriculture Regulations of the Department of Agriculture (Continued) AGRICULTURAL MARKETING SERVICE (MARKETING AGREEMENTS AND ORDERS; FRUITS, VEGETABLES, NUTS), DEPARTMENT OF AGRICULTURE DRIED PRUNES PRODUCED IN...

  8. 7 CFR 993.53 - Above parity situations.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 7 Agriculture 8 2011-01-01 2011-01-01 false Above parity situations. 993.53 Section 993.53 Agriculture Regulations of the Department of Agriculture (Continued) AGRICULTURAL MARKETING SERVICE (Marketing Agreements and Orders; Fruits, Vegetables, Nuts), DEPARTMENT OF AGRICULTURE DRIED PRUNES PRODUCED IN...

  9. 7 CFR 993.53 - Above parity situations.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... 7 Agriculture 8 2014-01-01 2014-01-01 false Above parity situations. 993.53 Section 993.53 Agriculture Regulations of the Department of Agriculture (Continued) AGRICULTURAL MARKETING SERVICE (MARKETING AGREEMENTS AND ORDERS; FRUITS, VEGETABLES, NUTS), DEPARTMENT OF AGRICULTURE DRIED PRUNES PRODUCED IN...

  10. 7 CFR 993.53 - Above parity situations.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... 7 Agriculture 8 2012-01-01 2012-01-01 false Above parity situations. 993.53 Section 993.53 Agriculture Regulations of the Department of Agriculture (Continued) AGRICULTURAL MARKETING SERVICE (Marketing Agreements and Orders; Fruits, Vegetables, Nuts), DEPARTMENT OF AGRICULTURE DRIED PRUNES PRODUCED IN...

  11. Estimation of crown biomass of Pinus pinaster stands and shrubland above-ground biomass using forest inventory data, remotely sensed imagery and spatial prediction models

    Treesearch

    H. Viana; J. Aranha; D. Lopes; Warren B. Cohen

    2012-01-01

    Spatially crown biomass of Pinus pinaster stands and shrubland above-ground biomass (AGB) estimation was carried-out in a region located in Centre-North Portugal, by means of different approaches including forest inventory data, remotely sensed imagery and spatial prediction models. Two cover types (pine stands and shrubland) were inventoried and...

  12. Physiological characteristics, dry matter, and active component accumulation patterns of Changium smyrnioides in response to a light intensity gradient.

    PubMed

    Wang, Chang-Lin; Guo, Qiao-Sheng; Zhu, Zai-Biao; Cheng, Bo-Xing

    2017-12-01

    Changium smyrnioides Wolff (Apiaceae) is an endangered medicinal plant with numerous pharmacological uses. To investigate the effect of light intensity levels on the growth and accumulation of secondary metabolites of C. smyrnioides, cultivated seedlings were subjected to different relative light intensities via sun-shading. Changium smyrnioides seedlings were subjected to five irradiance treatments (100, 60.54, 44.84, 31.39, and 10.56% sunlight) in glasshouse for 9 months. Enzymatic and non-enzymatic antioxidants with spectrophotometric method, photosynthetic parameters with Li-6400XT, dry matter accumulation and active component contents in the root with spectrophotometric and HPLC method were analyzed. With an increase in relative light intensity levels, activities of enzymatic and non-enzymatic antioxidants, and malondialdehyde (MDA) contents were increased overall, while net photosynthetic rate (P n ) and dry matter accumulation patter first increased and then declined. The highest net photosynthetic rate (30.68 μmol/m 2 ·s) and dry root weight (5.07 g) were achieved under 60.54% sunlight. Lower relative light intensity levels stimulated the accumulation levels of bioactive compounds in the roots so that the highest contents of mannitol (1.35%) and choline (405.58 μg/g) were recorded under 31.39% sunlight, and the highest polysaccharide content (10.80%) were achieved under 44.84% sunlight. With a decrease in the relative light intensity levels, the water-soluble component content increased first and then decreased. The results revealed that 31.39-60.54% sunlight serve as appropriate relative light intensity conditions for cultivated C. smyrnioides.

  13. Influence of sewage sludge, as a substrate, in the plasticity of functional characteristics of plants.

    PubMed

    da Silva, Vicente Elício Porfiro Sales Gonçalves; Buarque, Patrícia Marques Carneiro; Ferreira, Wanessa Nepomuceno; Buarque, Hugo Leonardo de Brito; Silva, Maria Amanda Menezes

    2018-04-24

    This work aimed to evaluate the effect of sewage sludge application as fertilizer on the plasticity of functional characteristics of species commonly found in the Caatinga. The research was developed in the nursery of the Federal Institute of Education, Science and Technology of Ceará (IFCE), Quixadá campus, located in northeastern Brazil. Three treatments were applied: raw sludge, sanitized sludge, and no manipulation. In each treatment, five species were planted, each with five individuals, totaling 75 individuals, which were tagged, and 4 months after germination, they were destroyed to obtain dry matter content (TMSF) from leaf, stem (TMSC), fine root (TMSRF), and thick root (TMSRG); leaf area; height and diameter of the seedling; and length above and below the ground. The sanitized sludge was responsible for giving higher values for leaf area, height of the seedlings, and diameter and length of stem and root. However, the dry matter content of the fine roots was higher in the treatment without manipulation. At the community level, as TMSRG increased, TMSC also increased, the same occurred between TMSRG and TMSRF, TMSC and TMSRF, and stem length and leaf area. In the treatment without manipulation, there was a positive correlation between leaf area, height and plant diameter, and negative correlation between root length and plant diameter. Thus, it can be concluded that the use of sanitized sludge is a good tool to increase the availability of soil resources, conferring to individuals' greater dry matter content, greater leaf area, and higher height and diameter above the ground.

  14. Comparison of three different wastewater sludge and their respective drying processes: Solar, thermal and reed beds - Impact on organic matter characteristics.

    PubMed

    Collard, Marie; Teychené, Benoit; Lemée, Laurent

    2017-12-01

    Drying process aims at minimising the volume of wastewater sludge (WWS) before disposal, however it can impact sludge characteristics. Due to its high content in organic matter (OM) and lipids, sludge are mainly valorised by land farming but can also be considered as a feedstock for biodiesel production. As sludge composition is a major parameter for the choice of disposal techniques, the objective of this study was to determine the influence of the drying process. To reach this goal, three sludges obtained from solar, reed beds and thermal drying processes were investigated at the global and molecular scales. Before the drying step the sludges presented similar physico-chemical (OM content, elemental analysis, pH, infrared spectra) characteristics and lipid contents. A strong influence of the drying process on lipids and humic-like substances contents was observed through OM fractionation. Thermochemolysis-GCMS of raw sludge and lipids revealed similar molecular content mainly constituted with steroids and fatty acids. Molecular changes were noticeable for thermal drying through differences in branched to linear fatty acids ratio. Finally the thermal drying induced a weakening of OM whereas the solar drying led to a complexification. These findings show that smooth drying processes such as solar or reed-beds are preferable for amendment production whereas thermal process leads to pellets with a high lipid content which could be considered for fuel production. Copyright © 2016 Elsevier Ltd. All rights reserved.

  15. 40 CFR 60.732 - Standards for particulate matter.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 40 Protection of Environment 7 2013-07-01 2013-07-01 false Standards for particulate matter. 60... Dryers in Mineral Industries § 60.732 Standards for particulate matter. Each owner or operator of any... particulate matter in excess of 0.092 gram per dry standard cubic meter (g/dscm) [0.040 grain per dry standard...

  16. 40 CFR 60.732 - Standards for particulate matter.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 40 Protection of Environment 6 2011-07-01 2011-07-01 false Standards for particulate matter. 60... Dryers in Mineral Industries § 60.732 Standards for particulate matter. Each owner or operator of any... particulate matter in excess of 0.092 gram per dry standard cubic meter (g/dscm) [0.040 grain per dry standard...

  17. 40 CFR 60.732 - Standards for particulate matter.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 40 Protection of Environment 6 2010-07-01 2010-07-01 false Standards for particulate matter. 60... Dryers in Mineral Industries § 60.732 Standards for particulate matter. Each owner or operator of any... particulate matter in excess of 0.092 gram per dry standard cubic meter (g/dscm) [0.040 grain per dry standard...

  18. 40 CFR 60.732 - Standards for particulate matter.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 40 Protection of Environment 7 2014-07-01 2014-07-01 false Standards for particulate matter. 60... Dryers in Mineral Industries § 60.732 Standards for particulate matter. Each owner or operator of any... particulate matter in excess of 0.092 gram per dry standard cubic meter (g/dscm) [0.040 grain per dry standard...

  19. Interspecies differences and variability with time of protein precipitation activity of extractable tannins, crude protein, ash, and dry matter content of leaves from 13 species of Nepalese fodder trees.

    PubMed

    Wood, C D; Tiwari, B N; Plumb, V E; Powell, C J; Roberts, B T; Padmini Sirimane, V D; Rossiter, J T; Gill, M

    1994-12-01

    Dry matter, ash, crude protein, and protein precipitation activity (PPA) of 13 Nepalese tree fodder species were monitored in dried samples prepared monthly between November 1990 and May 1991, and additionally in November 1991, covering the season when they are particularly important as fodder. Monthly levels of dry matter, ash, and crude protein were fairly stable except when there was new leaf growth, although year to year differences in dry matter were found inBrassaiopsis hainla (Bh),Dendrocalamus strictus (Ds),Ficus roxburghii (Fr), andQuercus semecarpifolia (Qs). Tannin PPA fluctuated considerably inArtocarpus lakoocha (Al),Ficus glaberrima (Fg),F. nerrifolia (Fn), Fr,F. semicordata (Fs),Litsea polyantha (Lp), andPrunus cerasoides (Pc), and to a lesser extent in Bh,Castanopsis indica (Ci),C. tribuloides (Ct),Quercus lamellosa (Ql), and Qs. Similar fluctuations in PPA were observed in fresh leaf samples taken weekly. Ds did not have any detectable PPA. Trends in PPA fluctuation were generally similar for trees located at similar altitudes. Fr, Pc, Al, Fn, Ql, and Ci had falling PPAs before shedding leaves. Some of the fluctuations in Fr, Fs, Fg, Pc, and Lp were apparently due to changes in the extractability and quantity of condensed tannins. These fluctuations in PPA may affect the nutritive value of the fodders.

  20. Above- and below-ground methane fluxes and methanotrophic activity in a landfill-cover soil

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Schroth, M.H., E-mail: martin.schroth@env.ethz.ch; Eugster, W.; Gomez, K.E.

    2012-05-15

    Highlights: Black-Right-Pointing-Pointer We quantify above- and below-ground CH{sub 4} fluxes in a landfill-cover soil. Black-Right-Pointing-Pointer We link methanotrophic activity to estimates of CH{sub 4} loading from the waste body. Black-Right-Pointing-Pointer Methane loading and emissions are highly variable in space and time. Black-Right-Pointing-Pointer Eddy covariance measurements yield largest estimates of CH{sub 4} emissions. Black-Right-Pointing-Pointer Potential methanotrophic activity is high at a location with substantial CH{sub 4} loading. - Abstract: Landfills are a major anthropogenic source of the greenhouse gas methane (CH{sub 4}). However, much of the CH{sub 4} produced during the anaerobic degradation of organic waste is consumed by methanotrophic microorganismsmore » during passage through the landfill-cover soil. On a section of a closed landfill near Liestal, Switzerland, we performed experiments to compare CH{sub 4} fluxes obtained by different methods at or above the cover-soil surface with below-ground fluxes, and to link methanotrophic activity to estimates of CH{sub 4} ingress (loading) from the waste body at selected locations. Fluxes of CH{sub 4} into or out of the cover soil were quantified by eddy-covariance and static flux-chamber measurements. In addition, CH{sub 4} concentrations at the soil surface were monitored using a field-portable FID detector. Near-surface CH{sub 4} fluxes and CH{sub 4} loading were estimated from soil-gas concentration profiles in conjunction with radon measurements, and gas push-pull tests (GPPTs) were performed to quantify rates of microbial CH{sub 4} oxidation. Eddy-covariance measurements yielded by far the largest and probably most representative estimates of overall CH{sub 4} emissions from the test section (daily mean up to {approx}91,500 {mu}mol m{sup -2} d{sup -1}), whereas flux-chamber measurements and CH{sub 4} concentration profiles indicated that at the majority of locations the cover soil

  1. Estimation and mapping of above-ground biomass of mangrove forests and their replacement land uses in the Philippines using Sentinel imagery

    NASA Astrophysics Data System (ADS)

    Castillo, Jose Alan A.; Apan, Armando A.; Maraseni, Tek N.; Salmo, Severino G.

    2017-12-01

    The recent launch of the Sentinel-1 (SAR) and Sentinel-2 (multispectral) missions offers a new opportunity for land-based biomass mapping and monitoring especially in the tropics where deforestation is highest. Yet, unlike in agriculture and inland land uses, the use of Sentinel imagery has not been evaluated for biomass retrieval in mangrove forest and the non-forest land uses that replaced mangroves. In this study, we evaluated the ability of Sentinel imagery for the retrieval and predictive mapping of above-ground biomass of mangroves and their replacement land uses. We used Sentinel SAR and multispectral imagery to develop biomass prediction models through the conventional linear regression and novel Machine Learning algorithms. We developed models each from SAR raw polarisation backscatter data, multispectral bands, vegetation indices, and canopy biophysical variables. The results show that the model based on biophysical variable Leaf Area Index (LAI) derived from Sentinel-2 was more accurate in predicting the overall above-ground biomass. In contrast, the model which utilised optical bands had the lowest accuracy. However, the SAR-based model was more accurate in predicting the biomass in the usually deficient to low vegetation cover non-forest replacement land uses such as abandoned aquaculture pond, cleared mangrove and abandoned salt pond. These models had 0.82-0.83 correlation/agreement of observed and predicted value, and root mean square error of 27.8-28.5 Mg ha-1. Among the Sentinel-2 multispectral bands, the red and red edge bands (bands 4, 5 and 7), combined with elevation data, were the best variable set combination for biomass prediction. The red edge-based Inverted Red-Edge Chlorophyll Index had the highest prediction accuracy among the vegetation indices. Overall, Sentinel-1 SAR and Sentinel-2 multispectral imagery can provide satisfactory results in the retrieval and predictive mapping of the above-ground biomass of mangroves and the replacement

  2. Advanced Coupled Simulation of Borehole Thermal Energy Storage Systems and Above Ground Installations

    NASA Astrophysics Data System (ADS)

    Welsch, Bastian; Rühaak, Wolfram; Schulte, Daniel O.; Bär, Kristian; Sass, Ingo

    2016-04-01

    Seasonal thermal energy storage in borehole heat exchanger arrays is a promising technology to reduce primary energy consumption and carbon dioxide emissions. These systems usually consist of several subsystems like the heat source (e.g. solarthermics or a combined heat and power plant), the heat consumer (e.g. a heating system), diurnal storages (i.e. water tanks), the borehole thermal energy storage, additional heat sources for peak load coverage (e.g. a heat pump or a gas boiler) and the distribution network. For the design of an integrated system, numerical simulations of all subsystems are imperative. A separate simulation of the borehole energy storage is well-established but represents a simplification. In reality, the subsystems interact with each other. The fluid temperatures of the heat generation system, the heating system and the underground storage are interdependent and affect the performance of each subsystem. To take into account these interdependencies, we coupled a software for the simulation of the above ground facilities with a finite element software for the modeling of the heat flow in the subsurface and the borehole heat exchangers. This allows for a more realistic view on the entire system. Consequently, a finer adjustment of the system components and a more precise prognosis of the system's performance can be ensured.

  3. Net Changes in Above Ground Woody Carbon Stock in Western Juniper Woodlands using Wavelet Techniques and Multi-temporal Aerial Photography

    NASA Astrophysics Data System (ADS)

    Strand, E. K.; Bunting, S. C.; Smith, A. M.

    2006-12-01

    Expansion of woody plant cover in semi-arid ecosystems previously occupied primarily by grasses and forbs has been identified as an important land cover change process affecting the global carbon budget. Although woody encroachment occurs worldwide, quantifying changes in carbon pools and fluxes related to this phenomenon via remote sensing is challenging because large areas are affected at a fine spatial resolution (1- 10 m) and, in many cases, at slow temporal rates. Two-dimensional spatial wavelet analysis (SWA) represents a novel image processing technique that has been successful in automatically and objectively quantifying ecologically relevant features at multiple scales. We apply SWA to current and historic 1-m resolution black and white aerial photography to quantify changes in above ground woody biomass and carbon stock of western juniper (Juniperus occidentalis subsp. occidentalis) expanding into sagebrush (Artemisia spp.) steppe on the Owyhee Plateau in southwestern Idaho. Due to the large land area (330,000 ha) and variable availability of historical photography, we sampled forty-eight 100-ha blocks situated across the area, stratified using topographic, soil, and land stewardship variables. The average juniper plant cover increased one-fold (from 5.3% to 10.4% total cover) at the site during the time period of 1939-1946 to 1998-2004. Juniper plant density has increased by 128% with a higher percentage of the plant population in the smaller size classes compared to the size distribution 60 years ago. After image-based SWA delineation of tree crown sizes, we computed the change in above ground woody plant biomass and carbon stock between the two time periods using allometry. Areas where the shrub steppe is dominated by low sagebrush (Artemisia arbuscula) has experienced little to no expansion of western juniper. However, on deeper, more well drained soils capable of supporting mountain big sagebrush (Artemisia tridentata subsp. vaseyana), the above

  4. 40 CFR 60.152 - Standard for particulate matter.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 40 Protection of Environment 6 2011-07-01 2011-07-01 false Standard for particulate matter. 60.152... Plants § 60.152 Standard for particulate matter. (a) On and after the date on which the performance test...: (1) Particulate matter at a rate in excess of 0.65 g/kg dry sludge input (1.30 lb/ton dry sludge...

  5. 40 CFR 60.152 - Standard for particulate matter.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 40 Protection of Environment 6 2010-07-01 2010-07-01 false Standard for particulate matter. 60.152... Plants § 60.152 Standard for particulate matter. (a) On and after the date on which the performance test...: (1) Particulate matter at a rate in excess of 0.65 g/kg dry sludge input (1.30 lb/ton dry sludge...

  6. 40 CFR 60.152 - Standard for particulate matter.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 40 Protection of Environment 7 2014-07-01 2014-07-01 false Standard for particulate matter. 60.152... Plants § 60.152 Standard for particulate matter. (a) On and after the date on which the performance test...: (1) Particulate matter at a rate in excess of 0.65 g/kg dry sludge input (1.30 lb/ton dry sludge...

  7. 40 CFR 60.152 - Standard for particulate matter.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 40 Protection of Environment 7 2013-07-01 2013-07-01 false Standard for particulate matter. 60.152... Plants § 60.152 Standard for particulate matter. (a) On and after the date on which the performance test...: (1) Particulate matter at a rate in excess of 0.65 g/kg dry sludge input (1.30 lb/ton dry sludge...

  8. 40 CFR 60.152 - Standard for particulate matter.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 40 Protection of Environment 7 2012-07-01 2012-07-01 false Standard for particulate matter. 60.152... Plants § 60.152 Standard for particulate matter. (a) On and after the date on which the performance test...: (1) Particulate matter at a rate in excess of 0.65 g/kg dry sludge input (1.30 lb/ton dry sludge...

  9. Dry-Enzyme Test For Gaseous Chemicals

    NASA Technical Reports Server (NTRS)

    Barzana, Eduardo; Karel, Marcus; Klibanov, Alexander

    1990-01-01

    Simple, dry-chemical test detects ethanol in human breath. Method of test also adapted to detection of such toxic chemicals as formaldehyde in airstreams. Used qualitatively to detect chemical compounds above present level; for example, ethanol above legal level for driving. Also used to indicate quantitatively concentrations of compounds. Involves dry enzyme and color indicator. Adapted to detect any gaseous compound transformed by enzymes to produce change evident to human eye or to instrument.

  10. Transport and solubility of Hetero-disperse dry deposition particulate matter subject to urban source area rainfall-runoff processes

    NASA Astrophysics Data System (ADS)

    Ying, G.; Sansalone, J.

    2010-03-01

    SummaryWith respect to hydrologic processes, the impervious pavement interface significantly alters relationships between rainfall and runoff. Commensurate with alteration of hydrologic processes the pavement also facilitates transport and solubility of dry deposition particulate matter (PM) in runoff. This study examines dry depositional flux rates, granulometric modification by runoff transport, as well as generation of total dissolved solids (TDS), alkalinity and conductivity in source area runoff resulting from PM solubility. PM is collected from a paved source area transportation corridor (I-10) in Baton Rouge, Louisiana encompassing 17 dry deposition and 8 runoff events. The mass-based granulometric particle size distribution (PSD) is measured and modeled through a cumulative gamma function, while PM surface area distributions across the PSD follow a log-normal distribution. Dry deposition flux rates are modeled as separate first-order exponential functions of previous dry hours (PDH) for PM and suspended, settleable and sediment fractions. When trans-located from dry deposition into runoff, PSDs are modified, with a d50m decreasing from 331 to 14 μm after transport and 60 min of settling. Solubility experiments as a function of pH, contact time and particle size using source area rainfall generate constitutive models to reproduce pH, alkalinity, TDS and alkalinity for historical events. Equilibrium pH, alkalinity and TDS are strongly influenced by particle size and contact times. The constitutive leaching models are combined with measured PSDs from a series of rainfall-runoff events to demonstrate that the model results replicate alkalinity and TDS in runoff from the subject watershed. Results illustrate the granulometry of dry deposition PM, modification of PSDs along the drainage pathway, and the role of PM solubility for generation of TDS, alkalinity and conductivity in urban source area rainfall-runoff.

  11. Above ground performance of preservative-treated western wood species

    Treesearch

    Jeffrey J. Morrell; D.J. Miller; Stan T. Lebow

    2000-01-01

    Incised and non-incised Douglas-fir, western hemlock, and ponderosa pine L- joints were treated with ammoniacal-based pentachlorophenol, chromated zinc chloride, thiocyanomethylthiobenzothiazole (TCMBT) or TCMTB plus methylenebisthiocyanate or 3 iodo-2-propynyl carbamate with or without chlorpyrifos to retentions between 0.8 and 6.4 kg/m3 and exposed, uncoated, above...

  12. Biomass and Nutrient Distribution in 3-Year Old Green Ash and Swamp Chestnut Oak Grown in a Minor Stream Bottom

    Treesearch

    Harvey E. Kennedy; Bryce E. Schlaegel

    1985-01-01

    After three growing seasons, green ash had produced 7,342 pounds per acre of above-ground dry matter compared to 3,572 for oak. Of the total biomass, ash had 53% in the bole (wood plus bark), 22% in old branches, 21% in leaves and 4% in new growth; oak had 50%, 21%, 24%, and 5% in the same components. These proportions changed after leaf fall. Concentrations of N, P, K...

  13. Airport cleanup rises above problems

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Pressly, N.; Lucas, B.; Frumer, B.

    Engineers used a treatment combination to improve the in-situ bioremediation system`s efficiency in removing underground fuel leaks at JFK Airport. John F. Kennedy International Airport, in New York City, on Jamaica Bay, has an above-ground storage capacity of about 32 million gallons of jet fuel, which flow through about 50 miles of high-pressure underground pipe to the central terminal area. EAch terminal`s fuel hydrant system was the major source os subsurface contamination at the site. The site is covered by 1 to 1.5 feet of reinforced concrete pavement. Liquid phase jet fuel (free product) was measured on the water tablemore » with true thickness ranging from less than 1 inch to 1 foot. After analysis of core samples, contamination was found adsorbed to the soil with maximum levels at the water table. This article describes the clean up, covering the following topics: microbial conditions during system operation; above-ground treatment challenges: free product emulsification, presence of biomass; evaluation of enhancements: dissolved air floatation, coagulation and flocculation, retention time adjustments; conclusions.« less

  14. Changes on sewage sludge stability after greenhouse drying

    NASA Astrophysics Data System (ADS)

    Soriano-Disla, J. M.; Houot, S.; Imhoff, M.; Valentin, N.; Gómez, I.; Navarro-Pedreño, J.

    2009-04-01

    The progressive implementation of the Urban Waste Water Treatment Directive 91/271/EEC in all the European member states is increasing the quantities of sewage sludge requiring disposal. Sludge application onto cultivated soils as organic fertilizers allows the recycling of nutrients. The application of only dehydrated sludges has generated many problems including unpleasant odours and difficult management (regarding transport and application) related to their high water content. One way to overcome these problems, in a cheap and clean way, is the drying of sludges using the energy of the sun under greenhouse conditions. This drying may affect sludge chemical characteristics including organic matter stability and nitrogen availability, parameters which have to be controlled for the proper management of dry sludge application onto soils. For this reason, the main aim of this work was to study the impact of greenhouse drying of different sewage sludges on their organic matter stability and nitrogen availability, assessed by biochemical fractionation and mineralization assays. Three sewage sludges were sampled before (dehydrated sludges) and after greenhouse drying (dried sludges). The analyses consisted of: humidity, organic matter, mineral and organic N contents, N and C mineralization during 91-day laboratory incubations in controlled conditions, and biochemical fractionation using the Van Soest procedure. Greenhouse drying decreased the water content from 70-80% to 10% and also the odours, both of which will improve the management of the final product from the perspective of application and transport. We also found that drying reduced the organic matter content of the sludges but not the biodegradability of the remaining carbon. Organic N mineralization occurred during greenhouse drying, explaining why mineral N content tended to increase and the potential mineralization of organic nitrogen decreased after greenhouse drying. The biochemical stability did not

  15. Degradation of anionic surfactants during drying of UASBR sludges on sand drying beds.

    PubMed

    Mungray, Arvind Kumar; Kumar, Pradeep

    2008-09-01

    Anionic surfactant (AS) concentrations in wet up-flow anaerobic sludge blanket reactor (UASBR) sludges from five sewage treatment plants (STPs) were found to range from 4480 to 9,233 mg kg(-1)dry wt. (average 7,347 mg kg(-1)dry wt.) over a period of 18 months. After drying on sand drying beds (SDBs), AS in dried-stabilized sludges averaged 1,452 mg kg(-1)dry wt., a reduction of around 80%. The kinetics of drying followed simple first-order reduction of moisture with value of drying constant (k(d))=0.051 d(-1). Reduction of AS also followed first-order kinetics. AS degradation rate constant (k(AS)) was found to be 0.034 d(-1) and half-life of AS as 20 days. The order of rates of removal observed was k(d)>k(AS)>k(COD)>k(OM) (drying >AS degradation>COD reduction>organic matter reduction). For the three applications of dried-stabilized sludges (soil, agricultural soil, grassland), values of risk quotient (RQ) were found to be <1, indicating no risk.

  16. The repeated drying-wetting and freezing-thawing cycles affect only the active pool of soil organic matter

    NASA Astrophysics Data System (ADS)

    Semenov, Vyacheslav; Zinyakova, Natalya; Tulina, Anastasiya

    2016-04-01

    The decrease in the content of soil organic carbon, particularly in active form, is one of the major problems of the 21st century, which is closely related to the disturbance of the biogeochemical carbon cycle and to the increase in the emission of carbon dioxide into the atmosphere. The main reasons for the SOM losses are the surplus of the SOM active pool losses due to mineralization, erosion, and infiltration over the input of fresh organic matter to the soil, as well as the changes in the soil conditions and processes due to natural and anthropogenic disturbing impacts. Experiments were carried out with mixed samples from the upper layers of soddy-podzolic soil, gray forest soil, and typical chernozems. Soil samples as controls were incubated after wetting for 150 days. The dynamics and cumulative production of C-CO2 under stable temperature (22°C) and moisture conditions were determined; the initial content of potentially mineralizable organic matter (C0) in the soil at the beginning of the incubation was then calculated to use these data as the control. Other soil samples were exposed in flasks to the following successive treatments: wetting →incubation → freezing → thawing → incubation →drying. Six repeated cycles of disturbing impacts were performed for 140 days of the experiment. After six cycles, the soil samples were incubated under stable temperature and moisture conditions for 150 days. The wetting of dried soils and the thawing of frozen soils are accompanied by the pulsed dynamics of the C-CO2 production with an abrupt increase in the rate of the C-CO2 emission within several days by 2.7-12.4 and 1.6-2.7 times, respectively, compared to the stable incubation conditions. The rate of the C-CO2 production pulses under each subsequent impact decreased compared to the preceding one similarly for all studied soils, which could be due to the depletion in potentially mineralizable soil organic matter (C0). The cumulative extra C-CO2 production by

  17. Changes in ground beetle assemblages above and below the treeline of the Dolomites after almost 30 years (1980/2009)

    PubMed Central

    Pizzolotto, Roberto; Gobbi, Mauro; Brandmayr, Pietro

    2014-01-01

    Very little is known about the changes of ground beetle assemblages in the last few decades in the Alps, and different responses to climate change of animal populations living above and below the treeline have not been estimated yet. This study focuses on an altitudinal habitat sequence from subalpine spruce forest to alpine grassland in a low disturbance area of the southeastern Dolomites in Italy, the Paneveggio Regional Park. We compared the ground beetle (Carabidae) populations sampled in 1980 in six stands below and above the treeline (1650–2250 m a.s.l.) with those sampled in the same sites almost 30 years later (2008/9). Quantitative data (species richness and abundance) have been compared by means of several diversity indexes and with a new index, the Index of Rank-abundance Change (IRC). Our work shows that species richness and abundance have changed after almost 30 years as a consequence of local extinctions, uphill increment of abundance and uphill shift of distribution range. The overall species number dropped from 36 to 27, while in the sites above the treeline, species richness and abundance changed more than in the forest sites. Two microtherm characteristic species of the pioneer cushion grass mats, Nebria germari and Trechus dolomitanus, became extinct or showed strong abundance reduction. In Nardetum pastures, several hygrophilic species disappeared, and xerophilic zoophytophagous elements raised their population density. In forest ecosystems, the precipitation reduction caused deep soil texture and watering changes, driving a transformation from Sphagnum-rich (peaty) to humus-rich soil, and as a consequence, soil invertebrate biomass strongly increased and thermophilic carabids enriched the species structure. In three decades, Carabid assemblages changed consistently with the hypothesis that climate change is one of the main factors triggering natural environment modifications. Furthermore, the level of human disturbance could enhance the

  18. Effects of substitution of different levels of steam-flaked corn for finely ground corn on lactation and digestion in early lactation dairy cows.

    PubMed

    Zhong, R Z; Li, J G; Gao, Y X; Tan, Z L; Ren, G P

    2008-10-01

    Eight multiparous Holstein cows, 4 of them fitted with rumen cannulas, were used to test the effects of substitution of steam-flaked corn (SFC) for equal amounts of finely ground corn (FGC) in diets on feed intake and digestion, blood metabolites, and lactation performance in early lactation dairy cows. Cows were fed 4 diets in a replicated 4 x 4 Latin square design. The fistulated cows formed 1 replicate. Each experimental period lasted for 3 wk. The 4 diets contained 0, 10, 20, or 40% SFC and 40, 30, 20, or 0% FGC (dry matter basis), respectively. The milk protein content and yield, milk solid nonfat content and yield, plasma glucose concentration, and dry matter intake increased as the proportion of SFC increased in diets. Apparent total tract digestibilities of dry matter, organic matter, neutral detergent fiber, acid detergent fiber, and average ruminal fluid NH(3)-N concentration decreased with increasing levels of SFC. The ruminal fluid pH was not affected by the substitution of SFC for FGC. The 20% SFC substitution improved digestion of crude protein, yield of fat-corrected milk, milk lactose content, fat, and fat yield. The 40% SFC substitution increased urea concentration in both plasma and milk. It was concluded that 20% of SFC substitution for FGC appeared to be an appropriate level in diet for early lactation dairy cows.

  19. 46 CFR 154.1150 - Distribution of dry chemical.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 46 Shipping 5 2010-10-01 2010-10-01 false Distribution of dry chemical. 154.1150 Section 154.1150... Firefighting System: Dry Chemical § 154.1150 Distribution of dry chemical. (a) All locations on the above deck... chemical hand hose lines; or (2) At least one dry chemical hand hose line and one dry chemical monitor. (b...

  20. 46 CFR 154.1150 - Distribution of dry chemical.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 46 Shipping 5 2011-10-01 2011-10-01 false Distribution of dry chemical. 154.1150 Section 154.1150... Firefighting System: Dry Chemical § 154.1150 Distribution of dry chemical. (a) All locations on the above deck... chemical hand hose lines; or (2) At least one dry chemical hand hose line and one dry chemical monitor. (b...

  1. 46 CFR 154.1150 - Distribution of dry chemical.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... 46 Shipping 5 2014-10-01 2014-10-01 false Distribution of dry chemical. 154.1150 Section 154.1150... Firefighting System: Dry Chemical § 154.1150 Distribution of dry chemical. (a) All locations on the above deck... chemical hand hose lines; or (2) At least one dry chemical hand hose line and one dry chemical monitor. (b...

  2. 46 CFR 154.1150 - Distribution of dry chemical.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 46 Shipping 5 2013-10-01 2013-10-01 false Distribution of dry chemical. 154.1150 Section 154.1150... Firefighting System: Dry Chemical § 154.1150 Distribution of dry chemical. (a) All locations on the above deck... chemical hand hose lines; or (2) At least one dry chemical hand hose line and one dry chemical monitor. (b...

  3. 46 CFR 154.1150 - Distribution of dry chemical.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... 46 Shipping 5 2012-10-01 2012-10-01 false Distribution of dry chemical. 154.1150 Section 154.1150... Firefighting System: Dry Chemical § 154.1150 Distribution of dry chemical. (a) All locations on the above deck... chemical hand hose lines; or (2) At least one dry chemical hand hose line and one dry chemical monitor. (b...

  4. A comparative analysis of extended water cloud model and backscatter modelling for above-ground biomass assessment in Corbett Tiger Reserve

    NASA Astrophysics Data System (ADS)

    Kumar, Yogesh; Singh, Sarnam; Chatterjee, R. S.; Trivedi, Mukul

    2016-04-01

    Forest biomass acts as a backbone in regulating the climate by storing carbon within itself. Thus the assessment of forest biomass is crucial in understanding the dynamics of the environment. Traditionally the destructive methods were adopted for the assessment of biomass which were further advanced to the non-destructive methods. The allometric equations developed by destructive methods were further used in non-destructive methods for the assessment, but they were mostly applied for woody/commercial timber species. However now days Remote Sensing data are primarily used for the biomass geospatial pattern assessment. The Optical Remote Sensing data (Landsat8, LISS III, etc.) are being used very successfully for the estimation of above ground biomass (AGB). However optical data is not suitable for all atmospheric/environmental conditions, because it can't penetrate through clouds and haze. Thus Radar data is one of the alternate possible ways to acquire data in all-weather conditions irrespective of weather and light. The paper examines the potential of ALOS PALSAR L-band dual polarisation data for the estimation of AGB in the Corbett Tiger Reserve (CTR) covering an area of 889 km2. The main focus of this study is to explore the accuracy of Polarimetric Scattering Model (Extended Water Cloud Model (EWCM) with respect to Backscatter model in the assessment of AGB. The parameters of the EWCM were estimated using the decomposition components (Raney Decomposition) and the plot level information. The above ground biomass in the CTR ranges from 9.6 t/ha to 322.6 t/ha.

  5. Effects of aeration strategy on the evolution of dissolved organic matter (DOM) and microbial community structure during sludge bio-drying.

    PubMed

    Zhang, Junya; Cai, Xing; Qi, Lu; Shao, Chunyan; Lin, Yang; Zhang, Jin; Zhang, Yuanli; Shen, Peihong; Wei, Yuansong

    2015-09-01

    Sludge bio-drying in which sludge is dried by means of the heat generated by the aerobic degradation of its own organic substances has been widely used for sludge treatment. A better understanding of the evolution of dissolved organic matter (DOM) and its degradation drivers during sludge bio-drying could facilitate its control. Aeration is one of the key factors that affect sludge bio-drying performance. In this study, two aeration strategies (pile I-the optimized and pile II-the current) were established to investigate their impacts on the evolution of DOM and the microbial community in a full-scale sludge bio-drying plant. A higher pile temperature in pile I caused pile I to enter the DOM and microbiology stable stage approximately2 days earlier than pile II. The degradation of easily degradable components in the DOM primarily occurred in the thermophilic phase; after that degradation, the DOM components changed a little. Along with the evolution of the DOM, its main degradation driver, the microbial community, changed considerably. Phyla Firmicutes and Proteobacteria were dominant in the thermophilic stage, and genus Ureibacillus, which was the primary thermophilic bacteria, was closely associated with the degradation of the DOM. In the mesophilic stage, the microbial community changed significantly at first and subsequently stabilized, and the genus Parapedobacter, which belongs to Bacteriodetes, became dominant. This study elucidates the interplay between the DOM and microbial community during sludge bio-drying.

  6. Quantifying particulate matter deposition in Niwot Ridge, Colorado: Collection of dry deposition using marble inserts and particle imaging using the FlowCAM

    NASA Astrophysics Data System (ADS)

    Goss, Natasha R.; Mladenov, Natalie; Seibold, Christine M.; Chowanski, Kurt; Seitz, Leslie; Wellemeyer, T. Barret; Williams, Mark W.

    2013-12-01

    Atmospheric wet and dry deposition are important sources of carbon for remote alpine lakes and soils. The carbon inputs from dry deposition in alpine National Atmospheric Deposition Program (NADP) collectors, including aeolian dust and biological material, are not well constrained due to difficulties in retaining particulate matter in the collectors. Here, we developed and tested a marble insert for dry deposition collection at the Niwot Ridge Long Term Ecological Research Station (NWT LTER) Soddie site (3345 m) between 24 May and 8 November 2011. We conducted laboratory tests of the insert's effect on particulate matter (PM) mass and non-purgeable organic carbon (DOC) and found that the insert did not significantly change either measurement. Thus, the insert may enable dry deposition collection of PM and DOC at NADP sites. We then developed a method for enumerating the collected wet and dry deposition with the Flow Cytometer and Microscope (FlowCAM), a dynamic-image particle analysis tool. The FlowCAM has the potential to establish morphology, which affects particle settling and retention, through particle diameter and aspect ratio. Particle images were used to track the abundance of pollen grains over time. Qualitative image examination revealed that most particles were biological in nature, such as intact algal cells and pollen. Dry deposition loading to the Soddie site as determined by FlowCAM measurements was highly variable, ranging from 100 to >230 g ha-1 d-1 in June-August 2011 and peaking in late June. No significant difference in diameter or aspect ratio was found between wet and dry deposition, suggesting fundamental similarities between those deposition types. Although FlowCAM statistics and identification of particle types proved insightful, our total-particle enumeration method had a high variance and underestimated the total number of particles when compared to imaging of relatively large volumes (60-125 mL) from a single sample. We recommend use of

  7. Freeze drying apparatus

    DOEpatents

    Coppa, Nicholas V.; Stewart, Paul; Renzi, Ernesto

    2001-01-01

    The present invention provides methods and apparatus for freeze drying in which a solution, which can be a radioactive salt dissolved within an acid, is frozen into a solid on vertical plates provided within a freeze drying chamber. The solid is sublimated into vapor and condensed in a cold condenser positioned above the freeze drying chamber and connected thereto by a conduit. The vertical positioning of the cold condenser relative to the freeze dryer helps to help prevent substances such as radioactive materials separated from the solution from contaminating the cold condenser. Additionally, the system can be charged with an inert gas to produce a down rush of gas into the freeze drying chamber to also help prevent such substances from contaminating the cold condenser.

  8. Freeze drying method

    DOEpatents

    Coppa, Nicholas V.; Stewart, Paul; Renzi, Ernesto

    1999-01-01

    The present invention provides methods and apparatus for freeze drying in which a solution, which can be a radioactive salt dissolved within an acid, is frozen into a solid on vertical plates provided within a freeze drying chamber. The solid is sublimated into vapor and condensed in a cold condenser positioned above the freeze drying chamber and connected thereto by a conduit. The vertical positioning of the cold condenser relative to the freeze dryer helps to help prevent substances such as radioactive materials separated from the solution from contaminating the cold condenser. Additionally, the system can be charged with an inert gas to produce a down rush of gas into the freeze drying chamber to also help prevent such substances from contaminating the cold condenser.

  9. The effect of feeding bull Bali cattle kept in extensive husbandry system with concentrates contained gliricidia sepium leaf meal and banana strach tuber meal on their feed consumption and dried organic matter digestability

    NASA Astrophysics Data System (ADS)

    Fattah, S.; Sobang, Y. U. L.; Samba, F. D.; Hartati, E.; Kapa, M. M. J.; Henuk, Y. L.

    2018-02-01

    This study aimed to evaluate the effect of feeding bull Bali Cattle kept in extensive husbnadry system with concentrates contained gliricidia sepium leaf meal and banana strach tuber meal in their feed consumptions and dried organic matter digestibility. Three bull Bali cattle aged 1 - 2 years old with an initial body weight of 135.5 kg - 168.0 kg were used in this study. The three treatments used were T0 = local feeds (consisted of Leucaena leucocephala, Acasia leochophloea, and Ficus sp. leaves as commonly used by local farmers); T1 = T0 + 1 kg concentrate (contained banana strach tuber meal + gliricidia sepium leaf meal); T2 = T1 +2 kg concentrate (contained banana strach tuber meal + gliricidia sepium leaf meal). The results showed that the dry matter intake were: 2.40, 3.52, and 4.14; organic matter intake were: 2.17, 3.32, and 3.62; dry matter digestible was 64.63%, 72.45%, 77.28% and organic matter digestible was 66.79%, 74.66%, 79.33% for T0, T1, and T2, respectively. There was no effect (P>0.05) of treatments on the three parameters observed on bull Bali cattle kept in extensive husbandry system and fed with concentrates contained leaf gliricidia sepium meal and banana starch tuber meal.

  10. Rumen Degradability and Post-ruminal Digestion of Dry Matter, Nitrogen and Amino Acids of Three Protein Supplements.

    PubMed

    Gao, Wei; Chen, Aodong; Zhang, Bowen; Kong, Ping; Liu, Chenli; Zhao, Jie

    2015-04-01

    This study evaluated the in situ ruminal degradability, and subsequent small intestinal digestibility (SID) of dry matter, crude protein (CP), and amino acids (AA) of cottonseed meal (CSM), sunflower seed meal (SFSM) and distillers dried grains with solubles (DDGS) by using the modified three-step in vitro procedure. The ruminal degradability and subsequent SID of AA in rumen-undegradable protein (RUP-AA) varied among three protein supplements. The result show that the effective degradability of DM for SFSM, CSM, and DDGS was 60.8%, 56.4%, and 41.0% and their ruminal fermentable organic matter was 60.0%, 55.9%, and 39.9%, respectively. The ruminal degradable protein (RDP) content in CP for SFSM, CSM, and DDGS was 68.3%, 39.0%, and 32.9%, respectively, at the ruminal solid passage rate of 1.84%/h. The SFSM is a good source of RDP for rumen micro-organisms; however, the SID of RUP of SFSM was lower. The DDGS and CSM are good sources of RUP for lambs to digest in the small intestine to complement ruminal microbial AA of growing lambs. Individual RUP-AA from each protein source was selectively removed by the rumen micro-organisms, especially for Trp, Arg, His, and Lys (p<0.01). The SID of individual RUP-AA was different within specific RUP origin (p<0.01). Limiting amino acid was Leu for RUP of CSM and Lys for both RUP of SFSM and DDGS, respectively. Therefore, different protein supplements with specific limitations should be selected and combined carefully in growing lambs ration to optimize AA balance.

  11. Delineation of Areas Contributing Water to the Dry Brook Public-Supply Well, South Hadley, Massachusetts

    USGS Publications Warehouse

    Garabedian, Stephen P.; Stone, Janet Radway

    2004-01-01

    Areas contributing water to the Dry Brook public-supply well in South Hadley, Massachusetts, were delineated with a numerical ground-water-flow model that is based on geologic and hydrologic information for the confined sand and gravel aquifer pumped by the supply well. The study area is along the Connecticut River in central Massachusetts, about 12 miles north of Springfield, Massachusetts. Geologic units in the study area consist of Mesozoic-aged sedimentary and igneous bedrock, late-Pleistocene glaciolacustrine sediments, and recent alluvial deposits of the Connecticut River flood plain. Dry Brook Hill, immediately south of the supply well, is a large subaqueous lacustrine fan and delta formed during the last glacial retreat by sediment deposition into glacial Lake Hitchcock from a meltwater tunnel that was likely near where the Connecticut River cuts through the Holyoke Range. The sediments that compose the aquifer grade from very coarse sand and gravel along the northern flank of the hill, to medium sands in the body of the hill, and to finer-grained sediments along the southern flank of the hill. The interbedded and overlapping fine-grained lacustrine sediments associated with Dry Brook Hill include varved silt and clay deposits. These fine-grained sediments form a confining bed above the coarse-grained aquifer at the supply well and partially extend under the Connecticut River adjacent to the supply well. Ground-water flow in the aquifer supplying water to Dry Brook well was simulated with the U.S. Geological Survey ground-water-flow modeling code MODFLOW. The Dry Brook aquifer model was calibrated to drawdown data collected from 8 observation wells during an aquifer test conducted by pumping the supply well for 10 days at a rate of 122.2 cubic feet per minute (ft3/min; 914 gallons per minute) and to water levels collected from observation wells across the study area. Generally, the largest hydraulic conductivity values used in the model were in the sand and

  12. Understanding Particulate Matter Dynamics in the San Joaquin Valley during DISCOVER-AQ, 2013

    NASA Astrophysics Data System (ADS)

    Prabhakar, G.; Zhang, X.; Kim, H.; Parworth, C.; Pusede, S. E.; Wooldridge, P. J.; Cohen, R. C.; Zhang, Q.; Cappa, C. D.

    2015-12-01

    Air quality in the California San Joaquin Valley (SJV) during winter continues to be the worst in the state, failing EPA's 24-hour standard for particulate matter. Despite our improved understanding of the sources of particulate matter (PM) in the valley, air-quality models are unable to predict PM concentrations accurately. We aim to characterize periods of high particulate matter concentrations in the San Joaquin Valley based on ground and airborne measurements of aerosols and gaseous pollutants, during the DISCOVER-AQ campaign, 2013. A highly instrumented aircraft flew across the SJV making three transects in a repeatable pattern, with vertical spirals over select locations. The aircraft measurements were complemented by ground measurements at these locations, with extensive chemically-speciated measurements at a ground "supersite" at Fresno. Hence, the campaign provided a comprehensive three-dimensional view of the particulate and gaseous pollutants around the valley. The vertical profiles over the different sites indicate significant variability in the concentrations and vertical distribution of PM around the valley, which are most likely driven by differences in the combined effects of emissions, chemistry and boundary layer dynamics at each site. The observations suggest that nighttime PM is dominated by surface emissions of PM from residential fuel combustion, while early morning PM is strongly influenced by mixing of low-level, above-surface, nitrate-rich layers formed from dark chemistry overnight to the surface.

  13. Pre-rigor temperature and the relationship between lamb tenderisation, free water production, bound water and dry matter.

    PubMed

    Devine, Carrick; Wells, Robyn; Lowe, Tim; Waller, John

    2014-01-01

    The M. longissimus from lambs electrically stimulated at 15 min post-mortem were removed after grading, wrapped in polythene film and held at 4 (n=6), 7 (n=6), 15 (n=6, n=8) and 35°C (n=6), until rigor mortis then aged at 15°C for 0, 4, 24 and 72 h post-rigor. Centrifuged free water increased exponentially, and bound water, dry matter and shear force decreased exponentially over time. Decreases in shear force and increases in free water were closely related (r(2)=0.52) and were unaffected by pre-rigor temperatures. © 2013.

  14. Biomass of open-grown Virginia pine

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Madgwick, H.A.I.; Olah, F.D.; Burkhart, H.E.

    1977-03-01

    Five open-grown Pinus virginiana trees ranging from 1.05 to 15.78 m tall were destructively sampled and the data used to obtain relationships between tree size and biomass to estimate dry matter production. The ratio of foliage to above-ground woody biomass decreased with tree age from 0.4 for a 7-year-old tree to 0.05 for a 39-year-old tree. Needle longevity increased with tree age. 5 references.

  15. Pyrolysis of ground pine chip and ground pellet particles

    DOE PAGES

    Rezaei, Hamid; Yazdanpanah, Fahimeh; Lim, C. Jim; ...

    2016-08-04

    In addition to particle size, biomass density influences heat and mass transfer rates during the thermal treatment processes. In this research, thermal behaviour of ground pine chip particles and ground pine pellet particles in the range of 0.25–5 mm was investigated. A single particle from ground pellets was almost 3 to 4 times denser than a single particle from ground chips at a similar size and volume of particle. Temperature was ramped up from room temperature (~25 °C) to 600 °C with heating rates of 10, 20, 30, and 50 °C/min. Pellet particles took 25–88 % longer time to drymore » than the chip particles. Microscopic examination of 3 mm and larger chip particles showed cracks during drying. No cracks were observed for pellet particles. The mass loss due to treatment at temperatures higher than 200 °C was about 80% both for chip and pellet particles. It took 4 min for chip and pellet particles to lose roughly 63% of their dry mass at a heating rate of 50 °C/min. The SEM structural analysis showed enlarged pores and cracks in cell walls of the pyrolyzed wood chips. As a result, these pores were not observed in pyrolyzed pellet particles.« less

  16. Drought and root herbivory interact to alter the response of above-ground parasitoids to aphid infested plants and associated plant volatile signals.

    PubMed

    Tariq, Muhammad; Wright, Denis J; Bruce, Toby J A; Staley, Joanna T

    2013-01-01

    Multitrophic interactions are likely to be altered by climate change but there is little empirical evidence relating the responses of herbivores and parasitoids to abiotic factors. Here we investigated the effects of drought on an above/below-ground system comprising a generalist and a specialist aphid species (foliar herbivores), their parasitoids, and a dipteran species (root herbivore).We tested the hypotheses that: (1) high levels of drought stress and below-ground herbivory interact to reduce the performance of parasitoids developing in aphids; (2) drought stress and root herbivory change the profile of volatile organic chemicals (VOCs) emitted by the host plant; (3) parasitoids avoid ovipositing in aphids feeding on plants under drought stress and root herbivory. We examined the effect of drought, with and without root herbivory, on the olfactory response of parasitoids (preference), plant volatile emissions, parasitism success (performance), and the effect of drought on root herbivory. Under drought, percentage parasitism of aphids was reduced by about 40-55% compared with well watered plants. There was a significant interaction between drought and root herbivory on the efficacy of the two parasitoid species, drought stress partially reversing the negative effect of root herbivory on percent parasitism. In the absence of drought, root herbivory significantly reduced the performance (e.g. fecundity) of both parasitoid species developing in foliar herbivores. Plant emissions of VOCs were reduced by drought and root herbivores, and in olfactometer experiments parasitoids preferred the odour from well-watered plants compared with other treatments. The present work demonstrates that drought stress can change the outcome of interactions between herbivores feeding above- and below-ground and their parasitoids, mediated by changes in the chemical signals from plants to parasitoids. This provides a new insight into how the structure of terrestrial communities may be

  17. Calculation of dose distribution above contaminated soil

    NASA Astrophysics Data System (ADS)

    Kuroda, Junya; Tenzou, Hideki; Manabe, Seiya; Iwakura, Yukiko

    2017-07-01

    The purpose of this study was to assess the relationship between altitude and the distribution of the ambient dose rate in the air over soil decontamination area by using PHITS simulation code. The geometry configuration was 1000 m ×1000 m area and 1m in soil depth and 100m in altitude from the ground to simulate the area of residences or a school grounds. The contaminated region is supposed to be uniformly contaminated by Cs-137 γ radiation sources. The air dose distribution and space resolution was evaluated for flux of the gamma rays at each altitude, 1, 5, 10, and 20m. The effect of decontamination was calculated by defining sharpness S. S was the ratio of an average flux and a flux at the center of denomination area in each altitude. The suitable flight altitude of the drone is found to be less than 15m above a residence and 31m above a school grounds to confirm the decontamination effect. The calculation results can be a help to determine a flight planning of a drone to minimize the clash risk.

  18. Coordinated Airborne, Spaceborne and Ground-based Measurements of Massive Thick Aerosol Layers during the Dry Season in Southern Africa

    NASA Technical Reports Server (NTRS)

    Schmid, B.; Redemann, J.; Russell, P. B.; Hobbs, P. V.; Hlavka, D. L.; McGill, M. J.; Holben, B. N.; Welton, E. J.; Campbell, J. R.; Torres, O.

    2003-01-01

    During the dry season airborne campaign of the Southern African Regional Science Initiative (SAFARI 2000), coordinated observations were made of massive thick aerosol layers. These layers were often dominated by aerosols from biomass burning. We report on airborne Sun photometer measurements of aerosol optical depth (lambda = 0.354- 1.557 microns), columnar water vapor, and vertical profiles of aerosol extinction and water vapor density that were obtained aboard the University of Washington's Convair-580 research aircraft. We compare these with ground-based AERONET Sun/sky radiometer results, with ground based lidar data (MPL-Net), and with measurements from a downward pointing lidar aboard the high-flying NASA ER-2 aircraft. Finally, we show comparisons between aerosol optical depths fiom the Sun photometer and those retrieved over land and over water using four spaceborne sensors (TOMS, MODIS, MISR, and ATSR-2).

  19. Mind the Roots: Phenotyping Below-Ground Crop Diversity and Its Influence on Final Yield

    NASA Astrophysics Data System (ADS)

    Nieters, C.; Guadagno, C. R.; Lemli, S.; Hosseini, A.; Ewers, B. E.

    2017-12-01

    Changes in global climate patterns and water regimes are having profound impacts on worldwide crop production. An ever-growing population paired with increasing temperatures and unpredictable periods of severe drought call for accurate modeling of future crop yield. Although novel approaches are being developed in high-throughput, above-ground image phenotyping, the below-ground plant system is still poorly phenotyped. Collection of plant root morphology and hydraulics are needed to inform mathematical models to reliably estimate yields of crops grown in sub-optimal conditions. We used Brassica rapa to inform our model as it is a globally cultivated crop with several functionally diverse cultivars. Specifically, we use 7 different accessions from oilseed (R500 and Yellow Sarson), leafy type (Pac choi and Chinese cabbage), a vegetable turnip, and two Wisconsin Fast Plants (Imb211 and Fast Plant self-compatible), which have shorter life cycles and potentially large differences in allocation to roots. Bi-weekly, we harvested above and below-ground biomass to compare the varieties in terms of carbon allocation throughout their life cycle. Using WinRhizo software, we analyzed root system length and surface area to compare and contrast root morphology among cultivars. Our results confirm that root structural characteristics are crucial to explain plant water use and carbon allocation. The root:shoot ratio reveals a significant (p < 0.01) difference among crop accession. To validate the procedure across different varieties and life stages we also compared surface area results from the image-based technology to dry biomass finding a strong linear relationship (R2= 0.85). To assess the influence of a diverse above-ground morphology on the root system we also measured above-ground anatomical and physiological traits such as gas exchange, chlorophyll content, and chlorophyll a fluorescence. A thorough analysis of the root system will clarify carbon dynamics and hydraulics at

  20. Provitamin A biofortification of cassava enhances shelf life but reduces dry matter content of storage roots due to altered carbon partitioning into starch.

    PubMed

    Beyene, Getu; Solomon, Felix R; Chauhan, Raj D; Gaitán-Solis, Eliana; Narayanan, Narayanan; Gehan, Jackson; Siritunga, Dimuth; Stevens, Robyn L; Jifon, John; Van Eck, Joyce; Linsler, Edward; Gehan, Malia; Ilyas, Muhammad; Fregene, Martin; Sayre, Richard T; Anderson, Paul; Taylor, Nigel J; Cahoon, Edgar B

    2017-11-28

    Storage roots of cassava (Manihot esculenta Crantz), a major subsistence crop of sub-Saharan Africa, are calorie rich but deficient in essential micronutrients, including provitamin A β-carotene. In this study, β-carotene concentrations in cassava storage roots were enhanced by co-expression of transgenes for deoxy-d-xylulose-5-phosphate synthase (DXS) and bacterial phytoene synthase (crtB), mediated by the patatin-type 1 promoter. Storage roots harvested from field-grown plants accumulated carotenoids to ≤50 μg/g DW, 15- to 20-fold increases relative to roots from nontransgenic plants. Approximately 85%-90% of these carotenoids accumulated as all-trans-β-carotene, the most nutritionally efficacious carotenoid. β-Carotene-accumulating storage roots displayed delayed onset of postharvest physiological deterioration, a major constraint limiting utilization of cassava products. Large metabolite changes were detected in β-carotene-enhanced storage roots. Most significantly, an inverse correlation was observed between β-carotene and dry matter content, with reductions of 50%-60% of dry matter content in the highest carotenoid-accumulating storage roots of different cultivars. Further analysis confirmed a concomitant reduction in starch content and increased levels of total fatty acids, triacylglycerols, soluble sugars and abscisic acid. Potato engineered to co-express DXS and crtB displayed a similar correlation between β-carotene accumulation, reduced dry matter and starch content and elevated oil and soluble sugars in tubers. Transcriptome analyses revealed a reduced expression of genes involved in starch biosynthesis including ADP-glucose pyrophosphorylase genes in transgenic, carotene-accumulating cassava roots relative to nontransgenic roots. These findings highlight unintended metabolic consequences of provitamin A biofortification of starch-rich organs and point to strategies for redirecting metabolic flux to restore starch production. © 2017 The

  1. Estimating above-ground biomass on mountain meadows and pastures through remote sensing

    NASA Astrophysics Data System (ADS)

    Barrachina, M.; Cristóbal, J.; Tulla, A. F.

    2015-06-01

    Extensive stock-breeding systems developed in mountain areas like the Pyrenees are crucial for local farming economies and depend largely on above-ground biomass (AGB) in the form of grass produced on meadows and pastureland. In this study, a multiple linear regression analysis technique based on in-situ biomass collection and vegetation and wetness indices derived from Landsat-5 TM data is successfully applied in a mountainous Pyrenees area to model AGB. Temporal thoroughness of the data is ensured by using a large series of images. Results of on-site AGB collection show the importance for AGB models to capture the high interannual and intraseasonal variability that results from both meteorological conditions and farming practices. AGB models yield best results at midsummer and end of summer before mowing operations by farmers, with a mean R2, RMSE and PE for 2008 and 2009 midsummer of 0.76, 95 g m-2 and 27%, respectively; and with a mean R2, RMSE and PE for 2008 and 2009 end of summer of 0.74, 128 g m-2 and 36%, respectively. Although vegetation indices are a priori more related with biomass production, wetness indices play an important role in modeling AGB, being statistically selected more frequently (more than 50%) than other traditional vegetation indexes (around 27%) such as NDVI. This suggests that middle infrared bands are crucial descriptors of AGB. The methodology applied in this work compares favorably with other works in the literature, yielding better results than those works in mountain areas, owing to the ability of the proposed methodology to capture natural and anthropogenic variations in AGB which are the key to increasing AGB modeling accuracy.

  2. Relationship between environmental factors, dry matter loss and mycotoxin levels in stored wheat and maize infected with Fusarium species.

    PubMed

    Mylona, Kalliopi; Sulyok, Michael; Magan, Naresh

    2012-01-01

    This study examined the relationship between storage environmental factors (water activity (a(w)) (0.89-0.97) and temperature (15°C-30°C)), colonisation of wheat and maize by Fusarium graminearum and F. verticillioides respectively and the dry matter losses (DMLs) caused and quantified by contamination with deoxynivalenol (DON), zearalenone (ZEA) and fumonisins (FUMs) during storage. Fungal growth was assessed by the amount of CO(2) produced under different interacting conditions of a(w) and temperature. DMLs were quantified using the cumulative CO(2) data, and these were shown to increase as temperature and a(w) increased. The amount of DON, ZEA (wheat for human consumption) and FUMs (feed maize) produced was significantly affected by the storage conditions. The three toxins however showed different patterns of production. Optimum for DON was at the wettest conditions (0.97a(w)) and the highest temperature assessed (30°C), whereas for ZEA this shifted to 25°C. FUMs were produced in higher amounts in maize at 30°C and 0.97a(w); however, at intermediate a(w) levels (0.955a(w)), the highest production occurred at 25°C followed by 20°C. Polynomial models were developed for the effect of the storage factors on DMLs and toxin production. DMLs under different environmental conditions were significantly correlated with DON and FUMs. DON contamination was above the EU limits in at least 80% of the wheat samples with DMLs >1%, whereas at least 70% of the same samples contained ZEA above the respective EU legislative limits. Similarly, at least 75% of the maize samples with DMLs ≥ 0.9% exceeded the EU limits for the sum of FUMs in feed. These results show that it may be possible to use temporal CO(2) production during storage of grains as an indicator of the level of contamination of the grain with mycotoxins.

  3. Use of modified cages attached to growing calves to measure the effect of stable flies on dry matter intake and digestibility, and defensive movements

    USDA-ARS?s Scientific Manuscript database

    The effect of stable flies on growing calves was examined using modified fly cages attached to the animals. Dry matter intake and digestibility as well as behavioral responses of the animals were monitored. Nine Holstein calves, individually housed in 3 x 3 m pens, were exposed to three levels of st...

  4. Effect of fiber removal from ground corn, distillers dried grains with solubles and soybean meal using the Elusieve process on broiler performance and processing yield

    USDA-ARS?s Scientific Manuscript database

    The Elusieve process, a combination of sieving and elutriation (air classification), has been found to be effective in fiber separation from ground corn, distillers dried grains with solubles (DDGS) and soybean meal (SBM). The objective of this study was to determine the effect of removing fiber fro...

  5. Rumen Degradability and Post-ruminal Digestion of Dry Matter, Nitrogen and Amino Acids of Three Protein Supplements

    PubMed Central

    Gao, Wei; Chen, Aodong; Zhang, Bowen; Kong, Ping; Liu, Chenli; Zhao, Jie

    2015-01-01

    This study evaluated the in situ ruminal degradability, and subsequent small intestinal digestibility (SID) of dry matter, crude protein (CP), and amino acids (AA) of cottonseed meal (CSM), sunflower seed meal (SFSM) and distillers dried grains with solubles (DDGS) by using the modified three-step in vitro procedure. The ruminal degradability and subsequent SID of AA in rumen-undegradable protein (RUP-AA) varied among three protein supplements. The result show that the effective degradability of DM for SFSM, CSM, and DDGS was 60.8%, 56.4%, and 41.0% and their ruminal fermentable organic matter was 60.0%, 55.9%, and 39.9%, respectively. The ruminal degradable protein (RDP) content in CP for SFSM, CSM, and DDGS was 68.3%, 39.0%, and 32.9%, respectively, at the ruminal solid passage rate of 1.84%/h. The SFSM is a good source of RDP for rumen micro-organisms; however, the SID of RUP of SFSM was lower. The DDGS and CSM are good sources of RUP for lambs to digest in the small intestine to complement ruminal microbial AA of growing lambs. Individual RUP-AA from each protein source was selectively removed by the rumen micro-organisms, especially for Trp, Arg, His, and Lys (p<0.01). The SID of individual RUP-AA was different within specific RUP origin (p<0.01). Limiting amino acid was Leu for RUP of CSM and Lys for both RUP of SFSM and DDGS, respectively. Therefore, different protein supplements with specific limitations should be selected and combined carefully in growing lambs ration to optimize AA balance. PMID:25656208

  6. Characterization and disinfection by-product formation potential of natural organic matter in surface and ground waters from Northern Florida

    USGS Publications Warehouse

    Rostad, C.E.; Leenheer, J.A.; Katz, B.; Martin, B.S.; Noyes, T.I.

    2000-01-01

    Streamwaters in northern Florida have large concentrations of natural organic matter (NOM), and commonly flow directly into the ground water system through karst features, such as sinkholes. In this study NOM from northern Florida stream and ground waters was fractionated, the fractions characterized by infrared (IR) and nuclear magnetic resonance (NMR), and then chlorinated to investigate their disinfection by-product (DBP) formation potential (FP). As the NOM character changed (as quantified by changes in NOM distribution in various fractions, such as hydrophilic acids or hydrophobic neutrals) due to migration through the aquifer, the total organic halide (TOX)-FP and trihalomethane (THM)-FP yield of each of these fractions varied also. In surface waters, the greatest DBP yields were produced by the colloid fraction. In ground waters, DBP yield of the hydrophobic acid fraction (the greatest in terms of mass) decreased during infiltration.

  7. Quantifying Above‐ and Below‐ground Growth Responses of the Western Australian Oil Mallee, Eucalyptus kochii subsp. plenissima, to Contrasting Decapitation Regimes

    PubMed Central

    WILDY, DAN T.; PATE, JOHN S.

    2002-01-01

    Resprouting in the oil mallee, Eucalyptus kochii Maiden & Blakely subsp. plenissima Gardner (Brooker), involves generation of new shoots from preformed meristematic foci on the lignotuber. Numbers of such foci escalated from 200 per lignotuber in trees aged 1 year to 3000 on 4‐ to 5‐year‐old trees. Removal of shoot biomass by decapitation 5 cm above ground in summer (February) or spring (October) resulted in initiation of 140–170 new shoots, but approx. 400 shoots were induced to form if crops of new shoots were successively removed until sprouting ceased and rootstocks senesced. Initially, the new shoot biomass of regenerating coppices increased slowly and the root biomass failed to increase appreciably until 1·7–2·5 years after cutting. Newly cut trees showed loss of fine root biomass, and structural roots failed to secondarily thicken to the extent shown by uncut trees. After 2 years, the biomass of shoots of coppiced plants was only one‐third that of uncut control trees and shoot : root dry mass ratios of coppiced plants were still low (1·5–2·0) compared with those of the controls (average ratio of 3·1). Spring cutting promoted quicker and greater biomass recovery than summer cutting. Starch in below‐ground biomass fell quickly following decapitation and remained low for a 12–18 month period. Utilization of starch reserves in naturally regenerating coppices was estimated to provide only a small proportion of the dry matter accumulated in new shoots. Results are discussed in relation to their impact on coppicing ability of the species under natural conditions or when successively coppiced for shoot biomass production. PMID:12197516

  8. Comparison of optical properties of chromophoric dissolved organic matter (CDOM) in alpine lakes above or below the tree line: insights into sources of CDOM.

    PubMed

    Su, Yaling; Chen, Feizhou; Liu, Zhengwen

    2015-05-01

    Here we investigated absorption and fluorescence properties of chromophoric dissolved organic matter (CDOM) in 15 alpine lakes located below or above the tree line to determine its source and composition. The results indicate that the concentrations of CDOM in below-tree-line lakes are significantly higher than in above-tree-line lakes, as evidenced from the absorption coefficients of a250 and a365. The intensities of the protein-like and humic-like fluorescence in below-tree-line lakes are higher than in above-tree-line lakes as well. Three fluorescent components were identified using parallel factor analysis (PARAFAC) modelling. Component 1 is probably associated with biological degradation of terrestrial humic component. The terrestrial humic-like component 2 is only found in below-tree-line lakes. The protein-like or phenolic component 3 is dominant in above-tree-line lakes, which is probably more derived from autochthonous origin. In this study, (1) higher a250/a365 and S275-295 values indicate smaller molecular weights of CDOM in above-tree-line lakes than in below-tree-line lakes, and smaller molecular weights at the surface than at 2.0 m depth; (2) SUVA254 and FI255 results provide evidence of lower percent aromaticity of CDOM in above-tree-line lakes; and (3) FI310 and FI370 suggest a strong allochthonous origin at the surface in below-tree-line lakes, and more contribution from autochthonous biological and aquatic bacterial origin in above-tree-line lakes.

  9. SPARTAN: a global network to evaluate and enhance satellite-based estimates of ground-level particulate matter for global health applications

    NASA Astrophysics Data System (ADS)

    Snider, G.; Weagle, C. L.; Martin, R. V.; van Donkelaar, A.; Conrad, K.; Cunningham, D.; Gordon, C.; Zwicker, M.; Akoshile, C.; Artaxo, P.; Anh, N. X.; Brook, J.; Dong, J.; Garland, R. M.; Greenwald, R.; Griffith, D.; He, K.; Holben, B. N.; Kahn, R.; Koren, I.; Lagrosas, N.; Lestari, P.; Ma, Z.; Vanderlei Martins, J.; Quel, E. J.; Rudich, Y.; Salam, A.; Tripathi, S. N.; Yu, C.; Zhang, Q.; Zhang, Y.; Brauer, M.; Cohen, A.; Gibson, M. D.; Liu, Y.

    2015-01-01

    Ground-based observations have insufficient spatial coverage to assess long-term human exposure to fine particulate matter (PM2.5) at the global scale. Satellite remote sensing offers a promising approach to provide information on both short- and long-term exposure to PM2.5 at local-to-global scales, but there are limitations and outstanding questions about the accuracy and precision with which ground-level aerosol mass concentrations can be inferred from satellite remote sensing alone. A key source of uncertainty is the global distribution of the relationship between annual average PM2.5 and discontinuous satellite observations of columnar aerosol optical depth (AOD). We have initiated a global network of ground-level monitoring stations designed to evaluate and enhance satellite remote sensing estimates for application in health-effects research and risk assessment. This Surface PARTiculate mAtter Network (SPARTAN) includes a global federation of ground-level monitors of hourly PM2.5 situated primarily in highly populated regions and collocated with existing ground-based sun photometers that measure AOD. The instruments, a three-wavelength nephelometer and impaction filter sampler for both PM2.5 and PM10, are highly autonomous. Hourly PM2.5 concentrations are inferred from the combination of weighed filters and nephelometer data. Data from existing networks were used to develop and evaluate network sampling characteristics. SPARTAN filters are analyzed for mass, black carbon, water-soluble ions, and metals. These measurements provide, in a variety of regions around the world, the key data required to evaluate and enhance satellite-based PM2.5 estimates used for assessing the health effects of aerosols. Mean PM2.5 concentrations across sites vary by more than 1 order of magnitude. Our initial measurements indicate that the ratio of AOD to ground-level PM2.5 is driven temporally and spatially by the vertical profile in aerosol scattering. Spatially this ratio is

  10. Silage review: Factors affecting dry matter and quality losses in silages.

    PubMed

    Borreani, G; Tabacco, E; Schmidt, R J; Holmes, B J; Muck, R E

    2018-05-01

    An overview was made of dry matter (DM) and quality losses that occur during the ensiling process from the field through the feeding phase. The aim was to review the relevant published literature of the last 15 yr focusing on developments achieved after the publication of the book Silage Science and Technology. This review discusses the factors affecting DM and quality losses in terms of field and pre-ensiling conditions, respiration and temperature at ensiling, fermentation patterns, methods of covering and weighting the silage cover, and management of aerobic deterioration. The possibility of reducing DM and quality losses during the ensiling process requires knowledge of how to measure losses on farm and establish the status of the silage during the feed-out phase, implementing the most effective management practices to avoid air exposure during conservation and reduce silage aerobic deterioration during feeding. The paper concludes with future perspectives and recommended management practices to reduce losses and increase efficiency over the whole ensiling process in view of increasing sustainability of the livestock production chain. The Authors. Published by FASS Inc. and Elsevier Inc. on behalf of the American Dairy Science Association®. This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/3.0/).

  11. Parameterizations of Dry Deposition for the Industrial Source Complex Model

    NASA Astrophysics Data System (ADS)

    Wesely, M. L.; Doskey, P. V.; Touma, J. S.

    2002-05-01

    Improved algorithms have been developed to simulate the dry deposition of hazardous air pollutants (HAPs) with the Industrial Source Complex model system. The dry deposition velocities are described in conventional resistance schemes, for which micrometeorological formulas are applied to describe the aerodynamic resistances above the surface. Pathways to uptake of gases at the ground and in vegetative canopies are depicted with several resistances that are affected by variations in air temperature, humidity, solar irradiance, and soil moisture. Standardized land use types and seasonal categories provide sets of resistances to uptake by various components of the surface. To describe the dry deposition of the large number of gaseous organic HAPS, a new technique based on laboratory study results and theoretical considerations has been developed to provide a means to evaluate the role of lipid solubility on uptake by the waxy outer cuticle of vegetative plant leaves. The dry deposition velocities of particulate HAPs are simulated with a resistance scheme in which deposition velocity is described for two size modes: a fine mode with particles less than about 2.5 microns in diameter and a coarse mode with larger particles but excluding very coarse particles larger than about 10 microns in diameter. For the fine mode, the deposition velocity is calculated with a parameterization based on observations of sulfate dry deposition. For the coarse mode, a representative settling velocity is assumed. Then the total deposition velocity is estimated as the sum of the two deposition velocities weighted according to the amount of mass expected in the two modes.

  12. Warm Dry Weather Conditions Cause of 2016 Fort McMurray Wild Forest Fire and Associated Air Quality

    NASA Astrophysics Data System (ADS)

    de Azevedo, S. C.; Singh, R. P.; da Silva, E. A., Sr.

    2016-12-01

    The climate change is evident from the increasing temperature around the world, day to day life and increasing frequency of natural hazards. The warm and dry conditions are the cause of frequent forest fires around the globe. Forest fires severely affect the air quality and human health. Multi sensor satellites and dense network of ground stations provide information about vegetation health, meteorological, air quality and atmospheric parameters. We have carried out detailed analysis of satellite and ground data of wild forest fire that occurred in May 2016 in Fort McMurray, Alberta, Canada. This wild forest fire destroyed 10 per cent of Fort McMurray's housing and forced more than 90,000 people to evacuate the surrounding areas. Our results show that the warm and dry conditions with low rainfall were the cause of Fort McMurray wild fire. The air quality parameters (particulate matter, CO, ozone, NO2, methane) and greenhouse gases measured from Atmospheric Infrared Sounder (AIRS) satellite show enhanced levels soon after the forest fire. The emissions from the forest fire affected health of population living in surrounding areas up to 300 km radius.

  13. Particulate matter pollution in the coal-producing regions of the Appalachian Mountains: Integrated ground-based measurements and satellite analysis.

    PubMed

    Aneja, Viney P; Pillai, Priya R; Isherwood, Aaron; Morgan, Peter; Aneja, Saurabh P

    2017-04-01

    This study integrates the relationship between measured surface concentrations of particulate matter 10 μm or less in diameter (PM 10 ), satellite-derived aerosol optical depth (AOD), and meteorology in Roda, Virginia, during 2008. A multiple regression model was developed to predict the concentrations of particles 2.5 μm or less in diameter (PM 2.5 ) at an additional location in the Appalachia region, Bristol, TN. The model was developed by combining AOD retrievals from Moderate Resolution Imaging Spectro-radiometer (MODIS) sensor on board the EOS Terra and Aqua Satellites with the surface meteorological observations. The multiple regression model predicted PM 2.5 (r 2 = 0.62), and the two-variable (AOD-PM 2.5 ) model predicted PM 2.5 (r 2 = 0.4). The developed model was validated using particulate matter recordings and meteorology observations from another location in the Appalachia region, Hazard, Kentucky. The model was extrapolated to the Roda, VA, sampling site to predict PM 2.5 mass concentrations. We used 10 km x 10 km resolution MODIS 550 nm AOD to predict ground level PM 2.5 . For the relevant period in 2008, in Roda, VA, the predicted PM 2.5 mass concentration is 9.11 ± 5.16 μg m -3 (mean ± 1SD). This is the first study that couples ground-based Particulate Matter measurements with satellite retrievals to predict surface air pollution at Roda, Virginia. Roda is representative of the Appalachian communities that are commonly located in narrow valleys, or "hollows," where homes are placed directly along the roads in a region of active mountaintop mining operations. Our study suggests that proximity to heavy coal truck traffic subjects these communities to chronic exposure to coal dust and leads us to conclude that there is an urgent need for new regulations to address the primary sources of this particulate matter.

  14. 40 CFR 60.62 - Standard for particulate matter.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... particulate matter in excess of 0.15 kg per metric ton of feed (dry basis) to the kiln (0.30 lb per ton). (2... subpart shall cause to be discharged into the atmosphere from any clinker cooler any gases which: (1) Contain particulate matter in excess of 0.050 kg per metric ton of feed (dry basis) to the kiln (0.10 lb...

  15. Spatial relationships between above-ground biomass and bird species biodiversity in Palawan, Philippines

    PubMed Central

    Singh, Minerva; Friess, Daniel A.; Vilela, Bruno; Alban, Jose Don T. De; Monzon, Angelica Kristina V.; Veridiano, Rizza Karen A.; Tumaneng, Roven D.

    2017-01-01

    This study maps distribution and spatial congruence between Above-Ground Biomass (AGB) and species richness of IUCN listed conservation-dependent and endemic avian fauna in Palawan, Philippines. Grey Level Co-Occurrence Texture Matrices (GLCMs) extracted from Landsat and ALOS-PALSAR were used in conjunction with local field data to model and map local-scale field AGB using the Random Forest algorithm (r = 0.92 and RMSE = 31.33 Mg·ha-1). A support vector regression (SVR) model was used to identify the factors influencing variation in avian species richness at a 1km scale. AGB is one of the most important determinants of avian species richness for the study area. Topographic factors and anthropogenic factors such as distance from the roads were also found to strongly influence avian species richness. Hotspots of high AGB and high species richness concentration were mapped using hotspot analysis and the overlaps between areas of high AGB and avian species richness was calculated. Results show that the overlaps between areas of high AGB with high IUCN red listed avian species richness and endemic avian species richness were fairly limited at 13% and 8% at the 1-km scale. The overlap between 1) low AGB and low IUCN richness, and 2) low AGB and low endemic avian species richness was higher at 36% and 12% respectively. The enhanced capacity to spatially map the correlation between AGB and avian species richness distribution will further assist the conservation and protection of forest areas and threatened avian species. PMID:29206228

  16. Spatial relationships between above-ground biomass and bird species biodiversity in Palawan, Philippines.

    PubMed

    Singh, Minerva; Friess, Daniel A; Vilela, Bruno; Alban, Jose Don T De; Monzon, Angelica Kristina V; Veridiano, Rizza Karen A; Tumaneng, Roven D

    2017-01-01

    This study maps distribution and spatial congruence between Above-Ground Biomass (AGB) and species richness of IUCN listed conservation-dependent and endemic avian fauna in Palawan, Philippines. Grey Level Co-Occurrence Texture Matrices (GLCMs) extracted from Landsat and ALOS-PALSAR were used in conjunction with local field data to model and map local-scale field AGB using the Random Forest algorithm (r = 0.92 and RMSE = 31.33 Mg·ha-1). A support vector regression (SVR) model was used to identify the factors influencing variation in avian species richness at a 1km scale. AGB is one of the most important determinants of avian species richness for the study area. Topographic factors and anthropogenic factors such as distance from the roads were also found to strongly influence avian species richness. Hotspots of high AGB and high species richness concentration were mapped using hotspot analysis and the overlaps between areas of high AGB and avian species richness was calculated. Results show that the overlaps between areas of high AGB with high IUCN red listed avian species richness and endemic avian species richness were fairly limited at 13% and 8% at the 1-km scale. The overlap between 1) low AGB and low IUCN richness, and 2) low AGB and low endemic avian species richness was higher at 36% and 12% respectively. The enhanced capacity to spatially map the correlation between AGB and avian species richness distribution will further assist the conservation and protection of forest areas and threatened avian species.

  17. Coordinated Airborne, Spaceborne, and Ground-Based Measurements of Massive, Thick Aerosol Layers During the Dry Season in Southern Africa

    NASA Technical Reports Server (NTRS)

    Schmid, B.; Redemann, J.; Russell, P. B.; Hobbs, P. V.; Hlavka, D. L.; McGill, M. J.; Holben, B. N.; Welton, E. J.; Campbell, J.; Torres, O.; hide

    2002-01-01

    During the dry-season airborne campaign of the Southern African Regional Science Initiative (SAFARI 2000), unique coordinated observations were made of massive, thick aerosol layers. These layers were often dominated by aerosols from biomass burning. We report on airborne Sunphotometer measurements of aerosol optical depth (lambda=354-1558 nm), columnar water vapor, and vertical profiles of aerosol extinction and water vapor density that were obtained aboard the University of Washington's Convair-580 research aircraft. We compare these with ground-based AERONET Sun/sky radiometer results, with ground based lidar data MPL-Net), and with measurements from a downward-pointing lidar aboard the high-flying NASA ER-2 aircraft. Finally, we show comparisons between aerosol optical depths from the Sunphotometer and those retrieved over land and over water using four spaceborne sensors (TOMS (Total Ozone Mapping Spectrometer), MODIS (Moderate Resolution Imaging Spectrometer), MISR (Multiangle Imaging Spectroradiometer) and ATSR-2 (Along Track Scanning Radiometer)).

  18. Ground Water and Surface Water in the Haiku Area, East Maui, Hawaii

    USGS Publications Warehouse

    Gingerich, Stephen B.

    1999-01-01

    relatively low-permeability geologic layers, and (2) as a freshwater lens floating on denser, underlying saltwater. The rocks beneath the contact between the Kula Volcanics and the underlying Honomanu Basalt and above the freshwater lens appear to be unsaturated on the basis of several observations: (1) streams are dry or losing water where they are incised into the Honomanu Basalt, (2) the hydraulic conductivity of the Honomanu Basalt is too high to support a thick ground-water lens given the estimated recharge to the study area, and (3) wells that penetrate through the contact have encountered conditions of cascading water from above the contact and dry lava tubes in the Honomanu Basalt. More than 90 percent of the recharge to the study area is estimated to flow downward through the perched high-level water body to reach the freshwater lens. A cross-sectional, steady-state, variably saturated ground-water flow model using the computer code VS2DT was constructed to evaluate whether a two-layer, variably saturated ground-water flow system could exist given the hydrologic and geologic conditions of the Haiku study area. Using 25 inches per year of recharge and hydraulic characteristics representative of the Kula Volcanics and the Honomanu Basalt, the model demonstrates that a 13-foot thick geologic layer with a saturated vertical hydraulic conductivity less than 6.6Y10-2 feet per day can impede vertical ground-water flow enough to produce two separate saturated zones with an unsaturated zone between them. Subsequent lower vertical hydraulic conductivity values for the impeding layer allow even less water to reach the lower layer.

  19. Inelastic dark matter in light of DAMA/LIBRA

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chang, Spencer; Weiner, Neal; Kribs, Graham D.

    2009-02-15

    Inelastic dark matter, in which weakly interacting massive particle (WIMP)-nucleus scatterings occur through a transition to an excited WIMP state {approx}100 keV above the ground state, provides a compelling explanation of the DAMA annual modulation signal. We demonstrate that the relative sensitivities of various dark matter direct detection experiments are modified such that the DAMA annual modulation signal can be reconciled with the absence of a reported signal at CDMS-Soudan, XENON10, ZEPLIN, CRESST, and KIMS for inelastic WIMPs with masses O(100 GeV). We review the status of these experiments, and make predictions for upcoming ones. In particular, we note thatmore » inelastic dark matter leads to highly suppressed signals at low energy, with most events typically occurring between 20 and 45 keV (unquenched) at xenon and iodine experiments, and generally no events at low ({approx}10 keV) energies. Suppressing the background in this high-energy region is essential to testing this scenario. The recent CRESST data suggest seven observed tungsten events, which is consistent with expectations from this model. If the tungsten signal persists at future CRESST runs, it would provide compelling evidence for inelastic dark matter, while its absence should exclude it.« less

  20. 8. 'THE ABOVE IS A PICTURE OF A DROP WHICH ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    8. 'THE ABOVE IS A PICTURE OF A DROP WHICH WAS CONSTRUCTED THIS SPRING ON THE MAIL CANAL OF THE U.S. DRY GULCH NEAR THE LOWER END.' 1930 - Irrigation Canals in the Uinta Basin, Duchesne, Duchesne County, UT

  1. Radiation data input for the design of dry or semi-dry U tailings disposal.

    PubMed

    Kvasnicka, J

    1986-09-01

    Before discussion of design criteria for the handling of dry or semi-dry tailings, it is necessary to obtain an insight into the radiation levels associated with the tailings particles and to study the basic physical properties of dry tailings. This article presents the experimental results of assessing Ra and specific alpha-activity distribution with respect to particle size of the Ranger (RUM) and Nabarlek (QML) uranium mines dry tailings samples. The variation of Rn emanation coefficient versus particle size of dry tailings has also been measured. The nuclear-track detection technique, gamma spectrometry and alpha counting were used for the above measurements. Surface Rn flux from the hypothetical Nabarlek semi-infinite dry tailings pile is 32 Bq m-2 s-1 and the Rn flux for Ranger is 10 Bq m-2 s-1. The theoretical exposure rates for 1 m above these hypothetical tailings piles are 0.95 microC kg-1 h-1 and 0.28 microC kg-1 h-1, respectively. The derived air alpha-contamination limits (DAAC) for the tailings dust were calculated to be 1.2 Bq m-3 for workers and 0.034 Bq m-3 for a member of the public. The limit for workers corresponds to the air tailings dust concentration of 0.79 mg m-3 for QML tailings and 2.2 mg m-3 for RUM tailings. The DAAC limit for the public corresponds to the air tailings dust concentration of 0.022 mg m-3 for QML tailings and 0.064 mg m-3 for RUM tailings.

  2. SENSEI: First Direct-Detection Constraints on sub-GeV Dark Matter from a Surface Run

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Crisler, Michael; Essig, Rouven; Estrada, Juan

    The Sub-Electron-Noise Skipper CCD Experimental Instrument (SENSEI) uses the recently developed Skipper-CCD technology to search for electron recoils from the interaction of sub-GeV dark matter particles with electrons in silicon. We report first results from a prototype SENSEI detector, which collected 0.019 gram-days of commissioning data above ground at Fermi National Accelerator Laboratory. These commissioning data are sufficient to set new direct-detection constraints for dark matter particles with masses between ~500 keV and 4 MeV. Moreover, since these data were taken on the surface, they disfavor previously allowed strongly interacting dark matter particles with masses between ~500 keV and amore » few hundred MeV. We discuss the implications of these data for several dark matter candidates, including one model proposed to explain the anomalously large 21-cm signal observed by the EDGES Collaboration. SENSEI is the first experiment dedicated to the search for electron recoils from dark matter, and these results demonstrate the power of the Skipper-CCD technology for dark matter searches.« less

  3. What is soil organic matter worth?

    PubMed

    Sparling, G P; Wheeler, D; Vesely, E-T; Schipper, L A

    2006-01-01

    The conservation and restoration of soil organic matter are often advocated because of the generally beneficial effects on soil attributes for plant growth and crop production. More recently, organic matter has become important as a terrestrial sink and store for C and N. We have attempted to derive a monetary value of soil organic matter for crop production and storage functions in three contrasting New Zealand soil orders (Gley, Melanic, and Granular Soils). Soil chemical and physical characteristics of real-life examples of three pairs of matched soils with low organic matter contents (after long-term continuous cropping for vegetables or maize) or high organic matter content (continuous pasture) were used as input data for a pasture (grass-clover) production model. The differences in pasture dry matter yields (non-irrigated) were calculated for three climate scenarios (wet, dry, and average years) and the yields converted to an equivalent weight and financial value of milk solids. We also estimated the hypothetical value of the C and N sequestered during the recovery phase of the low organic matter content soils assuming trading with C and N credits. For all three soil orders, and for the three climate scenarios, pasture dry matter yields were decreased in the soils with lower organic matter contents. The extra organic matter in the high C soils was estimated to be worth NZ$27 to NZ$150 ha(-1) yr(-1) in terms of increased milk solids production. The decreased yields from the previously cropped soils were predicted to persist for 36 to 125 yr, but with declining effect as organic matter gradually recovered, giving an accumulated loss in pastoral production worth around NZ$518 to NZ$1239 ha(-1). This was 42 to 73 times lower than the hypothetical value of the organic matter as a sequestering agent for C and N, which varied between NZ$22,963 to NZ$90,849 depending on the soil, region, discount rates, and values used for carbon and nitrogen credits.

  4. Quantifying the effect of hand wash duration, soap use, ground beef debris, and drying methods on the removal of Enterobacter aerogenes on hands.

    PubMed

    Jensen, Dane A; Danyluk, Michelle D; Harris, Linda J; Schaffner, Donald W

    2015-04-01

    Hand washing is recognized as a crucial step in preventing foodborne disease transmission by mitigating crosscontamination among hands, surfaces, and foods. This research was undertaken to establish the importance of several keys factors (soap, soil, time, and drying method) in reducing microorganisms during hand washing. A nonpathogenic nalidixic acid-resistant Enterobacter aerogenes surrogate for Salmonella was used to assess the efficacy of using soap or no soap for 5 or 20 s on hands with or without ground beef debris and drying with paper towel or air. Each experiment consisted of 20 replicates, each from a different individual with ∼ 6 log CFU/ml E. aerogenes on their hands. A reduction of 1.0 ± 0.4 and 1.7 ± 0.8 log CFU of E. aerogenes was observed for a 5-s wash with no soap and a 20-s wash with soap, respectively. When there was no debris on the hands, there was no significant difference between washing with and without soap for 20 s (P > 0.05). Likewise, there was no significant difference in the reductions achieved when washing without soap, whether or not debris was on the hands (P > 0.05). A significantly greater reduction (P < 0.05) in E. aerogenes (0.5 log CFU greater reduction) was observed with soap when there was ground beef debris on the hands. The greatest difference (1.1 log CFU greater average reduction) in effectiveness occurred when ground beef debris was on the hands and a 20-s wash with water was compared with a 20-s wash with soap. Significantly greater (P < 0.05) reductions were observed with paper towel drying compared with air (0.5 log CFU greater reductions). Used paper towels may contain high bacterial levels (>4.0 log CFU per towel) when hands are highly contaminated. Our results support future quantitative microbial risk assessments needed to effectively manage risks of foodborne illness in which food workers' hands are a primary cause.

  5. Investigating the relationship between peat biogeochemistry and above-ground plant phenology with remote sensing along a gradient of permafrost thaw.

    NASA Astrophysics Data System (ADS)

    Garnello, A.; Dye, D. G.; Bogle, R.; Hough, M.; Raab, N.; Dominguez, S.; Rich, V. I.; Crill, P. M.; Saleska, S. R.

    2016-12-01

    Global climate models predict a 50% - 85% decrease in permafrost area in northern regions by 2100 due to increased temperature and precipitation variability, potentially releasing large stores of carbon as greenhouse gases (GHG) due to microbial activity. Linking belowground biogeochemical processes with observable above ground plant dynamics would greatly increase the ability to track and model GHG emissions from permafrost thaw, but current research has yet to satisfactorily develop this link. We hypothesized that seasonal patterns in peatland biogeochemistry manifests itself as observable plant phenology due to the tight coupling resulting from plant-microbial interactions. We tested this by using an automated, tower-based camera to acquire daily composite (red, green, blue) and near infrared (NIR) images of a thawing permafrost peatland site near Abisko, Sweden. The images encompassed a range of exposures which were merged into high-dynamic-range images, a novel application to remote sensing of plant phenology. The 2016 growing season camera images are accompanied by mid-to-late season CH4 and CO2 fluxes measured from soil collars, and by early-mid-late season peat core samples of the composition of microbial communities and key metabolic genes, and of the organic matter and trace gas composition of peat porewater. Additionally, nearby automated gas flux chambers measured sub-hourly fluxes of CO2 and CH4 from the peat, which will also be incorporated into analysis of relationships between seasonal camera-derived vegetation indices and gas fluxes from habitats with different vegetation types. While remote sensing is a proven method in observing plant phenology, this technology has yet to be combined with soil biogeochemical and microbial community data in regions of permafrost thaw. Establishing a high resolution phenology monitoring system linked to soil biogeochemical processes in subarctic peatlands will advance the understanding of how observable patterns in

  6. Effects of hot, humid weather on milk temperature, dry matter intake, and milk yield of lactating dairy cows.

    PubMed

    West, J W; Mullinix, B G; Bernard, J K

    2003-01-01

    Lactating cows were exposed to moderate and hot, humid weather to determine the effect of increasing ambient temperature, relative humidity, or temperature-humidity index (THI) on intake, milk yield, and milk temperature. Minimum and maximum temperatures averaged 17.9 and 29.5 degrees C (cool period) and 22.5 and 34.4 degrees C (hot period), and minimum and maximum THI averaged 63.8 and 76.6 (cool period) and 72.1 and 83.6 (hot period). Environmental conditions had minor effects on intake and milk yield during the cool period. During the hot period, the THI 2 d earlier and mean air temperature 2 d earlier had the greatest impact on milk yield and DMI, respectively. Both breeds maintained milk temperature within normal ranges during the cool period, but Holstein and Jersey p.m. milk temperatures averaged 39.6 and 39.2 degrees C during the hot period. Current day mean air temperature during the hot period had the greatest impact on cow p.m. milk temperature, and minimum air temperature had the greatest influence on a.m. milk temperature. Dry matter intake and milk yield declined linearly with respective increases in air temperature or THI during the hot period and milk temperature increased linearly with increasing air temperature. Dry matter intake and milk yield both exhibited a curvilinear relationship with milk temperature. Environmental modifications should target the effects of high temperatures on cow body temperature and should modify the environment at critical times during the day when cows are stressed, including morning hours when ambient temperatures are typically cooler and cows are not assumed to be stressed.

  7. Behavior of aircraft antiskid breaking systems on dry and wet runway surfaces: A slip-ratio-controlled system with ground speed reference from unbraked nose wheel

    NASA Technical Reports Server (NTRS)

    Tanner, J. A.; Stubbs, S. M.

    1977-01-01

    An experimental investigation was conducted at the Langley aircraft landing loads and traction facility to study the braking and cornering response of a slip ratio controlled aircraft antiskid braking system with ground speed reference derived from an unbraked nose wheel. The investigation, conducted on dry and wet runway surfaces, utilized one main gear wheel, brake, and tire assembly of a DC-9 series 10 airplane. During maximum braking, the average ratio of the drag force friction coefficient developed by the antiskid system to the maximum drag force friction coefficient available was higher on the dry surface than on damp and flooded surfaces, and was reduced with lighter vertical loads, higher yaw angles, and when new tire treads were replaced by worn treads. Similarly, the average ratio of side force friction coefficient developed by the tire under antiskid control to the maximum side force friction coefficient available to a freely rolling yawed tire decreased with increasing yaw angle, generally increased with ground speed, and decreased when tires with new treads were replaced by those with worn treads.

  8. Calcium sources for milk production in Holstein cows via changes in dry matter intake, mineral utilization, and mineral source buffering potential.

    PubMed

    Wohlt, J E; Ritter, D E; Evans, J L

    1986-11-01

    Three supplemental sources of inorganic calcium (calcite flour, aragonite, albacar), each differing in particle size and rate of reactivity, provided .6 or .9% calcium in corn silage:grain (1:1 dry matter) diets of high producing dairy cows. All cows were fed calcite flour at .6% calcium during the first 4 wk of lactation. On d 29 of lactation 5 cows were assigned to each of the six diets. Peak milk yield paralleled dry matter intake and was higher when calcite flour and aragonite provided .9% calcium, intermediate when all sources provided .6% calcium, and lower when albacar provided .9% calcium. However, adaptations to calcium source and to particle sizes of a calcium source (.35 to 1190 mu) were made within 40 d by lactating Holsteins. Starch increased and pH decreased in feces of cows fed albacar. Increasing calcium in the diet provided more buffering capacity in the gastrointestinal tract. True absorption of calcium did not differ from linearity due to source when fecal calcium was regressed on ingested calcium but did vary as a function of diet percentage. Thus, calcium retention was increased when cows were fed .9 vs. .6% calcium. These data suggest that a slow reacting (coarser) inorganic calcium source should be fed at a higher amount to optimize feed intake and milk production.

  9. Temporal and spatial distributions of summer-time ground-level fine particulate matters in Baltimore-DC region

    NASA Astrophysics Data System (ADS)

    Liu, Y.; Greenwald, R.; Sarnat, J.; Hu, X.; Kewada, P.; Morales, Y.; Goldman, G.; Redman, J.; Russell, A. G.

    2011-12-01

    Environmental epidemiological studies have established a robust association between chronic exposure to ambient level fine particulate matters (PM2.5) and adverse health effects such as COPD, cardiorespiratory diseases, and premature death. Population exposure to PM2.5 has historically been estimated using ground measurements which are often sparse and unevenly distributed. There has been much interest as well as suspicion in both the air quality management and research communities regarding the value of satellite retrieved AOD as particle air pollution indicators. A critical step towards the future use of satellite aerosol products in air quality monitoring and management is to better understand the AOD-PM2.5 association. The existing EPA and IMPROVE networks are insufficient to validate AOD-estimated PM2.5 surface especially when higher resolution satellite products become available in the near future. As part of DISCOVER-AQ mission, we deployed 15 portable filter-based samplers alongside of ground-based sun photometers of the Distributed Regional Aerosol Gridded Observation Network (DRAGON) in July 2011. Gravimetric analyses were conducted to estimate 24h PM2.5 mass concentrations, using Teflon filters and Personal Environmental Monitors (PEMs) operated at a flow rate of 4 LPM. Pre- and post-sampling filters were weighed at our weigh room laboratory facilities at the Georgia Institute of Technology. Our objectives are (1) to examine if AOD measured by ground-based sun-photometers with the support from ground-based lidars can provide the fine scale spatial heterogeneity observed by ground PM monitors, and (2) whether PM2.5 levels estimated by satellite AOD agree with this true PM2.5 surface. Study design, instrumentation, and preliminary results of measured PM2.5 spatial patterns in July 2011 will be presented as well as discussion of further data analysis and model development.

  10. QTLs associated with dry matter intake, metabolic mid-test weight, growth and feed efficiency have little overlap across 4 beef cattle studies.

    PubMed

    Saatchi, Mahdi; Beever, Jonathan E; Decker, Jared E; Faulkner, Dan B; Freetly, Harvey C; Hansen, Stephanie L; Yampara-Iquise, Helen; Johnson, Kristen A; Kachman, Stephen D; Kerley, Monty S; Kim, JaeWoo; Loy, Daniel D; Marques, Elisa; Neibergs, Holly L; Pollak, E John; Schnabel, Robert D; Seabury, Christopher M; Shike, Daniel W; Snelling, Warren M; Spangler, Matthew L; Weaber, Robert L; Garrick, Dorian J; Taylor, Jeremy F

    2014-11-20

    The identification of genetic markers associated with complex traits that are expensive to record such as feed intake or feed efficiency would allow these traits to be included in selection programs. To identify large-effect QTL, we performed a series of genome-wide association studies and functional analyses using 50 K and 770 K SNP genotypes scored in 5,133 animals from 4 independent beef cattle populations (Cycle VII, Angus, Hereford and Simmental×Angus) with phenotypes for average daily gain, dry matter intake, metabolic mid-test body weight and residual feed intake. A total of 5, 6, 11 and 10 significant QTL (defined as 1-Mb genome windows with Bonferroni-corrected P-value<0.05) were identified for average daily gain, dry matter intake, metabolic mid-test body weight and residual feed intake, respectively. The identified QTL were population-specific and had little overlap across the 4 populations. The pleiotropic or closely linked QTL on BTA 7 at 23 Mb identified in the Angus population harbours a promising candidate gene ACSL6 (acyl-CoA synthetase long-chain family member 6), and was the largest effect QTL associated with dry matter intake and mid-test body weight explaining 10.39% and 14.25% of the additive genetic variance, respectively. Pleiotropic or closely linked QTL associated with average daily gain and mid-test body weight were detected on BTA 6 at 38 Mb and BTA 7 at 93 Mb confirming previous reports. No QTL for residual feed intake explained more than 2.5% of the additive genetic variance in any population. Marker-based estimates of heritability ranged from 0.21 to 0.49 for residual feed intake across the 4 populations. This GWAS study, which is the largest performed for feed efficiency and its component traits in beef cattle to date, identified several large-effect QTL that cumulatively explained a significant percentage of additive genetic variance within each population. Differences in the QTL identified among the different populations may be

  11. Above-ground biomass prediction by Sentinel-1 multitemporal data in central Italy with integration of ALOS2 and Sentinel-2 data

    NASA Astrophysics Data System (ADS)

    Laurin, Gaia Vaglio; Balling, Johannes; Corona, Piermaria; Mattioli, Walter; Papale, Dario; Puletti, Nicola; Rizzo, Maria; Truckenbrodt, John; Urban, Marcel

    2018-01-01

    The objective of this research is to test Sentinel-1 SAR multitemporal data, supported by multispectral and SAR data at other wavelengths, for fine-scale mapping of above-ground biomass (AGB) at the provincial level in a Mediterranean forested landscape. The regression results indicate good accuracy of prediction (R2=0.7) using integrated sensors when an upper bound of 400 Mg ha-1 is used in modeling. Multitemporal SAR information was relevant, allowing the selection of optimal Sentinel-1 data, as broadleaf forests showed a different response in backscatter throughout the year. Similar accuracy in predictions was obtained when using SAR multifrequency data or joint SAR and optical data. Predictions based on SAR data were more conservative, and in line with those from an independent sample from the National Forest Inventory, than those based on joint data types. The potential of S1 data in predicting AGB can possibly be improved if models are developed per specific groups (deciduous or evergreen species) or forest types and using a larger range of ground data. Overall, this research shows the usefulness of Sentinel-1 data to map biomass at very high resolution for local study and at considerable carbon density.

  12. Comparison of shortened and conventional dry period management strategies.

    PubMed

    Cermakova, J; Kudrna, V; Simeckova, M; Vyborna, A; Dolezal, P; Illek, J

    2014-09-01

    The aim of this study was to compare 2 dry-cow management strategies and evaluate the effect of shortened dry period strategy on feed intake, metabolism, and postpartum performance of dairy cows in early lactation. Twenty-nine high-yielding dairy cows were divided into 2 groups. The control (CON) group (n=14) was assigned to a traditional dry period of approximately 60 d (57±5.9 d) and was fed a far-off dry cow ration from dry-off to -21 d relative to expected parturition. From d -21 relative to expected parturition, the cows were switched to a precalving ration containing an additional 3kg of concentrates. The cows of the experimental group (n=15) were assigned to a shortened dry period (SDP; 35±6.3 d) and were continuously fed a late-lactation diet from d -60 d relative to expected parturition until calving. After calving, both groups were fed the same lactation diet corresponding to their lactation requirements and cows were followed for 100 d of lactation. Prepartum dry matter intake of the cows assigned to an SDP and fed a late-lactation diet was approximately 4.11kg/cow per day greater compared with the CON group during the 60 d. However, no effect of dry period strategy on postpartum dry matter intake was detected. The cows with an SDP produced approximately 2.78kg/d (6.9%) less milk in the first 100 d of lactation than CON cows; the difference was not statistically significant. No differences were observed in live body weight, body condition score, or back-fat thickness between the treatments. Similarly, no differences existed in concentrations of plasma metabolites. The cows of the SDP group showed lower pH and increased concentrations of lactic acid and volatile fatty acids prepartum than the CON cows. Postpartum concentrations of lactic acid, volatile fatty acids, and NH3 and pH in rumen fluid did not differ between the treatments. Shortening of the dry period did not affect the colostrum quality or birth weights of the calves. Based on the results of

  13. Investigations in the ionosphere by means of Kosmos 378. N(h) profiles and the temperature of the F region according to ground-based and satellite measurements above Khabarovsk

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mirmovich, E.G.; Shapiro, B.S.

    1975-01-01

    Simultaneous satellite measurements of electron density N/sub s/ and temperature (T/sub e/)/sub s/ at a height h/sub s/ above an observatory and ground-based observations are used to compute the total vertical electron density profiles N(h) and estimate the temperature of the ionospheric plasma. Four close time intervals after sunset were selected for analysis.

  14. Influence of Wheat Straw Pelletizing and Inclusion Rate in Dry Rolled or Steam-flaked Corn-based Finishing Diets on Characteristics of Digestion for Feedlot Cattle.

    PubMed

    Manríquez, O M; Montano, M F; Calderon, J F; Valdez, J A; Chirino, J O; Gonzalez, V M; Salinas-Chavira, J; Mendoza, G D; Soto, S; Zinn, R A

    2016-06-01

    Eight Holstein steers (216±48 kg body weight) fitted with ruminal and duodenal cannulas were used to evaluate effects of wheat straw processing (ground vs pelleted) at two straw inclusion rates (7% and 14%; dry matter basis) in dry rolled or steam-flaked corn-based finishing diets on characteristics of digestion. The experimental design was a split plot consisting of two simultaneous 4×4 Latin squares. Increasing straw level reduced ruminal (p<0.01) and total tract (p = 0.03) organic matter (OM) digestion. As expected, increasing wheat straw level from 7% to 14% decreased (p<0.05) ruminal and total tract digestion of OM. Digestion of neutral detergent fiber (NDF) and starch, per se, were not affected (p>0.10) by wheat straw level. Likewise, straw level did not influence ruminal acetate and propionate molar proportions or estimated methane production (p>0.10). Pelleting straw did not affect (p≥0.48) ruminal digestion of OM, NDF, and starch, or microbial efficiency. Ruminal feed N digestion was greater (7.4%; p = 0.02) for ground than for pelleted wheat straw diets. Although ruminal starch digestion was not affected by straw processing, post-ruminal (p<0.01), and total-tract starch (p = 0.05) digestion were greater for ground than for pelleted wheat straw diets, resulting in a tendency for increased post-ruminal (p = 0.06) and total tract (p = 0.07) OM digestion. Pelleting wheat straw decreased (p<0.01) ruminal pH, although ruminal volatile fatty acids (VFA) concentration and estimated methane were not affected (p≥0.27). Ruminal digestion of OM and starch, and post-ruminal and total tract digestion of OM, starch and N were greater (p<0.01) for steam-flaked than for dry rolled corn-based diets. Ruminal NDF digestion was greater (p = 0.02) for dry rolled than for steam-flaked corn, although total tract NDF digestion was unaffected (p = 0.94). Ruminal microbial efficiency and ruminal degradation of feed N were not affected (p>0.14) by corn processing. However

  15. Microbial community dynamics induced by rewetting dry soil: summer precipitation matters

    NASA Astrophysics Data System (ADS)

    Barnard, Romain; Osborne, Catherine; Firestone, Mary

    2015-04-01

    The massive soil CO2 efflux associated with rewetting dry soils after the dry summer period significantly contributes to the annual carbon budget of Mediterranean grasslands. Rapid reactivation of soil heterotrophic activity and available carbon are both required to fuel the CO2 pulse. Better understanding of the effects of altered summer precipitation on the metabolic state of indigenous microorganisms may be important in predicting future changes in carbon cycling. We investigated the effects of a controlled rewetting event on the soil CO2 efflux pulse and on the present (DNA-based) and potentially active (rRNA-based) soil bacterial and fungal communities in intact soil cores previously subjected to three different precipitation patterns over four months (full summer dry season, extended wet season, and absent dry season). Phylogenetic marker genes for bacteria (16S) and fungi (28S) were sequenced before and after rewetting, and the abundance of these genes and transcripts was measured. Even after having experienced markedly different antecedent water conditions, the potentially active bacterial communities showed a consistent wet-up response, reflecting contrasting life-strategies for different groups. Moreover, we found a significant positive relation between the extent of change in the structure of the potentially active bacterial community and the magnitude of the CO2 pulse upon rewetting dry soils. We suggest that the duration of severe dry conditions (predicted to change under future climate) is important in conditioning the response potential of the soil bacterial community to wet-up as well as in framing the magnitude of the associated CO2 pulse.

  16. Effects of dietary fermented spent coffee ground on nutrient digestibility and nitrogen utilization in sheep

    PubMed Central

    Rim, Jong-su

    2018-01-01

    Objective The objective of the study was to determine the effect of fermented spent coffee ground (FSCG) on nutrient digestibility and nitrogen utilization in sheep. Methods Fermentation of spent coffee ground (SCG) was conducted using Lactobacillus plantrum. Fermentation was performed at moisture content of 70% and temperature of 39°C with anaerobic air tension for 48 h. Four adult rams (initial body weight = 56.8±0.4 kg) were housed in a respiration-metabolism chamber and the treatments were: i) control (Basal diet; 0% SCG or FSCG), ii) 10% level of SCG, iii) 10% level of FSCG, and iv) 20% level of FSCG in 4×4 Latin square design. Each dietary experiment period lasted for 18-d with a 14-d of adaptation period and a 4-d of sample collection period. Results In SCG fermentation experimental result, acid detergent insoluble nitrogen (ADIN) concentration of FSCG (64.5% of total N) was lower than that of non-fermented SCG (78.8% of total N). Digestibility of dry matter and organic matter was similar among treatment groups. Although crude protein (CP) digestibility of the control was greater than FSCG groups (p< 0.05), the 10% FSCG group showed greater CP digestibility and nitrogen retention than non-fermented 10% SCG group (p<0.05). Body weight gain and average daily gain were linearly decreased with increasing FSCG feeding level (p<0.05). When the feeding level of FSCG was increased, water intake was linearly increased (p<0.05). With an increasing FSCG level, dry matter intake did not differ among groups, although the gain to feed ratio tended to decrease with increasing level of FSCG (p<0.10). Conclusion Microbial fermentation of SCG can improve protein digestibility, thereby increasing CP digestibility and nitrogen utilization in sheep. Fermentation using microorganisms in feed ingredients with low digestibility could have a positive effect on improving the quality of raw feed. PMID:29103281

  17. Effects of dietary fermented spent coffee ground on nutrient digestibility and nitrogen utilization in sheep.

    PubMed

    Choi, Yongjun; Rim, Jong-Su; Na, Youngjun; Lee, Sang Rak

    2018-03-01

    The objective of the study was to determine the effect of fermented spent coffee ground (FSCG) on nutrient digestibility and nitrogen utilization in sheep. Fermentation of spent coffee ground (SCG) was conducted using Lactobacillus plantrum . Fermentation was performed at moisture content of 70% and temperature of 39°C with anaerobic air tension for 48 h. Four adult rams (initial body weight = 56.8±0.4 kg) were housed in a respiration-metabolism chamber and the treatments were: i) control (Basal diet; 0% SCG or FSCG), ii) 10% level of SCG, iii) 10% level of FSCG, and iv) 20% level of FSCG in 4×4 Latin square design. Each dietary experiment period lasted for 18-d with a 14-d of adaptation period and a 4-d of sample collection period. In SCG fermentation experimental result, acid detergent insoluble nitrogen (ADIN) concentration of FSCG (64.5% of total N) was lower than that of non-fermented SCG (78.8% of total N). Digestibility of dry matter and organic matter was similar among treatment groups. Although crude protein (CP) digestibility of the control was greater than FSCG groups (p< 0.05), the 10% FSCG group showed greater CP digestibility and nitrogen retention than non-fermented 10% SCG group (p<0.05). Body weight gain and average daily gain were linearly decreased with increasing FSCG feeding level (p<0.05). When the feeding level of FSCG was increased, water intake was linearly increased (p<0.05). With an increasing FSCG level, dry matter intake did not differ among groups, although the gain to feed ratio tended to decrease with increasing level of FSCG (p<0.10). Microbial fermentation of SCG can improve protein digestibility, thereby increasing CP digestibility and nitrogen utilization in sheep. Fermentation using microorganisms in feed ingredients with low digestibility could have a positive effect on improving the quality of raw feed.

  18. 49 CFR 175.900 - Handling requirements for carbon dioxide, solid (dry ice).

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... (dry ice). 175.900 Section 175.900 Transportation Other Regulations Relating to Transportation PIPELINE....900 Handling requirements for carbon dioxide, solid (dry ice). Carbon dioxide, solid (dry ice) when... operator must ensure that the ground staff is informed that the dry ice is being loaded or is on board the...

  19. 49 CFR 175.900 - Handling requirements for carbon dioxide, solid (dry ice).

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... (dry ice). 175.900 Section 175.900 Transportation Other Regulations Relating to Transportation PIPELINE....900 Handling requirements for carbon dioxide, solid (dry ice). Carbon dioxide, solid (dry ice) when... operator must ensure that the ground staff is informed that the dry ice is being loaded or is on board the...

  20. 49 CFR 175.900 - Handling requirements for carbon dioxide, solid (dry ice).

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... (dry ice). 175.900 Section 175.900 Transportation Other Regulations Relating to Transportation PIPELINE....900 Handling requirements for carbon dioxide, solid (dry ice). Carbon dioxide, solid (dry ice) when... operator must ensure that the ground staff is informed that the dry ice is being loaded or is on board the...

  1. 49 CFR 175.900 - Handling requirements for carbon dioxide, solid (dry ice).

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... (dry ice). 175.900 Section 175.900 Transportation Other Regulations Relating to Transportation PIPELINE....900 Handling requirements for carbon dioxide, solid (dry ice). Carbon dioxide, solid (dry ice) when... operator must ensure that the ground staff is informed that the dry ice is being loaded or is on board the...

  2. 49 CFR 175.900 - Handling requirements for carbon dioxide, solid (dry ice).

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... (dry ice). 175.900 Section 175.900 Transportation Other Regulations Relating to Transportation PIPELINE....900 Handling requirements for carbon dioxide, solid (dry ice). Carbon dioxide, solid (dry ice) when... operator must ensure that the ground staff is informed that the dry ice is being loaded or is on board the...

  3. Simulated Sea-Level Rise Effects on the Above and Below-Ground Growth of Two Tidal Marsh Plant Species

    NASA Astrophysics Data System (ADS)

    Schile, L. M.; Callaway, J. C.; Kelly, M.

    2011-12-01

    Sea-level is expected to rise between 55 and 140 cm in the next century and is likely to have significant effects on the distribution and maintenance of tidal wetlands; however, little is known about the effects of increased sea level on Pacific coast tidal marsh vegetation. We initiated a field experiment in March 2011 to examine how increased depth and duration of inundation affect above and below-ground growth of two tidal wetland plant species: Schoenoplectus acutus and S. americanus. PVC planters, referred to as marsh organs, were installed at fixed elevations in channels at two ancient marshes in the San Francisco Bay Estuary: Browns Island and Rush Ranch. Each marsh organ structure is comprised of five rows of three six-inch PVC pipes, with each row 15cm lower than the row above, and was filled with surrounding mudflat sediment. Elevations span 60 cm and were chosen to be lower than the average current elevations of both species at each marsh to reflect projected increases in sea level. Rhizomes were collected from Browns Island, the less-saline site, and were cut to uniform sizes before planting. In every row, each species was grown individually and together. On a monthly basis, plant heights were recorded and pore-water sulfide concentration, salinity, and soil oxidation-reduction potential were measured. Schoenoplectus americanus growth and density significantly decreased with increased inundation at both sites. Schoenoplectus acutus growth was impacted more significantly at lower elevations at Rush Ranch but had little variation in density and growth across elevations at Browns Island. Salinity and sulfide concentrations varied little across elevations within a site but differed between sites. Above and belowground biomass will be collected in September 2011 to measure total annual productivity. The experiment provides basic yet crucial information on the impacts of increased inundation on tidal wetland vegetation and insight into potential changes in

  4. Modeling homeorhetic trajectories of milk component yields, body composition and dry-matter intake in dairy cows: Influence of parity, milk production potential and breed.

    PubMed

    Daniel, J B; Friggens, N C; van Laar, H; Ingvartsen, K L; Sauvant, D

    2018-06-01

    The control of nutrient partitioning is complex and affected by many factors, among them physiological state and production potential. Therefore, the current model aims to provide for dairy cows a dynamic framework to predict a consistent set of reference performance patterns (milk component yields, body composition change, dry-matter intake) sensitive to physiological status across a range of milk production potentials (within and between breeds). Flows and partition of net energy toward maintenance, growth, gestation, body reserves and milk components are described in the model. The structure of the model is characterized by two sub-models, a regulating sub-model of homeorhetic control which sets dynamic partitioning rules along the lactation, and an operating sub-model that translates this into animal performance. The regulating sub-model describes lactation as the result of three driving forces: (1) use of previously acquired resources through mobilization, (2) acquisition of new resources with a priority of partition towards milk and (3) subsequent use of resources towards body reserves gain. The dynamics of these three driving forces were adjusted separately for fat (milk and body), protein (milk and body) and lactose (milk). Milk yield is predicted from lactose and protein yields with an empirical equation developed from literature data. The model predicts desired dry-matter intake as an outcome of net energy requirements for a given dietary net energy content. The parameters controlling milk component yields and body composition changes were calibrated using two data sets in which the diet was the same for all animals. Weekly data from Holstein dairy cows was used to calibrate the model within-breed across milk production potentials. A second data set was used to evaluate the model and to calibrate it for breed differences (Holstein, Danish Red and Jersey) on the mobilization/reconstitution of body composition and on the yield of individual milk components

  5. Characteristics and sources of submicron aerosols above the urban canopy (260 m) in Beijing, China during 2014 APEC summit

    NASA Astrophysics Data System (ADS)

    Chen, C.; Sun, Y. L.; Xu, W. Q.; Du, W.; Zhou, L. B.; Han, T. T.; Wang, Q. Q.; Fu, P. Q.; Wang, Z. F.; Gao, Z. Q.; Zhang, Q.; Worsnop, D. R.

    2015-08-01

    The megacity of Beijing has experienced frequent severe fine particle pollution during the last decade. Although the sources and formation mechanisms of aerosol particles have been extensively investigated on the basis of ground measurements, real-time characterization of aerosol particle composition and sources above the urban canopy in Beijing is rare. In this study, we conducted real-time measurements of non-refractory submicron aerosol (NR-PM1) composition at 260 m at the 325 m Beijing Meteorological Tower (BMT) from 10 October to 12 November 2014, by using an aerosol chemical speciation monitor (ACSM) along with synchronous measurements of size-resolved NR-PM1 composition at near ground level using a High-Resolution Time-of-Flight Aerosol Mass Spectrometer (HR-ToF-AMS). The NR-PM1 composition above the urban canopy was dominated by organics (46 %), followed by nitrate (27 %) and sulfate (13 %). The high contribution of nitrate and high NO3-/SO42- mass ratios illustrate an important role of nitrate in particulate matter (PM) pollution during the study period. The organic aerosol (OA) was mainly composed by secondary OA (SOA), accounting for 61 % on an average. Different from that measured at the ground site, primary OA (POA) correlated moderately with SOA, likely suggesting a high contribution from regional transport above the urban canopy. The Asia-Pacific Economic Cooperation (APEC) summit with strict emission controls provides a unique opportunity to study the impacts of emission controls on aerosol chemistry. All aerosol species were shown to have significant decreases of 40-80 % during APEC from those measured before APEC, suggesting that emission controls over regional scales substantially reduced PM levels. However, the bulk aerosol composition was relatively similar before and during APEC as a result of synergetic controls of aerosol precursors such as SO2, NOx, and volatile organic compounds (VOCs). In addition to emission controls, the routine

  6. Tracking liquid in drying colloidal fluids with polarized light microscopy

    NASA Astrophysics Data System (ADS)

    Cho, Kun; Park, Jung Soo; Kim, Joon Heon; Weon, Byung Mook

    2014-11-01

    When colloidal fluids dry, tracking liquid surfaces around colloids is difficult with conventional imaging techniques. Here we show that polarized light microscopy (PM) is very useful in tracking liquid surfaces during drying processes of colloidal fluids. In particular, the PM mode is not a new or difficult way but is able to visualize liquid films above colloids in real time. We demonstrate that when liquid films above colloidal particles are broken, the PM patterns appear clearly: this feature is useful to identify the moment of liquid film rupture above colloids in drying colloidal fluids. This result is helpful to improve relevant processes such as inkjet printing, painting, and nanoparticle patterning (K.C. and J.S.P. equally contributed). This work (NRF-2013R1A22A04008115) was supported by Mid-career Researcher Program through NRF grant funded by the MEST.

  7. Supersymmetric dark matter above the W mass

    NASA Technical Reports Server (NTRS)

    Griest, Kim; Kamionkowski, Marc; Turner, Michael S.

    1989-01-01

    The cosmological consequences are studied for the minimal supersymmetric extension of the standard model in the case that the neutralino is heavier than W. The cross section was calculated for annihilation of heavy neutralinos into final states containing gauge and Higgs bosons (XX yields WW, ZZ, HH, HW, HZ), where X is the lightest, nth neutralino and the results are compared with the results with those previously obtained for annihilation into fermions to find the relic cosmological abundance for the most general neutralino. The new channels are particularly important for the Higgsino-like and mixed-state neutralinos, but are sub-dominant (to the fermion-antifermion annihilation channels) in the case that the neutralino is mostly a gaugino. The effect of the top quark mass is also considered. Using these cross sections and the cosmological constraint omega(sub X)h squared is less than or approximately 1, the entire range of cosmologically acceptable supersymmetric parameter space is mapped and a very general bound on the neutralino mass is discovered. For a top quark mass of less than 180 GeV, neutralinos heavier than 3200 GeV are cosmologically inconsistent, and if the top quark mass is less than 120 GeV, the bound is lowered to 2600 GeV. Neutralino states that are mostly gaugino are constrained to be lighter than 550 GeV. It is found that a heavy neutralino that contributes omega(sub X) is approximately 1 arises for a very wide range of model parameters and makes, therefore, a very natural and attractive dark matter candidate.

  8. Accelerating Aerobic Sludge Granulation by Adding Dry Sewage Sludge Micropowder in Sequencing Batch Reactors

    PubMed Central

    Li, Jun; Liu, Jun; Wang, Danjun; Chen, Tao; Ma, Ting; Wang, Zhihong; Zhuo, Weilong

    2015-01-01

    Micropowder (20–250 µm) made from ground dry waste sludge from a municipal sewage treatment plant was added in a sequencing batch reactor (R2), which was fed by synthetic wastewater with acetate as carbon source. Compared with the traditional SBR (R1), aerobic sludge granulation time was shortened 15 days in R2. Furthermore, filamentous bacteria in bulking sludge were controlled to accelerate aerobic granulation and form large granules. Correspondingly, the SVI decreased from 225 mL/g to 37 mL/g. X-ray Fluorescence (XRF) analysis demonstrated that Al and Si from the micropowder were accumulated in granules. A mechanism hypotheses for the acceleration of aerobic granulation by adding dry sludge micropowder is proposed: added micropowder acts as nuclei to induce bacterial attachment; dissolved matters from the micropowder increase abruptly the organic load for starved sludge to control overgrown filamentous bacteria as a framework for aggregation; increased friction from the movement of micropowder forces the filaments which extend outwards to shrink for shaping granules. PMID:26308025

  9. Testing the generality of above-ground biomass allometry across plant functional types at the continent scale.

    PubMed

    Paul, Keryn I; Roxburgh, Stephen H; Chave, Jerome; England, Jacqueline R; Zerihun, Ayalsew; Specht, Alison; Lewis, Tom; Bennett, Lauren T; Baker, Thomas G; Adams, Mark A; Huxtable, Dan; Montagu, Kelvin D; Falster, Daniel S; Feller, Mike; Sochacki, Stan; Ritson, Peter; Bastin, Gary; Bartle, John; Wildy, Dan; Hobbs, Trevor; Larmour, John; Waterworth, Rob; Stewart, Hugh T L; Jonson, Justin; Forrester, David I; Applegate, Grahame; Mendham, Daniel; Bradford, Matt; O'Grady, Anthony; Green, Daryl; Sudmeyer, Rob; Rance, Stan J; Turner, John; Barton, Craig; Wenk, Elizabeth H; Grove, Tim; Attiwill, Peter M; Pinkard, Elizabeth; Butler, Don; Brooksbank, Kim; Spencer, Beren; Snowdon, Peter; O'Brien, Nick; Battaglia, Michael; Cameron, David M; Hamilton, Steve; McAuthur, Geoff; Sinclair, Jenny

    2016-06-01

    Accurate ground-based estimation of the carbon stored in terrestrial ecosystems is critical to quantifying the global carbon budget. Allometric models provide cost-effective methods for biomass prediction. But do such models vary with ecoregion or plant functional type? We compiled 15 054 measurements of individual tree or shrub biomass from across Australia to examine the generality of allometric models for above-ground biomass prediction. This provided a robust case study because Australia includes ecoregions ranging from arid shrublands to tropical rainforests, and has a rich history of biomass research, particularly in planted forests. Regardless of ecoregion, for five broad categories of plant functional type (shrubs; multistemmed trees; trees of the genus Eucalyptus and closely related genera; other trees of high wood density; and other trees of low wood density), relationships between biomass and stem diameter were generic. Simple power-law models explained 84-95% of the variation in biomass, with little improvement in model performance when other plant variables (height, bole wood density), or site characteristics (climate, age, management) were included. Predictions of stand-based biomass from allometric models of varying levels of generalization (species-specific, plant functional type) were validated using whole-plot harvest data from 17 contrasting stands (range: 9-356 Mg ha(-1) ). Losses in efficiency of prediction were <1% if generalized models were used in place of species-specific models. Furthermore, application of generalized multispecies models did not introduce significant bias in biomass prediction in 92% of the 53 species tested. Further, overall efficiency of stand-level biomass prediction was 99%, with a mean absolute prediction error of only 13%. Hence, for cost-effective prediction of biomass across a wide range of stands, we recommend use of generic allometric models based on plant functional types. Development of new species

  10. Dry matter intake and feed efficiency profiles of 3 genotypes of Holstein-Friesian within pasture-based systems of milk production.

    PubMed

    Coleman, J; Berry, D P; Pierce, K M; Brennan, A; Horan, B

    2010-09-01

    The primary objective of the study was to quantify the effect of genetic improvement using the Irish total merit index (Economic Breeding Index) on dry matter intake and feed efficiency across lactation and to quantify the variation in performance among alternative definitions of feed efficiency. Three genotypes of Holstein-Friesian dairy cattle were established from within the Moorepark dairy research herd: 1) low Economic Breeding Index North American Holstein-Friesian representative of the Irish national average dairy cow, 2) high genetic merit North American Holstein-Friesian, and 3) high genetic merit New Zealand Holstein-Friesian. Animals from within each genotype were randomly allocated to 1 of 2 possible intensive pasture-based feed systems: 1) the Moorepark pasture system (2.64 cows/ha and 500 kg of concentrate supplement per cow per lactation) and 2) a high output per hectare pasture system (2.85 cows/ha and 1,200 kg of concentrate supplement per cow per lactation). A total of 128 and 140 spring-calving dairy cows were used during the years 2007 and 2008, respectively. Each group had an individual farmlet of 17 paddocks, and all groups were managed similarly throughout the study. The effects of genotype, feed system, and the interaction between genotype and feed system on dry matter intake, milk production, body weight, body condition score, and different definitions of feed efficiency were studied using mixed models with factorial arrangements of genotypes and feed systems accounting for the repeated cow records across years. No significant genotype-by-feed-system interactions were observed for any of the variables measured. Results showed that aggressive selection using the Irish Economic Breeding Index had no effect on dry matter intake across lactation when managed on intensive pasture-based systems of milk production, although the ranking of genotypes for feed efficiency differed depending on the definition of feed efficiency used. Performance of

  11. Freezing temperatures as a limit to forest recruitment above tropical Andean treelines.

    PubMed

    Rehm, Evan M; Feeley, Kenneth J

    2015-07-01

    The elevation of altitudinal treelines is generally believed to occur where low mean temperatures during the growing season limit growth and prevent trees from establishing at higher elevations. Accordingly, treelines should move upslope with increasing global temperatures. Contrary to this prediction, tropical treelines have remained stable over the past several decades despite increasing mean temperatures. The observed stability of tropical treelines, coupled with the drastically different temperature profiles between temperate and tropical treelines, suggests that using mean measures of temperature to predict tropical treeline movements during climate change may be overly simplistic. We hypothesize that frost events at tropical treelines may slow climate driven treeline movement by preventing tree recruitment beyond the established forest canopy. To assess this hypothesis, we measured freezing resistance of four canopy-forming treeline species (Weinmannia fagaroides, Polylepis pauta, Clethra cuneata, and Gynoxys nitida) at two life stages (juvenile and adult) and during two seasons (warm-wet and cold-dry). Freezing resistances were then compared to microclimatic data to determine if freezing events in the grassland matrix above treeline are too harsh for these forest species. Freezing resistance varied among species and life stages from -5.7 degrees C for juveniles of P. pauta to -11.1 degrees C for juveniles of W. fagaroides. Over a four-year period, the lowest temperatures recorded at 10 cm above ground level in the grasslands above treeline and at treeline itself were -8.9 degrees C and -6.8 degrees C, respectively. Juveniles maintained freezing resistances similar to adults during the coldest parts of the year and ontogenetic differences in freezing resistance were only present during the warm season when temperatures did not represent a significant threat to active plant tissue. These findings support the hypothesis that rare extreme freezing events at and

  12. Characteristics and sources of submicron aerosols above the urban canopy (260 m) in Beijing, China, during the 2014 APEC summit

    NASA Astrophysics Data System (ADS)

    Chen, C.; Sun, Y. L.; Xu, W. Q.; Du, W.; Zhou, L. B.; Han, T. T.; Wang, Q. Q.; Fu, P. Q.; Wang, Z. F.; Gao, Z. Q.; Zhang, Q.; Worsnop, D. R.

    2015-11-01

    The megacity of Beijing has experienced frequent severe fine particle pollution during the last decade. Although the sources and formation mechanisms of aerosol particles have been extensively investigated on the basis of ground measurements, real-time characterization of aerosol particle composition and sources above the urban canopy in Beijing is rare. In this study, we conducted real-time measurements of non-refractory submicron aerosol (NR-PM1) composition at 260 m at the Beijing 325 m meteorological tower (BMT) from 10 October to 12 November 2014, by using an aerosol chemical speciation monitor (ACSM) along with synchronous measurements of size-resolved NR-PM1 composition near ground level using a high-resolution time-of-flight aerosol mass spectrometer (HR-ToF-AMS). The NR-PM1 composition above the urban canopy was dominated by organics (46 %), followed by nitrate (27 %) and sulfate (13 %). The high contribution of nitrate and high NO3- / SO42- mass ratios illustrates an important role of nitrate in particulate matter (PM) pollution during the study period. The organic aerosol (OA) was mainly composed of secondary OA (SOA), accounting for 61 % on an average. Different from that measured at the ground site, primary OA (POA) correlated moderately with SOA, likely suggesting a high contribution from regional transport above the urban canopy. The Asia-Pacific Economic Cooperation (APEC) summit with strict emission controls provides a unique opportunity to study the impacts of emission controls on aerosol chemistry. All aerosol species were shown to have significant decreases of 40-80 % during APEC from those measured before APEC, suggesting that emission controls over regional scales substantially reduced PM levels. However, the bulk aerosol composition was relatively similar before and during APEC as a result of synergetic controls of aerosol precursors. In addition to emission controls, the routine circulations of mountain-valley breezes were also found to play

  13. Morphological plasticity of root growth under mild water stress increases water use efficiency without reducing yield in maize

    NASA Astrophysics Data System (ADS)

    Cai, Qian; Zhang, Yulong; Sun, Zhanxiang; Zheng, Jiaming; Bai, Wei; Zhang, Yue; Liu, Yang; Feng, Liangshan; Feng, Chen; Zhang, Zhe; Yang, Ning; Evers, Jochem B.; Zhang, Lizhen

    2017-08-01

    A large yield gap exists in rain-fed maize (Zea mays L.) production in semi-arid regions, mainly caused by frequent droughts halfway through the crop-growing period due to uneven distribution of rainfall. It is questionable whether irrigation systems are economically required in such a region since the total amount of rainfall does generally meet crop requirements. This study aimed to quantitatively determine the effects of water stress from jointing to grain filling on root and shoot growth and the consequences for maize grain yield, above- and below-ground dry matter, water uptake (WU) and water use efficiency (WUE). Pot experiments were conducted in 2014 and 2015 with a mobile rain shelter to achieve conditions of no, mild or severe water stress. Maize yield was not affected by mild water stress over 2 years, while severe stress reduced yield by 56 %. Both water stress levels decreased root biomass slightly but shoot biomass substantially. Mild water stress decreased root length but increased root diameter, resulting in no effect on root surface area. Due to the morphological plasticity in root growth and the increase in root / shoot ratio, WU under water stress was decreased, and overall WUE for both above-ground dry matter and grain yield increased. Our results demonstrate that an irrigation system might be not economically and ecologically necessary because the frequently occurring mild water stress did not reduce crop yield much. The study helps us to understand crop responses to water stress during a critical water-sensitive period (middle of the crop-growing season) and to mitigate drought risk in dry-land agriculture.

  14. 40 CFR 60.382 - Standard for particulate matter.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 40 Protection of Environment 6 2010-07-01 2010-07-01 false Standard for particulate matter. 60.382... Processing Plants § 60.382 Standard for particulate matter. (a) On and after the date on which the... stack emissions that: (1) Contain particulate matter in excess of 0.05 grams per dry standard cubic...

  15. 40 CFR 60.382 - Standard for particulate matter.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 40 Protection of Environment 7 2013-07-01 2013-07-01 false Standard for particulate matter. 60.382... Processing Plants § 60.382 Standard for particulate matter. (a) On and after the date on which the... stack emissions that: (1) Contain particulate matter in excess of 0.05 grams per dry standard cubic...

  16. 40 CFR 60.382 - Standard for particulate matter.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 40 Protection of Environment 7 2014-07-01 2014-07-01 false Standard for particulate matter. 60.382... Processing Plants § 60.382 Standard for particulate matter. (a) On and after the date on which the... stack emissions that: (1) Contain particulate matter in excess of 0.05 grams per dry standard cubic...

  17. 40 CFR 60.382 - Standard for particulate matter.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 40 Protection of Environment 6 2011-07-01 2011-07-01 false Standard for particulate matter. 60.382... Processing Plants § 60.382 Standard for particulate matter. (a) On and after the date on which the... stack emissions that: (1) Contain particulate matter in excess of 0.05 grams per dry standard cubic...

  18. Microbial Communities in the Northeastern Pacific and Responses to Organic Matter Inputs Above the Sediment-Water Interface

    NASA Astrophysics Data System (ADS)

    Harbeitner, R.; Sudek, S.; Choi, C. J.; Bird, L.; Worden, A. Z.

    2016-12-01

    We are investigating variability in marine microbial communities in the sunlit photic zone, the mesopelagic "twilight" zone, and the deep sea. To establish an understanding that allows assessment of future change, consistent methods are being used across three North Pacific Ocean cruises. We will characterize vertical distributions and temporal variability by flow cytometry and 16S rRNA gene sequencing (V1-V2 Illumina amplicons). Stations were sampled in the Monterey Bay Canyon, including a shallow depth station (600 m) with relatively high terrestrial input, deeper stations (1000 and 1800 m), and above an offshore seamount (1400 m). At all stations, the cyanobacterium Synechococcus was more abundant than Prochlorococcus in the photic zone and at the shallowest station, photosynthetic eukaryotes dominated. Heterotrophic bacteria abundances were similar (1,132,886 ± 316,914 ml-1) at the chlorophyll maximum in photic zone samples. Within the mesopelagic, at 600 m depth, bacterial abundances were similar (98,632-104,075 ml-1). Below 600 m, the seamount station had lower abundances (49,050 ± 8,473 ml-1) than canyon stations (71,799 ± 10,425 ml-1). We also performed experiments in newly designed gas permeable in situ incubators using water from just above the sediment-seawater interface at canyon sites of 1000 and 1800 m depth. Organic matter (OM)-amended treatments and controls were sampled at 0, 1, 5, and 24 days. Bacteria abundance increased with OM addition after 1 day (e.g. control 68,856 ± 6,826 ml-1, amended 98,088 ± 199 ml-1) and by 24 days increased 6-fold, with no statistical difference between controls and OM treatments. The results that will be presented from these experiments and ongoing diversity analyses are providing new insights into microbial distributions and activities over vertical gradients in the ocean. We are investigating variability in marine microbial communities in the sunlit photic zone, the mesopelagic "twilight" zone, and the deep sea

  19. Test Duration for Water Intake, Average Daily Gain, and Dry Matter Intake in Beef Cattle.

    PubMed

    Ahlberg, C M; Allwardt, K; Broocks, A; Bruno, K; McPhillips, L; Taylor, A; Krehbiel, C R; Calvo-Lorenzo, M; Richards, C J; Place, S E; DeSilva, U; VanOverbeke, D L; Mateescu, R G; Kuehn, L A; Weaber, R L; Bormann, J M; Rolf, M M

    2018-05-22

    Water is an essential nutrient, but the effect it has on performance generally receives little attention. There are few systems and guidelines for collection of water intake phenotypes in beef cattle, which makes large-scale research on water intake a challenge. The Beef Improvement Federation has established guidelines for feed intake and average daily gain tests, but no guidelines exist for water intake. The goal of this study was to determine the test duration necessary for collection of accurate water intake phenotypes. To facilitate this goal, individual daily water intake (WI) and feed intake (FI) records were collected on 578 crossbred steers for a total of 70 d using an Insentec system at the Oklahoma State University Willard Sparks Beef Research Unit. Steers were fed in 5 groups and were individually weighed every 14 days. Within each group, steers were blocked by body weight (low and high) and randomly assigned to 1 of 4 pens containing approximately 30 steers per pen. Each pen provided 103.0 m2 of shade and included an Insentec system containing 6 feed bunks and 1 water bunk. Steers were fed a constant diet across groups and dry matter intake was calculated using the average of weekly percent dry matter within group. Average feed and water intakes for each animal were computed for increasingly large test durations (7, 14, 21, 28, 35, 42, 49, 56, 63 and 70 d), and ADG was calculated using a regression formed from body weights (BW) taken every14 d (0, 14, 28, 42, 56, and 70 d). Intervals for all traits were computed starting from both the beginning (d 0) and the end of the testing period (d 70). Pearson and Spearman correlations were computed for phenotypes from each shortened test period and for the full 70-d test. Minimum test duration was determined when the Pearson correlations were greater than 0.95 for each trait. Our results indicated that minimum test duration for WI, DMI, and ADG were 35, 42, and 70 d, respectively. No comparable studies exist for

  20. Dry Transfer Inoculation of Low-Moisture Spices Containing Antimicrobial Compounds.

    PubMed

    Hildebrandt, Ian M; Hu, Chuxuan; Grasso-Kelley, Elizabeth M; Ye, Peiran; Anderson, Nathan M; Keller, Susanne E

    2017-02-01

    Inoculation of a food product for use in subsequent validation studies typically makes use of a high concentration cocktail of microorganisms suspended in aqueous media. However, this inoculation method may prove difficult particularly when the food product is a low-moisture food containing antimicrobial compounds, such as some dried spices. In this study, a dry transfer method for inoculation of clove powder, oregano leaves, ginger powder, and ground black pepper with a five-serovar cocktail of Salmonella was developed and compared with a traditional aqueous inoculation procedure. Spices were inoculated at three levels, 10, 8, and 6 log CFU/g, by using both an aqueous suspension of Salmonella and a dry transfer of Salmonella from previously inoculated silica beads. At the highest inoculation level, the dry transfer method resulted in a significantly higher microbial load (P < 0.05) for ground cloves and oregano, but not for ginger and ground black pepper. At the intermediate inoculation level, differences were apparent only for ginger and black pepper. Inoculation levels of 6 log CFU/g resulted in recoveries below detection limits for both methods of inoculation. Additional examination on the survival of Salmonella on silica beads after inoculation and in clove powder after dry transfer from silica beads showed linear rates of decline, with a rate of -0.011 log CFU/g/day for beads and -0.015 log CFU/g/day for clove powder. The results suggest that dry transfer of Salmonella via inoculated silica beads is a viable alternative when traditional aqueous inoculation is not feasible.

  1. Polarimetric scattering model for estimation of above ground biomass of multilayer vegetation using ALOS-PALSAR quad-pol data

    NASA Astrophysics Data System (ADS)

    Sai Bharadwaj, P.; Kumar, Shashi; Kushwaha, S. P. S.; Bijker, Wietske

    Forests are important biomes covering a major part of the vegetation on the Earth, and as such account for seventy percent of the carbon present in living beings. The value of a forest's above ground biomass (AGB) is considered as an important parameter for the estimation of global carbon content. In the present study, the quad-pol ALOS-PALSAR data was used for the estimation of AGB for the Dudhwa National Park, India. For this purpose, polarimetric decomposition components and an Extended Water Cloud Model (EWCM) were used. The PolSAR data orientation angle shifts were compensated for before the polarimetric decomposition. The scattering components obtained from the polarimetric decomposition were used in the Water Cloud Model (WCM). The WCM was extended for higher order interactions like double bounce scattering. The parameters of the EWCM were retrieved using the field measurements and the decomposition components. Finally, the relationship between the estimated AGB and measured AGB was assessed. The coefficient of determination (R2) and root mean square error (RMSE) were 0.4341 and 119 t/ha respectively.

  2. 40 CFR 60.732 - Standards for particulate matter.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... particulate matter in excess of 0.092 gram per dry standard cubic meter (g/dscm) [0.040 grain per dry standard... § 60.8 is completed, but not later than 180 days after the initial startup, whichever date comes first...

  3. Secretly asymmetric dark matter

    NASA Astrophysics Data System (ADS)

    Agrawal, Prateek; Kilic, Can; Swaminathan, Sivaramakrishnan; Trendafilova, Cynthia

    2017-01-01

    We study a mechanism where the dark matter number density today arises from asymmetries generated in the dark sector in the early Universe, even though the total dark matter number remains zero throughout the history of the Universe. The dark matter population today can be completely symmetric, with annihilation rates above those expected from thermal weakly interacting massive particles. We give a simple example of this mechanism using a benchmark model of flavored dark matter. We discuss the experimental signatures of this setup, which arise mainly from the sector that annihilates the symmetric component of dark matter.

  4. Comparing the Effects of Particulate Matter on the Ocular Surfaces of Normal Eyes and a Dry Eye Rat Model.

    PubMed

    Han, Ji Yun; Kang, Boram; Eom, Youngsub; Kim, Hyo Myung; Song, Jong Suk

    2017-05-01

    To compare the effect of exposure to particulate matter on the ocular surface of normal and experimental dry eye (EDE) rat models. Titanium dioxide (TiO2) nanoparticles were used as the particulate matter. Rats were divided into 4 groups: normal control group, TiO2 challenge group of the normal model, EDE control group, and TiO2 challenge group of the EDE model. After 24 hours, corneal clarity was compared and tear samples were collected for quantification of lactate dehydrogenase, MUC5AC, and tumor necrosis factor-α concentrations. The periorbital tissues were used to evaluate the inflammatory cell infiltration and detect apoptotic cells. The corneal clarity score was greater in the EDE model than in the normal model. The score increased after TiO2 challenge in each group compared with each control group (normal control vs. TiO2 challenge group, 0.0 ± 0.0 vs. 0.8 ± 0.6, P = 0.024; EDE control vs. TiO2 challenge group, 2.2 ± 0.6 vs. 3.8 ± 0.4, P = 0.026). The tear lactate dehydrogenase level and inflammatory cell infiltration on the ocular surface were higher in the EDE model than in the normal model. These measurements increased significantly in both normal and EDE models after TiO2 challenge. The tumor necrosis factor-α levels and terminal deoxynucleotidyl transferase-mediated dUTP nick end labeling-positive cells were also higher in the EDE model than in the normal model. TiO2 nanoparticle exposure on the ocular surface had a more prominent effect in the EDE model than it did in the normal model. The ocular surface of dry eyes seems to be more vulnerable to fine dust of air pollution than that of normal eyes.

  5. Simulation of Local Seismic Ground Motions from the FLASK Underground Nuclear Explosion near the Source Physics Experiment Dry Alluvium Geology Site

    NASA Astrophysics Data System (ADS)

    Rodgers, A. J.; Pitarka, A.; Wagoner, J. L.; Helmberger, D. V.

    2017-12-01

    The FLASK underground nuclear explosion (UNE) was conducted in Area 2 of Yucca Flat at the Nevada Test Site on May 26, 1970. The yield was 105 kilotons (DOE/NV-209-Rev 16) and the working point was 529 m below the surface. This test was detonated in faulted Tertiary volcanic rocks of Yucca Flat. Coincidently, the FLASK UNE ground zero (GZ) is close (< 600 m) to the U2ez hole where the Source Physics Experiment will be conducting Phase II of its chemical high explosives test series in the so-called Dry Alluvium Geology (DAG) site. Ground motions from FLASK were recorded by twelve (12) three-component seismic stations in the near-field at ranges 3-4 km. We digitized the paper records and used available metadata on peak particle velocity measurements made at the time to adjust the amplitudes. These waveforms show great variability in amplitudes and waveform complexity with azimuth from the shot, likely due to along propagation path structure such as the geometry of the hard-rock/alluvium contact above the working point. Peak particle velocities at stations in the deeper alluvium to the north, east and south of GZ have larger amplitudes than those to the west where the basement rock is much shallower. Interestingly, the transverse components show a similar trend with azimuth. In fact, the transverse component amplitudes are similar to the other components for many stations overlying deeper basement. In this study, we simulated the seismic response at the available near-field stations using the SW4 three-dimensional (3D) finite difference code. SW4 can simulate seismic wave propagation in 3D inelastic earth structure, including surface topography. SW4 includes vertical mesh refinement which greatly reduces the computational resources needed to run a specific problem. Simulations are performed on high-performance computers with grid spacing as small as 10 meters and resolution to 6 Hz. We are testing various subsurface models to identify the role of 3D structure on path

  6. Agricultural management affects below ground carbon input estimations

    NASA Astrophysics Data System (ADS)

    Hirte, Juliane; Leifeld, Jens; Abiven, Samuel; Oberholzer, Hans-Rudolf; Mayer, Jochen

    2017-04-01

    Root biomass and rhizodeposition carbon (C release by living roots) are among the most relevant root parameters for studies of plant response to environmental change, soil C modelling or estimations of soil C sequestration. Below ground C inputs of agricultural crops are typically estimated from above ground biomass or yield, thereby implying constant below to above ground C ratios. Agricultural management practices affect above ground biomass considerably; however, their effects on below ground C inputs are only poorly understood. Our aims were therefore to (i) quantify root biomass C and rhizodeposition C of maize and wheat grown in agricultural management systems with different fertilization intensities and (ii) determine management effects on below/above ground C ratios and vertical distribution of below ground C inputs into soil. We conducted a comprehensive field study on two Swiss long-term field trials, DOK (Basel) and ZOFE (Zurich), with silage (DOK) and grain (ZOFE) maize in 2013 and winter wheat in 2014 (ZOFE) and 2015 (DOK). Three treatments in DOK (2 bio-organic, 1 mixed conventional) and 4 treatments in ZOFE (1 without, 1 manure, 2 mineral fertilization) reflected increasing fertilization intensities. In each of 4 replicated field plots per treatment, one microplot (steel tube of 0.5m depth) was inserted into soil, covering an area of 0.1m2. The microplot plants were pulse-labelled with 13C-CO2 in weekly intervals throughout the respective growing season. After harvest, the microplot soil was sampled in three soil depths (0 - 0.25, 0.25 - 0.5, 0.5 - 0.75m), roots were separated from soil by picking and wet sieving, and root and soil samples were analysed for their δ13C values by IRMS. Carbon rhizodeposition was calculated from 13C-excess values in bulk soil and roots. (i) Average root biomasses of maize and wheat were 1.9 and 1.4 tha 1, respectively, in DOK and 0.9 and 1.1 tha 1, respectively, in ZOFE. Average amounts of C rhizodeposition of maize

  7. Drying-induced physico-chemical changes in cranberry products.

    PubMed

    Michalska, Anna; Wojdyło, Aneta; Honke, Joanna; Ciska, Ewa; Andlauer, Wilfried

    2018-02-01

    Sugar-free cranberry juice (XAD) and juice with 15% of maltodextrin were dried by freeze-, vacuum and spray drying methods. Total phenolics (589-6435mg/kg dry matter) including 5 flavonols, 3 phenolic acids, 2 procyanidins and 5 anthocyanins were stronger affected by juice formulation than by drying methods. Spray drying of juice, regardless of its formulation, was competitive to freeze drying in terms of polyphenols' retention. Increase in temperature up to 100°C during vacuum drying of XAD extracts resulted in degradation of polyphenolics (down to 4%), except chlorogenic acid. Its content increased with rise in temperature and accelerated hydroxymethylfurfural formation. The stronger the impact of drying, the more chlorogenic acid is present in cranberry products. In all powders analysed, formation of furoylmethyl amino acids was noted. Antioxidant capacity of cranberry products was influenced by juice formulation and was linked to content of polyphenols. Copyright © 2017 Elsevier Ltd. All rights reserved.

  8. Near-infrared spectrometry allows fast and extensive predictions of functional traits from dry leaves and branches.

    PubMed

    Costa, Flávia R C; Lang, Carla; Almeida, Danilo R A; Castilho, Carolina V; Poorter, Lourens

    2018-05-16

    The linking of individual functional traits to ecosystem processes is the basis for making generalizations in ecology, but the measurement of individual values is laborious and time consuming, preventing large-scale trait mapping. Also, in hyper-diverse systems, errors occur because identification is difficult, and species level values ignore intra-specific variation. To allow extensive trait mapping at the individual level, we evaluated the potential of Fourrier-Transformed Near Infra-Red Spectrometry (FT-NIR) to adequately describe 14 traits that are key for plant carbon, water, and nutrient balance. FT-NIR absorption spectra (1,000-2,500 nm) were obtained from dry leaves and branches of 1,324 trees of 432 species from a hyper-diverse Amazonian forest. FT-NIR spectra were related to measured traits for the same plants using partial least squares regressions. A further 80 plants were collected from a different site to evaluate model applicability across sites. Relative prediction error (RMSE rel ) was calculated as the percentage of the trait value range represented by the final model RMSE. The key traits used in most functional trait studies; specific leaf area, leaf dry matter content, wood density and wood dry matter content can be well predicted by the model (R 2  = 0.69-0.78, RMSE rel  = 9-11%), while leaf density, xylem proportion, bark density and bark dry matter content can be moderately well predicted (R 2  = 0.53-0.61, RMSE rel  = 14-17%). Community-weighted means of all traits were well estimated with NIR, as did the shape of the frequency distribution of the community values for the above key traits. The model developed at the core site provided good estimations of the key traits of a different site. An evaluation of the sampling effort indicated that 400 or less individuals may be sufficient for establishing a good local model. We conclude that FT-NIR is an easy, fast and cheap method for the large-scale estimation of individual plant traits

  9. Effect of atmospheric electricity on dry deposition of airborne particles from atmosphere

    NASA Astrophysics Data System (ADS)

    Tammet, H.; Kimmel, V.; Israelsson, S.

    The electric mechanism of dry deposition is well known in the case of unattached radon daughter clusters that are unipolar charged and of high mobility. The problematic role of the electric forces in deposition of aerosol particles is theoretically examined by comparing the fluxes of particles carried by different deposition mechanisms in a model situation. The electric mechanism of deposition appears essential for particles of diameter 10-200 nm in conditions of low wind speed. The electric flux of fine particles can be dominant on the tips of leaves and needles even in a moderate atmospheric electric field of a few hundred V m -1 measured over the plane ground surface. The electric deposition is enhanced under thunderclouds and high voltage power lines. Strong wind suppresses the relative role of the electric deposition when compared with aerodynamic deposition. When compared with diffusion deposition the electric deposition appears less uniform: the precipitation particulate matter on the tips of leaves and especially on needles of top branches of conifer trees is much more intensive than on the ground surface and electrically shielded surfaces of plants. The knowledge of deposition geometry could improve our understanding of air pollution damage to plants.

  10. Ground-water program in Alabama

    USGS Publications Warehouse

    LaMoreaux, P.E.

    1955-01-01

    Several recent years of drought have emphasized the importance of Alabama's ground-water supplies, a matter of concern to us all.  So far we have been blessed in Alabama with ample ground-water, although a combination of increased use, waste, pollution, and drought has brought about critical local water shortages.  These problems serve as a fair warning of what lies ahead if we do not take the necessary steps to obtan adequate knowledge of our ground-water resources.

  11. Ruminal temperature may aid in the detection of subacute ruminal acidosis.

    PubMed

    AlZahal, O; Kebreab, E; France, J; Froetschel, M; McBride, B W

    2008-01-01

    The objective of this study was to investigate the relationship between ruminal pH and ruminal temperature and to develop a predictive equation that can aid in the diagnosis of subacute ruminal acidosis (SARA). Six rumen-fistulated lactating Holstein dairy cows (639 +/- 51 kg body weight) were used in the study. Cows were randomly allocated to 1 of 2 dietary treatments: control (% of dry matter, 40% corn silage, 27% mixed haylage, 7% alfalfa hay, 18% protein supplement, 4% ground corn, and 4% wheat bran) or SARA total mixed ration (% of dry matter, 31% corn silage, 20% mixed haylage, 5% alfalfa hay, 15% protein supplement, 19% ground wheat, and 10% ground barley) and were fed daily at 0700 and 1300 h. The experiment consisted of 1 wk of adaptation followed by 1 wk of treatment. Ruminal pH and ruminal temperature were simultaneously and continuously recorded every minute for 4 d per week using the same indwelling electrode. Subacute-acidotic cows spent more time (min/d) below ruminal pH 5.6 and a greater time above 39.2 degrees C than control cows. Ruminal pH nadir had a negative relationship with its corresponding ruminal temperature (R2 = 0.77). Therefore, ruminal temperature may have potential to predict ruminal pH and thus aid in the diagnosis of SARA.

  12. Tricholoma matsutake in a natural Pinus densiflora forest: correspondence between above- and below-ground genets, association with multiple host trees and alteration of existing ectomycorrhizal communities.

    PubMed

    Lian, Chunlan; Narimatsu, Maki; Nara, Kazuhide; Hogetsu, Taizo

    2006-01-01

    Tricholoma matsutake (matsutake) is an ectomycorrhizal (ECM) fungus that produces economically important mushrooms in Japan. Here, we use microsatellite markers to identify genets of matsutake sporocarps and below-ground ECM tips, as well as associated host genotypes of Pinus densiflora. We also studied ECM fungal community structure inside, beneath and outside the matsutake fairy rings, using morphological and internal transcribed spacer (ITS) polymorphism analysis. Based on sporocarp samples, one to four genets were found within each fairy ring, and no genetic differentiation among six sites was detected. Matsutake ECM tips were only found beneath fairy rings and corresponded with the genotypes of the above-ground sporocarps. We detected nine below-ground matsutake genets, all of which colonized multiple pine trees (three to seven trees per genet). The ECM fungal community beneath fairy rings was species-poor and significantly differed from those inside and outside the fairy rings. We conclude that matsutake genets occasionally establish from basidiospores and expand on the root systems of multiple host trees. Although matsutake mycelia suppress other ECM fungi during expansion, most of them may recover after the passage of the fairy rings.

  13. Effect of drying on the bioactive compounds, antioxidant, antibacterial and antityrosinase activities of pomegranate peel.

    PubMed

    Mphahlele, Rebogile R; Fawole, Olaniyi A; Makunga, Nokwanda P; Opara, Umezuruike L

    2016-05-26

    The use of pomegranate peel is highly associated with its rich phenolic concentration. Series of drying methods are recommended since bioactive compounds are highly sensitive to thermal degradation. The study was conducted to evaluate the effects of drying on the bioactive compounds, antioxidant as well as antibacterial and antityrosinase activities of pomegranate peel. Dried pomegranate peels with the initial moisture content of 70.30 % wet basis were prepared by freeze and oven drying at 40, 50 and 60 °C. Difference in CIE-LAB, chroma (C*) and hue angle (h°) were determined using colorimeter. Individual polyphenol retention was determined using LC-MS and LC-MS(E) while total phenolics concentration (TPC), total flavonoid concentration (TFC), total tannins concentration (TTC) and vitamin C concentration were measured using colorimetric methods. The antioxidant activity was measured by radical scavenging activity (RSA) and ferric reducing antioxidant power (FRAP). Furthermore, the antibacterial activity of methanolic peel extracts were tested on Gram negative (Escherichia coli and Klebsiella pneumonia) and Gram positive bacteria (Staphylococcus aureus and Bacillus subtilis) using the in vitro microdilution assays. Tyrosinase enzyme inhibition was investigated against monophenolase (tyrosine) and diphenolase (DOPA), with arbutin as positive controls. Oven drying at 60 °C resulted in high punicalin concentration (888.04 ± 141.03 mg CE/kg dried matter) along with poor red coloration (high hue angle). Freeze dried peel contained higher catechin concentration (674.51 mg/kg drying matter) + catechin and -epicatechin (70.56 mg/kg drying matter) compared to oven dried peel. Furthermore, freeze dried peel had the highest total phenolic, tannin and flavonoid concentrations compared to oven dried peel over the temperature range studied. High concentration of vitamin C (31.19 μg AAE/g dried matter) was observed in the oven dried (40 °C) pomegranate peel

  14. Cleanup Verification Package for the 618-2 Burial Ground

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    W. S. Thompson

    2006-12-28

    This cleanup verification package documents completion of remedial action for the 618-2 Burial Ground, also referred to as Solid Waste Burial Ground No. 2; Burial Ground No. 2; 318-2; and Dry Waste Burial Site No. 2. This waste site was used primarily for the disposal of contaminated equipment, materials and laboratory waste from the 300 Area Facilities.

  15. Forest Type and Above Ground Biomass Estimation Based on Sentinel-2A and WorldView-2 Data Evaluation of Predictor nd Data Suitability

    NASA Astrophysics Data System (ADS)

    Fritz, Andreas; Enßle, Fabian; Zhang, Xiaoli; Koch, Barbara

    2016-08-01

    The present study analyses the two earth observation sensors regarding their capability of modelling forest above ground biomass and forest density. Our research is carried out at two different demonstration sites. The first is located in south-western Germany (region Karlsruhe) and the second is located in southern China in Jiangle County (Province Fujian). A set of spectral and spatial predictors are computed from both, Sentinel-2A and WorldView-2 data. Window sizes in the range of 3*3 pixels to 21*21 pixels are computed in order to cover the full range of the canopy sizes of mature forest stands. Textural predictors of first and second order (grey-level-co-occurrence matrix) are calculated and are further used within a feature selection procedure. Additionally common spectral predictors from WorldView-2 and Sentinel-2A data such as all relevant spectral bands and NDVI are integrated in the analyses. To examine the most important predictors, a predictor selection algorithm is applied to the data, whereas the entire predictor set of more than 1000 predictors is used to find most important ones. Out of the original set only the most important predictors are then further analysed. Predictor selection is done with the Boruta package in R (Kursa and Rudnicki (2010)), whereas regression is computed with random forest. Prior the classification and regression a tuning of parameters is done by a repetitive model selection (100 runs), based on the .632 bootstrapping. Both are implemented in the caret R pack- age (Kuhn et al. (2016)). To account for the variability in the data set 100 independent runs are performed. Within each run 80 percent of the data is used for training and the 20 percent are used for an independent validation. With the subset of original predictors mapping of above ground biomass is performed.

  16. Optimal Atmospheric Correction for Above-Ground Forest Biomass Estimation with the ETM+ Remote Sensor.

    PubMed

    Nguyen, Hieu Cong; Jung, Jaehoon; Lee, Jungbin; Choi, Sung-Uk; Hong, Suk-Young; Heo, Joon

    2015-07-31

    The reflectance of the Earth's surface is significantly influenced by atmospheric conditions such as water vapor content and aerosols. Particularly, the absorption and scattering effects become stronger when the target features are non-bright objects, such as in aqueous or vegetated areas. For any remote-sensing approach, atmospheric correction is thus required to minimize those effects and to convert digital number (DN) values to surface reflectance. The main aim of this study was to test the three most popular atmospheric correction models, namely (1) Dark Object Subtraction (DOS); (2) Fast Line-of-sight Atmospheric Analysis of Spectral Hypercubes (FLAASH) and (3) the Second Simulation of Satellite Signal in the Solar Spectrum (6S) and compare them with Top of Atmospheric (TOA) reflectance. By using the k-Nearest Neighbor (kNN) algorithm, a series of experiments were conducted for above-ground forest biomass (AGB) estimations of the Gongju and Sejong region of South Korea, in order to check the effectiveness of atmospheric correction methods for Landsat ETM+. Overall, in the forest biomass estimation, the 6S model showed the bestRMSE's, followed by FLAASH, DOS and TOA. In addition, a significant improvement of RMSE by 6S was found with images when the study site had higher total water vapor and temperature levels. Moreover, we also tested the sensitivity of the atmospheric correction methods to each of the Landsat ETM+ bands. The results confirmed that 6S dominates the other methods, especially in the infrared wavelengths covering the pivotal bands for forest applications. Finally, we suggest that the 6S model, integrating water vapor and aerosol optical depth derived from MODIS products, is better suited for AGB estimation based on optical remote-sensing data, especially when using satellite images acquired in the summer during full canopy development.

  17. Optimal Atmospheric Correction for Above-Ground Forest Biomass Estimation with the ETM+ Remote Sensor

    PubMed Central

    Nguyen, Hieu Cong; Jung, Jaehoon; Lee, Jungbin; Choi, Sung-Uk; Hong, Suk-Young; Heo, Joon

    2015-01-01

    The reflectance of the Earth’s surface is significantly influenced by atmospheric conditions such as water vapor content and aerosols. Particularly, the absorption and scattering effects become stronger when the target features are non-bright objects, such as in aqueous or vegetated areas. For any remote-sensing approach, atmospheric correction is thus required to minimize those effects and to convert digital number (DN) values to surface reflectance. The main aim of this study was to test the three most popular atmospheric correction models, namely (1) Dark Object Subtraction (DOS); (2) Fast Line-of-sight Atmospheric Analysis of Spectral Hypercubes (FLAASH) and (3) the Second Simulation of Satellite Signal in the Solar Spectrum (6S) and compare them with Top of Atmospheric (TOA) reflectance. By using the k-Nearest Neighbor (kNN) algorithm, a series of experiments were conducted for above-ground forest biomass (AGB) estimations of the Gongju and Sejong region of South Korea, in order to check the effectiveness of atmospheric correction methods for Landsat ETM+. Overall, in the forest biomass estimation, the 6S model showed the bestRMSE’s, followed by FLAASH, DOS and TOA. In addition, a significant improvement of RMSE by 6S was found with images when the study site had higher total water vapor and temperature levels. Moreover, we also tested the sensitivity of the atmospheric correction methods to each of the Landsat ETM+ bands. The results confirmed that 6S dominates the other methods, especially in the infrared wavelengths covering the pivotal bands for forest applications. Finally, we suggest that the 6S model, integrating water vapor and aerosol optical depth derived from MODIS products, is better suited for AGB estimation based on optical remote-sensing data, especially when using satellite images acquired in the summer during full canopy development. PMID:26263996

  18. Above-ground biomass and structure of pristine Siberian Scots pine forests as controlled by competition and fire.

    PubMed

    Wirth, C; Schulze, E-D; Schulze, W; von Stünzner-Karbe, D; Ziegler, W; Miljukova, I M; Sogatchev, A; Varlagin, A B; Panvyorov, M; Grigoriev, S; Kusnetzova, W; Siry, M; Hardes, G; Zimmermann, R; Vygodskaya, N N

    1999-10-01

    The study presents a data set of above-ground biomass (AGB), structure, spacing and fire regime, for 24 stands of pristine Siberian Scots pine (Pinus sylvestris) forests with lichens (n = 20) or Vaccinium/mosses (n = 4) as ground cover, along four chronosequences. The stands of the "lichen" site type (LT) were stratified into three chronosequences according to stand density and fire history. Allometric equations were established from 90 sample trees for stem, coarse branch, fine branch, twig and needle biomass. The LT stands exhibited a low but sustained biomass accumulation until a stand age of 383 years. AGB reached only 6-10 kg dw  m -2 after 200 years depending on stand density and fire history compared to 20 kg dw  m -2 in the "Vaccinium" type (VT) stands. Leaf area index (LAI) in the LT stands remained at 0.5-1.5 and crown cover was 30-60%, whereas LAI reached 2.5 and crown cover was >100% in the VT stands. Although nearest-neighbour analyses suggested the existence of density-dependent mortality, fire impact turned out to have a much stronger effect on density dynamics. Fire scar dating and calculation of mean and initial fire return intervals revealed that within the LT stands differences in structure and biomass were related to the severity of fire regimes, which in turn was related to the degree of landscape fragmentation by wetlands. Self-thinning analysis was used to define the local carrying capacity for biomass. A series of undisturbed LT stands was used to characterise the upper self-thinning boundary. Stands that had experienced a moderate fire regime were positioned well below the self-thinning boundary in a distinct fire-thinning band of reduced major axis regression slope -0.26. We discuss how this downward shift resulted from alternating phases of density reduction by fire and subsequent regrowth. We conclude that biomass in Siberian Scots pine forests is strongly influenced by fire and that climate change will affect ecosystem

  19. Non-destructive prediction of 'Hass' avocado dry matter via FT-NIR spectroscopy.

    PubMed

    Wedding, Brett B; White, Ronald D; Grauf, Steve; Wright, Carole; Tilse, Bonnie; Hofman, Peter; Gadek, Paul A

    2011-01-30

    The inability to consistently guarantee internal quality of horticulture produce is of major importance to the primary producer, marketers and ultimately the consumer. Currently, commercial avocado maturity estimation is based on the destructive assessment of percentage dry matter (%DM), and sometimes percentage oil, both of which are highly correlated with maturity. In this study the utility of Fourier transform (FT) near-infrared spectroscopy (NIRS) was investigated for the first time as a non-invasive technique for estimating %DM of whole intact 'Hass' avocado fruit. Partial least squares regression models were developed from the diffuse reflectance spectra to predict %DM, taking into account effects of intra-seasonal variation and orchard conditions. It was found that combining three harvests (early, mid and late) from a single farm in the major production district of central Queensland yielded a predictive model for %DM with a coefficient of determination for the validation set of 0.76 and a root mean square error of prediction of 1.53% for DM in the range 19.4-34.2%. The results of the study indicate the potential of FT-NIRS in diffuse reflectance mode to non-invasively predict %DM of whole 'Hass' avocado fruit. When the FT-NIRS system was assessed on whole avocados, the results compared favourably against data from other NIRS systems identified in the literature that have been used in research applications on avocados. 2010 Society of Chemical Industry.

  20. Spectroscopic Analysis of Temporal Changes in Leaf Moisture and Dry Matter Content

    NASA Astrophysics Data System (ADS)

    Qi, Y.; Dennison, P. E.; Brewer, S.; Jolly, W. M.; Kropp, R.

    2013-12-01

    Live fuel moisture (LFM), the ratio of water content to dry matter content (DMC) in live fuel, is critical for determining fire danger and behavior. Remote sensing estimation of LFM often relies on an assumption of changing water content and stable DMC over time. In order to advance understanding of temporal variation in LFM and DMC, we collected field samples and spectroscopic data for two species, lodgepole pine (Pinus contorta) and big sagebrush (Artemisia tridentata), to explore seasonal trends and spectral expression of these trends. New and old needles were measured separately for lodgepole pine. All samples were measured using a visible/NIR/SWIR spectrometer, and coincident samples were processed to provide LFM, DMC, water content and chemical components including structural and non-structural carbohydrates. New needles initially exhibited higher LFM and a smaller proportion of DMC, but differences between new and old needles converged as the new needles hardened. DMC explained more variation in LFM than water content for new pine needles and sagebrush leaves. Old pine needles transported non-structural carbohydrates to new needles to accumulate DMC during the growth season, resulting decreasing LFM in new needles. DMC and water content co-varied with vegetation chemical components and physical structure. Spectral variation in response to changing DMC is difficulty to isolate from the spectral signatures of multiple chemical components. Partial least square regression combined with hyperspectral data may increase modeling performance in LFM estimation.

  1. Influence of management regime and harvest date on the forage quality of rangelands plants: the importance of dry matter content

    PubMed Central

    Bumb, Iris; Garnier, Eric; Bastianelli, Denis; Richarte, Jean; Bonnal, Laurent; Kazakou, Elena

    2016-01-01

    In spite of their recognized ecological value, relatively little is known about the nutritional value of species-rich rangelands for herbivores. We investigated the sources of variation in dry matter digestibility (DMD), neutral detergent fibre content (NDF) and nitrogen concentration (NC) in plants from species-rich Mediterranean rangelands in southern France, and tested whether the dry matter content (DMC) was a good predictor of the forage quality of different plant parts. Sixteen plant species with contrasting growth forms (rosette, tussock, extensive and stemmed-herb) were studied, representative of two management regimes imposed in these rangelands: (i) fertilization and intensive grazing and (ii) non-fertilization and moderate grazing. Among the 16 plant species, four species were found in both treatments, allowing us to assess the intraspecific variability in forage quality and DMC across the treatments. The components of nutritional value (DMD, NDF and NC) as well as the DMC of leaves, stems and reproductive plant parts, were assessed at the beginning of the growing season and at peak standing biomass. All components of nutritional value and DMC were affected by species growth form: rosettes had higher DMD and NC than tussocks; the reverse being found for NDF and DMC. As the season progressed, DMD and NC of the different plant parts decreased while NDF and DMC increased for all species. DMC was negatively related to DMD and NC and positively to NDF, regardless of the source of variation (species, harvest date, management regime or plant part). Path analysis indicated that NDF was the main determinant of DMD. Better assessment of forage quality in species-rich systems requires consideration of their growth form composition. DMC of all plant parts, which is closely related to NDF, emerged as a good predictor and easily measured trait to estimate DMD in these species-rich systems. PMID:27339049

  2. Analysis of problems with dry fermentation process for biogas production

    NASA Astrophysics Data System (ADS)

    Pilát, Peter; Patsch, Marek; Jandačka, Jozef

    2012-04-01

    The technology of dry anaerobic fermentation is still meeting with some scepticism, and therefore in most biogas plants are used wet fermentation technology. Fermentation process would be not complete without an optimal controlled condition: dry matter content, density, pH, and in particular the reaction temperature. If is distrust of dry fermentation eligible it was on the workplace of the Department of Power Engineering at University of Zilina built an experimental small-scale biogas station that allows analysis of optimal parameters of the dry anaerobic fermentation, in particular, however, affect the reaction temperature on yield and quality of biogas.

  3. Open sun drying of green bean: influence of pretreatments on drying kinetics, colour and rehydration capacity

    NASA Astrophysics Data System (ADS)

    İsmail, Osman; Kantürk Figen, Aysel; Pişkin, Sabriye

    2017-04-01

    Green bean ( Phaseolus Vulgaris L), classified under legume family, is a primary source of dietary protein in human diets especially in the agricultural countries. Green bean is susceptible to rapid deterioration because of their high moisture content and in order to prevent and present the green bean drying process is applied. In this study, effects of pretreatments on drying kinetics, colour and rehydration capacity of green bean were investigated. It was observed that the pretreatment affected the drying time. The shortest drying times were obtained from pretreated samples with blanched. Drying times were determined as 47, 41 and 29 h for natural, salted and blanch, respectively. The results showed that pretreatment and ambient temperature significantly ( P = 0.05) affected the drying rate and the drying time. The effective moisture diffusivity was determined by using Fick's second law and was found to be range between 3.15 × 10-10 and 1.2 × 10-10 m2/s for the pre-treated and natural green bean samples. The rehydration values were obtained 2.75, 2.71, 2.29 (g water/g dry matter) for the blanched, salted and natural samples. The effective diffusion coefficients were calculated using the data collected during the falling rate period and the experimental data are fitted to seven thin layer drying models which found in the literature. The Logarithmic model was found to best describe the drying behavior of fresh green beans under open air sun. Rehydration time and color parameters had been determined in order to improve the quality of dried green bean. Regarding with rehydration time and colour data, the best results were obtained at blanched drying conditions.

  4. [Distribution of 137Cs, 90Sr and their chemical analogues in the components of an above-ground part of a pine in a quasi-equilibrium condition].

    PubMed

    Mamikhin, S V; Manakhov, D V; Shcheglov, A I

    2014-01-01

    The additional study of the distribution of radioactive isotopes of caesium and strontium and their chemical analogues in the above-ground components of pine in the remote from the accident period was carried out. The results of the research confirmed the existence of analogy in the distribution of these elements on the components of this type of wood vegetation in the quasi-equilibrium (relatively radionuclides) condition. Also shown is the selective possibility of using the data on the ash content of the components of forest stands of pine and oak as an information analogue.

  5. Integrating disparate lidar data at the national scale to assess the relationships between height above ground, land cover and ecoregions

    USGS Publications Warehouse

    Stoker, Jason M.; Cochrane, Mark A.; Roy, David P.

    2013-01-01

    With the acquisition of lidar data for over 30 percent of the US, it is now possible to assess the three-dimensional distribution of features at the national scale. This paper integrates over 350 billion lidar points from 28 disparate datasets into a national-scale database and evaluates if height above ground is an important variable in the context of other nationalscale layers, such as the US Geological Survey National Land Cover Database and the US Environmental Protection Agency ecoregions maps. While the results were not homoscedastic and the available data did not allow for a complete height census in any of the classes, it does appear that where lidar data were used, there were detectable differences in heights among many of these national classification schemes. This study supports the hypothesis that there were real, detectable differences in heights in certain national-scale classification schemes, despite height not being a variable used in any of the classification routines.

  6. Below-ground chemical ecology and IPM

    USDA-ARS?s Scientific Manuscript database

    The phasing out of methyl bromide as a soil fumigant has led to a need for new technologies to manage below-ground plant pests and a sustainable approach would be to utilize semiochemicals comparable to above-ground IPM. Soil-dwelling beneficial entomopathogenic (EPNs) (Steinernema spp. and Heteror...

  7. Characterisation of spray dried soy sauce powders made by adding crystalline carbohydrates to drying carrier.

    PubMed

    Wang, Wei; Zhou, Weibiao

    2015-02-01

    This study aimed to reduce stickiness and caking of spray dried soy sauce powders by introducing a new crystalline structure into powder particles. To perform this task, soy sauce powders were formulated by using mixtures of cellulose and maltodextrin or mixtures of waxy starch and maltodextrin as drying carriers, with a fixed carrier addition rate of 30% (w/v) in the feed solution. The microstructure, crystallinity, solubility as well as stickiness and caking strength of all the different powders were analysed and compared. Incorporating crystalline carbohydrates in the drying carrier could significantly reduce the stickiness and caking strength of the powders when the ratio of crystalline carbohydrates to maltodextrin was above 1:5 and 1:2, respectively. X-ray Diffraction (XRD) results showed that adding cellulose or waxy starch could induce the crystallinity of powders. Differential Scanning Calorimetry (DSC) results demonstrated that the native starch added to the soy sauce powders did not fully gelatinize during spray drying. Copyright © 2014 Elsevier Ltd. All rights reserved.

  8. Above Canopy Emissions of Isoprene and Monoterpenes from a Southeast Asian Tropical Forest

    NASA Astrophysics Data System (ADS)

    Baker, B.; Johnson, C.; Cai, Z.; Guenther, A.; Greenberg, J.; Bai, J.; Li, Q.

    2003-12-01

    Fluxes of isoprene were measured using the eddy covariance technique and an ozone chemiluminescence isoprene sensor above a secondary tropical forest/rubber tree plantation located in the Xishuangbanna region of southern China during the wet and dry seasons. Fluxes of monoterpenes were inferred from ambient boundary layer concentrations (wet season) and from relaxed eddy accumulation measurements (dry season). Isoprene emissions were comparable to what has been observed from other tropical forests in Africa and South America. In this forest, monoterpene emissions were much higher during the wet season due to the senescence of the rubber trees during the dry season. These flux measurements represent the first ecosystem level flux measurements reported from Southeast Asian tropical forests.

  9. Testing of the Prototype Mars Drill and Sample Acquisition System in the Mars Analog Site of the Antarctica's Dry Valleys

    NASA Astrophysics Data System (ADS)

    Zacny, K.; Paulsen, G.; McKay, C.; Glass, B. J.; Marinova, M.; Davila, A. F.; Pollard, W. H.; Jackson, A.

    2011-12-01

    We report on the testing of the one meter class prototype Mars drill and cuttings sampling system, called the IceBreaker in the Dry Valleys of Antarctica. The drill consists of a rotary-percussive drill head, a sampling auger with a bit at the end having an integrated temperature sensor, a Z-stage for advancing the auger into the ground, and a sampling station for moving the augered ice shavings or soil cuttings into a sample cup. In November/December of 2010, the IceBreaker drill was tested in the Uni-versity Valley (within the Beacon Valley region of the Antarctic Dry Valleys). University Valley is a good analog to the Northern Polar Regions of Mars because a layer of dry soil lies on top of either ice-cemeted ground or massive ice (depending on the location within the valley). That is exactly what the 2007 Phoenix mission discovered on Mars. The drill demonstrated drilling in ice-cemented ground and in massive ice at the 1-1-100-100 level; that is the drill reached 1 meter in 1 hour with 100 Watts of power and 100 Newton Weight on Bit. This corresponds to an average energy of 100 Whr. At the same time, the bit temperature measured by the bit thermocouple did not exceed more than 10 °C above the formation temperature. The temperature also never exceeded freezing, which minimizes chances of getting stuck and also of altering the materials that are being sampled and analyzed. The samples in the forms of cuttings were acquired every 10 cm intervals into sterile bags. These tests have shown that drilling on Mars, in ice cemented ground with limited power, energy and Weight on Bit, and collecting samples in discrete depth intervals is possible within the given mass, power, and energy levels of a Phoenix-size lander and within the duration of a Phoenix-like mission.

  10. An enzyme complex increases in vitro dry matter digestibility of corn and wheat in pigs.

    PubMed

    Park, Kyu Ree; Park, Chan Sol; Kim, Beob Gyun

    2016-01-01

    Two experiments were conducted to determine the effects of enzyme complex on in vitro dry matter (DM) digestibility for feed ingredients. The objective of experiment 1 was to screen feed ingredients that can be effective substrates for an enzyme complex, mainly consisted of β-pentosanase, β-glucanase and α-amylase, using in vitro digestibility methods. In experiment 1, the test ingredients were three grain sources (barley, corn and wheat) and six protein supplements (canola meal, copra expellers, cottonseed meal, distillers dried grains with solubles, palm kernel expellers and soybean meal). In vitro ileal and total tract digestibility (IVID and IVTTD, respectively) of DM for test ingredients were determined. In vitro digestibility methods consisted of two- or three-step procedure simulating in vivo digestion in the pig gastrointestinal tracts with or without enzyme complex. As the enzyme complex added, the IVID of DM for corn and wheat increased (p < 0.05) by 5.0 and 2.6 percentage unit, respectively. The IVTTD of DM for corn increased (p < 0.05) by 3.1 percentage unit with enzyme complex addition. As the effect of enzyme complex was the greatest in corn digestibility, corn grains were selected to determine the in vitro digestibility of the fractions (starch, germ, hull and gluten) that maximally respond to the enzyme complex in experiment 2. The IVID of DM for corn starch, germ and hull increased (p < 0.05) by 16.0, 2.8 and 1.2 percentage unit, respectively. The IVTTD of DM for corn starch and hull also increased (p < 0.05) by 8.6 and 0.9 percentage unit, respectively, with enzyme complex addition. In conclusion, the enzyme complex increases in vitro DM digestibility of corn and wheat, and the digestibility increments of corn are mainly attributed to the increased digestibility of corn starch.

  11. Dry Matter Production, Nutrient Cycled and Removed, and Soil Fertility Changes in Yam-Based Cropping Systems with Herbaceous Legumes in the Guinea-Sudan Zone of Benin.

    PubMed

    Maliki, Raphiou; Sinsin, Brice; Floquet, Anne; Cornet, Denis; Malezieux, Eric; Vernier, Philippe

    2016-01-01

    Traditional yam-based cropping systems (shifting cultivation, slash-and-burn, and short fallow) often result in deforestation and soil nutrient depletion. The objective of this study was to determine the impact of yam-based systems with herbaceous legumes on dry matter (DM) production (tubers, shoots), nutrients removed and recycled, and the soil fertility changes. We compared smallholders' traditional systems (1-year fallow of Andropogon gayanus-yam rotation, maize-yam rotation) with yam-based systems integrated herbaceous legumes (Aeschynomene histrix/maize intercropping-yam rotation, Mucuna pruriens/maize intercropping-yam rotation). The experiment was conducted during the 2002 and 2004 cropping seasons with 32 farmers, eight in each site. For each of them, a randomized complete block design with four treatments and four replicates was carried out using a partial nested model with five factors: Year, Replicate, Farmer, Site, and Treatment. Analysis of variance (ANOVA) using the general linear model (GLM) procedure was applied to the dry matter (DM) production (tubers, shoots), nutrient contribution to the systems, and soil properties at depths 0-10 and 10-20 cm. DM removed and recycled, total N, P, and K recycled or removed, and soil chemical properties (SOM, N, P, K, and pH water) were significantly improved on yam-based systems with legumes in comparison with traditional systems.

  12. Sterile Neutrino Dark Matter

    NASA Astrophysics Data System (ADS)

    Merle, Alexander

    2017-03-01

    This book is a new look at one of the hottest topics in contemporary science, Dark Matter. It is the pioneering text dedicated to sterile neutrinos as candidate particles for Dark Matter, challenging some of the standard assumptions which may be true for some Dark Matter candidates but not for all. So, this can be seen either as an introduction to a specialized topic or an out-of-the-box introduction to the field of Dark Matter in general. No matter if you are a theoretical particle physicist, an observational astronomer, or a ground-based experimentalist, no matter if you are a grad student or an active researcher, you can benefit from this text, for a simple reason: a non-standard candidate for Dark Matter can teach you a lot about what we truly know about our standard picture of how the Universe works.

  13. Graphite tail powder and liquid biofertilizer as trace elements source for ground nut

    NASA Astrophysics Data System (ADS)

    Hindersah, Reginawanti; Setiawati, M. Rochimi; Fitriatin, B. Natalie; Suryatama, Pujawati; Asmiran, Priyanka; Panatarani, Camellia; Joni, I. Made

    2018-02-01

    Utilization of graphite tail waste from the mineral beneficiation processing is very important since it contain significant amount of essential minerals which are necessary for plant growth. These mineral are required in biochemical processes and mainly play an important role as cofactor in enzymatic reaction. The objective of this research is to investigate the performance of graphite tail on supporting plant growth and yield of ground nut (Arachishypogeae L.). A field experiment has been performed to test the performance of mixed graphite tail and reduced organic matter dose. The graphite tail size were reduced to various sieved size, -80 mesh, -100 mesh and -200 mesh. The experiment was setup in randomized block design with 4 treatments and 6 replications for each treatment, while the control plot is received without graphite tail. The results demonstrated that reduced organic matter along with -200 mesh tail has potentially decreased plant height at the end of vegetative growth stage, in contrast for to -80 mesh tail amendment increased individual fresh plant biomass. Statistically, there was no change of plant nodule, individual shoot fresh and dry weight, root nodule, number of pod following any mesh of graphite tail amendment. Reducing organic matter while adding graphite tail of 5% did not change bean weight in all plot. In contrast, reduced organic matter along with 80-mesh graphite tail amendment improved the nut yield per plot. This experiment suggests that graphite tail, mainly -80 mesh graphite tail can be possibly used in legume production.

  14. Monitoring stratospheric chlorine activation from time series of OClO DSCDs above Kiruna using ground-based zenith sky DOAS observations

    NASA Astrophysics Data System (ADS)

    Gu, Myojeong; Enell, Carl-Fredrik; Pukite, Janis; Platt, Ulrich; Raffalski, Uwe; Wagner, Thomas

    2017-04-01

    After to the Montreal protocol and amendments, the production of CFCs was strongly reduced. Since then scientists have steadily made efforts to monitor the amount of chlorine compounds which are responsible for the destruction of ozone in the stratosphere. Although very recent research of stratospheric ozone indicates an ozone recovery, ozone depletion is still observed in the polar spring and is expected to last for about another 70 years according to the WMO. Therefore, continuous observation and analysis of the stratospheric ozone as well as other stratospheric trace gases are highly demanded. Several previous studies have investigated OClO which is an indicator for stratospheric chlorine activation using satellite, ground-based, and balloon remote sensing measurements. In this work, we investigate long-term time series of OClO DSCDs (Differential Slant Column densities) above Kiruna, Sweden (67.84°N, 20.41°E) which is located inside the Arctic Circle by using the ground-based zenith sky DOAS measurements. Since our measurements are performed at the fixed site, for the interpretation also the relative position of the polar vortex has to be considered. Our long-term data obtained during about 15 years allows us to classify the dependence of the OClO amount on the various meteorological conditions. Our data show a large variability with high OClO SCDs in cold, and low OClO SCDs in warm winters. Our measurements also allow to investigate the effect of the chlorine activation and its duration on the strength of the ozone destruction.

  15. Recent developments in drying of food products

    NASA Astrophysics Data System (ADS)

    Valarmathi, T. N.; Sekar, S.; Purushothaman, M.; Sekar, S. D.; Rama Sharath Reddy, Maddela; Reddy, Kancham Reddy Naveen Kumar

    2017-05-01

    Drying is a dehydration process to preserve agricultural products for long period usage. The most common and cheapest method is open sun drying in which the products are simply laid on ground, road, mats, roof, etc. But the open sun drying has some disadvantages like dependent on good weather, contamination by dust, birds and animals consume a considerable quantity, slow drying rate and damages due to strong winds and rain. To overcome these difficulties solar dryers are developed with closed environment for drying agricultural products effectively. To obtain good quality food with reduced energy consumption, selection of appropriate drying process and proper input parameters is essential. In recent years several researchers across the world have developed new drying systems for improving the product quality, increasing the drying rate, decreasing the energy consumption, etc. Some of the new systems are fluidized bed, vibrated fluidized bed, desiccant, microwave, vacuum, freeze, infrared, intermittent, electro hydrodynamic and hybrid dryers. In this review the most recent progress in the field of drying of agricultural food products such as new methods, new products and modeling and optimization techniques has been presented. Challenges and future directions are also highlighted. The review will be useful for new researchers entering into this ever needed and ever growing field of engineering.

  16. Methane at Ascension Island, southern tropical Atlantic Ocean: continuous ground measurement and vertical profiling above the Trade-Wind Inversion

    NASA Astrophysics Data System (ADS)

    Lowry, David; Brownlow, Rebecca; Fisher, Rebecca; Nisbet, Euan; Lanoisellé, Mathias; France, James; Thomas, Rick; Mackenzie, Rob; Richardson, Tom; Greatwood, Colin; Freer, Jim; Cain, Michelle; Warwick, Nicola; Pyle, John

    2015-04-01

    δ13CCH4. The marine boundary layer at the surface has CH4 mixing ratios below 1800ppb. In the mixing layer of the TWI, values increase, and above 2000m, methane is above 1820ppb. Back trajectory analysis shows that these inputs are from African savanna and wetland emissions. After vertical mixing events the difference across the TWI reduces to less than 10ppb. The experiment has demonstrated the feasibility of UAV work to observe methane at Ascension. In effect, Ascension becomes a 'virtual mountain observatory' - measurements here can both use the Trade Winds to monitor the wide South Atlantic and Southern Ocean, and also the air above the TWI to assess inputs from tropical Africa and S. America. Comparison of continuous ground measurements, vertical UAV profiles and data from the Ascension TCCON site, potentially allows observation of a complete atmospheric profile. Acknowledgement This work is supported by the Natural Environment Research Council Grant NE/K005979/1

  17. Evaluation of Grounding Impedance of a Complex Lightning Protective System Using Earth Ground Clamp Measurements and ATP Modeling

    NASA Technical Reports Server (NTRS)

    Mata, Carlos T.; Rakov, V. A.; Mata, Angel G.

    2010-01-01

    A new Lightning Protection System (LPS) was designed and built at Launch Complex 39B (LC39B), at the Kennedy Space Center (KSC), Florida, which consists of a catenary wire system (at a height of about 181 meters above ground level) supported by three insulators installed atop three towers in a triangular configuration. A total of nine downconductors (each about 250 meters long, on average) are connected to the catenary wire system. Each of the nine downconductors is connected to a 7.62-meter radius circular counterpoise conductor with six equally spaced 6-meter long vertical grounding rods. Grounding requirements at LC39B call for all underground and above ground metallic piping, enclosures, raceways, and cable trays, within 7.62 meters of the counterpoise, to be bounded to the counterpoise, which results in a complex interconnected grounding system, given the many metallic piping, raceways, and cable trays that run in multiple direction around LC39B. The complexity of this grounding system makes the fall of potential method, which uses multiple metallic rods or stakes, unsuitable for measuring the grounding impedances of the downconductors. To calculate the downconductors grounding impedance, an Earth Ground Clamp (a stakeless grounding resistance measuring device) and a LPS Alternative Transient Program (ATP) model are used. The Earth Ground Clamp is used to measure the loop impedance plus the grounding impedance of each downconductor and the ATP model is used to calculate the loop impedance of each downconductor circuit. The grounding impedance of the downconductors is then calculated by subtracting the ATP calculated loop impedances from the Earth Ground Clamp measurements.

  18. 40 CFR 60.282a - Standard for filterable particulate matter.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... matter. 60.282a Section 60.282a Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) AIR... 23, 2013 § 60.282a Standard for filterable particulate matter. (a) On and after the date on which the... furnace any gases which: (i) Contain filterable particulate matter in excess of 0.10 gram per dry standard...

  19. Investigating alternative solutions for adsorption-contact drying when burning vegetable wastes

    NASA Astrophysics Data System (ADS)

    Golubkovich, A. V.

    2007-06-01

    Results are presented from investigation of three alternative solutions for adsorption-contact drying: combined (with cooling by means of outdoor air), with afterburning of combustible matters, and with limited adsorption of moisture using solid products of fuel combustion. Mathematical models and simplified expressions for calculating the time taken for the fuel drying to proceed are proposed.

  20. Dark matter, neutron stars, and strange quark matter.

    PubMed

    Perez-Garcia, M Angeles; Silk, Joseph; Stone, Jirina R

    2010-10-01

    We show that self-annihilating weakly interacting massive particle (WIMP) dark matter accreted onto neutron stars may provide a mechanism to seed compact objects with long-lived lumps of strange quark matter, or strangelets, for WIMP masses above a few GeV. This effect may trigger a conversion of most of the star into a strange star. We use an energy estimate for the long-lived strangelet based on the Fermi-gas model combined with the MIT bag model to set a new limit on the possible values of the WIMP mass that can be especially relevant for subdominant species of massive neutralinos.

  1. Composition, physical properties and drying characteristics of seed oil of Citrullus lanatus

    NASA Astrophysics Data System (ADS)

    Idris, S. A.; Rashidi, A. R.; Muhammad, A.; Abdullah, M.; Elham, O. S. J.; Mamat, M. S.

    2017-09-01

    A study to investigate the effect of different drying methods for the pre-treatment process on the quality and quantity of oil extracted from Citrulllus lanatus seeds was conducted. The red type Citrulllus lanatus seeds from local supermarket in Shah Alam is used in this experiment. The amount of seed was divided into two portions; one portion was subjected to sun drying while the other portion was subjected to oven drying (at a temperature of 70°C). After the drying process, the seeds were ground in a laboratory grinder to turn them into powder. The ground seeds then will be fed to Supercritical Carbon Dioxide unit (SC-CO2) for extraction. Once the extracted oil is obtained, it will be analysed by using Gas Chromatography and Mass Spectrometer (GC-MS). Results indicated that the amount of the moisture content from the sun-dried was lower compared to oven-dried. The results also indicated that, there were no significant difference in the quantity of oil obtained from both samples of oven-dried and sun-dried. However, the acid value and other component content in the sample were higher in the sun-dried sample relative to the oven-dried sample. Linoleic acid is the only compound that was found in the oven-dried sample, whereas linoleic acid and oleic acid were found in the sun-dried sample. Based on the results, it shows that the drying effect were important when the quality of oil was to be considered. The other compounds like Naphtalenol, 9-17-Octadecadeinal, 2-Chloroethyl linoleate, and Carboxin also are found in the sun-dried sample. Other that that, drying method does not give any effect to the physical appearance of the extracted oil, as similar color and other physical appearance was produced by the both sample.

  2. Effect of organic matter and roots in soil respiration in a Mediterranean riparian areas in Central Spain

    NASA Astrophysics Data System (ADS)

    Gonzalez-Garrido, Laura; Delgado, Juan Antonio; Martinez, Teodora

    2010-05-01

    Soil respiration is one of the largest carbon flux components within terrestrial ecosystems, and small changes in the magnitude of soil respiration could have a large effect on the concentration of CO2 in the atmosphere. The main objective is evaluating the factors controlling soil respiration on the global carbon cycle in riparian areas of Henares River. We evaluated total soil respiration as it was affected by soil temperature, soil moisture, root respiration and organic matter in four areas differing in vegetation cover. We specifically assessed the contribution of soil organic matter and fine root biomass (≤1 mm.) in soil carbon dioxide flux. The study area is located on the riverbanks of Henares River where it passes through the municipal term of Alcala de Henares (Madrid) in Central Spain. Measurements were performed in spring and autumn of 2009. The study was conducted on four different types of riparian vegetation: natural Mediterranean riparian forest, reforestation of 1994, reforestation of 1999 and riparian grassland without trees. In each area of study 3, 25x25 m, plots were delimited and within each plot three sampling units of 50x50 cm were selected at random. The temperature of the ground was taken during the measures from respiration using a Multi-thermometer (-50°C - +300°C) at 5 cm depth. The moisture content of the ground was measured at 5 cm of depth with a HH2 Moisture meter (Delta Devices, Cambridge, UK). The measures of respiration of the ground were realised in field by means of LCI portable (LC pro ADC Bioscientific, Ltd. UK) connected to a ground respiration camera. We introduced the camera 3 cm into the soil just after eliminating the vegetation grass of the surface of measurement cutting carefully the aerial part, without damaging the roots. Soil CO2 flux measurements were registered after stabilization. Immediately after CO2 measurements, we obtained soil samples by means of a drill of 2.18 cm of diameter taking samples to 10 cm and

  3. Ground albedo neutrons produced by cosmic radiations

    NASA Astrophysics Data System (ADS)

    Kodama, M.

    1983-05-01

    Day-to-day variations of cosmic-ray-produced neutron fluxes near the earth's ground surface are measured by using three sets of paraffin-moderated BF3 counters, which are installed in different locations, 3 m above ground, ground level, and 20 cm under ground. Neutron flux decreases observed by these counters when snowcover exists show that there are upward-moving neutrons, that is, ground albedo neutron near the ground surface. The amount of albedo neutrons is estimated to be about 40 percent of total neutron flux in the energy range 1-10 to the 6th eV.

  4. Forest floor methane flux modelled by soil water content and ground vegetation - comparison to above canopy flux

    NASA Astrophysics Data System (ADS)

    Halmeenmäki, Elisa; Peltola, Olli; Haikarainen, Iikka; Ryhti, Kira; Rannik, Üllar; Pihlatie, Mari

    2017-04-01

    Methane (CH4) is an important and strong greenhouse gas of which atmospheric concentration is rising. While boreal forests are considered as an important sink of CH4 due to soil CH4 oxidation, the soils have also a capacity to emit CH4. Moreover, vegetation is shown to contribute to the ecosystem-atmosphere CH4 flux, and it has been estimated to be the least well known natural sources of CH4. In addition to well-known CH4 emissions from wetland plants, even boreal trees have been discovered to emit CH4. At the SMEAR (Station for Measuring Ecosystem-Atmosphere Relations) II station in Hyytiälä, southern Finland (61° 51' N, 24°17' E; 181 m asl), we have detected small CH4 emissions from above the canopy of a Scots pine (Pinus sylvestris) dominated forest. To assess the origin of the observed emissions, we conducted forest floor CH4 flux measurements with 54 soil chambers at the footprint area of the above canopy flux measurements during two growing seasons. In addition, we measured the soil volumetric water content (VWC) every time next to the forest floor chamber measurements, and estimated vegetation coverages inside the chambers. In order to model the forest floor CH4 flux at the whole footprint area, we combined lidar (light detection and ranging) data with the field measurements. To predict the soil water content and thus the potential CH4 flux, we used local elevation, slope, and ground return intensity (GRI), calculated from the lidar data (National Land Survey of Finland). We categorized the soil chambers into four classes based on the VWC so that the class with the highest VWC values includes all the soil chambers with a potential to emit CH4. Based on a statistically significant correlation between the VWC and the forest floor CH4 flux (r = 0.30, p < 0.001), we modelled the potential forest floor CH4 flux of the whole area. The results of the soil chamber measurements show a few areas of the forest floor with significant CH4 emissions. The modelled map

  5. The distribution of dry matter growth between shoot and roots in loblolly pine

    Treesearch

    F. Thomas Ledig; F. Herbert Bormann; Karl F. Wenger

    1970-01-01

    The allometric relationship, log (y) = a + k•log (x)-where x is one plant organ (e g., dry weight of roots) and y is another (e.g., dry weight of shoot)-was used to study the relative distribution of growth within loblolly pine seedlings. The relative...

  6. Arbuscular mycorrhizal fungi alter above- and below-ground chemical defense expression differentially among Asclepias species.

    PubMed

    Vannette, Rachel L; Hunter, Mark D; Rasmann, Sergio

    2013-01-01

    Below-ground (BG) symbionts of plants can have substantial influence on plant growth and nutrition. Recent work demonstrates that mycorrhizal fungi can affect plant resistance to herbivory and the performance of above- (AG) and BG herbivores. Although these examples emerge from diverse systems, it is unclear if plant species that express similar defensive traits respond similarly to fungal colonization, but comparative work may inform this question. To examine the effects of arbuscular mycorrhizal fungi (AMF) on the expression of chemical resistance, we inoculated 8 species of Asclepias (milkweed)-which all produce toxic cardenolides-with a community of AMF. We quantified plant biomass, foliar and root cardenolide concentration and composition, and assessed evidence for a growth-defense tradeoff in the presence and absence of AMF. As expected, total foliar and root cardenolide concentration varied among milkweed species. Importantly, the effect of mycorrhizal fungi on total foliar cardenolide concentration also varied among milkweed species, with foliar cardenolides increasing or decreasing, depending on the plant species. We detected a phylogenetic signal to this variation; AMF fungi reduced foliar cardenolide concentrations to a greater extent in the clade including A. curassavica than in the clade including A. syriaca. Moreover, AMF inoculation shifted the composition of cardenolides in AG and BG plant tissues in a species-specific fashion. Mycorrhizal inoculation changed the relative distribution of cardenolides between root and shoot tissue in a species-specific fashion, but did not affect cardenolide diversity or polarity. Finally, a tradeoff between plant growth and defense in non-mycorrhizal plants was mitigated completely by AMF inoculation. Overall, we conclude that the effects of AMF inoculation on the expression of chemical resistance can vary among congeneric plant species, and ameliorate tradeoffs between growth and defense.

  7. Arbuscular mycorrhizal fungi alter above- and below-ground chemical defense expression differentially among Asclepias species

    PubMed Central

    Vannette, Rachel L.; Hunter, Mark D.; Rasmann, Sergio

    2013-01-01

    Below-ground (BG) symbionts of plants can have substantial influence on plant growth and nutrition. Recent work demonstrates that mycorrhizal fungi can affect plant resistance to herbivory and the performance of above- (AG) and BG herbivores. Although these examples emerge from diverse systems, it is unclear if plant species that express similar defensive traits respond similarly to fungal colonization, but comparative work may inform this question. To examine the effects of arbuscular mycorrhizal fungi (AMF) on the expression of chemical resistance, we inoculated 8 species of Asclepias (milkweed)—which all produce toxic cardenolides—with a community of AMF. We quantified plant biomass, foliar and root cardenolide concentration and composition, and assessed evidence for a growth-defense tradeoff in the presence and absence of AMF. As expected, total foliar and root cardenolide concentration varied among milkweed species. Importantly, the effect of mycorrhizal fungi on total foliar cardenolide concentration also varied among milkweed species, with foliar cardenolides increasing or decreasing, depending on the plant species. We detected a phylogenetic signal to this variation; AMF fungi reduced foliar cardenolide concentrations to a greater extent in the clade including A. curassavica than in the clade including A. syriaca. Moreover, AMF inoculation shifted the composition of cardenolides in AG and BG plant tissues in a species-specific fashion. Mycorrhizal inoculation changed the relative distribution of cardenolides between root and shoot tissue in a species-specific fashion, but did not affect cardenolide diversity or polarity. Finally, a tradeoff between plant growth and defense in non-mycorrhizal plants was mitigated completely by AMF inoculation. Overall, we conclude that the effects of AMF inoculation on the expression of chemical resistance can vary among congeneric plant species, and ameliorate tradeoffs between growth and defense. PMID:24065971

  8. Developing ground penetrating radar (GPR) for enhanced root and soil organic carbon imaging: Optimizing bioenergy crop adaptation and agro-ecosystem services

    NASA Astrophysics Data System (ADS)

    Hays, D. B.; Delgado, A.; Bruton, R.; Dobreva, I. D.; Teare, B.; Jessup, R.; Rajan, N.; Bishop, M. P.; Lacey, R.; Neely, H.; Hons, F.; Novo, A.

    2016-12-01

    Selection of the ideal high biomass energy feedstock and crop cultivars for our national energy and production needs should consider not only the value of the harvested above ground feedstock, but also the local and global environmental services it provides in terms of terrestrial carbon (C) phyto-sequestration and improved soil organic matter enrichment. Selection of ideal crops cultivars is mature, while biofuel feedstock is well under way. What is lacking, however, is high throughput phenotyping (HTP) and integrated real-time data analysis technologies for selecting ideal genotypes within these crops that also confer recalcitrant high biomass or perennial root systems not only for C phyto-sequestration, but also for adaptation to conservation agro-ecosystems, increasing soil organic matter and soil water holding capacity. In no-till systems, significant studies have shown that increasing soil organic carbon is derived primarily from root and not above ground biomass. As such, efforts to increase plant soil phyto-sequestration will require a focus on developing optimal root systems within cultivated crops. We propose to achieve a significant advancement in the use of ground penetrating radar (GPR) as one approach to phenotype root biomass and 3D architecture, and to quantify soil carbon sequestration. In this context, GPR can be used for genotypic selection in breeding nurseries and unadapted germplasm with favorable root architectures, and for assessing management and nutrient practices that promote root growth. GPR has been used for over a decade to successfully map coarse woody roots. Only few have evaluated its efficacy for imaging finer fibrous roots found in grasses, or tap root species. The objectives of this project is to: i) Empirically define the optimal ground penetrating radar (GPR)-antenna array for 3D root and soil organic carbon imaging and quantification in high biomass grass systems; and ii) Develop novel 3- and 4-dimensional data analysis

  9. Long-term litter manipulation alters soil organic matter turnover in a temperate deciduous forest.

    PubMed

    Wang, Jun-Jian; Pisani, Oliva; Lin, Lisa H; Lun, Olivia O Y; Bowden, Richard D; Lajtha, Kate; Simpson, André J; Simpson, Myrna J

    2017-12-31

    Understanding soil organic matter (OM) biogeochemistry at the molecular-level is essential for assessing potential impacts from management practices and climate change on shifts in soil carbon storage. Biomarker analyses and nuclear magnetic resonance (NMR) spectroscopy were used in an ongoing detrital input and removal treatment experiment in a temperate deciduous forest in Pennsylvania, USA, to examine how above- and below-ground plant inputs control soil OM quantity and quality at the molecular-level. From plant material to surface soils, the free acyclic lipids and cutin, suberin, and lignin biomarkers were preferentially retained over free sugars and free cyclic lipids. After 20years of above-ground litter addition (Double Litter) or exclusion (No Litter) treatments, soil OM composition was relatively more degraded, as revealed by solid-state 13 C NMR spectroscopy. Under Doubled Litter inputs, soil carbon and phospholipid fatty acid (PLFA) concentrations were unchanged, suggesting that the current OM degradation status is a reflection of microbial-mediated degradation that occurred prior to the 20-year sampling campaign. Soil OM degradation was higher in the No Litter treatments, likely due to the decline in fresh, above-ground litter inputs over time. Furthermore, root and root and litter exclusion treatments (No Roots and No Inputs, respectively) both significantly reduced free sugars and PLFAs and increased preservation of suberin-derived compounds. PLFA stress ratios and the low N-acetyl resonances from diffusion edited 1 H NMR also indicate substrate limitations and reduced microbial biomass with these treatments. Overall, we highlight that storage of soil carbon and its biochemical composition do not linearly increase with plant inputs because the microbial processing of soil OM is also likely altered in the studied forest. Copyright © 2017 Elsevier B.V. All rights reserved.

  10. Dry Matter Production, Nutrient Cycled and Removed, and Soil Fertility Changes in Yam-Based Cropping Systems with Herbaceous Legumes in the Guinea-Sudan Zone of Benin

    PubMed Central

    Sinsin, Brice; Floquet, Anne; Cornet, Denis; Malezieux, Eric; Vernier, Philippe

    2016-01-01

    Traditional yam-based cropping systems (shifting cultivation, slash-and-burn, and short fallow) often result in deforestation and soil nutrient depletion. The objective of this study was to determine the impact of yam-based systems with herbaceous legumes on dry matter (DM) production (tubers, shoots), nutrients removed and recycled, and the soil fertility changes. We compared smallholders' traditional systems (1-year fallow of Andropogon gayanus-yam rotation, maize-yam rotation) with yam-based systems integrated herbaceous legumes (Aeschynomene histrix/maize intercropping-yam rotation, Mucuna pruriens/maize intercropping-yam rotation). The experiment was conducted during the 2002 and 2004 cropping seasons with 32 farmers, eight in each site. For each of them, a randomized complete block design with four treatments and four replicates was carried out using a partial nested model with five factors: Year, Replicate, Farmer, Site, and Treatment. Analysis of variance (ANOVA) using the general linear model (GLM) procedure was applied to the dry matter (DM) production (tubers, shoots), nutrient contribution to the systems, and soil properties at depths 0–10 and 10–20 cm. DM removed and recycled, total N, P, and K recycled or removed, and soil chemical properties (SOM, N, P, K, and pH water) were significantly improved on yam-based systems with legumes in comparison with traditional systems. PMID:27446635

  11. Gypsum ground: a new occurrence of gypsum sediment in playas of central Australia

    NASA Astrophysics Data System (ADS)

    Xiang Yang Chen; Bowler, James M.; Magee, John W.

    1991-06-01

    There are many playas (dry salt lakes) in arid central Australia (regional rainfall about 250 mm/y and pan evaporation around 3000 mm/y). Highly soluble salts, such as halite, only appear as a thin (several centimetres thick), white, ephemeral efflorescent crust on the dry surface. Gypsum is the major evaporite precipitating both at present and preserved in sediment sequences. One type of gypsum deposit forms a distinctive surface feature, which is here termed "gypsum ground". It consists of a thick (up to 80 cm) gypsum zone which rises from the surrounding smooth white playa surface and is overlain by a heaved brown crust. The gypsum zone, with an average gypsum content above 60%, consists of pure gypsum sublayers and interlayered clastic bands of sandy clay. The gypsum crystals are highly corroded, especially in the direction parallel to the c-axis and on the upper sides where illuviated clay has accumulated in corrosion hollows. Overgrowth parallel to the a- and b-axes is very common, forming highly discoidal habits. These secondary changes (corrosion and overgrowth) are well-developed in the vadose zone and absent from crystals below the long-term watertable (depth around 40 cm). These crystal characteristics indicate a rainwater leaching process. At Lake Amadeus, one of the largest playas (800 km 2) of central Australia, such gypsum ground occupies 16% of the total area. The gypsum ground is interpreted as an alteration of a pre-existing gypsum deposit which probably extended across the whole playa before breaking down, leaving a playa marginal terrace and several terrace islands within the gypsum ground. This pre-existing gypsum deposit, preserved in the residual islands, consists of pure, pale, sand-sized lenticular crystals. It is believed to have been deposited during an episode of high regional watertable, causing active groundwater seepage and more frequent surface brine in the playa. A later fall in watertable, probably resulting from climatic change

  12. Biodiesel Production from Spent Coffee Grounds

    NASA Astrophysics Data System (ADS)

    Blinová, Lenka; Bartošová, Alica; Sirotiak, Maroš

    2017-06-01

    The residue after brewing the spent coffee grounds is an oil-containing waste material having a potential of being used as biodiesel feedstock. Biodiesel production from the waste coffee grounds oil involves collection and transportation of coffee residue, drying, oil extraction, and finally production of biodiesel. Different methods of oil extraction with organic solvents under different conditions show significant differences in the extraction yields. In the manufacturing of biodiesel from coffee oil, the level of reaction completion strongly depends on the quality of the feedstock oil. This paper presents an overview of oil extraction and a method of biodiesel production from spent coffee grounds.

  13. Ground Penetrating Radar : Pavement Layer Thickness Evaluation

    DOT National Transportation Integrated Search

    2003-12-01

    The following report demonstrates the accuracy of using Ground Penetrating Radar (GPR) to determine both the surface layer thickness for asphalt, and concrete pavements. In addition tests were conducted to identify GPR's repeatability on dry pavement...

  14. Ground penetrating radar, pavement layer thickness evaluation

    DOT National Transportation Integrated Search

    2002-12-01

    The following report demonstrates the accuracy of using Ground Penetrating Radar (GPR) to determine both the surface layer thickness for asphalt, and concrete pavements. In addition tests were conducted to identify GPR's repeatability on dry pavement...

  15. Ground Penetrating Radar : Pavement Layer Thickness Evaluation

    DOT National Transportation Integrated Search

    2002-12-01

    The following report demonstrates the accuracy of using Ground Penetrating Radar (GPR) to determine both the surface layer thickness for asphalt, and concrete pavements. In addition tests were conducted to identify GPR's repeatability on dry pavement...

  16. A Clinical Study of Subtype-based Prevalence of Dry Eye.

    PubMed

    Rege, Aditya; Kulkarni, Varsha; Puthran, Neelam; Khandgave, Tejaswini

    2013-10-01

    Dry Eye is a multifactorial disease of the tearfilm and the ocular surface which may be due to reduced tear production or excessive tear evaporation resulting in discomfort, visual disturbance, and tear film instability with a potential damage to the ocular surface. Various population-based studies have been done to find out the prevalence and the magnitude of the problem. Women Health Study reported prevalence of 7.8% after screening 36995 subjects above 49 years by interview. The prevalence reported by Blue Mountain Study was 15.3% .The Beaver Dam Study and Shiphai Eye studies are other studies reporting prevalence of 14.5% and 33.7% respectively. McMonnies questionnaire is a widely used screening instrument for Dry-Eye syndromes with sensitivity reportedly varying between 87% and 98% and specificity between 87% and 97%. Prevalence studies use McMonnie's questionnaire for screening individuals for Dry Eye, whereafter tests like Schirmer's test, Tear Film Break Up Time test, Rose Bengal test, Lissamine Green test and Meibomian Gland Dysfunction test are useful for further evaluation. While these tests help to differentiate the subtypes of Dry Eye such as Lipid Anomaly Dry Eye, Aqueous Tear Deficiency and Mucin Layer Deficiency, however, their sensitivity and specificity has not been widely studied. Additionally, very few studies have reported the prevalence of the various subtypes of Dry Eye. To determine the subtype-based prevalence of Dry Eye, to study the specificity and sensitivity of clinical tests for Dry Eye and to correlate McMonnies questionnaire with Dry Eye tests results. A prospective, cross-sectional, observational study, duly approved by the Institutional Ethics Committee, was conducted from October 2010 to April 2012. A total of 4750 subjects above 18 yrs of age were screened by the McMonnies questionnaire. Respondents having a score greater than 14.5 were subjected to clinical Dry Eye tests. The data obtained was analyzed using chi-square test. p

  17. Characterization of dissolved organic matter in an urbanized estuary located in Northeastern Brazil.

    PubMed

    Arguelho, Maria de Lara Palmeira de Macedo; Alves, José do Patrocínio Hora; Monteiro, Adnívia Santos Costa; Garcia, Carlos Alexandre Borges

    2017-06-01

    The Sal River estuary, which is located in the state of Sergipe, Northeastern Brazil, stands out as an urban estuary, anthropogenically impacted by untreated and treated wastewater discharge. Synchronous fluorescence spectroscopy and measurement of dissolved organic carbon (DOC) were used for characterization of dissolved organic matter (DOM) in the estuarine water. Dissolved organic carbon concentrations ranged from 7.5 to 19.0 mg L -1 and, in general, the highest values were recorded during dry season. For both seasons (dry and rainy), DOC presented an inverse linear relationship with salinity, which indicates a conservative dilution of organic matter coming into the estuary. During rainy season, anthropogenic organic constituents and humic substances from land-based sources predominated in DOM composition, carried by river flow. Whereas during the dry season, it has been observed a significant increase of products generated by microbial degradation of anthropogenic organic matter. The relationships between fluorescence intensity and salinity suggest a conservative behavior during rainy season and a non-conservative behavior during dry season, with addition of fluorescent organic matter into the intermediate zone of the estuary. Photodegradation by action of sunlight caused a decrease in fluorescence intensity of humic and tryptophan-like constituents and the release of photoproducts, resulting in an increase in fluorescence intensity of protein-like constituents.

  18. Acceptances for space-based and ground-based fluorescence detectors, and inference of the neutrino-nucleon cross-section above 1019eV

    NASA Astrophysics Data System (ADS)

    Palomares-Ruiz, Sergio; Irimia, Andrei; Weiler, Thomas J.

    2006-04-01

    Detection of ultrahigh energy neutrinos will be useful for unraveling the dynamics of the most violent sources in the cosmos and for revealing the neutrino cross-section at extreme energy. If there exists a Greisen-Zatsepin-Kuz’min (GZK) suppression of cosmic-ray events above EGZK˜5×1019eV, as predicted by theory, then the only messengers of energies beyond EGZK are neutrinos. Cosmic neutrino fluxes can initiate air-showers through interaction in the atmosphere, or in the Earth. Neutrino trajectories will be downgoing to nearly horizontal in the former case, and “Earth-skimming” in the latter case. Thus it is important to know the acceptances (event rate/flux) of proposed air-shower experiments for detecting both types of neutrino-initiated events. We calculate these acceptances for fluorescence detectors, both space-based as with the EUSO and OWL proposals, and ground-based, as with Auger, HiRes and Telescope Array. The neutrino cross-section σνNCC is unknown at energies above 5.2×1013eV. Although the popular QCD extrapolation of lower-energy physics offers the cross-section value of 0.54×10-31(Eν/1020eV)0.36cm2, new physics could raise or lower this value. Therefore, we present the acceptances of horizontal (HAS) and upgoing (UAS) air-showers as a function of σνNCC over the range 10-34 to 10-30cm2. The dependences of acceptances on neutrino energy, shower-threshold energy, shower length, and shower column density are also studied. We introduce a cloud layer, and study its effect on rates as viewed from space and from the ground. For UAS, we present acceptances for events over land (rock), and over the ocean (water). Acceptances over water are larger by about an order of magnitude, thus favoring space-based detectors. We revisit the idea of Kusenko and Weiler [Phys. Rev. Lett. 88, 161101 (2002)PRLTAO0031-900710.1103/PhysRevLett.88.161101] to infer σνNCC at Eν≳1020 from the ratio of HAS-to-UAS events, and obtain favorable results. Included in

  19. Mineral-Ground Micro-Fibrillated Cellulose Reinforcement for Polymer Compounds

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Phipps, Jon; Ireland, Sean; Skuse, David

    2017-01-01

    ORNL worked with Imerys to demonstrate reinforcement of additive manufacturing feedstock materials using mineral-ground microfibrillated cellulose (MFC). Properly prepared/dried mineral-ground cellulose microfibrils significantly improved mechanical properties of both ABS and PLA resins. While tensile strength increases up to ~40% were observed, elastic modulus of the both resins doubled with the addition of 30% MFC.

  20. Evaluation of two Vaisala RS92 radiosonde solar radiative dry bias correction algorithms

    DOE PAGES

    Dzambo, Andrew M.; Turner, David D.; Mlawer, Eli J.

    2016-04-12

    Solar heating of the relative humidity (RH) probe on Vaisala RS92 radiosondes results in a large dry bias in the upper troposphere. Two different algorithms (Miloshevich et al., 2009, MILO hereafter; and Wang et al., 2013, WANG hereafter) have been designed to account for this solar radiative dry bias (SRDB). These corrections are markedly different with MILO adding up to 40 % more moisture to the original radiosonde profile than WANG; however, the impact of the two algorithms varies with height. The accuracy of these two algorithms is evaluated using three different approaches: a comparison of precipitable water vapor (PWV),more » downwelling radiative closure with a surface-based microwave radiometer at a high-altitude site (5.3 km m.s.l.), and upwelling radiative closure with the space-based Atmospheric Infrared Sounder (AIRS). The PWV computed from the uncorrected and corrected RH data is compared against PWV retrieved from ground-based microwave radiometers at tropical, midlatitude, and arctic sites. Although MILO generally adds more moisture to the original radiosonde profile in the upper troposphere compared to WANG, both corrections yield similar changes to the PWV, and the corrected data agree well with the ground-based retrievals. The two closure activities – done for clear-sky scenes – use the radiative transfer models MonoRTM and LBLRTM to compute radiance from the radiosonde profiles to compare against spectral observations. Both WANG- and MILO-corrected RHs are statistically better than original RH in all cases except for the driest 30 % of cases in the downwelling experiment, where both algorithms add too much water vapor to the original profile. In the upwelling experiment, the RH correction applied by the WANG vs. MILO algorithm is statistically different above 10 km for the driest 30 % of cases and above 8 km for the moistest 30 % of cases, suggesting that the MILO correction performs better than the WANG in clear-sky scenes. Lastly, the

  1. Evaluation of two Vaisala RS92 radiosonde solar radiative dry bias correction algorithms

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Dzambo, Andrew M.; Turner, David D.; Mlawer, Eli J.

    Solar heating of the relative humidity (RH) probe on Vaisala RS92 radiosondes results in a large dry bias in the upper troposphere. Two different algorithms (Miloshevich et al., 2009, MILO hereafter; and Wang et al., 2013, WANG hereafter) have been designed to account for this solar radiative dry bias (SRDB). These corrections are markedly different with MILO adding up to 40 % more moisture to the original radiosonde profile than WANG; however, the impact of the two algorithms varies with height. The accuracy of these two algorithms is evaluated using three different approaches: a comparison of precipitable water vapor (PWV),more » downwelling radiative closure with a surface-based microwave radiometer at a high-altitude site (5.3 km m.s.l.), and upwelling radiative closure with the space-based Atmospheric Infrared Sounder (AIRS). The PWV computed from the uncorrected and corrected RH data is compared against PWV retrieved from ground-based microwave radiometers at tropical, midlatitude, and arctic sites. Although MILO generally adds more moisture to the original radiosonde profile in the upper troposphere compared to WANG, both corrections yield similar changes to the PWV, and the corrected data agree well with the ground-based retrievals. The two closure activities – done for clear-sky scenes – use the radiative transfer models MonoRTM and LBLRTM to compute radiance from the radiosonde profiles to compare against spectral observations. Both WANG- and MILO-corrected RHs are statistically better than original RH in all cases except for the driest 30 % of cases in the downwelling experiment, where both algorithms add too much water vapor to the original profile. In the upwelling experiment, the RH correction applied by the WANG vs. MILO algorithm is statistically different above 10 km for the driest 30 % of cases and above 8 km for the moistest 30 % of cases, suggesting that the MILO correction performs better than the WANG in clear-sky scenes. Lastly, the

  2. Effect of biomass open burning on particulate matter and polycyclic aromatic hydrocarbon concentration levels and PAH dry deposition in ambient air.

    PubMed

    Chiu, Jui C; Shen, Yun H; Li, Hsing W; Chang, Shun S; Wang, Lin C; Chang-Chien, Guo P

    2011-01-01

    The objectives of the present study were to investigate particulate matter (PM) and polycyclic aromatic hydrocarbon (PAH) concentrations in ambient air during rice straw open burning and non-open burning periods. In the ambient air of a rice field, the mean PM concentration during and after an open burning event were 1828 and 102 μg m⁻³, respectively, which demonstrates that during a rice field open burning event, the PM concentration in the ambient air of rice field is over 17 times higher than that of the non-open burning period. During an open burning event, the mean total PAH and total toxic equivalence (BaP(eq)) concentrations in the ambient air of a rice field were 7206 ng m⁻³ and 10.3 ng m⁻³, respectively, whereas after the open burning event, they were 376 ng m⁻³ and 1.50 ng m⁻³, respectively. Open burning thus increases total PAH and total BaP(eq) concentrations by 19-fold and 6.8-fold, respectively. During a rice straw open burning event, in the ambient air of a rice field, the mean dry deposition fluxes of total PAHs and total BaP(eq) were 1222 μg m⁻² day⁻¹ and 4.80 μg m⁻² day⁻¹, respectively, which are approximately 60- and 3-fold higher than those during the non-open burning period, respectively. During the non-open burning period, particle-bound PAHs contributed 79.2-84.2% of total dry deposition fluxes (gas + particle) of total PAHs. However, an open burning event increases the contribution to total PAH dry deposition by particle-bound PAHs by up to 85.9-95.5%. The results show that due to the increased amount of PM in the ambient air resulting from rice straw open burning, particle-bound PAHs contributed more to dry deposition fluxes of total PAHs than they do during non-open burning periods. The results show that biomass (rice straw) open burning is an important PAH emission source that significantly increases both PM and PAH concentration levels and PAH dry deposition in ambient air.

  3. Analysis of silage composition by near-infrared reflectance spectroscopy

    NASA Astrophysics Data System (ADS)

    Reeves, James B., III; Blosser, Timothy H.; Colenbrander, V. F.

    1991-02-01

    Two studies were performed to investigate the feasibility of using near infrared reflectance spectroscopy (NIRS) with undried silages. In the first study silages were analyzed for major components (e. g. dry matter crude protein and other forms of nitrogen fiber and in vitro digestible dry matter) and short chain fatty acids (SCFA). NIRS was found to operate satisfactorily except for some forms of nitrogen and SCFA. In study two various methods of grinding spectral regions and sample presentation were examined. Undried Wiley ground samples in a rectangular cell gave the best overall results for non-dry ice undried grinds with wavelengths between 1100 and 2498 nm. Silages scanned after drying however produced the best results. Intact samples did not perform as well as ground samples and wavelengths below 1100 nm were of little use. 2 .

  4. Optical Remote Sensing of Electric Fields Above Thunderstorms

    NASA Astrophysics Data System (ADS)

    Burns, B. M.; Carlson, B. E.; Lauben, D.; Cohen, M.; Smith, D.; Inan, U. S.

    2010-12-01

    Measurement of thunderstorm electric fields typically require balloon-borne measurements in the region of interest. Such measurements are cumbersome and provide limited information at a single point. Remote sensing of electric fields by Kerr-effect induced optical polarization changes of background skylight circumvents many of these difficulties and can in principle provide a high-speed movie of electric field behavior. Above-thundercloud 100 kV/m quasi-static electric fields are predicted to produce polarization changes at above the part in one million level that should be detectable at a ground instrument featuring 1 cm2sr geometric factor and 1 kHz bandwidth (though more sensitivity is nonetheless desired). Currently available optical and electronic components may meet these requirements. We review the principles of this measurement and discuss the current status of a field-ready prototype instrument currently in construction.

  5. Dry wind tunnel system

    NASA Technical Reports Server (NTRS)

    Chen, Ping-Chih (Inventor)

    2013-01-01

    This invention is a ground flutter testing system without a wind tunnel, called Dry Wind Tunnel (DWT) System. The DWT system consists of a Ground Vibration Test (GVT) hardware system, a multiple input multiple output (MIMO) force controller software, and a real-time unsteady aerodynamic force generation software, that is developed from an aerodynamic reduced order model (ROM). The ground flutter test using the DWT System operates on a real structural model, therefore no scaled-down structural model, which is required by the conventional wind tunnel flutter test, is involved. Furthermore, the impact of the structural nonlinearities on the aeroelastic stability can be included automatically. Moreover, the aeroservoelastic characteristics of the aircraft can be easily measured by simply including the flight control system in-the-loop. In addition, the unsteady aerodynamics generated computationally is interference-free from the wind tunnel walls. Finally, the DWT System can be conveniently and inexpensively carried out as a post GVT test with the same hardware, only with some possible rearrangement of the shakers and the inclusion of additional sensors.

  6. Synthesis and characterization of nanocrystalline mesoporous zirconia using supercritical drying.

    PubMed

    Tyagi, Beena; Sidhpuria, Kalpesh; Shaik, Basha; Jasra, Raksh Vir

    2006-06-01

    Synthesis of nano-crystalline zirconia aerogel was done by sol-gel technique and supercritical drying using n-propanol solvent at and above supercritical temperature (235-280 degrees C) and pressure (48-52 bar) of n-propanol. Zirconia xerogel samples have also been prepared by conventional thermal drying method to compare with the super critically dried samples. Crystalline phase, crystallite size, surface area, pore volume, and pore size distribution were determined for all the samples in detail to understand the effect of gel drying methods on these properties. Supercritical drying of zirconia gel was observed to give thermally stable, nano-crystalline, tetragonal zirconia aerogels having high specific surface area and porosity with narrow and uniform pore size distribution as compared to thermally dried zirconia. With supercritical drying, zirconia samples show the formation of only mesopores whereas in thermally dried samples, substantial amount of micropores are observed along with mesopores. The samples prepared using supercritical drying yield nano-crystalline zirconia with smaller crystallite size (4-6 nm) as compared to higher crystallite size (13-20 nm) observed with thermally dried zirconia.

  7. Fiberboard created using the natural adhesive properties of distillers dried grains with solubles

    USDA-ARS?s Scientific Manuscript database

    Distillers dried grains with solubles (DDGS) were employed as a bio-based resin/adhesive. DDGS were defatted with hexane, ball ground and screened prior to use. DDGS flour was mixed dry with Paulownia wood (PW) to make composites using the following conditions: temperature of 150-195 oC, PW particle...

  8. A cost effective and operational methodology for wall to wall Above Ground Biomass (AGB) and carbon stocks estimation and mapping: Nepal REDD+

    NASA Astrophysics Data System (ADS)

    Gilani, H., Sr.; Ganguly, S.; Zhang, G.; Koju, U. A.; Murthy, M. S. R.; Nemani, R. R.; Manandhar, U.; Thapa, G. J.

    2015-12-01

    Nepal is a landlocked country with 39% forest cover of the total land area (147,181 km2). Under the Forest Carbon Partnership Facility (FCPF) and implemented by the World Bank (WB), Nepal chosen as one of four countries best suitable for results-based payment system for Reducing Emissions from Deforestation and Forest Degradation (REDD and REDD+) scheme. At the national level Landsat based, from 1990 to 2000 the forest area has declined by 2%, i.e. by 1467 km2, whereas from 2000 to 2010 it has declined only by 0.12% i.e. 176 km2. A cost effective monitoring and evaluation system for REDD+ requires a balanced approach of remote sensing and ground measurements. This paper provides, for Nepal a cost effective and operational 30 m Above Ground Biomass (AGB) estimation and mapping methodology using freely available satellite data integrated with field inventory. Leaf Area Index (LAI) generated based on propose methodology by Ganguly et al. (2012) using Landsat-8 the OLI cloud free images. To generate tree canopy height map, a density scatter graph between the Geoscience Laser Altimeter System (GLAS) on the Ice, Cloud, and Land Elevation Satellite (ICESat) estimated maximum height and Landsat LAI nearest to the center coordinates of the GLAS shots show a moderate but significant exponential correlation (31.211*LAI0.4593, R2= 0.33, RMSE=13.25 m). From the field well distributed circular (750m2 and 500m2), 1124 field plots (0.001% representation of forest cover) measured which were used for estimation AGB (ton/ha) using Sharma et al. (1990) proposed equations for all tree species of Nepal. A satisfactory linear relationship (AGB = 8.7018*Hmax-101.24, R2=0.67, RMSE=7.2 ton/ha) achieved between maximum canopy height (Hmax) and AGB (ton/ha). This cost effective and operational methodology is replicable, over 5-10 years with minimum ground samples through integration of satellite images. Developed AGB used to produce optimum fuel wood scenarios using population and road

  9. Microwave signatures of ice hydrometeors from ground-based observations above Summit, Greenland

    DOE PAGES

    Pettersen, Claire; Bennartz, Ralf; Kulie, Mark S.; ...

    2016-04-15

    Multi-instrument, ground-based measurements provide unique and comprehensive data sets of the atmosphere for a specific location over long periods of time and resulting data compliment past and existing global satellite observations. Our paper explores the effect of ice hydrometeors on ground-based, high-frequency passive microwave measurements and attempts to isolate an ice signature for summer seasons at Summit, Greenland, from 2010 to 2013. Furthermore, data from a combination of passive microwave, cloud radar, radiosonde, and ceilometer were examined to isolate the ice signature at microwave wavelengths. By limiting the study to a cloud liquid water path of 40 g m -2more » or less, the cloud radar can identify cases where the precipitation was dominated by ice. These cases were examined using liquid water and gas microwave absorption models, and brightness temperatures were calculated for the high-frequency microwave channels: 90, 150, and 225GHz. By comparing the measured brightness temperatures from the microwave radiometers and the calculated brightness temperature using only gas and liquid contributions, any residual brightness temperature difference is due to emission and scattering of microwave radiation from the ice hydrometeors in the column. The ice signature in the 90, 150, and 225 GHz channels for the Summit Station summer months was isolated. Then, this measured ice signature was compared to an equivalent brightness temperature difference calculated with a radiative transfer model including microwave single-scattering properties for several ice habits. Furthermore, initial model results compare well against the 4 years of summer season isolated ice signature in the high-frequency microwave channels.« less

  10. Above-ground biomass and carbon estimates of Shorea robusta and Tectona grandis forests using QuadPOL ALOS PALSAR data

    NASA Astrophysics Data System (ADS)

    Behera, M. D.; Tripathi, P.; Mishra, B.; Kumar, Shashi; Chitale, V. S.; Behera, Soumit K.

    2016-01-01

    Mechanisms to mitigate climate change in tropical countries such as India require information on forest structural components i.e., biomass and carbon for conservation steps to be implemented successfully. The present study focuses on investigating the potential use of a one time, QuadPOL ALOS PALSAR L-band 25 m data to estimate above-ground biomass (AGB) using a water cloud model (WCM) in a wildlife sanctuary in India. A significant correlation was obtained between the SAR-derived backscatter coefficient (σ°) and the field measured AGB, with the maximum coefficient of determination for cross-polarized (HV) σ° for Shorea robusta, and the weakest correlation was observed with co-polarized (HH) σ° for Tectona grandis forests. The biomass of S. robusta and that of T. grandis were estimated on the basis of field-measured data at 444.7 ± 170.4 Mg/ha and 451 ± 179.4 Mg/ha respectively. The mean biomass values estimated using the WCM varied between 562 and 660 Mg/ha for S. robusta; between 590 and 710 Mg/ha for T. grandis using various polarized data. Our results highlighted the efficacy of one time, fully polarized PALSAR data for biomass and carbon estimate in a dense forest.

  11. 4. BUNKER HILL LEAD SMELTER. VIEW IS FROM RIDGE ABOVE ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    4. BUNKER HILL LEAD SMELTER. VIEW IS FROM RIDGE ABOVE GOVERNMENT GULCH LOOKING TO THE EAST. IN THE RIGHT MID GROUND, CARPENTER SHOP BUILDINGS AND FRAMING SHEDS ARE VISIBLE. THE BACKGROUND FACILITIES VISIBLE FROM L. TO R. ARE: SMELTER OFFICE, REFINERIES, SLAG FUMING STACKS, HIGH VELOCITY FLUE, BAG HOUSE, 200-FOOT STACK, AND 715-FOOT STACK. - Bunker Hill Lead Smelter, Bradley Rail Siding, Kellogg, Shoshone County, ID

  12. The Southern African Regional Science Initiative (SAFARI 2000). Dry-Season Campaign: An Overview

    NASA Technical Reports Server (NTRS)

    Swap, R. J.; Annegarn, H. J.; Suttles, J. T.; Haywood, J.; Hely, C.; Hobbs, P. V.; Holben, B. N.; Ji, J.; King, M. D.; Bhartia, P. K. (Technical Monitor)

    2002-01-01

    The Southern African Regional Science Initiative (SAFARI 2000) is an international science project investigating the southern African earth-atmosphere-human system. The experiment was conducted over a two-year period March 1999 - March 2001. The dry season field campaign (August-Steptember 2000) was the most intensive activity and involving over 200 scientists from 18 different nations. The main objectives of this campaign were to characterize and quantify the biogenic, pyrogenic and anthropogenic aerosol and trace gas emissions and their transport and transformations in the atmosphere and to validate the NASA Earth Observing System (EOS) satellite Terra within a scientific context. Five aircraft, namely two South African Weather Service aircraft, University of Washington CV-580, the UK Meteorological Office C-130 and the NASA ER-2, with different altitude capabilities, participated in the campaign. Additional airborne sampling of southern African air masses that had moved downwind of the subcontinent was conducted by the CSIRO over Australia. Multiple observations were taken in various sectors for a variety of synoptic conditions. Flight missions were designed to maximize synchronous over-flights of the NASA TERRA satellite platform, above regional ground validation and science targets. Numerous smaller-scale ground validation activities took place throughout the region during the campaign period.

  13. The surface area of soil organic matter

    USGS Publications Warehouse

    Chiou, C.T.; Lee, J.-F.; Boyd, S.A.

    1990-01-01

    The previously reported surface area for soil organic matter (SOM) of 560-800 m2/g as determined by the ethylene glycol (EG) retention method was reexamined by the standard BET method based on nitrogen adsorption at liquid nitrogen temperature. Test samples consisted of two high organic content soils, a freeze-dried soil humic acid, and an oven-dried soil humic acid. The measured BET areas for these samples were less than 1 m2/g, except for the freeze-dried humic acid. The results suggest that surface adsorption of nonionic organic compounds by SOM is practically insignificant in comparison to uptake by partition. The discrepancy between the surface areas of SOM obtained by BET and EG methods was explained in terms of the 'free surface area' and the 'apparent surface area' associated with these measurements.The previously reported surface area for soil organic matter (SOM) of 560-800 m2/g as determined by the ethylene glycol (EG) retention method was reexamined by the standard BET method based on nitrogen adsorption at liquid nitrogen temperature. Test samples consisted of two high organic content soils, a freeze-dried soil humic acid, and an oven-dried soil humic acid. The measured BET areas for these samples were less than 1 m2/g, except for the freeze-dried humic acid. The results suggest that surface adsorption of nonionic organic compounds by SOM is practically insignificant in comparison to uptake by partition. The discrepancy between the surface areas of SOM obtained by BET and EG methods was explained in terms of the 'free surface area' and the 'apparent surface area' associated with these measurements.

  14. A modified dynamical model of drying process of polymer blend solution coated on a flat substrate

    NASA Astrophysics Data System (ADS)

    Kagami, Hiroyuki

    2008-05-01

    We have proposed and modified a model of drying process of polymer solution coated on a flat substrate for flat polymer film fabrication. And for example numerical simulation of the model reproduces a typical thickness profile of the polymer film formed after drying. Then we have clarified dependence of distribution of polymer molecules on a flat substrate on a various parameters based on analysis of numerical simulations. Then we drove nonlinear equations of drying process from the dynamical model and the fruits were reported. The subject of above studies was limited to solution having one kind of solute though the model could essentially deal with solution having some kinds of solutes. But nowadays discussion of drying process of a solution having some kinds of solutes is needed because drying process of solution having some kinds of solutes appears in many industrial scenes. Polymer blend solution is one instance. And typical resist consists of a few kinds of polymers. Then we introduced a dynamical model of drying process of polymer blend solution coated on a flat substrate and results of numerical simulations of the dynamical model. But above model was the simplest one. In this study, we modify above dynamical model of drying process of polymer blend solution adding effects that some parameters change with time as functions of some variables to it. Then we consider essence of drying process of polymer blend solution through comparison between results of numerical simulations of the modified model and those of the former model.

  15. Recovery of Waste Heat from Propellant Forced-Air Dry House

    DTIC Science & Technology

    1978-12-01

    function of bulk air side film heat transfer coefficient and diffusivity 66 15. Dry house waste heat recovery system instrumentation 67 16. Sample data...inlet condition by, maintaining the exhaust temperature above the NG dew point. The set point is adjustable to accommodate various propel- lant and...system. In dry cycle operation, an overall energy recovery effectiveness of about 40% was measured for winter operation when the exhaust temperature

  16. Tundra plant above-ground biomass and shrub dominance mapped across the North Slope of Alaska

    NASA Astrophysics Data System (ADS)

    Berner, Logan T.; Jantz, Patrick; Tape, Ken D.; Goetz, Scott J.

    2018-03-01

    Arctic tundra is becoming greener and shrubbier due to recent warming. This is impacting climate feedbacks and wildlife, yet the spatial distribution of plant biomass in tundra ecosystems is uncertain. In this study, we mapped plant and shrub above-ground biomass (AGB; kg m-2) and shrub dominance (%; shrub AGB/plant AGB) across the North Slope of Alaska by linking biomass harvests at 28 field sites with 30 m resolution Landsat satellite imagery. We first developed regression models (p < 0.01) to predict plant AGB (r 2 = 0.79) and shrub AGB (r 2 = 0.82) based on the normalized difference vegetation index (NDVI) derived from imagery acquired by Landsat 5 and 7. We then predicted regional plant and shrub AGB by combining these regression models with a regional Landsat NDVI mosaic built from 1721 summer scenes acquired between 2007 and 2016. Our approach employed a Monte Carlo uncertainty analysis that propagated sampling and sensor calibration errors. We estimated that plant AGB averaged 0.74 (0.60, 0.88) kg m-2 (95% CI) and totaled 112 (91, 135) Tg across the region, with shrub AGB accounting for ~43% of regional plant AGB. The new maps capture landscape variation in plant AGB visible in high resolution satellite and aerial imagery, notably shrubby riparian corridors. Modeled shrub AGB was strongly correlated with field measurements of shrub canopy height at 25 sites (rs  = 0.88) and with a regional map of shrub cover (rs  = 0.76). Modeled plant AGB and shrub dominance were higher in shrub tundra than graminoid tundra and increased between areas with the coldest and warmest summer air temperatures, underscoring the fact that future warming has the potential to greatly increase plant AGB and shrub dominance in this region. These new biomass maps provide a unique source of ecological information for a region undergoing rapid environmental change.

  17. Sensitivity of Above-Ground Biomass Estimates to Height-Diameter Modelling in Mixed-Species West African Woodlands

    PubMed Central

    Aynekulu, Ermias; Pitkänen, Sari; Packalen, Petteri

    2016-01-01

    It has been suggested that above-ground biomass (AGB) inventories should include tree height (H), in addition to diameter (D). As H is a difficult variable to measure, H-D models are commonly used to predict H. We tested a number of approaches for H-D modelling, including additive terms which increased the complexity of the model, and observed how differences in tree-level predictions of H propagated to plot-level AGB estimations. We were especially interested in detecting whether the choice of method can lead to bias. The compared approaches listed in the order of increasing complexity were: (B0) AGB estimations from D-only; (B1) involving also H obtained from a fixed-effects H-D model; (B2) involving also species; (B3) including also between-plot variability as random effects; and (B4) involving multilevel nested random effects for grouping plots in clusters. In light of the results, the modelling approach affected the AGB estimation significantly in some cases, although differences were negligible for some of the alternatives. The most important differences were found between including H or not in the AGB estimation. We observed that AGB predictions without H information were very sensitive to the environmental stress parameter (E), which can induce a critical bias. Regarding the H-D modelling, the most relevant effect was found when species was included as an additive term. We presented a two-step methodology, which succeeded in identifying the species for which the general H-D relation was relevant to modify. Based on the results, our final choice was the single-level mixed-effects model (B3), which accounts for the species but also for the plot random effects reflecting site-specific factors such as soil properties and degree of disturbance. PMID:27367857

  18. Light Diffusion in the Tropical Dry Forest of Costa Rica

    NASA Astrophysics Data System (ADS)

    Calvo-Rodriguez, S.; Sanchez-Azofeifa, G. A.

    2016-06-01

    Leaf Area Index (LAI) has been defined as the total leaf area (one-sided) in relation to the ground. LAI has an impact on tree growth and recruitment through the interception of light, which in turn affects primary productivity. Even though many instruments exist for estimating LAI from ground, they are often laborious and costly to run continuously. Measurements of LAI from the field using traditional sensors (e.g., LAI-2000) require multiple visits to the field under very specific sky conditions, making them unsuitable to operate in inaccessible areas and forests with dense vegetation, as well as areas where persistent sunny conditions are the norm like tropical dry forests. With this context, we proposed a methodology to characterize light diffusion based on NDVI and LAI measurements taken from the field in two successional stages in the tropical dry forest of Santa Rosa National Park in Costa Rica. We estimate a "K" coefficient to characterize light diffusion by the canopy, based on field NDVI measurements derived from optical phenology instruments and MODIS NDVI. From the coefficients determined, we estimated LAI values and compared them with ground measurements of LAI. In both successional stages ground measurements of LAI had no significant difference to the tower-derived LAI and the estimated LAI from MODIS NDVI.

  19. Characterization and source identification of organic matter in view of land uses and heavy rainfall in the Lake Shihwa, Korea.

    PubMed

    Lee, Yeonjung; Hur, Jin; Shin, Kyung-Hoon

    2014-07-15

    The characteristics and sources of organic matter in water of the Lake Shihwa, which receives inputs from rural, urban, and industrial areas, were evaluated by examining the biodegradable organic carbon concentration, fluorescence spectra, and carbon and nitrogen isotope ratios, especially during rainy season and dry season. The organic matter transported from rural areas was of refractory nature, while that of industrial origin decomposed rapidly. As compared to the dry season, the organic matter in the rainy season was characterized by a reduced labile fraction. During the dry season, the autochthonous organic matter dominated in the lake, however, the contributions of allochthonous organic sources by industrial and rural areas significantly increased at rainy season. This investigation revealed that the transport of organic matter of anthropogenic origin to the Lake Shihwa was mainly influenced by heavy rainfall. Moreover, each anthropogenic source could differently influence the occurrence of organic matter in water of the Lake Shihwa. Copyright © 2014 Elsevier Ltd. All rights reserved.

  20. Ground-Cover Measurements: Assessing Correlation Among Aerial and Ground-Based Methods

    NASA Astrophysics Data System (ADS)

    Booth, D. Terrance; Cox, Samuel E.; Meikle, Tim; Zuuring, Hans R.

    2008-12-01

    Wyoming’s Green Mountain Common Allotment is public land providing livestock forage, wildlife habitat, and unfenced solitude, amid other ecological services. It is also the center of ongoing debate over USDI Bureau of Land Management’s (BLM) adjudication of land uses. Monitoring resource use is a BLM responsibility, but conventional monitoring is inadequate for the vast areas encompassed in this and other public-land units. New monitoring methods are needed that will reduce monitoring costs. An understanding of data-set relationships among old and new methods is also needed. This study compared two conventional methods with two remote sensing methods using images captured from two meters and 100 meters above ground level from a camera stand (a ground, image-based method) and a light airplane (an aerial, image-based method). Image analysis used SamplePoint or VegMeasure software. Aerial methods allowed for increased sampling intensity at low cost relative to the time and travel required by ground methods. Costs to acquire the aerial imagery and measure ground cover on 162 aerial samples representing 9000 ha were less than 3000. The four highest correlations among data sets for bare ground—the ground-cover characteristic yielding the highest correlations (r)—ranged from 0.76 to 0.85 and included ground with ground, ground with aerial, and aerial with aerial data-set associations. We conclude that our aerial surveys are a cost-effective monitoring method, that ground with aerial data-set correlations can be equal to, or greater than those among ground-based data sets, and that bare ground should continue to be investigated and tested for use as a key indicator of rangeland health.

  1. Inflatable Dark Matter.

    PubMed

    Davoudiasl, Hooman; Hooper, Dan; McDermott, Samuel D

    2016-01-22

    We describe a general scenario, dubbed "inflatable dark matter," in which the density of dark matter particles can be reduced through a short period of late-time inflation in the early Universe. The overproduction of dark matter that is predicted within many, otherwise, well-motivated models of new physics can be elegantly remedied within this context. Thermal relics that would, otherwise, be disfavored can easily be accommodated within this class of scenarios, including dark matter candidates that are very heavy or very light. Furthermore, the nonthermal abundance of grand unified theory or Planck scale axions can be brought to acceptable levels without invoking anthropic tuning of initial conditions. A period of late-time inflation could have occurred over a wide range of scales from ∼MeV to the weak scale or above, and could have been triggered by physics within a hidden sector, with small but not necessarily negligible couplings to the standard model.

  2. Effects of growth stage and growing degree day accumulations on triticale forages: 1) Dry matter yield, nutritive value, and in-vitro dry matter disappearance

    USDA-ARS?s Scientific Manuscript database

    The use of triticale (X Triticosecale Wittmack) in dairy-cropping systems has expanded greatly in recent years, partly to improve land stewardship by providing winter ground cover. Our objectives were to establish relationships relating indices of nutritive value with growth stage or accumulated gro...

  3. Superconductivity above the lowest Earth temperature in pressurized sulfur hydride

    NASA Astrophysics Data System (ADS)

    Bianconi, Antonio; Jarlborg, Thomas

    2015-11-01

    A recent experiment has shown a macroscopic quantum coherent condensate at 203 K, about 19 degrees above the coldest temperature recorded on the Earth surface, 184 K (-89.2 ^\\circ \\text{C}, -128.6 ^\\circ \\text{F}) in pressurized sulfur hydride. This discovery is relevant not only in material science and condensed matter but also in other fields ranging from quantum computing to quantum physics of living matter. It has given the start to a gold rush looking for other macroscopic quantum coherent condensates in hydrides at the temperature range of living matter 200c <400 \\text{K} . We present here a review of the experimental results and the theoretical works and we discuss the Fermiology of \\text{H}3\\text{S} focusing on Lifshitz transitions as a function of pressure. We discuss the possible role of the shape resonance near a neck disrupting Lifshitz transition, in the Bianconi-Perali-Valletta (BPV) theory, for rising the critical temperature in a multigap superconductor, as the Feshbach resonance rises the critical temperature in Fermionic ultracold gases.

  4. Micronutrient mineral and folate content of Australian and imported dried fruit products.

    PubMed

    Bennett, Louise E; Singh, Davinder P; Clingeleffer, Peter R

    2011-01-01

    A selection of Australian and imported fresh and dried fruit products, including sultanas, Sunmuscats, Carina currants, Zante currants, apricots, and prunes, were analyzed for selected minerals (Ca, Mg, Na, S, B, Al, Fe, Mn, Cu, Zn, Mo, and Se), folate and vitamin C, and the capacity of dried fruits for dietary provision of these micronutrients evaluated. Micro-nutrients were concentrated by a factor of 3-5 in dried fruits compared with their fresh fruit counterparts and were consequently present in nutritionally significant levels, in contrast to fresh fruit. Australian dried sultanas, Carina currant, Zante currant, apricots, and prunes contained Cu, Fe, K, and Mn at levels of >20% of daily Required Dietary Intake (RDI, taken as the average for adult men and women as nominated by the Australian National Health and Medical Research Council) and Sunmuscats contained Cu, Fe, and K at >20% of RDI. All dried fruits studied contained boron in the range of 1.5 to 5.4 mg per 100 g; however, the RDI for boron has not been defined by the NHMRC at the present time. All sultanas and currants studied contained folate at levels of 10-20% of RDI per 100 g. Experimental drying methods significantly affected folate levels with higher folate content in non-ground versus ground-based drying methods. Of the micro-nutrients supplying >20% of RDI, folate represents a particular nutrient for which the mean daily intake of adult Australians is typically inadequate. This study shows that dried fruit consumption, in contrast with fresh fruit, can provide significant proportions of daily requirements of several micronutrients, particularly folate.

  5. Fecal bulk, energy intake, and serum cholesterol: regression response of serum cholesterol to apparent digestibility of dry matter and suboptimal energy intake in rats on fiber-fat diet.

    PubMed

    Normani, M Z; Hussain, S S; Lim, J K; Albrink, M J; Gunnells, C K; Davis, G K

    1981-10-01

    Two experiments were conducted in the rat to determine the relationships of serum cholesterol (SC, mg/dl), apparent digestibility of dry matter (DDM, %), and digested energy intake (DE, kcal/day) at suboptimal level of energy. The energies in diet and feces were determined by calorimetry. DE as percentage of the National Research Council requirement (DE%) was suboptimal (70 to 85%). The experiments had four to five isofibrous diets, and no fiber diets, supplemented with 0.2% crystalline cholesterol (CChol). Animals in experiment 1 were fed varying amounts of feed with 18% coconut oil in the diets where as these in experiment 2 were given fixed amounts of feed with either 6 or 18% oil. The following regressions (p less than 0.001) for SC were found: experiment 1: -1157.7 -5.97 DDM +105.5 CCI -1.48 CCI2 (r2 0.35), where CCI = CChol, mg/day; -1888.4 -2.66 DE +120.97 CCI -1.62 CCI2 (r2 0.37). Experiment 2: 762.99 -6.15 DDM -0.8 fat cal % -0.87DE% (r2 0.31), where fat cal % = fat calories % of DE. Data indicate that at suboptimal energy intake, SC was inversely related to (1) DDM, (2) fat cal, and (3) total energy intake. Liver cholesterol lowering effect of the dietary fiber was also observed. The above findings help to elucidate various conflicting reports related to diet and blood cholesterol.

  6. Total folate content and retention in rosehips (Rosa ssp.) after drying.

    PubMed

    Strålsjö, Lena; Alklint, Charlotte; Olsson, Marie E; Sjöholm, Ingegerd

    2003-07-16

    Folate concentrations in rosehips and commercial rosehip products and factors affecting folate retention during drying were investigated. On the basis of the raw material studied during 3 years, rosehips were shown to be a rich folate source, 400-600 microg/100 g based on dry matter and 160-185 microg/100 g based on the fresh weight (edible part). Rosehips are not often consumed fresh; therefore, drying to produce stable semimanufactures is a crucial step. The degradation of folate was shown to be dependent on the drying time until the water activity was below 0.75. The required drying time was reduced by cutting the rosehips in slices and to some extent also by increasing the temperature. Retention of folate and ascorbic acid was affected by the same factors, and high content of ascorbic acid could provide a possible protection for folate degradation.

  7. A sustainable approach towards rural development: dry toilets in Nepal.

    PubMed

    Regmi, M R

    2005-01-01

    Existing inadequate sewerage systems and direct disposal of household waste into water courses has tremendously increased water pollution. Dry toilets are feasible in rural and peri-urban areas to reduce the consumption of costlier water that is required for flushing. As conventional treatment technologies require high investment, and operation and maintenance costs, dry toilets are the only suitable option left for sanitation in the 21st century when working with limited financial resources. To reduce environmental degradation and overcome this problem, the dry toilet is only the realistic option in Nepal. Two reactors, one exposed to sunrays and the other without sunrays, were constructed. In the model with sunrays, it was found that in 48 days of observation faecal coliform presence depleted to 610 cells per gm from the initial value of 7 x 10(10) and volatile organic matter came down from 98.09% to 70.18%. Similarly, in the other model, the destruction of faecal coliform in 65 days was found to be 920 cells/gm while the destruction of organic matter took 75 days. Also, observing from 313 people in a cluster on the pilot project, the annually recovered value of N, P and K was found to be 1565 kg, 125 kg, 344 kg, respectively. This paper deals with the different types of dry ecological toilet, their performance and feasibility study in Nepal, with the full involvement of local people, based on complete laboratory analysis and regular monitoring. Using dry toilets will save 14 LPCD, which is equivalent to 14 MLD and the resulting demand will become only 80 MLD for the urban area of Kathmandu. The result advocates the implementation of ecological dry toilets to save valuable water wasted in flushing, as well as saving the resources needed to treat the waste.

  8. Moisture in untreated, a cetylated, and furfurylated Norway spruce studied during drying using time domain NMR

    Treesearch

    Lisabeth G. Thygesen; Thomas Elder

    2008-01-01

    Using time domain NMR, the moisture in Norway spruce (Picea abies (L.) Karst.) sapwood subjected to four different treatments (never-dried, dried and remoistened, acetylated, and furfurylated) was studied during drying at 40°C, at sample average moisture contents above fiber saturation. Spin-spin relaxation time distributions were derived from CPMG...

  9. Using simple environmental variables to estimate below-ground productivity in grasslands

    USGS Publications Warehouse

    Gill, R.A.; Kelly, R.H.; Parton, W.J.; Day, K.A.; Jackson, R.B.; Morgan, J.A.; Scurlock, J.M.O.; Tieszen, L.L.; Castle, J.V.; Ojima, D.S.; Zhang, X.S.

    2002-01-01

    In many temperate and annual grasslands, above-ground net primary productivity (NPP) can be estimated by measuring peak above-ground biomass. Estimates of below-ground net primary productivity and, consequently, total net primary productivity, are more difficult. We addressed one of the three main objectives of the Global Primary Productivity Data Initiative for grassland systems to develop simple models or algorithms to estimate missing components of total system NPP. Any estimate of below-ground NPP (BNPP) requires an accounting of total root biomass, the percentage of living biomass and annual turnover of live roots. We derived a relationship using above-ground peak biomass and mean annual temperature as predictors of below-ground biomass (r2 = 0.54; P = 0.01). The percentage of live material was 0.6, based on published values. We used three different functions to describe root turnover: constant, a direct function of above-ground biomass, or as a positive exponential relationship with mean annual temperature. We tested the various models against a large database of global grassland NPP and the constant turnover and direct function models were approximately equally descriptive (r2 = 0.31 and 0.37), while the exponential function had a stronger correlation with the measured values (r2 = 0.40) and had a better fit than the other two models at the productive end of the BNPP gradient. When applied to extensive data we assembled from two grassland sites with reliable estimates of total NPP, the direct function was most effective, especially at lower productivity sites. We provide some caveats for its use in systems that lie at the extremes of the grassland gradient and stress that there are large uncertainties associated with measured and modelled estimates of BNPP.

  10. 33 CFR 110.190 - Tortugas Harbor, in vicinity of Garden Key, Dry Tortugas, Fla.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... Garden Key, Dry Tortugas, Fla. 110.190 Section 110.190 Navigation and Navigable Waters COAST GUARD..., in vicinity of Garden Key, Dry Tortugas, Fla. (a) The anchorage grounds. All of Bird Key Harbor, southwest of Garden Key, bounded by the surrounding reefs and shoals and, on the northeast, by a line...

  11. 33 CFR 110.190 - Tortugas Harbor, in vicinity of Garden Key, Dry Tortugas, Fla.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... Garden Key, Dry Tortugas, Fla. 110.190 Section 110.190 Navigation and Navigable Waters COAST GUARD..., in vicinity of Garden Key, Dry Tortugas, Fla. (a) The anchorage grounds. All of Bird Key Harbor, southwest of Garden Key, bounded by the surrounding reefs and shoals and, on the northeast, by a line...

  12. 33 CFR 110.190 - Tortugas Harbor, in vicinity of Garden Key, Dry Tortugas, Fla.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... Garden Key, Dry Tortugas, Fla. 110.190 Section 110.190 Navigation and Navigable Waters COAST GUARD..., in vicinity of Garden Key, Dry Tortugas, Fla. (a) The anchorage grounds. All of Bird Key Harbor, southwest of Garden Key, bounded by the surrounding reefs and shoals and, on the northeast, by a line...

  13. 33 CFR 110.190 - Tortugas Harbor, in vicinity of Garden Key, Dry Tortugas, Fla.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... Garden Key, Dry Tortugas, Fla. 110.190 Section 110.190 Navigation and Navigable Waters COAST GUARD..., in vicinity of Garden Key, Dry Tortugas, Fla. (a) The anchorage grounds. All of Bird Key Harbor, southwest of Garden Key, bounded by the surrounding reefs and shoals and, on the northeast, by a line...

  14. 33 CFR 110.190 - Tortugas Harbor, in vicinity of Garden Key, Dry Tortugas, Fla.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... Garden Key, Dry Tortugas, Fla. 110.190 Section 110.190 Navigation and Navigable Waters COAST GUARD..., in vicinity of Garden Key, Dry Tortugas, Fla. (a) The anchorage grounds. All of Bird Key Harbor, southwest of Garden Key, bounded by the surrounding reefs and shoals and, on the northeast, by a line...

  15. Guide to North Dakota's ground-water resources

    USGS Publications Warehouse

    Paulson, Q.F.

    1983-01-01

    Ground water, the water we pump from the Earth through wells or that which flows naturally from springs, is one of North Dakota's most valuable resources. More than 60 percent of the people living in the State use ground water for one purpose of another. It is the only source of water for thousands of farm families and their livestock. Almost all smaller cities and villages depend solely on groudn water as a source of supply. Increasingly, ground water is being used to irrigate crops and grasslands (fig. 1) during protracted dry spells so common in North Dakota. During recent years there has been a rapid development of rural water ditribution systems in which thousands of farms and rurals residences are connected via underground pipeline to a single water source, usually wells pumping ground water.

  16. Diallel analysis of provitamin A carotenoid and dry matter content in cassava (Manihot esculenta Crantz)

    PubMed Central

    Esuma, Williams; Kawuki, Robert S.; Herselman, Liezel; Labuschagne, Maryke Tine

    2016-01-01

    Global efforts are underway to biofortify cassava (Manihot esculenta Crantz) with provitamin A carotenoids to help combat dietary vitamin A deficiency afflicting the health of more than 500 million resource-poor people in Sub-Saharan Africa. To further the biofortification initiative in Uganda, a 6×6 diallel analysis was conducted to estimate combining ability of six provitamin A clones and gene actions controlling total carotenoid content (TCC), dry matter content (DMC) in cassava roots and other relevant traits. Fifteen F1 families generated from the diallel crosses were evaluated in two environments using a randomized complete block design. General combining ability (GCA) effects were significant for TCC and DMC, suggesting the relative importance of additive gene effects in controlling these traits in cassava. On the other hand, non-additive effects were predominant for root and shoot weight. MH02-073HS, with the highest level of TCC, was the best general combiner for TCC while NASE 3, a popular white-fleshed variety grown by farmers in Uganda, was the best general combiner for DMC. Such progenitors with superior GCA effects could form the genetic source for future programs targeting cassava breeding for TCC and DMC. A negative correlation was observed between TCC and DMC, which will require breeding strategies to combine both traits for increased adoption of provitamin A cassava varieties. PMID:27795688

  17. [Dry toilets: a means of alternative sanitation].

    PubMed

    García-Ubaque, César A; Vaca-Bohórquez, Martha L; García-Ubaque, Juan C

    2014-01-01

    Evaluating dry toilet use in a rural area of Colombia. Fifteen families were selected by convenience sampling from the rural area of a municipality in the Cundinamarca department in Colombia. A dry (composting) toilet was installed in one house and used for demonstration purposes over a five-month period. An ex-post evaluation was made concerning technical and economic matters. A dry toilet is easy to construct/install and has environmental benefits associated with less contamination of water sources reduction and a reduced amount of chemical fertilizer. Dry toilets’ construction and operating costs may represent savings of Col$616973456 (US$308487) in the municipality being studied, compared to the costs involved in conventional toilet use. However, cultural barriers were found regarding their use. A large percentage of households in many countries’ rural sectors do not have a sewerage system for disposing of human waste. This situation creates significant challenges regarding environmental health and ecosystem conservation. Dry toilets represent an environmentally-acceptable solution from a technical and economic perspective; however, work is required concerning social and cultural factors producing cultural perceptions and prejudices about handling excreta to provide the necessary coverage and produce a significant impact on people’s awareness.

  18. Completing below-ground carbon budgets for pastures, recovering forests, and mature forests of Amazonia

    NASA Technical Reports Server (NTRS)

    Davidson, Eric A.; Nepstad, Daniel C.; Trumbore, Susan E.

    1994-01-01

    The objective of this grant was to complete below-ground carbon budgets for pastures and forest soils in the Amazon. Profiles of radon and carbon dioxide were used to estimate depth distribution of CO2 production in soil. This information is necessary for determining the importance of deep roots as sources of carbon inputs. Samples were collected for measuring root biomass from new research sites at Santana de Araguaia and Trombetas. Soil gases will be analyzed for CO2 and (14)CO2, and soil organic matter will be analyzed for C-14. Estimates of soil texture from the RADAMBRASIL database were merged with climate data to calculate soil water extraction by forest canopies during the dry season. In addition, a preliminary map of areas where deep roots are needed for deep soil water was produced. A list of manuscripts and papers prepared during the reporting periods is given.

  19. Prediction of carotenoids, cyanide and dry matter contents in fresh cassava root using NIRS and Hunter color techniques.

    PubMed

    Sánchez, T; Ceballos, H; Dufour, D; Ortiz, D; Morante, N; Calle, F; Zum Felde, T; Domínguez, M; Davrieux, F

    2014-05-15

    Efforts are currently underway to improve carotenoids content in cassava roots through conventional breeding as a strategy to reduce vitamin A deficiency. However, only few samples can be quantified each day for total carotenoids (TCC) and β-carotene (TBC) contents, limiting the gains from breeding. A database with >3000 samples was used to evaluate the potential of NIRS and chromameter devices to predict root quality traits. Maximum TTC and TBC were up to 25.5 and 16.6 μg/g (fresh weight basis), respectively. NIRS predictions were highly satisfactory for dry matter content (DMC, R(2): 0.96), TCC (R(2): 0.92) and TBC (R(2): 0.93). NIRS could also distinguish roots with high or low cyanogenic potential (R(2): 0.86). Hunter color parameters could also be used for predictions, but with lower accuracy than NIRS. NIRS or chromameter improve selection protocols, allowing faster gains from breeding. Results also demonstrate that TBC and DMC can be improved simultaneously (required for the adoption of biofortified cassava). Copyright © 2013 Elsevier Ltd. All rights reserved.

  20. A mouse dry eye model induced by topical administration of the air pollutant particulate matter 10.

    PubMed

    Li, Juan; Tan, Gang; Ding, Xiaoyan; Wang, Yahong; Wu, Anhua; Yang, Qichen; Ye, Lei; Shao, Yi

    2017-12-01

    To introduce a novel dry eye mouse model induced by topical administration of the air pollutant particulate matter 10 (PM 10 ). A total of 60 male BALB/c mice were used in this study and divided into two groups: group A (PBS eye drops, n=30) and group B (PM 10 eye drop group, n=30). Each treatment was dosed four times a day, every time 50ul with the concentration of 5mg/ml PM10, for 14 consecutive days in the right eye. The clinical manifestations of dry eye were measured before therapy and 4, 7 and 14days post-treatment respectively, which included the tear volume, tear break-up (BUT) time, corneal fluorescein staining, rose bengal staining, Lissamine Green staining and inflammatory index. Eye samples were collected on D14 and examined by histologic light microscopy, transmission electron microscopy (TEM) and scanning electron microscopy (SEM), corneal cytokeration 10 (K10) immunnostaining, and tumor necrosis factor-α (TNF-α), NF-κB-p65 and NF-κB Western Blot analysis. At 0d, 7d and 14d, there were no statistical changes in tear volume, BUT after treatment (P>0.05) with PBS in group A. In group B, all items showed statistical differences at each time point (P<0.05). At 14d after therapy, the fluorescein staining score of group B was higher than group A (P<0.05). The score of rose bengal staining and Lissamine Green staining in group B was also higher than that in group A (P<0.05). The number of mean layers of corneal epithelial cells in the group A was significantly lower than that in the group B (P<0.05). TEM and SEM revealed that the number of corneal epithelial microvilli were drastically reduced in group B. The number of corneal chondriosome/desmosomes was also reduced in group B by TEM. PM 10 induced apoptosis in the superficial and basal corneal epithelium, and leaded to abnormal differentiation and proliferation of the ocular surface with higher expression levels of K10 and reduced number of goblet cells in the conjunctival fornix in group B. PM 10

  1. Characterization of Site for Installing Open Loop Ground Source Heat Pump System

    NASA Astrophysics Data System (ADS)

    Yun, S. W.; Park, Y.; Lee, J. Y.; Yi, M. J.; Cha, J. H.

    2014-12-01

    This study was conducted to understand hydrogeological properties of site where open loop ground source heat pump system will be installed and operated. Groundwater level and water temperature were hourly measured at the well developed for usage of open loop ground source heat pump system from 11 October 2013 to 8 January 2014. Groundwater was sampled in January and August 2013 and its chemical and isotopic compositions were analyzed. The bedrock of study area is the Jurassic granodiorite that mainly consists of quartz (27.9 to 46.8%), plagioclase (26.0 to 45.5%), and alkali feldspar (9.5 to 18.7%). The groundwater level ranged from 68.30 to 68.94 m (above mean sea level). Recharge rate was estimated using modified watertable fluctuation method and the recharge ratios was 9.1%. The water temperature ranged from 14.8 to 15.0oC. The vertical Increase rates of water temperature were 1.91 to 1.94/100 m. The water temperature showed the significant seasonal variation above 50 m depth, but had constant value below 50 m depth. Therefore, heat energy of the groundwater can be used securely in open loop ground source heat pump system. Electrical conductivity ranged from 120 to 320 µS/cm in dry season and from 133 to 310 µS/cm in wet season. The electrical conductivity gradually decreased with depth. In particular, electrical conductivity in approximately 30 m depth decreased dramatically (287 to 249 µS/cm) in wet season. The groundwater was Ca-HCO3 type. The concentrations of dissolved components did not show the vertically significant variations from 0 to 250 m depth. The δ18O and δD ranged from -9.5 to -9.4‰ and from -69 to -68‰. This work is supported by the New and Renewable Energy of the Korea Institute of Energy Technology Evaluation and Planning (KETEP) grant funded by the Korea government Ministry of Knowledge Economy (No.20123040110010).

  2. Quark Matter May Not Be Strange.

    PubMed

    Holdom, Bob; Ren, Jing; Zhang, Chen

    2018-06-01

    If quark matter is energetically favored over nuclear matter at zero temperature and pressure, then it has long been expected to take the form of strange quark matter (SQM), with comparable amounts of u, d, and s quarks. The possibility of quark matter with only u and d quarks (udQM) is usually dismissed because of the observed stability of ordinary nuclei. However, we find that udQM generally has lower bulk energy per baryon than normal nuclei and SQM. This emerges in a phenomenological model that describes the spectra of the lightest pseudoscalar and scalar meson nonets. Taking into account the finite size effects, udQM can be the ground state of baryonic matter only for baryon number A>A_{min} with A_{min}≳300. This ensures the stability of ordinary nuclei and points to a new form of stable matter just beyond the periodic table.

  3. Quark Matter May Not Be Strange

    NASA Astrophysics Data System (ADS)

    Holdom, Bob; Ren, Jing; Zhang, Chen

    2018-06-01

    If quark matter is energetically favored over nuclear matter at zero temperature and pressure, then it has long been expected to take the form of strange quark matter (SQM), with comparable amounts of u , d , and s quarks. The possibility of quark matter with only u and d quarks (u d QM ) is usually dismissed because of the observed stability of ordinary nuclei. However, we find that u d QM generally has lower bulk energy per baryon than normal nuclei and SQM. This emerges in a phenomenological model that describes the spectra of the lightest pseudoscalar and scalar meson nonets. Taking into account the finite size effects, u d QM can be the ground state of baryonic matter only for baryon number A >Amin with Amin≳300 . This ensures the stability of ordinary nuclei and points to a new form of stable matter just beyond the periodic table.

  4. Effect of residual water content on the physico-chemical properties of sucralfate dried gel obtained by microwave drying.

    PubMed

    Gainotti, Alessandro; Losi, Elena; Bettini, Ruggero; Colombo, Paolo; Sonvico, Fabio; Baroni, Daniela; Santi, Patrizia; Colombo, Gaia

    2005-08-01

    The purpose of this study was to investigate the physico-chemical characteristics of sucralfate humid gel dried by microwaves, in relation to the residual water content. Differential scanning calorimetry (DSC) allowed for the determination of the water state in sucralfate samples. Fourier-transform infrared (FT-IR) spectroscopy was used to monitor the changes in sucralfate gel structure induced by the microwave drying. A boundary value of total water content for sucralfate gel samples was found at 42% (w/w). Below this value only bound water was present, whereas above this value, the increase in total water was due to free water. In the physical form of gel, the strength of the coordination between sulfate anions and the positively charged aluminum hydroxide was dependent on the residual water content. The study of the sedimentation behavior of water suspensions prepared with dried sucralfate allowed for the evaluation of the retention of gel properties. We found that the microwave drying process affected the sedimentation of sucralfate dried gel suspensions independent of the residual water content: when suspensions were prepared from sucralfate dried gel powders containing more than 42% (w/w) of residual water, the sedimentation ratio was higher than 0.9. The non-gel powder suspension showed a sedimentation ratio of 0.68 +/- 0.02, whereas the sucralfate humid gel suspension did not sediment.

  5. Whole plant senescence of sunflower following seedhead removal

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ho, InSun; Below, F.E.

    1989-09-01

    This study was undertaken to further clarify the relationship between seed development and monocarpic senescence of sunflower (Helianthus annuus L.). Field-grown plants with and without seedheads were evaluated for rate and duration of accumulation of dry weight, reduced N, and P by whole shoots, and for partitioning of these constituents within the individual plant parts. Concurrent with seedhead removal, ({sup 15}N)nitrate was applied to the plants in a selected are of the experimental plot. Whole plants (above ground portions) were harvested seven times during the seed-filling period and analyzed from dry weight, reduced N, and P. Although seedhead removal depressedmore » the rates of dry weight, reduced N, and P accumulation by whole shoots, it extended the duration of accumulation of these constituents, relative to headed control plants. As a result, the final whole shoot dry weight and N and P contents at seed maturity were similar for deheaded and headed plants. Seedhead removal also affected the partitioning of dry matter, reduced N, and P but the relative proportions varied as a function of constituent and growth stage. Analysis of {sup 15}N present in whole shoots at physiological maturity showed that similar amounts of nitrate were absorbed during the postflowering period by headed and deheaded plants. These data indicate that the absence of seeds does not affect the total accumulation of dry matter, reduced N, or P, by sunflower plants, but does alter the rates of accumulation and partitioning of these constituents.« less

  6. Acoustic-to-Seismic Coupling Over Porous Ground Surfaces.

    DTIC Science & Technology

    1984-01-01

    of sound into the ground is predicted for both spherical and plane acoustic waves incident upon two models of the ground viz i) a rigid porous solid...and soils of above-ground acoustic disturbances. Furthermore it is found possible to predict the results of model measurements using continuous and...saddle point 2.4 The geometrical wave 2.5 The lateral wave 2.6 Special cases 3. POINT TO POINT PROPAGATION MEASUREMENTS USING ACOUSTIC MODELLING " 3.0

  7. Nanoparticle preparation of Mefenamic acid by electrospray drying

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zolkepali, Nurul Karimah, E-mail: fitrah@salam.uitm.edu.my; Bakar, Noor Fitrah Abu, E-mail: fitrah@salam.uitm.edu.my; Anuar, Nornizar

    2014-02-24

    Nanoparticles preparation of Mefenamic acid (MA) by using an electrospray drying method was conducted in this study. Electrospray drying is a process that uses electrostatic force to disperse a conductive liquid stream into fine charged droplets through the coulomb fission of charges in the liquid and finally dry into fine particles. Electrospray drying modes operation usually in Taylor cone jet, and it was formed by controlling applied voltage and liquid flow rate. A conductive liquid (2.77–8.55μScm{sup −1}) which is MA solution was prepared by using acetone with concentration 0.041 and 0.055 M before pumping at a flow rate of 3–6ml/h.more » By applying the applied voltage at 1.3–1.5 kV, Taylor cone jet mode was formed prior to the electrospray. During electrospray drying process, solvent evaporation from the droplet was occurring that leads to coulomb disruption and may generate to nanoparticles. The dried nanoparticles were collected on a grounded substrate that was placed at varying distance from the electrospray. MA particle with size range of 100–400 nm were produced by electrospray drying process. Characterization of particles by using X-ray diffractometry (XRD) and differential scanning calorimetry (DSC) show that particles formed into polymorph I.« less

  8. Particulate matter air quality assessment over southeast United States using satellite and ground measurements

    NASA Astrophysics Data System (ADS)

    Gupta, Pawan

    Fine particles (PM2.5, particles with aerodynamic diameter less than 2.5 mum) can penetrate deep inside the human lungs and recent scientific studies have shown thousands of deaths occur each year around the world, prematurely, due to a high concentration of particulate matter. Therefore, monitoring and forecasting of surface level fine particulate matter air quality is very important. Typically air quality measurements are made from ground stations. In recent years, linear regression relationships between satellite derived aerosol optical thickness (AOT) and surface measured PM2.5 mass concentration are formed and used to estimate PM2.5 in the areas where surface measurements are not available. This type of simple linear relationships varies with regions and seasons, and does not provide accurate enough estimation of surface level pollution and many studies have shown that AOT alone is not sufficient for PM2.5 mass concentration estimations. Furthermore, AOT represents aerosol loading in the entire column of the atmosphere whereas PM2.5 is measured at the surface; hence, the knowledge of vertical distribution of aerosols coupled with meteorology becomes critical in PM2.5 estimations. In this dissertation I used three years (2004-2006) of coincident hourly PM2.5, MODerate resolution Imaging Spectroradiometer (MODIS) derived AOT, and Rapid Update Cycle (RUC) analyzed meteorological fields to assess PM2.5 air quality in the Southeast United States. I explored the use of two-variate (TVM), multi-variate (MVM) and artificial neural network (ANN) methods for estimating PM2.5 over 85 stations in the region. First, satellite data were analyzed for sampling biases, quality, and impact of clouds. Results show that MODIS-Terra AOT data was available only about 50% of the days in any given month due to cloud over and unfavorable surface conditions, but this produced a sampling bias of less than 2 mugm-3. Results indicate that there is up to three fold improvements in the

  9. Strange matter in compact stars

    NASA Astrophysics Data System (ADS)

    Klähn, Thomas; Blaschke, David B.

    2018-02-01

    We discuss possible scenarios for the existence of strange matter in compact stars. The appearance of hyperons leads to a hyperon puzzle in ab-initio approaches based on effective baryon-baryon potentials but is not a severe problem in relativistic mean field models. In general, the puzzle can be resolved in a natural way if hadronic matter gets stiffened at supersaturation densities, an effect based on the quark Pauli quenching between hadrons. We explain the conflict between the necessity to implement dynamical chiral symmetry breaking into a model description and the conditions for the appearance of absolutely stable strange quark matter that require both, approximately masslessness of quarks and a mechanism of confinement. The role of strangeness in compact stars (hadronic or quark matter realizations) remains unsettled. It is not excluded that strangeness plays no role in compact stars at all. To answer the question whether the case of absolutely stable strange quark matter can be excluded on theoretical grounds requires an understanding of dense matter that we have not yet reached.

  10. Use of Satellite Observations for Long-Term Exposure Assessment of Global Concentrations of Fine Particulate Matter

    PubMed Central

    Martin, Randall V.; Brauer, Michael; Boys, Brian L.

    2014-01-01

    Background: More than a decade of satellite observations offers global information about the trend and magnitude of human exposure to fine particulate matter (PM2.5). Objective: In this study, we developed improved global exposure estimates of ambient PM2.5 mass and trend using PM2.5 concentrations inferred from multiple satellite instruments. Methods: We combined three satellite-derived PM2.5 sources to produce global PM2.5 estimates at about 10 km × 10 km from 1998 through 2012. For each source, we related total column retrievals of aerosol optical depth to near-ground PM2.5 using the GEOS–Chem chemical transport model to represent local aerosol optical properties and vertical profiles. We collected 210 global ground-based PM2.5 observations from the literature to evaluate our satellite-based estimates with values measured in areas other than North America and Europe. Results: We estimated that global population-weighted ambient PM2.5 concentrations increased 0.55 μg/m3/year (95% CI: 0.43, 0.67) (2.1%/year; 95% CI: 1.6, 2.6) from 1998 through 2012. Increasing PM2.5 in some developing regions drove this global change, despite decreasing PM2.5 in some developed regions. The estimated proportion of the population of East Asia living above the World Health Organization (WHO) Interim Target-1 of 35 μg/m3 increased from 51% in 1998–2000 to 70% in 2010–2012. In contrast, the North American proportion above the WHO Air Quality Guideline of 10 μg/m3 fell from 62% in 1998–2000 to 19% in 2010–2012. We found significant agreement between satellite-derived estimates and ground-based measurements outside North America and Europe (r = 0.81; n = 210; slope = 0.68). The low bias in satellite-derived estimates suggests that true global concentrations could be even greater. Conclusions: Satellite observations provide insight into global long-term changes in ambient PM2.5 concentrations. Satellite-derived estimates and ground-based PM2.5 observations from this study

  11. Matter formed at the BNL Relativistic Heavy Ion Collider.

    PubMed

    Brown, G E; Gelman, B A; Rho, Mannque

    2006-04-07

    We suggest that the "new form of matter" found just above T(c) by the Relativistic Heavy Ion Collider is made up of tightly bound quark-antiquark pairs, essentially 32 chirally restored (more precisely, nearly massless) mesons of the quantum numbers of pi, sigma, rho, and a1. Taking the results of lattice gauge simulations (LGS) for the color Coulomb potential from the work of the Bielefeld group and feeding this into a relativistic two-body code, after modifying the heavy-quark lattice results so as to include the velocity-velocity interaction, all ground-state eigenvalues of the 32 mesons go to zero at T(c) just as they do from below T(c) as predicted by the vector manifestation of hidden local symmetry. This could explain the rapid rise in entropy up to T(c) found in LGS calculations. We argue that how the dynamics work can be understood from the behavior of the hard and soft glue.

  12. Deposition Velocity of PM2.5 in the Winter and Spring above Deciduous and Coniferous Forests in Beijing, China

    PubMed Central

    Sun, Fengbin; Yin, Zhe; Lun, Xiaoxiu; Zhao, Yang; Li, Renna; Shi, Fangtian; Yu, Xinxiao

    2014-01-01

    To estimate the deposition effect of PM2.5 (particle matter with aerodynamic diameter <2.5 µm) in forests in northern China, we used the gradient method to measure the deposition velocity of PM2.5 during the winter and spring above a deciduous forest in Olympic Forest Park and above a coniferous forest in Jiufeng National Forest Park. Six aerosol samplers were placed on two towers at each site at heights of 9, 12 and 15 m above the ground surface. The sample filters were exchanged every four hours at 6∶00 AM, 10∶00 AM, 2∶00 PM, 6∶00 PM, 10∶00 PM, and 2∶00 AM. The daytime and nighttime deposition velocities in Jiufeng Park and Olympic Park were compared in this study. The February deposition velocities in Jiufeng Park were 1.2±1.3 and 0.7±0.7 cm s−1 during the day and night, respectively. The May deposition velocities in Olympic Park were 0.9±0.8 and 0.4±0.5 cm s−1 during the day and night, respectively. The May deposition velocities in Jiufeng Park were 1.1±1.2 and 0.6±0.5 cm s−1 during the day and night, respectively. The deposition velocities above Jiufeng National Forest Park were higher than those above Olympic Forest Park. The measured values were smaller than the simulated values obtained by the Ruijgrok et al. (1997) and Wesely et al. (1985) models. However, the reproducibility of the Ruijgrok et al. (1997) model was better than that of the Wesely et al. (1985) model. The Hicks et al. (1977) model was used to analyze additional forest parameters to calculate the PM2.5 deposition, which could better reflect the role of the forest in PM2.5 deposition. PMID:24842850

  13. Effects of nitrogen fertilization strategies on nitrogen use efficiency in physiology, recovery, and agronomy and redistribution of dry matter accumulation and nitrogen accumulation in two typical rice cultivars in Zhejiang, China.

    PubMed

    Xie, Wen-xia; Wang, Guang-huo; Zhang, Qi-chun; Guo, Hai-chao

    2007-03-01

    Field experiments were conducted in farmers' rice fields in 2001 and 2002 to study the effects of nitrogen (N) management strategies on N use efficiency in recovery (RE), agronomy (AE) and physiology (PE) and redistribution of dry matter accumulation (DMA) and nitrogen accumulation (NA) in two typical rice cultivars in Jinhua, Zhejiang Province. This study aimed mainly at identifying the possible causes of poor fertilizer N use efficiency (NUE) of rice in Zhejiang by comparing farmers' fertilizer practice (FFP) with advanced site-specific nutrient management (SSNM) and real-time N management (RTNM). The results showed that compared to FFP, SSNM and RTNM reduced DMA and NA before panicle initiation and increased DMA and NA at post-flowering. There is no significant difference between SSNM and FFP in post-flowering dry matter redistribution (post-DMR) and post-flowering nitrogen redistribution (post-NR). These results suggest that high input rate of fertilizer N and improper fertilizer N timing are the main factors causing low NUE of irrigated rice in the farmer's routine practice of Zhejiang. With SSNM, about 15% of the current total N input in direct-seeding early rice and 45% in single rice could be reduced without yield loss in Zhejiang, China.

  14. Improved methods for the determination of drying conditions and fraction insoluble solids (FIS) in biomass pretreatment slurry

    DOE PAGES

    Sluiter, Amie; Sluiter, Justin; Wolfrum, Ed; ...

    2016-05-20

    Accurate and precise chemical characterization of biomass feedstocks and process intermediates is a requirement for successful technical and economic evaluation of biofuel conversion technologies. The uncertainty in primary measurements of the fraction insoluble solid (FIS) content of dilute acid pretreated corn stover slurry is the major contributor to uncertainty in yield calculations for enzymatic hydrolysis of cellulose to glucose. This uncertainty is propagated through process models and impacts modeled fuel costs. The challenge in measuring FIS is obtaining an accurate measurement of insoluble matter in the pretreated materials, while appropriately accounting for all biomass derived components. Three methods were testedmore » to improve this measurement. One used physical separation of liquid and solid phases, and two utilized direct determination of dry matter content in two fractions. We offer a comparison of drying methods. Lastly, our results show utilizing a microwave dryer to directly determine dry matter content is the optimal method for determining FIS, based on the low time requirements and the method optimization done using model slurries.« less

  15. Effect of the corn breaking method on oil distribution between stillage phases of dry-grind corn ethanol production.

    PubMed

    Wang, H; Wang, T; Johnson, L A; Pometto, A L

    2008-11-12

    The majority of fuel ethanol in the United States is produced by using the dry-grind corn ethanol process. The corn oil that is contained in the coproduct, distillers' dried grains with solubles (DDGS), can be recovered for use as a biodiesel feedstock. Oil removal will also improve the feed quality of DDGS. The most economical way to remove oil is considered to be at the centrifugation step for separating thin stillage (liquid) from coarse solids after distilling the ethanol. The more oil there is in the liquid, the more it can be recovered by centrifugation. Therefore, we studied the effects of corn preparation and grinding methods on oil distribution between liquid and solid phases. Grinding the corn to three different particle sizes, flaking, flaking and grinding, and flaking and extruding were used to break up the corn kernel before fermentation, and their effects on oil distribution between the liquid and solid phases were examined by simulating an industrial decanter centrifuge. Total oil contents were measured in the liquid and solids after centrifugation. Dry matter yield and oil partitioning in the thin stillage were highly positively correlated. Flaking slightly reduced bound fat. The flaked and then extruded corn meal released the highest amount of free oil, about 25% compared to 7% for the average of the other treatments. The freed oil from flaking, however, became nonextractable after the flaked corn was ground. Fine grinding alone had little effect on oil partitioning.

  16. Design, characterization, and aerosol dispersion performance modeling of advanced spray-dried microparticulate/nanoparticulate mannitol powders for targeted pulmonary delivery as dry powder inhalers.

    PubMed

    Li, Xiaojian; Vogt, Frederick G; Hayes, Don; Mansour, Heidi M

    2014-04-01

    The purpose was to design and characterize inhalable microparticulate/nanoparticulate dry powders of mannitol with essential particle properties for targeted dry powder delivery for cystic fibrosis mucolytic treatment by dilute organic solution spray drying, and, in addition, to tailor and correlate aerosol dispersion performance delivered as dry powder inhalers based on spray-drying conditions and solid-state physicochemical properties. Organic solution advanced spray drying from dilute solution followed by comprehensive solid-state physicochemical characterization and in vitro dry powder aerosolization were used. The particle size distribution of the spray-dried (SD) powders was narrow, unimodal, and in the range of ∼500 nm to 2.0 μm. The particles possessed spherical particle morphology, relatively smooth surface morphology, low water content and vapor sorption (crystallization occurred at exposure above 65% relative humidity), and retention of crystallinity by polymorphic interconversion. The emitted dose, fine particle fraction (FPF), and respirable fraction (RF) were all relatively high. The mass median aerodynamic diameters were below 4 μm for all SD mannitol aerosols. The in vitro aerosol deposition stage patterns could be tailored based on spray-drying pump rate. Positive linear correlation was observed between both FPF and RF values with spray-drying pump rates. The interplay between various spray-drying conditions, particle physicochemical properties, and aerosol dispersion performance was observed and examined, which enabled tailoring and modeling of high aerosol deposition patterns.

  17. Design, Characterization, and Aerosol Dispersion Performance Modeling of Advanced Spray-Dried Microparticulate/Nanoparticulate Mannitol Powders for Targeted Pulmonary Delivery as Dry Powder Inhalers

    PubMed Central

    Li, Xiaojian; Vogt, Frederick G.; Hayes, Don

    2014-01-01

    Abstract Background: The purpose was to design and characterize inhalable microparticulate/nanoparticulate dry powders of mannitol with essential particle properties for targeted dry powder delivery for cystic fibrosis mucolytic treatment by dilute organic solution spray drying, and, in addition, to tailor and correlate aerosol dispersion performance delivered as dry powder inhalers based on spray-drying conditions and solid-state physicochemical properties. Methods: Organic solution advanced spray drying from dilute solution followed by comprehensive solid-state physicochemical characterization and in vitro dry powder aerosolization were used. Results: The particle size distribution of the spray-dried (SD) powders was narrow, unimodal, and in the range of ∼500 nm to 2.0 μm. The particles possessed spherical particle morphology, relatively smooth surface morphology, low water content and vapor sorption (crystallization occurred at exposure above 65% relative humidity), and retention of crystallinity by polymorphic interconversion. The emitted dose, fine particle fraction (FPF), and respirable fraction (RF) were all relatively high. The mass median aerodynamic diameters were below 4 μm for all SD mannitol aerosols. Conclusion: The in vitro aerosol deposition stage patterns could be tailored based on spray-drying pump rate. Positive linear correlation was observed between both FPF and RF values with spray-drying pump rates. The interplay between various spray-drying conditions, particle physicochemical properties, and aerosol dispersion performance was observed and examined, which enabled tailoring and modeling of high aerosol deposition patterns. PMID:24502451

  18. Modelling above-ground carbon dynamics using multi-temporal airborne lidar: insights from a Mediterranean woodland

    NASA Astrophysics Data System (ADS)

    Simonson, W.; Ruiz-Benito, P.; Valladares, F.; Coomes, D.

    2015-09-01

    Woodlands represent highly significant carbon sinks globally, though could lose this function under future climatic change. Effective large-scale monitoring of these woodlands has a critical role to play in mitigating for, and adapting to, climate change. Mediterranean woodlands have low carbon densities, but represent important global carbon stocks due to their extensiveness and are particularly vulnerable because the region is predicted to become much hotter and drier over the coming century. Airborne lidar is already recognized as an excellent approach for high-fidelity carbon mapping, but few studies have used multi-temporal lidar surveys to measure carbon fluxes in forests and none have worked with Mediterranean woodlands. We use a multi-temporal (five year interval) airborne lidar dataset for a region of central Spain to estimate above-ground biomass (AGB) and carbon dynamics in typical mixed broadleaved/coniferous Mediterranean woodlands. Field calibration of the lidar data enabled the generation of grid-based maps of AGB for 2006 and 2011, and the resulting AGB change were estimated. There was a close agreement between the lidar-based AGB growth estimate (1.22 Mg ha-1 year-1) and those derived from two independent sources: the Spanish National Forest Inventory, and a~tree-ring based analysis (1.19 and 1.13 Mg ha-1 year-1, respectively). We parameterised a simple simulator of forest dynamics using the lidar carbon flux measurements, and used it to explore four scenarios of fire occurrence. Under undisturbed conditions (no fire occurrence) an accelerating accumulation of biomass and carbon is evident over the next 100 years with an average carbon sequestration rate of 1.95 Mg C ha-1 year-1. This rate reduces by almost a third when fire probability is increased to 0.01, as has been predicted under climate change. Our work shows the power of multi-temporal lidar surveying to map woodland carbon fluxes and provide parameters for carbon dynamics models. Space

  19. Modelling above-ground carbon dynamics using multi-temporal airborne lidar: insights from a Mediterranean woodland

    NASA Astrophysics Data System (ADS)

    Simonson, W.; Ruiz-Benito, P.; Valladares, F.; Coomes, D.

    2016-02-01

    Woodlands represent highly significant carbon sinks globally, though could lose this function under future climatic change. Effective large-scale monitoring of these woodlands has a critical role to play in mitigating for, and adapting to, climate change. Mediterranean woodlands have low carbon densities, but represent important global carbon stocks due to their extensiveness and are particularly vulnerable because the region is predicted to become much hotter and drier over the coming century. Airborne lidar is already recognized as an excellent approach for high-fidelity carbon mapping, but few studies have used multi-temporal lidar surveys to measure carbon fluxes in forests and none have worked with Mediterranean woodlands. We use a multi-temporal (5-year interval) airborne lidar data set for a region of central Spain to estimate above-ground biomass (AGB) and carbon dynamics in typical mixed broadleaved and/or coniferous Mediterranean woodlands. Field calibration of the lidar data enabled the generation of grid-based maps of AGB for 2006 and 2011, and the resulting AGB change was estimated. There was a close agreement between the lidar-based AGB growth estimate (1.22 Mg ha-1 yr-1) and those derived from two independent sources: the Spanish National Forest Inventory, and a tree-ring based analysis (1.19 and 1.13 Mg ha-1 yr-1, respectively). We parameterised a simple simulator of forest dynamics using the lidar carbon flux measurements, and used it to explore four scenarios of fire occurrence. Under undisturbed conditions (no fire) an accelerating accumulation of biomass and carbon is evident over the next 100 years with an average carbon sequestration rate of 1.95 Mg C ha-1 yr-1. This rate reduces by almost a third when fire probability is increased to 0.01 (fire return rate of 100 years), as has been predicted under climate change. Our work shows the power of multi-temporal lidar surveying to map woodland carbon fluxes and provide parameters for carbon

  20. The Southern African Regional Science Initiative (SAFARI 2000): Overview of the Dry Season Field Campaign

    NASA Technical Reports Server (NTRS)

    Swap, R. J.; Annegarn, H. J.; Suttles, J. T.; Haywood, J.; Helmlinger, M. C.; Hely, C.; Hobbs, P. V.; Holben, B. N.; Ji, J.; King, M. D.

    2002-01-01

    The Southern African Regional Science Initiative (SAFARI 2000) is an international project investigating the earth atmosphere -human system in southern Africa. The programme was conducted over a two year period from March 1999 to March 2001. The dry season field campaign (August-September 2000) was the most intensive activity involved over 200 scientist from eighteen countries. The main objectives were to characterize and quantify biogenic, pyrogenic and anthropogenic aerosol and trace gas emissions and their transport and transformations in the atmosphere and to validate NASA's Earth Observing System's Satellite Terra within a scientific context. Five aircraft-- two South African Weather Service Aeorcommanders, the University of Washington's CV-880, the U.K. Meteorological Office's C-130, and NASA's ER-2 --with different altitude capabilities, participated in the campaign. Additional airborne sampling of southern African air masses, that had moved downwind of the subcontinent, was conducted by the CSIRO over Australia. Multiple Observations were made in various geographical sections under different synoptic conditions. Airborne missions were designed to optimize the value of synchronous over-flights of the Terra Satellite platform, above regional ground validation and science targets. Numerous smaller scale ground validation activities took place throughout the subcontinent during the campaign period.

  1. Assessing the Effects of Land-use Change on Plant Traits, Communities and Ecosystem Functioning in Grasslands: A Standardized Methodology and Lessons from an Application to 11 European Sites

    PubMed Central

    Garnier, Eric; Lavorel, Sandra; Ansquer, Pauline; Castro, Helena; Cruz, Pablo; Dolezal, Jiri; Eriksson, Ove; Fortunel, Claire; Freitas, Helena; Golodets, Carly; Grigulis, Karl; Jouany, Claire; Kazakou, Elena; Kigel, Jaime; Kleyer, Michael; Lehsten, Veiko; Lepš, Jan; Meier, Tonia; Pakeman, Robin; Papadimitriou, Maria; Papanastasis, Vasilios P.; Quested, Helen; Quétier, Fabien; Robson, Matt; Roumet, Catherine; Rusch, Graciela; Skarpe, Christina; Sternberg, Marcelo; Theau, Jean-Pierre; Thébault, Aurélie; Vile, Denis; Zarovali, Maria P.

    2007-01-01

    Background and Aims A standardized methodology to assess the impacts of land-use changes on vegetation and ecosystem functioning is presented. It assumes that species traits are central to these impacts, and is designed to be applicable in different historical, climatic contexts and local settings. Preliminary results are presented to show its applicability. Methods Eleven sites, representative of various types of land-use changes occurring in marginal agro-ecosystems across Europe and Israel, were selected. Climatic data were obtained at the site level; soil data, disturbance and nutrition indices were described at the plot level within sites. Sixteen traits describing plant stature, leaf characteristics and reproductive phase were recorded on the most abundant species of each treatment. These data were combined with species abundance to calculate trait values weighed by the abundance of species in the communities. The ecosystem properties selected were components of above-ground net primary productivity and decomposition of litter. Key Results The wide variety of land-use systems that characterize marginal landscapes across Europe was reflected by the different disturbance indices, and were also reflected in soil and/or nutrient availability gradients. The trait toolkit allowed us to describe adequately the functional response of vegetation to land-use changes, but we suggest that some traits (vegetative plant height, stem dry matter content) should be omitted in studies involving mainly herbaceous species. Using the example of the relationship between leaf dry matter content and above-ground dead material, we demonstrate how the data collected may be used to analyse direct effects of climate and land use on ecosystem properties vs. indirect effects via changes in plant traits. Conclusions This work shows the applicability of a set of protocols that can be widely applied to assess the impacts of global change drivers on species, communities and ecosystems. PMID

  2. Ground-water quality data in the north San Francisco Bay hydrologic provinces, California, 2004: Results from the California Ground-water Ambient Monitoring and Assessment (GAMA) program

    USGS Publications Warehouse

    Kulongoski, Justin T.; Belitz, Kenneth; Dawson, Barbara J.

    2006-01-01

    compounds that may be indicative of the prescence of waste-water were detected in ground-water samples. Twenty-six percent of the randomized wells sampled for waste-water indicators had at least one detection. Isophorone was the most frequently detected in 6 of the 84 randomized wells. Bisphenol-A, caffeine, and indole each were detected in 3 of the 84 randomized wells. Major and minor ions and dissolved solids (DS) samples were collected at 33 public-supply wells; 3 samples had DS concentrations above the secondary maximum contaminant level (SMCL) of 500 mg/L. Ground-water samples from 32 public-supply wells were analyzed for trace elements. Arsenic concentrations above the MCL of 10 μg/L were measured at 4 public-supply wells, boron concentrations above the detection level for the purpose of reporting (DLR) of 100 μg/L were measured at 19 wells. Iron concentrations above the SMCL of 300 μg/L were measured at 7 wells, a lead concentration above the California notification level (NL) of 15 μg/L at one well, and manganese concentrations above the SMCL of 50 μg/L were measured at 17 wells. Vanadium concentrations above the DLR of 3 μg/L were measured at 9 public-supply wells; and chromium(VI) concentrations above the DLR of 1 μg/L were measured at 48 public-supply wells. Major and minor ions and dissolved solids (DS) samples were collected at 33 public-supply wells; 3 samples had DS concentrations above the secondary maximum contaminant level (SMCL) of 500 mg/L. Ground-water samples from 32 public-supply wells were analyzed for trace elements. Arsenic concentrations above the MCL of 10 μg/L were measured at 4 public-supply wells, boron concentrations above the detection level for the purpose of reporting (DLR) of 100 μg/L were measured at 19 wells. Iron concentrations above the SMCL of 300 μg/L were measured at 7 wells, a lead concentration above the California notification level (NL) of 15 μg/L at one well, and manganese concentrations above the SMCL of 50

  3. The Xenon1T Dark Matter Search Experiment

    NASA Astrophysics Data System (ADS)

    Aprile, Elena

    The worldwide race towards direct dark matter detection in the form of Weakly Interacting Massive Particles (WIMPs) has been dramatically accelerated by the remarkable progress and evolution of liquid xenon time projection chambers (LXeTPCs). With a realistic discovery potential, Xenon100 has already reached a sensitivity of 7 × 10-45 cm2, and continues to accrue data at the Laboratori Nazionali del Gran Sasso (LNGS) in Italy towards its ultimate sensitivity reach at the σ SI ˜ 2 × 10-45 cm2 level for the spin-independent WIMP-nucleon cross-section. To fully explore the favoured parameter space for WIMP dark matter in search of a first robust and statistically significant discovery, or to confirm any hint of a signal from Xenon100, the next phase of the Xenon program will be a detector at the ton scale - Xenon1T. The Xenon1T detector, based on 2.2 ton of LXe viewed by low radioactivity photomultiplier tubes and housed in a water Cherenkov muon veto at LNGS, is presented. With an experimental aim of probing WIMP interaction cross-sections above of order σ SI ˜ 2 × 10-47 cm2 within 2 years of operation, Xenon1T will provide the sensitivity to probe a particularly favourable region of electroweak physics on a timescale compatible with complementary ground and satellite based indirect searches and with accelerator dark matter searches at the LHC. Indeed, for a σ SI ˜ 10-45 cm2 and 100 GeV/c2 WIMP mass, Xenon1T could detect of order 100 events in this exposure, providing statistics for placing significant constraints on the WIMP mass.

  4. Mechanisms and implications of a type IV functional response for short-term intake rate of dry matter in large mammalian herbivores.

    PubMed

    Mezzalira, Jean C; Bonnet, Olivier J F; Carvalho, Paulo C de F; Fonseca, Lidiane; Bremm, Carolina; Mezzalira, Carlos C; Laca, Emilio A

    2017-09-01

    The functional response (i.e. the relationship between consumers' intake rate and resource density) is central in plant-herbivore interactions. Its shape and the biological processes leading to it have significant implications for both foraging theory and ecology of grazing systems. A type IV functional response (i.e. dome-shaped relationship) of short-term intake rate of dry matter (intake while grazing) has rarely been reported for large herbivores and the conditions that can lead to it are poorly understood. We report a type IV functional response observed in heifers grazing monocultures of Cynodon sp. and Avena strigosa. The mechanisms and consequences of this type of functional response for grazed system dynamics are discussed. Intake rate was higher at intermediate than at short or tall sward heights in both grass species. The type IV functional response resulted from changes in bite mass instead of a longer time needed to encounter and process bites. Thus, the decrease of intake rate of dry matter in tall swards is not explained by a shift from process 3 (potential bites are concentrated and apparent) to process 2 (potential bites are apparent but dispersed, Spalinger & Hobbs 1992). Bite mass was smaller in tall than in intermediate swards due to a reduction of bite volume possibly caused by the greater proportion of stem and sheath acting as a physical barrier to bite formation. It is generally accepted that potential bites are abundant and apparent in most grassland and meadow systems, as they were in the present experiments. Therefore, a type IV response of intake rate not directly related to digestive constraints may determine the dynamics of intake and defoliation under a much larger set of conditions than previously thought. These results have implications for foraging theory and stability of grazing systems. For example, if animals prefer patches of intermediate stature that yield the highest intake rate, grazing should lead to the widely observed

  5. Utilization of ground waste seashells in cement mortars for masonry and plastering.

    PubMed

    Lertwattanaruk, Pusit; Makul, Natt; Siripattarapravat, Chalothorn

    2012-11-30

    In this research, four types of waste seashells, including short-necked clam, green mussel, oyster, and cockle, were investigated experimentally to develop a cement product for masonry and plastering. The parameters studied included water demand, setting time, compressive strength, drying shrinkage and thermal conductivity of the mortars. These properties were compared with those of a control mortar that was made of a conventional Portland cement. The main parameter of this study was the proportion of ground seashells used as cement replacement (5%, 10%, 15%, or 20% by weight). Incorporation of ground seashells resulted in reduced water demand and extended setting times of the mortars, which are advantages for rendering and plastering in hot climates. All mortars containing ground seashells yielded adequate strength, less shrinkage with drying and lower thermal conductivity compared to the conventional cement. The results indicate that ground seashells can be applied as a cement replacement in mortar mixes and may improve the workability of rendering and plastering mortar. Copyright © 2012 Elsevier Ltd. All rights reserved.

  6. How Should Dry Lightning be Defined to Best to Correlate to Wildfire Initiation?

    NASA Astrophysics Data System (ADS)

    Vant-Hull, B.; Koshak, W. J.

    2017-12-01

    Dry lightning can be defined by a maximum precipitation threshold, a dry period preceding a flash, and the spatial resolution used to relate a lightning flash to precipitation. Using data from most of CONUS from 2003-2015, the annual total of wildfires was compared to the annual number of dry flashes, with dry flash parameters adjusted to maximize the correlation between annual totals throughout the time period. A maximum correlation of 0.93 was found for a dry period of 36 hours, with no precipitation rates above 0.2 mm/hr during this time, on a 0.1 degree grid. Such a high correlation to wildfires on a climatic scale indicates a need to understand how changing weather patterns can influence the occurrence of properly defined dry lightning. Under this understanding dry lightning counts could qualify as a NCA indicator.

  7. Comparison of drying characteristic and uniformity of banana cubes dried by pulse-spouted microwave vacuum drying, freeze drying and microwave freeze drying.

    PubMed

    Jiang, Hao; Zhang, Min; Mujumdar, Arun S; Lim, Rui-Xin

    2014-07-01

    To overcome the flaws of high energy consumption of freeze drying (FD) and the non-uniform drying of microwave freeze drying (MFD), pulse-spouted microwave vacuum drying (PSMVD) was developed. The results showed that the drying time can be dramatically shortened if microwave was used as the heating source. In this experiment, both MFD and PSMVD could shorten drying time by 50% as compared to the FD process. Depending on the heating method, MFD and PSMVD dried banana cubes showed trends of expansion while FD dried samples demonstrated trends of shrinkage. Shrinkage also brought intensive structure and highest fracturability of all three samples dried by different methods. The residual ascorbic acid content of PSMVD dried samples can be as high as in FD dried samples, which were superior to MFD dried samples. The tests confirmed that PSMVD could bring about better drying uniformity than MFD. Besides, compared with traditional MFD, PSMVD can provide better extrinsic feature, and can bring about improved nutritional features because of the higher residual ascorbic acid content. © 2013 Society of Chemical Industry.

  8. Make dark matter charged again

    NASA Astrophysics Data System (ADS)

    Agrawal, Prateek; Cyr-Racine, Francis-Yan; Randall, Lisa; Scholtz, Jakub

    2017-05-01

    We revisit constraints on dark matter that is charged under a U(1) gauge group in the dark sector, decoupled from Standard Model forces. We find that the strongest constraints in the literature are subject to a number of mitigating factors. For instance, the naive dark matter thermalization timescale in halos is corrected by saturation effects that slow down isotropization for modest ellipticities. The weakened bounds uncover interesting parameter space, making models with weak-scale charged dark matter viable, even with electromagnetic strength interaction. This also leads to the intriguing possibility that dark matter self-interactions within small dwarf galaxies are extremely large, a relatively unexplored regime in current simulations. Such strong interactions suppress heat transfer over scales larger than the dark matter mean free path, inducing a dynamical cutoff length scale above which the system appears to have only feeble interactions. These effects must be taken into account to assess the viability of darkly-charged dark matter. Future analyses and measurements should probe a promising region of parameter space for this model.

  9. Make dark matter charged again

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Agrawal, Prateek; Cyr-Racine, Francis-Yan; Randall, Lisa

    2017-05-01

    We revisit constraints on dark matter that is charged under a U(1) gauge group in the dark sector, decoupled from Standard Model forces. We find that the strongest constraints in the literature are subject to a number of mitigating factors. For instance, the naive dark matter thermalization timescale in halos is corrected by saturation effects that slow down isotropization for modest ellipticities. The weakened bounds uncover interesting parameter space, making models with weak-scale charged dark matter viable, even with electromagnetic strength interaction. This also leads to the intriguing possibility that dark matter self-interactions within small dwarf galaxies are extremely large,more » a relatively unexplored regime in current simulations. Such strong interactions suppress heat transfer over scales larger than the dark matter mean free path, inducing a dynamical cutoff length scale above which the system appears to have only feeble interactions. These effects must be taken into account to assess the viability of darkly-charged dark matter. Future analyses and measurements should probe a promising region of parameter space for this model.« less

  10. Experimental soft-matter science

    NASA Astrophysics Data System (ADS)

    Nagel, Sidney R.

    2017-04-01

    Soft materials consist of basic units that are significantly larger than an atom but much smaller than the overall dimensions of the sample. The label "soft condensed matter" emphasizes that the large basic building blocks of these materials produce low elastic moduli that govern a material's ability to withstand deformations. Aside from softness, there are many other properties that are also caused by the large size of the constituent building blocks. Soft matter is dissipative, disordered, far from equilibrium, nonlinear, thermal and entropic, slow, observable, gravity affected, patterned, nonlocal, interfacially elastic, memory forming, and active. This is only a partial list of how matter created from large component particles is distinct from "hard matter" composed of constituents at an atomic scale. Issues inherent in soft matter raise problems that are broadly important in diverse areas of science and require multiple modes of attack. For example, far-from-equilibrium behavior is confronted in biology, chemistry, geophysics, astrophysics, and nuclear physics. Similarly, issues dealing with disorder appear broadly throughout many branches of inquiry wherever rugged landscapes are invoked. This article reviews the discussions that occurred during a workshop held on 30-31 January 2016 in which opportunities in soft-matter experiment were surveyed. Soft matter has had an exciting history of discovery and continues to be a fertile ground for future research.

  11. Nitrogen and dry-matter partitioning in soybean plants during onset of and recovery from nitrogen stress

    NASA Technical Reports Server (NTRS)

    Tolley-Henry, L.; Raper, C. D. Jr; Raper CD, J. r. (Principal Investigator)

    1986-01-01

    The study tested the hypothesis that resupplying nitrogen after a period of nitrogen stress leads to restoration of the balance between root and shoot growth and normal functional activity. Nonnodulated soybean plants were grown hydroponically for 14 days with 1.0 mM NO3- in a complete nutrient solution. One set of plants was continued on the complete nutrient solution for 25 days; a second set was given 0.0 mM NO3- for 25 days; and the third set was given 0.0 mM NO3- for 10 days followed by transfer to the complete solution with 1.0 mM NO3- for 15 days. In continuously nitrogen-stressed plants, emergence and expansion of main-stem and branch leaves were severely inhibited as low nitrogen content limited further growth. This was followed by a shift in partitioning of dry matter from the leaves to the roots, resulting in an initial stimulation of root growth and a decreased shoot:root ratio. Reduced nitrogen also was redistributed from the leaves into the stem and roots. When nitrogen stress was relieved, leaf initiation and expansion were renewed. With the restoration of the balance between root and shoot function, the shoot:root ratio and distribution of reduced nitrogen within the plant organs returned to levels similar to those of nonstressed plants.

  12. Optimization Review: Ogallala Ground Water Contamination Superfund Site, Operable Unit 2 (Tip Top Cleaners), Ogallala, Nebraska

    EPA Pesticide Factsheets

    The Ogallala Ground Water Contamination Superfund site was identified in 1989 through municipal well sampling. Tetrachloroethene (PCE), a solvent commonly used in dry cleaner operations, was the primary ground water target chemical of concern (COC) that..

  13. UPWELLING EVENT IN THE DRY TORTUGAS DURING MAY 1998

    EPA Science Inventory

    A major macro-algae bloom was observed during a coral disease survey in May 1998 in the Dry Tortugas and New Grounds region. The significant algal growth was found only on the outer slope of reefs in depths greater than 25'; the algal bloom was not present on shallow reefs. The a...

  14. Bacterial communities and their association with the bio-drying of sewage sludge.

    PubMed

    Cai, Lu; Chen, Tong-Bin; Gao, Ding; Yu, Jie

    2016-03-01

    Bio-drying is a technology that aims to remove water from a material using the microbial heat originating from organic matter degradation. However, the evolution of bacterial communities that are associated with the drying process has not been researched systematically. This study was performed to investigate the variations of bacterial communities and the relationships among bacterial communities, water evaporation, water generation, and organic matter degradation during the bio-drying of sewage sludge. High-throughput pyrosequencing was used to analyze the bacterial communities, while water evaporation and water generation were determined based on an in situ water vapor monitoring device. The values of water evaporation, water generation, and volatile solids degradation were 412.9 g kg(-1) sewage sludge bio-drying material (SSBM), 65.0 g kg(-1) SSBM, and 70.2 g kg(-1) SSBM, respectively. Rarefaction curves and diversity indices showed that bacterial diversity plummeted after the temperature of the bio-drying pile dramatically increased on d 2, which coincided with a remarkable increase of water evaporation on d 2. Bacterial diversity increased when the pile cooled. During the thermophilic phase, in which Acinetobacter and Bacillus were the dominant genera, the rates of water evaporation, water generation, and VS degradation peaked. These results implied that the elevated temperature reshaped the bacterial communities, which played a key role in water evaporation, and the high temperature also contributed to the effective elimination of pathogens. Copyright © 2015 Elsevier Ltd. All rights reserved.

  15. Bodily matters above and below ground: the treatment of American remains from the Korean War.

    PubMed

    Keene, Judith

    2010-02-01

    Throughout most of the twentieth century, depending on the capabilities of the military mortuary services and the time limits set by government, the bodies of the American fallen in foreign wars have been repatriated home to their families. In the Korean War the conditions of combat posed large challenges to the recovery and returns of bodily remains. Almost half a century after that conflict, the American missing in Korea have become significant players within the government's expanding efforts that were prompted in answer to demands to locate American soldiers who remain unaccounted for from the Vietnam War. The essay traces the background to U.S. military mortuary services and the operation in the Korean War and in the subsequent joint expeditions in North Korea. The analysis concludes that in most of these ventures the outlay of resources has produced few remains.

  16. Production of ethanol and feed by high dry matter hydrolysis and fermentation of palm kernel press cake.

    PubMed

    Jørgensen, Henning; Sanadi, Anand R; Felby, Claus; Lange, Niels Erik Krebs; Fischer, Morten; Ernst, Steffen

    2010-05-01

    Palm kernel press cake (PKC) is a residue from palm oil extraction presently only used as a low protein feed supplement. PKC contains 50% fermentable hexose sugars present in the form of glucan and mainly galactomannan. This makes PKC an interesting feedstock for processing into bioethanol or in other biorefinery processes. Using a combination of mannanase, beta-mannosidase, and cellulases, it was possible without any pretreatment to hydrolyze PKC at solid concentrations of 35% dry matter with mannose yields up to 88% of theoretical. Fermentation was tested using Saccharomyces cerevisiae in both a separate hydrolysis and fermentation (SHF) and simultaneous saccharification and fermentation (SSF) setup. The hydrolysates could readily be fermented without addition of nutrients and with average fermentation yields of 0.43 +/- 0.02 g/g based on consumed mannose and glucose. Employing SSF, final ethanol concentrations of 70 g/kg was achieved in 216 h, corresponding to an ethanol yield of 70% of theoretical or 200 g ethanol/kg PKC. Testing various enzyme mixtures revealed that including cellulases in combination with mannanases significantly improved ethanol yields. Processing PKC to ethanol resulted in a solid residue enriched in protein from 17% to 28%, a 70% increase, thereby potentially making a high-protein containing feed supplement.

  17. Selection signatures in four lignin genes from switchgrass populations divergently selected for in vitro dry matter digestibility

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chen, Shiyu; Kaeppler, Shawn M.; Vogel, Kenneth P.

    Switchgrass is undergoing development as a dedicated cellulosic bioenergy crop. Fermentation of lignocellulosic biomass to ethanol in a bioenergy system or to volatile fatty acids in a livestock production system is strongly and negatively influenced by lignification of cell walls. This study detects specific loci that exhibit selection signatures across switchgrass breeding populations that differ in in vitro dry matter digestibility (IVDMD), ethanol yield, and lignin concentration. Allele frequency changes in candidate genes were used to detect loci under selection. Out of the 183 polymorphisms identified in the four candidate genes, twenty-five loci in the intron regions and four locimore » in coding regions were found to display a selection signature. All loci in the coding regions are synonymous substitutions. Selection in both directions were observed on polymorphisms that appeared to be under selection. Genetic diversity and linkage disequilibrium within the candidate genes were low. The recurrent divergent selection caused excessive moderate allele frequencies in the cycle 3 reduced lignin population as compared to the base population. As a result, this study provides valuable insight on genetic changes occurring in short-term selection in the polyploid populations, and discovered potential markers for breeding switchgrass with improved biomass quality.« less

  18. Selection signatures in four lignin genes from switchgrass populations divergently selected for in vitro dry matter digestibility

    DOE PAGES

    Chen, Shiyu; Kaeppler, Shawn M.; Vogel, Kenneth P.; ...

    2016-11-28

    Switchgrass is undergoing development as a dedicated cellulosic bioenergy crop. Fermentation of lignocellulosic biomass to ethanol in a bioenergy system or to volatile fatty acids in a livestock production system is strongly and negatively influenced by lignification of cell walls. This study detects specific loci that exhibit selection signatures across switchgrass breeding populations that differ in in vitro dry matter digestibility (IVDMD), ethanol yield, and lignin concentration. Allele frequency changes in candidate genes were used to detect loci under selection. Out of the 183 polymorphisms identified in the four candidate genes, twenty-five loci in the intron regions and four locimore » in coding regions were found to display a selection signature. All loci in the coding regions are synonymous substitutions. Selection in both directions were observed on polymorphisms that appeared to be under selection. Genetic diversity and linkage disequilibrium within the candidate genes were low. The recurrent divergent selection caused excessive moderate allele frequencies in the cycle 3 reduced lignin population as compared to the base population. As a result, this study provides valuable insight on genetic changes occurring in short-term selection in the polyploid populations, and discovered potential markers for breeding switchgrass with improved biomass quality.« less

  19. The Influence of African Dust on Air Quality in the Caribbean Basin: An Integrated Analysis of Satellite Retrievals, Ground Observations, and Model Simulations

    NASA Astrophysics Data System (ADS)

    Yu, H.; Prospero, J. M.; Chin, M.; Randles, C. A.; da Silva, A.; Bian, H.

    2015-12-01

    Long-term surface measurements in several locations extending from northeastern coast of South America to Miami in Florida have shown that African dust arrives in the Greater Caribbean Basin throughout a year. This long-range transported dust frequently elevates the level of particulate matter (PM) above the WHO guideline for PM10, which raises a concern of possible adverse impact of African dust on human health in the region. There is also concern about how future climate change might affect dust transport and its influence on regional air quality. In this presentation we provide a comprehensive characterization of the influence of African dust on air quality in the Caribbean Basin via integrating the ground observations with satellite retrievals and model simulations. The ground observations are used to validate and evaluate satellite retrievals and model simulations of dust, while satellite measurements and model simulations are used to extend spatial coverage of the ground observations. An analysis of CALIPSO lidar measurements of three-dimensional distribution of aerosols over 2007-2014 yields altitude-resolved dust mass flux into the region. On a basis of 8-year average and integration over the latitude zone of 0°-30°N, a total of 76 Tg dust is imported to the air above the Greater Caribbean Basin, of which 34 Tg (or 45%) is within the lowest 1 km layer and most relevant to air quality concern. The seasonal and interannual variations of the dust import are well correlated with ground observations of dust in Cayenne, Barbados, Puerto Rico, and Miami. We will also show comparisons of the size-resolved dust amount from both NASA GEOS-5 aerosol simulation and MERRA-2 aerosol reanalysis (i.e., column aerosol loading being constrained by satellite measurements of radiance at the top of atmosphere) with the ground observations and satellite measurement.

  20. Hybrid Drying of Carrot Preliminary Processed with Ultrasonically Assisted Osmotic Dehydration

    PubMed Central

    2017-01-01

    Summary In this paper the kinetics of osmotic dehydration of carrot and the influence of this pretreatment on the post-drying processes and the quality of obtained products are analysed. Osmotic dehydration was carried out in the aqueous fructose solution in two different ways: with and without ultrasound assistance. In the first part of the research, the kinetics of osmotic dehydration was analysed on the basis of osmotic dewatering rate, water loss and solid gain. Next, the effective time of dehydration was determined and in the second part of research samples were initially dehydrated for 30 min and dried. Five different procedures of drying were established on the grounds of convective method enhanced with microwave and infrared radiation. The influence of osmotic dehydration on the drying kinetics and final product quality was analysed. It was found that it did not influence the drying kinetics significantly but positively affected the final product quality. Negligible influence on the drying kinetics was attributed to solid uptake, which may block the pores, hindering heat and mass transfer. It was also concluded that the application of microwave and/or infrared radiation during convective drying significantly influenced the kinetics of the final stage of drying. A proper combination of aforementioned techniques of hybrid drying allows reducing the drying time. Differences between the particular dehydration methods and drying schedules were discussed. PMID:28867949

  1. Changes in the phenolic acid content during commercial dry-grind processing of corn to ethanol and DDGS

    USDA-ARS?s Scientific Manuscript database

    Nine fractions (ground corn-1, cooked slurry-2, liquefied slurry-3, fermented mash-4, whole stillage-5, thin stillage-6, condensed distillers soluble (CDS)-7, distillers wet grains (DWG)-8, and distillers dried grains with solubles (DDGS)-9) were collected from three commercial dry-grind bioethanol ...

  2. Geology and ground water in the Platte-Republican Rivers watershed and the Little Blue River basin above Angus, Nebraska, with a section on chemical quality of the ground water

    USGS Publications Warehouse

    Johnson, C.R.; Brennan, Robert

    1960-01-01

    This report describes an area of about 7,300 square miles in south-central Nebraska. Approximately one-fourth of the area, largely at its east end, consists of an undissected southeastward-sloping upland plain and is almost wholly irrigable; the remainder is in various stages of dissection and only parts of it are suitable for irrigation. Although some of the deeper lying bedrock formations are potential sources of water supply, they are not likely to be tapped in the near future because abundant supplies are available at shallower depth from semiconsolidated and unconsolidated deposits. The Ogallala formation of Tertiary (Pliocene) age consists of gravel, sand, silt, and volcanic ash, some layers of which are partly cemented. It was deposited by eastward-flowing streams, which formed a constructional plain above a surface into which the streams had previously eroded broad valleys. In turn, valleys were cut into the surface of the Ogallala before the overlying deposits of gravel, sand, silt, and clay of Quaternary (Pleistocene) age were laid down, also forming a constructional plain. During Recent time, streams have dissected the older deposits and have deposited thin alluvium in their valleys; also, several parts of the area have become mantled by wind-deposited sand. Because during Tertiary and Quaternary time the area repeatedly was the site of deposition and erosion, the thickness of all the stratigraphic units differs markedly from place to place. In general, however, the Ogallala formation thins eastward and in the central and eastern parts of the area is overlain by the eastward-thickening deposits of Pleistocene age. The maximum thickness of the Ogallala formation is about 500 feet, and the maximum thickness of the Pleistocene deposits is a little more than 300 feet. Each thins to a featheredge and is completely absent in parts of the area. The water-bearing part of the combined Tertiary and Pleistocene deposits is considered to be a single zone of

  3. The amount of food ingested in a single meal by rainbow trout offered chopped herring, dry and wet diets

    PubMed

    Ruohonen; Grove; McIlroy

    1997-07-01

    Two-year-old 1·5-kg rainbow trout were held in cages and conditioned by feeding either on low-fat chopped herring (H trout) or dry pellets (P trout) for 15 weeks. Their satiation amounts were then determined under standard conditions. On a wet weight basis H trout ate 2·5-3·5 times more food than P trout; this was sufficient to compensate for the high water content of herring and thereby maintain the dry matter intake. When P trout were offered herring (PH trout) they consumed more food than when offered dry pellets but not as much as H trout. Stomach capacity restricted the intake and their dry matter intake was reduced by c. 40%. When H trout were offered dry pellets (HP trout) they adjusted their intake immediately close to the level of P trout although their larger stomachs could have accommodated more than twice this volume of dry food. The return of appetite after a satiation meal was almost linear with time. Appetite increased at c. 556 mg g-1 body weight h-1 for H trout and at 142 mg g-1 bw h-1 for P trout. The return of appetite in PH trout was significantly slower (c. 370 mg g-1 bw h-1) than in H trout; the previous dietary history of the PH trout limited their capacity to process larger volumes of wet food in a single meal. Fish offered dry diet (P and HP trout) had similar rates of appetite return despite their previous feeding history suggesting that the property of the dry feed itself might limit meal size. The total gastric emptying time of diets of similar dry matter content (with and without large amounts of water) was similar, but the delay time before gastric emptying starts tended to be longer for dry diets. Dry pellets appear to impose a demand for water that prolongs the gastric delay. This water demand is met partly by drinking since the trout fed on dry pellets drank significantly more (436±189 mg kg-1 h-1) than unfed and herring-fed trout which drank little or not at all (65±113 and 70±66 mg kg-1 h

  4. Perspective on the Cosmic-ray Electron Spectrum above TeV

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Fang, Kun; Wang, Bing-Bing; Bi, Xiao-Jun

    2017-02-20

    The AMS-02 has measured the cosmic-ray electron (plus positron) spectrum up to ∼TeV with unprecedented precision. The spectrum can be well described by a power law without any obvious features above 10 GeV. The satellite instrument Dark Matter Particle Explorer (DAMPE), which was launched a year ago, will measure the electron spectrum up to 10 TeV with high-energy resolution. The cosmic electrons beyond TeV may be attributed to few local cosmic-ray sources, such as supernova remnants. Therefore, spectral features, such as cut-off and bumps, can be expected at high energies. In this work, we provide a careful study on themore » perspective of the electron spectrum beyond TeV. We first examine our astrophysical source models on the latest leptonic data of AMS-02 to give a self-consistent picture. Then we focus on the discussion about the candidate sources, which could be electron contributors above TeV. Depending on the properties of the local sources (especially on the nature of Vela), DAMPE may detect interesting features in the electron spectrum above TeV in the future.« less

  5. Ground-water quality and geochemistry in Dayton, Stagecoach, and Churchill Valleys, western Nevada

    USGS Publications Warehouse

    Thomas, James M.; Lawrence, Stephen J.

    1994-01-01

    The U.S. Geological Survey investigated the quality of ground water in the Dayton, Stagecoach, and Churchill Valleys as part of the Carson River Basin National Water-Quality Assessment (NAWQA) pilot study. Four aquifer systems have been de- lineated in the study area. Principal aquifers are unconsolidated deposits at altitudes of less than 4,900 feet above sea level and more than 50 feet below land surface. Shallow aquifers are at altitudes of less than 4,900 feet and less than 50 feet below land surface. Upland aquifers are above 4,900 feet and provide recharge to the principal aquifers. Thermal aquifers, defined as those having a water temperature greater than 30 degrees Celsius, are also present. Ground water used in Dayton, Stagecoach, and Churchill Valleys is pumped from principal aquifers in unconsolidated basin-fill deposits. Ground water in these aquifers originates as precipitation in the adjacent mountains and is recharged by the Carson River and by underflow from adjacent upstream valleys. Ground-water flow is generally parallel to the direction of surface-water flow in the Carson River. Ground water is discharged by pumping, evapo- transpiration, and underflow into the Carson River. The results of geochemical modeling indicate that as ground water moves from upland aquifers in mountainous recharge areas to principal aquifers in basin-fill deposits, the following processes probably occur: (1) plagioclase feldspar, sodium chloride, gypsum (or pyrite), potassium feldspar, and biotite dissolve; (2) calcite precipitates; (3) kaolinite forms; (4) small amounts of calcium and magnesium in the water exchange for potassium on aquifer minerals; and (5) carbon dioxide is gained or lost. The geochemical models are consistent with (1) phases identified in basin- fill sediments; (2) chemical activity of major cations and silica; (3) saturation indices of calcite and amorphous silica; (4) phase relations for aluminosilicate minerals indicated by activity diagrams; and

  6. Deformation of Fold-and-Thrust Belts above a Viscous Detachment: New Insights from Analogue Modelling Experiments

    NASA Astrophysics Data System (ADS)

    Nogueira, Carlos R.; Marques, Fernando O.

    2015-04-01

    Theoretical and experimental studies on fold-and-thrusts belts (FTB) have shown that, under Coulomb conditions, deformation of brittle thrust wedges above a dry frictional basal contact is characterized by dominant frontward vergent thrusts (forethrusts) with thrust spacing and taper angle being directly influenced by the basal strength (increase in basal strength leading to narrower thrust spacing and higher taper angles); whereas thrust wedges deformed above a weak viscous detachment, such as salt, show a more symmetric thrust style (no prevailing vergence of thrusting) with wider thrust spacing and shallower wedges. However, different deformation patterns can be found on this last group of thrust wedges both in nature and experimentally. Therefore we focused on the strength (friction) of the wedge basal contact, the basal detachment. We used a parallelepiped box with four fixed walls and one mobile that worked as a vertical piston drove by a computer controlled stepping motor. Fine dry sand was used as the analogue of brittle rocks and silicone putty (PDMS) with Newtonian behaviour as analogue of the weak viscous detachment. To investigate the strength of basal contact on thrust wedge deformation, two configurations were used: 1) a horizontal sand pack with a dry frictional basal contact; and 2) a horizontal sand pack above a horizontal PDMS layer, acting as a basal weak viscous contact. Results of the experiments show that: the model with a dry frictional basal detachment support the predictions for the Coulomb wedges, showing a narrow wedge with dominant frontward vergence of thrusting, close spacing between FTs and high taper angle. The model with a weak viscous frictional basal detachment show that: 1) forethrusts (FT) are dominant showing clearly an imbricate asymmetric geometry, with wider spaced thrusts than the dry frictional basal model; 2) after FT initiation, the movement on the thrust can last up to 15% model shortening, leading to great amount of

  7. Ground-State Properties of Unitary Bosons: From Clusters to Matter

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Carlson, J.; Gandolfi, S.; van Kolck, U.

    The properties of cold Bose gases at unitarity have been extensively investigated in the last few years both theoretically and experimentally. In this paper we use a family of interactions tuned to two-body unitarity and very weak three-body binding to demonstrate the universal properties of both clusters and matter. We determine the universal properties of finite clusters up to 60 particles and, for the first time, explicitly demonstrate the saturation of energy and density with particle number and compare with bulk properties. At saturation in the bulk we determine the energy, density, two- and three-body contacts, and the condensate fraction.more » We find that uniform matter is more bound than three-body clusters by nearly 2 orders of magnitude, the two-body contact is very large in absolute terms, and yet the condensate fraction is also very large, greater than 90%. Finally, equilibrium properties of these systems may be experimentally accessible through rapid quenching of weakly interacting boson superfluids.« less

  8. Ground-State Properties of Unitary Bosons: From Clusters to Matter

    DOE PAGES

    Carlson, J.; Gandolfi, S.; van Kolck, U.; ...

    2017-11-29

    The properties of cold Bose gases at unitarity have been extensively investigated in the last few years both theoretically and experimentally. In this paper we use a family of interactions tuned to two-body unitarity and very weak three-body binding to demonstrate the universal properties of both clusters and matter. We determine the universal properties of finite clusters up to 60 particles and, for the first time, explicitly demonstrate the saturation of energy and density with particle number and compare with bulk properties. At saturation in the bulk we determine the energy, density, two- and three-body contacts, and the condensate fraction.more » We find that uniform matter is more bound than three-body clusters by nearly 2 orders of magnitude, the two-body contact is very large in absolute terms, and yet the condensate fraction is also very large, greater than 90%. Finally, equilibrium properties of these systems may be experimentally accessible through rapid quenching of weakly interacting boson superfluids.« less

  9. Enhanced submarine ground water discharge form mixing of pore water and estuarine water

    USGS Publications Warehouse

    Martin, Jonathan B.; Cable, Jaye E.; Swarzenski, Peter W.; Lindenberg, Mary K.

    2004-01-01

    Submarine ground water discharge is suggested to be an important pathway for contaminants from continents to coastal zones, but its significance depends on the volume of water and concentrations of contaminants that originate in continental aquifers. Ground water discharge to the Banana River Lagoon, Florida, was estimated by analyzing the temporal and spatial variations of Cl− concentration profiles in the upper 230 cm of pore waters and was measured directly by seepage meters. Total submarine ground water discharge consists of slow discharge at depths > ∼70 cm below seafloor (cmbsf) of largely marine water combined with rapid discharge of mixed pore water and estuarine water above ∼70 cmbsf. Cl− profiles indicate average linear velocities of ∼0.014 cm/d at depths > ∼70 cmbsf. In contrast, seepage meters indicate water discharges across the sediment-water interface at rates between 3.6 and 6.9 cm/d. The discrepancy appears to be caused by mixing in the shallow sediment, which may result from a combination of bioirrigation, wave and tidal pumping, and convection. Wave and tidal pumping and convection would be minor because the tidal range is small, the short fetch of the lagoon limits wave heights, and large density contacts are lacking between lagoon and pore water. Mixing occurs to ∼70 cmbsf, which represents depths greater than previously reported. Mixing of oxygenated water to these depths could be important for remineralization of organic matter.

  10. Changing Regulations of COD Pollution Load of Weihe River Watershed above TongGuan Section, China

    NASA Astrophysics Data System (ADS)

    Zhu, Lei; Liu, WanQing

    2018-02-01

    TongGuan Section of Weihe River Watershed is a provincial section between Shaanxi Province and Henan Province, China. Weihe River Watershed above TongGuan Section is taken as the research objective in this paper and COD is chosen as the water quality parameter. According to the discharge characteristics of point source pollutions and non-point source pollutions, a method—characteristic section load (CSLD) method is suggested and point and non-point source pollution loads of Weihe River Watershed above TongGuan Section are calculated in the rainy, normal and dry season in 2013. The results show that the monthly point source pollution loads of Weihe River Watershed above TongGuan Section discharge stably and the monthly non-point source pollution loads of Weihe River Watershed above TongGuan Section change greatly and the non-point source pollution load proportions of total pollution load of COD decrease in the rainy, wet and normal period in turn.

  11. Fungal endophytes in above-ground tissues of desert plants: infrequent in culture, but highly diverse and distinctive symbionts

    PubMed Central

    Massimo, Nicholas C.; Nandi Devan, MM; Arendt, Kayla R.; Wilch, Margaret H.; Riddle, Jakob M.; Furr, Susan H.; Steen, Cole; U'Ren, Jana M.; Sandberg, Dustin C.; Arnold, A. Elizabeth

    2015-01-01

    In hot deserts, plants cope with aridity, high temperatures, and nutrient-poor soils with morphological and biochemical adaptations that encompass intimate microbial symbioses. Whereas the root microbiomes of arid-land plants have received increasing attention, factors influencing assemblages of symbionts in above-ground tissues have not been evaluated for many woody plants that flourish in desert environments. We evaluated the diversity, host affiliations, and distributions of endophytic fungi associated with photosynthetic tissues of desert trees and shrubs, focusing on non-succulent woody plants in the species-rich Sonoran Desert. To inform our strength of inference, we evaluated the effects of two different nutrient media, incubation temperatures, and collection seasons on the apparent structure of endophyte assemblages. Analysis of >22,000 tissue segments revealed that endophytes were isolated four times more frequently from photosynthetic stems than leaves. Isolation frequency was lower than expected given the latitude of the study region, and varied among species a function of sampling site and abiotic factors. However, endophytes were very species-rich and phylogenetically diverse, consistent with less-arid sites of a similar latitudinal position. Community composition differed among host species, but not as a function of tissue type, sampling site, sampling month, or exposure. Estimates of abundance, diversity and composition were not influenced by isolation medium or incubation temperature. Phylogenetic analyses of the most commonly isolated genus (Preussia) revealed multiple evolutionary origins of desert-plant endophytism and little phylogenetic structure with regard to seasonality, tissue preference, or optimal temperatures and nutrients for growth in vitro. Together, these results provide insight into endophytic symbioses in desert plant communities, and can be used to optimize strategies for capturing endophyte biodiversity at regional scales. PMID

  12. Deep Soil Carbon Influenced Following Forest Organic Matter Manipulation In A Loblolly Pine Plantation In The Southeastern United States

    NASA Astrophysics Data System (ADS)

    Hatten, J. A.; Mack, J.; Sucre, E.; Leggett, Z.; Roberts, S.; Dewey, J.

    2013-12-01

    Forest harvest residues and forest floor materials are significant sources of mineral soil organic matter and nutrients for regenerating and establishing forests. Harvest residues in particular are occasionally removed, piled, or burned following harvesting. Weyerhaeuser Company established an experimental study to evaluate the effect of the removal and addition of harvest residual and forest-floor on site productivity and soil carbon. This study was installed in a loblolly pine plantation near Millport, Alabama, USA on the Upper Gulf Coastal Plain to test both extremes from complete removal of harvest residues and forest floor to doubling of these materials. This study has been continuously monitored since its establishment in 1994. We have examined the effects of varying forest floor levels on the biomass, soil carbon content, and soil carbon composition in the context of these management activities. Above- and below-ground productivity, soil moisture, soil temperature, and nutrient dynamics have been related to soil organic carbon in mineral soil, size/density fractionation, and lignin and cutin biomarkers from the cupric oxide (CuO)-oxidation technique. We have found that while removing litter and harvest residues has little effect on biomass production and soil carbon, importing litter and harvest residues increases forest productivity and soil carbon content. Interestingly, increased carbon was observed in all depths assessed (O horizon, 0-20, 20-40, and 40-60cm) suggesting that this practice may sequester organic carbon in deep soil horizons. Our biomarker analysis indicated that importing litter and harvest residues increased relative contributions from above ground sources at the 20-40cm depth and increased relative contributions from belowground sources at the 40-60cm depth. These results suggest that organic matter manipulations in managed forests can have significant effects on deep soil carbon that may be resistant to mineralization or the effects of

  13. Valeriana officinalis Dry Plant Extract for Direct Compression: Preparation and Characterization.

    PubMed

    Gallo, Loreana; Ramírez-Rigo, María Veronica; Piña, Juliana; Palma, Santiago; Allemandi, Daniel; Bucalá, Verónica

    2012-01-01

    Valeriana officinalis L. (Valerianaceae) is one of the most widely used plants for the treatment of anxiety and insomnia. Usually dry plant extracts, including V. officinalis, are hygroscopic materials with poor physico-mechanical properties that can be directly compressed.A V. officinalis dry extract with moderate hygroscocity is suitable for direct compression, and was obtained by using a simple and economical technique. The V. officinalis fluid extract was oven-dried with colloidal silicon dioxide as a drying adjuvant. The addition of colloidal silicon dioxide resulted in a dry plant extract with good physico-mechanical properties for direct compression and lower hygroscopicity than the dry extract without the carrier. The dry plant extract glass transition temperature was considerably above room temperature (about 72 °C). The colloidal silicon dioxide also produced an antiplasticizing effect, improving the powder's physical stability.The pharmaceutical performance of the prepared V. officinalis dry extract was studied through the design of tablets. The manufactured tablets showed good compactability, friability, hardness, and disintegration time. Those containing a disintegrant (Avicel PH 101) exhibited the best pharmaceutical performance, having the lowest disintegration time of around 40 seconds.

  14. Valeriana officinalis Dry Plant Extract for Direct Compression: Preparation and Characterization

    PubMed Central

    Gallo, Loreana; Ramírez-Rigo, María Veronica; Piña, Juliana; Palma, Santiago; Allemandi, Daniel; Bucalá, Verónica

    2012-01-01

    Valeriana officinalis L. (Valerianaceae) is one of the most widely used plants for the treatment of anxiety and insomnia. Usually dry plant extracts, including V. officinalis, are hygroscopic materials with poor physico-mechanical properties that can be directly compressed. A V. officinalis dry extract with moderate hygroscocity is suitable for direct compression, and was obtained by using a simple and economical technique. The V. officinalis fluid extract was oven-dried with colloidal silicon dioxide as a drying adjuvant. The addition of colloidal silicon dioxide resulted in a dry plant extract with good physico-mechanical properties for direct compression and lower hygroscopicity than the dry extract without the carrier. The dry plant extract glass transition temperature was considerably above room temperature (about 72 °C). The colloidal silicon dioxide also produced an antiplasticizing effect, improving the powder’s physical stability. The pharmaceutical performance of the prepared V. officinalis dry extract was studied through the design of tablets. The manufactured tablets showed good compactability, friability, hardness, and disintegration time. Those containing a disintegrant (Avicel PH 101) exhibited the best pharmaceutical performance, having the lowest disintegration time of around 40 seconds. PMID:23264947

  15. Vector dark matter annihilation with internal bremsstrahlung

    DOE PAGES

    Bambhaniya, Gulab; Kumar, Jason; Marfatia, Danny; ...

    2017-01-10

    We consider scenarios in which the annihilation of self-conjugate spin-1 dark matter to a Standard Model fermion-antifermion final state is chirality suppressed, but where this suppression can be lifted by the emission of an additional photon via internal bremsstrahlung. We find that this scenario can only arise if the initial dark matter state is polarized, which can occur in the context of self-interacting dark matter. In particular, this is possible if the dark matter pair forms a bound state that decays to its ground state before the constituents annihilate. We show that the shape of the resulting photon spectrum ismore » the same as for self-conjugate spin-0 and spin-1/2 dark matter, but the normalization is less heavily suppressed in the limit of heavy mediators.« less

  16. Effect of repeated drying-wetting-freezing-thawing cycles on the active soil organic carbon pool

    NASA Astrophysics Data System (ADS)

    Semenov, V. M.; Kogut, B. M.; Lukin, S. M.

    2014-04-01

    Samples of soddy-podzolic soil (long-term overgrown fallow and continuous bare fallow), gray forest soil (forest, farming agrocenosis), and a typical chernozem (virgin steppe, forest area, farming agrocenosis, continuous bare fallow) have been incubated under stable conditions; other samples of these soils have been subjected to six drying-wetting-incubation-freezing-thawing-incubation cycles during 136 days. The wetting of dried soils and the thawing of frozen soils result in an abrupt but short increase in the emission rate of C-CO2 by 2.7-12.4 and 1.6-2.7 times, respectively, compared to the stable incubation conditions. As the soil is depleted in potentially mineralizable organic matter, the rate of the C-CO2 emission pulses initiated by disturbing impacts decreases. The cumulative extra production of C-CO2 by soils of natural lands for six cycles makes up 21-40% of that in the treatments with stable incubation conditions; the corresponding value for cultivated soils, including continuous clean fallow, is in the range of 45-82%. The content of potentially mineralizable organic matter in the soils subjected to recurrent drying-wetting-freezingthawing cycles decreased compared to the soils without disturbing impacts by 1.6-4.4 times, and the mineralization constants decreased by 1.9-3.6 times. It has been emphasized that the cumulative effect of drying-wetting-freezing-thawing cycles is manifested not only in the decrease in the total Corg from the soil but also in the reduction of the mineralization potential of the soil organic matter.

  17. ASTROPHYSICS. Exclusion of leptophilic dark matter models using XENON100 electronic recoil data.

    PubMed

    2015-08-21

    Laboratory experiments searching for galactic dark matter particles scattering off nuclei have so far not been able to establish a discovery. We use data from the XENON100 experiment to search for dark matter interacting with electrons. With no evidence for a signal above the low background of our experiment, we exclude a variety of representative dark matter models that would induce electronic recoils. For axial-vector couplings to electrons, we exclude cross sections above 6 × 10(-35) cm(2) for particle masses of m(χ) = 2 GeV/c(2). Independent of the dark matter halo, we exclude leptophilic models as an explanation for the long-standing DAMA/LIBRA signal, such as couplings to electrons through axial-vector interactions at a 4.4σ confidence level, mirror dark matter at 3.6σ, and luminous dark matter at 4.6σ. Copyright © 2015, American Association for the Advancement of Science.

  18. Ground Source Heat Pump Computational Results

    DOE Data Explorer

    James Menart

    2013-07-31

    This data submission includes simulation results for ground loop heat pump systems located in 6 different cities across the United States. The cities are Boston, MA, Dayton, OH, Omaha, NE, Orlando, FL, Sacramento, CA, and St. Paul, MN. These results were obtained from the two-dimensional geothermal computer code called GEO2D. GEO2D was written as part of this DOE funded grant. The results included in this submission for each of the 6 cities listed above are: 1) specific information on the building being heated or cooled by the ground loop geothermal system, 2) some extreme values for the building heating and cooling loads during the year, 3) the inputs required to carry out the simulation, 4) a plot of the hourly building heating and cooling loads throughout the year, 5) a plot of the fluid temperature exiting the ground loop for a 20 year period, 6) a plot of the heat exchange between the ground loop and the ground for a 20 year period, and 7) ground and ground loop temperature contour plots at different times of the year for the 20 year period.

  19. Efficiency of converting nutrient dry matter to milk in Holstein herds.

    PubMed

    Britt, J S; Thomas, R C; Speer, N C; Hall, M B

    2003-11-01

    Production of milk from feed dry matter intakes (DMI), called dairy or feed efficiency, is not commonly measured in dairy herds as is feed conversion to weight gain in swine, beef, and poultry; however, it has relevance to conversion of purchased input to salable product and proportion of dietary nutrients excreted. The purpose of this study was to identify some readily measured factors that affect dairy efficiency. Data were collected from 13 dairy herds visited 34 times over a 14-mo period. Variables measured included cool or warm season (high ambient temperature <21 degrees C or >21 degrees C, respectively), days in milk, DMI, milk yield, milk fat percent, herd size, dietary concentrations (DM basis) and kilograms of crude protein (CP), acid detergent fiber (ADF), neutral detergent fiber (NDF), and forage. Season, days in milk, CP % and forage % of diet DM, and kilograms of dietary CP affected dairy efficiency. When evaluated using a model containing the significant variables, dairy efficiency was lower in the warm season (1.31) than in the cool season (1.40). In terms of simple correlations, dairy efficiency was negatively correlated with days in milk (r = -0.529), DMI (r = -0.316), forage % (r = -0.430), NDF % (r = -0.308), and kilograms of forage (r = -0.516), NDF (r = -0.434), and ADF (r = -0.313), in the diet, respectively. Dairy efficiency was positively correlated with milk yield (r = 0.707). The same relative patterns of significance and correlation were noted for dairy efficiency calculated with 3.5% fat-corrected milk yield. Diets fed by the herds fell within such a small range of variation (mean +/- standard deviation) for CP % (16.3 +/- 0.696), NDF % (33.2 +/- 2.68), and forage % (46.9 +/- 5.56) that these would not be expected to be useful to evaluate the effect of excessive underfeeding or overfeeding of these dietary components. The negative relationships of dairy efficiency with increasing dietary fiber and forage may reflect the effect of

  20. A case study of air quality above an urban roof top vegetable farm.

    PubMed

    Tong, Zheming; Whitlow, Thomas H; Landers, Andrew; Flanner, Benjamin

    2016-01-01

    The effect of elevation and rooftop configuration on local air quality was investigated at the Brooklyn Grange rooftop farm during a short-term observational campaign. Using multiple particle counters and sonic anemometers deployed along vertical gradients, we found that PM2.5 concentration decayed with height above the street. Samples adjacent to the street had the highest average PM2.5 concentration and frequent stochastic spikes above background. Rooftop observations 26 m above ground showed 7-33% reductions in average PM2.5 concentration compared with the curbside and had far fewer spikes. A relationship between the vertical extinction rate of PM2.5 and atmospheric stability was found whereby less unstable atmosphere and greater wind shear led to greater PM2.5 extinction due to damped vertical motion of air. Copyright © 2015 Elsevier Ltd. All rights reserved.