Sample records for above-threshold ionization spectra

  1. Suppression in high-order above-threshold ionization: destructive interference from quantum orbits

    NASA Astrophysics Data System (ADS)

    Lai, Xuan Yang; Quan, Wei; Yu, Shao Gang; Huang, Yi Yi; Liu, Xiao Jun

    2018-05-01

    We experimentally study the above-threshold ionization (ATI) spectra of noble gas argon in an intense laser field and focus on a novel suppression structure in the high-order ATI (HATI) spectra. It is found that, when a well-documented resonancelike enhancement feature appears in the HATI spectra, a significant suppression structure is followed in a higher energy region of the spectra. The observation is well reproduced by a numerical solution of the time-dependent Schrödinger equation. In terms of quantum-orbit theory, the observed suppression structure can be ascribed to the destructive interference from longer quantum orbits. Furthermore, an intrinsic relation between the ionization suppression and the ionization enhancement in the HATI spectra is well established.

  2. Rings in above-threshold ionization: A quasiclassical analysis

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lewenstein, M.; Kulander, K.C.; Schafer, K.J.

    1995-02-01

    A generalized strong-field approximation is formulated to describe atoms interacting with intense laser fields. We apply it to determine angular distributions of electrons in above-threshold ionization (ATI). The theory treats the effects of an electron rescattering from its parent ion core in a systematic perturbation series. Probability amplitudes for ionization are interpreted in terms of quasiclassical electron trajectories. We demonstrate that contributions from the direct tunneling processes in the absence of rescattering are not sufficient to describe the observed ATI spectra. We show that the high-energy portion of the spectrum, including recently discovered rings (i.e., complex features in the angularmore » distributions of outgoing electrons) are due to rescattering processes. We compare our quasiclassical results with exact numerical solutions.« less

  3. High-order above-threshold dissociation of molecules

    NASA Astrophysics Data System (ADS)

    Lu, Peifen; Wang, Junping; Li, Hui; Lin, Kang; Gong, Xiaochun; Song, Qiying; Ji, Qinying; Zhang, Wenbin; Ma, Junyang; Li, Hanxiao; Zeng, Heping; He, Feng; Wu, Jian

    2018-03-01

    Electrons bound to atoms or molecules can simultaneously absorb multiple photons via the above-threshold ionization featured with discrete peaks in the photoelectron spectrum on account of the quantized nature of the light energy. Analogously, the above-threshold dissociation of molecules has been proposed to address the multiple-photon energy deposition in the nuclei of molecules. In this case, nuclear energy spectra consisting of photon-energy spaced peaks exceeding the binding energy of the molecular bond are predicted. Although the observation of such phenomena is difficult, this scenario is nevertheless logical and is based on the fundamental laws. Here, we report conclusive experimental observation of high-order above-threshold dissociation of H2 in strong laser fields where the tunneling-ionized electron transfers the absorbed multiphoton energy, which is above the ionization threshold to the nuclei via the field-driven inelastic rescattering. Our results provide an unambiguous evidence that the electron and nuclei of a molecule as a whole absorb multiple photons, and thus above-threshold ionization and above-threshold dissociation must appear simultaneously, which is the cornerstone of the nowadays strong-field molecular physics.

  4. High-order above-threshold dissociation of molecules.

    PubMed

    Lu, Peifen; Wang, Junping; Li, Hui; Lin, Kang; Gong, Xiaochun; Song, Qiying; Ji, Qinying; Zhang, Wenbin; Ma, Junyang; Li, Hanxiao; Zeng, Heping; He, Feng; Wu, Jian

    2018-02-27

    Electrons bound to atoms or molecules can simultaneously absorb multiple photons via the above-threshold ionization featured with discrete peaks in the photoelectron spectrum on account of the quantized nature of the light energy. Analogously, the above-threshold dissociation of molecules has been proposed to address the multiple-photon energy deposition in the nuclei of molecules. In this case, nuclear energy spectra consisting of photon-energy spaced peaks exceeding the binding energy of the molecular bond are predicted. Although the observation of such phenomena is difficult, this scenario is nevertheless logical and is based on the fundamental laws. Here, we report conclusive experimental observation of high-order above-threshold dissociation of H 2 in strong laser fields where the tunneling-ionized electron transfers the absorbed multiphoton energy, which is above the ionization threshold to the nuclei via the field-driven inelastic rescattering. Our results provide an unambiguous evidence that the electron and nuclei of a molecule as a whole absorb multiple photons, and thus above-threshold ionization and above-threshold dissociation must appear simultaneously, which is the cornerstone of the nowadays strong-field molecular physics. Copyright © 2018 the Author(s). Published by PNAS.

  5. Probing electron delays in above-threshold ionization

    DOE PAGES

    Zipp, Lucas J.; Natan, Adi; Bucksbaum, Philip H.

    2014-11-21

    Recent experiments have revealed attosecond delays in the emission of electrons from atoms ionized by extreme UV light, offering a glimpse into the ultrafast nature of light-induced electron dynamics. In this work, we extend these measurements to the strong-field above-threshold ionization (ATI) regime, by measuring delays in the photoemission of electrons from argon in the presence of an intense laser field. We probe the ATI process with a weak coherent reference, at half the laser frequency. The interfering ionization signal reveals the relative spectral phase of adjacent ATI channels, with an equivalent resolution of a few attoseconds. These relative delaysmore » depend on the strong field, and approach zero at higher intensity. Our phase measurements of ATI electrons show how strong fields alter ionization dynamics in atoms.« less

  6. Two-color above-threshold and two-photon sequential double ionization beyond the dipole approximation

    NASA Astrophysics Data System (ADS)

    Grum-Grzhimailo, A. N.; Gryzlova, E. V.; Kuzmina, E. I.; Chetverkina, A. S.; Strakhova, S. I.

    2015-04-01

    Two nonlinear atomic photoprocesses are theoretically considered with the emphasis on the photoelectron angular distributions and their modifications due to violation of the dipole approximation: sequential two-photon double ionization and two-color above threshold ionization. These reactions are now accessible with X-ray free electron lasers. Both processes are exemplified by the ionization of krypton: from the 4p shell in the sequential two-photon double ionization and from the 2s shell in the two-color above-threshold ionization, which are compared to the Ar(3p) and Ne(1s) ionization, respectively. Noticeable nondipole effects are predicted.

  7. Above-Threshold Ionization by an Elliptically Polarized Field: Quantum Tunneling Interferences and Classical Dodging

    NASA Astrophysics Data System (ADS)

    Paulus, G. G.; Zacher, F.; Walther, H.; Lohr, A.; Becker, W.; Kleber, M.

    1998-01-01

    Measurements of above-threshold ionization electron spectra in an elliptically polarized field as a function of the ellipticity are presented. In the rescattering regime, electron yields quickly drop with increasing ellipticity. The yields of lower-energy electrons rise again when circular polarization is approached. A classical explanation for these effects is provided. Additional local maxima in the yields of lower-energy electrons can be interpreted as being due to interferences of electron trajectories that tunnel out at different times within one cycle of the field.

  8. Interference substructure of above-threshold ionization peaks in the stabilization regime

    NASA Astrophysics Data System (ADS)

    Toyota, Koudai; Tolstikhin, Oleg I.; Morishita, Toru; Watanabe, Shinichi

    2008-09-01

    The photoelectron spectra produced in the photodetachment of H- (treated in the single-active-electron approximation) by strong high-frequency laser pulses with adequately chosen laser parameters in the stabilization regime are theoretically studied for elliptic polarization over an extended parameter range. An oscillating substructure in the above-threshold ionization peaks is observed, which confirms similar findings in the one-dimensional (1D) [K. Toyota , Phys. Rev. A 76, 043418 (2007)] and 3D calculations for linear polarization [O. I. Tolstikhin, Phys. Rev. A 77, 032712 (2008)]. The mechanism is an interference between the photoelectron wave packets created in the rising and falling parts of the pulse which is specific to the stabilization regime. We thus conclude that this interference substructure is robust for any polarization and over a wide range of the laser parameters, and hence should be observable experimentally.

  9. Molecular orbital imaging via above-threshold ionization with circularly polarized pulses.

    PubMed

    Zhu, Xiaosong; Zhang, Qingbin; Hong, Weiyi; Lu, Peixiang; Xu, Zhizhan

    2011-07-18

    Above-threshold ionization (ATI) for aligned or orientated linear molecules by circularly polarized laser pulsed is investigated. It is found that the all-round structural information of the molecular orbital is extracted with only one shot by the circularly polarized probe pulse rather than with multi-shot detections in a linearly polarized case. The obtained photoelectron momentum spectrum directly depicts the symmetry and electron distribution of the occupied molecular orbital, which results from the strong sensitivity of the ionization probability to these structural features. Our investigation indicates that the circularly polarized probe scheme would present a simple method to study the angle-dependent ionization and image the occupied electronic orbital.

  10. Application of the dressed-bound-state molecular strong-field approximation to above-threshold ionization of heteronuclear molecules: NO vs. CO.

    PubMed

    Busuladžić, M; Hasović, E; Becker, W; Milošević, D B

    2012-10-07

    We theoretically investigate high-order above-threshold ionization (HATI) of heteronuclear diatomic molecules applying the molecular strong-field approximation which includes dressing of the molecular bound state. We consider HATI of nitrogen monoxide molecules, which are characterized by the π symmetry of their highest occupied molecular orbital. We show that the HATI spectra of NO exhibit characteristic interference structures. We analyze the differences and similarities of the HATI spectra of NO molecules and the spectra of CO (σ symmetry) and O(2) (π(g) symmetry) molecules. The symmetry properties of the molecular HATI spectra governed by linearly and elliptically polarized fields are considered in detail. The yields of high-energy electrons, contributing to the plateau region of the photoelectron spectra, strongly depend on the employed ellipticity.

  11. Scaling of the low-energy structure in above-threshold ionization in the tunneling regime: theory and experiment.

    PubMed

    Guo, L; Han, S S; Liu, X; Cheng, Y; Xu, Z Z; Fan, J; Chen, J; Chen, S G; Becker, W; Blaga, C I; DiChiara, A D; Sistrunk, E; Agostini, P; DiMauro, L F

    2013-01-04

    A calculation of the second-order (rescattering) term in the S-matrix expansion of above-threshold ionization is presented for the case when the binding potential is the unscreened Coulomb potential. Technical problems related to the divergence of the Coulomb scattering amplitude are avoided in the theory by considering the depletion of the atomic ground state due to the applied laser field, which is well defined and does not require the introduction of a screening constant. We focus on the low-energy structure, which was observed in recent experiments with a midinfrared wavelength laser field. Both the spectra and, in particular, the observed scaling versus the Keldysh parameter and the ponderomotive energy are reproduced. The theory provides evidence that the origin of the structure lies in the long-range Coulomb interaction.

  12. Polarization effects in above-threshold ionization with a mid-infrared strong laser field

    NASA Astrophysics Data System (ADS)

    Kang, Hui-Peng; Xu, Song-Po; Wang, Yan-Lan; Yu, Shao-Gang; Zhao, Xiao-Yun; Hao, Xiao-Lei; Lai, Xuan-Yang; Pfeifer, Thomas; Liu, Xiao-Jun; Chen, Jing; Cheng, Ya; Xu, Zhi-Zhan

    2018-05-01

    Using a semiclassical approach, we theoretically study the above-threshold ionization of magnesium by intense, mid-infrared laser pulses. The formation of low-energy structures in the photoelectron spectrum is found to be enhanced by comparing with a calculation based on the single-active electron approximation. By performing electron trajectory and recollision-time distribution analysis, we demonstrate that this phenomenon is due to the laser-induced ionic core polarization effects on the recolliding electrons. We also show that the polarization effects should be experimentally detectable. Our finding provides new insight into ultrafast control of strong-field photoionization and imaging of polar molecules.

  13. High-order above-threshold photoemission from nanotips controlled with two-color laser fields

    NASA Astrophysics Data System (ADS)

    Seiffert, Lennart; Paschen, Timo; Hommelhoff, Peter; Fennel, Thomas

    2018-07-01

    We investigate the process of phase-controlled high-order above-threshold photoemission from metallic nanotips under bichromatic laser fields. Experimental photoelectron spectra resulting from two-color excitation with a moderately intense near-infrared fundamental field (1560 nm) and its weak second harmonic show a strong sensitivity on the relative phase and clear indications for a plateau-like structure that is attributed to elastic backscattering. To explore the relevant control mechanisms, characteristic features, and particular signatures from the near-field inhomogeneity, we performed systematic quantum simulations employing a one-dimensional nanotip model. Besides rich phase-dependent structures in the simulated above-threshold ionization photoelectron spectra we find ponderomotive shifts as well as substantial modifications of the rescattering cutoff as function of the decay length of the near-field. To explore the quantum or classical nature of the observed features and to discriminate the two-color effects stemming from electron propagation and from the ionization rate we compare the quantum results to classical trajectory simulations. We show that signatures from direct electrons as well as the modulations in the plateau region mainly stem from control of the ionization probability, while the modulation in the cutoff region can only be explained by the impact of the two-color field on the electron trajectory. Despite the complexity of the phase-dependent features that render two-color strong-field photoemission from nanotips intriguing for sub-cycle strong-field control, our findings support that the recollision features in the cutoff region provide a robust and reliable method to calibrate the relative two-color phase.

  14. Near-Threshold Ionization of Argon by Positron Impact

    NASA Astrophysics Data System (ADS)

    Babij, T. J.; Machacek, J. R.; Murtagh, D. J.; Buckman, S. J.; Sullivan, J. P.

    2018-03-01

    The direct single-ionization cross section for Ar by positron impact has been measured in the region above the first ionization threshold. These measurements are compared to semiclassical calculations which give rise to a power law variation of the cross section in the threshold region. The experimental results appear to be in disagreement with extensions to the Wannier theory applied to positron impact ionization, with a smaller exponent than that calculated by most previous works. In fact, in this work, we see no difference in threshold behavior between the positron and electron cases. Possible reasons for this discrepancy are discussed.

  15. Phase- and intensity-resolved measurements of above threshold ionization by few-cycle pulses

    NASA Astrophysics Data System (ADS)

    Kübel, M.; Arbeiter, M.; Burger, C.; Kling, Nora G.; Pischke, T.; Moshammer, R.; Fennel, T.; Kling, M. F.; Bergues, B.

    2018-07-01

    We investigate the carrier-envelope phase (CEP) and intensity dependence of the longitudinal momentum distribution of photoelectrons resulting from above threshold ionization of argon by few-cycle laser pulses. The intensity of the pulses with a center wavelength of 750 nm is varied in a range between 0.7 × 1014 and 5.5× {10}14 {{W}} {cm}}-2. Our measurements reveal a prominent maximum in the CEP-dependent asymmetry at photoelectron energies of 2 U P (U P being the ponderomotive potential), that is persistent over the entire intensity range. Further local maxima are observed around 0.3 and 0.8 U P. The experimental results are in good agreement with theoretical results obtained by solving the three-dimensional time-dependent Schrödinger equation. We show that for few-cycle pulses, the amplitude of the CEP-dependent asymmetry provides a reliable measure for the peak intensity on target. Moreover, the measured asymmetry amplitude exhibits an intensity-dependent interference structure at low photoelectron energy, which could be used to benchmark model potentials for complex atoms.

  16. Studies in Above- and Below-Threshold Harmonics in Argon with an Infrared Femtosecond Laser

    NASA Astrophysics Data System (ADS)

    Chew, Andrew; Yin, Yanchun; Li, Jie; Ren, Xiaoming; Cunningham, Eric; Wu, Yi; Chang, Zenghu

    2016-05-01

    We investigate and compare the above- and below-threshold harmonics in Argon gas using our recently-developed 1 kHz, two-cycle (11.4 fs), 3mJ, and carrier-envelope-phase(CEP)-stable laser at 1.6 μm. Such ultraviolet pulses can serve as pump or probe for studying dynamics in atoms and molecules. Unlike high harmonics with photon energy well above the ionization potential, the mechanism for generating harmonics near the ionization threshold is still under intense investigation. Previous work by Chini et al. on below-threshold harmonics was done using a 0.8 μm few-cycle Ti:Sapphire spectrally-broadened source with energy up to 300 μJ. It has been predicted by theory that free-free transitions dominate the below threshold harmonic generation as the laser wavelength increase from near infrared to mid-infrared. We are therefore interested in investigating how using a longer wavelength laser might lead to changes to the behavior of below-threshold harmonics when we vary various parameters. We report the π-periodity CEP dependence and ellipticity dependence of the above- and below-threshold harmonics. This material was based on work supported by National Science Foundation (1068604), Army Research Office (W911NF-14-1-0383), Air Force Office of Scientific Research (FA9550-15-1-0037) and the DARPA PULSE program by a Grant from AMRDEC (W31P4Q1310017).

  17. Long-range Coulomb effect in above-threshold ionization of Ne subject to few-cycle and multicycle laser fields

    NASA Astrophysics Data System (ADS)

    Xu, SongPo; Quan, Wei; Chen, YongJu; Xiao, ZhiLei; Wang, YanLan; Kang, HuiPeng; Hua, LinQiang; Gong, Cheng; Lai, XuanYang; Liu, XiaoJun; Hao, XiaoLei; Hu, ShiLin; Chen, Jing

    2017-06-01

    The long-range Coulomb effect (LRCE) is demonstrated experimentally and theoretically by investigating the pulse duration dependence of low-energy structure (LES) in above-threshold ionization of Ne. It is found experimentally that at 800 nm the LES shows itself as a double-hump structure (DHS) in momentum distribution of singly charged ion for Ne, and moreover, this structure is more prominent for multicycle laser fields than for few-cycle cases. This result can be reproduced and explained qualitatively with a semiclassical model and attributed to the paramount role of LRCE. That is to say, after the laser field vanishes, the electrons decelerate while flying away from the core by the long-range tail of Coulomb potential, which eventually makes DHS less notable.

  18. Resonant two-photon ionization and mass-analyzed threshold ionization spectroscopy of p-vinylaniline

    NASA Astrophysics Data System (ADS)

    Tzeng, Sheng Yuan; Dong, Changwu; Tzeng, Wen Bih

    2012-10-01

    We report the vibronic and cation spectra of p-vinylaniline, which are recorded by using the resonant two-photon ionization and the mass-analyzed threshold ionization spectroscopic techniques. The band origin of the S1 ← S0 electronic transition appears at 31,490 ± 2 cm-1 and the adiabatic ionization energy is determined to be 59,203 ± 5 cm-1. Due to the nature of the substituent, the amino and vinyl groups lead to lower electronic excitation and ionization energies by a few thousand wave numbers. Most of the observed active modes result from the in-plane ring deformation and substituent-sensitive vibrations of this molecule in the electronically excited S1 and cationic ground D0 states. By comparing the frequencies of the observed active vibrations, one may conclude that the molecular geometry and the vibrational coordinates of these modes of the p-vinylaniline cation in the D0 state resemble those of the neutral species in the S1 state.

  19. Degradation spectra and ionization yields of electrons in gases

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Inokuti, M.; Douthat, D.A.; Rau, A.R.P.

    1975-01-01

    Progress in the microscopic theory of electron degradation in gases by Platzman, Fano, and co-workers is outlined. The theory consists of (1) the cataloging of all major inelastic-collision cross sections for electrons (including secondary-electron energy distribution in a single ionizing collision) and (2) the evaluation of cumulative consequences of individual electron collisions for the electrons themselves as well as for target molecules. For assessing the data consistency and reliability and extrapolating the data to the unexplored ranges of variables (such as electron energy), a series of plots devised by Platzman are very powerful. Electron degradation spectra were obtained through numericalmore » solution of the Spencer--Fano equation for all electron energies down to the first ionization thresholds for a few examples such as He and Ne. The systematics of the solutions resulted in the recognition of approximate scaling properties of the degradation spectra for different initial electron energies and pointed to new methods of more efficient treatment. Systematics of the ionization yields and their energy dependence on the initial electron energy were also recognized. Finally, the Spencer--Fano equation for the degradation spectra and the Fowler equation for the ionization and other yields are tightly linked with each other by a set of variational principles. (52 references, 7 figures) (DLC)« less

  20. Zero kinetic energy spectroscopy: mass-analyzed threshold ionization spectra of chromium sandwich complexes with alkylbenzenes, (η(6)-RPh)(2)Cr (R = Me, Et, i-Pr, t-Bu).

    PubMed

    Ketkov, Sergey Y; Selzle, Heinrich L; Cloke, F Geoffrey N; Markin, Gennady V; Shevelev, Yury A; Domrachev, Georgy A; Schlag, Edward W

    2010-10-28

    For over 25 years zero kinetic energy (ZEKE) spectroscopy has yielded a rich foundation of high-resolution results of molecular ions. This was based on the discovery in the late 60's of long-lived ion states throughout the ionization continuum of molecular ions. Here, an example is chosen from another fundamental system pioneered at this university. The mass-analyzed threshold ionization (MATI) spectra of jet-cooled chromium bisarene complexes (η(6)-RPh)(2)Cr (R = Me (1), Et (2), i-Pr (3), and t-Bu (4)) have been measured and interpreted on the basis of DFT calculations. The MATI spectra of complexes 1 and 2 appear to reveal features arising from ionizations of the isomers formed by the rotation of one arene ring relative to the other. The 1 and 2 MATI spectra show two intense peaks corresponding to the 0(0)(0) ionizations with inverse intensity ratios. As indicated by the DFT calculations, the intensity ratio change on going from 1 to 2 results from different isomers contributing to each MATI peak. The ionization energies corresponding to the 0(0)(0) peaks are 42746 ± 5 and 42809 ± 5 cm(-1) for compound 1 and 42379 ± 5 and 42463 ± 5 cm(-1) for complex 2. The 1 and 2 spectra show also the weaker features representing transitions to the vibrationally excited cationic levels, the signals of individual rotamers being detected and assigned on the basis of calculated vibrational frequencies. The MATI spectra of compounds 3 and 4 reveal only one strong peak because of close ionization potentials of the isomers contributing to the MATI signal. The 3 and 4 ionization energies are 42104 ± 5 and 41917 ± 5 cm(-1), respectively. The precise values of ionization energies obtained from the MATI spectra reveal a nonlinear dependence of the IE on the number of Me groups in the alkyl substituents of (η(6)-RPh)(2)Cr. This can be explained by an increase in the molecular zero point energies on methylation of the substituents.

  1. Bond-rearrangement and ionization mechanisms in the photo-double-ionization of simple hydrocarbons (C 2H 4, C 2H 3F, and 1,1-C 2H 2F 2) near and above threshold

    DOE PAGES

    Gaire, B.; Gatton, A. S.; Wiegandt, F.; ...

    2016-09-14

    We have investigated bond-rearrangement driven by photo-double-ionization (PDI) near and above the double ionization threshold in a sequence of carbon-carbon double bonded hydrocarbon molecules: ethylene, fluoroethylene, and 1,1-difluoroethylene. We employ the kinematically complete cold target recoil ion momentum spectroscopy (COLTRIMS) method to resolve all photo-double-ionization events leading to two-ionic fragments. We observe changes in the branching ratios of different dissociative ionization channels depending on the presence of none, one, or two fluorine atoms. The role of the fluorine atom in the bond-rearrangement channels is intriguing as evident by the re-ordering of the threshold energies of the PDI in the fluorinatedmore » molecules. These effects offer a compelling argument that the electronegativity of the fluorine (or the polarity of the molecule) strongly influences the potential energy surfaces of the molcules and drives bond-rearrangement during the dissociation process. The energy sharing and the relative angle between the 3D-momentum vectors of the two electrons provide clear evidence of direct and indirect PDI processes.« less

  2. Above-threshold ionization in multicenter molecules: The role of the initial state

    NASA Astrophysics Data System (ADS)

    Suárez, Noslen; Chacón, Alexis; Pisanty, Emilio; Ortmann, Lisa; Landsman, Alexandra S.; Picón, Antonio; Biegert, Jens; Lewenstein, Maciej; Ciappina, Marcelo F.

    2018-03-01

    A possible route to extract electronic and nuclear dynamics from molecular targets with attosecond temporal and nanometer spatial resolution is to employ recolliding electrons as "probes." The recollision process in molecules is, however, very challenging to treat using ab initio approaches. Even for the simplest diatomic systems, such as H2, today's computational capabilities are not enough to give a complete description of the electron and nuclear dynamics initiated by a strong laser field. As a consequence, approximate qualitative descriptions are called to play an important role. In this paper we extend the work presented in Suárez et al. [N. Suárez, A. Chacón, J. A. Pérez-Hernández, J. Biegert, M. Lewenstein, and M. F. Ciappina, High-order-harmonic generation in atomic and molecular systems, Phys. Rev. A 95, 033415 (2017), 10.1103/PhysRevA.95.033415] to three-center molecular targets. Additionally, we incorporate a more accurate description of the molecular ground state, employing information extracted from quantum chemistry software packages. This step forward allows us to include, in a detailed way, both the molecular symmetries and nodes present in the high-occupied molecular orbital. We are able, on the one hand, to keep our formulation as analytical as in the case of diatomics and, on the other hand, to still give a complete description of the underlying physics behind the above-threshold ionization process. The application of our approach to complex multicenter—with more than three centers—targets appears to be straightforward.

  3. Phase-dependent above-barrier ionization of excited-state electrons.

    PubMed

    Yang, Weifeng; Song, Xiaohong; Chen, Zhangjin

    2012-05-21

    The carrier-envelope phase (CEP)-dependent above-barrier ionization (ABI) has been investigated in order to probe the bound-state electron dynamics. It is found that when the system is initially prepared in the excited state, the ionization yield asymmetry between left and right sides can occur both in low-energy and high-energy parts of the photoelectron spectra. Moreover, in electron momentum map, a new interference effect along the direction perpendicular to the laser polarization is found. We show that this interference is related to the competition among different excited states. The interference effect is dependent on CEPs of few-cycle probe pulses, which can be used to trace the superposition information and control the electron wave packet of low excited states.

  4. Electron rescattering in above-threshold photodetachment of negative ions.

    PubMed

    Gazibegović-Busuladzić, A; Milosević, D B; Becker, W; Bergues, B; Hultgren, H; Kiyan, I Yu

    2010-03-12

    We present experimental and theoretical results on photodetachment of Br(-) and F(-) in a strong infrared laser field. The observed photoelectron spectra of Br(-) exhibit a high-energy plateau along the laser polarization direction, which is identified as being due to the rescattering effect. The shape and the extension of the plateau is found to be influenced by the depletion of negative ions during the interaction with the laser pulse. Our findings represent the first observation of electron rescattering in above-threshold photodetachment of an atomic system with a short-range potential.

  5. Above-threshold ionization of noble gases in elliptically polarized fields: Effects of atomic polarization on photoelectron angular distributions

    NASA Astrophysics Data System (ADS)

    Wang, YanLan; Yu, ShaoGang; Lai, XuanYang; Liu, XiaoJun; Chen, Jing

    2017-06-01

    We theoretically investigate the atomic polarization effect on photoelectron angular distributions (PADs) in above-threshold ionization of noble gases with elliptically polarized laser fields at wavelength of 800 nm, ellipticity of 0.25, and intensity of 1.5 ×1014W/cm2 . Simulations based on a semiclassical model that includes both the ionic Coulomb potential and the atomic polarization effect show surprisingly little difference between PADs for Ar, Kr, and Xe, which is in good agreement with recent experimental observations. Our calculations reveal that the atomic polarization effect increases the distance of the tunnel exit point of the photoelectron to the parent ion and weakens the strength of the interaction between the parent ion and the photoelectron on its subsequent classical propagation. As a result, the forward-scattering electrons which contribute to the main lobes in PADs are substantially suppressed. Our results indicate that the insensitivity of PADs for Ar, Kr, and Xe may be closely related to the influence of the atomic polarization effect on the photoelectron dynamics in the strong laser field.

  6. Identification of four rotamers of m-methoxystyrene by resonant two-photon ionization and mass analyzed threshold ionization spectroscopy

    NASA Astrophysics Data System (ADS)

    Xu, Yanqi; Tzeng, Sheng Yuan; Shivatare, Vidya; Takahashi, Kaito; Zhang, Bing; Tzeng, Wen Bih

    2015-03-01

    We report the vibronic and cation spectra of four rotamers of m-methoxystyrene, recorded by using the two-color resonant two-photon ionization and mass-analyzed threshold ionization techniques. The excitation energies of the S1← S0 electronic transition are found to be 32 767, 32 907, 33 222, and 33 281 cm-1, and the corresponding adiabatic ionization energies are 65 391, 64 977, 65 114, and 64 525 cm-1 for these isomeric species. Most of the observed active vibrations in the electronically excited S1 and cationic ground D0 states involve in-plane ring deformation and substituent-sensitive bending motions. It is found that the relative orientation of the methoxyl with respect to the vinyl group does not influence the vibrational frequencies of the ring-substituent bending modes. The two dimensional potential energy surface calculations support our experimental finding that the isomerization is restricted in the S1 and D0 states.

  7. Fine Substituent Effects in Sandwich Complexes: A Threshold Ionization Study of Monosubstituted Chromium Bisarene Compounds.

    PubMed

    Ketkov, Sergey Yu; Markin, Gennady V; Tzeng, Sheng Y; Tzeng, Wen B

    2016-03-24

    Mass-analyzed threshold ionization spectra of jet-cooled [(η(6) -PhMe)(η(6) -PhH)Cr] and [(η(6) -Ph2 )(η(6) -PhH)Cr] reveal with unprecedented accuracy the effects of methyl and phenyl groups on the electronic structure of bis(η(6) -benzene)chromium. These "pure" substituent effects allow quantitative experimental determination of the ionization energy changes caused by the mutual substituent influence in bisarene systems. Two types of such influence have been revealed for the first time in bis(η(6) -toluene)chromium. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  8. Ionization cross sections of the Au L subshells by electron impact from the L3 threshold to 100 keV

    NASA Astrophysics Data System (ADS)

    Barros, Suelen F.; Vanin, Vito R.; Maidana, Nora L.; Martins, Marcos N.; García-Alvarez, Juan A.; Santos, Osvaldo C. B.; Rodrigues, Cleber L.; Koskinas, Marina F.; Fernández-Varea, José M.

    2018-01-01

    We measured the cross sections for Au Lα, Lβ, Lγ, Lℓ and Lη x-ray production by the impact of electrons with energies from the L3 threshold to 100 keV using a thin Au film whose mass thickness was determined by Rutherford Backscattering Spectrometry. The x-ray spectra were acquired with a Si drift detector, which allowed to separate the components of the Lγ multiplet lines. The measured Lα, Lβ, {{L}}{γ }1, L{γ }{2,3,6}, {{L}}{γ }{4,4\\prime }, {{L}}{γ }5, {{L}}{\\ell } and Lη x-ray production cross sections were then employed to derive Au L1, L2 and L3 subshell ionization cross sections with relative uncertainties of 8%, 7% and 7%, respectively; these figures include the uncertainties in the atomic relaxation parameters. The correction for the increase in electron path length inside the Au film was estimated by means of Monte Carlo simulations. The experimental ionization cross sections are about 10% above the state-of-the-art distorted-wave calculations.

  9. Threshold law for electron-atom impact ionization

    NASA Technical Reports Server (NTRS)

    Temkin, A.

    1982-01-01

    A derivation of the explicit form of the threshold law for electron impact ionization of atoms is presented, based on the Coulomb-dipole theory. The important generalization is made of using a dipole function whose moment is the dipole moment formed by an inner electron and the nucleus. The result is a modulated quasi-linear law for the yield of positive ions which applies to positron-atom impact ionization.

  10. Bound-Electron Nonlinearity Beyond the Ionization Threshold.

    PubMed

    Wahlstrand, J K; Zahedpour, S; Bahl, A; Kolesik, M; Milchberg, H M

    2018-05-04

    We present absolute space- and time-resolved measurements of the ultrafast laser-driven nonlinear polarizability in argon, krypton, xenon, nitrogen, and oxygen up to ionization fractions of a few percent. These measurements enable determination of the strongly nonperturbative bound-electron nonlinear polarizability well beyond the ionization threshold, where it is found to remain approximately quadratic in the laser field, a result normally expected at much lower intensities where perturbation theory applies.

  11. Bound-Electron Nonlinearity Beyond the Ionization Threshold

    NASA Astrophysics Data System (ADS)

    Wahlstrand, J. K.; Zahedpour, S.; Bahl, A.; Kolesik, M.; Milchberg, H. M.

    2018-05-01

    We present absolute space- and time-resolved measurements of the ultrafast laser-driven nonlinear polarizability in argon, krypton, xenon, nitrogen, and oxygen up to ionization fractions of a few percent. These measurements enable determination of the strongly nonperturbative bound-electron nonlinear polarizability well beyond the ionization threshold, where it is found to remain approximately quadratic in the laser field, a result normally expected at much lower intensities where perturbation theory applies.

  12. Spectroscopy of the UO+2 cation and the delayed ionization of UO2.

    PubMed

    Merritt, Jeremy M; Han, Jiande; Heaven, Michael C

    2008-02-28

    Vibronically resolved spectra for the UO+2 cation have been recorded using the pulsed field ionization zero electron kinetic energy (PFI-ZEKE) technique. For the ground state, long progressions in both the bending and symmetric stretch vibrations were observed. Bend and stretch progressions of the first electronically excited state were also observed, and the origin was found at an energy of 2678 cm(-1) above the ground state zero-point level. This observation is consistent with a recent theoretical prediction [Infante et al., J. Chem. Phys. 127, 124308 (2007)]. The ionization energy for UO2, derived from the PFI-ZEKE spectrum, namely, 6.127(1) eV, is in excellent agreement with the value obtained from an earlier photoionization efficiency measurement. Delayed ionization of UO2 in the gas phase has been reported previously [Han et al., J. Chem. Phys. 120, 5155 (2004)]. Here, we extend the characterization of the delayed ionization process by performing a quantitative study of the ionization rate as a function of the energy above the ionization threshold. The ionization rate was found to be 5 x 10(6) s(-1) at threshold, and increased linearly with increasing energy in the range investigated (0-1200 cm(-1)).

  13. Two-Color Coherent Control of Femtosecond Above-Threshold Photoemission from a Tungsten Nanotip.

    PubMed

    Förster, Michael; Paschen, Timo; Krüger, Michael; Lemell, Christoph; Wachter, Georg; Libisch, Florian; Madlener, Thomas; Burgdörfer, Joachim; Hommelhoff, Peter

    2016-11-18

    We demonstrate coherent control of multiphoton and above-threshold photoemission from a single solid-state nanoemitter driven by a fundamental and a weak second harmonic laser pulse. Depending on the relative phase of the two pulses, electron emission is modulated with a contrast of the oscillating current signal of up to 94%. Electron spectra reveal that all observed photon orders are affected simultaneously and similarly. We confirm that photoemission takes place within 10 fs. Accompanying simulations indicate that the current modulation with its large contrast results from two interfering quantum pathways leading to electron emission.

  14. HF Accelerated Electron Fluxes, Spectra, and Ionization

    NASA Astrophysics Data System (ADS)

    Carlson, Herbert C.; Jensen, Joseph B.

    2015-10-01

    Wave particle interactions, an essential aspect of laboratory, terrestrial, and astrophysical plasmas, have been studied for decades by transmitting high power HF radio waves into Earth's weakly ionized space plasma, to use it as a laboratory without walls. Application to HF electron acceleration remains an active area of research (Gurevich in Usp Fizicheskikh Nauk 177(11):1145-1177, 2007) today. HF electron acceleration studies began when plasma line observations proved (Carlson et al. in J Atmos Terr Phys 44:1089-1100, 1982) that high power HF radio wave-excited processes accelerated electrons not to ~eV, but instead to -100 times thermal energy (10 s of eV), as a consequence of inelastic collision effects on electron transport. Gurevich et al (J Atmos Terr Phys 47:1057-1070, 1985) quantified the theory of this transport effect. Merging experiment with theory in plasma physics and aeronomy, enabled prediction (Carlson in Adv Space Res 13:1015-1024, 1993) of creating artificial ionospheres once ~GW HF effective radiated power could be achieved. Eventual confirmation of this prediction (Pedersen et al. in Geophys Res Lett 36:L18107, 2009; Pedersen et al. in Geophys Res Lett 37:L02106, 2010; Blagoveshchenskaya et al. in Ann Geophys 27:131-145, 2009) sparked renewed interest in optical inversion to estimate electron spectra in terrestrial (Hysell et al. in J Geophys Res Space Phys 119:2038-2045, 2014) and planetary (Simon et al. in Ann Geophys 29:187-195, 2011) atmospheres. Here we present our unpublished optical data, which combined with our modeling, lead to conclusions that should meaningfully improve future estimates of the spectrum of HF accelerated electron fluxes. Photometric imaging data can significantly improve detection of emissions near ionization threshold, and confirm depth of penetration of accelerated electrons many km below the excitation altitude. Comparing observed to modeled emission altitude shows future experiments need electron density profiles

  15. A Test of Thick-Target Nonuniform Ionization as an Explanation for Breaks in Solar Flare Hard X-Ray Spectra

    NASA Technical Reports Server (NTRS)

    Holman, gordon; Dennis Brian R.; Tolbert, Anne K.; Schwartz, Richard

    2010-01-01

    Solar nonthermal hard X-ray (HXR) flare spectra often cannot be fitted by a single power law, but rather require a downward break in the photon spectrum. A possible explanation for this spectral break is nonuniform ionization in the emission region. We have developed a computer code to calculate the photon spectrum from electrons with a power-law distribution injected into a thick-target in which the ionization decreases linearly from 100% to zero. We use the bremsstrahlung cross-section from Haug (1997), which closely approximates the full relativistic Bethe-Heitler cross-section, and compare photon spectra computed from this model with those obtained by Kontar, Brown and McArthur (2002), who used a step-function ionization model and the Kramers approximation to the cross-section. We find that for HXR spectra from a target with nonuniform ionization, the difference (Delta-gamma) between the power-law indexes above and below the break has an upper limit between approx.0.2 and 0.7 that depends on the power-law index delta of the injected electron distribution. A broken power-law spectrum with a. higher value of Delta-gamma cannot result from nonuniform ionization alone. The model is applied to spectra obtained around the peak times of 20 flares observed by the Ramaty High Energy Solar Spectroscopic Imager (RHESSI from 2002 to 2004 to determine whether thick-target nonuniform ionization can explain the measured spectral breaks. A Monte Carlo method is used to determine the uncertainties of the best-fit parameters, especially on Delta-gamma. We find that 15 of the 20 flare spectra require a downward spectral break and that at least 6 of these could not be explained by nonuniform ionization alone because they had values of Delta-gamma with less than a 2.5% probability of being consistent with the computed upper limits from the model. The remaining 9 flare spectra, based on this criterion, are consistent with the nonuniform ionization model.

  16. Collectivization of anti-analog strength above charged particle thresholds

    NASA Astrophysics Data System (ADS)

    Okołowicz, J.; Płoszajczak, M.; Charity, R. J.; Sobotka, L. G.

    2018-04-01

    Ten years ago, highly excited states were found in 9Li and 10Be a few hundred kilovolts above the proton decay threshold. These physical states are too low in energy to be the isospin-stretched configuration of the decay channel (the isobaric analog or T>). However, these states can be understood by a continuum cognizant shell model as strongly mixed states of lower isospin (T<), where the mixing is largely mediated by the open neutron channels but ushered in energy to be just above the proton threshold.

  17. The laser desorption/laser ionization mass spectra of some anti-inflammatory drugs

    NASA Astrophysics Data System (ADS)

    Milnes, John; Rogers, Kevin; Jones, Sian; Gormally, John

    1994-03-01

    The IR laser desorption/ultraviolet laser ionization time-of-flight mass spectra are reported for the anti-inflammatory drugs indomethacin, acemetacin, ibuprofen, flurbiprofen, diflunisal and mefenamic acid. It is found that the six compounds can be readily ionized by two photon absorption at a fixed wavelength of 266 nm. Mass spectra have been obtained under conditions of high ionizing irradiance and the observed fragmentation behaviour is discussed.

  18. Threshold ionization spectroscopic investigation of supersonic jet-cooled, laser-desorbed Tryptophan

    NASA Astrophysics Data System (ADS)

    Taherkhani, Mehran; Armentano, Antonio; Černý, Jiří; Müller-Dethlefs, Klaus

    2016-07-01

    Tryptophan (Trp) was studied by two-colour Photoionization Efficiency (PIE) and Mass Analysed Threshold Ionization (MATI) spectroscopy using a laser desorption apparatus. Conformer A of Trp was excited into the S1 state (34,878 cm-1) and the second laser was scanned around the D0 cation ground and the D1 excited state. No ionization signal into the D0 state could be found, but a clear threshold was observed for the D1 state with an ionization energy of 66,704 ± 3 cm-1 (8.27 eV). This observation is explained in terms of the electronic configurations of the S1 and cationic states.

  19. Selected cis- and trans-3-fluorostyrene rotamers studied by two-color resonant two-photon mass-analyzed threshold ionization spectroscopy

    NASA Astrophysics Data System (ADS)

    Wu, Pei Ying; Tzeng, Wen Bih

    2015-10-01

    We applied two-color resonant two-photon ionization and mass-analyzed threshold ionization techniques to record the vibronic, photoionization efficiency, and cation spectra of the selected rotamers of 3-fluorostyrene. The adiabatic ionization energies of cis- and trans-3-fluorostyrene were determined to be 69 960 ± 5 and 69 856 ± 5 cm-1, respectively. Cation vibrations 10a, 15, 6b, and 12 of both rotamers have been found to have frequencies of 218, 404, 452, and 971 cm-1, respectively. This finding shows that the relative orientation of the vinyl group with respect to the F atom does not affect these vibrations of the 3-fluorostyrene cation. Our one-dimensional potential energy surface calculations support that the cis-trans isomerization of 3-fluorostyrene does not occur under the present experimental conditions.

  20. Sequential and direct ionic excitation in the strong-field ionization of 1-butene molecules.

    PubMed

    Schell, Felix; Boguslavskiy, Andrey E; Schulz, Claus Peter; Patchkovskii, Serguei; Vrakking, Marc J J; Stolow, Albert; Mikosch, Jochen

    2018-05-18

    We study the Strong-Field Ionization (SFI) of the hydrocarbon 1-butene as a function of wavelength using photoion-photoelectron covariance and coincidence spectroscopy. We observe a striking transition in the fragment-associated photoelectron spectra: from a single Above Threshold Ionization (ATI) progression for photon energies less than the cation D0-D1 gap to two ATI progressions for a photon energy greater than this gap. For the first case, electronically excited cations are created by SFI populating the ground cationic state D0, followed by sequential post-ionization excitation. For the second case, direct sub-cycle SFI to the D1 excited cation state contributes significantly. Our experiments access ionization dynamics in a regime where strong-field and resonance-enhanced processes can interplay.

  1. Ionization Waves of Arbitrary Velocity

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Turnbull, D.; Franke, P.; Katz, J.

    The flying focus is a technique in which a chirped laser beam is focused by a chromatic lens to produce an extended focal spot within which laser intensity can propagate at any velocity. If the intensity is above the ionization threshold of a background gas, an ionization wave will track the ionization threshold intensity isosurface as it propagates. We report on the demonstration of such ionization waves of arbitrary velocity. Subluminal and superluminal ionization fronts were produced, both forward- and backward-propagating relative to the ionizing laser. In conclusion, all backward and all superluminal cases mitigated the issue of ionization-induced refractionmore » that typically challenges the formation of long, contiguous plasma channels.« less

  2. Ionization Waves of Arbitrary Velocity

    DOE PAGES

    Turnbull, D.; Franke, P.; Katz, J.; ...

    2018-05-31

    The flying focus is a technique in which a chirped laser beam is focused by a chromatic lens to produce an extended focal spot within which laser intensity can propagate at any velocity. If the intensity is above the ionization threshold of a background gas, an ionization wave will track the ionization threshold intensity isosurface as it propagates. We report on the demonstration of such ionization waves of arbitrary velocity. Subluminal and superluminal ionization fronts were produced, both forward- and backward-propagating relative to the ionizing laser. In conclusion, all backward and all superluminal cases mitigated the issue of ionization-induced refractionmore » that typically challenges the formation of long, contiguous plasma channels.« less

  3. A Near-Threshold Shape Resonance in the Valence-Shell Photoabsorption of Linear Alkynes

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Jacovella, U.; Holland, D. M. P.; Boyé-Péronne, S.

    2015-12-17

    The room-temperature photoabsorption spectra of a number of linear alkynes with internal triple bonds (e.g., 2-butyne, 2-pentyne, and 2- and 3-hexyne) show similar resonances just above the lowest ionization threshold of the neutral molecules. These features result in a substantial enhancement of the photoabsorption cross sections relative to the cross sections of alkynes with terminal triple bonds (e.g., propyne, 1-butyne, 1-pentyne,...). Based on earlier work on 2-butyne [Xu et al., J. Chem. Phys. 2012, 136, 154303], these features are assigned to excitation from the neutral highest occupied molecular orbital (HOMO) to a shape resonance with g (l = 4) charactermore » and approximate pi symmetry. This generic behavior results from the similarity of the HOMOs in all internal alkynes, as well as the similarity of the corresponding g pi virtual orbital in the continuum. Theoretical calculations of the absorption spectrum above the ionization threshold for the 2- and 3-alkynes show the presence of a shape resonance when the coupling between the two degenerate or nearly degenerate pi channels is included, with a dominant contribution from l = 4. These calculations thus confirm the qualitative arguments for the importance of the l = 4 continuum near threshold for internal alkynes, which should also apply to other linear internal alkynes and alkynyl radicals. The 1-alkynes do not have such high partial waves present in the shape resonance. The lower l partial waves in these systems are consistent with the broader features observed in the corresponding spectra.« less

  4. Quantum dynamics of Kerr optical frequency combs below and above threshold: Spontaneous four-wave mixing, entanglement, and squeezed states of light

    NASA Astrophysics Data System (ADS)

    Chembo, Yanne K.

    2016-03-01

    The dynamical behavior of Kerr optical frequency combs is very well understood today from the perspective of the semiclassical approximation. These combs are obtained by pumping an ultrahigh-Q whispering-gallery mode resonator with a continuous-wave laser. The long-lifetime photons are trapped within the toruslike eigenmodes of the resonator, where they interact nonlinearly via the Kerr effect. In this article, we use quantum Langevin equations to provide a theoretical understanding of the nonclassical behavior of these combs when pumped below and above threshold. In the configuration where the system is under threshold, the pump field is the unique oscillating mode inside the resonator, and it triggers the phenomenon of spontaneous four-wave mixing, where two photons from the pump are symmetrically up- and down-converted in the Fourier domain. This phenomenon, also referred to as parametric fluorescence, can only be understood and analyzed from a fully quantum perspective as a consequence of the coupling between the field of the central (pumped) mode and the vacuum fluctuations of the various side modes. We analytically calculate the power spectra of the spontaneous emission noise, and we show that these spectra can be either single- or double-peaked depending on the value of the laser frequency, chromatic dispersion, pump power, and spectral distance between the central mode and the side mode of interest. We also calculate as well the overall spontaneous noise power per side mode and propose simplified analytical expressions for some particular cases. In the configuration where the system is pumped above threshold, we investigate the phenomena of quantum correlations and multimode squeezed states of light that can occur in the Kerr frequency combs originating from stimulated four-wave mixing. We show that for all stationary spatiotemporal patterns, the side modes that are symmetrical relative to the pumped mode in the frequency domain display quantum correlations

  5. High-order above-threshold ionization beyond the electric dipole approximation

    NASA Astrophysics Data System (ADS)

    Brennecke, Simon; Lein, Manfred

    2018-05-01

    Photoelectron momentum distributions from strong-field ionization are calculated by numerical solution of the one-electron time-dependent Schrödinger equation for a model atom including effects beyond the electric dipole approximation. We focus on the high-energy electrons from rescattering and analyze their momentum component along the field propagation direction. We show that the boundary of the calculated momentum distribution is deformed in accordance with the classical three-step model including the beyond-dipole Lorentz force. In addition, the momentum distribution exhibits an asymmetry in the signal strengths of electrons emitted in the forward/backward directions. Taken together, the two non-dipole effects give rise to a considerable average forward momentum component of the order of 0.1 a.u. for realistic laser parameters.

  6. Theoretical infrared spectra of some model polycyclic aromatic hydrocarbons - Effect of ionization

    NASA Technical Reports Server (NTRS)

    De Frees, D. J.; Miller, M. D.; Talbi, D.; Pauzat, F.; Ellinger, Y.

    1993-01-01

    In order to test the hypothesis of ionized PAHs as possible carriers of the UIR bands, we realized a computational exploration on selected PAHs of small dimension in order to identify which changes ionization would induce on their IR spectra. In this study we performed ab initio calculations of the spectra of neutral and positively ionized naphthalene, anthracene, and pyrene. The results are significantly important. The frequencies in the cations are slightly shifted with respect to the neutral species, but no general conclusion can be reached from the three molecules considered. By contrast, the relative intensities of most vibrations are strongly affected by ionization, leading to a much better agreement between the calculated CH/CC vibration intensity ratios and those deduced from observations.

  7. Prospective Evaluation of Patient Usage of Above and Below Threshold Waveforms With Traditional Spinal Cord Stimulation Devices.

    PubMed

    Owusu, Stephanie; Huynh, Alexander; Gruenthal, Eric; Prusik, Julia; Owusu-Sarpong, Stephane; Cherala, Rasan; Peng, Sophia; Pilitsis, Julie G; McCallum, Sarah E

    2017-08-01

    Spinal cord stimulation (SCS) is an efficacious therapy used to treat chronic pain. The type of SCS programming is important in improving patients' quality of life and overall satisfaction. In this study, 19 patients who underwent SCS with traditional devices were given between 4 and 6 programs including programs with stimulation below sensory threshold and above sensory threshold. Usage patterns and preferences were assessed. SCS patients were given 4-6 programs, some above sensory threshold and some below threshold immediately postoperatively after permanent implantation. Usage patterns of different programs were documented, including percent of time that the settings were used and preference for above threshold vs. below threshold settings during sleeping, walking, sitting, and vigorous activity. Improvements at three months in Oswestry disability index (ODI), numeric rating scale (NRS), Beck depression inventory (BDI), McGill pain questionnaire (MPQ), pain catastrophizing scale (PCS), insomnia severity index (ISI), and Epworth sleepiness scale (ESS) were evaluated. Patients were all trialed on above sensory threshold programs. Six weeks after implantation, most patients preferred above threshold stimulation (74%) vs. below threshold waveforms (21%). Patient diagnosis, type/location of lead or recharging burden played no role in patient preference. Above threshold patients had significantly better improvement in BDI scores than did below threshold patients (p < 0.05) at three-month follow-up but also had worse ESS scores (p < 0.05). Above threshold stimulation was preferred for walking and sitting (p < 0.05). Results indicate that when given the option between waveforms inducing paresthesias and those that do not, SCS patients tend to prefer waveforms that induce paresthesias. Among users of above threshold waveforms, there was preference for these settings during walking and sitting. There was a trend for below threshold preference in vigorous

  8. Optical potential approach to the electron-atom impact ionization threshold problem

    NASA Technical Reports Server (NTRS)

    Temkin, A.; Hahn, Y.

    1973-01-01

    The problem of the threshold law for electron-atom impact ionization is reconsidered as an extrapolation of inelastic cross sections through the ionization threshold. The cross sections are evaluated from a distorted wave matrix element, the final state of which describes the scattering from the Nth excited state of the target atom. The actual calculation is carried for the e-H system, and a model is introduced which is shown to preserve the essential properties of the problem while at the same time reducing the dimensionability of the Schrodinger equation. Nevertheless, the scattering equation is still very complex. It is dominated by the optical potential which is expanded in terms of eigen-spectrum of QHQ. It is shown by actual calculation that the lower eigenvalues of this spectrum descend below the relevant inelastic thresholds; it follows rigorously that the optical potential contains repulsive terms. Analytical solutions of the final state wave function are obtained with several approximations of the optical potential.

  9. Ar 3p photoelectron sideband spectra in two-color XUV + NIR laser fields

    NASA Astrophysics Data System (ADS)

    Minemoto, Shinichirou; Shimada, Hiroyuki; Komatsu, Kazma; Komatsubara, Wataru; Majima, Takuya; Mizuno, Tomoya; Owada, Shigeki; Sakai, Hirofumi; Togashi, Tadashi; Yoshida, Shintaro; Yabashi, Makina; Yagishita, Akira

    2018-04-01

    We performed photoelectron spectroscopy using femtosecond XUV pulses from a free-electron laser and femtosecond near-infrared pulses from a synchronized laser, and succeeded in measuring Ar 3p photoelectron sideband spectra due to the two-color above-threshold ionization. In our calculations of the first-order time-dependent perturbation theoretical model based on the strong field approximation, the photoelectron sideband spectra and their angular distributions are well reproduced by considering the timing jitter between the XUV and the NIR pulses, showing that the timing jitter in our experiments was distributed over the width of {1.0}+0.4-0.2 ps. The present approach can be used as a method to evaluate the timing jitter inevitable in FEL experiments.

  10. An investigation of electronic states of some molecules and molecular cations using mass analyzed threshold ionization and photoinduced Rydberg ionization spectroscopy

    NASA Astrophysics Data System (ADS)

    Hofstein, Jason David

    1999-11-01

    Mass analyzed threshold ionization (MATI) experiments have enabled mapping of the n-dependent Rydberg state survival probability for a series of molecules. Utilizing vacuum and extreme ultraviolet (VUV/XUV) photons, one photon Rydberg manifold spectra of argon, hydrogen chloride, nitrogen, benzene, and oxygen were produced, and the prospects of photoinduced Rydberg ionization (PIRI) experiments examined. It was found that the widths of Rydberg manifolds for the molecules studied are quite different. Hydrogen chloride and nitrogen have the narrowest manifold width, followed by benzene, and then oxygen. These varying widths are most strongly correlated with the angular momentum (i.e., quantum defect) of the initially prepared Rydberg orbital. PIRI experiments required the use of a static cell, rather than a molecular jet assembly, for the more efficient production of higher amounts of VUV/XUV radiation, and hence more Rydberg signal needed to observe PIRI. Armed with the ability to produce tunable VUV/XUV radiation, and to determine the feasibility of a PIRI experiment, the MATI and fragment PIRI spectra of trans-1,3-butadiene (BD) were recorded. The MATI spectrum is vibrationally resolved and was analyzed with the help of ab initio calculations and other published results. The fragment PIRI spectrum of the A<==X transition of BD+ is not vibrationally resolved, but information regarding the wavelength dependence of fragmentation pathways has been gathered and interpreted. It was found that at low photodissociation photon energies, production of C3H3+ dominates, but at higher photon energies, C2H4 + is also produced. The production of each fragment showed a definite PIRI wavelength dependence.

  11. Angle-resolved high-order above-threshold ionization of a molecule: sensitive tool for molecular characterization.

    PubMed

    Busuladzić, M; Gazibegović-Busuladzić, A; Milosević, D B; Becker, W

    2008-05-23

    The strong-field approximation for ionization of diatomic molecules by an intense laser field is generalized to include rescattering of the ionized electron off the various centers of its molecular parent ion. The resulting spectrum and its interference structure strongly depend on the symmetry of the ground state molecular orbital. For N2, if the laser polarization is perpendicular to the molecular axis, we observe a distinct minimum in the emission spectrum, which survives focal averaging and allows determination of, e.g., the internuclear separation. In contrast, for O2, rescattering is absent in the same situation.

  12. Effects of ultrashort laser pulses on angular distributions of photoionization spectra.

    PubMed

    Ooi, C H Raymond; Ho, W L; Bandrauk, A D

    2017-07-27

    We study the photoelectron spectra by intense laser pulses with arbitrary time dependence and phase within the Keldysh framework. An efficient semianalytical approach using analytical transition matrix elements for hydrogenic atoms in any initial state enables efficient and accurate computation of the photoionization probability at any observation point without saddle point approximation, providing comprehensive three dimensional photoelectron angular distribution for linear and elliptical polarizations, that reveal the intricate features and provide insights on the photoionization characteristics such as angular dispersions, shift and splitting of photoelectron peaks from the tunneling or above threshold ionization(ATI) regime to non-adiabatic(intermediate) and multiphoton ionization(MPI) regimes. This facilitates the study of the effects of various laser pulse parameters on the photoelectron spectra and their angular distributions. The photoelectron peaks occur at multiples of 2ħω for linear polarization while  odd-ordered peaks are suppressed in the direction perpendicular to the electric field. Short pulses create splitting and angular dispersion where the peaks are strongly correlated to the angles. For MPI and elliptical polarization with shorter pulses the peaks split into doublets and the first peak vanishes. The carrier envelope phase(CEP) significantly affects the ATI spectra while the Stark effect shifts the spectra of intermediate regime to higher energies due to interference.

  13. Solar Energetic Particle Spectra

    NASA Astrophysics Data System (ADS)

    Ryan, J. M.; Boezio, M.; Bravar, U.; Bruno, A.; Christian, E. R.; de Nolfo, G. A.; Martucci, M.; Mergè, M.; Munini, R.; Ricci, M.; Sparvoli, R.; Stochaj, S.

    2017-12-01

    We report updated event-integrated spectra from several SEP events measured with PAMELA. The measurements were made from 2006 to 2014 in the energy range starting at 80 MeV and extending well above the neutron monitor threshold. The PAMELA instrument is in a high inclination, low Earth orbit and has access to SEPs when at high latitudes. Spectra have been assembled from these high-latitude measurements. The field of view of PAMELA is small and during the high-latitude passes it scans a wide range of asymptotic directions as the spacecraft orbits. Correcting for data gaps, solid angle effects and improved background corrections, we have compiled event-integrated intensity spectra for twenty-eight SEP events. Where statistics permit, the spectra exhibit power law shapes in energy with a high-energy exponential roll over. The events analyzed include two genuine ground level enhancements (GLE). In those cases the roll-over energy lies above the neutron monitor threshold ( 1 GV) while the others are lower. We see no qualitative difference between the spectra of GLE vs. non-GLE events, i.e., all roll over in an exponential fashion with rapidly decreasing intensity at high energies.

  14. The inception of pulsed discharges in air: simulations in background fields above and below breakdown

    NASA Astrophysics Data System (ADS)

    Sun, Anbang; Teunissen, Jannis; Ebert, Ute

    2014-11-01

    We investigate discharge inception in air, in uniform background electric fields above and below the breakdown threshold. We perform 3D particle simulations that include a natural level of background ionization in the form of positive and \\text{O}2- ions. In background fields below breakdown, we use a strongly ionized seed of electrons and positive ions to enhance the field locally. In the region of enhanced field, we observe the growth of positive streamers, as in previous simulations with 2D plasma fluid models. The inclusion of background ionization has little effect in this case. When the background field is above the breakdown threshold, the situation is very different. Electrons can then detach from \\text{O}2- and start ionization avalanches in the whole volume. These avalanches together create one extended discharge, in contrast to the ‘double-headed’ streamers found in many fluid simulations.

  15. Above-threshold scattering about a Feshbach resonance for ultracold atoms in an optical collider.

    PubMed

    Horvath, Milena S J; Thomas, Ryan; Tiesinga, Eite; Deb, Amita B; Kjærgaard, Niels

    2017-09-06

    Ultracold atomic gases have realized numerous paradigms of condensed matter physics, where control over interactions has crucially been afforded by tunable Feshbach resonances. So far, the characterization of these Feshbach resonances has almost exclusively relied on experiments in the threshold regime near zero energy. Here, we use a laser-based collider to probe a narrow magnetic Feshbach resonance of rubidium above threshold. By measuring the overall atomic loss from colliding clouds as a function of magnetic field, we track the energy-dependent resonance position. At higher energy, our collider scheme broadens the loss feature, making the identification of the narrow resonance challenging. However, we observe that the collisions give rise to shifts in the center-of-mass positions of outgoing clouds. The shifts cross zero at the resonance and this allows us to accurately determine its location well above threshold. Our inferred resonance positions are in excellent agreement with theory.Studies on energy-dependent scattering of ultracold atoms were previously carried out near zero collision energies. Here, the authors observe a magnetic Feshbach resonance in ultracold Rb collisions for above-threshold energies and their method can also be used to detect higher partial wave resonances.

  16. Extraction of hadron interactions above inelastic threshold in lattice QCD.

    PubMed

    Aoki, Sinya; Ishii, Noriyoshi; Doi, Takumi; Hatsuda, Tetsuo; Ikeda, Yoichi; Inoue, Takashi; Murano, Keiko; Nemura, Hidekatsu; Sasaki, Kenji

    2011-01-01

    We propose a new method to extract hadron interactions above inelastic threshold from the Nambu-Bethe-Salpeter amplitude in lattice QCD. We consider the scattering such as A + B → C + D, where A, B, C, D are names of different 1-particle states. An extension to cases where particle productions occur during scatterings is also discussed.

  17. Extraction of hadron interactions above inelastic threshold in lattice QCD

    PubMed Central

    AOKI, Sinya; ISHII, Noriyoshi; DOI, Takumi; HATSUDA, Tetsuo; IKEDA, Yoichi; INOUE, Takashi; MURANO, Keiko; NEMURA, Hidekatsu; SASAKI, Kenji

    2011-01-01

    We propose a new method to extract hadron interactions above inelastic threshold from the Nambu–Bethe–Salpeter amplitude in lattice QCD. We consider the scattering such as A + B → C + D, where A, B, C, D are names of different 1-particle states. An extension to cases where particle productions occur during scatterings is also discussed. PMID:21986314

  18. Reproducing impact ionization mass spectra of E and F ring ice grains at different impact speeds

    NASA Astrophysics Data System (ADS)

    Klenner, F.; Reviol, R.; Postberg, F.

    2017-09-01

    As impact speeds of E and F ring ice grains impinging onto the target of impact ionization mass spectrometers in space can vary greatly, the resulting cationic or anionic mass spectra can have very different appearances. The mass spectra can be accurately reproduced with an analog experimental setup IR-FL-MALDI-ToF-MS (Infrared Free Liquid Matrix Assisted Laser Desorption and Ionization Time of Flight Mass Spectrometry). We compare mass spectra of E and F ring ice grains taken by the Cosmic Dust Analyzer (CDA) onboard Cassini recorded at different impact speeds with our analog spectra and prove the capability of the analog experiment.

  19. Ionization balance for iron XXV, XXIV and XXIII derived from solar flare X-ray spectra

    NASA Astrophysics Data System (ADS)

    Antonucci, E.; Dodero, M. A.; Gabriel, A. H.; Tanaka, K.; Dubau, J.

    1987-06-01

    An analysis has been carried out using over 300 spectra of solar flares from both the XRP instrument on SMM and the SOX instrument on Hinotori. The helium-like iron and associated dielectronic satellite spectra were used in order to derive a revised ionization balance for Fe XXIV/Fe XXV. This is found to lie between the theoretical curves based upon ECIP ionization rates, and those using Lotz formalism, with a tendency to be closer to the former. An extension of the analysis to include Fe XXIII is subject to a somewhat larger uncertainty in the interpretation. However it indicates a similar effect for this ion. Using all three ions, a revised ionization balance for iron is presented.

  20. Inclusion of Theta(12) dependence in the Coulomb-dipole theory of the ionization threshold

    NASA Technical Reports Server (NTRS)

    Srivastava, M. K.; Temkin, A.

    1991-01-01

    The Coulomb-dipole (CD) theory of the electron-atom impact-ionization threshold law is extended to include the full electronic repulsion. It is found that the threshold law is altered to a form in contrast to the previous angular-independent model. A second energy regime, is also identified wherein the 'threshold' law reverts to its angle-independent form. In the final part of the paper the dipole parameter is estimated to be about 28. This yields numerical estimates of E(a) = about 0.0003 and E(b) = about 0.25 eV.

  1. Threshold Ionization and Spin-Orbit Coupling of Cerium Monoxide

    NASA Astrophysics Data System (ADS)

    Cao, Wenjin; Zhang, Yuchen; Wu, Lu; Yang, Dong-Sheng

    2017-06-01

    Cerium oxides are widely used in heterogeneous catalysis due to their ability to switch between different oxidation states. We report here the mass-analyzed threshold ionization (MATI) spectroscopy of cerium monoxide (CeO) produced by laser ablating a Ce rod in a molecular beam source. The MATI spectrum in the range of 40000-45000 \\wn exhibits several band systems with similar vibrational progressions. The strongest band is at 43015 (5) \\wn, which can be assigned as the adiabatic ionization energy of the neutral species. The spectrum also shows Ce-O stretching frequencies of 817 and 890 \\wn in the neutral and ion states, respectively. By comparing with spin-orbit coupled multireference quasi-degenerate perturbation theory (SO-MCQDPT) calculations, the observed band systems are assigned to transitions from various low-energy spin-orbit levels of the neutral oxide to the two lowest spin-orbit levels of the corresponding ion. The current work will also be compared with previous experimental and computational studies on the neutral species.

  2. Dynamics of nonspherical microbubble oscillations above instability threshold

    NASA Astrophysics Data System (ADS)

    Guédra, Matthieu; Cleve, Sarah; Mauger, Cyril; Blanc-Benon, Philippe; Inserra, Claude

    2017-12-01

    Time-resolved dynamics of nonspherical oscillations of micrometer-sized bubbles are captured and analyzed using high-speed imaging. The axisymmetry of the bubble shape is ensured with certainty for the first time from the recordings of two synchronous high-speed cameras located at 90∘. The temporal dynamics of finite-amplitude nonspherical oscillations are then analyzed for various acoustic pressures above the instability threshold. The experimental results are compared with recent theories accounting for nonlinearities and mode coupling, highlighting particular effects inherent to these mechanisms (saturation of the instability, triggering of nonparametric shape modes). Finally, the amplitude of the nonspherical oscillations is given as function of the driving pressure both for quadrupolar and octupolar bubbles.

  3. Ionization potential depression and optical spectra in a Debye plasma model

    NASA Astrophysics Data System (ADS)

    Lin, Chengliang; Röpke, Gerd; Reinholz, Heidi; Kraeft, Wolf-Dietrich

    2017-11-01

    We show how optical spectra in dense plasmas are determined by the shift of energy levels as well as the broadening owing to collisions with the plasma particles. In lowest approximation, the interaction with the plasma particles is described by the RPA dielectric function, leading to the Debye shift of the continuum edge. The bound states remain nearly un-shifted, their broadening is calculated in Born approximation. The role of ionization potential depression as well as the Inglis-Teller effect are shown. The model calculations have to be improved going beyond the lowest (RPA) approximation when applying to WDM spectra.

  4. Resonances above the proton threshold in 26Si

    DOE PAGES

    Chipps, Kelly A.

    2016-03-06

    26Al remains an intriguing target for observational gamma-ray astronomy, thanks to its characteristic decay. The 25Al(p, )26Si reaction is part of a chain that bypasses the production of the observable 26Alg in favor of the isomeric state; its rate at novae temperatures is dominated by a resonance around 400 keV, the precise location and J assignment of which has been hotly debated. Considerable confusion in this regard has arisen from the use of outdated excitation energies and masses. Here, a reanalysis of previous work is completed to first, elucidate the confusion regarding the level structure just above the proton threshold,more » and second, provide focus to future studies.« less

  5. High-resolution vacuum-ultraviolet photoabsorption spectra of 1-butyne and 2-butyne

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Jacovella, U.; Holland, D. M. P.; Boyé-Péronne, S.

    2015-07-21

    The absolute photoabsorption cross sections of 1- and 2-butyne have been recorded at high resolution by using the vacuum-ultraviolet Fourier-Transform spectrometer at the SOLEIL Synchrotron. Both spectra show more resolved structure than previously observed, especially in the case of 2-butyne. In this work, we assess the potential importance of Rydberg states with higher values of orbital angular momentum, l, than are typically observed in photoabsorption experiments from ground state molecules. We show how the character of the highest occupied molecular orbitals in 1- and 2-butyne suggests the potential importance of transitions to such high-l (l = 3 and 4) Rydbergmore » states. Furthermore, we use theoretical calculations of the partial wave composition of the absorption cross section just above the ionization threshold and the principle of continuity of oscillator strength through an ionization threshold to support this conclusion. The new absolute photoabsorption cross sections are discussed in light of these arguments, and the results are consistent with the expectations. This type of argument should be valuable for assessing the potential importance of different Rydberg series when sufficiently accurate direct quantum chemical calculations are difficult, for example, in the n ≥ 5 manifolds of excited states of larger molecules.« less

  6. Non-equilibrium ionization by a periodic electron beam. II. Synthetic Si IV and O IV transition region spectra

    NASA Astrophysics Data System (ADS)

    Dzifčáková, Elena; Dudík, Jaroslav

    2018-03-01

    Context. Transition region (TR) spectra typically show the Si IV 1402.8 Å line to be enhanced by a factor of 5 or more compared to the neighboring O IV 1401.2 Å, contrary to predictions of ionization equilibrium models and the Maxwellian distribution of particle energies. Non-equilibrium effects in TR spectra are therefore expected. Aims: To investigate the combination of non-equilibrium ionization and high-energy particles, we apply the model of the periodic electron beam, represented by a κ-distribution that recurs at periods of several seconds, to plasma at chromospheric temperatures of 104 K. This simple model can approximate a burst of energy release involving accelerated particles. Methods: Instantaneous time-dependent charge states of silicon and oxygen were calculated and used to synthesize the instantaneous and period-averaged spectra of Si IV and O IV. Results: The electron beam drives the plasma out of equilibrium. At electron densities of Ne = 1010 cm-3, the plasma is out of ionization equilibrium at all times in all cases we considered, while for a higher density of Ne = 1011 cm-3, ionization equilibrium can be reached toward the end of each period, depending on the conditions. In turn, the character of the period-averaged synthetic spectra also depends on the properties of the beam. While the case of κ = 2 results in spectra with strong or even dominant O IV, higher values of κ can approximate a range of observed TR spectra. Spectra similar to typically observed spectra, with the Si IV 1402.8 Å line about a factor 5 higher than O IV 1401.2 Å, are obtained for κ = 3. An even higher value of κ = 5 results in spectra that are exclusively dominated by Si IV, with negligible O IV emission. This is a possible interpretation of the TR spectra of UV (Ellerman) bursts, although an interpretation that requires a density that is 1-3 orders of magnitude lower than for equilibrium estimates. Movies associated to Fig. A.1 are available at http://https://www.aanda.org

  7. Non-equilibrium ionization by a periodic electron beam. I. Synthetic coronal spectra and implications for interpretation of observations

    NASA Astrophysics Data System (ADS)

    Dzifčáková, E.; Dudík, J.; Mackovjak, Š.

    2016-05-01

    Context. Coronal heating is currently thought to proceed via the mechanism of nanoflares, small-scale and possibly recurring heating events that release magnetic energy. Aims: We investigate the effects of a periodic high-energy electron beam on the synthetic spectra of coronal Fe ions. Methods: Initially, the coronal plasma is assumed to be Maxwellian with a temperature of 1 MK. The high-energy beam, described by a κ-distribution, is then switched on every period P for the duration of P/ 2. The periods are on the order of several tens of seconds, similar to exposure times or cadences of space-borne spectrometers. Ionization, recombination, and excitation rates for the respective distributions are used to calculate the resulting non-equilibrium ionization state of Fe and the instantaneous and period-averaged synthetic spectra. Results: Under the presence of the periodic electron beam, the plasma is out of ionization equilibrium at all times. The resulting spectra averaged over one period are almost always multithermal if interpreted in terms of ionization equilibrium for either a Maxwellian or a κ-distribution. Exceptions occur, however; the EM-loci curves appear to have a nearly isothermal crossing-point for some values of κs. The instantaneous spectra show fast changes in intensities of some lines, especially those formed outside of the peak of the respective EM(T) distributions if the ionization equilibrium is assumed. Movies 1-5 are available in electronic form at http://www.aanda.org

  8. Standardized UV-vis spectra as the foundation for a threshold-based, integrated photosafety evaluation.

    PubMed

    Bauer, Daniel; Averett, Lacey A; De Smedt, Ann; Kleinman, Mark H; Muster, Wolfgang; Pettersen, Betty A; Robles, Catherine

    2014-02-01

    Phototoxicity is a relatively common phenomenon and is an adverse effect of some systemic drugs. The fundamental initial step of photochemical reactivity is absorption of a photon; however, little guidance has been provided thus far regarding how ultraviolet-visible (UV-vis) light absorption spectra may be used to inform testing strategies for investigational drugs. Here we report the results of an inter-laboratory study comparing the data from harmonized UV-vis light absorption spectra obtained in methanol with data from the in vitro 3T3 Neutral Red Uptake Phototoxicity Test. Six pharmaceutical companies submitted data according to predefined quality criteria for 76 compounds covering a wide range of chemical classes showing a diverse but "positive"-enhanced distribution of photo irritation factors (22%: PIF<2, 12%: PIF 2-5, 66%: PIF>5). For compounds being formally positive (PIF value above 5) the lowest reported molar extinction coefficient (MEC) was 1700 L mol⁻¹ cm⁻¹ in methanol. However, the majority of these formally positive compounds showed MEC values being significantly higher (up to almost 40,000 L mol⁻¹ cm⁻¹). In conclusion, an MEC value of 1000 L mol⁻¹ cm⁻¹ may represent a reasonable and pragmatic threshold warranting further experimental photosafety evaluation. Copyright © 2013 Elsevier Inc. All rights reserved.

  9. Electronic and ionization spectra of 1,1-diamino-2,2-dinitroethylene, FOX-7.

    PubMed

    Borges, Itamar

    2014-03-01

    Singlet, triplet and ionized states of the energetic molecule 1,1-diamino-2,2-dinitroethylene, known as FOX-7 or DADNE, were investigated using the symmetry-adapted-cluster configuration interaction (SAC-CI) ab initio wave function. The 20 computed singlet transitions, with 2 exceptions, were bright. The most intense singlet transitions were of the n₀→π type-typical of molecules having nitro groups. Fast intersystem crossing (ISC) from the 1¹A, 2¹A and 8¹A bright singlet transitions is possible. Other feasible ISC processes are discussed. The computed singlet and ionization spectra have similar features when compared to nitramide and N,N-dimethylnitramine molecules, which have only a nitro group. The ionization energies of the first 20 states have differences in comparison with Koopmans' energy values that can reach 3 eV. Moreover, the character of the first ionized states, dominated by single ionizations, is not the same when compared with the character resulting from application of Koopmans' theorem.

  10. Correlated electron-nuclear dynamics in above-threshold multiphoton ionization of asymmetric molecule.

    PubMed

    Wang, Zhuo; Li, Min; Zhou, Yueming; Lan, Pengfei; Lu, Peixiang

    2017-02-20

    The partition of the photon energy into the subsystems of molecules determines many photon-induced chemical and physical dynamics in laser-molecule interactions. The electron-nuclear energy sharing from multiphoton ionization of molecules has been used to uncover the correlated dynamics of the electron and fragments. However, most previous studies focus on symmetric molecules. Here we study the electron-nuclear energy sharing in strong-field photoionization of HeH 2+ by solving the one-dimensional time-dependent Schrödinger equation (TDSE). Compared with symmetric molecules, the joint electron-nuclear energy spectrum (JES) of HeH 2+ reveals an anomalous energy shift at certain nuclear energies, while it disappears at higher and lower nuclear energies. Through tracing the time evolution of the wavepacket of bound states, we identify that this energy shift originates from the joint effect of the Stark shift, associated with the permanent dipole, and the Autler-Townes effect due to the coupling of the 2pσ and 2sσ states in strong fields. The energy shift in the JES appears at certain nuclear distances only when both Stark effect and Autler-Townes effect play important roles. We further demonstrate that the electron-nuclei energy sharing can be controlled by varying laser intensity for asymmetric molecules, providing alternative approaches to manipulate photochemical reactions for more complex molecules.

  11. The cryogenic dark matter search low ionization-threshold experiment

    NASA Astrophysics Data System (ADS)

    Basu Thakur, Ritoban

    Over 80 years ago we discovered the presence of Dark Matter in our universe. Endeavors in astronomy and cosmology are in consensus with ever improving precision that Dark Matter constitutes an essential 27% of our universe. The Standard Model of Particle Physics does not provide any answers to the Dark Matter problem. It is imperative that we understand Dark Matter and discover its fundamental nature. This is because, alongside other important factors, Dark Matter is responsible for formation of structure in our universe. The very construct in which we sit is defined by its abundance. The Milky Way galaxy, hence life, wouldn't have formed if small over densities of Dark Matter had not caused sufficient accretion of stellar material. Marvelous experiments have been designed based on basic notions to directly and indirectly study Dark Matter, and the Cryogenic Dark Matter Search (CDMS) experiment has been a pioneer and forerunner in the direct detection field. Generations of the CDMS experiment were designed with advanced scientific upgrades to detect Dark Matter particles of mass O(100) GeV/c2. This mass-scale was set primarily by predictions from Super Symmetry. Around 2013 the canonical SUSY predictions were losing some ground and several observations (rather hints of signals) from various experiments indicated to the possibility of lighter Dark Matter of mass O(10) GeV/c2. While the SuperCDMS experiment was probing the regular parameter space, the CDMSlite experiment was conceived to dedicatedly search for light Dark Matter using a novel technology. "CDMSlite" stands for CDMS - low ionization threshold experiment. Here we utilize a unique electron phonon coupling mechanism to measure ionization generated by scattering of light particles. Typically signals from such low energy recoils would be washed under instrumental noise.In CDMSlite via generation of Luke-Neganov phonons we can detect the small ionization energies, amplified in phonon modes during charge

  12. The Cryogenic Dark Matter Search low ionization-threshold experiment

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Basu Thakur, Ritoban

    2014-01-01

    Over 80 years ago we discovered the presence of Dark Matter in our universe. Endeavors in astronomy and cosmology are in consensus with ever improving precision that Dark Matter constitutes an essential 27% of our universe. The Standard Model of Particle Physics does not provide any answers to the Dark Matter problem. It is imperative that we understand Dark Matter and discover its fundamental nature. This is because, alongside other important factors, Dark Matter is responsible for formation of structure in our universe. The very construct in which we sit is defined by its abundance. The Milky Way galaxy, hencemore » life, wouldn't have formed if small over densities of Dark Matter had not caused sufficient accretion of stellar material. Marvelous experiments have been designed based on basic notions to directly and in-directly study Dark Matter, and the Cryogenic Dark Matter Search (CDMS) experiment has been a pioneer and forerunner in the direct detection field. Generations of the CDMS experiment were designed with advanced scientific upgrades to detect Dark Matter particles of mass O(100) GeV/c 2. This mass-scale was set primarily by predictions from Super Symmetry. Around 2013 the canonical SUSY predictions were losing some ground and several observations (rather hints of signals) from various experiments indicated to the possibility of lighter Dark Matter of mass O(10) GeV/c 2. While the SuperCDMS experiment was probing the regular parameter space, the CDMSlite experiment was conceived to dedicatedly search for light Dark Matter using a novel technology. "CDMSlite" stands for CDMS - low ionization threshold experiment. Here we utilize a unique electron phonon coupling mechanism to measure ionization generated by scattering of light particles. Typically signals from such low energy recoils would be washed under instrumental noise. In CDMSlite via generation of Luke-Neganov phonons we can detect the small ionization energies, amplified in phonon modes during

  13. Use of relativistic rise in ionization chambers for measurement of high energy heavy nuclei

    NASA Technical Reports Server (NTRS)

    Barthelmy, S. D.; Israel, M. H.; Klarmann, J.; Vogel, J. S.

    1983-01-01

    A balloon-borne instrument has been constructed to measure the energy spectra of cosmic-ray heavy nuclei in the range of about 0.3 to about 100 GeV/amu. It makes use of the relativistic rise portion of the Bethe-Bloch curve in ionization chambers for energy determination in the 10- to 100-GeV/amu interval. The instrument consists of six layers of dual-gap ionization chambers for energy determination above 10 GeV/amu. Charge is determined with a NE114 scintillator and a Pilot 425 plastic Cerenkov counter. A CO2 gas Cerenkov detector (1 atm; threshold of 30 GeV/amu) calibrates the ion chambers in the relativistic rise region. The main emphasis of the instrument is the determination of the change of the ratio of Iron (26) to the Iron secondaries (21-25) in the energy range of 10 to 100 GeV/amu. Preliminary data from a balloon flight in the fall of 1982 from Palestine, TX is presented.

  14. Exploiting Sub-threshold and above-threshold characteristics in a silver-enhanced gold nanoparticle based biochip.

    PubMed

    Liu, Yang; Alocilja, Evangelyn; Chakrabartty, Shantanu

    2009-01-01

    Silver-enhanced labeling is a technique used in immunochromatographic assays for improving the sensitivity of pathogen detection. In this paper, we employ the silver enhancement approach for constructing a biomolecular transistor that uses a high-density interdigitated electrode to detect rabbit IgG. We show that the response of the biomolecular transistor comprises of: (a) a sub-threshold region where the conductance change is an exponential function of the enhancement time and; (b) an above-threshold region where the conductance change is a linear function with respect to the enhancement time. By exploiting both these regions of operation, it is shown that the silver enhancing time is a reliable indicator of the IgG concentration. The method provides a relatively straightforward alternative to biomolecular signal amplification techniques. The measured results using a biochip prototype fabricated in silicon show that 240 pg/mL rabbit IgG can be detected at the silver enhancing time of 42 min. Also, the biomolecular transistor is compatible with silicon based processing making it ideal for designing integrated CMOS biosensors.

  15. Relative Abundances and Energy Spectra of C, N, and 0 as Measured by the Advanced Thin Ionization Calorimeter Balloon Experiment

    NASA Technical Reports Server (NTRS)

    Fazely, A. R.; Gunasingha, R. M.; Adams, J. H.; Ahn, E. J.; Ahn, H. S.; Bashindzhagyan, G.; Case, G.; Chang, J.; Christl, M.; Ellison, S.

    2003-01-01

    We present results on the spectra and the relative abundances of C, N, and 0 nuclei in the cosmic radiation as measured from the Advanced Thin Ionization Calorimeter Balloon Experiment (ATIC) . The ATIC detector has completed two successful balloon flights from McMurdo, Antarctica lasting a total of more than 35 days. ATIC is designed as a multiple, long duration balloon flight, investigation of the cosmic ray spectra from below 50 GeV to near 100 TeV total energy, using a fully active Bismuth Germanate calorimeter. It is equipped with a large area mosaic of silicon detector pixels capable of charge identification from H to Fe. As a redundancy check for the charge identification and a particle tracking system, three projective layers of x-y scintillator hodoscopes were employed, above, in the middle and below a 0.75 nuclear interaction length graphite target.

  16. Photoelectron circular dichroism in the multiphoton ionization by short laser pulses. II. Three- and four-photon ionization of fenchone and camphor.

    PubMed

    Müller, Anne D; Artemyev, Anton N; Demekhin, Philipp V

    2018-06-07

    Angle-resolved multiphoton ionization of fenchone and camphor by short intense laser pulses is computed by the time-dependent single center method. Thereby, the photoelectron circular dichroism (PECD) in the three-photon resonance enhanced ionization and four-photon above-threshold ionization of these molecules is investigated in detail. The computational results are in satisfactory agreement with the available experimental data, measured for randomly oriented fenchone and camphor molecules at different wavelengths of the exciting pulses. We predict a significant enhancement of the multiphoton PECD for uniaxially oriented fenchone and camphor.

  17. Photoelectron circular dichroism in the multiphoton ionization by short laser pulses. II. Three- and four-photon ionization of fenchone and camphor

    NASA Astrophysics Data System (ADS)

    Müller, Anne D.; Artemyev, Anton N.; Demekhin, Philipp V.

    2018-06-01

    Angle-resolved multiphoton ionization of fenchone and camphor by short intense laser pulses is computed by the time-dependent single center method. Thereby, the photoelectron circular dichroism (PECD) in the three-photon resonance enhanced ionization and four-photon above-threshold ionization of these molecules is investigated in detail. The computational results are in satisfactory agreement with the available experimental data, measured for randomly oriented fenchone and camphor molecules at different wavelengths of the exciting pulses. We predict a significant enhancement of the multiphoton PECD for uniaxially oriented fenchone and camphor.

  18. Electron-Atom Ionization Calculations using Propagating Exterior Complex Scaling

    NASA Astrophysics Data System (ADS)

    Bartlett, Philip

    2007-10-01

    The exterior complex scaling method (Science 286 (1999) 2474), pioneered by Rescigno, McCurdy and coworkers, provided highly accurate ab initio solutions for electron-hydrogen collisions by directly solving the time-independent Schr"odinger equation in coordinate space. An extension of this method, propagating exterior complex scaling (PECS), was developed by Bartlett and Stelbovics (J. Phys. B 37 (2004) L69, J. Phys. B 39 (2006) R379) and has been demonstrated to provide computationally efficient and accurate calculations of ionization and scattering cross sections over a large range of energies below, above and near the ionization threshold. An overview of the PECS method for three-body collisions and the computational advantages of its propagation and iterative coupling techniques will be presented along with results of: (1) near-threshold ionization of electron-hydrogen collisions and the Wannier threshold laws, (2) scattering cross section resonances below the ionization threshold, and (3) total and differential cross sections for electron collisions with excited targets and hydrogenic ions from low through to high energies. Recently, the PECS method has been extended to solve four-body collisions using time-independent methods in coordinate space and has initially been applied to the s-wave model for electron-helium collisions. A description of the extensions made to the PECS method to facilitate these significantly more computationally demanding calculations will be given, and results will be presented for elastic, single-excitation, double-excitation, single-ionization and double-ionization collisions.

  19. Electron ionization and dissociation of aliphatic amino acids

    NASA Astrophysics Data System (ADS)

    Papp, P.; Shchukin, P.; Kočíšek, J.; Matejčík, Š.

    2012-09-01

    We present experimental and theoretical study of electron ionization and dissociative ionization to the gas phase amino acids valine, leucine, and isoleucine. A crossed electron/molecular beams technique equipped with quadrupole mass analyzer has been applied to measure mass spectra and ion efficiency curves for formation of particular ions. From experimental data the ionization energies of the molecules and the appearance energies of the fragment ions were determined. Ab initio calculations (Density Functional Theory and G3MP2 methods) were performed in order to calculate the fragmentation paths and interpret the experimental data. The experimental ionization energies of parent molecules [P]+ 8.91 ± 0.05, 8.85 ± 0.05, and 8.79 ± 0.05 eV and G3MP2 ionization energies (adiabatic) of 8.89, 8.88, and 8.81 eV were determined for valine, leucine, and isoleucine, respectively, as well as the experimental and theoretical threshold energies for dissociative ionization channels. The comparison of experimental data with calculations resulted in identification of the ions as well as the neutral fragments formed in the dissociative reactions. Around 15 mass/charge ratio fragments were identified from the mass spectra by comparison of experimental appearance energies with calculated reaction enthalpies for particular dissociative reactions.

  20. Two-Electron Correlations in e+H-->e+e+p Near Threshold

    NASA Astrophysics Data System (ADS)

    Kato, Daiji; Watanabe, Shinichi

    1995-03-01

    We present an ab initio calculation of the ionization cross section of atomic hydrogen near threshold with precision that compares excellently with the Shah-Elliot-Gilbody experiment [J. Phys. B 20, 3501 (1987)]. This fills the gap between theory and experiment down to 0.1 a.u. above threshold, complementing the recent spectacular work of Bray and Stelbovics [Phys. Rev. Lett. 70, 746 (1993)]. The angular momentum distributions of the secondary electron display an evolution in correlation patterns toward the threshold.

  1. New Measurements of Doubly Ionized Iron Group Spectra by High Resolution Fourier Transform and Grating Spectroscopy

    NASA Technical Reports Server (NTRS)

    Smillie, D. G.; Pickering, J. C.; Blackwell-Whitehead, R. J.; Smith, Peter L.; Nave, G.

    2006-01-01

    We report new measurements of doubly ionized iron group element spectra, important in the analysis of B-type (hot) stars whose spectra they dominate. These measurements include Co III and Cr III taken with the Imperial College VUV Fourier transform (FT) spectrometer and measurements of Co III taken with the normal incidence vacuum spectrograph at NIST, below 135 nm. We report new Fe III grating spectra measurements to complement our FT spectra. Work towards transition wavelengths, energy levels and branching ratios (which, combined with lifetimes, produce oscillator strengths) for these ions is underway.

  2. Dynamical orientation effects in atomic ionization by impact of protons and positrons

    NASA Astrophysics Data System (ADS)

    Fregenal, Daniel; Barrachina, Raúl; Bernardi, Guillermo; Suárez, Sergio; Fiol, Juan

    2011-10-01

    Recent results in ionization collisions with positrons and protons showed that just above the two-body threshold, for electron velocities close to the final projectile's velocity, the electron-projectile continuum dipole is narrowly oriented along the direction of motion of its centre-of-mass, with the negative charge pointing towards the residual target. Although a forward-backward asymmetry in the vicinity of the two-body threshold has been studied many year ago in ion impact ionization collisions, that was by far a much milder effect that left no fingerprint on the cusp position. Our results show that the phenomena is present for ionization by impact of both protons and positrons. In this communication, through measurements on H+ + He and calculations we analyze in detail this effect that can be linked to a dynamical alignment of the two-body subsystem in the continuum. Recent results in ionization collisions with positrons and protons showed that just above the two-body threshold, for electron velocities close to the final projectile's velocity, the electron-projectile continuum dipole is narrowly oriented along the direction of motion of its centre-of-mass, with the negative charge pointing towards the residual target. Although a forward-backward asymmetry in the vicinity of the two-body threshold has been studied many year ago in ion impact ionization collisions, that was by far a much milder effect that left no fingerprint on the cusp position. Our results show that the phenomena is present for ionization by impact of both protons and positrons. In this communication, through measurements on H+ + He and calculations we analyze in detail this effect that can be linked to a dynamical alignment of the two-body subsystem in the continuum. This work was partially supported by the Consejo Nacional de Investigaciones Cientificas y Tecnicas, Universidad Nacional de Cuyo and Fundacion Balseiro.

  3. Fatty acid kinetic responses to running above or below lactate threshold.

    PubMed

    Kanaley, J A; Mottram, C D; Scanlon, P D; Jensen, M D

    1995-08-01

    During running exercise above the lactate threshold (LT), it is unknown whether free fatty acid (FFA) mobilization can meet the energy demands for fatty acid oxidation. This study was performed to determine whether FFA availability is reduced during running exercise above compared with below the LT and to assess whether the level of endurance training influences FFA mobilization. Twelve marathon runners and 12 moderately trained runners ran at a workload that was either above or below their individual LT. Fatty acid oxidation (indirect calorimetry) and FFA release ([1-14C]palmitate) were measured at baseline, throughout exercise, and at recovery. The plasma FFA rate of appearance increased during exercise in both groups; running above or below the LT, but the total FFA availability for 30 min of exercise was greater (P < 0.01) in the below LT group (marathon, 23 +/- 2 mmol; moderate, 21 +/- 2 mmol) than in the above LT group (18 +/- 3 and 13 +/- 3 mmol, respectively). Total fatty acid oxidation (indirect calorimetry) greatly exceeded circulating FFA availability, regardless of training or exercise group (P < 0.01). No statistically significant exercise intensity or training differences in fatty acid oxidation were found (above LT: marathon, 71 +/- 12, moderate, 64 +/- 17 mmol/30 min; below LT: marathon 91 +/- 12, moderate, 60 +/- 5 mmol/30 min). In conclusion, during exercise above or below LT, circulating FFA cannot meet the oxidative needs and intramuscular triglyceride stores must be utilized. Further marathon training does not enhance effective adipose tissue lipolysis during exercise compared with moderate endurance training.

  4. Computational Prediction of Electron Ionization Mass Spectra to Assist in GC/MS Compound Identification.

    PubMed

    Allen, Felicity; Pon, Allison; Greiner, Russ; Wishart, David

    2016-08-02

    We describe a tool, competitive fragmentation modeling for electron ionization (CFM-EI) that, given a chemical structure (e.g., in SMILES or InChI format), computationally predicts an electron ionization mass spectrum (EI-MS) (i.e., the type of mass spectrum commonly generated by gas chromatography mass spectrometry). The predicted spectra produced by this tool can be used for putative compound identification, complementing measured spectra in reference databases by expanding the range of compounds able to be considered when availability of measured spectra is limited. The tool extends CFM-ESI, a recently developed method for computational prediction of electrospray tandem mass spectra (ESI-MS/MS), but unlike CFM-ESI, CFM-EI can handle odd-electron ions and isotopes and incorporates an artificial neural network. Tests on EI-MS data from the NIST database demonstrate that CFM-EI is able to model fragmentation likelihoods in low-resolution EI-MS data, producing predicted spectra whose dot product scores are significantly better than full enumeration "bar-code" spectra. CFM-EI also outperformed previously reported results for MetFrag, MOLGEN-MS, and Mass Frontier on one compound identification task. It also outperformed MetFrag in a range of other compound identification tasks involving a much larger data set, containing both derivatized and nonderivatized compounds. While replicate EI-MS measurements of chemical standards are still a more accurate point of comparison, CFM-EI's predictions provide a much-needed alternative when no reference standard is available for measurement. CFM-EI is available at https://sourceforge.net/projects/cfm-id/ for download and http://cfmid.wishartlab.com as a web service.

  5. DFT-Supported Threshold Ionization Study of Chromium Biphenyl Complexes: Unveiling the Mechanisms of Substituent Influence on Redox Properties of Sandwich Compounds.

    PubMed

    Ketkov, Sergey Yu; Tzeng, Sheng-Yuan; Wu, Pei-Ying; Markin, Gennady V; Tzeng, Wen-Bih

    2017-10-04

    High-resolution mass-analyzed threshold ionization (MATI) spectra of (η 6 -Ph 2 ) 2 Cr and (η 6 -Ph 2 )(η 6 -PhMe)Cr demonstrate that the Ph groups work as electron donors, decreasing the ionization energy of the gas-phase bisarene complexes. In contrast to electrochemical data, a close similarity of the Ph and Me group effects on the oxidation of free sandwich molecules has been revealed. However, DFT calculations testify for the opposite shifts of the electron density caused by the Me and Ph substituents in the neutral complexes, the latter behaving as an electron-accepting fragment. On the contrary, in the bisarene cations, the Ph group becomes a stronger donor than methyl. This change provides the similar substituent effects observed with the MATI experiment. On the other hand, the well-documented opposite influence of the Me and Ph fragments on the redox potential of the (η 6 -arene) 2 Cr +/0 couple in solution appears to be a result of solvation effects but not intramolecular interactions as shown for the first time in this work. © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  6. Increasing the applicability of density functional theory. V. X-ray absorption spectra with ionization potential corrected exchange and correlation potentials.

    PubMed

    Verma, Prakash; Bartlett, Rodney J

    2016-07-21

    Core excitation energies are computed with time-dependent density functional theory (TD-DFT) using the ionization energy corrected exchange and correlation potential QTP(0,0). QTP(0,0) provides C, N, and O K-edge spectra to about an electron volt. A mean absolute error (MAE) of 0.77 and a maximum error of 2.6 eV is observed for QTP(0,0) for many small molecules. TD-DFT based on QTP (0,0) is then used to describe the core-excitation spectra of the 22 amino acids. TD-DFT with conventional functionals greatly underestimates core excitation energies, largely due to the significant error in the Kohn-Sham occupied eigenvalues. To the contrary, the ionization energy corrected potential, QTP(0,0), provides excellent approximations (MAE of 0.53 eV) for core ionization energies as eigenvalues of the Kohn-Sham equations. As a consequence, core excitation energies are accurately described with QTP(0,0), as are the core ionization energies important in X-ray photoionization spectra or electron spectroscopy for chemical analysis.

  7. How to Compute Electron Ionization Mass Spectra from First Principles.

    PubMed

    Bauer, Christoph Alexander; Grimme, Stefan

    2016-06-02

    The prediction of electron ionization (EI) mass spectra (MS) from first principles has been a major challenge for quantum chemistry (QC). The unimolecular reaction space grows rapidly with increasing molecular size. On the one hand, statistical models like Eyring's quasi-equilibrium theory and Rice-Ramsperger-Kassel-Marcus theory have provided valuable insight, and some predictions and quantitative results can be obtained from such calculations. On the other hand, molecular dynamics-based methods are able to explore automatically the energetically available regions of phase space and thus yield reaction paths in an unbiased way. We describe in this feature article the status of both methodologies in relation to mass spectrometry for small to medium sized molecules. We further present results obtained with the QCEIMS program developed in our laboratory. Our method, which incorporates stochastic and dynamic elements, has been a significant step toward the reliable routine calculation of EI mass spectra.

  8. Energy and charge transfer in ionized argon coated water clusters.

    PubMed

    Kočišek, J; Lengyel, J; Fárník, M; Slavíček, P

    2013-12-07

    We investigate the electron ionization of clusters generated in mixed Ar-water expansions. The electron energy dependent ion yields reveal the neutral cluster composition and structure: water clusters fully covered with the Ar solvation shell are formed under certain expansion conditions. The argon atoms shield the embedded (H2O)n clusters resulting in the ionization threshold above ≈15 eV for all fragments. The argon atoms also mediate more complex reactions in the clusters: e.g., the charge transfer between Ar(+) and water occurs above the threshold; at higher electron energies above ~28 eV, an excitonic transfer process between Ar(+)* and water opens leading to new products Ar(n)H(+) and (H2O)(n)H(+). On the other hand, the excitonic transfer from the neutral Ar* state at lower energies is not observed although this resonant process was demonstrated previously in a photoionization experiment. Doubly charged fragments (H2O)(n)H2(2+) and (H2O)(n)(2+) ions are observed and Intermolecular Coulomb decay (ICD) processes are invoked to explain their thresholds. The Coulomb explosion of the doubly charged cluster formed within the ICD process is prevented by the stabilization effect of the argon solvent.

  9. Damping and power spectra of quasi-periodic intensity disturbances above a solar polar coronal hole

    NASA Astrophysics Data System (ADS)

    Jiao, Fang-Ran; Xia, Li-Dong; Huang, Zheng-Hua; Li, Bo; Fu, Hui; Yuan, Ding; Chandrashekhar, Kalugodu

    2016-06-01

    We study intensity disturbances above a solar polar coronal hole that can be seen in the AIA 171 Å and 193 Å passbands, aiming to provide more insights into their physical nature. The damping and power spectra of the intensity disturbances with frequencies from 0.07 mHz to 10.5 mHz are investigated. The damping of the intensity disturbances tends to be stronger at lower frequencies, and their damping behavior below 980″ (for comparison, the limb is at 945″) is different from what happens above. No significant difference is found between the damping of the intensity disturbances in the AIA 171 Å and that in the AIA 193 Å. The indices of the power spectra of the intensity disturbances are found to be slightly smaller in the AIA 171 Å than in the AIA 193 Å, but the difference is within one standard deviation. An additional enhanced component is present in the power spectra in a period range of 8-40 min at lower heights. The power spectra of a spicule is highly correlated with its associated intensity disturbance, which suggests that the power spectra of the intensity disturbances might be a mixture of spicules and wave activities. We suggest that each intensity disturbance in the polar coronal hole is possibly a series of independent slow magnetoacoustic waves triggered by spicular activities.

  10. Energy spectra of cosmic-ray nuclei to above 100 GeV per nucleon

    NASA Technical Reports Server (NTRS)

    Simon, M.; Spiegelhauer, H.; Schmidt, W. K. H.; Siohan, F.; Ormes, J. F.; Balasubrahmanyan, V. K.; Arens, J. F.

    1980-01-01

    Energy spectra of cosmic-ray nuclei boron to iron have been measured from 2 GeV per nucleon to beyond 100 GeV per nucleon. The data were obtained using an ionization calorimeter flown on a balloon from Palestine, Texas. The 3450 kg payload floated at 7 g/sq cm for almost 24 hours. The results are in excellent agreement with those of other workers where overlaps exist. The spectra are not consistent with single power laws, and demonstrate the power of using a single technique sensitive over a large dynamic range. The data are consistent with the leaky box model of cosmic-ray propagation. The boron data indicate that the cosmic-ray escape length decreases with increasing energy as E to the -(0.4 + or - 0.1) up to 100 GeV per nucleon. Secondary nuclei from iron are also consistent with this dependence. Predicted changes in the energy dependence of the ratios of primary nuclei O/C and (Fe + Ni)/(C + O) are also observed.

  11. Numerical models for the diffuse ionized gas in galaxies. I. Synthetic spectra of thermally excited gas with turbulent magnetic reconnection as energy source

    NASA Astrophysics Data System (ADS)

    Hoffmann, T. L.; Lieb, S.; Pauldrach, A. W. A.; Lesch, H.; Hultzsch, P. J. N.; Birk, G. T.

    2012-08-01

    Aims: The aim of this work is to verify whether turbulent magnetic reconnection can provide the additional energy input required to explain the up to now only poorly understood ionization mechanism of the diffuse ionized gas (DIG) in galaxies and its observed emission line spectra. Methods: We use a detailed non-LTE radiative transfer code that does not make use of the usual restrictive gaseous nebula approximations to compute synthetic spectra for gas at low densities. Excitation of the gas is via an additional heating term in the energy balance as well as by photoionization. Numerical values for this heating term are derived from three-dimensional resistive magnetohydrodynamic two-fluid plasma-neutral-gas simulations to compute energy dissipation rates for the DIG under typical conditions. Results: Our simulations show that magnetic reconnection can liberate enough energy to by itself fully or partially ionize the gas. However, synthetic spectra from purely thermally excited gas are incompatible with the observed spectra; a photoionization source must additionally be present to establish the correct (observed) ionization balance in the gas.

  12. Strong-field ionization of linear molecules by a bicircular laser field: Symmetry considerations

    NASA Astrophysics Data System (ADS)

    Gazibegović-Busuladžić, A.; Busuladžić, M.; Hasović, E.; Becker, W.; Milošević, D. B.

    2018-04-01

    Using the improved molecular strong-field approximation, we investigate (high-order) above-threshold ionization [(H)ATI] of various linear polyatomic molecules by a two-color laser field of frequencies r ω and s ω (with integer numbers r and s ) having coplanar counter-rotating circularly polarized components (a so-called bicircular field). Reflection and rotational symmetries for molecules aligned in the laser-field polarization plane, analyzed for diatomic homonuclear molecules in Phys. Rev. A 95, 033411 (2017), 10.1103/PhysRevA.95.033411, are now considered for diatomic heteronuclear molecules and symmetric and asymmetric linear triatomic molecules. There are additional rotational symmetries for (H)ATI spectra of symmetric linear molecules compared to (H)ATI spectra of the asymmetric ones. It is shown that these symmetries manifest themselves differently for r +s odd and r +s even. For example, HATI spectra for symmetric molecules with r +s even obey inversion symmetry. For ATI spectra of linear molecules, reflection symmetry appears only for certain molecular orientation angles ±90∘-j r 180∘/(r +s ) (j integer). For symmetric linear molecules, reflection symmetry appears also for the angles -j r 180∘/(r +s ) . For perpendicular orientation of molecules with respect to the laser-field polarization plane, the HATI spectra are very similar to those of the atomic targets, i.e., both spectra are characterized by the same type of the (r +s )-fold symmetry.

  13. Calculation of fully differential cross sections for the near threshold double ionization of helium atoms

    NASA Astrophysics Data System (ADS)

    Singh, Prithvi; Purohit, Ghanshyam; Dorn, Alexander; Ren, Xueguang; Patidar, Vinod

    2016-01-01

    Fully differential cross sectional (FDCS) results are reported for the electron-impact double ionization of helium atoms at 5 and 27 eV excess energy. The present attempt to calculate the FDCS in the second Born approximation and treating the postcollision interaction is helpful to analyze the measurements of Ren et al (2008 Phys. Rev. Lett. 101 093201) and Durr et al (2007 Phys. Rev. Lett. 98 193201). The second-order processes and postcollision interaction have been found to be significant in describing the trends of the FDCS. More theoretical effort is required to describe the collision dynamics of electron-impact double ionization of helium atoms at near threshold.

  14. Impact of Coulomb potential on peak structures arising in momentum and low-energy photoelectron spectra produced in strong-field ionization of laser-irradiated atoms

    NASA Astrophysics Data System (ADS)

    Pyak, P. E.; Usachenko, V. I.

    2018-03-01

    The phenomenon of pronounced peak structure(s) of longitudinal momentum distributions as well as a spike-like structure of low-energy spectra of photoelectrons emitted from laser-irradiated Ar and Ne atoms in a single ionization process is theoretically studied in the tunneling and multiphoton regimes of ionization. The problem is addressed assuming only the direct above-threshold ionization (ATI) as a physical mechanism underlying the phenomenon under consideration (viz. solely contributing to observed photoelectron momentum distributions (PMD)) and using the Coulomb-Volkov (CV) ansatz within the frame of conventional strong-field approximation (SFA) applied in the length-gauge formulation. The developed CV-SFA approach also incorporates the density functional theory essentially exploited for numerical composition of initial (laser-free) atomic state(s) constructed from atomic orbitals of Gaussian type. Our presented CV-SFA based (and laser focal-volume averaged) calculation results proved to be well reproducing both the pronounced double-peak and/or ATI-like multi-peak structure(s) experimentally observed in longitudinal PMD under conditions of tunneling and/or multiphoton regime, respectively. In addition, our CV-SFA results presented for tunneling regime also suggest and remarkably reproduce a pronounced structure observed in relevant experiments as a ‘spike-like’ enhanced maximum arising in low-energy region (around the value of about 1 eV) of photoelectron spectra. The latter consistency allows to identify and interpret these results as the so-called low-energy structure (LES) since the phenomenon proved to appear as the most prominent if the influence of Coulomb potential on photoelectron continuum states is maximally taken into account under calculations (viz. if the parameter Z in CV’s functions is put equal to 1). Moreover, the calculated LES proved to correspond (viz., established as closely related) to the mentioned double-peak structure arising

  15. Laser desorption/ionization from nanostructured surfaces: nanowires, nanoparticle films and silicon microcolumn arrays

    NASA Astrophysics Data System (ADS)

    Chen, Yong; Luo, Guanghong; Diao, Jiajie; Chornoguz, Olesya; Reeves, Mark; Vertes, Akos

    2007-04-01

    Due to their optical properties and morphology, thin films formed of nanoparticles are potentially new platforms for soft laser desorption/ionization (SLDI) mass spectrometry. Thin films of gold nanoparticles (with 12±1 nm particle size) were prepared by evaporation-driven vertical colloidal deposition and used to analyze a series of directly deposited polypeptide samples. In this new SLDI method, the required laser fluence for ion detection was equal or less than what was needed for matrix-assisted laser desorption/ionization (MALDI) but the resulting spectra were free of matrix interferences. A silicon microcolumn array-based substrate (a.k.a. black silicon) was developed as a new matrix-free laser desorption ionization surface. When low-resistivity silicon wafers were processed with a 22 ps pulse length 3×ω Nd:YAG laser in air, SF6 or water environment, regularly arranged conical spikes emerged. The radii of the spike tips varied with the processing environment, ranging from approximately 500 nm in water, to ~2 µm in SF6 gas and to ~5 µm in air. Peptide mass spectra directly induced by a nitrogen laser showed the formation of protonated ions of angiotensin I and II, substance P, bradykinin fragment 1-7, synthetic peptide, pro14-arg, and insulin from the processed silicon surfaces but not from the unprocessed areas. Threshold fluences for desorption/ionization were similar to those used in MALDI. Although compared to silicon nanowires the threshold laser pulse energy for ionization is significantly (~10×) higher, the ease of production and robustness of microcolumn arrays offer complementary benefits.

  16. Residual Inhibition Functions Overlap Tinnitus Spectra and the Region of Auditory Threshold Shift

    PubMed Central

    Moffat, Graeme; Baumann, Michael; Ward, Lawrence M.

    2008-01-01

    Animals exposed to noise trauma show augmented synchronous neural activity in tonotopically reorganized primary auditory cortex consequent on hearing loss. Diminished intracortical inhibition in the reorganized region appears to enable synchronous network activity that develops when deafferented neurons begin to respond to input via their lateral connections. In humans with tinnitus accompanied by hearing loss, this process may generate a phantom sound that is perceived in accordance with the location of the affected neurons in the cortical place map. The neural synchrony hypothesis predicts that tinnitus spectra, and heretofore unmeasured “residual inhibition functions” that relate residual tinnitus suppression to the center frequency of masking sounds, should cover the region of hearing loss in the audiogram. We confirmed these predictions in two independent cohorts totaling 90 tinnitus subjects, using computer-based tools designed to assess the psychoacoustic properties of tinnitus. Tinnitus spectra and residual inhibition functions for depth and duration increased with the amount of threshold shift over the region of hearing impairment. Residual inhibition depth was shallower when the masking sounds that were used to induce residual inhibition showed decreased correspondence with the frequency spectrum and bandwidth of the tinnitus. These findings suggest that tinnitus and its suppression in residual inhibition depend on processes that span the region of hearing impairment and not on mechanisms that enhance cortical representations for sound frequencies at the audiometric edge. Hearing thresholds measured in age-matched control subjects without tinnitus implicated hearing loss as a factor in tinnitus, although elevated thresholds alone were not sufficient to cause tinnitus. PMID:18712566

  17. 48 CFR 653.219-70 - DOS form DS-1910, Small Business Agency Review-Actions Above the Simplified Acquisition Threshold.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... 48 Federal Acquisition Regulations System 4 2012-10-01 2012-10-01 false DOS form DS-1910, Small Business Agency Review-Actions Above the Simplified Acquisition Threshold. 653.219-70 Section 653.219-70... Threshold. As prescribed in 619.501(c), DS-1910 is prescribed for use in documenting set-aside decisions...

  18. Formation and reactions of negative ions relevant to chemical ionization mass spectrometry. I. Cl mass spectra of organic compounds produced by F− reactions

    PubMed Central

    Tiernan, T. O.; Chang, C.; Cheng, C. C.

    1980-01-01

    A systematic study of the negative-ion chemical ionization mass spectra produced by the reaction of F− with a wide variety of organic compounds has been accomplished. A time-of-flight mass spectrometer fitted with a modified high pressure ion source was employed for these experiments. The F− reagent ion was generated from CF3H or NF3, typically at an ion source pressure of 100 μm. In pure NF3, F− is the major ion formed and constitutes more than 90% of the total ion intensity. While F− is also the major primary ion formed in pure CF3H, it undergoes rapid ion-molecule reactions at elevated source pressures, yielding (HF)nF− (n = 1−3) ions, which makes CF3H less suitable as a chemical ionization reagent gas. Among the organic compounds investigated were carboxylic acids, ketones, aldehydes, esters, alcohols, phenols, halides, nitriles, nitrobenzene, ethers, amines and hydrocarbons. An intense (M − 1)− ion was observed in the F− chemical ionization mass spectra of carboxylic acids, ketones, aldehydes and phenols. Alcohols yield only (M + F)− ions upon reaction with F−. A weaker (M + F)− ion was also detected in the F− chemical ionization spectra of carboxylic acids, aldehydes, ketones and nitriles. The F− chemical ionization mass spectra of esters, halides, nitriles, nitrobenzene and ethers are characterized primarily by the ions, RCOO−, X−, CN−, NO2−, and OR−, respectively. In addition, esters show a very weak (M − 1)− ion (except formates). In the F− chemical ionization spectra of some aliphatic alkanes and o-xylene, a very weak (M + F)− ion was observed. Amines and aliphatic alkenes exhibit only insignificant fragment ions under similar conditions, while aromatic hydrocarbons, such as benzene and toluene are not reactive at all with the F− ion. The mechanisms of the various reactions mentioned are discussed, and several experimental complications are noted. In still other studies, the effects of varying several

  19. Pain threshold is achieved at intensity above anaerobic threshold in patients with intermittent claudication.

    PubMed

    Ritti-Dias, Raphael Mendes; de Moraes Forjaz, Cláudia Lúcia; Cucato, Gabriel Grizzo; Costa, Luis Augusto Riani; Wolosker, Nelson; de Fátima Nunes Marucci, Maria

    2009-01-01

    Walking training is considered as the first treatment option for patients with peripheral arterial disease and intermittent claudication (IC). Walking exercise has been prescribed for these patients by relative intensity of peak oxygen uptake (VO2peak), ranging from 40% to 70% VO2peak, or pain threshold (PT). However, the relationship between these methods and anaerobic threshold (AT), which is considered one of the best metabolic markers for establishing training intensity, has not been analyzed. Thus, the aim of this study was to compare, in IC patients, the physiological responses at exercise intensities usually prescribed for training (% VO2peak or % PT) with the ones observed at AT. Thirty-three IC patients performed maximal graded cardiopulmonary treadmill test to assess exercise tolerance. During the test, heart rate (HR), VO2, and systolic blood pressure were measured and responses were analyzed at the following: 40% of VO2peak; 70% of VO2peak; AT; and PT. Heart rate and VO2 at 40% and 70% of VO2peak were lower than those at AT (HR: -13 +/- 9% and -3 +/- 8%, P < .01, respectively; VO2: -52 +/- 12% and -13 +/- 15%, P < .01, respectively). Conversely, HR and VO2 at PT were slightly higher than those at AT (HR: +3 +/- 8%, P < .01; VO2: +6 +/- 15%, P = .04). None of the patients achieved the respiratory compensation point. Prescribing exercise for IC patients between 40% and 70% of VO2peak will induce a lower stimulus than that at AT, whereas prescribing exercise at PT will result in a stimulus above AT. Thus, prescribing exercise training for IC patients on the basis of PT will probably produce a greater metabolic stimulus, promoting better cardiovascular benefits.

  20. Revised Energy Spectra for Primary Elements, H - Si, above 50 GeV from the ATIC-2 Science Flight

    NASA Technical Reports Server (NTRS)

    Wefel, J. P.; Adams, J. H., Jr.; Ahn, H. S.; Bashindzhagyan, G. L.; Chang, J.; Christl, M.; Fazely, A. R.; Ganel, O.; Gunashingha, R. M.; Guzik, T. G.; hide

    2007-01-01

    The Advanced Thin Ionization Calorimeter (ATIC) long duration balloon experiment had a successful science flight accumulating 18 days of data (12/02 - 1/03) during a single circumnavigation in Antarctica. ATIC measures the energy spectra of elements from H to Fe in primary cosmic rays using a fully active Bismuth Germanate calorimeter preceded by a carbon target, with embedded scintillator hodoscopes, and a silicon matrix charge detector at the top. Preliminary results from ATIC have been reported in previous conferences. The revised results reported here are derived from a new analysis of the data with improved charge resolution, lower background and revised energy calibration. The raw energy deposit spectra are de-convolved into primary energy spectra and extrapolated to the top of the atmosphere. We compare these revised results to previous data and comment upon the astrophysical interpretation of the results.

  1. Bottomonium-like states: Physics case for energy scan above the BB¯ threshold at Belle-II

    NASA Astrophysics Data System (ADS)

    Bondar, A. E.; Mizuk, R. V.; Voloshin, M. B.

    2017-02-01

    The Belle-II experiment is expected to collect large data samples at the Υ(4S) and Υ(5S) resonances to study primarily B and Bs mesons. We discuss what other data above the BB¯ threshold are of interest. We propose to perform a high-statistics energy scan from the BB¯ threshold up to the highest possible energy, and to collect data at the Υ(6S) and at higher mass states if they are found in the scan. We emphasize the interest in increasing the maximal energy from 11.24 GeV to 11.5-12 GeV in the future. These data are needed for the investigation of bottomonium and bottomonium-like states.

  2. Coherent motion threshold measurements for M-cell deficit differ for above- and below-average readers.

    PubMed

    Solan, Harold A; Hansen, Peter C; Shelley-Tremblay, John; Ficarra, Anthony

    2003-11-01

    Research during the past 20 years has influenced the management of diagnosis and treatment of children identified as having learning-related vision problems. The intent of this study is to determine whether coherent motion threshold testing can distinguish better-than-average non-disabled (ND) readers from those who are moderately reading disabled (RD) among sixth-grade students. A sample of 23 better-than-average non-disabled readers (> or = 80th percentile) and 27 moderately disabled readers (< or = 32nd percentile) were identified using a standardized reading comprehension test. Each participant was tested for coherent motion threshold. Previous psychophysical and fMRI research with adults suggests that coherent motion threshold is a valid measure of magnocellular (M-cell) integrity. The average of two coherent motion threshold trials was significantly greater for moderately reading disabled subjects than for above-average readers (p < 0.01). The mean threshold percentage of dots required to observe lateral motion was 9.2% for moderately reading disabled readers and 4.6% for superior readers (p = 0.001). The outcome of this preliminary study provides an efficient procedure to identify sixth-grade students whose reading disability may be associated with an M-cell deficit. Our previous investigations involving visual processing, visual attention, and oculomotor therapy have resulted in significant improvements in reading comprehension, visual attention, and eye movements. It remains to be demonstrated whether vision therapy has an impact on the M-cell deficit, as measured with coherent motion threshold testing for moderately disabled readers.

  3. Identification of nickel-vacancy defects by combining experimental and ab initio simulated photocurrent spectra

    NASA Astrophysics Data System (ADS)

    Londero, E.; Bourgeois, E.; Nesladek, M.; Gali, A.

    2018-06-01

    There is a continuous search for solid state spin qubits operating at room temperature with excitation in the infrared communication bandwidth. Recently, we have introduced the photoelectric detection of magnetic resonance (PDMR) to read the electron spin state of nitrogen-vacancy (NV) centers in diamond, a technique which is promising for applications in quantum information technology. By measuring the photoionization spectra on a diamond crystal, we found two ionization thresholds of unknown origin. On the same sample we also observed absorption and photoluminescence signatures that were identified in the literature as Ni-associated defects. We performed ab initio calculations of the photoionization cross section of the nickel split-vacancy complex (NiV) and N-related defects in their relevant charge states and fitted the concentration of these defects to the measured photocurrent spectrum, which led to a surprising match between experimental and calculated spectra. This study enabled us to identify the two unknown ionization thresholds with the two acceptor levels of NiV. Because the excitation of NiV is in the infrared, the photocurrent detected from the paramagnetic NiV color centers is a promising way towards the design of electrically readout qubits.

  4. Evaluation of resonances above the proton threshold in 26Si

    NASA Astrophysics Data System (ADS)

    Chipps, K. A.

    2016-09-01

    26Al remains an intriguing target for observational gamma-ray astronomy, thanks to its characteristic decay. The 25Al(p, γ)26Si reaction is the crucial link in a sequence that bypasses the production of the observable 26Alg . s . in favor of the isomeric state, and as such has been the focus of many studies. Considerable confusion in this regard has arisen from the use of outdated excitation energies and masses in reaction studies and rate evaluations. Recalibration of existing data from the literature has resulted in updated excitation and resonance energies, but open questions remain, particularly with regard to spin assignments and partial widths/resonance strengths. A discussion of the levels just above the proton threshold in 26Si relevant to the astrophysical 25Al(p, γ)26Si reaction rate will be presented. This work is funded by the US Department of Energy, Office of Science, Office of Nuclear Physics.

  5. High-resolution threshold photoionization of N2O

    NASA Technical Reports Server (NTRS)

    Wiedmann, R. T.; Grant, E. R.; Tonkyn, R. G.; White, M. G.

    1991-01-01

    Pulsed field ionization (PFI) has been used in conjunction with a coherent VUV source to obtain high-resolution threshold photoelectron spectra for the (000), (010), (020), and (100) vibrational states of the N2O(+) cation. Simulations for the rotational profiles of each vibronic level were obtained by fitting the Buckingham-Orr-Sichel equations using accurate spectroscopic constants for the ground states of the neutral and the ion. The relative branch intensities are interpreted in terms of the partial waves of the outgoing photoelectron to which the ionic core is coupled and in terms of the angular momentum transferred to the core.

  6. Composition and energy spectra of cosmic ray nuclei above 500 GeV/nucleon from the JACEE emulsion chambers

    NASA Technical Reports Server (NTRS)

    Burnett, T. H.; Dake, S.; Derrickson, J. H.; Fountain, W. F.; Fuki, M.; Gregory, J. C.; Hayashi, T.; Holynski, R.; Iwai, J.; Jones, W. V.

    1985-01-01

    The composition and energy spectra of charge groups (C - 0), (Ne - S), and (Z approximately 17) above 500 GeV/nucleon from the experiments of JACEE series balloonborne emulsion chambers are reported. Studies of cosmic ray elemental composition at higher energies provide information on propagation through interstellar space, acceleration mechanisms, and their sources. One of the present interests is the elemental composition at energies above 100 GeV/nucleon. Statistically sufficient data in this energy region can be decisive in judgment of propagation models from the ratios of SECONDARY/PRIMARY and source spectra (acceleration mechanism), as well as speculative contributions of different sources from the ratios of PRIMARY/PRIMARY. At much higher energies, i.e., around 10 to the 15th power eV, data from direct observation will give hints on the knee problem, as to whether they favor an escape effect possibly governed by magnetic rigidity above 10 to the 16th power eV.

  7. First measurement of the isoscalar excitation above the neutron emission threshold of the Pygmy Dipole Resonance in 68Ni

    NASA Astrophysics Data System (ADS)

    Martorana, N. S.; Cardella, G.; Lanza, E. G.; Acosta, L.; Andrés, M. V.; Auditore, L.; Catara, F.; De Filippo, E.; De Luca, S.; Dell'Aquila, D.; Gnoffo, B.; Lanzalone, G.; Lombardo, I.; Maiolino, C.; Norella, S.; Pagano, A.; Pagano, E. V.; Papa, M.; Pirrone, S.; Politi, G.; Quattrocchi, L.; Rizzo, F.; Russotto, P.; Santonocito, D.; Trifirò, A.; Trimarchi, M.; Vigilante, M.; Vitturi, A.

    2018-07-01

    The excitation of the Pygmy Dipole Resonance (PDR) in the 68Ni nucleus, above the neutron emission threshold, via an isoscalar probe has been observed for the first time. The excitation has been produced in reactions where a 68Ni beam, obtained by the fragmentation of a 70Zn primary beam at INFN-LNS, impinged on a 12C target. The γ-ray decay was detected using the CsI(Tl) detectors of the CHIMERA multidetector sphere. The 68Ni isotope as well as other heavy ion fragments were detected using the FARCOS array. The population of the PDR was evidenced by comparing the detected γ-ray energy spectra with statistical code calculations. The isotopic resolution of the detection system allows also to directly compare neutron decay channels with the 68Ni channel, better evidencing the PDR decay response function. This comparison allows also the extraction of the PDR cross section and the relative γ-ray angular distribution. The measured γ-ray angular distribution confirms the E1 character of the transition. The γ decay cross section for the excitation of the PDR was measured to be 0.32 mb with a 18% of statistical error.

  8. Near-threshold electron-impact doubly differential cross sections for the ionization of argon and krypton

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yates, Brent R.; Khakoo, Murtadha A.

    2011-04-15

    We present normalized doubly differential cross sections (DDCS's) for the near-threshold, electron-impact single ionization of argon and krypton, similar to those taken earlier for Ne and Xe [Yates et al., J. Phys. B 42, 095206 (2009)]. The Ar measurements were taken at incident energies of 17, 18, 20, and 30 eV while the Kr measurements were taken at 15, 16, 17.5, and 20 eV. The DDCS scattering angles range from 15 deg. to 120 deg. The differential data are initially normalized to available experimental cross sections for excitation of the ground np{sup 6} to the np{sup 5}(n+1)s excited states ofmore » the noble gas and, after integration, to well-established experimental total ionization cross sections of Rapp and Englander-Golden [J. Chem. Phys. 43, 1464 (1965)].« less

  9. Imprints of the Molecular Electronic Structure in the Photoelectron Spectra of Strong-Field Ionized Asymmetric Triatomic Model Molecules

    NASA Astrophysics Data System (ADS)

    Paul, Matthias; Yue, Lun; Gräfe, Stefanie

    2018-06-01

    We examine the circular dichroism in the angular distribution of photoelectrons of triatomic model systems ionized by strong-field ionization. Following our recent work on this effect [Paul, Yue, and Gräfe, J. Mod. Opt. 64, 1104 (2017), 10.1080/09500340.2017.1299883], we demonstrate how the symmetry and electronic structure of the system is imprinted into the photoelectron momentum distribution. We use classical trajectories to reveal the origin of the threefolded pattern in the photoelectron momentum distribution, and show how an asymmetric nuclear configuration of the triatomic system effects the photoelectron spectra.

  10. Contribution of the pre-ionized H2 and the ionized H2+ subsystems to the HHG Spectra of H2 in intense laser fields

    NASA Astrophysics Data System (ADS)

    Iravani, Hossein; Sabzyan, Hassan; Vafaee, Mohsen; Buzari, Behnaz

    2018-04-01

    Contributions of the pre-ionized H2 (PI-H2) and ionized {{{H}}}2+ subsystems of the two-electron H2 system to its high-order harmonic generation in eight-cycle sin2-like ultrafast intense laser pulses are calculated and analyzed based on the solution of the time-dependent Schrödinger equation for the one-dimensional two-electronic H2 system with fixed nuclei. The laser pulses have λ = 390 and 532 nm wavelengths and I = 1 × 1014, 5 × 1014, 1 × 1015 and 5 × 1015 W cm‑2 intensities. It is found that at the two lower intensities, the PI-H2 subsystem dominantly produces the HHG spectra. However, at the two higher intensities, both PI-H2 and ionized {{{H}}}2+ subsystems contribute comparably to the HHG spectra. In the {{{H}}}2+ subsystem, the symmetry of the populations of {{{H}}}2+(I) and {{{H}}}2+(II) regions (left and right regions of {{{H}}}2+ subsystem) is broken by increasing the laser intensity. Complex patterns and even harmonics also appear at these two higher intensities. For instance, at 1 × 1015 W cm‑2 intensity and λ = 532 nm wavelength, the even harmonics are appeared near cutoff region. Interestingly, at 5 × 1015 W cm‑2 intensity and λ = 390 nm wavelength, the even harmonics replaced by the odd harmonics with red shift. At λ = 390 and 532 nm wavelengths and I = 1 × 1015 intensity, the two-electron cutoffs corresponding to nonsequential double-recombination with maximum return kinetic energy of 4.70Up are detected. The HHG spectra of the whole H2 system obtained with and without nuclear dynamics treated classically are approximately similar. However, at 1 × 1015 W cm‑2 intensity and λ = 532 nm wavelength, if we take into account nuclear dynamics, the even harmonics which are appeared near cutoff region, replaced by the odd harmonics with blue shift.

  11. Ionization rate from the electron precipitation during August 2011 storm

    NASA Astrophysics Data System (ADS)

    Huang, Y.; Huang, C. Y.; Su, Y.

    2013-12-01

    We apply a parameterization by Fang et al. [2010] (Fang2010) to the complex energy spectra measured by DMSP F16 satellites to calculate the ionization rate from electron precipitation during a moderate storm on August 6th, 2011. The DMSP electron flux measurements show that there is clear enhancement of electron fluxes in the polar cap. The mean energy in the polar cap is mostly above 100 eV, while the mean energy of auroral zone is above 1 keV. F16 also captures a strong Poynting flux enhancement in the polar cap. The electron impact ionization rates using thermospheric densities and temperatures from NRLMSISE-00, TIE-GCM and GITM show clear enhancement at F-region altitudes in the polar cap region due to the low-energy electrons precipitated. Using the default empirical formulations of electron impact ionization in GCMs, TIE-GCM and GITM do not capture the F-region ionization shown in the results of Fang2010 parameterization. Fang, X, C. E. Randall, D. Lummerzheim, W. Wang, G. Lu, S. C. Solomon, and R. A. Frahm (2010), Geophys. Res. Lett., 37, L22106, doi:10.1029/2010GL045406.

  12. Polarization asymmetry in two-electron photodetachment - A cogent test of the ionization threshold law

    NASA Technical Reports Server (NTRS)

    Temkin, A.; Bhatia, A. K.

    1988-01-01

    A very sensitive test of the electron-atom ionization threshold law is suggested: for spin-aligned heavy negative ions it consists of measuring the polarization asymmetry A(PA) coming from double detachment by left- versus right-circularly polarized light. The respective yields are worked out for the Te(-) (5p)5 2P(3/2) ion. The Coulomb-dipole theory predicts A(PA) to be the ratio of two oscillating functions in sharp contrast to any power law (specifically that of Wannier, 1953) for which the ratio is expected to be a smooth function of energy.

  13. Extreme Ultraviolet Spectra of Few-Times Ionized Tungsten for Divertor Plasma Diagnostics

    DOE PAGES

    Clementson, Joel; Lennartsson, Thomas; Beiersdorfer, Peter

    2015-09-09

    The extreme ultraviolet (EUV) emission from few-times ionized tungsten atoms has been experimentally studied at the Livermore electron beam ion trap facility. The ions were produced and confined during low-energy operations of the EBIT-I electron beam ion trap. By varying the electron-beam energy from around 30–300 eV, tungsten ions in charge states expected to be abundant in tokamak divertor plasmas were excited, and the resulting EUV emission was studied using a survey spectrometer covering 120–320 Å. It is found that the emission strongly depends on the excitation energy; below 150 eV, it is relatively simple, consisting of strong isolated linesmore » from a few charge states, whereas at higher energies, it becomes very complex. For divertor plasmas with tungsten impurity ions, this emission should prove useful for diagnostics of tungsten flux rates and charge balance, as well as for radiative cooling of the divertor volume. Several lines in the 194–223 Å interval belonging to the spectra of five- and seven-times ionized tungsten (Tm-like W VI and Ho-like W VIII) were also measured using a high-resolution spectrometer.« less

  14. Dissociative and double photoionization of CO from threshold to 90 A

    NASA Technical Reports Server (NTRS)

    Masuoka, T.; Samson, J. A. R.

    1981-01-01

    Partial cross sections for molecular photoionization (CO(+)), dissociative photoionization (C(+) and O(+)), and dissociative double photoionization (C(2+)) in CO have been measured from their thresholds to 90 A using techniques of mass spectrometry. The results are compared with data reported previously. Several peaks observed in the cross section curves for dissociated fragments are tentatively assigned by comparing with those in the photoelectron spectra reported for CO. It is concluded that the shoulder in the total absorption cross section curve between 400 and 90 A results solely from the dissociative ionization processes.

  15. New Results from the Search for Low-Mass Weakly Interacting Massive Particles with the CDMS Low Ionization Threshold Experiment

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Agnese, R.; Anderson, A. J.; Aramaki, T.

    2016-02-01

    The CDMS low ionization threshold experiment (CDMSlite) uses cryogenic germanium detectors operated at a relatively high bias voltage to amplify the phonon signal in the search for weakly interacting massive particles (WIMPs). Results are presented from the second CDMSlite run with an exposure of 70 kg day, which reached an energy threshold for electron recoils as low as 56 eV. A fiducialization cut reduces backgrounds below those previously reported by CDMSlite. New parameter space for the WIMP-nucleon spin-independent cross section is excluded for WIMP masses between 1.6 and 5.5 GeV/c^2.

  16. New results from the search for low-mass weakly interacting massive particles with the CDMS low ionization threshold experiment

    DOE PAGES

    Agnese, R.

    2016-02-17

    The CDMS low ionization threshold experiment (CDMSlite) uses cryogenic germanium detectors operated at a relatively high bias voltage to amplify the phonon signal in the search for weakly interacting massive particles (WIMPs). Our results are presented from the second CDMSlite run with an exposure of 70 kg days, which reached an energy threshold for electron recoils as low as 56 eV. Furthermore, a fiducialization cut reduces backgrounds below those previously reported by CDMSlite. Lastly, new parameter space for the WIMP-nucleon spin-independent cross section is excluded forWIMP masses between 1.6 and 5.5 GeV/c 2.

  17. Piezoresistive strain sensing of carbon black /silicone composites above percolation threshold

    NASA Astrophysics Data System (ADS)

    Shang, Shuying; Yue, Yujuan; Wang, Xiaoer

    2016-12-01

    A series of flexible composites with a carbon black (CB) filled silicone rubber matrix were made by an improved process in this work. A low percolation threshold with a mass ratio of 2.99% CB was achieved. The piezoresistive behavior of CB/silicone composites above the critical value, with the mass ratio of carbon black to the silicone rubber ranging from 0.01 to 0.2, was studied. The piezoresistive behavior was different from each other for the composites with different CB contents. But, the composites show an excellent repeatability of piezoresistivity under cyclic compression, no matter with low filler content or with high filler content. The most interesting phenomena were that the plots of gauge factor versus strain of the composites with different CB contents constructed a master curve and the curve could be well fitted by a function. It was showed that the gauge factor of the composites was strain-controlled showing a promising prospect of application.

  18. The immune synapse clears and excludes molecules above a size threshold

    PubMed Central

    Cartwright, Adam N. R.; Griggs, Jeremy; Davis, Daniel M.

    2014-01-01

    Natural killer cells assess target cell health via interactions at the immune synapse (IS) that facilitates signal integration and directed secretion. Here we test whether the IS also functions as a gasket. Quantitative fluorescence microscopy of nanometer-scale dextrans within synapses formed by various effector-target cell conjugates reveal that molecules are excluded in a size-dependent manner at activating synapses. Dextran sized ≤4 nm move in and out of the IS, but access is significantly reduced (by >50%) for dextran sized 10–13 nm, and dextran ≥32 nm is almost entirely excluded. Depolymerization of F-actin abrogated exclusion. Unexpectedly, larger-sized dextrans are cleared as the IS assembles in a zipper-like manner. Monoclonal antibodies are also excluded from the IS but smaller single-domain antibodies are able to penetrate. Therefore, the IS can clear and exclude molecules above a size threshold, and drugs designed to target synaptic cytokines or cytotoxic proteins must fit these dimensions. PMID:25407222

  19. Measurement of Excitation Spectra in the ^{12}C(p,d) Reaction near the η^{'} Emission Threshold.

    PubMed

    Tanaka, Y K; Itahashi, K; Fujioka, H; Ayyad, Y; Benlliure, J; Brinkmann, K-T; Friedrich, S; Geissel, H; Gellanki, J; Guo, C; Gutz, E; Haettner, E; Harakeh, M N; Hayano, R S; Higashi, Y; Hirenzaki, S; Hornung, C; Igarashi, Y; Ikeno, N; Iwasaki, M; Jido, D; Kalantar-Nayestanaki, N; Kanungo, R; Knöbel, R; Kurz, N; Metag, V; Mukha, I; Nagae, T; Nagahiro, H; Nanova, M; Nishi, T; Ong, H J; Pietri, S; Prochazka, A; Rappold, C; Reiter, M P; Rodríguez-Sánchez, J L; Scheidenberger, C; Simon, H; Sitar, B; Strmen, P; Sun, B; Suzuki, K; Szarka, I; Takechi, M; Tanihata, I; Terashima, S; Watanabe, Y N; Weick, H; Widmann, E; Winfield, J S; Xu, X; Yamakami, H; Zhao, J

    2016-11-11

    Excitation spectra of ^{11}C are measured in the ^{12}C(p,d) reaction near the η^{'} emission threshold. A proton beam extracted from the synchrotron SIS-18 at GSI with an incident energy of 2.5 GeV impinges on a carbon target. The momenta of deuterons emitted at 0° are precisely measured with the fragment separator (FRS) operated as a spectrometer. In contrast to theoretical predictions on the possible existence of deeply bound η^{'}-mesic states in carbon nuclei, no distinct structures are observed associated with the formation of bound states. The spectra are analyzed to set stringent constraints on the formation cross section and on the hitherto barely known η^{'}-nucleus interaction.

  20. Scaling Laws of the Two-Electron Sum-Energy Spectrum in Strong-Field Double Ionization.

    PubMed

    Ye, Difa; Li, Min; Fu, Libin; Liu, Jie; Gong, Qihuang; Liu, Yunquan; Ullrich, J

    2015-09-18

    The sum-energy spectrum of two correlated electrons emitted in nonsequential strong-field double ionization (SFDI) of Ar was studied for intensities of 0.3 to 2×10^{14} W/cm^{2}. We find the mean sum energy, the maximum of the distributions as well as the high-energy tail of the scaled (to the ponderomotive energy) spectra increase with decreasing intensity below the recollision threshold (BRT). At higher intensities the spectra collapse into a single distribution. This behavior can be well explained within a semiclassical model providing clear evidence of the importance of multiple recollisions in the BRT regime. Here, ultrafast thermalization between both electrons is found occurring within three optical cycles only and leaving its clear footprint in the sum-energy spectra.

  1. Compound annotation in liquid chromatography/high-resolution mass spectrometry based metabolomics: robust adduct ion determination as a prerequisite to structure prediction in electrospray ionization mass spectra.

    PubMed

    Jaeger, Carsten; Méret, Michaël; Schmitt, Clemens A; Lisec, Jan

    2017-08-15

    A bottleneck in metabolic profiling of complex biological extracts is confident, non-supervised annotation of ideally all contained, chemically highly diverse small molecules. Recent computational strategies combining sum formula prediction with in silico fragmentation achieve confident de novo annotation, once the correct neutral mass of a compound is known. Current software solutions for automated adduct ion assignment, however, are either publicly unavailable or have been validated against only few experimental electrospray ionization (ESI) mass spectra. We here present findMAIN (find Main Adduct IoN), a new heuristic approach for interpreting ESI mass spectra. findMAIN scores MS 1 spectra based on explained intensity, mass accuracy and isotope charge agreement of adducts and related ionization products and annotates peaks of the (de)protonated molecule and adduct ions. The approach was validated against 1141 ESI positive mode spectra of chemically diverse standard compounds acquired on different high-resolution mass spectrometric instruments (Orbitrap and time-of-flight). Robustness against impure spectra was evaluated. Correct adduct ion assignment was achieved for up to 83% of the spectra. Performance was independent of compound class and mass spectrometric platform. The algorithm proved highly tolerant against spectral contamination as demonstrated exemplarily for co-eluting compounds as well as systematically by pairwise mixing of spectra. When used in conjunction with MS-FINDER, a state-of-the-art sum formula tool, correct sum formulas were obtained for 77% of spectra. It outperformed both 'brute force' approaches and current state-of-the-art annotation packages tested as potential alternatives. Limitations of the heuristic pertained to poorly ionizing compounds and cationic compounds forming [M] + ions. A new, validated approach for interpreting ESI mass spectra is presented, filling a gap in the nontargeted metabolomics workflow. It is freely available

  2. Few-cycle attosecond pulse chirp effects on asymmetries in ionized electron momentum distributions

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Peng Liangyou; Tan Fang; Gong Qihuang

    2009-07-15

    The momentum distributions of electrons ionized from H atoms by chirped few-cycle attosecond pulses are investigated by numerically solving the time-dependent Schroedinger equation. The central carrier frequency of the pulse is chosen to be 25 eV, which is well above the ionization threshold. The asymmetry (or difference) in the yield of electrons ionized along and opposite to the direction of linear laser polarization is found to be very sensitive to the pulse chirp (for pulses with fixed carrier-envelope phase), both for a fixed electron energy and for the energy-integrated yield. In particular, the larger the pulse chirp, the larger themore » number of times the asymmetry changes sign as a function of ionized electron energy. For a fixed chirp, the ionized electron asymmetry is found to be sensitive also to the carrier-envelope phase of the few-cycle pulse.« less

  3. Demonstration of self-truncated ionization injection for GeV electron beams

    PubMed Central

    Mirzaie, M.; Li, S.; Zeng, M.; Hafz, N. A. M.; Chen, M.; Li, G. Y.; Zhu, Q. J.; Liao, H.; Sokollik, T.; Liu, F.; Ma, Y. Y.; Chen, L.M.; Sheng, Z. M.; Zhang, J.

    2015-01-01

    Ionization-induced injection mechanism was introduced in 2010 to reduce the laser intensity threshold for controllable electron trapping in laser wakefield accelerators (LWFA). However, usually it generates electron beams with continuous energy spectra. Subsequently, a dual-stage target separating the injection and acceleration processes was regarded as essential to achieve narrow energy-spread electron beams by ionization injection. Recently, we numerically proposed a self-truncation scenario of the ionization injection process based upon overshooting of the laser-focusing in plasma which can reduce the electron injection length down to a few hundred micrometers, leading to accelerated beams with extremely low energy-spread in a single-stage. Here, using 100 TW-class laser pulses we report experimental observations of this injection scenario in centimeter-long plasma leading to the generation of narrow energy-spread GeV electron beams, demonstrating its robustness and scalability. Compared with the self-injection and dual-stage schemes, the self-truncated ionization injection generates higher-quality electron beams at lower intensities and densities, and is therefore promising for practical applications. PMID:26423136

  4. High-resolution threshold photoionization of N sub 2 O

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wiedmann, R.T.; Grant, E.R.; Tonkyn, R.G.

    1991-07-15

    Pulsed field ionization (PFI) has been used in conjunction with a coherent vuv source to obtain high-resolution threshold photoelectron spectra for the (000), (010), (020), and (100) vibrational states of the N{sub 2}O{sup +} cation. Simulations for the rotational profiles of each vibronic level were obtained by fitting the Buckingham--Orr--Sichel equations (A. D. Buckingham, B. J. Orr, and J. M. Sichel, Philos. Trans. R. Soc. London, Ser. A {bold 268}, 147 (1970)) using accurate spectroscopic constants for the ground states of the neutral and the ion. The relative branch intensities are interpreted in terms of the partial waves of themore » outgoing photoelectron to which the ionic core is coupled and in terms of the angular momentum transferred to the core. The PFI technique also allows us to report an improved value for the ionization potential of N{sub 2}O of 103 963{plus minus}5 cm{sup {minus}1}.« less

  5. Trajectory calculations of two-dimensional Penning ionization electron spectra of N 2 in collision with metastable He* 2 3S atoms

    NASA Astrophysics Data System (ADS)

    Ohno, Koichi; Yamazaki, Masakazu; Kishimoto, Naoki; Ogawa, Tetsuji; Takeshita, Kouichi

    2000-12-01

    Ionization cross-sections of N 2 in collision with He* 2 3S as functions of the collision energy and the ejected electron kinetic energy (two-dimensional Penning ionization electron spectra, 2D-PIES) have been evaluated by trajectory calculations based on quantum chemical potential surfaces of both entrance and exit channels as well as on the transition widths for producing X, A, and B states of N 2+. The present approach using a Li atom for He * and an overlap approximation for Γ has given theoretical 2D-PIES in good agreement with the observation and a promise for its application to the study of dynamics in collisional ionization involving highly anisotropic target systems.

  6. An improved experimental scheme for simultaneous measurement of high-resolution zero electron kinetic energy (ZEKE) photoelectron and threshold photoion (MATI) spectra

    NASA Astrophysics Data System (ADS)

    Michels, François; Mazzoni, Federico; Becucci, Maurizio; Müller-Dethlefs, Klaus

    2017-10-01

    An improved detection scheme is presented for threshold ionization spectroscopy with simultaneous recording of the Zero Electron Kinetic Energy (ZEKE) and Mass Analysed Threshold Ionisation (MATI) signals. The objective is to obtain accurate dissociation energies for larger molecular clusters by simultaneously detecting the fragment and parent ion MATI signals with identical transmission. The scheme preserves an optimal ZEKE spectral resolution together with excellent separation of the spontaneous ion and MATI signals in the time-of-flight mass spectrum. The resulting improvement in sensitivity will allow for the determination of dissociation energies in clusters with substantial mass difference between parent and daughter ions.

  7. STORAGE RING CROSS SECTION MEASUREMENTS FOR ELECTRON IMPACT SINGLE AND DOUBLE IONIZATION OF Fe{sup 13+} AND SINGLE IONIZATION OF Fe{sup 16+} AND Fe{sup 17+}

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hahn, M.; Novotny, O.; Savin, D. W.

    2013-04-10

    We report measurements of electron impact ionization for Fe{sup 13+}, Fe{sup 16+}, and Fe{sup 17+} over collision energies from below threshold to above 3000 eV. The ions were recirculated using an ion storage ring. Data were collected after a sufficiently long time that essentially all the ions had relaxed radiatively to their ground state. For single ionization of Fe{sup 13+}, we find that previous single pass experiments are more than 40% larger than our results. Compared to our work, the theoretical cross section recommended by Arnaud and Raymond is more than 30% larger, while that of Dere is about 20%more » greater. Much of the discrepancy with Dere is due to the theory overestimating the contribution of excitation-autoionization via n = 2 excitations. Double ionization of Fe{sup 13+} is dominated by direct ionization of an inner shell electron accompanied by autoionization of a second electron. Our results for single ionization of Fe{sup 16+} and Fe{sup 17+} agree with theoretical calculations to within the experimental uncertainties.« less

  8. AUTOMATED DECONVOLUTION OF COMPOSITE MASS SPECTRA OBTAINED WITH AN OPEN-AIR IONIZATIONS SOURCE BASED ON EXACT MASSES AND RELATIVE ISOTIPIC ABUNDANCES

    EPA Science Inventory

    Chemicals dispersed by accidental, deliberate, or weather-related events must be rapidly identified to assess health risks. Mass spectra from high levels of analytes obtained using rapid, open-air ionization by a Direct Analysis in Real Time (DART®) ion source often contain

  9. 48 CFR 653.219-70 - DOS form DS-1910, Small Business Agency Review-Actions Above the Simplified Acquisition Threshold.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 48 Federal Acquisition Regulations System 4 2010-10-01 2010-10-01 false DOS form DS-1910, Small Business Agency Review-Actions Above the Simplified Acquisition Threshold. 653.219-70 Section 653.219-70 Federal Acquisition Regulations System DEPARTMENT OF STATE CLAUSES AND FORMS FORMS Prescription of Forms 653.219-70 DOS form DS-1910, Small...

  10. 48 CFR 653.219-70 - DOS form DS-1910, Small Business Agency Review-Actions Above the Simplified Acquisition Threshold.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 48 Federal Acquisition Regulations System 4 2011-10-01 2011-10-01 false DOS form DS-1910, Small Business Agency Review-Actions Above the Simplified Acquisition Threshold. 653.219-70 Section 653.219-70 Federal Acquisition Regulations System DEPARTMENT OF STATE CLAUSES AND FORMS FORMS Prescription of Forms 653.219-70 DOS form DS-1910, Small...

  11. 48 CFR 653.219-70 - DOS form DS-1910, Small Business Agency Review-Actions Above the Simplified Acquisition Threshold.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... 48 Federal Acquisition Regulations System 4 2014-10-01 2014-10-01 false DOS form DS-1910, Small Business Agency Review-Actions Above the Simplified Acquisition Threshold. 653.219-70 Section 653.219-70 Federal Acquisition Regulations System DEPARTMENT OF STATE CLAUSES AND FORMS FORMS Prescription of Forms 653.219-70 DOS form DS-1910, Small...

  12. 48 CFR 653.219-70 - DOS form DS-1910, Small Business Agency Review-Actions Above the Simplified Acquisition Threshold.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 48 Federal Acquisition Regulations System 4 2013-10-01 2013-10-01 false DOS form DS-1910, Small Business Agency Review-Actions Above the Simplified Acquisition Threshold. 653.219-70 Section 653.219-70 Federal Acquisition Regulations System DEPARTMENT OF STATE CLAUSES AND FORMS FORMS Prescription of Forms 653.219-70 DOS form DS-1910, Small...

  13. Threshold law for positron-atom impact ionisation

    NASA Technical Reports Server (NTRS)

    Temkin, A.

    1982-01-01

    The threshold law for ionisation of atoms by positron impact is adduced in analogy with our approach to the electron-atom ionization. It is concluded the Coulomb-dipole region of the potential gives the essential part of the interaction in both cases and leads to the same kind of result: a modulated linear law. An additional process which enters positron ionization is positronium formation in the continuum, but that will not dominate the threshold yield. The result is in sharp contrast to the positron threshold law as recently derived by Klar on the basis of a Wannier-type analysis.

  14. Cold Multiphoton Matrix Assisted Laser Desorption/Ionization (MALDI)

    NASA Astrophysics Data System (ADS)

    Harris, Peter; Cooke, William; Tracy, Eugene

    2008-05-01

    We present evidence of a cold multiphoton MALDI process occurring at a Room Temperature Ionic Liquid (RTIL)/metal interface. Our RTIL, 1-Butyl-3-methylimidazolium hexafluorophosphate, remains a stable liquid at room temperatures, even at pressures lower than 10-9 torr. We focus the 2^nd harmonic of a pulsed (2ns pulse length) Nd:YAG laser onto a gold grid coated with RTIL to generate a cold (narrow velocity spread) ion source with temporal resolution comparable to current MALDI ion sources. Unlike conventional MALDI, we believe multiphoton MALDI does not rely on collisional ionization within the ejection plume, and thus produces large signals at laser intensities just above threshold. Removing the collisional ionization process allow us to eject material from smaller regions of a sample, enhancing the suitability of multiphoton MALDI as an ion imaging technique.

  15. Similarity of High-Resolution Tandem Mass Spectrometry Spectra of Structurally Related Micropollutants and Transformation Products

    NASA Astrophysics Data System (ADS)

    Schollée, Jennifer E.; Schymanski, Emma L.; Stravs, Michael A.; Gulde, Rebekka; Thomaidis, Nikolaos S.; Hollender, Juliane

    2017-12-01

    High-resolution tandem mass spectrometry (HRMS2) with electrospray ionization is frequently applied to study polar organic molecules such as micropollutants. Fragmentation provides structural information to confirm structures of known compounds or propose structures of unknown compounds. Similarity of HRMS2 spectra between structurally related compounds has been suggested to facilitate identification of unknown compounds. To test this hypothesis, the similarity of reference standard HRMS2 spectra was calculated for 243 pairs of micropollutants and their structurally related transformation products (TPs); for comparison, spectral similarity was also calculated for 219 pairs of unrelated compounds. Spectra were measured on Orbitrap and QTOF mass spectrometers and similarity was calculated with the dot product. The influence of different factors on spectral similarity [e.g., normalized collision energy (NCE), merging fragments from all NCEs, and shifting fragments by the mass difference of the pair] was considered. Spectral similarity increased at higher NCEs and highest similarity scores for related pairs were obtained with merged spectra including measured fragments and shifted fragments. Removal of the monoisotopic peak was critical to reduce false positives. Using a spectral similarity score threshold of 0.52, 40% of related pairs and 0% of unrelated pairs were above this value. Structural similarity was estimated with the Tanimoto coefficient and pairs with higher structural similarity generally had higher spectral similarity. Pairs where one or both compounds contained heteroatoms such as sulfur often resulted in dissimilar spectra. This work demonstrates that HRMS2 spectral similarity may indicate structural similarity and that spectral similarity can be used in the future to screen complex samples for related compounds such as micropollutants and TPs, assisting in the prioritization of non-target compounds. [Figure not available: see fulltext.

  16. Lightning electromagnetic radiation field spectra in the interval from 0. 2 to 20 MHz

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Willett, J.C.; Bailey, J.C.; Leteinturier, C.

    1990-11-20

    Average energy spectral densities are presented for the fast transitions in most of the components that produce large radiation field impulses from cloud-to-ground lightning; first and subsequent return strokes; stepped, dart-stepped, and 'chaotic' leaders; and 'characteristic' cloud pulses. A disagreement in the previous literature about the spectral energy radiated by return strokes at high frequencies is noted and explained. The authors show that the spectral amplitudes are not seriously distorted by propagation over less than 35 km of seawater, although as much as 45 km of such propagation does appear to produce significant attenuation above about 10 MHz. First andmore » subsequent return strokes produce identical spectra between 0.2 and 20 MHz. The spectra of stepped and dart-stepped leader steps are nearly identical and are very similar to that of characteristic pulses. The spectra of leader steps also match return stroke spectra above 2-3 MHz after the former are increased by about 7 dB. The shapes of individual spectra do not depend on their amplitude, so the shapes of the average spectra are probably not distorted by the trigger thresholds used in the data acquisition. Return strokes are the strongest sources of radiation from cloud-to-ground lightning in the 0.2- to 20-MHz frequency range, although certain intracloud processes are stronger radiators above 8 MHz.« less

  17. Training Performed Above Lactate Threshold Decreases p53 and Shelterin Expression in Mice.

    PubMed

    de Carvalho Cunha, Verusca Najara; Dos Santos Rosa, Thiago; Sales, Marcelo Magalhães; Sousa, Caio Victor; da Silva Aguiar, Samuel; Deus, Lysleine Alves; Simoes, Herbert Gustavo; de Andrade, Rosangela Vieira

    2018-06-26

    Telomere shortening is associated to sarcopenia leading to functional impairment during aging. There are mechanisms associated with telomere attrition, as well to its protection and repair. Physical training is a factor that attenuates telomere shortening, but little is known about the effects of different exercise intensities on telomere biology. Thus, we evaluated the effects of exercise intensity (moderate vs. high-intensity domain) on gene expression of senescence markers Checkpoint kinase 2 and tumor suppressor ( Chk2 and p53 , respectively), shelterin telomere repeat binding 1 and 2 ( Trf1 / Trf2 ), DNA repair ( Xrcc5 ), telomerase reverse transcriptase ( mTERT ) and telomere length in middle aged mice. Three groups were studied: a control group (CTL) and two groups submitted to swimming at intensities below the lactate threshold (LI group) and above the lactate threshold (HI group) for 40 and 20 min respectively, for 12 weeks. After training, the HI group showed reduction in p53 expression in the muscle, and decreased shelterin complex expression when compared to LI group. No differences were observed between groups for mTERT expression and telomere length. Thus, exercise training in high-intensity domain was more effective on reducing markers of senescence and apoptosis. The higher intensity exercise training also diminished shelterin expression, with no differences in telomere length and mTERT expression. Such results possibly indicate a more effective DNA protection for the higher-intensity exercise training. © Georg Thieme Verlag KG Stuttgart · New York.

  18. Revealing isomerism in sodium-water clusters: Photoionization spectra of Na(H2O)n (n = 2-90)

    NASA Astrophysics Data System (ADS)

    Dierking, Christoph W.; Zurheide, Florian; Zeuch, Thomas; Med, Jakub; Parez, Stanislav; Slavíček, Petr

    2017-06-01

    Soft ionization of sodium tagged polar clusters is increasingly used as a powerful technique for sizing and characterization of small aerosols with possible application, e.g., in atmospheric chemistry or combustion science. Understanding the structure and photoionization of the sodium doped clusters is critical for such applications. In this work, we report on measurements of photoionization spectra for sodium doped water clusters containing 2-90 water molecules. While most of the previous studies focused on the ionization threshold of the Na(H2O)n clusters, we provide for the first time full photoionization spectra, including the high-energy region, which are used as reference for a comparison with theory. As reported in previous work, we have seen an initial drop of the appearance ionization energy with cluster size to values of about 3.2 eV for n <5 . In the size range from n = 5 to n = 15, broad ion yield curves emerge; for larger clusters, a constant range between signal appearance (˜2.8 eV) and signal saturation (˜4.1 eV) has been observed. The measurements are interpreted with ab initio calculations and ab initio molecular dynamics simulations for selected cluster sizes (n ≤ 15). The simulations revealed theory shortfalls when aiming at quantitative agreement but allowed us identifying structural motifs consistent with the observed ionization energy distributions. We found a decrease in the ionization energy with increasing coordination of the Na atom and increasing delocalization of the Na 3s electron cloud. The appearance ionization energy is determined by isomers with fully solvated sodium and a highly delocalized electron cloud, while both fully and incompletely solvated isomers with localized electron clouds can contribute to the high energy part of the photoionization spectrum. Simulations at elevated temperatures show an increased abundance of isomers with low ionization energies, an entropic effect enabling size selective infrared action

  19. Revealing isomerism in sodium-water clusters: Photoionization spectra of Na(H2O)n (n = 2-90).

    PubMed

    Dierking, Christoph W; Zurheide, Florian; Zeuch, Thomas; Med, Jakub; Parez, Stanislav; Slavíček, Petr

    2017-06-28

    Soft ionization of sodium tagged polar clusters is increasingly used as a powerful technique for sizing and characterization of small aerosols with possible application, e.g., in atmospheric chemistry or combustion science. Understanding the structure and photoionization of the sodium doped clusters is critical for such applications. In this work, we report on measurements of photoionization spectra for sodium doped water clusters containing 2-90 water molecules. While most of the previous studies focused on the ionization threshold of the Na(H 2 O) n clusters, we provide for the first time full photoionization spectra, including the high-energy region, which are used as reference for a comparison with theory. As reported in previous work, we have seen an initial drop of the appearance ionization energy with cluster size to values of about 3.2 eV for n<5. In the size range from n = 5 to n = 15, broad ion yield curves emerge; for larger clusters, a constant range between signal appearance (∼2.8 eV) and signal saturation (∼4.1 eV) has been observed. The measurements are interpreted with ab initio calculations and ab initio molecular dynamics simulations for selected cluster sizes (n≤ 15). The simulations revealed theory shortfalls when aiming at quantitative agreement but allowed us identifying structural motifs consistent with the observed ionization energy distributions. We found a decrease in the ionization energy with increasing coordination of the Na atom and increasing delocalization of the Na 3s electron cloud. The appearance ionization energy is determined by isomers with fully solvated sodium and a highly delocalized electron cloud, while both fully and incompletely solvated isomers with localized electron clouds can contribute to the high energy part of the photoionization spectrum. Simulations at elevated temperatures show an increased abundance of isomers with low ionization energies, an entropic effect enabling size selective infrared action

  20. A discharge flow-photoionization mass spectrometric study of the FO(X 2 Pi i) radical. Photoionization efficiency spectrum and ionization energy

    NASA Technical Reports Server (NTRS)

    Zhang, Zhengyu; Kuo, Szu-Cherng; Klemm, R. Bruce; Monks, Paul S.; Stief, Louis J.

    1994-01-01

    Photoionization efficiency spectra of FO were measured over the wavelength range 80.0-100.0 nm and in the ionization threshold region, 94.0-100.0 nm, using a discharge flow-photoionization mass spectrometer apparatus coupled to a synchrotron radiation source. FO was generated by the reaction of F2P atoms with NO3 and via a F2O2 discharge. A value of 12.78 +/- 0.03 eV was obtained for the adiabatic ionization energy of FO from photoion thresholds which corresponds to FO(+)(X 3 Sigma -) from FO(X 2 Pi i). These results, which are the first to be obtained by direct Photo-ionization mass spectrometry (PIMS) measurements, corroborate those of a photoelectron spectroscopy (PES) study; however, the ionization energy determined here is free from interferences due to other species which complicated the PES measurement. A value of 109.5 +/- 8.0 kJ/mol for Delta f H 0 298(FO) is computed from the present value of IE(FO) and a previous appearance energy measurement, and a value for the proton affinity of FO is calculated to be 511.5 +/- 10.0 kJ/mol.

  1. Electron induced inelastic and ionization cross section for plasma modeling

    NASA Astrophysics Data System (ADS)

    Verma, Pankaj; Mahato, Dibyendu; Kaur, Jaspreet; Antony, Bobby

    2016-09-01

    The present paper reports electron impact total inelastic and ionization cross section for silicon, germanium, and tin tetrahalides at energies varying from ionization threshold of the target to 5000 eV. These cross section data over a wide energy domain are very essential to understand the physico-chemical processes involved in various environments such as plasma modeling, semiconductor etching, atmospheric sciences, biological sciences, and radiation physics. However, the cross section data on the above mentioned molecules are scarce. In the present article, we report the computation of total inelastic cross section using spherical complex optical potential formalism and the estimation of ionization cross section through a semi-empirical method. The present ionization cross section result obtained for SiCl4 shows excellent agreement with previous measurements, while other molecules have not yet been investigated experimentally. Present results show more consistent behaviour than previous theoretical estimates. Besides cross sections, we have also studied the correlation of maximum ionization cross section with the square root of the ratio of polarizability to ionization potential for the molecules with known polarizabilities. A linear relation is observed between these quantities. This correlation is used to obtain approximate polarizability volumes for SiBr4, SiI4, GeCl4, GeBr4, and GeI4 molecules.

  2. Determination of atomic hydrogen in non-thermal hydrogen plasmas by means of molecular beam threshold ionization mass spectrometry.

    PubMed

    Wang, Wei-Guo; Xu, Yong; Yang, Xue-Feng; Wang, Wen-Chun; Zhu, Ai-Min

    2005-01-01

    Atomic hydrogen plays important roles in chemical vapor deposition of functional materials, plasma etching and new approaches to chemical synthesis of hydrogen-containing compounds. The present work reports experimental determinations of atomic hydrogen near the grounded electrode in medium-pressure dielectric barrier discharge hydrogen plasmas by means of molecular beam threshold ionization mass spectrometry (MB-TIMS). At certain discharge conditions (a.c. frequency of 24 kHz, 28 kV of peak-to-peak voltage), the measured hydrogen dissociation fraction is decreased from approximately 0.83% to approximately 0.14% as the hydrogen pressure increases from 2.0 to 14.0 Torr. A simulation method for extraction of the approximate electron beam energy distribution function in the mass spectrometer ionizer and a semi-quantitative approach to calibrate the mass discrimination effect caused by the supersonic beam formation and the mass spectrometer measurement are reported. Copyright 2005 John Wiley & Sons, Ltd.

  3. How big, and how long-lasting, will an extreme burst above threshold be ? Lessons from self-organised criticality

    NASA Astrophysics Data System (ADS)

    Watkins, N. W.; Chapman, S. C.; Hnat, B.

    2011-12-01

    The idea that there might not be a typical scale for energy release in some space physics systems is a relatively new one [see e.g. mini-review of early work in Freeman and Watkins, Science, 2002; & Aschwanden, Self Organized Criticality (SOC) in Astrophysics, Springer, 2011]. In part it resulted from the widespread approximate fractality seen elsewhere in nature. SOC was introduced by Bak et al [PRL, 1987] as a physical explanation of such widespread space-time fractality. SOC inspired the introduction into magnetospheric physics of "burst" diagnostics by Takalo [1993] & Consolini [1996]. These quantified events in a time series by "size" (integrated area above a fixed threshold) and "duration", and revealed a long tailed population of events across a broad range of sizes, subsequently also seen in solar wind drivers like Akasofu's epsilon function [Freeman et al, PRE & GRL, 2000]. Spatiotemporal bursts have an interest beyond SOC, however. Estimating the probability of a burst of a given size and duration bears directly on the problem of correlated extreme events, or "bunched black swans" [e.g. Watkins et al, EGU, 2011 presentation at the URL below]. With a view both to space physics and this wider context we here consider an interesting development of the burst idea made by Uritsky et al [GRL, 2001]. These authors adapted the spatiotemporal spreading exponent [e.g. Marro & Dickman, Nonequilibrium phase transitions in lattice models, 1999], calculating a superposed epoch average of surviving activity in bursts after their first excursion above a threshold. In a 1D time series, the 1-minute AL auroral index (averaged over 5 minutes), they found scaling behaviour up to ~ 2 hours. We investigate the relationships between exponents found by this method and other, more widely known exponents governing a fractal (or multifractal) time series such as the self-similarity exponent H and long-range dependence exponent d. We conclude by discussing the applications of these

  4. Critical current simulation in granular superconductors above the percolation threshold

    NASA Astrophysics Data System (ADS)

    Riedinger, Roland

    1992-02-01

    In the phase-coherent regime without applied external magnetic field, the critical superconducting current is limited by intragranular junctions which behave like Josephson junctions. We study the percolation aspects specific to lattices of such junctions and/or the mixing of superconductor with normal grains by averaging over configurations. We illustrate on 2 and 3 dimensional examples. The power laws valid near the percolation threshold are valid well above it, in two and three dimensions. We discuss the other models limiting the superconducting current, the vortex creep and superconducting order parameter fluctuations. Dans la limite de champ magnétique nul et de cohérence de phase du paramètre d'ordre supraconducteur, le courant supraconducteur maximal dans un réseau est limité par les jonctions intergranulaires qui se comportent comme des jonctions Josephson. Nous analysons les problèmes de percolation spécifiques aux réseaux de jonctions et du mélange de grains normaux et supraconducteurs. Nous donnons des exemples bidimensionnels et tridimensionnels ; après moyenne sur les configurations et analyse en taille finie, nous montrons que les lois de puissance valables au voisinage du seuil de percolation s'étendent sur un grand domaine au-delà du seuil de percolation, à deux et trois dimensions. Nous discutons les autres modèles limitant le courant supraconducteur, ancrage de vortex et fluctuations du paramètre d'ordre.

  5. A search for evidence of below threshold dielectronic recombination in low temperature plasmas

    NASA Astrophysics Data System (ADS)

    Nemer, Ahmad; Loch, Stuart; Sterling, Nicholas C.; Raymond, John C.

    2018-06-01

    There are two main types of photoionized gaseous nebulae that exist in the universe, H II regions and Planetary Nebulae (PNe), that mark the endpoints of stellar evolution, and understanding their composition will lead to better understanding of stellar evolution processes, and galactic chemical nucleosynthesis. Determination of heavy elements’ abundances is essential in the analysis of these nebulae. In addition, lines emitted from these heavy elements are typically used for nebular condition deduction. There has been a long-standing problem regarding discrepancy of temperatures and abundances resolved from optical recombination lines and collisionally excited lines. One of the reasons suggested to explain the discrepancy is Dielectronic Recombination (DR). DR is thought to necessarily occur through continuum states overlapping with autoionizing states that are above the ionization threshold. Robicheaux et al. (2010) proposed that DR to below threshold states is possible through ‘negative’ energy electrons recombining to below threshold doubly excited states. The spectral lines emitted from this process could provide an efficient mechanism to cool off plasma in addition to having satellite lines blended with collisionally excited lines related to plasma diagnostics. Furthermore, this phenomenon would occur significantly in low temperature plasmas which makes it challenging to prepare an experiment for testing it in a lab. In this research we present a spectroscopic study into this process through observed optical spectra from seven PNe that suffer from abundance discrepancy problem. A code was developed that produces a synthetic spectrum for 2 cases; namely, C IV recombining to C III and C III to C II. There is faint emission in the optical for these cases. Other possible mechismas to activiate these lines were included in the model and found insignificant. The Auger rates were calculated using the atomic physics code AUTOSTRUCTURE, and the lines were

  6. A fast, automated, polynomial-based cosmic ray spike-removal method for the high-throughput processing of Raman spectra.

    PubMed

    Schulze, H Georg; Turner, Robin F B

    2013-04-01

    Raman spectra often contain undesirable, randomly positioned, intense, narrow-bandwidth, positive, unidirectional spectral features generated when cosmic rays strike charge-coupled device cameras. These must be removed prior to analysis, but doing so manually is not feasible for large data sets. We developed a quick, simple, effective, semi-automated procedure to remove cosmic ray spikes from spectral data sets that contain large numbers of relatively homogenous spectra. Although some inhomogeneous spectral data sets can be accommodated--it requires replacing excessively modified spectra with the originals and removing their spikes with a median filter instead--caution is advised when processing such data sets. In addition, the technique is suitable for interpolating missing spectra or replacing aberrant spectra with good spectral estimates. The method is applied to baseline-flattened spectra and relies on fitting a third-order (or higher) polynomial through all the spectra at every wavenumber. Pixel intensities in excess of a threshold of 3× the noise standard deviation above the fit are reduced to the threshold level. Because only two parameters (with readily specified default values) might require further adjustment, the method is easily implemented for semi-automated processing of large spectral sets.

  7. Ionization Waves of Arbitrary Velocity

    NASA Astrophysics Data System (ADS)

    Turnbull, D.; Franke, P.; Katz, J.; Palastro, J. P.; Begishev, I. A.; Boni, R.; Bromage, J.; Milder, A. L.; Shaw, J. L.; Froula, D. H.

    2018-06-01

    Flying focus is a technique that uses a chirped laser beam focused by a highly chromatic lens to produce an extended focal region within which the peak laser intensity can propagate at any velocity. When that intensity is high enough to ionize a background gas, an ionization wave will track the intensity isosurface corresponding to the ionization threshold. We report on the demonstration of such ionization waves of arbitrary velocity. Subluminal and superluminal ionization fronts were produced that propagated both forward and backward relative to the ionizing laser. All backward and all superluminal cases mitigated the issue of ionization-induced refraction that typically inhibits the formation of long, contiguous plasma channels.

  8. Ionization energies of aqueous nucleic acids: photoelectron spectroscopy of pyrimidine nucleosides and ab initio calculations.

    PubMed

    Slavícek, Petr; Winter, Bernd; Faubel, Manfred; Bradforth, Stephen E; Jungwirth, Pavel

    2009-05-13

    Vertical ionization energies of the nucleosides cytidine and deoxythymidine in water, the lowest ones amounting in both cases to 8.3 eV, are obtained from photoelectron spectroscopy measurements in aqueous microjets. Ab initio calculations employing a nonequilibrium polarizable continuum model quantitatively reproduce the experimental spectra and provide molecular interpretation of the individual peaks of the photoelectron spectrum, showing also that lowest ionization originates from the base. Comparison of calculated vertical ionization potentials of pyrimidine bases, nucleosides, and nucleotides in water and in the gas phase underlines the dramatic effect of bulk hydration on the electronic structure. In the gas phase, the presence of sugar and, in particular, of phosphate has a strong effect on the energetics of ionization of the base. Upon bulk hydration, the ionization potential of the base in contrast becomes rather insensitive to the presence of the sugar and phosphate, which indicates a remarkable screening ability of the aqueous solvent. Accurate aqueous-phase vertical ionization potentials provide a significant improvement to the corrected gas-phase values used in the literature and represent important information in assessing the threshold energies for photooxidation and oxidation free energies of solvent-exposed DNA components. Likewise, such energetic data should allow improved assessment of delocalization and charge-hopping mechanisms in DNA ionized by radiation.

  9. Preparing transition-metal clusters in known structural forms: the mass-analyzed threshold ionization spectrum of V3.

    PubMed

    Ford, Mark S; Mackenzie, Stuart R

    2005-08-22

    The first results are presented of a new experiment designed both to generate and characterize spectroscopically individual isomers of transition-metal cluster cations. As a proof of concept the one-photon mass-analyzed threshold ionization (MATI) spectrum of V3 has been recorded in the region of 44,000-45,000 cm-1. This study extends the range of a previous zero-kinetic-energy (ZEKE) photoelectron study of Yang et al. [Chem. Phys. Lett. 231, 177 (1994)] with which the current results are compared. The MATI spectra reported here exhibit surprisingly high resolution (0.2 cm-1) for this technique despite the use of large discrimination and extraction fields. Analysis of the rotational profile of the origin band allows assignment of the V3 ground state as and the V3+ ground state as , both with D3h geometry, in agreement with the density-functional theory study of the V3 ZEKE spectrum by Calaminici et al. [J. Chem. Phys. 114, 4036 (2001)]. There is also some evidence in the spectrum of transitions to the low-lying excited state of the ion. The vibrational structure observed in the MATI spectrum is, however, significantly different to and less extensive than that predicted in the density-functional theory study. Possible reasons for the discrepancies are discussed and an alternative assignment is proposed which results in revised values for the vibrational wave numbers of both the neutral and ionic states. These studies demonstrate the efficient generation of cluster ions in known structural (isomeric) forms and pave the way for the study of cluster reactivity as a function of geometrical structure.

  10. Towards a full reference library of MS(n) spectra. Testing of a library containing 3126 MS2 spectra of 1743 compounds.

    PubMed

    Milman, Boris L

    2005-01-01

    A library consisting of 3766 MS(n) spectra of 1743 compounds, including 3126 MS2 spectra acquired mainly using ion trap (IT) and triple-quadrupole (QqQ) instruments, was composed of numerous collections/sources. Ionization techniques were mainly electrospray ionization and also atmospheric pressure chemical ionization and chemical ionization. The library was tested for the performance in identification of unknowns, and in this context this work is believed to be the largest of all known tests of product-ion mass spectral libraries. The MS2 spectra of the same compounds from different collections were in turn divided into spectra of 'unknown' and reference compounds. For each particular compound, library searches were performed resulting in selection by taking into account the best matches for each spectral collection/source. Within each collection/source, replicate MS2 spectra differed in the collision energy used. Overall, there were up to 950 search results giving the best match factors and their ranks in corresponding hit lists. In general, the correct answers were obtained as the 1st rank in up to 60% of the search results when retrieved with (on average) 2.2 'unknown' and 6.2 reference replicates per compound. With two or more replicates of both 'unknown' and reference spectra (the average numbers of replicates were 4.0 and 7.8, respectively), the fraction of correct answers in the 1st rank increased to 77%. This value is close to the performance of established electron ionization mass spectra libraries (up to 79%) found by other workers. The hypothesis that MS2 spectra better match reference spectra acquired using the same type of tandem mass spectrometer (IT or QqQ) was neither strongly proved nor rejected here. The present work shows that MS2 spectral libraries containing sufficiently numerous different entries for each compound are sufficiently efficient for identification of unknowns and suitable for use with different tandem mass spectrometers. 2005 John

  11. The kinetic energy spectrum of protons produced by the dissociative ionization of H2 by electron impact

    NASA Technical Reports Server (NTRS)

    Khakoo, M. A.; Srivastava, S. K.

    1985-01-01

    The kinetic energy spectra of protons resulting from the dissociative ionization of H2 by electron impact have been measured for electron impact energies from threshold (approximately 17 eV) to 160 eV at 90 deg and 30 deg detection angles, using a crossed-beam experimental arrangement. To check reliability, two separate proton energy analysis methods have been employed, i.e., a time-of-flight proton energy analysis and an electrostatic hemispherical energy analyzer. The present results are compared with previous measurements.

  12. A Search for Pulsations From Geminga Above 100 GeV With Veritas

    DOE PAGES

    Aliu, E.; Archambault, S.; Archer, A.; ...

    2015-02-09

    Here, we present the results of 71.6 hr of observations of the Geminga pulsar (PSR J0633+1746) with the VERITAS very-high-energy gamma-ray telescope array. Data taken with VERITAS between 2007 November and 2013 February were phase-folded using a Geminga pulsar timing solution derived from data recorded by the XMM- Newton and Fermi-LAT space telescopes. No significant pulsed emission above 100 GeV is observed, and we report upper limits at the 95% confidence level on the integral flux above 135 GeV (spectral analysis threshold) of 4.0 × 10 -13 s -1 cm -2 and 1.7 × 10 -13 s -1 cm -2more » for the two principal peaks in the emission profile. These upper limits, placed in context with phase-resolved spectral energy distributions determined from 5 yr of data from the Fermi-Large Area Telescope (LAT), constrain possible hardening of the Geminga pulsar emission spectra above ~50 GeV.« less

  13. Experimental study of the role of trap symmetry in an atom-chip interferometer above the Bose–Einstein condensation threshold

    NASA Astrophysics Data System (ADS)

    Dupont-Nivet, M.; Demur, R.; Westbrook, C. I.; Schwartz, S.

    2018-04-01

    We report the experimental study of an atom-chip interferometer using ultracold rubidium 87 atoms above the Bose–Einstein condensation threshold. The observed dependence of the contrast decay time with temperature and with the degree of symmetry of the traps during the interferometer sequence is in good agreement with theoretical predictions published in Dupont-Nivet et al (2016 New J. Phys. 18 113012). These results pave the way for precision measurements with trapped thermal atoms.

  14. Unveiling the Ionization Energy of the CN Radical.

    PubMed

    Gans, Bérenger; Boyé-Péronne, Séverine; Garcia, Gustavo A; Röder, Anja; Schleier, Domenik; Halvick, Philippe; Loison, Jean-Christophe

    2017-09-07

    The cyano radical is a ubiquitous molecule and was, for instance, one of the first species detected in astrophysical media such as comets or diffuse clouds. In photodissociation regions, the reaction rate of CN + + CO → CN + CO + is one of the critical parameters defining nitrile chemistry. The enthalpy of this charge transfer reaction is defined as the difference of ionization energies (E I ) between CN and CO. Although E I (CO) is known accurately, the E I (CN) values are more dispersed and deduced indirectly from thermodynamic thresholds only, all above E I (CO), leading to the assumption that the reaction is fast even at low temperature. Using a combination of synchrotron radiation, electron/ion imaging coincidence techniques, and supporting ab initio calculations, we directly determine the first adiabatic ionization energy of CN at 13.956(7) eV, and we demonstrate that E I (CN) < E I (CO). The findings suggest a very slow reaction in the cold regions of interstellar media.

  15. NIST Databases on Atomic Spectra

    NASA Astrophysics Data System (ADS)

    Reader, J.; Wiese, W. L.; Martin, W. C.; Musgrove, A.; Fuhr, J. R.

    2002-11-01

    The NIST atomic and molecular spectroscopic databases now available on the World Wide Web through the NIST Physics Laboratory homepage include Atomic Spectra Database, Ground Levels and Ionization Energies for the Neutral Atoms, Spectrum of Platinum Lamp for Ultraviolet Spectrograph Calibration, Bibliographic Database on Atomic Transition Probabilities, Bibliographic Database on Atomic Spectral Line Broadening, and Electron-Impact Ionization Cross Section Database. The Atomic Spectra Database (ASD) [1] offers evaluated data on energy levels, wavelengths, and transition probabilities for atoms and atomic ions. Data are given for some 950 spectra and 70,000 energy levels. About 91,000 spectral lines are included, with transition probabilities for about half of these. Additional data resulting from our ongoing critical compilations will be included in successive new versions of ASD. We plan to include, for example, our recently published data for some 16,000 transitions covering most ions of the iron-group elements, as well as Cu, Kr, and Mo [2]. Our compilations benefit greatly from experimental and theoretical atomic-data research being carried out in the NIST Atomic Physics Division. A new compilation covering spectra of the rare gases in all stages of ionization, for example, revealed a need for improved data in the infrared. We have thus measured these needed data with our high-resolution Fourier transform spectrometer [3]. An upcoming new database will give wavelengths and intensities for the stronger lines of all neutral and singly-ionized atoms, along with energy levels and transition probabilities for the persistent lines [4]. A critical compilation of the transition probabilities of Ba I and Ba II [5] has been completed and several other compilations of atomic transition probabilities are nearing completion. These include data for all spectra of Na, Mg, Al, and Si [6]. Newly compiled data for selected ions of Ne, Mg, Si and S, will form the basis for a new

  16. Electron scattering from excited states of hydrogen: Implications for the ionization threshold law

    NASA Astrophysics Data System (ADS)

    Temkin, A.; Shertzer, J.

    2013-05-01

    The elastic scattering wave function for electrons scattered from the Nth excited state of hydrogen is the final state of the matrix element for excitation of that state. This paper deals with the solution of that problem primarily in the context of the Temkin-Poet (TP) model [A. Temkin, Phys. Rev.PHRVAO0031-899X10.1103/PhysRev.126.130 126, 130 (1962); R. Poet, J. Phys. BJPAPEH0022-370010.1088/0022-3700/11/17/019 11, 3081 (1978)], wherein only the radial parts of the interaction are included. The relevant potential for the outer electron is dominated by the Hartree potential, VNH(r). In the first part of the paper, VNH(r) is approximated by a potential WN(r), for which the scattering equation can be analytically solved. The results allow formal analytical continuation of N into the continuum, so that the ionization threshold law can be deduced. Because the analytic continuation involves going from N to an imaginary function of the momentum of the inner electron, the threshold law turns out to be an exponentially damped function of the available energy E, in qualitative accord with the result of Macek and Ihra [J. H. Macek and W. Ihra, Phys. Rev. APLRAAN1050-294710.1103/PhysRevA.55.2024 55, 2024 (1997)] for the TP model. Thereafter, the scattering equation for the Hartree potential VNH(r) is solved numerically. The numerical aspects of these calculations have proven to be challenging and required several developments for the difficulties to be overcome. The results for VNH(r) show only a simple energy-dependent shift from the approximate potential WN(r), which therefore does not change the analytic continuation and the form of the threshold law. It is concluded that the relevant optical potential must be included in order to compare directly with the analytic result of Macek and Ihra. The paper concludes with discussions of (a) a quantum mechanical interpretation of the result, and (b) the outlook of this approach for the complete problem.

  17. Narrow chaotic compound autoionizing states in atomic spectra

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Flambaum, V.V.; Gribakina, A.A.; Gribakin, G.F.

    1996-09-01

    Simultaneous excitation of several valence electrons in atoms gives rise to a dense spectrum of compound autoionizing states (AIS). These states are almost chaotic superpositions of large numbers of many-electron basis states built of single-electron orbitals. The mean level spacing {ital D} between such states is very small (e.g., {ital D}{lt}0.01 eV for the numerical example of {ital J}{sup {pi}}=4{sup {minus}} states of Ce just above the ionization threshold). The autoionization widths of these states estimated by perturbations, {gamma}=2{pi}{vert_bar}{ital W}{vert_bar}{sup 2}, where {ital W} is the Coulomb matrix element coupling the AIS to the continuum, are also small, but comparablemore » with {ital D} in magnitude: {gamma}{approximately}{ital D}. Hence the nonperturbative interaction of AIS with each other via the continuum is very essential. It suppresses greatly the widths of the autoionizing resonances ({Gamma}{approx_equal}{ital D}{sup 2}/3{gamma}{lt}{ital D}), and leads to the emergence of a {open_quote}{open_quote}collective{close_quote}{close_quote} doorway state which accumulates a large share of the total width. This state is in essence a modified single-particle continuum decoupled from the resonances due to its large width. Narrow compound AIS should be a common feature of atomic spectra at energies sufficient for excitation of several electrons above the ground-state configuration. The narrow resonances can be observed as peaks in the photoabsorption, or, in electron-ion scattering, as Fano-type profiles on the background provided by the wide doorway-state resonance. It is also shown that the statistics of electromagnetic and autoionization amplitudes involving compound states are close to Gaussian. {copyright} {ital 1996 The American Physical Society.}« less

  18. High-resolution photoabsorption spectrum of jet-cooled propyne

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Jacovella, U.; Holland, D. M. P.; Boyé-Péronne, S.

    2014-09-21

    The absolute photoabsorption cross section of propyne was recorded between 62 000 and 88 000 cm{sup −1} by using the vacuum-ultraviolet, Fourier-transform spectrometer at the Synchrotron Soleil. This cross section spans the region including the lowest Rydberg bands and extends above the Franck-Condon envelope for ionization to the ground electronic state of the propyne cation, X{sup ~+}. Room-temperature spectra were recorded in a flowing cell at 0.9 cm{sup −1} resolution, and jet-cooled spectra were recorded at 1.8 cm{sup −1} resolution and a rotational temperature of ∼100 K. The reduced widths of the rotational band envelopes in the latter spectra reveal new structuremore » and simplify a number of assignments. Although nf Rydberg series have not been assigned previously in the photoabsorption spectrum of propyne, arguments are presented for their potential importance, and the assignment of one nf series is proposed. As expected from previous photoelectron spectra, Rydberg series are also observed above the adiabatic ionization threshold that converge to the v{sub 3}{sup +} = 1 and 2 levels of the C≡C stretching vibration.« less

  19. Low threshold interband cascade lasers operating above room temperature

    NASA Technical Reports Server (NTRS)

    Hill, C. J.; Yang, B.; Yang, R. Q.

    2003-01-01

    Mid-IR type-II interband cascade lasers were demonstrated in pulsed mode at temperatures up to 325 K and in continuous mode up to 200 K. At 80 K, the threshold current density was 8.9 A/cm2 and a cw outpout power of 140 mW/facet was obtained.

  20. I. RENAL THRESHOLDS FOR HEMOGLOBIN IN DOGS

    PubMed Central

    Lichty, John A.; Havill, William H.; Whipple, George H.

    1932-01-01

    We use the term "renal threshold for hemoglobin" to indicate the smallest amount of hemoglobin which given intravenously will effect the appearance of recognizable hemoglobin in the urine. The initial renal threshold level for dog hemoglobin is established by the methods employed at an average value of 155 mg. hemoglobin per kilo body weight with maximal values of 210 and minimal of 124. Repeated daily injections of hemoglobin will depress this initial renal threshold level on the average 46 per cent with maximal values of 110 and minimal values of 60 mg. hemoglobin per kilo body weight. This minimal or depression threshold is relatively constant if the injections are continued. Rest periods without injections cause a return of the renal threshold for hemoglobin toward the initial threshold levels—recovery threshold level. Injections of hemoglobin below the initial threshold level but above the minimal or depression threshold will eventually reduce the renal threshold for hemoglobin to its depression threshold level. We believe the depression threshold or minimal renal threshold level due to repeated hemoglobin injections is a little above the glomerular threshold which we assume is the base line threshold for hemoglobin. Our reasons for this belief in the glomerular threshold are given above and in the other papers of this series. PMID:19870016

  1. Optics Recycle Loop Strategy for NIF Operations above UV Laser-Induced Damage Threshold

    DOE PAGES

    Spaeth, M. L.; Wegner, P. J.; Suratwala, T. I.; ...

    2017-03-23

    The National Ignition Facility (NIF) at Lawrence Livermore National Laboratory (LLNL) houses the world’s largest laser system, composed of 192 individual, 40-cm-aperture beamlines. The NIF laser routinely operates at ultraviolet (UV) fluences above 8 J/cm 2, more than twice the (3ω only) damage threshold of commercially available UV-grade fused silica. NIF is able to maintain such high fluence operation by using an optics recycling loop strategy. Successful operation of the loop relies on a number of technologies specifically developed for NIF. One of the most important is the capability developed by LLNL and their vendors for producing highly damage-resistant optics.more » Other technologies developed for the optics recycle loop raise the operating point of NIF by keeping damage growth in check. LLNL has demonstrated the capability to sustain UV fused silica optic recycling rates of up to 40 optics per week. The optics are ready for reinstallation after a 3-week trip through a recycle loop where the damage state of each optic is assessed and repaired. The impact of the optics recycle loop has been profound, allowing the experimental program to routinely employ energies and fluences that would otherwise have been unachievable. Without the recycle loop, it is likely that the NIF fluence would need to be kept below the UV threshold for damage growth, ~4 J/cm 2, thus keeping the energy delivered to the target significantly below 1 MJ. With the recycle loop implemented during the National Ignition Campaign, NIF can routinely deliver >1.8 MJ on target, an increase in operational capability of more than 100%. Finally, in this paper, the enabling technological advances, optical performance, and operational capability implications of the optics recycle loop are discussed.« less

  2. Optics Recycle Loop Strategy for NIF Operations above UV Laser-Induced Damage Threshold

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Spaeth, M. L.; Wegner, P. J.; Suratwala, T. I.

    The National Ignition Facility (NIF) at Lawrence Livermore National Laboratory (LLNL) houses the world’s largest laser system, composed of 192 individual, 40-cm-aperture beamlines. The NIF laser routinely operates at ultraviolet (UV) fluences above 8 J/cm 2, more than twice the (3ω only) damage threshold of commercially available UV-grade fused silica. NIF is able to maintain such high fluence operation by using an optics recycling loop strategy. Successful operation of the loop relies on a number of technologies specifically developed for NIF. One of the most important is the capability developed by LLNL and their vendors for producing highly damage-resistant optics.more » Other technologies developed for the optics recycle loop raise the operating point of NIF by keeping damage growth in check. LLNL has demonstrated the capability to sustain UV fused silica optic recycling rates of up to 40 optics per week. The optics are ready for reinstallation after a 3-week trip through a recycle loop where the damage state of each optic is assessed and repaired. The impact of the optics recycle loop has been profound, allowing the experimental program to routinely employ energies and fluences that would otherwise have been unachievable. Without the recycle loop, it is likely that the NIF fluence would need to be kept below the UV threshold for damage growth, ~4 J/cm 2, thus keeping the energy delivered to the target significantly below 1 MJ. With the recycle loop implemented during the National Ignition Campaign, NIF can routinely deliver >1.8 MJ on target, an increase in operational capability of more than 100%. Finally, in this paper, the enabling technological advances, optical performance, and operational capability implications of the optics recycle loop are discussed.« less

  3. Dynamics of the reaction of atomic oxygen with ethene: Observation of all carbon-containing products by single-photon ionization

    NASA Astrophysics Data System (ADS)

    Lee, Shih-Huang; Huang, Wen-Jian; Chen, Wei-Kan

    2007-10-01

    We measured time-of-flight (TOF) spectra of products from the reaction O( 3P/ 1D) + C 2H 4 at collision energy 6.4 kcal mol -1 using a quadrupole mass filter and tunable vacuum-ultraviolet light for ionization. All carbon-containing products from five exit channels - CH 2CHO + H, CH 2CO + H 2, CH 3 + HCO, CH 2 + HCHO, and CH 2CO + 2H - were identified. Product channels CH 2CHO + H and CH 2CO + 2H associate with 3P and 1D atomic oxygen reactants, respectively. Both 3P and 1D oxygen reactants might be responsible for the other reactions. The ionization threshold of nascent vinoxy radicals is 9.3 ± 0.1 eV.

  4. A SEARCH FOR PULSATIONS FROM GEMINGA ABOVE 100 GeV WITH VERITAS

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Aliu, E.; Archambault, S.; Archer, A.

    2015-02-10

    We present the results of 71.6 hr of observations of the Geminga pulsar (PSR J0633+1746) with the VERITAS very-high-energy gamma-ray telescope array. Data taken with VERITAS between 2007 November and 2013 February were phase-folded using a Geminga pulsar timing solution derived from data recorded by the XMM- Newton and Fermi-LAT space telescopes. No significant pulsed emission above 100 GeV is observed, and we report upper limits at the 95% confidence level on the integral flux above 135 GeV (spectral analysis threshold) of 4.0 × 10{sup –13} s{sup –1} cm{sup –2} and 1.7 × 10{sup –13} s{sup –1} cm{sup –2} for the two principal peaksmore » in the emission profile. These upper limits, placed in context with phase-resolved spectral energy distributions determined from 5 yr of data from the Fermi-Large Area Telescope (LAT), constrain possible hardening of the Geminga pulsar emission spectra above ∼50 GeV.« less

  5. A detailed analysis of the high-resolution X-ray spectra of NGC 3516: variability of the ionized absorbers

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Huerta, E. M.; Krongold, Y.; Jimenez-Bailon, E.

    2014-09-20

    The 1.5 Seyfert galaxy NGC 3516 presents a strong time variability in X-rays. We re-analyzed the nine observations performed in 2006 October by XMM-Newton and Chandra in the 0.3 to 10 keV energy band. An acceptable model was found for the XMM-Newton data fitting the EPIC-PN and RGS spectra simultaneously; later, this model was successfully applied to the contemporary Chandra high-resolution data. The model consists of a continuum emission component (power law + blackbody) absorbed by four ionized components (warm absorbers), and 10 narrow emission lines. Three absorbing components are warm, producing features only in the soft X-ray band. Themore » fourth ionization component produces Fe XXV and Fe XXVI in the hard-energy band. We study the time response of the absorbing components to the well-detected changes in the X-ray luminosity of this source and find that the two components with the lower ionization state show clear opacity changes consistent with gas close to photoionization equilibrium. These changes are supported by the models and by differences in the spectral features among the nine observations. On the other hand, the two components with higher ionization state do not seem to respond to continuum variations. The response time of the ionized absorbers allows us to constrain their electron density and location. We find that one component (with intermediate ionization) must be located within the obscuring torus at a distance 2.7 × 10{sup 17} cm from the central engine. This outflowing component likely originated in the accretion disk. The three remaining components are at distances larger than 10{sup 16}-10{sup 17} cm. Two of the absorbing components in the soft X-rays have similar outflow velocities and locations. These components may be in pressure equilibrium, forming a multi-phase medium, if the gas has metallicity larger than the solar one (≳ 5 Z {sub ☉}). We also search for variations in the covering factor of the ionized absorbers (although

  6. Quantum interference in laser-induced nonsequential double ionization

    NASA Astrophysics Data System (ADS)

    Quan, Wei; Hao, XiaoLei; Wang, YanLan; Chen, YongJu; Yu, ShaoGang; Xu, SongPo; Xiao, ZhiLei; Sun, RenPing; Lai, XuanYang; Hu, ShiLin; Liu, MingQing; Shu, Zheng; Wang, XiaoDong; Li, WeiDong; Becker, Wilhelm; Liu, XiaoJun; Chen, Jing

    2017-09-01

    Quantum interference plays an important role in various intense-laser-driven atomic phenomena, e.g., above-threshold ionization and high-order-harmonic generation, and provides a useful tool in ultrafast imaging of atomic and molecular structure and dynamics. However, it has eluded observation in nonsequential double ionization (NSDI), which serves as an ideal prototype to study electron-electron correlation. Thus far, NSDI usually could be well understood from a semiclassical perspective, where all quantum aspects have been ignored after the first electron has tunneled. Here we perform coincidence measurements for NSDI of xenon subject to laser pulses at 2400 nm. It is found that the intensity dependence of the asymmetry parameter between the yields in the second and fourth quadrants and those in the first and third quadrants of the electron-momentum-correlation distributions exhibits a peculiar fast oscillatory structure, which is beyond the scope of the semiclassical picture. Our theoretical analysis indicates that this oscillation can be attributed to interference between the contributions of different excited states in the recollision-excitation-with-subsequent-ionization channel. Our work demonstrates the significant role of quantum interference in NSDI and may create an additional pathway towards manipulation and imaging of the ultrafast atomic and molecular dynamics in intense laser fields.

  7. Rapid self-organised initiation of ad hoc sensor networks close above the percolation threshold

    NASA Astrophysics Data System (ADS)

    Korsnes, Reinert

    2010-07-01

    This work shows potentials for rapid self-organisation of sensor networks where nodes collaborate to relay messages to a common data collecting unit (sink node). The study problem is, in the sense of graph theory, to find a shortest path tree spanning a weighted graph. This is a well-studied problem where for example Dijkstra’s algorithm provides a solution for non-negative edge weights. The present contribution shows by simulation examples that simple modifications of known distributed approaches here can provide significant improvements in performance. Phase transition phenomena, which are known to take place in networks close to percolation thresholds, may explain these observations. An initial method, which here serves as reference, assumes the sink node starts organisation of the network (tree) by transmitting a control message advertising its availability for its neighbours. These neighbours then advertise their current cost estimate for routing a message to the sink. A node which in this way receives a message implying an improved route to the sink, advertises its new finding and remembers which neighbouring node the message came from. This activity proceeds until there are no more improvements to advertise to neighbours. The result is a tree network for cost effective transmission of messages to the sink (root). This distributed approach has potential for simple improvements which are of interest when minimisation of storage and communication of network information are a concern. Fast organisation of the network takes place when the number k of connections for each node ( degree) is close above its critical value for global network percolation and at the same time there is a threshold for the nodes to decide to advertise network route updates.

  8. Ionization pattern obtained in electrospray ionization or atmospheric pressure chemical ionization interfaces for authorized antidepressants in Romania

    NASA Astrophysics Data System (ADS)

    Grecu, Iulia; Ionicǎ, Mihai; Vlǎdescu, Marian; Truţǎ, Elena; Sultan, Carmen; Viscol, Oana; Horhotǎ, Luminiţa; Radu, Simona

    2016-12-01

    Antidepressants were found in 1950. In the 1990s there was a new generation of antidepressants. They act on the level of certain neurotransmitters extrasinpatic by its growth. After their mode of action antidepressants may be: SSRIs (Selective Serotonin Reuptake Inhibitors); (Serotonin-Norepinephrine Reuptake Inhibitors); SARIs (Serotonin Antagonist Reuptake Inhibitors); NRIs (Norepinephrine Reuptake Inhibitors); NDRIs (Norepinephrine-Dopamine Reuptake Inhibitors) NDRAs (Norepinephrine-Dopamine Releasing Agents); TCAs (Tricyclic Antidepressants); TeCAs (Tetracyclic Antidepressants); MAOIs (Monoamine Oxidase Inhibitors); agonist receptor 5-HT1A (5- hydroxytryptamine); antagonist receptor 5-HT2; SSREs (Selective Serotonin Reuptake Enhancers) and Sigma agonist receptor. To determine the presence of antidepressants in biological products, it has been used a system HPLC-MS (High Performance Liquid Chromatography - Mass Spectrometry) Varian 12001. The system is equipped with APCI (Atmospheric Pressure Chemical Ionization) or ESI (ElectroSpray Ionization) interface. To find antidepressants in unknown samples is necessary to recognize them after mass spectrum. Because the mass spectrum it is dependent on obtaining private parameters work of HPLC-MS system, and control interfaces, the mass spectra library was filled with the mass spectra of all approved antidepressants in Romania. The paper shows the mass spectra obtained in the HPLCMS system.

  9. X-ray spectra of supernova remnants

    NASA Technical Reports Server (NTRS)

    Szymkowiak, A. E.

    1985-01-01

    X-ray spectra were obtained from fields in three supernova remnants with the solid state spectrometer of the HEAO 2 satellite. These spectra, which contain lines from K-shell transitions of several abundant elements with atomic numbers between 10 and 22, were compared with various models, including some of spectra that would be produced by adiabatic phase remnants when the time-dependence of the ionization is considered.

  10. Matrix effect in matrix-assisted laser desorption/ionization mass spectra of derivatized oligomeric polyols.

    PubMed

    Borisov, Roman S; Polovkov, Nikolai Yu; Zhilyaev, Dmitry I; Zaikin, Vladimir G

    2013-01-30

    Herein we describe a strong matrix effect observed in the matrix-assisted laser desorption/ionization time-of-flight (MALDI-ToF) mass spectra of silylated glycerol alkoxylates and manifested in the loss of the silyl groups in the presence of carboxyl-containing matrices. Commercially available glycerol alkoxylates containing three end OH groups as well as three matrices - 2,5-dihydroxybenzoic acid (DHB), 3-indoleacrylic acid (IAA) and 1,8,9-anthracenetriol (dithranol) - were chosen for the investigation. N,O-Bis(trimethylsilyl)trifluoroacetamide containing 1% trimethylchlorosilane, acetic anhydride and a formylation mixture (formic acid/acetyl chloride) were used for derivatization. Initial oligomers and derivatized products were analyzed by MALDI-ToF-mass spectrometry (MS) on an Autoflex II instrument, equipped with a nitrogen laser (λ 337 nm), in positive ion reflectron mode. Only [M + Na](+) ions were observed for underivatized polymers and for completely derivatized polymers in the presence of DHB and dithranol, respectively. In the case of IAA the mass spectra revealed sets of peaks for underivatized, and for partially and completely derivatized oligomers. No similar 'matrix effect' was observed in the case of acylated glycerol alkoxylates (acyl = formyl, acetyl): only peaks for completely derivatized oligomers were obtained in all matrices: DHB, IAA and dithranol. Using 1,9-nonandiol, we showed that the 'matrix effect' was due to trans-silylation of carboxyl-containing matrices (DHB and IAA) during co-crystallization of silylated oligomers and matrices. The obtained results show that matrix molecules can participate as reactive species in MALDI-ToF-MS experiments. The matrix should be carefully chosen when a derivatization approach is applied because the analysis of spectra of the completely derivatized products is particularly desirable in the quantitative determination of functional end-groups. Copyright © 2012 John Wiley & Sons, Ltd.

  11. Ionizing Energy Depositions After Fast Neutron Interactions in Silicon

    DOE PAGES

    Bergmann, Benedikt; Pospisil, Stanislav; Caicedo, Ivan; ...

    2016-06-01

    In our study we present the ionizing energy depositions in a 300 μm thick silicon layer after fast neutron impact. With the Time-of-Flight (ToF) technique, the ionizing energy deposition spectra of recoil silicons and secondary charged particles were assigned to (quasi-)monoenergetic neutron energies in the range from 180 keV to hundreds of MeV. We also show and interpret representative measured energy spectra. By separating the ionizing energy losses of the recoil silicon from energy depositions by products of nuclear reactions, the competition of ionizing (IEL) and non-ionizing energy losses (NIEL) of a recoil silicon within the silicon lattice was investigated.more » Furthermore, the data give supplementary information to the results of a previous measurement and are compared with different theoretical predictions.« less

  12. Ionizing Energy Depositions After Fast Neutron Interactions in Silicon

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bergmann, Benedikt; Pospisil, Stanislav; Caicedo, Ivan

    In our study we present the ionizing energy depositions in a 300 μm thick silicon layer after fast neutron impact. With the Time-of-Flight (ToF) technique, the ionizing energy deposition spectra of recoil silicons and secondary charged particles were assigned to (quasi-)monoenergetic neutron energies in the range from 180 keV to hundreds of MeV. We also show and interpret representative measured energy spectra. By separating the ionizing energy losses of the recoil silicon from energy depositions by products of nuclear reactions, the competition of ionizing (IEL) and non-ionizing energy losses (NIEL) of a recoil silicon within the silicon lattice was investigated.more » Furthermore, the data give supplementary information to the results of a previous measurement and are compared with different theoretical predictions.« less

  13. Distributions of extreme bursts above thresholds in a fractional Lévy toy model of natural complexity.

    NASA Astrophysics Data System (ADS)

    Watkins, Nicholas; Chapman, Sandra; Rosenberg, Sam; Credgington, Dan; Sanchez, Raul

    2010-05-01

    In 2 far-sighted contributions in the 1960s Mandelbrot showed the ubiquity of both non-Gaussian fluctuations and long-ranged temporal memory (the "Noah" and "Joseph" effects, respectively) in the natural and man-made worlds. Much subsequent work in complexity science has contributed to the physical underpinning of these effects, particularly in cases where complex interactions in a system cause a driven or random perturbation to be nonlinearly amplified in amplitude and/or spread out over a wide range of frequencies. In addition the modelling of catastrophes has begun to incorporate the insights which these approaches have offered into the likelihood of extreme and long-lived fluctuations. I will briefly survey how the application of the above ideas in the earth system has been a key focus and motivation of research into natural complexity at BAS [e.g. Watkins & Freeman, Science, 2008; Edwards et al, Nature, 2007]. I will then discuss in detail a standard toy model (linear fractional stable motion, LFSM) which combines the Noah and Joseph effects in a controllable way and explain how it differs from the widely used continuous time random walk. I will describe how LFSM is being used to explore the interplay of the above two effects in the distribution of bursts above thresholds. I will describe ongoing work to improve the accuracy of maximum likelihood-based estimation of burst size and waiting time distributions for LFSM first reported in [Watkins et al, PRE, 2009]; and will also touch on similar work for multifractal models [Watkins et al, PRL comment, 2009].

  14. Generation of monoenergetic ion beams via ionization dynamics (Conference Presentation)

    NASA Astrophysics Data System (ADS)

    Lin, Chen; Kim, I. Jong; Yu, Jinqing; Choi, Il Woo; Ma, Wenjun; Yan, Xueqing; Nam, Chang Hee

    2017-05-01

    The research on ion acceleration driven by high intensity laser pulse has attracted significant interests in recent decades due to the developments of laser technology. The intensive study of energetic ion bunches is particularly stimulated by wide applications in nuclear fusion, medical treatment, warm dense matter production and high energy density physics. However, to implement such compact accelerators, challenges are still existing in terms of beam quality and stability, especially in applications that require higher energy and narrow bandwidth spectra ion beams. We report on the acceleration of quasi-mono-energetic ion beams via ionization dynamics in the interaction of an intense laser pulse with a solid target. Using ionization dynamics model in 2D particle-in-cell (PIC) simulations, we found that high charge state contamination ions can only be ionized in the central spot area where the intensity of sheath field surpasses their ionization threshold. These ions automatically form a microstructure target with a width of few micron scale, which is conducive to generate mono-energetic beams. In the experiment of ultraintense (< 10^21 W/cm^2) laser pulses irradiating ultrathin targets each attracted with a contamination layer of nm-thickness, high quality < 100 MeV mono-energetic ion bunches are generated. The peak energy of the self-generated micro-structured target ions with respect to different contamination layer thickness is also examined This is relatively newfound respect, which is confirmed by the consistence between experiment data and the simulation results.

  15. Valence shell threshold photoelectron spectroscopy of the CHxCN (x = 0-2) and CNC radicals.

    PubMed

    Garcia, Gustavo A; Krüger, Julia; Gans, Bérenger; Falvo, Cyril; Coudert, Laurent H; Loison, Jean-Christophe

    2017-07-07

    We present the photoelectron spectroscopy of four radical species, CH x CN (x = 0-2) and CNC, formed in a microwave discharge flow-tube reactor by consecutive H abstractions from CH 3 CN (CH x CN + F → CH x-1 CN + HF (x = 1-3)). The spectra were obtained combining tunable vacuum ultraviolet synchrotron radiation with double imaging electron/ion coincidence techniques, which yielded mass-selected threshold photoelectron spectra. The results obtained for H 2 CCN complement existing ones while for the other radicals the data represent the first observation of their (single-photon) ionizing transitions. In the case of H 2 CCN, Franck-Condon calculations have been performed in order to assign the vibrational structure of the X + 1 A 1 ←X 2 B 1 ionizing transition. A similar treatment for the HCCN, CCN, and CNC radicals appeared to be more complicated mainly because a Renner-Teller effect strongly affects the vibrational levels of the ground electronic state of the HCCN + , CCN, and CNC species. Nevertheless, the first adiabatic ionization energies of these radicals are reported and compared to our ab initio calculated values, leading to new values for enthalpies of formation (Δ f H 298 0 (HCCN + (X 2 A ' ))=1517±12kJmol -1 ,Δ f H 298 0 (CCN(X 2 Π))=682±13kJmol -1 , and Δ f H 298 0 (CNC(X 2 Πg))=676±12kJmol -1 ), which are of fundamental importance for astrochemistry.

  16. Heart rate response during a simulated Olympic boxing match is predominantly above ventilatory threshold 2: a cross sectional study

    PubMed Central

    de Lira, Claudio Andre Barbosa; Peixinho-Pena, Luiz Fernando; Vancini, Rodrigo Luiz; de Freitas Guina Fachina, Rafael Júlio; de Almeida, Alexandre Aparecido; Andrade, Marília dos Santos; da Silva, Antonio Carlos

    2013-01-01

    The present study aimed to describe heart rate (HR) responses during a simulated Olympic boxing match and examine physiological parameters of boxing athletes. Ten highly trained Olympic boxing athletes (six men and four women) performed a maximal graded exercise test on a motorized treadmill to determine maximal oxygen uptake (52.2 mL · kg−1 · min−1 ± 7.2 mL · kg−1 · min−1) and ventilatory thresholds 1 and 2. Ventilatory thresholds 1 and 2 were used to classify the intensity of exercise based on respective HR during a boxing match. In addition, oxygen uptake (V̇O2) was estimated during the match based on the HR response and the HR-V̇O2 relationship obtained from a maximal graded exercise test for each participant. On a separate day, participants performed a boxing match lasting three rounds, 2 minutes each, with a 1-minute recovery period between each round, during which HR was measured. In this context, HR and V̇O2 were above ventilatory threshold 2 during 219.8 seconds ± 67.4 seconds. There was an increase in HR and V̇O2 as a function of round (round 3 < round 2 < round 1, P < 0.0001). These findings may direct individual training programs for boxing practitioners and other athletes. PMID:24379723

  17. Heart rate response during a simulated Olympic boxing match is predominantly above ventilatory threshold 2: a cross sectional study.

    PubMed

    de Lira, Claudio Andre Barbosa; Peixinho-Pena, Luiz Fernando; Vancini, Rodrigo Luiz; de Freitas Guina Fachina, Rafael Júlio; de Almeida, Alexandre Aparecido; Andrade, Marília Dos Santos; da Silva, Antonio Carlos

    2013-01-01

    The present study aimed to describe heart rate (HR) responses during a simulated Olympic boxing match and examine physiological parameters of boxing athletes. Ten highly trained Olympic boxing athletes (six men and four women) performed a maximal graded exercise test on a motorized treadmill to determine maximal oxygen uptake (52.2 mL · kg(-1) · min(-1) ± 7.2 mL · kg(-1) · min(-1)) and ventilatory thresholds 1 and 2. Ventilatory thresholds 1 and 2 were used to classify the intensity of exercise based on respective HR during a boxing match. In addition, oxygen uptake (V̇O2) was estimated during the match based on the HR response and the HR-V̇O2 relationship obtained from a maximal graded exercise test for each participant. On a separate day, participants performed a boxing match lasting three rounds, 2 minutes each, with a 1-minute recovery period between each round, during which HR was measured. In this context, HR and V̇O2 were above ventilatory threshold 2 during 219.8 seconds ± 67.4 seconds. There was an increase in HR and V̇O2 as a function of round (round 3 < round 2 < round 1, P < 0.0001). These findings may direct individual training programs for boxing practitioners and other athletes.

  18. Hard X-Ray Emission and the Ionizing Source in LINERs

    NASA Technical Reports Server (NTRS)

    Terashima, Yuichi; Ho, Luis C.; Ptak, Andrew F.

    2000-01-01

    We report X-ray fluxes in the 2-10 keV band from LINERs (low-ionization nuclear emission-line regions) and low-luminosity Seyfert galaxies obtained with the ASCA satellite. Observed X-ray luminosities are in the range between 4 x 10(exp 39) and 5 x 10(exp 41) ergs/s, which are significantly smaller than that of the "classical" low-luminosity Seyfert 1 galaxy NGC 4051. We found that X-ray luminosities in 2-10 keV of LINERs with broad H.alpha emission in their optical spectra (LINER 1s) are proportional to their Ha luminosities. This correlation strongly supports the hypothesis that the dominant ionizing source in LINER 1s is photoionization by hard photons from low-luminosity AGNs. On the other hand, the X-ray luminosities of most LINERs without broad H.alpha emission (LINER 2s) in our sample are lower than LINER 1s at a given H.alpha luminosity. The observed X-ray luminosities in these objects are insufficient to power their H.alpha luminosities, suggesting that their primary ionizing source is other than an AGN, or that an AGN, if present, is obscured even at energies above 2 keV.

  19. A photoelectron spectroscopic investigation of vinyl fluoride (C2H3F): the HeI, threshold and CIS photoelectron spectroscopy

    NASA Astrophysics Data System (ADS)

    Locht, R.; Leyh, B.; Dehareng, D.; Hottmann, K.; Baumgärtel, H.

    2010-01-01

    The threshold photoelectron spectrum (TPES) and the constant ion state (CIS) spectra of the individual ionic states of C2H3F have been recorded using synchrotron radiation. For comparison a well-resolved HeI photoelectron spectrum (HeI-PES) has also been measured and analysed in detail. The TPES has been measured between 9.5 eV and 35 eV photon energy. Numerous vibrational structures, reported for the first time, observed in the ground state and the six excited states of the cation are analysed. Quantum chemical calculations have been performed and provide strong support to the assignments. State-selected CIS spectra highlighted the major importance of autoionization for the production of almost all ionized states of C2H3F observed in this work.

  20. X-ray Reflected Spectra from Accretion Disk Models. III. A Complete Grid of Ionized Reflection Calculations

    NASA Technical Reports Server (NTRS)

    Garcia, J.; Dauser, T.; Reynolds, C. S.; Kallman, T. R.; McClintock, J. E.; Wilms, J.; Ekmann, W.

    2013-01-01

    We present a new and complete library of synthetic spectra for modeling the component of emission that is reflected from an illuminated accretion disk. The spectra were computed using an updated version of our code xillver that incorporates new routines and a richer atomic data base. We offer in the form of a table model an extensive grid of reflection models that cover a wide range of parameters. Each individual model is characterized by the photon index Gamma of the illuminating radiation, the ionization parameter zeta at the surface of the disk (i.e., the ratio of the X-ray flux to the gas density), and the iron abundance A(sub Fe) relative to the solar value. The ranges of the parameters covered are: 1.2 <= Gamma <= 3.4, 1 <= zeta <= 104, and 0.5 <= A(sub Fe) <= 10. These ranges capture the physical conditions typically inferred from observations of active galactic nuclei, and also stellar-mass black holes in the hard state. This library is intended for use when the thermal disk flux is faint compared to the incident power-law flux. The models are expected to provide an accurate description of the Fe K emission line, which is the crucial spectral feature used to measure black hole spin. A total of 720 reflection spectra are provided in a single FITS file suitable for the analysis of X-ray observations via the atable model in xspec. Detailed comparisons with previous reflection models illustrate the improvements incorporated in this version of xillver.

  1. Future directions for LDEF ionizing radiation modeling and assessments

    NASA Technical Reports Server (NTRS)

    Armstrong, T. W.; Colborn, B. L.

    1992-01-01

    Data from the ionizing radiation dosimetry aboard LDEF provide a unique opportunity for assessing the accuracy of current space radiation models and in identifying needed improvements for future mission applications. Details are given of the LDEF data available for radiation model evaluations. The status is given of model comparisons with LDEF data, along with future directions of planned modeling efforts and data comparison assessments. The methodology is outlined which is related to modeling being used to help insure that the LDEF ionizing radiation results can be used to address ionizing radiation issues for future missions. In general, the LDEF radiation modeling has emphasized quick-look predictions using simplified methods to make comparisons with absorbed dose measurements and induced radioactivity measurements of emissions. Modeling and LDEF data comparisons related to linear energy transfer spectra are of importance for several reasons which are outlined. The planned modeling and LDEF data comparisons for LET spectra is discussed, including components of the LET spectra due to different environment sources, contribution from different production mechanisms, and spectra in plastic detectors vs silicon.

  2. Low-energy electron scattering from atomic hydrogen. I. Ionization

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Childers, J.G.; James, K.E. Jr.; Bray, Igor

    2004-02-01

    Absolute doubly differential cross sections for the ionization of atomic hydrogen by electron impact have been measured at energies ranging from near threshold to intermediate values. The measurements are normalized to the accurate differential cross section for the electron-impact excitation of the H 1 {sup 2}S{yields}2 {sup 2}S+2 {sup 2}P transition. These measurements were made possible through the use of a moveable target source which enables the collection of hydrogen energy loss spectra free of all backgrounds. The measurements cover the incident electron energy range of 14.6-40 eV and scattering angles from 12 deg. to 127 deg., and are inmore » very good agreement with the results of the latest theoretical models--the convergent close-coupling model and the exterior complex scaling model.« less

  3. Ionization and dissociation of molecular ion beams by intense ultrafast laser pulses

    NASA Astrophysics Data System (ADS)

    Ben-Itzhak, Itzik

    2007-06-01

    Laser-induced dissociation and ionization of a diatomic molecular-ion beam were simultaneously measured using coincidence 3D momentum imaging, with direct separation of the two processes even where the fragment kinetic energy is the same for both processes. We mainly focus on the fundamental H2^+ molecule in 7-135 fs laser pulses having 10^13-10^15 W/cm^2 peak intensity. At high intensities the kinetic energy release (KER) distribution following ionization of H2^+ was measured to be broad and structureless. Its centroid shifts toward higher energies as the laser intensity is increased indicating that ionization shifts to smaller internuclear distances. In contrast, a surprising structure is observed near the ionization threshold, which we call above threshold Coulomb explosion (ATCE) [1]. The angular distributions of the two H^+ fragments are strongly peaked along the laser polarization, and the angular distribution is described well by [cos^2θ]^n, where n is the number of photons predicted by our ATCE model [1]. Our data indicates that n varies with the laser wavelength as predicted by the model. The KER and angular distributions of H2^+ dissociation change dramatically with decreasing pulse width over the 7-135 fs range in contrast to the reported trend for longer pulses. Others contributing to this work: A.M. Sayler, P.Q. Wang, J. McKenna, B. Gaire, Nora G. Johnson, E. Parke, K.D. Carnes, and B.D. Esry. Thank are due to Professor Zenghu Chang for providing the intense laser beams and Dr. Charles Fehrenbach for his help with the ion beams. [1] B.D. Esry, A.M. Sayler, P.Q. Wang, K.D. Carnes, and I. Ben-Itzhak, Phys. Rev. Lett. 97, 013003 (2006).

  4. Measurement of the first ionization potential of astatine by laser ionization spectroscopy

    PubMed Central

    Rothe, S.; Andreyev, A. N.; Antalic, S.; Borschevsky, A.; Capponi, L.; Cocolios, T. E.; De Witte, H.; Eliav, E.; Fedorov, D. V.; Fedosseev, V. N.; Fink, D. A.; Fritzsche, S.; Ghys, L.; Huyse, M.; Imai, N.; Kaldor, U.; Kudryavtsev, Yuri; Köster, U.; Lane, J. F. W.; Lassen, J.; Liberati, V.; Lynch, K. M.; Marsh, B. A.; Nishio, K.; Pauwels, D.; Pershina, V.; Popescu, L.; Procter, T. J.; Radulov, D.; Raeder, S.; Rajabali, M. M.; Rapisarda, E.; Rossel, R. E.; Sandhu, K.; Seliverstov, M. D.; Sjödin, A. M.; Van den Bergh, P.; Van Duppen, P.; Venhart, M.; Wakabayashi, Y.; Wendt, K. D. A.

    2013-01-01

    The radioactive element astatine exists only in trace amounts in nature. Its properties can therefore only be explored by study of the minute quantities of artificially produced isotopes or by performing theoretical calculations. One of the most important properties influencing the chemical behaviour is the energy required to remove one electron from the valence shell, referred to as the ionization potential. Here we use laser spectroscopy to probe the optical spectrum of astatine near the ionization threshold. The observed series of Rydberg states enabled the first determination of the ionization potential of the astatine atom, 9.31751(8) eV. New ab initio calculations are performed to support the experimental result. The measured value serves as a benchmark for quantum chemistry calculations of the properties of astatine as well as for the theoretical prediction of the ionization potential of superheavy element 117, the heaviest homologue of astatine. PMID:23673620

  5. The VIMOS Ultra Deep Survey: Nature, ISM properties, and ionizing spectra of CIII]λ1909 emitters at z = 2-4

    NASA Astrophysics Data System (ADS)

    Nakajima, K.; Schaerer, D.; Le Fèvre, O.; Amorín, R.; Talia, M.; Lemaux, B. C.; Tasca, L. A. M.; Vanzella, E.; Zamorani, G.; Bardelli, S.; Grazian, A.; Guaita, L.; Hathi, N. P.; Pentericci, L.; Zucca, E.

    2018-05-01

    Context. Ultraviolet (UV) emission-line spectra are used to spectroscopically confirm high-z galaxies and increasingly also to determine their physical properties. Aims: We construct photoionization models to interpret the observed UV spectra of distant galaxies in terms of the dominant radiation field and the physical condition of the interstellar medium (ISM). These models are applied to new spectroscopic observations from the VIMOS Ultra Deep Survey (VUDS). Methods: We construct a large grid of photoionization models, which use several incident radiation fields (stellar populations, active galactic nuclei (AGNs), mix of stars and AGNs, blackbodies, and others), and cover a wide range of metallicities and ionization parameters. From these models we derive new spectral UV line diagnostics using equivalent widths (EWs) of [CIII]λ1909 doublet, CIVλ1549 doublet and the line ratios of [CIII], CIV, and He IIλ1640 recombination lines. We apply these diagnostics to a sample of 450 [CIII]-emitting galaxies at redshifts z = 2-4 previously identified in VUDS. Results: We demonstrate that our photoionization models successfully reproduce observations of nearby and high-redshift sources with known radiation field and/or metallicity. For star-forming galaxies our models predict that [CIII] EW peaks at sub-solar metallicities, whereas CIV EW peaks at even lower metallicity. Using the UV diagnostics, we show that the average star-forming galaxy (EW([CIII]) 2 Å) based on the composite of the 450 UV-selected galaxies' spectra The inferred metallicity and ionization parameter is typically Z = 0.3-0.5 Z⊙ and logU = -2.7 to - 3, in agreement with earlier works at similar redshifts. The models also indicate an average age of 50-200 Myr since the beginning of the current star-formation, and an ionizing photon production rate, ξion, of logξion/erg-1 Hz = 25.3-25.4. Among the sources with EW([CIII]) >= 10 Å, approximately 30% are likely dominated by AGNs. The metallicity derived

  6. X-RAY REFLECTED SPECTRA FROM ACCRETION DISK MODELS. III. A COMPLETE GRID OF IONIZED REFLECTION CALCULATIONS

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Garcia, J.; McClintock, J. E.; Dauser, T.

    2013-05-10

    We present a new and complete library of synthetic spectra for modeling the component of emission that is reflected from an illuminated accretion disk. The spectra were computed using an updated version of our code XILLVER that incorporates new routines and a richer atomic database. We offer in the form of a table model an extensive grid of reflection models that cover a wide range of parameters. Each individual model is characterized by the photon index {Gamma} of the illuminating radiation, the ionization parameter {xi} at the surface of the disk (i.e., the ratio of the X-ray flux to themore » gas density), and the iron abundance A{sub Fe} relative to the solar value. The ranges of the parameters covered are 1.2 {<=} {Gamma} {<=} 3.4, 1 {<=} {xi} {<=} 10{sup 4}, and 0.5 {<=} A{sub Fe} {<=} 10. These ranges capture the physical conditions typically inferred from observations of active galactic nuclei, and also stellar-mass black holes in the hard state. This library is intended for use when the thermal disk flux is faint compared to the incident power-law flux. The models are expected to provide an accurate description of the Fe K emission line, which is the crucial spectral feature used to measure black hole spin. A total of 720 reflection spectra are provided in a single FITS file (http://hea-www.cfa.harvard.edu/{approx}javier/xillver/) suitable for the analysis of X-ray observations via the atable model in XSPEC. Detailed comparisons with previous reflection models illustrate the improvements incorporated in this version of XILLVER.« less

  7. Electron-atom spin asymmetry and two-electron photodetachment - Addenda to the Coulomb-dipole threshold law

    NASA Technical Reports Server (NTRS)

    Temkin, A.

    1984-01-01

    Temkin (1982) has derived the ionization threshold law based on a Coulomb-dipole theory of the ionization process. The present investigation is concerned with a reexamination of several aspects of the Coulomb-dipole threshold law. Attention is given to the energy scale of the logarithmic denominator, the spin-asymmetry parameter, and an estimate of alpha and the energy range of validity of the threshold law, taking into account the result of the two-electron photodetachment experiment conducted by Donahue et al. (1984).

  8. Theory of dissociative tunneling ionization

    NASA Astrophysics Data System (ADS)

    Svensmark, Jens; Tolstikhin, Oleg I.; Madsen, Lars Bojer

    2016-05-01

    We present a theoretical study of the dissociative tunneling ionization process. Analytic expressions for the nuclear kinetic energy distribution of the ionization rates are derived. A particularly simple expression for the spectrum is found by using the Born-Oppenheimer (BO) approximation in conjunction with the reflection principle. These spectra are compared to exact non-BO ab initio spectra obtained through model calculations with a quantum mechanical treatment of both the electronic and nuclear degrees of freedom. In the regime where the BO approximation is applicable, imaging of the BO nuclear wave function is demonstrated to be possible through reverse use of the reflection principle, when accounting appropriately for the electronic ionization rate. A qualitative difference between the exact and BO wave functions in the asymptotic region of large electronic distances is shown. Additionally, the behavior of the wave function across the turning line is seen to be reminiscent of light refraction. For weak fields, where the BO approximation does not apply, the weak-field asymptotic theory describes the spectrum accurately.

  9. Photo-Double Ionization: Threshold Law and Low-Energy Behavior

    NASA Technical Reports Server (NTRS)

    Bhatia, A. K.; Temkin, A.

    2007-01-01

    The threshold law for photoejection of two electrons from atoms (PDI) is derived from a modification of the Coulomb-dipole (C-D) theory. The C-D theory applies to two-electron ejection from negative ions (photo-double detachment:PDD). The modification consists of correctly accounting for the fact that in PDI that the two escaping electrons see a Coulomb field, asymptotically no matter what their relative distances from the residual ion are. We find in the contralinear spherically symmetric model that the analytic threshold law Q(E), i.e. the yield of residual ions, to be Q Integral of (E) varies as E + (C(sub w) E(sup gamma W)) +CE(sup 5/4) sin [1/2 ln E + phi]/ln(E). The first and third terms are beyond the Wannier law. Our threshold law can only be rigorously justified for residual energies <= 10(exp -3) eV. Nevertheless in the present experimental range (0.1 - 4 eV), the form, even without the second term, can be fitted to experimental results of PDI for He, Li, and Be, in contrast to the Wannier law which has a larger deviation from the data for Li and Be.

  10. Experimental study of the p+{sup 6}Li{yields}{eta}+{sup 7}Be reaction 11.3 MeV above threshold

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Budzanowski, A.; Kliczewski, S.; Siudak, R.

    2010-10-15

    The cross section for the reaction p+{sup 6}Li{yields}{eta}+{sup 7}Be was measured at an excess energy of 11.28 MeV above threshold by detecting the recoiling {sup 7}Be nuclei. A dedicated set of focal plane detectors was built for the magnetic spectrograph Big Karl and was used for identification and four-momentum measurement of {sup 7}Be. A differential cross section of nb/(d{sigma}/d{Omega})=[0.69{+-}0.20(stat.){+-}0.20(syst.)] sr for the ground state plus 1/2{sup -} was measured. The result is compared to model calculations.

  11. [Spectra and thermal analysis of the arc in activating flux plasma arc welding].

    PubMed

    Chai, Guo-Ming; Zhu, Yi-Feng

    2010-04-01

    In activating flux plasma arc welding the welding arc was analyzed by spectra analysis technique, and the welding arc temperature field was measured by the infrared sensing and computer image technique. The distribution models of welding arc heat flow density of activating flux PAW welding were developed. The composition of welding arc affected by activated flux was studied, and the welding arc temperature field was studied. The results show that the spectral lines of argon atom and ionized argon atom of primary ionization are the main spectra lines of the conventional plasma welding arc. The spectra lines of weld metal are inappreciable in the spectra lines of the conventional plasma welding arc. The gas particle is the main in the conventional plasma welding arc. The conventional plasma welding arc is gas welding arc. The spectra lines of argon atom and ionized argon atom of primary ionization are intensified in the activating flux plasma welding arc, and the spectra lines of Ti, Cr and Fe elements are found in the activating flux plasma welding arc. The welding arc temperature distribution in activating flux plasma arc welding is compact, the outline of the welding arc temperature field is narrow, the range of the welding arc temperature distribution is concentrated, the welding arc radial temperature gradient is large, and the welding arc radial temperature gradient shows normal Gauss distribution.

  12. Ionizing radiation detector

    DOEpatents

    Thacker, Louis H.

    1990-01-01

    An ionizing radiation detector is provided which is based on the principle of analog electronic integration of radiation sensor currents in the sub-pico to nano ampere range between fixed voltage switching thresholds with automatic voltage reversal each time the appropriate threshold is reached. The thresholds are provided by a first NAND gate Schmitt trigger which is coupled with a second NAND gate Schmitt trigger operating in an alternate switching state from the first gate to turn either a visible or audible indicating device on and off in response to the gate switching rate which is indicative of the level of radiation being sensed. The detector can be configured as a small, personal radiation dosimeter which is simple to operate and responsive over a dynamic range of at least 0.01 to 1000 R/hr.

  13. FSFE: Fake Spectra Flux Extractor

    NASA Astrophysics Data System (ADS)

    Bird, Simeon

    2017-10-01

    The fake spectra flux extractor generates simulated quasar absorption spectra from a particle or adaptive mesh-based hydrodynamic simulation. It is implemented as a python module. It can produce both hydrogen and metal line spectra, if the simulation includes metals. The cloudy table for metal ionization fractions is included. Unlike earlier spectral generation codes, it produces absorption from each particle close to the sight-line individually, rather than first producing an average density in each spectral pixel, thus substantially preserving more of the small-scale velocity structure of the gas. The code supports both Gadget (ascl:0003.001) and AREPO.

  14. Analysis of solvent dyes in refined petroleum products by electrospray ionization mass spectrometry

    USGS Publications Warehouse

    Rostad, C.E.

    2010-01-01

    Solvent dyes are used to color refined petroleum products to enable differentiation between gasoline, diesel, and jet fuels. Analysis for these dyes in the hydrocarbon product is difficult due to their very low concentrations in such a complex matrix. Flow injection analysis/electrospray ionization/mass spectrometry in both negative and positive mode was used to optimize ionization of ten typical solvent dyes. Samples of hydrocarbon product were analyzed under similar conditions. Positive electrospray ionization produced very complex spectra, which were not suitably specific for targeting only the dyes. Negative electrospray ionization produced simple spectra because aliphatic and aromatic moieties were not ionized. This enabled screening for a target dye in samples of hydrocarbon product from a spill.

  15. Spectra of High-Ionization Seyfert 1 Galaxies: Implications for the Narrow-Line Region

    NASA Technical Reports Server (NTRS)

    Moore, David; Cohen, Ross D.; Marcy, Geoffrey W.

    1996-01-01

    observational study produce line width correlations only if the width is defined by a parameter that is more sensitive to extended profile wings than is the FWHM. Our sample of six objects is in effect augmented by incorporating the larger sample (16 objects) of Veilleux into some of our discussion. This paper focuses on new interpretations of NLR emission-line spectra and line profiles that stem directly from the observations. Paper 2 focuses on modeling and complements this paper by illustrating explicitly the effects that spatial variations in electron density, ionization parameter, and column density have on model profiles. By comparing model profiles with the observed profiles presented here, as well as with those presented by Veilleux, Paper 2 yields insight into how the electron density, ionization parameter, and column density likely vary throughout the NLR.

  16. Energy spectra of cosmic rays above 1 TeV per nucleon

    NASA Technical Reports Server (NTRS)

    Burnett, T. H.; Dake, S.; Derrickson, J. H.; Fountain, W. F.; Fuki, M.

    1990-01-01

    Direct measurements of cosmic-ray nuclei above 1 TeV/nucleon have been performed in a series of balloon-borne experiments with emulsion chambers. The observed all-particle spectrum above 20 TeV is consistent with the results of the Proton satellite and many air shower experiments. The proton spectrum is consistent with a power law having an index of 2.76 + or - 0.09 up to at least 100 TeV, but an overabundance of helium by a factor of 2 above 2 TeV per nucleon is found when compared with the extrapolation from the low energies. For heavy elements (C through Fe), the intensities around 1 TeV/nucleon are consistent, within the statistical errors, with the extrapolation from lower energy data using the Spacelab 2 spectral indices. An enhancement for the medium-heavy components (C through Ca) above 200 TeV is indicated. The mean mass above 50 TeV indicates slightly higher values than the results of the air shower experiments.

  17. Fragmentation pathways and structural characterization of organophosphorus compounds related to the Chemical Weapons Convention by electron ionization and electrospray ionization tandem mass spectrometry.

    PubMed

    Hosseini, Seyed Esmaeil; Saeidian, Hamid; Amozadeh, Ali; Naseri, Mohammad Taghi; Babri, Mehran

    2016-12-30

    For unambiguous identification of Chemical Weapons Convention (CWC)-related chemicals in environmental samples, the availability of mass spectra, interpretation skills and rapid microsynthesis of suspected chemicals are essential requirements. For the first time, the electron ionization single quadrupole and electrospray ionization tandem mass spectra of a series of O-alkyl N-[bis(dimethylamino)methylidene]-P-methylphosphonamidates (Scheme 1, cpd 4) were studied for CWC verification purposes. O-Alkyl N-[bis(dimethylamino)methylidene]-P-methylphosphonamidates were prepared through a microsynthetic method and were analyzed using electron ionization and electrospray ionization mass spectrometry with gas and liquid chromatography, respectively, as MS-inlet systems. General EI and ESI fragmentation pathways were proposed and discussed, and collision-induced dissociation studies of the protonated derivatives of these compounds were performed to confirm proposed fragment ion structures by analyzing mass spectra of deuterated analogs. Mass spectrometric studies revealed some interesting fragmentation pathways during the ionization process, such as McLafferty rearrangement, hydrogen rearrangement and a previously unknown intramolecular electrophilic aromatic substitution reaction. The EI and ESI fragmentation routes of the synthesized compounds 4 were investigated with the aim of detecting and identifying CWC-related chemicals during on-site inspection and/or off-site analysis and toxic chemical destruction monitoring. Copyright © 2016 John Wiley & Sons, Ltd. Copyright © 2016 John Wiley & Sons, Ltd.

  18. Electron impact fragmentation of thymine: partial ionization cross sections for positive fragments

    NASA Astrophysics Data System (ADS)

    van der Burgt, Peter J. M.; Mahon, Francis; Barrett, Gerard; Gradziel, Marcin L.

    2014-06-01

    We have measured mass spectra for positive ions for low-energy electron impact on thymine using a reflectron time-of-flight mass spectrometer. Using computer controlled data acquisition, mass spectra have been acquired for electron impact energies up to 100 eV in steps of 0.5 eV. Ion yield curves for most of the fragment ions have been determined by fitting groups of adjacent peaks in the mass spectra with sequences of normalized Gaussians. The ion yield curves have been normalized by comparing the sum of the ion yields to the average of calculated total ionization cross sections. Appearance energies have been determined. The nearly equal appearance energies of 83 u and 55 u observed in the present work strongly indicate that near threshold the 55 u ion is formed directly by the breakage of two bonds in the ring, rather than from a successive loss of HNCO and CO from the parent ion. Likewise 54 u is not formed by CO loss from 82 u. The appearance energies are in a number of cases consistent with the loss of one or more hydrogen atoms from a heavier fragment, but 70 u is not formed by hydrogen loss from 71 u.

  19. Photo-Double Ionization: Threshold Law and Low-Energy Behavior

    NASA Technical Reports Server (NTRS)

    Bhatia, Anand

    2008-01-01

    The threshold law for photoejection of two electrons from atoms (PDI) is derived from a modification of the Coulomb-dipole (C-D) theory. The C-D theory applies to two-electron ejection from negative ions (photo-double detachment:PDD). The modification consists of correctly accounting for the fact that in PDI that the two escaping electrons see a Coulomb field, asymptotically no matter what their relative distances from the residual ion are. We find in the contralinear spherically symmetric model that the analytic threshold law Q(E),i. e. the yield of residual ions, to be Qf(E)approaches E + CwE(sup gamma(w)) + CE(sup 5/4)sin[1/2 ln(E + theta)]/ln(E). The first and third terms are beyond the Wannier law. Our threshold law can only be rigorously justified for residual energies less than or equal to 10(exp -3) eV. Nevertheless in the present experimental range (0.1 - 4 eV), the form, even without the second term, can be fitted to experimental results of PDI for He, Li, and Be, in contrast to the Wannier law which has a larger deviation from the data for Li and Be, for both of which the data show signs of modulation.

  20. The threshold laws for electron-atom and positron-atom impact ionization

    NASA Technical Reports Server (NTRS)

    Temkin, A.

    1983-01-01

    The Coulomb-dipole theory is employed to derive a threshold law for the lowest energy needed for the separation of three particles from one another. The study focuses on an electron impinging on a neutral atom, and the dipole is formed between an inner electron and the nucleus. The analytical dependence of the transition matrix element on energy is reduced to lowest order to obtain the threshold law, with the inner electron providing a shield for the nucleus. Experimental results using the LAMPF accelerator to produce a high energy beam of H- ions, which are then exposed to an optical laser beam to detach the negative H- ion, are discussed. The threshold level is found to be confined to the region defined by the upper bound of the inverse square of the Coulomb-dipole region. Difficulties in exact experimental confirmation of the threshold are considered.

  1. Level crossings in the ionization of H(2) Rydberg molecules at a metal surface.

    PubMed

    McCormack, E A; Ford, M S; Softley, T P

    2010-10-28

    The ionization of H(2) Rydberg states at a metal surface is investigated using a molecular beam incident at grazing incidence on a gold surface. The H(2) molecules, excited by stepwise two-color laser excitation, are selected in each of the accessible Stark eigenstates of the N(+) = 2, n = 17 Rydberg manifold in turn and the ionization at the surface is characterized by applying a field to extract the ions formed. Profiles of extracted ion signal versus applied field show resonances that can be simulated by assuming an enhancement of surface ionization at fields corresponding to energy-level crossings between the populated N(+) = 2 manifold and the near-degenerate N(+) = 0 Stark manifolds. It is concluded that the slow (microsecond time scale) rotation-electronic energy transfer to N(+) = 0 states occurring at these crossings takes place in the time interval following application of the field ramp when the molecule is still distant from, and unperturbed by, the surface. However, the energy levels are strongly perturbed by image-dipole interactions as the molecule approaches close to the surface, leading to additional energy-level crossings. Adiabatic behavior at such crossings affects the intensity of the observed resonances in the surface ionization signal but not their field positions. Resonances are also observed in the surface ionization profiles at fields above the field-ionization threshold; some of these show asymmetric "Fano-type" line shapes due to quantum interference in the nonradiative coupling to degenerate bound and continuum states.

  2. A new characterization of three-dimensional conductivity backbone above and below the percolation threshold

    NASA Astrophysics Data System (ADS)

    Skal, Asya S.

    1996-08-01

    A new definition of three-dimensional conductivity backbone, obtained from a distribution function of Joule heat and the Hall coefficient is introduced. The fractal dimension d fB = d - ( {g}/{v}) = 2.25 of conductivity backbone for both sides of the threshold is obtained from a critical exponent of the Hall coefficient g = 0.6. This allows one to construct, below the threshold, a new order parameter of metal-conductor transition—the two-component infinite conductivity back-bone and tested scaling relation, proposed by Alexander and Orbach [ J. Phys. Rev. Lett.43, 1982, L625] for both sides of a threshold.

  3. X-ray detection of warm ionized matter in the Galactic halo

    NASA Astrophysics Data System (ADS)

    Nicastro, F.; Senatore, F.; Gupta, A.; Guainazzi, M.; Mathur, S.; Krongold, Y.; Elvis, M.; Piro, L.

    2016-03-01

    We report on a systematic investigation of the cold and mildly ionized gaseous baryonic metal components of our Galaxy, through the analysis of high-resolution Chandra and XMM-Newton spectra of two samples of Galactic and extragalactic sources. The comparison between lines of sight towards sources located in the disc of our Galaxy and extragalactic sources allows us for the first time to clearly distinguish between gaseous metal components in the disc and halo of our Galaxy. We find that a warm ionized metal medium (WIMM) permeates a large volume above and below the Galaxy's disc, perhaps up to the circum-galactic space. This halo WIMM imprints virtually the totality of the O I and O II absorption seen in the spectra of our extragalactic targets, has a temperature of T_{WIMM}^{Halo}=2900 ± 900 K, a density < n_H > _{WIMM}^{Halo} = 0.023 ± 0.009 cm-3 and a metallicity Z_{WIMM}^{Halo} = (0.4 ± 0.1) Z⊙. Consistently with previous works, we also confirm that the disc of the Galaxy contains at least two distinct gaseous metal components, one cold and neutral (the CNMM: cold neutral metal medium) and one warm and mildly ionized, with the same temperature of the halo WIMM, but higher density (< n_H > _{WIMM}^{Disc} = 0.09 ± 0.03 cm-3) and metallicity (Z_{WIMM}^{Disc} = 0.8 ± 0.1 Z⊙). By adopting a simple disc+sphere geometry for the Galaxy, we estimate masses of the CNMM and the total (disc + halo) WIMM of MCNMM ≲ 8 × 108 M⊙ and MWIMM ≃ 8.2 × 109 M⊙.

  4. Feasibility of Ionization-Mediated Pathway for Ultraviolet-Induced Melanin Damage.

    PubMed

    Mandal, Mukunda; Das, Tamal; Grewal, Baljinder K; Ghosh, Debashree

    2015-10-22

    Melanin is the pigment found in human skin that is responsible for both photoprotection and photodamage. Recently there have been reports that greater photodamage of DNA occurs when cells containing melanin are irradiated with ultraviolet (UV) radiation, thus suggesting that the photoproducts of melanin cause DNA damage. Photoionization processes have also been implicated in the photodegradation of melanin. However, not much is known about the oxidation potential of melanin and its monomers. In this work we calculate the ionization energies of monomers, dimers, and few oligomers of eumelanin to estimate the threshold energy required for the ionization of eumelanin. We find that this threshold is within the UV-B region for eumelanin. We also look at the charge and spin distributions of the various ionized states of the monomers that are formed to understand which of the ionization channels might favor monomerization from a covalent dimer.

  5. Ionization detection system for aerosols

    DOEpatents

    Jacobs, Martin E.

    1977-01-01

    This invention relates to an improved smoke-detection system of the ionization-chamber type. In the preferred embodiment, the system utilizes a conventional detector head comprising a measuring ionization chamber, a reference ionization chamber, and a normally non-conductive gas triode for discharging when a threshold concentration of airborne particulates is present in the measuring chamber. The improved system utilizes a measuring ionization chamber which is modified to minimize false alarms and reductions in sensitivity resulting from changes in ambient temperature. In the preferred form of the modification, an annular radiation shield is mounted about the usual radiation source provided to effect ionization in the measuring chamber. The shield is supported by a bimetallic strip which flexes in response to changes in ambient temperature, moving the shield relative to the source so as to vary the radiative area of the source in a manner offsetting temperature-induced variations in the sensitivity of the chamber.

  6. Dynamic molecular structure retrieval from low-energy laser-induced electron diffraction spectra

    NASA Astrophysics Data System (ADS)

    Vu, Dinh-Duy T.; Phan, Ngoc-Loan T.; Hoang, Van-Hung; Le, Van-Hoang

    2017-12-01

    A recently developed quantitative rescattering theory showed that a laser-free elastic cross section can be separated from laser-induced electron diffraction (LIED) spectra. Based upon this idea, Blaga et al investigated the possibility of reconstructing molecular structure from LIED spectra (2012 Nature 483 7388). In the above study, an independent atoms model (IAM) was used to interpret high-energy electron-molecule collisions induced by a mid-infrared laser. Our research aims to extend the application range of this structural retrieval method to low-energy spectra induced by more common near-infrared laser sources. The IAM is insufficient in this case, so we switch to a more comprehensive model—the multiple scattering (MS) theory. From the original version concerning only neutral targets, we upgrade the model so that it is compatible with electron-ion collisions at low energy. With available LIED experiment data of CO2 and O2, the upgraded MS is shown to be greatly effective as a tool for molecular imaging from spectra induced by a near-infrared laser. The captured image is at about 2 fs after the ionization, shorter than the period 4-6 fs by using the mid-infrared laser in Blaga’s experiment.

  7. Electron impact ionization of the gas-phase sorbitol

    NASA Astrophysics Data System (ADS)

    Chernyshova, Irina; Markush, Pavlo; Zavilopulo, Anatoly; Shpenik, Otto

    2015-03-01

    Ionization and dissociative ionization of the sorbitol molecule by electron impact have been studied using two different experimental methods. In the mass range of m/ z = 10-190, the mass spectra of sorbitol were recorded at the ionizing electron energies of 70 and 30 eV. The ion yield curves for the fragment ions have been analyzed and the appearance energies of these ions have been determined. The relative total ionization cross section of the sorbitol molecule was measured using monoenergetic electron beam. Possible fragmentation pathways for the sorbitol molecule were proposed.

  8. Two-photon spectroscopy of autoionizing states of Xe² near threshold

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Pratt, Stephen T.; Dehmer, Patricia M.; Dehmer, Joseph L.

    1990-01-01

    The two-photon ionization spectrum of Xe² in the region of the first ionization threshold is presented. Vibronic bands corresponding to at least four different autoionizing electronic states of Xe² are observed for the first time and are tentatively assigned. The observed appearance potential is significantly higher (by 415 cm-1) than the earlier single-photon ionization result (Ng, Trevor, Mahan and Lee, - J. Chem. Phys. 65 (1976) 4327).

  9. Structure and dynamics of H2+ near the dissociation threshold: A combined experimental and computational investigation

    NASA Astrophysics Data System (ADS)

    Beyer, Maximilian; Merkt, Frédéric

    2016-12-01

    The pulsed-field-ionization zero-kinetic-energy photoelectron spectrum of H2 has been recorded in the vicinity of the dissociative-ionization threshold following three-photon excitation via selected rotational levels of the B1 Σu+ (v = 19) and H ‾ 1 Σg+ (v = 11) intermediate states. The spectra consist of transitions to bound levels of the X+2 Σg+ state of H2+ with v+ in the range 14-19 and N+ in the range 0-9, of the A+2 Σu+ state with v+ = 0 and N+ = 0-2, and of shape resonances corresponding to the X+(v+ = 17, N+ = 7) and X+(v+ = 18, N+ = 4) quasibound levels. Calculations of the level structure of H2+ have been carried out and the influence of adiabatic, nonadiabatic, relativistic and radiative corrections on the positions of these levels, and in the case of the shape resonances also on their widths, has been investigated. Different methods of calculating the widths and profiles of the shape resonances have been tested for comparison with the experimental observations. Slow oscillations of the dissociative-ionization yield have been observed and reflect, in first approximation, the Franck-Condon factors of the X+, A+ ← H ‾ bound - free transitions.

  10. The hydrogen molecule under the reaction microscope: single photon double ionization at maximum cross section and threshold (doubly differential cross sections)

    DOE PAGES

    Weber, Thorsten; Foucar, Lutz; Jahnke, Till; ...

    2017-07-07

    In this paper, we studied the photo double ionization of hydrogen molecules in the threshold region (50 eV) and the complete photo fragmentation of deuterium molecules at maximum cross section (75 eV) with single photons (linearly polarized) from the Advanced Light Source, using the reaction microscope imaging technique. The 3D-momentum vectors of two recoiling ions and up to two electrons were measured in coincidence. We present the kinetic energy sharing between the electrons and ions, the relative electron momenta, the azimuthal and polar angular distributions of the electrons in the body-fixed frame. We also present the dependency of the kineticmore » energy release in the Coulomb explosion of the two nuclei on the electron emission patterns. We find that the electronic emission in the body-fixed frame is strongly influenced by the orientation of the molecular axis to the polarization vector and the internuclear distance as well as the electronic energy sharing. Finally, traces of a possible breakdown of the Born–Oppenheimer approximation are observed near threshold.« less

  11. The hydrogen molecule under the reaction microscope: single photon double ionization at maximum cross section and threshold (doubly differential cross sections)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Weber, Thorsten; Foucar, Lutz; Jahnke, Till

    In this paper, we studied the photo double ionization of hydrogen molecules in the threshold region (50 eV) and the complete photo fragmentation of deuterium molecules at maximum cross section (75 eV) with single photons (linearly polarized) from the Advanced Light Source, using the reaction microscope imaging technique. The 3D-momentum vectors of two recoiling ions and up to two electrons were measured in coincidence. We present the kinetic energy sharing between the electrons and ions, the relative electron momenta, the azimuthal and polar angular distributions of the electrons in the body-fixed frame. We also present the dependency of the kineticmore » energy release in the Coulomb explosion of the two nuclei on the electron emission patterns. We find that the electronic emission in the body-fixed frame is strongly influenced by the orientation of the molecular axis to the polarization vector and the internuclear distance as well as the electronic energy sharing. Finally, traces of a possible breakdown of the Born–Oppenheimer approximation are observed near threshold.« less

  12. Automatic Preocessing of Impact Ionization Mass Spectra Obtained by Cassini CDA

    NASA Astrophysics Data System (ADS)

    Villeneuve, M.

    2015-12-01

    Since Cassini's arrival at Saturn in 2004, the Comic Dust Analyzer (CDA) has recorded nearly 200,000 mass spectra of dust particles. A majority of this data has been collected in Saturn's diffuse E ring where sodium salts embedded in water ice particles indicate that many particles are in fact frozen droplets from Enceladus' subsurface ocean that have been expelled from cracks in the icy crust. So far only a small fraction of the obtained spectra have been processed because the steps in processing the spectra require human manipulation. We developed an automatic processing pipeline for CDA mass spectra which will consistently analyze this data. The preprocessing steps are to de-noise the spectra, determine and remove the baseline, calculate the correct stretch parameter, and finally to identify elements and compounds in the spectra. With the E ring constantly evolving due to embedded active moons, this data will provide valuable information about the source of the E ring, the subsurface of Saturn's ice moon Enceladus, as well as about the dynamics of the ring itself.

  13. Common Gamma-ray Glows above Thunderclouds

    NASA Astrophysics Data System (ADS)

    Kelley, Nicole; Smith, David; Dwyer, Joseph; Hazelton, Bryna; Grefenstette, Brian; Lowell, Alex; Splitt, Michael; Lazarus, Steven; Rassoul, Hamid

    2013-04-01

    Gamma-ray glows are continuous, long duration gamma- and x-ray emission seen coming from thunderclouds. The Airborne for Energetic Lightning Emissions (ADELE) observed 12 gamma-ray glows during its summer 2009 flight campaign over the areas of Colorado and Florida in the United States. For these glows we shall present their spectra, relationship to lightning activity and how their duration and size changes as a function of distance. Gamma-ray glows follow the relativistic runaway electron avalanche (RREA) spectrum and have been previously measured from the ground and inside the cloud. ADELE measured most glows as it flew above the screening layer of the cloud. During the brightest glow on August 21, 2009, we can show that we are flying directly into a downward facing relativistic runaway avalanche, indicative of flying between the upper positive and negative screening layer of the cloud. In order to explain the brightness of this glow, RREA with an electric field approaching the limit for relativistic feedback must be occurring. Using all 12 glows, we show that lightning activity diminishes during the onset of the glow. Using this along with the fact that glows occur as the field approaches the level necessary for feedback, we attempt to distinguish between two possibilities: that glows are evidence that RREA with feedback, rather than lightning, is sometimes the primary channel for discharging the cloud, or else that the overall discharging is still controlled by lightning, with glows simply appearing during times when a subsidence of lightning allows the field to rise above the threshold for RREA.

  14. Effect of relativity on the ionization spectra of the xenon fluorides XeFn (n=2, 4, 6).

    PubMed

    Pernpointner, Markus; Cederbaum, Lorenz S

    2005-06-01

    Noble gas compounds exhibit special chemical bonding situations and have been investigated by various spectroscopic and theoretical techniques. In this work we calculate the ionization spectra of the xenon fluorides (XeF2,XeF4, and XeF6) in the valence and subvalence (down to Xe 4d) areas by application of the recently developed Dirac-Hartree-Fock one-particle propagator technique. In this technique, the relativistic (four-component) and electron correlation effects are computed simultaneously. The xenon compounds show considerable spin-orbit splitting strongly influencing the photoelectron spectrum not reproducible in prior calculations. Comparison to one-component methods is made and the occurring satellite structures are interpreted. The satellite structures can be attributed either to the breakdown of the one-particle picture or to a reflection of intra-atomic and interatomic Auger decay processes within the molecule.

  15. Inclusion of Exercise Intensities Above the Lactate Threshold in VO2/Running Speed Regression Does not Improve the Precision of Accumulated Oxygen Deficit Estimation in Endurance-Trained Runners

    PubMed Central

    Reis, Victor M.; Silva, António J.; Ascensão, António; Duarte, José A.

    2005-01-01

    The present study intended to verify if the inclusion of intensities above lactate threshold (LT) in the VO2/running speed regression (RSR) affects the estimation error of accumulated oxygen deficit (AOD) during a treadmill running performed by endurance-trained subjects. Fourteen male endurance-trained runners performed a sub maximal treadmill running test followed by an exhaustive supra maximal test 48h later. The total energy demand (TED) and the AOD during the supra maximal test were calculated from the RSR established on first testing. For those purposes two regressions were used: a complete regression (CR) including all available sub maximal VO2 measurements and a sub threshold regression (STR) including solely the VO2 values measured during exercise intensities below LT. TED mean values obtained with CR and STR were not significantly different under the two conditions of analysis (177.71 ± 5.99 and 174.03 ± 6.53 ml·kg-1, respectively). Also the mean values of AOD obtained with CR and STR did not differ under the two conditions (49.75 ± 8.38 and 45.8 9 ± 9.79 ml·kg-1, respectively). Moreover, the precision of those estimations was also similar under the two procedures. The mean error for TED estimation was 3.27 ± 1.58 and 3.41 ± 1.85 ml·kg-1 (for CR and STR, respectively) and the mean error for AOD estimation was 5.03 ± 0.32 and 5.14 ± 0.35 ml·kg-1 (for CR and STR, respectively). The results indicated that the inclusion of exercise intensities above LT in the RSR does not improve the precision of the AOD estimation in endurance-trained runners. However, the use of STR may induce an underestimation of AOD comparatively to the use of CR. Key Points It has been suggested that the inclusion of exercise intensities above the lactate threshold in the VO2/power regression can significantly affect the estimation of the energy cost and, thus, the estimation of the AOD. However data on the precision of those AOD measurements is rarely provided. We have

  16. Calculation of femtosecond pulse laser induced damage threshold for broadband antireflective microstructure arrays.

    PubMed

    Jing, Xufeng; Shao, Jianda; Zhang, Junchao; Jin, Yunxia; He, Hongbo; Fan, Zhengxiu

    2009-12-21

    In order to more exactly predict femtosecond pulse laser induced damage threshold, an accurate theoretical model taking into account photoionization, avalanche ionization and decay of electrons is proposed by comparing respectively several combined ionization models with the published experimental measurements. In addition, the transmittance property and the near-field distribution of the 'moth eye' broadband antireflective microstructure directly patterned into the substrate material as a function of the surface structure period and groove depth are performed by a rigorous Fourier model method. It is found that the near-field distribution is strongly dependent on the periodicity of surface structure for TE polarization, but for TM wave it is insensitive to the period. What's more, the femtosecond pulse laser damage threshold of the surface microstructure on the pulse duration taking into account the local maximum electric field enhancement was calculated using the proposed relatively accurate theoretical ionization model. For the longer incident wavelength of 1064 nm, the weak linear damage threshold on the pulse duration is shown, but there is a surprising oscillation peak of breakdown threshold as a function of the pulse duration for the shorter incident wavelength of 532 nm.

  17. Manganese oxide nanoparticle-assisted laser desorption/ionization mass spectrometry for medical applications

    NASA Astrophysics Data System (ADS)

    Taira, Shu; Kitajima, Kenji; Katayanagi, Hikaru; Ichiishi, Eiichiro; Ichiyanagi, Yuko

    2009-06-01

    We prepared and characterized manganese oxide magnetic nanoparticles (d =5.6 nm) and developed nanoparticle-assited laser desorption/ionization (nano-PALDI) mass spectrometry. The nanoparticles had MnO2 and Mn2O3 cores conjugated with hydroxyl and amino groups, and showed paramagnetism at room temperature. The nanoparticles worked as an ionization assisting reagent in mass spectroscopy. The mass spectra showed no background in the low m/z. The nanoparticles could ionize samples of peptide, drug and proteins (approx. 5000 Da) without using matrix, i.e., 2,5-dihydroxybenzoic acid (DHB), 4-hydroxy-α-cinnamic acid (CHCA) and liquid matrix, as conventional ionization assisting reagents. Post source decay spectra by nano-PALDI mass spectrometry will yield information of the chemical structure of analytes.

  18. Dust Spectra from Above and Below

    NASA Technical Reports Server (NTRS)

    2004-01-01

    Spectra of martian dust taken by the Mars Exploration Rover Spirit's mini-thermal emission spectrometer are compared to that of the orbital Mars Global Surveyor's thermal emission spectrometer. The graph shows that the two instruments are in excellent agreement.

    Rover Senses Carbon Dioxide [figure removed for brevity, see original site] Click on image for larger view

    This graph, consisting of data acquired on Mars from the Mars Exploration Rover Spirit's mini-thermal emission spectrometer, shows the light, or spectral, signature of carbon dioxide. Carbon dioxide makes up the bulk of the thin martian atmosphere.

    Rover Senses Silicates [figure removed for brevity, see original site] Click on image for larger view

    This graph, consisting of data acquired on Mars by the Mars Exploration Rover Spirit's mini-thermal emission spectrometer, shows the light, or spectral, signature of silicates - a group of minerals that form the majority of Earth's crust. Minerals called feldspars and zeolites are likely candidates responsible for this feature.

    Rover Senses Bound Water [figure removed for brevity, see original site] Click on image for larger view

    This graph, consisting of data acquired on Mars from the Mars Exploration Rover Spirit's mini-thermal emission spectrometer, shows the light, or spectral, signature of an as-of-yet unidentified mineral that contains bound water in its crystal structure. Minerals such as gypsum and zeolites are possible candidates.

    Rover Senses Carbonates [figure removed for brevity, see original site] Click on image for larger view

    This graph, consisting of data from the Mars Exploration Rover Spirit's mini-thermal emission spectrometer, shows the light, or spectral, signatures of carbonates - minerals common to Earth that form only in water. The detection of trace amounts of carbonates on Mars may be due to an interaction between the water vapor in the atmosphere and minerals on the surface.

  19. Resonant ionization spectroscopy of autoionizing Rydberg states in cobalt and redetermination of its ionization potential

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Liu, Yuan; Gottwald, T.; Mattolat, C.

    We obtained multi-step resonance ionization spectroscopy of cobalt using a hot-cavity laser ion source and three Ti:Sapphire lasers. Furthermore, the photoionization spectra revealed members of five new autoionizing Rydberg series that originate from three different lower levels of 3d 74s5s h 4F 9/2, 3d 74s4d f 4G 11/2, and 3d 74s4d f 4H 13/2 and converge to the first four excited states of singly ionized Co. Our analyses of the Rydberg series yield 63564.689 0.036 cm -1 as the first ionization potential of Co, which is an order of magnitude more accurate than the previous estimation. Using a three-step resonancemore » ionization scheme that employs an autoinizing Rydberg state in the last transition, we obtained an overall ionization efficiency of about 18% for Co.« less

  20. Resonant ionization spectroscopy of autoionizing Rydberg states in cobalt and redetermination of its ionization potential

    DOE PAGES

    Liu, Yuan; Gottwald, T.; Mattolat, C.; ...

    2017-03-20

    We obtained multi-step resonance ionization spectroscopy of cobalt using a hot-cavity laser ion source and three Ti:Sapphire lasers. Furthermore, the photoionization spectra revealed members of five new autoionizing Rydberg series that originate from three different lower levels of 3d 74s5s h 4F 9/2, 3d 74s4d f 4G 11/2, and 3d 74s4d f 4H 13/2 and converge to the first four excited states of singly ionized Co. Our analyses of the Rydberg series yield 63564.689 0.036 cm -1 as the first ionization potential of Co, which is an order of magnitude more accurate than the previous estimation. Using a three-step resonancemore » ionization scheme that employs an autoinizing Rydberg state in the last transition, we obtained an overall ionization efficiency of about 18% for Co.« less

  1. Resolving the Structure of Ionized Helium in the Intergalactic Medium with the Far Ultraviolet Spectroscopic Explorer. 2.3

    NASA Technical Reports Server (NTRS)

    Kriss, G. A.; Shull, J. M.; Oegerle, W.; Zheng, W.; Davidsen, A. F.; Songaila, A.; Tumlinson, J.; Cowie, L. L.; Dehavreng, J.-M.; Friedman, S. D.

    2001-01-01

    The neutral hydrogen and the ionized helium absorption in the spectra of high-redshift quasi-stellar objects (QSOs) are unique probes of structure in the universe at epochs intermediate between the earliest density fluctuations seen in the cosmic background radiation and the distribution of galaxies visible today. We present Far-Ultraviolet Spectroscopic Explorer (FUSE) observations of the line of sight to the QSO HE2347-4342 in the 1000-1187 angstrom band at a resolving power of 15,000. Above redshift z = 2.7, the IGM is largely opaque in He II Ly-alpha (304 angstroms). At lower redshifts, the optical depth gradually decreases to a mean value tau = 1 at z = 2.4. We resolve the He II Ly-alpha absorption as a discrete forest of absorption lines in the z = 2.3 - 2.7 redshift range. Approximately 50% of these spectral features have H I counterparts with column densities N(sub HI) > 10(exp 12.3)/sq cm visible in a Keck spectrum. These account for most of the observed opacity in He II Ly-alpha. The remainder have N(sub HI) < 10(exp 12.3)/sq cm, below the threshold for current observations. A short extrapolation of the power-law distribution of H I column densities to lower values can account for these new absorbers. The He II to H I column density ratio eta averages approximately 80, consistent with photoionization of the IGM by a hard ionizing spectrum resulting from the integrated light of quasars at high redshift, but there is considerable scatter. Values of eta > 100 in many locations indicate that there may be localized contributions from starbursts or heavily filtered QSO radiation.

  2. Threshold Hypothesis: Fact or Artifact?

    ERIC Educational Resources Information Center

    Karwowski, Maciej; Gralewski, Jacek

    2013-01-01

    The threshold hypothesis (TH) assumes the existence of complex relations between creative abilities and intelligence: linear associations below 120 points of IQ and weaker or lack of associations above the threshold. However, diverse results have been obtained over the last six decades--some confirmed the hypothesis and some rejected it. In this…

  3. Ratios of double to single ionization of He and Ne by strong 400-nm laser pulses using the quantitative rescattering theory

    NASA Astrophysics Data System (ADS)

    Chen, Zhangjin; Li, Xiaojin; Zatsarinny, Oleg; Bartschat, Klaus; Lin, C. D.

    2018-01-01

    We present numerical simulations of the ratio between double and single ionization of He and Ne by intense laser pulses at wavelengths of 390 and 400 nm, respectively. The yields of doubly charged ions due to nonsequential double ionization (NSDI) are obtained by employing the quantitative rescattering (QRS) model. In this model, the NSDI ionization probability is expressed as a product of the returning electron wave packet (RWP) and the total scattering cross sections for laser-free electron impact excitation and electron impact ionization of the parent ion. According to the QRS theory, the same RWP is also responsible for the emission of high-energy above-threshold ionization photoelectrons. To obtain absolute double-ionization yields, the RWP is generated by solving the time-dependent Schrödinger equation (TDSE) within a one-electron model. The same TDSE results can also be taken to obtain single-ionization yields. By using the TDSE results to calibrate single ionization and the RWP obtained from the strong-field approximation, we further simplify the calculation such that the nonuniform laser intensity distribution in the focused laser beam can be accounted for. In addition, laser-free electron impact excitation and ionization cross sections are calculated using the state-of-the-art many-electron R -matrix theory. The simulation results for double-to-single-ionization ratios are found to compare well with experimental data and support the validity of the nonsequential double-ionization mechanism for the covered intensity region.

  4. Identification of doubly excited states in nonsequential double ionization of Ar in strong laser fields

    NASA Astrophysics Data System (ADS)

    Chen, Zhangjin; Li, Xiaojin; Sun, Xiaoli; Hao, Xiaolei; Chen, Jing

    2017-12-01

    We use the semiclassical model to study the intensity dependence of nonsequential double ionization (NSDI) of Ar in short strong laser pulses. The contributions to NSDI through sequential ionization of doubly excited states (SIDE) are identified by tracking the energy trajectories of the two outgoing electrons. The correlated electron momentum distributions are calculated from which the longitudinal momentum distributions of the fast and the slow electrons for the side-by-side and the back-to-back emissions are obtained. The simulated momentum distributions of the fast and the slow electrons for NSDI of Ar by linearly polarized fields with a wavelength of 795 nm at an intensity of 7 × 1013 W cm-2 are in good agreement with the experimental measurements of Liu et al (2014 Phys. Rev. Lett. 112 013003). We demonstrate that the process of double ionization through SIDE dominates NSDI only when the laser intensities are below the recollision threshold; nevertheless, for higher intensities the SIDE process still takes place although the contribution to the NSDI yields decreases rapidly as the intensity increases. It has been found that for SIDE at different intensities, both the correlated electron momentum spectra and the momentum distributions of the fast and the slow electrons remain the same.

  5. Advanced p-MOSFET Ionizing-Radiation Dosimeter

    NASA Technical Reports Server (NTRS)

    Buehler, Martin G.; Blaes, Brent R.

    1994-01-01

    Circuit measures total dose of ionizing radiation in terms of shift in threshold gate voltage of doped-channel metal oxide/semiconductor field-effect transistor (p-MOSFET). Drain current set at temperature-independent point to increase accuracy in determination of radiation dose.

  6. Above threshold spectral dependence of linewidth enhancement factor, optical duration and linear chirp of quantum dot lasers.

    PubMed

    Kim, Jimyung; Delfyett, Peter J

    2009-12-07

    The spectral dependence of the linewidth enhancement factor above threshold is experimentally observed from a quantum dot Fabry-Pérot semiconductor laser. The linewidth enhancement factor is found to be reduced when the quantum dot laser operates approximately 10 nm offset to either side of the gain peak. It becomes significantly reduced on the anti-Stokes side as compared to the Stokes side. It is also found that the temporal duration of the optical pulses generated from quantum dot mode-locked lasers is shorter when the laser operates away from the gain peak. In addition, less linear chirp is impressed on the pulse train generated from the anti-Stokes side whereas the pulses generated from the gain peak and Stokes side possess a large linear chirp. These experimental results imply that enhanced performance characteristics of quantum dot lasers can be achieved by operating on the anti-Stokes side, approximately 10 nm away from the gain peak.

  7. Modeling of ablation threshold dependence on pulse duration for dielectrics with ultrashort pulsed laser

    NASA Astrophysics Data System (ADS)

    Sun, Mingying; Zhu, Jianqiang; Lin, Zunqi

    2017-01-01

    We present a numerical model of plasma formation in ultrafast laser ablation on the dielectrics surface. Ablation threshold dependence on pulse duration is predicted with the model and the numerical results for water agrees well with the experimental data for pulse duration from 140 fs to 10 ps. Influences of parameters and approximations of photo- and avalanche-ionization on the ablation threshold prediction are analyzed in detail for various pulse lengths. The calculated ablation threshold is strongly dependent on electron collision time for all the pulse durations. The complete photoionization model is preferred for pulses shorter than 1 ps rather than the multiphoton ionization approximations. The transition time of inverse bremsstrahlung absorption needs to be considered when pulses are shorter than 5 ps and it can also ensure the avalanche ionization (AI) coefficient consistent with that in multiple rate equations (MREs) for pulses shorter than 300 fs. The threshold electron density for AI is only crucial for longer pulses. It is reasonable to ignore the recombination loss for pulses shorter than 100 fs. In addition to thermal transport and hydrodynamics, neglecting the threshold density for AI and recombination could also contribute to the disagreements between the numerical and the experimental results for longer pulses.

  8. Detection of High Energy Cosmic Rays with Advanced Thin Ionization Calorimeter, ATIC

    NASA Technical Reports Server (NTRS)

    Adams, J. H.; Ahn, E. J.; Ahn, H. S.; Bashindzhagyan, G.; Case, G.; Chang, J.; Christl, M.; Ellison, S.; Fazely, A. R.; Ganel, O.

    2002-01-01

    The author presents preliminary results of the first flight of the Advanced Thin Ionization Calorimeter (ATIC). ATIC is a multiple, long duration balloon flight, investigation for the study of cosmic ray spectra from below 50 GeV to near 100 TeV total energy, using a fully active Bismuth Germanate (BGO) calorimeter. It is equipped with the first large area mosaic of small fully depleted silicon detector pads capable of charge identification of cosmic rays from H to Fe. As a redundancy check for the charge identification and a coarse particle tracking system, three projective layers of x-y scintillator hodoscopes were employed, above, in the center and below a Carbon interaction 'target'.

  9. Ionization of Local Interstellar Gas Based on STIS and FUSE spectra of Nearby Stars

    NASA Astrophysics Data System (ADS)

    Redfield, Seth; Linsky, J. L.

    2009-01-01

    The ultraviolet contains many resonance line transitions that are sensitive to a range of ionization stages of ions present in the local interstellar medium (LISM). We couple observations of high resolution ultraviolet spectrographs, STIS and GHRS on the Hubble Space Telescope (HST) and the Far-Ultraviolet Spectroscopic Explorer (FUSE) in order to make a comprehensive survey of the ionization structure of the local interstellar medium. In particular, we focus on the sight line toward G191-B2B, a nearby (69 pc) white dwarf. We present interstellar detections of highly ionized elements (e.g., SiIII, CIII, CIV, etc) and compare them directly to neutral or singly ionized LISM detections (e.g., SiII, CII, etc). The extensive observations of G191-B2B provides an opportunity for a broad study of ionization stages of several elements, while a survey of several sight lines provides a comprehensive look at the ionization structure of the LISM. We acknowledge support for this project through NASA FUSE Grant NNX06AD33G.

  10. 20 CFR 418.1105 - What is the threshold?

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... 20 Employees' Benefits 2 2012-04-01 2012-04-01 false What is the threshold? 418.1105 Section 418... What is the threshold? (a) The threshold is a level of modified adjusted gross income above which the... gross income threshold is $80,000 for individuals with a Federal income tax filing status of single...

  11. Electron and fluorescence spectra of a water molecule irradiated by an x-ray free-electron laser pulse

    NASA Astrophysics Data System (ADS)

    Schäfer, Julia M.; Inhester, Ludger; Son, Sang-Kil; Fink, Reinhold F.; Santra, Robin

    2018-05-01

    With the highly intense x-ray light generated by x-ray free-electron lasers (XFELs), molecular samples can be ionized many times in a single pulse. Here we report on a computational study of molecular spectroscopy at the high x-ray intensity provided by XFELs. Calculated photoelectron, Auger electron, and x-ray fluorescence spectra are presented for a single water molecule that reaches many electronic hole configurations through repeated ionization steps. The rich details shown in the spectra depend on the x-ray pulse parameters in a nonintuitive way. We discuss how the observed trends can be explained by the competition of microscopic electronic transition processes. A detailed comparison between spectra calculated within the independent-atom model and within the molecular-orbital framework highlights the chemical sensitivity of the spectral lines of multiple-hole configurations. Our results demonstrate how x-ray multiphoton ionization-related effects such as charge-rearrangement-enhanced x-ray ionization of molecules and frustrated absorption manifest themselves in the electron and fluorescence spectra.

  12. Upper stimulation threshold for retinal ganglion cell activation.

    PubMed

    Meng, Kevin; Fellner, Andreas; Rattay, Frank; Ghezzi, Diego; Meffin, Hamish; Ibbotson, Michael R; Kameneva, Tatiana

    2018-08-01

    The existence of an upper threshold in electrically stimulated retinal ganglion cells (RGCs) is of interest because of its relevance to the development of visual prosthetic devices, which are designed to restore partial sight to blind patients. The upper threshold is defined as the stimulation level above which no action potentials (direct spikes) can be elicited in electrically stimulated retina. We collected and analyzed in vitro recordings from rat RGCs in response to extracellular biphasic (anodic-cathodic) pulse stimulation of varying amplitudes and pulse durations. Such responses were also simulated using a multicompartment model. We identified the individual cell variability in response to stimulation and the phenomenon known as upper threshold in all but one of the recorded cells (n  =  20/21). We found that the latencies of spike responses relative to stimulus amplitude had a characteristic U-shape. In silico, we showed that the upper threshold phenomenon was observed only in the soma. For all tested biphasic pulse durations, electrode positions, and pulse amplitudes above lower threshold, a propagating action potential was observed in the distal axon. For amplitudes above the somatic upper threshold, the axonal action potential back-propagated in the direction of the soma, but the soma's low level of hyperpolarization prevented action potential generation in the soma itself. An upper threshold observed in the soma does not prevent spike conductance in the axon.

  13. An Evaluation of Performance Thresholds in Nursing Home Pay-for-Performance.

    PubMed

    Werner, Rachel M; Skira, Meghan; Konetzka, R Tamara

    2016-12-01

    Performance thresholds are commonly used in pay-for-performance (P4P) incentives, where providers receive a bonus payment for achieving a prespecified target threshold but may produce discontinuous incentives, with providers just below the threshold having the strongest incentive to improve and providers either far below or above the threshold having little incentive. We investigate the effect of performance thresholds on provider response in the setting of nursing home P4P. The Minimum Data Set (MDS) and Online Survey, Certification, and Reporting (OSCAR) datasets. Difference-in-differences design to test for changes in nursing home performance in three states that implemented threshold-based P4P (Colorado, Georgia, and Oklahoma) versus three comparator states (Arizona, Tennessee, and Arkansas) between 2006 and 2009. We find that those farthest below the threshold (i.e., the worst-performing nursing homes) had the largest improvements under threshold-based P4P while those farthest above the threshold worsened. This effect did not vary with the percentage of Medicaid residents in a nursing home. Threshold-based P4P may provide perverse incentives for nursing homes above the performance threshold, but we do not find evidence to support concerns about the effects of performance thresholds on low-performing nursing homes. © Health Research and Educational Trust.

  14. Increasing the oscillation frequency of strong magnetic fields above 101 kHz significantly raises peripheral nerve excitation thresholds

    PubMed Central

    Weinberg, Irving N.; Stepanov, Pavel Y.; Fricke, Stanley T.; Probst, Roland; Urdaneta, Mario; Warnow, Daniel; Sanders, Howard; Glidden, Steven C.; McMillan, Alan; Starewicz, Piotr M.; Reilly, J. Patrick

    2012-01-01

    Purpose: A time-varying magnetic field can cause unpleasant peripheral nerve stimulation (PNS) when the maximum excursion of the magnetic field (ΔB) is above a frequency-dependent threshold level [P. Mansfield and P. R. Harvey, Magn. Reson. Med. 29, 746–758 (1993)]. Clinical and research magnetic resonance imaging (MRI) gradient systems have been designed to avoid such bioeffects by adhering to regulations and guidelines established on the basis of clinical trials. Those trials, generally employing sinusoidal waveforms, tested human responses to magnetic fields at frequencies between 0.5 and 10 kHz [W. Irnich and F. Schmitt, Magn. Reson. Med. 33, 619–623 (1995), T. F. Budinger et al., J. Comput. Assist. Tomogr. 15, 909–914 (1991), and D. J. Schaefer et al., J. Magn. Reson. Imaging 12, 20–29 (2000)]. PNS thresholds for frequencies higher than 10 kHz had been extrapolated, using physiological models [J. P. Reilly et al., IEEE Trans. Biomed. Eng. BME-32(12), 1001–1011 (1985)]. The present study provides experimental data on human PNS thresholds to oscillating magnetic field stimulation from 2 to 183 kHz. Sinusoidal waveforms were employed for several reasons: (1) to facilitate comparison with earlier reports that used sine waves, (2) because prior designers of fast gradient hardware for generalized waveforms (e.g., including trapezoidal pulses) have employed quarter-sine-wave resonant circuits to reduce the rise- and fall-times of pulse waveforms, and (3) because sinusoids are often used in fast pulse sequences (e.g., spiral scans) [S. Nowak, U.S. patent 5,245,287 (14 September 1993) and K. F. King and D. J. Schaefer, J. Magn. Reson. Imaging 12, 164–170 (2000)]. Methods: An IRB-approved prospective clinical trial was performed, involving 26 adults, in which one wrist was exposed to decaying sinusoidal magnetic field pulses at frequencies from 2 to 183 kHz and amplitudes up to 0.4 T. Sham exposures (i.e., with no magnetic fields) were applied to all

  15. Binge Drinking Above and Below Twice the Adolescent Thresholds and Health-Risk Behaviors.

    PubMed

    Hingson, Ralph Waldo; Zha, Wenxing

    2018-05-01

    Underage drinking has been associated with health-risk behaviors: unintentional and unprotected sex; physical and sexual assault; suicide; homicide; traffic and other unintentional injuries; and overdoses. Five drinks consumed over 2 hours by adult males and 4 drinks by adult females typically produce blood alcohol levels (BALs) of ≥0.08%, which the National Institute on Alcohol Abuse and Alcoholism considers binge drinking. Being smaller, young adolescents can reach adult binge-drinking BALs of ≥0.08% with fewer drinks. Previous research indicates boys ages 9 to 13 would reach ≥0.08% with 3 drinks, 4 drinks at ages 14 to 15, and 5 drinks at ages ≥16. For girls, ≥0.08% is reached with ≥3 drinks at ages 9 to 17 and ≥4 drinks at ages ≥18. This study explores whether, among a national sample of high school students, adolescent binge drinking at ≥twice versus thresholds versus nonbinge drinking heightens associations of drinking with health-risk behaviors. In 2015, the Youth Risk Behavior Survey asked a national probability sample of 15,624 high school students grades 9 to 12 (response rate 60%) about their past-month drinking and past-month or past-year health-risk behaviors. Logistic regressions with pairwise comparisons examined the association between different drinking levels and selected risk behaviors, adjusting for age, sex, race/ethnicity, and drinking frequency. Seven percent binged ≥twice and 9% thresholds, and 14% drank less than the binge thresholds. Significantly higher percentages of binge drinkers at ≥twice versus thresholds versus other drinkers reported illegal drug and tobacco use, risky sexual and traffic behaviors, physical fights, suicide, less school-night sleep, and poorer school grades. Adolescent alcohol misuse screening should query the maximum number of drinks consumed per occasion and frequency of such consumption. State and national

  16. The CNO Concentration in Cosmic Ray Spectrum as Measured From The Advanced Thin Ionization Calorimeter Experiment

    NASA Technical Reports Server (NTRS)

    Fazely, A. R.; Gunasingha, R. M.; Adams, James H., Jr.; Ahn, H.; Ampe, J.; Bashindzhagyan, G.; Whitaker, Ann F. (Technical Monitor)

    2001-01-01

    We present preliminary results on the spectra of CNO nuclei in the cosmic radiation as measured in the first flight of the Advanced Thin Ionization Calorimeter Balloon Experiment (ATIC) which lasted for 16 days, starting in December, 2000 with a launch from McMurdo, Antarctica. ATIC is a multiple, long duration balloon flight, investigation for the study of cosmic ray spectra from below 50 GeV to near 100 TeV total energy, using a fully active Bismuth Germanate (BGO) calorimeter. It is equipped with the first large area mosaic of small fully depleted silicon detector pads capable of charge identification in cosmic rays from H to Fe. As a redundancy check for the charge identification and a coarse particle tracking system, three projective layers of x-y scintillator hodoscopes were employed, above, in the center and below a Carbon interaction "target".

  17. A study of tungsten spectra using large helical device and compact electron beam ion trap in NIFS

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Morita, S.; Goto, M.; Murakami, I.

    2013-07-11

    Tungsten spectra have been observed from Large Helical Device (LHD) and Compact electron Beam Ion Trap (CoBIT) in wavelength ranges of visible to EUV. The EUV spectra with unresolved transition array (UTA), e.g., 6g-4f, 5g-4f, 5f-4d and 5p-4d transitions for W{sup +24-+33}, measured from LHD plasmas are compared with those measured from CoBIT with monoenergetic electron beam ({<=}2keV). The tungsten spectra from LHD are well analyzed based on the knowledge from CoBIT tungsten spectra. The C-R model code has been developed to explain the UTA spectra in details. Radial profiles of EUV spectra from highly ionized tungsten ions have beenmore » measured and analyzed by impurity transport simulation code with ADPAK atomic database code to examine the ionization balance determined by ionization and recombination rate coefficients. As the first trial, analysis of the tungsten density in LHD plasmas is attempted from radial profile of Zn-like WXLV (W{sup 44+}) 4p-4s transition at 60.9A based on the emission rate coefficient calculated with HULLAC code. As a result, a total tungsten ion density of 3.5 Multiplication-Sign 10{sup 10}cm{sup -3} at the plasma center is reasonably obtained. In order to observe the spectra from tungsten ions in lower-ionized charge stages, which can give useful information on the tungsten influx in fusion plasmas, the ablation cloud of the impurity pellet is directly measured with visible spectroscopy. A lot of spectra from neutral and singly ionized tungsten are observed and some of them are identified. A magnetic forbidden line from highly ionized tungsten ions has been examined and Cd-like WXXVII (W{sup 26+}) at 3893.7A is identified as the ground-term fine-structure transition of 4f{sup 23}H{sub 5}-{sup 3}H{sub 4}. The possibility of {alpha} particle diagnostic in D-T burning plasmas using the magnetic forbidden line is discussed.« less

  18. A study of tungsten spectra using large helical device and compact electron beam ion trap in NIFS

    NASA Astrophysics Data System (ADS)

    Morita, S.; Dong, C. F.; Goto, M.; Kato, D.; Murakami, I.; Sakaue, H. A.; Hasuo, M.; Koike, F.; Nakamura, N.; Oishi, T.; Sasaki, A.; Wang, E. H.

    2013-07-01

    Tungsten spectra have been observed from Large Helical Device (LHD) and Compact electron Beam Ion Trap (CoBIT) in wavelength ranges of visible to EUV. The EUV spectra with unresolved transition array (UTA), e.g., 6g-4f, 5g-4f, 5f-4d and 5p-4d transitions for W+24-+33, measured from LHD plasmas are compared with those measured from CoBIT with monoenergetic electron beam (≤2keV). The tungsten spectra from LHD are well analyzed based on the knowledge from CoBIT tungsten spectra. The C-R model code has been developed to explain the UTA spectra in details. Radial profiles of EUV spectra from highly ionized tungsten ions have been measured and analyzed by impurity transport simulation code with ADPAK atomic database code to examine the ionization balance determined by ionization and recombination rate coefficients. As the first trial, analysis of the tungsten density in LHD plasmas is attempted from radial profile of Zn-like WXLV (W44+) 4p-4s transition at 60.9Å based on the emission rate coefficient calculated with HULLAC code. As a result, a total tungsten ion density of 3.5×1010cm-3 at the plasma center is reasonably obtained. In order to observe the spectra from tungsten ions in lower-ionized charge stages, which can give useful information on the tungsten influx in fusion plasmas, the ablation cloud of the impurity pellet is directly measured with visible spectroscopy. A lot of spectra from neutral and singly ionized tungsten are observed and some of them are identified. A magnetic forbidden line from highly ionized tungsten ions has been examined and Cd-like WXXVII (W26+) at 3893.7Å is identified as the ground-term fine-structure transition of 4f23H5-3H4. The possibility of α particle diagnostic in D-T burning plasmas using the magnetic forbidden line is discussed.

  19. Photoionization and electron-impact ionization of Ar5+

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wang, J.C.; Lu, M.; Esteves, D.

    2007-02-27

    Absolute cross sections for photoionization andelectron-impact Photionization of Ar5+ have been measuredusing twodifferent interacting-beams setups. The spectra consist of measurementsof the yield of products dueto single ionization as a function ofelectron or photon energy. In addition, absolute photoionization andelectron-impact ionization cross sections were measured to normalize themeasured Ar6+ product-ion yield spectra. In the energy range from 90 to111 eV, both electron-impact ionization and photoionization of Ar5+aredominated by indirect 3s subshell excitation-autoionization. In theenergy range from 270 to 285 eV, resonances due to 2p-3dexcitation-autoionization are prominent in the photoionization spectrum.In the range from 225 to 335 eV, an enhancement due tomore » 2p-nl (n>2>excitations are evident in the electron-impactionization cross section.The electron and photon impact data show some features due to excitationof the same intermediate autoionizing states.« less

  20. Resonant two-photon ionization and mass-analyzed threshold ionization spectroscopy of 3,5-difluorophenol

    NASA Astrophysics Data System (ADS)

    Peng, Wei Chih; Wu, Pei Ying; Tzeng, Shen Yuan; Tzeng, Wen Bih

    2018-05-01

    The first electronic transition and adiabatic ionization energies of 3,5-difluorophenol (35DFP) have been identified as 37614 cm-1 and 72468 cm-1, respectively. These energy values of 35DFP are marginally higher than those of other positional isomers of difluorophenols (25DFP, 34DFP, and 24DFP). The observed active vibrations are primarily due to the in-plane and out-of-plane ring deformation and substituent-sensitive bending motions in the electronically excited (S1) and cationic ground (D0) states.

  1. A Simple Sonication Improves Protein Signal in Matrix-Assisted Laser Desorption Ionization Imaging

    NASA Astrophysics Data System (ADS)

    Lin, Li-En; Su, Pin-Rui; Wu, Hsin-Yi; Hsu, Cheng-Chih

    2018-02-01

    Proper matrix application is crucial in obtaining high quality matrix-assisted laser desorption ionization (MALDI) mass spectrometry imaging (MSI). Solvent-free sublimation was essentially introduced as an approach of homogeneous coating that gives small crystal size of the organic matrix. However, sublimation has lower extraction efficiency of analytes. Here, we present that a simple sonication step after the hydration in standard sublimation protocol significantly enhances the sensitivity of MALDI MSI. This modified procedure uses a common laboratory ultrasonicator to immobilize the analytes from tissue sections without noticeable delocalization. Improved imaging quality with additional peaks above 10 kDa in the spectra was thus obtained upon sonication treatment. [Figure not available: see fulltext.

  2. The investigation of time dependent flame structure by ionization probes

    NASA Technical Reports Server (NTRS)

    Ventura, J. M. P.; Suzuki, T.; Yule, A. J.; Ralph, S.; Chigier, N. A.

    1980-01-01

    Ionization probes were used to measure mean ionization current and frequency spectra, auto-correlations and cross-correlations in jet flames with variation in the initial Reynolds numbers and equivalence ratios. Special attention was paid to the transitional region between the burner exit plane and the plane of onset of turbulence.

  3. Competitive photodissociation channels in jet-cooled HNCO: Thermochemistry and near-threshold predissociation

    NASA Astrophysics Data System (ADS)

    Zyrianov, M.; Droz-Georget, Th.; Sanov, A.; Reisler, H.

    1996-11-01

    The photoinitiated unimolecular decomposition of jet-cooled HNCO has been studied following S1(1A″)←S0(1A') excitation near the thresholds of the spin-allowed dissociation channels: (1) H(2S)+NCO(X2Π) and (2) NH(a1Δ)+CO(X1Σ+), which are separated by 4470 cm-1. Photofragment yield spectra of NCO(X2Π) and NH (a1Δ) were obtained in selected regions in the 260-220 nm photolysis range. The NCO(X2Π)yield rises abruptly at 38 380 cm-1 and the spectrum exhibits structures as narrow as 0.8 cm-1 near the threshold. The linewidths increase only slowly with photolysis energy. The jet-cooled absorption spectrum near the channel (1) threshold [D0(H+NCO)] was obtained using two-photon excitation via the S1 state, terminating in a fluorescent product. The absorption spectrum is similar to the NCO yield spectrum, and its intensity does not diminish noticeably above D0(H+NCO), indicating that dissociation near threshold is slow. The NCO product near threshold is cold, as is typical of a barrierless reaction. NH (a1Δ) products appear first at 42 840 cm-1, but their yield is initially very small, as evidenced also by the insignificant decrease in the NCO yield in the threshold region of channel (2). The NH (a1Δ) yield increases faster at higher photolysis energies and the linewidths increase as well. At the channel (2) threshold, the NH (a1Δ) product is generated only in the lowest rotational level, J=2, and rotational excitation increases with photolysis energy. We propose that in the range 260-230 nm, HNCO (S1) undergoes radiationless decay terminating in S0/T1 followed by unimolecular reaction. Decompositions via channels (1) and (2) proceed without significant exit channel barriers. At wavelengths shorter than 230 nm, the participation of an additional, direct pathway cannot be ruled out. The jet-cooled photofragment yield spectra allow the determination, with good accuracy, of thermochemical values relevant to HNCO decomposition. The following heats of formation are

  4. Strategy Guideline: Modeling Enclosure Design in Above-Grade Walls

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lstiburek, J.; Ueno, K.; Musunuru, S.

    2016-02-24

    The Strategy Guideline describes how to model and interpret results of models for above grade walls. The Measure Guideline analyzes the failure thresholds and criteria for above grade walls. A library of above-grade walls with historically successful performance was used to calibrate WUFI (Warme Und Feuchte Instationar) software models. The information is generalized for application to a broad population of houses within the limits of existing experience.

  5. Ionization-chamber smoke detector system

    DOEpatents

    Roe, Robert F.

    1976-10-19

    This invention relates to an improved smoke-detection system of the ionization-chamber type. In the preferred embodiment, the system utilizes a conventional detector head comprising a measuring ionization chamber, a reference ionization chamber, and a normally non-conductive gas triode for discharging when a threshold concentration of airborne particulates is present in the measuring chamber. The improved system is designed to reduce false alarms caused by fluctuations in ambient temperature. Means are provided for periodically firing the gas discharge triode and each time recording the triggering voltage required. A computer compares each triggering voltage with its predecessor. The computer is programmed to energize an alarm if the difference between the two compared voltages is a relatively large value indicative of particulates in the measuring chamber and to disregard smaller differences typically resulting from changes in ambient temperature.

  6. Pre-Ionization Controlled Laser Plasma Formation for Ignition Applications

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Shneider, Mikhail

    The presented research explored new physics and ignition schemes based on laser induced plasmas that are fundamentally distinct from past laser ignition research focused on single laser pulses. Specifically, we consider the use of multiple laser pulses where the first pulse provides pre-ionization allowing controlled absorption of the second pulse. In this way, we can form tailored laser plasmas in terms of their ionization fraction, gas temperature (e.g. to achieve elevated temperature of ~2000 K ideally suited for an ignition source), reduced energy loss to shock waves and radiation, and large kernel size (e.g. length ~1-10 cm). The proposed researchmore » included both experimental and modeling efforts, at Colorado State University, Princeton University and University of Tennessee, towards the basic science of the new laser plasma approach with emphasis on tailoring the plasmas to practical propulsion systems. Experimental results (CSU) show that the UV beam produces a pre-ionized volume which assists in breakdown of the NIR beam, leading to reduction in NIR breakdown threshold by factor of >2. Numerical modeling is performed to examine the ionization and breakdown of both beams. The main theoretical and computational parts of the work were done at Princeton University. The modeled breakdown threshold of the NIR, including assist by pre-ionization, is in reasonable agreement with the experimental results.« less

  7. Compton spectra of atoms at high x-ray intensity

    NASA Astrophysics Data System (ADS)

    Son, Sang-Kil; Geffert, Otfried; Santra, Robin

    2017-03-01

    Compton scattering is the nonresonant inelastic scattering of an x-ray photon by an electron and has been used to probe the electron momentum distribution in gas-phase and condensed-matter samples. In the low x-ray intensity regime, Compton scattering from atoms dominantly comes from bound electrons in neutral atoms, neglecting contributions from bound electrons in ions and free (ionized) electrons. In contrast, in the high x-ray intensity regime, the sample experiences severe ionization via x-ray multiphoton multiple ionization dynamics. Thus, it becomes necessary to take into account all the contributions to the Compton scattering signal when atoms are exposed to high-intensity x-ray pulses provided by x-ray free-electron lasers (XFELs). In this paper, we investigate the Compton spectra of atoms at high x-ray intensity, using an extension of the integrated x-ray atomic physics toolkit, xatom. As the x-ray fluence increases, there is a significant contribution from ionized electrons to the Compton spectra, which gives rise to strong deviations from the Compton spectra of neutral atoms. The present study provides not only understanding of the fundamental XFEL-matter interaction but also crucial information for single-particle imaging experiments, where Compton scattering is no longer negligible. , which features invited work from the best early-career researchers working within the scope of J. Phys. B. This project is part of the Journal of Physics series’ 50th anniversary celebrations in 2017. Sang-Kil Son was selected by the Editorial Board of J. Phys. B as an Emerging Leader.

  8. ON-LINE ANALYSIS OF AQUEOUS AEROSOLS BY LASER DESORPTION IONIZATION. (R823980)

    EPA Science Inventory

    In this work the effects of water on the laser desorption ionization mass spectra of single aerosol particles are explored. Aqueous aerosols are produced by passing dry particles through a humid environment so that they undergo deliquescent growth. Laser desorption ionization is ...

  9. Valence ionized states of iron pentacarbonyl and eta5-cyclopentadienyl cobalt dicarbonyl studied by symmetry-adapted cluster-configuration interaction calculation and collision-energy resolved Penning ionization electron spectroscopy.

    PubMed

    Fukuda, Ryoichi; Ehara, Masahiro; Nakatsuji, Hiroshi; Kishimoto, Naoki; Ohno, Koichi

    2010-02-28

    Valence ionized states of iron pentacarbonyl Fe(CO)(5) and eta(5)-cyclopentadienyl cobalt dicarbonyl Co(eta(5)-C(5)H(5))(CO)(2) have been studied by ultraviolet photoelectron spectroscopy, two-dimensional Penning ionization electron spectroscopy (2D-PIES), and symmetry-adapted cluster-configuration interaction calculations. Theory provided reliable assignments for the complex ionization spectra of these molecules, which have metal-carbonyl bonds. Theoretical ionization energies agreed well with experimental observations and the calculated wave functions could explain the relative intensities of PIES spectra. The collision-energy dependence of partial ionization cross sections (CEDPICS) was obtained by 2D-PIES. To interpret these CEDPICS, the interaction potentials between the molecules and a Li atom were examined in several coordinates by calculations. The relation between the slope of the CEDPICS and the electronic structure of the ionized states, such as molecular symmetry and the spatial distribution of ionizing orbitals, was analyzed. In Fe(CO)(5), an attractive interaction was obtained for the equatorial CO, while the interaction for the axial CO direction was repulsive. For Co(eta(5)-C(5)H(5))(CO)(2), the interaction potential in the direction of both Co-C-O and Co-Cp ring was attractive. These anisotropic interactions and ionizing orbital distributions consistently explain the relative slopes of the CEDPICS.

  10. Wavelength dependence of femtosecond laser-induced damage threshold of optical materials

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gallais, L., E-mail: laurent.gallais@fresnel.fr; Douti, D.-B.; Commandré, M.

    2015-06-14

    An experimental and numerical study of the laser-induced damage of the surface of optical material in the femtosecond regime is presented. The objective of this work is to investigate the different processes involved as a function of the ratio of photon to bandgap energies and compare the results to models based on nonlinear ionization processes. Experimentally, the laser-induced damage threshold of optical materials has been studied in a range of wavelengths from 1030 nm (1.2 eV) to 310 nm (4 eV) with pulse durations of 100 fs with the use of an optical parametric amplifier system. Semi-conductors and dielectrics materials, in bulk or thinmore » film forms, in a range of bandgap from 1 to 10 eV have been tested in order to investigate the scaling of the femtosecond laser damage threshold with the bandgap and photon energy. A model based on the Keldysh photo-ionization theory and the description of impact ionization by a multiple-rate-equation system is used to explain the dependence of laser-breakdown with the photon energy. The calculated damage fluence threshold is found to be consistent with experimental results. From these results, the relative importance of the ionization processes can be derived depending on material properties and irradiation conditions. Moreover, the observed damage morphologies can be described within the framework of the model by taking into account the dynamics of energy deposition with one dimensional propagation simulations in the excited material and thermodynamical considerations.« less

  11. A Combined Desorption Ionization by Charge Exchange (DICE) and Desorption Electrospray Ionization (DESI) Source for Mass Spectrometry

    NASA Astrophysics Data System (ADS)

    Chan, Chang-Ching; Bolgar, Mark S.; Miller, Scott A.; Attygalle, Athula B.

    2011-01-01

    A source that couples the desorption ionization by charge exchange (DICE) and desorption electrospray ionization (DESI) techniques together was demonstrated to broaden the range of compounds that can be analyzed in a single mass spectrometric experiment under ambient conditions. A tee union was used to mix the spray reagents into a partially immiscible blend before this mixture was passed through a conventional electrospray (ES) probe capillary. Using this technique, compounds that are ionized more efficiently by the DICE method and those that are ionized better with the DESI procedure could be analyzed simultaneously. For example, hydroquinone, which is not detected when subjected to DESI-MS in the positive-ion generation mode, or the sodium adduct of guaifenesin, which is not detected when examined by DICE-MS, could both be detected in one experiment when the two techniques were combined. The combined technique was able to generate the molecular ion, proton and metal adduct from the same compound. When coupled to a tandem mass spectrometer, the combined source enabled the generation of product ion spectra from the molecular ion and the [M + H]+ or [M + metal]+ ions of the same compound without the need to physically change the source from DICE to DESI. The ability to record CID spectra of both the molecular ion and adduct ions in a single mass spectrometric experiment adds a new dimension to the array of mass spectrometric methods available for structural studies.

  12. Testing for a Debt-Threshold Effect on Output Growth.

    PubMed

    Lee, Sokbae; Park, Hyunmin; Seo, Myung Hwan; Shin, Youngki

    2017-12-01

    Using the Reinhart-Rogoff dataset, we find a debt threshold not around 90 per cent but around 30 per cent, above which the median real gross domestic product (GDP) growth falls abruptly. Our work is the first to formally test for threshold effects in the relationship between public debt and median real GDP growth. The null hypothesis of no threshold effect is rejected at the 5 per cent significance level for most cases. While we find no evidence of a threshold around 90 per cent, our findings from the post-war sample suggest that the debt threshold for economic growth may exist around a relatively small debt-to-GDP ratio of 30 per cent. Furthermore, countries with debt-to-GDP ratios above 30 per cent have GDP growth that is 1 percentage point lower at the median.

  13. Testing for a Debt‐Threshold Effect on Output Growth†

    PubMed Central

    Lee, Sokbae; Park, Hyunmin; Seo, Myung Hwan; Shin, Youngki

    2017-01-01

    Abstract Using the Reinhart–Rogoff dataset, we find a debt threshold not around 90 per cent but around 30 per cent, above which the median real gross domestic product (GDP) growth falls abruptly. Our work is the first to formally test for threshold effects in the relationship between public debt and median real GDP growth. The null hypothesis of no threshold effect is rejected at the 5 per cent significance level for most cases. While we find no evidence of a threshold around 90 per cent, our findings from the post‐war sample suggest that the debt threshold for economic growth may exist around a relatively small debt‐to‐GDP ratio of 30 per cent. Furthermore, countries with debt‐to‐GDP ratios above 30 per cent have GDP growth that is 1 percentage point lower at the median. PMID:29263562

  14. Fragmentation pathways of tungsten hexacarbonyl clusters upon electron ionization.

    PubMed

    Neustetter, M; Jabbour Al Maalouf, E; Limão-Vieira, P; Denifl, S

    2016-08-07

    Electron ionization of neat tungsten hexacarbonyl (W(CO)6) clusters has been investigated in a crossed electron-molecular beam experiment coupled with a mass spectrometer system. The molecule is used for nanofabrication processes through electron beam induced deposition and ion beam induced deposition techniques. Positive ion mass spectra of W(CO)6 clusters formed by electron ionization at 70 eV contain the ion series of the type W(CO)n (+) (0 ≤ n ≤ 6) and W2(CO)n (+) (0 ≤ n ≤ 12). In addition, a series of peaks are observed and have been assigned to WC(CO)n (+) (0 ≤ n ≤ 3) and W2C(CO)n (+) (0 ≤ n ≤ 10). A distinct change of relative fragment ion intensity can be observed for clusters compared to the single molecule. The characteristic fragmentation pattern obtained in the mass spectra can be explained by a sequential decay of the ionized organometallic, which is also supported by the study of the clusters when embedded in helium nanodroplets. In addition, appearance energies for the dissociative ionization channels for singly charged ions have been estimated from experimental ion efficiency curves.

  15. Dynamics and Fragmentation of Hydrogen Bonded and van der Waal Clusters upon 26.5 eV Soft X-ray Laser Ionization

    NASA Astrophysics Data System (ADS)

    Dong, Feng; Heinbuch, Scott; Bernstein, Elliot; Rocca, Jorge

    2006-05-01

    A desk-top soft x-ray laser is applied to the study of water, methanol, ammonia, sulfur dioxide, carbon dioxide, mixed sulfur dioxide-water, and mixed carbon dioxide-water clusters through single photon ionization time of flight mass spectroscopy. Almost all of the energy above the vertical ionization energy is removed by the ejected electron. Protonated water, methanol, and ammonia clusters dominate the mass spectra for the first three systems. The temperatures of the neutral water and methanol clusters can be estimated. In the case of pure SO2 and CO2, the mass spectra are dominated by (SO2)n^+ and (CO2)n^+ cluster series. When a high or low concentration of SO2/CO2 is mixed with water, we observe (SO2/CO2)nH2O^+ or SO2/CO2(H2O)nH^+ in the mass spectra, respectively. The unimolecular dissociation rate constants for reactions involving loss of one neutral molecule are calculated for the protonated water, methanol, and ammonia clusters as well as for SO2 and CO2 clusters. We find that the 26.5 eV soft x-ray laser is a nearly ideal tool for the study of hydrogen bonded and van der Waals cluster systems and we are currently exploring its usefulness for other more strongly bound systems.

  16. Flash Spectroscopy: Emission Lines From the Ionized Circumstellar Material Around 10-Day-Old Type II Supernovae

    NASA Technical Reports Server (NTRS)

    Khazov, D.; Yaron, O.; Gal-Yam, A.; Manulis, I.; Rubin, A.; Kulkarni, S. R.; Arcavi, I.; Kasliwal, M. M.; Ofek, E. O.; Cao, Y.; hide

    2016-01-01

    Supernovae (SNe) embedded in dense circumstellar material (CSM) may show prominent emission lines in their early-time spectra (< or =10 days after the explosion), owing to recombination of the CSM ionized by the shock-breakout flash. From such spectra ("flash spectroscopy"), we can measure various physical properties of the CSM, as well as the mass-loss rate of the progenitor during the year prior to its explosion. Searching through the Palomar Transient Factory (PTF and iPTF) SN spectroscopy databases from 2009 through 2014, we found 12 SNe II showing flash-ionized (FI) signatures in their first spectra. All are younger than 10 days. These events constitute 14% of all 84 SNe in our sample having a spectrum within 10 days from explosion, and 18% of SNe II observed at ages <5 days, thereby setting lower limits on the fraction of FI events. We classified as "blue/featureless" (BF) those events having a first spectrum that is similar to that of a blackbody, without any emission or absorption signatures. It is possible that some BF events had FI signatures at an earlier phase than observed, or that they lack dense CSM around the progenitor. Within 2 days after explosion, 8 out of 11 SNe in our sample are either BF events or show FI signatures. Interestingly, we found that 19 out of 21 SNe brighter than an absolute magnitude M(sub R) = -18.2 belong to the FI or BF groups, and that all FI events peaked above M(sub R) = -17.6 mag, significantly brighter than average SNe II.

  17. SDSS IV MaNGA: Deep observations of extra-planar, diffuse ionized gas around late-type galaxies from stacked IFU spectra

    NASA Astrophysics Data System (ADS)

    Jones, A.; Kauffmann, G.; D'Souza, R.; Bizyaev, D.; Law, D.; Haffner, L.; Bahé, Y.; Andrews, B.; Bershady, M.; Brownstein, J.; Bundy, K.; Cherinka, B.; Diamond-Stanic, A.; Drory, N.; Riffel, R. A.; Sánchez, S. F.; Thomas, D.; Wake, D.; Yan, R.; Zhang, K.

    2017-03-01

    We have conducted a study of extra-planar diffuse ionized gas using the first year data from the MaNGA IFU survey. We have stacked spectra from 49 edge-on, late-type galaxies as a function of distance from the midplane of the galaxy. With this technique we can detect the bright emission lines Hα, Hβ, [O II]λλ3726, 3729, [O III]λ5007, [N II]λλ6549, 6584, and [S II]λλ6717, 6731 out to about 4 kpc above the midplane. With 16 galaxies we can extend this analysis out to about 9 kpc, I.e. a distance of 2Re, vertically from the midplane. In the halo, the surface brightnesses of the [O II] and Hα emission lines are comparable, unlike in the disk where Hα dominates. When we split the sample by specific star-formation rate, concentration index, and stellar mass, each subsample's emission line surface brightness profiles and ratios differ, indicating that extra-planar gas properties can vary. The emission line surface brightnesses of the gas around high specific star-formation rate galaxies are higher at all distances, and the line ratios are closer to ratios characteristic of H II regions compared with low specific star-formation rate galaxies. The less concentrated and lower stellar mass samples exhibit line ratios that are more like H II regions at larger distances than their more concentrated and higher stellar mass counterparts. The largest difference between different subsamples occurs when the galaxies are split by stellar mass. We additionally infer that gas far from the midplane in more massive galaxies has the highest temperatures and steepest radial temperature gradients based on their [N II]/Hα and [O II]/Hα ratios between the disk and the halo. SDSS IV.

  18. Volume nanograting formation in laser-silica interaction as a result of the 1D plasma-resonance ionization instability

    NASA Astrophysics Data System (ADS)

    Gildenburg, V. B.; Pavlichenko, I. A.

    2016-08-01

    The initial stage of the small-scale ionization-induced instability developing inside the fused silica volume exposed to the femtosecond laser pulse is studied as a possible initial cause of the self-organized nanograting formation. We have calculated the spatial spectra of the instability with the electron-hole diffusion taken into account for the first time and have found that it results in the formation of some hybrid (diffusion-wave) 1D structure with the spatial period determined as the geometrical mean of the laser wavelength and characteristic diffusion length of the process considered. Near the threshold of the instability, this period occurs to be approximately equal to the laser half-wavelength in the silica, close to the one experimentally observed.

  19. Volume nanograting formation in laser-silica interaction as a result of the 1D plasma-resonance ionization instability

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gildenburg, V. B., E-mail: gil@appl.sci-nnov.ru; Pavlichenko, I. A.; Institute of Applied Physics, Russian Academy of Sciences, Nizhny Novgorod 603950

    2016-08-15

    The initial stage of the small-scale ionization-induced instability developing inside the fused silica volume exposed to the femtosecond laser pulse is studied as a possible initial cause of the self-organized nanograting formation. We have calculated the spatial spectra of the instability with the electron-hole diffusion taken into account for the first time and have found that it results in the formation of some hybrid (diffusion-wave) 1D structure with the spatial period determined as the geometrical mean of the laser wavelength and characteristic diffusion length of the process considered. Near the threshold of the instability, this period occurs to be approximatelymore » equal to the laser half-wavelength in the silica, close to the one experimentally observed.« less

  20. High voltage threshold for stable operation in a dc electron gun

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yamamoto, Masahiro, E-mail: masahiro@post.kek.jp; Nishimori, Nobuyuki, E-mail: n-nishim@tagen.tohoku.ac.jp

    We report clear observation of a high voltage (HV) threshold for stable operation in a dc electron gun. The HV hold-off time without any discharge is longer than many hours for operation below the threshold, while it is roughly 10 min above the threshold. The HV threshold corresponds to the minimum voltage where discharge ceases. The threshold increases with the number of discharges during HV conditioning of the gun. Above the threshold, the amount of gas desorption per discharge increases linearly with the voltage difference from the threshold. The present experimental observations can be explained by an avalanche discharge modelmore » based on the interplay between electron stimulated desorption (ESD) from the anode surface and subsequent secondary electron emission from the cathode by the impact of ionic components of the ESD molecules or atoms.« less

  1. Ultraviolet absorption by highly ionized atoms in the Orion Nebula

    NASA Technical Reports Server (NTRS)

    Franco, J.; Savage, B. D.

    1982-01-01

    The International Ultraviolet Explorer was used to obtain high-resolution, far-UV spectra of theta 1 A, theta 1 C, theta 1 D, and theta 2 A Orionis. The interstellar absorption lines in these spectra are discussed with an emphasis on the high-ionization lines of C IV and Si IV. Theta 2 A Ori has interstellar C IV and Si IV absorption of moderate strength at the velocity found for normal H II region ions. Theta 1 C Ori has very strong interstellar C IV and Si IV absorption at velocities blueshifted by about 25 km/s from that found for the normal H II region ions. The possible origin of the high-ionization lines by three processes is considered: X-ray ionization, collisional ionization, and UV photoionization. It is concluded that the C IV and Si IV ions toward theta 2 A and theta 1 C Ori are likely produced by UV photoionization of surrounding nebular gas. In the case of theta 1 C Ori, the velocity shift of the high-ionization lines may be produced through the acceleration of high-density globules in the core of the nebula by the stellar wind of theta 1 C Ori.

  2. Electron impact ionization of cycloalkanes, aldehydes, and ketones

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gupta, Dhanoj; Antony, Bobby, E-mail: bka.ism@gmail.com

    The theoretical calculations of electron impact total ionization cross section for cycloalkane, aldehyde, and ketone group molecules are undertaken from ionization threshold to 2 keV. The present calculations are based on the spherical complex optical potential formalism and complex scattering potential ionization contribution method. The results of most of the targets studied compare fairly well with the recent measurements, wherever available and the cross sections for many targets are predicted for the first time. The correlation between the peak of ionization cross sections with number of target electrons and target parameters is also reported. It was found that the crossmore » sections at their maximum depend linearly with the number of target electrons and with other target parameters, confirming the consistency of the values reported here.« less

  3. Resonant two-photon ionization and laser induced fluorescence spectroscopy of jet-cooled adenine

    NASA Astrophysics Data System (ADS)

    Kim, Nam Joon; Jeong, Gawoon; Kim, Yung Sam; Sung, Jiha; Keun Kim, Seong; Park, Young Dong

    2000-12-01

    Electronic spectra of the jet-cooled DNA base adenine were obtained by the resonant two-photon ionization (R2PI) and the laser induced fluorescence (LIF) techniques. The 0-0 band to the lowest electronically excited state was found to be located at 35 503 cm-1. Well-resolved vibronic structures were observed up to 1100 cm-1 above the 0-0 level, followed by a slow rise of broad structureless absorption. The lowest electronic state was proposed to be of nπ* character, which lies ˜600 cm-1 below the onset of the ππ* state. The broad absorption was attributed to the extensive vibronic mixing between the nπ* state and the high-lying ππ* state.

  4. A variety of characteristic behaviour of resonant KL23L23 Auger decays following Si K-shell photoexcitation of SiCl4

    NASA Astrophysics Data System (ADS)

    Suzuki, I. H.; Kono, Y.; Sakai, K.; Kimura, M.; Ueda, K.; Tamenori, Y.; Takahashi, O.; Nagaoka, S.

    2013-04-01

    Spectator resonant Auger electron spectra with the Si 1s photoexcitation of SiCl4 have been measured using an electron spectroscopic technique combined with undulator radiation. The transition with the highest intensity in the total ion yield (TIY) spectrum, coming from excitation of a 1s electron into the 9t2 valence orbital, generates the resonant Auger decay in which the excited electron remains in the 9t2 orbital. A TIY peak positioned slightly above the 1s ionization threshold induces Auger decay in which the slow photoelectron is re-captured into a higher lying Rydberg orbital or the normal Auger peak shape is distorted due to a post-collision interaction effect. Another structure above the threshold, originating from a doubly excited state, yields the normal Auger peak with the distortion of peak shape and a resonant Auger peak with a higher kinetic energy. These findings provide a clear understanding of the properties of the excited orbitals which were ambiguous previously.

  5. Laser Pulse Width Dependence and Ionization Mechanism of Matrix-Assisted Laser Desorption/Ionization

    NASA Astrophysics Data System (ADS)

    Liang, Sheng-Ping; Lu, I.-Chung; Tsai, Shang-Ting; Chen, Jien-Lian; Lee, Yuan Tseh; Ni, Chi-Kung

    2017-10-01

    Ultraviolet laser pulses at 355 nm with variable pulse widths in the region from 170 ps to 1.5 ns were used to investigate the ionization mechanism of matrix-assisted laser desorption/ionization (MALDI) for matrices 2,5-dihydroxybenzoic acid (DHB), α-cyano-4-hydroxycinnamic acid (CHCA), and sinapinic acid (SA). The mass spectra of desorbed ions and the intensity and velocity distribution of desorbed neutrals were measured simultaneously for each laser shot. These quantities were found to be independent of the laser pulse width. A comparison of the experimental measurements and numerical simulations according to the multiphoton ionization, coupled photophysical and chemical dynamics (CPCD), and thermally induced proton transfer models showed that the predictions of thermally induced proton transfer model were in agreement with the experimental data, but those of the multiphoton ionization model were not. Moreover, the predictions of the CPCD model based on singlet-singlet energy pooling were inconsistent with the experimental data of CHCA and SA, but were consistent with the experimental data of DHB only when some parameters used in the model were adjusted to extreme values. [Figure not available: see fulltext.

  6. Communication: Protonation process of formic acid from the ionization and fragmentation of dimers induced by synchrotron radiation in the valence region

    NASA Astrophysics Data System (ADS)

    Arruda, Manuela S.; Medina, Aline; Sousa, Josenilton N.; Mendes, Luiz A. V.; Marinho, Ricardo R. T.; Prudente, Frederico V.

    2016-04-01

    The ionization and fragmentation of monomers of organic molecules have been extensively studied in the gas phase using mass spectroscopy. In the spectra of these molecules it is possible to identify the presence of protonated cations, which have a mass-to-charge ratio one unit larger than the parent ion. In this work, we investigate this protonation process as a result of dimers photofragmentation. Experimental photoionization and photofragmentation results of doubly deuterated formic acid (DCOOD) in the gas phase by photons in the vacuum ultraviolet region are presented. The experiment was performed by using a time-of-flight mass spectrometer installed at the Brazilian Synchrotron Light Laboratory and spectra for different pressure values in the experimental chamber were obtained. The coupled cluster approach with single and double substitutions was employed to assist the experimental analysis. Results indicate that protonated formic acid ions are originated from dimer dissociation, and the threshold photoionization of (DCOOD)ṡD+ is also determined.

  7. Multi-photon ionization of atoms in intense short-wavelength radiation fields

    NASA Astrophysics Data System (ADS)

    Meyer, Michael

    2015-05-01

    The unprecedented characteristics of XUV and X-ray Free Electron Lasers (FELs) have stimulated numerous investigations focusing on the detailed understanding of fundamental photon-matter interactions in atoms and molecules. In particular, the high intensities (up to 106 W/cm2) giving rise to non-linear phenomena in the short wavelength regime. The basic phenomenology involves the production of highly charged ions via electron emission to which both sequential and direct multi-photon absorption processes contribute. The detailed investigation of the role and relative weight of these processes under different conditions (wavelength, pulse duration, intensity) is the key element for a comprehensive understanding of the ionization dynamics. Here the results of recent investigations are presented, performed at the FELs in Hamburg (FLASH) and Trieste (FERMI) on atomic systems with electronic structures of increasing complexity (Ar, Ne and Xe). Mainly, electron spectroscopy is used to obtain quantitative information about the relevance of various multi-photon ionization processes. For the case of Ar, a variety of processes including above threshold ionization (ATI) from 3p and 3s valence shells, direct 2p two-photon ionization and resonant 2p-4p two-photon excitations were observed and their role was quantitatively determined comparing the experimental ionization yields to ab-initio calculations of the cross sections for the multi-photon processes. Using Ar as a benchmark to prove the reliability of the combined experimental and theoretical approach, the more complex and intriguing case of Xe was studied. Especially, the analysis of the two-photon ATI from the Xe 4d shell reveals new insight into the character of the 4d giant resonance, which was unresolved in the linear one-photon regime. Finally, the influence of intense XUV radiation to the relaxation dynamics of the Ne 2s-3p resonance was investigated by angle-resolved electron spectroscopy, especially be observing

  8. Lithium atoms on helium nanodroplets: Rydberg series and ionization dynamics

    NASA Astrophysics Data System (ADS)

    Lackner, Florian; Krois, Günter; Ernst, Wolfgang E.

    2017-11-01

    The electronic excitation spectrum of lithium atoms residing on the surface of helium nanodroplets is presented and analyzed employing a Rydberg-Ritz approach. Utilizing resonant two-photon ionization spectroscopy, two different Rydberg series have been identified: one assigned to the nS(Σ) series and the other with predominantly nP(Π) character. For high Rydberg states, which have been resolved up to n = 13, the surrounding helium effectively screens the valence electron from the Li ion core, as indicated by the apparent red-shift of Li transitions and lowered quantum defects on the droplet with respect to their free atom counterparts. For low n states, the screening effect is weakened and the prevailing repulsive interaction gives rise to strongly broadened and blue-shifted transitions. The red-shifts originate from the polarization of nearby He atoms by the positive Li ion core. As a consequence of this effect, the ionization threshold is lowered by 116 ± 10 cm-1 for Li on helium droplets with a radius of about 40 Å. Upon single-photon ionization, heavy complexes corresponding to Li ions attached to intact helium droplets are detected. We conclude that ionization close to the on-droplet ionization threshold triggers a dynamic process in which the Li ion core undergoes a transition from a surface site into the droplet.

  9. Ionization Cross Sections and Dissociation Channels of DNA Bases by Electron Collisions

    NASA Technical Reports Server (NTRS)

    Huo, Winifred M.; Dateo, Christopher E.; Fletcher, Graham D.

    2004-01-01

    Free secondary electrons are the most abundant secondary species in ionizing radiation. Their role in DNA damage, both direct and indirect, is an active area of research. While indirect damage by free radicals, particularly by the hydroxyl radical generated by electron collision with water. is relatively well studied, damage by direct electron collision with DNA is less well understood. Only recently Boudaiffa et al. demonstrated that electrons at energies well below ionization thresholds can induce substantial yields of single- and double-strand breaks in DNA by a resonant, dissociative attachment process. This study attracted renewed interest in electron collisions with DNA, especially in the low energy region. At higher energies ionization becomes important. While Monte Carlo track simulations of radiation damage always include ionization, the probability of dissociative ionization, i.e., simultaneous ionization and dissociation, is ignored. Just like dissociative attachment, dissociative ionization may be an important contributor to double-strand breaks since the radicals and ions produced by dissociative ionization, located in the vicinity of the DNA coil, can readily interact with other parts of the DNA. Using the improved binary-encounter dipole (iBED) formulation, we calculated the ionization cross sections of the four DNA bases, adenine, cytosine, guanine, and thymine, by electrons at energies from threshold to 1 KeV. The present calculation gives cross sections approximately 20% lower than the results by Bemhardt and Paretzke using the Deutsch-Mark and Binary-Encounter-Bethe (BEB) formalisms. The difference is most likely due to the lack of a shielding term in the dipole potential used in the Deutsch-Mark and BEB formalisms. The dissociation channels of ionization for the bases are currently being studied.

  10. Ionization of doped helium nanodroplets: Complexes of C60 with water clusters

    NASA Astrophysics Data System (ADS)

    Denifl, S.; Zappa, F.; Mähr, I.; Mauracher, A.; Probst, M.; Urban, J.; Mach, P.; Bacher, A.; Bohme, D. K.; Echt, O.; Märk, T. D.; Scheier, P.

    2010-06-01

    Water clusters are known to undergo an autoprotonation reaction upon ionization by photons or electron impact, resulting in the formation of (H2O)nH3O+. Ejection of OH cannot be quenched by near-threshold ionization; it is only partly quenched when clusters are complexed with inert gas atoms. Mass spectra recorded by electron ionization of water-doped helium droplets show that the helium matrix also fails to quench OH loss. The situation changes drastically when helium droplets are codoped with C60. Charged C60-water complexes are predominantly unprotonated; C60(H2O)4+ and (C60)2(H2O)4+ appear with enhanced abundance. Another intense ion series is due to C60(H2O)nOH+; dehydrogenation is proposed to be initiated by charge transfer between the primary He+ ion and C60. The resulting electronically excited C60+∗ leads to the formation of a doubly charged C60-water complex either via emission of an Auger electron from C60+∗, or internal Penning ionization of the attached water complex, followed by charge separation within {C60(H2O)n}2+. This mechanism would also explain previous observations of dehydrogenation reactions in doped helium droplets. Mass-analyzed ion kinetic energy scans reveal spontaneous (unimolecular) dissociation of C60(H2O)n+. In addition to the loss of single water molecules, a prominent reaction channel yields bare C60+ for sizes n=3, 4, or 6. Ab initio Hartree-Fock calculations for C60-water complexes reveal negligible charge transfer within neutral complexes. Cationic complexes are well described as water clusters weakly bound to C60+. For n=3, 4, or 6, fissionlike desorption of the entire water complex from C60(H2O)n+ energetically competes with the evaporation of a single water molecule.

  11. Atmospheric sampling glow discharge ionization source

    DOEpatents

    McLuckey, Scott A.; Glish, Gary L.

    1989-01-01

    An atmospheric sampling glow discharge ionization source that can be used in combination with an analytical instrument which operates at high vacuum, such as a mass spectrometer. The atmospheric sampling glow discharge ionization source comprises a chamber with at least one pair of electrodes disposed therein, an inlet for a gaseous sample to be analyzed and an outlet communicating with an analyzer which operates at subatmospheric pressure. The ionization chamber is maintained at a pressure below atmospheric pressure, and a voltage difference is applied across the electrodes to induce a glow discharge between the electrodes, so that molecules passing through the inlet are ionized by the glow discharge and directed into the analyzer. The ionization source accepts the sample under atmospheric pressure conditions and processes it directly into the high vacuum instrument, bridging the pressure gap and drawing off unwanted atmospheric gases. The invention also includes a method for analyzing a gaseous sample using the glow discharge ionization source described above.

  12. Atmospheric sampling glow discharge ionization source

    DOEpatents

    McLuckey, S.A.; Glish, G.L.

    1989-07-18

    An atmospheric sampling glow discharge ionization source that can be used in combination with an analytical instrument which operates at high vacuum, such as a mass spectrometer. The atmospheric sampling glow discharge ionization source comprises a chamber with at least one pair of electrodes disposed therein, an inlet for a gaseous sample to be analyzed and an outlet communicating with an analyzer which operates at subatmospheric pressure. The ionization chamber is maintained at a pressure below atmospheric pressure, and a voltage difference is applied across the electrodes to induce a glow discharge between the electrodes, so that molecules passing through the inlet are ionized by the glow discharge and directed into the analyzer. The ionization source accepts the sample under atmospheric pressure conditions and processes it directly into the high vacuum instrument, bridging the pressure gap and drawing off unwanted atmospheric gases. The invention also includes a method for analyzing a gaseous sample using the glow discharge ionization source described above. 3 figs.

  13. [Ionization energies and infrared spectra studies of histidine using density functional theory].

    PubMed

    Hu, Qiong; Wang, Guo-Ying; Liu, Gang; Ou, Jia-Ming; Wang, Rui-Li

    2010-05-01

    Histidines provide axial ligands to the primary electron donors in photosynthetic reaction centers (RCs) and play an important role in the protein environments of these donors. In this paper the authors present a systematic study of ionization energies and vibrational properties of histidine using hybrid density functional theory (DFT). All calculations were undertaken by using B3LYP method in combination with four basis sets: 6-31G(d), 6-31G(df, p), 6-31+G(d) and 6-311+G(2d, 2p) with the aim to investigate how the basis sets influence the calculation results. To investigate solvent effects and gain a detailed understanding of marker bands of histidine, the ionization energies of histidine and the vibrational frequencies of histidine which are unlabeled and 13C, 15N, and 2H labeled in the gas phase, CCl4, protein environment, THF and water solution, which span a wide range of dielectric constant, were also calculated. Our results showed that: (1) The main geometry parameters of histidine were impacted by basis sets and mediums, and C2-N3 and N3-C4 bond of imidazole ring of histidine side chain display the maximum bond lengths in the gas phase; (2) single point energies and frequencies calculated were decreased while ionization energies increased with the increasing level of basis sets and diffuse function applied in the same solvent; (3) with the same computational method, the higher the dielectric constant of the solvent used, the lower the ionization energy and vibrational frequency and the higher the intensity obtained. In addition, calculated ionization energy in the gas phase and marker bands of histidine as well as frequency shift upon 13C and 15N labeling at the computationally more expensive 6-311+G(2d, 2p) level are in good agreement with experimental observations available in literatures. All calculations indicated that the results calculated by using higher level basis set with diffuse function were more accurate and closer to the experimental value. In

  14. Photoelectron interference fringes by super intense x-ray laser pulses

    NASA Astrophysics Data System (ADS)

    Toyota, Koudai; Tolstikhin, Oleg I.; Morishita, Toru; Watanabe, Shinichi

    2009-09-01

    The photoelectron spectra of H- produced by circularly polarized strong high-frequency laser pulses are theoretically studied. An oscillating substructure in the above-threshold ionization (ATI) peaks is observed, which extends the validity of the earlier findings in the 1D calculations [K. Toyota et al., Phys. Rev. A 76, 043418 (2007)] and 3D calculations for linear polarization [O. I. Tolstikhin, Phys. Rev. A 77, 032712 (2008)]. Its origin is due to an interference between a pair of photoelectron wave packets created in the rising and falling part of the pulse, which appears clearly in the stabilization regime.

  15. Ultraviolet absorption by highly ionized halo gas near the Galactic center

    NASA Technical Reports Server (NTRS)

    Savage, B. D.; Massa, D.

    1985-01-01

    Initial results are presented for a program to survey highly ionized gas in the Milky Way disk and halo. High-resolution IUE (International Ultraviolet Explorer) far-UV spectra were obtained for 12 stars at galactocentric distances less than 6 kpc. The stars are 0.7-2.2 kpc away from the plane. Most of the spectra contain exceedingly strong and broad interstellar absorption lines of weakly and highly ionized atoms. In addition to the normally strong lines of Si IV and C IV, strong interstellar NV lines have been detected in the spectra of eight stars. The detection of NV absorption (amounting to more than 10 times the predicted NV) provides an important new constraint on models for the origin of Galactic halo gas. A Galactic fountain operating in the presence of known UV and EUV radiation might explain the observations.

  16. H+, O2+, O3+ and high resolution PIXE spectra of Yb2O3

    NASA Astrophysics Data System (ADS)

    Chaves, P. C.; Reis, M. A.

    2017-11-01

    The number of X-ray spectrometry systems having energy resolution of the order of 10 eV, or less, has increasing recently, included already energy dispersive systems (EDS). Access to previous unseen spectra details and enhanced information including speciation, becomes more common and available. Analysis of high resolution EDS PIXE spectra is, nevertheless a complex task due to the need to carefully account for contributions from minor and satellite transitions. In this work, a pure Yb2O3 sample was irradiated at the HRHE-PIXE setup of C2TN, and simultaneous CdTe and X-ray Microcalorimeter Spectrometer (XMS) spectra were collected. The L-shell spectrum of Yb emitted during irradiations using H+ , O2+ and O3+ ions in the energy range from 1.0 to 6.5 MeV was studied. Measured L X-ray spectra were analysed taking into account the effects of the multiple ionization in the L and M shells. All spectra were analysed using the DT2 code, which allows to include in the fitting model diagram lines as well as multi-ionization satellites and any other contributions. In this communication we present the results and discuss details and problems related to the transition energies, intensity, line width data, and multiple ionization satellites.

  17. Intelligence and Creativity: Over the Threshold Together?

    ERIC Educational Resources Information Center

    Welter, Marisete Maria; Jaarsveld, Saskia; van Leeuwen, Cees; Lachmann, Thomas

    2016-01-01

    Threshold theory predicts a positive correlation between IQ and creativity scores up to an IQ level of 120 and no correlation above this threshold. Primary school children were tested at beginning (N = 98) and ending (N = 70) of the school year. Participants performed the standard progressive matrices (SPM) and the Test of Creative…

  18. Fragmentation pathways of tungsten hexacarbonyl clusters upon electron ionization

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Neustetter, M.; Jabbour Al Maalouf, E.; Denifl, S., E-mail: Stephan.Denifl@uibk.ac.at, E-mail: plimaovieira@fct.unl.pt

    2016-08-07

    Electron ionization of neat tungsten hexacarbonyl (W(CO){sub 6}) clusters has been investigated in a crossed electron-molecular beam experiment coupled with a mass spectrometer system. The molecule is used for nanofabrication processes through electron beam induced deposition and ion beam induced deposition techniques. Positive ion mass spectra of W(CO){sub 6} clusters formed by electron ionization at 70 eV contain the ion series of the type W(CO){sub n}{sup +} (0 ≤ n ≤ 6) and W{sub 2}(CO){sub n}{sup +} (0 ≤ n ≤ 12). In addition, a series of peaks are observed and have been assigned to WC(CO){sub n}{sup +} (0 ≤more » n ≤ 3) and W{sub 2}C(CO){sub n}{sup +} (0 ≤ n ≤ 10). A distinct change of relative fragment ion intensity can be observed for clusters compared to the single molecule. The characteristic fragmentation pattern obtained in the mass spectra can be explained by a sequential decay of the ionized organometallic, which is also supported by the study of the clusters when embedded in helium nanodroplets. In addition, appearance energies for the dissociative ionization channels for singly charged ions have been estimated from experimental ion efficiency curves.« less

  19. The enhancement of neutral metal Na layer above thunderstorms

    NASA Astrophysics Data System (ADS)

    Yu, B.; Xue, X.; Lu, G.; Dou, X.; Gao, Q.; Qie, X.; Wu, J.; Tang, Y.; Holzworth, R.

    2016-12-01

    Na (sodium) exists as layers of atoms in the mesosphere/lower thermosphere (MLT) at altitudes between 80 and 105 km. It has lower ionization potential of 5.139 eV than atmospheric species, such as O2 (12.06 eV). Tropospheric thunderstorms affect the lower ionosphere and the ionospheric sporadic E (Es) at 100 km can also be influenced by lightning. The mechanism is expected to be associated with transient luminous events (TLE) as red sprites and gigantic jets at upper atmosphere. However, measurements of ionospheric electric fields of 20mV·m-1 above thunderstorms are less than estimated value (>48 0mV·m-1) to excite ionization in the lower ionosphere. We found an enhancement of Na layer above thunderstorms. The increase of Na density in the statistical result can be as much as 500 cm-3 and it will have an impact on ionospheric chemistry and modify the conductivity properties of the MLT region.

  20. The lowest ionization potentials of Al2

    NASA Technical Reports Server (NTRS)

    Bauschlicher, Charles W., Jr.; Barnes, Leslie A.; Taylor, Peter R.

    1988-01-01

    Potential curves for the lowest two electronic states (X 2 sigma g + and A 2 pi u) of Al2(+) were computed using complete active space SCF/multireference CI wave functions and large Gaussian basis sets. The lowest observable vertical ionization potential (to Al2(+) X 2 sigma g +) of the Al2 X 3 pi u ground state is calculated to occur around 6.1 eV, in excellent agreement with the experimental range of 6.0 to 6.42 eV obtained in recent cluster ionization studies by Cox and co-workers. The second vertical ionization potential (to Al2(+) A 2 pi u) occurs near 6.4 eV, also within the experimental range. The adiabatic IP of 5.90 eV is in good agreement with the value of 5.8 to 6.1 eV deduced by Hanley and co-workers from the difference in thresholds between collision induced dissociation processes of Al3(+). The computed IP values are somewhat larger than those deduced from branching ratios in cluster fragmentation experiments by Jarrold and co-workers. The observation of an ionization threshold below 6.42 eV is shown to be incompatible with an Al2 ground electronic state assignment of 3 sigma g -, but the separation between the two lowest states of Al2 is so small that it is likely that both are populated in the experiments, so that this does not provide unambiguous support for the recent theoretical assignment of the ground state as 3 pi u.

  1. How the laser-induced ionization of transparent solids can be suppressed

    NASA Astrophysics Data System (ADS)

    Gruzdev, Vitaly

    2013-12-01

    A capability to suppress laser-induced ionization of dielectric crystals in controlled and predictable way can potentially result in substantial improvement of laser damage threshold of optical materials. The traditional models that employ the Keldysh formula do not predict any suppression of the ionization because of the oversimplified description of electronic energy bands underlying the Keldysh formula. To fix this gap, we performed numerical simulations of time evolution of conduction-band electron density for a realistic cosine model of electronic bands characteristic of wide-band-gap cubic crystals. The simulations include contributions from the photo-ionization (evaluated by the Keldysh formula and by the formula for the cosine band of volume-centered cubic crystals) and from the avalanche ionization (evaluated by the Drude model). Maximum conduction-band electron density is evaluated from a single rate equation as a function of peak intensity of femtosecond laser pulses for alkali halide crystals. Results obtained for high-intensity femtosecond laser pulses demonstrate that the ionization can be suppressed by proper choice of laser parameters. In case of the Keldysh formula, the peak electron density exhibits saturation followed by gradual increase. For the cosine band, the electron density increases with irradiance within the low-intensity multiphoton regime and switches to decrease with intensity approaching threshold of the strong singularity of the ionization rate characteristic of the cosine band. Those trends are explained with specific modifications of band structure by electric field of laser pulses.

  2. Atmospheric pressure chemical ionization studies of non-polar isomeric hydrocarbons using ion mobility spectrometry and mass spectrometry with different ionization techniques

    NASA Technical Reports Server (NTRS)

    Borsdorf, H.; Nazarov, E. G.; Eiceman, G. A.

    2002-01-01

    The ionization pathways were determined for sets of isomeric non-polar hydrocarbons (structural isomers, cis/trans isomers) using ion mobility spectrometry and mass spectrometry with different techniques of atmospheric pressure chemical ionization to assess the influence of structural features on ion formation. Depending on the structural features, different ions were observed using mass spectrometry. Unsaturated hydrocarbons formed mostly [M - 1]+ and [(M - 1)2H]+ ions while mainly [M - 3]+ and [(M - 3)H2O]+ ions were found for saturated cis/trans isomers using photoionization and 63Ni ionization. These ionization methods and corona discharge ionization were used for ion mobility measurements of these compounds. Different ions were detected for compounds with different structural features. 63Ni ionization and photoionization provide comparable ions for every set of isomers. The product ions formed can be clearly attributed to the structures identified. However, differences in relative abundance of product ions were found. Although corona discharge ionization permits the most sensitive detection of non-polar hydrocarbons, the spectra detected are complex and differ from those obtained with 63Ni ionization and photoionization. c. 2002 American Society for Mass Spectrometry.

  3. Strategy Guideline. Modeling Enclosure Design in Above-Grade Walls

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    J. Lstiburek; Ueno, K.; Musunuru, S.

    2016-02-01

    The Strategy Guideline, written by the U.S. Department of Energy's research team Building Science Corporation, 1) describes how to model and interpret results of models for above-grade walls, and 2) analyzes the failure thresholds and criteria for above-grade walls. A library of above-grade walls with historically successful performance was used to calibrate WUFI (Wärme und Feuchte instationär) software models. The information is generalized for application to a broad population of houses within the limits of existing experience.

  4. Ionization balance of impurities in turbulent scrape-off layer plasmas I: local ionization-recombination equilibrium

    NASA Astrophysics Data System (ADS)

    Guzman, F.; Marandet, Y.; Tamain, P.; Bufferand, H.; Ciraolo, G.; Ghendrih, Ph; Guirlet, R.; Rosato, J.; Valentinuzzi, M.

    2015-12-01

    In magnetized fusion devices, cross field impurity transport is often dominated by turbulence, in particular in the scrape-off layer. In these outer regions of the plasma, fluctuations of plasma parameters can be comparable to mean values, and the way ionization and recombination sources are treated in transport codes becomes questionnable. In fact, sources are calculated using the mean density and temperature values, with no account of fluctuations. In this work we investigate the modeling uncertainties introduced by this approximation, both qualitatively and quantitatively for the local ionization equilibrium. As a first step transport effects are neglected, and their role will be discussed in a companion paper. We show that temperature fluctuations shift the ionization balance towards lower temperatures, essentially because of the very steep temperature dependence of the ionization rate coefficients near the threshold. To reach this conclusion, a thorough analysis of the time scales involved is carried out, in order to devise a proper way of averaging over fluctuations. The effects are found to be substantial only for fairly large relative fluctuation levels for temperature, that is of the order of a few tens of percents.

  5. Tunneling ionization and harmonic generation in two-color fields

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kondo, K.; Kobayashi, Y.; Sagisaka, A.

    1996-02-01

    Tunneling ionization and harmonic generation in two-color fields were studied with a fundamental beam ({omega}) and its harmonics (2{omega},3{omega}), which were generated by a 100-fs Ti:sapphire laser. Ion yields of atoms and molecules were successfully controlled by means of a change in the relative phase between {omega} and 3{omega} pulses. Two-color interference was clearly observed in photoelectron spectra and harmonic spectra. In the {omega}{endash}2{omega} field even-order harmonics were observed in which the intensity was almost equal to that of the odd harmonics because of an asymmetric optical field. These results were compared with the quasi-static model for ionization and withmore » the quantum theory for harmonic generation. {copyright} {ital 1996 Optical Society of America.}« less

  6. Comparing Ultraviolet Spectra Against Calculations: First Results

    NASA Technical Reports Server (NTRS)

    Peterson, Ruth C.

    2003-01-01

    The five-year goal of this effort is to calculate high fidelity mid-UV spectra for individual stars and stellar systems for a wide range of ages, abundances, and abundance ratios. In this first year, the emphasis was placed on revising the list of atomic line parameters used to calculate mid-UV spectra. First, new identifications of atomic lines and measurements of their transition probabilities were obtained for lines of the first and second ionization stages of iron-peak elements. Second, observed mid-UV and optical spectra for standard stars were re-analyzed and compared to new calculations, to refine the determination of transition probabilities and to estimate the identity of lines still missing from the laboratory lists. As evidenced by the figures, a dramatic improvement has resulted in the reproduction of the spectra of standard stars by the calculations.

  7. Ionization cross section, pressure shift and isotope shift measurements of osmium

    NASA Astrophysics Data System (ADS)

    Hirayama, Yoshikazu; Mukai, Momo; Watanabe, Yutaka; Oyaizu, Michihiro; Ahmed, Murad; Kakiguchi, Yutaka; Kimura, Sota; Miyatake, Hiroari; Schury, Peter; Wada, Michiharu; Jeong, Sun-Chan

    2017-11-01

    In-gas-cell laser resonance ionization spectroscopy of neutral osmium atoms was performed with the use of a two-color two-step laser resonance ionization technique. Saturation curves for the ionization scheme were measured, and the ionization cross section was experimentally determined by solving the rate equations for the ground, intermediate and ionization continuum populations. The pressure shift and pressure broadening in the resonance spectra of the excitation transition were measured. The electronic factor {F}247 for the transition {λ }1=247.7583 nm to the intermediate state was deduced from the measured isotope shifts of stable {}{188,189,{190,192}}Os isotopes. The efficient ionization scheme, pressure shift, nuclear isotope shift and {F}247 are expected to be useful for applications of laser ion sources to unstable nuclei and for nuclear spectroscopy based on laser ionization techniques.

  8. FLASH SPECTROSCOPY: EMISSION LINES FROM THE IONIZED CIRCUMSTELLAR MATERIAL AROUND <10-DAY-OLD TYPE II SUPERNOVAE

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Khazov, D.; Yaron, O.; Gal-Yam, A.

    Supernovae (SNe) embedded in dense circumstellar material (CSM) may show prominent emission lines in their early-time spectra (≤10 days after the explosion), owing to recombination of the CSM ionized by the shock-breakout flash. From such spectra (“flash spectroscopy”), we can measure various physical properties of the CSM, as well as the mass-loss rate of the progenitor during the year prior to its explosion. Searching through the Palomar Transient Factory (PTF and iPTF) SN spectroscopy databases from 2009 through 2014, we found 12 SNe II showing flash-ionized (FI) signatures in their first spectra. All are younger than 10 days. These eventsmore » constitute 14% of all 84 SNe in our sample having a spectrum within 10 days from explosion, and 18% of SNe II observed at ages <5 days, thereby setting lower limits on the fraction of FI events. We classified as “blue/featureless” (BF) those events having a first spectrum that is similar to that of a blackbody, without any emission or absorption signatures. It is possible that some BF events had FI signatures at an earlier phase than observed, or that they lack dense CSM around the progenitor. Within 2 days after explosion, 8 out of 11 SNe in our sample are either BF events or show FI signatures. Interestingly, we found that 19 out of 21 SNe brighter than an absolute magnitude M{sub R} = −18.2 belong to the FI or BF groups, and that all FI events peaked above M{sub R} = −17.6 mag, significantly brighter than average SNe II.« less

  9. Flash Spectroscopy: Emission Lines from the Ionized Circumstellar Material Around <10-Day-Old Type II Supernovae

    DOE PAGES

    Khazov, Daniel; Yaron, O.; Gal-Yam, A.; ...

    2016-02-02

    Supernovae (SNe) embedded in dense circumstellar material (CSM) may show prominent emission lines in their early-time spectra (≤10 days after the explosion), owing to recombination of the CSM ionized by the shock-breakout flash. From such spectra ("flash spectroscopy"), we can measure various physical properties of the CSM, as well as the mass-loss rate of the progenitor during the year prior to its explosion. In this paper, by searching through the Palomar Transient Factory (PTF and iPTF) SN spectroscopy databases from 2009 through 2014, we found 12 SNe II showing flash-ionized (FI) signatures in their first spectra. All are younger thanmore » 10 days. These events constitute 14% of all 84 SNe in our sample having a spectrum within 10 days from explosion, and 18% of SNe II observed at ages <5 days, thereby setting lower limits on the fraction of FI events. We classified as "blue/featureless" (BF) those events having a first spectrum that is similar to that of a blackbody, without any emission or absorption signatures. It is possible that some BF events had FI signatures at an earlier phase than observed, or that they lack dense CSM around the progenitor. Within 2 days after explosion, 8 out of 11 SNe in our sample are either BF events or show FI signatures. Finally and interestingly, we found that 19 out of 21 SNe brighter than an absolute magnitude M R = -18.2 belong to the FI or BF groups, and that all FI events peaked above M R = -17.6 mag, significantly brighter than average SNe II.« less

  10. Flash Spectroscopy: Emission Lines from the Ionized Circumstellar Material Around <10-Day-Old Type II Supernovae

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Khazov, Daniel; Yaron, O.; Gal-Yam, A.

    Supernovae (SNe) embedded in dense circumstellar material (CSM) may show prominent emission lines in their early-time spectra (≤10 days after the explosion), owing to recombination of the CSM ionized by the shock-breakout flash. From such spectra ("flash spectroscopy"), we can measure various physical properties of the CSM, as well as the mass-loss rate of the progenitor during the year prior to its explosion. In this paper, by searching through the Palomar Transient Factory (PTF and iPTF) SN spectroscopy databases from 2009 through 2014, we found 12 SNe II showing flash-ionized (FI) signatures in their first spectra. All are younger thanmore » 10 days. These events constitute 14% of all 84 SNe in our sample having a spectrum within 10 days from explosion, and 18% of SNe II observed at ages <5 days, thereby setting lower limits on the fraction of FI events. We classified as "blue/featureless" (BF) those events having a first spectrum that is similar to that of a blackbody, without any emission or absorption signatures. It is possible that some BF events had FI signatures at an earlier phase than observed, or that they lack dense CSM around the progenitor. Within 2 days after explosion, 8 out of 11 SNe in our sample are either BF events or show FI signatures. Finally and interestingly, we found that 19 out of 21 SNe brighter than an absolute magnitude M R = -18.2 belong to the FI or BF groups, and that all FI events peaked above M R = -17.6 mag, significantly brighter than average SNe II.« less

  11. Capillary atmospheric pressure electron capture ionization (cAPECI): a highly efficient ionization method for nitroaromatic compounds.

    PubMed

    Derpmann, Valerie; Mueller, David; Bejan, Iustinian; Sonderfeld, Hannah; Wilberscheid, Sonja; Koppmann, Ralf; Brockmann, Klaus J; Benter, Thorsten

    2014-03-01

    We report on a novel method for atmospheric pressure ionization of compounds with elevated electron affinity (e.g., nitroaromatic compounds) or gas phase acidity (e.g., phenols), respectively. The method is based on the generation of thermal electrons by the photo-electric effect, followed by electron capture of oxygen when air is the gas matrix yielding O2(-) or of the analyte directly with nitrogen as matrix. Charge transfer or proton abstraction by O2(-) leads to the ionization of the analytes. The interaction of UV-light with metals is a clean method for the generation of thermal electrons at atmospheric pressure. Furthermore, only negative ions are generated and neutral radical formation is minimized, in contrast to discharge- or dopant assisted methods. Ionization takes place inside the transfer capillary of the mass spectrometer leading to comparably short transfer times of ions to the high vacuum region of the mass spectrometer. This strongly reduces ion transformation processes, resulting in mass spectra that more closely relate to the neutral analyte distribution. cAPECI is thus a soft and selective ionization method with detection limits in the pptV range. In comparison to standard ionization methods (e.g., PTR), cAPECI is superior with respect to both selectivity and achievable detection limits. cAPECI demonstrates to be a promising ionization method for applications in relevant fields as, for example, explosives detection and atmospheric chemistry.

  12. Oxygen ionization rates at Mars and Venus - Relative contributions of impact ionization and charge exchange

    NASA Astrophysics Data System (ADS)

    Zhang, M. H. G.; Luhmann, J. G.; Nagy, A. F.; Spreiter, J. R.; Stahara, S. S.

    1993-02-01

    Oxygen ion production rates above the ionopauses of Venus and Mars are calculated for photoionization, charge exchange, and solar wind electron impact ionization processes. The latter two require the use of the Spreiter and Stahara (1980) gas dynamic model to estimate magnetosheath velocities, densities, and temperatures. The results indicate that impact ionization is the dominant mechanism for the production of O(+) ions at both Venus and Mars. This finding might explain both the high ion escape rates measured by Phobos 2 and the greater mass loading rate inferred for Venus from the bow shock positions.

  13. Spatially resolved density and ionization measurements of shocked foams using x-ray fluorescence

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    MacDonald, M. J.; Keiter, P. A.; Montgomery, D. S.

    2016-09-28

    We present experiments at the Trident laser facility demonstrating the use of x-ray fluorescence (XRF) to simultaneously measure density, ionization state populations, and electron temperature in shocked foams. An imaging x-ray spectrometer obtained spatially resolved measurements of Ti K-α emission. Density profiles were measured from K-α intensity. Ti ionization state distributions and electron temperatures were inferred by fitting K-α spectra to spectra from CRETIN simulations. This work shows that XRF provides a powerful tool to complement other diagnostics to make equation of state measurements of shocked materials containing a suitable tracer element.

  14. Measurements of ionization states in warm dense aluminum with betatron radiation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mo, M. Z.; Chen, Z.; Fourmaux, S.

    Time-resolved measurements of the ionization states of warm dense aluminum via K-shell absorption spectroscopy are demonstrated using betatron radiation generated from laser wakefield acceleration as a probe. The warm dense aluminum is generated by irradiating a free-standing nanofoil with a femtosecond optical laser pulse and was heated to an electron temperature of ~20–25 eV at a close-to-solid mass density. Absorption dips in the transmitted x-ray spectrum due to the Al 4+ and Al 5+ ions are clearly seen during the experiments. The measured absorption spectra are compared to simulations with various ionization potential depression models, including the commonly used Stewart-Pyattmore » model and an alternative modified Ecker-Kröll model. Furthermore, the observed absorption spectra are in approximate agreement with these models, though indicating a slightly higher state of ionization and closer agreement for simulations with the modified Ecker-Kröll model.« less

  15. Measurements of ionization states in warm dense aluminum with betatron radiation

    DOE PAGES

    Mo, M. Z.; Chen, Z.; Fourmaux, S.; ...

    2017-05-19

    Time-resolved measurements of the ionization states of warm dense aluminum via K-shell absorption spectroscopy are demonstrated using betatron radiation generated from laser wakefield acceleration as a probe. The warm dense aluminum is generated by irradiating a free-standing nanofoil with a femtosecond optical laser pulse and was heated to an electron temperature of ~20–25 eV at a close-to-solid mass density. Absorption dips in the transmitted x-ray spectrum due to the Al 4+ and Al 5+ ions are clearly seen during the experiments. The measured absorption spectra are compared to simulations with various ionization potential depression models, including the commonly used Stewart-Pyattmore » model and an alternative modified Ecker-Kröll model. Furthermore, the observed absorption spectra are in approximate agreement with these models, though indicating a slightly higher state of ionization and closer agreement for simulations with the modified Ecker-Kröll model.« less

  16. Measurements of ionization states in warm dense aluminum with betatron radiation

    NASA Astrophysics Data System (ADS)

    Mo, M. Z.; Chen, Z.; Fourmaux, S.; Saraf, A.; Kerr, S.; Otani, K.; Masoud, R.; Kieffer, J.-C.; Tsui, Y.; Ng, A.; Fedosejevs, R.

    2017-05-01

    Time-resolved measurements of the ionization states of warm dense aluminum via K-shell absorption spectroscopy are demonstrated using betatron radiation generated from laser wakefield acceleration as a probe. The warm dense aluminum is generated by irradiating a free-standing nanofoil with a femtosecond optical laser pulse and was heated to an electron temperature of ˜20 -25 eV at a close-to-solid mass density. Absorption dips in the transmitted x-ray spectrum due to the Al4 + and Al5 + ions are clearly seen during the experiments. The measured absorption spectra are compared to simulations with various ionization potential depression models, including the commonly used Stewart-Pyatt model and an alternative modified Ecker-Kröll model. The observed absorption spectra are in approximate agreement with these models, though indicating a slightly higher state of ionization and closer agreement for simulations with the modified Ecker-Kröll model.

  17. Photoionization using the xchem approach: Total and partial cross sections of Ne and resonance parameters above the 2 s22 p5 threshold

    NASA Astrophysics Data System (ADS)

    Marante, Carlos; Klinker, Markus; Kjellsson, Tor; Lindroth, Eva; González-Vázquez, Jesús; Argenti, Luca; Martín, Fernando

    2017-08-01

    The XCHEM approach interfaces well established quantum chemistry packages with scattering numerical methods in order to describe single-ionization processes in atoms and molecules. This should allow one to describe electron correlation in the continuum at the same level of accuracy as quantum chemistry methods do for bound states. Here we have applied this method to study multichannel photoionization of Ne in the vicinity of the autoionizing states lying between the 2 s22 p5 and 2 s 2 p6 ionization thresholds. The calculated total photoionization cross sections are in very good agreement with the absolute measurement of Samson et al. [J. Electron Spectrosc. Relat. Phenom. 123, 265 (2002), 10.1016/S0368-2048(02)00026-9], and with independent benchmark calculations performed at the same level of theory. From these cross sections, we have extracted resonance positions, total autoionization widths, Fano profile parameters, and correlation parameters for the lowest three autoionizing states. The values of these parameters are in good agreement with those reported in earlier theoretical and experimental work. We have also evaluated β asymmetry parameter and partial photoionization cross sections and, from the latter, partial autoionization widths and Starace parameters for the same resonances, not yet available in the literature. Resonant features in the calculated β parameter are in good agreement with the experimental observations. We have found that the three lowest resonances preferentially decay into the 2 p-1ɛ d continuum rather than into the 2 p-1ɛ s one [Phys. Rev. A 89, 043415 (2014), 10.1103/PhysRevA.89.043415], in agreement with previous expectations, and that in the vicinity of the resonances the partial 2 p-1ɛ s cross section can be larger than the 2 p-1ɛ d one, in contrast with the accepted idea that the latter should amply dominate in the whole energy range. These results show the potential of the XCHEM approach to describe highly correlated process

  18. An Atlas of Far-ultraviolet Spectra of the Zeta Aurigae Binary 31 Cygni with Line Identifications

    NASA Astrophysics Data System (ADS)

    Hagen Bauer, Wendy; Bennett, Philip D.

    2014-04-01

    The ζ Aurigae system 31 Cygni (K4 Ib + B4 V) was observed by the FUSE satellite during total eclipse and at three phases during chromospheric eclipse. We present the coadded, calibrated spectra and atlases with line identifications. During total eclipse, emission from high ionization states (e.g., Fe III and Cr III) shows asymmetric profiles redshifted from the systemic velocity, while emission from lower ionization states (e.g., Fe II and O I) appears more symmetric and is centered closer to the systemic velocity. Absorption from neutral and singly ionized elements is detected during chromospheric eclipse. Late in chromospheric eclipse, absorption from the K star wind is detected at a terminal velocity of ~80 km s-1. These atlases will be useful for interpreting the far-UV spectra of other ζ Aur systems, as the observed FUSE spectra of 32 Cyg, KQ Pup, and VV Cep during chromospheric eclipse resemble that of 31 Cyg.

  19. Ionization correction factors for H II regions in blue compact dwarf galaxies

    NASA Astrophysics Data System (ADS)

    Holovatyi, V. V.; Melekh, B. Ya.

    2002-08-01

    Energy distributions in the spectra of the ionizing nuclei of H II regions beyond λ <= 91.2 nm were calculated. A grid of photoionization models of 270 H II regions was constructed. The free parameters of the model grid are the hydrogen density nH in the nebular gas, filling factor, energy Lc-spectrum of ionizing nuclei, and metallicity. The chemical composition from the studies of Izotov et al. were used for model grid initialization. The integral linear spectra calculated for the photoionization models were used to determine the concentration ne, temperatures Te of electrons, and ionic concentrations n(A+i)/n(H+) by the nebular gas diagnostic method. The averaged relative ionic abundances n(A+i)/n(H+) thus calculated were used to determine new expressions for ionization correction factors which we recommend for the determination of abundances in the H II regions of blue compact dwarf galaxies.

  20. Electron-helium S-wave model benchmark calculations. II. Double ionization, single ionization with excitation, and double excitation

    NASA Astrophysics Data System (ADS)

    Bartlett, Philip L.; Stelbovics, Andris T.

    2010-02-01

    The propagating exterior complex scaling (PECS) method is extended to all four-body processes in electron impact on helium in an S-wave model. Total and energy-differential cross sections are presented with benchmark accuracy for double ionization, single ionization with excitation, and double excitation (to autoionizing states) for incident-electron energies from threshold to 500 eV. While the PECS three-body cross sections for this model given in the preceding article [Phys. Rev. A 81, 022715 (2010)] are in good agreement with other methods, there are considerable discrepancies for these four-body processes. With this model we demonstrate the suitability of the PECS method for the complete solution of the electron-helium system.

  1. Factors that affect molecular weight distribution of Suwannee river fulvic acid as determined by electrospray ionization/mass spectrometry

    USGS Publications Warehouse

    Rostad, Colleen E.; Leenheer, Jerry A.

    2004-01-01

    Effects of methylation, molar response, multiple charging, solvents, and positive and negative ionization on molecular weight distributions of aquatic fulvic acid were investigated by electrospray ionization/mass spectrometry. After preliminary analysis by positive and negative modes, samples and mixtures of standards were derivatized by methylation to minimize ionization sites and reanalyzed.Positive ionization was less effective and produced more complex spectra than negative ionization. Ionization in methanol/water produced greater response than in acetonitrile/water. Molar response varied widely for the selected free acid standards when analyzed individually and in a mixture, but after methylation this range decreased. After methylation, the number average molecular weight of the Suwannee River fulvic acid remained the same while the weight average molecular weight decreased. These differences are probably indicative of disaggregation of large aggregated ions during methylation. Since the weight average molecular weight decreased, it is likely that aggregate formation in the fulvic acid was present prior to derivatization, rather than multiple charging in the mass spectra.

  2. Elemental Spectra from the First ATIC Flight

    NASA Technical Reports Server (NTRS)

    Ahn, H. S.; Adams, J. H.; Bashindzhagyan, G.; Batkov, K. E.; Changv, J.; Christl, M.; Fazely, A. R.; Ganel, O.; Gunasingha, R. M.; Guzik, T. G.

    2005-01-01

    The Advanced Thin Ionization Calorimeter (ATIC) instrument is a balloon-borne experiment designed to measure the composition and energy spectra of Z = l to 26 cosmic rays over the energy range from approx. 10(exp 11) to approx. 10(exp 14) eV. The instrument consists of a silicon matrix charge detector, plastic scintillator strip hodoscopes interleaved with graphite interaction targets, and a fully active Bismuth Germanate (BGO) calorimeter. ATIC had two successful Long Duration Balloon flights launched from McMurdo Station, Antarctica in 2000 and 2002. In this paper, spectra of various elements measured during the first 16 day flight are presented.

  3. Network problem threshold

    NASA Technical Reports Server (NTRS)

    Gejji, Raghvendra, R.

    1992-01-01

    Network transmission errors such as collisions, CRC errors, misalignment, etc. are statistical in nature. Although errors can vary randomly, a high level of errors does indicate specific network problems, e.g. equipment failure. In this project, we have studied the random nature of collisions theoretically as well as by gathering statistics, and established a numerical threshold above which a network problem is indicated with high probability.

  4. Poverty dynamics, poverty thresholds and mortality: An age-stage Markovian model

    PubMed Central

    Rehkopf, David; Tuljapurkar, Shripad; Horvitz, Carol C.

    2018-01-01

    Recent studies have examined the risk of poverty throughout the life course, but few have considered how transitioning in and out of poverty shape the dynamic heterogeneity and mortality disparities of a cohort at each age. Here we use state-by-age modeling to capture individual heterogeneity in crossing one of three different poverty thresholds (defined as 1×, 2× or 3× the “official” poverty threshold) at each age. We examine age-specific state structure, the remaining life expectancy, its variance, and cohort simulations for those above and below each threshold. Survival and transitioning probabilities are statistically estimated by regression analyses of data from the Health and Retirement Survey RAND data-set, and the National Longitudinal Survey of Youth. Using the results of these regression analyses, we parameterize discrete state, discrete age matrix models. We found that individuals above all three thresholds have higher annual survival than those in poverty, especially for mid-ages to about age 80. The advantage is greatest when we classify individuals based on 1× the “official” poverty threshold. The greatest discrepancy in average remaining life expectancy and its variance between those above and in poverty occurs at mid-ages for all three thresholds. And fewer individuals are in poverty between ages 40-60 for all three thresholds. Our findings are consistent with results based on other data sets, but also suggest that dynamic heterogeneity in poverty and the transience of the poverty state is associated with income-related mortality disparities (less transience, especially of those above poverty, more disparities). This paper applies the approach of age-by-stage matrix models to human demography and individual poverty dynamics. In so doing we extend the literature on individual poverty dynamics across the life course. PMID:29768416

  5. Statistical analysis of fragmentation patterns of electron ionization mass spectra of enolized-trimethylsilylated anabolic androgenic steroids

    NASA Astrophysics Data System (ADS)

    Fragkaki, A. G.; Angelis, Y. S.; Tsantili-Kakoulidou, A.; Koupparis, M.; Georgakopoulos, C.

    2009-08-01

    Anabolic androgenic steroids (AAS) are included in the List of prohibited substances of the World Anti-Doping Agency (WADA) as substances abused to enhance athletic performance. Gas chromatography coupled to mass spectrometry (GC-MS) plays an important role in doping control analyses identifying AAS as their enolized-trimethylsilyl (TMS)-derivatives using the electron ionization (EI) mode. This paper explores the suitability of complementary GC-MS mass spectra and statistical analysis (principal component analysis, PCA and partial least squares-discriminant analysis, PLS-DA) to differentiate AAS as a function of their structural and conformational features expressed by their fragment ions. The results obtained showed that the application of PCA yielded a classification among the AAS molecules which became more apparent after applying PLS-DA to the dataset. The application of PLS-DA yielded a clear separation among the AAS molecules which were, thus, classified as: 1-ene-3-keto, 3-hydroxyl with saturated A-ring, 1-ene-3-hydroxyl, 4-ene-3-keto, 1,4-diene-3-keto and 3-keto with saturated A-ring anabolic steroids. The study of this paper also presents structurally diagnostic fragment ions and dissociation routes providing evidence for the presence of unknown AAS or chemically modified molecules known as designer steroids.

  6. Wavelengths, Transition Probabilities, and Energy Levels for the Spectra of Strontium Ions (Sr II through Sr XXXVIII)

    NASA Astrophysics Data System (ADS)

    Sansonetti, J. E.

    2012-03-01

    Energy levels, with designations and uncertainties, have been compiled for the spectra of strontium (Z=38) ions from singly ionized to hydrogen-like. Wavelengths with classifications, intensities, and transition probabilities are also tabulated. In addition, ground states and ionization energies are listed. For many ionization stages experimental data are available; however for those for which only theoretical calculations or fitted values exist, these are reported. There are a few ionization stages for which only a calculated ionization potential is available.

  7. Rovibrational photoionization dynamics of methyl and its isotopomers studied by high-resolution photoionization and photoelectron spectroscopy

    NASA Astrophysics Data System (ADS)

    Schulenburg, A. M.; Alcaraz, Ch.; Grassi, G.; Merkt, F.

    2006-09-01

    High-resolution photoionization and pulsed-field-ionization zero-kinetic-energy photoelectron spectra of CH3, CH2D, CHD2, and CD3 have been recorded in the vicinity of the first adiabatic ionization threshold following single-photon excitation from the ground neutral state using a narrow-bandwidth vacuum-ultraviolet laser. The radicals were produced from the precursor molecules methyl-bromide, methyl-iodide, dimethyl-thioether, acetone, and nitromethane by 193nm excimer photolysis in a quartz capillary and were subsequently cooled to a rotational temperature Trot≈30K in a supersonic expansion. Nitromethane was identified as a particularly suitable photolytic precursor of methyl for studies by photoionization and threshold photoelectron spectroscopy. Thanks to the cold rotational temperature reached in the supersonic expansion, the rotational structure of the threshold ionization spectra could be resolved, and the photoionization dynamics investigated. Rydberg series converging on excited rotational levels of CH3+ could be observed in the range of principal quantum number n =30-50, and both rotational autoionization and predissociation were identified as decay processes in the threshold region. The observed photoionization transitions can be understood in the realm of an orbital model for direct ionization but the intensity distributions can only be fully accounted for if the rotational channel interactions mediated by the quadrupole of the cation are considered. Improved values of the adiabatic ionization thresholds were derived for all isotopomers [CH3: 79356.2(15)cm-1, CH2D: 79338.8(15)cm-1, CHD2: 79319.1(15)cm-1, and CD3: 79296.4(15)cm-1].

  8. Negative differential resistance in GaN nanocrystals above room temperature.

    PubMed

    Chitara, Basant; Ivan Jebakumar, D S; Rao, C N R; Krupanidhi, S B

    2009-10-07

    Negative differential resistance (NDR) has been observed for the first time above room temperature in gallium nitride nanocrystals synthesized by a simple chemical route. Current-voltage characteristics have been used to investigate this effect through a metal-semiconductor-metal (M-S-M) configuration on SiO2. The NDR effect is reversible and reproducible through many cycles. The threshold voltage is approximately 7 V above room temperature.

  9. Regular series of doubly excited states inside two-electron continua: Application to 2s2-hole states in neon above the Ne2+1s22s22p4 and 1s22s2p5 thresholds

    NASA Astrophysics Data System (ADS)

    Komninos, Yannis; Mercouris, Theodoros; Nicolaides, Cleanthes A.

    2011-02-01

    We report results of many-electron calculations that predict the presence of a regular series of autoionizing doubly excited states (DESs) of 1Posymmetry embedded inside one- as well as two-electron continua of neon, in the range of excitation 105.9-121.9 eV above the ground state. The limit of 121.9 eV represents the two-electron ionization threshold (TEIT) labeled by Ne2+ 1s22p6 1S. The wave functions of these unstable states and their properties are computed according to the theoretical framework, which is explained and justified in the text. Their formal structure is (ψcore)1S⊗Φ(r1→,r2→)1Po, where both ψcore and Φ(r⃗1,r⃗2) are correlated wave functions, the latter being represented reasonably accurately by a self-consistently obtained superposition of nsnp and np(n+1)d configurations n=3-7. By fitting the calculated lowest energies at each value of n, (five states), an effective hydrogenic formula is obtained, which gives the whole energy spectrum up to the TEIT. The autoionization widths are small and decrease with excitation energy. Oscillator strengths for the excitation of these narrow resonance states by absorption of one photon are also small. Because of their electronic structure, these states are compared to 1Po DESs in He, which were found in the 1980s to constitute a regular ladder with wave-function characteristics that tend to those of the so-called Wannier state at threshold. In the present case, the presence of the core and the concomitant interactions do not permit the emergence of such geometrical features.

  10. Dissociative Ionization of Benzene by Electron Impact

    NASA Technical Reports Server (NTRS)

    Huo, Winifred; Dateo, Christopher; Kwak, Dochan (Technical Monitor)

    2002-01-01

    We report a theoretical study of the dissociative ionization (DI) of benzene from the low-lying ionization channels. Our approach makes use of the fact that electron motion is much faster than nuclear motion and DI is treated as a two-step process. The first step is electron-impact ionization resulting in an ion with the same nuclear geometry as the neutral molecule. In the second step the nuclei relax from the initial geometry and undergo unimolecular dissociation. For the ionization process we use the improved binary-encounter dipole (iBED) model. For the unimolecular dissociation step, we study the steepest descent reaction path to the minimum of the ion potential energy surface. The path is used to analyze the probability of unimolecular dissociation and to determine the product distributions. Our analysis of the dissociation products and the thresholds of the productions are compared with the result dissociative photoionization measurements of Feng et al. The partial oscillator strengths from Feng et al. are then used in the iBED cross section calculations.

  11. Anomalous photo-ionization of 4d shell in medium-Z ionized atoms

    NASA Astrophysics Data System (ADS)

    Klapisch, M.; Busquet, M.

    2013-09-01

    Photoionization (PI) cross sections (PICS) are necessary for the simulation of astrophysical and ICF plasmas. In order to be used in plasma modeling, the PICS are usually fit to simple analytical formulas. We observed an unusual spectral shape of the PICS of the 4d shell of ionized Xe and other elements, computed with different codes: a local minimum occurs around twice the threshold energy. We explain this phenomenon as interference between the bound 4d wavefunction and the free electron wavefunction, which is similar to the Cooper minima for neutral atoms. Consequently, the usual fitting formulas, which consist of a combination of inverse powers of the frequency beyond threshold, may yield rates for PI and radiative recombination (RR) that are incorrect by orders of magnitude. A new fitting algorithm is proposed and is included in the latest version of HULLAC.v9.5.

  12. Rocket measurements of mesospheric ionization irregularities

    NASA Technical Reports Server (NTRS)

    Stoltzfus, R. B.; Bowhill, S. A.

    1985-01-01

    The Langmuir probe technique for measurement of electron concentration in the mesosphere is capable of excellent altitude resolution, of order 1 m. Measurements from nine daytime rocket flights carrying an electron density fine structure experiment frequently show small scale ionization structures in the altitude region 70 to 90 km. The irregularities are believed to be the result of turbulent advection of ions and electrons. The fine structure experiment flown by the University of Illinois is described and methods of analyzing the collected data is presented. Theories of homogeneous, isotropic turbulence are reviewed. Power spectra of the measured irregularities are calculated and compared to spectra predicted by turbulence theories.

  13. A Method For Assessing Economic Thresholds of Hardwood Competition

    Treesearch

    Steven A. Knowe

    2002-01-01

    A procedure was developed for computing economic thresholds for hardwood competition in pine plantations. The economic threshold represents the break-even level of competition above which hardwood control is a financially attractive treatment. Sensitivity analyses were conducted to examine the relative importance of biological and economic factors in determining...

  14. Properties of perimetric threshold estimates from Full Threshold, SITA Standard, and SITA Fast strategies.

    PubMed

    Artes, Paul H; Iwase, Aiko; Ohno, Yuko; Kitazawa, Yoshiaki; Chauhan, Balwantray C

    2002-08-01

    To investigate the distributions of threshold estimates with the Swedish Interactive Threshold Algorithms (SITA) Standard, SITA Fast, and the Full Threshold algorithm (Humphrey Field Analyzer; Zeiss-Humphrey Instruments, Dublin, CA) and to compare the pointwise test-retest variability of these strategies. One eye of 49 patients (mean age, 61.6 years; range, 22-81) with glaucoma (Mean Deviation mean, -7.13 dB; range, +1.8 to -23.9 dB) was examined four times with each of the three strategies. The mean and median SITA Standard and SITA Fast threshold estimates were compared with a "best available" estimate of sensitivity (mean results of three Full Threshold tests). Pointwise 90% retest limits (5th and 95th percentiles of retest thresholds) were derived to assess the reproducibility of individual threshold estimates. The differences between the threshold estimates of the SITA and Full Threshold strategies were largest ( approximately 3 dB) for midrange sensitivities ( approximately 15 dB). The threshold distributions of SITA were considerably different from those of the Full Threshold strategy. The differences remained of similar magnitude when the analysis was repeated on a subset of 20 locations that are examined early during the course of a Full Threshold examination. With sensitivities above 25 dB, both SITA strategies exhibited lower test-retest variability than the Full Threshold strategy. Below 25 dB, the retest intervals of SITA Standard were slightly smaller than those of the Full Threshold strategy, whereas those of SITA Fast were larger. SITA Standard may be superior to the Full Threshold strategy for monitoring patients with visual field loss. The greater test-retest variability of SITA Fast in areas of low sensitivity is likely to offset the benefit of even shorter test durations with this strategy. The sensitivity differences between the SITA and Full Threshold strategies may relate to factors other than reduced fatigue. They are, however, small in

  15. Ultraviolet spectra of extreme nearby star-forming regions - approaching a local reference sample for JWST

    NASA Astrophysics Data System (ADS)

    Senchyna, Peter; Stark, Daniel P.; Vidal-García, Alba; Chevallard, Jacopo; Charlot, Stéphane; Mainali, Ramesh; Jones, Tucker; Wofford, Aida; Feltre, Anna; Gutkin, Julia

    2017-12-01

    Nearby dwarf galaxies provide a unique laboratory in which to test stellar population models below Z⊙/2. Such tests are particularly important for interpreting the surprising high-ionization ultraviolet (UV) line emission detected at z > 6 in recent years. We present HST/COS UV spectra of 10 nearby metal-poor star-forming galaxies selected to show He II emission in SDSS optical spectra. The targets span nearly a dex in gas-phase oxygen abundance (7.8 < 12 + log O/H < 8.5) and present uniformly large specific star formation rates (sSFR ∼102 Gyr-1). The UV spectra confirm that metal-poor stellar populations can power extreme nebular emission in high-ionization UV lines, reaching C III] equivalent widths comparable to those seen in systems at z ∼ 6-7. Our data reveal a marked transition in UV spectral properties with decreasing metallicity, with systems below 12 + log O/H ≲ 8.0 (Z/Z⊙ ≲ 1/5) presenting minimal stellar wind features and prominent nebular emission in He II and C IV. This is consistent with nearly an order of magnitude increase in ionizing photon production beyond the He+-ionizing edge relative to H-ionizing flux as metallicity decreases below a fifth solar, well in excess of standard stellar population synthesis predictions. Our results suggest that often-neglected sources of energetic radiation such as stripped binary products and very massive O-stars produce a sharper change in the ionizing spectrum with decreasing metallicity than expected. Consequently, nebular emission in C IV and He II powered by these stars may provide useful metallicity constraints in the reionization era.

  16. Comparison of Internal Energy Distributions of Ions Created by Electrospray Ionization and Laser Ablation-Liquid Vortex Capture-Electrospray Ionization

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Cahill, John F.; Kertesz, Vilmos; Ovchinnikova, Olga S.

    2015-06-27

    Recently a number of techniques have combined laser ablation with liquid capture for mass spectrometry spot sampling and imaging applications. The newly developed non-contact liquid-vortex capture probe has been used to efficiently collect 355 nm UV laser ablated material in a continuous flow solvent stream in which the captured material dissolves and then undergoes electrospray ionization. This sampling and ionization approach has produced what appear to be classic electrospray ionization spectra; however, the softness of this sampling/ionization process versus simple electrospray ionization has not been definitely determined. A series of benzlypyridinium salts, known as thermometer ions, were used to comparemore » internal energy distributions between electrospray ionization and the UV laser ablation liquid-vortex capture probe electrospray combination. Measured internal energy distributions were identical between the two techniques, even with differences in laser fluence (0.7-3.1 J cm-2) and when using UV-absorbing or non-UV-absorbing sample substrates. This data indicates ions formed directly by UV laser ablation, if any, are likely an extremely small constituent of the total ion signal observed. Instead, neutral molecules, clusters or particulates ejected from the surface during laser ablation, subsequently captured and dissolved in the flowing solvent stream then electrosprayed are the predominant source of ion signal observed. The electrospray ionization process used controls the softness of the technique.« less

  17. Electrospray Post-Ionization Mass Spectrometry of Electrosurgical Aerosols

    NASA Astrophysics Data System (ADS)

    Guenther, Sabine; Schäfer, Karl-Christian; Balog, Júlia; Dénes, Júlia; Majoros, Tamás; Albrecht, Katalin; Tóth, Miklós; Spengler, Bernhard; Takáts, Zoltán

    2011-11-01

    The feasibility of electrospray (ES) ionization of aerosols generated by electrosurgical disintegration methods was investigated. Although electrosurgery itself was demonstrated to produce gaseous ions, post-ionization methods were implemented to enhance the ion yield, especially in those cases when the ion current produced by the applied electrosurgical method is not sufficient for MS analysis. Post-ionization was implemented by mounting an ES emitter onto a Venturi pump, which is used for ion transfer. The effect of various parameters including geometry, high voltage setting, flow parameters, and solvent composition was investigated in detail. Experimental setups were optimized accordingly. ES post-ionization was found to yield spectra similar to those obtained by the REIMS technique, featuring predominantly lipid-type species. Signal enhancement was 20- to 50-fold compared with electrosurgical disintegration in positive mode, while no improvement was observed in negative mode. ES post-ionization was also demonstrated to allow the detection of non-lipid type species in the electrosurgical aerosol, including drug molecules. Since the tissue specificity of the MS data was preserved in the ES post-ionization setup, feasibility of tissue identification was demonstrated using different electrosurgical methods.

  18. Biases in Metallicity Measurements from Global Galaxy Spectra: The Effects of Flux Weighting and Diffuse Ionized Gas Contamination

    NASA Astrophysics Data System (ADS)

    Sanders, Ryan L.; Shapley, Alice E.; Zhang, Kai; Yan, Renbin

    2017-12-01

    Galaxy metallicity scaling relations provide a powerful tool for understanding galaxy evolution, but obtaining unbiased global galaxy gas-phase oxygen abundances requires proper treatment of the various line-emitting sources within spectroscopic apertures. We present a model framework that treats galaxies as ensembles of H II and diffuse ionized gas (DIG) regions of varying metallicities. These models are based upon empirical relations between line ratios and electron temperature for H II regions, and DIG strong-line ratio relations from SDSS-IV MaNGA IFU data. Flux-weighting effects and DIG contamination can significantly affect properties inferred from global galaxy spectra, biasing metallicity estimates by more than 0.3 dex in some cases. We use observationally motivated inputs to construct a model matched to typical local star-forming galaxies, and quantify the biases in strong-line ratios, electron temperatures, and direct-method metallicities as inferred from global galaxy spectra relative to the median values of the H II region distributions in each galaxy. We also provide a generalized set of models that can be applied to individual galaxies or galaxy samples in atypical regions of parameter space. We use these models to correct for the effects of flux-weighting and DIG contamination in the local direct-method mass-metallicity and fundamental metallicity relations, and in the mass-metallicity relation based on strong-line metallicities. Future photoionization models of galaxy line emission need to include DIG emission and represent galaxies as ensembles of emitting regions with varying metallicity, instead of as single H II regions with effective properties, in order to obtain unbiased estimates of key underlying physical properties.

  19. Spatially resolved density and ionization measurements of shocked foams using x-ray fluorescence

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    MacDonald, M. J.; Keiter, P. A.; Montgomery, D. S.

    2016-09-22

    We present experiments at the Trident laser facility demonstrating the use of x-ray fluorescence (XRF) to simultaneously measure density, ionization state populations, and electron temperature in shocked foams. An imaging x-ray spectrometer was used to obtain spatially-resolved measurements of Ti K-more » $$\\alpha$$ emission. Density profiles were measured from K-$$\\alpha$$ intensity. Ti ionization state distributions and electron temperatures were inferred by fitting K-$$\\alpha$$ spectra to spectra from CRETIN simulations. This study shows that XRF provides a powerful tool to complement other diagnostics to make equation of state measurements of shocked materials containing a suitable tracer element.« less

  20. Laser-Induced Acoustic Desorption/Electron Ionization of Amino Acids and Small Peptides

    NASA Astrophysics Data System (ADS)

    Jarrell, Tiffany M.; Owen, Benjamin C.; Riedeman, James S.; Prentice, Boone M.; Pulliam, Chris J.; Max, Joann; Kenttämaa, Hilkka I.

    2017-06-01

    Laser-induced acoustic desorption (LIAD) allows for desorption of neutral nonvolatile compounds independent of their volatility or thermal stability. Many different ionization methods have been coupled with LIAD. Hence, this setup provides a better control over the types of ions formed than other mass spectrometry evaporation/ionization methods commonly used to characterize biomolecules, such as ESI or MALDI. In this study, the utility of LIAD coupled with electron ionization (EI) was tested for the analysis of common amino acids with no derivatization. The results compared favorably with previously reported EI mass spectra obtained using thermal desorption/EI. Further, LIAD/EI mass spectra collected for hydrochloride salts of two amino acids were found to be similar to those measured for the neutral amino acids with the exception of the appearance of an HCl+● ion. However, the hydrochloride salt of arginine showed a distinctly different LIAD/EI mass spectrum than the previously published literature EI mass spectrum, likely due to its highly basic side chain that makes a specific zwitterionic form particularly favorable. Finally, EI mass spectra were measured for seven small peptides, including di-, tri-, and tetrapeptides. These mass spectra show a variety of ion types. However, an type ions are prevalent. Also, electron-induced dissociation (EID) of protonated peptides has been reported to form primarily an type ions. In addition, the loss of small neutral molecules and side-chain cleavages were observed that are reminiscent of other high-energy fragmentation methods, such as EID. Finally, the isomeric dipeptides LG and IG were found to produce drastically different EI mass spectra, thus allowing differentiation of the leucine and isoleucine amino acids in these dipeptides. [Figure not available: see fulltext.

  1. Low-mass dark matter search using ionization signals in XENON100

    NASA Astrophysics Data System (ADS)

    Aprile, E.; Aalbers, J.; Agostini, F.; Alfonsi, M.; Amaro, F. D.; Anthony, M.; Arneodo, F.; Barrow, P.; Baudis, L.; Bauermeister, B.; Benabderrahmane, M. L.; Berger, T.; Breur, P. A.; Brown, A.; Brown, E.; Bruenner, S.; Bruno, G.; Budnik, R.; Buss, A.; Bütikofer, L.; Cardoso, J. M. R.; Cervantes, M.; Cichon, D.; Coderre, D.; Colijn, A. P.; Conrad, J.; Cussonneau, J. P.; Decowski, M. P.; de Perio, P.; di Gangi, P.; di Giovanni, A.; Duchovni, E.; Ferella, A. D.; Fieguth, A.; Franco, D.; Fulgione, W.; Galloway, M.; Garbini, M.; Geis, C.; Goetzke, L. W.; Greene, Z.; Grignon, C.; Gross, E.; Hasterok, C.; Hogenbirk, E.; Itay, R.; Kaminsky, B.; Kessler, G.; Kish, A.; Landsman, H.; Lang, R. F.; Levinson, L.; Le Calloch, M.; Levy, C.; Linde, F.; Lindemann, S.; Lindner, M.; Lopes, J. A. M.; Lyashenko, A.; Manfredini, A.; Marrodán Undagoitia, T.; Masbou, J.; Massoli, F. V.; Masson, D.; Mayani, D.; Melgarejo Fernandez, A. J.; Meng, Y.; Messina, M.; Micheneau, K.; Miguez, B.; Molinario, A.; Murra, M.; Naganoma, J.; Oberlack, U.; Orrigo, S. E. A.; Pakarha, P.; Pelssers, B.; Persiani, R.; Piastra, F.; Pienaar, J.; Plante, G.; Priel, N.; Rauch, L.; Reichard, S.; Reuter, C.; Rizzo, A.; Rosendahl, S.; Rupp, N.; Dos Santos, J. M. F.; Sartorelli, G.; Scheibelhut, M.; Schindler, S.; Schreiner, J.; Schumann, M.; Scotto Lavina, L.; Selvi, M.; Shagin, P.; Simgen, H.; Stein, A.; Thers, D.; Tiseni, A.; Trinchero, G.; Tunnell, C. D.; von Sivers, M.; Wall, R.; Wang, H.; Weber, M.; Wei, Y.; Weinheimer, C.; Wulf, J.; Zhang, Y.; Xenon Collaboration

    2016-11-01

    We perform a low-mass dark matter search using an exposure of 30 kg ×yr with the XENON100 detector. By dropping the requirement of a scintillation signal and using only the ionization signal to determine the interaction energy, we lowered the energy threshold for detection to 0.7 keV for nuclear recoils. No dark matter detection can be claimed because a complete background model cannot be constructed without a primary scintillation signal. Instead, we compute an upper limit on the WIMP-nucleon scattering cross section under the assumption that every event passing our selection criteria could be a signal event. Using an energy interval from 0.7 keV to 9.1 keV, we derive a limit on the spin-independent WIMP-nucleon cross section that excludes WIMPs with a mass of 6 GeV /c2 above 1.4 ×10-41 cm2 at 90% confidence level.

  2. Measurements of the absolute energy spectra of cosmic-ray positrons and electrons above 7 GeV

    NASA Astrophysics Data System (ADS)

    Grimani, C.; Stephens, S. A.; Cafagna, F. S.; Basini, G.; Bellotti, R.; Brunetti, M. T.; Circella, M.; Codino, A.; De Marzo, C.; De Pascale, M. P.; Finetti, N.; Golden, R. L.; Hof, M.; Menn, W.; Mitchell, J. W.; Morselli, A.; Ormes, J. F.; Papini, P.; Pfeifer, C.; Piccardi, S.; Picozza, P.; Ricci, M.; Simon, M.; Spillantini, P.; Stochaj, S. J.; Streitmatter, R. E.

    2002-09-01

    A measurement of the energy spectra of cosmic-ray positrons and electrons was made with a balloon-borne magnet-spectrometer, which was flown at a mean geomagnetic cut-off of 4.5 GV/c. The observed positron flux in the energy range 7-16 GeV is approximately an order of magnitude lower than that of electrons, as measured in other experiments at various energies. The power law spectral index of the observed differential energy spectrum of electrons is -2.89 +/- 0.10 in the energy interval 7.5-47 GeV. For positrons the overall fit of the available data above 7 GeV has been considered. The spectral index is found to be -3.37 +/- 0.26 and the fraction of positrons, e+/(e+,+ e-), has a mean value of 0.064 +/- 0.003. The world data on e+/(e+,+ e-) from 0.1 to 30 GeV indicate that a plerion type electron spectrum is preferred over the other types. The trend of the presently existing high energy data also suggests a possible contribution of positrons produced at the pulsar polar cap. High resolution experiments capable of identifying positrons at least up to 100 GeV with high statistics are required to pinpoint the origin of both electrons and positrons in the cosmic radiation.

  3. Highly informative multiclass profiling of lipids by ultra-high performance liquid chromatography - Low resolution (quadrupole) mass spectrometry by using electrospray ionization and atmospheric pressure chemical ionization interfaces.

    PubMed

    Beccaria, Marco; Inferrera, Veronica; Rigano, Francesca; Gorynski, Krzysztof; Purcaro, Giorgia; Pawliszyn, Janusz; Dugo, Paola; Mondello, Luigi

    2017-08-04

    A simple, fast, and versatile method, using an ultra-high performance liquid chromatography system coupled with a low resolution (single quadrupole) mass spectrometer was optimized to perform multiclass lipid profiling of human plasma. Particular attention was made to develop a method suitable for both electrospray ionization and atmospheric pressure chemical ionization interfaces (sequentially in positive- and negative-ion mode), without any modification of the chromatographic conditions (mobile phase, flow-rate, gradient, etc.). Emphasis was given to the extrapolation of the structural information based on the fragmentation pattern obtained using atmospheric pressure chemical ionization interface, under each different ionization condition, highlighting the complementary information obtained using the electrospray ionization interface, of support for related molecule ions identification. Furthermore, mass spectra of phosphatidylserine and phosphatidylinositol obtained using the atmospheric pressure chemical ionization interface are reported and discussed for the first time. Copyright © 2017 Elsevier B.V. All rights reserved.

  4. SU-F-I-75: Half-Value Layer Thicknesses and Homogeneity Coefficients for Fluoroscopic X-Ray Beam Spectra Incorporating Spectral Filtration

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wunderle, K; Wayne State University School of Medicine, Detroit, MI; Godley, A

    Purpose: The purpose of this investigation is to quantify various first half-value-layers (HVLs), second HVLs and homogeneity coefficients (HCs) for a state-of-the-art fluoroscope utilizing spectral (copper) filtration. Methods: A Radcal (Monrovia, Ca) AccuPro dosimeter with a 10×6-6 calibrated ionization chamber was used to measure air kerma for radiographic x-ray exposures made on a Siemens (Erlangen, Germany) Artis ZeeGo fluoroscope operated in the service mode. The ionization chamber was centered in the x-ray beam at 72 cm from the focal spot with a source-to-image-distance of 120 cm. The collimators were introduced to limit the x-ray field to approximately 5 cm ×more » 5 cm at the ionization chamber plane. Type-1100 aluminum filters, in 0.5 mm increments, were used to determine the HVL. Two HVL calculation methods were used, log-linear interpolation and Lambert-W interpolation as described by Mathieu [Med Phys, 38(8), 4546 (2011)]. Multiple measurements were made at 60, 80, 100, 120 kVp at spectral filtration thicknesses of 0, 0.1, 0.3, 0.6 and 0.9 mm. Results: First HVL, second HVL, and HCs are presented for the fluoroscopic x-ray beam spectra indicated above, with nearly identical results from the two interpolation methods. Accuracy of the set kVp was also determined and deviated less than 2%. First HVLs for fluoroscopic x-ray beam spectra without spectral filtration determined in our study were 7%–16% greater than previously published data by Fetterly et al. [Med Phys, 28, 205 (2001)]. However, the FDA minimum HVL requirements changed since that publication, requiring larger HVLs as of 2006. Additionally, x-ray tube and generator architecture have substantially changed over the last 15 years providing different beam spectra. Conclusion: X-ray beam quality characteristics for state-of-the-art fluoroscopes with spectral filtration have not been published. This study provides reference data which will be useful for defining beam qualities encountered on

  5. Amonia gas: an improved reagent for chemical ionization mass spectrometry of bile acid methyl ester acetates

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    DeMark, B.R.; Klein, P.D.

    1981-01-01

    The ammonia chemical ionization mass spectra of 28 methyl ester acetate derivatives of bile acids and related compounds have been determined by gas-liquid chromatography-mass spectrometry. Advantages of ammonia ionization over the previously studied isobutane ionization include a 130 to 270% enhancement in the sensitivity of base peak monitoring, and direct determination of molecular weight from the base peak (M + NH/sub 4//sup +/) in the mass spectrum of any of the derivatives. Minor ions in the ammonia spectra also allow selective detection of 3-keto compounds and can indicate unsaturation or double bond conjugation in the molecule. The significance of thesemore » studies for the detection and quantitation of bile acids is discussed. 2 tables.« less

  6. Autoionizing resonances in electron-impact ionization of O5+ ions

    NASA Astrophysics Data System (ADS)

    Müller, A.; Teng, H.; Hofmann, G.; Phaneuf, R. A.; Salzborn, E.

    2000-12-01

    We report on a detailed experimental and theoretical study of electron-impact ionization of O5+ ions. A high-resolution scan measurement of the K-shell excitation threshold region has been performed with statistical uncertainties as low as 0.03%. At this level of precision a wealth of features in the cross section arising from indirect ionization processes becomes visible, and even interference of direct ionization with resonant-excitation/auto-double-ionization (READI) is clearly observed. The experimental results are compared with R-matrix calculations that include both direct and indirect processes in a unified way. Radiative damping of autoionizing Li-like states is found to be about 10-15 %. The calculations almost perfectly reproduce most of the experimental resonance features found in the present measurement including READI. They also agree with the direct-ionization converged close-coupling results of I. Bray [J. Phys. B 28, L247 (1995)] and the absolute total ionization cross section measurement of K. Rinn et al. [Phys. Rev. A 36, 595 (1987)].

  7. Electron-Impact Total Ionization Cross Sections of CH and C2H2

    PubMed Central

    Kim, Yong-Ki; Ali, M. Asgar; Rudd, M. Eugene

    1997-01-01

    Electron-impact total ionization cross sections for the CH radical and C2H2 (acetylene) have been calculated using the Binary-Encounter-Bethe (BEB) model. The BEB model combines the Mott cross section and the asymptotic form of the Bethe theory, and has been shown to generate reliable ionization cross sections for a large variety of molecules. The BEB cross sections for CH and C2H2 are in good agreement with the available experimental data from ionization thresholds to hundreds of eV in incident energies. PMID:27805116

  8. A Low-Noise Germanium Ionization Spectrometer for Low-Background Science

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Aalseth, Craig E.; Colaresi, Jim; Collar, Juan I.

    2016-12-01

    Recent progress on the development of very low energy threshold high purity germanium ionization spectrometers has produced an instrument of 1.2 kg mass and excellent noise performance. The detector was installed in a low-background cryostat intended for use in a low mass, WIMP dark matter direct detection search. The integrated detector and low background cryostat achieved noise performance of 98 eV full-width half-maximum of an input electronic pulse generator peak and gamma-ray energy resolution of 1.9 keV full-width half-maximum at the 60Co gamma-ray energy of 1332 keV. This Transaction reports the thermal characterization of the low-background cryostat, specifications of themore » newly prepared 1.2 kg p-type point contact germanium detector, and the ionization spectroscopy – energy resolution and energy threshold – performance of the integrated system.« less

  9. The Precision Array for Probing the Epoch of Re-ionization: Eight Station Results

    NASA Astrophysics Data System (ADS)

    Parsons, Aaron R.; Backer, Donald C.; Foster, Griffin S.; Wright, Melvyn C. H.; Bradley, Richard F.; Gugliucci, Nicole E.; Parashare, Chaitali R.; Benoit, Erin E.; Aguirre, James E.; Jacobs, Daniel C.; Carilli, Chris L.; Herne, David; Lynch, Mervyn J.; Manley, Jason R.; Werthimer, Daniel J.

    2010-04-01

    We are developing the Precision Array for Probing the Epoch of Re-ionization (PAPER) to detect 21 cm emission from the early universe, when the first stars and galaxies were forming. We describe the overall experiment strategy and architecture and summarize two PAPER deployments: a four-antenna array in the low radio frequency interference (RFI) environment of Western Australia and an eight-antenna array at a prototyping site at the NRAO facilities near Green Bank, WV. From these activities we report on system performance, including primary beam model verification, dependence of system gain on ambient temperature, measurements of receiver and overall system temperatures, and characterization of the RFI environment at each deployment site. We present an all-sky map synthesized between 139 MHz and 174 MHz using data from both arrays that reaches down to 80 mJy (4.9 K, for a beam size of 2.15e-5 sr at 156 MHz), with a 10 mJy (620 mK) thermal noise level that indicates what would be achievable with better foreground subtraction. We calculate angular power spectra (C ell) in a cold patch and determine them to be dominated by point sources, but with contributions from galactic synchrotron emission at lower radio frequencies and angular wavemodes. Although the sample variance of foregrounds dominates errors in these power spectra, we measure a thermal noise level of 310 mK at ell = 100 for a 1.46 MHz band centered at 164.5 MHz. This sensitivity level is approximately 3 orders of magnitude in temperature above the level of the fluctuations in 21 cm emission associated with re-ionization.

  10. Anomalous ionization seen in the spectra of B supergiants

    NASA Technical Reports Server (NTRS)

    Cassinelli, J. P.; Abbott, D. C.

    1981-01-01

    An IUE survey of B supergiants has been conducted to study the persistence with spectral type of the ultraviolet resonance lines of N V, C IV and Si IV. N V is seen as late as B2.5Ia, C IV until B6Ia and Si IV throughout the range from B1.5 to B9. This is in fairly good agreement with the Auger ionization model of Cassinelli and Olson (1979). The terminal velocities are derived for the 20 stars in the sample and it is found that the ratio v(T)/v(esc) decreases monotonically with spectral type from the value of 3.0 that it has in the O spectral range to the value 1.0 at B9Ia.

  11. Synthetic IRIS spectra of the solar transition region: Effect of high-energy tails

    NASA Astrophysics Data System (ADS)

    Dzifčáková, E.; Vocks, C.; Dudík, J.

    2017-06-01

    Aims: The solar transition region satisfies the conditions for presence of non-Maxwellian electron energy distributions with high-energy tails at energies corresponding to the ionization potentials of many ions emitting in the extreme-ultraviolet and ultraviolet portions of the spectrum. Methods: We calculate the synthetic Si iv, O iv, and S iv spectra in the far ultraviolet channel of the Interface Region Imaging Spectrograph (IRIS). Ionization, recombination, and excitation rates are obtained by integration of the cross-sections or their approximations over the model electron distributions considering particle propagation from the hotter corona. Results: The ionization rates are significantly affected by the presence of high-energy tails. This leads to the peaks of the relative abundance of individual ions to be broadened with pronounced low-temperature shoulders. As a result, the contribution functions of individual lines observable by IRIS also exhibit low-temperature shoulders, or their peaks are shifted to temperatures an order of magnitude lower than for the Maxwellian distribution. The integrated emergent spectra can show enhancements of Si iv compared to O iv by more than a factor of two. Conclusions: The high-energy particles can have significant impact on the emergent spectra and their presence needs to be considered even in situations without strong local acceleration.

  12. Population sensitivities of animals to chronic ionizing radiation-model predictions from mice to elephant.

    PubMed

    Sazykina, Tatiana G

    2018-02-01

    Model predictions of population response to chronic ionizing radiation (endpoint 'morbidity') were made for 11 species of warm-blooded animals, differing in body mass and lifespan - from mice to elephant. Predictions were made also for 3 bird species (duck, pigeon, and house sparrow). Calculations were based on analytical solutions of the mathematical model, simulating a population response to low-LET ionizing radiation in an ecosystem with a limiting resource (Sazykina, Kryshev, 2016). Model parameters for different species were taken from biological and radioecological databases; allometric relationships were employed for estimating some parameter values. As a threshold of decreased health status in exposed populations ('health threshold'), a 10% reduction in self-repairing capacity of organisms was suggested, associated with a decline in ability to sustain environmental stresses. Results of the modeling demonstrate a general increase of population vulnerability to ionizing radiation in animal species of larger size and longevity. Populations of small widespread species (mice, house sparrow; body mass 20-50 g), which are characterized by intensive metabolism and short lifespan, have calculated 'health thresholds' at dose rates about 6.5-7.5 mGy day -1 . Widespread animals with body mass 200-500 g (rat, common pigeon) - demonstrate 'health threshold' values at 4-5 mGy day -1 . For populations of animals with body mass 2-5 kg (rabbit, fox, raccoon), the indicators of 10% health decrease are in the range 2-3.4 mGy day -1 . For animals with body mass 40-100 kg (wolf, sheep, wild boar), thresholds are within 0.5-0.8 mGy day -1 ; for herbivorous animals with body mass 200-300 kg (deer, horse) - 0.5-0.6 mGy day -1 . The lowest health threshold was estimated for elephant (body mass around 5000 kg) - 0.1 mGy day -1 . According to the model results, the differences in population sensitivities of warm-blooded animal species to ionizing radiation are generally

  13. Collisional Ionization Equilibrium for Optically Thin Plasmas

    NASA Technical Reports Server (NTRS)

    Bryans, P.; Mitthumsiri, W.; Savin, D. W.; Badnell, N. R.; Gorczyca, T. W.; Laming, J. M.

    2006-01-01

    Reliably interpreting spectra from electron-ionized cosmic plasmas requires accurate ionization balance calculations for the plasma in question. However, much of the atomic data needed for these calculations have not been generated using modern theoretical methods and their reliability are often highly suspect. We have utilized state-of-the-art calculations of dielectronic recombination (DR) rate coefficients for the hydrogenic through Na-like ions of all elements from He to Zn. We have also utilized state-of-the-art radiative recombination (RR) rate coefficient calculations for the bare through Na-like ions of all elements from H to Zn. Using our data and the recommended electron impact ionization data of Mazzotta et al. (1998), we have calculated improved collisional ionization equilibrium calculations. We compare our calculated fractional ionic abundances using these data with those presented by Mazzotta et al. (1998) for all elements from H to Ni, and with the fractional abundances derived from the modern DR and RR calculations of Gu (2003a,b, 2004) for Mg, Si, S, Ar, Ca, Fe, and Ni.

  14. Far-ultraviolet absorption spectra of quasars: How to find missing hot gas and metals

    NASA Technical Reports Server (NTRS)

    Verner, D. A.; Tytler, David; Barthel, P. D.

    1994-01-01

    We show that some high-redshift QSO absorption systems that reveal only the H I Lyman series lines at wavelengths visible from the ground maybe a new class of ultra-high-ionization metal line systems, with metal lines in the far-UV region which is now being explored with satellites. At high temperatures or in intense radiation fields metal systems will not show the usual C IV absorption, and O VI will become the most prominent metal absorber. At still higher ionization, O IV also becomes weak and the strongest metal lines are from Ne VIII, Mg X and Si XII, which have doublets in the rangs 500-800 A. Hence very high ionization metal systems will not show metal lines in existing spectra. Recent X-ray observations show that galaxy halos contain hot gas, so we predict that far-UV spectra of QSOs will also show this gas.

  15. Raman spectra of solid benzene under high pressure

    NASA Technical Reports Server (NTRS)

    Thiery, M.-M.; Kobashi, K.; Spain, I. L.

    1985-01-01

    Raman spectra of solid benzene have been measured at room temperature up to about 140 kbar, using the diamond anvil cell. Effort has been focused upon the lattice vibration spectra at pressures above that of phase II. It is found that a change in slopes occurs in the frequency-pressure curves at about 40 kbar. Furthermore, a new band appears above 90 kbar. These features probably correspond respectively to the II-III phase transition, which has been reported previously, and a III-IV phase transition, reported here for the first time.

  16. Factors that affect molecular weight distribution of Suwannee river fulvic acid as determined by electrospray ionization/mass spectrometry

    USGS Publications Warehouse

    Rostad, C.E.; Leenheer, J.A.

    2004-01-01

    Effects of methylation, molar response, multiple charging, solvents, and positive and negative ionization on molecular weight distributions of aquatic fulvic acid were investigated by electrospray ionization/mass spectrometry. After preliminary analysis by positive and negative modes, samples and mixtures of standards were derivatized by methylation to minimize ionization sites and reanalyzed.Positive ionization was less effective and produced more complex spectra than negative ionization. Ionization in methanol/water produced greater response than in acetonitrile/water. Molar response varied widely for the selected free acid standards when analyzed individually and in a mixture, but after methylation this range decreased. After methylation, the number average molecular weight of the Suwannee River fulvic acid remained the same while the weight average molecular weight decreased. These differences are probably indicative of disaggregation of large aggregated ions during methylation. Since the weight average molecular weight decreased, it is likely that aggregate formation in the fulvic acid was present prior to derivatization, rather than multiple charging in the mass spectra. ?? 2004 Elsevier B.V. All rights reserved.

  17. On ionizing shock waves

    NASA Astrophysics Data System (ADS)

    Kaniel, A.; Igra, O.; Ben-Dor, G.; Mond, M.

    The flow field in the ionizing relaxation zone developed behind a normal shock wave in an electrically neutral, homogeneous, two temperature mixture of thermally ideal gases (molecules, atoms, ions, electrons) was numerically solved. The heat transfer between the electron gas and the other components was taken into account while all the other transport phenomena (molecular, turbulent and radiative) were neglected in the relaxation zone, since it is dominated by inelastic collisions. The threshold cross sections measured by Specht (1981), for excitation of argon by electron collisions, were used. The calculated results show good agreement with the results of the shock tube experiments presented by Glass and Liu (1978), especially in the electron avalanche region. A critical examination was made of the common assumptions regarding the average energy with which electrons are produced by atom-atom collisions and the relative effectiveness of atom-atom collisions (versus electron-atom collisions) in ionizing excited argon.

  18. Hydraulic effects in a radiative atmosphere with ionization

    NASA Astrophysics Data System (ADS)

    Bhat, P.; Brandenburg, A.

    2016-03-01

    Context. In his 1978 paper, Eugene Parker postulated the need for hydraulic downward motion to explain magnetic flux concentrations at the solar surface. A similar process has also recently been seen in simplified (e.g., isothermal) models of flux concentrations from the negative effective magnetic pressure instability (NEMPI). Aims: We study the effects of partial ionization near the radiative surface on the formation of these magnetic flux concentrations. Methods: We first obtain one-dimensional (1D) equilibrium solutions using either a Kramers-like opacity or the H- opacity. The resulting atmospheres are then used as initial conditions in two-dimensional (2D) models where flows are driven by an imposed gradient force that resembles a localized negative pressure in the form of a blob. To isolate the effects of partial ionization and radiation, we ignore turbulence and convection. Results: Because of partial ionization, an unstable stratification always forms near the surface. We show that the extrema in the specific entropy profiles correspond to the extrema in the degree of ionization. In the 2D models without partial ionization, strong flux concentrations form just above the height where the blob is placed. Interestingly, in models with partial ionization, such flux concentrations always form at the surface well above the blob. This is due to the corresponding negative gradient in specific entropy. Owing to the absence of turbulence, the downflows reach transonic speeds. Conclusions: We demonstrate that, together with density stratification, the imposed source of negative pressure drives the formation of flux concentrations. We find that the inclusion of partial ionization affects the entropy profile dramatically, causing strong flux concentrations to form closer to the surface. We speculate that turbulence effects are needed to limit the strength of flux concentrations and homogenize the specific entropy to a stratification that is close to marginal.

  19. Coulomb-repulsion-assisted double ionization from doubly excited states of argon

    NASA Astrophysics Data System (ADS)

    Liao, Qing; Winney, Alexander H.; Lee, Suk Kyoung; Lin, Yun Fei; Adhikari, Pradip; Li, Wen

    2017-08-01

    We report a combined experimental and theoretical study to elucidate nonsequential double-ionization dynamics of argon atoms at laser intensities near and below the recollision-induced ionization threshold. Three-dimensional momentum measurements of two electrons arising from strong-field nonsequential double ionization are achieved with a custom-built electron-electron-ion coincidence apparatus, showing laser intensity-dependent Coulomb repulsion effect between the two outgoing electrons. Furthermore, a previously predicted feature of double ionization from doubly excited states is confirmed in the distributions of sum of two-electron momenta. A classical ensemble simulation suggests that Coulomb-repulsion-assisted double ionization from doubly excited states is at play at low laser intensity. This mechanism can explain the dependence of Coulomb repulsion effect on the laser intensity, as well as the transition from side-by-side to back-to-back dominant emission along the laser polarization direction.

  20. A Continuous Threshold Expectile Model.

    PubMed

    Zhang, Feipeng; Li, Qunhua

    2017-12-01

    Expectile regression is a useful tool for exploring the relation between the response and the explanatory variables beyond the conditional mean. A continuous threshold expectile regression is developed for modeling data in which the effect of a covariate on the response variable is linear but varies below and above an unknown threshold in a continuous way. The estimators for the threshold and the regression coefficients are obtained using a grid search approach. The asymptotic properties for all the estimators are derived, and the estimator for the threshold is shown to achieve root-n consistency. A weighted CUSUM type test statistic is proposed for the existence of a threshold at a given expectile, and its asymptotic properties are derived under both the null and the local alternative models. This test only requires fitting the model under the null hypothesis in the absence of a threshold, thus it is computationally more efficient than the likelihood-ratio type tests. Simulation studies show that the proposed estimators and test have desirable finite sample performance in both homoscedastic and heteroscedastic cases. The application of the proposed method on a Dutch growth data and a baseball pitcher salary data reveals interesting insights. The proposed method is implemented in the R package cthreshER .

  1. Thresholds for Shifting Visually Perceived Eye Level Due to Incremental Pitches

    NASA Technical Reports Server (NTRS)

    Scott, Donald M.; Welch, Robert; Cohen, M. M.; Hill, Cyndi

    2001-01-01

    Visually perceived eye level (VPEL) was judged by subjects as they viewed a luminous grid pattern that was pitched by 2 or 5 deg increments between -20 deg and +20 deg. Subjects were dark adapted for 20 min and indicated--VPEL by directing the beam of a laser pointer to the rear wall of a 1.25 m cubic pitch box that rotated about a horizontal axis midpoint on the rear wall. Data were analyzed by ANOVA and the Tukey HSD procedure. Results showed a 10.0 deg threshold for pitches P(sub i) above the reference pitch P(sub 0), and a -10.3 deg threshold for pitches P(sub i) below-the reference-pitch P(sub 0). Threshold data for pitches P(sub i) < P(sub 0) suggest an asymmetric threshold for VPEL below and above physical eye level.

  2. H2CN+ and H2CNH+: New insight into the structure and dynamics from mass-selected threshold photoelectron spectra

    NASA Astrophysics Data System (ADS)

    Holzmeier, Fabian; Lang, Melanie; Hader, Kilian; Hemberger, Patrick; Fischer, Ingo

    2013-06-01

    In this paper, we reinvestigate the photoionization of nitrogen containing reactive intermediates of the composition H2CN and H2CNH, molecules of importance in astrochemistry and biofuel combustion. In particular, H2CN is also of considerable interest to theory, because of its complicated potential energy surface. The species were generated by flash pyrolysis, ionized with vacuum ultraviolet synchrotron radiation, and studied by mass-selected threshold photoelectron (TPE) spectroscopy. In the mass-selected TPE-spectrum of m/z = 28, contributions of all four isomers of H2CN were identified. The excitation energy to the triplet cation of the methylene amidogen radical H2CN was determined to be 12.32 eV. Considerable activity in the C-N mode of the cation is visible. Furthermore, we derived values for excitation into the triplet cations of 11.72 eV for cis-HCNH, 12.65 eV for trans-HCNH, and 11.21 eV for H2NC. The latter values are probably accurate to within one vibrational quantum. The spectrum features an additional peak at 10.43 eV that corresponds to excitation into the C2v-symmetric H2CN+. As this structure constitutes a saddle point, the peak is assigned to an activated complex on the singlet potential energy surface of the cation, corresponding to a hydrogen atom migration. For methanimine, H2CNH, the adiabatic ionization energy IEad was determined to be 9.99 eV and the vibrational structure of the spectrum was analyzed in detail. The uncertainty of earlier values that simply assigned the signal onset to the IEad is thus considerably reduced. The spectrum is dominated by the H-N-C bending mode ν1+ and the rocking mode ν3+. All experimental data were supported by calculations and Franck-Condon simulations.

  3. Prolonged noise exposure-induced auditory threshold shifts in rats

    PubMed Central

    Chen, Guang-Di; Decker, Brandon; Muthaiah, Vijaya Prakash Krishnan; Sheppard, Adam; Salvi, Richard

    2014-01-01

    Noise-induced hearing loss (NIHL) initially increases with exposure duration, but eventually reaches an asymptotic threshold shift (ATS) once the exposure duration exceeds 18-24 h. Equations for predicting the ATS have been developed for several species, but not for rats, even though this species is extensively used in noise exposure research. To fill this void, we exposed rats to narrowband noise (NBN, 16-20 kHz) for 5 weeks starting at 80 dB SPL in the first week and then increasing the level by 6 dB per week to a final level of 104 dB SPL. Auditory brainstem responses (ABR) were recorded before, during, and following the exposure to determine the amount of hearing loss. The noise induced threshold shift to continuous long-term exposure, defined as compound threshold shift (CTS), within and above 16-20 kHz increased with noise level at the rate of 1.82 dB threshold shift per dB of noise level (NL) above a critical level (C) of 77.2 dB SPL i.e. CTS = 1.82(NL-77.2). The normalized amplitude of the largest ABR peak measured at 100 dB SPL decreased at the rate of 3.1% per dB of NL above the critical level of 76.9 dB SPL, i.e., %ABR Reduction = 3.1%(NL-76.9). ABR thresholds measured >30 days post-exposure only partially recovered resulting in a permanent threshold shift of 30-40 dB along with severe hair cell loss in the basal, high-frequency region of the cochlea. In the rat, CTS increases with noise level with a slope similar to humans and chinchillas. The critical level (C) in the rat is similar to that of humans, but higher than that of chinchillas. PMID:25219503

  4. Proximity effects in the electron impact mass spectra of 2-substituted benzazoles

    NASA Astrophysics Data System (ADS)

    Chantler, Thomas; Perrin, Victoria L.; Donkor, Rachel E.; Cawthorne, Richard S.; Bowen, Richard D.

    2004-08-01

    The 70 eV electron impact mass spectra of a wide range of 2-substituted benzazoles are reported and discussed. Particular attention is paid to the mechanistic significance and analytical utility of [M-H]+ and [M-X]+ signals in the spectra of benzazoles in which the 2-substituent contains a terminal aryl group with one or more substituents, X. Loss of H[radical sign] or X[radical sign] occurs preferentially from an ortho-position from ionized 2-benzylbenzimidazoles, 2-phenethylbenzimidazoles, 2-styrylbenzimidazoles, 2-styrylbenzoxazoles and 2-styrylbenzothiazoles. In the three styrylbenzazole series, the [M-H]+ and/or [M-X]+ signals dominate the spectra. This unusually facile loss of H[radical sign] or X[radical sign] may be attributed to a proximity effect, in which cyclization of the ionized molecule is followed by elimination of an ortho-substituent to give an exceptionally stable polycyclic ion. Formation of a new five- or six-membered ring by the proximity effect occurs rapidly; cyclization to a seven-membered ring takes place rather less readily; but formation of a ring with only four atoms or more than seven atoms is not observed to a significant extent. The proximity effect competes effectively with loss of a methyl radical by simple cleavage of an ethyl, isopropyl and even a t-butyl group in the pendant aromatic ring of ionized 2-(4-alkylstyryl)benzazoles.

  5. Mass spectrometry of analytical derivatives. 2. "Ortho" and "Para" effects in electron ionization mass spectra of derivatives of hydroxy, mercapto and amino benzoic acids.

    PubMed

    Todua, Nino G; Mikaia, Anzor I

    2016-01-01

    Derivatives requiring either anhydrous or aqueous reaction conditions were prepared for robust and reliable gas chromatography/mass spectrometry (GC/MS) characterization of hydroxyl, mercapto, and amino benzoic acids Methylation and trialkylsilytation are employed for blocking the acidic function. Alkyl, trimethylsilyl, acetyl, perfluoroacyl and alkoxycarbonyl derivatization groups are introduced to hydroxyl, mercapto and amino functions. The electron ionization induced fragmentation characteristics of corresponding derivatives are explained by comparing the MS 1 spectra of unlabeled compounds to their 2 H and 13 C labeled analogs, and analysis of collision-induced dissociation data from MS 2 spectra. Competing fragmentation alternatives are identified and specific decomposition processes are detailed that characterize (a) ortho isomers due to interaction or vicinal functional substituents and (b) para isomers prone to forming para quinoid type structures. Skeletal and hydrogen rearrangements typical for methyl benzoates and the blocking groups are considered when discussing diagnostically important ions. Characteristic ions produced as a result of rearrangements in ortho isomers are classified, and skeletal rearrangements required to produce para quinoid type ions specific for para isomers are noted. Key ions for structure elucidation and differentiation of isomers for derivatives of substituted benzoic acids by GC/MS are suggested.

  6. Advanced Kr Atomic Structure and Ionization Kinetics for Pinches on ZR

    NASA Astrophysics Data System (ADS)

    Dasgupta, Arati; Clark, Robert; Giuliani, John; Ouart, Nick; Davis, Jack; Jones, Brent; Ampleford, Dave; Hansen, Stephanie

    2011-10-01

    High fluence photon sources above 10 keV are a challenge for HED plasmas. This motivates Kr atomic modeling as its K-shell radiation starts at 13 keV. We have developed atomic structure and collisional-radiatve data for the full K-and L-shell and much of the M-shell using the the state-of-the-art Flexible Atomic Code. All relevant atomic collisional and radiative processes that affect ionization balance and are necessary to accurately model the pinch dynamics and the spectroscopic details of the emitted radiation are included in constructing the model. This non-LTE CRE model will be used to generate synthetic spectra for fixed densities and temperatures relevant for Kr gas-puff simulations in ZR. Work supported by DOE/NNSA. Sandia is a multi-program laboratory operated by Sandia Corporation, a Lockheed Martin Company, for the United States Department of Energy's National Nuclear Security Administration under contract DE-AC04-94AL85000.

  7. Sparsely Ionizing Diagnostic and Natural Background Radiations are Likely Preventing Cancer and Other Genomic-Instability-Associated Diseases

    PubMed Central

    Scott, Bobby R.; Di Palma, Jennifer

    2007-01-01

    Routine diagnostic X-rays (e.g., chest X-rays, mammograms, computed tomography scans) and routine diagnostic nuclear medicine procedures using sparsely ionizing radiation forms (e.g., beta and gamma radiations) stimulate the removal of precancerous neo-plastically transformed and other genomically unstable cells from the body (medical radiation hormesis). The indicated radiation hormesis arises because radiation doses above an individual-specific stochastic threshold activate a system of cooperative protective processes that include high-fidelity DNA repair/apoptosis (presumed p53 related), an auxiliary apoptosis process (PAM process) that is presumed p53-independent, and stimulated immunity. These forms of induced protection are called adapted protection because they are associated with the radiation adaptive response. Diagnostic X-ray sources, other sources of sparsely ionizing radiation used in nuclear medicine diagnostic procedures, as well as radioisotope-labeled immunoglobulins could be used in conjunction with apopto-sis-sensitizing agents (e.g., the natural phenolic compound resveratrol) in curing existing cancer via low-dose fractionated or low-dose, low-dose-rate therapy (therapeutic radiation hormesis). Evidence is provided to support the existence of both therapeutic (curing existing cancer) and medical (cancer prevention) radiation hormesis. Evidence is also provided demonstrating that exposure to environmental sparsely ionizing radiations, such as gamma rays, protect from cancer occurrence and the occurrence of other diseases via inducing adapted protection (environmental radiation hormesis). PMID:18648608

  8. Efficient pre-ionization by direct X-B mode conversion in VEST

    NASA Astrophysics Data System (ADS)

    Jo, JongGab; Lee, H. Y.; Kim, S. C.; Kim, S. H.; An, Y. H.; Hwang, Y. S.

    2017-01-01

    Pre-ionization experiments with pure toroidal field have been carried out in VEST (Versatile Experiment Spherical Torus) to investigate the feasibility of direct XB mode conversion from perpendicular LFS (Low Field Side) injection for efficient pre-ionization. Pre-ionization plasmas are studied by measuring the electron density and temperature profiles with respect to microwave power and toroidal field strength, and 2D full wave cold plasma simulation using the COMSOL Multiphysics is performed for the comparison. It is experimentally figured out that exceeding the threshold microwave power (>3 kW), the parametric decay and localized collisional heating is observed near the UHR (Upper Hybrid Resonance), and the efficient XB mode conversion can be achieved in both short density scale length (Ln) and magnetic scale length (LB) region positioned at outboard and inboard sides, respectively. From the 2D full wave simulations, the reflection and tunneling of X-wave near the R-cutoff layer according to the measured electron density profiles are analyzed with electric field polarization and power flow. Threshold electric field and wave power density for parametric decay are evaluated at least more than 4.8 × 104 V/m and 100 W/cm2, respectively. This study shows that efficient pre-ionization schemes using direct XB mode conversion can be realized by considering the key factors such as Ln, LB, and transmitted wave power at the UHR. Application to Ohmic start-up experiment is carried out to confirm the effect of the pre-ionization schemes on tokamak plasma start-up in VEST.

  9. Threshold-dependent sample sizes for selenium assessment with stream fish tissue

    USGS Publications Warehouse

    Hitt, Nathaniel P.; Smith, David R.

    2015-01-01

    Natural resource managers are developing assessments of selenium (Se) contamination in freshwater ecosystems based on fish tissue concentrations. We evaluated the effects of sample size (i.e., number of fish per site) on the probability of correctly detecting mean whole-body Se values above a range of potential management thresholds. We modeled Se concentrations as gamma distributions with shape and scale parameters fitting an empirical mean-to-variance relationship in data from southwestern West Virginia, USA (63 collections, 382 individuals). We used parametric bootstrapping techniques to calculate statistical power as the probability of detecting true mean concentrations up to 3 mg Se/kg above management thresholds ranging from 4 to 8 mg Se/kg. Sample sizes required to achieve 80% power varied as a function of management thresholds and Type I error tolerance (α). Higher thresholds required more samples than lower thresholds because populations were more heterogeneous at higher mean Se levels. For instance, to assess a management threshold of 4 mg Se/kg, a sample of eight fish could detect an increase of approximately 1 mg Se/kg with 80% power (given α = 0.05), but this sample size would be unable to detect such an increase from a management threshold of 8 mg Se/kg with more than a coin-flip probability. Increasing α decreased sample size requirements to detect above-threshold mean Se concentrations with 80% power. For instance, at an α-level of 0.05, an 8-fish sample could detect an increase of approximately 2 units above a threshold of 8 mg Se/kg with 80% power, but when α was relaxed to 0.2, this sample size was more sensitive to increasing mean Se concentrations, allowing detection of an increase of approximately 1.2 units with equivalent power. Combining individuals into 2- and 4-fish composite samples for laboratory analysis did not decrease power because the reduced number of laboratory samples was compensated for by increased

  10. Theory of ionizing neutrino-atom collisions: The role of atomic recoil

    NASA Astrophysics Data System (ADS)

    Kouzakov, Konstantin A.; Studenikin, Alexander I.

    2016-04-01

    We consider theoretically ionization of an atom by neutrino impact taking into account electromagnetic interactions predicted for massive neutrinos by theories beyond the Standard Model. The effects of atomic recoil in this process are estimated using the one-electron and semiclassical approximations and are found to be unimportant unless the energy transfer is very close to the ionization threshold. We show that the energy scale where these effects become important is insignificant for current experiments searching for magnetic moments of reactor antineutrinos.

  11. Variable-Threshold Threshold Elements,

    DTIC Science & Technology

    A threshold element is a mathematical model of certain types of logic gates and of a biological neuron. Much work has been done on the subject of... threshold elements with fixed thresholds; this study concerns itself with elements in which the threshold may be varied, variable- threshold threshold ...elements. Physical realizations include resistor-transistor elements, in which the threshold is simply a voltage. Variation of the threshold causes the

  12. Non-traditional applications of laser desorption/ionization mass spectrometry

    NASA Astrophysics Data System (ADS)

    McAlpin, Casey R.

    protonated free analyte molecules. Expanded applications of MOLI MS were developed following description of the ionization mechanism. A series of experiments were carried out involving treatment of metal oxide surfaces with reagent molecules to expand MOLI MS and develop enhanced MOLI MS methodologies. It was found that treatment of the metal oxide surface with a small molecule to act as a proton source expanded MOLI MS to analytes which did not form acidic adsorbed species. Proton-source pretreated MOLI MS was then used for the analysis of oils obtained from the fast, anoxic pyrolysis of biomass (py-oil). These samples are complex and produce MOLI mass spectra with many peaks. In this experiment, methods of data reduction including Kendrick mass defects and nominal mass z*-scores, which are commonly used for the study of petroleum fractions, were used to interpret these spectra and identify the major constituencies of py-oils. Through data reduction and collision induced dissociation (CID), homologous series of compounds were rapidly identified. The final chapter involves using metal oxides to catalytically cleave the ester linkage on lipids containing fatty acids in addition to ionization. The cleavage process results in the production of spectra similar to those observed with saponification/methylation. Fatty acid profiles were generated for a variety of micro-organisms to differentiate between bacterial species. (Abstract shortened by UMI.)

  13. Molecular Data for a Biochemical Model of DNA Radiation Damage: Electron Impact Ionization and Dissociative Ionization of DNA Bases and Sugar-Phosphate Backbone

    NASA Technical Reports Server (NTRS)

    Dateo, Christopher E.; Fletcher, Graham D.

    2004-01-01

    As part of the database for building up a biochemical model of DNA radiation damage, electron impact ionization cross sections of sugar-phosphate backbone and DNA bases have been calculated using the improved binary-encounter dipole (iBED) model. It is found that the total ionization cross sections of C3'- and C5'-deoxyribose-phospate, two conformers of the sugar-phosphate backbone, are close to each other. Furthermore, the sum of the ionization cross sections of the separate deoxyribose and phosphate fragments is in close agreement with the C3'- and C5'-deoxyribose-phospate cross sections, differing by less than 10%. Of the four DNA bases, the ionization cross section of guanine is the largest, then in decreasing order, adenine, thymine, and cytosine. The order is in accordance with the known propensity of oxidation of the bases by ionizing radiation. Dissociative ionization (DI), a process that both ionizes and dissociates a molecule, is investigated for cytosine. The DI cross section for the formation of H and (cytosine-Hl)(+), with the cytosine ion losing H at the 1 position, is also reported. The threshold of this process is calculated to be 17.1 eV. Detailed analysis of ionization products such as in DI is important to trace the sequential steps in the biochemical process of DNA damage.

  14. Ionization Processes in the Atmosphere of Titan (Research Note). III. Ionization by High-Z Nuclei Cosmic Rays

    NASA Technical Reports Server (NTRS)

    Gronoff, G.; Mertens, C.; Lilensten, J.; Desorgher, L.; Fluckiger, E.; Velinov, P.

    2011-01-01

    Context. The Cassini-Huygens mission has revealed the importance of particle precipitation in the atmosphere of Titan thanks to in-situ measurements. These ionizing particles (electrons, protons, and cosmic rays) have a strong impact on the chemistry, hence must be modeled. Aims. We revisit our computation of ionization in the atmosphere of Titan by cosmic rays. The high-energy high-mass ions are taken into account to improve the precision of the calculation of the ion production profile. Methods. The Badhwahr and O Neill model for cosmic ray spectrum was adapted for the Titan model. We used the TransTitan model coupled with the Planetocosmics model to compute the ion production by cosmic rays. We compared the results with the NAIRAS/HZETRN ionization model used for the first time for a body that differs from the Earth. Results. The cosmic ray ionization is computed for five groups of cosmic rays, depending on their charge and mass: protons, alpha, Z = 8 (oxygen), Z = 14 (silicon), and Z = 26 (iron) nucleus. Protons and alpha particles ionize mainly at 65 km altitude, while the higher mass nucleons ionize at higher altitudes. Nevertheless, the ionization at higher altitude is insufficient to obscure the impact of Saturn s magnetosphere protons at a 500 km altitude. The ionization rate at the peak (altitude: 65 km, for all the different conditions) lies between 30 and 40/cu cm/s. Conclusions. These new computations show for the first time the importance of high Z cosmic rays on the ionization of the Titan atmosphere. The updated full ionization profile shape does not differ significantly from that found in our previous calculations (Paper I: Gronoff et al. 2009, 506, 955) but undergoes a strong increase in intensity below an altitude of 400 km, especially between 200 and 400 km altitude where alpha and heavier particles (in the cosmic ray spectrum) are responsible for 40% of the ionization. The comparison of several models of ionization and cosmic ray spectra (in

  15. The enhancement of neutral metal Na layer above thunderstorms

    NASA Astrophysics Data System (ADS)

    Yu, Bingkun; Xue, Xianghui; Lu, Gaopeng; Kuo, Chengling; Dou, Xiankang; Gao, Qi; Qie, Xiushu; Wu, Jianfei; Tang, Yihuan

    2017-04-01

    Na (sodium) exists as layers of atoms in the mesosphere/lower thermosphere (MLT) at altitudes between 80 and 105 km. It has lower ionization potential of 5.139 eV than atmospheric species, such as O2 (12.06 eV). Tropospheric thunderstorms affect the lower ionosphere and the ionospheric sporadic E (Es) at 100 km can also be influenced by lightning. The mechanism is expected to be associated with transient luminous events (TLE) as red sprites and gigantic jets at upper atmosphere. However, measurements of ionospheric electric fields of 20mV·m-1 above thunderstorms are less than estimated value (>48 0mV·m-1) to excite ionization in the lower ionosphere. We found an enhancement of Na layer above thunderstorms. The increase of Na density in the statistical result can be as much as 500 cm-3 and it will have an impact on ionospheric chemistry and modify the conductivity properties of the MLT region. The ionospheric observations made with two digisondes near the Na lidar, the thunderstorm model, ionosphere model, and Na chemistry model are all used to discuss the possible mechanisms responsible for the enhancement of Na layer after thunderstorms.

  16. Improved molecular level identification of organic compounds using comprehensive two-dimensional chromatography, dual ionization energies and high resolution mass spectrometry

    DOE PAGES

    Worton, David R.; Decker, Monika; Isaacman-VanWertz, Gabriel; ...

    2017-05-22

    A new analytical methodology combining comprehensive two-dimensional gas chromatography (GC×GC), dual ionization energies and high resolution time of flight mass spectrometry has been developed that improves molecular level identification of organic compounds in complex environmental samples. GC×GC maximizes compound separation providing cleaner mass spectra by minimizing erroneous fragments from interferences and co-eluting peaks. Traditional electron ionization (EI, 70 eV) provides MS fragmentation patterns that can be matched to published EI MS libraries while vacuum ultraviolet photoionization (VUV, 10.5 eV) yields MS with reduced fragmentation enhancing the abundance of the molecular ion providing molecular formulas when combined with high resolution massmore » spectrometry. We demonstrate this new approach by applying it to a sample of organic aerosol. In this sample, 238 peaks were matched to EI MS library data with FM ≥ 800 but a fifth (42 compounds) were determined to be incorrectly identified because the molecular formula was not confirmed by the VUV MS data. This highlights the importance of using a complementary technique to confirm compound identifications even for peaks with very good matching statistics. In total, 171 compounds were identified by EI MS matching to library spectra with confirmation of the molecular formula from the high resolution VUV MS data and were not dependent on the matching statistics being above a threshold value. A large number of unidentified peaks were still observed with FM < 800, which in routine analysis would typically be neglected. Where possible, these peaks were assigned molecular formulas from the VUV MS data (211 in total). In total, the combination of EI and VUV MS data provides more than twice as much molecular level peak information than traditional approaches and improves confidence in the identification of individual organic compounds. The molecular formula data from the VUV MS data was used, in

  17. Improved molecular level identification of organic compounds using comprehensive two-dimensional chromatography, dual ionization energies and high resolution mass spectrometry

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Worton, David R.; Decker, Monika; Isaacman-VanWertz, Gabriel

    A new analytical methodology combining comprehensive two-dimensional gas chromatography (GC×GC), dual ionization energies and high resolution time of flight mass spectrometry has been developed that improves molecular level identification of organic compounds in complex environmental samples. GC×GC maximizes compound separation providing cleaner mass spectra by minimizing erroneous fragments from interferences and co-eluting peaks. Traditional electron ionization (EI, 70 eV) provides MS fragmentation patterns that can be matched to published EI MS libraries while vacuum ultraviolet photoionization (VUV, 10.5 eV) yields MS with reduced fragmentation enhancing the abundance of the molecular ion providing molecular formulas when combined with high resolution massmore » spectrometry. We demonstrate this new approach by applying it to a sample of organic aerosol. In this sample, 238 peaks were matched to EI MS library data with FM ≥ 800 but a fifth (42 compounds) were determined to be incorrectly identified because the molecular formula was not confirmed by the VUV MS data. This highlights the importance of using a complementary technique to confirm compound identifications even for peaks with very good matching statistics. In total, 171 compounds were identified by EI MS matching to library spectra with confirmation of the molecular formula from the high resolution VUV MS data and were not dependent on the matching statistics being above a threshold value. A large number of unidentified peaks were still observed with FM < 800, which in routine analysis would typically be neglected. Where possible, these peaks were assigned molecular formulas from the VUV MS data (211 in total). In total, the combination of EI and VUV MS data provides more than twice as much molecular level peak information than traditional approaches and improves confidence in the identification of individual organic compounds. The molecular formula data from the VUV MS data was used, in

  18. Tandem mass spectrometry characteristics of polyester anions and cations formed by electrospray ionization.

    PubMed

    Arnould, Mark A; Buehner, Rita W; Wesdemiotis, Chrys; Vargas, Rafael

    2005-01-01

    Electrospray ionization of polyesters composed of isophthalic acid and neopentyl glycol produces carboxylate anions in negative mode and mainly sodium ion adducts in positive mode. A tandem mass spectrometry (MS/MS) study of these ions in a quadrupole ion trap shows that the collisionally activated dissociation pathways of the anions are simpler than those of the corresponding cations. Charge-remote fragmentations predominate in both cases, but the spectra obtained in negative mode are devoid of the complicating cation exchange observed in positive mode. MS/MS of the Na(+) adducts gives rise to a greater number of fragments but not necessarily more structural information. In either positive or negative mode, polyester oligomers with different end groups fragment by similar mechanisms. The observed fragments are consistent with rearrangements initiated by the end groups. Single-stage ESI mass spectra also are more complex in positive mode because of extensive H/Na substitutions; this is also true for matrix-assisted laser desorption ionization (MALDI) mass spectra. Hence, formation and analysis of anions might be the method of choice for determining block length, end group structure and copolymer sequence, provided the polyester contains at least one carboxylic acid end group that is ionizable to anions.

  19. Investigating resonances above and below the threshold in nuclear reactions of astrophysical interest and beyond

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    La Cognata, M., E-mail: lacognata@lns.infn.it; Kiss, G. G.; Mukhamedzhanov, A. M.

    2015-10-15

    Resonances in nuclear cross sections dramatically change their trends. Therefore, the presence of unexpected resonances might lead to unpredicted consequences on astrophysics and nuclear physics. In nuclear physics, resonances allow one to study states in the intermediate compound systems, to evaluate their cluster structure, for instance, especially in the energy regions approaching particle decay thresholds. In astrophysics, resonances might lead to changes in the nucleosynthesis flow, determining different isotopic compositions of the nuclear burning ashes. For these reasons, the Trojan Horse method has been modified to investigate resonant reactions. Thanks to this novel approach, for the first time normalization tomore » direct data might be avoided. Moreover, in the case of sub threshold resonances, the Trojan Horse method modified to investigate resonances allows one to deduce the asymptotic normalization coefficient, showing the close connection between the two indirect approaches.« less

  20. Ionizing laser propagation and spectral phase determination

    NASA Astrophysics Data System (ADS)

    Mittelberger, D. E.; Nakamura, K.; Lehe, R.; Gonsalves, A. J.; Benedetti, C.; Mao, H.-S.; Daniels, J.; Dale, N.; Swanson, K. K.; Esarey, E.; Leemans, W. P.

    2017-03-01

    Ionization-induced blueshifting is investigated through INF&RNO simulations and experimental studies at the Berkeley Laboratory Laser Accelerator (BELLA) Center. The effects of spectral phase and optical compression are explored. An in-situ method for verifying the spectral phase of an intense laser pulse at focus is presented, based on the effects of optical compression on the morphology of the blueshifted laser spectra.

  1. THE ORIGIN AND OPTICAL DEPTH OF IONIZING RADIATION IN THE 'GREEN PEA' GALAXIES

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Jaskot, A. E.; Oey, M. S.

    2013-04-01

    Although Lyman-continuum (LyC) radiation from star-forming galaxies likely drove the reionization of the universe, observations of star-forming galaxies at low redshift generally indicate low LyC escape fractions. However, the extreme [O III]/[O II] ratios of the z = 0.1-0.3 Green Pea galaxies may be due to high escape fractions of ionizing radiation. To analyze the LyC optical depths and ionizing sources of these rare, compact starbursts, we compare nebular photoionization and stellar population models with observed emission lines in the Peas' Sloan Digital Sky Survey (SDSS) spectra. We focus on the six most extreme Green Peas, the galaxies with themore » highest [O III]/[O II] ratios and the best candidates for escaping ionizing radiation. The Balmer line equivalent widths and He I {lambda}3819 emission in the extreme Peas support young ages of 3-5 Myr, and He II {lambda}4686 emission in five extreme Peas signals the presence of hard ionizing sources. Ionization by active galactic nuclei or high-mass X-ray binaries is inconsistent with the Peas' line ratios and ages. Although stacked spectra reveal no Wolf-Rayet (WR) features, we tentatively detect WR features in the SDSS spectra of three extreme Peas. Based on the Peas' ages and line ratios, we find that WR stars, chemically homogeneous O stars, or shocks could produce the observed He II emission. If hot stars are responsible, then the Peas' optical depths are ambiguous. However, accounting for emission from shocks lowers the inferred optical depth and suggests that the Peas may be optically thin. The Peas' ages likely optimize the escape of LyC radiation; they are old enough for supernovae and stellar winds to reshape the interstellar medium, but young enough to possess large numbers of UV-luminous O or WR stars.« less

  2. Humidity Effects on Fragmentation in Plasma-Based Ambient Ionization Sources

    NASA Astrophysics Data System (ADS)

    Newsome, G. Asher; Ackerman, Luke K.; Johnson, Kevin J.

    2016-01-01

    Post-plasma ambient desorption/ionization (ADI) sources are fundamentally dependent on surrounding water vapor to produce protonated analyte ions. There are two reports of humidity effects on ADI spectra. However, it is unclear whether humidity will affect all ADI sources and analytes, and by what mechanism humidity affects spectra. Flowing atmospheric pressure afterglow (FAPA) ionization and direct analysis in real time (DART) mass spectra of various surface-deposited and gas-phase analytes were acquired at ambient temperature and pressure across a range of observed humidity values. A controlled humidity enclosure around the ion source and mass spectrometer inlet was used to create programmed humidity and temperatures. The relative abundance and fragmentation of molecular adduct ions for several compounds consistently varied with changing ambient humidity and also were controlled with the humidity enclosure. For several compounds, increasing humidity decreased protonated molecule and other molecular adduct ion fragmentation in both FAPA and DART spectra. For others, humidity increased fragment ion ratios. The effects of humidity on molecular adduct ion fragmentation were caused by changes in the relative abundances of different reagent protonated water clusters and, thus, a change in the average difference in proton affinity between an analyte and the population of water clusters. Control of humidity in ambient post-plasma ion sources is needed to create spectral stability and reproducibility.

  3. Humidity Effects on Fragmentation in Plasma-Based Ambient Ionization Sources.

    PubMed

    Newsome, G Asher; Ackerman, Luke K; Johnson, Kevin J

    2016-01-01

    Post-plasma ambient desorption/ionization (ADI) sources are fundamentally dependent on surrounding water vapor to produce protonated analyte ions. There are two reports of humidity effects on ADI spectra. However, it is unclear whether humidity will affect all ADI sources and analytes, and by what mechanism humidity affects spectra. Flowing atmospheric pressure afterglow (FAPA) ionization and direct analysis in real time (DART) mass spectra of various surface-deposited and gas-phase analytes were acquired at ambient temperature and pressure across a range of observed humidity values. A controlled humidity enclosure around the ion source and mass spectrometer inlet was used to create programmed humidity and temperatures. The relative abundance and fragmentation of molecular adduct ions for several compounds consistently varied with changing ambient humidity and also were controlled with the humidity enclosure. For several compounds, increasing humidity decreased protonated molecule and other molecular adduct ion fragmentation in both FAPA and DART spectra. For others, humidity increased fragment ion ratios. The effects of humidity on molecular adduct ion fragmentation were caused by changes in the relative abundances of different reagent protonated water clusters and, thus, a change in the average difference in proton affinity between an analyte and the population of water clusters. Control of humidity in ambient post-plasma ion sources is needed to create spectral stability and reproducibility.

  4. Nonsequential double ionization with mid-infrared laser fields

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Li, Ying -Bin; Wang, Xu; Yu, Ben -Hai

    Using a full-dimensional Monte Carlo classical ensemble method, we present a theoretical study of atomic nonsequential double ionization (NSDI) with mid-infrared laser fields, and compare with results from near-infrared laser fields. Unlike single-electron strong-field processes, double ionization shows complex and unexpected interplays between the returning electron and its parent ion core. As a result of these interplays, NSDI for mid-IR fields is dominated by second-returning electron trajectories, instead of first-returning trajectories for near-IR fields. Here, some complex NSDI channels commonly happen with near-IR fields, such as the recollision-excitation-with-subsequent-ionization (RESI) channel, are virtually shut down by mid-IR fields. Besides, the finalmore » energies of the two electrons can be extremely unequal, leading to novel e-e momentum correlation spectra that can be measured experimentally.« less

  5. Nonsequential double ionization with mid-infrared laser fields

    DOE PAGES

    Li, Ying -Bin; Wang, Xu; Yu, Ben -Hai; ...

    2016-11-18

    Using a full-dimensional Monte Carlo classical ensemble method, we present a theoretical study of atomic nonsequential double ionization (NSDI) with mid-infrared laser fields, and compare with results from near-infrared laser fields. Unlike single-electron strong-field processes, double ionization shows complex and unexpected interplays between the returning electron and its parent ion core. As a result of these interplays, NSDI for mid-IR fields is dominated by second-returning electron trajectories, instead of first-returning trajectories for near-IR fields. Here, some complex NSDI channels commonly happen with near-IR fields, such as the recollision-excitation-with-subsequent-ionization (RESI) channel, are virtually shut down by mid-IR fields. Besides, the finalmore » energies of the two electrons can be extremely unequal, leading to novel e-e momentum correlation spectra that can be measured experimentally.« less

  6. Indirect dark matter signatures in the cosmic dark ages. II. Ionization, heating, and photon production from arbitrary energy injections

    NASA Astrophysics Data System (ADS)

    Slatyer, Tracy R.

    2016-01-01

    Any injection of electromagnetically interacting particles during the cosmic dark ages will lead to increased ionization, heating, production of Lyman-α photons and distortions to the energy spectrum of the cosmic microwave background, with potentially observable consequences. In this paper we describe numerical results for the low-energy electrons and photons produced by the cooling of particles injected at energies from keV to multi-TeV scales, at arbitrary injection redshifts (but focusing on the post-recombination epoch). We use these data, combined with existing calculations modeling the cooling of these low-energy particles, to estimate the resulting contributions to ionization, excitation and heating of the gas, and production of low-energy photons below the threshold for excitation and ionization. We compute corrected deposition-efficiency curves for annihilating dark matter, and demonstrate how to compute equivalent curves for arbitrary energy-injection histories. These calculations provide the necessary inputs for the limits on dark matter annihilation presented in the accompanying paper I, but also have potential applications in the context of dark matter decay or deexcitation, decay of other metastable species, or similar energy injections from new physics. We make our full results publicly available at http://nebel.rc.fas.harvard.edu/epsilon, to facilitate further independent studies. In particular, we provide the full low-energy electron and photon spectra, to allow matching onto more detailed codes that describe the cooling of such particles at low energies.

  7. Radiative Rates for Forbidden Transitions in Doubly-Ionized Fe-Peak Elements

    NASA Astrophysics Data System (ADS)

    Fivet, Vanessa; Quinet, P.; Bautista, M.

    2012-05-01

    Accurate and reliable atomic data for lowly-ionized Fe-peak species (Sc, Ti, V, Cr, Mn, Fe, Co, Ni and Cu) are of paramount importance for the analysis of the high resolution astrophysical spectra currently available. The third spectra of several iron group elements have been observed in different galactic sources like Herbig-Haro objects in the Orion Nebula [1] and stars like Eta Carinae [2]. However, forbidden transitions between low-lying metastable levels of doubly-ionized iron-peak ions have been very little investigated so far and radiative rates for those lines remain sparse or inexistent. We are carrying out a systematic study of the electronic structure of doubly-ionized iron-peak elements. The magnetic dipole (M1) and electric quadrupole (E2) transition probabilities are computed using the pseudo-relativistic Hartree-Fock (HFR) code of Cowan [3] and the central Thomas-Fermi-Dirac potential approximation implemented in AUTOSTRUCTURE [4]. This multi-platform approach allows for consistency checks and intercomparison and has proven very successful in the study of the complex Fe-peak species where many different effects contribute [5]. References [1] A. Mesa-Delgado et al., MNRAS 395 (2009) 855 [2] S. Johansson et al., A&A 361 (2000) 977 [3] R.D. Cowan, The Theory of Atomic Structure and Spectra, Berkeley: Univ. California Press (1981) [4] N.R. Badnell, J. Phys. B: At. Mol. Opt. Phys. 30 (1997) 1 [5] M. Bautista et al., ApJ 718 (2010) L189

  8. Future directions for LDEF ionizing radiation modeling and assessments

    NASA Technical Reports Server (NTRS)

    Armstrong, T. W.; Colborn, B. L.

    1993-01-01

    A calculational program utilizing data from radiation dosimetry measurements aboard the Long Duration Exposure Facility (LDEF) satellite to reduce the uncertainties in current models defining the ionizing radiation environment is in progress. Most of the effort to date has been on using LDEF radiation dose measurements to evaluate models defining the geomagnetically trapped radiation, which has provided results applicable to radiation design assessments being performed for Space Station Freedom. Plans for future data comparisons, model evaluations, and assessments using additional LDEF data sets (LET spectra, induced radioactivity, and particle spectra) are discussed.

  9. A Critical, Nonlinear Threshold Dictates Bacterial Invasion and Initial Kinetics During Influenza

    NASA Astrophysics Data System (ADS)

    Smith, Amber M.; Smith, Amanda P.

    2016-12-01

    Secondary bacterial infections increase morbidity and mortality of influenza A virus (IAV) infections. Bacteria are able to invade due to virus-induced depletion of alveolar macrophages (AMs), but this is not the only contributing factor. By analyzing a kinetic model, we uncovered a nonlinear initial dose threshold that is dependent on the amount of virus-induced AM depletion. The threshold separates the growth and clearance phenotypes such that bacteria decline for dose-AM depletion combinations below the threshold, stay constant near the threshold, and increase above the threshold. In addition, the distance from the threshold correlates to the growth rate. Because AM depletion changes throughout an IAV infection, the dose requirement for bacterial invasion also changes accordingly. Using the threshold, we found that the dose requirement drops dramatically during the first 7d of IAV infection. We then validated these analytical predictions by infecting mice with doses below or above the predicted threshold over the course of IAV infection. These results identify the nonlinear way in which two independent factors work together to support successful post-influenza bacterial invasion. They provide insight into coinfection timing, the heterogeneity in outcome, the probability of acquiring a coinfection, and the use of new therapeutic strategies to combat viral-bacterial coinfections.

  10. A Critical, Nonlinear Threshold Dictates Bacterial Invasion and Initial Kinetics During Influenza.

    PubMed

    Smith, Amber M; Smith, Amanda P

    2016-12-15

    Secondary bacterial infections increase morbidity and mortality of influenza A virus (IAV) infections. Bacteria are able to invade due to virus-induced depletion of alveolar macrophages (AMs), but this is not the only contributing factor. By analyzing a kinetic model, we uncovered a nonlinear initial dose threshold that is dependent on the amount of virus-induced AM depletion. The threshold separates the growth and clearance phenotypes such that bacteria decline for dose-AM depletion combinations below the threshold, stay constant near the threshold, and increase above the threshold. In addition, the distance from the threshold correlates to the growth rate. Because AM depletion changes throughout an IAV infection, the dose requirement for bacterial invasion also changes accordingly. Using the threshold, we found that the dose requirement drops dramatically during the first 7d of IAV infection. We then validated these analytical predictions by infecting mice with doses below or above the predicted threshold over the course of IAV infection. These results identify the nonlinear way in which two independent factors work together to support successful post-influenza bacterial invasion. They provide insight into coinfection timing, the heterogeneity in outcome, the probability of acquiring a coinfection, and the use of new therapeutic strategies to combat viral-bacterial coinfections.

  11. LASER DESORPTION/IONIZATION OF SINGLE ULTRAFINE MULTICOMPONENT AEROSOLS. (R823980)

    EPA Science Inventory

    Laser desorption/ionization characteristics of single
    ultrafine multicomponent aerosols have been investigated.
    The results confirm earlier findings that (a) the negative
    ion spectra are dominated by free electrons and (b) the ion
    yield-to-mass ratio is higher for ...

  12. Explaining the length threshold of polyglutamine aggregation

    NASA Astrophysics Data System (ADS)

    De Los Rios, Paolo; Hafner, Marc; Pastore, Annalisa

    2012-06-01

    The existence of a length threshold, of about 35 residues, above which polyglutamine repeats can give rise to aggregation and to pathologies, is one of the hallmarks of polyglutamine neurodegenerative diseases such as Huntington’s disease. The reason why such a minimal length exists at all has remained one of the main open issues in research on the molecular origins of such classes of diseases. Following the seminal proposals of Perutz, most research has focused on the hunt for a special structure, attainable only above the minimal length, able to trigger aggregation. Such a structure has remained elusive and there is growing evidence that it might not exist at all. Here we review some basic polymer and statistical physics facts and show that the existence of a threshold is compatible with the modulation that the repeat length imposes on the association and dissociation rates of polyglutamine polypeptides to and from oligomers. In particular, their dramatically different functional dependence on the length rationalizes the very presence of a threshold and hints at the cellular processes that might be at play, in vivo, to prevent aggregation and the consequent onset of the disease.

  13. Enhanced one-photon double ionization of atoms and molecules in an environment of different species.

    PubMed

    Stumpf, V; Kryzhevoi, N V; Gokhberg, K; Cederbaum, L S

    2014-05-16

    The correlated nature of electronic states in atoms and molecules is manifested in the simultaneous emission of two electrons after absorption of a single photon close to the respective threshold. Numerous observations in atoms and small molecules demonstrate that the double ionization efficiency close to threshold is rather small. In this Letter we show that this efficiency can be dramatically enhanced in the environment. To be specific, we concentrate on the case where the species in question has one or several He atoms as neighbors. The enhancement is achieved by an indirect process, where a He atom of the environment absorbs a photon and the resulting He(+) cation is neutralized fast by a process known as electron transfer mediated decay, producing thereby doubly ionized species. The enhancement of the double ionization is demonstrated in detail for the example of the Mg · He cluster. We show that the double ionization cross section of Mg becomes 3 orders of magnitude larger than the respective cross section of the isolated Mg atom. The impact of more neighbors is discussed and the extension to other species and environments is addressed.

  14. Absolute cross-section measurements of inner-shell ionization

    NASA Astrophysics Data System (ADS)

    Schneider, Hans; Tobehn, Ingo; Ebel, Frank; Hippler, Rainer

    1994-12-01

    Cross section ratios for K- and L-shell ionization of thin silver and gold targets by positron and electron impact have been determined at projectile energies of 30 70 keV. The experimental results are confirmed by calculations in plane wave Born approximation (PWBA) which include an electron exchange term and account for the deceleration or acceleration of the incident projectile in the nuclear field of the target atom. We report first absolute cross sections for K- and L-shell ionization of silver and gold targets by lepton impact in the threshold region. We have measured the corresponding cross sections for electron (e-) impact with an electron gun and the same experimental set-up.

  15. Visual adaptation and the amplitude spectra of radiological images.

    PubMed

    Kompaniez-Dunigan, Elysse; Abbey, Craig K; Boone, John M; Webster, Michael A

    2018-01-01

    We examined how visual sensitivity and perception are affected by adaptation to the characteristic amplitude spectra of X-ray mammography images. Because of the transmissive nature of X-ray photons, these images have relatively more low-frequency variability than natural images, a difference that is captured by a steeper slope of the amplitude spectrum (~ - 1.5) compared to the ~ 1/f (slope of - 1) spectra common to natural scenes. Radiologists inspecting these images are therefore exposed to a different balance of spectral components, and we measured how this exposure might alter spatial vision. Observers (who were not radiologists) were adapted to images of normal mammograms or the same images sharpened by filtering the amplitude spectra to shallower slopes. Prior adaptation to the original mammograms significantly biased judgments of image focus relative to the sharpened images, demonstrating that the images are sufficient to induce substantial after-effects. The adaptation also induced strong losses in threshold contrast sensitivity that were selective for lower spatial frequencies, though these losses were very similar to the threshold changes induced by the sharpened images. Visual search for targets (Gaussian blobs) added to the images was also not differentially affected by adaptation to the original or sharper images. These results complement our previous studies examining how observers adapt to the textural properties or phase spectra of mammograms. Like the phase spectrum, adaptation to the amplitude spectrum of mammograms alters spatial sensitivity and visual judgments about the images. However, unlike the phase spectrum, adaptation to the amplitude spectra did not confer a selective performance advantage relative to more natural spectra.

  16. Dental age estimation: the role of probability estimates at the 10 year threshold.

    PubMed

    Lucas, Victoria S; McDonald, Fraser; Neil, Monica; Roberts, Graham

    2014-08-01

    The use of probability at the 18 year threshold has simplified the reporting of dental age estimates for emerging adults. The availability of simple to use widely available software has enabled the development of the probability threshold for individual teeth in growing children. Tooth development stage data from a previous study at the 10 year threshold were reused to estimate the probability of developing teeth being above or below the 10 year thresh-hold using the NORMDIST Function in Microsoft Excel. The probabilities within an individual subject are averaged to give a single probability that a subject is above or below 10 years old. To test the validity of this approach dental panoramic radiographs of 50 female and 50 male children within 2 years of the chronological age were assessed with the chronological age masked. Once the whole validation set of 100 radiographs had been assessed the masking was removed and the chronological age and dental age compared. The dental age was compared with chronological age to determine whether the dental age correctly or incorrectly identified a validation subject as above or below the 10 year threshold. The probability estimates correctly identified children as above or below on 94% of occasions. Only 2% of the validation group with a chronological age of less than 10 years were assigned to the over 10 year group. This study indicates the very high accuracy of assignment at the 10 year threshold. Further work at other legally important age thresholds is needed to explore the value of this approach to the technique of age estimation. Copyright © 2014. Published by Elsevier Ltd.

  17. On the X-ray spectra of luminous, inhomogeneous accretion flows

    NASA Astrophysics Data System (ADS)

    Merloni, A.; Malzac, J.; Fabian, A. C.; Ross, R. R.

    2006-08-01

    We discuss the expected X-ray spectral and variability properties of black hole accretion discs at high luminosity, under the hypothesis that radiation-pressure-dominated discs are subject to violent clumping instabilities and, as a result, have a highly inhomogeneous two-phase structure. After deriving the full accretion disc solutions explicitly in terms of the parameters of the model, we study their radiative properties both with a simple two-zone model, treatable analytically, and with radiative transfer simulations which account simultaneously for energy balance and Comptonization in the hot phase, together with reflection, reprocessing, ionization and thermal balance in the cold phase. We show that, if not only the density, but also the heating rate within these flows is inhomogeneous, then complex reflection-dominated spectra can be obtained for a high enough covering fraction of the cold phase. In general, large reflection components in the observed X-ray spectra should be associated with strong soft excesses, resulting from the combined emission of ionized atomic emission lines. The variability properties of such systems are such that, even when contributing to a large fraction of the hard X-ray spectrum, the reflection component is less variable than the power-law-like emission originating from the hot Comptonizing phase, in agreement with what is observed in many Narrow Line Seyfert 1 galaxies and bright Seyfert 1. Our model falls within the family of those trying to explain the complex X-ray spectra of bright AGN with ionized reflection, but presents an alternative, specific, physically motivated, geometrical set-up for the complex multiphase structure of the inner regions of near-Eddington accretion flows.

  18. Correspondence between evoked vocal responses and auditory thresholds in Pleurodema thaul (Amphibia; Leptodactylidae).

    PubMed

    Penna, Mario; Velásquez, Nelson; Solís, Rigoberto

    2008-04-01

    Thresholds for evoked vocal responses and thresholds of multiunit midbrain auditory responses to pure tones and synthetic calls were investigated in males of Pleurodema thaul, as behavioral thresholds well above auditory sensitivity have been reported for other anurans. Thresholds for evoked vocal responses to synthetic advertisement calls played back at increasing intensity averaged 43 dB RMS SPL (range 31-52 dB RMS SPL), measured at the subjects' position. Number of pulses increased with stimulus intensities, reaching a plateau at about 18-39 dB above threshold and decreased at higher intensities. Latency to call followed inverse trends relative to number of pulses. Neural audiograms yielded an average best threshold in the high frequency range of 46.6 dB RMS SPL (range 41-51 dB RMS SPL) and a center frequency of 1.9 kHz (range 1.7-2.6 kHz). Auditory thresholds for a synthetic call having a carrier frequency of 2.1 kHz averaged 44 dB RMS SPL (range 39-47 dB RMS SPL). The similarity between thresholds for advertisement calling and auditory thresholds for the advertisement call indicates that male P. thaul use the full extent of their auditory sensitivity in acoustic interactions, likely an evolutionary adaptation allowing chorusing activity in low-density aggregations.

  19. A review of the perceptual effects of hearing loss for frequencies above 3 kHz.

    PubMed

    Moore, Brian C J

    2016-12-01

    Hearing loss caused by exposure to intense sounds usually has its greatest effects on audiometric thresholds at 4 and 6 kHz. However, in several countries compensation for occupational noise-induced hearing loss is calculated using the average of audiometric thresholds for selected frequencies up to 3 kHz, based on the implicit assumption that hearing loss for frequencies above 3 kHz has no material adverse consequences. This paper assesses whether this assumption is correct. Studies are reviewed that evaluate the role of hearing for frequencies above 3 kHz. Several studies show that frequencies above 3 kHz are important for the perception of speech, especially when background sounds are present. Hearing at high frequencies is also important for sound localization, especially for resolving front-back confusions. Hearing for frequencies above 3 kHz is important for the ability to understand speech in background sounds and for the ability to localize sounds. The audiometric threshold at 4 kHz and perhaps 6 kHz should be taken into account when assessing hearing in a medico-legal context.

  20. Upper Hybrid Effects in Artificial Ionization

    NASA Astrophysics Data System (ADS)

    Papadopoulos, K.; Eliasson, B. E.

    2014-12-01

    A most fascinating result of recent ionospheric experiments has been the discovery of artificial ionization by Pedersen et al. (GRL, 37, L02106, 2010). The Artificial Ionospheric Layers (AIL) were the result of F-region O-mode HF irradiation using the HAARP ionospheric heater operating at 3.6 MW power. As demonstrated by Eliasson et al. (JGR, 117, A10321, 2012) the physics controlling the observed phenomenon and its threshold can be summarized as: " Collisional ionization due to high energy (~ 20 eV) electron tails generated by the interaction of strong Langmuir turbulence with plasma heated at the upper hybrid resonance and transported at the reflection height". The objective of the current presentation is to explore the role of the upper hybrid heating in the formation of AIL and its implications to future experiments involving HF heaters operating in middle and equatorial latitudes.

  1. Mercury demethylation in waterbird livers: Dose-response thresholds and differences among species

    USGS Publications Warehouse

    Eagles-Smith, Collin A.; Ackerman, Joshua T.; Julie, Y.E.E.; Adelsbach, T.L.

    2009-01-01

    We assessed methylmercury (MeHg) demethylation in the livers of adults and chicks of four waterbird species that commonly breed in San Francisco Bay: American avocets, black-necked stilts, Caspian terns, and Forster's terns. In adults (all species combined), we found strong evidence for a threshold, model where MeHg demethylation occurred above a hepatic total mercury concentration threshold of 8.51 ?? 0.93 ??g/g dry weight, and there was a strong decline in %MeHg values as total mercury (THg) concentrations increased above 8.51 ??g/g dry weight. Conversely, there was no evidence for a demethylation threshold in chicks, and we found that %MeHg values declined linearly with increasing THg concentrations. For adults, we also found taxonomie differences in the demethylation responses, with avocets and stilts showing a higher demethylation rate than that of terns when concentrations exceeded the threshold, whereas terns had a lower demethylation threshold (7.48 ?? 1.48 ??g/g dry wt) than that of avocets and stilts (9.91 ?? 1.29 ??g/g dry wt). Finally, we assessed the role of selenium (Se) in the demethylation process. Selenium concentrations were positively correlated with inorganic Hg in livers of birds above the demethylation threshold but not below. This suggests that Se may act as a binding site for demethylated Hg and may reduce the potential for secondary toxicity. Our findings indicate that waterbirds demethylate mercury in their livers if exposure exceeds a threshold value and suggest that taxonomie differences in demethylation ability may be an important factor in evaluating species-specific risk to MeHg exposure. Further, we provide strong evidence for a threshold of approximately 8.5 ??g/g dry weight of THg in the liver where demethylation is initiated. ?? 2009 SETAC.

  2. On the expected discounted penalty functions for two classes of risk processes under a threshold dividend strategy

    NASA Astrophysics Data System (ADS)

    Lu, Zhaoyang; Xu, Wei; Sun, Decai; Han, Weiguo

    2009-10-01

    In this paper, the discounted penalty (Gerber-Shiu) functions for a risk model involving two independent classes of insurance risks under a threshold dividend strategy are developed. We also assume that the two claim number processes are independent Poisson and generalized Erlang (2) processes, respectively. When the surplus is above this threshold level, dividends are paid at a constant rate that does not exceed the premium rate. Two systems of integro-differential equations for discounted penalty functions are derived, based on whether the surplus is above this threshold level. Laplace transformations of the discounted penalty functions when the surplus is below the threshold level are obtained. And we also derive a system of renewal equations satisfied by the discounted penalty function with initial surplus above the threshold strategy via the Dickson-Hipp operator. Finally, analytical solutions of the two systems of integro-differential equations are presented.

  3. Positronium collisions with atoms and molecules

    NASA Astrophysics Data System (ADS)

    Fabrikant, I. I.; Gribakin, G. F.; Wilde, R. S.

    2017-11-01

    We review recent theoretical efforts to explain observed similarities between electron-atom and positronium(Ps)-atom scattering which also extends to molecular targets. In the range of the projectile velocities above the threshold for Ps ionization (break-up) this similarity can be explained in terms of quasi-free electron scattering and impulse approximation. However, for lower Ps velocities more sophisticated methods should be developed. Our calculations of Ps scattering by heavy noble-gas atoms agree well with experiments at Ps velocities above the Ps ionization threshold. However, in contrast to electron scattering cross sections, at lower velocities they exhibit maxima whereas the experimental cross sections tend to decrease toward lower velocities indicating the same similarity with electron scattering cross section observed above the threshold. Our preliminary results for Ps-N2 scattering confirm experimental observation of a resonance similar to the ∏ g resonance in electron-N2 scattering.

  4. Extending a Tandem Mass Spectral Library to Include MS2 Spectra of Fragment Ions Produced In-Source and MSn Spectra.

    PubMed

    Yang, Xiaoyu; Neta, Pedatsur; Stein, Stephen E

    2017-11-01

    Tandem mass spectral library searching is finding increased use as an effective means of determining chemical identity in mass spectrometry-based omics studies. We previously reported on constructing a tandem mass spectral library that includes spectra for multiple precursor ions for each analyte. Here we report our method for expanding this library to include MS 2 spectra of fragment ions generated during the ionization process (in-source fragment ions) as well as MS 3 and MS 4 spectra. These can assist the chemical identification process. A simple density-based clustering algorithm was used to cluster all significant precursor ions from MS 1 scans for an analyte acquired during an infusion experiment. The MS 2 spectra associated with these precursor ions were grouped into the same precursor clusters. Subsequently, a new top-down hierarchical divisive clustering algorithm was developed for clustering the spectra from fragmentation of ions in each precursor cluster, including the MS 2 spectra of the original precursors and of the in-source fragments as well as the MS n spectra. This algorithm starts with all the spectra of one precursor in one cluster and then separates them into sub-clusters of similar spectra based on the fragment patterns. Herein, we describe the algorithms and spectral evaluation methods for extending the library. The new library features were demonstrated by searching the high resolution spectra of E. coli extracts against the extended library, allowing identification of compounds and their in-source fragment ions in a manner that was not possible before. Graphical Abstract ᅟ.

  5. Influence of surgical gloves on haptic perception thresholds.

    PubMed

    Hatzfeld, Christian; Dorsch, Sarah; Neupert, Carsten; Kupnik, Mario

    2018-02-01

    Impairment of haptic perception by surgical gloves could reduce requirements on haptic systems for surgery. While grip forces and manipulation capabilities were not impaired in previous studies, no data is available for perception thresholds. Absolute and differential thresholds (20 dB above threshold) of 24 subjects were measured for frequencies of 25 and 250 Hz with a Ψ-method. Effects of wearing a surgical glove, moisture on the contact surface and subject's experience with gloves were incorporated in a full-factorial experimental design. Absolute thresholds of 12.8 dB and -29.6 dB (means for 25 and 250 Hz, respectively) and differential thresholds of -12.6 dB and -9.5 dB agree with previous studies. A relevant effect of the frequency on absolute thresholds was found. Comparisons of glove- and no-glove-conditions did not reveal a significant mean difference. Wearing a single surgical glove does not affect absolute and differential haptic perception thresholds. Copyright © 2017 John Wiley & Sons, Ltd.

  6. Quantum control via a genetic algorithm of the field ionization pathway of a Rydberg electron

    NASA Astrophysics Data System (ADS)

    Gregoric, Vincent C.; Kang, Xinyue; Liu, Zhimin Cheryl; Rowley, Zoe A.; Carroll, Thomas J.; Noel, Michael W.

    2017-08-01

    Quantum control of the pathway along which a Rydberg electron field ionizes is experimentally and computationally demonstrated. Selective field ionization is typically done with a slowly rising electric field pulse. The (1/n*)4 scaling of the classical ionization threshold leads to a rough mapping between arrival time of the electron signal and principal quantum number of the Rydberg electron. This is complicated by the many avoided level crossings that the electron must traverse on the way to ionization, which in general leads to broadening of the time-resolved field ionization signal. In order to control the ionization pathway, thus directing the signal to the desired arrival time, a perturbing electric field produced by an arbitrary wave-form generator is added to a slowly rising electric field. A genetic algorithm evolves the perturbing field in an effort to achieve the target time-resolved field ionization signal.

  7. On the contribution of active galactic nuclei to the high-redshift metagalactic ionizing background

    NASA Astrophysics Data System (ADS)

    D'Aloisio, Anson; Upton Sanderbeck, Phoebe R.; McQuinn, Matthew; Trac, Hy; Shapiro, Paul R.

    2017-07-01

    Motivated by the claimed detection of a large population of faint active galactic nuclei (AGNs) at high redshift, recent studies have proposed models in which AGNs contribute significantly to the z > 4 H I ionizing background. In some models, AGNs are even the chief sources of reionization. If proved true, these models would make necessary a complete revision to the standard view that galaxies dominated the high-redshift ionizing background. It has been suggested that AGN-dominated models can better account for two recent observations that appear to be in conflict with the standard view: (1) large opacity variations in the z ˜ 5.5 H I Ly α forest, and (2) slow evolution in the mean opacity of the He II Ly α forest. Large spatial fluctuations in the ionizing background from the brightness and rarity of AGNs may account for the former, while the earlier onset of He II reionization in these models may account for the latter. Here we show that models in which AGN emissions source ≳50 per cent of the ionizing background generally provide a better fit to the observed H I Ly α forest opacity variations compared to standard galaxy-dominated models. However, we argue that these AGN-dominated models are in tension with constraints on the thermal history of the intergalactic medium (IGM). Under standard assumptions about the spectra of AGNs, we show that the earlier onset of He II reionization heats up the IGM well above recent temperature measurements. We further argue that the slower evolution of the mean opacity of the He II Ly α forest relative to simulations may reflect deficiencies in current simulations rather than favour AGN-dominated models as has been suggested.

  8. Injection and trapping of tunnel-ionized electrons into laser-produced wakes.

    PubMed

    Pak, A; Marsh, K A; Martins, S F; Lu, W; Mori, W B; Joshi, C

    2010-01-15

    A method, which utilizes the large difference in ionization potentials between successive ionization states of trace atoms, for injecting electrons into a laser-driven wakefield is presented. Here a mixture of helium and trace amounts of nitrogen gas was used. Electrons from the K shell of nitrogen were tunnel ionized near the peak of the laser pulse and were injected into and trapped by the wake created by electrons from majority helium atoms and the L shell of nitrogen. The spectrum of the accelerated electrons, the threshold intensity at which trapping occurs, the forward transmitted laser spectrum, and the beam divergence are all consistent with this injection process. The experimental measurements are supported by theory and 3D OSIRIS simulations.

  9. Mirrorless Optical Parametric Oscillation with Tunable Threshold in Cold Atoms.

    PubMed

    Mei, Yefeng; Guo, Xianxin; Zhao, Luwei; Du, Shengwang

    2017-10-13

    We report the demonstration of a mirrorless optical parametric oscillator with a tunable threshold in laser-cooled atoms with four-wave mixing (FWM) using electromagnetically induced transparency. Driven by two classical laser beams, the generated Stokes and anti-Stokes fields counterpropagate and build up efficient intrinsic feedback through the nonlinear FWM process. This feedback does not involve any cavity or spatially distributed microstructures. We observe the transition of photon correlation properties from the biphoton quantum regime (below the threshold) to the oscillation regime (above the threshold). The pump threshold can be tuned by varying the operating parameters. We achieve the oscillation with a threshold as low as 15  μW.

  10. Fast Ionized X-ray Absorbers in AGNs

    NASA Astrophysics Data System (ADS)

    Fukumura, K.; Tombesi, F.; Kazanas, D.; Shrader, C.; Behar, E.; Contopoulos, I.

    2015-07-01

    We present a study of X-ray ionization of MHD accretion-disk wind models in an effort to explain the highly-ionized ultra-fast outflows (UFOs) identified as X-ray absorbers recently detected in various sub-classes of Seyfert AGNs. Our primary focus is to show that magnetically-driven outflows are physically plausible candidates to account for the AGN X-ray spectroscopic observations. We calculate its X-ray ionization and the ensuing X-ray absorption line spectra in comparison with an XXM-Newton/EPIC spectrum of the narrow-line Seyfert AGN, PG 1211+143. We find, through identifying the detected features with Fe Kα transitions, that the absorber has a characteristic ionization parameter of log(xi[erg cm/s]) = 5-6 and a hydrogen-equivalent column density on the order of 1e23 cm-2, outflowing at a sub-relativistic velocity of v/c = 0.1-0.2. The best-fit model favors its radial location at R = 200 Rs (Rs is the Schwarzschild radius), with a disk inner truncation radius at Rt = 30Rs. The overall K-shell feature in data is suggested to be dominated by Fe XXV with very little contribution from Fe XXVI and weakly-ionized iron, which is in a good agreement with a series of earlier analysis of the UFOs in various AGNs including PG 1211+143.

  11. Normal Auger spectra of iodine in gas phase alkali iodide molecules

    NASA Astrophysics Data System (ADS)

    Hu, Zhengfa; Caló, Antonio; Kukk, Edwin; Aksela, Helena; Aksela, Seppo

    2005-06-01

    Molecular normal Auger electron spectra following the iodine 4d ionization in gas-phase alkali iodides were investigated both experimentally and theoretically. The Auger electron spectra for LiI, NaI and KI were recorded using electron impact, and for RbI by using photo-excitation. These Auger spectra were analyzed in detail and compared to the referenced normal Auger spectra of HI [L. Karlsson, S. Svensson, P. Baltzer, M. Carlsson-Göthe, M.P. Keane, A. Naves de Brito, N. Correia, B. Wannberg, J. Phys. B 22 (1989) 3001]. An energy shift toward higher kinetic energy and a narrowing in linewidth are observed in the Auger spectra series revealing the effect of the changing environment from covalently bonded HI to ionic alkali iodide compounds. The experimental results are also compared with the theoretical ab initio calculations and with the Auger spectra of I -, computed with the multiconfiguration Hartree-Fock (MCHF) method.

  12. On the intermolecular Coulombic decay of singly and doubly ionized states of water dimer.

    PubMed

    Stoychev, Spas D; Kuleff, Alexander I; Cederbaum, Lorenz S

    2010-10-21

    A semiquantitative study of the intermolecular Coulombic decay (ICD) of singly and doubly ionized water dimer has been carried out with the help of ab initio computed ionization spectra and potential energy curves (PECs). These PECs are particular cuts through the (H(2)O)(2), (H(2)O)(2) (+), and (H(2)O)(2) (++) hypersurfaces along the distance between the two oxygen atoms. A comparison with the recently published experimental data for the ICD in singly ionized water dimers [T. Jahnke, H. Sann, T. Havermeier et al., Nat. Phys. 6, 139 (2010)] and in large water clusters [M. Mucke, M. Braune, S. Barth et al., Nat. Phys. 6, 143 (2010)] shows that such a simplified description in which the internal degrees of freedom of the water molecules are frozen gives surprisingly useful results. Other possible decay channels of the singly ionized water dimer are also investigated and the influence of the H-atom participating in the hydrogen bond on the spectra of the proton-donor and proton-acceptor molecules in the dimer is discussed. Importantly, the decay processes of one-site dicationic states of water dimer are discussed and an estimate of the ICD-electron spectra is made. More than 33% of the dications produced by Auger decay are found to undergo ICD. The qualitative results show that the ICD following Auger decay in water is also expected to be an additional source of low-energy electrons proven to be extremely important for causing damages to living tissues.

  13. Electron- and proton-induced ionization of pyrimidine

    DOE PAGES

    Champion, Christophe; Quinto, Michele; Weck, Philippe F

    2015-03-27

    This present work describes a quantum-mechanically based model of the electron- and proton-induced ionization of isolated pyrimidine molecules. The impact energies range from the target ionization threshold up to ~1 keV for electrons and from 10 keV up to 10 MeV for protons. The cross-section calculations are performed within the 1st Born approximation in which the ejected electron is described by a Coulomb wave whereas the incident and the scattered projectiles are both described by plane waves. The pyrimidine target is described using the Gaussian 09 software package. Furthermore, our theoretical predictions obtained are in good agreement with experimental absolutemore » total cross sections, while large discrepancies are observed between existing semi-empirical models and the present calculations.« less

  14. On similarity of various reactor spectra and 235U prompt fission neutron spectrum.

    PubMed

    Košťál, Michal; Matěj, Zdeněk; Losa, Evžen; Huml, Ondřej; Štefánik, Milan; Cvachovec, František; Schulc, Martin; Jánský, Bohumil; Novák, Evžen; Harutyunyan, Davit; Rypar, Vojtěch

    2018-05-01

    A well-defined neutron spectrum is an essential tool not only for calibration and testing of neutron detectors used in dosimetry and spectroscopy but also for validation and verification of evaluated cross sections. A new evaluation of thermal-neutron induced 235 U PFNS was performed by the International Atomic Energy Agency (IAEA) in the CIELO (Collaborative International Evaluated Library Organisation Project) project; new measurements of Spectral Averaged Cross sections averaged in the evaluated spectrum are to be obtained. In general, a neutron spectrum in the core is not identical to the pure fission one because fission neutrons undergo many scattering reactions, but it can be shown that PFNS and reactor spectra become undistinguishable from a certain energy boundary. This limit is important for experiments, because when the studied reaction threshold is over this limit, the spectral averaged cross sections in PFNS can be derived from the measured reactions in the reactor core. The evaluation of the neutron spectrum measurements in three different thermal-reactor cores shows that this lower limit is around the energy of 5.5 - 6 MeV. Above this energy the reactor spectra becomes identical with the 235 U PFNS. IAEA CIELO PFNS is within 5% of the measured PFNS from 10 to 14 MeV in a LR-0 reactor, while ENDF/B-VII evaluated PFNS underestimated measured neutron spectra. Copyright © 2018 Elsevier Ltd. All rights reserved.

  15. The collisional drift mode in a partially ionized plasma. [in the F region

    NASA Technical Reports Server (NTRS)

    Hudson, M. K.; Kennel, C. F.

    1974-01-01

    The structure of the drift instability was examined in several density regimes. Let sub e be the total electron mean free path, k sub z the wave-vector component along the magnetic field, and the ratio of perpendicular ion diffusion to parallel electron streaming rates. At low densities (k sub z lambda 1) the drift mode is isothermal and should be treated kineticly. In the finite heat conduction regime square root of m/M k sub z Lambda sub 1) the drift instability threshold is reduced at low densities and increased at high densities as compared to the isothermal threshold. Finally, in the energy transfer limit (k sub z kambda sub e square root of m/M) the drift instability behaves adiabatically in a fully ionized plasma and isothermally in a partially ionized plasma for an ion-neutral to Coulomb collision frequency ratio.

  16. Combined exposure to X-irradiation followed by N-ethyl-N-nitrosourea treatment alters the frequency and spectrum of Ikaros point mutations in murine T-cell lymphoma.

    PubMed

    Kakinuma, Shizuko; Nishimura, Mayumi; Amasaki, Yoshiko; Takada, Mayumi; Yamauchi, Kazumi; Sudo, Satomi; Shang, Yi; Doi, Kazutaka; Yoshinaga, Shinji; Shimada, Yoshiya

    2012-09-01

    Ionizing radiation is a well-known carcinogen, but its potency may be influenced by other environmental carcinogens, which is of practical importance in the assessment of risk. Data are scarce, however, on the combined effect of radiation with other environmental carcinogens and the underlying mechanisms involved. We studied the mode and mechanism of the carcinogenic effect of radiation in combination with N-ethyl-N-nitrosourea (ENU) using doses approximately equal to the corresponding thresholds. B6C3F1 mice exposed to fractionated X-irradiation (Kaplan's method) followed by ENU developed T-cell lymphomas in a dose-dependent manner. Radiation doses above an apparent threshold acted synergistically with ENU to promote lymphoma development, whereas radiation doses below that threshold antagonized lymphoma development. Ikaros, which regulates the commitment and differentiation of lymphoid lineage cells, is a critical tumor suppressor gene frequently altered in both human and mouse lymphomas and shows distinct mutation spectra between X-ray- and ENU-induced lymphomas. In the synergistically induced lymphomas, we observed a low frequency of LOH and an inordinate increase of Ikaros base substitutions characteristic of ENU-induced point mutations, G:C to A:T at non-CpG, A:T to G:C, G:C to T:A and A:T to T:A. This suggests that radiation doses above an apparent threshold activate the ENU mutagenic pathway. This is the first report on the carcinogenic mechanism elicited by combined exposure to carcinogens below and above threshold doses based on the mutation spectrum of the causative gene. These findings constitute a basis for assessing human cancer risk following exposure to multiple carcinogens. Copyright © 2012 Elsevier B.V. All rights reserved.

  17. Modification and benchmarking of MCNP for low-energy tungsten spectra.

    PubMed

    Mercier, J R; Kopp, D T; McDavid, W D; Dove, S B; Lancaster, J L; Tucker, D M

    2000-12-01

    The MCNP Monte Carlo radiation transport code was modified for diagnostic medical physics applications. In particular, the modified code was thoroughly benchmarked for the production of polychromatic tungsten x-ray spectra in the 30-150 kV range. Validating the modified code for coupled electron-photon transport with benchmark spectra was supplemented with independent electron-only and photon-only transport benchmarks. Major revisions to the code included the proper treatment of characteristic K x-ray production and scoring, new impact ionization cross sections, and new bremsstrahlung cross sections. Minor revisions included updated photon cross sections, electron-electron bremsstrahlung production, and K x-ray yield. The modified MCNP code is benchmarked to electron backscatter factors, x-ray spectra production, and primary and scatter photon transport.

  18. Timing Recollision in Nonsequential Double Ionization by Intense Elliptically Polarized Laser Pulses.

    PubMed

    Kang, H; Henrichs, K; Kunitski, M; Wang, Y; Hao, X; Fehre, K; Czasch, A; Eckart, S; Schmidt, L Ph H; Schöffler, M; Jahnke, T; Liu, X; Dörner, R

    2018-06-01

    We examine correlated electron and doubly charged ion momentum spectra from strong field double ionization of neon employing intense elliptically polarized laser pulses. An ellipticity-dependent asymmetry of correlated electron and ion momentum distributions has been observed. Using a 3D semiclassical model, we demonstrate that our observations reflect the subcycle dynamics of the recollision process. Our Letter reveals a general physical picture for recollision impact double ionization with elliptical polarization and demonstrates the possibility of ultrafast control of the recollision dynamics.

  19. Timing Recollision in Nonsequential Double Ionization by Intense Elliptically Polarized Laser Pulses

    NASA Astrophysics Data System (ADS)

    Kang, H.; Henrichs, K.; Kunitski, M.; Wang, Y.; Hao, X.; Fehre, K.; Czasch, A.; Eckart, S.; Schmidt, L. Ph. H.; Schöffler, M.; Jahnke, T.; Liu, X.; Dörner, R.

    2018-06-01

    We examine correlated electron and doubly charged ion momentum spectra from strong field double ionization of neon employing intense elliptically polarized laser pulses. An ellipticity-dependent asymmetry of correlated electron and ion momentum distributions has been observed. Using a 3D semiclassical model, we demonstrate that our observations reflect the subcycle dynamics of the recollision process. Our Letter reveals a general physical picture for recollision impact double ionization with elliptical polarization and demonstrates the possibility of ultrafast control of the recollision dynamics.

  20. The relativistic feedback discharge model of terrestrial gamma ray flashes

    NASA Astrophysics Data System (ADS)

    Dwyer, Joseph R.

    2012-02-01

    As thunderclouds charge, the large-scale fields may approach the relativistic feedback threshold, above which the production of relativistic runaway electron avalanches becomes self-sustaining through the generation of backward propagating runaway positrons and backscattered X-rays. Positive intracloud (IC) lightning may force the large-scale electric fields inside thunderclouds above the relativistic feedback threshold, causing the number of runaway electrons, and the resulting X-ray and gamma ray emission, to grow exponentially, producing very large fluxes of energetic radiation. As the flux of runaway electrons increases, ionization eventually causes the electric field to discharge, bringing the field below the relativistic feedback threshold again and reducing the flux of runaway electrons. These processes are investigated with a new model that includes the production, propagation, diffusion, and avalanche multiplication of runaway electrons; the production and propagation of X-rays and gamma rays; and the production, propagation, and annihilation of runaway positrons. In this model, referred to as the relativistic feedback discharge model, the large-scale electric fields are calculated self-consistently from the charge motion of the drifting low-energy electrons and ions, produced from the ionization of air by the runaway electrons, including two- and three-body attachment and recombination. Simulation results show that when relativistic feedback is considered, bright gamma ray flashes are a natural consequence of upward +IC lightning propagating in large-scale thundercloud fields. Furthermore, these flashes have the same time structures, including both single and multiple pulses, intensities, angular distributions, current moments, and energy spectra as terrestrial gamma ray flashes, and produce large current moments that should be observable in radio waves.

  1. Threshold temperature optical fibre sensors

    NASA Astrophysics Data System (ADS)

    Stasiewicz, K. A.; Musial, J. E.

    2016-12-01

    This paper presents a new approach to manufacture a threshold temperature sensor based on a biconical optical fibre taper. The presented sensor employs the influence of variable state of concentration of some isotropic materials like wax or paraffin. Application of the above- mentioned materials is an attempt to prove that there is a possibility to obtain a low-cost, repeatable and smart sensor working as an in-line element. Optical fibre taper was obtained from a standard single mode fibre (SMF28®) by using a low pressure gas burner technique. The diameter of the manufactured tapers was 6.0 ± 0.5 μm with the length of elongation equal to 30.50 ± 0.16 mm. The applied technology allowed to produce tapers with the losses of 0.183 ± 0.015 dB. Application of materials with different temperature transition points made it possible to obtain the threshold work at the temperatures connected directly with their conversion temperature. External materials at the temperatures above their melting points do not influence the propagation losses. For each of them two types of the protection area and position of the optical fibre taper were applied.

  2. Electron gyroharmonic effects in ionization and electron acceleration during high-frequency pumping in the ionosphere.

    PubMed

    Gustavsson, B; Leyser, T B; Kosch, M; Rietveld, M T; Steen, A; Brändström, B U E; Aso, T

    2006-11-10

    Optical emissions and incoherent scatter radar data obtained during high-frequency electromagnetic pumping of the ionospheric plasma from the ground give data on electron energization in an energy range from 2 to 100 eV. Optical emissions at 4278 A from N2+ that require electrons with energies above the 18 eV ionization energy give the first images ever of pump-induced ionization of the thermosphere. The intensity at 4278 A is asymmetric around the ionospheric electron gyroharmonic, being stronger above the gyroresonance. This contrasts with emissions at 6300 A from O(1D) and of electron temperature enhancements, which have minima at the gyroharmonic but have no apparent asymmetry. This direct evidence of pump-induced ionization contradicts previous indirect evidence, which indicated that ionization is most efficiently produced when the pump frequency was below the gyroharmonic.

  3. Characteristics of soft x-ray spectra from ultra-fast micro-capillary discharge plasmas

    NASA Astrophysics Data System (ADS)

    Li, Jing; Avaria, Gonzalo; Shlyaptsev, Vyacheslav; Tomasel, Fernando; Grisham, Michael; Dawson, Quincy; Rocca, Jorge; NSF CenterExtreme Ultraviolet Science; Technology Collaboration

    2013-10-01

    The efficient generation of high aspect ratio (e.g. 300:1) plasma columns ionized to very high degrees of ionization (e.g. Ni-like Xenon) by an ultrafast current pulses of moderate amplitude in micro-capillary channels is of interest for fundamental plasma studies and for applications such as the generation of discharge-pumped soft x-ray lasers. Spectra and simulations for plasmas generated in 500 um alumina capillary discharges driven by 35-40 kA current pulses with 4 ns rise time were obtained in Xenon and Neon discharges. The first shows the presence of lines corresponding to ionization stages up to Fe-like Xe. The latter show that Al impurities from the walls and Si (from injected SiH4) are ionized to the H-like and He-like stages. He-like spectra containing the resonance line significantly broaden by opacity, the intercombination line, and Li-like satellites are analyzed and modeled. For Xenon discharges, the spectral lines from the Ni-like transitions the 3d94d(3/2, 3/2)J=0 to the 3d94p(5/2, 3/2)J=1 and to 3d94p(3/2, 1/2)J=1 are observed at gas pressures up to 2.0 Torr. Work supported by NSF Award PHY-1004295.

  4. Total and dissociative photoionization cross sections of N2 from threshold to 107 eV

    NASA Technical Reports Server (NTRS)

    Samson, James A. R.; Masuoka, T.; Pareek, P. N.; Angel, G. C.

    1986-01-01

    The absolute cross sections for the production of N(+) and N2(+) were measured from the dissociative ionization threshold of 115 A. In addition, the absolute photoabsorption and photoionization cross sections were tabulated between 114 and 796 A. The ionization efficiencies were also given at several discrete wave lengths between 660 and 790 A. The production of N(+) fragment ions are discussed in terms of the doubly excited N2(+) states with binding energies in the range of 24 to 44 eV.

  5. Total and dissociative photoionization cross sections of N2 from threshold to 107 eV

    NASA Technical Reports Server (NTRS)

    Samson, James A. R.; Masuoka, T.; Pareek, P. N.; Angel, G. C.

    1987-01-01

    The absolute cross sections for the production of N(+) and N2(+) have been measured from the dissociative ionization threshold to 115 A. In addition, the absolute photoabsorption and photoionization cross sections are tabulated between 114 and 796 A. The ionization efficiencies are also given at several discrete wavelengths between 660 and 790 A. The production of N(+) fragment ions are discussed in terms of the doubly excited N2(+) states with binding energies in the range 24 to 44 eV.

  6. Enhanced Ionization of Embedded Clusters by Electron-Transfer-Mediated Decay in Helium Nanodroplets.

    PubMed

    LaForge, A C; Stumpf, V; Gokhberg, K; von Vangerow, J; Stienkemeier, F; Kryzhevoi, N V; O'Keeffe, P; Ciavardini, A; Krishnan, S R; Coreno, M; Prince, K C; Richter, R; Moshammer, R; Pfeifer, T; Cederbaum, L S; Mudrich, M

    2016-05-20

    We report the observation of electron-transfer-mediated decay (ETMD) involving magnesium (Mg) clusters embedded in helium (He) nanodroplets. ETMD is initiated by the ionization of He followed by removal of two electrons from the Mg clusters of which one is transferred to the He ion while the other electron is emitted into the continuum. The process is shown to be the dominant ionization mechanism for embedded clusters for photon energies above the ionization potential of He. For Mg clusters larger than five atoms we observe stable doubly ionized clusters. Thus, ETMD provides an efficient pathway to the formation of doubly ionized cold species in doped nanodroplets.

  7. Laser separation of lithium isotopes by double resonance enhanced multiphoton ionization of Li/sub 2/

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Balz, J.G.; Bernheim, R.A.; Gold, L.P.

    1987-01-01

    Multiphoton ionization spectra of /sup 7/Li/sub 2/, /sup 6/Li/sub 2/, and /sup 7/Li/sup 6/Li vapors have been measured in the 570--650 nm region using a single, low resolution, multimode cw dye laser. A number of wavelengths provide selective multiphoton ionization of one isotopic species demonstrating the possibility of efficient laser-driven isotopic separation in lithium in this wavelength region.

  8. In situ analysis of soybeans and nuts by probe electrospray ionization mass spectrometry.

    PubMed

    Petroselli, Gabriela; Mandal, Mridul K; Chen, Lee C; Hiraoka, Kenzo; Nonami, Hiroshi; Erra-Balsells, Rosa

    2015-04-01

    The probe electrospray ionization (PESI) is an ESI-based ionization technique that generates electrospray from the tip of a solid metal needle. In the present work, we describe the PESI mass spectra obtained by in situ measurement of soybeans and several nuts (peanuts, walnuts, cashew nuts, macadamia nuts and almonds) using different solid needles as sampling probes. It was found that PESI-MS is a valuable approach for in situ lipid analysis of these seeds. The phospholipid and triacylglycerol PESI spectra of different nuts and soybean were compared by principal component analysis (PCA). PCA shows significant differences among the data of each family of seeds. Methanolic extracts of nuts and soybean were exposed to air and sunlight for several days. PESI mass spectra were recorded before and after the treatment. Along the aging of the oil (rancidification), the formation of oxidated species with variable number of hydroperoxide groups could be observed in the PESI spectra. The relative intensity of oxidated triacylglycerols signals increased with days of exposition. Monitoring sensitivity of PESI-MS was high. This method provides a fast, simple and sensitive technique for the analysis (detection and characterization) of lipids in seed tissue and degree of oxidation of the oil samples. Copyright © 2015 John Wiley & Sons, Ltd.

  9. Electron-impact ionization of silicon tetrachloride (SiCl4).

    PubMed

    Basner, R; Gutkin, M; Mahoney, J; Tarnovsky, V; Deutsch, H; Becker, K

    2005-08-01

    We measured absolute partial cross sections for the formation of various singly charged and doubly charged positive ions produced by electron impact on silicon tetrachloride (SiCl4) using two different experimental techniques, a time-of-flight mass spectrometer (TOF-MS) and a fast-neutral-beam apparatus. The energy range covered was from the threshold to 900 eV in the TOF-MS and to 200 eV in the fast-neutral-beam apparatus. The results obtained by the two different experimental techniques were found to agree very well (better than their combined margins of error). The SiCl3(+) fragment ion has the largest partial ionization cross section with a maximum value of slightly above 6x10(-20) m2 at about 100 eV. The cross sections for the formation of SiCl4(+), SiCl+, and Cl+ have maximum values around 4x10(-20) m2. Some of the cross-section curves exhibit an unusual energy dependence with a pronounced low-energy maximum at an energy around 30 eV followed by a broad second maximum at around 100 eV. This is similar to what has been observed by us earlier for another Cl-containing molecule, TiCl4 [R. Basner, M. Schmidt, V. Tamovsky, H. Deutsch, and K. Becker, Thin Solid Films 374 291 (2000)]. The maximum cross-section values for the formation of the doubly charged ions, with the exception of SiCl3(++), are 0.05x10(-20) m2 or less. The experimentally determined total single ionization cross section of SiCl4 is compared with the results of semiempirical calculations.

  10. Characteristics of light reflected from a dense ionization wave with a tunable velocity.

    PubMed

    Zhidkov, A; Esirkepov, T; Fujii, T; Nemoto, K; Koga, J; Bulanov, S V

    2009-11-20

    An optically dense ionization wave (IW) produced by two femtosecond (approximately 10/30 fs) laser pulses focused cylindrically and crossing each other may become an efficient coherent x-ray converter in accordance with the Semenova-Lampe theory. The resulting velocity of a quasiplane IW in the vicinity of pulse intersection changes with the angle between the pulses from the group velocity of ionizing pulses to infinity allowing a tuning of the wavelength of x rays and their bunching. The x-ray spectra after scattering of a lower frequency and long coherent light pulse change from the monochromatic to high order harmoniclike with the duration of the ionizing pulses.

  11. An experimental and theoretical study of the valence shell photoelectron spectra of 2-chloropyridine and 3-chloropyridine

    NASA Astrophysics Data System (ADS)

    Holland, D. M. P.; Powis, I.; Trofimov, A. B.; Menzies, R. C.; Potts, A. W.; Karlsson, L.; Badsyuk, I. L.; Moskovskaya, T. E.; Gromov, E. V.; Schirmer, J.

    2017-10-01

    The valence shell photoelectron spectra of 2-chloropyridine and 3-chloropyridine have been studied both experimentally and theoretically. Synchrotron radiation has been employed to record angle resolved photoelectron spectra in the photon energy range 20-100 eV, and these have enabled anisotropy parameters and branching ratios to be derived. The experimental results have been compared with theoretical predictions obtained using the continuum multiple scattering Xα approach. This comparison shows that the anisotropy parameter associated with the nominally chlorine lone-pair orbital lying in the molecular plane is strongly affected by the atomic Cooper minimum. In contrast, the photoionization dynamics of the second lone-pair orbital, orientated perpendicular to the molecular plane, seem relatively unaffected by this atomic phenomenon. The outer valence ionization has been studied theoretically using the third-order algebraic-diagrammatic construction (ADC(3)) approximation scheme for the one-particle Green's function, the outer valence Green's function method, and the equation-of-motion (EOM) coupled cluster (CC) theory at the level of the EOM-IP-CCSD and EOM-EE-CC3 models. The convergence of the results to the complete basis set limit has been investigated. The ADC(3) method has been employed to compute the complete valence shell ionization spectra of 2-chloropyridine and 3-chloropyridine. The relaxation mechanism for ionization of the nitrogen σ-type lone-pair orbital (σN LP) has been found to be different to that for the corresponding chlorine lone-pair (σCl LP). For the σN LP orbital, π-π* excitations play the main role in the screening of the lone-pair hole. In contrast, excitations localized at the chlorine site involving the chlorine πCl LP lone-pair and the Cl 4p Rydberg orbital are the most important for the σCl LP orbital. The calculated photoelectron spectra have allowed assignments to be proposed for most of the structure observed in the

  12. An experimental and theoretical study of the valence shell photoelectron spectra of 2-chloropyridine and 3-chloropyridine.

    PubMed

    Holland, D M P; Powis, I; Trofimov, A B; Menzies, R C; Potts, A W; Karlsson, L; Badsyuk, I L; Moskovskaya, T E; Gromov, E V; Schirmer, J

    2017-10-28

    The valence shell photoelectron spectra of 2-chloropyridine and 3-chloropyridine have been studied both experimentally and theoretically. Synchrotron radiation has been employed to record angle resolved photoelectron spectra in the photon energy range 20-100 eV, and these have enabled anisotropy parameters and branching ratios to be derived. The experimental results have been compared with theoretical predictions obtained using the continuum multiple scattering Xα approach. This comparison shows that the anisotropy parameter associated with the nominally chlorine lone-pair orbital lying in the molecular plane is strongly affected by the atomic Cooper minimum. In contrast, the photoionization dynamics of the second lone-pair orbital, orientated perpendicular to the molecular plane, seem relatively unaffected by this atomic phenomenon. The outer valence ionization has been studied theoretically using the third-order algebraic-diagrammatic construction (ADC(3)) approximation scheme for the one-particle Green's function, the outer valence Green's function method, and the equation-of-motion (EOM) coupled cluster (CC) theory at the level of the EOM-IP-CCSD and EOM-EE-CC3 models. The convergence of the results to the complete basis set limit has been investigated. The ADC(3) method has been employed to compute the complete valence shell ionization spectra of 2-chloropyridine and 3-chloropyridine. The relaxation mechanism for ionization of the nitrogen σ-type lone-pair orbital (σ N LP ) has been found to be different to that for the corresponding chlorine lone-pair (σ Cl LP ). For the σ N LP orbital, π-π* excitations play the main role in the screening of the lone-pair hole. In contrast, excitations localized at the chlorine site involving the chlorine π Cl LP lone-pair and the Cl 4p Rydberg orbital are the most important for the σ Cl LP orbital. The calculated photoelectron spectra have allowed assignments to be proposed for most of the structure observed in the

  13. A new temperature threshold detector - Application to missile monitoring

    NASA Astrophysics Data System (ADS)

    Coston, C. J.; Higgins, E. V.

    Comprehensive thermal surveys within the case of solid propellant ballistic missile flight motors are highly desirable. For example, a problem involving motor failures due to insulator cracking at motor ignition, which took several years to solve, could have been identified immediately on the basis of a suitable thermal survey. Using conventional point measurements, such as those utilizing typical thermocouples, for such a survey on a full scale motor is not feasible because of the great number of sensors and measurements required. An alternate approach recognizes that temperatures below a threshold (which depends on the material being monitored) are acceptable, but higher temperatures exceed design margins. In this case hot spots can be located by a grid of wire-like sensors which are sensitive to temperature above the threshold anywhere along the sensor. A new type of temperature threshold detector is being developed for flight missile use. The considered device consists of KNO3 separating copper and Constantan metals. Above the KNO3 MP, galvanic action provides a voltage output of a few tenths of a volt.

  14. Air density correction in ionization dosimetry.

    PubMed

    Christ, G; Dohm, O S; Schüle, E; Gaupp, S; Martin, M

    2004-05-21

    Air density must be taken into account when ionization dosimetry is performed with unsealed ionization chambers. The German dosimetry protocol DIN 6800-2 states an air density correction factor for which current barometric pressure and temperature and their reference values must be known. It also states that differences between air density and the attendant reference value, as well as changes in ionization chamber sensitivity, can be determined using a radioactive check source. Both methods have advantages and drawbacks which the paper discusses in detail. Barometric pressure at a given height above sea level can be determined by using a suitable barometer, or data downloaded from airport or weather service internet sites. The main focus of the paper is to show how barometric data from measurement or from the internet are correctly processed. Therefore the paper also provides all the requisite equations and terminological explanations. Computed and measured barometric pressure readings are compared, and long-term experience with air density correction factors obtained using both methods is described.

  15. Electron ionization of SiCl4

    NASA Astrophysics Data System (ADS)

    King, Simon J.; Price, Stephen D.

    2011-02-01

    Relative partial ionization cross sections (PICS) for the formation of fragment ions following electron ionization of SiCl4, in the electron energy range 30-200 eV, have been determined using time-of-flight mass spectrometry coupled with an ion coincidence technique. By this method, the contributions to the yield of each fragment ion from dissociative single, double, and triple ionization, are distinguished. These yields are quantified in the form of relative precursor-specific PICS, which are reported here for the first time for SiCl4. For the formation of singly charged ionic fragments, the low-energy maxima appearing in the PICS curves are due to contributions from single ionization involving predominantly indirect ionization processes, while contributions to the yields of these ions at higher electron energies are often dominated by dissociative double ionization. Our data, in the reduced form of relative PICS, are shown to be in good agreement with a previous determination of the PICS of SiCl4. Only for the formation of doubly charged fragment ions are the current relative PICS values lower than those measured in a previous study, although both datasets agree within combined error limits. The relative PICS data presented here include the first quantitative measurements of the formation of Cl2+ fragment ions and of the formation of ion pairs via dissociative double ionization. The peaks appearing in the 2D ion coincidence data are analyzed to provide further information concerning the mechanism and energetics of the charge-separating dissociations of SiCl42+. The lowest energy dicationic precursor state, leading to SiCl3+ + Cl+ formation, lies 27.4 ± 0.3 eV above the ground state of SiCl4 and is in close agreement with a calculated value of the adiabatic double ionization energy (27.3 eV).

  16. Electron ionization of SiCl4.

    PubMed

    King, Simon J; Price, Stephen D

    2011-02-21

    Relative partial ionization cross sections (PICS) for the formation of fragment ions following electron ionization of SiCl(4), in the electron energy range 30-200 eV, have been determined using time-of-flight mass spectrometry coupled with an ion coincidence technique. By this method, the contributions to the yield of each fragment ion from dissociative single, double, and triple ionization, are distinguished. These yields are quantified in the form of relative precursor-specific PICS, which are reported here for the first time for SiCl(4). For the formation of singly charged ionic fragments, the low-energy maxima appearing in the PICS curves are due to contributions from single ionization involving predominantly indirect ionization processes, while contributions to the yields of these ions at higher electron energies are often dominated by dissociative double ionization. Our data, in the reduced form of relative PICS, are shown to be in good agreement with a previous determination of the PICS of SiCl(4). Only for the formation of doubly charged fragment ions are the current relative PICS values lower than those measured in a previous study, although both datasets agree within combined error limits. The relative PICS data presented here include the first quantitative measurements of the formation of Cl(2) (+) fragment ions and of the formation of ion pairs via dissociative double ionization. The peaks appearing in the 2D ion coincidence data are analyzed to provide further information concerning the mechanism and energetics of the charge-separating dissociations of SiCl(4) (2+). The lowest energy dicationic precursor state, leading to SiCl(3) (+) + Cl(+) formation, lies 27.4 ± 0.3 eV above the ground state of SiCl(4) and is in close agreement with a calculated value of the adiabatic double ionization energy (27.3 eV).

  17. Atmospheric Pressure Ionization Permanent Magnet Fourier Transform Ion Cyclotron Resonance Mass Spectrometry

    PubMed Central

    Vilkov, Andrey N.; Gamage, Chaminda M.; Misharin, Alexander S.; Doroshenko, Vladimir M.; Tolmachev, Dmitry A.; Tarasova, Irina A.; Kharybin, Oleg N.; Novoselov, Konstantin P.; Gorshkov, Michael V.

    2007-01-01

    A new Fourier Transform Ion Cyclotron Resonance mass spectrometer based on a permanent magnet with an atmospheric pressure ionization source was designed and constructed. A mass resolving power (full-width-at-half-maximum) of up to 80,000 in the electron ionization mode and 25,000 in the electrospray mode was obtained. Also, a mass measurement accuracy at low-ppm level has been demonstrated for peptide mixtures in a mass range of up to 1,200 m/z in the isotopically resolved mass spectra. PMID:17587594

  18. The locking and unlocking thresholds for tearing modes in a cylindrical tokamak

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Huang, Wenlong; Zhu, Ping, E-mail: pzhu@ustc.edu.cn; Department of Engineering Physics, University of Wisconsin-Madison, Madison, Wisconsin 53706

    2016-03-15

    The locking and unlocking thresholds for tearing modes are in general different. In this work, the physics origin for this difference is illustrated from theory analysis, and a numerical procedure is developed to find both locking and unlocking thresholds. In particular, a new scaling law for the unlocking threshold that is valid in both weak and strong rotation regimes has been derived from the lowest amplitude of the RMP (resonant magnetic perturbation) allowed for the locked-mode solution. Above the unlocking threshold, the criterion for the phase-flip instability is extended to identify the entire locked-mode states. Two different regimes of themore » RMP amplitude in terms of the accessibility of the locked-mode states have been found. In the first regime, the locked-mode state may or may not be accessible depending on the initial conditions of an evolving island. In the second regime, the locked-mode state can always be reached regardless of the initial conditions of the tearing mode. The lowest RMP amplitude for the second regime is determined to be the mode-locking threshold. The different characteristics of the two regimes above the unlocking threshold reveal the underlying physics for the gap between the locking and unlocking thresholds and provide an explanation for the closely related and widely observed hysteresis phenomena in island evolution during the sweeping process of the RMP amplitude up and down across that threshold gap.« less

  19. Metals in the circumgalactic medium are out of ionization equilibrium due to fluctuating active galactic nuclei

    NASA Astrophysics Data System (ADS)

    Segers, Marijke C.; Oppenheimer, Benjamin D.; Schaye, Joop; Richings, Alexander J.

    2017-10-01

    We study the effect of a fluctuating active galactic nucleus (AGN) on the abundance of circumgalactic O VI in galaxies selected from the Evolution and Assembly of GaLaxies and their Environments simulations. We follow the time-variable O VI abundance in post-processing around four galaxies - two at z = 0.1 with stellar masses of M* ˜ 1010 M⊙ and M* ˜ 1011 M⊙, and two at z = 3 with similar stellar masses - out to impact parameters of twice their virial radii, implementing a fluctuating central source of ionizing radiation. Due to delayed recombination, the AGN leave significant 'AGN proximity zone fossils' around all four galaxies, where O VI and other metal ions are out of ionization equilibrium for several megayears after the AGN fade. The column density of O VI is typically enhanced by ≈0.3-1.0 dex at impact parameters within 0.3Rvir, and by ≈0.06-0.2 dex at 2Rvir, thereby also enhancing the covering fraction of O VI above a given column density threshold. The fossil effect tends to increase with increasing AGN luminosity, and towards shorter AGN lifetimes and larger AGN duty cycle fractions. In the limit of short AGN lifetimes, the effect converges to that of a continuous AGN with a luminosity of (fduty/100 per cent) times the AGN luminosity. We also find significant fossil effects for other metal ions, where low-ionization state ions are decreased (Si IV, C IV at z = 3) and high-ionization state ions are increased (C IV at z = 0.1, Ne viii, Mg x). Using observationally motivated AGN parameters, we predict AGN proximity zone fossils to be ubiquitous around M* ˜ 1010-11 M⊙ galaxies, and to affect observations of metals in the circumgalactic medium at both low and high redshifts.

  20. Assessment of electron propagator methods for the simulation of vibrationally-resolved valence and core photoionization spectra

    PubMed Central

    Baiardi, A.; Paoloni, L.; Barone, V.; Zakrzewski, V.G.; Ortiz, J.V.

    2017-01-01

    The analysis of photoelectron spectra is usually facilitated by quantum mechanical simulations. Due to the recent improvement of experimental techniques, the resolution of experimental spectra is rapidly increasing, and the inclusion of vibrational effects is usually mandatory to obtain a reliable reproduction of the spectra. With the aim of defining a robust computational protocol, a general time-independent formulation to compute different kinds of vibrationally-resolved electronic spectra has been generalized to support also photoelectron spectroscopy. The electronic structure data underlying the simulation are computed using different electron propagator approaches. In addition to the more standard approaches, a new and robust implementation of the second-order self-energy approximation of the electron propagator based on a transition operator reference (TOEP2) is presented. To validate our implementation, a series of molecules has been used as test cases. The result of the simulations shows that, for ultraviolet photoionization spectra, the more accurate non-diagonal approaches are needed to obtain a reliable reproduction of vertical ionization energies, but diagonal approaches are sufficient for energy gradients and pole strengths. For X-ray photoelectron spectroscopy, the TOEP2 approach, besides being more efficient, is also the most accurate in the reproduction of both vertical ionization energies and vibrationally-resolved bandshapes. PMID:28521087

  1. New Fe i Level Energies and Line Identifications from Stellar Spectra. II. Initial Results from New Ultraviolet Spectra of Metal-poor Stars

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Peterson, Ruth C.; Kurucz, Robert L.; Ayres, Thomas R., E-mail: peterson@ucolick.org

    2017-04-01

    The Fe i spectrum is critical to many areas of astrophysics, yet many of the high-lying levels remain uncharacterized. To remedy this deficiency, Peterson and Kurucz identified Fe i lines in archival ultraviolet and optical spectra of metal-poor stars, whose warm temperatures favor moderate Fe i excitation. Sixty-five new levels were recovered, with 1500 detectable lines, including several bound levels in the ionization continuum of Fe i. Here, we extend the previous work by identifying 59 additional levels, with 1400 detectable lines, by incorporating new high-resolution UV spectra of warm metal-poor stars recently obtained by the Hubble Space Telescope Imagingmore » Spectrograph. We provide gf values for these transitions, both computed as well as adjusted to fit the stellar spectra. We also expand our spectral calculations to the infrared, confirming three levels by matching high-quality spectra of the Sun and two cool stars in the H -band. The predicted gf values suggest that an additional 3700 Fe i lines should be detectable in existing solar infrared spectra. Extending the empirical line identification work to the infrared would help confirm additional Fe i levels, as would new high-resolution UV spectra of metal-poor turnoff stars below 1900 Å.« less

  2. New Fe I Level Energies and Line Identifications from Stellar Spectra. II. Initial Results from New Ultraviolet Spectra of Metal-poor Stars

    NASA Astrophysics Data System (ADS)

    Peterson, Ruth C.; Kurucz, Robert L.; Ayres, Thomas R.

    2017-04-01

    The Fe I spectrum is critical to many areas of astrophysics, yet many of the high-lying levels remain uncharacterized. To remedy this deficiency, Peterson & Kurucz identified Fe I lines in archival ultraviolet and optical spectra of metal-poor stars, whose warm temperatures favor moderate Fe I excitation. Sixty-five new levels were recovered, with 1500 detectable lines, including several bound levels in the ionization continuum of Fe I. Here, we extend the previous work by identifying 59 additional levels, with 1400 detectable lines, by incorporating new high-resolution UV spectra of warm metal-poor stars recently obtained by the Hubble Space Telescope Imaging Spectrograph. We provide gf values for these transitions, both computed as well as adjusted to fit the stellar spectra. We also expand our spectral calculations to the infrared, confirming three levels by matching high-quality spectra of the Sun and two cool stars in the H-band. The predicted gf values suggest that an additional 3700 Fe I lines should be detectable in existing solar infrared spectra. Extending the empirical line identification work to the infrared would help confirm additional Fe I levels, as would new high-resolution UV spectra of metal-poor turnoff stars below 1900 Å.

  3. Recognizing millions of consistently unidentified spectra across hundreds of shotgun proteomics datasets

    PubMed Central

    Griss, Johannes; Perez-Riverol, Yasset; Lewis, Steve; Tabb, David L.; Dianes, José A.; del-Toro, Noemi; Rurik, Marc; Walzer, Mathias W.; Kohlbacher, Oliver; Hermjakob, Henning; Wang, Rui; Vizcaíno, Juan Antonio

    2016-01-01

    Mass spectrometry (MS) is the main technology used in proteomics approaches. However, on average 75% of spectra analysed in an MS experiment remain unidentified. We propose to use spectrum clustering at a large-scale to shed a light on these unidentified spectra. PRoteomics IDEntifications database (PRIDE) Archive is one of the largest MS proteomics public data repositories worldwide. By clustering all tandem MS spectra publicly available in PRIDE Archive, coming from hundreds of datasets, we were able to consistently characterize three distinct groups of spectra: 1) incorrectly identified spectra, 2) spectra correctly identified but below the set scoring threshold, and 3) truly unidentified spectra. Using a multitude of complementary analysis approaches, we were able to identify less than 20% of the consistently unidentified spectra. The complete spectrum clustering results are available through the new version of the PRIDE Cluster resource (http://www.ebi.ac.uk/pride/cluster). This resource is intended, among other aims, to encourage and simplify further investigation into these unidentified spectra. PMID:27493588

  4. Recognizing millions of consistently unidentified spectra across hundreds of shotgun proteomics datasets.

    PubMed

    Griss, Johannes; Perez-Riverol, Yasset; Lewis, Steve; Tabb, David L; Dianes, José A; Del-Toro, Noemi; Rurik, Marc; Walzer, Mathias W; Kohlbacher, Oliver; Hermjakob, Henning; Wang, Rui; Vizcaíno, Juan Antonio

    2016-08-01

    Mass spectrometry (MS) is the main technology used in proteomics approaches. However, on average 75% of spectra analysed in an MS experiment remain unidentified. We propose to use spectrum clustering at a large-scale to shed a light on these unidentified spectra. PRoteomics IDEntifications database (PRIDE) Archive is one of the largest MS proteomics public data repositories worldwide. By clustering all tandem MS spectra publicly available in PRIDE Archive, coming from hundreds of datasets, we were able to consistently characterize three distinct groups of spectra: 1) incorrectly identified spectra, 2) spectra correctly identified but below the set scoring threshold, and 3) truly unidentified spectra. Using a multitude of complementary analysis approaches, we were able to identify less than 20% of the consistently unidentified spectra. The complete spectrum clustering results are available through the new version of the PRIDE Cluster resource (http://www.ebi.ac.uk/pride/cluster). This resource is intended, among other aims, to encourage and simplify further investigation into these unidentified spectra.

  5. Line Emission and X-ray Line Polarization of Multiply Ionized Mo Ions

    NASA Astrophysics Data System (ADS)

    Petkov, E. E.; Safronova, A. S.; Kantsyrev, V. L.; Shlyaptseva, V. V.; Stafford, A.; Safronova, U. I.; Shrestha, I. K.; Schultz, K. A.; Childers, R.; Cooper, M. C.; Beiersdorfer, P.; Hell, N.; Brown, G. V.

    2016-10-01

    We present a comprehensive experimental and theoretical study of the line emission from multiply ionized Mo ions produced by two different sets of experiments: at LLNL EBIT and the pulsed power generator Zebra at UNR. Mo line emission and polarization measurements were accomplished at EBIT for the first time. In particular, benchmarking experiments at the LLNL EBIT with Mo ions produced at electron beam energies from 2.75 keV up to 15 keV allowed us to break down these very complicated spectra into spectra with only few ionization stages and to select processes that influence them as well as to measure line polarization. The EBIT data were recorded using the EBIT Calorimeter Spectrometer and a crystal spectrometer with a Ge crystal. X-ray Mo spectra and pinhole images were collected from Z-pinch plasmas produced from various wire loads. Non-LTE modeling, high-precision relativistic atomic and polarization data were used to analyze L-shell Mo spectra. The influence of different plasma processes including electron beams on Mo line radiation is summarized. This work was supported by NNSA under DOE Grant DE-NA0002954. Experiments at the NTF/UNR were funded in part by DE-NA0002075. Work at LLNL was performed under the auspices of the U.S. DOE under contract DE-AC52-07NA27344.

  6. Vibrational spectra and structures of neutral Si(m)C(n) clusters (m + n = 6): sequential doping of silicon clusters with carbon atoms.

    PubMed

    Savoca, Marco; Lagutschenkov, Anita; Langer, Judith; Harding, Dan J; Fielicke, André; Dopfer, Otto

    2013-02-14

    Vibrational spectra of mixed silicon carbide clusters Si(m)C(n) with m + n = 6 in the gas phase are obtained by resonant infrared-vacuum-ultraviolet two-color ionization (IR-UV2CI for n ≤ 2) and density functional theory (DFT) calculations. Si(m)C(n) clusters are produced in a laser vaporization source, in which the silicon plasma reacts with methane. Subsequently, they are irradiated with tunable IR light from an IR free electron laser before they are ionized with UV photons from an F(2) laser. Resonant absorption of one or more IR photons leads to an enhanced ionization efficiency for Si(m)C(n) and provides the size-specific IR spectra. IR spectra measured for Si(6), Si(5)C, and Si(4)C(2) are assigned to their most stable isomers by comparison with calculated linear absorption spectra. The preferred Si(m)C(n) structures with m + n = 6 illustrate the systematic transition from chain-like geometries for bare C(6) to three-dimensional structures for bare Si(6). In contrast to bulk SiC, carbon atom segregation is observed already for the smallest n (n = 2).

  7. VUV and soft x-ray ionization of a plant volatile: Vanillin (C{sub 8}H{sub 8}O{sub 3})

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Betancourt, A. Moreno; Moura, C. E. V. de; Rocha, A. B.

    2016-03-21

    Plant volatiles are emitted by plants in response to several forms of stress, including interaction with energetic photons. In the present work, we discuss the interaction of extreme UV and soft X-ray photons with a plant volatile, vanillin. The single and double (multiple) ionization of the vanillin molecule have been studied for the first time using time-of-flight mass spectrometry and VUV and soft X-ray photons (synchrotron radiation, at 12.0 eV, 21.2 eV, 130 eV, 310 eV, 531 eV, and 550 eV). At 12.0 and 21.2 eV, only singly charged species are observed and the parent ion, C{sub 8}H{sub 8}O{sub 3}{supmore » +}, is the dominant species. Energy differences for some selected fragments were calculated theoretically in this energy region. At 130 eV, direct double and triple ionization of the valence electrons may occur. The fragmentation increases and CHO{sup +} becomes one of the main cations in the mass spectrum. The molecular ion is still the dominant species, but other fragments, such as C{sub 6}H{sub 5}O{sup +}, begin to present similar intensities. At 310 eV, C 1s electrons may be ionized and Auger processes give rise to dissociative doubly ionized cations. Ionization around the O 1s edge has been studied both at the 531 eV resonance and above the ionization edge. Resonant and normal Auger processes play a significant role in each case and a large fragmentation of the molecule is observed at both photon energies, with intense fragments such as CHO{sup +} and CH{sub 3}{sup +} being clearly observed. A near edge X-ray absorption fine structure spectrum of the vanillin molecule was obtained around the O 1s ionization threshold. In addition, the fragmentation of vanillin has also been studied using a fast beam of electrons (800 eV), for the sake of comparison.« less

  8. The Spitzer Atlas of Stellar Spectra (SASS)

    NASA Astrophysics Data System (ADS)

    Ardila, David R.; Van Dyk, Schuyler D.; Makowiecki, Wojciech; Stauffer, John; Song, Inseok; Rho, Jeonghee; Fajardo-Acosta, Sergio; Hoard, D. W.; Wachter, Stefanie

    2010-12-01

    We present the Spitzer Atlas of Stellar Spectra, which includes 159 stellar spectra (5-32 μm R ~ 100) taken with the Infrared Spectrograph on the Spitzer Space Telescope. This Atlas gathers representative spectra of a broad section of the Hertzsprung-Russell diagram, intended to serve as a general stellar spectral reference in the mid-infrared. It includes stars from all luminosity classes, as well as Wolf-Rayet (WR) objects. Furthermore, it includes some objects of intrinsic interest, such as blue stragglers and certain pulsating variables. All of the spectra have been uniformly reduced, and all are available online. For dwarfs and giants, the spectra of early-type objects are relatively featureless, characterized by the presence of hydrogen lines in A spectral types. Besides these, the most noticeable photospheric features correspond to water vapor and silicon monoxide in late-type objects and methane and ammonia features at the latest spectral types. Most supergiant spectra in the Atlas present evidence of circumstellar gas and/or dust. The sample includes five M supergiant spectra, which show strong dust excesses and in some cases polycyclic aromatic hydrocarbon features. Sequences of WR stars present the well-known pattern of lines of He I and He II, as well as forbidden lines of ionized metals. The characteristic flat-top shape of the [Ne III] line is evident even at these low spectral resolutions. Several Luminous Blue Variables and other transition stars are present in the Atlas and show very diverse spectra, dominated by circumstellar gas and dust features. We show that the [8]-[24] Spitzer colors (IRAC and MIPS) are poor predictors of spectral type for most luminosity classes.

  9. The Spitzer Atlas of Stellar Spectra (SASS)

    NASA Astrophysics Data System (ADS)

    Ardila, D. R.; van Dyk, S. D., Makowiecki, W.; Stauffer, J.; Song, I.; Ro, J.; Fajardo-Acosta, S.; Hoard, D. W.; Wachter, S.

    2011-11-01

    We present the Spitzer Atlas of Stellar Spectra (SASS), which includes 159 stellar spectra (5 to 32 micron; R about 100) taken with the Infrared Spectrograph on the Spitzer Space Telescope. This Atlas gathers representative spectra of a broad section of the Hertzsprung-Russell diagram, intended to serve as a general stellar spectral reference in the mid-infrared. It includes stars from all luminosity classes, as well as Wolf-Rayet (WR) objects. Furthermore, it includes some objects of intrinsic interest, like blue stragglers and certain pulsating variables. All the spectra have been uniformly reduced, and all are available online. For dwarfs and giants, the spectra of early-type objects are relatively featureless, dominated by Hydrogen lines around A spectral types. Besides these, the most noticeable photospheric features correspond to water vapor and silicon monoxide in late-type objects and methane and ammonia features at the latest spectral types. Most supergiant spectra in the Atlas present evidence of circumstellar gas. The sample includes five M supergiant spectra, which show strong dust excesses and in some cases PAH features. Sequences of WR stars present the well-known pattern of lines of He I and He II, as well as forbidden lines of ionized metals. The characteristic flat-top shape of the [Ne III] line is evident even at these low spectral resolutions. Several Luminous Blue Variables and other transition stars are present in the Atlas and show very diverse spectra, dominated by circumstellar gas and dust features. We show that the [8]-[24] Spitzer colors (IRAC and MIPS) are poor predictors of spectral type for most luminosity classes.

  10. Adaptive Identification and Characterization of Polar Ionization Patches

    NASA Technical Reports Server (NTRS)

    Coley, W. R.; Heelis, R. A.

    1995-01-01

    Dynamics Explorer 2 (DE 2) spacecraft data are used to detect and characterize polar cap 'ionization patches' loosely defined as large-scale (greater than 100 km) regions where the F region plasma density is significantly enhanced (approx greater than 100%) above the background level. These patches are generally believed to develop in or equatorward of the dayside cusp region and then drift in an antisunward direction over the polar cap. We have developed a flexible algorithm for the identification and characterization of these structures, as a function of scale-size and density enhancement, using data from the retarding potential analyzer, the ion drift meter, and the langmuir probe on board the DE 2 satellite. This algorithm was used to study the structure and evolution of ionization patches as they cross the polar cap. The results indicate that in the altitude region from 240 to 950 km ion density enhancements greater than a factor of 3 above the background level are relatively rare. Further, the ionization patches show a preferred horizontal scale size of 300-400 km. There exists a clear seasonal and universal time dependence to the occurrence frequency of patches with a northern hemisphere maximum centered on the winter solstice and the 1200-2000 UT interval.

  11. Stars and gas in the most metal-deficient galaxies in the Universe.

    NASA Astrophysics Data System (ADS)

    Wofford, Aida

    2017-08-01

    Improving our understanding of star formation at low metallicity is of large relevance for a variety of fields in astrophysics since it relates to multiple topical questions. These range from understanding the properties of galaxies that contributed to cosmic reionization to the evolution of metal poor massive stars that give rise to the formation of heavy binary black holes. Crucial are observational constraints for the theoretical predictions, which can be obtained from rest-frame UV spectra of local star-forming dwarf galaxies with ionized-gas oxygen abundances at the low-metallicity threshold of the nearby Universe.While samples of UV spectra exist for galaxies in the metallicity range above 1/20 solar, only two useful spectra covering from H I Lyman-alpha (LyA, 1216 Ang) to C III] 1909 are available at lower metallicites. We propose COS G140L observations of eight extremely-metal poor galaxies (XMPGs) with He II emission that will: i) provide three more spectra with 12+log(O/H)=<7.4 (suitable targets at such low Z are hard to find), and ii) leverage existing WFC3 and Chandra images which are useful for discrimintating among different sources of ionization. Combining this dataset with existing spectra at similar and higher metallicity will allow us to address three questions: 1) How does metallicity determine galaxy properties?, 2) Is narrow He II emission a good tracer of peculiar massive stars?, and 3) Can we probe star-formation at high redshift with UV lines other than LyA? Our study will provide valuable clues for interpreting rest-frame UV spectra of high-z galaxies that will challenge our understanding of star formation at low Z.

  12. Determination of the measurement threshold in gamma-ray spectrometry.

    PubMed

    Korun, M; Vodenik, B; Zorko, B

    2017-03-01

    In gamma-ray spectrometry the measurement threshold describes the lover boundary of the interval of peak areas originating in the response of the spectrometer to gamma-rays from the sample measured. In this sense it presents a generalization of the net indication corresponding to the decision threshold, which is the measurement threshold at the quantity value zero for a predetermined probability for making errors of the first kind. Measurement thresholds were determined for peaks appearing in the spectra of radon daughters 214 Pb and 214 Bi by measuring the spectrum 35 times under repeatable conditions. For the calculation of the measurement threshold the probability for detection of the peaks and the mean relative uncertainty of the peak area were used. The relative measurement thresholds, the ratios between the measurement threshold and the mean peak area uncertainty, were determined for 54 peaks where the probability for detection varied between some percent and about 95% and the relative peak area uncertainty between 30% and 80%. The relative measurement thresholds vary considerably from peak to peak, although the nominal value of the sensitivity parameter defining the sensitivity for locating peaks was equal for all peaks. At the value of the sensitivity parameter used, the peak analysis does not locate peaks corresponding to the decision threshold with the probability in excess of 50%. This implies that peaks in the spectrum may not be located, although the true value of the measurand exceeds the decision threshold. Copyright © 2017 Elsevier Ltd. All rights reserved.

  13. Derivation of ionization balance for calcium XVIII/XIX using XRP solar X-ray data

    NASA Astrophysics Data System (ADS)

    Antonucci, E.; Gabriel, A. H.; Doyle, J. G.; Dubau, J.; Faucher, P.; Jordan, C.; Veck, N.

    1984-04-01

    Spectra of calcium from solar flares are used in an attempt to derive an ionization balance for Ca XVIII/Ca XIX. The isothermal assumption inherent in this derivation is shown not to introduce errors, by modelling a number of hypothetical nonisothermal plasmas. The unresolved blend of calcium and argon lines prevents a definitive determination of the results, owing to uncertainties in the ratio of abundances of these elements. The resulting ionization balance curves are presented as a function of the solar argon/calcium abundance ratio. The theoretical ionization balance of Doyle and Raymond is consistent with the data. To within the expected accuracy of the atomic theories, there is no reason to assume that the flare plasma is other than close to steady-state ionization balance.

  14. The Properties and Evolution of the Highly Ionized Gas in MR 2251-178

    NASA Astrophysics Data System (ADS)

    Kaspi, Shai; Netzer, Hagai; Chelouche, Doron; George, Ian M.; Nandra, Kirpal; Turner, T. J.

    2004-08-01

    We present the first XMM-Newton observations of the radio-quiet quasar MR 2251-178 obtained in 2000 and 2002. The EPIC pn spectra show a power-law continuum with a slope of Γ=1.6 at high energies absorbed by at least two warm absorbers (WAs) intrinsic to the source. The underlying continuum in the earlier observation shows a ``soft excess'' at low X-ray energies, which can be modeled as an additional power law with Γ=2.9. The spectra also show a weak narrow iron Kα emission line. The high-resolution grating spectrum obtained in 2002 shows emission lines from N VI, O VII, O VIII, Ne IX, and Ne X, as well as absorption lines from the low-ionization ions of O III, O IV, and O V, and other confirmed and suspected weaker absorption lines. The O III-O V lines are consistent with the properties of the emission-line gas observed as extended optical [O III] emission in this source. The signal-to-noise ratio of the 2000 grating data is too low to detect any lines. We suggest a model for the high-resolution spectrum that consists of two or three WA components. The two-component model has a high-ionization WA with a column density of 1021.5-1021.8 cm-2 and a low-ionization absorber with a column density of 1020.3 cm-2. In the three-component model we add a lower ionization component that produces the observed iron M shell absorption lines. We investigate the spectral variations in MR 2251-178 over a period of 8.5 yr using data from ASCA, BeppoSAX, and XMM-Newton. All X-ray observations can be fitted with the above two power laws and the two absorbers. The observed luminosity variations seem to correlate with variations in the soft X-ray continuum. The 8.5 yr history of the source suggests a changing X-ray absorber due to material that enters and disappears from the line of sight on timescales of several months. We also present, for the first time, the entire Far Ultraviolet Spectroscopic Explorer (FUSE) spectrum of MR 2251-178. We detect emission from N III, C III, and O VI

  15. Electron energy-loss spectra in molecular fluorine

    NASA Technical Reports Server (NTRS)

    Nishimura, H.; Cartwright, D. C.; Trajmar, S.

    1979-01-01

    Electron energy-loss spectra in molecular fluorine, for energy losses from 0 to 17.0 eV, have been taken at incident electron energies of 30, 50, and 90 eV and scattering angles from 5 to 140 deg. Features in the spectra above 11.5 eV energy loss agree well with the assignments recently made from optical spectroscopy. Excitations of many of the eleven repulsive valence excited electronic states are observed and their location correlates reasonably well with recent theoretical results. Several of these excitations have been observed for the first time and four features, for which there are no identifications, appear in the spectra.

  16. MOSFET and MOS capacitor responses to ionizing radiation

    NASA Technical Reports Server (NTRS)

    Benedetto, J. M.; Boesch, H. E., Jr.

    1984-01-01

    The ionizing radiation responses of metal oxide semiconductor (MOS) field-effect transistors (FETs) and MOS capacitors are compared. It is shown that the radiation-induced threshold voltage shift correlates closely with the shift in the MOS capacitor inversion voltage. The radiation-induced interface-state density of the MOSFETs and MOS capacitors was determined by several techniques. It is shown that the presence of 'slow' states can interfere with the interface-state measurements.

  17. Mass spectrometry of analytical derivatives. 2. “Ortho” and “Para” effects in electron ionization mass spectra of derivatives of hydroxy, mercapto and amino benzoic acids1

    PubMed Central

    Todua, Nino G.; Mikaia, Anzor I.

    2016-01-01

    Derivatives requiring either anhydrous or aqueous reaction conditions were prepared for robust and reliable gas chromatography/mass spectrometry (GC/MS) characterization of hydroxyl, mercapto, and amino benzoic acids Methylation and trialkylsilytation are employed for blocking the acidic function. Alkyl, trimethylsilyl, acetyl, perfluoroacyl and alkoxycarbonyl derivatization groups are introduced to hydroxyl, mercapto and amino functions. The electron ionization induced fragmentation characteristics of corresponding derivatives are explained by comparing the MS1 spectra of unlabeled compounds to their 2H and 13C labeled analogs, and analysis of collision-induced dissociation data from MS2 spectra. Competing fragmentation alternatives are identified and specific decomposition processes are detailed that characterize (a) ortho isomers due to interaction or vicinal functional substituents and (b) para isomers prone to forming para quinoid type structures. Skeletal and hydrogen rearrangements typical for methyl benzoates and the blocking groups are considered when discussing diagnostically important ions. Characteristic ions produced as a result of rearrangements in ortho isomers are classified, and skeletal rearrangements required to produce para quinoid type ions specific for para isomers are noted. Key ions for structure elucidation and differentiation of isomers for derivatives of substituted benzoic acids by GC/MS are suggested. PMID:27891187

  18. Deconvolution of Energy Spectra in the ATIC Experiment

    NASA Technical Reports Server (NTRS)

    Batkov, K. E.; Panov, A. D.; Adams, J. H.; Ahn, H. S.; Bashindzhagyan, G. L.; Chang, J.; Christl, M.; Fazley, A. R.; Ganel, O.; Gunasigha, R. M.; hide

    2005-01-01

    The Advanced Thin Ionization Calorimeter (ATIC) balloon-borne experiment is designed to perform cosmic- ray elemental spectra measurements from below 100 GeV up to tens TeV for nuclei from hydrogen to iron. The instrument is composed of a silicon matrix detector followed by a carbon target, interleaved with scintillator tracking layers, and a segmented BGO calorimeter composed of 320 individual crystals totalling 18 radiation lengths, used to determine the particle energy. The technique for deconvolution of the energy spectra measured in the thin calorimeter is based on detailed simulations of the response of the ATIC instrument to different cosmic ray nuclei over a wide energy range. The method of deconvolution is described and energy spectrum of carbon obtained by this technique is presented.

  19. Electronic and vibrational spectra of matrix isolated anthracene radical cations - Experimental and theoretical aspects

    NASA Technical Reports Server (NTRS)

    Szczepanski, Jan; Vala, Martin; Talbi, Dahbia; Parisel, Olivier; Ellinger, Yves

    1993-01-01

    The IR vibrational and visible/UV electronic absorption spectra of the anthracene cation, An(+), were studied experimentally, in argon matrices at 12 K, as well as theoretically, using ab initio calculations for the vibrational modes and enhanced semiempirical methods with configuration interaction for the electronic spectra. It was found that both approaches predicted well the observed photoelectron spectrum. The theoretical IR intensities showed some remarkable differences between neutral and ionized species (for example, the CH in-plane bending modes and CC in-plane stretching vibrations were predicted to increase by several orders of magnitude upon ionization). Likewise, estimated experimental IR intensities showed a significant increase in the cation band intensities over the neutrals. The implication of these findings for the hypothesis that polycyclic aromatic hydrocarbon cations are responsible for the unidentified IR emission bands from interstellar space is discussed.

  20. Slow Photoelectron Spectroscopy and State-Selected Unimolecular Decomposition of Ionized DNA Bases Analogues

    NASA Astrophysics Data System (ADS)

    Mahjoub, Ahmed; Hochlaf, Majdi; Poisson, Lionel; Garcia, Gustavo A.; Nahon, Laurent

    2013-06-01

    We studied the single-photon ionization of gas-phase 2-Piperidone (DNA basis analogue) and of its dimer using vacuum-ultraviolet (VUV) synchrotron radiation coupled to a velocity map imaging electron/ion coincidence spectrometer The slow photoelectron spectrum (SPES) of the monomer is dominated by the vibrational transitions to the ground state. These spectra are assigned with the help of theoretical calculations dealing with the equilibrium geometries, electronic-state patterns and evolutions, harmonic and anharmonic wavenumbers. After its formation, dimer is subject of intramolecular isomerization, H transfer and then unimolecular fragmentation processes. The near threshold photofragmentation pattern of the cationic 2-Piperidone cation and its dimer has been recorded. The experimental method yields the fragment intensity as a function of the internal energy deposited into the parent cation. In parallel, ab initio studies on ionic and neutral fragmentation products have been performed with the aim of determining the isomers of the ionic products observed experimentally as well as of their neutral counterparts. L. Nahon, N. De Oliveria,J. F. Gil,B. Pilette,O. Marcouillé, B. La garde and F. Polack Journal of Synchrotron Radiation {19}(4), 508-520; 2012

  1. A threshold effect for spacecraft charging

    NASA Technical Reports Server (NTRS)

    Olsen, R. C.

    1983-01-01

    The borderline case between no charging and large (kV) negative potentials for eclipse charging events on geosynchronous satellites is investigated, and the dependence of this transition on a threshold energy in the ambient plasma is examined. Data from the Applied Technology Satellite 6 and P78-2 (SCATHA) show that plasma sheet fluxes must extend above 10 keV for these satellites to charge in eclipse. The threshold effect is a result of the shape of the normal secondary yield curve, in particular the high energy crossover, where the secondary yield drops below 1. It is found that a large portion of the ambient electron flux must exceed this energy for a negative current to exist.

  2. Differential dpa calculations with SPECTRA-PKA

    NASA Astrophysics Data System (ADS)

    Gilbert, M. R.; Sublet, J.-Ch.

    2018-06-01

    The processing code SPECTRA-PKA produces energy spectra of primary atomic recoil events (or primary knock-on atoms, PKAs) for any material composition exposed to an irradiation spectrum. Such evaluations are vital inputs for simulations aimed at understanding the evolution of damage in irradiated material, which is generated in cascade displacement events initiated by PKAs. These PKA spectra present the full complexity of the input (to SPECTRA-PKA) nuclear data-library evaluations of recoil events. However, the commonly used displacements per atom (dpa) measure, which is an integral measure over all possible recoil events of the displacement damage dose, is still widely used and has many useful applications - as both a comparative and correlative quantity. This paper describes the methodology employed that allows the SPECTRA-PKA code to evaluate dpa rates using the energy-dependent recoil (PKA) cross section data used for the PKA distributions. This avoids the need for integral displacement kerma cross sections and also provides new insight into the relative importance of different reaction channels (and associated different daughter residual and emitted particles) to the total integrated dpa damage dose. Results are presented for Fe, Ni, W, and SS316. Fusion dpa rates are compared to those in fission, highlighting the increased contribution to damage creation in the former from high-energy threshold reactions.

  3. Calculation of photoionization cross section near auto-ionizing lines and magnesium photoionization cross section near threshold

    NASA Technical Reports Server (NTRS)

    Moore, E. N.; Altick, P. L.

    1972-01-01

    The research performed is briefly reviewed. A simple method was developed for the calculation of continuum states of atoms when autoionization is present. The method was employed to give the first theoretical cross section for beryllium and magnesium; the results indicate that the values used previously at threshold were sometimes seriously in error. These threshold values have potential applications in astrophysical abundance estimates.

  4. The Magellan Evolution of Galaxies Spectroscopic and Ultraviolet Reference Atlas (MegaSaura). II. Stacked Spectra

    NASA Astrophysics Data System (ADS)

    Rigby, J. R.; Bayliss, M. B.; Chisholm, J.; Bordoloi, R.; Sharon, K.; Gladders, M. D.; Johnson, T.; Paterno-Mahler, R.; Wuyts, E.; Dahle, H.; Acharyya, A.

    2018-01-01

    We stack the rest-frame ultraviolet spectra of N = 14 highly magnified gravitationally lensed galaxies at redshifts 1.6< z< 3.6. The resulting new composite spans 900< {λ }{rest}< 3000 Å, with a peak signal-to-noise ratio (S/N) of 103 per spectral resolution element (∼100 km s‑1). It is the highest S/N, highest spectral resolution composite spectrum of z ∼ 2–3 galaxies yet published. The composite reveals numerous weak nebular emission lines and stellar photospheric absorption lines that can serve as new physical diagnostics, particularly at high redshift with the James Webb Space Telescope (JWST). We report equivalent widths to aid in proposing for and interpreting JWST spectra. We examine the velocity profiles of strong absorption features in the composite, and in a matched composite of z∼ 0 COS/HST galaxy spectra. We find remarkable similarity in the velocity profiles at z∼ 0 and z∼ 2, suggesting that similar physical processes control the outflows across cosmic time. While the maximum outflow velocity depends strongly on ionization potential, the absorption-weighted mean velocity does not. As such, the bulk of the high-ionization absorption traces the low-ionization gas, with an additional blueshifted absorption tail extending to at least ‑2000 km s‑1. We interpret this tail as arising from the stellar wind and photospheres of massive stars. Starburst99 models are able to replicate this high-velocity absorption tail. However, these theoretical models poorly reproduce several of the photospheric absorption features, indicating that improvements are needed to match observational constraints on the massive stellar content of star-forming galaxies at z∼ 2. We publicly release our composite spectra.

  5. Construction of a magnetic bottle spectrometer and its application to pulse duration measurement of X-ray laser using a pump-probe method

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Namba, S., E-mail: namba@hiroshima-u.ac.jp; Hasegawa, N.; Kishimoto, M.

    To characterize the temporal evolution of ultrashort X-ray pulses emitted by laser plasmas using a pump-probe method, a magnetic bottle time-of-flight electron spectrometer is constructed. The design is determined by numerical calculations of a mirror magnetic field and of the electron trajectory in a flight tube. The performance of the spectrometer is characterized by measuring the electron spectra of xenon atoms irradiated with a laser-driven plasma X-ray pulse. In addition, two-color above-threshold ionization (ATI) experiment is conducted for measurement of the X-ray laser pulse duration, in which xenon atoms are simultaneously irradiated with an X-ray laser pump and an IRmore » laser probe. The correlation in the intensity of the sideband spectra of the 4d inner-shell photoelectrons and in the time delay of the two laser pulses yields an X-ray pulse width of 5.7 ps, in good agreement with the value obtained using an X-ray streak camera.« less

  6. Power spectra as a diagnostic tool in probing statistical/nonstatistical behavior in unimolecular reactions

    NASA Astrophysics Data System (ADS)

    Chang, Xiaoyen Y.; Sewell, Thomas D.; Raff, Lionel M.; Thompson, Donald L.

    1992-11-01

    The possibility of utilizing different types of power spectra obtained from classical trajectories as a diagnostic tool to identify the presence of nonstatistical dynamics is explored by using the unimolecular bond-fission reactions of 1,2-difluoroethane and the 2-chloroethyl radical as test cases. In previous studies, the reaction rates for these systems were calculated by using a variational transition-state theory and classical trajectory methods. A comparison of the results showed that 1,2-difluoroethane is a nonstatistical system, while the 2-chloroethyl radical behaves statistically. Power spectra for these two systems have been generated under various conditions. The characteristics of these spectra are as follows: (1) The spectra for the 2-chloroethyl radical are always broader and more coupled to other modes than is the case for 1,2-difluoroethane. This is true even at very low levels of excitation. (2) When an internal energy near or above the dissociation threshold is initially partitioned into a local C-H stretching mode, the power spectra for 1,2-difluoroethane broaden somewhat, but discrete and somewhat isolated bands are still clearly evident. In contrast, the analogous power spectra for the 2-chloroethyl radical exhibit a near complete absence of isolated bands. The general appearance of the spectrum suggests a very high level of mode-to-mode coupling, large intramolecular vibrational energy redistribution (IVR) rates, and global statistical behavior. (3) The appearance of the power spectrum for the 2-chloroethyl radical is unaltered regardless of whether the initial C-H excitation is in the CH2 or the CH2Cl group. This result also suggests statistical behavior. These results are interpreted to mean that power spectra may be used as a diagnostic tool to assess the statistical character of a system. The presence of a diffuse spectrum exhibiting a nearly complete loss of isolated structures indicates that the dissociation dynamics of the molecule will

  7. Mathematical Model of Naive T Cell Division and Survival IL-7 Thresholds.

    PubMed

    Reynolds, Joseph; Coles, Mark; Lythe, Grant; Molina-París, Carmen

    2013-01-01

    We develop a mathematical model of the peripheral naive T cell population to study the change in human naive T cell numbers from birth to adulthood, incorporating thymic output and the availability of interleukin-7 (IL-7). The model is formulated as three ordinary differential equations: two describe T cell numbers, in a resting state and progressing through the cell cycle. The third is introduced to describe changes in IL-7 availability. Thymic output is a decreasing function of time, representative of the thymic atrophy observed in aging humans. Each T cell is assumed to possess two interleukin-7 receptor (IL-7R) signaling thresholds: a survival threshold and a second, higher, proliferation threshold. If the IL-7R signaling strength is below its survival threshold, a cell may undergo apoptosis. When the signaling strength is above the survival threshold, but below the proliferation threshold, the cell survives but does not divide. Signaling strength above the proliferation threshold enables entry into cell cycle. Assuming that individual cell thresholds are log-normally distributed, we derive population-average rates for apoptosis and entry into cell cycle. We have analyzed the adiabatic change in homeostasis as thymic output decreases. With a parameter set representative of a healthy individual, the model predicts a unique equilibrium number of T cells. In a parameter range representative of persistent viral or bacterial infection, where naive T cell cycle progression is impaired, a decrease in thymic output may result in the collapse of the naive T cell repertoire.

  8. Gas chromatography/chemical ionization triple quadrupole mass spectrometry analysis of anabolic steroids: ionization and collision-induced dissociation behavior.

    PubMed

    Polet, Michael; Van Gansbeke, Wim; Van Eenoo, Peter; Deventer, Koen

    2016-02-28

    The detection of new anabolic steroid metabolites and new designer steroids is a challenging task in doping analysis. Switching from electron ionization gas chromatography triple quadrupole mass spectrometry (GC/EI-MS/MS) to chemical ionization (CI) has proven to be an efficient way to increase the sensitivity of GC/MS/MS analyses and facilitate the detection of anabolic steroids. CI also extends the possibilities of GC/MS/MS analyses as the molecular ion is retained in its protonated form due to the softer ionization. In EI it can be difficult to find previously unknown but expected metabolites due to the low abundance or absence of the molecular ion and the extensive (and to a large extent unpredictable) fragmentation. The main aim of this work was to study the CI and collision-induced dissociation (CID) behavior of a large number of anabolic androgenic steroids (AAS) as their trimethylsilyl derivatives in order to determine correlations between structures and CID fragmentation. Clarification of these correlations is needed for the elucidation of structures of unknown steroids and new metabolites. The ionization and CID behavior of 65 AAS have been studied using GC/CI-MS/MS with ammonia as the reagent gas. Glucuronidated AAS reference standards were first hydrolyzed to obtain their free forms. Afterwards, all the standards were derivatized to their trimethylsilyl forms. Full scan and product ion scan analyses were used to examine the ionization and CID behavior. Full scan and product ion scan analyses revealed clear correlations between AAS structure and the obtained mass spectra. These correlations were confirmed by analysis of multiple hydroxylated, methylated, chlorinated and deuterated analogs. AAS have been divided into three groups according to their ionization behavior and into seven groups according to their CID behavior. Correlations between fragmentation and structure were revealed and fragmentation pathways were postulated. Copyright © 2016 John Wiley

  9. Proton and Electron Threshold Energy Measurements for Extravehicular Activity Space Suits. Chapter 2

    NASA Technical Reports Server (NTRS)

    Moyers, M. F.; Nelson, G. D.; Saganti, P. B.

    2003-01-01

    Construction of ISS will require more than 1000 hours of EVA. Outside of ISS during EVA, astronauts and cosmonauts are likely to be exposed to a large fluence of electrons and protons. Development of radiation protection guidelines requires the determination of the minimum energy of electrons and protons that penetrate the suits at various locations. Measurements of the water-equivalent thickness of both US. and Russian EVA suits were obtained by performing CT scans. Specific regions of interest of the suits were further evaluated using a differential range shift technique. This technique involved measuring thickness ionization curves for 6-MeV electron and 155-MeV proton beams with ionization chambers using a constant source-to-detector distance. The thicknesses were obtained by stacking polystyrene slabs immediately upstream of the detector. The thicknesses of the 50% ionizations relative to the maximum ionizations were determined. The detectors were then placed within the suit and the stack thickness adjusted until the 50% ionization was reestablished. The difference in thickness between the 50% thicknesses was then used with standard range-energy tables to determine the threshold energy for penetration. This report provides a detailed description of the experimental arrangement and results.

  10. Density Bounded H II Regions: Ionization of the Diffuse Interstellar and Intergalactic Media

    NASA Astrophysics Data System (ADS)

    Zurita, A.; Rozas, M.; Beckman, J. E.

    2000-05-01

    We present a study of the diffuse ionized gas (DIG) for a sample of nearby spiral galaxies using Hα images, after constructing their H II region catalogues. The integrated Hα emission of the DIG accounts for between 25% to 60% of the total Hα of the galaxy and a high ionizing photon flux is necessary to keep this gas ionized. We suggest that Lyman photons leaking from the most luminous H II regions are the prime source of the ionization of the DIG; they are more than enough to ionize the measured DIG in the model in which H II regions with luminosity in Hα greater than LStr=1038.6 erg sme are density bounded. We go on to show that this model can quantify the ionization observed in the skins of the high velocity clouds well above the plane of our Galaxy and predicts the ionization of the intergalactic medium.

  11. THE SPITZER ATLAS OF STELLAR SPECTRA (SASS)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ardila, David R.; Van Dyk, Schuyler D.; Makowiecki, Wojciech

    2010-12-15

    We present the Spitzer Atlas of Stellar Spectra, which includes 159 stellar spectra (5-32 {mu}m; R {approx} 100) taken with the Infrared Spectrograph on the Spitzer Space Telescope. This Atlas gathers representative spectra of a broad section of the Hertzsprung-Russell diagram, intended to serve as a general stellar spectral reference in the mid-infrared. It includes stars from all luminosity classes, as well as Wolf-Rayet (WR) objects. Furthermore, it includes some objects of intrinsic interest, such as blue stragglers and certain pulsating variables. All of the spectra have been uniformly reduced, and all are available online. For dwarfs and giants, themore » spectra of early-type objects are relatively featureless, characterized by the presence of hydrogen lines in A spectral types. Besides these, the most noticeable photospheric features correspond to water vapor and silicon monoxide in late-type objects and methane and ammonia features at the latest spectral types. Most supergiant spectra in the Atlas present evidence of circumstellar gas and/or dust. The sample includes five M supergiant spectra, which show strong dust excesses and in some cases polycyclic aromatic hydrocarbon features. Sequences of WR stars present the well-known pattern of lines of He I and He II, as well as forbidden lines of ionized metals. The characteristic flat-top shape of the [Ne III] line is evident even at these low spectral resolutions. Several Luminous Blue Variables and other transition stars are present in the Atlas and show very diverse spectra, dominated by circumstellar gas and dust features. We show that the [8]-[24] Spitzer colors (IRAC and MIPS) are poor predictors of spectral type for most luminosity classes.« less

  12. Effects of Ionization in a Laser Wakefield Accelerator

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    McGuffey, C.; Schumaker, W.; Matsuoka, T.

    2010-11-04

    Experimental results are presented from studies of the ionization injection process in laser wakefield acceleration using the Hercules laser with laser power up to 100 TW. Gas jet targets consisting of gas mixtures reduced the density threshold required for electron injection and increased the maximum beam charge. Gas mixture targets produced smooth beams even at densities which would produce severe beam breakup in pure He targets and the divergence was found to increase with gas mixture pressure.

  13. The Pfi-Zeke Spectroscopy Study of HfS+ and the Ionization Energy of HfS

    NASA Astrophysics Data System (ADS)

    Antonov, I. O.; Barker, B. J.; Heaven, M. C.

    2011-06-01

    Spectroscopic data for the ground and low-lying states HfS+ have been obtained using the technique of pulse field ionization - zero electron kinetic energy (PFI-ZEKE) spectroscopy. PFI-ZEKE spectra were recorded for the levels X2Σ+ (v=0-18), 2Δ5/2 (v=0-8) and 2Δ3/2 (v=0-3). Assignments of the electronically excited states of HfS+ are based on CCSD(T) and DFT calculations with SDB-aug-cc-pVTZ basis set. Rotationally resolved spectra were recorded for the X2Σ+ (v=0) state using single rotational line excitation of the intermediate state. The ionization energy for HfS, term energies and molecular constants for the ground and low-lying states of HfS+ will be reported.

  14. Prewhitening of Colored Noise Fields for Detection of Threshold Sources

    DTIC Science & Technology

    1993-11-07

    determines the noise covariance matrix, prewhitening techniques allow detection of threshold sources. The multiple signal classification ( MUSIC ...SUBJECT TERMS 1S. NUMBER OF PAGES AR Model, Colored Noise Field, Mixed Spectra Model, MUSIC , Noise Field, 52 Prewhitening, SNR, Standardized Test...EXAMPLE 2: COMPLEX AR COEFFICIENT .............................................. 5 EXAMPLE 3: MUSIC IN A COLORED BACKGROUND NOISE ...................... 6

  15. Making MUSIC: A multiple sampling ionization chamber

    NASA Astrophysics Data System (ADS)

    Shumard, B.; Henderson, D. J.; Rehm, K. E.; Tang, X. D.

    2007-08-01

    A multiple sampling ionization chamber (MUSIC) was developed for use in conjunction with the Atlas scattering chamber (ATSCAT). This chamber was developed to study the (α, p) reaction in stable and radioactive beams. The gas filled ionization chamber is used as a target and detector for both particles in the outgoing channel (p + beam particles for elastic scattering or p + residual nucleus for (α, p) reactions). The MUSIC detector is followed by a Si array to provide a trigger for anode events. The anode events are gated by a gating grid so that only (α, p) reactions where the proton reaches the Si detector result in an anode event. The MUSIC detector is a segmented ionization chamber. The active length of the chamber is 11.95 in. and is divided into 16 equal anode segments (3.5 in. × 0.70 in. with 0.3 in. spacing between pads). The dead area of the chamber was reduced by the addition of a Delrin snout that extends 0.875 in. into the chamber from the front face, to which a mylar window is affixed. 0.5 in. above the anode is a Frisch grid that is held at ground potential. 0.5 in. above the Frisch grid is a gating grid. The gating grid functions as a drift electron barrier, effectively halting the gathering of signals. Setting two sets of alternating wires at differing potentials creates a lateral electric field which traps the drift electrons, stopping the collection of anode signals. The chamber also has a reinforced mylar exit window separating the Si array from the target gas. This allows protons from the (α, p) reaction to be detected. The detection of these protons opens the gating grid to allow the drift electrons released from the ionizing gas during the (α, p) reaction to reach the anode segment below the reaction.

  16. Pulsar gamma-rays: Spectra luminosities and efficiencies

    NASA Technical Reports Server (NTRS)

    Harding, A. K.

    1980-01-01

    The general characteristics of pulsar gamma ray spectra are presented for a model where the gamma rays are produced by curvature radiation from energetic particles above the polar cap and attenuated by pair production. The shape of the spectrum is found to depend on pulsar period, magnetic field strength, and primary particle energy. By a comparison of numerically calculated spectra with the observed spectra of the Crab and Vela pulsars, it is determined that primary particles must be accelerated to energies of about 3 x 10 to the 7th power mc sq. A genaral formula for pulsar gamma ray luminosity is determined and is found to depend on period and field strength.

  17. The Properties and the Evolution of the Highly Ionized Gas in MR 2251-178

    NASA Technical Reports Server (NTRS)

    Kaspi, Shai; Netzer, hagai; Chelouche, Doron; George, Ian M.; Nandra, Kirpal; Turner, T. J.

    2004-01-01

    We present the first XMM-Newton observations of the radio-quiet quasar MR 2251-178 obtained in 2000 and 2002. The EPIC-pn spectra show a power-law continuum with a slope of Gamma = 1.6 at high energies absorbed by at least two warm absorbers (WAs) intrinsic to the source. The underlying continuum in the earlier observation shows a soft excess at low X-ray energies which can be modeled as an additional power-law with Gamma = 2.9. The spectra also show a weak narrow iron K alpha emission line. The high-resolution grating spectrum obtained in 2002 shows emission lines from N VI, O VII, O VIII, Ne IX, and Ne X, as well as absorption lines from the low-ionization ions of O III, O IV, and O V, and other confirmed and suspected weaker absorption lines. The O III - O V lines are consistent with the properties of the emission line gas observed as extended optical (O III) emission in this source. The signal-to-noise of the 2000 grating data is too low to detect any lines. We suggest a model for the high-resolution spectrum which consist of two or three warm-absorber (WA) components. The two-components model has a high-ionization WA with a column density of 10(exp 21.5)-10 (exp 21.8) sq cm and a low-ionization absorber with a column density of 10(exp 20.3) sq cm. In the three-components model we add a lower ionization component that produces the observed iron M-shell absorption lines. We investigate the spectral variations in MR 2251-178 over a period of 8.5 years using data from ASCA, BeppoSAX, and XMM-Newton. All X-ray observations can be fitted with the above two power laws and the two absorbers. The observed luminosity variations seems to correlate with variations in the soft X-ray continuum. The 8.5 year history of the source suggests a changing X-ray absorber due to material that enters and disappears from the line-of-sight on timescales of several months. We also present, for the first time, the entire FUSE spectrum of MR 2251-178. We detect emission from N III, C III

  18. A Search for Laser Emission with Megawatt Thresholds from 5600 FGKM Stars

    NASA Astrophysics Data System (ADS)

    Tellis, Nathaniel K.; Marcy, Geoffrey W.

    2017-06-01

    We searched high-resolution spectra of 5600 nearby stars for emission lines that are both inconsistent with a natural origin and unresolved spatially, as would be expected from extraterrestrial optical lasers. The spectra were obtained with the Keck 10 m telescope, including light coming from within 0.5 arcsec of the star, corresponding typically to within a few to tens of astronomical units of the star, and covering nearly the entire visible wavelength range from 3640 to 7890 Å. We establish detection thresholds by injecting synthetic laser emission lines into our spectra and blindly analyzing them for detections. We compute flux density detection thresholds for all wavelengths and spectral types sampled. Our detection thresholds for the power of the lasers themselves range from 3 kW to 13 MW, independent of distance to the star but dependent on the competing “glare” of the spectral energy distribution of the star and on the wavelength of the laser light, launched from a benchmark, diffraction-limited 10 m class telescope. We found no such laser emission coming from the planetary region around any of the 5600 stars. Because they contain roughly 2000 lukewarm, Earth-size planets, we rule out models of the Milky Way in which over 0.1% of warm, Earth-size planets harbor technological civilizations that, intentionally or not, are beaming optical lasers toward us. A next-generation spectroscopic laser search will be done by the Breakthrough Listen initiative, targeting more stars, especially stellar types overlooked here including spectral types O, B, A, early F, late M, and brown dwarfs, and astrophysical exotica.

  19. Emission spectra of photoionized plasmas induced by intense EUV pulses: Experimental and theoretical investigations

    NASA Astrophysics Data System (ADS)

    Saber, Ismail; Bartnik, Andrzej; Skrzeczanowski, Wojciech; Wachulak, Przemysław; Jarocki, Roman; Fiedorowicz, Henryk

    2017-03-01

    Experimental measurements and numerical modeling of emission spectra in photoionized plasma in the ultraviolet and visible light (UV/Vis) range for noble gases have been investigated. The photoionized plasmas were created using laser-produced plasma (LPP) extreme ultraviolet (EUV) source. The source was based on a gas puff target; irradiated with 10ns/10J/10Hz Nd:YAG laser. The EUV radiation pulses were collected and focused using grazing incidence multifoil EUV collector. The laser pulses were focused on a gas stream, injected into a vacuum chamber synchronously with the EUV pulses. Irradiation of gases resulted in a formation of low temperature photoionized plasmas emitting radiation in the UV/Vis spectral range. Atomic photoionized plasmas produced this way consisted of atomic and ionic with various ionization states. The most dominated observed spectral lines originated from radiative transitions in singly charged ions. To assist in a theoretical interpretation of the measured spectra, an atomic code based on Cowan's programs and a collisional-radiative PrismSPECT code have been used to calculate the theoretical spectra. A comparison of the calculated spectral lines with experimentally obtained results is presented. Electron temperature in plasma is estimated using the Boltzmann plot method, by an assumption that a local thermodynamic equilibrium (LTE) condition in the plasma is validated in the first few ionization states. A brief discussion for the measured and computed spectra is given.

  20. Adaptive threshold shearlet transform for surface microseismic data denoising

    NASA Astrophysics Data System (ADS)

    Tang, Na; Zhao, Xian; Li, Yue; Zhu, Dan

    2018-06-01

    Random noise suppression plays an important role in microseismic data processing. The microseismic data is often corrupted by strong random noise, which would directly influence identification and location of microseismic events. Shearlet transform is a new multiscale transform, which can effectively process the low magnitude of microseismic data. In shearlet domain, due to different distributions of valid signals and random noise, shearlet coefficients can be shrunk by threshold. Therefore, threshold is vital in suppressing random noise. The conventional threshold denoising algorithms usually use the same threshold to process all coefficients, which causes noise suppression inefficiency or valid signals loss. In order to solve above problems, we propose the adaptive threshold shearlet transform (ATST) for surface microseismic data denoising. In the new algorithm, we calculate the fundamental threshold for each direction subband firstly. In each direction subband, the adjustment factor is obtained according to each subband coefficient and its neighboring coefficients, in order to adaptively regulate the fundamental threshold for different shearlet coefficients. Finally we apply the adaptive threshold to deal with different shearlet coefficients. The experimental denoising results of synthetic records and field data illustrate that the proposed method exhibits better performance in suppressing random noise and preserving valid signal than the conventional shearlet denoising method.

  1. Characterization of reticulated vitreous carbon foam using a frisch-grid parallel-plate ionization chamber

    NASA Astrophysics Data System (ADS)

    Edwards, Nathaniel S.; Conley, Jerrod C.; Reichenberger, Michael A.; Nelson, Kyle A.; Tiner, Christopher N.; Hinson, Niklas J.; Ugorowski, Philip B.; Fronk, Ryan G.; McGregor, Douglas S.

    2018-06-01

    The propagation of electrons through several linear pore densities of reticulated vitreous carbon (RVC) foam was studied using a Frisch-grid parallel-plate ionization chamber pressurized to 1 psig of P-10 proportional gas. The operating voltages of the electrodes contained within the Frisch-grid parallel-plate ionization chamber were defined by measuring counting curves using a collimated 241Am alpha-particle source with and without a Frisch grid. RVC foam samples with linear pore densities of 5, 10, 20, 30, 45, 80, and 100 pores per linear inch were separately positioned between the cathode and anode. Pulse-height spectra and count rates from a collimated 241Am alpha-particle source positioned between the cathode and each RVC foam sample were measured and compared to a measurement without an RVC foam sample. The Frisch grid was positioned in between the RVC foam sample and the anode. The measured pulse-height spectra were indiscernible from background and resulted in negligible net count rates for all RVC foam samples. The Frisch grid parallel-plate ionization chamber measurement results indicate that electrons do not traverse the bulk of RVC foam and consequently do not produce a pulse.

  2. Interstellar dehydrogenated PAH anions: vibrational spectra

    NASA Astrophysics Data System (ADS)

    Buragohain, Mridusmita; Pathak, Amit; Sarre, Peter; Gour, Nand Kishor

    2018-03-01

    Interstellar polycyclic aromatic hydrocarbon (PAH) molecules exist in diverse forms depending on the local physical environment. Formation of ionized PAHs (anions and cations) is favourable in the extreme conditions of the interstellar medium (ISM). Besides in their pure form, PAHs are also likely to exist in substituted forms; for example, PAHs with functional groups, dehydrogenated PAHs etc. A dehydrogenated PAH molecule might subsequently form fullerenes in the ISM as a result of ongoing chemical processes. This work presents a density functional theory (DFT) calculation on dehydrogenated PAH anions to explore the infrared emission spectra of these molecules and discuss any possible contribution towards observed IR features in the ISM. The results suggest that dehydrogenated PAH anions might be significantly contributing to the 3.3 μm region. Spectroscopic features unique to dehydrogenated PAH anions are highlighted that may be used for their possible identification in the ISM. A comparison has also been made to see the size effect on spectra of these PAHs.

  3. Regional rainfall thresholds for landslide occurrence using a centenary database

    NASA Astrophysics Data System (ADS)

    Vaz, Teresa; Luís Zêzere, José; Pereira, Susana; Cruz Oliveira, Sérgio; Garcia, Ricardo A. C.; Quaresma, Ivânia

    2018-04-01

    This work proposes a comprehensive method to assess rainfall thresholds for landslide initiation using a centenary landslide database associated with a single centenary daily rainfall data set. The method is applied to the Lisbon region and includes the rainfall return period analysis that was used to identify the critical rainfall combination (cumulated rainfall duration) related to each landslide event. The spatial representativeness of the reference rain gauge is evaluated and the rainfall thresholds are assessed and calibrated using the receiver operating characteristic (ROC) metrics. Results show that landslide events located up to 10 km from the rain gauge can be used to calculate the rainfall thresholds in the study area; however, these thresholds may be used with acceptable confidence up to 50 km from the rain gauge. The rainfall thresholds obtained using linear and potential regression perform well in ROC metrics. However, the intermediate thresholds based on the probability of landslide events established in the zone between the lower-limit threshold and the upper-limit threshold are much more informative as they indicate the probability of landslide event occurrence given rainfall exceeding the threshold. This information can be easily included in landslide early warning systems, especially when combined with the probability of rainfall above each threshold.

  4. Examination of Laser Microprobe Vacuum Ultraviolet Ionization Mass Spectrometry with Application to Mapping Mars Returned Samples

    NASA Astrophysics Data System (ADS)

    Burton, A. S.; Berger, E. L.; Locke, D. R.; Lewis, E. K.; Moore, J. F.

    2018-04-01

    Laser microprobe of surfaces utilizing a two laser setup whereby the desorption laser threshold is lowered below ionization, and the resulting neutral plume is examined using 157nm Vacuum Ultraviolet laser light for mass spec surface mapping.

  5. Overview spectra and axial distribution of spectral line intensities in a high-current vacuum arc with CuCr electrodes

    NASA Astrophysics Data System (ADS)

    Lisnyak, M.; Pipa, A. V.; Gorchakov, S.; Iseni, S.; Franke, St.; Khapour, A.; Methling, R.; Weltmann, K.-D.

    2015-09-01

    Spectroscopic investigations of free-burning vacuum arcs in diffuse mode with CuCr electrodes are presented. The experimental conditions of the investigated arc correspond to the typical system for vacuum circuit breakers. Spectra of six species Cu I, Cu II, Cu III, Cr I, Cr II, and Cr III have been analyzed in the wavelength range 350-810 nm. The axial intensity distributions were found to be strongly dependent on the ionization stage of radiating species. Emission distributions of Cr II and Cu II can be distinguished as well as the distributions of Cr III and Cu III. Information on the axial distribution was used to identify the spectra and for identification of overlapping spectral lines. The overview spectra and some spectral windows recorded with high resolution are presented. Analysis of axial distributions of emitted light, which originates from different ionization states, is presented and discussed.

  6. Transition-matrix theory for two-photon ionization of rare-gas atoms and isoelectronic ions with application to argon

    NASA Astrophysics Data System (ADS)

    Starace, Anthony F.; Jiang, Tsin-Fu

    1987-08-01

    A transition-matrix theory for two-photon ionization processes in rare-gas atoms or isoelectronic ions is presented. Uncoupled ordinary differential equations are obtained for the radial functions needed to calculate the two-photon transition amplitude. The implications of these equations are discussed in detail. In particular, the role of correlations involving virtually excited electron pairs, which are known to be essential to the description of single-photon processes, is examined for multiphoton ionization processes. Additionally, electron scattering interactions between two electron-hole pairs are introduced into our transition amplitude in the boson approximation since these have been found important in two-photon ionization of xenon by L'Huillier and Wendin [J. Phys. B 20, L37 (1987)]. Application of our theory is made to two-photon ionization of the 3p subshell of argon below the one-photon ionization threshold. Our results are compared to previous calculations of McGuire [Phys. Rev. A 24, 835 (1981)], of Moccia, Rahman, and Rizzo [J. Phys. B 16, 2737 (1983)], and of Pindzola and Kelly [Phys. Rev. A 11, 1543 (1975)]. Results are presented for both circularly and linearly polarized photons. Among our findings are, firstly, that the electron scattering interactions, which have not been included in previous calculations for argon, produce a substantial reduction in the two-photon single-ionization cross section below the one-photon ionization threshold, which is in agreement with findings of L'Huillier and Wendin for xenon. Secondly, we find that de-excitation of virtually excited electron pairs by absorption of a photon is important for describing the interaction of the atom with the photon field, as in the case of single-photon ionization processes, but that further excitation of virtually excited electron pairs by the photon field has completely negligible effects, indicating a major simplification of the theory for higher-order absorption processes.

  7. Relativistic features and time delay of laser-induced tunnel ionization

    NASA Astrophysics Data System (ADS)

    Yakaboylu, Enderalp; Klaiber, Michael; Bauke, Heiko; Hatsagortsyan, Karen Z.; Keitel, Christoph H.

    2013-12-01

    The electron dynamics in the classically forbidden region during relativistic tunnel ionization is investigated. The classical forbidden region in the relativistic regime is identified by defining a gauge-invariant total-energy operator. Introducing position-dependent energy levels inside the tunneling barrier, we demonstrate that the relativistic tunnel ionization can be well described by a one-dimensional intuitive picture. This picture predicts that, in contrast to the well-known nonrelativistic regime, the ionized electron wave packet arises with a momentum shift along the laser's propagation direction. This is compatible with results from a strong-field approximation calculation where the binding potential is assumed to be zero ranged. Further, the tunneling time delay, stemming from Wigner's definition, is investigated for model configurations of tunneling and compared with results obtained from the exact propagator. By adapting Wigner's time delay definition to the ionization process, the tunneling time is investigated in the deep-tunneling and in the near-threshold-tunneling regimes. It is shown that while in the deep-tunneling regime signatures of the tunneling time delay are not measurable at remote distance, they are detectable, however, in the latter regime.

  8. Synchronization of low- and high-threshold motor units.

    PubMed

    Defreitas, Jason M; Beck, Travis W; Ye, Xin; Stock, Matt S

    2014-04-01

    We examined the degree of synchronization for both low- and high-threshold motor unit (MU) pairs at high force levels. MU spike trains were recorded from the quadriceps during high-force isometric leg extensions. Short-term synchronization (between -6 and 6 ms) was calculated for every unique MU pair for each contraction. At high force levels, earlier recruited motor unit pairs (low-threshold) demonstrated relatively low levels of short-term synchronization (approximately 7.3% extra firings than would have been expected by chance). However, the magnitude of synchronization increased significantly and linearly with mean recruitment threshold (reaching 22.1% extra firings for motor unit pairs recruited above 70% MVC). Three potential mechanisms that could explain the observed differences in synchronization across motor unit types are proposed and discussed. Copyright © 2013 Wiley Periodicals, Inc.

  9. The nuclear region of low luminosity flat radio spectrum sources. II. Emission-line spectra

    NASA Astrophysics Data System (ADS)

    Gonçalves, A. C.; Serote Roos, M.

    2004-01-01

    We report on the spectroscopic study of 19 low luminosity Flat Radio Spectrum (LL FRS) sources selected from Marchã's et al. (\\cite{March96}) 200 mJy sample. In the optical, these objects are mainly dominated by the host galaxy starlight. After correcting the data for this effect, we obtain a new set of spectra clearly displaying weak emission lines; such features carry valuable information concerning the excitation mechanisms at work in the nuclear regions of LL FRS sources. We have used a special routine to model the spectra and assess the intensities and velocities of the emission lines; we have analyzed the results in terms of diagnostic diagrams. Our analysis shows that 79% of the studied objects harbour a Low Ionization Nuclear Emission-line Region (or LINER) whose contribution was swamped by the host galaxy starlight. The remaining objects display a higher ionization spectrum, more typical of Seyferts; due to the poor quality of the spectra, it was not possible to identify any possible large Balmer components. The fact that we observe a LINER-type spectrum in LL FRS sources supports the idea that some of these objects could be undergoing an ADAF phase; in addition, such a low ionization emission-line spectrum is in agreement with the black hole mass values and sub-Eddington accretion rates published for some FRS sources. Based on observations collected at the Multiple Mirror Telescope on Mt. Hopkins. Full Fig. 1 is only available in electronic form at http://www.edpsciences.org

  10. Observations of extended and counterrotating disks of ionized gas in S0 galaxies

    NASA Technical Reports Server (NTRS)

    Dettmar, Ralf-Juergen; Jullien-Dettmar, Marlies; Barteldrees, Andreas

    1990-01-01

    While many E/S0 galaxies have been found to show emission line spectra in their nuclear regions, the question of the presence and nature of extended disks of ionized gas in these galaxies has been addressed only in recent years. Typically the ionized gas is detected in the inner region on a scale of approx. 1 kpc (e.g., Phillips et al. 1986, Caldwell 1984). Here researchers present evidence that the disks of ionized gas of at least some S0 galaxies are much more extended than previously believed. In addition, with the detection of the counterrotation of gas and stars in NGC 7007 they strengthen the basis for arguments that the source of gas in S0 galaxies is external

  11. Ionization Cross Sections and Dissociation Channels of the DNA Sugar-Phosphate Backbone by Electron Collisions

    NASA Technical Reports Server (NTRS)

    Dateo, Christopher; Huo, Winifred M.; Fletcher, Graham D.

    2004-01-01

    It has been suggested that the genotoxic effects of ionizing radiation in living cells are not caused by the highly energetic incident radiation, but rather are induced by less energetic secondary species generated, the most abundant of which are free electrons.' The secondary electrons will further react to cause DNA damage via indirect and direct mechanisms. Detailed knowledge of these mechanisms is ultimately important for the development of global models of cellular radiation damage. We are studying one possible mechanism for the formation cf DNA strand breaks involving dissociative ionization of the DNA sugar-phosphate backbone induced by secondary electron co!lisions. We will present ionization cross sections at electron collision energies between threshold and 10 KeV using the improved binary encounter dipole (iBED) formulation' Preliminary results of the possible dissociative ionization pathways will be presented. It is speculated that radical fragments produced from the dissociative ionization can further react, providing a possible mechanism for double strand breaks and base damage.

  12. An evaluation of ionizing radiation emitted by high power microwave generators

    NASA Astrophysics Data System (ADS)

    Lovell, C. David; Bolch, W. Emmett

    1992-02-01

    Ionizing radiation emitted by electron-beam driven high power microwave (HPM) generators were measured in the near and far-field using lithium fluoride (LiF) thermoluminescent dosimeters (TLD's). Simplified photon energy spectra were determined by measuring radiation transmission, at electron beam energies of 300 to 650 keV, through various thicknesses of steel and lead attenuators. These data were used to calculate the effective energy of the x-rays produced by interactions between the electrons and the walls or other structures of the HPM generators. Operators were polled to determine locations of burn marks or other visible damage to locate potential ionizing radiation source regions.

  13. Validity of abundances derived from spaxel spectra of the MaNGA survey

    NASA Astrophysics Data System (ADS)

    Pilyugin, L. S.; Grebel, E. K.; Zinchenko, I. A.; Nefedyev, Y. A.; Shulga, V. M.; Wei, H.; Berczik, P. P.

    2018-05-01

    We measured the emission lines in the spaxel spectra of Mapping Nearby Galaxies at Apache Point Observatory (MaNGA) galaxies in order to determine the abundance distributions therein. It has been suggested that the strength of the low-ionization lines, R2, N2, and S2, may be increased (relative to Balmer lines) in (some) spaxel spectra of the MaNGA survey due to a contribution of the radiation of the diffuse ionized gas. Consequently, the abundances derived from the spaxel spectra through strong-line methods may suffer from large errors. We examined this expectation by comparing the behaviour of the line intensities and the abundances estimated through different calibrations for slit spectra of H II regions in nearby galaxies, for fibre spectra from the Sloan Digital Sky Survey, and for spaxel spectra of the MaNGA survey. We found that the S2 strength is increased significantly in the fibre and spaxel spectra. The mean enhancement changes with metallicity and can be as large as a factor of 2. The mean distortion of R2 and N2 is less than a factor of 1.3. This suggests that Kaufmann et al.'s (2003, MNRAS, 346, 1055) demarcation line between active galactic nuclei and H II regions in the Baldwin, Phillips, & Terlevich (BPT, 1981, PASP, 93, 5) diagram is a useful criterion to reject spectra with significantly distorted strengths of the N2 and R2 lines. We find that the three-dimensional R calibration, which uses the N2 and R2 lines, produces reliable abundances in the MaNGA galaxies. The one-dimensional N2 calibration produces either reliable or wrong abundances depending on whether excitation and N/O abundance ratio in the target region (spaxel) are close to or differ from those parameters in the calibrating points located close to the calibration relation. We then determined abundance distributions within the optical radii in the discs of 47 MaNGA galaxies. The optical radii of the galaxies were estimated from the surface brightness profiles constructed based on the

  14. Low-energy electron-impact ionization of helium

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Schow, E.; Hazlett, K.; Childers, J. G.

    2005-12-15

    Normalized doubly differential cross sections for the electron-impact ionization of helium at low energies are presented. The data are taken at the incident electron energies of 26.3, 28.3, 30.3, 32.5, 34.3, 36.5, and 40.7 eV and for scattering angles of 10 deg. -130 deg. The measurements involve the use of the moveable target method developed at California State University Fullerton to accurately determine the continuum background in the energy-loss spectra. Normalization of experimental data is made on a relative scale to well-established experimental differential cross sections for excitation of the n=2 manifold of helium and then on an absolute scalemore » to the well-established total ionization cross sections of Shah et al. [J. Phys. B 21, 2751 (1988)]. Comparisons are made with available experimental data and the results of the convergent close-coupling theory.« less

  15. Oxidative Ionization Under Certain Negative-Ion Mass Spectrometric Conditions

    NASA Astrophysics Data System (ADS)

    Hassan, Isra; Pavlov, Julius; Errabelli, Ramu; Attygalle, Athula B.

    2017-02-01

    1,4-Hydroquinone and several other phenolic compounds generate (M - 2) -• radical-anions, rather than deprotonated molecules, under certain negative-ion mass spectrometric conditions. In fact, spectra generated under helium-plasma ionization (HePI) conditions from 1,4-hydroquinone and 1,4-benzoquinone (by electron capture) were practically indistinguishable. Because this process involves a net loss of H• and H+, it can be termed oxidative ionization. The superoxide radical-anion (O2 -•), known to be present in many atmospheric-pressure plasma ion sources operated in the negative mode, plays a critical role in the oxidative ionization process. The presence of a small peak at m/z 142 in the spectrum of 1,4-hydroquinone, but not in that of 1,4-benzoquinone, indicated that the initial step in the oxidative ionization process is the formation of an O2 -• adduct. On the other hand, under bona fide electrospray ionization (ESI) conditions, 1,4-hydroquinone generates predominantly an (M - 1) - ion. It is known that at sufficiently high capillary voltages, corona discharges begin to occur even in an ESI source. At lower ESI capillary voltages, deprotonation predominates; as the capillary voltage is raised, the abundance of O2 -• present in the plasma increases, and the source in turn increasingly behaves as a composite ESI/APCI source. While maintaining post-ionization ion activation to a minimum (to prevent fragmentation), and monitoring the relative intensities of the m/z 109 (due to deprotonation) and 108 (oxidative ionization) peaks recorded from 1,4-hydroquinone, a semiquantitative estimation of the APCI contribution to the overall ion-generation process can be obtained.

  16. Identification of Microalgae by Laser Desorption/Ionization Mass Spectrometry Coupled with Multiple Nanomatrices.

    PubMed

    Peng, Lung-Hsiang; Unnikrishnan, Binesh; Shih, Chi-Yu; Hsiung, Tung-Ming; Chang, Jeng; Hsu, Pang-Hung; Chiu, Tai-Chia; Huang, Chih-Ching

    2016-04-01

    In this study, we demonstrate a simple method to identify microalgae by surface-assisted laser desorption/ionization mass spectrometry (SALDI-MS) using three different substrates: HgSe, HgTe, and HgTeSe nanostructures. The fragmentation/ionization processes of complex molecules in algae varied according to the heat absorption and transfer efficiency of the nanostructured matrices (NMs). Therefore, the mass spectra obtained for microalgae showed different patterns of m/z values for different NMs. The spectra contained both significant and nonsignificant peaks. Constructing a Venn diagram with the significant peaks obtained for algae when using HgSe, HgTe, and HgTeSe NMs in m/z ratio range 100-1000, a unique relationship among the three sets of values was obtained. This unique relationship of sets is different for each species of microalgae. Therefore, by observing the particular relationship of sets, we successfully identified different algae such as Isochrysis galbana, Emiliania huxleyi, Thalassiosira weissflogii, Nannochloris sp., Skeletonema cf. costatum, and Tetraselmis chui. This simple and cost-effective SALDI-MS analysis method coupled with multi-nanomaterials as substrates may be extended to identify other microalgae and microorganisms in real samples. Graphical Abstract Identification of microalgae by surface-assisted laser desorption/ionization mass spectrometry coupled with three different mercury-based nanosubstrates.

  17. Electron impact ionization of plasma important SiClX (X = 1-4) molecules: theoretical cross sections

    NASA Astrophysics Data System (ADS)

    Kothari, Harshit N.; Pandya, Siddharth H.; Joshipura, K. N.

    2011-06-01

    Electron impact ionization of SiClX (X = 1-4) molecules is less studied but an important process for understanding and modelling the interactions of silicon-chlorine plasmas with different materials. The SiCl3 radical is a major chloro-silicon species involved in the CVD (chemical vapour deposition) of silicon films from SiCl4/Ar microwave plasmas. We report in this paper the total ionization cross sections for electron collisions on these silicon compounds at incident energies from the ionization threshold to 2000 eV. We employ the 'complex scattering potential-ionization contribution' method and identify the relative importance of various channels, with ionization included in the cumulative inelastic scattering. New results are also presented on these exotic molecular targets. This work is significant in view of the paucity of theoretical studies on the radicals SiClX (X = 1-3) and on SiCl4.

  18. Electron- and proton-induced ionization of pyrimidine

    NASA Astrophysics Data System (ADS)

    Champion, Christophe; Quinto, Michele A.; Weck, Philippe F.

    2015-05-01

    The present work describes a quantum-mechanically based model of the electron- and proton-induced ionization of isolated pyrimidine molecules. The impact energies range from the target ionization threshold up to ~1 keV for electrons and from 10 keV up to 10 MeV for protons. The cross-section calculations are performed within the 1st Born approximation in which the ejected electron is described by a Coulomb wave whereas the incident and the scattered projectiles are both described by plane waves. The pyrimidine target is described using the Gaussian 09 software package. The theoretical predictions obtained are in good agreement with experimental absolute total cross sections, while large discrepancies are observed between existing semi-empirical models and the present calculations. Contribution to the Topical Issue "COST Action Nano-IBCT: Nano-scale Processes Behind Ion-Beam Cancer Therapy", edited by Andrey Solov'yov, Nigel Mason, Gustavo García, Eugene Surdutovich.

  19. Fluorescence spectra of atmospheric aerosol at Adelphi, Maryland, USA: measurement and classification of single particles containing organic carbon

    NASA Astrophysics Data System (ADS)

    Pinnick, Ronald G.; Hill, Steven C.; Pan, Yong-Le; Chang, Richard K.

    We measured laser-induced fluorescence spectra from individual supermicron-sized atmospheric particles drawn into our laboratory at Adelphi, MD, an urban site in the Washington, DC metroplex. A virtural impactor concentrator is used along with an aerodynamic-focusing-nozzle which forms, within an optical chamber, a focused aerosol jet where single aerosol particles can be interrogated on-the-fly with a pulsed 266-nm-wavelength laser. Sample rates are a few liter per minute, and are size dependent. Crossed-diode laser beams indicate when a particle is traversing the sample region and are used to trigger the UV laser to fire and the gated intensified CCD to record the fluorescence spectrum. Our breadboard fluorescence particle spectrometer measures particles in the 3-10 μm diameter size range. Typical trigger rates are a few per second. The usable spectral range is from about 295 to 605 nm. The majority of the particles have very weak fluorescence (on average 8 percent of particles have fluorescence signals above noise). The spectra were grouped using a heirarchical cluster analysis, with parameters chosen so that spectra typically cluster into 4-12 main categories. From the set of all cluster spectra we chose 8 template spectra for reanalyzing all the data. On average, 92 percent (81-94 percent) of the spectra were similar to these templates (using the same thresholds used for the cluster analysis). The major emission bands of the most commonly occurring spectra have peaks: near 460 nm (28 percent of fluorescent particles on average), a very broad hump, and may be humic acids or humic like substances; near 317 nm (on average 24 percent of fluorescent particles); near 321 and 460 nm (a double hump, 12 percent of fluorescent particles); and near 341 nm (8 percent of fluorescent particles). Some of the fluorescence in spectra peaking in the 317-341 nm range is probably from dicyclic aromatics and heterocyclics, including the amino acid tryptophan in biological

  20. Strong-field ionization of H{sub 2} from ultraviolet to near-infrared wavelengths: Photoelectron energy and angular identifications

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wilbois, Timo; Helm, Hanspeter

    2011-11-15

    Strong-field ionization of molecular hydrogen is studied at wavelengths ranging from 300 to 800 nm using pulses of 100-fs duration. We find that over this wide wavelength range, from nominally 4-photon to 11-photon ionization, resonance features dominate the ionization probability at intensities below 10{sup 14} W/cm{sup 2}. Photoelectron momentum maps recorded by an imaging spectrometer are analyzed to identify the wavelength-dependent ionization pathways in single ionization of molecular hydrogen. A number of models, some empirical, which are appropriate for a quantitative interpretation of the spectra and the ionization yield are introduced. A near-absolute comparison of measured ionization yields at 398more » nm is made with the predictions based on a numerical solution [Y. V. Vanne and A. Saenz, Phys. Rev. A 79, 023421 (2009)] of the time-dependent Schroedinger equation for two correlated electrons.« less

  1. Negative permittivity and permeability spectra of Cu/yttrium iron garnet hybrid granular composite materials in the microwave frequency range

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Tsutaoka, Takanori, E-mail: tsutaok@hiroshima-u.ac.jp; Fukuyama, Koki; Kinoshita, Hideaki

    2013-12-23

    The relative complex permittivity and permeability spectra of the coagulated copper and yttrium iron garnet (Cu/YIG) hybrid granular composite materials have been studied in the microwave range. The insulator to metal transition was observed at the percolation threshold of Cu particle content (φ{sub Cu} = 16.0 vol. %) in the electrical conductivity. In the percolation threshold, the low frequency plasmonic state caused by the metallic Cu particle networks was observed. The percolated Cu/YIG granular composites show simultaneous negative permittivity and permeability spectra under external magnetic fields.

  2. Ionization-induced solvent migration in acetanilide-methanol clusters inferred from isomer-selective infrared spectroscopy.

    PubMed

    Weiler, Martin; Nakamura, Takashi; Sekiya, Hiroshi; Dopfer, Otto; Miyazaki, Mitsuhiko; Fujii, Masaaki

    2012-12-07

    We present the resonance-enhanced multiphoton ionization, infrared-ultraviolet hole burning (IR-UV HB), and IR dip spectra of the trans-acetanilide-methanol (AA-MeOH) cluster in the S(0), S(1), and cationic ground state (D(0)) in a supersonic jet. The IR-UV HB spectra demonstrate the co-existence of two isomers in S(0,1), in which MeOH binds either to the NH or the CO site of the peptide linkage in AA, denoted as AA(NH)-MeOH and AA(CO)-MeOH. When AA(CO)-MeOH is selectively ionized, its IR spectrum in D(0) is the same as that measured for AA(+) (NH)-MeOH. Thus, photoionization of AA(CO)-MeOH induces migration of MeOH from the CO to the NH site with 100% yield. Copyright © 2012 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  3. Remote control of the dissociative ionization of H2 based on electron-H2 + entanglement

    NASA Astrophysics Data System (ADS)

    Wang, Jun-Ping; He, Feng

    2018-04-01

    The single ionization of H2 in strong laser fields creates the correlated electron-H2 + pair. Based on such a correlation, we conceive a strategy to control the energy spectra of the freed electron or dissociative fragments by simulating the time-dependent Schrödinger equation. Two attosecond pulses in a train produce the replica of electron-H2 + pairs, which are to be steered by a time-delayed phase-stabilized (mid)infrared laser pulse. By controlling the behavior of the freed electron, the dissociation of H2 + can be controlled even though there is no direct laser-H2 + coupling. On the other hand, the photoelectron energy spectra can be manipulated via laser-H2 + coupling. This study demonstrates the entanglement of molecular quantum wave packets, and affords a route to remotely control molecular dissociative ionization.

  4. Characteristics of equatorial ionization anomaly (EIA) in relation to transionospheric satellite links around the northern crest in the Indian longitude sector

    NASA Astrophysics Data System (ADS)

    Das, A.; Paul, K. S.; Halder, S.; Basu, K.; Paul, A.

    2014-02-01

    The poleward gradient of the equatorial ionization anomaly (EIA) introduces more intense propagation effects on transionospheric satellite links in comparison to the equatorward gradient. Characterization of the poleward gradient was performed during March-April, August-October 2011 and March-April 2012 using GPS total electron content (TEC) recorded from a chain of stations located more or less along the same meridian (88.5° E) at Calcutta, Baharampore, Farakka and Siliguri. The poleward gradients calculated on magnetically quiet days at elevation in excess of 50° at 14:00, 15:00 and 16:00 LT were found to have a strong correlation with GPS S4 observed from Calcutta during post-sunset-to-midnight hours. A threshold value of poleward TEC gradient is calculated above which there is a probability of scintillation at Calcutta with S4 ≥ 0.4.

  5. Thresholding of auditory cortical representation by background noise

    PubMed Central

    Liang, Feixue; Bai, Lin; Tao, Huizhong W.; Zhang, Li I.; Xiao, Zhongju

    2014-01-01

    It is generally thought that background noise can mask auditory information. However, how the noise specifically transforms neuronal auditory processing in a level-dependent manner remains to be carefully determined. Here, with in vivo loose-patch cell-attached recordings in layer 4 of the rat primary auditory cortex (A1), we systematically examined how continuous wideband noise of different levels affected receptive field properties of individual neurons. We found that the background noise, when above a certain critical/effective level, resulted in an elevation of intensity threshold for tone-evoked responses. This increase of threshold was linearly dependent on the noise intensity above the critical level. As such, the tonal receptive field (TRF) of individual neurons was translated upward as an entirety toward high intensities along the intensity domain. This resulted in preserved preferred characteristic frequency (CF) and the overall shape of TRF, but reduced frequency responding range and an enhanced frequency selectivity for the same stimulus intensity. Such translational effects on intensity threshold were observed in both excitatory and fast-spiking inhibitory neurons, as well as in both monotonic and nonmonotonic (intensity-tuned) A1 neurons. Our results suggest that in a noise background, fundamental auditory representations are modulated through a background level-dependent linear shifting along intensity domain, which is equivalent to reducing stimulus intensity. PMID:25426029

  6. Quantum-mechanical predictions of electron-induced ionization cross sections of DNA components

    NASA Astrophysics Data System (ADS)

    Champion, Christophe

    2013-05-01

    Ionization of biomolecules remains still today rarely investigated on both the experimental and the theoretical sides. In this context, the present work appears as one of the first quantum mechanical approaches providing a multi-differential description of the electron-induced ionization process of the main DNA components for impact energies ranging from the target ionization threshold up to about 10 keV. The cross section calculations are here performed within the 1st Born approximation framework in which the ejected electron is described by a Coulomb wave whereas the incident and the scattered electrons are both described by a plane wave. The biological targets of interest, namely, the DNA nucleobases and the sugar-phosphate backbone, are here described by means of the GAUSSIAN 09 system using the restricted Hartree-Fock method with geometry optimization. The theoretical predictions also obtained have shown a reasonable agreement with the experimental total ionization cross sections while huge discrepancies have been pointed out with existing theoretical models, mainly developed within a semi-classical framework.

  7. Comparative simulation analysis on the ignition threshold of atmospheric He and Ar dielectric barrier discharge

    NASA Astrophysics Data System (ADS)

    Yao, Congwei; Chang, Zhengshi; Chen, Sile; Ma, Hengchi; Mu, Haibao; Zhang, Guan-Jun

    2017-09-01

    Dielectric barrier discharge (DBD) is widely applied in many fields, and the discharge characteristics of insert gas have been the research focus for years. In this paper, fluid models of atmospheric Ar and He DBDs driven by 22 kHz sinusoidal voltage are built to analyze their ignition processes. The contributions of different electron sources in ignition process are analyzed, including the direct ionization of ground state atom, stepwise ionization of metastable particles, and secondary electron emission from dielectric wall, and they play different roles in different discharge stages. The Townsend direct ionization coefficient of He is higher than Ar with the same electrical field intensity, which is the direct reason for the different ignition thresholds between He and Ar. Further, the electron energy loss per free electron produced in Ar and He DBDs is discussed. It is found that the total electron energy loss rate of Ar is higher than He when the same electrical field is applied. The excitation reaction of Ar consumes the major electron energy but cannot produce free electrons effectively, which is the essential reason for the higher ignition threshold of Ar. The computation results of He and Ar extinction voltages can be explained in the view of electron energy loss, as well as the experimental results of different extinction voltages between Ar/NH3 and He DBDs.

  8. Overview spectra and axial distribution of spectral line intensities in a high-current vacuum arc with CuCr electrodes

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lisnyak, M.; Pipa, A. V.; Gorchakov, S., E-mail: gorchakov@inp-greifswald.de, E-mail: weltmann@inp-greifswald.de

    2015-09-28

    Spectroscopic investigations of free-burning vacuum arcs in diffuse mode with CuCr electrodes are presented. The experimental conditions of the investigated arc correspond to the typical system for vacuum circuit breakers. Spectra of six species Cu I, Cu II, Cu III, Cr I, Cr II, and Cr III have been analyzed in the wavelength range 350–810 nm. The axial intensity distributions were found to be strongly dependent on the ionization stage of radiating species. Emission distributions of Cr II and Cu II can be distinguished as well as the distributions of Cr III and Cu III. Information on the axial distribution wasmore » used to identify the spectra and for identification of overlapping spectral lines. The overview spectra and some spectral windows recorded with high resolution are presented. Analysis of axial distributions of emitted light, which originates from different ionization states, is presented and discussed.« less

  9. A Search for Laser Emission with Megawatt Thresholds from 5600 FGKM Stars

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Tellis, Nathaniel K.; Marcy, Geoffrey W., E-mail: Nate.tellis@gmail.com

    We searched high-resolution spectra of 5600 nearby stars for emission lines that are both inconsistent with a natural origin and unresolved spatially, as would be expected from extraterrestrial optical lasers. The spectra were obtained with the Keck 10 m telescope, including light coming from within 0.5 arcsec of the star, corresponding typically to within a few to tens of astronomical units of the star, and covering nearly the entire visible wavelength range from 3640 to 7890 Å. We establish detection thresholds by injecting synthetic laser emission lines into our spectra and blindly analyzing them for detections. We compute flux density detectionmore » thresholds for all wavelengths and spectral types sampled. Our detection thresholds for the power of the lasers themselves range from 3 kW to 13 MW, independent of distance to the star but dependent on the competing “glare” of the spectral energy distribution of the star and on the wavelength of the laser light, launched from a benchmark, diffraction-limited 10 m class telescope. We found no such laser emission coming from the planetary region around any of the 5600 stars. Because they contain roughly 2000 lukewarm, Earth-size planets, we rule out models of the Milky Way in which over 0.1% of warm, Earth-size planets harbor technological civilizations that, intentionally or not, are beaming optical lasers toward us. A next-generation spectroscopic laser search will be done by the Breakthrough Listen initiative, targeting more stars, especially stellar types overlooked here including spectral types O, B, A, early F, late M, and brown dwarfs, and astrophysical exotica.« less

  10. Proton and Helium Spectra from the CREAM-III Flight

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yoon, Y. S.; Han, J. H.; Kim, K. C.

    2017-04-10

    Primary cosmic-ray elemental spectra have been measured with the balloon-borne Cosmic Ray Energetics And Mass (CREAM) experiment since 2004. The third CREAM payload (CREAM-III) flew for 29 days during the 2007–2008 Antarctic season. Energies of incident particles above 1 TeV are measured with a calorimeter. Individual elements are clearly separated with a charge resolution of ∼0.12 e (in charge units) and ∼0.14 e for protons and helium nuclei, respectively, using two layers of silicon charge detectors. The measured proton and helium energy spectra at the top of the atmosphere are harder than other existing measurements at a few tens ofmore » GeV. The relative abundance of protons to helium nuclei is 9.53 ± 0.03 for the range of 1 TeV/n to 63 TeV/n. This ratio is considerably smaller than other measurements at a few tens of GeV/n. The spectra become softer above ∼20 TeV. However, our statistical uncertainties are large at these energies and more data are needed.« less

  11. Spatially resolved thermal desorption/ionization coupled with mass spectrometry

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Jesse, Stephen; Van Berkel, Gary J; Ovchinnikova, Olga S

    2013-02-26

    A system and method for sub-micron analysis of a chemical composition of a specimen are described. The method includes providing a specimen for evaluation and a thermal desorption probe, thermally desorbing an analyte from a target site of said specimen using the thermally active tip to form a gaseous analyte, ionizing the gaseous analyte to form an ionized analyte, and analyzing a chemical composition of the ionized analyte. The thermally desorbing step can include heating said thermally active tip to above 200.degree. C., and positioning the target site and the thermally active tip such that the heating step forms themore » gaseous analyte. The thermal desorption probe can include a thermally active tip extending from a cantilever body and an apex of the thermally active tip can have a radius of 250 nm or less.« less

  12. Ultrafast multiphoton ionization dynamics and control of NaK molecules

    NASA Astrophysics Data System (ADS)

    Davidsson, Jan; Hansson, Tony; Mukhtar, Emad

    1998-12-01

    The multiphoton ionization dynamics of NaK molecules is investigated experimentally using one-color pump-probe femtosecond spectroscopy at 795 nm and intermediate laser field strengths (about 10 GW/cm2). Both NaK+ and Na+ ions are detected as a function of pulse separation time, pulse intensities, and strong pulse-weak pulse order. To aid in the analysis, the potential energy curves of the two lowest electronic states of NaK+ and the electronic transition dipole moment between them are calculated by the GAUSSIAN94 UCIS method. Different ionization pathways are identified by Franck-Condon analysis, and vibrational dynamics in the A 1Σ+ and 3 1Π states, as well as in the ground state, is observed. Further, the existence of a highly excited (above the adiabatic ionization limit) neutral state of NaK is proposed. By changing the strong pulse-weak pulse order of the pulses, the ionization pathways for production of both ions can be varied and thus controlled.

  13. Picosecond Electric-Field-Induced Threshold Switching in Phase-Change Materials.

    PubMed

    Zalden, Peter; Shu, Michael J; Chen, Frank; Wu, Xiaoxi; Zhu, Yi; Wen, Haidan; Johnston, Scott; Shen, Zhi-Xun; Landreman, Patrick; Brongersma, Mark; Fong, Scott W; Wong, H-S Philip; Sher, Meng-Ju; Jost, Peter; Kaes, Matthias; Salinga, Martin; von Hoegen, Alexander; Wuttig, Matthias; Lindenberg, Aaron M

    2016-08-05

    Many chalcogenide glasses undergo a breakdown in electronic resistance above a critical field strength. Known as threshold switching, this mechanism enables field-induced crystallization in emerging phase-change memory. Purely electronic as well as crystal nucleation assisted models have been employed to explain the electronic breakdown. Here, picosecond electric pulses are used to excite amorphous Ag_{4}In_{3}Sb_{67}Te_{26}. Field-dependent reversible changes in conductivity and pulse-driven crystallization are observed. The present results show that threshold switching can take place within the electric pulse on subpicosecond time scales-faster than crystals can nucleate. This supports purely electronic models of threshold switching and reveals potential applications as an ultrafast electronic switch.

  14. Highly ionized physical vapor deposition plasma source working at very low pressure

    NASA Astrophysics Data System (ADS)

    Stranak, V.; Herrendorf, A.-P.; Drache, S.; Cada, M.; Hubicka, Z.; Tichy, M.; Hippler, R.

    2012-04-01

    Highly ionized discharge for physical vapor deposition at very low pressure is presented in the paper. The discharge is generated by electron cyclotron wave resonance (ECWR) which assists with ignition of high power impulse magnetron sputtering (HiPIMS) discharge. The magnetron gun (with Ti target) was built into the single-turn coil RF electrode of the ECWR facility. ECWR assistance provides pre-ionization effect which allows significant reduction of pressure during HiPIMS operation down to p = 0.05 Pa; this is nearly more than an order of magnitude lower than at typical pressure ranges of HiPIMS discharges. We can confirm that nearly all sputtered particles are ionized (only Ti+ and Ti++ peaks are observed in the mass scan spectra). This corresponds well with high plasma density ne ˜ 1018 m-3, measured during the HiPIMS pulse.

  15. Nonsequential double ionization channels control of Ar with few-cycle elliptically polarized laser pulse by carrier-envelope-phase.

    PubMed

    Ben, Shuai; Wang, Tian; Xu, Tongtong; Guo, Jing; Liu, Xueshen

    2016-04-04

    The carrier-envelop-phase (CEP) dependence of nonsequential double ionization (NSDI) of atomic Ar with few-cycle elliptically polarized laser pulse is investigated using 2D classical ensemble method. We distinguish two particular recollision channels in NSDI, which are recollision-impact ionization (RII) and recollision-induced excitation with subsequent ionization (RESI). We separate the RII and RESI channels according to the delay time between recollision and final double ionization. By tracing the history of the trajectories, we find the electron correlation spectra as well as the competition between the two channels are sensitively dependent on the laser field CEP. Finally, control can be achieved between the two channels by varying the CEP.

  16. Direct analysis of herbal powders by pipette-tip electrospray ionization mass spectrometry.

    PubMed

    Wang, Haixing; So, Pui-Kin; Yao, Zhong-Ping

    2014-01-27

    Conventional electrospray ionization mass spectrometry (ESI-MS) is widely used for analysis of solution samples. The development of solid-substrate ESI-MS allows direct ionization analysis of bulky solid samples. In this study, we developed pipette-tip ESI-MS, a technique that combines pipette tips with syringe and syringe pump, for direct analysis of herbal powders, another common form of samples. We demonstrated that various herbal powder samples, including herbal medicines and food samples, could be readily online extracted and analyzed using this technique. Various powder samples, such as Rhizoma coptidis, lotus plumule, great burdock achene, black pepper, Panax ginseng, roasted coffee beans, Fructus Schisandrae Chinensis and Fructus Schisandrae Sphenantherae, were analyzed using pipette-tip ESI-MS and quality mass spectra with stable and durable signals could be obtained. Both positive and negative ion modes were attempted and various compounds including amino acids, oligosaccharides, glycosides, alkaloids, organic acids, ginosensides, flavonoids and lignans could be detected. Principal component analysis (PCA) based on the acquired mass spectra allowed rapid differentiation of closely related herbal species. Copyright © 2013 Elsevier B.V. All rights reserved.

  17. Weakly ionized cosmic gas: Ionization and characterization

    NASA Technical Reports Server (NTRS)

    Rosenberg, M.; Mendis, D. A.; Chow, V. W.

    1994-01-01

    Since collective plasma behavior may determine important transport processes (e.g., plasma diffusion across a magnetic field) in certain cosmic environments, it is important to delineate the parameter space in which weakly ionized cosmic gases may be characterized as plasmas. In this short note, we do so. First, we use values for the ionization fraction given in the literature, wherein the ionization is generally assumed to be due primarily to ionization by cosmic rays. We also discuss an additional mechanism for ionization in such environments, namely, the photoelectric emission of electrons from cosmic dust grains in an interstellar Far Ultra Violet (FUV) radiation field. Simple estimates suggest that under certain conditions this mechanism may dominate cosmic ray ionization, and possibly also the photoionization of metal atoms by the interstellar FUV field, and thereby lead to an enhanced ionization level.

  18. Total photoionization cross sections of atomic oxygen from threshold to 44.3A

    NASA Technical Reports Server (NTRS)

    Angel, G. C.; Samson, James A. R.

    1987-01-01

    The relative cross section of atomic oxygen for the production of singly charged ions has been remeasured in more detail and extended to cover the wavelength range 44.3 to 910.5 A by the use of synchrotron radiation. In addition, the contribution of multiple ionization to the cross sections has been measured allowing total photoionization cross sections to be obtained below 250 A. The results have been made absolute by normalization to previously measured data. The use of synchrotron radiation has enabled measurements of the continuum cross section to be made between the numerous autoionizing resonances that occur near the ionization thresholds. This in turn has allowed a more critical comparison of the various theoretical estimates of the cross section to be made. The series of autoionizing resonances leading to the 4-P state of the oxygen ion have been observed for the first time in an ionization type experiment and their positions compared with both theory and previous photographic recordings.

  19. Interaction with the Lower Ionosphere of Electromagnetic Pulses from Lightning: Heating, Attachment, Ionization, and Optical Emissions

    DTIC Science & Technology

    1993-09-25

    using Opal et al. [1971] data on the secondary electron spectra and the ionization potential approximation used by Richards and Torr [1990]. The...N£ most easily detectable in the natural aurora [ Vallance Jones, 1974]. 4? 44 OPTICAL EMISSIONS To study optical emissions from the D region...here) are considered to be weak based on observed auroral spectra [ Vallance Jones, 1974; p. 90]. The intensity of t’-th line is given by [Chamberlain

  20. The Higgs portal above threshold

    DOE PAGES

    Craig, Nathaniel; Lou, Hou Keong; McCullough, Matthew; ...

    2016-02-18

    The discovery of the Higgs boson opens the door to new physics interacting via the Higgs Portal, including motivated scenarios relating to baryogenesis, dark matter, and electroweak naturalness. In this study, we systematically explore the collider signatures of singlet scalars produced via the Higgs Portal at the 14TeV LHC and a prospective 100TeV hadron collider. We focus on the challenging regime where the scalars are too heavy to be produced in the decays of an on-shell Higgs boson, and instead are produced primarily via an o ff-shell Higgs. Assuming these scalars escape the detector, promising channels include missing energy inmore » association with vector boson fusion, monojets, and top pairs. In addition, we forecast the sensitivity of searches in these channels at √s = 14 & 100 TeV and compare collider reach to the motivated parameter space of singlet-assisted electroweak baryogenesis, Higgs Portal dark matter, and neutral naturalness.« less