Science.gov

Sample records for abrasions

  1. Air Abrasion

    MedlinePlus

    ... delivered directly to your desktop! more... What Is Air Abrasion? Article Chapters What Is Air Abrasion? What Happens? The Pros and Cons Will I Feel Anything? Is Air Abrasion for Everyone? print full article print this ...

  2. Valve for abrasive material

    DOEpatents

    Gardner, Harold S.

    1982-01-01

    A ball valve assembly for controlling the flow of abrasive particulates including an enlarged section at the bore inlet and an enlarged section at the bore outlet. A refractory ceramic annular deflector is positioned in each of the enlarged sections, substantially extending the useful life of the valve.

  3. Abrasion resistant heat pipe

    DOEpatents

    Ernst, Donald M.

    1984-10-23

    A specially constructed heat pipe for use in fluidized bed combustors. Two distinct coatings are spray coated onto a heat pipe casing constructed of low thermal expansion metal, each coating serving a different purpose. The first coating forms aluminum oxide to prevent hydrogen permeation into the heat pipe casing, and the second coating contains stabilized zirconium oxide to provide abrasion resistance while not substantially affecting the heat transfer characteristics of the system.

  4. Abrasion resistant heat pipe

    DOEpatents

    Ernst, D.M.

    1984-10-23

    A specially constructed heat pipe is described for use in fluidized bed combustors. Two distinct coatings are spray coated onto a heat pipe casing constructed of low thermal expansion metal, each coating serving a different purpose. The first coating forms aluminum oxide to prevent hydrogen permeation into the heat pipe casing, and the second coating contains stabilized zirconium oxide to provide abrasion resistance while not substantially affecting the heat transfer characteristics of the system.

  5. Abrasion protection in process piping

    SciTech Connect

    Accetta, J.

    1996-07-01

    Process piping often is subjected to failure from abrasion or a combination of abrasion and corrosion. Abrasion is a complex phenomenon, with many factors involved to varying degrees. Hard, mineral based alumina ceramic and basalt materials are used to provide protection against abrasion in many piping systems. Successful life extension examples are presented from many different industries. Lined piping components require special attention with regard to operating conditions as well as design and engineering considerations. Economic justification involves direct cost comparisons and avoided costs.

  6. Abrasion resistant composition

    DOEpatents

    Fischer, Keith D; Barnes, Christopher A; Henderson, Stephen L

    2014-05-13

    A surface covering composition of abrasion resistant character adapted for disposition in overlying bonded relation to a metal substrate. The surface covering composition includes metal carbide particles within a metal matrix at a packing factor of not less than about 0.6. Not less than about 40 percent by weight of the metal carbide particles are characterized by an effective diameter in the range of +14-32 mesh prior to introduction to the metal matrix. Not less than about 3 percent by weight of the metal carbide particles are characterized by an effective diameter of +60 mesh prior to introduction to the metal matrix.

  7. Abrasion-resistant antireflective coating for polycarbonate

    NASA Technical Reports Server (NTRS)

    Wydeven, T. J.

    1978-01-01

    Following plasma-polymerization technique, treatment in oxygen glow discharge further enhances abrasion resistance and transmission. Improvement in abrasion resistance was shown by measuring percentage of haze resulting from abrasion. Coating samples were analyzed for abrasion using standard fresh rubber eraser. Other tests included spectra measurements and elemental analysis with spectrometers and spectrophotometers.

  8. Abrasives in snuff?

    PubMed

    Dahl, B L; Stølen, S O; Oilo, G

    1989-08-01

    The purpose of this study was to determine and calculate the inorganic contents of four brands of snuff. Visual inspection of wet snuff showed fairly large, yellow crystal-like particles. Scanning electron microscopy and X-ray dispersive (EDX) analyses were used to study both wet snuff and ashes of snuff, whereas light emission spectrography was used to determine elements in the ashes. The crystal-like particles did not dissolve in distilled water or in ethanol heated to 60 degrees C. EDX analyses showed that most elements remained in the particles after washing. The total weight percentage of inorganic material in snuff was calculated after burning dried snuff until constant weight was obtained. The ashes of snuff did not contain any crystal-like particles but consisted of a small-grained amorphous mass. The following elements were detected: Ag, Al, Ba, Ca, Co, Cr, Cu, Fe, K, Li, Mg, Mn, Na, P, Pb, Si, Sr, Ti, Va, and Zr. Other elements such as rare earths were not searched for. The weight percentage of inorganic elements ranged between 12.35 +/- 0.69 and 20.95 +/- 0.81. Provided snuff is used in the same manner as chewing tobacco, and some people admit to doing so, there is a risk that its relatively high contents of inorganic material and heavily soluble salts may be conducive to excessive abrasion of teeth and restorations. PMID:2782061

  9. Conduit Coating Abrasion Testing

    NASA Technical Reports Server (NTRS)

    Sullivan, Mary K.

    2013-01-01

    During my summer internship at NASA I have been working alongside the team members of the RESTORE project. Engineers working on the RESTORE project are creating ·a device that can go into space and service satellites that no longer work due to gas shortage or other technical difficulties. In order to complete the task of refueling the satellite a hose needs to be used and covered with a material that can withstand effects of space. The conduit coating abrasion test will help the researchers figure out what type of thermal coating to use on the hose that will be refueling the satellites. The objective of the project is to determine whether or not the conduit coating will withstand the effects of space. For the RESTORE project I will help with various aspects of the testing that needed to be done in order to determine which type of conduit should be used for refueling the satellite. During my time on the project I will be assisting with wiring a relay board that connected to the test set up by soldering, configuring wires and testing for continuity. Prior to the testing I will work on creating the testing site and help write the procedure for the test. The testing will take place over a span of two weeks and lead to an informative conclusion. Working alongside various RESTORE team members I will assist with the project's documentation and records. All in all, throughout my internship at NASA I hope to learn a number of valuable skills and be a part of a hard working team of engineers.

  10. Abrasion of restorative materials by toothaste.

    PubMed

    Heath, J R; Wilson, H J

    1976-04-01

    The procedure developed in this investigation is suitable for determining the abrasion resistance of restorative materials to toothbrush/dentifrice abrasion. Ideally, a restoration should have an abrasion resistance similar to that of enamel. Of the materials tested, gold was the only one that wore slightly less than enamel, whilst amalgam wore almost twice as quickly. The silicate material and composites (excluding TD.71) wear away 2-4 times faster than enamel. TD.71 and especially the unfilled resin exhibited very high rates of abrasion. After prolonged toothbrush/dentifrice abrasion, the surfaces of gold and amalgam were considerably smoother than those of the silicate and composite materials. PMID:1066445

  11. Abrasive swivel assembly and method

    DOEpatents

    Hashish, Mohamed; Marvin, Mark

    1990-01-01

    An abrasive swivel assembly for providing a rotating, particle-laden fluid stream and, ultimately, a rotating particle-laden fluid jet is disclosed herein. This assembly includes a tubular arrangement for providing a particle-free stream of fluid, a swivel assembly for rotating a section of the tubular arrangement, and a tubular end section for introducing solid particles into the particle-free fluid stream at a point along the rotating tubular section, whereby to produce a particle-laden fluid stream. This last-mentioned stream can then be used in combination with a cooperating nozzle arrangement for providing a rotating particle-laden fluid jet. In an actual working embodiment, the fluid stream is of sufficiently high pressure so that the abrasive jet can be used as a cutting jet.

  12. Abrasive swivel assembly and method

    DOEpatents

    Hashish, Mohamed; Marvin, Mark

    1989-01-01

    An abrasive swivel assembly for providing a rotating, particle-laden fluid stream and, ultimately, a rotating particle-laden fluid jet is disclosed herein. This assembly includes a tubular arrangement for providing a particle-free stream of fluid, means for rotating a section of the tubular arrangement, and means for introducing solid particles into the particle-free fluid stream at a point along the rotating tubular section, whereby to produce a particle-laden fluid stream. This last-mentioned stream can then be used in combination with a cooperating nozzle arrangement for providing a rotating particle-laden fluid jet. In an actual working embodiment, the fluid stream is of sufficiently high pressure so that the abrasive jet can be used as a cutting jet.

  13. Abrasion-resistant coatings for plastic surfaces

    NASA Technical Reports Server (NTRS)

    Wydeven, T.; Hollahan, J. R.

    1976-01-01

    Optically clear composition of organosilicon compounds insulates plastic surfaces and protects them from abrasion. Plasma polymerization process produces superior uniformity and clarity than previous coating techniques.

  14. Abrasive drill for resilient materials

    NASA Technical Reports Server (NTRS)

    Koch, A. J.

    1981-01-01

    Resilient materials normally present problem in obtaining accurate and uniform hole size and position. Tool is fabricated from stiff metal rod such as tungsten or carbon steel that has diameter slightly smaller than required hole. Piercing/centering point is ground on one end of rod. Rod is then plasma-sprayed (flame-sprayed) with suitable hard abrasive coating. High-speed, slow-feed operation of tool is necessary for accurate holes, and this can be done with drill press, hard drill, or similar machines.

  15. Ceramic-bonded abrasive grinding tools

    DOEpatents

    Holcombe, Jr., Cressie E.; Gorin, Andrew H.; Seals, Roland D.

    1994-01-01

    Abrasive grains such as boron carbide, silicon carbide, alumina, diamond, cubic boron nitride, and mullite are combined with a cement primarily comprised of zinc oxide and a reactive liquid setting agent and solidified into abrasive grinding tools. Such grinding tools are particularly suitable for grinding and polishing stone, such as marble and granite.

  16. Ceramic-bonded abrasive grinding tools

    DOEpatents

    Holcombe, C.E. Jr.; Gorin, A.H.; Seals, R.D.

    1994-11-22

    Abrasive grains such as boron carbide, silicon carbide, alumina, diamond, cubic boron nitride, and mullite are combined with a cement primarily comprised of zinc oxide and a reactive liquid setting agent and solidified into abrasive grinding tools. Such grinding tools are particularly suitable for grinding and polishing stone, such as marble and granite.

  17. Ultrasonic Abrasive Removal Of EDM Recast

    NASA Technical Reports Server (NTRS)

    Mandel, Johnny L.; Jacobson, Marlowe S.

    1990-01-01

    Ultrasonic abrasive process removes layer of recast material generated during electrical-discharge machining (EDM) of damper pocket on turbine blade. Form-fitted tool vibrated ultrasonically in damper pocket from which material removed. Vibrations activate abrasive in pocket. Amount of material removed controlled precisely.

  18. Bendable Extension For Abrasive-Jet Cleaning

    NASA Technical Reports Server (NTRS)

    Mayer, Walter

    1989-01-01

    Hard-to-reach places cleaned more easily. Extension for abrasive-jet apparatus bent to provide controlled abrasive cleaning of walls in deep cavities or other hard-to-reach places. Designed for controlled removal of penetrant inspection dyes from inside castings, extension tube also used for such general grit-blasting work as removal of scratches.

  19. Corneal abrasions associated with pepper spray exposure.

    PubMed

    Brown, L; Takeuchi, D; Challoner, K

    2000-05-01

    Pepper spray containing oleoresin capsicum is used by law enforcement and the public as a form of nonlethal deterrent. Stimulated by the identification of a case of a corneal abrasion associated with pepper spray exposure, a descriptive retrospective review of a physician-maintained log of patients presenting to a jail ward emergency area over a 3-year period was performed. The objective was to give some quantification to the frequency with which an emergency physician could expect to see corneal abrasions associated with pepper spray exposure. Of 100 cases of pepper spray exposure identified, seven patients had sustained corneal abrasions. We conclude that corneal abrasions are not rare events when patients are exposed to pepper spray and that fluorescein staining and slit lamp or Wood's lamp examination should be performed on all exposed patients in whom corneal abrasions cannot be excluded on clinical grounds. PMID:10830682

  20. The abrasion and impact-abrasion behavior of austempered ductile irons

    SciTech Connect

    Hawk, Jeffrey A.; Dogan, Omer N.; Lerner, Y.S.

    1998-01-01

    Austempering of ductile irons has led to a new class of irons, Austempered Ductile Irons (ADIs), with improved mechanical strength and fracture toughness lacking in gray cast irons. Laboratory wear tests have been used to evaluate the abrasive and impact-abrasive wear behavior of a suite of ADIs. The use of high-stress, two-body abrasion, low-stress, three-body abrasion, and impact-abrasion tests provides a clear picture of the abrasive wear behavior of the ADIs and the mechanisms of material removal. When combined with hardness measurements, fracture toughness and a knowledge of the microstructure of the ADIs, the overall performance can be assessed relative to more wear resistant materials such as martensitic steels and high-chromium white cast irons

  1. 21 CFR 872.6010 - Abrasive device and accessories.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... (CONTINUED) MEDICAL DEVICES DENTAL DEVICES Miscellaneous Devices § 872.6010 Abrasive device and accessories. (a) Identification. An abrasive device and accessories is a device constructed of various abrasives... 21 Food and Drugs 8 2010-04-01 2010-04-01 false Abrasive device and accessories. 872.6010...

  2. 21 CFR 872.6010 - Abrasive device and accessories.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... (CONTINUED) MEDICAL DEVICES DENTAL DEVICES Miscellaneous Devices § 872.6010 Abrasive device and accessories. (a) Identification. An abrasive device and accessories is a device constructed of various abrasives... 21 Food and Drugs 8 2011-04-01 2011-04-01 false Abrasive device and accessories. 872.6010...

  3. 21 CFR 872.6010 - Abrasive device and accessories.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... (CONTINUED) MEDICAL DEVICES DENTAL DEVICES Miscellaneous Devices § 872.6010 Abrasive device and accessories. (a) Identification. An abrasive device and accessories is a device constructed of various abrasives... 21 Food and Drugs 8 2014-04-01 2014-04-01 false Abrasive device and accessories. 872.6010...

  4. 30 CFR 72.610 - Abrasive blasting.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... respirators approved for abrasive blasting by NIOSH under 42 CFR part 84, or the operation shall be performed... mines. Silica sand or other materials containing more than 1 percent free silica shall not be used as...

  5. 30 CFR 72.610 - Abrasive blasting.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... respirators approved for abrasive blasting by NIOSH under 42 CFR part 84, or the operation shall be performed... mines. Silica sand or other materials containing more than 1 percent free silica shall not be used as...

  6. 30 CFR 72.610 - Abrasive blasting.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... respirators approved for abrasive blasting by NIOSH under 42 CFR part 84, or the operation shall be performed... mines. Silica sand or other materials containing more than 1 percent free silica shall not be used as...

  7. 30 CFR 72.610 - Abrasive blasting.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... respirators approved for abrasive blasting by NIOSH under 42 CFR part 84, or the operation shall be performed... mines. Silica sand or other materials containing more than 1 percent free silica shall not be used as...

  8. 30 CFR 72.610 - Abrasive blasting.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... respirators approved for abrasive blasting by NIOSH under 42 CFR part 84, or the operation shall be performed... mines. Silica sand or other materials containing more than 1 percent free silica shall not be used as...

  9. The measurement of abrasive particles velocities in the process of abrasive water jet generation

    NASA Astrophysics Data System (ADS)

    Zeleňák, Michal; Foldyna, Josef; Říha, Zdeněk

    2014-08-01

    An optimization of the design of the abrasive cutting head using the numerical simulation requires gathering as much information about processes occurring in the cutting head as possible. Detailed knowledge of velocities of abrasive particles in the process of abrasive water jet generation is vital for the verification of the numerical model. A method of measurement of abrasive particles at the exit of focusing tube using the FPIV technique was proposed and preliminary tests are described in the paper. Results of analysis of measured velocity fields are presented in the paper.

  10. New iron-based SiC spherical composite magnetic abrasive for magnetic abrasive finishing

    NASA Astrophysics Data System (ADS)

    Zhang, Guixiang; Zhao, Yugang; Zhao, Dongbiao; Zuo, Dunwen; Yin, Fengshi

    2013-03-01

    SiC magnetic abrasive is used to polish surfaces of precise, complex parts which are hard, brittle and highly corrosion-resistant in magnetic abrasive finishing(MAF). Various techniques are employed to produce this magnetic abrasive, but few can meet production demands because they are usually time-consuming, complex with high cost, and the magnetic abrasives made by these techniques have irregular shape and low bonding strength that result in low processing efficiency and shorter service life. Therefore, an attempt is made by combining gas atomization and rapid solidification to fabricate a new iron-based SiC spherical composite magnetic abrasive. The experimental system to prepare this new magnetic abrasive is constructed according to the characteristics of gas atomization and rapid solidification process and the performance requirements of magnetic abrasive. The new iron-based SiC spherical composite magnetic abrasive is prepared successfully when the machining parameters and the composition proportion of the raw materials are controlled properly. Its morphology, microstructure, phase composition are characterized by scanning electron microscope(SEM) and X-ray diffraction(XRD) analysis. The MAF tests on plate of mold steel S136 are carried out without grinding lubricant to assess the finishing performance and service life of this new SiC magnetic abrasive. The surface roughness( R a) of the plate worked is rapidly reduced to 0.051 μm from an initial value of 0.372 μm within 5 min. The MAF test is carried on to find that the service life of this new SiC magnetic abrasive reaches to 155 min. The results indicate that this process presented is feasible to prepare the new SiC magnetic abrasive; and compared with previous magnetic abrasives, the new SiC spherical composite magnetic abrasive has excellent finishing performance, high processing efficiency and longer service life. The presented method to fabricate magnetic abrasive through gas atomization and rapid

  11. Abrasion by aeolian particles: Earth and Mars

    NASA Technical Reports Server (NTRS)

    Greeley, R.; Marshall, J. R.; White, B. R.; Pollack, J. B.; Marshall, J.; Krinsley, D.

    1984-01-01

    Estimation of the rate of aeolian abrasion of rocks on Mars requires knowledge of: (1) particle flux, (2) susceptibilities to abrasion of various rocks, and (3) wind frequencies on Mars. Fluxes and susceptibilities for a wide range of conditions were obtained in the laboratory and combined with wind data from the Viking meteorology experiment. Assuming an abundant supply of sand-sized particles, estimated rates range up to 2.1 x 10 to the minus 2 power cm of abrasion per year in the vicinity of Viking Lander 1. This rate is orders of magnitude too great to be in agreement with the inferred age of the surface based on models of impact crater flux. The discrepancy in the estimated rate of abrasion and the presumed old age of the surface cannot be explained easily by changes in climate or exhumation of ancient surfaces. The primary reason is thought to be related to the agents of abrasion. At least some sand-sized (approx. 100 micrometers) grains appear to be present, as inferred from both lander and orbiter observations. High rates of abrasion occur for all experimental cases involving sands of quartz, basalt, or ash. However, previous studies have shown that sand is quickly comminuted to silt- and clay-sized grains in the martian aeolian regime. Experiments also show that these fine grains are electrostatically charged and bond together as sand-sized aggregates. Laboratory simulations of wind abrasion involving aggregates show that at impact velocities capable of destroying sand, aggregates from a protective veneer on the target surface and can give rise to extremely low abrasion rates.

  12. [The application of air abrasion in dentistry].

    PubMed

    Mandinić, Zoran; Vulićević, Zoran R; Beloica, Milos; Radović, Ivana; Mandić, Jelena; Carević, Momir; Tekić, Jasmina

    2014-01-01

    One of the main objectives of contemporary dentistry is to preserve healthy tooth structure by applying techniques of noninvasive treatment. Air abrasion is a minimally invasive nonmechanical technique of tooth preparation that uses kinetic energy to remove carious tooth structure. A powerful narrow stream of moving aluminum-oxide particles hit the tooth surface and they abrade it without heat, vibration or noise. Variables that affect speed of cutting include air pressure, particle size, powder flow, tip's size, angle and distance from the tooth. It has been proposed that air abrasion can be used to diagnose early occlusal-surface lesions and treat them with minimal tooth preparation using magnifier. Reported advantages of air abrasion include reduced noise, vibration and sensitivity. Air abrasion cavity preparations have more rounded internal contours than those prepared with straight burs. This may increase the longevity of placed restorations because it reduces the incidence of fractures and a consequence of decreased internal stresses. However, air abrasion cannot be used for all patients, i.e. in cases involving severe dust allergy, asthma, chronic obstructive lung disease, recent extraction or other oral surgery, open wounds, advanced periodontal disease, recent placement of orthodontic appliances and oral abrasions, or subgingival caries removal. Many of these conditions increase the risk of air embolism in the oral soft tissues. Dust control is a challenge, and it necessitates the use of rubber dam, high-volume evacuation, protective masks and safety eyewear for both the patient and the therapist. PMID:24684041

  13. Abrasive wear of advanced structural materials

    NASA Astrophysics Data System (ADS)

    Lee, Gun-Young

    Wear of advanced structural materials, namely composites and ceramics, in abrasion has been examined in the present study. A simple physically-based model for the abrasive wear of composite materials is presented based on the mechanics and mechanisms associated with sliding wear in soft (ductile) matrix composites containing hard (brittle) reinforcement particles. The model is based on the assumption that any portion of the reinforcement that is removed as wear debris cannot contribute to the wear resistance of the matrix material. The size of this non-contributing portion of reinforcement is estimated by modeling three primary wear mechanisms, specifically plowing, cracking at the matrix/reinforcement interface or in the reinforcement, and particle removal. Critical variables describing the role of the reinforcement, such as the relative size, fracture toughness, and the nature of the matrix/reinforcement interface, are characterized by a single contribution coefficient, C. Predictions are compared with the results of experimental two-body (pin-on-drum) abrasive wear tests performed on a model aluminum particulate-reinforced epoxy-matrix composite material. In addition, the effects of post heat-treatment on the wear behavior of toughened silicon carbide (ABC-SiC) are investigated by characterizing the role of the microstructures introduced during the post annealing processes. When the annealing temperature is above 1300°C, an aluminum rich secondary phase (nano-precipitate) forms and grows inside the SiC grains. This toughened silicon carbide (ABC-SiC), annealed at temperatures ranging from 0 to 1600°C, is subjected to two- and three-body abrasions with different sizes of abrasives (3˜70 mum). The test results exhibit that the effect of nano-precipitates on wear resistance of post-annealed ABC-SiC is restricted to the abrasion with fine abrasives (3 mum), since nano-precipitates, in the range from 4 nm at 1300°C to 25 nm at 1600°C, are comparable in dimension

  14. Air abrasion: an old technology reborn.

    PubMed

    Berry, E A; Eakle, W S; Summitt, J B

    1999-08-01

    Recently, air abrasion has experienced a rebirth in restorative dentistry. Originally developed in the late 1940s, the principle of air abrasion is the imparting of kinetic energy to tiny aluminum oxide particles that are projected by a stream of compressed air or gas and expelled from a small nozzle. The force generated by the relatively hard particles striking a relatively hard surface is sufficient to cut into that surface. In the last decade, more than a dozen models of air abrasion units have been introduced into the marketplace and more are on the way. Manufacturers have developed air abrasion instruments that offer a broad range of features, from small table-top units to self-contained systems with compressors, vacuums, and curing lights. The costs range dramatically--from $1,000 to $20,000 or more--depending on the complexity of the features and attachments. Manufacturers make a variety of claims to support the value of this technology to the practicing dentist. A term often used to describe one of the benefits of air abrasion is microdentistry. The claim is that smaller, less invasive tooth preparations may be accomplished using air abrasion than with a traditional bur and air turbine. This may be true in some instances, but it would certainly depend on the operator's experience and ability to visually discern fine detail. Other claims about air abrasion are that it can be used to cut into tooth structure without local anesthesia and that it should be used on all stained grooves or fissures to determine if incipient carious lesions are present. Despite the limited number of clinical studies, the popularity of air abrasion continues to grow. To gain additional insight about these claims and to see what might be on the horizon for this technology, I spoke with three highly respected educators who are recognized for their expertise in air abrasion. What they said should give the reader a better understanding of how air abrasion might augment restorative

  15. Abrasion resistance of medical glove materials.

    PubMed

    Walsh, Donna L; Schwerin, Matthew R; Kisielewski, Richard W; Kotz, Richard M; Chaput, Maria P; Varney, George W; To, Theresa M

    2004-01-15

    Due to the increasing demand for nonlatex medical gloves in the health-care community, there is a need to assess the durability of alternative glove materials. This study examines durability characteristics of various glove materials by abrasion resistance testing. Natural rubber latex (latex), polyvinyl chloride (vinyl), acrylonitrile butadiene (nitrile), polychloroprene (neoprene), and a styrene-ethylene/butylene-styrene block copolymer (SEBS) were tested. All test specimens, with the exception of the vinyl, were obtained from surgical gloves. Unaged out-of-the-box specimens as well as those subjected to various degrees of artificial aging were included in the study. After the abrasion sequence, the barrier integrity of the material was assessed through the use of a static leak test. Other traditional tests performed on these materials were viral penetration to validate the abrasion data and tear testing for comparative purposes. The results indicate that specific glove-material performance is dependent upon the particular test under consideration. Most notably, abrasion, even in controlled nonsevere conditions, may compromise to varying degrees the barrier integrity of latex, vinyl, SEBS, nitrile, and neoprene glove materials. However, as evidenced by the results of testing three brands of neoprene gloves, the abrasion resistance of any one glove material may be significantly affected by variations in production processes. PMID:14689500

  16. An investigation into magnetic electrolytic abrasive turning

    NASA Astrophysics Data System (ADS)

    Mahdy, M. A. M.; Ismaeial, A. L.; Aly, F. F.

    2013-07-01

    The magnetic electrolytic abrasive turning (MEAT) process as a non-traditional machining is used to obtain surface finishing like mirror. MEAT provides one of the best alternatives for producing complex shapes with good finish in advanced materials used in aircraft and aerospace industries. The improvement of machining accuracy of MEAT continues to be a major challenge for modern industry. MEAT is a hybrid machining which combines two or more processes to remove material. The present research focuses on the development of precision electrochemical turning (ECT) under the effects of magnetic field and abrasives. The effect of magnetic flux density, electrochemical conditions and abrasive parameters on finishing efficiency and surface roughness are investigated. An empirical relationship is deduced.

  17. Corneal Abrasions and Corneal Foreign Bodies.

    PubMed

    Ahmed, Faheem; House, Robert James; Feldman, Brad Hal

    2015-09-01

    Corneal abrasions and corneal foreign bodies are frequently encountered ophthalmological injuries that are commonly diagnosed and managed by primary care physicians. The clinical course of a corneal epithelial defect can range from a relatively benign self-healing abrasion to a potentially sight-threatening complication such as a corneal ulcer, recurrent erosion, or traumatic iritis. A detailed clinical history regarding risk factors and exposure, along with a thorough slit lamp examination with fluorescein dye are essential for proper diagnosis and treatment, as well as to rule out penetrating globe injuries. Referral to an ophthalmologist is recommended in difficult cases or if other injuries are suspected. PMID:26319343

  18. Friction and abrasion of elastomeric materials

    NASA Technical Reports Server (NTRS)

    Gent, A. N.

    1975-01-01

    An abrasion apparatus is described. Experimental measurements are reported for four representative elastomeric materials, including a typical high-quality tire tread material and a possible replacement material for aircraft tire treads based on transpolypentenamer (TPPR). Measurements are carried out at different levels of frictional work input, corresponding to different severities of wear, and at both ambient temperature and at 100 C. Results indicate the marked superiority in abrasion resistance of the material based on TPPR, especially at 100 C, in comparison with the other materials examined.

  19. Universal scaling relations for pebble abrasion

    NASA Astrophysics Data System (ADS)

    Litwin, K. L.; Jerolmack, D. J.

    2012-12-01

    The process of abrasion of gravel in bed load transport results from particle-to-particle collisions, where the energy involved is sufficient to cause chipping and spallation but not fragmentation of parent grains. The removed rock material is not infinitesimal; daughter products as large as coarse sand can be produced. Although previous work has shown that lithology, grain shape, and energy of collision are contributing factors that control abrasion rates of river-bed material, little is known regarding the relationship between these factors and diminution rates. Here we explicitly isolate and investigate how these three factors influence rates of abrasion and the size distribution of daughter products, with laboratory experiments. The apparatus is a double pendulum (Newton's cradle) that produces well-controlled binary collisions. A high-speed camera precisely measures collision energy, while mass of parent rocks. and the size and shape distributions of daughter products, are measured periodically. We examined abrasion of initially square-cut 'rocks' as they underwent successive collisions in the binary collision apparatus. We have examined mass loss rate for varied lithologies, and observe a similar power-law relationship between impact energy and mass abraded. When normalized by sensible material properties, mass loss curves for all materials collapse onto a single curve, suggesting that the underlying mechanics of abrasion for different materials are the same. The relationship does not display the linear trend expected from pure energetics, and we suggest that this is a shape effect as protruding - and hence easily eroded - corners are worn away. Analysis of daughter-product particle size distributions for different lithology fragments - including natural rocks and also bricks - show the same functional form. Surprisingly, it is the power-law relation expected for brittle materials undergoing fragmentation. This suggests that brittle fracture theory also

  20. Recent progress of abrasion-resistant materials: learning from nature.

    PubMed

    Meng, Jingxin; Zhang, Pengchao; Wang, Shutao

    2016-01-21

    Abrasion-resistant materials have attracted great attention for their broad applications in industry, biomedicine and military. However, the development of abrasion-resistant materials that have with unique features such as being lightweight and flexible remains a great challenge in order to satisfy unmet demands. The outstanding performance of natural abrasion-resistant materials motivates the development of new bio-inspired abrasion-resistant materials. This review summarizes the recent progress in the investigation of natural abrasion-resistant materials to explore their general design principles (i.e., the correlation between chemical components and structural features). Following natural design principles, several artificial abrasion-resistant materials have shown unique abrasion-resistant properties. The potential challenges in the future and possible solutions for designing bio-inspired abrasion-resistant materials are also briefly discussed. PMID:26335377

  1. 29 CFR 1915.134 - Abrasive wheels.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... exceeded. (j) All employees using abrasive wheels shall be protected by eye protection equipment in accordance with the requirements of subpart I of this part except when adequate eye protection is afforded by eye shields which are permanently attached to the bench or floor stand....

  2. 30 CFR 58.610 - Abrasive blasting.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... miners shall use in accordance with 30 CFR 56.5005 or 57.5005 respirators approved for abrasive blasting by NIOSH under 42 CFR part 84, or the operation shall be performed in a totally enclosed device with the miner outside the device. (b) Underground areas of underground mines. Silica sand or...

  3. 30 CFR 58.610 - Abrasive blasting.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... miners shall use in accordance with 30 CFR 56.5005 or 57.5005 respirators approved for abrasive blasting by NIOSH under 42 CFR part 84, or the operation shall be performed in a totally enclosed device with the miner outside the device. (b) Underground areas of underground mines. Silica sand or...

  4. 30 CFR 58.610 - Abrasive blasting.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... miners shall use in accordance with 30 CFR 56.5005 or 57.5005 respirators approved for abrasive blasting by NIOSH under 42 CFR part 84, or the operation shall be performed in a totally enclosed device with the miner outside the device. (b) Underground areas of underground mines. Silica sand or...

  5. 30 CFR 58.610 - Abrasive blasting.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... miners shall use in accordance with 30 CFR 56.5005 or 57.5005 respirators approved for abrasive blasting by NIOSH under 42 CFR part 84, or the operation shall be performed in a totally enclosed device with the miner outside the device. (b) Underground areas of underground mines. Silica sand or...

  6. 29 CFR 1915.134 - Abrasive wheels.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... spindle speed under all conditions of normal grinding. The rated maximum speed of the wheel shall not be...) Floor stand and bench mounted abrasive wheels used for external grinding shall be provided with safety guards (protection hoods). The maximum angular exposure of the grinding wheel periphery and sides...

  7. 29 CFR 1915.134 - Abrasive wheels.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... spindle speed under all conditions of normal grinding. The rated maximum speed of the wheel shall not be...) Floor stand and bench mounted abrasive wheels used for external grinding shall be provided with safety guards (protection hoods). The maximum angular exposure of the grinding wheel periphery and sides...

  8. Evaluation and Treatment of Perioperative Corneal Abrasions

    PubMed Central

    Segal, Kira L.; Fleischut, Peter M.; Kim, Charles; Levine, Ben; Faggiani, Susan L.; Banerjee, Samprit; Gadalla, Farida; Lelli, Gary J.

    2014-01-01

    Purpose. To evaluate perioperative risk factors for corneal abrasion (CA) and to determine current care for perioperative CA in a tertiary care setting. Methods. Hospital-based, cross-sectional study. In Operating Room and Post-Anesthesia Care Units patients, a comparison of cases and controls was evaluated to elucidate risk factors, time to treatment, and most common treatments prescribed for corneal abrasions. Results. 86 cases of corneal abrasion and 89 controls were identified from the 78,542 surgical procedures performed over 2 years. Statistically significant risk factors were age (P = 0.0037), general anesthesia (P < 0.001), greater average estimated blood loss (P < 0.001), eyes taped during surgery (P < 0.001), prone position (P < 0.001), trendelenburg position (P < 0.001), and supplemental oxygen en route to and in the Post-Anesthesia Care Units (P < 0.001). Average time to complaint was 129 minutes. 94% of cases had an inpatient ophthalmology consult, with an average time to consult of 164 minutes. The most common treatment was artificial tears alone (40%), followed by combination treatment of antibiotic ointment and artificial tears (35.3%). Conclusions. Trendelenburg positioning is a novel risk factor for CA. Diagnosis and treatment of perioperative corneal abrasions by an ophthalmologist typically require three hours in the tertiary care setting. PMID:24672709

  9. 30 CFR 58.610 - Abrasive blasting.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... miners shall use in accordance with 30 CFR 56.5005 or 57.5005 respirators approved for abrasive blasting by NIOSH under 42 CFR part 84, or the operation shall be performed in a totally enclosed device with the miner outside the device. (b) Underground areas of underground mines. Silica sand or...

  10. 29 CFR 1915.134 - Abrasive wheels.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 29 Labor 7 2014-07-01 2014-07-01 false Abrasive wheels. 1915.134 Section 1915.134 Labor Regulations Relating to Labor (Continued) OCCUPATIONAL SAFETY AND HEALTH ADMINISTRATION, DEPARTMENT OF LABOR (CONTINUED) OCCUPATIONAL SAFETY AND HEALTH STANDARDS FOR SHIPYARD EMPLOYMENT Tools and Related...

  11. 29 CFR 1915.134 - Abrasive wheels.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 29 Labor 7 2012-07-01 2012-07-01 false Abrasive wheels. 1915.134 Section 1915.134 Labor Regulations Relating to Labor (Continued) OCCUPATIONAL SAFETY AND HEALTH ADMINISTRATION, DEPARTMENT OF LABOR (CONTINUED) OCCUPATIONAL SAFETY AND HEALTH STANDARDS FOR SHIPYARD EMPLOYMENT Tools and Related...

  12. Dust transport and abrasion assessment within simulated standing vegetation

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Crop residues are useful in protecting the top soil from depletion and abrasion due to wind erosion. A wind tunnel study was done to measure sand transport and abrasion energies within the simulated artificial standing vegetation. Wind profiles, relative abrasion energies and rates of sand dischar...

  13. Relationship between abrasive wear and microstructure of composite resins.

    PubMed

    Draughn, R A; Harrison, A

    1978-08-01

    The in vitro abrasion resistance of seven commercial composite resin restorative materials has been measured. Analysis of the composite microstructures shows that abrasion rates are dependent upon the size, hardness, and volume fraction of particles in the material. The most abrasion-resistant composites contain a high volume fraction of large, hard particles. PMID:278840

  14. 21 CFR 872.6030 - Oral cavity abrasive polishing agent.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... 21 Food and Drugs 8 2013-04-01 2013-04-01 false Oral cavity abrasive polishing agent. 872.6030... (CONTINUED) MEDICAL DEVICES DENTAL DEVICES Miscellaneous Devices § 872.6030 Oral cavity abrasive polishing agent. (a) Identification. An oral cavity abrasive polishing agent is a device in paste or powder...

  15. 21 CFR 872.6030 - Oral cavity abrasive polishing agent.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 21 Food and Drugs 8 2011-04-01 2011-04-01 false Oral cavity abrasive polishing agent. 872.6030... (CONTINUED) MEDICAL DEVICES DENTAL DEVICES Miscellaneous Devices § 872.6030 Oral cavity abrasive polishing agent. (a) Identification. An oral cavity abrasive polishing agent is a device in paste or powder...

  16. 21 CFR 872.6030 - Oral cavity abrasive polishing agent.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 21 Food and Drugs 8 2010-04-01 2010-04-01 false Oral cavity abrasive polishing agent. 872.6030... (CONTINUED) MEDICAL DEVICES DENTAL DEVICES Miscellaneous Devices § 872.6030 Oral cavity abrasive polishing agent. (a) Identification. An oral cavity abrasive polishing agent is a device in paste or powder...

  17. 21 CFR 872.6030 - Oral cavity abrasive polishing agent.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... 21 Food and Drugs 8 2014-04-01 2014-04-01 false Oral cavity abrasive polishing agent. 872.6030... (CONTINUED) MEDICAL DEVICES DENTAL DEVICES Miscellaneous Devices § 872.6030 Oral cavity abrasive polishing agent. (a) Identification. An oral cavity abrasive polishing agent is a device in paste or powder...

  18. 21 CFR 872.6030 - Oral cavity abrasive polishing agent.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... 21 Food and Drugs 8 2012-04-01 2012-04-01 false Oral cavity abrasive polishing agent. 872.6030... (CONTINUED) MEDICAL DEVICES DENTAL DEVICES Miscellaneous Devices § 872.6030 Oral cavity abrasive polishing agent. (a) Identification. An oral cavity abrasive polishing agent is a device in paste or powder...

  19. Wheel Abrasion Experiment Conducted on Mars

    NASA Technical Reports Server (NTRS)

    Ferguson, Dale C.

    1998-01-01

    Sojourner rover showing Lewis' wheel abrasion experiment. The Mars Pathfinder spacecraft soft-landed on Mars on July 4, 1997. Among the many experiments on its small Sojourner rover are three technology experiments from the NASA Lewis Research Center, including the Wheel Abrasion Experiment (WAE). The WAE was designed, built, delivered, and operated on Mars by a team of engineers and scientists from Lewis' Photovoltaics and Space Environments Branch. This experiment collected data to assess wheel surface wear on the Sojourner. It used a specially designed rover wheel, with thin films (200 to 1000 angstroms) of aluminum, nickel, and platinum deposited on black, anodized aluminum strips attached to the rover's right center wheel. As the wheel spun in the Martian soil, a photovoltaic sensor monitored changes in film reflectivity. These changes indicated abrasion of the metal films by Martian surface material. Rolling wear data were accumulated by the WAE. Also, at frequent intervals, all the rover wheels, except the WAE test wheel, were locked to hold the rover stationary while the test wheel alone was spun and dug into the Martian regolith. These tests created wear conditions more severe than simple rolling. The WAE will contribute substantially to our knowledge of Martian surface characteristics. Marked abrasion would indicate a surface composed of hard, possibly sharply edged grains, whereas lack of abrasion would suggest a somewhat softer surface. WAE results will be correlated with ground simulations to determine which terrestrial materials behave most like those on Mars. This knowledge will enable a deeper understanding of erosion processes on Mars and the role they play in Martian surface evolution. Preliminary results show that electrostatic charging of the rover wheels sometimes caused dust to accumulate on the WAE wheel, making interpretation of the reflectance data problematic. If electrostatic charging is the mechanism for dust attraction, this indicates

  20. Abrasion resistance of linings in filament wound composite pipe

    SciTech Connect

    Hall, S.C.

    1999-07-01

    Fiberglass filament wound composite pipe has numerous industrial applications including transportation of petroleum and natural gas. Its corrosion resistance is well known but it can be susceptible to abrasion and erosion when it is used to transport slurries or dry gas containing sand particles. However, composite pipe can be manufactured integrally with abrasion resistant linings which protect the pipe from abrasion and erosion and increase its life. Laboratory investigations were performed to determine the effect of abrasive flows through polyurea-lined and unlined glass-reinforced epoxy (GRE) pipe, ultra-high molecular weight (UHMW) polyethylene (PE) pipe, and unlined steel pipe. Results are provided for the abrasion resistance, chemical resistance, adhesion strength, elongation, tensile strength, impact resistance and hardness of selected linings. The abrasion resistance of polyurea-lined composite pipe proved to be almost as resistant to abrasion and erosion as unlined steel pipe without the electrochemical corrosion associated with steel pipe.

  1. Abrasion-Resistant Technology and its Prospect for CFB Boilers

    NASA Astrophysics Data System (ADS)

    Zheng, H.; Li, Y. J.; Wang, L. J.; Liu, S. H.; Dou, Q. R.

    In recent years, CFB boilers (CFBB) have been widely used in the commercial power plants due to its environmental benefits, high combustion efficiency, wide coal flexibility, and some other advantages. At the same time, the abrasion problem, the greatest weakness of this kind of boiler, has been gradually exposed in its application process. The abrasion, particularly on key parts such as the heating surface of water-cooled wall, furnace corners, separator entrance, seriously restricts the long-period operation ability of the CFBB. This article discusses current development status for various abrasion resistant refractory materials used in a CFBB. Some comments are provided for developing new high-performance abrasion resistant refractory materials and rapid-repaired materials according to the abrasion principle and the abrasion on different parts, as well as the economical and environmental requirements for the material. The abrasion solution and operation period of CFBB can be better improved given realization.

  2. Liquid abrasive pressure pot scoping tests report

    SciTech Connect

    Archibald, K.E.

    1996-01-01

    The primary initiatives of the LITCO Decontamination Development group at the Idaho Chemical Process Plant (ICPP) are the development of methods to eliminate the use of sodium bearing decontamination chemicals and minimization of the amount of secondary waste generated during decontamination activities. In July of 1994, a Commerce Business Daily (CBD) announcement was issued by the INEL to determine commercial interest in the development of an in-situ liquid abrasive grit blasting system. As a result of the CBD announcement, Klieber & Schulz issued an Expression of Interest letter which stated they would be interested in testing a prototype Liquid Abrasive Pressure Pot (LAPP). LITCO`s Decontamination group and Kleiber & Schulz entered into a Cooperative Research and Development Agreement (CRADA) in which the Decontamination Development group tested the prototype LAPP in a non-radioactive hot cell mockup. Test results are provided.

  3. Loose abrasive slurries for optical glass lapping

    SciTech Connect

    Neauport, Jerome; Destribats, Julie; Maunier, Cedric; Ambard, Chrystel; Cormont, Philippe; Pintault, B.; Rondeau, Olivier

    2010-10-20

    Loose abrasive lapping is widely used to prepare optical glass before its final polishing. We carried out a comparison of 20 different slurries from four different vendors. Slurry particle sizes and morphologies were measured. Fused silica samples were lapped with these different slurries on a single side polishing machine and characterized in terms of surface roughness and depth of subsurface damage (SSD). Effects of load, rotation speed, and slurry concentration during lapping on roughness, material removal rate, and SSD were investigated.

  4. Abrasive slurry composition for machining boron carbide

    DOEpatents

    Duran, Edward L.

    1985-01-01

    An abrasive slurry particularly suited for use in drilling or machining boron carbide consists essentially of a suspension of boron carbide and/or silicon carbide grit in a carrier solution consisting essentially of a dilute solution of alkylaryl polyether alcohol in octyl alcohol. The alkylaryl polyether alcohol functions as a wetting agent which improves the capacity of the octyl alcohol for carrying the grit in suspension, yet without substantially increasing the viscosity of the carrier solution.

  5. Abrasive slurry composition for machining boron carbide

    DOEpatents

    Duran, E.L.

    1984-11-29

    An abrasive slurry particularly suited for use in drilling or machining boron carbide consists essentially of a suspension of boron carbide and/or silicon carbide grit in a carrier solution consisting essentially of a dilute solution of alkylaryl polyether alcohol in octyl alcohol. The alkylaryl polyether alcohol functions as a wetting agent which improves the capacity of the octyl alcohol for carrying the grit in suspension, yet without substantially increasing the viscosity of the carrier solution.

  6. Predicting abrasive wear with coupled Lagrangian methods

    NASA Astrophysics Data System (ADS)

    Beck, Florian; Eberhard, Peter

    2015-05-01

    In this paper, a mesh-less approach for the simulation of a fluid with particle loading and the prediction of abrasive wear is presented. We are using the smoothed particle hydrodynamics (SPH) method for modeling the fluid and the discrete element method (DEM) for the solid particles, which represent the loading of the fluid. These Lagrangian methods are used to describe heavily sloshing fluids with their free surfaces as well as the interface between the fluid and the solid particles accurately. A Reynolds-averaged Navier-Stokes equations model is applied for handling turbulences. We are predicting abrasive wear on the boundary geometry with two different wear models taking cutting and deformation mechanisms into account. The boundary geometry is discretized with special DEM particles. In doing so, it is possible to use the same particle type for both the calculation of the boundary conditions for the SPH method as well as the DEM and for predicting the abrasive wear. After a brief introduction to the SPH method and the DEM, the handling of the boundary and the coupling of the fluid and the solid particles are discussed. Then, the applied wear models are presented and the simulation scenarios are described. The first numerical experiment is the simulation of a fluid with loading which is sloshing inside a tank. The second numerical experiment is the simulation of the impact of a free jet with loading to a simplified pelton bucket. We are especially investigating the wear patterns inside the tank and the bucket.

  7. Circular Signs of the Rock Abrasion Tool

    NASA Technical Reports Server (NTRS)

    2004-01-01

    This image was taken by Mars Exploration Rover Opportunity's front hazard-avoidance camera, providing a circular sign of the success of the rover's first grinding of a rock. The round, shallow hole seen in this image is on a rock dubbed 'McKittrick,' located in the 'El Capitan' area of the larger outcrop near Opportunity's landing site.

    Opportunity used its rock abrasion tool to grind off a patch of rock 45.5 millimeters (1.8 inches) in diameter during the 30th martian day, or sol, of its mission (Feb. 23, 2004). The grinding exposed fresh rock for close inspection by the rover's microscopic imager and two spectrometers located on its robotic arm. The Honeybee Robotics team, which designed and operates the rock abrasion tool, determined the depth of the cut at 'McKittrick' to be 4.4 millimeters (0.17 inches) deep.

    On sol 34 (Feb. 27, 2004), the rover is scheduled to grind into its second target on the 'El Capitan' area, a rock dubbed 'Guadalupe' in the upper middle part of this image. The rock abrasion tools on both Mars Exploration Rovers were supplied by Honeybee Robotics, New York, N.Y.

  8. Synthesis CNTs Particle Based Abrasive Media for Abrasive Flow Machining Process

    NASA Astrophysics Data System (ADS)

    Kumar, Sonu; Murtaza, Q.; Walia, R. S.; Dhull, S.; Tyagi, P. K.

    2016-02-01

    Abrasive flow machining (AFM) is a modem fine finishing process used for intricate and internal finishing of components or parts. It is based on flowing of viscoelastic abrasive media over the surface to be fine finished. The abrasive media is the important parameter in the AFM process because of its ability to accurately abrade the predefined area along it flow path. In this study, an attempt is made to develop a new abrasive, alumina with Carbon non tubes (CNTs) in viscoelastic medium. CNT s in house produced through chemical vapour deposition technique and characterize through TEM. Performance evaluation of the new abrasive media is carried out by increasing content of CNT s with fixed extrusion pressure, viscosity of media and media flow rate as process parameters and surface finish improvement and material removal as process responses in AFM setup. Significantly improvement has been observed in material removal and maximum improvement of 100% has been observed in the surface finish on the inner cylindrical surface of the cast iron work piece.

  9. A new dimension to conservative dentistry: Air abrasion

    PubMed Central

    Hegde, Vivek S; Khatavkar, Roheet A

    2010-01-01

    Air abrasion dentistry has evolved over a period of time from a new concept of an alternative means of cavity preparation to an essential means of providing a truly conservative preparation for preservation of a maximal sound tooth structure. The development of bonded restorations in combination with air abrasion dentistry provides a truly minimal intervention dentistry. This article reviews the development of air abrasion, its clinical uses, and the essential accessories required for its use. PMID:20582212

  10. Machining human dentin by abrasive water jet drilling.

    PubMed

    Kohorst, Philipp; Tegtmeyer, Sven; Biskup, Christian; Bach, Friedrich-Wilhelm; Stiesch, Meike

    2014-01-01

    The aim of this experimental in-vitro study was to investigate the machining of human dentin using an abrasive water jet and to evaluate the influence of different abrasives and water pressures on the removal rate. Seventy-two human teeth had been collected after extraction and randomly divided into six homogeneous groups (n=12). The teeth were processed in the area of root dentin with an industrial water jet device. Different abrasives (saccharose, sorbitol, xylitol) and water pressures (15 or 25 MPa) were used in each group. Dimensions of dentin removal were analysed using a stripe projection microscope and both drilling depth as well as volume of abrasion were recorded. Morphological analyses of the dentin cavities were performed using scanning electron microscopy (SEM). Both drilling depth and volume of abrasion were significantly influenced by the abrasive and the water pressure. Depending on these parameters, the drilling depth averaged between 142 and 378 μm; the volume of abrasion averaged between 0.07 and 0.15 mm3. Microscopic images revealed that all cavities are spherical and with clearly defined margins. Slight differences between the abrasives were found with respect to the microroughness of the surface of the cavities. The results indicate that abrasive water jet machining is a promising technique for processing human dentin. PMID:24642975

  11. The dollars and sense of selecting abrasion-resistant materials

    SciTech Connect

    Jackson, D.

    1988-05-01

    Sliding abrasion and impact damage affect mine and plant operating costs on a month-to-month, or, in some cases, day-to-day basis. Modern technology has given us the tools necessary to fight abrasion on every front - materials and techniques that are cost-effective, long-lasting, and easy to use. An inspection of abrasion-resistant materials and processes - metals; ceramics; sprayable and trowelable compounds; polyethylene; urethane; rubber; epoxy - may well provide information that could help improve your company's balance sheet. The following is a compilation of product releases, literature, and manuals offered by manufacturers of abrasion-resistant materials.

  12. Pebble Jammed in Rock Abrasion Tool

    NASA Technical Reports Server (NTRS)

    2004-01-01

    After the rock abrasion tool on NASA's Mars Exploration Rover Opportunity stopped working on sol 199 (Aug. 15, 2004), rover operators used the panoramic camera to take this image the next day for help in diagnosing the problem. The tool was closer than the camera could focus on sharply, but the image does show a dark spot just left of center, which engineers have determined is likely to be a pebble jammed between the cutting-blade rotor and the wire-brush rotor. If that diagnosis is confirmed by further analysis, the tool will likely be commanded to turn the rotors in reverse to release the pebble.

  13. Mars Pathfinder Wheel Abrasion Experiment Ground Test

    NASA Technical Reports Server (NTRS)

    Keith, Theo G., Jr.; Siebert, Mark W.

    1998-01-01

    The National Aeronautics and Space Administration (NASA) sent a mission to the martian surface, called Mars Pathfinder. The mission payload consisted of a lander and a rover. The primary purpose of the mission was demonstrating a novel entry, descent, and landing method that included a heat shield, a parachute, rockets, and a cocoon of giant air bags. Once on the surface, the spacecraft returned temperature measurements near the Martian surface, atmosphere pressure, wind speed measurements, and images from the lander and rover. The rover obtained 16 elemental measurements of rocks and soils, performed soil-mechanics, atmospheric sedimentation measurements, and soil abrasiveness measurements.

  14. Mars Exploration Rovers' Rock Abrasion Tool

    NASA Astrophysics Data System (ADS)

    Gorevan, S.; Myrick, T.; Davis, K.; Ji, J.; Bartlett, P.; Mukherjee, S.; Arafat, T.

    2003-04-01

    Each of the twin 2003 Mars Exploration Rovers will be equipped with a Rock Abrasion Tool (RAT) designed and tested by Honeybee Robotics. The RAT is a robotic grinding tool and science instrument about the size of a soda can and weighing less than 690 grams that is carried by the robotic arm or Instrument Deployment Device (IDD) of the rover. The primary purpose of the RAT is to remove the dust and surface rind from Mars rock targets to reveal the underlying petrographic features. After the RAT is placed and preloaded against the target rock by the IDD, all operations of the RAT are performed autonomously. Using three small motors to drive the rotation, revolve and z-axis subassemblies the RAT removes a 45 mm diameter, 5 mm deep patch of rock. The RAT has a resin-bonded diamond abrasion wheel and two brushes to provide a clean observation surface for the three surface instruments - APXS, Microscopic Imager and Moessbauer Spectrometer. Detailed design and operation descriptions, as well as recent qualification and operational testing results will be presented.

  15. Microwave sintering of sol-gel derived abrasive grain

    DOEpatents

    Plovnick, Ross; Celikkaya, Ahmet; Blake, Rodger D.

    1997-01-01

    A method is provided for making microwave-sintered, free flowing alpha alumina-based ceramic abrasive grain, under conditions effective to couple microwaves with calcined alpha alumina-based abrasive gain precursor and sinter it at a temperature of at least about 1150.degree. C.

  16. Soybean seedlings tolerate abrasion from air-propelled grit

    Technology Transfer Automated Retrieval System (TEKTRAN)

    New tools for controlling weeds would be useful for soybean production in organic systems. Air-propelled abrasive grit is one such tool that performs well for in-row weed control in corn, but crop safety in soybean is unknown. We examined responses to abrasion by corn-cob grit of soybean seedlings a...

  17. Sand abrasion injury and biomass partitiioning in cotton seedlings

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Wind blown soil particle abrasion negatively impacts millions of hectares of crops annually. The goal of this study was to examine the effects of wind and wind blown sand abrasion damage on cotton (Gossypium hirsutum L.) seedling biomass partitioning to leaves, stems, and roots. Seedlings of three ...

  18. 29 CFR 1926.303 - Abrasive wheels and tools.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 29 Labor 8 2014-07-01 2014-07-01 false Abrasive wheels and tools. 1926.303 Section 1926.303 Labor... (CONTINUED) SAFETY AND HEALTH REGULATIONS FOR CONSTRUCTION Tools-Hand and Power § 1926.303 Abrasive wheels and tools. (a) Power. All grinding machines shall be supplied with sufficient power to maintain...

  19. 21 CFR 872.6010 - Abrasive device and accessories.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... 21 Food and Drugs 8 2012-04-01 2012-04-01 false Abrasive device and accessories. 872.6010 Section 872.6010 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) MEDICAL DEVICES DENTAL DEVICES Miscellaneous Devices § 872.6010 Abrasive device and...

  20. 21 CFR 872.6010 - Abrasive device and accessories.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... 21 Food and Drugs 8 2013-04-01 2013-04-01 false Abrasive device and accessories. 872.6010 Section 872.6010 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) MEDICAL DEVICES DENTAL DEVICES Miscellaneous Devices § 872.6010 Abrasive device and...

  1. Abrasion of 6 dentifrices measured by vertical scanning interference microscopy

    PubMed Central

    PASCARETTI-GRIZON, Florence; MABILLEAU, Guillaume; CHAPPARD, Daniel

    2013-01-01

    Objectives The abrasion of dentifrices is well recognized to eliminate the dental plaque. The aims of this study were to characterize the abrasive powders of 6 dentifrices (3 toothpastes and 3 toothpowders) and to measure the abrasion on a test surface by Vertical Scanning Interference microscopy (VSI). Material and Methods Bright field and polarization microscopy were used to identify the abrasive particles on the crude dentifrices and after prolonged washes. Scanning electron microscopy and microanalysis characterized the shape and nature of the particles. Standardized and polished blocks of poly(methylmethacrylate) were brushed with a commercial electric toothbrush with the dentifrices. VSI quantified the mean roughness (Ra) and illustrated in 3D the abraded areas. Results Toothpastes induced a limited abrasion. Toothpowders induced a significantly higher roughness linked to the size of the abrasive particles. One powder (Gencix® produced a high abrasion when used with a standard testing weight. However, the powder is based on pumice particles covered by a plant homogenate that readily dissolves in water. When used in the same volume, or after dispersion in water, Ra was markedly reduced. Conclusion Light and electron microscopy characterize the abrasive particles and VSI is a new tool allowing the analysis of large surface of abraded materials. PMID:24212995

  2. Sand abrasion injury and biomass partitioning in cotton seedlings

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Wind blown soil particle abrasion negatively impacts millions of hectares of crops annually. The goal of this study was to examine the effects of wind and wind blown sand abrasion damage on cotton (Gossypium hirsutum L.) seedling biomass partitioning to leaves, stems, and roots. Seedlings of three ...

  3. 29 CFR 1910.215 - Abrasive wheel machinery.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... of the American National Standard Safety Code for the Use, Care, and Protection of Abrasive Wheels... Regulations Relating to Labor (Continued) OCCUPATIONAL SAFETY AND HEALTH ADMINISTRATION, DEPARTMENT OF LABOR OCCUPATIONAL SAFETY AND HEALTH STANDARDS Machinery and Machine Guarding § 1910.215 Abrasive wheel machinery....

  4. 29 CFR 1910.215 - Abrasive wheel machinery.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... of the American National Standard Safety Code for the Use, Care, and Protection of Abrasive Wheels... Regulations Relating to Labor (Continued) OCCUPATIONAL SAFETY AND HEALTH ADMINISTRATION, DEPARTMENT OF LABOR OCCUPATIONAL SAFETY AND HEALTH STANDARDS Machinery and Machine Guarding § 1910.215 Abrasive wheel machinery....

  5. Cotton seedling abrasion and recovery from wind blown sand

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Millions of hectares of crops are exposed to wind blown sand abrasion each year and in many instances the damage is thought to be severe enough to require replanting. The goal of this study was to determine the effects of wind blown sand abrasion duration on cotton (Gossypium hirsutum L.) seedlings...

  6. 29 CFR 1910.215 - Abrasive wheel machinery.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 29 Labor 5 2010-07-01 2010-07-01 false Abrasive wheel machinery. 1910.215 Section 1910.215 Labor... OCCUPATIONAL SAFETY AND HEALTH STANDARDS Machinery and Machine Guarding § 1910.215 Abrasive wheel machinery. (a... wheel in motion. (5) Excluded machinery. Natural sandstone wheels and metal, wooden, cloth, or...

  7. Sand abrasion injury and biomass partitioning in cotton seedlings

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Millions of acres of crops are exposed to wind blown sand abrasion injury each year and in many instances the damage is thought to be sufficiently severe to require replanting. The goal of this study was to determine the effects of wind blown sand abrasion duration on cotton seedlings. Seedlings of ...

  8. Microfracture patterns of abrasive wear striations on teeth indicate directionality.

    PubMed

    Gordon, K R

    1984-03-01

    A method is described that will indicate the direction that an abrasive particle was traveling as it scored the surface of a brittle material. Light and scanning electron micrographs of glass, dentine, and enamel abraded by loose and, steel carbide, and diamond indicate that partial Hertzian fracture cones are formed at the margins of wear striations during abrasion. The bases of these fracture cones face in the direction of travel of the abrasive particle and, therefore, indicate directionality. Because this method is based only on the consistent geometry of fracturing of brittle materials, it is independent of the loading of the abrasive particle. The only other method available to determine directionality of striations is unreliable since it uses the width of striations, and, hence, is dependent upon a consistent loading regime of the abrasive particle. This new method has direct application for determining the direction of movement of the jaws during mastication in living or fossil animals. PMID:6731603

  9. Solidification Structure and Abrasion Resistance of High Chromium White Irons

    SciTech Connect

    Dogan, O.N.; Hawk, J.A.; Laird, George, II

    1997-06-01

    Superior abrasive wear resistance, combined with relatively low production costs, makes high Cr white cast irons (WCIs) particularly attractive for applications in the grinding, milling, and pumping apparatus used to process hard materials. Hypoeutectic, eutectic, and hypereutectic cast iron compositions, containing either 15 or 26 wt pct chromium, were studied with respect to the macrostructural transitions of the castings, solidification paths, and resulting microstructures when poured with varying superheats. Completely equiaxed macrostructures were produced in thick section castings with slightly hypereutectic compositions. High-stress abrasive wear tests were then performed on the various alloys to examine the influence of both macrostructure and microstructure on wear resistance. Results indicated that the alloys with a primarily austenitic matrix had a higher abrasion resistance than similar alloys with a pearlitic/bainitic matrix. Improvement in abrasion resistance was partially attributed to the ability of the austenite to transform to martensite at the wear surface during the abrasion process.

  10. Solidification structure and abrasion resistance of high chromium white irons

    SciTech Connect

    Dogan, O.N.; Hawk, J.A.; Laird, G. II

    1997-06-01

    Superior abrasive wear resistance, combined with relatively low production costs, makes high Cr white cast irons (WCIs) particularly attractive for applications in the grinding, milling, and pumping apparatus used to process hard materials. Hypoeutectic, eutectic, and hypereutectic cast iron compositions, containing either 15 or 26 wt pct chromium, were studied with respect to the macrostructural transitions of the castings, solidification paths, and resulting microstructures when poured with varying superheats. Completely equiaxed macrostructures were produced in thick section castings with slightly hypereutectic compositions. High-stress abrasive wear tests were then performed on the various alloys to examine the influence of both macrostructure and microstructure on wear resistance. Results indicated that the alloys with a primarily austenitic matrix had a higher abrasion resistance than similar alloys with a pearlitic/bainitic matrix. Improvement in abrasion resistance was partially attributed to the ability of the austenite to transform to martensite at the wear surface during the abrasion process.

  11. Design of an impact abrasion testing machine

    NASA Astrophysics Data System (ADS)

    Zhang, D.; Beeley, P. R.; Baker, A. J.

    1994-04-01

    By using a cam-flat follower-impact shaft with a crank-flat rotating anvil system, the machine to be described can create various impact abrasion conditions to simulate a large range of industrial situations encountered in this field. The main features of the machine are the long working life of the flat rotating anvil, which works in the same way as that of the disk in a pin-on-disk wear tester, and the accurate control of both the impact energy delivered to the specimen and the total sliding distance of the specimen on the anvil. Statistical analysis of test results on the machine with EN24 steel and cast high manganese steel shows that the uncertainty of the population mean is within +/- 4.7% of the sample mean under a 95% confidence level of student distribution, which indicates a very good accuracy of test.

  12. Mechanics, kinematics and geometry of pebble abrasion from binary collisions

    NASA Astrophysics Data System (ADS)

    Miller, K. L.; Jerolmack, D. J.

    2014-12-01

    As sediment is transported downstream as bedload, it collides with the bed causing sharp edges to chip and wear away, rounding the rock through the process of abrasion. Previous work has linked abrasion to downstream fining and rounding of grains, however, there has been little attempt to understand the underlying kinematics of abrasion. Furthermore, most studies neglect the fine particle produced during the abrasion process, as the initial grain gets smaller and rounder. In this research, we preform well-controlled laboratory experiments to determine the functional dependence between impact energy and mass lost from abrasion. We use a double-pendulum "Newton's Cradle" set-up to examine the abrasion between two grains and with a high-speed camera, we can quantify the impact energies during collision. Results from experiments verify that mass loss is proportional to kinetic energy. We define a material parameter that incorporates material density, Young's modulus, and tensile stress and show that this parameter is directly related to the proportionality between mass loss and energy. We identify an initial region of the mass loss curves in which abrasion is independent of energy and material properties; results suggest this region is determined by shape. We show that grain size distributions of daughter products are universal and independent of material; they follow a Weibull distribution, which is expected distribution from brittle fracture theory. Finally, scanning electron microscope (SEM) images show a thin damage zone near the surface, suggesting that collision energy is attenuated over some small skin depth. Overall, we find that pebble abrasion by collision can be characterized by two universal scaling relations - the mass loss versus energy curves and the size distribution of daughter products. Results will be useful for estimating expected abrasion rates in the field, and additionally demonstrate that low-energy collisions produce large quantities of sand

  13. The effects of abrasives on electrical submersible pumps

    SciTech Connect

    Wilson, B.L. )

    1990-06-01

    The electrical submersible pump (ESP) is a high-speed rotating device. Its operational life in oil wells can depend on the type and quantities of abrasives present in the produced fluid. This paper reports on a set of experiments performed in a specialized abrasive test loop. In the test, the size and quantity of abrasives were varied along with flow rate through the pump. This paper also examines recent literature on sand production and explores some of the practical problems in sand measurement.

  14. Method for forming an abrasive surface on a tool

    DOEpatents

    Seals, Roland D.; White, Rickey L.; Swindeman, Catherine J.; Kahl, W. Keith

    1999-01-01

    A method for fabricating a tool used in cutting, grinding and machining operations, is provided. The method is used to deposit a mixture comprising an abrasive material and a bonding material on a tool surface. The materials are propelled toward the receiving surface of the tool substrate using a thermal spray process. The thermal spray process melts the bonding material portion of the mixture, but not the abrasive material. Upon impacting the tool surface, the mixture or composition solidifies to form a hard abrasive tool coating.

  15. New Rock Abrasivity Test Method for Tool Life Assessments on Hard Rock Tunnel Boring: The Rolling Indentation Abrasion Test (RIAT)

    NASA Astrophysics Data System (ADS)

    Macias, F. J.; Dahl, F.; Bruland, A.

    2016-05-01

    The tunnel boring machine (TBM) method has become widely used and is currently an important presence within the tunnelling industry. Large investments and high geological risk are involved using TBMs, and disc cutter consumption has a great influence on performance and cost, especially in hard rock conditions. Furthermore, reliable cutter life assessments facilitate the control of risk as well as avoiding delays and budget overruns. Since abrasive wear is the most common process affecting cutter consumption, good laboratory tests for rock abrasivity assessments are needed. A new abrasivity test method by rolling disc named Rolling Indentation Abrasion Test (RIAT) has been developed. The goal of the new test design and procedure is to reproduce wear behaviour on hard rock tunnel boring in a more realistic way than the traditionally used methods. Wear by rolling contact on intact rock samples is introduced and several rock types, covering a wide rock abrasiveness range, have been tested by RIAT. The RIAT procedure indicates a great ability of the testing method to assess abrasive wear on rolling discs. In addition and to evaluate the newly developed RIAT test method, a comprehensive laboratory testing programme including the most commonly used abrasivity test methods and the mineral composition were carried out. Relationships between the achieved results from conventional testing and RIAT results have been analysed.

  16. Effect of abrasive grit size on wear of manganese-zinc ferrite under three-body abrasion

    NASA Technical Reports Server (NTRS)

    Miyoshi, Kazuhisa

    1987-01-01

    Wear experiments were conducted using replication electron microscopy and reflection electron diffraction to study abrasion and deformed layers produced in single-crystal Mn-Zn ferrites under three-body abrasion. The abrasion mechanism of Mn-Zn ferrite changes drastically with the size of abrasive grits. With 15-micron (1000-mesh) SiC grits, abrasion of Mn-Zn ferrite is due principally to brittle fracture; while with 4- and 2-micron (4000- and 6000-mesh) SiC grits, abrasion is due to plastic deformation and fracture. Both microcracking and plastic flow produce polycrystalline states on the wear surfaces of single-crystal Mn-Zn ferrites. Coefficient of wear, total thickness of the deformed layers, and surface roughness of the wear surfaces increase markedly with an increase in abrasive grit size. The total thicknesses of the deformed layers are 3 microns for the ferrite abraded by 15-micron SiC, 0.9 microns for the ferrite abraded by 4-micron SiC, and 0.8 microns for the ferrite abraded by 1-micron SiC.

  17. Improved wound healing in blue LED treated superficial abrasions

    NASA Astrophysics Data System (ADS)

    Rossi, Francesca; Tatini, Francesca; Pini, Roberto; Bacci, Stefano; De Siena, Gaetano; Cicchi, Riccardo; Pavone, Francesco; Alfieri, Domenico

    2013-06-01

    A blue-LED photocoagulator device was designed in order to induce a selective photocoagulation effect in superficial bleeding. An in vivo study in rat back skin evidenced an improved healing process in the LED treated abrasions.

  18. Resistance of dentin coating materials against abrasion by toothbrush.

    PubMed

    Gando, Iori; Ariyoshi, Meu; Ikeda, Masaomi; Sadr, Alireza; Nikaido, Toru; Tagami, Junji

    2013-01-01

    Thin-film coating of root dentin surface by all-in-one adhesives has been shown to be an effective option to prevent root surface caries. The purpose of this study was to investigate the wear resistance against toothbrush abrasion of two all-in-one coating materials; Shield Force (SF) and Hybrid Coat (HC). Bovine dentin surfaces were covered with one of the coating materials; SF or HC. After storage in water for 24 h, the testing surface was subjected to the toothbrush abrasion test up to 50,000 cycles either in water or toothpaste slurry. The remaining thickness of the coating material was measured using SEM. Toothpaste slurry significantly increased rate of tooth brush abrasion of the coating materials. While SF and HC wore at a similar pace under toothbrush abrasion, SF had a thicker coat and could protect dentin longer, up to 50,000 cycles. PMID:23370872

  19. Dermoscopy and Onychomycosis: guided nail abrasion for mycological samples*

    PubMed Central

    Bet, Diego Leonardo; dos Reis, Ana Lucia; Chiacchio, Nilton Di; Belda Junior, Walter

    2015-01-01

    Mycological examination is still the cornerstone for the diagnosis of onychomycosis for many dermatologists, but sampling technique interferes on its sensitivity and specificity. Nail abrasion may be used to reach the most proximal part of the lesion and can be easily accomplished with an electric abrasor. We suggest nail plate dermoscopy to identify the best location for localized abrasion to obtain adequate samples for mycological examination. PMID:26734877

  20. Dermoscopy and Onychomycosis: guided nail abrasion for mycological samples.

    PubMed

    Bet, Diego Leonardo; Reis, Ana Lucia dos; Di Chiacchio, Nilton; Belda Junior, Walter

    2015-01-01

    Mycological examination is still the cornerstone for the diagnosis of onychomycosis for many dermatologists, but sampling technique interferes on its sensitivity and specificity. Nail abrasion may be used to reach the most proximal part of the lesion and can be easily accomplished with an electric abrasor. We suggest nail plate dermoscopy to identify the best location for localized abrasion to obtain adequate samples for mycological examination. PMID:26734877

  1. Dentifrice fluoride and abrasivity interplay on artificial caries lesions.

    PubMed

    Nassar, Hani M; Lippert, Frank; Eckert, George J; Hara, Anderson T

    2014-01-01

    Incipient caries lesions on smooth surfaces may be subjected to toothbrushing, potentially leading to remineralization and/or abrasive wear. The interplay of dentifrice abrasivity and fluoride on this process is largely unknown and was investigated on three artificially created lesions with different mineral content/distribution. 120 bovine enamel specimens were randomly allocated to 12 groups (n = 10), resulting from the association of (1) lesion type [methylcellulose acid gel (MeC); carboxymethylcellulose solution (CMC); hydroxyethylcellulose gel (HEC)], (2) slurry abrasive level [low (REA 4/ RDA 69); high (REA 7/RDA 208)], and (3) fluoride concentration [0/275 ppm (14.5 mM) F as NaF]. After lesion creation, specimens were brushed in an automated brushing machine with the test slurries (50 strokes 2×/day). Specimens were kept in artificial saliva in between brushings and overnight. Enamel surface loss (SL) was determined by optical profilometry after lesion creation, 1, 3 and 5 days. Two enamel sections (from baseline and post-brushing areas) were obtained and analyzed microradiographically. Data were analyzed by analysis of variance and Tukey's tests (α = 5%). Brushing with high-abrasive slurry caused more SL than brushing with low-abrasive slurry. For MeC and CMC lesions, fluoride had a protective effect on SL from day 3 on. Furthermore, for MeC and CMC, there was a significant mineral gain in the remaining lesions except when brushed with high-abrasive slurries and 0 ppm F. For HEC, a significant mineral gain took place when low-abrasive slurry was used with fluoride. The tested lesions responded differently to the toothbrushing procedures. Both slurry fluoride content and abrasivity directly impacted SL and mineral gain of enamel caries lesions. PMID:24993884

  2. Computed tomography to quantify tooth abrasion

    NASA Astrophysics Data System (ADS)

    Kofmehl, Lukas; Schulz, Georg; Deyhle, Hans; Filippi, Andreas; Hotz, Gerhard; Berndt-Dagassan, Dorothea; Kramis, Simon; Beckmann, Felix; Müller, Bert

    2010-09-01

    Cone-beam computed tomography, also termed digital volume tomography, has become a standard technique in dentistry, allowing for fast 3D jaw imaging including denture at moderate spatial resolution. More detailed X-ray images of restricted volumes for post-mortem studies in dental anthropology are obtained by means of micro computed tomography. The present study evaluates the impact of the pipe smoking wear on teeth morphology comparing the abraded tooth with its contra-lateral counterpart. A set of 60 teeth, loose or anchored in the jaw, from 12 dentitions have been analyzed. After the two contra-lateral teeth were scanned, one dataset has been mirrored before the two datasets were registered using affine and rigid registration algorithms. Rigid registration provides three translational and three rotational parameters to maximize the overlap of two rigid bodies. For the affine registration, three scaling factors are incorporated. Within the present investigation, affine and rigid registrations yield comparable values. The restriction to the six parameters of the rigid registration is not a limitation. The differences in size and shape between the tooth and its contra-lateral counterpart generally exhibit only a few percent in the non-abraded volume, validating that the contralateral tooth is a reasonable approximation to quantify, for example, the volume loss as the result of long-term clay pipe smoking. Therefore, this approach allows quantifying the impact of the pipe abrasion on the internal tooth morphology including root canal, dentin, and enamel volumes.

  3. Method of protecting surfaces from abrasion and abrasion resistant articles of manufacture

    DOEpatents

    Hirschfeld, T.B.

    1988-06-09

    Surfaces of fabricated structures are protected from damage by impacting particulates by a coating of hard material formed as a mass of thin flexible filaments having root ends secured to the surface and free portions which can flex and overlap to form a resilient cushioning mat which resembles hair or fur. The filamentary coating covers the underlying surface with hard abrasion resistance material while also being compliant and capable of local accommodation to particle impacts. The coating can also function as thermal and/or acoustical insulation and has a friction reducing effect. 11 figs.

  4. Atmospheric particulate emissions from dry abrasive blasting using coal slag.

    PubMed

    Kura, Bhaskar; Kambham, Kalpalatha; Sangameswaran, Sivaramakrishnan; Potana, Sandhya

    2006-08-01

    Coal slag is one of the widely used abrasives in dry abrasive blasting. Atmospheric emissions from this process include particulate matter (PM) and heavy metals, such as chromium, lead, manganese, nickel. Quantities and characteristics of PM emissions depend on abrasive characteristics and process parameters. Emission factors are key inputs to estimate emissions. Experiments were conducted to study the effect of blast pressure, abrasive feed rate, and initial surface contamination on total PM (TPM) emission factors for coal slag. Rusted and painted mild steel surfaces were used as base plates. Blasting was carried out in an enclosed chamber, and PM was collected from an exhaust duct using U.S. Environment Protection Agency source sampling methods for stationary sources. Results showed that there is significant effect of blast pressure, feed rate, and surface contamination on TPM emissions. Mathematical equations were developed to estimate emission factors in terms of mass of emissions per unit mass of abrasive used, as well as mass of emissions per unit of surface area cleaned. These equations will help industries in estimating PM emissions based on blast pressure and abrasive feed rate. In addition, emissions can be reduced by choosing optimum operating conditions. PMID:16933653

  5. Atmospheric particulate emissions from dry abrasive blasting using coal slag

    SciTech Connect

    Bhaskar Kura; Kalpalatha Kambham; Sivaramakrishnan Sangameswaran; Sandhya Potana

    2006-08-15

    Coal slag is one of the widely used abrasives in dry abrasive blasting. Atmospheric emissions from this process include particulate matter (PM) and heavy metals, such as chromium, lead, manganese, nickel. Quantities and characteristics of PM emissions depend on abrasive characteristics and process parameters. Emission factors are key inputs to estimate emissions. Experiments were conducted to study the effect of blast pressure, abrasive feed rate, and initial surface contamination on total PM (TPM) emission factors for coal slag. Rusted and painted mild steel surfaces were used as base plates. Blasting was carried out in an enclosed chamber, and PM was collected from an exhaust duct using U.S. Environment Protection Agency source sampling methods for stationary sources. Results showed that there is significant effect of blast pressure, feed rate, and surface contamination on TPM emissions. Mathematical equations were developed to estimate emission factors in terms of mass of emissions per unit mass of abrasive used, as well as mass of emissions per unit of surface area cleaned. These equations will help industries in estimating PM emissions based on blast pressure and abrasive feed rate. In addition, emissions can be reduced by choosing optimum operating conditions. 40 refs., 5 figs., 2 tabs.

  6. Analysis of Abrasive Blasting of DOP-26 Iridium Alloy

    SciTech Connect

    Ohriner, Evan Keith; Zhang, Wei; Ulrich, George B

    2012-01-01

    The effects of abrasive blasting on the surface geometry and microstructure of DOP-26 iridium alloy (Ir-0.3% W-0.006% Th 0.005% Al) have been investigated. Abrasive blasting has been used to control emissivity of components operating at elevated temperature. The effects of abrasive blasting conditions on surface morphology were investigated both experimentally and by numerical modeling. The simplified model, based on finite element analysis of a single angular particle impacting on Ir alloy disk, calculates the surface deformation and residual strain distribution. The experimental results and modeling results both indicate that the surface geometry is not sensitive to the abrasive blast process conditions of nozzle pressure and standoff distance considered in this study. On the other hand, the modeling results suggest that the angularity of the abrasive particle has an important role in determining surface geometry, which in turn, affects the emissivity. Abrasive blasting causes localized surface strains and localized recrystallization, but it does not affect grain size following extended exposure at elevated temperature. The dependence of emissivity of the DOP-26 alloy on mean surface slope follows a similar trend to that reported for pure iridium.

  7. A modified ASTM G-75 abrasion test helps select candidate alloys for service in a corrosive and abrasive slurry

    SciTech Connect

    Corbett, R.A.; Morrison, W.S.; Jenkins, C.F.; Westinghouse Savannah River Co., Aiken, SC )

    1989-01-01

    The design of a hazardous waste immobilization facility at the Savannah River Site (SRS) set material requirements for both abrasion resistance and corrosion resistance in process equipment. Standard ASTM slurry wear test G75 was modified to permit evaluation and comparison of abrasive resistance of candidate materials of construction in the laboratory. However, corrosion was found to contribute significantly to overall metal loss during the testing. Consequently, the abrasive slurry used for the testing was modified by adjusting its chemistry to include appropriate corrosive species. The Miller numbers obtained in the modified G75 Miller abrasion test are described. Pilot plant observations for Type 304L austenitic stainless steel were available. These data were used to generate a Morrison-Miller Ratio'' in order to determine anticipated field abrasion properties for other alloys. Hardness for many of the alloys fell in a narrow range about Rockwell B90, but performance varied significantly in response to slurry chemistry. This effect if synergistic may often be overlooked in the selection process, and it needs to be addressed. Some pilot plant testing of other alloys is essential to confirm the calculated abrasion rates and the approach of using the Morrison-Miller ratio. 6 refs., 3 figs., 5 tabs.

  8. Weldability of an abrasion-resistant steel

    SciTech Connect

    Adonyi, Y.; Domis, W.F.; Chen, C.C.

    1995-12-31

    The welding performance of a low-carbon-equivalent, abrasion-resistant steel newly developed for the mining industry was studied using a combination of simulative and actual weldability tests. The susceptibility to hydrogen-induced cracking in the weld-metal and heat-affected zones (HAZ), as well as the potential loss of strength and toughness in the HAZ, were evaluated. Simulative testing included the use of the Gleeble 1500 thermomechanical simulator to produce single and multiple-pass weld HAZ microstructures on CVN-size specimens. The effects of heat input, interpass temperature, and post-weld heat treatment (PWHT) on the HAZ microstructure and properties were determined. Additionally, a computer software was used to predict theoretical HAZ hardnesses and volume fraction of phases as a function of cooling rates. The actual welding tests included the Gapped Bead-on-Plate and the Y-groove tests to determine the weld-metal and HAZ susceptibility to hydrogen-induced cracking. Three heat inputs, two diffusible hydrogen and two weld-metal yield-strength levels were used for the actual welding stage. Good correlation was found between microstructure predictions, physical simulations, and actual weld testing results. The new steel was found to be highly weldable because of the low preheat required to avoid HAZ hydrogen induced cracking. All aspects of weld-metal and HAZ cracking behavior had to be addressed for a complete weldability characterization. It was also found that use of excessive heat inputs and PWHT should be avoided when welding this type of steels.

  9. Rock Abrasion Tool Exhibits the Deep Red Pigment of Mars

    NASA Technical Reports Server (NTRS)

    2006-01-01

    During recent soil-brushing experiments, the rock abrasion tool on NASA's Mars Exploration Rover Spirit became covered with dust, as shown here. An abundance of iron oxide minerals in the dust gave the device a reddish-brown veneer. Investigators were using the rock abrasion tool to uncover successive layers of soil in an attempt to reveal near-surface stratigraphy. Afterward, remnant dirt clods were visible on both the bit and the brush of the tool. Designers of the rock abrasion tool at Honeybee Robotics and engineers at the Jet Propulsion Laboratory developed a plan to run the brush on the rock abrasion tool in reverse to dislodge the dirt and return the tool to normal operation. Subsequent communications with the rover revealed that the procedure is working and the rock abrasion tool remains healthy.

    Spirit acquired this approximately true-color image with the panoramic camera on the rover's 893rd sol, or Martian day (July 8, 2006). The image combines exposures taken through three of the camera's filters, centered on wavelengths of 750 nanometers, 530 nanometers, and 430 nanometers.

  10. Abrasive tip treatment for use on compressor blades

    NASA Technical Reports Server (NTRS)

    Pedersen, H. C.

    1984-01-01

    A co-spray process was used which simultaneously but separately introduces abrasive grits and metal matrix powder into the plasma stream and entraps the abrasive grits within a molten matrix to form an abrasive coating as the matrix material solidifies on test specimen surfaces. Spray trials were conducted to optimize spray parameter settings for the various matrix/grit combinations before actual spraying of the test specimens. Rub, erosion, and bond adhesion tests were conducted on the coated specimens in the as-sprayed condition as well as on coated specimens that were aged for 100 hours at a temperature of 866K (1100 F). Microscopic examinations were performed to determine the coating abrasive-particle content, the size and shape of the adhesive particles in the coating, and the extent of compositional or morphological changes resulting from the aging process. A nickel chromium/aluminum composite with No. 150 size (0.002 to 0.005 inch) silicon carbide grits was selected as the best matrix/abrasive combination of the candidates surveyed for coating compressor blade tips.

  11. Abrasion of Candidate Spacesuit Fabrics by Simulated Lunar Dust

    NASA Technical Reports Server (NTRS)

    Gaier, James R.; Meador, Mary Ann; Rogers, Kerry J.; Sheehy, Brennan H.

    2009-01-01

    A protocol has been developed that produced the type of lunar soil abrasion damage observed on Apollo spacesuits. This protocol was then applied to four materials (Kevlar (DuPont), Vectran (Kuraray Co., Ltd.), Orthofabric, and Tyvek (DuPont)) that are candidates for advanced spacesuits. Three of the four new candidate fabrics (all but Vectran) were effective at keeping the dust from penetrating to layers beneath. In the cases of Kevlar and Orthofabric this was accomplished by the addition of a silicone layer. In the case of Tyvek, the paper structure was dense enough to block dust transport. The least abrasive damage was suffered by the Tyvek. This was thought to be due in large part to its non-woven paper structure. The woven structures were all abraded where the top of the weave was struck by the abrasive. Of these, the Orthofabric suffered the least wear, with both Vectran and Kevlar suffering considerably more extensive filament breakage.

  12. Review of scratch test studies of abrasion mechanisms

    SciTech Connect

    Kosel, T.H.

    1986-01-01

    The use of scratch tests to simulate the material removal mechanisms which occur during abrasion is reviewed. Although useful studies of the effect of the rake angle on material removal have been carried out using diamond tools, closer simulation of the mechanisms of material removal can be obtained using actual irregular individual abrasive particles as scratch tools. Previous studies are reviewed in which scratch tests have been performed with both conventional scratch test instruments and a specially designed system used for )ital in situ) scratch tests in the scanning electron microscope (SEM). Multiple-pass scratch tests over the same scratch path have been shown to create surface features and wear debris particles which are very similar to those produced by low-stress abrasion. Alumina (Al/sub 2/O/sub 3/) particles have been shown to produce continuous micromachining chips from the hard, brittle carbide phase of Stellite alloys, establishing direct cutting as the important mechanism of material removal for this type of abrasive. An )ital in situ) study of material removal from white cast irons by quartz particles has provided conclusive evidence that carbide removal does not occur by direct cutting but rather always involves microfracture. Previously unpublished work which has compared scratch tests with crushed quartz and alumina particles is included. Also described is a new scratch test system which controls the depth of cut rather than the scratch load in order to simulate high-stress abrasion, in which abrasive particles are constrained to a fixed depth of cut. Preliminary new results show substantially different carbide fracture behavior under fixed-depth conditions. 8 figs., 20 refs.

  13. Aeolian Abrasion, a Dominant Erosion Agent in the Martian Environment

    NASA Astrophysics Data System (ADS)

    Bridges, N.; Cooper, G.; Eddlemon, E.; Greeley, R.; Laity, J.; Phoreman, J.; Razdan, A.; van Note, S.; White, B.; Wilson, G.

    2004-12-01

    Aeolian abrasion is one of the predominant erosion mechanisms on Mars today. Martian ventifacts record the climate under which the rocks were modified (wind direction, wind speeds and particle flux) and therefore tie into the overall climatic regime of the planet. By better understanding the rates at which rocks abrade and the features diagnostic of specific climatic conditions, we can gain insight into past climates. Herein we report on numerical models, wind tunnel experiments, and field work to determine 1) Particle and kinetic fluxes on Earth and Mars, 2) the degree to which these parameters control abrasion, and 3) how, in detail, rocks of various shapes and compositions erode over time. Kinetic energy generally increases with height, whereas flux decreases, and impact angles, which affect energy transfer, and rebound effects are functions of the rock facet angle. This results in a non-linear relationship between abrasion potential and height that is a function of wind speed, planetary environment, and target geometry. We have computed the first three of these parameters numerically using a numerical saltation code, combined with published flux calculations These results have been compared to wind tunnel tests of flux vs. height, abrasion of erodible targets, and high speed video analysis under terrestrial and Martian pressures. We are also using high resolution laser scanning to characterize textures, shapes, and weathering changes for terrestrial and Martian rocks at the 100s of microns scale. We find that facet angle, texture, and rock heterogeneity are of critical importance in determining the rate and style of abrasion. Field and theoretical results demonstrate that high speed winds, not the integrated flux of lower speeds, and sand, not dust, produce most rock abrasion. On Mars, this requires sustained winds above 20-25 m/s at the near surface, a challenge in the current environment.

  14. Dental abrasion pattern in a selected group of Malaysians.

    PubMed

    Yaacob, H B; Park, A W

    1990-09-01

    Among 350 inhabitants of two villages, 31 (8.9%) cleaned their teeth using table salt and charcoal applied to their forefinger or a Melastoma brush. As a result, all had distinct forms of abrasion cavity on the labial surfaces of their teeth. All of the above three agents are highly abrasive and injurious to both the hard and soft oral tissues. This dying practice is only popular among a very small number of persons in the older age group, and should be discouraged. PMID:2230960

  15. Field evidence of two-phase abrasion process

    NASA Astrophysics Data System (ADS)

    Miller, K. L.; Szabo, T.; Jerolmack, D. J.; Domokos, G.

    2013-12-01

    The rounded shape of river rocks is clear evidence that abrasion due to bed load transport is a significant agent for mass loss. Its contribution to downstream fining, however, is typically assumed to be negligible - as diminution trends may be explained solely by size-selective transport. A recent theory has predicted that pebble abrasion occurs in two well separated phases: in Phase 1, an intially-polyhedral pebble rounds to the shape of an inscribed ellipsoid without any change in axis dimensions; in Phase II, axis dimensions are slowly reduced. Importantly, Phase I abrasion means that an initially-blocky pebble may lose up to half its mass without any apparent change in 'size', which is only measured as the length of a single pebble axis by most field researchers. We hypothesize that field studies have significantly underestimated the importance of abrasion because they do not quantify pebble shape, and we set out to demonstrate that two-phase abrasion occurs in a natural stream. Our study examines downstream trends in pebble size and shape along a 10-km stretch of the Rio Mameyes within the Luquillo Critical Zone observatory, where volcaniclastic cobbles and boulders are transported by bed load at slopes up to 10%. The upper reaches of the stream consist of alluviated bedrock valleys that preclude sediment storage and thus minimize size-selective transport, which allows us to isolate the effects of abrasion. The lower 5 km is an alluvial river in which size-selective transport becomes operative. We quantified the shape and size of thousands of pebbles along the profile using hand and image-based techniques. The data provide the first field validation of two-phase abrasion; in the bedrock reaches, pebbles clearly evolve toward ellipsoids without any significant change in axis dimensions (rounding), while in the lower reaches pebbles slowly reduce their axis dimensions with little or no change in roundness. Results also show that shape metrics determined from

  16. Exposure to crystalline silica in abrasive blasting operations where silica and non-silica abrasives are used.

    PubMed

    Radnoff, Diane L; Kutz, Michelle K

    2014-01-01

    Exposure to respirable crystalline silica is a hazard common to many industries in Alberta but particularly so in abrasive blasting. Alberta occupational health and safety legislation requires the consideration of silica substitutes when conducting abrasive blasting, where reasonably practicable. In this study, exposure to crystalline silica during abrasive blasting was evaluated when both silica and non-silica products were used. The crystalline silica content of non-silica abrasives was also measured. The facilities evaluated were preparing metal products for the application of coatings, so the substrate should not have had a significant contribution to worker exposure to crystalline silica. The occupational sampling results indicate that two-thirds of the workers assessed were potentially over-exposed to respirable crystalline silica. About one-third of the measurements over the exposure limit were at the work sites using silica substitutes at the time of the assessment. The use of the silica substitute, by itself, did not appear to have a large effect on the mean airborne exposure levels. There are a number of factors that may contribute to over-exposures, including the isolation of the blasting area, housekeeping, and inappropriate use of respiratory protective equipment. However, the non-silica abrasives themselves also contain silica. Bulk analysis results for non-silica abrasives commercially available in Alberta indicate that many contain crystalline silica above the legislated disclosure limit of 0.1% weight of silica per weight of product (w/w) and this information may not be accurately disclosed on the material safety data sheet for the product. The employer may still have to evaluate the potential for exposure to crystalline silica at their work site, even when silica substitutes are used. Limited tests on recycled non-silica abrasive indicated that the silica content had increased. Further study is required to evaluate the impact of product recycling

  17. Abrasion cross sections for Ne-20 projectiles at 2.1 GeV/nucleon

    NASA Technical Reports Server (NTRS)

    Townsend, L. W.

    1983-01-01

    Utilizing eikonal scattering theory, an optical model potential approximation to the exact nucleus-nucleus multiple scattering series is used in an abrasion-ablation collision formalism to predict abrasion cross sections for relativistic Ne-20 projectile nuclei. Excellent agreement with recent experimental abrasion results is obtained. The sensitivity of the abrasion predictions to Pauli exclusion principle correlation effects and to the assumed shape of the nuclear single-particle density distribution is also demonstrated.

  18. Development of a thermal reclamation system for spent blasting abrasive

    SciTech Connect

    Bryan, B.B.; Mensinger, M.C.; Rehmat, A.G.

    1991-01-01

    Abrasive blasting is the most economical method for paint removal from large surface areas such as the hulls and tanks of oceangoing vessels. Tens of thousands of tons of spent abrasive are generated annually by blasting operations in private and US Navy shipyards. Some of this material is classified as hazardous waste, and nearly all of it is currently being either stockpiled or disposed in landfills. The rapid decline in available landfill space and corresponding rise in landfill tipping fees pose a severe problem for shipyard operators throughout the US. This paper discusses the results of a research and development program initiated by the Institute of Gas Technology and supported by the US Navy to develop and test a fluidized-bed thermal reclamation system for spent abrasive waste minimization. Bench- and pilot-scale reclaimer tests and reclaimed abrasive performance tests are described along with the current status of a program to build and test a 5-ton/hour prototype reclaimer at a US Navy shipyard.

  19. 29 CFR 1910.215 - Abrasive wheel machinery.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... wheel in motion. (5) Excluded machinery. Natural sandstone wheels and metal, wooden, cloth, or paper... apply to natural sandstone wheels or metal, wooden, cloth, or paper discs, having a layer of abrasive on... and Type 27A cutting-off wheels. (g) Certain internal wheels. (h) Type 4 tapered wheels. (i)...

  20. 29 CFR 1910.215 - Abrasive wheel machinery.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... wheel in motion. (5) Excluded machinery. Natural sandstone wheels and metal, wooden, cloth, or paper... apply to natural sandstone wheels or metal, wooden, cloth, or paper discs, having a layer of abrasive on... and Type 27A cutting-off wheels. (g) Certain internal wheels. (h) Type 4 tapered wheels. (i)...

  1. 29 CFR 1926.303 - Abrasive wheels and tools.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... spindle speed at safe levels under all conditions of normal operation. (b) Guarding. (1) Grinding machines.... (1) Floor stand and bench mounted abrasive wheels, used for external grinding, shall be provided with safety guards (protection hoods). The maximum angular exposure of the grinding wheel periphery and...

  2. A nonmineralized approach to abrasion-resistant biomaterials

    PubMed Central

    Pontin, Michael G.; Moses, Dana N.; Waite, J. Herbert; Zok, Frank W.

    2007-01-01

    The tooth-like mouthparts of some animals consist of biomacromolecular scaffolds with few mineral components, making them intriguing paradigms of biostructural materials. In this study, the abrasion resistance of the jaws of one such animal, the bloodworm Glycera dibranchiata, has been evaluated by nanoindentation, nanoscratching, and wear testing. The hardest, stiffest, and most abrasion-resistant materials are found within a thin (<3 μm) surface layer near the jaw tip and a thicker (10–20 μm) subsurface layer, both rich in unmineralized Cu. These results are consistent with the supposition that Cu ions are involved in the formation of intermolecular coordination complexes between proteins, creating a highly cross-linked molecular network. The intervening layer contains aligned atacamite [Cu2(OH)3Cl] fibers and exhibits hardness and stiffness (transverse to the alignment direction) that are only slightly higher than those of the bulk material but lower than those of the two Cu-rich layers. Furthermore, the atacamite-containing layer is the least abrasion-resistant, by a factor of ≈3, even relative to the bulk material. These observations are broadly consistent with the behavior of engineering polymer composites with hard fiber or particulate reinforcements. The alignment of fibers parallel to the jaw surface, and the fiber proximity to the surface, are both suggestive of a natural adaptation to enhance bending stiffness and strength rather than to endow the surface regions with enhanced abrasion resistance. PMID:17702868

  3. Innovative decontamination technology by abrasion in vibratory vessels

    SciTech Connect

    Fabbri, Silvio; Ilarri, Sergio

    2007-07-01

    Available in abstract form only. Full text of publication follows: The possibility of using conventional vibratory vessel technology as a decontamination technique is the motivation for the development of this project. The objective is to explore the feasibility of applying the vibratory vessel technology for decontamination of radioactively-contaminated materials such as pipes and metal structures. The research and development of this technology was granted by the U.S. Department of Energy (DOE). Abrasion processes in vibratory vessels are widely used in the manufacture of metals, ceramics, and plastics. Samples to be treated, solid abrasive media and liquid media are set up into a vessel. Erosion results from the repeated impact of the abrasive particles on the surface of the body being treated. A liquid media, generally detergents or surfactants aid the abrasive action. The amount of material removed increases with the time of treatment. The design and construction of the machine were provided by Vibro, Argentina private company. Tests with radioactively-contaminated aluminum tubes and a stainless steel bar, were performed at laboratory level. Tests showed that it is possible to clean both the external and the internal surface of contaminated tubes. Results show a decontamination factor around 10 after the first 30 minutes of the cleaning time. (authors)

  4. Surface carbonization of titanium for abrasion-resistant implant materials.

    PubMed

    Zhu, Yuhe; Watari, Fumio

    2007-03-01

    Carbide layer was formed on the surface of Ti by heating in hydrocarbon atmosphere (benzene C6H6) at 1000-1400 degrees C using a high frequency induction heating method. Physical and mechanical properties of carbide-coated Ti were investigated to examine its potential as an abrasion-resistant implant material. Scanning electron microscopy (SEM) showed that the surface of Ti was covered with fine grains of 1-4 microm diameter, depending on heating conditions. In addition, carbide layer of about 1-25 microm thickness was observed on the cross-section of specimens by SEM and energy dispersive spectroscopy. Vickers hardness of surface carbide was found to be more than 2000. Further, Martens scratch test and ultrasonic scaler abrasion test showed that the indentation depth and width of carbide-coated Ti were much smaller than pure Ti, thereby confirming its high abrasion resistance. These results showed that for Ti implant materials that require high abrasion resistance, such as the abutment for dental implants, surface carbide coatings would be an effective means to improve their wear properties. PMID:17621941

  5. Potential of Air-Propelled Abrasives for Selective Weed Control

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Novel forms of selective weed control are needed by many types of growers, but especially organic growers who are restricted from using synthetic herbicides. Abrasive grit made from corn cobs was expelled from a sand blaster at 517 kPa pressure and aimed at seedlings of common lambsquarters and corn...

  6. Abrasive blasting agents: designing studies to evaluate relative risk.

    PubMed

    Hubbs, Ann; Greskevitch, Mark; Kuempel, Eileen; Suarez, Fernando; Toraason, Mark

    Workers exposed to respirable crystalline silica used in abrasive blasting are at increased risk of developing a debilitating and often fatal fibrotic lung disease called silicosis. The National Institute for Occupational Safety and Health (NIOSH) recommends that silica sand be prohibited as abrasive blasting material and that less hazardous materials be used in blasting operations. However, data are needed on the relative risks associated with exposure to abrasive blasting materials other than silica. NIOSH has completed acute studies in rats (Hubbs et al., 2001; Porter et al., 2002). To provide dose-response data applicable to making recommendation for occupational exposure limits, NIOSH has collaborated with the National Toxicology Program (NTP) to design longer term studies with silica substitutes. For risk assessment purposes, selected doses will include concentrations that are relevant to human exposures. Rat lung burdens achieved should be comparable to those estimated in humans with working lifetime exposures, even if this results in "overloading" doses in rats. To quantify both dose and response, retained particle burdens in the lungs and lung-associated lymph nodes will be measured, as well as biochemical and pathological indices of pulmonary response. This design will facilitate assessment of the pulmonary fibrogenic potential of inhaled abrasive blasting agents at occupationally relevant concentrations. PMID:16020188

  7. Solid Lubrication Fundamentals and Applications. Chapter 5; Abrasion: Plowing and Cutting

    NASA Technical Reports Server (NTRS)

    Miyoshi, Kazuhisa

    2001-01-01

    Chapter 5 discusses abrasion, a common wear phenomenon of great economic importance. It has been estimated that 50% of the wear encountered in industry is due to abrasion. Also, it is the mechanism involved in the finishing of many surfaces. Experiments are described to help in understanding the complex abrasion process and in predicting friction and wear behavior in plowing and/or cutting. These experimental modelings and measurements used a single spherical pin (asperity) and a single wedge pin (asperity). Other two-body and three-body abrasion studies used hard abrasive particles.

  8. Abrasive Wear Study of NiCrFeSiB Flame Sprayed Coating

    NASA Astrophysics Data System (ADS)

    Sharma, Satpal

    2013-10-01

    In the present study, abrasive wear behavior of NiCrFeSiB alloy coating on carbon steel was investigated. The NiCrFeSiB coating powder was deposited by flame spraying process. The microstructure, porosity and hardness of the coatings were evaluated. Elemental mapping was carried out in order to study the distribution of various elements in the coating. The abrasive wear behavior of these coatings was investigated under three normal loads (5, 10 and 15 N) and two abrasive grit sizes (120 and 320 grit). The abrasive wear rate was found to increase with the increase of load and abrasive size. The abrasive wear resistance of coating was found to be 2-3 times as compared to the substrate. Analysis of the scanning electron microscope images revealed cutting and plowing as the material removal mechanisms in these coatings under abrasive wear conditions used in this investigation.

  9. Wheel Abrasion Experiment Metals Selection for Mars Pathfinder Mission

    NASA Technical Reports Server (NTRS)

    Hepp, Aloysius F.; Fatemi, Navid S.; Wilt, David M.; Ferguson, Dale C.; Hoffman, Richard; Hill, Maria M.; Kaloyeros, Alain E.

    1996-01-01

    A series of metals was examined for suitability for the Wheel Abrasion Experiment, one of ten microrover experiments of the Mars Pathfinder Mission. The seven candidate metals were: Ag, Al, Au, Cu, Ni, Pt, and W. Thin films of candidate metals from 0.1 to 1.0 micrometer thick were deposited on black anodized aluminum coupons by e-beam and resistive evaporation and chemical vapor deposition. Optical, corrosion, abrasion, and adhesion criteria were used to select Al, Ni, and Pt. A description is given of the deposition and testing of thin films, followed by a presentation of experimental data and a brief discussion of follow-on testing and flight qualification.

  10. Abrasion Testing of Critical Components of Hydrokinetic Devices

    SciTech Connect

    Worthington, Monty; Ali, Muhammad; Ravens, Tom

    2013-12-06

    The objective of the Abrasion Testing of Critical Components of Hydrokinetic Devices (Project) was to test critical components of hydrokinetic devices in waters with high levels of suspended sediment – information that is widely applicable to the hydrokinetic industry. Tidal and river sites in Alaska typically have high suspended sediment concentrations. High suspended sediment also occurs in major rivers and estuaries throughout the world and throughout high latitude locations where glacial inputs introduce silt into water bodies. In assessing the vulnerability of technology components to sediment induced abrasion, one of the greatest concerns is the impact that the sediment may have on device components such as bearings and seals, failures of which could lead to both efficiency loss and catastrophic system failures.

  11. Nanometric Finishing on Biomedical Implants by Abrasive Flow Finishing

    NASA Astrophysics Data System (ADS)

    Subramanian, Kavithaa Thirumalai; Balashanmugam, Natchimuthu; Shashi Kumar, Panaghra Veeraiah

    2016-01-01

    Abrasive flow finishing (AFF) is a non-conventional finishing technique that offers better accuracy, efficiency, consistency, economy in finishing of complex/difficult to machine materials/components and provides the possibility of effective automation as aspired by the manufacturing sector. The present study describes the finishing of a hip joint made of ASTM grade Co-Cr alloy by Abrasive Flow Machining (AFM) process. The major input parameters of the AFF process were optimized for achieving nanometric finishing of the component. The roughness average (Ra) values were recorded during experimentation using surface roughness tester and the results are discussed in detail. The surface finished hip joints were characterized using Scanning Electron Microscopy (SEM), Atomic Force Microscopy (AFM) and residual stress analysis using X-Ray Diffraction (XRD). The discussion lays emphasis on the significance, efficacy and versatile nature of the AFF process in finishing of bio-medical implants.

  12. Microstructure and abrasive wear in silicon nitride ceramics

    SciTech Connect

    Dogan, Cynthia P.; Hawk, Jeffrey A.

    2001-10-01

    It is well known that abrasive wear resistance is not strictly a materials property, but also depends upon the specific conditions of the wear environment. Nonetheless, characteristics of the ceramic microstructure do influence its hardness and fracture toughness and must, therefore, play an active role in determining howa ceramic will respond to the specific stress states imposed upon it by the wear environment. In this study, the ways in which composition and microstructure influence the abrasive wear behavior of six commercially-produced silicon nitride based ceramics are examined. Results indicate that microstructural parameters, such as matrix grain size and orientation, porosity, and grain boundary microstructure, and thermal expansion mismatch stresses created as the result of second phase formation, influence the wear rate through their effect on wear sheet formation and subsurface fracture. It is also noted that the potential impact of these variables on the wear rate may not be reflected in conventional fracture toughness measurements.

  13. A physically-based abrasive wear model for composite materials

    SciTech Connect

    Lee, Gun Y.; Dharan, C.K.H.; Ritchie, Robert O.

    2001-05-01

    A simple physically-based model for the abrasive wear of composite materials is presented based on the mechanics and mechanisms associated with sliding wear in soft (ductile) matrix composites containing hard (brittle) reinforcement particles. The model is based on the assumption that any portion of the reinforcement that is removed as wear debris cannot contribute to the wear resistance of the matrix material. The size of this non-contributing portion of the reinforcement is estimated by modeling the three primary wear mechanisms, specifically plowing, interfacial cracking and particle removal. Critical variables describing the role of the reinforcement, such as its relative size and the nature of the matrix/reinforcement interface, are characterized by a single contribution coefficient, C. Predictions are compared with the results of experimental two-body (pin-on drum) abrasive wear tests performed on a model aluminum particulate-reinforced epoxy matrix composite material.

  14. Self inflicted corneal abrasions due to delusional parasitosis

    PubMed Central

    Meraj, Adeel; Din, Amad U; Larsen, Lynn; Liskow, Barry I

    2011-01-01

    The authors report a case of self inflicted bilateral corneal abrasions and skin damage due to ophthalmic and cutaneous delusional parasitosis. A male in his 50s presented with a 10 year history of believing that parasites were colonizing his skin and biting into his skin and eyes. The patient had received extensive medical evaluations that found no evidence that symptoms were due to a medical cause. He was persistent in his belief and had induced bilateral corneal abrasions and skin damage by using heat lamps and hair dryers in an attempt to disinfect his body. The patient was treated with olanzapine along with treatment for his skin and eyes. His delusional belief system persisted but no further damage to his eyes and skin was noted on initial follow-up. PMID:22689836

  15. Wear and abrasion resistance selection maps of biological materials.

    PubMed

    Amini, Shahrouz; Miserez, Ali

    2013-08-01

    The mechanical design of biological materials has generated widespread interest in recent years, providing many insights into their intriguing structure-property relationships. A critical characteristic of load-bearing materials, which is central to the survival of many species, is their wear and abrasion tolerance. In order to be fully functional, protective armors, dentitious structures and dynamic appendages must be able to tolerate repetitive contact loads without significant loss of materials or internal damage. However, very little is known about this tribological performance. Using a contact mechanics framework, we have constructed materials selection charts that provide general predictions about the wear performance of biological materials as a function of their fundamental mechanical properties. One key assumption in constructing these selection charts is that abrasion tolerance is governed by the first irreversible damage at the contact point. The maps were generated using comprehensive data from the literature and encompass a wide range of materials, from heavily mineralized to fully organic materials. Our analysis shows that the tolerance of biological materials against abrasion depends on contact geometry, which is ultimately correlated to environmental and selective pressures. Comparisons with experimental data from nanoindentation experiments are also drawn in order to verify our predictions. With the increasing amount of data available for biological materials also comes the challenge of selecting relevant model systems for bioinspired materials engineering. We suggest that these maps will be able to guide this selection by providing an overview of biological materials that are predicted to exhibit the best abrasion tolerance, which is of fundamental interest for a wide range of applications, for instance in restorative implants and protective devices. PMID:23643608

  16. Raising the resistance of mainline pump parts to hydraulic abrasion

    SciTech Connect

    Belousov, V.Ya.; Borisenko, V.V.; Zhuravlev, Yu.V.

    1988-01-01

    The authors investigate the diffusion coating of mainline petroleum pump surfaces with boron carbides and the subsequent hardness and abrasion resistance of the working surfaces based on the temperature of the treatment and the depth and concentration of the coating. Industrial testing on an NM 2500 x 230 centrifugal pump demonstrated an increase in service life by a factor of 2 to 2.5. The process has been put into production at an annual savings per pump of 4000 rubles.

  17. Mass flow rate measurement in abrasive jets using acoustic emission

    NASA Astrophysics Data System (ADS)

    Ivantsiv, V.; Spelt, J. K.; Papini, M.

    2009-09-01

    The repeatability of abrasive jet machining operations is presently limited by fluctuations in the mass flow rate due to powder compaction, stratification and humidity effects. It was found that the abrasive mass flow rate for a typical abrasive jet micromachining setup could be determined by using data from the acoustic emission of the abrasive jet impacting a flat plate. Two methods for extracting the mass flow rate from the acoustic emission were developed and compared. In the first method, the number of particle impacts per unit time was determined by a direct count of peaks in the acoustic emission signal. The second method utilizes the power spectrum density of the acoustic emission in a specific frequency range. Both measures were found to correlate strongly with the mass flow rate measured by weighing samples of blasted powder for controlled time periods. It was found that the peak count method permits measurement of the average frequency of the impacts and the mass flow rate, but can only be applied to flow rates in which the impact frequency is approximately one order of magnitude less than the frequency of the target plate ringing. The power spectrum density method of signal processing is applicable to relatively fine powders and to flow rates at which the average impact frequency is of the same order of magnitude as that of the ringing due to the impact. The acoustic emission technique can be used to monitor particle flow variations over a wide range of time periods and provides a straightforward and accurate means of process control.

  18. Abrasion of Candidate Spacesuit Fabrics by Simulated Lunar Dust

    NASA Technical Reports Server (NTRS)

    Gaier, James R.; Meador, Mary Ann; Rogers, Kerry J.; Sheehy, Brennan H.

    2009-01-01

    A protocol has been developed that produced the type of lunar soil abrasion damage observed on Apollo spacesuits. This protocol was then applied to four materials (Kevlar(Registered TradeMark), Vectran(Registered TradeMark), Orthofabric, and Tyvek(Registered TradeMark)) that are candidates for advanced spacesuits. Three of the four new candidate fabrics (all but Vectran(Registered TradeMark)) were effective at keeping the dust from penetrating to layers beneath. In the cases of Kevlar(Registered TradeMark) and Orthofabric this was accomplished by the addition of a silicone layer. In the case of Tyvek , the paper structure was dense enough to block dust transport. The least abrasive damage was suffered by the Tyvek(Registered TradeMark). This was thought to be due in large part to its non-woven paper structure. The woven structures were all abraded where the top of the weave was struck by the abrasive. Of these, the Orthofabric suffered the least wear, with both Vectran(Registered TradeMark) and Kevlar(Registered TradeMark) suffering considerably more extensive filament breakage.

  19. Abrasion of eroded root dentine brushed with different toothpastes.

    PubMed

    De Menezes, Márcio; Turssi, Cecilia Pedroso; Hara, Anderson Takeo; Messias, Danielle Cristine Furtado; Serra, Mônica Campos

    2004-09-01

    This study evaluated the surface roughness change and wear provided by different dentifrices on root dentine previously exposed to erosive challenges. According to a randomized complete block design, 150 slabs of bovine root dentine (6 x 3 x 2 mm) were ground flat and polished. In an area of 4 x 3 mm on the dentine surface, specimens were submitted to five erosive/abrasive events, each one composed by: exposure to Sprite Diet or distilled water for 5 min, then to a remineralizing solution for 1 min, and simulation of 5,000 brushing strokes. Four dentifrices--regular (RE), baking soda (BS), whitening (WT) and tartar control (TC)--and distilled water (CO), used as control, were compared. Final texture and the wear depth were evaluated using a profilometer. ANOVA did not show significant interaction, indicating that the effect of dentifrices on both surface roughness change and wear did not depend on whether or not the dentine was eroded ( p>0.05). There was no difference between abrasion of eroded and sound dentine. The Tukey's test revealed that WT, BS and TC provided the highest increase in surface roughness differing from RE and CO. TC yielded the deepest wear of root dentine, whereas RE and CO, the shallowest. No significant difference in wear among BS, TC and WT were observed. Within the limitations of this study, the data showed that abrasion of both eroded and sound root dentine was dependent on the dentifrice used. PMID:15146320

  20. Shotcup petal abrasions in close range .410-caliber shotgun injuries.

    PubMed

    Dowling, G P; Dickinson, J A; Cooke, C T

    1988-01-01

    Shotcup petal abrasions centered around a shotgun wound of entrance are generally thought to occur at a range of 30 to 90 cm. A suicidal .410-caliber shotgun injury of the right eye is described in which typical petal abrasions were noted around the entrance wound. However, significant soot deposition around the wound suggested that the range of fire was less than 30 cm and perhaps closer to 15 cm. Test-firing of the weapon and ammunition used by the decedent showed some spread of the shotcup petals at a range of 7.5 cm, progressing to maximum spread at 30 to 52.5 cm. Further testing with other .410 ammunition, containing shotcups, confirmed the spread of shotcup petals at ranges less than 30 cm, irrespective of manufacturer, shotshell length, and birdshot size. When a variety of shotguns were tested, it was found that one weapon with a very short barrel and cylinder bore did not exhibit petal spread until a range of 30 cm was reached. The remaining shotguns, with longer barrels and full choke, all demonstrated definite petal spread at a range of 12.5 cm. The long, narrow configuration of .410 shotcup petals may explain their early spread and the production of petal abrasions at ranges of less than 30 cm. PMID:3351464

  1. Comparing the Air Abrasion Cutting Efficacy of Dentine Using a Fluoride-Containing Bioactive Glass versus an Alumina Abrasive: An In Vitro Study.

    PubMed

    Tan, Melissa H X; Hill, Robert G; Anderson, Paul

    2015-01-01

    Air abrasion as a caries removal technique is less aggressive than conventional techniques and is compatible for use with adhesive restorative materials. Alumina, while being currently the most common abrasive used for cutting, has controversial health and safety issues and no remineralisation properties. The alternative, a bioactive glass, 45S5, has the advantage of promoting hard tissue remineralisation. However, 45S5 is slow as a cutting abrasive and lacks fluoride in its formulation. The aim of this study was to compare the cutting efficacy of dentine using a customised fluoride-containing bioactive glass Na0SR (38-80 μm) versus the conventional alumina abrasive (29 μm) in an air abrasion set-up. Fluoride was incorporated into Na0SR to enhance its remineralisation properties while strontium was included to increase its radiopacity. Powder outflow rate was recorded prior to the cutting tests. Principal air abrasion cutting tests were carried out on pristine ivory dentine. The abrasion depths were quantified and compared using X-ray microtomography. Na0SR was found to create deeper cavities than alumina (p < 0.05) despite its lower powder outflow rate and predictably reduced hardness. The sharper edges of the Na0SR glass particles might improve the cutting efficiency. In conclusion, Na0SR was more efficacious than alumina for air abrasion cutting of dentine. PMID:26697067

  2. Comparing the Air Abrasion Cutting Efficacy of Dentine Using a Fluoride-Containing Bioactive Glass versus an Alumina Abrasive: An In Vitro Study

    PubMed Central

    Tan, Melissa H. X.; Hill, Robert G.; Anderson, Paul

    2015-01-01

    Air abrasion as a caries removal technique is less aggressive than conventional techniques and is compatible for use with adhesive restorative materials. Alumina, while being currently the most common abrasive used for cutting, has controversial health and safety issues and no remineralisation properties. The alternative, a bioactive glass, 45S5, has the advantage of promoting hard tissue remineralisation. However, 45S5 is slow as a cutting abrasive and lacks fluoride in its formulation. The aim of this study was to compare the cutting efficacy of dentine using a customised fluoride-containing bioactive glass Na0SR (38–80 μm) versus the conventional alumina abrasive (29 μm) in an air abrasion set-up. Fluoride was incorporated into Na0SR to enhance its remineralisation properties while strontium was included to increase its radiopacity. Powder outflow rate was recorded prior to the cutting tests. Principal air abrasion cutting tests were carried out on pristine ivory dentine. The abrasion depths were quantified and compared using X-ray microtomography. Na0SR was found to create deeper cavities than alumina (p < 0.05) despite its lower powder outflow rate and predictably reduced hardness. The sharper edges of the Na0SR glass particles might improve the cutting efficiency. In conclusion, Na0SR was more efficacious than alumina for air abrasion cutting of dentine. PMID:26697067

  3. The effect of hydrogen peroxide on polishing removal rate in CMP with various abrasives

    NASA Astrophysics Data System (ADS)

    Manivannan, R.; Ramanathan, S.

    2009-01-01

    The effect of hydrogen peroxide in chemical mechanical planarization slurries for shallow trench isolation was investigated. The various abrasives used in this study were ceria, silica, alumina, zirconia, titania, silicon carbide, and silicon nitride. Hydrogen peroxide suppresses the polishing of silicon dioxide and silicon nitride surfaces by ceria abrasives. The polishing performances of other abrasives were either unaffected or enhanced slightly with the addition of hydrogen peroxide. The ceria abrasives were treated with hydrogen peroxide, and the polishing of the work surfaces with the treated abrasive shows that the inhibiting action of hydrogen peroxide is reversible. It was found that the effect of hydrogen peroxide as an additive is a strong function of the nature of the abrasive particle.

  4. A Profilometric Study to Assess the Role of Toothbrush and Toothpaste in Abrasion Process

    PubMed Central

    Kumar, Sandeep; Kumar Singh, Siddharth; Gupta, Anjali; Roy, Sayak; Sareen, Mohit; Khajuria, Sarang

    2015-01-01

    Statement of the Problem Despite of many studies conducted on toothbrushes and toothpaste to find out the culprit for abrasion, there is no clear cut evidence to pin point the real cause for abrasion. Purpose An in vitro assessment of the role of different types of toothbrushes (soft/ medium/hard) in abrasion process when used in conjunction with and without a dentifrice. Materials and Method Forty five freshly extracted, sound, human incisor teeth were collected for this study. Enamel specimens of approximately 9 mm2 were prepared by gross trimming of extracted teeth using a lathe machine (Baldor 340 Dental lathe; Ohio, USA). They were mounted on separate acrylic bases. The specimens were divided into three groups, each group containing 15 mounted specimens. Group 1 specimens were brushed with soft toothbrush; Group 2 brushed with medium toothbrush and Group 3 with hard toothbrush. Initially, all the mounted specimens in each group were brushed using dentifrice and then the same procedure was repeated with water as control. Profilometric readings were recorded pre and post to tooth brushing and the differences in readings served as proxy measure to assess surface abrasion. These values were then compared to each other. Kruskal Wallis and Mann-Whitney U test were performed. Results The results showed that brushing, with water alone, caused less abrasion than when toothpaste was added (p< 0.008). When brushed with water, the harder toothbrush caused more abrasion (higher Ra-value), but when toothpaste was added, the softer toothbrush caused more abrasion (p< 0.001). Conclusion Besides supporting the fact that toothpaste is needed to create a significant abrasion, this study also showed that a softer toothbrush can cause more abrasion than harder ones. The flexibility of bristles is only secondary to abrasion process and abrasivity of dentifrice has an important role in abrasion process. PMID:26535407

  5. A comparison of the abrasiveness of six ceramic surfaces and gold.

    PubMed

    Jacobi, R; Shillingburg, H T; Duncanson, M G

    1991-09-01

    A type III gold alloy and six different ceramic surfaces were secured in an abrasion machine opposing extracted teeth to determine their relative abrasiveness and resistance to wear. The rankings of restorative materials from least abrasive to most abrasive were: gold alloy, polished; cast ceramic, polished; porcelain, polished; cast ceramic, polished and shaded; porcelain, polished and glazed; cast ceramic, cerammed skin shaded; and cast ceramic, cerammed skin unshaded. The ranking of materials from most wear-resistant to least wear-resistant was: gold alloy, cast ceramic cerammed, cast ceramic cerammed and shaded, porcelain polished, porcelain glazed, cast ceramic polished and shaded, and cast ceramic polished. PMID:1800724

  6. A rotary-airlock valve resists abrasive mixtures

    SciTech Connect

    Not Available

    1993-03-01

    Hill and Griffith (H and G, Cincinnati, Ohio) is a leading supplier of custom-blended additives to founderies. Thousands of tons of clay and carbon blends such as bentonite, gilsonite and pulverized coal, pass through the company's rotary-airlock feeding system each month. H and G's original rotary valves had cylinders lined with chrome, and closed-end rotors with tips made from nickel-chromium alloys. These valves remained in service for a maximum of only three months each. During that time, the abrasive mixtures passing through the valves virtually eroded them, increasing tolerances and causing significant air leakage. The leaks caused the pneumatic line to plug up, reducing the velocity of the line below the minimum level needed to carry any material. To overcome the leakage, a second blower was added to the system. This unit supplied an additional 40 brake hp to the pneumatic-conveying line. With constant maintenance of the valve and the continuous operation of both blowers, H and G was able to extend the valve's life by nine months. After 20 years of trying valves with various configuration, H and G installed a Smoot Type 6 rotary-airlock valve in September of 1985. The new valve's internals were made from abrasion-resistant grades of NiHard and Stellite. This combination of alloys prolonged the active life of the valve by improving its abrasion resistance. During its first year, the Smoot valve did not break down, leak air or require use of the secondary blower. After its first year of service no wear was found on the valve's internal surfaces. Another mechanical analysis was performed in 1991, after five additional years of valve operation. The valve, which had now handled more than 250,000 tons of product, showed minimal wear. H and G's capital costs had been reduced from 25[cents]/ton to 3[cents]/ton by the new valve.

  7. Abrasion in pyroclastic density currents: Insights from tumbling experiments

    NASA Astrophysics Data System (ADS)

    Kueppers, Ulrich; Putz, Constanze; Spieler, Oliver; Dingwell, Donald B.

    2012-01-01

    During granular mass movements of any kind, particles may interact with one another. The degree of interaction is a function of several variables including; grain-size distribution, particle concentration, density stratification and degree of fluidisation. The impact of particle interaction is additionally influenced by the relative speed, impact angle and clast temperature. Thus, both source conditions and transport-related processes are expected to influence the flow dynamics of pyroclastic density currents and their subsequent deposition. Here, we use tumbling experiments to shed light on the susceptibility of porous clasts to abrasion. We investigated the abrasion of unaltered volcanic rocks (5.7-80 vol.% porosity) from Unzen (Japan), Bezymianny (Russia) and Santorini (Greece) volcanoes as well as one synthetic analogue material, an insulating material with the trade name Foamglas® (95 vol.% porosity). Each experiment started with angular fragments generated in a jaw crusher from larger clasts. Two experimental series were performed; on samples with narrow and broader grain-size distributions, respectively. The dry samples were subject to rotational movement at constant speed and ambient temperature in a gum rotational tumbler for durations of 15, 30, 45, 60 and 120 min. The amount of volcanic ash (particles <2 mm) generated was evaluated as a function of experimental duration and sample porosity. We term “abrasion” as the ash fraction generated during the experiments. The observed increase of “abrasion” with increasing sample porosity and experimental duration is initially non-linear but becomes linear for experiments of 30 min duration or longer. For any given sample, abrasion appears to be more effective for coarser samples and larger initial mass. The observed range of ash generated in our experiments is between 1 and 35 wt.%. We find that this amount generally increases with increasing initial clast size or increasing breadth of the initial grain

  8. Heat sealable, flame and abrasion resistant coated fabric

    NASA Technical Reports Server (NTRS)

    Tschirch, R. P.; Sidman, K. R. (Inventor)

    1983-01-01

    Flame retardant, abrasion resistant elastomeric compositions are disclosed which are comprised of thermoplastic polyurethane polymer and flame retarding amounts of a filler selected from decabromodiphenyloxide and antimony oxide in a 3:1 weight ratio, and decabromodiphenyloxide, antimony oxide, and ammonium polyphosphate in a 3:1:3 weight ratio respectively. Heat sealable coated fabrics employing such elastomeric compositions as coating film are produced by dissolving the elastomeric composition to form a solution, casting the solution onto a release paper and drying it to form an elastomeric film. The film is then bonded to a woven, knitted, or felted fabric.

  9. Effect of mechanical abrasion on the viability, disruption and germination of spores of Bacillus subtilis

    PubMed Central

    Jones, C.A.; Padula, N.L.; Setlow, P.

    2005-01-01

    Aims To elucidate the factors influencing the sensitivity of Bacillus subtilis spores to killing and disruption by mechanical abrasion, and the mechanism of stimulation of spore germination by abrasion. Methods and Results Spores of B. subtilis strains were abraded by shaking with glass beads in liquid or the dry state, and spore killing, disruption and germination were determined. Dormant spores were more resistant to killing and disruption by abrasion than were growing cells or germinated spores. However, dormant spores of the wild-type strain with or without most coat proteins removed, spores of strains with mutations causing spore coat defects, spores lacking their large depot of dipicolinic acid (DPA) and spores with defects in the germination process exhibited essentially identical rates of killing and disruption by abrasion. When spores lacking all nutrient germinant receptors were enumerated by plating directly on nutrient medium, abrasion increased the plating efficiency of these spores before killing them. Spores lacking all nutrient receptors and either of the two redundant cortex-lytic enzymes behaved similarly in this regard, but the plating efficiency of spores lacking both cortex-lytic enzymes was not stimulated by abrasion. Conclusions Dormant spores are more resistant to killing and disruption by abrasion than are growing cells or germinated spores, and neither the complete coats nor DPA are important in spore resistance to such treatments. Germination is not essential for spore killing by abrasion, although abrasion can trigger spore germination by activation of either of the spore’s cortex-lytic enzymes. Significance and Importance This work provides new insight into the mechanisms of the killing, disruption and germination of spores by abrasion and makes the surprising finding that at least much of the spore coat is not important in spore resistance to abrasion. PMID:16313421

  10. Air abrasion experiments in U-Pb dating of zircon

    USGS Publications Warehouse

    Goldich, S.S.; Fischer, L.B.

    1986-01-01

    Air abrasion of zircon grains can remove metamict material that has lost radiogenic Pb and zircon overgrowths that were added during younger events and thereby improve the precision of the age measurements and permit closer estimates of the original age. Age discordance that resulted from a single disturbance of the U-Pb isotopic decay systems, as had been demonstrated by T.E. Krogh, can be considerably reduced, and, under favorable conditions, the ages brought into concordancy. Two or more events complicate the U-Pb systematics, but a series of abrasion experiments can be helpful in deciphering the geologic history and in arriving at a useful interpretation of the probable times of origin and disturbances. In east-central Minnesota, U.S.A., Penokean tonalite gneiss is dated at 1869 ?? 5 Ma, and sheared granite gneiss is shown to have been a high-level granite intrusion at 1982 ?? 5 Ma in the McGrath Gneiss precursor. Tonalite gneiss and a mafic granodiorite in the Rainy Lake area, Ontario, Canada, are dated at 2736 ?? 16 and 2682 ?? 4 Ma, respectively. The tonalitic phase of the Morton Gneiss, southwestern Minnesota, is dated at 3662 ?? 42 Ma. ?? 1986.

  11. Abrasion Resistant Coating and Method of making the same

    SciTech Connect

    Sordelet, Daniel J.; Besser, Matthew F.

    1999-06-25

    An abrasion resistant coating is created by adding a ductile phase to a brittle matrix phase during spray coating where an Al-Cu-Fe quasicrystalline phase (brittle matrix) and an FeAl intermetallic (ductile phase) are combined. This composite coating produces a coating mostly of quasicrystal phase and an inter-splat layer of the FeAl phase to help reduce porosity and cracking within the coating. Coatings are prepared by plasma spraying unblended and blended quasicrystal and intermetallic powders. The blended powders contain 1, 5, 10 and 20 volume percent of the intermetallic powders. The unblended powders are either 100 volume percent quasicrystalline or 100 volume percent intermetallic; these unblended powders were studied for comparison to the others. Sufficient ductile phase should be added to the brittle matrix to transform abrasive wear mode from brittle fracture to plastic deformation, while at the same time the hardness of the composite should not be reduced below that of the original brittle phase material.

  12. Abrasion resistant coating and method of making the same

    DOEpatents

    Sordelet, Daniel J.; Besser, Matthew F.

    2001-06-05

    An abrasion resistant coating is created by adding a ductile phase to a brittle matrix phase during spray coating where an Al--Cu--Fe quasicrystalline phase (brittle matrix) and an FeAl intermetallic (ductile phase) are combined. This composite coating produces a coating mostly of quasicrystal phase and an inter-splat layer of the FeAl phase to help reduce porosity and cracking within the coating. Coatings are prepared by plasma spraying unblended and blended quasicrystal and intermetallic powders. The blended powders contain 1, 5, 10 and 20 volume percent of the intermetallic powders. The unblended powders are either 100 volume percent quasicrystalline or 100 volume percent intermetallic; these unblended powders were studied for comparison to the others. Sufficient ductile phase should be added to the brittle matrix to transform abrasive wear mode from brittle fracture to plastic deformation, while at the same time the hardness of the composite should not be reduced below that of the original brittle phase material.

  13. Prediction Of Abrasive And Diffusive Tool Wear Mechanisms In Machining

    NASA Astrophysics Data System (ADS)

    Rizzuti, S.; Umbrello, D.

    2011-01-01

    Tool wear prediction is regarded as very important task in order to maximize tool performance, minimize cutting costs and improve the quality of workpiece in cutting. In this research work, an experimental campaign was carried out at the varying of cutting conditions with the aim to measure both crater and flank tool wear, during machining of an AISI 1045 with an uncoated carbide tool P40. Parallel a FEM-based analysis was developed in order to study the tool wear mechanisms, taking also into account the influence of the cutting conditions and the temperature reached on the tool surfaces. The results show that, when the temperature of the tool rake surface is lower than the activation temperature of the diffusive phenomenon, the wear rate can be estimated applying an abrasive model. In contrast, in the tool area where the temperature is higher than the diffusive activation temperature, the wear rate can be evaluated applying a diffusive model. Finally, for a temperature ranges within the above cited values an adopted abrasive-diffusive wear model furnished the possibility to correctly evaluate the tool wear phenomena.

  14. Sliding-gate valve for use with abrasive materials

    DOEpatents

    Ayers, Jr., William J.; Carter, Charles R.; Griffith, Richard A.; Loomis, Richard B.; Notestein, John E.

    1985-01-01

    The invention is a flow and pressure-sealing valve for use with abrasive solids. The valve embodies special features which provide for long, reliable operating lifetimes in solids-handling service. The valve includes upper and lower transversely slidable gates, contained in separate chambers. The upper gate provides a solids-flow control function, whereas the lower gate provides a pressure-sealing function. The lower gate is supported by means for (a) lifting that gate into sealing engagement with its seat when the gate is in its open and closed positions and (b) lowering the gate out of contact with its seat to permit abrasion-free transit of the gate between its open and closed positions. When closed, the upper gate isolates the lower gate from the solids. Because of this shielding action, the sealing surface of the lower gate is not exposed to solids during transit or when it is being lifted or lowered. The chamber containing the lower gate normally is pressurized slightly, and a sweep gas is directed inwardly across the lower-gate sealing surface during the vertical translation of the gate.

  15. Attrition and abrasion models for oil shale process modeling

    SciTech Connect

    Aldis, D.F.

    1991-10-25

    As oil shale is processed, fine particles, much smaller than the original shale are created. This process is called attrition or more accurately abrasion. In this paper, models of abrasion are presented for oil shale being processed in several unit operations. Two of these unit operations, a fluidized bed and a lift pipe are used in the Lawrence Livermore National Laboratory Hot-Recycle-Solid (HRS) process being developed for the above ground processing of oil shale. In two reports, studies were conducted on the attrition of oil shale in unit operations which are used in the HRS process. Carley reported results for attrition in a lift pipe for oil shale which had been pre-processed either by retorting or by retorting then burning. The second paper, by Taylor and Beavers, reported results for a fluidized bed processing of oil shale. Taylor and Beavers studied raw, retorted, and shale which had been retorted and then burned. In this paper, empirical models are derived, from the experimental studies conducted on oil shale for the process occurring in the HRS process. The derived models are presented along with comparisons with experimental results.

  16. Cotton Seedling Injury and Recovery from Wind Blown Sand Abrasion: I. Duration of Exposure

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Millions of acres of crops are exposed to wind blown sand abrasion injury each year and in many instances the damage is thought to be sufficiently severe to require replanting. The goal of this study was to determine the effects of wind blown sand abrasion duration on cotton seedlings. Seedlings of...

  17. Cutting Tools, Files and Abrasives. Pre-Apprenticeship Phase 1 Training.

    ERIC Educational Resources Information Center

    Lane Community Coll., Eugene, OR.

    This self-paced student training module on cutting tools, files, and abrasives is one of a number of modules developed for Pre-apprenticeship Phase 1 Training. Purpose of the module is to enable students to identify and explain the proper use and care of various knives, saws, snips, chisels, and abrasives. The module may contain some or all of the…

  18. Process Monitoring Evaluation and Implementation for the Wood Abrasive Machining Process

    PubMed Central

    Saloni, Daniel E.; Lemaster, Richard L.; Jackson, Steven D.

    2010-01-01

    Wood processing industries have continuously developed and improved technologies and processes to transform wood to obtain better final product quality and thus increase profits. Abrasive machining is one of the most important of these processes and therefore merits special attention and study. The objective of this work was to evaluate and demonstrate a process monitoring system for use in the abrasive machining of wood and wood based products. The system developed increases the life of the belt by detecting (using process monitoring sensors) and removing (by cleaning) the abrasive loading during the machining process. This study focused on abrasive belt machining processes and included substantial background work, which provided a solid base for understanding the behavior of the abrasive, and the different ways that the abrasive machining process can be monitored. In addition, the background research showed that abrasive belts can effectively be cleaned by the appropriate cleaning technique. The process monitoring system developed included acoustic emission sensors which tended to be sensitive to belt wear, as well as platen vibration, but not loading, and optical sensors which were sensitive to abrasive loading. PMID:22163477

  19. Effect of canopy leaf distribution on sand transport and abrasion energy

    Technology Transfer Automated Retrieval System (TEKTRAN)

    During times when crop canopies are short or sparse, wind erosion can uncover plant roots, deplete the soil resource, and damage plants by abrasion and desiccation. Few studies have considered the effects of position and number of leaves on sand transport and the distribution of the sand abrasion en...

  20. Potential Use of Abrasive Air-Propelled Agricultural Residues for Weed Control

    Technology Transfer Automated Retrieval System (TEKTRAN)

    A new postemergence weed control tactic is proposed for organic production systems that results in plant abrasion and death upon assault from abrasive grits propelled by compressed air. Grit derived from granulated walnut shells was delivered by a sand blaster at 517 kPa at distances of 30 to 60 cm ...

  1. Hybrid organic/inorganic coatings for abrasion resistance on plastic and metal substrates

    SciTech Connect

    Wen, J.; Jordens, K.; Wilkes, G.L.

    1996-12-31

    Novel abrasion resistant coatings have been successfully prepared by the sol-gel method. These materials are spin coated onto bisphenol-A polycarbonate, diallyl diglycol carbonate resin (CR-39) sheet, aluminum, and steel substrates and are thermally cured to obtain a transparent coating of a few microns in thickness. Following the curing, the abrasion resistance is measured and compared with an uncoated control. It was found that these hybrid organic/inorganic networks partially afford excellent abrasion resistance to the polycarbonate substrates investigated. In addition to having excellent abrasion resistance comparable to current commercial coatings, some newly developed systems are also UV resistant. Similar coating formulations applied to metals can greatly improve the abrasion resistance despite the fact that the coatings are lower in density than their substrates.

  2. Electron Microscopy Abrasion Analysis of Candidate Fabrics for Planetary Space Suit Protective Overgarment Application

    NASA Technical Reports Server (NTRS)

    Hennessy, Mary J.

    1992-01-01

    The Electron Microscopy Abrasion Analysis of Candidate Fabrics for Planetary Space Suit Protective Overgarment Application is in support of the Abrasion Resistance Materials Screening Test. The fundamental assumption made for the SEM abrasion analysis was that woven fabrics to be used as the outermost layer of the protective overgarment in the design of the future, planetary space suits perform best when new. It is the goal of this study to determine which of the candidate fabrics was abraded the least in the tumble test. The sample that was abraded the least will be identified at the end of the report as the primary candidate fabric for further investigation. In addition, this analysis will determine if the abrasion seen by the laboratory tumbled samples is representative of actual EVA Apollo abrasion.

  3. A review of engineering control technology for exposures generated during abrasive blasting operations.

    PubMed

    Flynn, Michael R; Susi, Pam

    2004-10-01

    This literature review presents information on measures for controlling worker exposure to toxic airborne contaminants generated during abrasive blasting operations occurring primarily in the construction industry. The exposures of concern include respirable crystalline silica, lead, chromates, and other toxic metals. Unfortunately, silica sand continues to be widely used in the United States as an abrasive blasting medium, resulting in high exposures to operators and surrounding personnel. Recently, several alternative abrasives have emerged as potential substitutes for sand, but they seem to be underused Some of these abrasives may pose additional metal exposure hazards. In addition, several new and improved technologies offer promise for reducing or eliminating exposures; these include wet abrasive blasting, high-pressure water jetting, vacuum blasting, and automated/robotic systems. More research, particularly field studies, is needed to evaluate control interventions in this important and hazardous operation. PMID:15631059

  4. High grade abrasive product development from virtified industrial waste

    SciTech Connect

    Blume, R.D.; Drummond, C.H. III; Sarko, A.

    1996-12-31

    Recent developments in environmental legislation, as well as economic incentives such as the increasing cost of landfilling, have led to a paradigm shift away from encapsulation of hazardous waste. The current focus is recycling and product development utilizing industrial waste as raw materials. Current research has targeted the development of high grade abrasive (Vickers hardness (VHN) > 1000 kgF/mm{sup 2}) for blasting and buffing and polishing applications. In addition to product specific physical properties, the developed formulations must also have processing characteristics necessary for vitrification using a high temperature product burner developed by Seiler Pollution Control Systems, as well as the necessary resistance to leaching of EPA regulated hazardous components. Current work has led to the development of formulations with high VHN (950 kgF/mm{sup 2}), acceptable chemical durability, and high mechanical durability utilizing electric arc furnace dust (KO61) and foundry sand as the major components.

  5. Wire blade development for Fixed Abrasive Slicing Technique (FAST) slicing

    NASA Technical Reports Server (NTRS)

    Khattak, C. P.; Schmid, F.; Smith, M. B.

    1982-01-01

    A low cost, effective slicing method is essential to make ingot technology viable for photovoltaics in terrestrial applications. The fixed abrasive slicing technique (FAST) combines the advantages of the three commercially developed techniques. In its development stage FAST demonstrated cutting effectiveness of 10 cm and 15 cm diameter workpieces. Wire blade development is still the critical element for commercialization of FAST technology. Both impregnated and electroplated wire blades have been developed; techniques have been developed to fix diamonds only in the cutting edge of the wire. Electroplated wires show the most near term promise and this approach is emphasized. With plated wires it has been possible to control the size and shape of the electroplating, it is expected that this feature reduces kerf and prolongs the life of the wirepack.

  6. Fatigue Testing of Abrasive Water Jet Cut Titanium

    SciTech Connect

    Hovanski, Yuri; Dahl, Michael E.; Williford, Ralph E.

    2009-06-08

    Battelle Memorial Institute as part of its U.S. Department of Energy (USDOE) Contract No. DE-AC05-76RL01830 to operate the Pacific Northwest National Laboratory (PNNL) provides technology assistance to qualifying small businesses in association with a Technology Assistance Program (TAP). Qualifying companies are eligible to receive a set quantity of labor associated with specific technical assistance. Having applied for a TAP agreement to assist with fatigue characterization of Abrasive Water Jet (AWJ) cut titanium specimens, the OMAX Corporation was awarded TAP agreement 09-02. This program was specified to cover dynamic testing and analysis of fatigue specimens cut from titanium alloy Ti-6%Al-4%V via AWJ technologies. In association with the TAP agreement, a best effort agreement was made to characterize fatigue specimens based on test conditions supplied by OMAX.

  7. Microstructure and abrasion resistance of plasma sprayed titania coatings

    NASA Astrophysics Data System (ADS)

    Ctibor, P.; Neufuss, K.; Chraska, P.

    2006-12-01

    Agglomerated titania nanopowder and a “classical” titania were sprayed by the high throughput water-stabilized plasma (WSP) and thoroughly compared. Optical microscopy with image analysis as well as mercury intrusion porosimetry were used for quantification of porosity. Results indicate that the “nano” coatings in general exhibit finer pores than coatings of the “conventional” micron-sized powders. Mechanical properties such as Vickers microhardness and slurry abrasion response were measured and linked to the structural investigation. Impact of the variation in the slurry composition on wear resistance of tested coatings and on character of the wear damage is discussed. The overall results, however, suggest that the “nano” coatings properties are better only for carefully selected sets of spraying parameters, which seem to have a very important impact.

  8. Quantitative modeling of facet development in ventifacts by sand abrasion

    NASA Astrophysics Data System (ADS)

    Várkonyi, Péter L.; Laity, Julie E.; Domokos, Gábor

    2016-03-01

    We use a quantitative model to examine rock abrasion by direct impacts of sand grains. Two distinct mechanisms are uncovered (unidirectional and isotropic), which contribute to the macro-scale morphological characters (sharp edges and flat facets) of ventifacts. It is found that facet formation under conditions of a unidirectional wind relies on certain mechanical properties of the rock material, and we confirm the dominant role of this mechanism in the formation of large ventifacts. Nevertheless small ventifacts may also be shaped to polyhedral shapes in a different way (isotropic mechanism), which is not sensitive to wind characteristics nor to rock material properties. The latter mechanism leads to several 'mature' shapes, which are surprisingly analogous to the morphologies of typical small ventifacts. Our model is also able to explain certain quantitative laboratory and field observations, including quick decay of facet angles of ventifacts followed by stabilization in the range 20-30°.

  9. Cover and Erosion Asymmetry in Saltation-Abrasion

    NASA Astrophysics Data System (ADS)

    Stark, C. P.; Parker, G.

    2014-12-01

    Erosion in bedrock-floored rivers is both driven and limited by the amount of sediment transported along the bed. Some sediment boosts wear rates, whereas too much generates a protective cover. This phenomenon determines the shape of river channels in a variety of landscapes and limits how fast they evolve. Here we reevaluate data from a well-known bedrock wear experiment to throw new light on how the saltation-abrasion process. Instead of a symmetric form for erosion versus sediment flux relative to transport capacity, we find the erosion rate peak shifts towards lower sediment fluxes when blocking of oblique saltation trajectories is taken into account. The theoretical context for this reevaluation is a cover-saltation-abrasion model, based on queueing theory (QT), for bedload transport over a planar bedrock bed. The QT approach provides some clarity in the stochastic treatment of granular impacts and cover, and generates closed-form solutions for wear rate in terms of sediment flux and simplified saltation geometry. Applied to the Sklar & Dietrich (2001) experiments in a very small recirculating flume, the two-parameter QT model fits the observed relation between erosion rate and sediment load, infers sediment flux as a function of load, admits non-negligible wear rates for a mean sediment depth of one grain, i.e., for full cover on average, but also suggests that bedrock erosion is blocked at >=50% instantaneous cover. The QT model makes testable predictions for future laboratory experiments and highlights the need for specific improvements in more comprehensive treatments of bedrock erosion and cover.

  10. Quantitative image analysis for evaluating the abrasion resistance of nanoporous silica films on glass

    NASA Astrophysics Data System (ADS)

    Nielsen, Karsten H.; Karlsson, Stefan; Limbach, Rene; Wondraczek, Lothar

    2015-12-01

    The abrasion resistance of coated glass surfaces is an important parameter for judging lifetime performance, but practical testing procedures remain overly simplistic and do often not allow for direct conclusions on real-world degradation. Here, we combine quantitative two-dimensional image analysis and mechanical abrasion into a facile tool for probing the abrasion resistance of anti-reflective (AR) coatings. We determine variations in the average coated area, during and after controlled abrasion. Through comparison with other experimental techniques, we show that this method provides a practical, rapid and versatile tool for the evaluation of the abrasion resistance of sol-gel-derived thin films on glass. The method yields informative data, which correlates with measurements of diffuse reflectance and is further supported by qualitative investigations through scanning electron microscopy. In particular, the method directly addresses degradation of coating performance, i.e., the gradual areal loss of antireflective functionality. As an exemplary subject, we studied the abrasion resistance of state-of-the-art nanoporous SiO2 thin films which were derived from 5-6 wt% aqueous solutions of potassium silicates, or from colloidal suspensions of SiO2 nanoparticles. It is shown how abrasion resistance is governed by coating density and film adhesion, defining the trade-off between optimal AR performance and acceptable mechanical performance.

  11. Quantitative characterization of agglomerate abrasion in a tumbling blender by using the Stokes number approach.

    PubMed

    Willemsz, Tofan A; Nguyen, Tien Thanh; Hooijmaijers, Ricardo; Frijlink, Henderik W; Vromans, Herman; van der Voort Maarschalk, Kees

    2013-03-01

    Removal of microcrystalline cellulose agglomerates in a dry-mixing system (lactose, 100 M) predominantly occurs via abrasion. The agglomerate abrasion rate potential is estimated by the Stokes abrasion (StAbr) number of the system. The StAbr number equals the ratio between the kinetic energy density of the moving powder bed and the work of fracture of the agglomerate. Basically, the StAbr number concept describes the blending condition of the dry-mixing system. The concept has been applied to investigate the relevance of process parameters on agglomerate abrasion in tumbling blenders. Here, process parameters such as blender rotational speed and relative fill volumes were investigated. In this study, the StAbr approach revealed a transition point between abrasion rate behaviors. Below this transition point, a blending condition exists where agglomerate abrasion is dominated by the kinetic energy density of the powder blend. Above this transition point, a blending condition exists where agglomerates show (undesirable) slow abrasion rates. In this situation, the blending condition is mainly determined by the high fill volume of the filler. PMID:23250711

  12. Microstructural effects in abrasive wear. Third annual progress report, August 12, 1983-August 14, 1984

    SciTech Connect

    Kosel, T.H.

    1984-08-14

    The two major goals of the project are to improve our understanding of the mechanisms of carbide removal and of the role of matrix properties in abrasion. In the area of carbide removal mechanisms, progress this year has included completion of the fixed-depth scratch test apparatus and its use to demonstrate the occurrence of gross carbide cracking under fixed-depth conditions; comparable cracking does not occur under fixed-load conditions at a similar mean load. A high-stress abrasion system has been constructed and tested which will facilitate studies of abrasion under conditions similar to those produced by the fixed-depth scratch test system. Analysis of the work on the size effect in abrasion of dual-phase alloys has been completed. The largest single item in this year's proposed work in a study of the abrasion resistance and mechanisms of material removal in model alloys having second-phase particles (SPP's) with varying fracture properties. In the area of the effects of matrix properties on abrasion, the majority of the effort this year has centered on transmission electron microscopy of the subsurface deformation microstructures developed during abrasion.

  13. Quantitative image analysis for evaluating the abrasion resistance of nanoporous silica films on glass

    PubMed Central

    Nielsen, Karsten H.; Karlsson, Stefan; Limbach, Rene; Wondraczek, Lothar

    2015-01-01

    The abrasion resistance of coated glass surfaces is an important parameter for judging lifetime performance, but practical testing procedures remain overly simplistic and do often not allow for direct conclusions on real-world degradation. Here, we combine quantitative two-dimensional image analysis and mechanical abrasion into a facile tool for probing the abrasion resistance of anti-reflective (AR) coatings. We determine variations in the average coated area, during and after controlled abrasion. Through comparison with other experimental techniques, we show that this method provides a practical, rapid and versatile tool for the evaluation of the abrasion resistance of sol-gel-derived thin films on glass. The method yields informative data, which correlates with measurements of diffuse reflectance and is further supported by qualitative investigations through scanning electron microscopy. In particular, the method directly addresses degradation of coating performance, i.e., the gradual areal loss of antireflective functionality. As an exemplary subject, we studied the abrasion resistance of state-of-the-art nanoporous SiO2 thin films which were derived from 5–6 wt% aqueous solutions of potassium silicates, or from colloidal suspensions of SiO2 nanoparticles. It is shown how abrasion resistance is governed by coating density and film adhesion, defining the trade-off between optimal AR performance and acceptable mechanical performance. PMID:26656260

  14. Relationships Between Abrasive Wear, Hardness, and Surface Grinding Characteristics of Titanium-Based Metal Matrix Composites

    SciTech Connect

    Blau, Peter Julian; Jolly, Brian C

    2009-01-01

    The objective of this work was to support the development of grinding models for titanium metal-matrix composites (MMCs) by investigating possible relationships between their indentation hardness, low-stress belt abrasion, high-stress belt abrasion, and the surface grinding characteristics. Three Ti-based particulate composites were tested and compared with the popular titanium alloy Ti-6Al-4V. The three composites were a Ti-6Al-4V-based MMC with 5% TiB{sub 2} particles, a Ti-6Al-4V MMC with 10% TiC particles, and a Ti-6Al-4V/Ti-7.5%W binary alloy matrix that contained 7.5% TiC particles. Two types of belt abrasion tests were used: (a) a modified ASTM G164 low-stress loop abrasion test, and (b) a higher-stress test developed to quantify the grindability of ceramics. Results were correlated with G-ratios (ratio of stock removed to abrasives consumed) obtained from an instrumented surface grinder. Brinell hardness correlated better with abrasion characteristics than microindentation or scratch hardness. Wear volumes from low-stress and high-stress abrasive belt tests were related by a second-degree polynomial. Grindability numbers correlated with hard particle content but were also matrix-dependent.

  15. Linear abrasion of a titanium superhydrophobic surface prepared by ultrafast laser microtexturing

    NASA Astrophysics Data System (ADS)

    Steele, Adam; Nayak, Barada K.; Davis, Alexander; Gupta, Mool C.; Loth, Eric

    2013-11-01

    A novel method of fabricating titanium superhydrophobic surfaces by ultrafast laser irradiation is reported. The ultrafast laser irradiation creates self-organized microstructure superimposed with nano-scale roughness, after which a fluoropolymer coating is applied to lower the surface energy of the textured surface and achieve superhydrophobicity. The focus of this study is to investigate abrasion effects on this mechanically durable superhydrophobic surface. The mechanical durability is analyzed with linear abrasion testing and microscopy imaging. Linear abrasion tests indicate that these surfaces can resist complete microstructure failure up to 200 abrasion cycles and avoid droplet pinning up to ten abrasion cycles at 108.4 kPa applied pressure, which roughly corresponds to moderate to heavy sanding or rubbing in the presence of abrasive particles. The wear mechanisms are also investigated and the primary mechanism for this system is shown to be abrasive wear with fatigue by repeated plowing. Although these results demonstrate an advancement in mechanical durability over the majority of existing superhydrophobic surfaces, it exemplifies the challenge in creating superhydrophobic surfaces with suitable mechanical durability for harsh applications, even when using titanium.

  16. Influence of Corrosion on the Abrasion of Cutter Steels Used in TBM Tunnelling

    NASA Astrophysics Data System (ADS)

    Espallargas, N.; Jakobsen, P. D.; Langmaack, L.; Macias, F. J.

    2015-01-01

    Abrasion on tunnel boring machine (TBM) cutters may be critical in terms of project duration and costs. Several researchers are currently studying the degradation of TBM cutter tools used for excavating hard rock, soft ground and loose soil. So far, the primary focus of this research has been directed towards abrasive wear. Abrasive wear is a very common process in TBM excavation, but with a view to the environment in which the tools are working, corrosion may also exert an influence. This paper presents a selection of techniques that can be used to evaluate the influence of corrosion on abrasion on TBM excavation tools. It also presents the influence of corrosion on abrasive wear for some initial tests, with constant steel and geomaterial and varying properties of the excavation fluids (soil conditioners, anti-abrasion additives and water). The results indicate that the chloride content in the water media greatly influences the amount of wear, providing evidence of the influence of corrosion on the abrasion of the cutting tools. The presence of conditioning additives tailored to specific rock or soil conditions reduces wear. However, when chloride is present in the water, the additives minimise wear rates but fail to suppress corrosion of the cutting tools.

  17. Characterization and dispersion of pollutant releases from the abrasive blasting of lead paint from steel bridges

    SciTech Connect

    Lee, M.; Rana, B.

    1999-07-01

    The characterization of airborne and spent material for abrasive blasting of steel paint was performed as part of the Environmental Impact Statement for Lead Paint Removal Operations on New York City Department of Transportation Bridges1. Laboratory tests were performed on painted steel components of the Williamsburg Bridge, to determine the sizes of particles typically released into the air as aerosol and onto the ground as bulk material, as a result of accidental releases from abrasive blasting operations. Two of the most commonly used abrasives for paint removal on steel structures, recyclable steel grit and expendable abrasives were subjected to the laboratory tests. The results of the tests were used to determine the percentage of existing paint and abrasive which becomes airborne and the resultant particle size distributions, which were employed in the air quality concentration and deposition modeling for the EIS. Particle size distributions of the airborne material indicated that the profiles of airborne lead and particulate matter have a mean particle size between 15 and 21 microns. Spent abrasives and paint chips that settle on the floor are larger in size with a mean diameter greater than 259 microns, although up to 6% of this material has a mean diameter less than 50 microns. The percentage of paint and expendable abrasives that become airborne as a result of abrasive blasting were estimated to be as high as 9.0 and 12.4%, respectively. Potential release rates were derived for total accumulation (duration of the project), annual, quarterly, 24-hour, and 1-hour time averaging periods for abrasives, lead, and other metals. Pollutant releases were simulated as individual sources at multiple release heights with the Environment Protection Agency's ISC3ST model for six representative bridges near potential places of public exposure.

  18. Optical-model abrasion cross sections for high-energy heavy ions

    NASA Technical Reports Server (NTRS)

    Townsend, L. W.

    1981-01-01

    Within the context of eikonal scattering theory, a generalized optical model potential approximation to the nucleus-nucleus multiple scattering series is used in an abrasion-ablation collision model to predict abrasion cross sections for relativistic projectile heavy ions. Unlike the optical limit of Glauber theory, which cannot be used for very light nuclei, the abrasion formalism is valid for any projectile target combination at any incident kinetic energy for which eikonal scattering theory can be utilized. Results are compared with experimental results and predictions from Glauber theory.

  19. Plasma-polymerized coating for polycarbonate: Single-layer, abrasion resistant, and antireflection

    NASA Technical Reports Server (NTRS)

    Wydeven, Theodore

    1991-01-01

    Plasma-polymerized vinyl trimethoxy silane films were deposited on transparent polycarbonate substrates. The adherent, clear films protected the substrates from abrasion and also served as antireflection coatings. Post-treatment of the vinyl trimethoxy silane films in an oxygen glow discharge further improved their abrasion resistance. The coatings were characterized by elemental analysis of the bulk, ESCA analysis of the surface, transmission, thickness, abrasion resistance, haze, and adhesion. This patented process is currently used by the world's largest manufacturers of non-prescription sunglasses to protect the plastic glasses from scratching and thereby to increase their useful lifetime.

  20. Optical-model abrasion cross sections for high-energy heavy ions

    SciTech Connect

    Townsend, L.W.

    1981-07-01

    Within the context of eikonal scattering theory, a generalized optical model potential approximation to the nucleus-nucleus multiple scattering series is used in an abrasion-ablation collision model to predict abrasion cross sections for relativistic projectile heavy ions. Unlike the optical limit of Glauber theory, which cannot be used for very light nuclei, the abrasion formalism is valid for any projectile target combination at any incident kinetic energy for which eikonal scattering theory can be utilized. Results are compared with experimental results and predictions from Glauber theory.

  1. High Resolution Laser Scanning Techniques for Rock Abrasion and Texture Analyses on Mars and Earth

    NASA Technical Reports Server (NTRS)

    Bridges, N. T.; Razdan, A.; Greeley, R.; Laity, J. E.

    2004-01-01

    Aeolian abrasion is operative in many arid locations on Earth and is probably the dominant rock erosion process in the current Martian environment. Therefore, understanding the controlling parameters and rates of aeolian abrasion provides 1) insight into the stability of rocks on planetary surfaces and the environments under which the rocks abrade, and 2) a link between ventifact (a rock abraded by windblown particles) morphology and: a) abrasion conditions, b) possible ancient environments under which the rocks were abraded, and c) rock properties. promising and we plan further investigations in the wind tunnel and field. Our intent here is to discuss the basic technique, initial results, and upcoming plans.

  2. Target correlation effects on neutron-nucleus total, absorption, and abrasion cross sections

    NASA Technical Reports Server (NTRS)

    Cucinotta, Francis A.; Townsend, Lawrence W.; Wilson, John W.

    1991-01-01

    Second order optical model solutions to the elastic scattering amplitude were used to evaluate total, absorption, and abrasion cross sections for neutron nucleus scattering. Improved agreement with experimental data for total and absorption cross sections is found when compared with first order (coherent approximation) solutions, especially below several hundred MeV. At higher energies, the first and second order solutions are similar. There are also large differences in abrasion cross section calculations; these differences indicate a crucial role for cluster knockout in the abrasion step.

  3. Abrasion of heavy-duty coated steel pipes by sediment transport

    SciTech Connect

    Kariyazono, Yoshihisa; Miyajima, Yoshihiro; Sato, Koichi; Yamashita, Toshihiko, Yamashita; Saeki, Hiroshi

    1994-12-31

    Heavy-duty coatings are standard treatment for steel pipe piles in coastal zones to prevent corrosion. Large amounts of sand sometimes drift around piles by the action of waves. Coatings undergo abrasion by collision of sand particles. Authors carried out experiments by a large scale U-shaped tube which generated a strong oscillatory flow with sand drift and numerical analysis of collision of the particles. Authors found out the abrasion rate of pile is nearly proportional to the collision energy of the particles. Abrasion rate of polyethylene and elastic polyurethane coatings were lower than those of other materials.

  4. Three-Body Abrasion Testing Using Lunar Dust Simulants to Evaluate Surface System Materials

    NASA Technical Reports Server (NTRS)

    Kobrick, Ryan L.; Budinski, Kenneth G.; Street, Kenneth W., Jr.; Klaus, David M.

    2010-01-01

    Numerous unexpected operational issues relating to the abrasive nature of lunar dust, such as scratched visors and spacesuit pressure seal leaks, were encountered during the Apollo missions. To avoid reoccurrence of these unexpected detrimental equipment problems on future missions to the Moon, a series of two- and three-body abrasion tests were developed and conducted in order to begin rigorously characterizing the effect of lunar dust abrasiveness on candidate surface system materials. Two-body scratch tests were initially performed to examine fundamental interactions of a single particle on a flat surface. These simple and robust tests were used to establish standardized measurement techniques for quantifying controlled volumetric wear. Subsequent efforts described in the paper involved three-body abrasion testing designed to be more representative of actual lunar interactions. For these tests, a new tribotester was developed to expose samples to a variety of industrial abrasives and lunar simulants. The work discussed in this paper describes the three-body hardware setup consisting of a rotating rubber wheel that applies a load on a specimen as a loose abrasive is fed into the system. The test methodology is based on ASTM International (ASTM) B611, except it does not mix water with the abrasive. All tests were run under identical conditions. Abraded material specimens included poly(methyl methacrylate) (PMMA), hardened 1045 steel, 6061-T6 aluminum (Al) and 1018 steel. Abrasives included lunar mare simulant JSC- 1A-F (nominal size distribution), sieved JSC-1A-F (<25 m particle diameter), lunar highland simulant NU-LHT-2M, alumina (average diameter of 50 m used per ASTM G76), and silica (50/70 mesh used per ASTM G65). The measured mass loss from each specimen was converted using standard densities to determine total wear volume in cm3. Abrasion was dominated by the alumina and the simulants were only similar to the silica (i.e., sand) on the softer materials of

  5. Abrasive wear by coal-fueled diesel engine and related particles

    SciTech Connect

    Ives, L.K.

    1992-09-01

    The development of commercially viable diesel engines that operate directly on pulverized coal-fuels will require solution to the problem of severe abrasive wear. The purpose of the work described in this report was to investigate the nature of the abrasive wear problem. Analytical studies were carried out to determine the characteristics of the coal-fuel and associated combustion particles responsible for abrasion. Laboratory pinon-disk wear tests were conducted on oil-particle mixtures to determine the relationship between wear rate and a number of different particle characteristics, contact parameters, specimen materials properties, and other relevant variables.

  6. Surface assessment and modification of concrete using abrasive blasting

    NASA Astrophysics Data System (ADS)

    Millman, Lauren R.

    Composite systems are applied to concrete substrates to strengthen and extend the service life. Successful restoration or rehabilitation requires surface preparation prior to the application of the overlay. Surface coatings, waterproofing systems, and other external surface applications also require surface preparation prior to application. Abrasive blast media is often used to clean and uniformly roughen the substrate. The appropriate surface roughness is necessary to facilitate a strong bond between the existing substrate and overlay. Thus, surface modification using abrasive blast media (sand and dry ice), their respective environmental effects, surface roughness characterization prior to and after blasting, and the adhesion between the substrate and overlay are the focus of this dissertation. This dissertation is comprised of an introduction, a literature review, and four chapters, the first of which addresses the environmental effects due to abrasive blasting using sand, water, and dry ice. The assessment considered four response variables: carbon dioxide (CO2) emissions, fuel and energy consumption, and project duration. The results indicated that for sand blasting and water jetting, the primary factor contributing to environmental detriment was CO22 emissions from vehicular traffic near the construction site. The second chapter is an analysis of the International Concrete Repair Institute's (ICRI) concrete surface profiles (CSPs) using 3-D optical profilometry. The primary objective was to evaluate the suitability of approximating the 3-D surface (areal) parameters with those extracted from 2-D (linear) profiles. Four profile directions were considered: two diagonals, and lines parallel and transverse to the longitudinal direction of the mold. For any CSP mold, the estimation of the 3-D surface roughness using a 2-D linear profile resulted in underestimation and overestimation errors exceeding 50%, demonstrating the inadequacy of 2-D linear profiles to

  7. Abrasive jet micro-machining of polymeric materials

    NASA Astrophysics Data System (ADS)

    Hailu, Getu

    In the abrasive jet micro-machining (AJM) process, a jet of small particles is directed through an erosion resistant mask opening so that micro-sized features (i.e., micro-channels, holes, etc.) can be machined for the fabrication of micro-devices such as micro-fluidic and micro-electro-mechanical-systems (MEMS). Polymeric materials and elastomers have found applications in a wide variety of micro-devices. This thesis investigates the AJM of such materials, addressing the major challenges that must be overcome in order for the process to gain wider acceptance in industry. The thesis first presents a novel cryogenically assisted abrasive jet micro-machining (CAJM) technique that enables the micro-machining of elastomers such as polydimethylsiloxane (PDMS) that cannot be machined at room temperature. It was found that the erosion rate during CAJM is greatly increased, and the degree of particle embedment greatly decreased, compared to room temperature experiments. A finite element (FE) analysis was used to investigate the relationships between erosion, the heat transfer of the cooling jet and the resulting target temperature during the CAJM of channels in PDMS. The analysis illustrated the asymmetric nature of the cooling with much more cooling occurring towards the trailing edge of the jet. It was found that the predicted shape of the evolving machined surface profiles was improved significantly when a FE model was used to account for thermal distortion occurring during the CAJM process. An unwanted consequence of the AJM of polymeric materials was found to be particle embedding. Criteria leading to the embedding of spherical and angular particles in such materials were identified and modelled using rigid plastic analyses. It was found that the likelihood of embedding was proportional to the static coefficient of friction between the particle and the target for angular particles, and the depth of penetration for spherical particles. Scanning electron microscopy with

  8. Dental Abrasion of Incisor caused by a Babies' Dummy Clip: A Case Report.

    PubMed

    Doğramacı, Esma J; Rossi-Fedele, Giampiero

    2015-09-01

    Tooth surface loss (TSL), the non-carious loss of tooth tissue, is considered pathological if the teeth involved experience sensitivity and pain, are functionally compromised or they detract from the patient's appearance. TSL is a common clinical finding in many patient groups, although differences between the primary and permanent dentition contribute to TSL occurring at a faster rate and with worse outcomes in the primary dentition. This case report presents localized abrasion and associated apical periodontitis affecting a single primary tooth in a 2-year-old infant following the misuse of a babies' dummy clip whilst teething. Abrasion is rare in the primary dentition. CPD/CLINICAL RELEVANCE: This article highlights an unusual presentation of dental abrasion affecting the primary dentition caused by a previously unreported foreign object; abrasion in this case was a side-effect of soothing the discomfort of teething. PMID:26630866

  9. Dry Flowing Abrasive Decontamination Technique for Pipe Systems with Swirling Air Flow

    SciTech Connect

    Kameo, Yutaka; Nakashima, Mikio; Hirabayashi, Takakuni

    2003-10-15

    A dry abrasive decontamination method was developed for removing radioactive corrosion products from surfaces of coolant pipe systems in decommissioning of a nuclear power plant. Erosion behavior of inside surfaces of stainless and carbon steel pipes by a swirling air flow containing alumina or cast-iron grit abrasive was studied. Erosion depths of the test pipes were approximately proportional to an abrasive concentration in air and an exponent of flow rate of airstream. The experimental results indicated that the present method could keep satisfactory erosion ability of abrasives even for a large-size pipe. The present method was successfully applied to {sup 60}Co-contaminated specimens sampled from a pipe of the water cleanup system of the Japan Power Demonstration Reactor.

  10. Demonstration experience with an abrasive blasting technique for decontaminating concrete pads

    SciTech Connect

    Devgun, J.S. ); Land, R.R. ); Doane, R.W. )

    1990-01-01

    A demonstration was performed for decontaminating a radioactivity contaminated concrete pad with a portable abrasive blasting system. The system utilizes a rotating blast wheel that scours the concrete surface with metal abrasive. The metal abrasive, pulverized concrete dust, and contaminants rebound into a separator chamber. The reusable metal abrasive is recycled, and the pulverized media are removed to an integral dust collection system. The exhaust is HEPA filtered to minimize release of airborne contaminants. However, the technique had limited success in reducing contamination around the cracks and seams in the concrete where the higher activity levels of contamination were detected during the radiological survey before the cleanup. The technique can be successful and cost-effective in decontaminating large areas of low contamination; however, careful characterization and planning are necessary. 3 refs., 3 figs., 1 tabs.

  11. Abrasion resistance of biaxially oriented polypropylene films coated with nanocomposite hard coatings

    NASA Astrophysics Data System (ADS)

    Wang, Jing; Zhu, Yaofeng; Fu, Yaqin

    2013-11-01

    KMnO4-treated, functionalized, biaxially oriented polypropylene (BOPP) films coated with nano-silica hybrid material were synthesized. The abrasion resistance of the films was examined using a reciprocating fabric abrasion tester. Functional groups were confirmed by Fourier-transform infrared spectroscopy. Contact angle measurements were performed on the BOPP film surface to quantify the effectiveness of the functionalization. Results indicate that the abrasion resistance and roughness of the composite film were significantly affected by the modification of the BOPP film. Water surface contact angle of the modified BOPP films decreased from 90.1° to 71.4°,when KMnO4 concentration increased from 0 M to 0.25 M. Wettability of the BOPP films clearly improved after KMnO4 treatment. Abrasion resistance of the functionalized films coated with hybrid materials improved by 27.4% compared with that of the original film.

  12. Abrasion and deformed layer formation of manganese-zinc ferrite in sliding contact with lapping tapes

    NASA Technical Reports Server (NTRS)

    Miyoshi, K.; Buckley, D. H.; Tanaka, K.

    1986-01-01

    Wear experiments were conducted using replication electron microscopy and reflection electron diffraction to study abrasion and the deformed layers produced in single-crystal Mn-Zn ferrite simulated heads during contact with lapping tapes. The crystaline state of the head is changed drastically during the abrasion process. Crystalline states ranging from nearly amorphous to highly textured polycrystalline can be produced on the wear surface of a single-crystal Mn-Zn ferrite head. The total thickness of the deformed layer was approximately 0.8 microns. This thickness increased as the load and abrasive grit size increased. The anisotropic wear of the ferrite was found to be inversely proportional to the hardness of the wear surface. The wear was lower in the order 211 111 10 0110. The wear of the ferrite increased markedly with an increase in sliding velocity and abrasive grit size.

  13. Cracks in glass electrical connector headers removed by dry blasting with fine abrasive

    NASA Technical Reports Server (NTRS)

    Eckert, R. W.

    1967-01-01

    Cracking that causes pressure leakage in glass connector headers can be alleviated by manipulating the pin bridgewire connectors. This initiates the surface and meniscus cracks. Dry blasting the header surface with a fine abrasive then removes the cracks.

  14. Surface roughness and gloss of current CAD/CAM resin composites before and after toothbrush abrasion.

    PubMed

    Koizumi, Hiroyasu; Saiki, Osamu; Nogawa, Hiroshi; Hiraba, Haruto; Okazaki, Tomoyo; Matsumura, Hideo

    2015-01-01

    The purpose of this study was to evaluate the gloss and surface roughness behaviors of newly developed CAD/CAM composite blocks with different filler contents and characteristics. The gloss and surface roughness were quantified before and after a toothbrush dentifrice abrasion test; the results were compared to the gloss and surface roughness of a ceramic CAD/CAM block. Knoop hardness was determined before abrasion test. The results were analyzed by ANOVA, Tukey HSD, and Dunnett t test (p<0.05). The rank order of Knoop hardness was as follows: Vita Mark II>Vita Enamic>Gradia block>Shofu Block HC, Lava Ultimate≥Katana Avencia block≥Cerasmart. After toothbrush abrasion, a significant difference in the gloss unit was detected between the Shofu Block HC material and the ceramic block. The Ra and Rz of the Cerasmart and Shofu Block HC materials were significantly larger than those of the ceramic block after toothbrush abrasion. PMID:26632238

  15. Plasma polymerized coating for polycarbonate - Single layer, abrasion resistant, and antireflection

    NASA Technical Reports Server (NTRS)

    Wydeven, T.

    1977-01-01

    Plasma polymerized vinyltrimethoxy silane films were deposited on transparent polycarbonate substrates. The adherent, clear films protected the substrates from abrasion and also served as antireflection coatings. Posttreatment of the vinyltrimethoxy silane films in an oxygen glow discharge further improved the abrasion resistance. ESCA (electron spectroscopy for chemical analysis) and IR transmission spectra of some films were recorded, and an elemental analysis of the films was obtained.

  16. Experimental Study on Abrasive Waterjet Polishing of Hydraulic Turbine Blades

    NASA Astrophysics Data System (ADS)

    Khakpour, H.; Birglenl, L.; Tahan, A.; Paquet, F.

    2014-03-01

    In this paper, an experimental investigation is implemented on the abrasive waterjet polishing technique to evaluate its capability in polishing of surfaces and edges of hydraulic turbine blades. For this, the properties of this method are studied and the main parameters affecting its performance are determined. Then, an experimental test-rig is designed, manufactured and tested to be used in this study. This test-rig can be used to polish linear and planar areas on the surface of the desired workpieces. Considering the number of parameters and their levels, the Taguchi method is used to design the preliminary experiments. All experiments are then implemented according to the Taguchi L18 orthogonal array. The signal-to-noise ratios obtained from the results of these experiments are used to determine the importance of the controlled polishing parameters on the final quality of the polished surface. The evaluations on these ratios reveal that the nozzle angle and the nozzle diameter have the most important impact on the results. The outcomes of these experiments can be used as a basis to design a more precise set of experiments in which the optimal values of each parameter can be estimated.

  17. Gingival abrasion and plaque removal with manual versus electric toothbrushing.

    PubMed

    Niemi, M L; Ainamo, J; Etemadzadeh, H

    1986-08-01

    A clinical trial was designed to test the relative numbers of gingival lesions caused during standardized brushing of the teeth of 22 volunteer dental nurse students with a manual soft multitufted, a manual soft V-shaped, and an electric toothbrush. First, the left or the right side of the jaws of each subject was brushed by a dental hygienist using the manual V-shaped or the electric brush, and the other side using the manual multitufted brush. At the 2nd brushing 1 week later, the same hygienist used the multitufted brush for brushing the side contralateral to the one in which it was used the 1st week and the V-shaped manual brush instead of the electric and vice versa. After each brushing, the number of new gingival lesions was recorded and the cleansing effect evaluated by assessment of the amount of remaining plaque. This examiner was unaware of the type of brush used. The V-shaped manual toothbrush was found to have caused more gingival abrasion than the electric toothbrush (P less than 0.005) and a similar difference was found between the multitufted manual and the electric toothbrush (P less than 0.05). There was no clinically significant difference between the plaque removing effects of the 3 brushes tested. PMID:3463575

  18. Biodegradation and abrasive wear of nano restorative materials.

    PubMed

    de Paula, A B; Fucio, S B P; Ambrosano, G M B; Alonso, R C B; Sardi, J C O; Puppin-Rontani, R M

    2011-01-01

    The purpose of this study was to evaluate the biomechanical degradation of two nanofilled restorative materials (a resin-modified glass ionomer, Ketac N100 and a composite, Filtek Z350), compared with conventional materials (Vitremer and TPH Spectrum). Twenty specimens obtained from each material were divided into two storage groups (n=10): relative humidity (control) and Streptococcus mutans biofilm (biodegradation). After 7 days of storage, roughness values (Ra) and micrographs by scanning electron microscopy (SEM) were obtained. In a second experimental phase, the specimens previously subjected to biodegradation were fixed to the tooth-brushing device and abraded via toothbrushes, using dentifrice slurry (mechanical degradation). Next, these specimens were washed, dried, and reassessed by roughness and SEM. The data were submitted to repeated measures three-way analysis of variance (ANOVA) and Tukey tests (p<0.05). There was statistically significant interaction among factors: material, storage (humidity/biofilm), and abrasion (before/after). After biodegradation (S mutans biofilm storage), Ketac N100 presented the highest Ra values. Concerning bio plus mechanical challenge, TPH Spectrum, Ketac N100, and Vitremer presented the undesirable roughening of their surfaces, while the nano composite Filtek Z350 exhibited the best resistance to cumulative challenges proposed. The degraded aspect after biodegradation and the exposure of fillers after mechanical degradation were visualized in micrographs. This study demonstrated that the nanotechnology incorporated in restorative materials, as in composite resin and resin-modified glass ionomer, was important for the superior resistance to biomechanical degradation. PMID:21913859

  19. Experimental investigation of the abrasive crown dynamics in orbital atherectomy.

    PubMed

    Zheng, Yihao; Belmont, Barry; Shih, Albert J

    2016-07-01

    Orbital atherectomy is a catheter-based minimally invasive procedure to modify the plaque within atherosclerotic arteries using a diamond abrasive crown. This study was designed to investigate the crown motion and its corresponding contact force with the vessel. To this end, a transparent arterial tissue-mimicking phantom made of polyvinyl chloride was developed, a high-speed camera and image processing technique were utilized to visualize and quantitatively analyze the crown motion in the vessel phantom, and a piezoelectric dynamometer measured the forces on the phantom during the procedure. Observed under typical orbital atherectomy rotational speeds of 60,000, 90,000, and 120,000rpm in a 4.8mm caliber vessel phantom, the crown motion was a combination of high-frequency rotation at 1000, 1500, and 1660.4-1866.1Hz and low-frequency orbiting at 18, 38, and 40Hz, respectively. The measured forces were also composed of these high and low frequencies, matching well with the rotation of the eccentric crown and the associated orbital motion. The average peak force ranged from 0.1 to 0.4N at different rotational speeds. PMID:27160429

  20. Dressing of diamond grinding wheels by abrasive water jet for freeform optical surface grinding

    NASA Astrophysics Data System (ADS)

    Wang, Wei; Yao, Peng; Li, Chengwu; Huang, Chuanzhen; Wang, Jun; Zhu, Hongtao; Liu, Zengwen

    2014-08-01

    During the ultra-precision grinding of a large aperture mirror made of RB-SiC, the grinding wheel becomes dull rapidly, which will lead to an increase of grinding force and a decrease of grinding ratio. In this paper, diamond grinding sticks were dressed with micro SiC abrasive water jet and water jet. Through single factorial experiments, the influence of jet pressure on the dressing performance was investigated. To analyze and evaluate the effect of dressing quantitatively, the 3D roughness and the wheel topography were measured and compared with laser scanning confocal microscope before and after dressing. The experimental results show that the abrasive grains are well protruded from binder and the distribution of the abrasive grains becomes uniform after dressing by abrasive water jet when the dressing parameters are properly selected. The dressing performance of abrasive water jet is much better than water jet. For dressing ultra-fine grit size wheels, the abrasive size of the jet should be smaller than the wheel grit size to achieve a better result. The jet pressure is an obvious influence factor of the surface topography.

  1. An energetic approach to abrasive wear of a martensitic stainless steel

    SciTech Connect

    Pamuk, U.; Baydogan, M.; Niluefer, B.; Cimenoglu, H.

    2000-04-01

    Abrasive wear is the most common type of wear that causes failure of machine elements. Examinations of abraded surfaces revealed presence of embedded particles and grooves elongated along the sliding direction. This indicates that, there are two sequential stages of an abrasion process. In the first stage, asperities on the hard surface and/or hard abrasive grains penetrate into the soft material surface and then in the second stage, they grind the surface in the sliding direction. Therefore, indentation and scratching of an indenter, which can be realized by hardness and scratch tests, can simulate the damage produced on the abraded surface. On the basis of this simulation, an energetic model is proposed for abrasive wear in the present study. In this study, abrasive wear behavior of a martensitic stainless steel is examined by hardness and scratch tests. The results of tests were evaluated to estimate the work done during abrasion and to find out the dimensional wear coefficient according to the model proposed above.

  2. A correlation between abrasion resistance and other properties of some acrylic resins used in dentistry.

    PubMed

    Harrison, A; Huggett, R; Handley, R W

    1979-01-01

    This investigation studies the relationship of hardness, elastic modulus and scratch width as dependent variables to the abrasion resistance of twenty-three dental acrylic resins. The multiple correlation R, when all three variables are used as predictors, is 0.727. Because of the significant intercorrelations between the variables themselves a stepwise multiple regression analysis showed hardness as a redundant variable. Abrasive wear can be estimated from the following equation Abrasive wear = 806.1 - 0.1498 modulus + 0.681 scratch width (R = 0.725; standard deviation of estimate +/- 50.8) The deletion of scratch width does not appreciably reduce the standard deviation of the estimate: Abrasive wear = 1063.4 - 0.2055 modulus (r = 0.683; standard deviation of estimate +/- 50.3) The method of curing the specimens conformed to the respective manufacturers' instructions. Abrasion and scratch tests were performed using methods developed by the authors and previously described in the literature, whereas the hardness and elastic modulus results were devised from standard test procedures. Further research is currently in progress to improve the predictive power of abrasion resistance with additional new variables. PMID:429382

  3. Two-Phase Abrasion in Eolian Transport of Gypsum Sand, White Sands NM

    NASA Astrophysics Data System (ADS)

    Shaw, S.; Jerolmack, D. J.; Miller, K. L.

    2014-12-01

    Downstream rounding of grains is consistently observed in natural sediment transport settings. A recent theory put forth by Domokos et al. (2014) attributes particle rounding and size reduction to a geometric curvature-driven abrasion process. This process occurs in two phases, in which irregularly shaped or angular particles round to convex shapes with negligible change in axis dimension, then slowly reduce in particle diameter. Miller et al (in review) establish the existence of two-phase abrasion in the natural setting of a fluvial gravel stream. This study examines field samples from White Sands, NM to investigate the presence of two-phase abrasion in a different, non-idealized natural environment - a high-energy, eolian gypsum dunefield. Analysis of grain shapes from White Sands confirms the two-phase abrasion process, dependent upon mode of sediment transport. We find that large sand grains carried in saltation bed load transport exhibit shape change indicative of two-phase abrasion, while smaller particles carried in suspension do not. We observe rapid shape change in bed load particles approaching a convex shape, followed by slower reduction in grain axis dimensions. Confirmation of this process in a natural, non-idealized setting establishes two-phase abrasion as a general application for bed load transport.

  4. A light-scattering study of Al2O3 abrasives of various grit sizes

    NASA Astrophysics Data System (ADS)

    Heinson, Yuli W.; Chakrabarti, Amitabha; Sorensen, Christopher M.

    2016-09-01

    We report light scattering phase function measurements for irregularly shaped Al2O3 abrasive powders of various grit sizes. Q-space analysis is applied to the angular scattering to reveal a forward scattering regime, Guinier regime, power law regime with quantifiable exponents, and an enhanced backscattering regime. The exponents of the power laws for Al2O3 abrasives decrease with increasing internal coupling parameter ρ ‧ , which is in agreement with previous observations for other irregular particles. Unlike other dust particles previously studied showing single power laws under Q-space analysis, the largest three abrasives, for which ρ ‧ ≳ 100 , showed a kink in the power law, which is possibly due to the higher degree of symmetry for the abrasives than for all the particles studied previously. Direct comparison of the 1200, 1000, and 800 grit abrasive scattering to scattering by corresponding spheres shows that the scatterings approximately coincide at the spherical particle qR ≃ ρ ‧ crossover point. Furthermore, the scattering at the maximum qR = 2 kR by the irregularly shaped abrasives is close to the geometric centers of the glories of the spheres.

  5. The Mars Environmental Compatibility Assessment (MECA) Abrasion Tool

    NASA Technical Reports Server (NTRS)

    Kuhlman, K. R.; Anderson, M. S.; Hinde, B. D.; Hecht, M. H.; Pike, W. T.; Marshall, J. R.; Meloy, T. P.

    1999-01-01

    The Mars Environmental Compatibility Assessment (MECA) experiment, an instrument suite to be flown on Mars Surveyor 2001, will include a tool for doing simple mineralogical scratch and streak tests on particles from the Martian regolith. The Abrasion Tool will be applied to particles that adhere themselves to highly polished substrates of various hardnesses. Granular soil components will be subjected to a compressive force of about 3 N using a leaf spring. The spring will be applied with a paraffin actuator capable of a 0.76 mm throw to achieve a maximum displacement of about 7.5 mm at the tip of the tool. The pressure per grain will be dependent on the grain size, the number of grains that adhere to the substrate and the number of grains in compression. The pressure per particle is expected to be on the order of 100 MPa - 1 GPa. The MECA sample wheel containing the substrates will be rotated after the particles are placed in compression to produce scratches or pits. A primary goal of the Abrasion Tool is to identify quartz (Mohs' hardness = 7) using substrates of varying hardnesses. Quartz is considered hazardous to future human explorers of Mars because it can cause silicosis of the lungs if it is of respirable size. It is also hazardous to machinery, structures, and space suits because of its ability to abrade and scratch surfaces. Since large quantities of minerals harder than quartz are not expected, any scratches produced on polished quartz substrates might be reasonably attributed to quartz particles, although there may be minerals such as impact metamorphic diamond in the soils. Careful calibration of the tool will be necessary to ensure that grains are not overloaded; for example, a steel ball pressed into glass will produce a Hertzian fracture, even though it is softer than glass. Other minerals, such as magnetite (Mohs' hardness = 6.5) have been shown to scratch glass ceramics such as Zerodur (Mohs' hardness = 6.5). Thus, minerals can be differentiated

  6. The Mars Environmental Compatibility Assessment MECA Abrasion Tool

    NASA Astrophysics Data System (ADS)

    Kuhlman, K. R.; Anderson, M. S.; Hinde, B. D.; Hecht, M. H.; Pike, W. T.; Marshall, J.; Meloy, T. P.; Cobbly, T.

    1999-09-01

    The Mars Environmental Compatibility Assessment (MECA) experiment, an instrument suite to be flown on Mars Surveyor 2001, will include a tool for doing simple mineralogical scratch and streak tests on particles from the Martian regolith. The Abrasion Tool will be applied to particles that adhere to highly polished substrates of various hardnesses. Granular soil components will be subjected to a compressive force of about 3 N using a leaf spring. The spring will be applied with a paraffin actuator capable of a 0.76 mm throw to achieve a maximum displacement of about 7.5 mm at the tip of the tool. The pressure per grain will be dependent on the grain size, the number of grains that adhere to the substrate and the number of grains in compression. The pressure per particle is expected to be on the order of 100 MPa - 1 GPa. The MECA sample wheel containing the substrates will be rotated after the particles are placed in compression to produce scratches or pits. A primary goal of the Abrasion Tool is to identify quartz (Mohs' hardness = 7) using substrates of varying hardnesses. Quartz is considered hazardous to future human explorers of Mars because it can cause silicosis of the lungs if it is of respirable size. It is also hazardous to machinery, structures, and space suits because of its ability to abrade and scratch surfaces. Since large quantities of minerals harder than quartz are not expected, any scratches produced on polished quartz substrates might be reasonably attributed to quartz particles, although there may be minerals such as impact metamorphic diamond in the soils. Careful calibration of the tool will be necessary to ensure that grains are not overloaded; for example, a steel ball pressed into glass will produce a Hertzian fracture, even though it is softer than glass. Other minerals, such as magnetite (Mohs'hardness = 6.5) have been shown to scratch glass ceramics such as Zerodur (Mohs' hardness = 6.5). Thus, minerals can be differentiated: note that

  7. The Mars Environmental Compatibility Assessment MECA Abrasion Tool

    NASA Technical Reports Server (NTRS)

    Kuhlman, K. R.; Anderson, M. S.; Hinde, B. D.; Hecht, M. H.; Pike, W. T.; Marshall, J.; Meloy, T. P.; Cobbly, T.

    1999-01-01

    The Mars Environmental Compatibility Assessment (MECA) experiment, an instrument suite to be flown on Mars Surveyor 2001, will include a tool for doing simple mineralogical scratch and streak tests on particles from the Martian regolith. The Abrasion Tool will be applied to particles that adhere to highly polished substrates of various hardnesses. Granular soil components will be subjected to a compressive force of about 3 N using a leaf spring. The spring will be applied with a paraffin actuator capable of a 0.76 mm throw to achieve a maximum displacement of about 7.5 mm at the tip of the tool. The pressure per grain will be dependent on the grain size, the number of grains that adhere to the substrate and the number of grains in compression. The pressure per particle is expected to be on the order of 100 MPa - 1 GPa. The MECA sample wheel containing the substrates will be rotated after the particles are placed in compression to produce scratches or pits. A primary goal of the Abrasion Tool is to identify quartz (Mohs' hardness = 7) using substrates of varying hardnesses. Quartz is considered hazardous to future human explorers of Mars because it can cause silicosis of the lungs if it is of respirable size. It is also hazardous to machinery, structures, and space suits because of its ability to abrade and scratch surfaces. Since large quantities of minerals harder than quartz are not expected, any scratches produced on polished quartz substrates might be reasonably attributed to quartz particles, although there may be minerals such as impact metamorphic diamond in the soils. Careful calibration of the tool will be necessary to ensure that grains are not overloaded; for example, a steel ball pressed into glass will produce a Hertzian fracture, even though it is softer than glass. Other minerals, such as magnetite (Mohs'hardness = 6.5) have been shown to scratch glass ceramics such as Zerodur (Mohs' hardness = 6.5). Thus, minerals can be differentiated: note that

  8. Fluvial erosion of physically modeled abrasion-dominated slot canyons

    NASA Astrophysics Data System (ADS)

    Carter, Carissa L.; Anderson, Robert S.

    2006-11-01

    Abrasion-dominated fluvial erosion generates slot canyons in massive bedrock with intricately undulating walls. Flows in slot canyons are unusual in that the walls comprise a significant portion of the wetted perimeter of the flow during geomorphically effective floods. In Wire Pass, Utah, the upper Paria River incises through massive, crossbedded Navajo Sandstone. Incision in Wire Pass and related slots occurs only during flash floods; paleoflood debris indicates that the width/depth ratios of these flows are at times as low as 1:1. Submeter resolution field mapping of a 20-m length of Wire Pass shows that the wall morphology is a complicated combination of in-phase (meander-like) and out-of-phase (pinch and swell) undulations. In order to investigate evolution of slot canyons and the influence of their wall shapes on flow dynamics, we recorded the evolution of four distinct canyon wall morphologies in a 2.4 m flume box at the St. Anthony Falls Laboratory. In a substrate consisting of ˜ 3:2 mixtures of F110 sand and Plaster of Paris, we molded canyons with in-phase and out-of-phase undulations, and wide (6.5 cm) and narrow (4 cm) straight initial wall profiles. Discharges ranged from 1.4 L/s to 2.9 L/s, and wall and bed morphology were measured at 5 h intervals at 0.5 cm resolution. Results show efficient back-eddy erosion in the undulating canyon walls and related erosional bedforms in all channels created by vortices in the flow. Maximum filaments of velocity are depressed and asymmetric, and the implied shear stress distribution varied in space and time on the channel beds. Flow width/depth ratios strongly influence the flow structure and distribution of shear stress in a slot and appear to be a factor in dictating whether a bedrock channel widens its walls or incises its bed.

  9. Hydro- abrasive jet machining modeling for computer control and optimization

    NASA Astrophysics Data System (ADS)

    Groppetti, R.; Jovane, F.

    1993-06-01

    Use of hydro-abrasive jet machining (HAJM) for machining a wide variety of materials—metals, poly-mers, ceramics, fiber-reinforced composites, metal-matrix composites, and bonded or hybridized mate-rials—primarily for two- and three-dimensional cutting and also for drilling, turning, milling, and deburring, has been reported. However, the potential of this innovative process has not been explored fully. This article discusses process control, integration, and optimization of HAJM to establish a plat-form for the implementation of real-time adaptive control constraint (ACC), adaptive control optimiza-tion (ACO), and CAD/CAM integration. It presents the approach followed and the main results obtained during the development, implementation, automation, and integration of a HAJM cell and its computer-ized controller. After a critical analysis of the process variables and models reported in the literature to identify process variables and to define a process model suitable for HAJM real-time control and optimi-zation, to correlate process variables and parameters with machining results, and to avoid expensive and time-consuming experiments for determination of the optimal machining conditions, a process predic-tion and optimization model was identified and implemented. Then, the configuration of the HAJM cell, architecture, and multiprogramming operation of the controller in terms of monitoring, control, process result prediction, and process condition optimization were analyzed. This prediction and optimization model for selection of optimal machining conditions using multi-objective programming was analyzed. Based on the definition of an economy function and a productivity function, with suitable constraints relevant to required machining quality, required kerfing depth, and available resources, the model was applied to test cases based on experimental results.

  10. Using frictional power to model LSST removal with conventional abrasives

    NASA Astrophysics Data System (ADS)

    Allen, Richard G.; Hubler, William H.

    2015-08-01

    The stressed lap on the Large Polishing Machine (LPM) at the University of Arizona Richard F. Caris Mirror Lab has recently been used to polish the M1 and M3 surfaces of the 8.4-m mirror for the Large Synoptic Survey Telescope (LSST). Loadcells in the three 4-bar links that connect this lap to the spindle of the machine allow the translational forces and torque on the lap to be measured once a second. These force readings and all other available machine parameters are recorded in history files that can be used to create a 2D removal map from one or more polishing runs. While the Preston equation has been used for many years to predict removal in a conventional polishing process, we have adopted a new equation that assumes that removal is proportional to the energy that is transferred from the lap to the substrate via friction. Specifically, the instantaneous removal rate at any point is defined to be the product of four parameters - an energy conversion factor which we call the Allen coefficient, the coefficient of friction, the lap pressure, and the speed of the lap. The Allen coefficient is the ratio of volumetric removal to frictional energy for a particular combination of pad material, abrasive, and substrate. Because our calculations take into account changes in the coefficient of friction between the lap and mirror, our 2D removal maps usually correlate well with optical data. Removal maps for future polishing strokes are created in simulations that track the position and speed of individual lap pads.

  11. Combined effect of end-rounded versus tapered bristles and a dentifrice on plaque removal and gingival abrasion.

    PubMed

    Caporossi, Leonardo Stephan; Dutra, Danilo Antonio Milbradt; Martins, Maritieli Righi; Prochnow, Emilia Pithan; Moreira, Carlos Heitor Cunha; Kantorski, Karla Zanini

    2016-01-01

    Two previous clinical studies evaluated the effect of end-rounded versus tapered bristles of soft manual brushes on the removal of plaque and gingival abrasion. However, the combined effect of an abrasive dentifrice on these outcomes has yet to be understood. The purpose of the present study was to compare the incidence of gingival abrasion and the degree of plaque removal obtained after the use of toothbrushes with tapered or end-rounded bristles in the presence or absence of an abrasive dentifrice. The study involved a randomized, single-blind, crossover model (n = 39) with a split-mouth design. Subjects were instructed to refrain from performing oral hygiene procedures for 72 hours. Quadrants were randomized and subjects brushed with both types of toothbrushes using a dentifrice (relative dentin abrasion = ± 160). Plaque and gingival abrasion were assessed before and after brushing. After 7 days, the experiment was repeated without the dentifrice. The average reduction in plaque scores and the average increase in the number of abrasion sites were assessed by repeated-measures ANOVA and Bonferroni's post-hoc tests. End-rounded bristles removed significantly more plaque than tapered bristles, regardless of the use of a dentifrice. The dentifrice did not improve plaque removal. In the marginal area (cervical free gingiva), no difference in the incidence of gingival abrasion was detected between toothbrush types when used with a dentifrice (p ≥ 0.05). However, the dentifrice increased the incidence of abrasion (p < 0.001), irrespective of the toothbrush type tested. End-rounded bristles therefore removed plaque more effectively without causing a higher incidence of gingival abrasion when compared with tapered bristles. An abrasive dentifrice can increase the incidence of abrasion, and should be used with caution by individuals who are at risk of developing gingival recession. PMID:26981758

  12. Failure of a novel silicone–polyurethane copolymer (Optim™) to prevent implantable cardioverter-defibrillator lead insulation abrasions

    PubMed Central

    Hauser, Robert G.; Abdelhadi, Raed H.; McGriff, Deepa M.; Kallinen Retel, Linda

    2013-01-01

    Aim The purpose of this study was to determine if Optim™, a unique copolymer of silicone and polyurethane, protects Riata ST Optim and Durata implantable cardioverter-defibrillator (ICD) leads (SJM, St Jude Medical Inc., Sylmar, CA, USA) from abrasions that cause lead failure. Methods and results We searched the US Food and Drug Administration's (FDA's) Manufacturers and User Device Experience (MAUDE) database on 13 April 2012 using the simple search terms ‘Riata ST Optim™ abrasion analysis’ and ‘Durata abrasion analysis’. Lead implant time was estimated by subtracting 3 months from the reported lead age. The MAUDE search returned 15 reports for Riata ST Optim™ and 37 reports for Durata leads, which were submitted by SJM based on its analyses of returned leads for clinical events that occurred between December 2007 and January 2012. Riata ST Optim™ leads had been implanted 29.1 ± 11.7 months. Eight of 15 leads had can abrasions and three abrasions were caused by friction with another device, most likely another lead. Four of these abrasions resulted in high-voltage failures and one death. One failure was caused by an internal insulation defect. Durata leads had been implanted 22.2 ± 10.6 months. Twelve Durata leads had can abrasions, and six leads had abrasions caused by friction with another device. Of these 18 can and other device abrasions, 13 (72%) had electrical abnormalities. Low impedances identified three internal insulation abrasions. Conclusions Riata ST Optim™ and Durata ICD leads have failed due to insulation abrasions. Optim™ did not prevent these abrasions, which developed ≤4 years after implant. Studies are needed to determine the incidence of these failures and their clinical implications. PMID:22915789

  13. The effect of heat treatment on the gouging abrasion resistance of alloy white cast irons

    NASA Astrophysics Data System (ADS)

    Are, I. R. S.; Arnold, B. K.

    1995-02-01

    A series of heat treatments was employed to vary the microstructure of four commercially important alloy white cast irons, the wear resistance of which was then assessed by the ASTM jaw-crusher gouging abrasion test. Compared with the as-cast condition, standard austenitizing treatments produced a substantial increase in hardness, a marked decrease in the retained aus-tenite content in the matrix, and, in general, a significant improvement in gouging abrasion resistance. The gouging abrasion resistance tended to decline with increasing austenitizing tem-perature, although the changes in hardness and retained austenite content varied, depending on alloy composition. Subcritical heat treatment at 500 ° following hardening reduced the retained austenite content to values less than 10 pct, and in three of the alloys it caused a significant fall in both hardness and gouging abrasion resistance. The net result of the heat treatments was the development of optimal gouging abrasion resistance at intermediate levels of retained aus-tenite. The differing responses of the alloys to both high-temperature austenitizing treatments and to subcritical heat treatments at 500 ° were related to the effects of the differing carbon and alloying-element concentrations on changes in the M s temperature and secondary carbide precipitation.

  14. Comparative Evaluation of Gingival Depigmentation using Tetrafluoroethane Cryosurgery and Gingival Abrasion Technique: Two Years Follow Up

    PubMed Central

    Kumar, Santhosh; Bhat, G. Subraya; Bhat, K. Mahalinga

    2013-01-01

    Objective: A comparative evaluation of the gingival depigmentation by using Tetrafluoroethane cryosurgery and the gingival abrasion technique – 2 years of follow up. Material and Methods: Ten systemically healthy patients who were aged 18 to 36 years were selected for the study. Tetrafluoroethane was used for the cryosurgical depigmentation and the gingival abrasion technique used a coarse flame shaped bur. The presence or absence of pigmentation was tabulated, based on the GPI (Gingival Pigmentation Index). For the statistical analysis, Freidman’s test was used. Results: The keratinization was completed within a week after the application of the cryogen and about 10 days after the gingival abrasion technique was done. The statistical analysis which was done after 90th, 180th days and 2 years. The p-value which was obtained (p<.001) showed the superiority of cryosurgery over the gingival abrasion. During the follow up period, no side effects were seen for both the techniques and the improved aesthetics was maintained upto 2 years. Conclusion: The use of cryogen Tetrafluoroethane is easy, practical and inexpensive as compared to gingival abrasion, due to its high rate of recurrence. Hence, it is more acceptable to the patients and the operator. Further studies are needed to assess the long term effectiveness of the cryosurgical method of depigmentation. PMID:23543863

  15. A novel cleaner for colloidal silica abrasive removal in post-Cu CMP cleaning

    NASA Astrophysics Data System (ADS)

    Haiwen, Deng; Baimei, Tan; Baohong, Gao; Chenwei, Wang; Zhangbing, Gu; Yan, Zhang

    2015-10-01

    A novel cleaning solution, named FA/O alkaline cleaner, was proposed and demonstrated in the removal of colloidal silica abrasives. In order to remove both the chemical and physical absorbed colloidal silica abrasives, an FA/OII chelating agent and non-ionic surfactant were added into the cleaner. By varying the concentration of chelating agent and non-ionic surfactant, a series of experiments were performed to determine the best cleaning results. This paper discusses the mechanism of the removal of colloidal silica abrasives with a FA/O alkaline cleaner. Based on the experiment results, it is concluded that both the FA/OII chelating and non-ionic surfactant could benefit the removal of colloidal silica abrasives. When the concentration of FA/OII chelating agent and FA/O non-ionic surfactant reached the optima value, it was demonstrated that silica abrasives could be removed efficiently by this novel cleaning solution. Project supported by the Specific Project Items No. 2 in National Long-Term Technology Development Plan (No. 2009zx02308-003) and the Hebei Province Department of Education Fund (No. QN2014208).

  16. Sliding and Abrasive Wear Behavior of WC-CoCr Coatings with Different Carbide Sizes

    NASA Astrophysics Data System (ADS)

    Thakur, Lalit; Arora, Navneet

    2013-02-01

    This study examines the sliding and abrasive wear behaviors of high-velocity oxy-fuel (HVOF)-sprayed WC-CoCr coatings with different WC grain sizes. The HVOF coating deposition was assisted by in-flight particle temperature and velocity measurement system. The powder feedstocks and their corresponding coatings were characterized by means of XRD and Field Emission Scanning Electron Microscope analysis. Hardness, porosity, and indentation fracture toughness of these coatings were calculated and compared with each other. Sliding wear resistance of these coatings was calculated using pin-on-disk tribometer (ASTM G99-90). The two-body abrasion was quantified by sliding the samples over silicon carbide (SiC) abrasive paper bonded to a rotating flat disk of auto-polisher. The mechanism of materials' removal in both the sliding and abrasive wears was studied and discussed on microstructural investigations. It was observed that fine grain WC-CoCr cermet coating exhibits higher sliding and abrasive wear resistances as compared with conventional cermet coating.

  17. Comparative evaluation of enamel abrasivity by toothbrush and velcro: An in vitro scanning electron microscope study

    PubMed Central

    Ojha, Saroj Kumar; Javdekar, Sadashiv Bhaskar; Dhir, Sangeeta

    2015-01-01

    Context: Plaque control has been shown to be pivotal in maintaining the optimal periodontal health. Mechanical plaque control is the most popular option for establishing the optimal oral health. Toothbrushes have been the novel tool for mechanical cleansing. However, the abrasive potential of the toothbrushes on the enamel surface is an area in gray. Aims: The aim of this in vitro study is to evaluate the abrasivity of the toothbrush versus the velcro fasteners. Materials and Methods: The mounted teeth of both the groups were subjected to abrasion test, and the tooth surfaces were observed for the possible abrasions from the oscillating strokes (toothbrush) and frictional contacts (hook and loop velcro) and examined under the scanning electron microscope. Results: Comparative assessment of both velcro (hook and loop) and toothbrush bristles did not reveal any evidence of abrasion on the tooth specimens. Conclusions: Veclro fasteners are safe and qualitatively at par to the manual toothbrush for their efficacy and efficiency in teeth cleansing PMID:26229264

  18. Effect of carbonitride precipitates on the abrasive wear behaviour of hardfacing alloy

    NASA Astrophysics Data System (ADS)

    Yang, Ke; Yu, Shengfu; Li, Yingbin; Li, Chenglin

    2008-06-01

    Hardfacing alloy of martensitic stainless steel expect higher abradability to be achieved through the addition of nitrogen being provided by the fine scale precipitation of complex carbonitride particles. Niobium and titanium as the most effective carbonitride alloying elements were added in the Fe-Cr13-Mn-N hardfacing alloy to get carbonitride precipitates. Carbonitride was systematically studied by optical microscopy, scanning electronic microscopy and energy spectrum analysis. Abrasive wear resistance of hardfacing alloy in as-welded and heat-treated conditions was tested by using the belt abrasion test apparatus where the samples slide against the abrasive belt. It is found that carbonitride particles in the hardfacing alloy are complex of Cr, Ti and Nb distributing on the grain boundary or matrix of the hardfacing alloy with different number and size in as-welded and heat-treated conditions. A large number of carbonitrides can be precipitated with very fine size (nanoscale) after heat treatment. As a result, the homogeneous distribution of very fine carbonitride particles can significantly improve the grain-abrasion wear-resisting property of the hardfacing alloy, and the mass loss is plastic deformation with minimum depth of grooving by abrasive particles and fine delamination.

  19. Effect of ceramic coating by aerosol deposition on abrasion resistance of a resin composite material.

    PubMed

    Taira, Yohsuke; Hatono, Hironori; Mizukane, Masahiro; Tokita, Masahiro; Atsuta, Mitsuru

    2006-12-01

    Aerosol deposition (AD coating) is a novel technique to coat solid substances with a ceramic film. The purpose of the present study was to investigate the effect of AD coating on abrasion resistance of a resin composite material. A 5-microm-thick aluminum oxide layer was created on the polymerized resin composite. The specimen was cyclically abraded using a toothbrush abrasion simulator for 100,000 cycles. Abraded surface was then measured with a profilometer to determine the average roughness (Ra) and maximum roughness (Rmax). It was found that abrasion cycling increased the Ra value of the No-AD-coating group, but decreased the Ra and Rmax values of the AD coating group. Moreover, the AD coating group showed significantly smaller Ra and Rmax values after 100,000 abrasion cycles as compared to the No-coating control group. Microscopic observation supported these findings. In conclusion, the resistance of the resin composite against toothbrush abrasion was improved by AD coating. PMID:17338303

  20. [Grinding of titanium. 1. Commercial and experimental wheels made of silicon carbide abrasives].

    PubMed

    Miyakawa, O; Watanabe, K; Okawa, S; Nakano, S; Shiokawa, N; Kobayashi, M; Tamura, H

    1990-01-01

    Cast titanium was ground with commercial and experimental wheels made of silicon carbide abrasives, and their grinding performance was investigated. With the vitrified wheels made of the GC abrasive, at a higher the wheel circumferential speed and heavier the grinding pressure, the cutting rate was greater, accompanied by violent wear of the wheel. Being independent of the wheel speed, the grinding ratio reached about 1 under pressure heavier than 100 gf. The MgO-MgCl2-bonded wheels of the C abrasive exhibited a similar tendency. The manner in which the wheel was moved over the work during grinding proved to be very important, compared with the Ni-Cr alloy as reported previously. Only depression of the wheel against the work resulted in chemical attrition of the abrasive and discoloration of the work surface, or grinding burn, due to oxidation of titanium. Even when the wheel was moved over the work, chip-formation process of the cutting edge was far from ideal, and the work surface was contaminated due to reaction of titanium with the abrasive. At a higher wheel circumferential speed, more chips were loaded or built-up in the wheel and strongly rubbed the work surface, resulting in violent wear of the wheel; loading and dislodging of such chips were repeated. PMID:2134811

  1. The effect of erosion and abrasion on surface properties of composite resin

    NASA Astrophysics Data System (ADS)

    Stoleriu, S.; Andrian, S.; Pancu, G.; Nica, I.; Munteanu, A.; Balan, A.; Iovan, G.

    2016-06-01

    The aim of the study was to evaluate the surface roughness of two commercial composite resins submitted to erosive attack, to abrasive wear and to association of erosive and abrasive challenge. Standardized samples of G-snial anterior (GC Company) and Essentia (GC Company) composite resins were randomly split in 6 groups. In group 1 the samples were maintained in artificial saliva until the evaluation of surface roughness. In group 2 the samples were submitted only to erosive attack, in group 3 only to abrasive challenge and in groups 4,5, and 6 the erosive attack was followed by abrasive challenge immediately (group 4), 30 minutes after the erosive attack (group 5) and one hour after the erosive attack (group 6). The specimens were evaluated using surface roughness measuring tester SJ-210 (Mitutoyo Corporation, Japan) and the mean surface roughness values (Ra, μm) of each specimen were registered. A significantly increase of both composite resins surface roughness was recorded after erosive attack and abrasive challenge. Toothbrushing 60 minutes after acidic contact determined no significant differences in surface roughness of composite resins.

  2. Improvement in high stress abrasive wear property of steel by hardfacing

    SciTech Connect

    Kumar, S.; Mondal, D.P.; Khaira, H.K.; Jha, A.K.

    1999-12-01

    High stress abrasive wear behavior of mild steel, medium carbon steel, and hardfacing alloy has been studied to ascertain the extent of improvement in the wear properties after hardfacing of steel. High stress abrasive wear tests were carried out by sliding the specimen against the abrasive media consisting of silicon carbide particles, rigidly bonded on paper base and mounted on disk. Maximum wear was found in the case of mild steel followed by a medium carbon alloy steel and a hardfacing alloy. Different compositions of steels and constituent phases present led to different wear rates of the specimen. The extent of improvement in wear performance of steel due to hardfacing is quite appreciable (twice compared to mild steel). Microstructural examination of the wear surface has been carried out to understand the wear mechanism.

  3. Influence of material characteristics on the abrasive wear response of some hardfacing alloys

    SciTech Connect

    Jha, A.K.; Prasad, B.K.; Dasgupta, R.; Modi, O.P.

    1999-04-01

    This study examines the abrasive wear behavior of two iron-base hardfacing materials with different combinations of carbon and chromium after deposition on a steel substrate. Effects of applied load and sliding distance on the wear behavior of the specimens were studied. Operating material removal mechanisms also were analyzed through the scanning electron microscopy (SEM) examination of typical wear surfaces, subsurface regions, and debris particles. The results suggest a significant improvement in the wear resistance of the hardfaced layers over that of the substrate. Further, the specimens overlaid with the material with low carbon and high chromium contents attained better wear resistance than the one consisting of more carbon but less chromium. The former specimens also attained superior hardness. Smoother abrasion grooves on the wear surfaces and finer debris formation during the abrasion of the hardfaced samples were consistent with wear resistance superior to that of the substrate.

  4. The rock abrasion record at Gale Crater: Mars Science Laboratory results from Bradbury Landing to Rocknest

    NASA Astrophysics Data System (ADS)

    Bridges, N. T.; Calef, F. J.; Hallet, B.; Herkenhoff, K. E.; Lanza, N. L.; Le Mouélic, S.; Newman, C. E.; Blaney, D. L.; Pablo, M. A.; Kocurek, G. A.; Langevin, Y.; Lewis, K. W.; Mangold, N.; Maurice, S.; Meslin, P.-Y.; Pinet, P.; Renno, N. O.; Rice, M. S.; Richardson, M. E.; Sautter, V.; Sletten, R. S.; Wiens, R. C.; Yingst, R. A.

    2014-06-01

    Ventifacts, rocks abraded by wind-borne particles, are found in Gale Crater, Mars. In the eastward drive from "Bradbury Landing" to "Rocknest," they account for about half of the float and outcrop seen by Curiosity's cameras. Many are faceted and exhibit abrasion textures found at a range of scales, from submillimeter lineations to centimeter-scale facets, scallops, flutes, and grooves. The drive path geometry in the first 100 sols of the mission emphasized the identification of abrasion facets and textures formed by westerly flow. This upwind direction is inconsistent with predictions based on models and the orientation of regional dunes, suggesting that these ventifact features formed from very rare high-speed winds. The absence of active sand and evidence for deflation in the area indicates that most of the ventifacts are fossil features experiencing little abrasion today.

  5. New vibration-assisted magnetic abrasive polishing (VAMAP) method for microstructured surface finishing.

    PubMed

    Guo, Jiang; Kum, Chun Wai; Au, Ka Hing; Tan, Zhi'En Eddie; Wu, Hu; Liu, Kui

    2016-06-13

    In order to polish microstructured surface without deteriorating its profile, we propose a new vibration-assisted magnetic abrasive polishing (VAMAP) method. In this method, magnetic force guarantees that the magnetic abrasives can well contact the microstructured surface and access the corners of microstructures while vibration produces a relative movement between microstructures and magnetic abrasives. As the vibration direction is parallel to the microstructures, the profile of the microstructures will not be deteriorated. The relation between vibration and magnetic force was analyzed and the feasibility of this method was experimentally verified. The results show that after polishing, the surface finish around microstructures was significantly improved while the profile of microstructures was well maintained. PMID:27410370

  6. Abrasion-ablation model for neutron production in heavy ion reactions

    NASA Technical Reports Server (NTRS)

    Cucinotta, Francis A.; Wilson, John W.; Townsend, Lawrence W.

    1995-01-01

    In heavy ion reactions, neutron production at forward angles is observed to occur with a Gaussian shape that is centered near the beam energy and extends to energies well above that of the beam. This paper presents an abrasion-ablation model for making quantitative predictions of the neutron spectrum. To describe neutrons produced from the abrasion step of the reaction where the projectile and target overlap, the authors use the Glauber model and include effects of final-state interactions. They then use the prefragment mass distribution from abrasion with a statistical evaporation model to estimate the neutron spectrum resulting from ablation. Measurements of neutron production from Ne and Nb beams are compared with calculations, and good agreement is found.

  7. Non-abrasive particulate material for permeability alteration in subsurface formations

    SciTech Connect

    DePriester, C. L.

    1985-02-26

    An improved particulate material is disclosed for use in a method for altering the permeability of a gravity override or relatively high permeability path through a subsurface earth formation resulting from fluid injection into the subsurface formation. The method includes adding selectively sized, finely divided, amorphous non-abrasive particulate material to a fluid and injecting the fluid into the gravity override or relatively high permeability path to deposit the particulate material thus altering the permeability in the override, or relatively high permeability path. The particulate material may include graphite, carbon black, clay suspensions, quartz, or other minerals reduced in size range to behave as non-abrasive amorphous material which will present a non-abrasive characteristic in injection wells and if the particulate material is produced with formation fluids from the treated formation.

  8. Wear of artificial denture teeth by use of toothbrushes. Part 1: Abrasive wear of anterior teeth.

    PubMed

    Satoh, Y; Ohtani, K; Maejima, K; Morikawa, M; Matsuzu, M; Nagai, E; Toyoma, H; Ohwa, M; Ohki, K; Kaketani, M

    1990-12-01

    High-strength denture teeth (HS teeth) were developed in order to improve the hardness and wear resistance of conventional plastic denture teeth (PL teeth), while retaining their feature of easy occlusal adjustment. The objective of this study was to evaluate the abrasive wear resistance of HS teeth. We conducted wear tests and measured surface roughness using six types of anterior artificial teeth, i.e., three types of HS teeth and three types of PL teeth, the latter serving as the control. The results of the toothbrush abrasion test revealed that the HS teeth had about 5 times greater wear resistance than the PL teeth. It was also found that the type of artificial teeth and the number of abrasive wear-testing strokes had a significant (P less than 0.05) influence on the surface roughness of artificial teeth. PMID:2074493

  9. Abrasive wear: The efects of fibres size on oil palm empty fruit bunch polyester composite

    NASA Astrophysics Data System (ADS)

    Kasolang, S.; Kalam, A.; Ahmad, M. A.; Rahman, N. A.; Suhadah, W. N.

    2012-06-01

    This paper presents an experimental investigation carried out to determine the effect of palm oil empty fruit bunch (OPEFB) fibre size in dry sliding testing of polyester composite. These composite samples were produced by mixing raw OPEFB fibre with resin. The samples were prepared at different sizes of fibre (100, 125, 180 and 250μm). Abrasion Resistance Tester (TR-600) was used to carried out abrasive wear tests in dry sliding conditions. These tests were performed at room temperature for two different loads (10 and 30N) and at a constant sliding velocity of 1.4m/s. The specific wear rates of OPEFB polyester composites were obtained. The morphology of composite surface before and after tests was also examined using 3D microscope imaging. Preliminary work on thermal distribution at the abrasive wheel point was also conducted for selected samples.

  10. The rock abrasion record at Gale Crater: Mars Science Laboratory results from Bradbury Landing to Rocknest

    USGS Publications Warehouse

    Bridges, N.T.; Calef, F.J., III; Hallett, B.W.; Herkenhoff, Kenneth E.; Lanza, N.L.; Le Mouélic, S.; Newman, C.E.; Blaney, D.L.; de Pablo, M.A.; Kocurek, G.A.; Langevin, Y.; Lewis, K.W.; Mangold, N.; Maurice, S.; Meslin, P.-Y.; Pinet, P.; Renno, N.O.; Rice, CM.S.; Richardson, M.E.; Sautter, V.; Sletten, R.S.; Wiens, R.C.; Yingst, R.A.

    2014-01-01

    Ventifacts, rocks abraded by wind-borne particles, are found in Gale Crater, Mars. In the eastward drive from “Bradbury Landing” to “Rocknest,” they account for about half of the float and outcrop seen by Curiosity's cameras. Many are faceted and exhibit abrasion textures found at a range of scales, from submillimeter lineations to centimeter-scale facets, scallops, flutes, and grooves. The drive path geometry in the first 100 sols of the mission emphasized the identification of abrasion facets and textures formed by westerly flow. This upwind direction is inconsistent with predictions based on models and the orientation of regional dunes, suggesting that these ventifact features formed from very rare high-speed winds. The absence of active sand and evidence for deflation in the area indicates that most of the ventifacts are fossil features experiencing little abrasion today.

  11. CFD Based Erosion Modelling of Abrasive Waterjet Nozzle using Discrete Phase Method

    NASA Astrophysics Data System (ADS)

    Hakim Kamarudin, Naqib; Prasada Rao, A. K.; Azhari, Azmir

    2016-02-01

    In Abrasive Waterjet (AWJ) machining, the nozzle is the most critical component that influences the performance, precision and economy. Exposure to a high speed jet and abrasives makes it susceptible to wear erosion which requires for frequent replacement. The present works attempts to simulate the erosion of the nozzle wall using computational fluid dynamics. The erosion rate of the nozzle was simulated under different operating conditions. The simulation was carried out in several steps which is flow modelling, particle tracking and erosion rate calculation. Discrete Phase Method (DPM) and K-ε turbulence model was used for the simulation. Result shows that different operating conditions affect the erosion rate as well as the flow interaction of water, air and abrasives. The simulation results correlates well with past work.

  12. Influence of alumina and titanium dioxide coatings on abrasive wear resistance of AISI 1045 steel

    NASA Astrophysics Data System (ADS)

    Santos, A.; Remolina, A.; Marulanda, J.

    2016-02-01

    This project aims to compare the behaviour of an AISI 1045 steel's abrasive wear resistance when is covered with aluminium oxide (Al2O3) or Titanium dioxide (TiO2), of nanometric size, using the technique of thermal hot spray, which allows to directly project the suspension particles on the used substrate. The tests are performed based on the ASTM G65-04 standard (Standard Test Method for Measuring Abrasion Using the Dry Sand/Rubber Apparatus). The results show that the amount of, lost material increases linearly with the travelled distance; also determined that the thermal treatment of hardening-tempering and the alumina and titanium dioxide coatings decrease in average a 12.9, 39.6 and 29.3% respectively the volume of released material during abrasive wear test.

  13. Photodetector Development for the Wheel Abrasion Experiment on the Sojourner Microrover of the Mars Pathfinder Mission

    NASA Technical Reports Server (NTRS)

    Wilt, David M.; Jenkins, Phillip P.; Scheiman, David A.

    1997-01-01

    On-board the Mars Pathfinder spacecraft, launched in December of 1996, is a small roving vehicle named Sojourner. On Sojourner is an experiment to determine the abrasive characteristics of the Martian surface, called the Wheel Abrasion Experiment (WAE). The experiment works as follows: one of the wheels of the rover has a strip of black anodized aluminum bonded to the tread. The aluminum strip has thin coatings of aluminum, nickel and platinum deposited in patches. There are five (5) patches or samples of each metal, and the patches range in thickness from 200 A to 1000 A. The different metals were chosen for their differing hardness and their environmental stability. As the wheel is spun in the Martian soil, the thin patches of metal are abraded away, exposing the black anodization. The abrasion is monitored by measuring the amount of light reflected off of the samples. A photodetector was developed for this purpose, and that is the subject of this paper.

  14. Abrasion, erosion and scuffing resistance of carbide and oxide ceramic thermal sprayed coatings for different applications

    NASA Astrophysics Data System (ADS)

    Barbezat, G.; Nicoll, A. R.; Sickinger, A.

    1993-04-01

    In the area of antiwear coatings, carbide-containing coatings and oxide ceramic coatings are applied using different thermal spray processes in the form of individual layers. In many industries these coatings have become technically significant on components where wear and friction can cause critical damage in the form of abrasion, erosion and scuffing together with corrosion. Carbide-containing and ceramic coatings have been produced with different thermal spray processes for the determination of abrasive, adhesive and erosive wear resistance. Two types of abrasion test, namely an adhesion wear test and an erosion test in water at a high velocity, were used for the characterization of wear resistance under different conditions. The coatings were also characterized with regard to microstructure, composition and fracture toughness. The influence of the thermal spraying process parameters on the microstructure is presented together with the influence of the microstructure on the behavior of the coatings under simulated service conditions.

  15. Considerations on the European Standard EN 14157 Test Methods: Abrasion Resistance of Natural Stones Used for Flooring in Buildings

    NASA Astrophysics Data System (ADS)

    Karaca, Z.; Günes Yılmaz, N.; Goktan, R. M.

    2012-01-01

    In Europe, the Wide Wheel abrasion (WWA) test and the Böhme abrasion (BA) test are among the most widely used standard test methods for determining abrasion resistance of natural stones, the former being the reference test method in EN 14157 Standard. However, it is stated in the Annex-A (Informative) of EN 14157 Standard that very limited data are available to provide correlations between these two test methods. To be able to fill this gap, in this study, 25 different natural stones belonging to sedimentary, metamorphic and igneous groups were tested for their abrasion resistance as well as physico-mechanical properties. Also, for a better interpretation of abrasion resistance characteristics of the tested stone materials, relationships between abrasion resistance and physico-mechanical properties were statistically examined. A statistically significant linear correlation ( R 2 = 0.85; P value = 0.000) was established between the WWA test and the BA test, which could be used in practice for converting the measured abrasion resistance values from one testing method to another. It was also found that the correlation between these two test methods improved significantly ( R 2 = 0.93; P value = 0.001) when relatively high-porosity stone materials (porosity ≥1%) were separately evaluated. Both methods of abrasion resistance employed in the present study showed statistically significant linear correlations with uniaxial compressive strength and Brazilian tensile strength, the former proving to be a more influencing parameter on resistance to abrasion. Also, from the point view of representing actual abrasion mechanism of stone materials in practice, the necessity of simulating multi-directional foot traffic in abrasion testing methods was discussed. In this respect, the reference test method in the EN 14157 Standard was criticized for not fully meeting this requirement. It was also pointed out that the reference method could have some drawbacks when applied to coarse

  16. Abrasion Testing of Candidate Outer Layer Fabrics for Lunar EVA Space Suits

    NASA Technical Reports Server (NTRS)

    Mitchell, Kathryn C.

    2010-01-01

    During the Apollo program, the space suit outer layer fabrics were badly abraded after just a few Extravehicular Activities (EVAs). For example, the Apollo 12 commander reported abrasive wear on the boots, which penetrated the outer layer fabric into the thermal protection layers after less than eight hours of surface operations. Current plans for the Constellation Space Suit Element require the space suits to support hundreds of hours of EVA on the Lunar surface, creating a challenge for space suit designers to utilize materials advances made over the last forty years and improve upon the space suit fabrics used in the Apollo program. A test methodology has been developed by the NASA Johnson Space Center Crew and Thermal Systems Division for establishing comparative abrasion wear characteristics between various candidate space suit outer layer fabrics. The abrasion test method incorporates a large rotary drum tumbler with rocks and loose lunar simulant material to induce abrasion in fabric test cylinder elements, representative of what might occur during long term planetary surface EVAs. Preliminary materials screening activities were conducted to determine the degree of wear on representative space suit outer layer materials and the corresponding dust permeation encountered between subsequent sub -layers of thermal protective materials when exposed to a simulated worst case eight hour EVA. The test method was used to provide a preliminary evaluation of four candidate outer layer fabrics for future planetary surface space suit applications. This Paper provides a review of previous abrasion studies on space suit fabrics, details the methodologies used for abrasion testing in this particular study, and shares the results and conclusions of the testing.

  17. Abrasion Testing of Candidate Outer Layer Fabrics for Lunar EVA Space Suits

    NASA Technical Reports Server (NTRS)

    Mitchell, Kathryn

    2009-01-01

    During the Apollo program, the space suit outer layer fabrics were severely abraded after just a few Extravehicular Activities (EVAs). For example, the Apollo 12 commander reported abrasive wear on the boots, which penetrated the outer layer fabric into the thermal protection layers after less than eight hours of surface operations. Current plans for the Constellation Space Suit Element require the space suits to support hundreds of hours of EVA on the Lunar surface, creating a challenge for space suit designers to utilize materials advances made over the last forty years and improve upon the space suit fabrics used in the Apollo program. A test methodology has been developed by the NASA Johnson Space Center Crew and Thermal Systems Division for establishing comparative abrasion wear characteristics between various candidate space suit outer layer fabrics. The abrasion test method incorporates a large rotary drum tumbler with rocks and loose lunar simulant material to induce abrasion in fabric test cylinder elements, representative of what might occur during long term planetary surface EVAs. Preliminary materials screening activities were conducted to determine the degree of wear on representative space suit outer layer materials and the corresponding dust permeation encountered between subsequent sub-layers of thermal protective materials when exposed to a simulated worst case eight hour EVA. The test method was used to provide a preliminary evaluation of four candidate outer layer fabrics for future planetary surface space suit applications. This paper provides a review of previous abrasion studies on space suit fabrics, details the methodologies used for abrasion testing in this particular study, shares the results of the testing, and provides recommendations for future work.

  18. Brushing abrasion of eroded dentin after application of sodium fluoride solutions.

    PubMed

    Attin, T; Zirkel, C; Hellwig, E

    1998-01-01

    The aim of the present in vitro study was to evaluate the influence of sodium fluoride solutions on brushing abrasion of eroded dentin. Dentin specimens were prepared from 60 bovine incisors. The specimens were embedded in acrylic resin, ground flat, polished and subsequently covered with tape exposing an area of 1.8 mm x 10.0 mm in the center of the exposed dentin. The samples were alternatingly stored in a demineralizing solution (5 min) and a remineralizing solution (1 min) for 5 times. The erosive soft drink Sprite light(R) served as a demineralizing solution and artificial saliva was used as a remineralizing solution. Prior to storage in artificial saliva 15 specimens were each treated for 1 min with 250 and 2,000 ppm fluoride solution, respectively. Fifteen specimens were treated with distilled water instead of the fluoride solution (= eroded controls). The remaining samples were neither eroded with the soft drink nor fluoridated (= uneroded controls). After each immersion in artificial saliva the specimens were submitted to abrasion in a toothbrushing machine. After 5 demineralization-remineralization brushing cycles the total amount of tooth wear due to erosion and subsequent abrasion was profilometrically evaluated. Statistical analysis revealed the significantly lowest wear in the uneroded controls and the highest amount of abrasion in the eroded controls. Application of the fluoride solutions increased the wear resistance of the eroded dentin specimens, showing significantly better protection by the high-concentration compared to the low-concentration solution. The susceptibility to abrasion of the eroded dentin specimens treated with the high-concentration fluoride solution did not differ significantly from the uneroded dentin samples. It is concluded that application of 2,000 ppm sodium fluoride solutions immediately before toothbrushing significantly reduces abrasion of eroded dentin in vitro. PMID:9701659

  19. Microstructural effects in abrasive wear. Quarterly progress report, June 1981-January 1982

    SciTech Connect

    Kosel, T.H.; Rao, C.M.; Fernandes, M.T.; Fiore, N.F.

    1982-02-24

    This report describes research aimed at establishing quantitative relationships between microstructure and wear resistance of highly alloyed materials, including high-Cr white irons and powder metallurgy (PM) alloys now used or potentially to be used in coal mining, handling, and gasification. The specific types of wear under study are low-stress abrasion and gouging wear encountered in mining, coal conversion, and transfer applications. Recent work has concentrated on analysis of results. The many detailed observations obtained in the work on scratch test simulations of abrasive wear mechanisms have been summarized in drafts of three papers. The first, a study of abrasive wear mechanisms using diamond and alumina scratch tests, was included as an appendix to Quarterly Report 16/17 and has been accepted for publication in the journal Wear. Revision of the other two papers is in progress. Two papers representing our analysis of results are included as appendices to this report. The first, abrasion in multiphase alloys, was presented at the NACE conference on corrosion-erosion-wear of materials at Berkeley, California in January 1982, and will be published in the proceedings. The second, on a deformation-induced phase transformation during abrasive wear of Co-base alloys, is being submitted for publication in Metallurgical Transactions. In addition, work on the gouging abrasion resistance of the previously tested high Cr-Mo white cast irons is completed. The abstract of a short paper on the results is included as an appendix. (Note: since the appendices are, or will be, available in the open literature they have been removed from the report.)

  20. Subsurface mechanical damage during bound abrasive grinding of fused silica glass

    NASA Astrophysics Data System (ADS)

    Blaineau, P.; André, D.; Laheurte, R.; Darnis, P.; Darbois, N.; Cahuc, O.; Neauport, J.

    2015-10-01

    The subsurface damage (SSD) introduced during bound abrasive grinding of fused silica glass was measured using a wet etch technique. Various process parameters and grinding configurations were studied. The relation between the SSD depth, the process parameters and forces applied by the grinding wheel on the sample was investigated and compared to a simulation using a discrete element method to model the grinding interface. The results reveal a relation between the SSD depth and the grinding forces normalized by the abrasive concentration. Regarding the creation of the SSD, numerical simulations indicate that only a small fraction of the largest particles in the diamond wheel are responsible for the depth of the damaged layer.

  1. Abrasion Resistance of as-Cast High-Chromium Cast Iron

    NASA Astrophysics Data System (ADS)

    Pokusová, Marcela; Berta, Igor; Šooš, Ľubomír

    2014-12-01

    High chromium cast irons are widely used as abrasion resistant materials. Their properties and wear resistance depend on carbides and on the nature of the matrix supporting these carbides. The paper presents test results of irons which contain (in wt.%) 18-22 Cr and 2-5 C, and is alloyed by 1.7 Mo + 5 Ni + 2 Mn to improve the toughness. Tests showed as-cast irons with mostly austenitic matrix achieved hardness 36-53 HRC but their relative abrasion-resistance was higher than the tool steel STN 19436 heat treated on hardness 60 HRC.

  2. Comparison of the abrasive wear resistance between amalgams, hybrid composite material and different dental cements.

    PubMed

    Gil, F J; Espias, A; Sánchez, L A; Planell, J A

    1999-12-01

    This paper reports on the abrasion wear of various restorative dental materials (three amalgams and two dental cements and a hybrid composite material) commonly used in dentistry. The mechanical properties, surface roughness and the volume loss by abrasion were determined for the different materials studied. The results showed a better profile for the amalgams versus the composite materials due to the failure of the polymeric matrix of the latter materials. However, the amalgams exhibited corrosion observed by means of Scanning Electron Microscopy. PMID:10907431

  3. Computer Simulation of Stress-Strain State of Pipeline Section Affected by Abrasion Due to Mechanical Impurities

    NASA Astrophysics Data System (ADS)

    Burkov, P. V.; Afanas’ev, R. G.; Burkova, S. P.

    2016-04-01

    The paper presents the effect of abrasive wear of the pipeline section occurred due to mechanical impurities in the transported gas flow. The approaches to the detection of the maximum specific wear of the pipeline wall and the geometry of abrasion are the main problems of computer simulation described in this paper.

  4. Preparation of Fe-doped colloidal SiO(2) abrasives and their chemical mechanical polishing behavior on sapphire substrates.

    PubMed

    Lei, Hong; Gu, Qian; Chen, Ruling; Wang, Zhanyong

    2015-08-20

    Abrasives are one of key influencing factors on surface quality during chemical mechanical polishing (CMP). Silica sol, a widely used abrasive in CMP slurries for sapphire substrates, often causes lower material removal rate (MRRs). In the present paper, Fe-doped colloidal SiO2 composite abrasives were prepared by a seed-induced growth method in order to improve the MRR of sapphire substrates. The CMP performance of Fe-doped colloidal SiO2 abrasives on sapphire substrates was investigated using UNIPOL-1502 CMP equipment. Experimental results indicate that the Fe-doped colloidal SiO2 composite abrasives exhibit lower surface roughness and higher MRR than pure colloidal SiO2 abrasives for sapphire substrates under the same testing conditions. Furthermore, the acting mechanism of Fe-doped colloidal SiO2 composite abrasives in sapphire CMP was analyzed by x-ray photoelectron spectroscopy. Analytical results show that the Fe in the composite abrasives can react with the sapphire substrates to form aluminum ferrite (AlFeO3) during CMP, which promotes the chemical effect in CMP and leads to improvement of MRR. PMID:26368752

  5. Development of a two-body wet abrasion test method with attention to the effects of reused abradant

    SciTech Connect

    Blau, Peter Julian; Dehoff, Ryan R

    2012-01-01

    Abrasive wear is among the most common and costliest causes for material wastage, and it occurs in many forms. A simple method has been developed to quantify the response of metals and alloys to two-body wet abrasion. A metallographic polishing machine was modified to create a disk-on-flat sliding test rig. Adhesive-backed SiC grinding papers were used under fixed load and speed to rank the abrasive wear of seven alloy steels, some of which are candidates for drill cones for geothermal drilling. Standardized two-body abrasion tests, like those described in ASTM G132, feed unused abrasive into the contact; however, the current work investigated whether useful rankings could still be obtained with a simpler testing configuration in which specimens repeatedly slide on the same wear path under water-lubricated conditions. Tests using abrasive grit sizes of 120 and 180 resulted in the same relative ranking of the alloys although the coarser grit produced more total wear. Wear decreased when the same abrasive disk was re-used for up to five runs, but the relative rankings of the steels remained the same. This procedure was presented to ASTM Committee G2 on Wear and Erosion as a potential standard test for wet two-body abrasive wear.

  6. A critical review of non-carious cervical (wear) lesions and the role of abfraction, erosion, and abrasion.

    PubMed

    Bartlett, D W; Shah, P

    2006-04-01

    The terms 'abfraction' and 'abrasion' describe the cause of lesions found along the cervical margins of teeth. Erosion, abrasion, and attrition have all been associated with their formation. Early research suggested that the cause of the V-shaped lesion was excessive horizontal toothbrushing. Abfraction is another possible etiology and involves occlusal stress, producing cervical cracks that predispose the surface to erosion and abrasion. This article critically reviews the literature on abrasion, erosion, and abrasion, and abfraction. The references were obtained by a MEDLINE search in March, 2005, and from this, hand searches were undertaken. From the literature, there is little evidence, apart from laboratory studies, to indicate that abfraction exists other than as a hypothetical component of cervical wear. PMID:16567549

  7. A review on nozzle wear in abrasive water jet machining application

    NASA Astrophysics Data System (ADS)

    Syazwani, H.; Mebrahitom, G.; Azmir, A.

    2016-02-01

    This paper discusses a review on nozzle wear in abrasive water jet machining application. Wear of the nozzle becomes a major problem since it may affect the water jet machining performance. Design, materials, and life of the nozzle give significance effect to the nozzle wear. There are various parameters that may influence the wear rate of the nozzle such as nozzle length, nozzle inlet angle, nozzle diameter, orifice diameter, abrasive flow rate and water pressure. The wear rate of the nozzle can be minimized by controlling these parameters. The mechanism of wear in the nozzle is similar to other traditional machining processes which uses a cutting tool. The high pressure of the water and hard abrasive particles may erode the nozzle wall. A new nozzle using a tungsten carbide-based material has been developed to reduce the wear rate and improve the nozzle life. Apart from that, prevention of the nozzle wear has been achieved using porous lubricated nozzle. This paper presents a comprehensive review about the wear of abrasive water jet nozzle.

  8. Tribological properties of amorphous alloys and the role of surfaces in abrasive wear of materials

    NASA Technical Reports Server (NTRS)

    Miyoshi, K.; Buckley, D. H.

    1982-01-01

    The research approach undertaken by the authors relative to the subject, and examples of results from the authors are reviewed. The studies include programs in adhesion, friction, and various wear mechanisms (adhesive and abrasive wear). The materials which have been studied include such ceramic and metallic materials as silicon carbide, ferrites, diamond, and amorphous alloys.

  9. 16 CFR Figure 8 to Part 1512 - Reflectorized Bicycle Wheel Rim Abrasion Test Device

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... 16 Commercial Practices 2 2014-01-01 2014-01-01 false Reflectorized Bicycle Wheel Rim Abrasion Test Device 8 Figure 8 to Part 1512 Commercial Practices CONSUMER PRODUCT SAFETY COMMISSION FEDERAL HAZARDOUS SUBSTANCES ACT REGULATIONS REQUIREMENTS FOR BICYCLES Pt. 1512, Fig. 8 Figure 8 to Part...

  10. 16 CFR Figure 8 to Part 1512 - Reflectorized Bicycle Wheel Rim Abrasion Test Device

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 16 Commercial Practices 2 2011-01-01 2011-01-01 false Reflectorized Bicycle Wheel Rim Abrasion Test Device 8 Figure 8 to Part 1512 Commercial Practices CONSUMER PRODUCT SAFETY COMMISSION FEDERAL HAZARDOUS SUBSTANCES ACT REGULATIONS REQUIREMENTS FOR BICYCLES Pt. 1512, Fig. 8 Figure 8 to Part...

  11. 16 CFR Figure 8 to Part 1512 - Reflectorized Bicycle Wheel Rim Abrasion Test Device

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... 16 Commercial Practices 2 2013-01-01 2013-01-01 false Reflectorized Bicycle Wheel Rim Abrasion Test Device 8 Figure 8 to Part 1512 Commercial Practices CONSUMER PRODUCT SAFETY COMMISSION FEDERAL HAZARDOUS SUBSTANCES ACT REGULATIONS REQUIREMENTS FOR BICYCLES Pt. 1512, Fig. 8 Figure 8 to Part...

  12. 16 CFR Figure 8 to Part 1512 - Reflectorized Bicycle Wheel Rim Abrasion Test Device

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... 16 Commercial Practices 2 2012-01-01 2012-01-01 false Reflectorized Bicycle Wheel Rim Abrasion Test Device 8 Figure 8 to Part 1512 Commercial Practices CONSUMER PRODUCT SAFETY COMMISSION FEDERAL HAZARDOUS SUBSTANCES ACT REGULATIONS REQUIREMENTS FOR BICYCLES Pt. 1512, Fig. 8 Figure 8 to Part...

  13. 16 CFR Figure 8 to Part 1512 - Reflectorized Bicycle Wheel Rim Abrasion Test Device

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 16 Commercial Practices 2 2010-01-01 2010-01-01 false Reflectorized Bicycle Wheel Rim Abrasion Test Device 8 Figure 8 to Part 1512 Commercial Practices CONSUMER PRODUCT SAFETY COMMISSION FEDERAL HAZARDOUS SUBSTANCES ACT REGULATIONS REQUIREMENTS FOR BICYCLES Pt. 1512, Fig. 8 Figure 8 to Part...

  14. Microstructural effects in abrasive wear. Quarterly progress report, January 1-June 1, 1980

    SciTech Connect

    Fiore, N.F.; Kosel, T.H.; Channagiri, M.; Desai, V.; Fulcher, J.; Shetty, H.R.

    1980-06-01

    Research aimed at establishing quantitative relationships between microstructure and wear resistance of highly alloyed materials is described including high-Cr white irons and experimental Co-base and Ni-base powder metallurgy (PM) alloys now used or potentially to be used in coal mining, handling and gasification. The specific types of wear under study are low-stress abrasion and gouging wear encountered in mining, coal conversion and transfer applications. Research has concentrated on the investigation of wear in Co-base PM alloys No. 19 and No. 6, which have been sintered to provide different carbide sizes at the same volume fraction in each respective alloy. Low-stress abrasion tests using Al/sub 2/O/sub 3/ abrasive have been completed on Alloy No. 19 and the results show a monotonic decrease in wear rate with increasing size. A series of single-point scratch test simulations of abrasive wear mechanisms has been initiated, and these tests provide valuable insights into material removal processes in the Co-base alloys.

  15. Abrasive Wear Behaviour of COPPER-SiC and COPPER-SiO2 Composites

    NASA Astrophysics Data System (ADS)

    Umale, Tejas; Singh, Amarjit; Reddy, Y.; Khatitrkar, R. K.; Sapate, S. G.

    The present paper reports abrasive wear behaviour of copper matrix composites reinforced with silicon carbide and silica particles. Copper - SiC (12%) and Copper-SiO2 (9%) composites were prepared by powder metallurgical technique. Metallography, image analysis and hardness studies were carried out on copper composites. The abrasive wear experiments were carried out using pin on disc apparatus. The effect of sliding distance and load was studied on Copper - SiC (12%) and Copper-SiO2 (9%) composites. The abrasive wear volume loss increased with sliding distance in both the composites although the magnitude of increase was different in each case. Copper - SiC (12%) composites exhibited relatively better abrasion resistance as compared to and Copper-SiO2 (9%) composites. The abraded surfaces were observed under scanning electron microscope to study the morphology of abraded surfaces and operating wear mechanism. The analysis of wear debris particles was also carried out to substantiate the findings of the investigation.

  16. Optical tools for high-throughput screening of abrasion resistance of combinatorial libraries of organic coatings

    NASA Astrophysics Data System (ADS)

    Potyrailo, Radislav A.; Chisholm, Bret J.; Olson, Daniel R.; Brennan, Michael J.; Molaison, Chris A.

    2002-02-01

    Design, validation, and implementation of an optical spectroscopic system for high-throughput analysis of combinatorially developed protective organic coatings are reported. Our approach replaces labor-intensive coating evaluation steps with an automated system that rapidly analyzes 8x6 arrays of coating elements that are deposited on a plastic substrate. Each coating element of the library is 10 mm in diameter and 2 to 5 micrometers thick. Performance of coatings is evaluated with respect to their resistance to wear abrasion because this parameter is one of the primary considerations in end-use applications. Upon testing, the organic coatings undergo changes that are impossible to quantitatively predict using existing knowledge. Coatings are abraded using industry-accepted abrasion test methods at single-or multiple-abrasion conditions, followed by high- throughput analysis of abrasion-induced light scatter. The developed automated system is optimized for the analysis of diffusively scattered light that corresponds to 0 to 30% haze. System precision of 0.1 to 2.5% relative standard deviation provides capability for the reliable ranking of coatings performance. While the system was implemented for high-throughput screening of combinatorially developed organic protective coatings for automotive applications, it can be applied to a variety of other applications where materials ranking can be achieved using optical spectroscopic tools.

  17. Parametric Study to Correlate the Applied Factors and Abrasive Wear Resistance of HVOF Coating

    NASA Astrophysics Data System (ADS)

    Sharma, Satpal

    2012-12-01

    Co-Ni-base powder was modified with the addition of CeO2 to study the effect of CeO2 addition on microstructure, hardness, and abrasive wear behavior of the unmodified (without CeO2) and modified (with CeO2) HVOF sprayed coatings. To investigate the abrasive wear behavior of coatings statistical response surface methodology (RSM) with four factors such as load, abrasive size, sliding distance, and temperature with three levels of each factor were used. Analysis of variance (ANOVA) was carried out to determine the significant factors and their interactions. Thus abrasive wear model was developed in terms of main factors and their significant interactions. The validity of the model was evaluated by conducting experiments under different wear conditions. A comparison of modeled and experimental results showed 2-8% error. The wear resistance of coatings increased with the addition of CeO2. This is due to increase in hardness with the addition of CeO2 in Co-Ni-base coatings.

  18. Sand abrasion injury and plant survival in cotton seedlings of different ages

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Millions of hectares of crops are exposed to wind-blown soil abrasion injury each year and in many instances the damage is severe enough to require replanting. Little attention has been given to plant physiological or morphological factors that may lend resistance to, or enhance recovery from, wind-...

  19. ICAM-1 mediates surface contact between neutrophils and keratocytes following corneal epithelial abrasion in the mouse

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Corneal epithelial abrasion elicits an inflammatory response involving neutrophil (PMN) recruitment from the limbal vessels into the corneal stroma. These migrating PMNs make surface contact with collagen and stromal keratocytes. Using mice deficient in PMN integrin CD18, we previously showed that P...

  20. NK cells modulate the inflammatory response to corneal epithelial abrasion and thereby support wound healing

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Natural killer cells are lymphocytes of the innate immune system that have crucial cytotoxic and regulatory roles in adaptive immunity and inflammation. Herein, we consider a role for these cells in corneal wound healing. After a 2-mm central epithelial abrasion of the mouse cornea, a subset of clas...

  1. Intraoral leukoplakia, abrasion, periodontal breakdown, and tooth loss in a snuff dipper.

    PubMed

    Christen, A G; Armstrong, W R; McDaniel, R K

    1979-04-01

    Dentists should be aware that snuff dipping or chewing is increasing in southern states and perhaps in other sections of the United States. These habits can lead to clinical leukoplakia, gingival recession, tooth abrasion, and periodontal bone destruction. The possibility also exists that a malignant transformation of leukoplakia can develop in persons who use snuff and other forms of tobacco. PMID:285136

  2. Abrasive wear behavior of heat-treated ABC-silicon carbide

    SciTech Connect

    Zhang, Xiao Feng; Lee, Gun Y.; Chen, Da; Ritchie, Robert O.; De Jonghe, Lutgard C.

    2002-06-17

    Hot-pressed silicon carbide, containing aluminum, boron, and carbon additives (ABC-SiC), was subjected to three-body and two-body wear testing using diamond abrasives over a range of sizes. In general, the wear resistance of ABC-SiC, with suitable heat treatment, was superior to that of commercial SiC.

  3. Air-propelled abrasive grit for postemergence in-row weed control in field corn

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Organic growers need additional tools for weed control. A new technique involving abrasive grit propelled by compressed air was tested in field plots. Grit derived from corn cobs was directed at seedlings of summer annual weeds growing at the bases of corn plants when the corn was at differing early...

  4. Investigation of abrasion in Al–MgO metal matrix composites

    SciTech Connect

    Muharr em Pul; Çalin, Recep; Gül, Ferhat

    2014-12-15

    In this study, the effects of reinforcement volume fractions on abrasive wear behavior were examined in Al–MgO reinforced metal matrix composites of 5%, 10% and 15% reinforcement – volume ratios produced by melt-stirring. Abrasive wear tests were carried out by 60, 80 and 100 mesh sized Al{sub 2}O{sub 3} abrasive papers and pin-on-disc wear test apparatus under 10, 20 and 30 N loads at 0.2 m/s sliding speed. The mechanical properties such as hardness and fracture strength were determined. Subsequent to the wear tests, the microstructures of worn surfaces were examined by scanning electron microscope analyses. While increased MgO reinforcement volume fraction in the composite resulted increased hardness, fracture strength was determined to decrease. Additionally, it was found that increased MgO reinforcement volume fraction in the composite was accompanied with increased wear loss and porosity as well as reinforcement – volume ratio was identified to be significant determinants of abrasive wear behavior.

  5. PAGMan - propelled abrasive grit to manage weeds in soybean and corn

    Technology Transfer Automated Retrieval System (TEKTRAN)

    New tools for controlling weeds would be useful for soybean and corn production in organic systems or in systems in which weeds developed resistance to multiple herbicides. Here we report on two developments: (i) the safety to soybean seedlings of using air-propelled abrasive grit (PAG) for managing...

  6. Characterization of abrasion-induced nanoparticle release from paints into liquids and air

    NASA Astrophysics Data System (ADS)

    Golanski, L.; Gaborieau, A.; Guiot, A.; Uzu, G.; Chatenet, J.; Tardif, F.

    2011-07-01

    Two standard methods for the characterization of the abrasion nanoparticle release into air and liquid from coatings containing nanoparticles were developed. Details of the abrasion processes and the measurement methods are shown. Paints were formulated in an industrial facility. Standard abrasion conditions in wet environments were simulated. The size distribution of the particles abraded into liquid was analyzed by a laser granulometer: submicrometric and micrometric particles were observed, but no nanometric particles. The nanoparticles released in liquid were deposited on filters for SEM (Scanning Electron Microscopy) analysis. No free or agglomerated nanoparticles were observed by SEM: nanoparticles seem to remain embedded in the paint matrix. The same coatings were abraded in the air using another standard method. The ELPI (Electrical Low Pressure Impactor) was used to determine the number size distribution of the dust generated. Abrasion is found to produce submicrometric and micrometric particles in the air but no nanoparticles. Further characterizations by SEM confirmed that no free or agglomerated nanoparticles were emitted: nanoparticles seem to remain embedded in the paint matrix.

  7. Two waves of neutrophil emigration in response to corneal epithelial abrasion: Distinct adhesion molecule requirements

    Technology Transfer Automated Retrieval System (TEKTRAN)

    PURPOSE: Corneal abrasion results in an inflammatory response characterized by leukocyte emigration into the corneal stroma. Adhesion molecules play a critical role in leukocyte emigration to wound sites, but differences are evident in different vascular beds. In this study, the contributions of two...

  8. Laser abrasion for cosmetic and medical treatment of facial actinic damage

    SciTech Connect

    David, L.M.; Lask, G.P.; Glassberg, E.; Jacoby, R.; Abergel, R.P.

    1989-06-01

    Previous studies have shown the carbon dioxide (CO/sub 2/) laser to be effective in the treatment of actinic cheilitis. After CO/sub 2/ laser abrasion, normal skin and marked cosmetic improvement of the lip were noted. In our study, twenty-three patients were treated with CO/sub 2/ laser abrasions for cosmetic improvement of facial lines and actinic changes. Pre- and postoperative histopathologic examinations were made on two patients. Preoperative examination of specimens from actinically damaged skin showed atypical keratinocytes in the basal layer of the epidermis, with overlying dense compact orthokeratosis and parakeratosis. Abundant solar elastosis was seen in the papillary dermis. Postoperative histologic specimens showed a normal-appearing epidermis with fibrosis in the papillary dermis and minimal solar elastosis (about four weeks after laser treatment). At present, various modalities are available for the regeneration of the aged skin, including chemical peels and dermabrasion. Significantly fewer complications were noted with CO/sub 2/ laser abrasion than with these methods. Thus, CO/sub 2/ laser abrasion can be useful in the cosmetic and medical treatment of the aged skin. Marked clinical and histologic improvement has been demonstrated.

  9. Platelet recruitment promotes keratocyte repopulation following corneal epithelial abrasion in the mouse

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Corneal abrasion not only damages the epithelium but also induces stromal keratocyte death at the site of injury. While a coordinated cascade of inflammatory cell recruitment facilitates epithelial restoration, it is unclear if this cascade is necessary for keratocyte recovery. Since platelet and ne...

  10. Platelet response to corneal abrasion is necessary for acute inflammation and efficient re-epithelialization

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Purpose: Adhesion molecules play a critical role in leukocyte emigration to wound sites, but differences are evident in different vascular beds. This study investigates the contributions of P-selectin to neutrophil emigration into the cornea following central epithelial abrasion. Methods: Re-epithel...

  11. Martian and Terrestrial Rock Abrasion from Wind Tunnel and Field Studies

    NASA Technical Reports Server (NTRS)

    Bridges, N. T.; Greeley, R.; Eddlemon, E.; Laity, J. E.; Meyer, C.; Phoreman, J.; White, B. R.

    2003-01-01

    Earth and Mars exhibit ventifacts, rocks that have been abraded by saltating sand. Previous theoretical and laboratory studies have determined abrasion susceptibilities of rocks as a function of sand type and impact angle and rock material strengths. For the last two years we have been engaged in wind tunnel and field studies to better understand the fundamental factors which control and influence rock abrasion and ventifact formation on Earth and Mars. In particular, we are examining: 1) What types of rocks (composition, texture, and shape) preferentially erode and what are the relative rates of one type vs. another? 2) What are the controlling factors of the aeolian sand cloud (flux, particle speed, surface roughness, etc) which favor rock abrasion?, 3) How do specific ventifact characteristics tie into their mode of formation and rock properties? We find several important factors: 1) Initial rock shape controls the rate of abrasion, with steeper faces abrading faster than shallower ones. The relationship is partly dependent on angle-dependent flux (proportional to sin[theta]) but exhibits additional non-linear effects from momentum transfer efficiency and rebound effects that vary with incidence angle. 2) Irregular targets with pits or grooves abrade at greater rates than targets with smooth surfaces, with indentations generally enlarging with time. Surfaces become rougher with time. 3) Targets also abrade via slope retreat, which is roughly dependent on the slope of the front face. The formation of basal sills is common, as observed on terrestrial and Martian ventifacts.

  12. The Effect of Pleural Abrasion on the Treatment of Primary Spontaneous Pneumothorax: A Systematic Review of Randomized Controlled Trials

    PubMed Central

    Ming, Mo-yu; Cai, Shuang-qi; Chen, Yi-Qiang

    2015-01-01

    Background Pleural abrasion has been widely used to control the recurrence of primary spontaneous pneumothorax (PSP). However, controversy still exists regarding the advantages and disadvantages of pleural abrasion compared with other interventions in preventing the recurrence of PSP. Methods The PubMed, Embase, and Cochrane Central Register of Controlled Trials databases were searched up to December 15, 2014 to identify randomized controlled trials (RCTs) that compared the effects of pleural abrasion with those of other interventions in the treatment of PSP. The study outcomes included the PSP recurrence rate and the occurrence rate of adverse effects. Results Mechanical pleural abrasion and apical pleurectomy after thoracoscopic stapled bullectomy exhibited similarly persistent postoperative air leak occurrence rates (p = 0.978) and 1-year PSP recurrence rates (p = 0.821), whereas pleural abrasion led to reduced residual chest pain and discomfort (p = 0.001) and a smaller rate of hemothorax (p = 0.036) than did apical pleurectomy. However, the addition of minocycline pleurodesis to pleural abrasion did not reduce the pneumothorax recurrence rate compared with apical pleurectomy (3.8% for both procedures) but was associated with fewer complications. There was no statistical difference in the pneumothorax recurrence rate between mechanical pleural abrasion and chemical pleurodesis with minocycline on either an intention-to-treat basis (4 of 42 versus 0 of 42, p = 0.12; Fisher exact test) or after exclusions (2 of 40 versus 0 of 42, p = 0.24; Fisher exact test). Pleural abrasion plus minocycline pleurodesis also did not reduce the pneumothorax recurrence rate compared with pleural abrasion alone (p = 0.055). Moreover, pleural abrasion plus minocycline pleurodesis was associated with more intense acute chest pain. The postoperative overall recurrence rate in patients who underwent staple line coverage with absorbable cellulose mesh and fibrin glue was similar to that

  13. Forecasting of operational indicators of grinding tools with the controlled form and orientation of abrasive grains

    NASA Astrophysics Data System (ADS)

    Korotkov, V. A.; Minkin, E. M.

    2015-09-01

    The interconnection of the abrasive grain front angle parameter with the form, orientation and wear out parameters is investigated. The form of the abrasive grains was estimated by means of form coefficient which represents the relation of diameters of the spheres described around contours of grains, to diameters of the spheres entered in them. The spatial orientation angle of the abrasive grains was defined between main (i.e. the biggest) axis of the grains and the cutting plane. It is established that, depending on an orientation angle at increase in a form coefficient of the abrasive grains can be either an increase or a decrease in the values of their front angles. In most cases, with an increase in a form coefficient of the oriented grinding grains (at orientation angles Θ=10°÷125°) the growth of their front angles is fixed. At tangential orientation of grains (Θ=0°) and at the close directions of orientation (Θ=135°÷80°) the return picture is observed. Also established that the longer the abrasive grain wears along the main axis and located in the tool body, the larger is its front angle. Besides that, the front angles of the abrasive grains reach the maximum positive values at orientation angles Θ=22.5°÷45°.Dependence of tension in grains during the work with parameters of their form, orientation and depth of embedment in the bundle is investigated. It was found that for all orientation angles of grains their tension significantly increases with an increase in their form coefficient. Besides that it is confirmed that the deeper the grain is in the bundle, the lower the tension is there. Also found that tension is minimal when the grains are tangential orientated. Further on increase the option of the grains in the direction of action of the cutting force follows. Such option of orientation is the most rational both from the point of view of minimization of tension, and for ensuring rational sizes of front angles of the abrasive grains. The

  14. Gingival abrasion and recession in manual and oscillating–rotating power brush users

    PubMed Central

    Rosema, NAM; Adam, R; Grender, JM; Van der Sluijs, E; Supranoto, SC; Van der Weijden, GA

    2014-01-01

    Objective To assess gingival recession (GR) in manual and power toothbrush users and evaluate the relationship between GR and gingival abrasion scores (GA). Methods This was an observational (cross-sectional), single-centre, examiner-blind study involving a single-brushing exercise, with 181 young adult participants: 90 manual brush users and 91 oscillating–rotating power brush users. Participants were assessed for GR and GA as primary response variables. Secondary response variables were the level of gingival inflammation, plaque score reduction and brushing duration. Pearson correlation was used to describe the relationship between number of recession sites and number of abrasions. Prebrushing (baseline) and post-brushing GA and plaque scores were assessed and differences analysed using paired tests. Two-sample t-test was used to analyse group differences; ancova was used for analyses of post-brushing changes with baseline as covariate. Results Overall, 97.8% of the study population had at least one site of ≥1 mm of gingival recession. For the manual group, this percentage was 98.9%, and for the power group, this percentage was 96.7% (P = 0.621). Post-brushing, the power group showed a significantly smaller GA increase than the manual group (P = 0.004); however, there was no significant correlation between number of recession sites and number of abrasions for either group (P ≥ 0.327). Conclusions Little gingival recession was observed in either toothbrush user group; the observed GR levels were comparable. Lower post-brushing gingival abrasion levels were seen in the power group. There was no correlation between gingival abrasion as a result of brushing and the observed gingival recession following use of either toothbrush. PMID:24871587

  15. Glacial erosion and bedrock properties in NW Scotland: Abrasion and plucking, hardness and joint spacing

    NASA Astrophysics Data System (ADS)

    Krabbendam, Maarten; Glasser, Neil F.

    2011-07-01

    Subglacial erosion beneath glaciers occurs predominantly by abrasion and plucking, producing distinct erosional forms. The controls on the relative importance of abrasion vs. plucking are poorly understood. On the one hand, glacial conditions that favour or suppress cavity formation (ice velocity, ice thickness, and water pressure) are thought to favour plucking or abrasion, respectively. Conversely, bedrock properties are also known to control landforms, but this has rarely been analysed quantitatively. In this study we compare landforms and bedrock properties of sandstone and quartzite at the bed of a palaeo-ice stream near Ullapool in NW Scotland. The boundary between the rock types is at right angles to the westward palaeo-ice flow, and palaeoglacial conditions on both rock types were similar. We report quantitative parameters for bedrock properties (Schmidt hammer hardness and joint spacing) and use morphometric parameters to analyse the landforms. Torridon sandstone is soft but thick-bedded and with a wide joint spacing. Erosional bedforms include roche moutonnées with smoothed tops and concave stoss sides, whalebacks, and elongate p-forms, indicating a high proportion of abrasion over plucking. Cambrian quartzite is hard but thin-bedded with narrow joint spacing. Erosional landforms are angular to subangular with abundant plucked lee faces, suggesting a high proportion of plucking over abrasion. Hardness and joint spacing thus exert a strong control on subglacial erosional landforms and the mechanisms that formed them. Thus glacial conditions (ice velocity, ice thickness) can only be inferred from glacial erosional landforms if the effects of bedrock properties of the substrate are considered.

  16. WC-Co and Cr3C2-NiCr Coatings in Low- and High-Stress Abrasive Conditions

    NASA Astrophysics Data System (ADS)

    Kašparová, Michaela; Zahálka, František; Houdková, Šárka

    2011-03-01

    The article deals with the evaluation of abrasive wear resistance and adhesive strength of thermally sprayed coatings. The main attention was paid to differences between low- and high-stress abrasive conditions of the measuring. Conclusions include the evaluation of specific properties of the WC-Co and the Cr3C2-NiCr High Velocity Oxygen Fuel coatings and the evaluation of the changes in the behavior of the abrasive media. Mainly, the relationship between the low- and high-stress abrasion conditions and the wear mechanism in the tested materials was described. For the wear test, the abrasive media of Al2O3 and SiO2 sands were chosen. During wear tests, the volume loss of the tested materials and the surface roughness of the wear tracks were measured. The wear tracks on the tested materials and abrasive sands' morphologies were observed using Scanning Electron Microscopy. It was found that high-stress abrasive conditions change the coatings' behavior very significantly, particularly that of the Cr3C2-NiCr coating. Adhesive-cohesive properties of the coatings and relationships among individual structure particles were evaluated using tensile testing. It was found that the weak bond strength among the individual splats, structure particles, and phases plays a role in the poor wear resistance of the coatings.

  17. Comparison between PEEK and Ti6Al4V concerning micro-scale abrasion wear on dental applications.

    PubMed

    Sampaio, M; Buciumeanu, M; Henriques, B; Silva, F S; Souza, J C M; Gomes, J R

    2016-07-01

    In the oral cavity, abrasive wear is predictable at exposed tooth or restorative surfaces, during mastication and tooth brushing. Also, wear can occur at contacting surfaces between the Ti-based prosthetic structures and implants in presence of abrasive compounds from food or toothpaste. Thus, the aim of this work was to compare the abrasive wear resistance of PEEK and Ti6Al4V on three-body abrasion related to different hydrated silica content and loads. Surfaces of Ti6Al4V or PEEK cylinders (8mm diameter and 4mm height) were wet ground on SiC papers and then polished with 1µm diamond paste. After that, surfaces were ultrasonically cleaned in propyl alcohol for 15min and then in distilled water for 10min. Micro-scale abrasion tests were performed at 60rpm and on different normal loads (0.4, 0.8 or 1.2N) after 600 ball revolutions using suspensions with different weight contents of hydrated silica. After abrasive tests, wear scars on flat samples were measured to quantify the wear volume and characterized by scanning electron microscope (SEM) to identify the dominant wear mechanisms. Results showed a higher volume loss rate on PEEK than that recorded on Ti6Al4V,, when subjected to three-body abrasion tests involving hydrated silica suspensions. An increase in volume loss was noted on both tested materials when the abrasive content or load was increased. PEEK was characterized by less wear resistance than that on Ti6Al4V after micro-scale abrasion wear in contact with hydrated silica particles, as commonly found in toothpastes. PMID:26849309

  18. Validation of Proposed Metrics for Two-Body Abrasion Scratch Test Analysis Standards

    NASA Technical Reports Server (NTRS)

    Street, Kenneth W., Jr.; Kobrick, Ryan L.; Klaus, David M.

    2013-01-01

    Abrasion of mechanical components and fabrics by soil on Earth is typically minimized by the effects of atmosphere and water. Potentially abrasive particles lose sharp and pointed geometrical features through erosion. In environments where such erosion does not exist, such as the vacuum of the Moon, particles retain sharp geometries associated with fracturing of their parent particles by micrometeorite impacts. The relationship between hardness of the abrasive and that of the material being abraded is well understood, such that the abrasive ability of a material can be estimated as a function of the ratio of the hardness of the two interacting materials. Knowing the abrasive nature of an environment (abrasive)/construction material is crucial to designing durable equipment for use in such surroundings. The objective of this work was to evaluate a set of standardized metrics proposed for characterizing a surface that has been scratched from a two-body abrasion test. This is achieved by defining a new abrasion region termed Zone of Interaction (ZOI). The ZOI describes the full surface profile of all peaks and valleys, rather than just measuring a scratch width. The ZOI has been found to be at least twice the size of a standard width measurement; in some cases, considerably greater, indicating that at least half of the disturbed surface area would be neglected without this insight. The ZOI is used to calculate a more robust data set of volume measurements that can be used to computationally reconstruct a resultant profile for de tailed analysis. Documenting additional changes to various surface roughness par ameters also allows key material attributes of importance to ultimate design applications to be quantified, such as depth of penetration and final abraded surface roughness. Further - more, by investigating the use of custom scratch tips for specific needs, the usefulness of having an abrasion metric that can measure the displaced volume in this standardized

  19. Early abrasion of outer silicone insulation after intracardiac lead friction in a patient with cardiac device-related infective endocarditis.

    PubMed

    Ząbek, Andrej; Małecka, Barbara; Kołodzińska, Agnieszka; Maziarz, Andrej; Lelakowski, Jacek; Kutarski, Andrej

    2012-06-01

    We present a case of a 76-year-old woman on a permanent pacing device, with early abrasion of silicone endocardial lead insulations complicated by lead-dependent infective endocarditis 13 months after placement of an implantable pulse generator. The leads were removed using transvenous technique with direct traction, and with no additional tools. In the previous report, a set of additional tools was used, and therefore intraoperative endocardial lead abrasions or mechanical damage of leads could have not been excluded. The present case undoubtedly proves that the friction of leads against each other may result in abrasions of insulation of the intracardiac section of the lead. PMID:21070260

  20. Micro-abrasion-corrosion behaviour of a biomedical Ti-25Nb-3Mo-3Zr-2Sn alloy in simulated physiological fluid.

    PubMed

    Wang, Zhenguo; Li, Yan; Huang, Weijiu; Chen, Xiaoli; He, Haoran

    2016-10-01

    The micro-abrasion-corrosion behaviour of the biomedical Ti-25Nb-3Mo-3Zr-2Sn alloy in Hank׳s solution with protein has been investigated using electrochemical measurements, tribological tests and scanning electron microscope (SEM) observations. The potentiodynamic polarization tests showed that the corrosion potential (Ecorr) exhibits the maximum value at the abrasive concentration of 0.05gcm(-3) despite of the load level. The tribological results indicated that the total material loss of the Ti-25Nb-3Mo-3Zr-2Sn alloy during micro-abrasion increased with the increasing abrasive concentration at a certain applied load. When the abrasive concentration is no more than 0.15gcm(-3), the total material loss increases with increasing load, while the total material loss exhibits the maximum value at a moderate load in case of higher abrasive concentration levels. This was ascribed to the three-body or two-body micro-abrasion-corrosion at different abrasive concentration levels. The wastage map, abrasion mode map and synergy map associated with the applied load and the abrasive concentration were constructed to evaluate the micro-abrasion-corrosion behaviour of the Ti-25Nb-3Mo-3Zr-2Sn alloy in potential biomedical applications. PMID:27450038

  1. Abrasion and erosion testing of materials used in power production from coal

    SciTech Connect

    Tylczak, Joseph H.; Adler, Thomas A.; Rawers, James C.

    2003-09-01

    The Albany Research Center (ARC) has a long history of studying abrasive wear, related to mineral testing, handling, and processing. The center has also been instrumental in the design and development of wear test procedures and equipment. Research capabilities at ARC include Pin-on-Drum, Pin-on-Disk, and Dry Sand/Rubber Wheel abrasion tests, Jaw Crusher gouging test, Ball-on-Ball Impact test, and Jet erosion tests. Abrasive and erosive wear studies have been used to develop both new alloys and improved heat treatments of commercial alloys. As part of ARC’s newest iteration on wear testing to evaluate materials for use in new and existing pulverized coal combustion and gasifier power systems, the ARC has designed and constructed a new High Temperature Hostile Atmosphere Erosion Wear Test (HAET). This new piece of test apparatus is designed for erosive particle velocities of 10-40 m/sec and temperatures from room temperature (23°C) to 800+°C, with special control over the gas atmosphere. A variable speed whirling arm design is used to vary the impact energy of the gravity fed erosive particles. The specimens are mounted at the edge of a disk and allow a full range of impingement angles to be selected. An electric furnace heats the specimens in an enclosed retort to the selected temperature. Tests include both oxidizing conditions and reducing conditions. A range of gases, including CO, CO2, CH4, H2, H2S, HCl, N2, O2, and SO2 can be mixed and delivered to the retort. During the erosion testing a stream of abrasive powder is delivered in front of the specimens. This apparatus is designed to use low abrasive fluxes, which simulate real operating conditions in commercial power plants. Currently ~270 μm SiO2 particles are being used to simulate the abrasive impurities typically found in coal. Since operators are always striving for longer lifetimes and higher operating temperatures, this apparatus can help elucidate mechanisms of wastage and identify superior

  2. Relationship between Los Angeles attrition test and Nordic abrasion test of volcanic rocks

    NASA Astrophysics Data System (ADS)

    Krutilová, Kateřina; Prikryl, Richard

    2015-04-01

    Various volcanic rocks contribute significantly to the production of crushed stone in the Czech Republic. When used for road surfacing, results of Los Angeles attrition test (LA value below 25 or 30 depending on the mode of use) together with polished stone value are required. In the recent study, we have focused on the search for possible correlation between results obtained by Los Angeles attrition test and Nordic abrasion test, a test widely employed in Scandinavia. For the experimental study, a set of volcanic rocks from 36 active quarries was used. The rocks under study represent range of volcanic rocks from ultrabasic to acid members, formed form Neoproterozoic to Tertiary. The most favourable results of Los Angeles attrition test (i.e. the lowest LA values) were obtained for basalts (range of values 9.4-19.4) and spilites (range of values 8.4-14.9) which are in fact Neoproterozoic to Late Palaeozoic basalts affected by low grade metamorphism. Nordic abrasion test exhibited much broader range of values (6.4 to 36.9) with average value at 15.2 for basalts, resulting in weak coefficient of determination (0.19). . On contrary, narrow range of values from Nordic abrasion test of spilites (7.2-15.9), very similar to the range of LA values, is reflect in higher coefficient of determination (0.56). On contrary, the least favourable properties (LA values 12.3-29.2, Nordic abrasion 16.8-43.3) have been observed for a group of basic to intermediate rocks classified in older literature as melaphyres and diabases (ranging from basalts to trachyndesites and/or trachybasalts) of Palaeozoic age. However, in this specific group of volcanic rocks, the highest coefficient of determination (0.89) between both tests has been achieved. For volcanic rocks exhibiting acid composition (rhyolites and quartz porphyry), coefficient of determination between LA values (15.1-19.3) and Nordic abrasion test (7.3-21.9) is weak (0.42). The weakest relationship between LA values (14

  3. Erosion and abrasion on dental structures undergoing at-home bleaching

    PubMed Central

    Demarco, Flávio Fernando; Meireles, Sônia Saeger; Sarmento, Hugo Ramalho; Dantas, Raquel Venâncio Fernandes; Botero, Tatiana; Tarquinio, Sandra Beatriz Chaves

    2011-01-01

    This review investigates erosion and abrasion in dental structures undergoing at- home bleaching. Dental erosion is a multifactorial condition that may be idiopathic or caused by a known acid source. Some bleaching agents have a pH lower than the critical level, which can cause changes in the enamel mineral content. Investigations have shown that at-home tooth bleaching with low concentrations of hydrogen or carbamide peroxide have no significant damaging effects on enamel and dentin surface properties. Most studies where erosion was observed were in vitro. Even though the treatment may cause side effects like sensitivity and gingival irritation, these usually disappear at the end of treatment. Considering the literature reviewed, we conclude that tooth bleaching agents based on hydrogen or carbamide peroxide have no clinically significant influence on enamel/dentin mineral loss caused by erosion or abrasion. Furthermore, the treatment is tolerable and safe, and any adverse effects can be easily reversed and controlled. PMID:23674914

  4. M"ossbauer study of corrosion and abrasion products in oil transporting pipes

    NASA Astrophysics Data System (ADS)

    Gomez, Raul W.; Perez Mazariego, Jose Luis; Marquina, Vivianne; Marquina, Ma. Luisa; Ridaura, Rosalia; Martinez, Lorenzo

    2012-02-01

    It is known that one of the main technological problems in carbon steel oleoducts is the corrosion produced by different substances, such as water, carbon dioxide, sulfur, and microorganisms. In addition, if in such mixture there is sand, aggressive sludge can be form that abrasions material from the oleoduct. A room temperature M"ossbauer study of corroded material taken from different sites of oleoducts is presented. Most of the M"ossbauer spectra reveal the presence of nanoparticles, indicating that in these pipes the abrasion problem is severe. A preliminary identification of the oxidized samples suggests the presence of magnetite, and some Iron hydroxides. Further studies are in course in order to identify unambiguously the products present in the corroded materials.

  5. Abrasion resistance of restorative glass-ionomer cements with a light-cured surface coating.

    PubMed

    Hotta, M; Hirukawa, H

    1994-01-01

    This is a comparative study of the Knoop hardness number and the toothbrush wear of a surface coating agent applied to the surface of a glass-ionomer restorative cement. A reduction in surface hardness of the coating agent resulted in an increase in brush wear. The light-cured glazing agent (Bellfeel Brightener) proved to be significantly harder than those coated with a light-cured bonding agent (Occlusin). Occlusin bonding agent was removed by comparatively rapid abrasion; however, the Bellfeel Brightener was significantly more resistant to such abrasion. The analysis of the surface hardness and scanning electron microscopy observations of the brushed surfaces of the samples suggested that Bellfeel Brightener was effective as a glazing material for glass-ionomer cement restorations. PMID:8008609

  6. Wear of combinations of acrylic resin and porcelain, on an abrasion testing machine.

    PubMed

    Harrison, A

    1978-04-01

    Wear tests of various combinations of acrylic resin and porcelain were made using a machine which was designed to test materials under conditions similar to those of masticatory function by simulating the loads, sliding distances, and contact times encountered in the human masticatory cycle. The results showed that the amount of wear of the two materials worn in combination depended on the nature of the surrounding medium and on the surface roughness of the opposing material. Acrylic resin showed good wear resistance provided no third party abrasive or opposing hard, rough surface was present. When a mild abrasive was incorporated in the system, the acrylic resin vs acrylic resin combination wore almost seven times more than porcelain vs porcelain. Clinical experience would suggest that this is a reasonably sound order of wear. PMID:213546

  7. Abrasion resistance of titanium nitride coatings formed on titanium by ion-beam-assisted deposition.

    PubMed

    Sawase, T; Yoshida, K; Taira, Y; Kamada, K; Atsuta, M; Baba, K

    2005-02-01

    To improve the physical properties of the pure titanium surface, thin titanium nitride (TiN) films were deposited by means of ion-beam-assisted deposition. Film structure was confirmed as TiN by X-ray diffraction analysis. Surface hardness and abrasion resistance were significantly improved on TiN-coated specimens. Five combinations of oral hygiene instruments and materials were applied to the specimens as simulations of the oral environment. Treatment with the metal scaler and ultrasonic scaler severely changed the surface features and significantly increased the surface roughness parameters on pure titanium controls, whereas only small scratches and dull undulations were seen on the TiN-coated specimens. Profilometric tracings and scanning electron micrographs demonstrated the improved abrasion resistance of the TiN-coated specimens. PMID:15641983

  8. Abrasion and catastrophic rupture of lunar rocks - Some implications to the micrometeoroid flux at 1 AU.

    NASA Technical Reports Server (NTRS)

    Gault, D. E.; Hoerz, F.; Hartung, J. B.

    1972-01-01

    Results from laboratory studies of hypervelocity impact against crystalline rocks, combined with estimates of the micrometeoroid flux at the lunar surface, provide a basis for calculating abrasion rates and survival times before catastrophic rupture of rocks on the lunar surface. The surface residence times observed for lunar rocks of the order of 10 m.y. (derived from the track densities of iron group nuclei) restrict the mass range of impacting particles of interest to masses less than about 1.01 gram. Extrapolation downward to smaller masses following flux distributions suggested by early satellite data and photographic meteor observations leads to absurd rates of abrasion. Consistent with the observed crater populations on the lunar rocks and with the Pegasus, Explorer, and Pioneer satellite data, the slope of the mass-flux distribution must decrease markedly for masses below 1 to .1 microgram.

  9. Abrasive wear behavior of P/M titanium metal-matrix composites

    SciTech Connect

    Alman, D.E.; Hawk, J.A.; Simmons, J.W.

    1997-01-01

    The abrasive wear behavior of titanium metal-matrix composites produced by powder metallurgical techniques was studied. Ti powder was mixed with 0, 20, or 40 volume percent (v%) TiB2, TiC, TiN, SiC, an B4C powder to produce a composite powder blend. The blends were consolidated by hot-pressing at 1200° C and 20 MPa for 2 hours. Also a series of Ti-TiB2 composites was consolidated by press and sinter techniques. Two-body abrasive wear resistance, of the composites worn against either SiC or garnet particles, was evaluated using a pin-on-drum apparatus. The wear behavior of the composites was correlated to the physical properties (e.g., microstructure, sintered density, hardness, strength) of the composites, and compared to the behavior of conventional cast adn wrought Ti and other alloys.

  10. Mechanisms of microhole formation on glasses by an abrasive slurry jet

    SciTech Connect

    Wang, J.; Nguyen, T.; Pang, K. L.

    2009-02-15

    Abrasive jet micromachining is considered as a promising precision processing technology for brittle materials such as silicon substrates and glasses that are increasingly used in various applications. In this paper, the mechanisms of microhole formation on brittle glasses by an abrasive slurry jet are studied based on the viscous flow and erosion theories. It is shown that the hole cross section is characterized by a ''W'' shape and can be classified into three zones caused, respectively, by jet direct impact, viscous flow, and turbulent flow induced erosion. An analysis of the surface morphology shows that ductile-mode erosion is dominant. The effect of process parameters on material removal is studied which shows that increasing the pressure and erosion time increases the hole depth, but has little effect on the hole diameter.

  11. Lip rejuvenation using chemical abrasion and padding with expanded polytetrafluoroethylene implants.

    PubMed

    Mole, B

    1996-01-01

    Aesthetic improvement of the lips is a problem that must be treated in a totally independent way from the rest of the face because degeneration of the lips is tied to genetic or acquired factors for which no long-term procedure is effective. The effectiveness of resurfacing of large and small wrinkles using chemical abrasion has long been recognized. Labial padding, using supple Gore-Tex(R) implants that are cut to size and placed where necessary provides the desired result while preserving the function of the lip. Usually requested by the younger patient, it can be used in combination with chemical abrasion in the more mature patient. This technique is not only quick, tested, very effective, and definitive, but totally reversible if needed, which allows us to widen the indications with great safety. PMID:8670390

  12. Kerf modelling in abrasive waterjet milling using evolutionary computation and ANOVA techniques

    NASA Astrophysics Data System (ADS)

    Alberdi, A.; Rivero, A.; Carrascal, A.; Lamikiz, A.

    2012-04-01

    Many researchers demonstrated the capability of Abrasive Waterjet (AWJ) technology for precision milling operations. However, the concurrence of several input parameters along with the stochastic nature of this technology leads to a complex process control, which requires a work focused in process modelling. This research work introduces a model to predict the kerf shape in AWJ slot milling in Aluminium 7075-T651 in terms of four important process parameters: the pressure, the abrasive flow rate, the stand-off distance and the traverse feed rate. A hybrid evolutionary approach was employed for kerf shape modelling. This technique allowed characterizing the profile through two parameters: the maximum cutting depth and the full width at half maximum. On the other hand, based on ANOVA and regression techniques, these two parameters were also modelled as a function of process parameters. Combination of both models resulted in an adequate strategy to predict the kerf shape for different machining conditions.

  13. Self-healing of the superhydrophobicity by ironing for the abrasion durable superhydrophobic cotton fabrics

    PubMed Central

    Wu, Jingxia; Li, Jingye; Deng, Bo; Jiang, Haiqing; Wang, Ziqiang; Yu, Ming; Li, Linfan; Xing, Chenyang; Li, Yongjin

    2013-01-01

    Self-healing of the superhydrophobic cotton fabric (SCF) obtained by the radiation-induced graft polymerization of lauryl methacrylate (LMA) and n-hexyl methacrylate (HMA), can be achieved by ironing. Through the steam ironing process, the superhydrophobicity of the SCFs will be regenerated even after the yarns are ruptured during the abrasion test under a load pressure of 44.8 kPa. SCFs made from LMA grafted cotton fabric can ultimately withstand at least 24,000 cycles of abrasion with periodic steam ironing. The FT-IR microscope results show that the migration of the polymethacrylates graft chains from the interior to the surface is responsible for the self-healing effect. PMID:24135813

  14. Development of new bound abrasive polishers for final finishing of optical glasses

    NASA Astrophysics Data System (ADS)

    Puchebner, Birgit E.; Jacobs, Stephen D.

    1995-09-01

    Because there are no practical commercially available bound abrasive polishing media, we are developing a bound abrasive polisher for deterministic finishing of optical glasses. Several in- house formulated polishing pellets, molded laps, and ring tools have been studied. Two experimental test beds were employed. The first involved the polishing of flat optical glass parts on single pellet and molded pellet laps. The tests were conducted on a single spindle machine. The performance of in-house manufactured laps was compared to experimental and commercial formulations obtained from industry. Compositions which polished the glass below 20 angstrom rms surface roughness were selected for additional testing. The second test bed for these formulations was the Opticam SM. Materials were molded into a ring tool geometry. Although the tools polished effectively, more work is required to control surface figure during final finishing.

  15. Theoretical study on removal rate and surface roughness in grinding a RB-SiC mirror with a fixed abrasive.

    PubMed

    Wang, Xu; Zhang, Xuejun

    2009-02-10

    This paper is based on a microinteraction principle of fabricating a RB-SiC material with a fixed abrasive. The influence of the depth formed on a RB-SiC workpiece by a diamond abrasive on the material removal rate and the surface roughness of an optical component are quantitatively discussed. A mathematical model of the material removal rate and the simulation results of the surface roughness are achieved. In spite of some small difference between the experimental results and the theoretical anticipation, which is predictable, the actual removal rate matches the theoretical prediction very well. The fixed abrasive technology's characteristic of easy prediction is of great significance in the optical fabrication industry, so this brand-new fixed abrasive technology has wide application possibilities. PMID:19209202

  16. Numerical Simulation Study of Influence of Nozzle Entrance Diameter on Jet Performance of Pre-mixed Abrasive Water Jet

    NASA Astrophysics Data System (ADS)

    Guan, Jinfa; Deng, Songsheng; Jiao, Guangwei; Chen, Ming; Hua, Weixing

    Physical model of cone-cylinder nozzle was established. Based on the CFD software of FLUENT, the flow field about abrasive water jet in cone-cylinder nozzle was simulated by use of standard k-ɛ turbulent model, Lagrange Discrete Phase Model and SIMPLE algorithm. The simulation results show that axial velocity of abrasive particle is always smaller than axial velocity of abrasive particle and increases gradually with the increase of axial distance. Axial static pressure of water decreases gradually with the increase of axial distance. Axial velocity of abrasive particle at the exit of cone-cylinder nozzle decreases with the increase of nozzle entrance diameter. And axial static pressure of water at the entrance of cone-cylinder nozzle decreases with the increase of nozzle entrance diameter. 8mm is selected as an optimal nozzle entrance diameter.

  17. Process for producing a well-adhered durable optical coating on an optical plastic substrate. [abrasion resistant polymethyl methacrylate lenses

    NASA Technical Reports Server (NTRS)

    Kubacki, R. M. (Inventor)

    1978-01-01

    A low temperature plasma polymerization process is described for applying an optical plastic substrate, such as a polymethyl methacrylate lens, with a single layer abrasive resistant coating to improve the durability of the plastic.

  18. Process of forming a plated wirepack with abrasive particles only in the cutting surface with a controlled kerf

    NASA Technical Reports Server (NTRS)

    Smith, Maynard B. (Inventor); Schmid, Frederick (Inventor); Khattak, Chandra P. (Inventor)

    1983-01-01

    A narrow wire blade with abrasive particles plated within a longitudinally-extending, plated cutting portion that extends from only one side of a wire core and has parallel side walls spaced by a controlled width.

  19. Two-body, dry abrasive wear of Fe/Cr/C experimental alloys - relationship between microstructure and mechanical properties

    SciTech Connect

    Kwok, C.K.S.

    1982-01-01

    A systematic study of abrasive wear resistance of Fe/Cr/Mn based alloys has been carried out using a two body pin-on-disc wear machine. Abrasives used were silicon carbide, alumina and quartz. The objective of this study was to evaluate the abrasive wear resistance and to investigate the relationships between microstructure, mechanical properties, and abrasive wear resistance for these experimental alloys. Several commercial alloys were also tested to provide a basis for comparison. The goal of this study was to develop information so as to improve wear resistance of these experimental alloys by means of thermal treatments. Grain-refinement by double heat treatment was carried out in this research.

  20. Abrasive Wear Performance of Aluminium Modified Epoxy-Glass Fiber Composites

    NASA Astrophysics Data System (ADS)

    Kamble, Vikram G.; Mishra, Punyapriya; Al Dabbas, Hassan A.; Panda, H. S.; Fernandez, Johnathan Bruce

    2015-07-01

    For a long time, Aluminum filled epoxies molds have been used in rapid tooling process. These molds are very economical when applied in manufacturing of low volume of plastic parts. To improve the thermal conductivity of the material, the metallic filler material is added to it and the glass fiber improves the wear resistance of the material. These two important parameters establish the life of composites. The present work reports on abrasive wear behavior of Aluminum modified epoxy and glass fiber composite with 5 wt.% and 10 wt.% of aluminum particles. Through pin on disc wear testing machine, we studied the wear behaviors of composites, and all these samples were fabricated by using hand layup process. Epoxy resin was used as matrix material which was reinforced with Glass fiber and Aluminum as filler. The composite with 5 wt.% and 10 wt.% of Al was cast with dimensions 100 × 100 × 6 mm. The specimens were machined to a size of 6 × 6 × 4 mm for abrasive testing. Abrasive tests were carried out for different grit paper sizes, i.e., 150, 320, 600 at different sliding distance, i.e., 20, 40, 60 m at different loads of 5, 10 and 15 N and at constant speed. The weight loss due to wear was calculated along with coefficient of friction. Hardness was found using Rockwell hardness machine. The SEM morphology of the worn out surface wear was analyzed to understand the wear mechanism. Results showed that the addition of Aluminum particles was beneficial for low abrasive conditions.

  1. Abrasive Wear Resistance of Tool Steels Evaluated by the Pin-on-Disc Testing

    NASA Astrophysics Data System (ADS)

    Bressan, José Divo; Schopf, Roberto Alexandre

    2011-05-01

    Present work examines tool steels abrasion wear resistance and the abrasion mechanisms which are one main contributor to failure of tooling in metal forming industry. Tooling used in cutting and metal forming processes without lubrication fails due to this type of wear. In the workshop and engineering practice, it is common to relate wear resistance as function of material hardness only. However, there are others parameters which influences wear such as: fracture toughness, type of crystalline structure and the occurrence of hard precipitate in the metallic matrix and also its nature. In the present investigation, the wear mechanisms acting in tool steels were analyzed and, by normalized tests, wear resistance performance of nine different types of tool steels were evaluated by pin-on-disc testing. Conventional tool steels commonly used in tooling such as AISI H13 and AISI A2 were compared in relation to tool steels fabricated by sintering process such as Crucible CPM 3V, CPM 9V and M4 steels. Friction and wear testing were carried out in a pin-on-disc automated equipment which pin was tool steel and the counter-face was a abrasive disc of silicon carbide. Normal load of 5 N, sliding velocity of 0.45 m/s, total sliding distance of 3000 m and room temperature were employed. The wear rate was calculated by the Archard's equation and from the plotted graphs of pin cumulated volume loss versus sliding distance. Specimens were appropriately heat treated by quenching and three tempering cycles. Percentage of alloying elements, metallographic analyses of microstructure and Vickers microhardness of specimens were performed, analyzed and correlated with wear rate. The work is concluded by the presentation of a rank of tool steel wear rate, comparing the different tool steel abrasion wear resistance: the best tool steel wear resistance evaluated was the Crucible CPM 9V steel.

  2. Development of intermetallic-hardened abrasion-resistant weld hardfacing alloys

    SciTech Connect

    School, M.R.

    1986-01-01

    Chromium and cobalt are strategic materials in the US and both are major constituents in many weld hardfacing alloys. Substitution for these materials or alternatives to their use was a primary direction of this investigation which was conducted in conjunction with the US Bureau of Mines. Minimization of the use of strategic materials was the criteria guiding the development of intermetallic-hardened abrasion resistant weld hardfacing materials. Other criteria were that the new alloy contain a hard intermetallic compound in an FCC matrix, and that these intermetallic compounds be stable at room temperature. A survey of ternary systems was made and the Fe-Mo-Ni system was selected to provide a basis for alloy development. Fe-Mo-Ni alloys synthesized by arc-melting and similar alloys made by welding possessed similar microstructures, a (Fe, Ni){sub 7}Mo{sub 6} intermetallic plus austenite eutectic in an austenitic matrix. These materials exhibited poor abrasive resistance. Silicon additions to the alloy promoted formation of a Laves phase FeMoSi intermetallic which helped increase the abrasive wear resistance. Through a series of alloy chemistry iterations a final composition of Fe-20Mo-15Ni-5Si was selected. Heat treatment of this alloy at 550 to 650 C caused second phase precipitation in the matrix and raised the hardness about 14 points HRC to 50 HRC. The alloy's wear rate, measured with the pin-on-drum abrasive wear test, was 6.3 to 6.5 mg/m. However this was twice the wear rate observed in commercial high-carbon high-chromium alloys. Based on examination of the alloy microstructures, their chemistry, and an analysis of the Fe-Mo-Si phase system; directions for further research are to increase the molybdenum and silicon content to produce a Fe-20Mo-10Ni-15Si composition.

  3. Evaluation of weight loss and surface roughness of compomers after simulated toothbrushing abrasion test.

    PubMed

    Mondelli, Rafael Francisco Lia; Wang, Linda; Garcia, Fernanda Cristina Pimentel; Prakki, Anuradha; Mondelli, José; Franco, Eduardo Batista; Ishikiriama, Aquira

    2005-06-01

    This study aimed at analyzing the compomers wear by an "in vitro" toothbrushing abrasion test. The null hypotheses tested were that there would be no differences in weight loss and no significant changes in surface roughness of the compomers after this test. The utilized commercial brands were Dyract (Dentsply), Dyract AP (Dentsply), Compoglass F (Vivadent), Freedom (SDI), F2000 (3M ESPE), which were compared to the two resin composites Z100 (3M ESPE) and Silux Plus (3M ESPE). Ten cylindrical specimens for each commercial brand were prepared with 5mm diameter and 3mm thickness. An appropriate machine with soft bristle tips containing dentifrice solution and deionized water was used. A total of 100,000 brushing cycles were performed. The amount of weight loss was measured by the percentage alteration between the initial (before toothbrushing) and final weight (after toothbrushing), measured by a Sartorius analytical balance. The surface roughness change was determined by the percentage difference between initial and final means after 5 tracings by a T 1000 Hommel Tester roughness meter on the specimen's surfaces before and after toothbrushing abrasion test. The statistical analysis (Students paired t-test, ANOVA and Tukey, á=0.05) showed that all materials presented statistically significant weight loss and roughness increase after abrasion test. All compomers presented higher weight loss than resin composites. Freedom and Dyract AP presented the lowest weight loss among compomers. F2000 presented the worst abrasion resistance, without statistical differences with Dyract. For roughness changes, Dyract, Dyract AP, Z100, Compoglass F and Silux Plus showed the lowest surface roughness alteration, in increasing order, without statistical differences between them. Freedom was the statistically roughest material of the study. PMID:20924536

  4. The abrasion-wear resistance of arc sprayed stainless steel and composite stainless steel coatings

    SciTech Connect

    Dallaire, S.; Legoux, J.G.; Levert, H.

    1994-12-31

    Stainless steels are often used to palliate wear problems in various industries. Though they are not wear resistant, they have been used to a limited extent in applications involving both corrosive and abrasive/erosive environments. The protection of industrial components by arc sprayed stainless steel composite coatings could be considered very attractive provided these coatings offer a better wear protection than bulk stainless steel. The wear resistance of stainless steel and composite stainless steel-titanium boride coatings arc sprayed with air and argon was evaluated following the ASTM G-65 Abrasion Wear Test procedures. Wear volume loss measurements show that stainless steel coatings arc sprayed with air were slightly more resistant than bulk stainless steel while those sprayed with argon were slightly less resistant. The abrasion wear resistance of composite stainless steel-titanium diboride coatings is by two or four times beyond the wear resistance of bulk stainless steel depending upon the core wire constitution and the type of gas used for spraying. Microstructural analysis of coatings, microhardness measurements of sprayed lamellae and optical profilometry were used to characterize coatings and wear damages. Spraying with air instead of argon produced much more small particles. These particles, being removed from the metal sheath surface, are individually sprayed without diluting the concentration hard phases within cores. It results in coatings that contain large lamellae with hardnesses sufficient to withstand abrasion. By considering both the wire constitution and the spraying conditions, it was found possible to fabricate composite stainless steel coatings that show a 400% increase in wear resistance over bulk stainless steel.

  5. Clinical in situ study investigating abrasive effects of two commercially available toothpastes.

    PubMed

    Giles, A; Claydon, N C A; Addy, M; Hughes, N; Sufi, F; West, N X

    2009-07-01

    The aim of this study was to determine if the abrasive effect on dentine of two commercially available toothpastes, known to vary in their in vitro abrasive levels, can be differentiated in an in situ model after 10 days, assessed by contact profilometry. This was a single centre, single blind, randomized, split mouth, two treatment, in situ study, in 34 healthy subjects, evaluating the abrasive effects of two marketed desensitizing toothpastes, (Colgate Sensitive Multi Protection toothpaste - C; Sensodyne Total Protection - S). Subjects wore bi-lateral, lower buccal appliances, each fitted with four dentine sections which were power brushed three times a day with the treatment regimen. Each subject received two toothpaste treatments for 10 days during the treatment period. Samples were measured at baseline and day 10 by contact and non-contact profilometry and day 5 by contact profilometry. Thirty-four subjects were included in the efficacy analysis. Results from contact profilometry showed statistically significant (P < 0.0001) dentine loss compared to baseline at day 5 and 10 for both pastes. At each time point, C showed statistically significantly greater dentine loss than S, P < 0.0001. After 10 days treatment, the difference in dentine loss between the pastes was 1.4 microm. The non-contact profilometry data showed similar trends. After 10 days of treatment, C showed statistically significantly greater dentine loss than S, with treatment difference of 0.9 microm, P = 0.0057. The methodology used has successfully differentiated between the abrasivity of the two pastes in respect of dentine surface loss over time in an in situ environment. PMID:19531090

  6. Heat sealable, flame and abrasion resistant coated fabric. [clothing and containers for space exploration

    NASA Technical Reports Server (NTRS)

    Tschirch, R. P.; Sidman, K. R. (Inventor)

    1981-01-01

    Flame retardant, abrasion resistant elastomeric compositions are comprised of thermoplastic polyurethane polymer and flame retarding amounts of a filler selected from decabromodiphenyloxide and antimony oxide in a 3:1 weight ratio, and decabromodiphenyloxide, antimony oxide, and ammonium polyphosphate in a 3:1:3 weight ratio respectively. Coated fabrics employing such elastomeric compositions as coating film are flexible, lightweight, and air impermeable and can be made using heat or dielectric sealing procedures.

  7. Validation of Proposed Metrics for Two-Body Abrasion Scratch Test Analysis Standards

    NASA Technical Reports Server (NTRS)

    Kobrick, Ryan L.; Klaus, David M.; Street, Kenneth W., Jr.

    2011-01-01

    The objective of this work was to evaluate a set of standardized metrics proposed for characterizing a surface that has been scratched from a two-body abrasion test. This is achieved by defining a new abrasion region termed Zone of Interaction (ZOI). The ZOI describes the full surface profile of all peaks and valleys, rather than just measuring a scratch width as currently defined by the ASTM G 171 Standard. The ZOI has been found to be at least twice the size of a standard width measurement, in some cases considerably greater, indicating that at least half of the disturbed surface area would be neglected without this insight. The ZOI is used to calculate a more robust data set of volume measurements that can be used to computationally reconstruct a resultant profile for detailed analysis. Documenting additional changes to various surface roughness parameters also allows key material attributes of importance to ultimate design applications to be quantified, such as depth of penetration and final abraded surface roughness. Data are presented to show that different combinations of scratch tips and abraded materials can actually yield the same scratch width, but result in different volume displacement or removal measurements and therefore, the ZOI method is more discriminating than the ASTM method scratch width. Furthermore, by investigating the use of custom scratch tips for our specific needs, the usefulness of having an abrasion metric that can measure the displaced volume in this standardized manner, and not just by scratch width alone, is reinforced. This benefit is made apparent when a tip creates an intricate contour having multiple peaks and valleys within a single scratch. This work lays the foundation for updating scratch measurement standards to improve modeling and characterization of three-body abrasion test results.

  8. Framework for assessing key variable dependencies in loose-abrasive grinding and polishing

    SciTech Connect

    Taylor, J.S.; Aikens, D.M.; Brown, N.J.

    1995-12-01

    This memo describes a framework for identifying all key variables that determine the figuring performance of loose-abrasive lapping and polishing machines. This framework is intended as a tool for prioritizing R&D issues, assessing the completeness of process models and experimental data, and for providing a mechanism to identify any assumptions in analytical models or experimental procedures. Future plans for preparing analytical models or performing experiments can refer to this framework in establishing the context of the work.

  9. [Abrasion resistance of dental materials. 3. Surface quality study of Evicrol by wear measurements at different layer depths].

    PubMed

    Tappe, A; Eichhorn, T

    1980-04-01

    Abrasion determinations in various layer depths showed that the layer of the filling material Evicrol directly under the matrix-hardened surface is more abrasion-resistant than the matrix- hardened surface. From this it is concluded that it is good practice to overfill in making restorations of Evicrol and to remove a certain layer of material (approximately 0.25 mm, according to Fraunhofer). PMID:6935842

  10. Defining an Abrasion Index for Lunar Surface Systems as a Function of Dust Interaction Modes and Variable Concentration Zones

    NASA Technical Reports Server (NTRS)

    Kobrick, Ryan L.; Klaus, David M.; Street, Kenneth W., Jr.

    2010-01-01

    Unexpected issues were encountered during the Apollo era of lunar exploration due to detrimental abrasion of materials upon exposure to the fine-grained, irregular shaped dust on the surface of the Moon. For critical design features involving contact with the lunar surface and for astronaut safety concerns, operational concepts and dust tolerance must be considered in the early phases of mission planning. To systematically define material selection criteria, dust interaction can be characterized by two-body or three-body abrasion testing, and subcategorically by physical interactions of compression, rolling, sliding and bending representing specific applications within the system. Two-body abrasion occurs when a single particle or asperity slides across a given surface removing or displacing material. Three-body abrasion occurs when multiple particles interact with a solid surface, or in between two surfaces, allowing the abrasives to freely rotate and interact with the material(s), leading to removal or displacement of mass. Different modes of interaction are described in this paper along with corresponding types of tests that can be utilized to evaluate each configuration. In addition to differential modes of abrasion, variable concentrations of dust in different zones can also be considered for a given system design and operational protocol. These zones include: (1) outside the habitat where extensive dust exposure occurs, (2) in a transitional zone such as an airlock or suitport, and (3) inside the habitat or spacesuit with a low particle count. These zones can be used to help define dust interaction frequencies, and corresponding risks to the systems and/or crew can be addressed by appropriate mitigation strategies. An abrasion index is introduced that includes the level of risk, R, the hardness of the mineralogy, H, the severity of the abrasion mode, S, and the frequency of particle interactions, F.

  11. Defining an abrasion index for lunar surface systems as a function of dust interaction modes and variable concentration zones

    NASA Astrophysics Data System (ADS)

    Kobrick, Ryan L.; Klaus, David M.; Street, Kenneth W.

    2011-11-01

    Unexpected issues were encountered during the Apollo era of lunar exploration due to detrimental abrasion of materials upon exposure to the fine-grained, irregular shaped dust on the surface of the Moon. For critical design features involving contact with the lunar surface and for astronaut safety concerns, operational concepts and dust tolerance must be considered in the early phases of mission planning. To systematically define material selection criteria, dust interaction can be characterized by two-body or three-body abrasion testing, and sub-categorically by physical interactions of compression, rolling, sliding, and bending representing specific applications within the system. Two-body abrasion occurs when a single particle or asperity slides across a given surface removing or displacing material. Three-body abrasion occurs when multiple particles interact with a solid surface, or in between two surfaces, allowing the abrasives to freely rotate and interact with the material(s), leading to removal or displacement of mass. Different modes of interaction are described in this paper along with corresponding types of tests that can be utilized to evaluate each configuration. In addition to differential modes of abrasion, variable concentrations of dust in different zones can also be considered for a given system design and operational protocol. These zones include (1) outside the habitat where extensive dust exposure occurs, (2) in a transitional zone such as an airlock or suitport, and (3) inside the habitat or spacesuit with a low particle count. These zones can be used to help define dust interaction frequencies, and corresponding risks to the systems and/or crew can be addressed by appropriate mitigation strategies. An abrasion index is introduced that includes the level of risk, R, the hardness of the mineralogy, H, the severity of the abrasion mode, S, and the frequency of particle interactions, F.

  12. Evaluation of planarization performance for a novel alkaline copper slurry under a low abrasive concentration

    NASA Astrophysics Data System (ADS)

    Mengting, Jiang; Yuling, Liu; Haobo, Yuan; Guodong, Chen; Weijuan, Liu

    2014-11-01

    A novel alkaline copper slurry that possesses a relatively high planarization performance is investigated under a low abrasive concentration. Based on the action mechanism of CMP, the feasibility of using one type of slurry in copper bulk elimination process and residual copper elimination process, with different process parameters, was analyzed. In addition, we investigated the regular change of abrasive concentration effect on copper and tantalum removal rate and within wafer non-uniformity (WIWNU) in CMP process. When the abrasive concentration is 3 wt%, in bulk elimination process, the copper removal rate achieves 6125 Å/min, while WIWNU is 3.5%, simultaneously. In residual copper elimination process, the copper removal rate is approximately 2700 Å/min, while WIWNU is 2.8%. Nevertheless, the tantalum removal rate is 0 Å/min, which indicates that barrier layer isn't eliminated in residual copper elimination process. The planarization experimental results show that an excellent planarization performance is obtained with a relatively high copper removal rate in bulk elimination process. Meanwhile, after residual copper elimination process, the dishing value increased inconspicuously, in a controllable range, and the wafer surface roughness is only 0.326 nm (sq < 1 nm) after polishing. By comparison, the planarization performance and surface quality of alkaline slurry show almost no major differences with two kinds of commercial acid slurries after polishing. All experimental results are conducive to research and improvement of alkaline slurry in the future.

  13. Adhesive interfaces of enamel and dentin prepared by air-abrasion at different distances

    NASA Astrophysics Data System (ADS)

    Chinelatti, Michelle Alexandra; do Amaral, Thais Helena Andreolli; Borsatto, Maria Cristina; Palma-Dibb, Regina Guenka; Corona, Silmara Aparecida Milori

    2007-03-01

    The purpose of this study was to analyse, by scanning electron microscopy (SEM), the morphology of enamel and dentin/adhesive interfaces in cavities prepared by air-abrasion at different working distances. Thirty sound third human molars were selected and, on both their buccal and lingual surfaces, class V cavities were prepared by air-abrasion, at 2-, 4-, 6-, 8- and 10-mm working distances, or high-speed bur (control group). After preparation, all cavities were etched with 35% phosphoric acid gel and restored with Single Bond/Filtek Z-250. Buccal and lingual surfaces were separated and restorations sectioned in a buccolingual direction, providing two sections of each cavity, which were analysed by scanning electron microscopy. It was observed that the distances of 6 and 8 mm promoted more homogeneous dentin/adhesive interfaces, with tags formation, and more uniform for enamel, which were similar to the control group. It may be concluded that the air-abrasion working distance can influence the morphology of enamel and dentin/adhesive interfaces, and the intermediate distances provided better adhesive interfaces.

  14. Effect of abrasive surface roughening on the secondary yield of various metals

    NASA Astrophysics Data System (ADS)

    Graves, Timothy

    2007-11-01

    The secondary electron yield of metallic conductors plays a critical role in the development of multipactor discharges. These discharges require a secondary yield greater than unity at the appropriate energy level for sustained breakdown. By reducing the secondary yield below unity in the necessary energy range, multipactor and multipactor-induced glow discharges can be eliminated. Surface roughening has been shown to successfully lower the secondary yield to below unity (ref. 1). In addition, abrasive bead blasting has been shown to effectively reduce the secondary yield of copper surfaces while preserving voltage breakdown characteristics (ref. 2). This study investigates the effect of abrasive surface roughening on the secondary yield of materials such as copper, aluminum, and stainless steel. In addition to measuring the change in the secondary yield as a function of abrasive particle size, the multipactor resistance and voltage breakdown characteristics are investigated. In addition, the effect of vacuum conditioning via multipactor and rf plasma cleaning on the roughened surfaces will be discussed. Ref. 1. H. Bruining. Physics and Applications of Secondary Electron Emission. McGraw-Hill, NY, 1954. Ref. 2. T. P. Graves, Ph.D. Thesis, MIT. 2007

  15. Development and Testing of Abrasion Resistant Hard Coats For Polymer Film Reflectors: Preprint

    SciTech Connect

    Jorgensen, G.; Gee, R.; DiGrazia, M.

    2010-10-01

    Reflective polymer film technology can significantly reduce the cost of solar reflectors and installed Concentrated Solar Power (CSP) plants by both reduced material cost and lower weight. One challenge of polymer reflectors in the CSP environment pertains to contact cleaning methods typically used with glass mirrors. Such contact cleaning methods can scratch the surface of polymer reflectors and thereby reduce specular reflectance. ReflecTech, Inc. (a subsidiary of SkyFuel, Inc.) and the National Renewable Energy Laboratory (NREL) initiated a cooperative research and development agreement (CRADA) to devise and develop an abrasion resistant coating (ARC) suitable for deposition onto polymer based mirror film. A number of candidate ARC products were identified as candidate formulations. Industrial collaborators prepared samples having their ARCs deposited onto ReflecTech Mirror Film pre-laminated to aluminum sheet substrates. Samples were provided for evaluation and subjected to baseline (unweathered) and accelerated exposure conditions and subsequently characterized for abrasion resistance and adhesion. An advanced ARC product has been identified that exhibits outstanding initial abrasion resistance and adhesion to ReflecTech Mirror Film. These properties were also retained after exposure to the various accelerated stress conditions. This material has been successfully manufactured as a 1.5 m wide roll-to-roll construction in a production environment.

  16. Study on ultra-precision magnetic abrasive finishing process using low frequency alternating magnetic field

    NASA Astrophysics Data System (ADS)

    Wu, Jinzhong; Zou, Yanhua; Sugiyama, Hitoshi

    2015-07-01

    We proposed a new ultra-precision magnetic abrasive finishing (MAF) process using low frequency alternating magnetic field in this paper. Magnetic cluster themselves may produce the up and down movement change under alternating magnetic force. The movement may not only promote the dispersion of micro-magnetic particles, but also improve stirring effect and cross-cutting effects of the abrasives, achieving circulation and update to ensure the stability of grinding tools. This process is considered to be able to efficiently apply in ultra-precision finishing of plane and complicated micro-surfaces. In this study, we investigated the effects of alternating magnetic field on magnetic field distribution, finishing force and abrasive behavior. Furthermore, a set of experimental devices have been designed for finishing SUS304 stainless steel plate. The present work is aimed at understanding finishing particularity of this process and studying impacts of important process parameters namely grinding fluid, rotational speed of magnetic pole, current frequency on change in finish surface and material removal. Experimental results indicate that the process can realize ultra-precision finishing of plane by using oily grinding fluid. In the present research, the surface roughness of SUS304 stainless steel plate was improved from 240.24 nm to 4.38 nm by this process.

  17. Rock Cutting Depth Model Based on Kinetic Energy of Abrasive Waterjet

    NASA Astrophysics Data System (ADS)

    Oh, Tae-Min; Cho, Gye-Chun

    2016-03-01

    Abrasive waterjets are widely used in the fields of civil and mechanical engineering for cutting a great variety of hard materials including rocks, metals, and other materials. Cutting depth is an important index to estimate operating time and cost, but it is very difficult to predict because there are a number of influential variables (e.g., energy, geometry, material, and nozzle system parameters). In this study, the cutting depth is correlated to the maximum kinetic energy expressed in terms of energy (i.e., water pressure, water flow rate, abrasive feed rate, and traverse speed), geometry (i.e., standoff distance), material (i.e., α and β), and nozzle system parameters (i.e., nozzle size, shape, and jet diffusion level). The maximum kinetic energy cutting depth model is verified with experimental test data that are obtained using one type of hard granite specimen for various parameters. The results show a unique curve for a specific rock type in a power function between cutting depth and maximum kinetic energy. The cutting depth model developed here can be very useful for estimating the process time when cutting rock using an abrasive waterjet.

  18. An abrasion-ablation model description of galactic heavy-ion fragmentation

    NASA Technical Reports Server (NTRS)

    Townsend, L. W.; Wilson, J. W.; Norbury, J. W.; Bidasaria, H. B.

    1984-01-01

    The fragmentation of high-energy galactic heavy ions by nuclear interactions with arbitrary target nuclei is described within the context of a simple abrasion-ablation fragmentation model. The abrasion part of the theory utilizes a quantum-mechanical formalism based upon an optical model potential approximation to the exact nucleus-nucleus multiple-scattering series. Nuclear charge distributions of the excited prefragments are calculated using either a hypergeometric distribution or a method based upon the zero-point oscillations of the giant dipole resonance. The excitation energy of the prefragment is estimated from the geometric clean-cut abrasion-ablation model. The decay probabilities for the various particle emission channels, in the ablation stage of the fragmentation, are obtained from the EVAP-4 Monte Carlo computer program. Elemental production cross sections for 1.88-GeV/nucleon iron colliding with carbon, silver, and lead targets are calculated and compared with experimental data and with the predictions from the semiempirical relations of Silberberg and Tsao.

  19. The surface quality of AWJ cut parts as a function of abrasive material reusing rate

    NASA Astrophysics Data System (ADS)

    Schnakovszky, C.; Herghelegiu, E.; Radu, M. C.; Tampu, N. C.

    2015-11-01

    Abrasive water jet cutting (AWJ) has been extensively used during the last years to process a large variety of materials since it offers important advantages as a good quality of the processed surface, without heat affected zones, low environmental impact (no emission of dust or other compounds that endanger the health of the user), small induced mechanical stresses etc. The main disadvantage is the high cost of processing (cost of equipment and consumables). In view of this, the effects of reusing the abrasive material on the quality of processed surface are investigated in this paper. Two steel materials were used: OL 37 (S 235) with large applicability in machine building industry and 2P armor steel used in the arms industry. The reusing rate of the garnet abrasive material was: 0%, 20%, 40%, 60%, 80% and 100%. The quality of processed surface was quantified by the following parameters: width at the jet inlet (Li), width at the jet outlet (Lo), inclination angle (α), deviation from perpendicularity (u) and roughness (Ra).

  20. Influence of sodium content on the properties of bioactive glasses for use in air abrasion.

    PubMed

    Farooq, Imran; Tylkowski, Maxi; Müller, Steffen; Janicki, Tomasz; Brauer, Delia S; Hill, Robert G

    2013-12-01

    Air abrasion is used in minimally invasive dentistry for preparing cavities, while removing no or little sound dentine or enamel, and the use of bioactive glass (rather than alumina) as an abrasive could aid in tooth remineralization. Melt-derived bioactive glasses (SiO2-P2O5-CaO-CaF2-Na2O) with low sodium content (0 to 10 mol% Na2O in exchange for CaO) for increased hardness, high phosphate content for high bioactivity and fluoride content for release of fluoride and formation of fluorapatite were produced, and particles between 38 and 80 µm in size were used for cutting soda-lime silicate glass microscope slides and human enamel. Vickers hardness increased with decreasing Na2O content, owing to a more compact silicate network in low sodium content glasses, resulting in shorter cutting times. Cutting times using bioactive glass were significantly longer than using the alumina control (29 µm) when tested on microscope slides; however, glasses showed more comparable results when cutting human enamel. The bioactive glasses formed apatite in Tris buffer within 6 h, which was significantly faster than Bioglass® 45S5 (24 h), suggesting that the hardness of the glasses makes them suitable for air abrasion application, while their high bioactivity and fluoride content make them of interest for tooth remineralization. PMID:24287337

  1. Microstructure and Abrasive Wear Performance of Ni-Wc Composite Microwave Clad

    NASA Astrophysics Data System (ADS)

    Bansal, Amit; Zafar, Sunny; Sharma, Apurbba Kumar

    2015-10-01

    In the present work, Ni-WC powder was deposited on mild steel substrate to develop clads through microwave hybrid heating technique. The cladding trials were carried out in an industrial microwave applicator at 1.1 kW for 540 s. The Ni-WC composite clads were characterized for microstructure and abrasive wear performance through combination of x-ray diffraction, electron and optical microscopy, microhardness, and wear tests. Phase analysis of the Ni-WC clad indicated the presence of stable carbides such as WC, W2C, Ni2W4C, and Fe6W6C. The microstructure study of the clad layer revealed the presence of a uniformly distributed interlocked WC-based reinforcement embedded in the Ni-based matrix. The average Vicker's microhardness in the clad layer was observed to be 1028 ± 90 HV, which was approximately three times the microhardness of the substrate. Abrasive wear resistance of the microwave clads was superior to the MS substrate. Abrasion was the main wear mechanism in the Ni-WC clads and the substrate samples. However, the presence of WC-based reinforcement in the composite clads reduced microcutting, resulting in enhanced wear resistance.

  2. Tooth length and incisal wear and growth in guinea pigs (Cavia porcellus) fed diets of different abrasiveness.

    PubMed

    Müller, J; Clauss, M; Codron, D; Schulz, E; Hummel, J; Kircher, P; Hatt, J-M

    2015-06-01

    Dental diseases are among the most important reasons for presenting guinea pigs (Cavia porcellus) and other rodents to veterinary clinics, but the aetiopathology of this disease complex is unclear. Clinicians tend to believe that the ever-growing teeth of rabbits and rodents have a constant growth that needs to be worn down by the mastication of an appropriate diet. In this study, we tested the effect of four different pelleted diets of increasing abrasiveness [due to both internal (phytoliths) and external abrasives (sand)] or whole grass hay fed for 2 weeks each in random order to 16 guinea pigs on incisor growth and wear, and tooth length of incisors and cheek teeth. There was a positive correlation between wear and growth of incisors. Tooth lengths depended both on internal and external abrasives, but only upper incisors were additionally affected by the feeding of whole hay. Diet effects were most prominent in anterior cheek teeth, in particular M1 and m1. Cheek tooth angle did not become shallower with decreasing diet abrasiveness, suggesting that a lack of dietary abrasiveness does not cause the typical 'bridge formation' of anterior cheek teeth frequently observed in guinea pigs. The findings suggest that other factors than diet abrasiveness, such as mineral imbalances and in particular hereditary malocclusion, are more likely causes for dental problems observed in this species. PMID:25041439

  3. Bio-active glass air-abrasion has the potential to remove resin composite restorative material selectively

    NASA Astrophysics Data System (ADS)

    Milly, Hussam; Andiappan, Manoharan; Thompson, Ian; Banerjee, Avijit

    2014-06-01

    The aims of this study were to assess: (a) the chemistry, morphology and bioactivity of bio-active glass (BAG) air-abrasive powder, (b) the effect of three air-abrasion operating parameters: air pressure, powder flow rate (PFR) and the abrasive powder itself, on the selective removal of resin composite and (c) the required “time taken”. BAG abrasive particles were characterised using scanning electron microscopy-energy dispersive X-ray spectrometry (SEM-EDX) and Fourier-transform infrared spectroscopy (FTIR). Standardised resin composite restorations created within an enamel analogue block (Macor™) in vitro, were removed using air-abrasion undersimulated clinical conditions. 90 standardised cavities were scanned before and after resin composite removal using laser profilometry and the volume of the resulting 3D images calculated. Multilevel linear model was used to identify the significant factors affecting Macor™ removal. BAG powder removed resin composite more selectively than conventional air-abrasion alumina powder using the same operating parameters (p < 0.001) and the effect of altering the unit's operating parameters was significant (p < 0.001). In conclusion, BAG powder is more efficient than alumina in the selective removal of resin composite particularly under specific operating parameters, and therefore may be recommended clinically as a method of preserving sound enamel structure when repairing and removing defective resin composite restorations.

  4. The Contribution of Abrasion and Size-Selective Sorting to Downstream Fining in a Tropical Montane Stream

    NASA Astrophysics Data System (ADS)

    Szabo, T.; Miller, K. L.; Jerolmack, D. J.; Domokos, G.

    2014-12-01

    Quantifying the effect of abrasion vs. size-selective transport on downstream diminution of grain size and mass is a long-standing question in fluvial systems. While some authors have emphasized sorting by size-selective transport as the dominant fining mechanism in various rivers, others demonstrated the effectiveness of abrasion in certain fluvial systems. We present a synthetic grain-scale model in which we combine a recently developed geometric abrasion model (the so-called 'box equations' [1]) with a simplistic selective deposition rule. Box equations are capable to describe the evolution of both the shape and the size of the particles during abrasion, as opposed to previous models which only dealt with the size (or alternatively, the mass) diminution. We adapt our synthetic model to numerically simulate the downstream grain size and shape evolution in a short tropical river in Puerto Rico where we conducted a detailed field study. By switching off abrasion and selective deposition separately in the numerical model, the individual effects of these two processes can be examined. Based on our simplistic model we deduce that 1/3 of the mass of the grains may be lost only by abrasion in the examined river system. [1] Domokos, G., and G. W. Gibbons (2012), The evolution of pebble size and shape in space and time, Proc. R. Soc. A, 468(2146), 3059-3079, doi:10.1098/rspa.2011.0562.

  5. Rock Abrasion as Seen by the MSL Curiosity Rover: Insights on Physical Weathering on Mars

    NASA Astrophysics Data System (ADS)

    Bridges, N.; Day, M. D.; Le Mouelic, S.; Martin-Torres, F. J.; Newsom, H. E.; Sullivan, R. J., Jr.; Ullan, A.; Wiens, R. C.; Zorzano, M. P.

    2014-12-01

    Mars is a dry planet, with actively blowing sand in many regions. In the absence of stable liquid water and an active hydrosphere, rates of chemical weathering are slow, such that aeolian abrasion is a dominant agent of landscape modification where sand is present and winds above threshold occur at sufficient frequency. Reflecting this activity, ventifacts, rocks that have been abraded by windborne particles, and wind-eroded outcrops, are common. They provide invaluable markers of the Martian wind record and insight into climate and landscape modification. Ventifacts are distributed along the traverse of the Mars Science Laboratory Curiosity rover. They contain one or more diagnostic features and textures: Facets, keels, basal sills, elongated pits, scallops/flutes, grooves, rock tails, and lineations. Keels at the junction of facets are sharp enough to pose a hazard MSL's wheels in some areas. Geomorphic and textural patterns on outcrops indicate retreat of windward faces. Moonlight Valley and other depressions are demarcated by undercut walls and scree boulders, with the valley interiors containing fewer rocks, most of which show evidence for significant abrasion. Together, this suggests widening and undercutting of the valley walls, and erosion of interior rocks, by windblown sand. HiRISE images do not show any dark sand dunes in the traverse so far, in contrast to the large dune field to the south that is migrating up to 2 m per year. In addition, ChemCam shows that the rock Bathurst has a rind rich in mobile elements that would be removed in an abrading environment. This indicates that rock abrasion was likely more dominant in the past, a hypothesis consistent with rapid scarp retreat as suggested by the cosmogenic noble gases in Yellowknife Bay. Ventifacts and evidence for bedrock abrasion have also been found at the Pathfinder, Spirit, and Opportunity sites, areas, like the Curiosity traverse so far, that lack evidence for current high sand fluxes. Yardangs

  6. Abrasions and lameness in piglets born in different farrowing systems with different types of floor

    PubMed Central

    Zoric, Mate; Nilsson, Ebba; Mattsson, Sigbrit; Lundeheim, Nils; Wallgren, Per

    2008-01-01

    Background The quality of the floor is essential to the welfare of piglets as abrasions often are recorded in newborn piglets, and such lesions may lead to lameness. Apart from animal suffering, lameness contributes to losses in form of dead piglets, decreased growth, and increased use of antibiotics and manual labour. Methods In a herd with three different farrowing systems, 37 litters (390 piglets) were studied until the age of 3 weeks with respect to presence of skin wounds and abrasions. Lameness was registered until the age of 7 weeks. Eight lame piglets were sacrificed before medical treatment and subjected to necropsy including histopathological and microbiological examinations. Isolates of streptococci, staphylococci and E. coli were tested with respect to antimicrobial resistance. Mastitis was observed in ten sows. Results The most severe abrasions at carpus and soles were seen in the system with a new solid concrete floor with a slatted floor over the dunging area. The lowest magnitude was observed in the deep litter system with peat. Sole bruising was more common in the systems with concrete floor compared to the deep litter system with peat, and the differce in prevalence was significant at all examination days. The lesions decreased with time and about 75% of the treatments for lameness were performed during the first three weeks of life. The overall prevalence of lameness was highest in the system with new solid concrete floor with a slatted floor over the dunging area (9.4%) followed by the old solid concrete floor (7.5%). A lower (p < 0.05) prevalence was seen in the deep litters system with peat (3.3%). No significant relationship between mastitis and abrasions or lameness in the offspring was observed. Conclusion There were large differences in the prevalence of abrasions and lameness between the floor types. The deep litter system with peat provided a soft and good floor for piglets. The overall prevalence of lameness was only diagnosed in every

  7. Mycobacterium ulcerans Fails to Infect through Skin Abrasions in a Guinea Pig Infection Model: Implications for Transmission

    PubMed Central

    Williamson, Heather R.; Mosi, Lydia; Donnell, Robert; Aqqad, Maha; Merritt, Richard W.; Small, Pamela L. C.

    2014-01-01

    Transmission of M. ulcerans, the etiological agent of Buruli ulcer, from the environment to humans remains an enigma despite decades of research. Major transmission hypotheses propose 1) that M. ulcerans is acquired through an insect bite or 2) that bacteria enter an existing wound through exposure to a contaminated environment. In studies reported here, a guinea pig infection model was developed to determine whether Buruli ulcer could be produced through passive inoculation of M. ulcerans onto a superficial abrasion. The choice of an abrasion model was based on the fact that most bacterial pathogens infecting the skin are able to infect an open lesion, and that abrasions are extremely common in children. Our studies show that after a 90d infection period, an ulcer was present at intra-dermal injection sites of all seven animals infected, whereas topical application of M. ulcerans failed to establish an infection. Mycobacterium ulcerans was cultured from all injection sites whereas infected abrasion sites healed and were culture negative. A 14d experiment was conducted to determine how long organisms persisted after inoculation. Mycobacterium ulcerans was isolated from abrasions at one hour and 24 hours post infection, but cultures from later time points were negative. Abrasion sites were qPCR positive up to seven days post infection, but negative at later timepoints. In contrast, M. ulcerans DNA was detected at intra-dermal injection sites throughout the study. M. ulcerans was cultured from injection sites at each time point. These results suggest that injection of M. ulcerans into the skin greatly facilitates infection and lends support for the role of an invertebrate vector or other route of entry such as a puncture wound or deep laceration where bacteria would be contained within the lesion. Infection through passive inoculation into an existing abrasion appears a less likely route of entry. PMID:24722416

  8. Using stream sediment lithology to explore the roles of abrasion and channel network structure in shaping downstream sediment yields

    NASA Astrophysics Data System (ADS)

    Mueller, E. R.; Smith, M. E.; Pitlick, J.

    2012-12-01

    Both the flux and characteristics of stream sediment evolve downstream in response to variations in sediment supply, abrasion rate, and channel network structure. We use a simple erosion-abrasion mass balance to model the downstream evolution of sediment flux in two adjacent watersheds draining differing mixtures of soft and resistant rock types in the northern Rocky Mountains. Measurements of bed sediment grain size and lithology are used in conjunction with measured bed load and suspended load sediment fluxes to constrain the model. The results show that the downstream evolution in bed load flux and composition can be strongly influenced by subtle differences in underlying geology, which shapes both the abrasion characteristics and travel path lengths of individual rock types. In the Big Wood basin, abrasion rapidly reduces the size of soft sedimentary and volcanic rocks exposed in headwater areas, concentrating resistant granitic rocks in the stream bed and depressing bed load in favor of suspended load. Alternatively, in the North Fork Big Lost basin, volcanic and sedimentary lithologies are exposed throughout the catchment, and the bed material becomes dominated by erodible but resistant quartzitic sandstones. The result is a much higher bed load flux best modeled with modest abrasion rates. In both cases, the best-fit model can reproduce within 5% the composition of the stream bed substrate using realistic erosion and abrasion parameters. The results also demonstrate a strong linkage between modern hillslopes and channel systems even in these formerly glaciated landscapes, as the sediment signature of the primary streams reflects the systematic tapping of distinct source areas. While this work shows promise, measurement of the spatial patterns in the size and composition of bed and suspended load fluxes at locations throughout a channel network would better elucidate that relative importance of supply, sorting, and abrasion processes.

  9. Effect of Bioactive Glass air Abrasion on Shear Bond Strength of Two Adhesive Resins to Decalcified Enamel

    PubMed Central

    Eshghi, Alireza; Khoroushi, Maryam; Rezvani, Alireza

    2014-01-01

    Objective: Bioactive glass air abrasion is a conservative technique to remove initial decalcified tissue and caries. This study examined the shear bond strength of composite resin to sound and decalcified enamel air-abraded by bioactive glass (BAG) or alumina using etch-and-rinse and self-etch adhesives. Materials and Methods: Forty-eight permanent molars were root-amputated and sectioned mesiodistally. The obtained 96 specimens were mounted in acrylic resin; the buccal and lingual surfaces remained exposed. A demineralizing solution was used to decalcify half the specimens. Both sound and decalcified specimens were divided into two groups of alumina and bioactive glass air abrasion. In each group, the specimens were subdivided into two subgroups of Clearfil SE Bond or OptiBond FL adhesives (n=12). Composite resin cylinders were bonded on enamel surfaces cured and underwent thermocycling. The specimens were tested for shear bond strength. Data were analyzed using SPSS 16.0 and three-way ANOVA (α=0.05). Similar to the experimental groups, the enamel surface of one specimen underwent SEM evaluation. Results: No significant differences were observed in composite resin bond strength subsequent to alumina or bioactive glass air abrasion preparation techniques (P=0.987). There were no statistically significant differences between the bond strength of etch-and-rinse and self-etch adhesive groups (P=1). Also, decalcified or intact enamel groups had no significant difference (P=0.918). However, SEM analysis showed much less enamel irregularities with BAG air abrasion compared to alumina air abrasion. Conclusion: Under the limitations of this study, preparation of both intact and decalcified enamel surfaces with bioactive glass air abrasion results in similar bond strength of composite resin in comparison with alumina air abrasion using etch-&-rinse or self-etch adhesives. PMID:25628694

  10. Erosion and abrasion-inhibiting in situ effect of the Euclea natalensis plant of African regions.

    PubMed

    Sales-Peres, Silvia Helena de Carvalho; Xavier, Cheila Nilza Hamina; Mapengo, Marta Artemisa Abel; Forim, Moacir Rossi; Silva, Maria de Fatima; Sales-Peres, Arsenio

    2016-06-14

    This study evaluated the effect of Euclea natalensis gel on the reduction of erosive wear with or without abrasion, in enamel and dentin. During two five-day experimental crossover phases, volunteers (n = 10) wore palatal devices containing human enamel and dentin blocks (E = 8 and D = 8). The gel was applied in a thin layer in the experimental group, and was not applied in the control group. In the intraoral phase, volunteers used the palatal appliance for 12 h before the gel treatment, and were instructed to start the erosive challenges 6 h after the gel application. Erosion was performed with Coca-Cola® (for 5 min) 4 times/day. The appliance was then put back into the mouth and was brushed after 30 minutes. After intraoral exposure, the appliances were removed and the specimens were analyzed using profilometry (mean ± SD, μm). The Euclea natalensis gel caused less wear in enamel in the experimental group (EROS = 12.86 ± 1.75 µm; EROS + ABRAS = 12.13 ± 2.12 µm) than in the control group (EROS = 14.12 ± 7.66 µm; EROS + ABRAS = 16.29 ± 10.72 µm); however, the groups did not differ from each other significantly. A statistically significant value was found for erosion and eros + abrasion in dentin (p = 0.001). Euclea natalensis may play a role in the prevention of dentin loss under mild erosive and abrasive conditions. A clinical trial is required to confirm these promising results in a clinical situation. PMID:27305512

  11. In situ evaluation of different remineralization periods to decrease brushing abrasion of demineralized enamel.

    PubMed

    Attin, T; Knöfel, S; Buchalla, W; Tütüncü, R

    2001-01-01

    The aim of the present in situ study was to evaluate the effect of different periods of intraoral remineralization to decrease the susceptibility of previously demineralized enamel against toothbrushing abrasion. Six human enamel specimens (A-F) were recessed in the buccal aspects of each of eight intraoral appliances which were worn for 21 days by 8 panelists. Demineralization of the samples was performed twice a day extraorally in the acidic beverage Sprite Light for 90 s. Subsequently, the enamel specimens were brushed at different times. Specimen A was brushed immediately after the demineralization. The remaining samples B-E were brushed after the intraoral appliances had been worn for various periods of remineralization: specimen B, 10 min; C, 20 min; D, 30 min and E, 60 min, respectively. Specimen F was only demineralized and remineralized, but not brushed. After 21 days, enamel wear was measured with a laser profilometer. The following values (mean +/- standard deviation) were obtained: specimen A, 6.78+/-2.71 microm; B, 5.47+/-3.39 microm; C, 6.06+/-3.18 microm; D, 5.43+/-2.58 microm; E 4.78+/-2.57 microm, and F 0.66+/-1.11 micro;m. Analysis of variance revealed a significant influence of remineralization period on abrasive wear. However, even after a remineralization period of 60 min the wear was significantly increased as compared to the demineralized, but not brushed control. It is concluded that (1) abrasion resistance of softened enamel increases with remineralization period and (2) at least 60 min should elapse before toothbrushing after an erosive attack. PMID:11385203

  12. Standardization of a Volumetric Displacement Measurement for Two-Body Abrasion Scratch Test Data Analysis

    NASA Technical Reports Server (NTRS)

    Street, K. W. Jr.; Kobrick, R. L.; Klaus, D. M.

    2011-01-01

    A limitation has been identified in the existing test standards used for making controlled, two-body abrasion scratch measurements based solely on the width of the resultant score on the surface of the material. A new, more robust method is proposed for analyzing a surface scratch that takes into account the full three-dimensional profile of the displaced material. To accomplish this, a set of four volume- displacement metrics was systematically defined by normalizing the overall surface profile to denote statistically the area of relevance, termed the Zone of Interaction. From this baseline, depth of the trough and height of the plowed material are factored into the overall deformation assessment. Proof-of-concept data were collected and analyzed to demonstrate the performance of this proposed methodology. This technique takes advantage of advanced imaging capabilities that allow resolution of the scratched surface to be quantified in greater detail than was previously achievable. When reviewing existing data analysis techniques for conducting two-body abrasive scratch tests, it was found that the ASTM International Standard G 171 specified a generic metric based only on visually determined scratch width as a way to compare abraded materials. A limitation to this method was identified in that the scratch width is based on optical surface measurements, manually defined by approximating the boundaries, but does not consider the three-dimensional volume of material that was displaced. With large, potentially irregular deformations occurring on softer materials, it becomes unclear where to systematically determine the scratch width. Specifically, surface scratches on different samples may look the same from a top view, resulting in an identical scratch width measurement, but may vary in actual penetration depth and/or plowing deformation. Therefore, two different scratch profiles would be measured as having identical abrasion properties, although they differ

  13. Microleakage on Class V glass ionomer restorations after cavity preparation with aluminum oxide air abrasion.

    PubMed

    Corona, Silmara Aparecida Milori; Borsatto, Maria Cristina; Rocha, Renata Andréa Salvitti de Sá; Palma-Dibb, Regina Guenka

    2005-01-01

    This in vitro study assessed the marginal microleakage on class V cavities prepared with aluminum oxide air abrasion and restored with different glass ionomer cements. The cavities were prepared on the buccal and lingual surfaces of 15 sound third molars with an air- abrasion device (Kreativ Mach 4.1; New Image) using a 27.5-microm aluminum oxide particle stream, and were assigned to 3 groups of 10 cavities each. The restorative materials were: group I, a conventional glass ionomer cement (Ketac-Fil); groups II and III, resin-modified glass ionomer cements (Vitremer R and Fuji II LC, respectively). After placement of the restorations, the teeth were stored in distilled water at 37 degrees C for 24 h, polished and then submitted to a thermocycling regimen of 500 cycles, isolated, immersed in 0.2% Rhodamine B solution for 24 h, included and serially sectioned. Microleakage was assessed by viewing the specimens under an optical microscope connected to a color video camera and a computer. The images obtained were digitized and analyzed for microleakage using software that allows for a standard quantitative assessment of dye penetration in millimeters. Statistical analysis was done using the Kruskall-Wallis and Wilcoxon tests. Means of dye penetration (%) were: occlusal - I: 25.76 +/- 34.35, II: 20.00 +/- 42.16, III: 28.25 +/- 41.67; cervical - I: 23.72 +/- 41.84; II: 44.22 +/- 49.69, III: 39.27 +/- 50.74. No statistically significant differences (p>0.05) were observed among either the glass ionomer cements or the margins. In conclusion, class V cavities restored with either conventional or resin-modified glass ionomer cements after preparation with aluminum oxide air abrasion did not show complete sealing at the enamel and dentin/cementum margins. PMID:16113931

  14. Simplified Abrasion Test Methodology for Candidate EVA Glove Lay-Ups

    NASA Technical Reports Server (NTRS)

    Rabel, Emily; Aitchison, Lindsay

    2015-01-01

    During the Apollo Program, space suit outer-layer fabrics were badly abraded after performing just a few extravehicular activities (EVAs). For example, the Apollo 12 commander reported abrasive wear on the boots that penetrated the outer-layer fabric into the thermal protection layers after less than 8 hrs of surface operations. Current plans for the exploration planetary space suits require the space suits to support hundreds of hours of EVA on a lunar or Martian surface, creating a challenge for space suit designers to utilize materials advances made over the last 40 years and improve on the space suit fabrics used in the Apollo Program. Over the past 25 years the NASA Johnson Space Center Crew and Thermal Systems Division has focused on tumble testing as means of simulating wear on the outer layer of the space suit fabric. Most recently, in 2009, testing was performed on 4 different candidate outer layers to gather baseline data for future use in design of planetary space suit outer layers. In support of the High Performance EVA Glove Element of the Next Generation Life Support Project, testing a new configuration was recently attempted in which require 10% of the fabric per replicate of that need in 2009. The smaller fabric samples allowed for reduced per sample cost and flexibility to test small samples from manufacturers without the overhead to have a production run completed. Data collected from this iteration was compared to that taken in 2009 to validate the new test method. In addition the method also evaluated the fabrics and fabric layups used in a prototype thermal micrometeoroid garment (TMG) developed for EVA gloves under the NASA High Performance EVA Glove Project. This paper provides a review of previous abrasion studies on space suit fabrics, details methodologies used for abrasion testing in this particular study, results of the validation study, and results of the TMG testing.

  15. Hydrothermal treatment for TiN as abrasion resistant dental implant coating and its fibroblast response.

    PubMed

    Shi, Xingling; Xu, Lingli; Munar, Melvin L; Ishikawa, Kunio

    2015-04-01

    Dental implant made of pure titanium (Ti) is prone to scratch and abrasion during routine oral hygiene procedures. This results an increase in surface roughness and therefore, facilitates the adhesion of bacteria. In severe cases, this could lead to peri-implantitis. To overcome this problem, surface modification of Ti is necessary to improve its abrasion resistance. Besides, a strong implant-gingiva interface should also be guaranteed to prevent the adhesion of bacteria. In this study, titanium nitride (TiN) coating was first prepared with gas nitriding to increase surface hardness of pure the substrate. Then, the TiN was hydrothermally treated in CaCl2 solution in order to improve its soft tissue biocompatibility. The effect of hydrothermal treatment temperature on surface properties of TiN was investigated and its biocompatibility was assessed in vitro using NIH3T3 fibroblast cell. It was determined that 120°C was the critical temperature for the hydrothermal treatment condition. Treatment below 120°C could incorporate Ca into TiN surface, oxidize TiN surface partially and then improve the wettability while preserving its morphology and hardness. Fibroblast cell attachment and proliferation were improved and cell spreading was enhanced on hydrothermally treated specimens compared with untreated ones. Improved wettability, Ca incorporation and negative surface due to interstitial N were believed to be the main reasons. Hydrothermal treatment is expected to make TiN a promising dental implant coating with excellent abrasion resistance and good soft tissue affinity. PMID:25686920

  16. Methods for the determination of platinum group elements originating from the abrasion of automotive catalytic converters

    NASA Astrophysics Data System (ADS)

    Bencs, László; Ravindra, Khaiwal; Van Grieken, René

    2003-10-01

    Anthropogenic emission of platinum group elements (PGEs) from the abrasion of automotive catalytic converters into the environment has significantly increased. However, the concentration level of these PGEs (i.e. Pd, Pt, Rh) is still very low in the nature. Accordingly, their determination and speciation in various environmental compartments appears to be a challenging task for analytical chemists. The present review gives an overview of the analytical procedures documented in this particular field of analytical chemistry with a distinctive emphasis on spectrochemical methodology, it being the most sensitive and robust for accomplishing the above analytical task.

  17. Peel strength of denture liner to PMMA and polyamide: laser versus air-abrasion

    PubMed Central

    Bagis, Bora; Özcan, Mutlu; Durkan, Rukiye; Turgut, Sedanur; Ates, Sabit Melih

    2013-01-01

    PURPOSE This study investigated the effect of laser parameters and air-abrasion on the peel strength of silicon-based soft denture liner to different denture resins. MATERIALS AND METHODS Specimens (N=180) were prepared out of three different denture base resins (Rodex, cross-linked denture base acrylic resin; Paladent, heat-cured acrylic resin; Deflex, Polyamide resin) (75 mm × 25 mm × 3 mm). A silicon-based soft denture liner (Molloplast B) was applied to the denture resins after the following conditioning methods: a) Air-abrasion (50 µm), b) Er,Cr:YSGG laser (Waterlase MD Turbo, Biolase Technology) at 2 W-20 Hz, c) Er,Cr:YSGG laser at 2 W-30 Hz, d) Er,Cr:YSGG laser at 3 W-20 Hz, e) Er,Cr:YSGG laser at 3 W-30 Hz. Non-conditioned group acted as the control group. Peel test was performed in a universal testing machine. Failure modes were evaluated visually. Data were analyzed using two-way ANOVA and Tukey's test (α=.05). RESULTS Denture liner tested showed increased peel strength after laser treatment with different parameters (3.9±0.4 - 5.58±0.6 MPa) compared to the control (3.64±0.5 - 4.58±0.5 MPa) and air-abraded groups (3.1±0.6 - 4.46±0.3 MPa), but the results were not statistically significant except for Paladent, with the pretreatment of Er,Cr:YSGG laser at 3 W-20 Hz. Polyamide resin after air-abrasion showed significantly lower peel strength than those of other groups (3.1±0.6 MPa). CONCLUSION Heat-cured acrylic resin, PMMA, may benefit from Er,Cr:YSGG laser treatment at 3 W-20 Hz irradiation. Air-abrasion of polyamide resins should be avoided not to impair their peel bond strengths to silicon-based soft denture liners. PMID:24049570

  18. Abrasive stripping square-wave voltammetry of blackberry, raspberry, strawberry, pomegranate, and sweet and blue potatoes.

    PubMed

    Komorsky-Lovrić, Šebojka; Novak, Ivana

    2011-08-01

    Electro-oxidation potentials of 7 fruits and vegetables were determined by abrasive stripping voltammetry. The responses were characterized by 2 peaks with maxima at 0.45 and 0.55 V compared with Ag/AgCl, respectively. Both electrode reactions appear reversible at a frequency of 8 Hz. They can be ascribed to anthocyanidins and ellagic acid as electroactive compounds. By this method, an antioxidative capacity of a certain plant can be quickly estimated without extraction of active components. PMID:22417490

  19. Development of a fixed abrasive slicing technique (FAST) for reducing the cost of photovoltaic wafers

    SciTech Connect

    Schmid, F. )

    1991-12-01

    This report examines a wafer slicing technique developed by Crystal Systems, Inc. that reduces the cost of photovoltaic wafers. This fixed, abrasive slicing technique (FAST) uses a multiwire bladepack and a diamond-plated wirepack; water is the coolant. FAST is in the prototype production stage and reduces expendable material costs while retaining the advantages of a multiwire slurry technique. The cost analysis revealed that costs can be decreased by making more cuts per bladepack and slicing more wafers per linear inch. Researchers studied the degradation of bladepacks and increased wirepack life. 21 refs.

  20. Study of abrasive wear rate of silicon using n-alcohols

    NASA Technical Reports Server (NTRS)

    Danyluk, S.

    1982-01-01

    The work carried out at the University of Illinois at Chicago for the Flat-Plate Solar Array Project under contract No. 956053 is summarized. The abrasion wear rate of silicon in a number of fluid environments and the parameters that influence the surface mechanical properties of silicon were determined. Three tests were carried out in this study: circular and linear multiple-scratch test, microhardness test and a three-point bend test. The pertinent parameters such as effect of surface orientation, dopant and fluid properties were sorted. A brief review and critique of previous work is presented.

  1. The effect of daily fluoride mouth rinsing on enamel erosive/abrasive wear in situ.

    PubMed

    Stenhagen, K R; Hove, L H; Holme, B; Tveit, A B

    2013-01-01

    It is not known whether application of fluoride agents on enamel results in lasting resistance to erosive/abrasive wear. We investigated if one daily mouth rinse with sodium fluoride (NaF), stannous fluoride (SnF(2)) or titanium tetrafluoride (TiF(4)) solutions protected enamel against erosive/abrasive wear in situ (a paired, randomised and blind study). Sixteen molars were cut into 4 specimens, each with one amalgam filling (measurement reference surface). Two teeth (2 × 4 specimens) were mounted bilaterally (buccal aspects) on acrylic mandibular appliances and worn for 9 days by 8 volunteers. Every morning, the specimens were brushed manually with water (30 s) extra-orally. Then fluoride solutions (0.4% SnF(2) pH 2.5; 0.15% TiF(4) pH 2.1; 0.2% NaF pH 6.5, all 0.05 M F) were applied (2 min). Three of the specimens from each tooth got different treatment, and the fourth served as control. At midday, the specimens were etched for 2 min in 300 ml fresh 0.01 M hydrochloric acid and rinsed in tap water. This etch procedure was repeated in the afternoon. Topographic measurements were performed by a white-light interferometer. Mean surface loss (±SD) for 16 teeth after 9 days was: SnF(2) 1.8 ± 1.9 µm, TiF(4) 3.1 ± 4.8 µm, NaF 26.3 ± 4.7 µm, control 32.3 ± 4.4 µm. Daily rinse with SnF(2), TiF(4) and NaF resulted in 94, 90 and 18% reduction in enamel erosive/abrasive wear, respectively, compared with control (p < 0.05). The superior protective effect of daily rinse with either stannous or titanium tetrafluoride solutions on erosive/abrasive enamel wear is promising. PMID:23006823

  2. Silicon ingot casting: Heat exchanger method. Multi-wire slicing: Fixed abrasive slicing technique, phase 3

    NASA Technical Reports Server (NTRS)

    Schmid, F.; Khattak, C. P.

    1979-01-01

    In the area of ingot casting the proof of concept of heat exchanger method (HEM) was established. It was also established that HEM cast silicon yielded solar cell performance comparable to Czochralski grown material. Solar cells with conversion efficiencies of up to 15% were fabricated. It was shown that square cross-section ingots can be cast. In the area of crystal slicing, it was established that silicon can be sliced efficiently with the fixed abrasive slicing technique approach. This concept was carried forward to 10 cm diameter workpiece.

  3. Modeling of Abrasion Resistance Performance of Persian Handmade Wool Carpets Using Artificial Neural Network

    NASA Astrophysics Data System (ADS)

    Gupta, Shravan Kumar; Goswami, Kamal Kanti

    2015-10-01

    This paper presents the application of Artificial Neural Network (ANN) modeling for the prediction of abrasion resistance of Persian handmade wool carpets. Four carpet constructional parameters, namely knot density, pile height, number of ply in pile yarn and pile yarn twist have been used as input parameters for ANN model. The prediction performance was judged in terms of statistical parameters like correlation coefficient ( R) and Mean Absolute Percentage Error ( MAPE). Though the training performance of ANN was very good, the generalization ability was not up to the mark. This implies that large number of training data should be used for the adequate training of ANN models.

  4. Finished surface texture, abrasion resistance, and porosity of Aspa glass-ionomer cement.

    PubMed

    Smales, R; Joyce, K

    1978-11-01

    1. With the finishing agents tested Concise had a smoother surface texture than Aspa. 2. The smoothest surface was on Concise polymerized against a Mylar matrix strip. The smoothest surface for Aspa was obtained with a silicon carbide disk. 3. Aspa abraded about three times as rapidly by volume as Concise when tested by a two-body abrasion method. 4. Significantly more air bubbles were entrapped by hand mixing within Aspa than within Concise. 5. Controlled clinical studies of the glass-ionomer cements are needed before they can be fully evaluated as restorative materials. PMID:281506

  5. The impact of the bead width on the properties of the anti-abrasion surfacing weld

    NASA Astrophysics Data System (ADS)

    Beczkowski, Robert; Gucwa, Marek; Wróbel, Joanna; Kulawik, Adam

    2016-06-01

    This work presents the results of research on the anti-abrasion surfacing welds designated to operate under wear conditions. The main purpose of the work was to produce single-layer surface welds by means of semi-automatic hard-facing/surface welding with the use of filler material containing carbide precipitate and with the use of 10mm- and 20mm- wide beads. The samples were subject to visual and penetrant testing and to destructive testing in the form of macro and micro metallographic testing, hardness testing and bend testing with a view to determine the effect which the beads of various widths have on the analysed factors.

  6. Preparation and characterization of poly(vinylidene fluoride)/nanoclay nanocomposite flat sheet membranes for abrasion resistance.

    PubMed

    Lai, Chi Yan; Groth, Andrew; Gray, Stephen; Duke, Mikel

    2014-06-15

    Membranes with more resilience to abrasive wear are highly desired in water treatment, especially for seawater desalination. Nanocomposite poly(vinylidene fluoride) (PVDF)/nanoclay membranes were prepared by phase inversion and then tested for abrasion resistance. Their material properties were characterized using Fourier-transform infrared spectroscopy (FTIR), thermogravimetric analysis (TGA), tensile testing, scanning electron microscopy (SEM) and energy dispersive spectroscopy (EDS). Nanoclay Cloisite(®) 15A was utilised as the inorganic nanoparticle incorporated into PVDF. FTIR results showed a shifting of the PVDF crystalline phase from α to β thus indicating that the nanoclay altered the PVDF host material's structure and mechanical properties in terms of stiffness and toughness. Water permeation test showed that nanoclay at low concentration tended to reduce water flux. All nanocomposite membranes, with between 1 wt% and 5 wt% initial nanoclay loading, were more abrasion resistant than the control PVDF membrane. However, the 1 wt% exhibited superior resistance, lasting two times longer than the reference PVDF membrane under the same abrasive condition. The 1 wt% nanoclay membrane appeared less abraded by SEM observation, while also having the greatest tensile strength improvement (from 4.5 MPa to 4.9 MPa). This membrane also had the smallest agglomerated nanoclay particle size and highest toughness compared to the higher nanoclay content membranes. Nanoclays are therefore useful for improving abrasion resistance of PVDF membranes, but optimal loadings are essential to avoid losing essential mechanical properties. PMID:24698723

  7. The effect of abrasive blasting on the strength of a joint between dental porcelain and metal base.

    PubMed

    Pietnicki, Krzysztof; Wołowiec, Emilia; Klimek, Leszek

    2014-01-01

    This paper presents the effect of selected parameters of abrasive blasting on the strength of a joint between dental porcelain and metal base. Experiments were conducted for different grain sizes of abrasive material and different blasting angles, with a constant blasting pressure. InLine dental porcelain was fused on samples of cobalt-chromium alloy following abrasive blasting; they were subsequently subjected to shearing forces on a testing machine. The fractures were observed under an electron scanning microscope in order to determine the character and course of fracturing. Strength tests showed that the grain size of abrasive material was a parameter with the greatest effect on the strength. The best effects were achieved for samples subjected to abrasive blasting with material with grain size of 110 μm. No statistically significant differences were found for the strength of samples worked at different angles. The results of the fractographic examinations have shown that in all the samples, fracturing occurred mainly along the porcelain-metal boundary, with few cases of fracturing through porcelain. PMID:24708248

  8. Particle size effects on the abrasive wear of 20 vol% SiC{sub p}/7075Al composites

    SciTech Connect

    Sheu, C.Y.; Lin, S.J.

    1996-12-01

    Discontinuously reinforced aluminum (DRA) composites have many advantages over the unreinforced aluminum alloys and have found increasing applications in the automotive industry. The wear behavior plays a very important role in DRA composites for such applications. The commonly used apparatus for studying the DRA abrasive wear include pin-on-disk, block-on-ring, and pin-on-drum. The pins or blocks are the composites and the abrasive papers are bonded onto the counter parts. The main drawback of the block-on-ring and pin-on-drum techniques is that the contact area does not remain a constant during the initial testing period. In the pin-on-disk method, the abrasive testing conditions are not easily kept identical either. The abrasive particles are prone to be blunted and smeared by composites when running a single-track test and the sliding speed is not constant when running a spiral-track test. In this study, a modified pin-on-disk apparatus was developed. During the entire testing period, the contact area remains unchanged, and the composite pin can be always abraded y fresh abrasive particles. An aluminum alloy, AA 7075 was reinforced with 20 vol% SiC{sub p} at various particle sizes (82, 59, 37, 16, and 12 {micro}m).

  9. Corneal Abrasion

    MedlinePlus

    ... later, this may be a sign of recurrent erosion, which requires specific medical care by an eye ... fit and type. If the problem is recurrent erosion, your doctor will begin specific treatment for that ...

  10. Corneal Abrasions

    MedlinePlus

    ... prevent injuries by wearing eye protection (such as goggles or a facemask) when you're enjoying sports like skiing, snowboarding, hockey, and lacrosse. Safety goggles can protect your eyes when you're using ...

  11. Corneal Abrasions

    MedlinePlus

    ... bone: The eyelids and eyelashes work to keep particles out of your eyes. When particles get through and land on your cornea, tears help to wash the particles away. Sometimes, though, a foreign object contacts the ...

  12. Corneal Abrasions

    MedlinePlus

    ... can also be scratched by a fingernail, a tree branch or a contact lens that is dry ... young children's fingernails short, also. Trim low-hanging tree branches. Use care when putting in contact lenses, ...

  13. Development and validation of an alternative disturbed skin model by mechanical abrasion to study drug penetration

    PubMed Central

    Schlupp, P.; Weber, M.; Schmidts, T.; Geiger, K.; Runkel, F.

    2014-01-01

    Pharmaceuticals and cosmetics for dermal application are usually tested on healthy skin, although the primary permeation barrier, the stratum corneum, is often impaired by skin diseases or small skin lesions, especially on the hands. These skin conditions can considerably influence the permeation of chemicals and drugs. Furthermore, risk assessment for example of nanoparticles should be performed under various skin conditions to reflect the true circumstances. Therefore, an alternative and reproducible method for a high throughput of skin samples with impaired skin barrier was developed and verified by skin permeation studies (25 h) of caffeine, sorbic acid and testosterone compared to healthy (untreated) and tape-stripped skin. Skin barrier disruption was controlled by TEWL measurement. Skin permeation of the three substances was increased in tape-stripped and abraded skin compared to untreated skin due to the reduced barrier integrity. Enhancement of drug uptake was highest for the most hydrophilic substance, caffeine, followed by sorbic acid and lipophilic testosterone. No significant difference in drug uptake studies was observed between the new abrasion method with an aluminum-coated sponge and the tape-stripping method. The obtained results demonstrate that this abrasion method is an alternative way to achieve a disturbed skin barrier for drug and chemical uptake studies. PMID:25756004

  14. An experiment system for testing synergetic erosion caused by sand abrasion and cavitation

    NASA Astrophysics Data System (ADS)

    Lu, L.; Liu, J.; Zhang, J. G.; Zhu, L.; Xu, H. Q.; Meng, X. C.; Yu, J. C.; Ma, S. P.; Wang, K.

    2014-03-01

    An advanced comprehensive test system, designed for testing synergetic erosion due to cavitation and sand abrasion in hydraulic machinery, is presented in this paper. This system includes an integrated test rig, control platform, and state-of-the-art measurement etc. For the integrated test system, there are three test modes, Venturi-section water tunnel, rotating disc and rotating disc with jet nozzle. The maximum velocity is 45 m/s for Venturi-section water tunnel test mode, and 85 m/s for rotating disc test mode. The pressure range for those two test modes can be regulated within -0.09 MPa~0.6 MPa. The highest flow relative velocity is 120 m/s for rotating disc with jet nozzle test mode. All key parameters measured from the test rig, such as flow discharge, pressure, sand concentration, temperature etc, can be displayed online and processed in the control platform. This new test system provides researchers with the possibility to measure cavitation erosion, sand abrasion and the synergetic damage in hydraulic machinery. Further, flow visualization analysis, weight loss measurements and erosion outline measurements are available using the system.

  15. Resistance of nanofill and nanohybrid resin composites to toothbrush abrasion with calcium carbonate slurry.

    PubMed

    Suzuki, Toshimitsu; Kyoizumi, Hideaki; Finger, Werner J; Kanehira, Masafumi; Endo, Tatsuo; Utterodt, Andreas; Hisamitsu, Hisashi; Komatsu, Masashi

    2009-11-01

    The aim of this study was to investigate the wear of four nanofilled resin composites using simulated toothbrushing for 50,000 cycles with calcium carbonate slurry. The depth of abrasion and roughness (Ra) were measured after each 10,000 brushing cycle. The surface texture of the worn samples was examined by SEM.The wear depths of the nanofill Filtek Supreme XT (FIL), the nanohybrides Grandio (GRA), Tetric EvoCeram (TET), and Venus Diamond (VED) increased linearly with numbers of brushing cycles or approximately 80, 12, 600, and 60 mum, respectively after 50,000 strokes. Surface roughness showed virtually no change between 10,000 and 50,000 brushing cycles; the ranking order was TET < FIL < GRA < VED. FIL showed rather uniform abrasion with nanoclusters protruding from the surface. TET was very smoothly abraded without signs of debonding of the prepolymerized particles, whereas GRA and VED showed pronounced wear of the matrix polymer surrounding larger glass filler particles. PMID:20019422

  16. Analysis of silt abrasion of the impeller ring in a centrifugal pump with J-grooves

    NASA Astrophysics Data System (ADS)

    Qian, Z. D.; Wang, Z. Y.; Guo, Z. W.; Dong, J.; Lu, J.

    2016-05-01

    The water flow and movement of silt in a prototype double-suction centrifugal pump was simulated using an Euler-Lagrange multiphase flow model. J-Grooves were adopted to protect the impeller ring from silt abrasion. The influence of J-grooves on the silt concentration and pump efficiency was analyzed. The results show that the radial component of the relative velocity around the impeller ring is too low to move the silt out of the spacing between the impeller plate and the casing. The high silt concentration around the impeller ring is the major contributor to silt abrasion of the impeller ring. The J-grooves induce two strong vortices, which increase the radial component of the relative velocity of water and reduce the silt concentration around the impeller ring, but additional friction losses are introduced and the pump efficiency is decreased. Optimization of the number and shape of J-grooves decreases losses in the efficiency of the pump, and effectively protects the impeller ring. Case 4 was found the most effective configuration in this study.

  17. Antibacterial photodynamic therapy with 808-nm laser and indocyanine green on abrasion wound models

    NASA Astrophysics Data System (ADS)

    Topaloglu, Nermin; Güney, Melike; Yuksel, Sahru; Gülsoy, Murat

    2015-02-01

    Infections with pathogens could cause serious health problems, such as septicemia and subsequent death. Some of these deaths are caused by nosocomial, chronic, or burn-related wound infections. Photodynamic therapy (PDT) can be useful for the treatment of these infections. Our aim was to investigate the antibacterial effect of indocyanine green (ICG) and 808-nm laser on a rat abrasion wound model infected with the multidrug resistant Staphylococcus aureus strain. Abrasion wounds were infected with a multidrug resistant clinical isolate of S. aureus. ICG concentrations of 500, 1000, and 2000 μg/ml were applied with a 450 J/cm2 energy dose. Temperature change was monitored by a thermocouple system. The remaining bacterial burden was determined by the serial dilution method after each application. Wounds were observed for 11 days posttreatment. The recovery process was assessed macroscopically. Tissue samples were also examined histologically by hematoxylin-eosin staining. Around a 90% reduction in bacterial burden was observed after PDT applications. In positive control groups (ICG-only and laser-only groups), there was no significant reduction. The applied energy dose did not cause any thermal damage to the target tissue or host environment. Results showed that ICG together with a 808-nm laser might be a promising antibacterial method to eliminate infections in animals and accelerate the wound-healing process.

  18. Experimental Study on the Effects of Alumina Abrasive Particle Behavior in MR Polishing for MEMS Applications

    PubMed Central

    Kim, Dong-Woo; Cho, Myeong-Woo; Seo, Tae-Il; Shin, Young-Jae

    2008-01-01

    Recently, the magnetorheological (MR) polishing process has been examined as a new ultra-precision polishing technology for micro parts in MEMS applications. In the MR polishing process, the magnetic force plays a dominant role. This method uses MR fluids which contains micro abrasives as a polishing media. The objective of the present research is to shed light onto the material removal mechanism under various slurry conditions for polishing and to investigate surface characteristics, including shape analysis and surface roughness measurement, of spots obtained from the MR polishing process using alumina abrasives. A series of basic experiments were first performed to determine the optimum polishing conditions for BK7 glass using prepared slurries by changing the process parameters, such as wheel rotating speed and electric current. Using the obtained results, groove polishing was then performed and the results are investigated. Outstanding surface roughness of Ra=3.8nm was obtained on the BK7 glass specimen. The present results highlight the possibility of applying this polishing method to ultra-precision micro parts production, especially in MEMS applications.

  19. Simulation of abrasive flow machining process for 2D and 3D mixture models

    NASA Astrophysics Data System (ADS)

    Dash, Rupalika; Maity, Kalipada

    2015-12-01

    Improvement of surface finish and material removal has been quite a challenge in a finishing operation such as abrasive flow machining (AFM). Factors that affect the surface finish and material removal are media viscosity, extrusion pressure, piston velocity, and particle size in abrasive flow machining process. Performing experiments for all the parameters and accurately obtaining an optimized parameter in a short time are difficult to accomplish because the operation requires a precise finish. Computational fluid dynamics (CFD) simulation was employed to accurately determine optimum parameters. In the current work, a 2D model was designed, and the flow analysis, force calculation, and material removal prediction were performed and compared with the available experimental data. Another 3D model for a swaging die finishing using AFM was simulated at different viscosities of the media to study the effects on the controlling parameters. A CFD simulation was performed by using commercially available ANSYS FLUENT. Two phases were considered for the flow analysis, and multiphase mixture model was taken into account. The fluid was considered to be a

  20. UPb ages of zircon rims: A new analytical method using the air-abrasion technique

    USGS Publications Warehouse

    Aleinikoff, J.N.; Winegarden, D.L.; Walter, M.

    1990-01-01

    We present a new technique for directly dating, by conventional techniques, the rims of zircons. Several circumstances, such as a xenocrystic or inherited component in igneous zircon and metamorphic overgrowths on igneous cores, can result in grains with physically distinct age components. Pneumatic abrasion has been previously shown by Krogh to remove overgrowths and damaged areas of zircon, leaving more resistant and isotopically less disturbed parts available for analysis. A new abrader design, which is capable of very gently grinding only tips and interfacial edges of even needle-like grains, permits easy collection of abraded material for dating. Five examples demonstrate the utility of the "dust-collecting" technique, including two studies that compare conventional, ion microprobe and abrader data. Common Pb may be strongly concentrated in the outermost zones of many zircons and this Pb is not easily removed by leaching (even in weak HF). Thus, the benefit of removing only the outermost zones (and avoiding mixing of age components) is somewhat compromised by the much higher common Pb contents which result in less precise age determinations. A very brief abrasion to remove the high common Pb zones prior to collection of material for dating is selected. ?? 1990.

  1. Sliding and abrasive wear resistance of thermal-sprayed WC-CO coatings

    NASA Astrophysics Data System (ADS)

    Qiao, Yunfei; Liu, Yourong; Fischer, Traugott E.

    2001-03-01

    We studied the resistance of the coatings to abrasive and unlubricated sliding wear of 40 WC/Co coatings applied by high velocity oxygen fuel (HVOF), high-energy plasma spray (HEPS), and high velocity plasma spray (HVPS), using commercial and nanostructured experimental powders. The hardness of the coatings varies from 3 to 13 GPA, which is much lower than that of sintered samples (10 to 23 GPA) because of the porosity of the coatings. Phase analysis by x-ray diffraction revealed various amounts of decarburization in the coatings, some of which contain WC, W2C, W, and η phase. The abrasive and sliding wear resistance is limited by the hardness of the samples. For a given hardness, the wear resistance is lowered by decarburization, which produces a hard but brittle phase. Nanocarb powders have the shape of thin-walled hollow spheres that heat up rapidly in the gun and are more prone to decarburization than commercial materials. The work shows that, in order to obtain the performance of nanostructured coatings, the powder and spray techniques must be modified.

  2. The Effect of Thoracoscopic Pleurodesis in Primary Spontaneous Pneumothorax: Apical Parietal Pleurectomy versus Pleural Abrasion

    PubMed Central

    Huh, Up; Cho, Jeong Su; I, Hoseok; Lee, Jon Geun; Lee, Jun Ho

    2012-01-01

    Background The standard operative treatment of primary spontaneous pneumothorax (PSP) is thoracoscopic wedge resection, but necessity of pleurodesis still remains controversial. Nevertheless, pleural procedure after wedge resection such as pleurodesis has been performed in some patients who need an extremely low recurrence rate. Materials and Methods From January 2000 to July 2010, 207 patients who had undergone thoracoscopic wedge resection and pleurodesis were enrolled in this study. All patients were divided into two groups according to the methods of pleurodesis; apical parietal pleurectomy (group A) and pleural abrasion (group B). The recurrence after surgery had been checked by reviewing medical record through follow-up in ambulatory care clinic or calling to the patients, directly until January 2011. Results Of the 207 patients, the recurrence rate of group A and B was 9.1% and 12.8%, respectively and there was a significant difference (p=0.01, Cox's proportional hazard model). There was no significant difference in age, gender, smoking status, and body mass index between two groups. Conclusion This study suggests that the risk of recurrence after surgery in PSP is significantly low in patients who underwent thoracoscopic wedge resection with parietal pleurectomy than pleural abrasion. PMID:23130305

  3. Effects of enamel abrasion, salivary pellicle, and measurement angle on the optical assessment of dental erosion

    NASA Astrophysics Data System (ADS)

    Lussi, Adrian; Bossen, Anke; Höschele, Christoph; Beyeler, Barbara; Megert, Brigitte; Meier, Christoph; Rakhmatullina, Ekaterina

    2012-09-01

    The present study assessed the effects of abrasion, salivary proteins, and measurement angle on the quantification of early dental erosion by the analysis of reflection intensities from enamel. Enamel from 184 caries-free human molars was used for in vitro erosion in citric acid (pH 3.6). Abrasion of the eroded enamel resulted in a 6% to 14% increase in the specular reflection intensity compared to only eroded enamel, and the reflection increase depended on the erosion degree. Nevertheless, monitoring of early erosion by reflection analysis was possible even in the abraded eroded teeth. The presence of the salivary pellicle induced up to 22% higher reflection intensities due to the smoothing of the eroded enamel by the adhered proteins. However, this measurement artifact could be significantly minimized (p<0.05) by removing the pellicle layer with 3% NaOCl solution. Change of the measurement angles from 45 to 60 deg did not improve the sensitivity of the analysis at late erosion stages. The applicability of the method for monitoring the remineralization of eroded enamel remained unclear in a demineralization/remineralization cycling model of early dental erosion in vitro.

  4. Effects of enamel abrasion, salivary pellicle, and measurement angle on the optical assessment of dental erosion.

    PubMed

    Lussi, Adrian; Bossen, Anke; Höschele, Christoph; Beyeler, Barbara; Megert, Brigitte; Meier, Christoph; Rakhmatullina, Ekaterina

    2012-09-01

    The present study assessed the effects of abrasion, salivary proteins, and measurement angle on the quantification of early dental erosion by the analysis of reflection intensities from enamel. Enamel from 184 caries-free human molars was used for in vitro erosion in citric acid (pH 3.6). Abrasion of the eroded enamel resulted in a 6% to 14% increase in the specular reflection intensity compared to only eroded enamel, and the reflection increase depended on the erosion degree. Nevertheless, monitoring of early erosion by reflection analysis was possible even in the abraded eroded teeth. The presence of the salivary pellicle induced up to 22% higher reflection intensities due to the smoothing of the eroded enamel by the adhered proteins. However, this measurement artifact could be significantly minimized (p<0.05) by removing the pellicle layer with 3% NaOCl solution. Change of the measurement angles from 45 to 60 deg did not improve the sensitivity of the analysis at late erosion stages. The applicability of the method for monitoring the remineralization of eroded enamel remained unclear in a demineralization/remineralization cycling model of early dental erosion in vitro. PMID:23085926

  5. Standardization of a Volumetric Displacement Measurement for Two-Body Abrasion Scratch Test Data Analysis

    NASA Technical Reports Server (NTRS)

    Kobrick, Ryan L.; Klaus, David M.; Street, Kenneth W., Jr.

    2010-01-01

    A limitation has been identified in the existing test standards used for making controlled, two-body abrasion scratch measurements based solely on the width of the resultant score on the surface of the material. A new, more robust method is proposed for analyzing a surface scratch that takes into account the full three-dimensional profile of the displaced material. To accomplish this, a set of four volume displacement metrics are systematically defined by normalizing the overall surface profile to statistically denote the area of relevance, termed the Zone of Interaction (ZOI). From this baseline, depth of the trough and height of the ploughed material are factored into the overall deformation assessment. Proof of concept data were collected and analyzed to demonstrate the performance of this proposed methodology. This technique takes advantage of advanced imaging capabilities that now allow resolution of the scratched surface to be quantified in greater detail than was previously achievable. A quantified understanding of fundamental particle-material interaction is critical to anticipating how well components can withstand prolonged use in highly abrasive environments, specifically for our intended applications on the surface of the Moon and other planets or asteroids, as well as in similarly demanding, harsh terrestrial settings

  6. Surface properties and biocompatibility of nitrided titanium for abrasion resistant implant materials.

    PubMed

    Tamura, Yutaka; Yokoyama, Atsuro; Watari, Fumio; Kawasaki, Takao

    2002-12-01

    Corrosion, other related properties and biocompatibility of surface nitrided titanium were investigated to examine its possible use as an abrasion resistant implant material. The nitrided layer about 2 microm thick composed of TiN and Ti2N was formed on titanium by a gas nitriding method. The dissolved amount of titanium ion in SBF was as low as the detection limit of ICP, and that in the 1% lactic acid showed no significant difference from titanium. The tissue reaction of the cylindrical implant in soft tissue of rats showed no inflammation, and fine particles of 1 microm induced phagocytosis, which was similar to titanium. The implantation in the femor showed the new bone formed in direct contact with implants. All the results suggested that the wettability, corrosion resistance, S. mutans adhesion and biocompatibility were nearly equivalent to those of titanium. The surface of nitrided titanium was promising, with biocompatibility comparable with titanium, as an implant material such as for an abutment part of a dental implant, which requires high abrasion resistance. PMID:12608425

  7. Preparation of spherical ceria coated silica nanoparticle abrasives for CMP application

    NASA Astrophysics Data System (ADS)

    Peedikakkandy, Lekha; Kalita, Laksheswar; Kavle, Pravin; Kadam, Ankur; Gujar, Vikas; Arcot, Mahesh; Bhargava, Parag

    2015-12-01

    This paper describes synthesis of spherical and highly mono-dispersed ceria coated silica nanoparticles of size ∼70-80 nm for application as abrasive particles in Chemical Mechanical Planarization (CMP) process. Core silica nanoparticles were initially synthesized using micro-emulsion method. Ceria coating on these ultrafine and spherical silica nanoparticles was achieved using controlled chemical precipitation method. Study of various parameters influencing the formation of ceria coated silica nanoparticles of size less than 100 nm has been undertaken and reported. Ceria coating over silica nanoparticles was varied by controlling the reaction temperature, pH and precursor concentrations. Characterization studies using X-ray diffraction, scanning electron microscopy, transmission electron microscopy and Energy Dispersive X-ray analysis show formation of crystalline CeO2 coating of ∼10 nm thickness over silica with spherical morphology and particle size <100 nm. Aqueous slurry of ceria coated silica abrasive was prepared and employed for polishing of oxide and nitride films on silicon substrates. Polished films were studied using ellipsometry and an improvement in SiO2:SiN selective removal rates up to 12 was observed using 1 wt% ceria coated silica nanoparticles slurry.

  8. Rock Abrasion and Ventifact Formation on Mars from Field Analog, Theoretical, and Experimental Studies

    NASA Technical Reports Server (NTRS)

    Bridges, N. T.; Laity, J. E.

    2001-01-01

    Rocks observed by the Viking Landers and Pathfinder Lander/Sojourner rover exhibit a suite of perplexing rock textures. Among these are pits, spongy textures, penetrative flutes, lineaments, crusts, and knobs Fluvial, impact, chemical alteration, and aeolian mechanisms have been proposed for many of these. In an effort to better understand the origin and characteristics of Martian rock textures, abraded rocks in the Mojave Desert and other regions have been studied. We find that most Martian rock textures, as opposed to just a few, bear close resemblance to terrestrial aeolian textures and can most easily be explained by wind, not other, processes. Flutes, grooves, and some pits on Mars are consistent with abrasion by saltating particles, as described previously. However, many other rock textures probably also have an aeolian origin. Sills at the base of rocks that generally lie at high elevations, such as Half Dome, are consistent with such features on Earth that are related to moats or soil ramps that shield the basal part of the rock from erosion. Crusts consisting of fluted fabrics, such as those on Stimpy and Chimp, are similar to fluted crusts on Earth that spall off over time. Knobby and lineated rocks are similar to terrestrial examples of heterogeneous rocks that differentially erode. The location of specific rock textures on Mars also gives insight into their origin. Many of the most diagnostic ventifacts found at the Pathfinder site are located on rocks that lie near the crests or the upper slopes of ridges. On Earth, the most active ventifact formation occurs on sloped or elevated topography, where windflow is accelerated and particle kinetic energy and flux are increased. Integrated 0 together, these observations point to significant aeolian 0 modification of rocks on Mars and cast doubt on whether many primary textures resulting from other processes are preserved. Experimental simulations of abrasion in the presence of abundant sand indicate that

  9. Preparation of monodisperse polystyrene/silica core-shell nano-composite abrasive with controllable size and its chemical mechanical polishing performance on copper

    NASA Astrophysics Data System (ADS)

    Zhang, Lei; Wang, Haibo; Zhang, Zefang; Qin, Fei; Liu, Weili; Song, Zhitang

    2011-11-01

    Monodisperse silica-coated polystyrene (PS) nano-composite abrasives with controllable size were prepared via a two-step process. Monodisperse positively charged PS colloids were synthesized via polymerization of styrene by using a cationic initiator. In the subsequent coating process, silica formed shell on the surfaces of core PS particles via the ammonia-catalyzed hydrolysis and condensation of tetraethoxysilane. Neither centrifugation/water wash/redispersion cycle process nor surface modification or addition surfactant was needed in the whole process. The morphology of the abrasives was characterized by scanning electron microscope. Transmission electron microscope and energy dispersive X-ray analysis results indicated that silica layer was successfully coated onto the surfaces of PS particles. Composite abrasive has a core-shell structure and smooth surface. The chemical mechanical polishing performances of the composite abrasive and conventional colloidal silica abrasive on blanket copper wafers were investigated. The root mean square roughness decreases from 4.27 nm to 0.56 nm using composite abrasive. The PS/SiO2 core-shell composite abrasives exhibited little higher material removal rate than silica abrasives.

  10. Aeolian Abrasion at the Curiosity Landing Site: Clues to the Role of Wind in Landscape Modification

    NASA Astrophysics Data System (ADS)

    Bridges, N. T.; Le Mouélic, S.; Hallet, B.; Newman, C. E.; Rice, M. S.; Blaney, D. L.; Calef, F. J.; Herkenhoff, K. E.; Langevin, Y.; Lewis, K. W.; Maurice, S.; Pinet, P. C.; Wiens, R. C.; de Pablo, M.; Renno, N. O.

    2013-12-01

    The broad scale geomorphology of Gale Crater reflects diverse aeolian processes, from airfall settling that likely deposited much of the upper and some of the lower units of Mt. Sharp, to evidence of extensive wind exhumation and removal of material exterior to the mound, to active dunes on the crater floor. The integrated effect of aeolian sand transport can also be examined on a much smaller scale by the study of ventifacts, rocks that have been abraded by windborne particles. A diversity of ventifacts are found along Curiosity's traverse through the upper 'hummocky' (HY) geomorphic unit and the lower Yellowknife Bay (YKB) sedimentary rocks. The textures are analogous to abrasion features found on Earth and include cm-scale facets, keels, elongated pits, grooves, flutes, and basal sills. High-resolution images from ChemCam's Remote Micro-Imager also show mm-scale lineations. Evidence of differential erosion is common, with HY conglomerates (e.g., Hottah, Link) and the YKB Sheepbed mudstone unit containing distinct wind tails in the lee of resistant pebbles, and bedding features within Rocknest 3, the YKB Shaler sandstone unit, and other layered rocks displaying prominent ridge-groove topography. ChemCam LIBS depth profile data so far show no strong evidence for chemical differences in the elemental composition between abraded and non-abraded surfaces (as determined from qualitative assessment), as might be expected if there were rock coatings or weathering rinds undergoing active abrasion. Preliminary measurements of ventifact texture and wind tail orientations indicate sandblasting in HY and YKB from predominantly southwesterly and northerly directions, respectively. Based on meso-scale models of current winds and REMS results, SW flow is uncommon whereas N winds are frequent. Compositional and textural information from the suite of MSL instruments indicate that HY rocks are dominated by various types of basalt (either as whole rocks or the resistant clasts in

  11. Structural transformations, strengthening, and wear resistance of titanium nickelide upon abrasive and adhesive wear

    NASA Astrophysics Data System (ADS)

    Korshunov, L. G.; Pushin, V. G.; Chernenko, N. L.; Makarov, V. V.

    2010-07-01

    Wear resistance and structural transformations upon abrasive and adhesive wear of titanium nickelide Ti49.4Ni50.6 in microcrystalline (MC) and submicrocrystalline (SMC) states have been investigated. It has been shown that the abrasive wear resistance of this alloy exceeds that of the steel 12Kh18N9 by a factor of about 2, that of the steel 110G13 (Hadfield steel), by a factor of 1.3, and is close to that of the steel 95Kh18. Upon adhesive wear in a testing-temperature range from -50 to +300°C, the Ti49.4Ni50.6 alloy, as compared to the steel 12Kh18N9, is characterized by the wear rate that is tens of times smaller and by a reduced (1.5-2.0 times) friction coefficient. The enhanced wear resistance of the Ti49.4Ni50.6 alloy is due to the development of intense strain hardening in it and to a high fracture toughness, which is a consequence of effective relaxation of high contact stresses arising in the surface layer of the alloy. The SMC state produced in the alloy with the help of equal-channel angular pressing (ECAP) has no effect on the abrasive wear resistance of the alloy. The favorable effect of ECAP on the wear resistance of the Ti49.4Ni50.6 alloy takes place under conditions of its adhesive wear at temperatures from -25 to +70°C. The electron-microscopic investigation showed that under conditions of wear at negative and room temperatures in the surface layer (1-5 μm thick) of titanium nickelide there arises a mixed structure consisting of an amorphous phase and nanocrystals of supposedly austenite and martensite. Upon friction at 200-300°C, a nanocrystalline structure of the B2 phase arises near the alloy surface, which, as is the case with the amorphous-nanocrystalline structure, is characterized by significant effective strength and wear resistance.

  12. Lab-scale ash production by abrasion and collision experiments of porous volcanic samples

    NASA Astrophysics Data System (ADS)

    Mueller, S. B.; Lane, S. J.; Kueppers, U.

    2015-09-01

    In the course of explosive eruptions, magma is fragmented into smaller pieces by a plethora of processes before and during deposition. Volcanic ash, fragments smaller than 2 mm, has near-volcano effects (e.g. increasing mobility of PDCs, threat to human infrastructure) but may also cause various problems over long duration and/or far away from the source (human health and aviation matters). We quantify the efficiency of ash generation during experimental fracturing of pumiceous and scoriaceous samples subjected to shear and normal stress fields. Experiments were designed to produce ash by overcoming the yield strength of samples from Tenerife (Canary Islands, Spain), Sicily and Lipari Islands (Italy), with this study having particular interest in the < 355 μm fraction. Fracturing within volcanic conduits, plumes and pyroclastic density currents (PDCs) was simulated through a series of abrasion (shear) and collision (normal) experiments. An understanding of these processes is crucial as they are capable of producing very fine ash (< 10 μm). These particles can remain in the atmosphere for several days and may travel large distances (~ 1000s of km). This poses a threat to the aviation industry and human health. From the experiments we establish that abrasion produced the finest-grained material and up to 50% of the generated ash was smaller than 10 μm. In comparison, the collision experiments that applied mainly normal stress fields produced coarser grain sizes. Results were compared to established grain size distributions for natural fall and PDC deposits and good correlation was found. Energies involved in collision and abrasion experiments were calculated and showed an exponential correlation with ash production rate. Projecting these experimental results into the volcanic environment, the greatest amounts of ash are produced in the most energetic and turbulent regions of volcanic flows, which are proximal to the vent. Finest grain sizes are produced in PDCs

  13. Abrasion and fatigue resistance of PDMS containing multiblock polyurethanes after accelerated water exposure at elevated temperature.

    PubMed

    Chaffin, Kimberly A; Wilson, Charles L; Himes, Adam K; Dawson, James W; Haddad, Tarek D; Buckalew, Adam J; Miller, Jennifer P; Untereker, Darrel F; Simha, Narendra K

    2013-11-01

    Segmented polyurethane multiblock polymers containing polydimethylsiloxane and polyether soft segments form tough and easily processed thermoplastic elastomers (PDMS-urethanes). Two commercially available examples, PurSil 35 (denoted as P35) and Elast-Eon E2A (denoted as E2A), were evaluated for abrasion and fatigue resistance after immersion in 85 °C buffered water for up to 80 weeks. We previously reported that water exposure in these experiments resulted in a molar mass reduction, where the kinetics of the hydrolysis reaction is supported by a straight forward Arrhenius analysis over a range of accelerated temperatures (37-85 °C). We also showed that the ultimate tensile properties of P35 and E2A were significantly compromised when the molar mass was reduced. Here, we show that the reduction in molar mass also correlated with a reduction in both the abrasion and fatigue resistance. The instantaneous wear rate of both P35 and E2A, when exposed to the reciprocating motion of an ethylene tetrafluoroethylene (ETFE) jacketed cable, increased with the inverse of the number averaged molar mass (1/Mn). Both materials showed a change in the wear surface when the number-averaged molar mass was reduced to ≈ 16 kg/mole, where a smooth wear surface transitioned to a 'spalling-like' pattern, leaving the wear surface with ≈ 0.3 mm cracks that propagated beyond the contact surface. The fatigue crack growth rate for P35 and E2A also increased in proportion to 1/Mn, after the molar mass was reduced below a critical value of ≈30 kg/mole. Interestingly, this critical molar mass coincided with that at which the single cycle stress-strain response changed from strain hardening to strain softening. The changes in both abrasion and fatigue resistance, key predictors for long term reliability of cardiac leads, after exposure of this class of PDMS-urethanes to water suggests that these materials are susceptible to mechanical compromise in vivo. PMID:23871543

  14. Class III Restoration of Anterior Primary Teeth: In Vitro Retention Comparison of Conventional, Modified and Air-abrasion Treated Preparations

    PubMed Central

    Asl Aminabadi, Naser; Najafpour, Ebrahim; Erfanparast, Leila; Samiei, Mohammad; Haghifar, Monireh; Sighari Deljavan, Alireza; Jamali, Zahra; Pournaghi Azar, Fatemeh; Shokravi, Marzieh

    2014-01-01

    Background and aims. Anterior esthetic restoration is challenging in pediatric dentistry, due to limited durability and poor retention of the restoration.This study assessed the effect of air abrasion on tensile failure load of composite class III restorations using different preparation techniques. Materials and methods. 100 extracted human anterior primary teeth were divided, based on the preparation methods, into four groups each consisting of 25 subjects : conventional (A), labial surface bevel (B), conventional + air abrasion (C), and labial surface bevel + air abrasion (D). After restoring cavities, tensile failure load of samples was measured in Newton by Universal testing machine at a crosshead speed of 1 mm per minute. The data were analyzed by Kruskal-Wallis and Mann Whitney U tests using SPSS software. Results. There were statistically significant differences between groups A and C (P = 0.003), groups A and B (P & 0.001), groups A and D (P & 0.001), groups B and C (P = 0.028), groups B and D (P = 0.027), and also groups C and D (P& 0.001). Group D demonstrated the highest mean tensile failure load. Conclusion. Labial surface bevel treated by air abrasion showed significantly more retention of composite restoration. PMID:25093052

  15. Stability analyses of the mass abrasive projectile high-speed penetrating into concrete target. Part II: Structural stability analyses

    NASA Astrophysics Data System (ADS)

    Wu, Hao; Chen, Xiao-Wei; Fang, Qin; He, Li-Lin

    2014-12-01

    The initial oblique and attacking angles as well as the asymmetrical nose abrasion may lead to bending or even fracture of a projectile, and the penetration efficiency decreases distinctly. The structural stability of a high-speed projectile non-normally penetrating into concrete and the parametric influences involved are analyzed with the mass abrasion taken into account. By considering the symmetrical or asymmetrical nose abrasion as well as the initial oblique and attacking angles, both the axial and the transverse drag forces acting on the projectile are derived. Based on the ideal elastic-plastic yield criterion, an approach is proposed for predicting the limit striking velocity (LSV) that is the highest velocity at which no yielding failure has occurred and the projectile can still maintain its integral structural stability. Furthermore, some particular penetration scenarios are separately discussed in detail. Based on the engineering model for the mass loss and nose-blunting of ogive-nose projectiles established in Part I of this study, the above approach is validated by several high-speed penetration tests. The analysis on parametric influences indicates that the LSV is reduced with an increase in the asymmetrical nose abrasion, the length-diameter-ratio, and the concrete strength, as well as the oblique and attacking angles. Also, the LSV raises with an increase in the initial caliber-radius-head (CRH) and the dimensionless cartridge thickness of a projectile.

  16. Characterization of High-Temperature Abrasive Wear of Cold-Sprayed FeAl Intermetallic Compound Coating

    NASA Astrophysics Data System (ADS)

    Li, Chang-Jiu; Wang, Hong-Tao; Yang, Guan-Jun; Bao, Chong-Gao

    2011-01-01

    FeAl intermetallic compound coating was prepared by cold spraying using a mechanically alloyed Fe(Al) alloy powder followed by post-spray annealing at 950 °C. The high-temperature abrasive wear test was carried out for the FeAl coating at a temperature range from room temperature to 800 °C. The high-temperature abrasive wear of a heat-resistant stainless steel 2520 was performed for comparison. It was observed that the abrasive wear weight loss of FeAl coating was proportional to wear cycles in terms of sample revolutions at the tested temperatures. It was found that with the increase of the test temperature higher than 400 °C, the wear rate of cold-sprayed FeAl coating decreased with the increase of test temperature, while the wear rate of the heat-resistant steel increased significantly. The results indicate that the high-temperature abrasive wear resistance of the cold-sprayed FeAl intermetallic coating increased with the increase of the wear temperature in a temperature range from 400 to 800 °C. The wear resistance of cold-sprayed FeAl coating was higher than that of heat-resistant 2520 stainless steel under 800 °C by a factor of 3.

  17. Neutrophil (PMN) surface contact with keratocytes following corneal epithelial abrasion in the mouse: a novel role for ICAM-1

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Corneal epithelial abrasion is associated with an inflammatory response that involves PMN recruitment from the limbal vessels into the corneal stroma. Previously, in the injured mouse cornea, we showed that migrating PMNs not only make contact with collagen, but they also make extensive surface cont...

  18. Continuous Monitoring of Pin Tip Wear and Penetration into Rock Surface Using a New Cerchar Abrasivity Testing Device

    NASA Astrophysics Data System (ADS)

    Hamzaban, Mohammad-Taghi; Memarian, Hossein; Rostami, Jamal

    2014-03-01

    Evaluation of rock abrasivity is important when utilizing mechanized excavation in various mining and civil projects in hard rock. This is due to the need for proper selection of the rock cutting tools, estimation of the tool wear, machine downtime for cutter change, and costs. The Cerchar Abrasion Index (CAI) test is one of the simplest and most widely used methods for evaluating rock abrasivity. In this study, a new device for the determination of frictional forces and depth of pin penetration into the rock surface during a Cerchar test is discussed. The measured parameters were used to develop an analytical model for calculation of the size of the wear flat (and hence a continuous measure of CAI as the pin moves over the sample) and pin tip penetration into the rock during the test. Based on this model, continuous curves of CAI changes and pin tip penetration into the rock were plotted. Results of the model were used for introduction of a new parameter describing rock-pin interaction and classification of rock abrasion.

  19. Effects of Nanodiamond Abrasive Friability in Experimental MR Fluids with Phosphate Laser Glass LHG-8 and Other Optical Glasses

    SciTech Connect

    DeGroote, J.E.; Marino, A.E.; Wilson, J.P.; Spencer, K.E.; Jacobs, S.D.

    2005-09-22

    Research is currently being conducted to better understand the role that nanodiamond abrasives play in the removal process of Magnetorheological Finishing (MRF). The following presents removal rate data for a set of six optical glasses that were spotted (not polished out) with four different MR fluids, as well as texturing/smoothing data for phosphate laser glass LHG-8.

  20. Abrasion-resistant solgel antireflective films with a high laser-induced damage threshold for inertial confinement fusion

    NASA Astrophysics Data System (ADS)

    Xu, Yao; Zhang, Lei; Wu, Dong; Sun, Yu Han; Huang, Zu Xing; Jiang, Xiao Dong; Wei, Xiao Feng; Li, Zhi Hong; Dong, Bao Zhong; Wu, Zhong Hua

    2005-09-01

    To prepare abrasion-resistant antireflective (AR) films for inertial confinement fusion, four solgel routes have been investigated on polysiloxane-modified and polyvinylalcohol- (PVA-) modified SiO2 sols. As confirmed with a transmissive electron microscope, different fractal structure characteristics of the modified SiO2 particles are disclosed by small-angle x-ray scattering technology. And it is these special fractal characteristics that determine the performance of AR films on the level of internal microstructure. A 29Si magic angle spinning and nuclear magnetic resonance study has been successfully applied in explaining the fractal microstructure and its relation to the laser-induced damage threshold (LIDT) of AR films. The films modified by PVA120000 or acetic acid-catalyzed polysiloxane have higher LIDTs than those films modified by PVA16000 or hydrochloride acid-catalyzed polysiloxane. The films from PVA-modified SiO2 sols have a stronger abrasion resistance but lower antireflection than those films from polysiloxane-modified SiO2 sols. In addition, the films from polysiloxane-modified SiO2 sols can possess high transmittance and high LIDT if the polysiloxane synthesis condition is appropriately chosen, but the abrasion resistance is not as good as that from PVA modification. If strong abrasion resistance is necessary, a possible resolution may be to choose a more appropriate hydrophilic polymer than PVA. If not, polysiloxane-modified silica sol can also work when polysiloxane is synthesized under acetic acid catalysis.

  1. Fabrication of micro nickel/diamond abrasive pellet array lapping tools using a LIGA-like technology

    NASA Astrophysics Data System (ADS)

    Luo, Sheng-Yih; Yu, Tsung-Han; Hu, Yuh-Chung

    2007-06-01

    A manufacturing process of micro nickel/diamond abrasive pellet array lapping tools using a LIGA-like technology is reported here. The thickness of JSR THB-151N resist coated on an aluminum alloy substrate for micro lithography can reach up to 110 µm. During the lithography, different geometrical photomasks were used to create specific design patterns of the resist mold on the substrate. Micro roots, made by electrolytic machining on the substrate with guidance of the resist mold, can improve the adhesion of micro nickel abrasive pellets electroplated on the substrate. During the composite electroforming, the desired hardness of the nickel matrix inside the micro diamond abrasive pellets can be obtained by the addition of leveling and stress reducing agents. At moderate blade agitation and ultrasonic oscillation, higher concentration and more uniform dispersion of diamond powders deposited in the nickel matrix can be achieved. With these optimal experiment conditions of this fabrication process, the production of micro nickel/diamond abrasive pellet array lapping tools is demonstrated.

  2. Development of combinatorial chemistry methods for coatings: high-throughput screening of abrasion resistance of coatings libraries.

    PubMed

    Potyrailo, Radislav A; Chisholm, Bret J; Olson, Daniel R; Brennan, Michael J; Molaison, Chris A

    2002-10-01

    Design, validation, and implementation of an optical spectroscopic system for high-throughput analysis of combinatorially developed protective organic coatings are reported. Our approach replaces labor-intensive coating evaluation steps with an automated system that rapidly analyzes 8 x 6 arrays of coating elements that are discretely deposited on a single plastic substrate. Each coating element of the library is 10 mm in diameter and 2-5 microm thick. Performance of coatings is evaluated with respect to their resistance to wear abrasion because this parameter is one of the primary considerations in end-use applications. Upon testing, the coating materials undergo changes that are impossible to quantitatively predict using existing knowledge. Coatings are abraded using industry-accepted abrasion test methods at a single or multiple abrasion conditions followed by the high-throughput analysis of abrasion-induced light scatter. The developed automated system is optimized for the analysis of diffusively scattered light that corresponds to 0-30% haze. System precision of 0.1-2.5% relative standard deviation provides capability for the reliable ranking of coatings performance. Although the system was implemented for high-throughput screening of combinatorially developed organic protective coatings for automotive applications, it can be applied for a variety of other applications for which materials ranking can be achieved using optical spectroscopic tools. PMID:12380837

  3. Machining of Aircraft Titanium with Abrasive-Waterjets for Fatigue Critical Applications

    SciTech Connect

    Liu, H. T.; Hovanski, Yuri; Dahl, Michael E.

    2012-02-01

    Laboratory tests were conducted to determine the fatigue performance of abrasive-waterjet- (AWJ-) machined aircraft titanium. Dog-bone specimens machined with AWJs were prepared and tested with and without sanding and dry-grit blasting with Al2O3 as secondary processes. The secondary processes were applied to remove the visual appearance of AWJ-generated striations and to clean up the garnet embedment. The fatigue performance of AWJ-machined specimens was compared with baseline specimens machined with CNC milling. Fatigue test results of the titanium specimens not only confirmed our previous findings in aluminum dog-bone specimens but in comparison also further enhanced the fatigue performance of the titanium. In addition, titanium is known to be difficult to cut, particularly for thick parts, however AWJs cut the material 34% faster han stainless steel. AWJ cutting and dry-grit blasting are shown to be a preferred ombination for processing aircraft titanium that is fatigue critical.

  4. [Composites versus amalgam: comparative measurements of abrasion resistance in vivo: 1-year results].

    PubMed

    Meier, C; Lutz, F

    1979-03-01

    A method for the in-vivo measurement of wear resistance of restorative materials is described. A profilometer is used to record the reduction in vertical dimension of the test material's occlusal surface. This loss of substance is calculated as the wear resistance index. The technique was used in a 13 month clinical evaluation of 3 different restorative materials, Adaptic, Amalgam (Dispersalloy) and Estic microfill. The procedure is simple in execution and very accurate. Statistical analysis has shown significant differences in wear resistance of the examined materials independent of patient variation. Attrition and abrasion were definitely greater with a standard composite material (Adaptic) than with amalgam and a test composite (Estic microfill). The newly developed composite material utilizing extremely fine filler particles of pyrogenic SiO2 (Estic microfill) was shown to be comparable to amalgam in wear resistance during the 13-month test period. PMID:293032

  5. Abrasive resistance of arc sprayed carbonitride alloying self-shielded coatings

    NASA Astrophysics Data System (ADS)

    Deng, Yu; Yu, Shengfu; Xing, Shule; Huang, Linbing; Lu, Yan

    2011-10-01

    Wear-resistant coatings were prepared on the surface of the Q235 low-carbon steel plate by HVAS with the carbonitride alloying self-shielded flux-cored wire. Detection and analysis on the microstructure and properties of the coatings were carried out by using scanning electron microscope, microhardness tester and wear tester. The forming, the wear resistance and its mechanism of the coatings were studied. The results show that the coatings have good forming, homogeneous microstructure and compact structure. The coatings have good hardness, the average microhardness value reaches 520 HV 0.1, and the highest value is up to about 560 HV 0.1. As a result, the coatings have good abrasive wear performance and adhesion strength.

  6. Borosiliciding of Fe Ni alloys and evaluation of their resistance to abrasive wear

    NASA Astrophysics Data System (ADS)

    Sambogna, G.; Palombarini, G.; Carbucicchio, M.; Ciprian, R.

    2008-11-01

    X-ray diffraction analysis, Mössbauer measurements and metallographic observations were performed on borosilicide coatings grown at 850°C on Armco iron and the Fe64Ni36 binary alloy using a KBF4-activated powder mixture of B4C and Si3N4. The phase composition of the coatings was determined, a result allowing to show that the thermochemical treatment gives rise to iron boriding and iron siliciding reactions of different strength, depending on the treated material. The presence of Ni in the base metal allows iron-free nickel silicides to form as important components of the coating. The resistance of borosilicide coatings to abrasive wear is evaluated and discussed.

  7. Scratch and abrasion properties of polyurethane-based micro- and nano-hybrid obturation materials.

    PubMed

    Estevez, Miriam; Rodriguez, J Rogelio; Vargas, Susana; Guerra, J A; Brostow, Witold; Lobland, Haley E Hagg

    2013-06-01

    Polyurethane-based micro- and nano-hybrid composites were produced with controlled porosity to be used as obturation materials. In addition to hydroxyapatite (HAp) micro-particles in the composites, two different ceramics particle types were also added: alumina micro-particles and silica nano-particles. Particles of different sizes provide the materials with improved mechanical properties: the use of micro- and nano-particles produces a better packing because the nano-particles fill the interstitial space left by the micro-particles, rendering an improvement in the mechanical properties. The silica and alumina particles provide the materials with appropriate abrasion and scratching properties, while the HAp provides the required bio-acceptance. The polymeric matrix was a mono-component solvent-free polyurethane. The porosity was selected by controlling the chemical reaction. PMID:23862519

  8. Soft X-Ray Absorption Spectroscopy of High-Abrasion-Furnace Carbon Black

    NASA Astrophysics Data System (ADS)

    Muramatsu, Yasuji; Harada, Ryusuke; Gullikson, Eric M.

    2007-02-01

    The soft x-ray absorption spectra of high-abrasion-furnace carbon black were measured to obtain local-structure/chemical-states information of the primary particles and/or crystallites. The soft x-ray absorption spectral features of carbon black represent broader π* and σ* peak structures compared to highly oriented pyrolytic graphite (HOPG). The subtracted spectra between the carbon black and HOPG, (carbon black) — (HOPG), show double-peak structures on both sides of the π* peak. The lower-energy peak, denoted as the "pre-peak", in the subtracted spectra and the π*/σ* peak intensity ratio in the absorption spectra clearly depend on the specific surface area by nitrogen adsorption (NSA). Therefore, it is concluded that the pre-peak intensity and the π*/σ* ratio reflect the local graphitic structure of carbon black.

  9. Surface topography of cylindrical gear wheels after smoothing in abrasive mass, honing and shot peening

    NASA Astrophysics Data System (ADS)

    Michalski, J.; Pawlus, P.; Żelasko, W.

    2011-08-01

    The present paper presents the analysis of surface topography of gear teeth as the result of final machining processes. Teeth of multiple cylindrical gears shaped by grinding were smoothed in abrasive mass, honed or shot peened. The measurement of gears were made using coordinate measuring machine and 3D surface topography stylus instrument. The following deviations were studied; pitch deviation, total pitches deviations, variation of teeth thickness and deviation of gear radial run-out. Changes in teeth surface topography during machining process were determined. 3D surface topography parameters, surface directionality as well as areal autocorrelation and power spectral density functions were taken into consideration. As the results of the analysis, the best surface topography with regard to gear operational properties was recommended.

  10. Mathematical modeling of surface roughness in magnetic abrasive finishing of BK7 optical glass.

    PubMed

    Pashmforoush, Farzad; Rahimi, Abdolreza; Kazemi, Mehdi

    2015-10-01

    Magnetic abrasive finishing (MAF) is one of the advanced machining processes efficiently used to finish hard-to-machine materials. Simulation and modeling of the process is of particular importance to understand the mechanics of material removal and consequently achieve a high-quality surface with a minimum of surface defects. Hence, in this paper, we performed a numerical-experimental study to mathematically model the surface roughness during the MAF of BK7 optical glass. For this purpose, the initial roughness profile was estimated using fast Fourier transform (FFT) and a Gaussian filter. We obtained the final surface profile based on the material removal mechanisms and the corresponding chipping depth values evaluated by finite element analysis. We then validated experimentally the simulation results in terms of the arithmetic average surface roughness (R(a ). The comparison between the obtained results demonstrates that the theoretical and experimental findings are in good agreement when predicting the parameters' effect on surface roughness behavior. PMID:26479596

  11. A quantitative estimation of the exhaust, abrasion and resuspension components of particulate traffic emissions using electron microscopy

    NASA Astrophysics Data System (ADS)

    Weinbruch, Stephan; Worringen, Annette; Ebert, Martin; Scheuvens, Dirk; Kandler, Konrad; Pfeffer, Ulrich; Bruckmann, Peter

    2014-12-01

    The contribution of the three traffic-related components exhaust, abrasion, and resuspension to kerbside and urban background PM10 and PM1 levels was quantified based on the analysis of individual particles by scanning electron microscopy. A total of 160 samples was collected on 38 days between February and September 2009 at a kerbside and an urban background station in the urban/industrial Ruhr area (Germany). Based on size, morphology, chemical composition and stability under electron bombardment, the 111,003 particles studied in detail were classified into the following 14 particle classes: traffic/exhaust, traffic/abrasion, traffic/resuspension, carbonaceous/organic, industry/metallurgy, industry/power plants, secondary particles, (aged) sea salt, silicates, Ca sulfates, carbonates, Fe oxides/hydroxides, biological particles, and other particles. The traffic/exhaust component consists predominantly of externally mixed soot particles and soot internally mixed with secondary particles. The traffic/abrasion component contains all particles with characteristic tracer elements (Fe, Cu, Ba, Sb, Zn) for brake and tire abrasion. The traffic/resuspension component is defined by the mixing state and comprises all internally mixed particles with a high proportion of silicates or Fe oxides/hydroxides which contain soot or abrasion particles as minor constituent. In addition, silicates and Fe oxides/hydroxides internally mixed with chlorine and sulphur containing particles were also assigned to the traffic/resuspension component. The total contribution of traffic to PM10 was found to be 27% at the urban background station and 48% at the kerbside station, the corresponding values for PM1 are 15% and 39%. These values lie within the range reported in previous literature. The relative share of the different traffic components for PM10 at the kerbside station was 27% exhaust, 15% abrasion, and 58% resuspension (38%, 8%, 54% for PM1). For the urban background, the following

  12. The role of the microfissuration of the rock matrix in the abrasion resistance of ornamental granitic rocks

    NASA Astrophysics Data System (ADS)

    Rodríguez-Rey, Angel; Sanchez-Delgado, Nuria; Camino, Clara; Calleja, Lope; Ruiz de Argandoña, Vicente G.; Setien, Alexia

    2015-04-01

    The microcrack density and the abrasion resistance of five ornamental granites (Albero, Gris Alba, Mondariz, Rosa Porriño and Traspieles) from Galicia (NW Spain) have been quantified as part of a research aimed to interpret the cuttability of the rocks in relation to the petrophysical properties of the rock matrix. Large blocks from the quarries have been cut with an industrial saw and the microcrack density and the abrasion resistance have been measured in two surfaces: H, parallel to the cut surface; T, perpendicular both to the cut surface and the cutting direction. Both planes are perpendicular to the rift plane, as it is known in quarry works. The microcrack density has been quantified following an stereological procedure applied to polished sections imaged under scanning electron microscopy. The magnification of the images allowed the study of microcracks as narrow as 2 microns in aperture. The density has been quantified in terms of length of microcrack traces per surface unit so possible anisotropies of the microcrack network could be detected. The obtained values are in the typical range for this type of rocks although the Traspieles granite shows a higher value due to its weathering degree (H: 5.11, T: 5.37 mm/mm2). The values measured in the two surfaces (H and T) are quite similar in four of the rocks; only the Albero granite shows a marked anisotropy (H: 2.76 T: 3.53 mm/mm2). The abrasion resistance of the rocks has been measured following the european standard EN 14157:2004 using the capon method. The rocks can be classified in two groups according to their abrasion resistance. Rosa Porriño, Gris Alba and Mondariz granites are the more resistant to abrasion with values around 16-17 mm. Albero and Traspieles granites are less resistant with values higher than 19 mm. The results show a good correlation between the microcrack density and the abrasion resistance. As can be expected the rocks with high microcrack density show low abrasion resistance. The

  13. Rock Abrasion on Mars: Clues from the Pathfinder and Viking Landing Sites

    NASA Technical Reports Server (NTRS)

    Bridges, N. T.; Parker, T. J.; Kramer, G. M.

    2000-01-01

    A significant discovery of the Mars Pathfinder (MPF) mission was that many rocks exhibit characteristics of ventifacts, rocks that have been sculpted by saltating particles. Diagnostic features identifying the rocks as ventifacts am elongated pits, flutes, and grooves (collectively referred to as "flutes" unless noted otherwise). Faceted rocks or rock portions, circular pits, rills, and possibly polished rock surfaces are also seen and could be due, to aeolian abrasion. Many of these features were initially identified in rover images, where spatial resolution generally exceeded that of the IMP (Imager for Mars Pathfinder) camera. These images had two major limitations: 1) Only a limited number of rocks were viewed by the rover, biasing flute statistics; and 2) The higher resolution obtained by the rover images and the lack of such pictures at the Viking landing sites hampered comparisons of rock morphologies between the Pathfinder and Viking sites. To avoid this problem, rock morphology and ventifact statistics have been examined using new "super-resolution" IMP and Viking Lander images. Analyses of these images show that: 1) Flutes are seen on about 50% or more of the rocks in the near field at the MPF site; 2) The orientation of these flutes is similar to that for flutes identified in rover images; and 3) Ventifacts are significantly more abundant at the Pathfinder landing site than at the two Viking Landing sites, where rocks have undergone only a limited amount of aeolian abrasion. This is most likely due to the ruggedness of the Pathfinder site and a greater supply of abrading particles available shortly after the Arcs and Tiu Valles outflow channel floods.

  14. Comparative study of talc poudrage versus pleural abrasion for the treatment of primary spontaneous pneumothorax†

    PubMed Central

    Moreno-Merino, Sergio; Congregado, Miguel; Gallardo, Gregorio; Jimenez-Merchan, Rafael; Trivino, Ana; Cozar, Fernando; Lopez-Porras, Marta; Loscertales, Jesus

    2012-01-01

    Primary spontaneous pneumothorax is a pathology mainly affecting healthy young patients. Clinical guidelines do not specify the type of pleurodesis that should be conducted, due to the lack of comparative studies on the different techniques. The aim of this study was to compare talc poudrage and pleural abrasion in the treatment of spontaneous pneumothorax. A retrospective comparative study was performed, including 787 patients with primary spontaneous pneumothorax. The 787 patients were classified into two groups: Group A (pleural abrasion) n = 399 and Group B (talc pleurodesis) n = 388. The variables studied were recurrence, surgical time, morbidity and in-hospital length of stay. Statistical analysis was done by an unpaired t-test and Fisher's exact test (SSPS 18.0). Statistically significant differences were observed in the variables: surgical time (A: 46 ± 12.3; B: 37 ± 11.8 min; P < 0.001); length of stay (A: 4.7 ± 2.5; B: 4.3 ± 1.8 days; P = 0.01); apical air camera (A: 25; B: 4; P < 0.001); pleural effusion (A: 6; B: 0; P = 0.05). Talc poudrage shows shorter surgical times and length of stay, and lower re-intervention rates. Morbidity is lower in patients with talc poudrage. Statistically significant differences were not observed in recurrence, persistent air leaks, atelectasis and haemothorax. PMID:22514256

  15. Variability of rock erodibility in bedrock-floored stream channels based on abrasion mill experiments

    NASA Astrophysics Data System (ADS)

    Small, Eric E.; Blom, Tevis; Hancock, Gregory S.; Hynek, Brian M.; Wobus, Cameron W.

    2015-08-01

    We quantify variations in rock erodibility, Kr, within channel cross sections using laboratory abrasion mill experiments on bedrock surfaces extracted from streams with sandstone bedrock in Utah and basaltic bedrock in the Hawaiian Islands. Samples were taken from the thalweg and channel margins, the latter at a height that is inundated annually. For each sample, a sequence of abrasion mill experiments was completed to quantify variations in erosion rate with erosion depth. Erosion rate data from these experiments shows two things. First, the erosion rate from channel margin samples is greater than for thalweg samples, with the greatest difference observed for the rock surface that was exposed in the stream channel. Second, erosion rate decreases with depth beneath the original rock surface, by an order of magnitude in most cases. The erosion rate becomes steady at depths of 1-3 mm for channel margin samples and 0.1-0.4 mm for thalweg samples. Because only rock properties and microtopography vary throughout the sequence of mill experiments, these results suggest that Kr of the bedrock surface exposed in stream channels is higher at the margins than near the channel center and that Kr decreases over depths of ~1 mm. The simplest explanation for these patterns is that Kr is enhanced, at the bedrock surface and along the channel margins, due to the effects of weathering on rock strength and surface roughness. We hypothesize that a balance exists between weathering-enhanced erodibility and episodic incision to allow channel margins to lower at rates similar to the thalweg.

  16. Bound-abrasive grinding and polishing of surfaces of optical materials

    NASA Astrophysics Data System (ADS)

    Filatov, Yuriy D.; Filatov, Olexandr Y.; Monteil, Guy; Heisel, Uwe; Storchak, Michael

    2010-08-01

    Problems of improving efficiency and quality of diamond-abrasive finishing of optical materials by tools with bounded polishing powders, including diamond powder, by means of the improvement of the machining technology and application of new tools with functionally oriented designs and characteristics of working layer are considered. A model has been proposed of the slime particle formation and directional removal as well as of the generation of a high-quality surface in diamond-abrasive finishing of optical materials taking into account the peculiarities of the mass transfer in the contact zone and statistic character of the distribution of slime particles by size. The dependences of the particle number on the diffusion angle and coordinate of the contact have been derived in the studies of the dynamics of collision and diffusion of slime particles. The coordinate dependence of the flat surface roughness of glass K8 optics in fine diamond grinding has been described. Interaction and dispersion of deterioration particles in a contact zone of the tool and a processed sample in the course of polishing is described and the dispersion structure of deterioration particles of the tool on slime particles and on deterioration particles is explained oscillatory. It is shown, that differential dispersion section of deterioration particles on slime particles no less than on deterioration particles as much as possible at corners of dispersion close to 0 and 180° on the central sites of a contact zone. Coordinate dependence of full dispersion section of deterioration particles of the tool and dependence of microprofile height of the processed surface on circular zones radius are calculated. Conformity of experimental and theoretical microroughness profiles of a polished surface on a quartz sample is shown.

  17. Do soil microbes and abrasion by soil particles influence persistence and loss of physical dormancy in seeds of tropical pioneers?

    PubMed Central

    Zalamea, Paul-Camilo; Sarmiento, Carolina; Arnold, A. Elizabeth; Davis, Adam S.; Dalling, James W.

    2015-01-01

    Germination from the soil seed bank (SSB) is an important determinant of species composition in tropical forest gaps, with seed persistence in the SSB allowing trees to recruit even decades after dispersal. The capacity to form a persistent SSB is often associated with physical dormancy, where seed coats are impermeable at the time of dispersal. Germination literature often speculates, without empirical evidence, that dormancy-break in physically dormant seeds is the result of microbial action and/or abrasion by soil particles. We tested the microbial/soil abrasion hypothesis in four widely distributed neotropical pioneer tree species (Apeiba membranacea, Luehea seemannii, Ochroma pyramidale, and Cochlospermum vitifolium). Seeds were buried in five common gardens in a lowland tropical forest in Panama, and recovered at 1, 3, 6, and 12 months after burial. Seed permeability, microbial infection, seed coat thickness, and germination were measured. Parallel experiments compared the germination fraction of fresh and aged seeds without soil contact, and in seeds as a function of seed permeability. Contrary to the microbial/soil abrasion hypothesis the proportion of permeable seeds, and of seeds infected by cultivable microbes, decreased as a function of burial duration. Furthermore, seeds stored in dark and dry conditions for 2 years showed a higher proportion of seed germination than fresh seeds in identical germination conditions. We determined that permeable seeds of A. membranacea and O. pyramidale had cracks in the chalazal area or lacked the chalazal plug, whereas all surfaces of impermeable seeds were intact. Our results are inconsistent with the microbial/soil abrasion hypothesis of dormancy loss and instead suggest the existence of multiple dormancy phenotypes, where a fraction of each seed cohort is dispersed in a permeable state and germinates immediately, while the impermeable seed fraction accounts for the persistent SSB. Thus, we conclude that fluctuations

  18. Do soil microbes and abrasion by soil particles influence persistence and loss of physical dormancy in seeds of tropical pioneers?

    PubMed

    Zalamea, Paul-Camilo; Sarmiento, Carolina; Arnold, A Elizabeth; Davis, Adam S; Dalling, James W

    2014-01-01

    Germination from the soil seed bank (SSB) is an important determinant of species composition in tropical forest gaps, with seed persistence in the SSB allowing trees to recruit even decades after dispersal. The capacity to form a persistent SSB is often associated with physical dormancy, where seed coats are impermeable at the time of dispersal. Germination literature often speculates, without empirical evidence, that dormancy-break in physically dormant seeds is the result of microbial action and/or abrasion by soil particles. We tested the microbial/soil abrasion hypothesis in four widely distributed neotropical pioneer tree species (Apeiba membranacea, Luehea seemannii, Ochroma pyramidale, and Cochlospermum vitifolium). Seeds were buried in five common gardens in a lowland tropical forest in Panama, and recovered at 1, 3, 6, and 12 months after burial. Seed permeability, microbial infection, seed coat thickness, and germination were measured. Parallel experiments compared the germination fraction of fresh and aged seeds without soil contact, and in seeds as a function of seed permeability. Contrary to the microbial/soil abrasion hypothesis the proportion of permeable seeds, and of seeds infected by cultivable microbes, decreased as a function of burial duration. Furthermore, seeds stored in dark and dry conditions for 2 years showed a higher proportion of seed germination than fresh seeds in identical germination conditions. We determined that permeable seeds of A. membranacea and O. pyramidale had cracks in the chalazal area or lacked the chalazal plug, whereas all surfaces of impermeable seeds were intact. Our results are inconsistent with the microbial/soil abrasion hypothesis of dormancy loss and instead suggest the existence of multiple dormancy phenotypes, where a fraction of each seed cohort is dispersed in a permeable state and germinates immediately, while the impermeable seed fraction accounts for the persistent SSB. Thus, we conclude that fluctuations

  19. Zircon geochronology and ca. 400 Ma exhumation of Norwegian ultrahigh-pressure rocks: An ion microprobe and chemical abrasion study

    USGS Publications Warehouse

    Root, D.B.; Hacker, B.R.; Mattinson, J.M.; Wooden, J.L.

    2004-01-01

    Understanding the formation and exhumation of the remarkable ultrahigh-pressure (UHP) rocks of the Western Gneiss Region, Norway, hinges on precise determination of the time of eclogite recrystallization. We conducted detailed thermal ionization mass spectrometry, chemical abrasion analysis and sensitive high-resolution ion-microprobe analysis of zircons from four ultrahigh- and high-pressure (HP) rocks. Ion-microprobe analyses from the Flatraket eclogite yielded a broad range of apparently concordant Caledonian ages, suggesting long-term growth. In contrast, higher precision thermal ionization mass spectrometry analysis of zircon subject to combined thermal annealing and multi-step chemical abrasion yielded moderate Pb loss from the first (lowest temperature) abrasion step, possible minor Pb loss or minor growth at 400 Ma from the second step and a 407-404 Ma cluster of slightly discordant 206Pb/238U ages, most likely free from Pb loss, from the remaining abrasion steps. We interpret the latter to reflect zircon crystallization at ???405-400 Ma with minor discordance from inherited cores. Zircon crystallization occurred at eclogite-facies, possibly post-peak conditions, based on compositions of garnet inclusions in zircon as well as nearly flat HREE profiles and lack of Eu anomalies in zircon fractions subjected to chemical abrasion. These ages are significantly younger than the 425 Ma age often cited for western Norway eclogite recrystallization, implying faster rates of exhumation (>2.5-8.5 km/Myr), and coeval formation of eclogites across the UHP portion of the Western Gneiss Region. ?? 2004 Published by Elsevier B.V.

  20. Lithologic Influence and Experimental Variability in Gravel Abrasion: Implications for Predicting Rates of Downstream Fining of River Bed Sediments

    NASA Astrophysics Data System (ADS)

    Farrow, J. W.; Sklar, L. S.

    2004-12-01

    The question of what controls the occurrence and rate of downstream fining of bed-material sediments remains a fundamental unsolved problem despite over a century of field, experimental and theoretical investigations. Downstream fining rates are commonly modeled as exponential or power-law functions of travel distance. Much recent work has focused on the relative influence of particle abrasion and differential transport, however, no general method has been developed for explicitly accounting for the influence of rock strength in parameterizing fining models. Here we report preliminary results of laboratory tumbling experiments in which we are investigating the influence of variable rock durability, both between and within distinct lithologic units, on rates of particle abrasion. We consider three separate questions: 1) can rock tensile strength be used to predict differences in bulk fining rates across a wide spectrum of rock types; 2) does variability in rock durability among individual gravel clasts of the same lithologic composition and initial grain size lead to patterns of downstream evolution of grain size distributions that differ significantly from the predictions of simple fining models; and 3) how large is the uncertainty in abrasion coefficients determined by laboratory tumbling, as determined by replicate experiments with identical initial conditions? We use a horizontal axis, 25-cm diameter, steel barrel tumbler, driven by a mechanical transmission with excellent control of rotational velocity. Rock samples were collected from units of the Franciscan Formation in the Redwood Creek Watershed of Marin County, California, and from sedimentary and intrusive volcanic rocks of the Henry Mountains, in southeastern Utah. We collected clasts predominantly from hillslope source areas, to focus our attention on the durability of gravel as it enters the river network. We use the `Brazilian' tensile splitting test to measure the strength of 50-mm diameter core

  1. Micro-scale abrasive wear behavior of medical implant material Ti-25Nb-3Mo-3Zr-2Sn alloy on various friction pairs.

    PubMed

    Wang, Zhenguo; Huang, Weijiu; Ma, Yanlong

    2014-09-01

    The micro-scale abrasion behaviors of surgical implant materials have often been reported in the literature. However, little work has been reported on the micro-scale abrasive wear behavior of Ti-25Nb-3Mo-3Zr-2Sn (TLM) titanium alloy in simulated body fluids, especially with respect to friction pairs. Therefore, a TE66 Micro-Scale Abrasion Tester was used to study the micro-scale abrasive wear behavior of the TLM alloy. This study covers the friction coefficient and wear loss of the TLM alloy induced by various friction pairs. Different friction pairs comprised of ZrO2, Si3N4 and Al2O3 ceramic balls with 25.4mm diameters were employed. The micro-scale abrasive wear mechanisms and synergistic effect between corrosion and micro-abrasion of the TLM alloy were investigated under various wear-corrosion conditions employing an abrasive, comprised of SiC (3.5 ± 0.5 μm), in two test solutions, Hanks' solution and distilled water. Before the test, the specimens were heat treated at 760°C/1.0/AC+550°C/6.0/AC. It was discovered that the friction coefficient values of the TLM alloy are larger than those in distilled water regardless of friction pairs used, because of the corrosive Hanks' solution. It was also found that the value of the friction coefficient was volatile at the beginning of wear testing, and it became more stable with further experiments. Because the ceramic balls have different properties, especially with respect to the Vickers hardness (Hv), the wear loss of the TLM alloy increased as the ball hardness increased. In addition, the wear loss of the TLM alloy in Hanks' solution was greater than that in distilled water, and this was due to the synergistic effect of micro-abrasion and corrosion, and this micro-abrasion played a leading role in the wear process. The micro-scale abrasive wear mechanism of the TLM alloy gradually changed from two-body to mixed abrasion and then to three-body abrasion as the Vickers hardness of the balls increased. PMID:25063112

  2. Chemical-abrasion SIMS dating of zircon from the Eocene Caetano caldera, Nevada

    NASA Astrophysics Data System (ADS)

    Colgan, J.; Watts, K. E.; John, D. A.; Henry, C. D.; Coble, M. A.; Vazquez, J. A.

    2012-12-01

    The Eocene Caetano caldera in northern Nevada formed during eruption of ~1100 km3 of crystal-rich rhyolite. Miocene extension cut the caldera into a set of fault blocks that expose minor pre-caldera volcanic rocks, two units of intracaldera Caetano Tuff up to 4 km thick, ash-flow tuff feeder dikes and ring-fracture intrusions, caldera collapse breccias, and post-collapse resurgent intrusions. Single-crystal 40Ar/39Ar sanidine dates on all parts of the caldera system overlap, yielding a 34.01 ± 0.05 Ma (n=17, Fish Canyon sanidine = 28.201 Ma) age for the eruption. 40Ar/39Ar dating also documents several preceding episodes of magmatism: 35.69 ± 0.06 Ma (sanidine, n =13) rhyolite dikes in the nearby Cortez gold district, 35.21 ± 0.18 Ma (plagioclase, n=1) andesite lava underlying Caetano Tuff, and a 38.90 ± 0.11 Ma (biotite, n=1), dacite dike in the northeastern caldera wall. Extensive U-Pb SHRIMP dating of zircon from both the Cortez dikes and all phases of the Caetano system suggests continuous magmatism from 40-34 Ma. However, all samples contain at least some—sometimes many—zircons with U-Pb ages younger than the 34.0 Ma argon age. To determine if anomalously young zircon ages are due to Pb-loss, we analyzed representative samples of the upper Caetano Tuff and the Redrock Canyon resurgent pluton with and without chemical abrasion to mitigate Pb-loss. Bulk zircon separates were annealed at 850°C for 48 hours, then chemically abraded with 10:1 HF/HNO3 vapor in a Parr bomb at 225°C for 8 hours, based on protocols outlined by Mattinson (2005). Both treated and untreated zircons from the same sample were mounted in epoxy and polished to their midsections, then imaged on the SEM using BSE and CL. The SHRIMP-RG at Stanford University was used to determine U-Pb ages and trace element concentrations in single spots for ~25 to 30 individual zircons per sample, using a round-robin procedure and two zircon age standards (R33 and 080) to monitor external precision

  3. Tumbling experiments to test fragmentation and abrasion of rocks from the Southern Alps, New Zealand

    NASA Astrophysics Data System (ADS)

    Herman, F.; Fluekiger, L.; Cox, S. C.; Beyssac, O.

    2011-12-01

    Detrital cobbles and pebbles were collected from rivers draining the Southern Alps in the South Island of New Zealand. Our objective was to obtain a time-series of abrasion and fragmentation processes, in order to replicate fluvial processes and understand the relative erosion resistance of bedrock lithologies. Lithologies included variably metamorphosed greywacke-sandstone, semischist and schist, reflecting the range of rocks in the hangingwall of the Alpine Fault exhumed by differential uplift, and granite and gneiss in the footwall. Rocks were cut into 3cm cubes, weighed individually and washed in millipore water, then photographed. Experimental sample sets, matching the proportions of rock lithologies observed in the riverbeds, were placed in rectangular 20 litre containers together with 2 litres of fresh rainwater. Containers were rotated in a concrete mixer at 26 revolutions per minute for 2, 4, 12 and 49 hours, with a duplicate geochemical blank sample left for 50 hrs without tumbing. Each set of tumbled material was then extracted, photographed, classified, sorted into size fractions, weighed and saved for further analysis. Samples of sand, silt, rock-contaminated water and suspended sediment were also collected for filtering of suspended sediment, petrography and chemical analysis. Tumbling produced dramatic differences in the behaviour of different rocks, particularly in the relative strength of sandstone, semischist and schist lithologies. Cubes of schist fragmented into tabular pieces and rounded quickly, within two hours, compared with semischist and sandstone which retained cuboid forms and suffered only minor rounding of edges after 49 hours tumbling. Fine-grained material produced as a by-product was dominated by a silt/clay fraction that increased in quantity with tumbling time. Relatively little sand-sized sediment was generated, and its quantity decreased with tumbling time as it was also transformed into finer material. The experiment highlights

  4. Can Wet Rocky Granular Flows Become Debris Flows Due to Fine Sediment Production by Abrasion?

    NASA Astrophysics Data System (ADS)

    Arabnia, O.; Sklar, L. S.; Bianchi, G.; Mclaughlin, M. K.

    2015-12-01

    Debris flows are rapid mass movements in which elevated pore pressures are sustained by a viscous fluid matrix with high concentrations of fine sediments. Debris flows may form from coarse-grained wet granular flows as fine sediments are entrained from hillslope and channel material. Here we investigate whether abrasion of the rocks within a granular flow can produce sufficient fine sediments to create debris flows. To test this hypothesis experimentally, we used a set of 4 rotating drums ranging from 0.2 to 4.0 m diameter. Each drum has vanes along the boundary ensure shearing within the flow. Shear rate was varied by changing drum rotational velocity to maintain a constant Froude Number across drums. Initial runs used angular clasts of granodiorite with a tensile strength of 7.6 MPa, with well-sorted coarse particle size distributions linearly scaled with drum radius. The fluid was initially clear water, which rapidly acquired fine-grained wear products. After each 250 m tangential distance, we measured the particle size distributions, and then returned all water and sediment to the drums for subsequent runs. We calculate particle wear rates using statistics of size and mass distributions, and by fitting the Sternberg equation to the rate of mass loss from the size fraction > 2mm. Abundant fine sediments were produced in the experiments, but very little change in the median grain size was detected. This appears to be due to clast rounding, as evidenced by a decrease in the number of stable equilibrium resting points. We find that the growth in the fine sediment concentration in the fluid scales with unit drum power. This relationship can be used to estimate fine sediment production rates in the field. We explore this approach at Inyo Creek, a steep catchment in the Sierra Nevada, California. There, a significant debris flow occurred in July 2013, which originated as a coarse-grained wet granular flow. We use surveys to estimate flow depth and velocity where super

  5. Conventional and anti-erosion fluoride toothpastes: effect on enamel erosion and erosion-abrasion.

    PubMed

    Ganss, C; Lussi, A; Grunau, O; Klimek, J; Schlueter, N

    2011-01-01

    New toothpastes with anti-erosion claims are marketed, but little is known about their effectiveness. This study investigates these products in comparison with various conventional NaF toothpastes and tin-containing products with respect to their erosion protection/abrasion prevention properties. In experiment 1, samples were demineralised (10 days, 6 × 2 min/day; citric acid, pH 2.4), exposed to toothpaste slurries (2 × 2 min/day) and intermittently stored in a mineral salt solution. In experiment 2, samples were additionally brushed for 15 s during the slurry immersion time. Study products were 8 conventional NaF toothpastes (1,400-1,490 ppm F), 4 formulations with anti-erosion claims (2 F toothpastes: NaF + KNO(3) and NaF + hydroxyapatite; and 2 F-free toothpastes: zinc-carbonate-hydroxyapatite, and chitosan) and 2 Sn-containing products (toothpaste: 3,436 ppm Sn, 1,450 ppm F as SnF(2)/NaF; gel: 970 ppm F, 3,030 ppm Sn as SnF(2)). A mouth rinse (500 ppm F as AmF/NaF, 800 ppm Sn as SnCl(2)) was the positive control. Tissue loss was quantified profilometrically. In experiment 1, most NaF toothpastes and 1 F-free formulation reduced tissue loss significantly (between 19 and 42%); the Sn-containing formulations were the most effective (toothpaste and gel 55 and 78% reduction, respectively). In experiment 2, only 4 NaF toothpastes revealed significant effects compared to the F-free control (reduction between 29 and 37%); the F-free special preparations and the Sn toothpaste had no significant effect. The Sn gel (reduction 75%) revealed the best result. Conventional NaF toothpastes reduced the erosive tissue loss, but had limited efficacy regarding the prevention of brushing abrasion. The special formulations were not superior, or were even less effective. PMID:22156703

  6. Lab-scale ash production by abrasion and collision experiments of porous volcanic samples

    NASA Astrophysics Data System (ADS)

    Mueller, Sebastian B.; Lane, Steve J.; Kueppers, Ulrich

    2014-05-01

    In the course of explosive eruptions, magma is fragmented into smaller pieces by a plethora of processes before deposition. Volcanic ash, all fragments smaller than 2 mm, may have imminent and near-volcano effects but may also cause various problems over long duration and/or far away from the source. In an attempt to quantify the efficiency of ash generation, various experimental setups were applied on pumice and scoria samples. We used samples collected on Tenerife (Canary Islands, Spain), Sicily and Lipari Islands (both Italy) for experiments that generated shear or normal stress fields or combinations of these within the rock samples. Experiments were designed to overcome low yield strengths of samples and produce ash, with this study having particular interest in the < 355 µm fraction. By abrasion and collision experiments, the processes that are likely to happen within volcanic conduits, plumes or pyroclastic density currents (PDCs) were simulated. An understanding of these secondary fragmentation processes is crucial as they are capable of producing very fine ash, with size ranges from a few microns to few millimetres. These particles are known to remain in the atmosphere for several days and travel large distances (~ 100s of km). This poses threats to the aviation industry and human health. From the experiments we establish that abrasion setups produced the finest material and up to 50% of the generated ash was smaller than 10 µm. In comparison, the drop experiments that applied mainly normal stress fields produced coarser grain sizes. Results were compared to grain size distributions described in literature for natural fall and PDC deposits and good correlation was found. Energies involved in drop experiments were calculated and showed an exponential correlation with ash production rate. Projecting these results into the actual volcanic environment, highest amounts of ash are produced in most energetic and turbulent areas, which are proximal to the vent

  7. A comparison of the tribological behaviour of Y-TZP in tea and coffee under micro-abrasion conditions

    NASA Astrophysics Data System (ADS)

    Sharifi, S.; Stack, M. M.

    2013-10-01

    The micro-abrasion of Y-TZP, a candidate dental restorative material, was investigated in a range of caffeine-containing solutions which included tea and coffee. Additions of sugar and milk were used to test the effects of viscosity and pH on the wear rate. The results indicated a significant increase in wear rate in the various solutions, with some correlation between wear rate and increases in viscosity and this was linked to enhance particle entrainment in the more viscous solutions. The generally lower wear rate in tea compared to coffee was associated with a longer ageing period in this solution before uniform wear was observed. Micro-abrasion maps were used to characterize the differences in performance for the material in the environments studied.

  8. Microstructures and Abrasive Properties of the Oxide Coatings on Al6061 Alloys Prepared by Plasma Electrolytic Oxidation in Different Electrolytes

    NASA Astrophysics Data System (ADS)

    Wang, Kai; Byun, Sangsik; Lee, Chan Gyu; Koo, Bon Heun; Wang, Yi Qi; Song, Jung Il

    Al2O3 coatings were prepared on T6-tempered Al6061 alloys substrate under a hybrid voltage (AC 200 V-60 Hz and DC 260 V value) by plasma electrolytic oxidation (PEO) in 30 min. The effects of different electrolytes on the abrasive behaviors of the coatings were studied by conducting dry ball-on-disk wear tests. X-ray diffraction (XRD) and scanning electron microscopy (SEM) were used to investigate the coating microstructure. XRD analysis results show that the coatings mainly consist of α- and γ-Al2O3, and some mullite and AlPO4 phase in Na2SiO3 and Na3PO4 containing electrolytes, respectively. The wear test results show that the coatings which were PEO-treated in Na3PO4 containing electrolyte presented the most excellent abrasive resistance property.

  9. The Relationship between the Microstructure and Abrasive Resistance of a Hardfacing Alloy in the Fe-Cr-C-Nb-V System

    NASA Astrophysics Data System (ADS)

    Correa, E. O.; Alcântara, N. G.; Tecco, D. G.; Kumar, R. V.

    2007-08-01

    The relationship between abrasive wear resistance and microstructure of a hardfacing alloy based on the Fe-Cr-C-Nb-V system was investigated. This material was developed for cladding, by an open arc welding technique, of components subjected to severe abrasive wear. The work undertaken included the solidification study, microstructural characterization, and abrasion testing. Microstructural examinations of hardfaced layer showed that the microstructure of the alloy consisted of a large volume fraction of primary niobium carbides randomly dispersed in a metastable austenitic matrix containing fine M3C carbides and “islands” of eutectic mixture of γ/M7C3. Energy dispersive X-ray analysis results showed that V preferentially partitioned into the NbC and M3C phases. In comparison with the conventional high carbon/high chromium hardfacing alloy with higher hardness, a Fe-Cr-C-Nb-V hardfacing alloy exhibited improved abrasive wear resistance and a microstructure with higher toughness.

  10. Effect of Toothpastes with Different Abrasives on Eroded Human Enamel: An in situ/ex vivo Study.

    PubMed

    Ferreira, Meire Coelho; Ramos-Jorge, Maria Letícia; Delbem, Alberto Carlos Botazzo; Vieirac, Ricardo de Sousa

    2013-01-01

    The aim of the present study was to investigate the abrasive effect of CaCO3 and SiO2-based fluoride-free experimental toothpastes on eroded human permanent dental enamel and evaluate the effectiveness of waiting periods between acid exposure and tooth brushing. Twelve volunteers wore palatal appliances containing human enamel blocks for two periods of five days each. The appliances were immersed in a soft drink for five minutes four times a day (9:00 am, 11:00 am, 2:00 pm and 4:00 pm). On two occasions, two blocks were not submitted to additional treatment; two blocks were brushed (30 s) either with a CaCO3 or SiO2 toothpaste immediately after erosion and two blocks were brushed 1 h after erosion. Thus, the sample was divided into six groups: erosion alone (CaCO3 and SiO2 control); brushing with fluoride-free toothpaste (CaCO3 immediate and 1 h after erosion; SiO2 immediate and 1 h after erosion). Significant differences in wear depth were found between the enamel blocks in the CaCO3 immediate and 1 h after erosion groups and the blocks in the CaCO3 control group (p=0.001; p=0.022). No significant differences were found regarding the change in roughness and wear depth between blocks submitted to immediate abrasion and 1 h after erosion (CaCO3 and SiO2). The data revealed that surface roughness and wear depth is increased when erosion is combined with dental abrasion, regardless of the abrasive used. Waiting for 1 h to brush the eroded blocks offered no protective effect. PMID:24198851

  11. Abrasion-resistant solgel antireflective films with a high laser-induced damage threshold for inertial confinement fusion

    SciTech Connect

    Xu Yao; Zhang Lei; Wu Dong; Sun Yu Han; Huang Zuxing; Jiang Xiaodong; Wei Xiaofeng; Li Zhihong; Dong Baozhong; Wu Zhonghua

    2005-09-01

    To prepare abrasion-resistant antireflective (AR) films for inertial confinement fusion, four solgel routes have been investigated on polysiloxane-modified and polyvinylalcohol- (PVA-) modified SiO{sub 2} sols. As confirmed with a transmissive electron microscope, different fractal structure characteristics of the modified SiO{sub 2} particles are disclosed by small-angle x-ray scattering technology. And it is these special fractal characteristics that determine the performance of AR films on the level of internal microstructure. A {sup 29}Si magic angle spinning and nuclear magnetic resonance study has been successfully applied in explaining the fractal microstructure and its relation to the laser-induced damage threshold (LIDT) of AR films. The films modified by PVA120000 or acetic acid-catalyzed polysiloxane have higher LIDTs than those films modified by PVA16000 or hydrochloride acid-catalyzed polysiloxane. The films from PVA-modified SiO{sub 2} sols have a stronger abrasion resistance but lower antireflection than those films from polysiloxane-modified SiO{sub 2} sols. In addition, the films from polysiloxane-modified SiO{sub 2} sols can possess high transmittance and high LIDT if the polysiloxane synthesis condition is appropriately chosen, but the abrasion resistance is not as good as that from PVA modification. If strong abrasion resistance is necessary, a possible resolution may be to choose a more appropriate hydrophilic polymer than PVA. If not, polysiloxane-modified silica sol can also work when polysiloxane is synthesized under acetic acid catalysis.

  12. First-order control of surface roughness at three scales: boundary layer dynamics, tracer dispersion and pebble abrasion

    NASA Astrophysics Data System (ADS)

    Jerolmack, D. J.; Litwin, K. L.; Phillips, C. B.; Martin, R. L.

    2012-12-01

    In many situations it may be appropriate to treat surfaces as smooth and particles as spherical, however here we focus on scenarios in which the roughness of the surface exerts a first-order control on flow and transport dynamics. We describe three vignettes at three different scales: (1) roughness transitions and resulting sediment transport dynamics over ~10-km distance in a desert dune field; (2) reach-scale river bed roughness and its influence on dispersion of tracer particles in bed load; and (3) the control of particle surface roughness on the nature and rate of pebble abrasion. For (1), we show how the abrupt transition from a flat surface to a dune field may be treated as a step increase in the aerodynamic roughness parameter - so long as the spatial scale considered is significantly larger than that of an individual dune. This increase causes a spatial decline in the boundary stress downwind that may be understood using simple boundary layer theory, resulting in a factor of three decrease in the sand flux over a distance of kilometers. For (2), laboratory and field studies of tracer particles in bed load indicate that they undergo short flights separated by long rest periods having a power-law tail - even in steady flows. We hypothesize that for near-threshold transport - which predominates is coarse-grained rivers - particles become trapped in 'wells' produced by surface roughness, and their rest time is controlled by the time for the surface to scour down and release them. Laboratory observations support this hypothesis, while comparison to non-geophysical 'flows' indicates that these dynamics are generic to transport in disordered systems. Finally, for (3) we report laboratory experiments by our group and others showing how abrasion rate decreases with decreasing particle roughness. Geometric models quantitatively support the intuition that locations of high positive curvature on pebble surfaces are more susceptible to abrasion; as they are

  13. Effect of cuticular abrasion and recovery on water loss rates in queens of the desert harvester ant Messor pergandei.

    PubMed

    Johnson, Robert A; Kaiser, Alexander; Quinlan, Michael; Sharp, William

    2011-10-15

    Factors that affect water loss rates (WLRs) are poorly known for organisms in natural habitats. Seed-harvester ant queens provide an ideal system for examining such factors because WLRs for mated queens excavated from their incipient nests are twofold to threefold higher than those of alate queens. Indirect data suggest that this increase results from soil particles abrading the cuticle during nest excavation. This study provides direct support for the cuticle abrasion hypothesis by measuring total mass-specific WLRs, cuticular abrasion, cuticular transpiration, respiratory water loss and metabolic rate for queens of the ant Messor pergandei at three stages: unmated alate queens, newly mated dealate queens (undug foundresses) and mated queens excavated from their incipient nest (dug foundresses); in addition we examined these processes in artificially abraded alate queens. Alate queens had low WLRs and low levels of cuticle abrasion, whereas dug foundresses had high WLRs and high levels of cuticle abrasion. Total WLR and cuticular transpiration were lowest for alate queens, intermediate for undug foundresses and highest for dug foundresses. Respiratory water loss contributed ~10% of the total WLR and was lower for alate queens and undug foundresses than for dug foundresses. Metabolic rate did not vary across stages. Total WLR and cuticular transpiration of artificially abraded alate queens increased, whereas respiratory water loss and metabolic rate were unaffected. Overall, increased cuticular transpiration accounted for essentially all the increased total water loss in undug and dug foundresses and artificially abraded queens. Artificially abraded queens and dug foundresses showed partial recovery after 14 days. PMID:21957113

  14. Adhesion and wear behaviour of NCD coatings on Si3N4 by micro-abrasion tests.

    PubMed

    Silva, F G; Neto, M A; Fernandes, A J S; Costa, F M; Oliveira, F J; Silva, R F

    2009-06-01

    Nanocrystalline diamond (NCD) coatings offer an excellent alternative for tribological applications, preserving most of the intrinsic mechanical properties of polycrystalline CVD diamond and adding to it an extreme surface smoothness. Silicon nitride (Si3N4) ceramics are reported to guarantee high adhesion levels to CVD microcrystalline diamond coatings, but the NCD adhesion to Si3N4 is not yet well established. Micro-abrasion tests are appropriate for evaluating the abrasive wear resistance of a given surface, but they also provide information on thin film/substrate interfacial resistance, i.e., film adhesion. In this study, a comparison is made between the behaviour of NCD films deposited by hot-filament chemical vapour deposition (HFCVD) and microwave plasma assisted chemical vapour deposition (MPCVD) techniques. Silicon nitride (Si3N4) ceramic discs were selected as substrates. The NCD depositions by HFCVD and MPCVD were carried out using H2-CH4 and H2-CH4-N2 gas mixtures, respectively. An adequate set of growth parameters was chosen for each CVD technique, resulting in NCD films having a final thickness of 5 microm. A micro-abrasion tribometer was used, with 3 microm diamond grit as the abrasive slurry element. Experiments were carried out at a constant rotational speed (80 r.p.m.) and by varying the applied load in the range of 0.25-0.75 N. The wear rate for MPCVD NCD (3.7 +/- 0.8 x 10(-5) mm3 N(-1) m(-1)) is compatible with those reported for microcrystalline CVD diamond. The HFCVD films displayed poorer adhesion to the Si3N4 ceramic substrates than the MPCVD ones. However, the HFCVD films show better wear resistance as a result of their higher crystallinity according to the UV Raman data, despite evidencing premature adhesion failure. PMID:19504945

  15. Application of Abrasive-Waterjets for Machining Fatigue-Critical Aircraft Aluminum Parts

    SciTech Connect

    Liu, H T; Hovanski, Yuri; Dahl, Michael E; Zeng, J

    2010-08-19

    Current specifications require AWJ-cut aluminum parts for fatigue critical aerospace structures to go through subsequent processing due to concerns of degradation in fatigue performance. The requirement of secondary process for AWJ-machined parts greatly negates the cost effectiveness of waterjet technology. Some cost savings are envisioned if it can be shown that AWJ net cut parts have comparable durability properties as those conventionally machined. To revisit and upgrade the specifications for AWJ machining of aircraft aluminum, “Dog-bone” specimens, with and without secondary processes, were prepared for independent fatigue tests at Boeing and Pacific Northwest National Laboratory (PNNL). Test results show that the fatigue life is proportional to quality levels of machined edges or inversely proportional to the surface roughness Ra . Even at highest quality level, the average fatigue life of AWJ-machined parts is about 30% shorter than those of conventionally machined counterparts. Between two secondary processes, dry-grit blasting with aluminum oxide abrasives until the striation is removed visually yields excellent result. It actually prolongs the fatigue life of parts at least three times higher than that achievable with conventional machining. Dry-grit blasting is relatively simple and inexpensive to administrate and, equally important, alleviates the concerns of garnet embedment.

  16. Self-healing Characteristics of Collagen Coatings with Respect to Surface Abrasion

    PubMed Central

    Kim, Chang-Lae; Kim, Dae-Eun

    2016-01-01

    A coating based on collagen with self-healing properties was developed for applications in mechanical components that are prone to abrasion due to contact with a counter surface. The inherent swelling behavior of collagen in water was exploited as the fundamental mechanism behind self-healing of a wear scar formed on the surface. The effects of freeze-drying process and water treatment of the collagen coatings on their mechanical and self-healing properties were analyzed. Water was also used as the medium to trigger the self-healing effect of the collagen coatings after the wear test. It was found that collagen coatings without freeze-drying did not demonstrate any self-healing effect whereas the coatings treated by freeze-drying process showed remarkable self-healing effect. Overall, collagen coatings that were freeze-dried and water treated showed the best friction and self-healing properties. Repeated self-healing ability of these coatings with respect to wear scar was also demonstrated. It was also confirmed that the self-healing property of the collagen coating was effective over a relatively wide range of temperature. PMID:27010967

  17. Effect of Intercritical Heat Treatment on the Abrasive Wear Behaviour of Plain Carbon Dual Phase Steel

    NASA Astrophysics Data System (ADS)

    Manoj, M. K.; Pancholi, V.; Nath, S. K.

    Dual phase (DP) steels have been prepared from low carbon steel (0.14% C) at intercritical temperature 740°C and time is varied from 1 minute to 30 minutes followed by water quenching. These steels have been characterized by optical microscopy, FE-SEM, hardness measurements, tensile properties and electron backscattered diffraction (EBSD) studies. Tensile properties of a typical dual phase steel are found to be 805 MPa ultimate tensile strength with 18% total elongation. Martensite volume fraction of D P steel (determined by EBSD technique) prepared at 740°C for 6 minutes is found to be 10.2% and the grain size of ferrite and martensite found to be 14.39 micron and 1.05 microns respectively. Abrasive wear resistance of dual phase steels has been determined by pin on drum wear testing machine. DP steels have been found to be 25% more wear resistant than that of normalized steel. Short intercritical heating time followed by water quenching gives higher wear resistance by virtue of smaller and well dispersed martensite island in the matrix of ferrite.

  18. Thermocycling--the effects upon the compressive strength and abrasion resistance of three composite resins.

    PubMed

    Chadwick, R G

    1994-09-01

    The purpose of this investigation was to examine the effects of thermocycling upon the compressive strength and abrasive wear resistance of three commercial composites Fulfil, P-50 and Herculite-XR. Specimens of each material were divided into five treatment groups comprising a control, and four different cycling and storage regimes. Tests for compressive strength and wear resistance were carried out. Prior to testing all specimens were stored in distilled water for 1 week. Three groups were stored at a temperature of 37 degrees C and the remaining two at 60 degrees C. Thereafter all groups that were thermocycled were subjected to 750 cycles of a thermocycling regime consisting of the cycle ACAB where A and B represent the fixed temperatures of 37 degrees C and 5 degrees C, and C, depending upon the treatment group, either 50 degrees C or 60 degrees C. One-way analyses of variance upon the compressive strength and wear factor data following the treatments highlighted significant differences in the mean compressive strength for all materials (Fulfil (P < 0.05), P-50 and Herculite-XR (P < 0.01)) and in the wear factor values for only Fulfil and P-50 (P < 0.001). Surprisingly, thermocycling P-50 with an upper temperature limit of 50 degrees C had catastrophic consequences upon the measured properties. It is concluded that some of the observed behaviour may have potentially detrimental consequences upon the long-term clinical durability of the materials tested. PMID:7996337

  19. The abrasive wear of plasma sprayed nanoscale tungsten carbide-cobalt (WC-Co)

    NASA Astrophysics Data System (ADS)

    Tewksbury, Graham Alfred

    Thermal spray coatings composed of a variety of carbide sizes and cobalt contents were sprayed with a high energy plasma spray system. The size of the carbides used fell into three rough groupings, micrometer scale carbides (1--2 mum), submicrometer (700--300 nm), and nanoscale (≈100 nm). The feedstock powder was evaluated in terms of their size distribution, external morphology, internal morphology, and initial carbide size. Two different fixtures were used in spraying to evaluate the effect of cooling rate on the wear resistance of the coatings. The microstructures of the sprayed coatings were examined using optical metallography, SEM, FESEM, TEM, XRD and chemical analysis. The coatings were evaluated in low stress abrasive wear by the ASTM G-65 Dry Sand Rubber Wheel test. Furthermore, the porosity and hardness of the coatings were evaluated. The cobalt content was found to be the predominant influence on the wear rate of the coatings. The decrease in the carbide size was not found to effect the wear rate of the coatings. Coatings sprayed on the 'hot' fixture were found to have slightly improved wear resistance as compared to coatings sprayed on the 'cold' fixture. The wear rates of the coatings were found to be a function of the WC/Co volume ratio.

  20. Scalable superhydrophobic coatings based on fluorinated diatomaceous earth: Abrasion resistance versus particle geometry

    NASA Astrophysics Data System (ADS)

    Polizos, Georgios; Winter, Kyle; Lance, Michael J.; Meyer, Harry M.; Armstrong, Beth L.; Schaeffer, Daniel A.; Simpson, John T.; Hunter, Scott R.; Datskos, Panos G.

    2014-02-01

    Bio-inspired superhydrophobic surfaces were fabricated based on fossilized silica fresh water diatomaceous earth (DE) particles. These nanostructured silicified diatom frustules of cylindrical and circular structures were fluorinated to impart them with superhydrophobic properties. Substrates coated with superhydrophobic DE structures of varying size and shape were found to have water contact angles of approximately 170° and sliding angles of approximately 3°. The substrates were subjected to significant abrasion forces using a standard surface abrader. The ability to retain their superhydrophobic properties was observed to depend on the geometry and average size of the DE particles. The wettability of the abraded coatings was determined by their surface topology, and a transition from a non-wetted state to a partially wetted state was observed to occur and was dependent on the surface roughness. The proposed coatings are scalable, cost-effective, and can be applied on a variety of surfaces on critical infrastructures requiring protection from water saturation, ice formation and water based corrosion.

  1. AIBA as Free Radical Initiator for Abrasive-Free Polishing of Hard Disk Substrate

    NASA Astrophysics Data System (ADS)

    Lei, Hong; Ren, Xiaoyan

    2015-04-01

    In order to optimize the existing slurry for abrasive-free polishing (AFP) of a hard disk substrate, a water-soluble free radical initiator, 2,2'-azobis (2-methylpropionamidine) dihydrochloride (AIBA) was introduced into H2O2-based slurry in the present work. Polishing experiment results with AIBA in the H2O2 slurry indicate that the material removal rate (MRR) increases and the polished surface has a lower surface roughness. The mechanism of AIBA in AFP was investigated using electron spin-resonance spectroscopy and UV-Visible analysis, which showed that the concentration of hydroxyl radical (a stronger oxidizer than H2O2) in the slurry was enhanced in the present of AIBA. The structure of the film formed on the substrate surface was investigated by scanning electron microscopy, auger electron spectroscopy and electrochemical impedance spectroscopy technology, showing that a looser and porous oxide film was found on the hard disk substrate surface when treated with the H2O2-AIBA slurry. Furthermore, potentiodynamic polarization tests show that the H2O2-AIBA slurry has a higher corrosion current density, implying that a fast dissolution reaction can occur on the substrate surface. Therefore, we can conclude that the stronger oxidation ability, loose oxide film on the substrate surface, and the higher corrosion-wear rate of the H2O2-AIBA slurry lead to the higher MRR.

  2. Contributions of Nanodiamond Abrasives and Deionized Water in Magnetorheological Finishing of Aluminum Oxynitride

    SciTech Connect

    Miao, C.; Lambropoulos, J.C.; Romanofsky, H.; Shafrir, S.N.; Jacobs, S.D.

    2010-01-13

    Magnetorheological finishing (MRF) is a sub-aperture deterministic process for fabricating high-precision optics by removing material and smoothing the surface. The goal of this work is to study the relative contribution of nanodiamonds and water in material removal for MRF of aluminum oxynitride ceramic (ALON) based upon a nonaqueous magnetorheological (MR) fluid. Removal was enhanced by a high carbonyl iron concentration and the addition of nanodiamond abrasives. Small amounts of deionized (DI) water were introduced into the nonaqueous MR fluid to further influence the material removal process. Material removal data were collected with a spot-taking machine. Drag force (Fd) and normal force (Fn) before and after adding nanodiamonds or DI water were measured with a dual load cell. Both drag force and normal force were insensitive to the addition of nanodiamonds but increased with DI water content in the nonaqueous MR fluid. Shear stress (i.e., drag force divided by spot area) was calculated, and examined as a function of nanodiamond concentration and DI water concentration. Volumetric removal rate increased with increasing shear stress, which was shown to be a result of increasing viscosity after adding nanodiamonds and DI water. This work demonstrates that removal rate for a hard ceramic with MRF can be enhanced by adding DI water into a nonaqueous MR fluid.

  3. Profilometric analysis of two composite resins’ surface repolished after tooth brush abrasion with three polishing systems

    PubMed Central

    Uppal, Mudit; Ganesh, Arathi; Balagopal, Suresh; Kaur, Gurleen

    2013-01-01

    Aim: To evaluate the effect of three polishing protocols that could be implemented at recall on the surface roughness of two direct esthetic restorative materials. Materials and Methods: Specimens (n = 40) measuring 8 mm (length) × 5 mm (width) × 4 mm (height) were fabricated in an acrylic mold using two light-cured resin-based materials (microfilled composite and microhybrid composite). After photopolymerization, all specimens were finished and polished with one of three polishing protocols (Enhance, One Gloss, and Sof-Lex polishing systems). The average surface roughness of each treated specimen was determined using 3D optical profilometer. Next all specimens were brushed 60,000 times with nylon bristles at 7200 rpm using crosshead brushing device with equal parts of toothpaste and water used as abrasive medium. The surface roughness of each specimen was measured after brushing followed by repolishing with one of three polishing protocols, and then, the final surface roughness values were determined. Results: The data were analyzed using one-way and two-factor analysis of variance (ANOVA) and Tukey's honestly significant difference (HSD). Significant difference (P < 0.05) in surface roughness was observed. Simulated brushing following initial polishing procedure significantly roughened the surface of restorative material (P < 0.05). Conclusion: Polishing protocols can be used to restore a smooth surface on esthetic restorative materials following simulated tooth brushing. PMID:23956531

  4. 3D imaging of mammalian cells with ion-abrasion scanning electron microscopy.

    PubMed

    Heymann, Jurgen A W; Shi, Dan; Kim, Sang; Bliss, Donald; Milne, Jacqueline L S; Subramaniam, Sriram

    2009-04-01

    Understanding the hierarchical organization of molecules and organelles within the interior of large eukaryotic cells is a challenge of fundamental interest in cell biology. We are using ion-abrasion scanning electron microscopy (IA-SEM) to visualize this hierarchical organization in an approach that combines focused ion-beam milling with scanning electron microscopy. Here, we extend our previous studies on imaging yeast cells to image subcellular architecture in human melanoma cells and melanocytes at resolutions as high as approximately 6 and approximately 20 nm in the directions parallel and perpendicular, respectively, to the direction of ion-beam milling. The 3D images demonstrate the striking spatial relationships between specific organelles such as mitochondria and membranes of the endoplasmic reticulum, and the distribution of unique cellular components such as melanosomes. We also show that 10nm-sized gold particles and quantum dot particles with 7 nm-sized cores can be detected in single cross-sectional images. IA-SEM is thus a useful tool for imaging large mammalian cells in their entirety at resolutions in the nanometer range. PMID:19116171

  5. Deoxynivalenol removal from barley intended as swine feed through the use of an abrasive pearling procedure.

    PubMed

    House, James D; Nyachoti, Charles Martin; Abramson, David

    2003-08-13

    Samples of naturally contaminated hulled barley, with varying deoxynivalenol concentrations, were subjected to an abrasive type dehulling procedure. The remaining grain fractions were analyzed for weight remaining (%), deoxynivalenol (ppm), crude protein (%CP), neutral detergent fiber (%NDF), ash (%ASH), gross energy (GE; kcal/kg), and calculated digestible energy values (DE; kcal/kg). Following the initial 15 s of pearling, 85% of the grain mass remained. Additional pearling resulted in a linear decline of grain mass. Following 15 s of pearling, the grain contained 34% of the initial deoxynivalenol content, irrespective of the initial level of contamination. Further pearling resulted in continued significant (p < 0.05) reductions in the percent of deoxynivalenol remaining to a level of 7.9% after 120 s but with significant losses in grain mass. Pearling can serve as an effective means of reducing the deoxynivalenol content of barley, with improvements in nutrient levels. However, the need to reduce the deoxynivalenol content of contaminated barley to less than 1 ppm for swine will necessitate the removal of a significant amount of the grain mass for heavily contaminated samples. PMID:12903987

  6. Physical abrasion of mafic minerals and basalt grains: Application to martian aeolian deposits

    NASA Astrophysics Data System (ADS)

    Cornwall, C.; Bandfield, J. L.; Titus, T. N.; Schreiber, B. C.; Montgomery, D. R.

    2015-08-01

    Sediment maturity, or the mineralogical and physical characterization of sedimentary deposits, has been used to identify sediment sources, transport medium and distance, weathering processes, and paleoenvironments on Earth. Mature terrestrial sands are dominated by quartz, which is abundant in source lithologies on Earth and is physically and chemically stable under a wide range of conditions. Immature sands, such as those rich in feldspars or mafic minerals, are composed of grains that are easily physically weathered and highly susceptible to chemical weathering. On Mars, which is predominately mafic in composition, terrestrial standards of sediment maturity are not applicable. In addition, the martian climate today is cold and dry and sediments are likely to be heavily influenced by physical weathering rather than chemical weathering. Due to these large differences in weathering processes and composition, martian sediments require an alternate maturity index. This paper reports the results of abrasion tests conducted on a variety of mafic materials and results suggest that mature martian sediments may be composed of well sorted, well rounded, spherical polycrystalline materials, such as basalt. Volcanic glass is also likely to persist in a mechanical weathering environment while more fragile and chemically altered products are likely to be winnowed away. A modified sediment maturity index is proposed that can be used in future studies to constrain sediment source, paleoclimate, mechanisms for sediment production, and surface evolution. This maturity index may also provide insights into erosional and sediment transport systems and preservation processes of layered deposits.

  7. Self-healing Characteristics of Collagen Coatings with Respect to Surface Abrasion

    NASA Astrophysics Data System (ADS)

    Kim, Chang-Lae; Kim, Dae-Eun

    2016-03-01

    A coating based on collagen with self-healing properties was developed for applications in mechanical components that are prone to abrasion due to contact with a counter surface. The inherent swelling behavior of collagen in water was exploited as the fundamental mechanism behind self-healing of a wear scar formed on the surface. The effects of freeze-drying process and water treatment of the collagen coatings on their mechanical and self-healing properties were analyzed. Water was also used as the medium to trigger the self-healing effect of the collagen coatings after the wear test. It was found that collagen coatings without freeze-drying did not demonstrate any self-healing effect whereas the coatings treated by freeze-drying process showed remarkable self-healing effect. Overall, collagen coatings that were freeze-dried and water treated showed the best friction and self-healing properties. Repeated self-healing ability of these coatings with respect to wear scar was also demonstrated. It was also confirmed that the self-healing property of the collagen coating was effective over a relatively wide range of temperature.

  8. Abrasive jet micro-machining of planar areas and transitional slopes

    NASA Astrophysics Data System (ADS)

    Ghobeity, A.; Spelt, J. K.; Papini, M.

    2008-05-01

    Analytical and computer models are presented to predict the evolution of planar areas and transitional slopes micromachined in glass using abrasive jet micro-machining. The energy distributions across a rectangular and a round nozzle were found to be non-uniform and therefore unsuitable to machine flat surfaces in a single pass. Consequently, a simple model was developed to guide the computer-controlled machining of an approximately flat surface, by the use of multiple passes arranged in such a manner that the summation of their energy distributions gave a uniform energy flux to the surface. Planar areas were machined in glass, and there was good agreement between the model predictions and experimentally measured surface profiles. Masked planar areas were also machined, and it was found that particle scattering by the mask edge (Ghobeity, Krajac, Burzynski, Papini and Spelt 2008 Wear 264 185-98) caused the sidewalls of the planar area to be very shallow, on the order of only a few degrees. A novel method is presented to increase the slope at the edges of such masked planar areas. Although the methods are demonstrated through the micro-machining of flat, planar areas, they are equally applicable to the production of inclined planar areas and arbitrarily curved surfaces.

  9. Monitoring and Testing the Parts Cleaning Stations, Abrasive Blasting Cabinets, and Paint Booths

    NASA Technical Reports Server (NTRS)

    Jordan, Tracee M.

    2004-01-01

    I have the opportunity to work in the Environmental Management Office (EMO) this summer. One of the EMO's tasks is to make sure the Environmental Management System is implemented to the entire Glenn Research Center (GRC). The Environmental Management System (EMS) is a policy or plan that is oriented toward minimizing an organization's impact to the environment. Our EMS includes the reduction of solid waste regeneration and the reduction of hazardous material use, waste, and pollution. With the Waste Management Team's (WMT) help, the EMS can be implemented throughout the NASA Glenn Research Center. The WMT is responsible for the disposal and managing of waste throughout the GRC. They are also responsible for the management of all chemical waste in the facility. My responsibility is to support the waste management team by performing an inventory on parts cleaning stations, abrasive cabinets, and paint booths through out the entire facility. These booths/stations are used throughout the center and they need to be monitored and tested for hazardous waste and material. My job is to visit each of these booths/stations, take samples of the waste, and analyze the samples.

  10. Optically transparent superhydrophobic surfaces with enhanced mechanical abrasion resistance enabled by mesh structure.

    PubMed

    Yokoi, Naoyuki; Manabe, Kengo; Tenjimbayashi, Mizuki; Shiratori, Seimei

    2015-03-01

    Inspired by naturally occurring superhydrophobic surfaces such as "lotus leaves", a number of approaches have been attempted to create specific surfaces having nano/microscale rough structures and a low surface free energy. Most importantly, much attention has been paid in recent years to the improvement of the durability of highly transparent superhydrophobic surfaces. In this report, superhydrophobic surfaces are fabricated using three steps. First, chemical and morphological changes are generated in the polyester mesh by alkaline treatment of NaOH. Second, alkaline treatment causes hydrophobic molecules of 1H,1H,2H,2H-perfluorodecyltrichlorosilane to react with the hydroxyl groups on the fiber surfaces forming covalent bonds by using the chemical vapor deposition method. Third, hydrophobicity is enhanced by treating the mesh with SiO2 nanoparticles modified with 1H,1H,2H,2H-perfluorooctyltriethoxysilane using a spray method. The transmittance of the fabricated superhydrophobic mesh is approximately 80% in the spectral range of 400-1000 nm. The water contact angle and the water sliding angle remain greater than 150° and lower than 25°, respectively, and the transmittance remains approximately 79% after 100 cycles of abrasion under approximately 10 kPa of pressure. The mesh surface exhibits a good resistance to acidic and basic solutions over a wide range of pH values (pH 2-14), and the surface can also be used as an oil/water separation material because of its mesh structure. PMID:25625787

  11. Rounding of Clasts by Abrasion and Comminution in Pyroclastic Density Currents

    NASA Astrophysics Data System (ADS)

    Patel, A.; Manga, M.; Dufek, J.

    2009-12-01

    Abrasion and comminution of pumice clasts during the propagation of pyroclastic density currents has long been recognized as a potential source for the enhanced production of volcanic ash. The amount of ash produced in-situ can potentially affect runout distance, deposit sorting, the volume of ash introduced in the upper atmosphere, and internal pore pressure. Such ash production should be reflected in the roundness of clasts. We performed experimental measurements to determine the relationship between particle roundness (measured in two-dimensions by how close each particle’s area to perimeter squared ratio is to a circle’s) and mass loss caused by particle-particle interactions. We use airfall pumice from Medicine Lake, and clasts from flow deposits at Taupo and Mount St Helens. We find that average sample roundness reaches a maximum value once particles lose between 10 and 70% of their mass. The most texturally homogeneous clasts (Taupo) become the most round. We compared our experimental measurements with the roundness of clasts in the May 18, 1980 pyroclastic flow units at Mount St Helens, deposited 4.5-8 km from the vent. The roundness measurements of these clasts are close to the experimentally determined maximum values, suggesting that a significant amount of ash may have been produced in-situ within the flow. Numerical multiphase flow simulations for conditions similar to this eruption (Dufek and Manga, JGR 2008) are consistent with this conclusion.

  12. Experimental, numerical and analytical studies of abrasive wear: correlation between wear mechanisms and friction coefficient

    NASA Astrophysics Data System (ADS)

    Mezlini, Salah; Zidi, M.; Arfa, H.; Ben Tkaya, Mohamed; Kapsa, Philippe

    2005-11-01

    The transport of granular material often generates severe damage. Understanding the correlation between the friction coefficient, particle geometry and wear mechanisms is of primary importance for materials undergoing abrasive wear. The aim of this study is to investigate the effect of particle geometry on wear mechanisms and the friction coefficient. Numerical and analytical simulations and experimental results have been compared. The process to be studied is the scratch made by a rigid cone with different attack angles on a 5xxx aluminium alloy (Al-Mg) flat surface. A scratch test was used and the wear mechanisms were observed for different attack angles. A numerical study with a finite element code was made in order to understand the effect of attack angle on the friction coefficient. The contact surface and the friction coefficient were also studied, and the results compared to the Bowden and Tabor model. The superposition of the numerical, analytical and experimental results showed a better correlation between the wear mechanisms and the friction coefficient. It also showed the importance of the model hypothesis used to simulate the scratch phenomenon. To cite this article: S. Mezlini et al., C. R. Mecanique 333 (2005).

  13. Abrasive wear by diesel engine coal-fuel and related particles

    SciTech Connect

    Ives, L.K.

    1994-09-01

    The purpose of the work summarized in this report was to obtain a basic understanding of the factors which are responsible for wear of the piston ring and cylinder wall surfaces in diesel engines utilizing coal-fuel. The approach included analytical studies using scanning electron microscopy and energy dispersive x-ray analyses to characterize coal-fuel and various combustion particles, and two different wear tests. The wear tests were a modified pin-on-disk test and a block-on-ring test capable of either unidirectional or reciprocating-rotational sliding. The wear tests in general were conducted with mixtures of the particles and lubricating oil. The particles studied included coal-fuel, particles resulting from the combustion of coal fuel, mineral matter extracted during the processing of coal, and several other common abrasive particle types among which quartz was the most extensively examined. The variables studied included those associated with the particles, such as particle type, size, and hardness; variables related to contact conditions and the surrounding environment; and variables related to the type and properties of the test specimen materials.

  14. Characterization of nanoparticles from abrasive waterjet machining and electrical discharge machining processes.

    PubMed

    Ling, Tsz Yan; Pui, David Y H

    2013-11-19

    Abrasive Waterjet Machining (AWM) and Electrical Discharge Machining (EDM) processes are found to produce nanoparticles during operation. Impacts of engineered nanoparticles released to the environment and biological system have caused much concern. Similarly, the nanoparticles unintentionally produced by the AWM and EDM can lead to comparable effects. By application of the Nanoparticle Tracking Analysis (NTA) technique, the size distribution and concentration of nanoparticles in the water used in AWM and EDM were measured. The particles generally have a peak size of 100-200 nm. The filtration systems of the AWM and EDM processes were found to remove 70% and 90% the nanoparticles present, respectively. However, the particle concentration of the filtered water from the AWM was still four times higher than that found in regular tap water. These nanoparticles are mostly agglomerated, according to the microscopy analysis. Using the electron dispersive spectroscopy (EDS) technique, the particles are confirmed to come from the debris of the materials cut with the equipment. Since AWM and EDM are widely used, the handling and disposal of used filters collected with nanoparticles, release of nanoparticles to the sewer, and potential use of higher performance filters for these processes will deserve further consideration. PMID:24144041

  15. Bound-abrasive grinding and polishing of surfaces of optical materials

    NASA Astrophysics Data System (ADS)

    Filatov, Yuriy D.; Filatov, Olexandr Yu.; Monteil, Guy; Heisel, Uwe; Storchak, Michael

    2011-06-01

    Problems of efficiency and quality improvement of diamond-abrasive finishing of optical materials by tools with bounded polishing powders, including diamond powder, are considered. The dependences of the particle number on the diffusion angle and coordinate of the contact have been derived in the studies of the dynamics of collision and diffusion of slime particles. The coordinate dependence of the flat surface roughness of glass K8 optics in fine diamond grinding has been described. Interaction and dispersion of deterioration particles in a contact zone of the tool and the processed sample in the course of polishing is described and the dispersion structure of deterioration particles of the tool on slime particles and on deterioration particles is explained oscillatory. It is shown a that differential dispersion section of deterioration particles on slime particles is not less than on deterioration particles and is maximum at corners of dispersion close to 0° and 180° on the central sites of a contact zone. Coordinate dependence of the full dispersion section of deterioration particles of the tool and dependence of microprofile height of the processed surface on circular zones radius are calculated.

  16. The Optimum Production Method for Quality Improvement of Recycled Aggregates Using Sulfuric Acid and the Abrasion Method.

    PubMed

    Kim, Haseog; Park, Sangki; Kim, Hayong

    2016-01-01

    There has been increased deconstruction and demolition of reinforced concrete structures due to the aging of the structures and redevelopment of urban areas resulting in the generation of massive amounts of construction. The production volume of waste concrete is projected to increase rapidly over 100 million tons by 2020. However, due to the high cement paste content, recycled aggregates have low density and high absorption ratio. They are mostly used for land reclamation purposes with low added value instead of multiple approaches. This study was performed to determine an effective method to remove cement paste from recycled aggregates by using the abrasion and substituting the process water with acidic water. The aim of this study is to analyze the quality of the recycled fine aggregates produced by a complex method and investigate the optimum manufacturing conditions for recycled fine aggregates based on the design of experiment. The experimental parameters considered were water ratio, coarse aggregate ratio, and abrasion time and, as a result of the experiment, data concerning the properties of recycled sand were obtained. It was found that high-quality recycled fine aggregates can be obtained with 8.57 min of abrasion-crusher time and a recycled coarse aggregate ratio of over 1.5. PMID:27483298

  17. Trajectories and energy transfer of saltating particles onto rock surfaces : application to abrasion and ventifact formation on Earth and Mars

    NASA Technical Reports Server (NTRS)

    Bridges, Nathan T.; Phoreman, James; White, Bruce R.; Greeley, Ronald; Eddlemon, Eric E.; Wilson, Gregory R.; Meyer, Christine J.

    2005-01-01

    The interaction between saltating sand grains and rock surfaces is assessed to gauge relative abrasion potential as a function of rock shape, wind speed, grain size, and planetary environment. Many kinetic energy height profiles for impacts exhibit a distinctive increase, or kink, a few centimeters above the surface, consistent with previous field, wind tunnel, and theoretical investigations. The height of the kink observed in natural and wind tunnel settings is greater than predictions by a factor of 2 or more, probably because of enhanced bouncing off hard ground surfaces. Rebounded grains increase the effective flux and relative kinetic energy for intermediate slope angles. Whether abrasion occurs, as opposed to simple grain impact with little or no mass lost from the rock, depends on whether the grain kinetic energy (EG) exceeds a critical value (EC), as well as the flux of grains with energies above EC. The magnitude of abrasion and the shape change of the rock over time depends on this flux and the value of EG > EC. Considering the potential range of particle sizes and wind speeds, the predicted kinetic energies of saltating sand hitting rocks overlap on Earth and Mars. However, when limited to the most likely grain sizes and threshold conditions, our results agree with previous work and show that kinetic energies are about an order of magnitude greater on Mars.

  18. Improvement in Abrasion Wear Resistance and Microstructural Changes with Deep Cryogenic Treatment of Austempered Ductile Cast Iron (ADI)

    NASA Astrophysics Data System (ADS)

    Šolić, Sanja; Godec, Matjaž; Schauperl, Zdravko; Donik, Črtomir

    2016-07-01

    The application of a deep cryogenic treatment during the heat-treatment processes for different types of steels has demonstrated a significant influence on their mechanical and tribological properties. A great deal of research was conducted on steels, as well as on other kinds of materials, such as hard metal, gray cast iron, aluminum, aluminum alloys, etc., but not on austempered ductile iron (ADI). In this research the influence of a deep cryogenic treatment on the microstructure and abrasive wear resistance of austempered ductile iron was investigated. The ductile cast iron was austempered at the upper ausferritic temperature, deep cryogenically treated, and afterwards tempered at two different temperatures. The abrasion wear resistance was tested using the standard ASTM G65 method. The microstructure was characterized using optical microscopy, field-emission scanning electron microscopy, electron back-scattered diffraction, and X-ray diffraction in order to define the microstructural changes that influenced the properties of the ADI. The obtained results show that the deep cryogenic treatment, in combination with different tempering temperatures, affects the matrix microstructure of the austempered ductile iron, which leads to an increase in both the abrasion wear resistance and the hardness.

  19. Degradation of nontoxic fouling-release coatings as a result of abrasion and long-term exposure

    SciTech Connect

    Meyer, A.E.; Baier, R.E.; Forsberg, R.L.

    1995-06-01

    Previous work by this research group demonstrates that methylsilicone-based coatings having critical surface tensions between 20 and 25 mN/m allow easy mechanical detachment of zebra mussel infestations and other fouling for at least 2 years. Continuing evaluations of the coated test panels and trash racks at test sites in western New York confirm and extend the 2-year findings. Coatings which, in addition, contain elutable oils display an apparent further resistance to initial colonization by zebra mussels, but this early benefit does not carry over to the brush-removal forces required for cleaning of the once-fouled coating. Several of the elastomeric methylsilicone coatings are prone to cutting and abrasion damage, limiting their suitability for heavy-duty use and/or situations requiring periodic cleaning. Since standard tests for abrasion and wear developed for paints are not applicable to elastomeric coatings, our laboratory is using a brush abrasion test to evaluate fouling-release coatings for an increasing series of wet brushing cycles.

  20. The Optimum Production Method for Quality Improvement of Recycled Aggregates Using Sulfuric Acid and the Abrasion Method

    PubMed Central

    Kim, Haseog; Park, Sangki; Kim, Hayong

    2016-01-01

    There has been increased deconstruction and demolition of reinforced concrete structures due to the aging of the structures and redevelopment of urban areas resulting in the generation of massive amounts of construction. The production volume of waste concrete is projected to increase rapidly over 100 million tons by 2020. However, due to the high cement paste content, recycled aggregates have low density and high absorption ratio. They are mostly used for land reclamation purposes with low added value instead of multiple approaches. This study was performed to determine an effective method to remove cement paste from recycled aggregates by using the abrasion and substituting the process water with acidic water. The aim of this study is to analyze the quality of the recycled fine aggregates produced by a complex method and investigate the optimum manufacturing conditions for recycled fine aggregates based on the design of experiment. The experimental parameters considered were water ratio, coarse aggregate ratio, and abrasion time and, as a result of the experiment, data concerning the properties of recycled sand were obtained. It was found that high-quality recycled fine aggregates can be obtained with 8.57 min of abrasion-crusher time and a recycled coarse aggregate ratio of over 1.5. PMID:27483298

  1. Topical treatment with basic fibroblast growth factor promotes wound healing and barrier recovery induced by skin abrasion.

    PubMed

    Nakamizo, S; Egawa, G; Doi, H; Natsuaki, Y; Miyachi, Y; Kabashima, K

    2013-01-01

    It has been reported that basic fibroblast growth factor (bFGF) promotes the healing of skin ulceration by inducing fibroblast proliferation, yet the role of bFGF on epidermal barrier function, especially from the perspective of scratch-induced skin abrasion, remains unknown. To this end, we initially developed an epidermal abrasion mouse model induced by scratching with a stainless-steel wire brush, and examined the effects of bFGF on the wound healing induced by skin abrasion. This procedure induced a significant elevation of transepidermal water loss (TEWL) in a scratch-count-dependent manner. This elevated TEWL was significantly decreased following topical application of bFGF to the skin. In addition, bFGF increased the expression of Ki67 in keratinocytes following mechanical scratching. These results suggest that bFGF enhances keratinocyte proliferation, which, in turn, repairs the skin barrier disruption and wounds caused by scratching in mice. Consistently, bFGF stimulated proliferation of normal human epidermal keratinocytes (NHEK). Intriguingly, the effect of bFGF and other growth factors on NHEK proliferation was additive. However, high cell density diminished the effect of bFGF on NHEK proliferation. This particular result can be explained by our observation that FGF receptor mRNA expression in NHEK was low under conditions of high cell density. Our findings suggest that bFGF stimulates keratinocyte proliferation, especially in a lower cell density environment, to repair skin wound in accord with skin barrier recovery. PMID:23108135

  2. A comparison of surface roughness after micro abrasion of enamel with and without using CPP-ACP: An in vitro study

    PubMed Central

    Mathias, Jones; Kavitha, S; Mahalaxmi, S

    2009-01-01

    Aim: The aim of this study was to evaluate the surface roughness of enamel after micro abrasion with and without using remineralization agent, CPP-ACP (Casein Phosphopeptide-Amorphous Calcium Phosphate). Materials and Methods: Thirty freshly extracted anterior teeth were collected. The samples were randomly assigned to two study and one control group. Group A (n = 10) containing teeth in which only micro abrasion was done, Group B (n = 10) containing teeth in which CPP-ACP (G C Tooth Mousse) was applied after micro abrasion for a period of 30 days, once daily for three minutes and Group C (n = 10) in which no preparation was done and which acted as the control group. The samples were stored in artificial saliva and evaluated after 30 days, using surface profilometer. The results were tabulated and statistically analyzed. Results: According to the results of this study, a combination of the micro abrasion procedure and CPP-ACP application reduced the enamel surface roughness significantly, when compared to micro abrasion done alone. Conclusion: Application of CPP-ACP after micro abrasion procedure significantly reduces the enamel surface roughness thereby decreasing the risk of caries. PMID:20379436

  3. Preventive effect of toothpastes with MMP inhibitors on human dentine erosion and abrasion in vitro

    PubMed Central

    Hannas, Angelica Reis; Kato, Melissa Thiemi; Cardoso, Cristiane de Almeida Baldini; Magalhães, Ana Carolina; Pereira, José Carlos; Tjäderhane, Leo; Buzalaf, Marília Afonso Rabelo

    2016-01-01

    ABSTRACT The use of gels and mouthrinses with MMP inhibitors (chlorhexidine, and green tea extract) was shown to prevent erosive wear. The aim of this study was to analyze the protective effect of toothpastes containing MMP inhibitors on dentine loss induced by erosion in vitro. Material and Methods Five groups each containing 12 specimens of human root dentine were prepared. The specimens were subjected to 1 min erosion by immersion in a cola drink, 4 times a day, for 5 d. Each day, after the first and last erosive challenges, the specimens were brushed for 15 s with a slurry of dentifrice and water (1:3) containing placebo, 1,100 ppm fluoride, 0.61% green tea extract, 0.12% chlorhexidine or 0.004% chlorhexidine (commercial toothpaste). Between the acid challenges, the specimens were stored in artificial saliva with remineralizing potential until the next treatment. Dentine loss was determined using profilometry. Data were analyzed using one-way ANOVA after log transform (p<0.05). Results The mean wear values (μm) were as follows: placebo 1.83±0.53; 0.61% green tea extract 1.00±0.21; fluoride 1.27±0.43; 0.12% chlorhexidine 1.19±0.30; and 0.004% chlorhexidine 1.22±0.46. There was a significant difference in wear between placebo and all the treatment toothpastes, which did not differ from each other. Conclusion The results suggest that toothpastes containing MMP inhibitors are as effective as those based on NaF in preventing dentine erosion and abrasion. PMID:27008258

  4. In vitro toothbrushing abrasion of dental resin composites: packable, microhybrid, nanohybrid and microfilled materials.

    PubMed

    Moraes, Rafael Ratto de; Ribeiro, Daiane dos Santos; Klumb, Mirian Margarete; Brandt, William Cunha; Correr-Sobrinho, Lourenço; Bueno, Márcia

    2008-01-01

    This study evaluated weight loss and surface roughening after toothbrushing of different resin composites: one packable (Solitaire 2, Heraeus Kulzer), one microhybrid (Charisma, Heraeus Kulzer), one nanohybrid (Simile, Pentron) and one microfilled (Durafill VS, Heraeus Kulzer). Cylindrical specimens (n = 20) were prepared. Half of the samples were submitted to 60,000 strokes, at 4 Hz, with a dentifrice-water slurry. Control samples (n = 10) remained stored at 37 degrees C. Pre- and post-abrasion parameters for weight (mg) and surface roughness (Ra, microm) were determined on an analytical balance and a surface profilometer. Data were separately submitted to Repeated Measures ANOVA and Tukey's test (a = 0.05). Percentages of weight loss were analyzed by ANOVA and Tukey's test (a = 0.05). The relationship between both evaluations was assessed by Pearson's test (a = 0.05). The means (%) for weight loss (standard deviation) were 0.65(0.2), 0.93(0.2), 1.25(0.6) and 1.25(0.4) for Simile, Durafill, Charisma and Solitaire, respectively. Baseline roughness means ranged from 0.065(0.01), 0.071(0.01), 0.066(0.02) and 0.074(0.01) for Simile, Durafill, Charisma and Solitaire, respectively, to 0.105(0.04), 0.117(0.03), 0.161(0.03) and 0.214(0.07) after testing. The composites with larger fillers presented higher weight loss and roughening than the finer materials (p < 0.05). For both evaluations, control specimens showed no significant alteration. No significant relationship between loss of weight and roughness alteration was detected (r = 0.322, p = 0.429). PMID:18622479

  5. Evaluation of the roughness and mass loss of the flowable composites after simulated toothbrushing abrasion.

    PubMed

    Garcia, Fernanda Cristina Pimentel; Wang, Linda; D'Alpino, Paulo Henrique Perlatti; Souza, João Batista de; Araújo, Paulo Amarante de; Mondelli, Rafael Francisco de Lia

    2004-01-01

    The purpose of this study was to measure mass loss and surface roughness changes of different brands of flowable resin composites after a simulated toothbrushing test. The null hypotheses were that there would be no differences in mass loss and no significant changes in surface roughness after this test and that there would be no correlation between the two variables. The tested materials were Aeliteflo (Bisco), Flow-It (Pentron), Flow-It LF (Pentron), Natural Flow (DFL) and Wave (SDI). Z100 (3M/ESPE) microhybrid and Silux Plus (3M/ESPE) microfilled resin composites were used as control materials. Twelve specimens (5 mm in diameter, 3 mm thick) of each material were prepared according to manufacturers' instructions. Toothbrushing abrasion was performed on all specimens from each of the materials using a simulator. The percentage mass loss and surface roughness were assessed before and after 100,000 brushstrokes, using a Sartorius analytical balance of 0.0001 g accuracy and a Hommel Tester T1000, respectively. The measurements of both properties were statistically compared by paired t-test and Tukey's test (p < 0.05). All materials presented a statistically significant mass loss comparing initial and final values, with the exception of Flow-It LF. However, no difference was revealed when comparing the mass loss of the different tested materials. All materials became rougher and Wave presented statistically higher roughness compared to the other resin composites. Flowable resin composites did not seem to be superior to the control groups, and they can be expected to wear by mass loss and to have an increased roughness of surface after toothbrushing action. The anticipated null hypotheses were partially accepted. PMID:15311320

  6. Preventive effect of toothpastes with MMP inhibitors on human dentine erosion and abrasion in vitro.

    PubMed

    Hannas, Angelica Reis; Kato, Melissa Thiemi; Cardoso, Cristiane de Almeida Baldini; Magalhães, Ana Carolina; Pereira, José Carlos; Tjäderhane, Leo; Buzalaf, Marília Afonso Rabelo

    2016-02-01

    The use of gels and mouthrinses with MMP inhibitors (chlorhexidine, and green tea extract) was shown to prevent erosive wear. The aim of this study was to analyze the protective effect of toothpastes containing MMP inhibitors on dentine loss induced by erosion in vitro. Material and Methods Five groups each containing 12 specimens of human root dentine were prepared. The specimens were subjected to 1 min erosion by immersion in a cola drink, 4 times a day, for 5 d. Each day, after the first and last erosive challenges, the specimens were brushed for 15 s with a slurry of dentifrice and water (1:3) containing placebo, 1,100 ppm fluoride, 0.61% green tea extract, 0.12% chlorhexidine or 0.004% chlorhexidine (commercial toothpaste). Between the acid challenges, the specimens were stored in artificial saliva with remineralizing potential until the next treatment. Dentine loss was determined using profilometry. Data were analyzed using one-way ANOVA after log transform (p<0.05). Results The mean wear values (μm) were as follows: placebo 1.83±0.53; 0.61% green tea extract 1.00±0.21; fluoride 1.27±0.43; 0.12% chlorhexidine 1.19±0.30; and 0.004% chlorhexidine 1.22±0.46. There was a significant difference in wear between placebo and all the treatment toothpastes, which did not differ from each other. Conclusion The results suggest that toothpastes containing MMP inhibitors are as effective as those based on NaF in preventing dentine erosion and abrasion. PMID:27008258

  7. Medial Abrasion Syndrome: A Neglected Cause of Knee Pain in Middle and Old Age

    PubMed Central

    Lyu, Shaw-Ruey; Lee, Ching-Chih; Hsu, Chia-Chen

    2015-01-01

    Abstract Knee pain is a prevailing health problem of middle and old age. Medial plica-related medial abrasion syndrome (MAS), although a well-known cause of knee pain in younger individuals, has rarely been investigated in older individuals. This prospective study was conducted to investigate the prevalence and clinical manifestations of this syndrome as a cause of knee pain in middle and old age. The outcomes of arthroscopic treatment for this syndrome were also evaluated. A total of 232 knees of 169 patients >40 years of age (41–82, median: 63 years old) suffering from chronic knee pain were analyzed. The clinical diagnosis, predisposing factors, presenting symptoms, and physical signs were investigated. The sensitivity and specificity of each parameter of the clinical presentation for the diagnosis of MAS were evaluated after confirmation by arthroscopy. For patients with MAS, the roentgenographic and arthroscopic manifestations were investigated, and arthroscopic medial release (AMR) was performed. The outcomes were evaluated by the changes in the pain domain of the Knee Society scoring system and by patient satisfaction. The prevalence of medial plica was 95%, and osteoarthritis (OA) was the most common clinical diagnosis. Symptoms of pain and crepitus in motion and local tenderness during physical examination were the most sensitive parameters for the diagnosis. A history of a single knee injury combined with local tenderness and a palpable band found during physical examination were the most specific parameters for the diagnosis. The majority of patients suffering from this syndrome were successfully treated using AMR, yielding a satisfaction rate of 85.5% after a minimum of 3 years. MAS is a common cause of knee pain in middle and old age and can be effectively treated by AMR. Its concomitance with OA warrants further investigation. PMID:25906102

  8. In vitro effect of air-abrasion operating parameters on dynamic cutting characteristics of alumina and bio-active glass powders.

    PubMed

    Milly, H; Austin, R S; Thompson, I; Banerjee, A

    2014-01-01

    Minimally invasive dentistry advocates the maintenance of all repairable tooth structures during operative caries management in combination with remineralization strategies. This study evaluated the effect of air-abrasion operating parameters on its cutting efficiency/pattern using bio-active glass (BAG) powder and alumina powder as a control in order to develop its use as a minimally invasive operative technique. The cutting efficiency/pattern assessment on an enamel analogue, Macor, was preceded by studying the powder flow rate (PFR) of two different commercial intraoral air-abrasion units with differing powder-air admix systems. The parameters tested included air pressure, powder flow rate, nozzle-substrate distance, nozzle angle, shrouding the air stream with a curtain of water, and the chemistry of abrasive powder. The abraded troughs were scanned and analyzed using confocal white light profilometry and MountainsMap surface analysis software. Data were analyzed statistically using one-way and repeated-measures analysis of variance tests (p=0.05). The air-abrasion unit using a vibration mechanism to admix the abrasive powder with the air stream exhibited a constant PFR regardless of the set air pressure. Significant differences in cutting efficiency were observed according to the tested parameters (p<0.05). Alumina powder removed significantly more material than did BAG powder. Using low air pressure and suitable consideration of the effect of air-abrasion parameters on cutting efficiency/patterns can improve the ultraconservative cutting characteristics of BAG air-abrasion, thereby allowing an introduction of this technology for the controlled cleaning/removal of enamel, where it is indicated clinically. PMID:23718212

  9. Seasonal-scale abrasion and quarrying patterns from a two-dimensional ice-flow model coupled to distributed and channelized subglacial drainage

    NASA Astrophysics Data System (ADS)

    Beaud, Flavien; Flowers, Gwenn E.; Pimentel, Sam

    2014-08-01

    Field data and numerical modeling show that glaciations have the potential either to enhance relief or to dampen topography. We aim to model the effect of the subglacial hydraulic system on spatiotemporal patterns of glacial erosion by abrasion and quarrying on time scales commensurate with drainage system fluctuations (e.g., seasonal to annual). We use a numerical model that incorporates a dual-morphology subglacial drainage system coupled to a higher-order ice-flow model and process-specific erosion laws. The subglacial drainage system allows for a dynamic transition between two morphologies: the distributed system, characterized by an increase in basal water pressure with discharge, and the channelized system, which exhibits a decrease in equilibrium water pressure with increasing discharge. We apply the model to a simple synthetic glacier geometry, drive it with prescribed meltwater input variations, and compute sliding and erosion rates over a seasonal cycle. When both distributed and channelized systems are included, abrasion and sliding maxima migrate ~ 20% up-glacier compared to simulations with distributed drainage only. Power-law sliding generally yields to a broader response of abrasion to water pressure changes along the flowline compared to Coulomb-friction sliding. Multi-day variations in meltwater input elicit a stronger abrasion response than either diurnal- or seasonal variations alone for the same total input volume. An increase in water input volume leads to increased abrasion. We find that ice thickness commensurate with ice sheet outlet glaciers can hinder the up-glacier migration of abrasion. Quarrying patterns computed with a recently published law differ markedly from calculated abrasion patterns, with effective pressure being a stronger determinant than sliding speeds of quarrying rates. These variations in calculated patterns of instantaneous erosion as a function of hydrology-, sliding-, and erosion-model formulation, as well as model

  10. Abrasive, Silica Phytoliths and the Evolution of Thick Molar Enamel in Primates, with Implications for the Diet of Paranthropus boisei

    PubMed Central

    Rabenold, Diana; Pearson, Osbjorn M.

    2011-01-01

    Background Primates—including fossil species of apes and hominins—show variation in their degree of molar enamel thickness, a trait long thought to reflect a diet of hard or tough foods. The early hominins demonstrated molar enamel thickness of moderate to extreme degrees, which suggested to most researchers that they ate hard foods obtained on or near the ground, such as nuts, seeds, tubers, and roots. We propose an alternative hypothesis—that the amount of phytoliths in foods correlates with the evolution of thick molar enamel in primates, although this effect is constrained by a species' degree of folivory. Methodology/Principal Findings From a combination of dietary data and evidence for the levels of phytoliths in plant families in the literature, we calculated the percentage of plant foods rich in phytoliths in the diets of twelve extant primates with wide variation in their molar enamel thickness. Additional dietary data from the literature provided the percentage of each primate's diet made up of plants and of leaves. A statistical analysis of these variables showed that the amount of abrasive silica phytoliths in the diets of our sample primates correlated positively with the thickness of their molar enamel, constrained by the amount of leaves in their diet (R2 = 0.875; p<.0006). Conclusions/Significance The need to resist abrasion from phytoliths appears to be a key selective force behind the evolution of thick molar enamel in primates. The extreme molar enamel thickness of the teeth of the East African hominin Paranthropus boisei, long thought to suggest a diet comprising predominantly hard objects, instead appears to indicate a diet with plants high in abrasive silica phytoliths. PMID:22163299

  11. Polyester and epoxy resins: Abrasion resistance. (Latest citations from the Rubber and Plastics Research Association database). Published Search

    SciTech Connect

    Not Available

    1994-06-01

    The bibliography contains citations concerning techniques and materials for enhanced wear and abrasion resistance of polyester and epoxy resins. Topics include test procedures and results, compounds and additives, forming processes, reinforcement effects, and applications. Electrical insulation, linings and coatings for numerous substrates, solar control film glazing material, hoses, material to rebuild worn metal parts, pipes, boats, industrial floor coverings, and ladder rungs are among the applications discussed. Trade name materials and manufacturers are included. (Contains a minimum of 130 citations and includes a subject term index and title list.)

  12. Comparison of shear bond strength and surface structure between conventional acid etching and air-abrasion of human enamel.

    PubMed

    Olsen, M E; Bishara, S E; Damon, P; Jakobsen, J R

    1997-11-01

    Recently, air-abrasion technology has been examined for potential applications within dentistry, including the field of orthodontics. The purpose of this study was to compare the traditional acid-etch technique with an air-abrasion surface preparation technique, with two different sizes of abrading particles. The following parameters were evaluated: (a) shear bond strength, (b) bond failure location, and (c) enamel surface preparation, as viewed through a scanning electron microscope. Sixty extracted human third molars were pumiced and divided into three groups of 20. The first group was etched with a 37% phosphoric acid gel for 30 seconds, rinsed for 30 seconds, and dried for 20 seconds. The second and third groups were air-abraded with (a) a 50 microm particle and (b) a 90 microm particle of aluminum oxide, with the Micro-etcher microabrasion machine (Danville Engineering Inc.). All three groups had molar stainless steel orthodontic brackets bonded to the buccal surface of each tooth with Transbond XT bonding system (3M Unitek). A Zwick Universal Testing Machine (Calitek Corp.) was used to determine shear bond strengths. The analysis of variance was used to compare the three groups. The Adhesive Remnant Index (ARI) was used to evaluate the residual adhesive on the enamel after bracket removal. The chi square test was used to evaluate differences in the ARI scores among the groups. The significance for all tests was predetermined at p < or = 0.05. The results indicated that there was a significant difference in shear bond strength among the three groups (p = 0.0001). The Duncan Multiple Range test showed a significant decrease in shear bond strength in the air-abraded groups. The chi square test revealed significant differences among the ARI scores of the acid-etched group and the air-abraded groups (chi(2) = 0.0001), indicating no adhesive remained on the enamel surface after debonding when air-abrasion was used. In conclusion, the current findings indicate that

  13. Mobile load simulators - A tool to distinguish between the emissions due to abrasion and resuspension of PM10 from road surfaces

    NASA Astrophysics Data System (ADS)

    Gehrig, R.; Zeyer, K.; Bukowiecki, N.; Lienemann, P.; Poulikakos, L. D.; Furger, M.; Buchmann, B.

    2010-12-01

    Mechanically produced abrasion particles and resuspension processes are responsible for a significant part of the PM10 emissions of road traffic. However, specific differentiation between PM10 emissions due to abrasion and resuspension from road pavement is very difficult due to their similar elemental composition and highly correlated variation in time. In this work Mobile Load Simulators were used to estimate PM10 emission factors for pavement abrasion and resuspension on different pavement types for light and heavy duty vehicles. From the experiments it was derived that particle emissions due to abrasion from pavements in good condition are quite low in the range of only a few mg·km -1 per vehicle if quantifiable at all. Considerable abrasion emissions, however, can occur from damaged pavements. Resuspension of deposited dust can cause high and extremely variable particle emissions depending strongly on the dirt load of the road surface. Porous pavements seem to retain deposited dust better than dense pavements, thus leading to lower emissions due to resuspension compared to pavements with a dense structure (e.g. asphalt concrete). Tyre wear seemed not to be a quantitatively significant source of PM10 emissions from road traffic.

  14. New Rock Physical Properties Assessments From the Mars Exploration Rover Rock Abrasion Tool (RAT).

    NASA Astrophysics Data System (ADS)

    Bartlett, P. W.; Basso, B.; Kusack, A.; Wilson, J.; Zacny, K.

    2005-12-01

    The Rock Abrasion Tool (RAT) serves as the sample preparation device on the Mars Exploration Rovers (MER) science payload. The RAT grinds a circular area 45 millimeter in diameter, and on the order of a few millimeters deep, into a rock face. This process removes surface fines and weathered layers in preparation for imaging and spectral observations of the rock. As of September 2005, 15 grinding operations have been performed at Gusev Crater and 26 at Meridiani Planum. Since the RAT performs a mechanical operation on a rock, deductions can be made via the RAT's engineering data about the rock's physical properties. For each grinding operation, the energy consumed while grinding is converted to provide a physically relevant Specific Grind Energy (SGE) in terms of Joules per cubic millimeter of rock removed. The calculation is performed over the last 0.25 millimeter of a grinding operation, where it is possible, by taking measurements from Microscopic Imager images of the abraded area, to make an accurate estimate of the volume of rock removed. Progress is presented on recent refinement of the SGE calculation methods including decoupling of artifacts. Environmental factors and differing parameters used to command the RAT operations are among the key artifacts recently analyzed. Progress is also presented on further characterization of the dynamics and wear mechanics involved in the grinding process, and how they influence SGE. A library of Earth rocks has been assembled and it is being used with the RAT Engineering Model to create a set of similar SGE data products that can be compared to Mars rocks in order to contribute to physical properties assessments of the Mars rocks. Initial results indicate that the Martian rocks are analogous to a range of Earth rocks, from gypsum to low-strength basalt in terms of grindability; however, caution needs to be exercised in making a direct comparison of grinding energies. This is because the grindability of rocks was found to

  15. Thickness-Independent Ultrasonic Imaging Applied to Abrasive Cut-Off Wheels: An Advanced Aerospace Materials Characterization Method for the Abrasives Industry. A NASA Lewis Research Center Technology Transfer Case History

    NASA Technical Reports Server (NTRS)

    Roth, Don J.; Farmer, Donald A.

    1998-01-01

    Abrasive cut-off wheels are at times unintentionally manufactured with nonuniformity that is difficult to identify and sufficiently characterize without time-consuming, destructive examination. One particular nonuniformity is a density variation condition occurring around the wheel circumference or along the radius, or both. This density variation, depending on its severity, can cause wheel warpage and wheel vibration resulting in unacceptable performance and perhaps premature failure of the wheel. Conventional nondestructive evaluation methods such as ultrasonic c-scan imaging and film radiography are inaccurate in their attempts at characterizing the density variation because a superimposing thickness variation exists as well in the wheel. In this article, the single transducer thickness-independent ultrasonic imaging method, developed specifically to allow more accurate characterization of aerospace components, is shown to precisely characterize the extent of the density variation in a cut-off wheel having a superimposing thickness variation. The method thereby has potential as an effective quality control tool in the abrasives industry for the wheel manufacturer.

  16. Microstructural effects in abrasive wear. Quarterly progress report, December 1980-1 June 1981. [Alloys for use in coal mining, handling, and gasification

    SciTech Connect

    Kosel, T.H.; Rao, M.C.; Shetty, H.R.; Fernandes, M.T.; Fiore, N.F.

    1981-10-29

    This report describes research aimed at establishing quantitative relationships between microstructure and wear resistance of highly alloyed materials, including high-Cr white irons and experimental Co-base and Ni-base powder metallurgy (PM) alloys now used or potentially to be used in coal mining, handling, and gasification. The specific types of wear under study are low-stress abrasion and gouging wear encountered in mining, coal conversion, and transfer applications. During this period, work was concentrated on analysis of results. The many detailed observations obtained in the work on scratch test simulations of abrasive wear mechanisms have been summarized in drafts of three papers. The first, A Study of Abrasive Wear Mechanisms Using Diamond and Alumina Scratch Tests, is included as an appendix to this report and is being submitted for publication. Revision of the other papers is in progress.

  17. A comparison of different gingival depigmentation techniques: ablation by erbium:yttrium-aluminum-garnet laser and abrasion by rotary instruments

    PubMed Central

    Lee, Kwang-Myung; Lee, Dong-Yeol; Shin, Seung-Il; Kwon, Young-Hyuk; Chung, Jong-Hyuk

    2011-01-01

    Purpose The aim of this study is to compare two different gingival depigmentation techniques using an erbium:yttrium-aluminum-garnet (Er:YAG) laser and rotary instruments. Methods Two patients with melanin pigmentation of gingiva were treated with different gingival depigmentation techniques. Ablation of the gingiva by Er:YAG laser was performed on the right side, and abrasion with a rotary round bur on the opposite side. Results The patients were satisfied with the esthetically significant improvement with each method. However, some pigment still remained on the marginal gingival and papilla. The visual analog scale did not yield much difference between the two methods, with slightly more pain on the Er:YAG laser treated site. Conclusions The results of these cases suggest that ablation of the gingiva by an Er:YAG laser and abrasion with a rotary round bur is good enough to achieve esthetic satisfaction and fair wound healing without infection or severe pain. Prudent care about the gingival condition, such as the gingival thickness and degree of pigmentation along with appropriate assessment is needed in ablation by the Er:YAG laser procedure. PMID:21954425

  18. Facile fabrication of superhydrophobic surface with excellent mechanical abrasion and corrosion resistance on copper substrate by a novel method.

    PubMed

    Su, Fenghua; Yao, Kai

    2014-06-11

    A novel method for controllable fabrication of a superhydrophobic surface with a water contact angle of 162 ± 1° and a sliding angle of 3 ± 0.5° on copper substrate is reported in this Research Article. The facile and low-cost fabrication process is composed from the electrodeposition in traditional Watts bath and the heat-treatment in the presence of (heptadecafluoro-1,1,2,2-tetradecyl) triethoxysilane (AC-FAS). The superhydrophobicity of the fabricated surface results from its pine-cone-like hierarchical micro-nanostructure and the assembly of low-surface-energy fluorinated components on it. The superhydrophobic surface exhibits high microhardness and excellent mechanical abrasion resistance because it maintains superhydrophobicity after mechanical abrasion against 800 grit SiC sandpaper for 1.0 m at the applied pressure of 4.80 kPa. Moreover, the superhydrophobic surface has good chemical stability in both acidic and alkaline environments. The potentiodynamic polarization and electrochemical impedance spectroscopy test shows that the as-prepared superhydrophobic surface has excellent corrosion resistance that can provide effective protection for the bare Cu substrate. In addition, the as-prepared superhydrophobic surface has self-cleaning ability. It is believed that the facile and low-cost method offer an effective strategy and promising industrial applications for fabricating superhydrophobic surfaces on various metallic materials. PMID:24796223

  19. Effect of ion nitriding on the abrasive wear resistance of ultrahigh-strength steels with different silicon contents

    NASA Astrophysics Data System (ADS)

    Riofano, R. M. Muñoz; Casteletti, L. C.; Nascente, P. A. P.

    2005-02-01

    This article studies the effect of silicon (Si) on ultrahigh-strength AISI 4340 steels in connection with the thermal treatment, as well as the influence of this element on nitriding and, consequently, abrasive wear. Four alloys with different Si contents were nitrided at 350 °C (4 and 8 h) and 500 and 550 °C (2 and 4 h) in a gas mixture of 80 vol.% H2 and 20 vol.% N2. The nitrided layers were characterized by microhardness and pin-on-disk tests, optical microscopy, scanning electron microscopy with energy-dispersive x-ray spectrometry, and x-ray diffraction (XRD). The increase in Si enhanced the tempering resistance of the steels and also improved considerably the hardness of the nitrided layers. The increase in Si produced thinner compound layers with better hardness quality and high abrasive wear resistance. XRD analysis detected a mixture of nitrides in the layers γ‧-Fe4N, ɛ-Fe2 3N, CrN, MoN, and Si3N4 with their proportions varying with the nitriding conditions.

  20. Abrasive resistance of metastable V-Cr-Mn-Ni spheroidal carbide cast irons using the factorial design method

    NASA Astrophysics Data System (ADS)

    Efremenko, V. G.; Shimizu, K.; Cheiliakh, A. P.; Pastukhova, T. V.; Chabak, Yu. G.; Kusumoto, K.

    2016-06-01

    Full factorial design was used to evaluate the two-body abrasive resistance of 3wt%C-4wt%Mn-1.5wt%Ni spheroidal carbide cast irons with varying vanadium (5.0wt%-10.0wt%) and chromium (up to 9.0wt%) contents. The alloys were quenched at 920°C. The regression equation of wear rate as a function of V and Cr contents was proposed. This regression equation shows that the wear rate decreases with increasing V content because of the growth of spheroidal VC carbide amount. Cr influences the overall response in a complex manner both by reducing the wear rate owing to eutectic carbides (M7C3) and by increasing the wear rate though stabilizing austenite to deformation-induced martensite transformation. This transformation is recognized as an important factor in increasing the abrasive response of the alloys. By analyzing the regression equation, the optimal content ranges are found to be 7.5wt%-10.0wt% for V and 2.5wt%-4.5wt% for Cr, which corresponds to the alloys containing 9vol%-15vol% spheroidal VC carbides, 8vol%-16vol% M7C3, and a metastable austenite/martensite matrix. The wear resistance is 1.9-2.3 times that of the traditional 12wt% V-13wt% Mn spheroidal carbide cast iron.

  1. A COMBINATION OF CURCUMIN AND GINGER EXTRACT IMPROVES ABRASION WOUND HEALING IN CORTICOSTEROID-DAMAGED HAIRLESS RAT SKIN

    PubMed Central

    Bhagavathula, Narasimharao; Warner, Roscoe L.; DaSilva, Marissa; McClintock, Shannon D.; Barron, Adam; Aslam, Muhammad N.; Johnson, Kent J.; Varani, James

    2010-01-01

    Hairless rats were topically treated with a combination of 10% curcumin and 3% ginger extract (or with each agent alone) for a 21-day period. Following this, the rats were treated topically with Temovate (corticosteroid) for an additional 15 days. At the end of the treatment period, superficial abrasion wounds were induced in the treated skin. Abrasion wounds healed more slowly in the skin of Temovate-treated rats than in skin of control animals. Healing was more rapid in skin of rats that had been pre-treated with either curcumin or ginger extract alone or with the combination of curcumin-ginger extract (along with Temovate) than in the skin of rats treated with Temovate and vehicle alone. Skin samples were obtained at the time of wound closure. Collagen production was increased and matrix metalloproteinase-9 production was decreased in the recently-healed skin from rats treated with the botanical preparation relative to rats treated with Temovate plus vehicle. In none of the rats was there any indication of skin irritation during the treatment phase or during wounding and repair. Taken together, these data suggest that a combination of curcumin and ginger extract might provide a novel approach to improving structure and function in skin and, concomitantly, reducing formation of non-healing wounds in “at-risk” skin. PMID:19660044

  2. Investigation of Noise Level and Penetration Rate of Pneumatic Drill vis-à-vis Rock Compressive Strength and Abrasivity

    NASA Astrophysics Data System (ADS)

    Kivade, S. B.; Murthy, Ch. S. N.; Vardhan, H.

    2014-10-01

    In this paper, detailed studies were carried out to determine the influence of rock properties on the sound level produced during pneumatic drilling. Further, investigation was also carried out on the effect of thrust, air pressure and compressive strength on penetration rate and the sound level produced. For this purpose, a fabricated pneumatic drill set up available in the institute was used. Rock properties, like compressive strength and abrasivity, of various samples collected from the field were determined in the laboratory. Drilling experiments were carried out on ten different rock samples for varying thrust and air pressure values and the corresponding A-weighted equivalent continuous sound levels were measured. It was observed that, very low thrust results in low penetration rate. Even very high thrust does not produce high penetration rate at higher operating air pressures. With increase in thrust beyond the optimum level, the penetration rate starts decreasing and causes the drill bit to `stall'. Results of the study show that penetration rate and sound level increases with increase in the thrust level. After reaching the maximum, they start decreasing despite the increase of thrust. The main purpose of the study is to develop a general prediction model and to investigate the relationships between sound level produced during drilling and physical properties such as uniaxial compressive strength and abrasivity of sedimentary rocks. The results were evaluated using the multiple regression analysis taking into account the interaction effects of predictor variables.

  3. Effect of Air Abrasion Preconditioning on Microleakage in Class V Restorations Under Cyclic Loading: An In-vitro Study

    PubMed Central

    Dharmani, Charan Kamal Kaur; Singh, Shamsher; Logani, Ajay; Shah, Naseem

    2014-01-01

    Background: Microleakage in class V Glass Ionomer Cement(GIC) or composite restorations at enamel or cementum margins has been cited as a reason for their failure. Air abrasion has been used to precondition tooth surface for increasing retention of such restorations. This study is done to evaluate the effect of preconditioning with air abrasion on microleakage in class V GIC and composite restorations. Materials and Methods: Class V cavities were prepared in 40 freshly extracted teeth. They were categorised into following four groups (n=10) depending on cavity preconditioning and restoration. Group I: 10% polyacrylic acid and GI (Ketac molar TM 3M ESPE); Group II: AA and GI; Group III: 35% Phosphoric acid and micro filled composite (MC) (Heliomolar, Ivoclar Vivadent); Group IV: AA and MC. Each group was further divided into subgroups A (no loading) & B (cyclic loading). Microleakage at occlusal and gingival margins was evaluated using methylene blue dye penetration method. Statistical analysis was done using Kruskal-wallis test and Mann-Whitney U test. Results: Microleakage at cementum margins was higher than at enamel margins in all the groups. Preconditioning with AA resulted in increased micro leakage. Conclusion: AA as a preconditioning agent was ineffective in producing superior tooth-restoration bonding. PMID:24995240

  4. Surface roughness and bond strength between Y-TZP and self-adhesive resin cement after air particle abrasion protocols.

    PubMed

    Sousa, Rafael Santiago de; Campos, Fernanda; Sarmento, Hugo Ramalho; Alves, Maria Luiza Lima; Dal Piva, Amanda Maria de Oliveira; Gondim, Laísa Daniel; Souza, Rodrigo Othávio Assunção

    2016-01-01

    The aim of this study was to evaluate the influence of different air particle abrasion (APA) protocols-with variations in particle types, duration of application, and the distance between the device tip and the ceramic-on the surface roughness (SR) of zirconia-based ceramic (yttria-stabilized tetragonal zirconia polycrystal [Y-TZP]) and the shear bond strength (SBS) between Y-TZP and resin cement. In total, 135 sintered Y-TZP blocks were polished and divided into 9 groups according to 3 factors: particle (alumina vs alumina coated with silica), duration (5 vs 10 seconds), and distance (contact vs 10 mm away). All 3 factors significantly influenced the SR values between the experimental groups and the control group. For SBS, only the particle type was a statistically significant factor. Results showed that air particle abrasion with silica-coated alumina resulted in higher SBS, even though the SR values associated with those groups were not the highest. PMID:27599282

  5. Testing of Alternative Abrasives for Water-Jet Cutting at C Tank Farm

    SciTech Connect

    Krogstad, Eirik J.

    2013-08-01

    Legacy waste from defense-related activities at the Hanford Site has predominantly been stored in underground tanks, some of which have leaked; others may be at risk to do so. The U.S. Department of Energy’s goal is to empty the tanks and transform their contents into more stable waste forms. To do so requires breaking up, and creating a slurry from, solid wastes in the bottoms of the tanks. A technology developed for this purpose is the Mobile Arm Retrieval System. This system is being used at some of the older single shell tanks at C tank farm. As originally planned, access ports for the Mobile Arm Retrieval System were to be cut using a high- pressure water-jet cutter. However, water alone was found to be insufficient to allow effective cutting of the steel-reinforced tank lids, especially when cutting the steel reinforcing bar (“rebar”). The abrasive added in cutting the hole in Tank C-107 was garnet, a complex natural aluminosilicate. The hardness of garnet (Mohs hardness ranging from H 6.5 to 7.5) exceeds that of solids currently in the tanks, and was regarded to be a threat to Hanford Waste Treatment and Immobilization Plant systems. Olivine, an iron-magnesium silicate that is nearly as hard as garnet (H 6.5 to 7), has been proposed as an alternative to garnet. Pacific Northwest National Laboratory proposed to test pyrite (FeS2), whose hardness is slightly less (H 6 to 6.5) for 1) cutting effectiveness, and 2) propensity to dissolve (or disintegrate by chemical reaction) in chemical conditions similar to those of tank waste solutions. Cutting experiments were conducted using an air abrader system and a National Institute of Standards and Technology Standard Reference Material (SRM 1767 Low Alloy Steel), which was used as a surrogate for rebar. The cutting efficacy of pyrite was compared with that of garnet and olivine in identical size fractions. Garnet was found to be most effective in removing steel from the target; olivine and pyrite were less

  6. Effects of neoprene mat on diarrhea, mortality and foreleg abrasion of pre-weaning piglets.

    PubMed

    Gu, Zhaobing; Xin, Hongwei; Wang, Chaoyuan; Shi, Zhengxiang; Liu, Zuohua; Yang, Feiyun; Lin, Baozhong; Wang, Chao; Li, Baoming

    2010-06-01

    Modern commercial swine farrowing crates are typically equipped with slatted iron floor to improve management efficiency (e.g., ease of manure handling, cleanliness of the farrowing crates and hence improved animal hygiene). However, the bare and hard floor surface can impair the welfare of the sow-litter because of some undesirable impacts on the pigs, such as foreleg abrasion, large temperature gradients between the cold floor surface and the abdomen of the piglets (hence higher susceptibility to diarrhea), and higher pre-weaning mortality or morbidity. Although straw bedding has been shown to be conducive to providing better environment for the sow-litter, use of straw creates challenges in terms of economics, hygiene and manure handling. This study investigates the use of neoprene mat (NM) in key areas of the farrowing crates - underneath the sow and in the piglet suckling area to improve the microenvironment and hence welfare of the sow-litter. Two experiments were conducted, each involving 12 sow-litters. The first experiment was to evaluate the thickness of a rectangular-shaped NM (7, 10 or 13 mm) vs. the slatted iron floor (control or Ctrl) and collect the corresponding animal response data; while the second follow-up experiment was to verify the benefits of supplying an improved, double concave (or H)-shaped NM with 10mm thick (CNM10) vs. Ctrl for the farrowing operation. Results of both experiments demonstrated considerable benefits of the NM placement in the farrowing crates. Specifically, the NM reduced the piglet foreleg lesion area and joint swellings (0% for NM vs. 8-10% for Ctrl during suckling periods in both Expts 1 and 2, P<0.001); reduced pre-weaning piglet crushing mortality (18.5+/-5.0%, 6.7+/-3.3% and 9.1+/-5.2% and for Ctrl, NM7 and NM10 and in Expt 1, P<0.05); and reduced piglet diarrhea morbidity (0.6+/-0.2% for CNM10 vs. 2.7+/-0.3% for Ctrl in Expt 2, P<0.01). Piglets in the NM litters had smaller temperature gradients between the abdomen

  7. Antimicrobial photodynamic therapy with RLP068 kills methicillin-resistant Staphylococcus aureus and improves wound healing in a mouse model of infected skin abrasion PDT with RLP068/Cl in infected mouse skin abrasion.

    PubMed

    Vecchio, Daniela; Dai, Tianhong; Huang, Liyi; Fantetti, Lia; Roncucci, Gabrio; Hamblin, Michael R

    2013-09-01

    Photodynamic therapy (PDT) is an alternative treatment for infections that can kill drug resistant bacteria without damaging host-tissue. In this study we used bioluminescent methicillin-resistant Staphylococcus aureus, in a mouse skin abrasion model, to investigate the effect of PDT on bacterial inactivation and wound healing. RLP068/Cl, a tetracationic Zn(II)phthalocyanine derivative and toluidine blue (TBO) were used. The light-dose response of PDT to kill bacteria in vivo and the possible recurrence in the days post-treatment were monitored by real-time bioluminescence imaging, and wound healing by digital photography. The results showed PDT with RLP068/Cl (but not TBO) was able to kill bacteria, to inhibit bacterial re-growth after the treatment and to significantly accelerate the wound healing process (© 2013 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim). PMID:22987338

  8. The Impact of Retained Austenite Characteristics on the Two-Body Abrasive Wear Behavior of Ultrahigh Strength Bainitic Steels

    NASA Astrophysics Data System (ADS)

    Narayanaswamy, Balaji; Hodgson, Peter; Timokhina, Ilana; Beladi, Hossein

    2016-08-01

    In the current study, a high-carbon, high-alloy steel (0.79 pct C, 1.5 pct Si, 1.98 pct Mn, 0.98 pct Cr, 0.24 pct Mo, 1.06 pct Al, and 1.58 pct Co in wt pct) was subjected to an isothermal bainitic transformation at a temperature range of 473 K to 623 K (200 °C to 350 °C), resulting in different fully bainitic microstructures consisting of bainitic ferrite and retained austenite. With a decrease in the transformation temperature, the microstructure was significantly refined from ~300 nm at 623 K (350 °C) to less than 60 nm at 473 K (200 °C), forming nanostructured bainitic microstructure. In addition, the morphology of retained austenite was progressively altered from film + blocky to an exclusive film morphology with a decrease in the temperature. This resulted in an enhanced wear resistance in nanobainitic microstructures formed at low transformation temperature, e.g., 473 K (200 °C). Meanwhile, it gradually deteriorated with an increase in the phase transformation temperature. This was mostly attributed to the retained austenite characteristics (i.e., thin film vs blocky), which significantly altered their mechanical stability. The presence of blocky retained austenite at high transformation temperature, e.g., 623 K (350 °C) resulted in an early onset of TRIPing phenomenon during abrasion. This led to the formation of coarse martensite with irregular morphology, which is more vulnerable to crack initiation and propagation than that of martensite formed from the thin film austenite, e.g., 473 K (200 °C). This resulted in a pronounced material loss for the fully bainitic microstructures transformed at high temperature, e.g., 623 K (350 °C), leading to distinct sub-surface layer and friction coefficient curve characteristics. A comparison of the abrasive behavior of the fully bainitic microstructure formed at 623 K (350 °C) and fully pearlitic microstructure demonstrated a detrimental effect of blocky retained austenite with low mechanical stability on the

  9. Effect of experimental parameters on the high-stress abrasive wear behavior of steels and a software package for its prediction

    SciTech Connect

    Dasgupta, R.; Roy, A.; Prasad, B.K.; Yegneswaran, A.H.

    1999-06-01

    The effect of different experimental factors on the high-stress abrasive wear properties of steels has been studied. A correlation among the factors has been established by linear regression analysis. A computer software in Microsoft Basic language utilizing linear regression analysis has been developed with the capability of predicting the wear response of steels from the experimental factors.

  10. Comparative evaluation of surface properties of enamel and different esthetic restorative materials under erosive and abrasive challenges: An in vitro study

    PubMed Central

    Kaur, Simranjeet; Makkar, Sameer; Kumar, Rajneesh; Pasricha, Shinam; Gupta, Pranav

    2015-01-01

    Introduction: Noncarious tooth surface loss is a normal physiological process occurring throughout the life, but it can often become a problem affecting function, esthetics or cause pain. Aim: The purpose of this study was to assess the effect of erosive and abrasive challenges on the surface microhardness and surface wear of enamel and three different restorative materials, that is, nanofilled composite, microfilled composite and resin-modified glass ionomer cement (RMGIC) by using Vickers microhardness tester and profilometer respectively. Subjects and Methods: Nanofilled composite (Filtek™ Z350 × T), microfilled composite (Heliomolar®) and RMGIC (Fuji II LC) were used in the study. Results: Nanofilled composite resin has the best resistance to erosion and/or abrasion among all the materials tested, followed by microfilled composite and RMGIC respectively. Conclusion: Toothbrush abrasion has a synergistic effect with erosion on substance loss of human enamel, composites, and RMGIC. The susceptibility to acid and/or toothbrush abrasion of human enamel was higher compared to restorative materials. PMID:26752876

  11. Influence of Air Abrasion and Sonic Technique on Microtensile Bond Strength of One-Step Self-Etch Adhesive on Human Dentin

    PubMed Central

    Anja, Baraba; Walter, Dukić; Nicoletta, Chieffi; Marco, Ferrari; Pezelj Ribarić, Sonja; Ivana, Miletić

    2015-01-01

    The purpose of this in vitro study was to evaluate the microtensile bond strength of one-step self-etch adhesive to human dentin surface modified with air abrasion and sonic technique and to assess the morphological characteristics of the pretreated dentin surface. The occlusal enamel was removed to obtain a flat dentin surface for thirty-six human molar teeth. The teeth were randomly divided into three experimental groups (n = 12 per group), according to the pretreatment of the dentin: (1) control group, (2) air abrasion group, and (3) sonic preparation group. Microtensile bond strength test was performed on a universal testing machine. Two specimens from each experimental group were subjected to SEM examination. There was no statistically significant difference in bond strength between the three experimental groups (P > 0.05). Mean microtensile bond strength (MPa) values were 35.3 ± 12.8 for control group, 35.8 ± 13.5 for air abrasion group, and 37.7 ± 12.0 for sonic preparation group. The use of air abrasion and sonic preparation with one-step self-etch adhesive does not appear to enhance or impair microtensile bond strength in dentin. PMID:25879053

  12. In vitro comparative bond strength of contemporary self-adhesive resin cements to zirconium oxide ceramic with and without air-particle abrasion.

    PubMed

    Blatz, Markus B; Phark, Jin-Ho; Ozer, Fusun; Mante, Francis K; Saleh, Najeed; Bergler, Michael; Sadan, Avishai

    2010-04-01

    This study compared shear bond strengths of six self-adhesive resin cements to zirconium oxide ceramic with and without air-particle abrasion. One hundred twenty zirconia samples were air-abraded (group SB; n = 60) or left untreated (group NO). Composite cylinders were bonded to the zirconia samples with either BisCem (BC), Maxcem (MC), G-Cem (GC), RelyX Unicem Clicker (RUC), RelyX Unicem Applicator (RUA), or Clearfil SA Cement (CSA). Shear bond strength was tested after thermocycling, and data were analyzed with analysis of variance and Holm-Sidak pairwise comparisons. Without abrasion, RUA (8.0 MPa), GC (7.9 MPa), and CSA (7.6 MPa) revealed significantly higher bond strengths than the other cements. Air-particle abrasion increased bond strengths for all test cements (p < 0.001). GC (22.4 MPa) and CSA (18.4 MPa) revealed the highest bond strengths in group SB. Bond strengths of self-adhesive resin cements to zirconia were increased by air-particle abrasion. Cements containing adhesive monomers (MDP/4-META) were superior to other compositions. PMID:19415350

  13. Gamma delta T Cells Are Necessary for Platelet and Neutrophil Accumulation in Limbal Vessels and Efficient Epithelial Repair after Corneal Abrasion

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Corneal epithelial abrasion in C57BL/6 mice induces an inflammatory response, with peak accumulation of neutrophils in the corneal stroma within 12 hours. Platelets localize in the limbal vessels throughout the same time course as neutrophils and contribute to wound healing because antibody-dependen...

  14. Comparison of surface abrasion produced on the enamel surface by a standard dentifrice using three different toothbrush bristle designs: A profilometric in vitro study

    PubMed Central

    Kumar, Sandeep; Kumari, Minal; Acharya, Shashidhar; Prasad, Ram

    2014-01-01

    Aim: The aim was to assess, in vitro, the effect on surface abrasivity of enamel surface caused by three different types (flat trim, zig-zag, bi-level) of toothbrush bristle design. Materials and Methods: Twenty-four freshly extracted, sound, human incisor teeth were collected for this study. The enamel slab was prepared, which were mounted, on separate acrylic bases followed by subjected to profilometric analysis. The surface roughness was measured using the profilometer. The specimen were divided into three groups, each group containing eight mounted specimens, wherein, Group 1 specimens were brushed with flat trim toothbrush; Group 2 brushed with zig-zag and Group 3 with bi-level bristle design. A commercially available dentifrice was used throughout the study. A single specimen was brushed for 2 times daily for 2 min period for 1 week using a customized brushing apparatus. The pre- and post-roughness value change were analyzed and recorded. Statistical test: Kruskal–Wallis test and Mann–Whitney U-test. Result: The results showed that surface abrasion was produced on each specimen, in all the three groups, which were subjected to brushing cycle. However, the bi-level bristle design (350% increase in roughness, P = 0.021) and zig-zag bristle design (160% increase in roughness, P = 0.050) showed significantly higher surface abrasion when compared with flat trim bristle design toothbrush. Conclusion: Flat trim toothbrush bristle produces least surface abrasion and is relatively safe for use. PMID:25125852

  15. Development of Abrasion-Resistant Coating for Solar Reflective Films. Cooperative Research and Development Final Report, CRADA Number CRD-07-247

    SciTech Connect

    Gray, Matthew

    2015-10-01

    The purpose of this CRADA is to develop an abrasion-resistant coating, suitable for use on polymeric-based reflective films (e.g., the ReflecTech reflective film), that allows for improved scratch resistance and enables the use of aggressive cleaning techniques (e.g., direct contact methods like brushing) without damaging the specular reflectance properties of the reflective film.

  16. Stability analyses of the mass abrasive projectile high-speed penetrating into a concrete target Part III: Terminal ballistic trajectory analyses

    NASA Astrophysics Data System (ADS)

    Wu, H.; Chen, X. W.; Fang, Q.; Kong, X. Z.; He, L. L.

    2015-08-01

    During the high-speed penetration of projectiles into concrete targets (the impact velocity ranges from 1.0 to 1.5 km/s), important factors such as the incident oblique and attacking angles, as well as the asymmetric abrasions of the projectile nose induced by the target-projectile interactions, may lead to obvious deviation of the terminal ballistic trajectory and reduction of the penetration efficiency. Based on the engineering model for the mass loss and nose-blunting of ogive-nosed projectiles established, by using the Differential Area Force Law (DAFL) method and semi-empirical resistance function, a finite differential approach was programmed (PENTRA2D) for predicting the terminal ballistic trajectory of mass abrasive high-speed projectiles penetrating into concrete targets. It accounts for the free-surface effects on the drag force acting on the projectile, which are attributed to the oblique and attacking angles, as well as the asymmetric nose abrasion of the projectile. Its validation on the prediction of curvilinear trajectories of non-normal high-speed penetrators into concrete targets is verified by comparison with available test data. Relevant parametric influential analyses show that the most influential factor for the stability of terminal ballistic trajectories is the attacking angle, followed by the oblique angle, the discrepancy of asymmetric nose abrasion, and the location of mass center of projectile. The terminal ballistic trajectory deviations are aggravated as the above four parameters increase.

  17. Abrasion resistance of oxidized zirconium in comparison with CoCrMo and titanium nitride coatings for artificial knee joints.

    PubMed

    Galetz, Mathias C; Fleischmann, Ernst W; Konrad, Christian H; Schuetz, Adelheid; Glatzel, Uwe

    2010-04-01

    Most total knee replacement joints consist of a metal femoral component made from a cobalt-chromium- molybdenum (CoCrMo)-alloy and a tibial component with an ultrahigh molecular weight polyethylene (UHMWPE) bearing surface. Wear of the UHMWPE remains the primary disadvantage of these implants. The allergic potential ascribed to CoCrMo-alloys is a further concern. Other metallic alloys with and without ceramic coatings are clinically used to avoid these problems. This study compared the mechanical surface properties of an oxidized zirconium alloy with those of cast and wrought CoCrMo and TiAlV6-4. Additionally, the influence of a titanium nitride (TiN)-plasma coating on the surface properties was investigated. The composition of the oxidized zirconium layer was analyzed. Micro- and macrohardness tests as well as adhesion tests were used to reveal material differences in terms of their abrasive wear potential in artificial joints. PMID:20162723

  18. The Effect of Silane on the Microstructure, Corrosion, and Abrasion Resistances of the Anodic Films on Ti Alloy

    NASA Astrophysics Data System (ADS)

    Wang, Jinwei; Chen, Jiali

    2016-04-01

    Anodic oxide films on Ti-6Al-4V alloy are prepared using sodium hydroxide as the base electrolyte containing aminopropyl trimethoxysilane (APS) as an additive. Some APS undergo hydrolysis, adsorption, and chemical reaction with the TiO x to form Ti-O-Si bond as confirmed by ATR-FTIR and XPS spectra, and in turn their surface appearance and roughness are greatly changed with the addition of APS as observed by their SEM images. These amino anodic films possess much higher corrosive resistances since the formation of Ti-O-Si complex enhances the compactness of the anodic films and the existence of aminopropyl groups inside the pores provides additional blocking effects. Besides, their improvement in anti-abrasive capability is attributed to the toughening effect of the chemically bonded silanes and the lubrication functions from both the chemically bonded and physically absorbed silanes between the touched interfaces.

  19. Abrasive wear behavior of a brittle matrix (MoSi2) composite reinforced with a ductile phase (Nb)

    SciTech Connect

    Alman, David E.; Hawk, Jeffrey A.

    2001-10-01

    The toughness of a variety of brittle ceramic and intermetallic matrices has been improved through the incorporation of ductile metallic reinforcements. In these composites resistance to catastrophic failure of the matrix is derived through a combination of mechanisms, including matrix crack bridging, matrix crack defection and rupturing of the ductile phase. The degree to which these mechanisms operate is a function of composite microstructure. In general, the ductile phase is softer than the matrix phase. This may have unique implications when the materials are subjected to a wear environment, whether intentional or not. Hence, it is important to understand the wear behavior of these new materials. MoSi2–Nb was selected as a model composite system, in part because of the wide body of open literature regarding this system. The influences of abrasive wear environment and the composite microstructure (Nb reinforcement size, shape and volume fraction) on the wear resistance of the composites are reported.

  20. Randomised in situ study on the efficacy of a tin/chitosan toothpaste on erosive-abrasive enamel loss.

    PubMed

    Schlueter, N; Klimek, J; Ganss, C

    2013-01-01

    Tin is a notable anti-erosive agent, and the biopolymer chitosan has also shown demineralisation-inhibiting properties. Therefore, the anti-erosive/anti-abrasive efficacy of the combination of both compounds was tested under in situ conditions. Twenty-seven volunteers were included in a randomised, double-blind, three-cell crossover in situ trial. Enamel specimens were recessed on the buccal aspects of mandibular appliances, extraorally demineralised (6 × 2 min/day) and intraorally treated with toothpaste slurries (2 × 2 min/day). Within the slurry treatment time, one-half of the specimens received additional intraoral brushing (5 s, 2.5 N). The tested toothpastes included a placebo toothpaste, an experimental NaF toothpaste (1,400 ppm F(-)) and an experimental F/Sn/chitosan toothpaste (1,400 ppm F(-), 3,500 ppm Sn(2+), 0.5% chitosan). The percentage reduction of tissue loss (slurry exposure/slurry exposure + brushing) compared to placebo was 19.0 ± 47.3/21.3 ± 22.4 after use of NaF and 52.5 ± 30.9/50.2 ± 34.3 after use of F/Sn/chitosan. F/Sn/chitosan was significantly more effective than NaF (p ≤ 0.001) and showed good efficacy against erosive and erosive-abrasive tissue loss. This study suggests that the F/Sn/chitosan toothpaste could provide good protection for patients who frequently consume acidic foodstuffs. PMID:23969953

  1. Monitoring the press-fit insertion of an acetabular cup by impact measurements: influence of bone abrasion.

    PubMed

    Michel, Adrien; Bosc, Romain; Mathieu, Vincent; Hernigou, Philippe; Haiat, Guillaume

    2014-10-01

    Press-fit procedures used for the insertion of cementless hip prostheses aim at obtaining optimal implant primary stability. We have previously used the measurement of impact duration to follow the insertion of the acetabular cup implant within bone tissue. The aim of this study was to investigate the variation of the value of the impact momentum due to successive insertions of the acetabular cup into bone tissue. The results obtained with impact momentum and contact duration measurements were compared. A total of 10 bovine bone samples were subjected to three successive procedures consisting of 10 reproducible impacts (3.5 kg falling 40 mm). Each procedure aimed at inserting the acetabular cup implant into the same bone cavity. The time variation of force during each impact was recorded by a force sensor, allowing the measurement of the impact duration (I 1) and momentum (I 2). The value of I 2 increased as a function of the impact number and reached a constant value after N 2 = 5.07 ± 1.31 impacts. Moreover, statistical analyses show that N 2 decreased significantly as a function of the number of experiments, which may be due to abrasion phenomena at the bone-implant interface. Abrasion phenomena led to a faster insertion of the acetabular cup when the implant had been previously inserted into the same bone cavity. An empirical analytical model considering a flat punch configuration to model the bone-implant contact conditions was used to understand the trend of the variation of I 2 during the insertion of the acetabular cup. The measurement of the force during impacts is useful to assess the bone-implant interface properties, but needs to be validated in the clinic to be useful for orthopaedic surgeons intra-operatively. PMID:25258009

  2. Burried MIS 5 abrasion platforms in the Bay of Koper (Gulf of Trieste, Northern Adriatic) confirm long-term subsidence of the Northern Adriatic region

    NASA Astrophysics Data System (ADS)

    Trobec, Ana; Šmuc, Andrej; Poglajen, Sašo; Vrabec, Marko

    2016-04-01

    The youngest seafloor sediments of the Gulf of Trieste (Northern Adriatic) are represented by an up to several 100 meters thick succession of Pliocene to Quaternary continental and shallow-marine deposits recording numerous transgressive-regressive cycles. These sediments are separated from older lithologies (mainly Eocene flysch) by an erosional unconformity. Previous geophysical campaigns conducted in the Italian part of the Gulf of Trieste revealed a complex undulating morphology of the unconformity characterised by numerous morphological steps in the flysch appearing between 40 and 200 m below sea level. From correlation with onshore well data from the Friuli and Veneto area it is assumed that the highest system of these unconformities located at approximately 40 mbsl represents a marine abrasion platform formed during the MIS 5 period sea-level highstand. We present the first observations of these abrasion platforms in the Bay of Koper in the southern (Slovenian) part of the Gulf of Trieste. A series of perpendicular sub-bottom sonar profiles with a spacing of 250-500 meters was acquired in the Bay of Koper between 2009 and 2012 with the Innomar parametric sediment echo sounder SES-2000. Along the northern coast of the bay several acoustic facies were resolved, including the top erosional unconformity surface of the flysch. On this surface we located platforms at 35 ms (platform A), 40 ms (platform B) and 50 ms (platform C) of two-way-travel time. The top of abrasion platform B coincides with the top of a sediment progradational wedge which overlies abrasion platform C. No progradational wedge is developed at the top of platform A. Due to signal attenuation and multiples sub-bottom profiles could not be interpreted below 53 ms TWT time. We used a sound velocity of 1650 m/s for the time to depth conversion, which places the platforms at the depth of 28, 33 and 41 mbsl, respectively. Assuming that the abrasion platforms are a remnant of the MIS 5 highstand, this

  3. Transport-induced abrasion of fossil reptilian teeth: Implications for the existence of Tertiary dinosaurs in the Hell Creek Formation, Montana

    NASA Astrophysics Data System (ADS)

    Argast, Scott; Farlow, James O.; Gabet, Rose M.; Brinkman, Daniel L.

    1987-10-01

    The experimental transport-induced abrasion of five fossil teeth from a crocodilian and the tyrannosaurid dinosaur Albertosaurus demonstrates that enamel-coated teeth are minimally affected by abrasion associated with sediment-transport processes. After the equivalent of 360 480 km of transport, two teeth showed slight loss of weight, scratches were developed on the surface of one tooth, there were slight enlargements of the areas between adjacent serrations of one tooth, and a pit in the exposed dentine of one tooth was abraded smooth. These changes would have been difficult to recognize if the teeth had not been examined before the start of the experiment. Our results suggest that dinosaur teeth are abraded so slowly by transport processes that they provide equivocal evidence for limited transport and reworking.

  4. Investigation of the Effect of Tungsten Substitution on Microstructure and Abrasive Wear Performance of In Situ VC-Reinforced High-Manganese Austenitic Steel Matrix Composite

    NASA Astrophysics Data System (ADS)

    Moghaddam, Emad Galin; Karimzadeh, Neda; Varahram, Naser; Davami, Parviz

    2013-08-01

    Particulate VC-reinforced high-manganese austenitic steel matrix composites with different vanadium and tungsten contents were synthesized by conventional alloying and casting route. Microstructural characterizations showed that the composites processed by in situ precipitation of the reinforcements were composed of V8C7 particulates distributed in an austenitic matrix. It was observed that addition of tungsten to austenite increases work-hardening rate of subsurface layer during pin-on disk wear test. The maximum abrasive wear resistance was achieved at tungsten content equal to 2 wt pct. However, excessive addition of tungsten promoted the formation of W3C phase and reduced the abrasive wear resistance because of decrease in distribution homogeneity and volume fraction of the reinforcing VC particles.

  5. Effects of gill abrasion and experimental infection with Tenacibaculum maritimum on the respiratory physiology of Atlantic salmon Salmo salar affected by amoebic gill disease.

    PubMed

    Powell, Mark D; Harris, James O; Carson, Jeremy; Hill, Jonathan V

    2005-02-28

    The effects of gill abrasion and experimental infection with Tenacibaculum maritimum were assessed in Atlantic salmon Salmo salar with underlying amoebic gill disease. The respiratory and acid-base parameters arterial oxygen tension (P(a)O2), arterial whole blood oxygen content (C(a)O2), arterial pH (pHa), haematocrit and haemoglobin concentrations were measured at intervals over a 48 h recovery period following surgical cannulation of the dorsal aorta. Mortality rates over the recovery period were variable, with gill abrasion and inoculation with T. maritimum causing the highest initial mortality rate and unabraded, uninoculated controls showing the lowest overall mortality rate. Fish with abraded gills tended to show reduced P(a)O2 and lower C(a)O2 compared with unabraded fish. Infection with T. maritimum had no effect on P(a)O2 or C(a)O2. All fish showed an initial alkalosis at 24 h post-surgery/inoculation which was more pronounced in fish inoculated with T. maritimum. There were no significant effects of gill abrasion or infection upon the ratio of oxygen specifically bound to haemoglobin or mean cellular haemoglobin concentration. Histologically, 48 h following surgery, abraded gills showed multifocal hyperplastic lesions with pronounced branchial congestion and telangiectasis, and those inoculated with T. maritimum exhibited focal areas of branchial necrosis and erosion associated with filamentous bacterial mats. All fish examined showed signs of amoebic gill disease with multifocal hyperplastic and spongious lesions with parasome-containing amoeba associated with the gill epithelium. The results suggest that respiratory compromise occurred as a consequence of gill abrasion rather than infection with T. maritimum. PMID:15819432

  6. Test chamber and forensic microscopy investigation of the transfer of brominated flame retardants into indoor dust via abrasion of source materials.

    PubMed

    Rauert, C; Harrad, S; Suzuki, G; Takigami, H; Uchida, N; Takata, K

    2014-09-15

    Brominated flame retardants (BFRs) have been detected in indoor dust in many studies, at concentrations spanning several orders of magnitude. Limited information is available on the pathways via which BFRs migrate from treated products into dust, yet the different mechanisms hypothesized to date may provide an explanation for the range of reported concentrations. In particular, transfer of BFRs to dust via abrasion of particles or fibers from treated products may explain elevated concentrations (up to 210 mg g(-1)) of low volatility BFRs like decabromodiphenyl ether (BDE-209). In this study, an indoor dust sample containing a low concentration of hexabromocyclododecane, or HBCD, (110 ng g(-1) ΣHBCDs) was placed on the floor of an in-house test chamber. A fabric curtain treated with HBCDs was placed on a mesh shelf 3 cm above the chamber floor and abrasion induced using a stirrer bar. This induced abrasion generated fibers of the curtain, which contaminated the dust, and ΣHBCD concentrations in the dust increased to between 4020 and 52 500 ng g(-1) for four different abrasion experiment times. The highly contaminated dust (ΣHBCD at 52 500 ng g(-1)) together with three archived dust samples from various UK microenvironments, were investigated with forensic microscopy techniques. These techniques included Micro X-ray fluorescent spectroscopy, scanning emission microscopy coupled with an energy dispersive X-ray spectrometer, Fourier transform infrared spectroscopy with further BFR analysis on LC-MS/MS. Using these techniques, fibers or particles abraded from a product treated with BFRs were identified in all dust samples, thereby accounting for the elevated concentrations detected in the original dust (3500 to 88 800 ng g(-1) ΣHBCD and 24 000 to 1,438 000 ng g(-1) for BDE-209). This study shows how test chamber experiments alongside forensic microscopy techniques, can provide valuable insights into the pathways via which BFRs contaminate indoor dust. PMID:24984234

  7. An abrasion-resistant and broadband antireflective silica coating by block copolymer assisted sol-gel method.

    PubMed

    Zou, Liping; Li, Xiaoguang; Zhang, Qinghua; Shen, Jun

    2014-09-01

    A double-layer broadband antireflective (AR) coating was prepared on glass substrate via sol-gel process using two kinds of acid-catalyzed TEOS-derived silica sols. The relative dense layer with a porosity of ∼10% was obtained from an as-prepared sol, while the porous layer with a porosity of ∼55% was from a modified one with block copolymer (BCP) Pluronic F127 as template which results in abundant ordered mesopores. The two layers give rise to a reasonable refractive index gradient from air to the substrate and thus high transmittance in a wide wavelength range, and both of them have the same tough skeleton despite different porosity, for which each single-layer and the double-layer coatings all behaved well in the mechanical property tests. The high transmittance and the strong ability of resisting abrasion make this coating promising for applications in some harsh conditions. In addition, the preparation is simple, low-cost, time-saving, and flexible for realizing the optical property. PMID:25117300

  8. Massachusetts Beryllium Screening Program for Former Workers of Wyman-Gordon, Norton Abrasives, and MIT/Nuclear Metals

    SciTech Connect

    Pepper, L. D.

    2008-05-21

    The overall objective of this project was to provide medical screening to former workers of Wyman-Gordon Company, Norton Abrasives, and MIT/Nuclear Metals (NMI) in order to prevent and minimize the health impact of diseases caused by site related workplace exposures to beryllium. The program was developed in response to a request by the U.S. Department of Energy (DOE) that had been authorized by Congress in Section 3162 of the 1993 Defense Authorization Act, urging the DOE to carry out a program for the identification and ongoing evaluation of current and former DOE employees who are subjected to significant health risks during such employment." This program, funded by the DOE, was an amendment to the medical surveillance program for former DOE workers at the Nevada Test Site (NTS). This program's scope included workers who had worked for organizations that provided beryllium products or materials to the DOE as part of their nuclear weapons program. These organizations have been identified as Beryllium Vendors.

  9. From synchrotron radiation to lab source: advanced speckle-based X-ray imaging using abrasive paper

    PubMed Central

    Wang, Hongchang; Kashyap, Yogesh; Sawhney, Kawal

    2016-01-01

    X-ray phase and dark-field imaging techniques provide complementary and inaccessible information compared to conventional X-ray absorption or visible light imaging. However, such methods typically require sophisticated experimental apparatus or X-ray beams with specific properties. Recently, an X-ray speckle-based technique has shown great potential for X-ray phase and dark-field imaging using a simple experimental arrangement. However, it still suffers from either poor resolution or the time consuming process of collecting a large number of images. To overcome these limitations, in this report we demonstrate that absorption, dark-field, phase contrast, and two orthogonal differential phase contrast images can simultaneously be generated by scanning a piece of abrasive paper in only one direction. We propose a novel theoretical approach to quantitatively extract the above five images by utilising the remarkable properties of speckles. Importantly, the technique has been extended from a synchrotron light source to utilise a lab-based microfocus X-ray source and flat panel detector. Removing the need to raster the optics in two directions significantly reduces the acquisition time and absorbed dose, which can be of vital importance for many biological samples. This new imaging method could potentially provide a breakthrough for numerous practical imaging applications in biomedical research and materials science. PMID:26847921

  10. A patterned abrasion caused by the impact of a cartridge case may simulate an atypical muzzle imprint mark.

    PubMed

    Kramer, Lena; Nadjem, Hadi; Glardon, Matthieu; Kneubuehl, Beat P; Pollak, Stefan; Große Perdekamp, Markus; Pircher, Rebecca

    2016-05-01

    In contact shots, the muzzle imprint is an informative finding associated with the entrance wound. It typically mirrors the constructional components being in line with the muzzle or just behind. Under special conditions, other patterned skin marks located near a gunshot entrance wound may give the impression to be part of the muzzle imprint. A potential mechanism causing a patterned pressure abrasion in close proximity to the bullet entrance site is demonstrated on the basis of a suicidal shot to the temple. The skin lesion in question appeared as a ring-shaped excoriation with a diameter corresponding to that of the cartridge case. Two hypotheses concerning the causative mechanism were investigated by test shots: - After being ejected, the cartridge case ricocheted inside a confined space (car cabin in the particular case) and secondarily hit the skin near the gunshot entrance wound. - The ejection of the cartridge case failed so that the case became stuck in the ejection port and its mouth contacted the skin when the body collapsed after being hit. PMID:26496804

  11. Search for magnetic minerals in Martian rocks: Overview of the Rock Abrasion Tool (RAT) magnet investigation on Spirit and Opportunity

    NASA Astrophysics Data System (ADS)

    Goetz, Walter; Leer, Kristoffer; Gunnlaugsson, Haraldur P.; Bartlett, Paul; Basso, Brandon; Bell, Jim; Bertelsen, Preben; Binau, Charlotte S.; Chu, Phillip C.; Gorevan, S.; Hansen, Mikkel F.; Hviid, Stubbe F.; Kinch, Kjartan M.; Klingelhöfer, Göstar; Kusack, Alastair; Madsen, Morten B.; Ming, Douglas W.; Morris, Richard V.; Mumm, Erik; Myrick, Tom; Olsen, Malte; Squyres, Steven W.; Wilson, Jack; Yen, Albert

    2008-05-01

    The Rock Abrasion Tool (RAT) on board the Mars Exploration Rovers (MER) is a grinding tool designed to remove dust coatings and/or weathering rinds from rocks and expose fresh rock material. Four magnets of different strengths that are built into the structure of the RAT have been attracting substantial amounts of magnetic material during RAT activities from rocks throughout both rover missions. The RAT magnet experiment as performed on Spirit demonstrates the presence of a strongly ferrimagnetic phase in Gusev crater rocks, which based on Mössbauer and visible/near-infrared reflectance spectra is interpreted as magnetite. The amount of abraded rock material adhering to the magnets varied strongly during the mission and is correlated in a consistent way to the amount of magnetite inferred from Mössbauer spectra for the corresponding rock. The RAT magnet experiment as performed on Opportunity also indicates the presence of a strongly ferrimagnetic phase in outcrops, such as magnetite or an altered version of magnetite. However, the evidence is weaker than in the case of Spirit. According to data from the α particle X-ray spectrometer (APXS) and the Mössbauer spectrometer (MB), the Eagle crater outcrops should not contain magnetite and their magnetization should not exceed 0.03 A m2 kg-1. However, this assertion seems to be in contradiction with the results of the RAT magnet experiment. The evidence for a strongly ferrimagnetic phase at low abundance in the Meridiani outcrops is discussed.

  12. Structural and chemical characteristics of atomically smooth GaN surfaces prepared by abrasive-free polishing with Pt catalyst

    NASA Astrophysics Data System (ADS)

    Murata, Junji; Sadakuni, Shun; Okamoto, Takeshi; Hattori, Azusa N.; Yagi, Keita; Sano, Yasuhisa; Arima, Kenta; Yamauchi, Kazuto

    2012-06-01

    This paper reports the structural and chemical characteristics of atomically flat gallium nitride (GaN) surfaces prepared by abrasive-free polishing with platinum (Pt) catalyst. Atomic force microscopy revealed regularly alternating wide and narrow terraces with a step height equivalent to that of a single bilayer on the flattened GaN surfaces, which originate from the differences in etching rate of two neighboring terraces. The material removal characteristics of the method for GaN surfaces were investigated in detail. We confirmed that an atomically smooth GaN surface with an extremely small number of surface defects, including pits and scratches, can be achieved, regardless of the growth method, surface polarity, and doping concentration. X-ray photoelectron spectroscopy showed that the flattening method produces clean GaN surfaces with only trace impurities such as Ga oxide and metallic Ga. Contamination with the Pt catalyst was also evaluated using total-reflection X-ray fluorescence analysis. A wet cleaning method with aqua regia is proposed, which markedly eliminates this Pt contamination without affecting the surface morphology.

  13. Abrasion behavior of aluminum and composite skin coupons, stiffened skins and stiffened panels representative of transport airplane structures

    NASA Technical Reports Server (NTRS)

    Jackson, K. E.

    1985-01-01

    A three-phase investigation was conducted to compare the friction and wear response of aluminum and graphite-epoxy composite materials when subjected to loading conditions similar to those experienced by the skin panels on the underside of a transport airplane during an emergency belly landing on a runway surface. The first phase involved a laboratory test which used a standard belt sander to provide the sliding abrasive surface. Small skin-coupon test specimens were abraded over a range of pressures and velocities to determine the effects of these variables on the coefficient of friction and wear rate. The second phase involved abrading I-beam stiffened skins on actual runway surface over the same range of pressures and velocities used in the first phase. In the third phase, large stiffened panels which most closely resembled transport fuelage skin construction were abraded on a runway surface. This report presents results from each phase of the investigation and shows comparisons between the friction and wear behavior of the aluminum and graphite-epoxy composite materials.

  14. Postoperative anti-adhesion ability of a novel carboxymethyl chitosan from silkworm pupa in a rat cecal abrasion model.

    PubMed

    Zhu, Lin; Zhang, Yu-Qing

    2016-04-01

    N,O-Carboxymethyl chitosan (NOCC) can prevent postsurgical adhesion formation. Here, we described the preparation of a novel silkworm pupa NOCC and its effects on the prevention of postoperative adhesion in a rat cecal abrasion model. The degree of deacetylation (DDA) of silkworm pupa chitosan was only 49.87 ± 0.86%; regardless, it was used as the raw material to construct the novel silkworm pupa NOCC, which had a weaker crystallinity than the NOCC standard. Sixty male Sprague-Dawley rats were divided into three groups and treated as follows: 0.9% normal saline solution as a negative control, medical anti-adhesion gel as a positive control and the silkworm pupa NOCC anti-adhesion solution. Two and three weeks after surgery, the animals were killed and the adhesion formation was scored. The silkworm pupa NOCC solution significantly decreased the levels of WBC, TNF-α, IL-1β, IL-2, IL-6 and IL-8 but had no effect on IL-4. Additionally, a lower level of TGF-β1 expression was found in the silkworm pupa NOCC group, and significantly less collagen (P<0.01) and fewer inflammatory cells and fibroblasts were detected in the animals of this group. These results suggested that the novel NOCC from silkworm pupa using the method described here have potential applications in the prevention of postoperative intestinal adhesion. PMID:26838865

  15. A cellular-automata and particle-tracking simulation of abrasive jet micromachining of polymethyl-methacrylate

    NASA Astrophysics Data System (ADS)

    Ciampini, D.; Papini, M.

    2011-08-01

    A cellular automaton simulation which is able to predict the geometry of micro-features etched into ductile erosive targets, as a result of abrasive jet micromachining (AJM), is presented. Similar to a previous simulation for the AJM of brittle erosive targets, the movement of individual erodent particles is tracked in a simulated environment, including their collisions with, and ricochet from, the mask and target substrate modeled as cellular-automatons. A new cell erosion algorithm is presented in order to allow the previous simulation to be applied to the AJM of ductile materials. A previously published empirical erosion rule, which related the erosion rate of ductile substrates caused by a jet, was also proven to be applicable, to a good approximation, to single particle impacts. With this new cell erosion algorithm, the predictions of the model compared well with measurements of the surface evolution of unmasked channels, masked micro-holes and micro-channels machined in polymethyl-methacrylate. The results also highlight the importance of modeling the effect of particle size on the prediction of the size and shape of features fabricated in ductile erosive materials using AJM.

  16. Ion-Abrasion Scanning Electron Microscopy Reveals Surface-Connected Tubular Conduits in HIV-Infected Macrophages

    PubMed Central

    Bennett, Adam E.; Narayan, Kedar; Shi, Dan; Hartnell, Lisa M.; Gousset, Karine; He, Haifeng; Lowekamp, Bradley C.; Yoo, Terry S.; Bliss, Donald; Freed, Eric O.; Subramaniam, Sriram

    2009-01-01

    HIV-1-containing internal compartments are readily detected in images of thin sections from infected cells using conventional transmission electron microscopy, but the origin, connectivity, and 3D distribution of these compartments has remained controversial. Here, we report the 3D distribution of viruses in HIV-1-infected primary human macrophages using cryo-electron tomography and ion-abrasion scanning electron microscopy (IA-SEM), a recently developed approach for nanoscale 3D imaging of whole cells. Using IA-SEM, we show the presence of an extensive network of HIV-1-containing tubular compartments in infected macrophages, with diameters of ∼150–200 nm, and lengths of up to ∼5 µm that extend to the cell surface from vesicular compartments that contain assembling HIV-1 virions. These types of surface-connected tubular compartments are not observed in T cells infected with the 29/31 KE Gag-matrix mutant where the virus is targeted to multi-vesicular bodies and released into the extracellular medium. IA-SEM imaging also allows visualization of large sheet-like structures that extend outward from the surfaces of macrophages, which may bend and fold back to allow continual creation of viral compartments and virion-lined channels. This potential mechanism for efficient virus trafficking between the cell surface and interior may represent a subversion of pre-existing vesicular machinery for antigen capture, processing, sequestration, and presentation. PMID:19779568

  17. From synchrotron radiation to lab source: advanced speckle-based X-ray imaging using abrasive paper

    NASA Astrophysics Data System (ADS)

    Wang, Hongchang; Kashyap, Yogesh; Sawhney, Kawal

    2016-02-01

    X-ray phase and dark-field imaging techniques provide complementary and inaccessible information compared to conventional X-ray absorption or visible light imaging. However, such methods typically require sophisticated experimental apparatus or X-ray beams with specific properties. Recently, an X-ray speckle-based technique has shown great potential for X-ray phase and dark-field imaging using a simple experimental arrangement. However, it still suffers from either poor resolution or the time consuming process of collecting a large number of images. To overcome these limitations, in this report we demonstrate that absorption, dark-field, phase contrast, and two orthogonal differential phase contrast images can simultaneously be generated by scanning a piece of abrasive paper in only one direction. We propose a novel theoretical approach to quantitatively extract the above five images by utilising the remarkable properties of speckles. Importantly, the technique has been extended from a synchrotron light source to utilise a lab-based microfocus X-ray source and flat panel detector. Removing the need to raster the optics in two directions significantly reduces the acquisition time and absorbed dose, which can be of vital importance for many biological samples. This new imaging method could potentially provide a breakthrough for numerous practical imaging applications in biomedical research and materials science.

  18. Editor's Highlight: Abrasion of Artificial Stones as a New Cause of an Ancient Disease. Physicochemical Features and Cellular Responses.

    PubMed

    Pavan, Cristina; Polimeni, Manuela; Tomatis, Maura; Corazzari, Ingrid; Turci, Francesco; Ghigo, Dario; Fubini, Bice

    2016-09-01

    New outbursts of silicosis were recently reported among workers manufacturing an engineered material known as "artificial stone," composed by high percentages of quartz (up to 98%) agglomerated with pigments and polymeric resins. Dusts released by abrasion during artificial stone polishing were characterized for particle size, morphology, and elemental composition and studied for (1) ability to catalyze free radical generation in acellular tests, (2) membranolytic potential on human erythrocytes, (3) cytotoxic activity (lactate dehydrogenase release) on murine alveolar macrophages (MH-S) and human bronchial epithelial (BEAS-2B) cell lines, (4) induction of epithelial-mesenchymal transition (EMT) in BEAS-2B cells. Min-U-Sil 5 was used as reference quartz. Artificial stone dusts exhibited morphological features close to quartz, but contained larger amount of metal transition ions (mainly, Fe, Cu, and Ti), potentially responsible for the high reactivity in free radical generation observed. Opposite to Min-U-Sil 5, they were neither hemolytic nor cytotoxic on MH-S cells, a low cytotoxicity only being observed with BEAS-2B cells. The presence on the particle surface of residues of the resin accounts for this attenuated behavior, as hemolysis appeared and cytotoxicity increased after thermal degradation of the resin, when the free quartz surface was exposed. All dusts induced EMT with loss of E-cadherin expression and increased the expression of mesenchymal proteins (α-smooth muscle actin and vimentin). This may contribute to explain the development of fibrosis on workers exposed to artificial stone dusts. PMID:27255382

  19. γδ T Cells Are Necessary for Platelet and Neutrophil Accumulation in Limbal Vessels and Efficient Epithelial Repair after Corneal Abrasion

    PubMed Central

    Li, Zhijie; Burns, Alan R.; Rumbaut, Rolando E.; Smith, C. Wayne

    2007-01-01

    Corneal epithelial abrasion in C57BL/6 mice induces an inflammatory response with peak accumulation of neutrophils in the corneal stroma within 12 hours. Platelets localize in the limbal vessels throughout the same time course as neutrophils and contribute to wound healing because antibody-dependent depletion of platelets retards epithelial division and wound closure. In the present study, T cells in the limbal epithelium were found to predominantly express the γδ T-cell receptor (TCR). Corneal abrasion in wild-type, CD11a−/−, and P-sel−/− mice increased the numbers of γδ T cells in the limbal and peripheral corneal epithelium and in the corneal stroma adjacent to the limbal blood vessels. Intercellular adhesion molecule (ICAM)-1−/− mice exhibited a reduction in γδ T-cell accumulation. TCRδ−/− mice exhibited reduced inflammation and delayed epithelial wound healing as evidenced by delayed wound closure, reduced epithelial cell division, reduced neutrophil infiltration, and reduced epithelial cell density at 96 hours after wounding. TCRδ−/− mice also exhibited >60% reduction in platelet localization in the limbus despite similar platelet counts and platelet function assessed with an in vivo thrombosis model. These results are consistent with the conclusion that γδ T cells are necessary for efficient inflammation, platelet localization in the limbus, and epithelial wound healing after corneal abrasion. PMID:17675580

  20. Effect of Experimental Variables of Abrasive Wear on 3D Surface Roughness and Wear Rate of Al-4.5 % Cu Alloy

    NASA Astrophysics Data System (ADS)

    Ghosh, Debashis; Mallik, Manab; Mandal, Nilrudra; Dutta, Samik; Roy, Himadri; Lohar, Aditya Kumar

    2016-05-01

    This investigation was primarily carried out to examine the abrasive wear behavior of as cast Al-4.5 % Cu alloy. Wear tests have been carried out using an abrasive wear machine with emery paper embedded with SiC particles acting as abrasive medium. The experiments were planned using central composite design, with, load, cycle and grit size as input variables, whereas wear rate and 3D roughness were considered as output variable. Analysis of variance was applied to check the adequacy of the mathematical model and their respective parameters. Microstructural investigations of the worn surfaces have been carried out to explain the observed results and to understand the wear micro-mechanisms as per the planned experiments. Desirability function optimization technique was finally employed to optimize the controlling factors. The observed results revealed that, grit size plays a significant role in the variation of wear rate and 3D roughness as compared to load and cycles. Based on the significance of interactions, the regression equations were derived and verified further with a number of confirmation runs to assess the adequacy of the model. A close agreement (±10 %) between the predicted and experimentally measured results was obtained from this investigation.