Sample records for abrasive jet micromachining

  1. Feasibility Study on Cutting HTPB Propellants with Abrasive Water Jet

    NASA Astrophysics Data System (ADS)

    Jiang, Dayong; Bai, Yun

    2018-01-01

    Abrasive water jet is used to carry out the experiment research on cutting HTPB propellants with three components, which will provide technical support for the engineering treatment of waste rocket motor. Based on the reliability theory and related scientific research results, the safety and efficiency of cutting sensitive HTPB propellants by abrasive water jet were experimentally studied. The results show that the safety reliability is not less than 99.52% at 90% confidence level, so the safety is adequately ensured. The cooling and anti-friction effect of high-speed water jet is the decisive factor to suppress the detonation of HTPB propellant. Compared with pure water jet, cutting efficiency was increased by 5% - 87%. The study shows that abrasive water jets meet the practical use for cutting HTPB propellants.

  2. Design of a new abrasive slurry jet generator

    NASA Astrophysics Data System (ADS)

    Wang, F. C.; Shi, L. L.; Guo, C. W.

    2017-12-01

    With the advantages of a low system working pressure, good jet convergence and high cutting quality, abrasive slurry jet (ASJ) has broad application prospects in material cutting and equipment cleaning. Considering that the generator plays a crucial role in ASJ system, the paper designed a new type ASJ generator using an electric oil pump, a separate plunger cylinder, and a spring energized seal. According to the determining of structure shape, size and seal type, a new ASJ generator has been manufactured out and tested by a series of experiments. The new generator separates the abrasive slurry from the dynamic hydraulic oil, which can improve the service life of the ASJ system. And the new ASJ system can reach 40 MPa and has good performance in jet convergence, which deserves to popularization and application in materials machining.

  3. Computational Fluid Dynamic Simulation of Flow in Abrasive Water Jet Machining

    NASA Astrophysics Data System (ADS)

    Venugopal, S.; Sathish, S.; Jothi Prakash, V. M.; Gopalakrishnan, T.

    2017-03-01

    Abrasive water jet cutting is one of the most recently developed non-traditional manufacturing technologies. In this machining, the abrasives are mixed with suspended liquid to form semi liquid mixture. The general nature of flow through the machining, results in fleeting wear of the nozzle which decrease the cutting performance. The inlet pressure of the abrasive water suspension has main effect on the major destruction characteristics of the inner surface of the nozzle. The aim of the project is to analyze the effect of inlet pressure on wall shear and exit kinetic energy. The analysis could be carried out by changing the taper angle of the nozzle, so as to obtain optimized process parameters for minimum nozzle wear. The two phase flow analysis would be carried by using computational fluid dynamics tool CFX. It is also used to analyze the flow characteristics of abrasive water jet machining on the inner surface of the nozzle. The availability of optimized process parameters of abrasive water jet machining (AWJM) is limited to water and experimental test can be cost prohibitive. In this case, Computational fluid dynamics analysis would provide better results.

  4. The Laser MicroJet (LMJ): a multi-solution technology for high quality micro-machining

    NASA Astrophysics Data System (ADS)

    Mai, Tuan Anh; Richerzhagen, Bernold; Snowdon, Paul C.; Wood, David; Maropoulos, Paul G.

    2007-02-01

    The field of laser micromachining is highly diverse. There are many different types of lasers available in the market. Due to their differences in irradiating wavelength, output power and pulse characteristic they can be selected for different applications depending on material and feature size [1]. The main issues by using these lasers are heat damages, contamination and low ablation rates. This report examines on the application of the Laser MicroJet(R) (LMJ), a unique combination of a laser beam with a hair-thin water jet as a universal tool for micro-machining of MEMS substrates, as well as ferrous and non-ferrous materials. The materials include gallium arsenide (GaAs) & silicon wafers, steel, tantalum and alumina ceramic. A Nd:YAG laser operating at 1064 nm (infra red) and frequency doubled 532 nm (green) were employed for the micro-machining of these materials.

  5. Computational Fluid Dynamics Analysis of Nozzle in Abrasive Water Jet Machining

    NASA Astrophysics Data System (ADS)

    Venugopal, S.; Chandresekaran, M.; Muthuraman, V.; Sathish, S.

    2017-03-01

    Abrasive water jet cutting is one of the most recently developed non-traditional manufacturing technologies. The general nature of flow through the machining, results in rapid wear of the nozzle which decrease the cutting performance. It is well known that the inlet pressure of the abrasive water suspension has main effect on the erosion characteristics of the inner surface of the nozzle. The objective of the project is to analyze the effect of inlet pressure on wall shear and exit kinetic energy. The analysis would be carried out by varying the inlet pressure of the nozzle, so as to obtain optimized process parameters for minimum nozzle wear. The two phase flow analysis would be carried by using computational fluid dynamics tool CFX. The availability of minimized process parameters such as of abrasive water jet machining (AWJM) is limited to water and experimental test can be cost prohibitive.

  6. Casing window milling with abrasive fluid jet

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Vestavik, O.M.; Fidtje, T.H.; Faure, A.M.

    1995-12-31

    Methods for through tubing re-entry drilling of multilateral wells has a large potential for increasing hydrocarbon production and total recovery. One of the bottle-necks of this technology is initiation of the side-track by milling a window in the casing downhole. A new approach to this problem has been investigated in a joint industry project. An experimental set-up has been built for milling a 4 inch window in a 7 inch steel casing at surface in the laboratory. A specially designed bit developed at RIF using abrasive jet cutting technology has been used for the window milling. The bit has anmore » abrasive jet beam which is always directed in the desired side-track direction, even if the bit is rotating uniformly. The bit performs the milling with a combined mechanical and hydraulic jet action. The method has been successfully demonstrated. The experiments has shown that the window milling can be performed with very low WOB and torque, and that only small side forces are required to perform the operation. Casing milling has been performed without a whipstock, a cement plug has been the only support for the tool. The tests indicate that milling operations can be performed more efficiently with less time and costs than what is required with conventional techniques. However, the method still needs some development of the downhole motor for coiled tubing applications. The method can be used both for milling and drilling giving the advantage of improved rate of penetration, improved bit life and increased horizontal reach. The method is planned to be demonstrated downhole in the near future.« less

  7. Development of underwater cutting system by abrasive water-jet

    NASA Astrophysics Data System (ADS)

    Demura, Kenji; Yamaguchi, Hitoshi

    1993-09-01

    The technology to cut objects in the ocean's depths with abrasive water jets was examined for possible application in view of the greater water depths and sophistication involved in work on the ocean floor today. A test model was developed to study this technology's safety and practicability. The test model was designed for use at great water depths and has functions and a configuration that are unlike equipment used on land. A continuous, stable supply of abrasive is a distinctive design feature. In land applications, there had been problems with plugged tubes and an uneven supply. For this reason, the abrasive was converted to slurry form, and a continuous pressurized tube pump system was adopted for supply to the nozzle head. Also, a hydraulic motor that does not employ oil or electric power was used to provide an underwater drive that is environment-friendly. The report outlines the technology's general design concept including its distinctive functions and its configuration for use at great depths, and the report provides great detail on the equipment.

  8. A study on practical use of underwater abrasive water jet cutting

    NASA Astrophysics Data System (ADS)

    Yamaguchi, Hitoshi; Demura, Kenji

    1993-09-01

    The practicality of underwater abrasive water jet cutting technology was studied in experiments. A study of abrasives in slurried form showed that optimum polymer concentration can be selected to suit underwater conditions. For the long-distance transport of slurry from the ocean surface to the ocean floor, a direct supply system by hose proved to be practical. This system takes advantage of the insolubility of the slurry in water due to a difference in specific gravity. For cutting thick steel plate at great ocean depths, a simulation with a pressurized container revealed the requirements for actual cutting. Confirmation of remote cutting operations will become the most important technology in field applications. Underwater sound vibration characteristics were found to change significantly in direct response to modifications in cutting conditions. This will be important basic data to develop an effective sensoring method.

  9. Optimization of Profile and Material of Abrasive Water Jet Nozzle

    NASA Astrophysics Data System (ADS)

    Anand Bala Selwin, K. P.; Ramachandran, S.

    2017-05-01

    The objective of this work is to study the behaviour of the abrasive water jet nozzle with different profiles and materials. Taguchi-Grey relational analysis optimization technique is used to optimize the value with different material and different profiles. Initially the 3D models of the nozzle are modelled with different profiles by changing the tapered inlet angle of the nozzle. The different profile models are analysed with different materials and the results are optimized. The optimized results would give the better result taking wear and machining behaviour of the nozzle.

  10. Removal of single point diamond-turning marks by abrasive jet polishing.

    PubMed

    Li, Z Z; Wang, J M; Peng, X Q; Ho, L T; Yin, Z Q; Li, S Y; Cheung, C F

    2011-06-01

    Single point diamond turning (SPDT) is highly controllable and versatile in producing axially symmetric forms, non-axially-symmetric forms, microstructured surfaces, and free forms. However, the fine SPDT marks left in the surface limit its performance, and they are difficult to reduce or eliminate. It is unpractical for traditional methods to remove the fine marks without destroying their forms, especially for the aspheres and free forms. This paper introduces abrasive jet polishing (AJP) for the posttreatment of diamond-turned surfaces to remove the periodic microstructures. Samples of diamond-turned electroless nickel plated plano mirror were used in the experiments. One sample with an original surface roughness of more than 400 nm decreased to 4 nm after two iterations abrasive jet polishing; the surface roughness of another sample went from 3.7 nm to 1.4 nm after polishing. The periodic signatures on both of the samples were removed entirely after polishing. Contrastive experimental research was carried out on electroless nickel mirror with magnetorheological finishing, computer controlled optical surfacing, and AJP. The experimental results indicate that AJP is more appropriate in removing the periodic SPDT marks. Also, a figure maintaining experiment was carried out with the AJP process; the uniform polishing process shows that the AJP process can remove the periodic turning marks without destroying the original form.

  11. Abrasive slurry jet cutting model based on fuzzy relations

    NASA Astrophysics Data System (ADS)

    Qiang, C. H.; Guo, C. W.

    2017-12-01

    The cutting process of pre-mixed abrasive slurry or suspension jet (ASJ) is a complex process affected by many factors, and there is a highly nonlinear relationship between the cutting parameters and cutting quality. In this paper, guided by fuzzy theory, the fuzzy cutting model of ASJ was developed. In the modeling of surface roughness, the upper surface roughness prediction model and the lower surface roughness prediction model were established respectively. The adaptive fuzzy inference system combines the learning mechanism of neural networks and the linguistic reasoning ability of the fuzzy system, membership functions, and fuzzy rules are obtained by adaptive adjustment. Therefore, the modeling process is fast and effective. In this paper, the ANFIS module of MATLAB fuzzy logic toolbox was used to establish the fuzzy cutting model of ASJ, which is found to be quite instrumental to ASJ cutting applications.

  12. Micromachined Fluid Inertial Sensors

    PubMed Central

    Liu, Shiqiang; Zhu, Rong

    2017-01-01

    Micromachined fluid inertial sensors are an important class of inertial sensors, which mainly includes thermal accelerometers and fluid gyroscopes, which have now been developed since the end of the last century for about 20 years. Compared with conventional silicon or quartz inertial sensors, the fluid inertial sensors use a fluid instead of a solid proof mass as the moving and sensitive element, and thus offer advantages of simple structures, low cost, high shock resistance, and large measurement ranges while the sensitivity and bandwidth are not competitive. Many studies and various designs have been reported in the past two decades. This review firstly introduces the working principles of fluid inertial sensors, followed by the relevant research developments. The micromachined thermal accelerometers based on thermal convection have developed maturely and become commercialized. However, the micromachined fluid gyroscopes, which are based on jet flow or thermal flow, are less mature. The key issues and technologies of the thermal accelerometers, mainly including bandwidth, temperature compensation, monolithic integration of tri-axis accelerometers and strategies for high production yields are also summarized and discussed. For the micromachined fluid gyroscopes, improving integration and sensitivity, reducing thermal errors and cross coupling errors are the issues of most concern. PMID:28216569

  13. Effect of abrasive water jet on the structure of the surface layer of Al-Mg alloy

    NASA Astrophysics Data System (ADS)

    Tabatchikova, T. I.; Tereshchenko, N. A.; Yakovleva, I. L.; Gudnev, N. Z.

    2017-09-01

    Optical, scanning, and transmission electron microscopy methods, and X-ray diffraction analysis have been used to study the changes in the structure and the microhardness in the surface layer of the Al-Mg (5.8-6.8 wt %) alloy after water jet cutting. The dislocation density, the sizes of coherent scattering regions, and microdistortions have been determined. The transformation of the fine structure has been revealed in the displacement from the alloy volume to the abrasive-waterjet cutting surface.

  14. Air-Abrasive Disinfection of Implant Surfaces in a Simulated Model of Periimplantitis.

    PubMed

    Quintero, David George; Taylor, Robert Bonnie; Miller, Matthew Braden; Merchant, Keith Roshanali; Pasieta, Scott Anthony

    2017-06-01

    This in vitro study aimed to evaluate the ability of air-powder abrasion to decontaminate dental implants. Twenty-six implants were inoculated with a Streptococcus sanguinis biofilm media in a novel periimplantitis defect model. Six implants served as controls, and 20 implants were disinfected with either the Cavitron JET Plus or the AIR-FLOW PERIO air-powder abrasion units. Residual bacteria were cultured, and colony forming units (CFUs) were totaled at 24 hours. As expected, negative control implant cultures showed no evidence of viable bacteria. Bacterial growth was observed on all positive control cultures, whereas only 15% of the experimental cultures displayed evidence of viable bacteria. The average CFU per streak for the positive control was 104 compared with a maximum of 10 and 4 CFUs for the Cavitron JET Plus and AIR-FLOW PERIO, respectively. There was a 99.9% reduction in bacteria for both air-powder abrasion instruments. Air-powder abrasion is an effective technique for the decontamination of dental implants, and the Cavitron JET Plus and AIR-FLOW PERIO are equally successful at eliminating viable bacteria from implant surfaces.

  15. Optimization and application of influence function in abrasive jet polishing.

    PubMed

    Li, Zhaoze; Li, Shengyi; Dai, Yifan; Peng, Xiaoqiang

    2010-05-20

    We analyze the material removal mechanism of abrasive jet polishing (AJP) technology, based on the fluid impact dynamics theory. Combined with the computational fluid dynamics simulation and process experiments, influence functions at different impingement angles are obtained, which are not of a regular Gaussian shape and are unfit for the corrective figuring of optics. The influence function is then optimized to obtain an ideal Gaussian shape by rotating the oblique nozzle, and its stability is validated through a line scanning experiment. The fluctuation of the influence function can be controlled within +/-5%. Based on this, we build a computed numerically controlled experimental system for AJP, and one flat BK7 optical glass with a diameter of 20mm is polished. After two iterations of polishing, the peak-to-valley value decreases from 1.43lambda (lambda=632.8nm in this paper) to 0.294lambda, and the rms value decreases from 0.195lambda to 0.029lambda. The roughness of this polished surface is within 2nm. The experimental result indicates that the optimized influence function is suitable for precision optics figuring and polishing.

  16. Effect of air abrasion and polishing on primary molar fissures.

    PubMed

    Lenzi, T L; Menezes, L B R; Soares, F Z M; Rocha, R O

    2013-04-01

    To evaluate the effect of air abrasion and polishing on primary molar fissures under light microscopy. 15 exfoliated primary second molars were longitudinally sectioned and photographed under a stereomicroscope (40×; baseline evaluation). Sections were then randomly allocated into one of the two groups (n = 15) and treated by either air abrasion (aluminium oxide jet) or air polishing (sodium bicarbonate jet) for 30 s. After treatment, sections were washed with an air/water spray, dried with absorbent paper, and photographed as previously described (final evaluation). Baseline and final morphology were compared by two blinded examiners who evaluated changes in the width and depth of fissures. The percentage of changed fissures was analysed, and the two treatments were compared using the Mann-Whitney test (α = 0.01). Both air systems resulted in fissure changes in most (93.3 %) of the sections. No significant differences in fissure width changes were found between treatments, but when changes in fissure depth were evaluated, air polishing was found to be less damaging than air abrasion (p < 0.01). Air abrasion and polishing cause changes to the anatomical configuration of occlusal fissures of primary molars.

  17. Micromachined spinneret

    DOEpatents

    Okandan, Murat; Galambos, Paul

    2007-11-06

    A micromachined spinneret is disclosed which has one or more orifices through which a fiber-forming material can be extruded to form a fiber. Each orifice is surrounded by a concentric annular orifice which allows the fiber to be temporarily or permanently coated with a co-extrudable material. The micromachined spinneret can be formed by a combination of surface and bulk micromachining.

  18. Rock Abrasion Tool Exhibits the Deep Red Pigment of Mars

    NASA Technical Reports Server (NTRS)

    2006-01-01

    During recent soil-brushing experiments, the rock abrasion tool on NASA's Mars Exploration Rover Spirit became covered with dust, as shown here. An abundance of iron oxide minerals in the dust gave the device a reddish-brown veneer. Investigators were using the rock abrasion tool to uncover successive layers of soil in an attempt to reveal near-surface stratigraphy. Afterward, remnant dirt clods were visible on both the bit and the brush of the tool. Designers of the rock abrasion tool at Honeybee Robotics and engineers at the Jet Propulsion Laboratory developed a plan to run the brush on the rock abrasion tool in reverse to dislodge the dirt and return the tool to normal operation. Subsequent communications with the rover revealed that the procedure is working and the rock abrasion tool remains healthy.

    Spirit acquired this approximately true-color image with the panoramic camera on the rover's 893rd sol, or Martian day (July 8, 2006). The image combines exposures taken through three of the camera's filters, centered on wavelengths of 750 nanometers, 530 nanometers, and 430 nanometers.

  19. A modeling of elementary passes taking into account the firing angle in abrasive water jet machining of titanium alloy

    NASA Astrophysics Data System (ADS)

    Bui, Van-Hung; Gilles, Patrick; Cohen, Guillaume; Rubio, Walter

    2018-05-01

    The use of titanium alloys in the aeronautical and high technology domains is widespread. The high strength and the low mass are two outstanding characteristics of titanium alloys which permit to produce parts for these domains. As other hard materials, it is challenging to generate 3D surfaces (e.g. pockets) when using conventional cutting methods. The development of Abrasive Water Jet Machining (AWJM) technology shows the capability to cut any kind of materials and it seems to be a good solution for such titanium materials with low specific force, low deformation of parts and low thermal shocks. Applying this technology for generating 3D surfaces requires to adopt a modelling approach. However, a general methodology results in complex models due to a lot of parameters of the machining process and based on numerous experiments. This study introduces an extended geometry model of an elementary pass when changing the firing angle during machining Ti-6AL-4V titanium alloy with a given machine configuration. Several experiments are conducted to observe the influence of major kinematic operating parameters, i.e. jet inclination angle (α) (perpendicular to the feed direction) and traverse speed (Vf). The material exposure time and the erosion capability of abrasives particles are affected directly by a variation of the traverse speed (Vf) and firing angle (α). These variations lead to different erosion rates along the kerf profile characterized by the depth and width of cut. A comparison demonstrated an efficiency of the proposed model for depth and width of elementary passes. Based on knowledge of the influence of both firing angle and traverse speed on the elementary pass shape, the proposed model allows to develop the simulation of AWJM process and paves a way for milling flat bottom pockets and 3D complex shapes.

  20. Micromachined chemical jet dispenser

    DOEpatents

    Swierkowski, Steve P.

    1999-03-02

    A dispenser for chemical fluid samples that need to be precisely ejected in size, location, and time. The dispenser is a micro-electro-mechanical systems (MEMS) device fabricated in a bonded silicon wafer and a substrate, such as glass or silicon, using integrated circuit-like fabrication technology which is amenable to mass production. The dispensing is actuated by ultrasonic transducers that efficiently produce a pressure wave in capillaries that contain the chemicals. The 10-200 .mu.m diameter capillaries can be arranged to focus in one spot or may be arranged in a larger dense linear array (.about.200 capillaries). The dispenser is analogous to some ink jet print heads for computer printers but the fluid is not heated, thus not damaging certain samples. Major applications are in biological sample handling and in analytical chemical procedures such as environmental sample analysis, medical lab analysis, or molecular biology chemistry experiments.

  1. Micromachined chemical jet dispenser

    DOEpatents

    Swierkowski, S.P.

    1999-03-02

    A dispenser is disclosed for chemical fluid samples that need to be precisely ejected in size, location, and time. The dispenser is a micro-electro-mechanical systems (MEMS) device fabricated in a bonded silicon wafer and a substrate, such as glass or silicon, using integrated circuit-like fabrication technology which is amenable to mass production. The dispensing is actuated by ultrasonic transducers that efficiently produce a pressure wave in capillaries that contain the chemicals. The 10-200 {micro}m diameter capillaries can be arranged to focus in one spot or may be arranged in a larger dense linear array (ca. 200 capillaries). The dispenser is analogous to some ink jet print heads for computer printers but the fluid is not heated, thus not damaging certain samples. Major applications are in biological sample handling and in analytical chemical procedures such as environmental sample analysis, medical lab analysis, or molecular biology chemistry experiments. 4 figs.

  2. Gage for micromachining system

    DOEpatents

    Miller, Donald M.

    1979-02-27

    A gage for measuring the contour of the surface of an element of a micromachining tool system and of a work piece machined by the micromachining tool system. The gage comprises a glass plate containing two electrical contacts and supporting a steel ball resting against the contacts. As the element or workpiece is moved against the steel ball, the very slight contact pressure causes an extremely small movement of the steel ball which breaks the electrical circuit between the two contacts. The contour information is supplied to a dedicated computer controlling the micromachining tool so that the computer knows the contour of the element and the work piece to an accuracy of .+-. 25 nm. The micromachining tool system with X- and omega-axes is used to machine spherical, aspherical, and irregular surfaces with a maximum contour error of 100 nanometers (nm) and surface waviness of no more than 0.8 nm RMS.

  3. Micromachined electrical cauterizer

    DOEpatents

    Lee, Abraham P.; Krulevitch, Peter A.; Northrup, M. Allen

    1999-01-01

    A micromachined electrical cauterizer. Microstructures are combined with microelectrodes for highly localized electro cauterization. Using boron etch stops and surface micromachining, microneedles with very smooth surfaces are made. Micromachining also allows for precision placement of electrodes by photolithography with micron sized gaps to allow for concentrated electric fields. A microcauterizer is fabricated by bulk etching silicon to form knife edges, then parallelly placed microelectrodes with gaps as small as 5 .mu.m are patterned and aligned adjacent the knife edges to provide homeostasis while cutting tissue. While most of the microelectrode lines are electrically insulated from the atmosphere by depositing and patterning silicon dioxide on the electric feedthrough portions, a window is opened in the silicon dioxide to expose the parallel microelectrode portion. This helps reduce power loss and assist in focusing the power locally for more efficient and safer procedures.

  4. Wafer scale micromachine assembly method

    DOEpatents

    Christenson, Todd R.

    2001-01-01

    A method for fusing together, using diffusion bonding, micromachine subassemblies which are separately fabricated is described. A first and second micromachine subassembly are fabricated on a first and second substrate, respectively. The substrates are positioned so that the upper surfaces of the two micromachine subassemblies face each other and are aligned so that the desired assembly results from their fusion. The upper surfaces are then brought into contact, and the assembly is subjected to conditions suited to the desired diffusion bonding.

  5. Design of experimental setup for supercritical CO2 jet under high ambient pressure conditions

    NASA Astrophysics Data System (ADS)

    Shi, Huaizhong; Li, Gensheng; He, Zhenguo; Wang, Haizhu; Zhang, Shikun

    2016-12-01

    With the commercial extraction of hydrocarbons in shale and tight reservoirs, efficient methods are needed to accelerate developing process. Supercritical CO2 (SC-CO2) jet has been considered as a potential way due to its unique fluid properties. In this article, a new setup is designed for laboratory experiment to research the SC-CO2 jet's characteristics in different jet temperatures, pressures, standoff distances, ambient pressures, etc. The setup is composed of five modules, including SC-CO2 generation system, pure SC-CO2 jet system, abrasive SC-CO2 jet system, CO2 recovery system, and data acquisition system. Now, a series of rock perforating (or case cutting) experiments have been successfully conducted using the setup about pure and abrasive SC-CO2 jet, and the results have proven the great perforating efficiency of SC-CO2 jet and the applications of this setup.

  6. Design of experimental setup for supercritical CO2 jet under high ambient pressure conditions.

    PubMed

    Shi, Huaizhong; Li, Gensheng; He, Zhenguo; Wang, Haizhu; Zhang, Shikun

    2016-12-01

    With the commercial extraction of hydrocarbons in shale and tight reservoirs, efficient methods are needed to accelerate developing process. Supercritical CO 2 (SC-CO 2 ) jet has been considered as a potential way due to its unique fluid properties. In this article, a new setup is designed for laboratory experiment to research the SC-CO 2 jet's characteristics in different jet temperatures, pressures, standoff distances, ambient pressures, etc. The setup is composed of five modules, including SC-CO 2 generation system, pure SC-CO 2 jet system, abrasive SC-CO 2 jet system, CO 2 recovery system, and data acquisition system. Now, a series of rock perforating (or case cutting) experiments have been successfully conducted using the setup about pure and abrasive SC-CO 2 jet, and the results have proven the great perforating efficiency of SC-CO 2 jet and the applications of this setup.

  7. Micromachined electrical cauterizer

    DOEpatents

    Lee, A.P.; Krulevitch, P.A.; Northrup, M.A.

    1999-08-31

    A micromachined electrical cauterizer is disclosed. Microstructures are combined with microelectrodes for highly localized electro cauterization. Using boron etch stops and surface micromachining, microneedles with very smooth surfaces are made. Micromachining also allows for precision placement of electrodes by photolithography with micron sized gaps to allow for concentrated electric fields. A microcauterizer is fabricated by bulk etching silicon to form knife edges, then parallelly placed microelectrodes with gaps as small as 5 {mu}m are patterned and aligned adjacent the knife edges to provide homeostasis while cutting tissue. While most of the microelectrode lines are electrically insulated from the atmosphere by depositing and patterning silicon dioxide on the electric feedthrough portions, a window is opened in the silicon dioxide to expose the parallel microelectrode portion. This helps reduce power loss and assist in focusing the power locally for more efficient and safer procedures. 7 figs.

  8. Micro-machined resonator

    DOEpatents

    Godshall, N.A.; Koehler, D.R.; Liang, A.Y.; Smith, B.K.

    1993-03-30

    A micro-machined resonator, typically quartz, with upper and lower micro-machinable support members, or covers, having etched wells which may be lined with conductive electrode material, between the support members is a quartz resonator having an energy trapping quartz mesa capacitively coupled to the electrode through a diaphragm; the quartz resonator is supported by either micro-machined cantilever springs or by thin layers extending over the surfaces of the support. If the diaphragm is rigid, clock applications are available, and if the diaphragm is resilient, then transducer applications can be achieved. Either the thin support layers or the conductive electrode material can be integral with the diaphragm. In any event, the covers are bonded to form a hermetic seal and the interior volume may be filled with a gas or may be evacuated. In addition, one or both of the covers may include oscillator and interface circuitry for the resonator.

  9. Micro-machined resonator

    DOEpatents

    Godshall, Ned A.; Koehler, Dale R.; Liang, Alan Y.; Smith, Bradley K.

    1993-01-01

    A micro-machined resonator, typically quartz, with upper and lower micro-machinable support members, or covers, having etched wells which may be lined with conductive electrode material, between the support members is a quartz resonator having an energy trapping quartz mesa capacitively coupled to the electrode through a diaphragm; the quartz resonator is supported by either micro-machined cantilever springs or by thin layers extending over the surfaces of the support. If the diaphragm is rigid, clock applications are available, and if the diaphragm is resilient, then transducer applications can be achieved. Either the thin support layers or the conductive electrode material can be integral with the diaphragm. In any event, the covers are bonded to form a hermetic seal and the interior volume may be filled with a gas or may be evacuated. In addition, one or both of the covers may include oscillator and interface circuitry for the resonator.

  10. Development of hybrid fluid jet/float polishing process

    NASA Astrophysics Data System (ADS)

    Beaucamp, Anthony T. H.; Namba, Yoshiharu; Freeman, Richard R.

    2013-09-01

    On one hand, the "float polishing" process consists of a tin lap having many concentric grooves, cut from a flat by single point diamond turning. This lap is rotated above a hydrostatic bearing spindle of high rigidity, damping and rotational accuracy. The optical surface thus floats above a thin layer of abrasive particles. But whilst surface texture can be smoothed to ~0.1nm rms (as measured by atomic force microscopy), this process can only be used on flat surfaces. On the other hand, the CNC "fluid jet polishing" process consists of pumping a mixture of water and abrasive particles to a converging nozzle, thus generating a polishing spot that can be moved along a tool path with tight track spacing. But whilst tool path feed can be moderated to ultra-precisely correct form error on freeform optical surfaces, surface finish improvement is generally limited to ~1.5nm rms (with fine abrasives). This paper reports on the development of a novel finishing method, that combines the advantages of "fluid jet polishing" (i.e. freeform corrective capability) with "float polishing" (i.e. super-smooth surface finish of 0.1nm rms or less). To come up with this new "hybrid" method, computational fluid dynamic modeling of both processes in COMSOL is being used to characterize abrasion conditions and adapt the process parameters of experimental fluid jet polishing equipment, including: (1) geometrical shape of nozzle, (2) position relative to the surface, (3) control of inlet pressure. This new process is aimed at finishing of next generation X-Ray / Gamma Ray focusing optics.

  11. The Development of Micromachined Gyroscope Structure and Circuitry Technology

    PubMed Central

    Xia, Dunzhu; Yu, Cheng; Kong, Lun

    2014-01-01

    This review surveys micromachined gyroscope structure and circuitry technology. The principle of micromachined gyroscopes is first introduced. Then, different kinds of MEMS gyroscope structures, materials and fabrication technologies are illustrated. Micromachined gyroscopes are mainly categorized into micromachined vibrating gyroscopes (MVGs), piezoelectric vibrating gyroscopes (PVGs), surface acoustic wave (SAW) gyroscopes, bulk acoustic wave (BAW) gyroscopes, micromachined electrostatically suspended gyroscopes (MESGs), magnetically suspended gyroscopes (MSGs), micro fiber optic gyroscopes (MFOGs), micro fluid gyroscopes (MFGs), micro atom gyroscopes (MAGs), and special micromachined gyroscopes. Next, the control electronics of micromachined gyroscopes are analyzed. The control circuits are categorized into typical circuitry and special circuitry technologies. The typical circuitry technologies include typical analog circuitry and digital circuitry, while the special circuitry consists of sigma delta, mode matching, temperature/quadrature compensation and novel special technologies. Finally, the characteristics of various typical gyroscopes and their development tendency are discussed and investigated in detail. PMID:24424468

  12. Micromachined evaporators for AMTEC cells

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Izenson, M.G.; Crowley, C.J.

    1996-12-31

    To achieve high cell efficiency and reliability, the capillary pumping system for Alkali Metal Thermal to Electric Conversion (AMTEC) must have three key characteristics: (1) very small pores to achieve a high capillary pumping head, (2) high permeability for the flow of liquid sodium to minimize internal losses, and (3) be made from a material that is exceptionally stable at high temperatures in a sodium environment. The authors have developed micromachining techniques to manufacture high performance evaporators for AMTEC cells. The evaporators have been fabricated from stainless steel, molybdenum, and a niobium alloy (Nb-1Zr). The regular, micromachined structure leads tomore » very high capillary pumping head with high permeability for liquid flow. Data from tests performed with common fluids at room temperature characterize the capillary pumping head and permeability of these structures. Three micromachined evaporators have been built into AMTEC cells and operated at temperatures up to 1,100 K. Results from these tests confirm the excellent pumping capabilities of the micromachined evaporators.« less

  13. Micro-machined thermo-conductivity detector

    DOEpatents

    Yu, Conrad

    2003-01-01

    A micro-machined thermal conductivity detector for a portable gas chromatograph. The detector is highly sensitive and has fast response time to enable detection of the small size gas samples in a portable gas chromatograph which are in the order of nanoliters. The high sensitivity and fast response time are achieved through micro-machined devices composed of a nickel wire, for example, on a silicon nitride window formed in a silicon member and about a millimeter square in size. In addition to operating as a thermal conductivity detector, the silicon nitride window with a micro-machined wire therein of the device can be utilized for a fast response heater for PCR applications.

  14. Rock Cutting Depth Model Based on Kinetic Energy of Abrasive Waterjet

    NASA Astrophysics Data System (ADS)

    Oh, Tae-Min; Cho, Gye-Chun

    2016-03-01

    Abrasive waterjets are widely used in the fields of civil and mechanical engineering for cutting a great variety of hard materials including rocks, metals, and other materials. Cutting depth is an important index to estimate operating time and cost, but it is very difficult to predict because there are a number of influential variables (e.g., energy, geometry, material, and nozzle system parameters). In this study, the cutting depth is correlated to the maximum kinetic energy expressed in terms of energy (i.e., water pressure, water flow rate, abrasive feed rate, and traverse speed), geometry (i.e., standoff distance), material (i.e., α and β), and nozzle system parameters (i.e., nozzle size, shape, and jet diffusion level). The maximum kinetic energy cutting depth model is verified with experimental test data that are obtained using one type of hard granite specimen for various parameters. The results show a unique curve for a specific rock type in a power function between cutting depth and maximum kinetic energy. The cutting depth model developed here can be very useful for estimating the process time when cutting rock using an abrasive waterjet.

  15. Micromachined electrostatic vertical actuator

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lee, Abraham P.; Sommargren, Gary E.; McConaghy, Charles F.

    A micromachined vertical actuator utilizing a levitational force, such as in electrostatic comb drives, provides vertical actuation that is relatively linear in actuation for control, and can be readily combined with parallel plate capacitive position sensing for position control. The micromachined electrostatic vertical actuator provides accurate movement in the sub-micron to micron ranges which is desirable in the phase modulation instrument, such as optical phase shifting. For example, compact, inexpensive, and position controllable micromirrors utilizing an electrostatic vertical actuator can replace the large, expensive, and difficult-to-maintain piezoelectric actuators. A thirty pound piezoelectric actuator with corner cube reflectors, as utilized inmore » a phase shifting diffraction interferometer can be replaced with a micromirror and a lens. For any very precise and small amplitudes of motion` micromachined electrostatic actuation may be used because it is the most compact in size, with low power consumption and has more straightforward sensing and control options.« less

  16. Micromachined electrostatic vertical actuator

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lee, A.P.; Sommargren, G.E.; McConaghy, C.F.

    A micromachined vertical actuator utilizing a levitational force, such as in electrostatic comb drives, provides vertical actuation that is relatively linear in actuation for control, and can be readily combined with parallel plate capacitive position sensing for position control. The micromachined electrostatic vertical actuator provides accurate movement in the sub-micron to micron ranges which is desirable in the phase modulation instrument, such as optical phase shifting. For example, compact, inexpensive, and position controllable micromirrors utilizing an electrostatic vertical actuator can replace the large, expensive, and difficult-to-maintain piezoelectric actuators. A thirty pound piezoelectric actuator with corner cube reflectors, as utilized inmore » a phase shifting diffraction interferometer can be replaced with a micromirror and a lens. For any very precise and small amplitudes of motion, micromachined electrostatic actuation may be used because it is the most compact in size, with low power consumption and has more straightforward sensing and control options.« less

  17. Laser Micromachining Fabrication of THz Components

    NASA Technical Reports Server (NTRS)

    DrouetdAubigny, C.; Walker, C.; Jones, B.; Groppi, C.; Papapolymerou, J.; Tavenier, C.

    2001-01-01

    Laser micromachining techniques can be used to fabricate high-quality waveguide structures and quasi-optical components to micrometer accuracies. Successful GHz designs can be directly scaled to THz frequencies. We expect this promising technology to allow the construction of the first fully integrated THz heterodyne imaging arrays. At the University of Arizona, construction of the first laser micromachining system designed for THz waveguide components fabrication has been completed. Once tested and characterized our system will be used to construct prototype THz lx4 focal plane mixer arrays, magic tees, AR coated silicon lenses, local oscillator source phase gratings, filters and more. Our system can micro-machine structures down to a few microns accuracy and up to 6 inches across in a short time. This paper discusses the design and performance of our micromachining system, and illustrates the type, range and performance of components this exciting new technology will make accessible to the THz community.

  18. Physics-based signal processing algorithms for micromachined cantilever arrays

    DOEpatents

    Candy, James V; Clague, David S; Lee, Christopher L; Rudd, Robert E; Burnham, Alan K; Tringe, Joseph W

    2013-11-19

    A method of using physics-based signal processing algorithms for micromachined cantilever arrays. The methods utilize deflection of a micromachined cantilever that represents the chemical, biological, or physical element being detected. One embodiment of the method comprises the steps of modeling the deflection of the micromachined cantilever producing a deflection model, sensing the deflection of the micromachined cantilever and producing a signal representing the deflection, and comparing the signal representing the deflection with the deflection model.

  19. Micromachined peristaltic pump

    NASA Technical Reports Server (NTRS)

    Hartley, Frank T. (Inventor)

    1998-01-01

    A micromachined pump including a channel formed in a semiconductor substrate by conventional processes such as chemical etching. A number of insulating barriers are established in the substrate parallel to one another and transverse to the channel. The barriers separate a series of electrically conductive strips. An overlying flexible conductive membrane is applied over the channel and conductive strips with an insulating layer separating the conductive strips from the conductive membrane. Application of a sequential voltage to the series of strips pulls the membrane into the channel portion of each successive strip to achieve a pumping action. A particularly desirable arrangement employs a micromachined push-pull dual channel cavity employing two substrates with a single membrane sandwiched between them.

  20. Silicon micromachined vibrating gyroscopes

    NASA Astrophysics Data System (ADS)

    Voss, Ralf

    1997-09-01

    This work gives an overview of silicon micromachined vibrating gyroscopes. Market perspectives and fields of application are pointed out. The advantage of using silicon micromachining is discussed and estimations of the desired performance, especially for automobiles are given. The general principle of vibrating gyroscopes is explained. Vibrating silicon gyroscopes can be divided into seven classes. for each class the characteristic principle is presented and examples are given. Finally a specific sensor, based on a tuning fork for automotive applications with a sensitivity of 250(mu) V/degrees is described in detail.

  1. Optical wireless communications for micromachines

    NASA Astrophysics Data System (ADS)

    O'Brien, Dominic C.; Yuan, Wei Wen; Liu, Jing Jing; Faulkner, Grahame E.; Elston, Steve J.; Collins, Steve; Parry-Jones, Lesley A.

    2006-08-01

    A key challenge for wireless sensor networks is minimizing the energy required for network nodes to communicate with each other, and this becomes acute for self-powered devices such as 'smart dust'. Optical communications is a potentially attractive solution for such devices. The University of Oxford is currently involved in a project to build optical wireless links to smart dust. Retro-reflectors combined with liquid crystal modulators can be integrated with the micro-machine to create a low power transceiver. When illuminated from a base station a modulated beam is returned, transmitting data. Data from the base station can be transmitted using modulation of the illuminating beam and a receiver at the micro-machine. In this paper we outline the energy consumption and link budget considerations in the design of such micro-machines, and report preliminary experimental results.

  2. The application of micromachined sensors to manned space systems

    NASA Technical Reports Server (NTRS)

    Bordano, Aldo; Havey, Gary; Wald, Jerry; Nasr, Hatem

    1993-01-01

    Micromachined sensors promise significant system advantages to manned space vehicles. Vehicle Health Monitoring (VHM) is a critical need for most future space systems. Micromachined sensors play a significant role in advancing the application of VHM in future space vehicles. This paper addresses the requirements that future VHM systems place on micromachined sensors such as: system integration, performance, size, weight, power, redundancy, reliability and fault tolerance. Current uses of micromachined sensors in commercial, military and space systems are used to document advantages that are gained and lessons learned. Based on these successes, the future use of micromachined sensors in space programs is discussed in terms of future directions and issues that need to be addressed such as how commercial and military sensors can meet future space system requirements.

  3. Soft micromachines with programmable motility and morphology

    PubMed Central

    Huang, Hen-Wei; Sakar, Mahmut Selman; Petruska, Andrew J.; Pané, Salvador; Nelson, Bradley J.

    2016-01-01

    Nature provides a wide range of inspiration for building mobile micromachines that can navigate through confined heterogenous environments and perform minimally invasive environmental and biomedical operations. For example, microstructures fabricated in the form of bacterial or eukaryotic flagella can act as artificial microswimmers. Due to limitations in their design and material properties, these simple micromachines lack multifunctionality, effective addressability and manoeuvrability in complex environments. Here we develop an origami-inspired rapid prototyping process for building self-folding, magnetically powered micromachines with complex body plans, reconfigurable shape and controllable motility. Selective reprogramming of the mechanical design and magnetic anisotropy of body parts dynamically modulates the swimming characteristics of the micromachines. We find that tail and body morphologies together determine swimming efficiency and, unlike for rigid swimmers, the choice of magnetic field can subtly change the motility of soft microswimmers. PMID:27447088

  4. Soft micromachines with programmable motility and morphology.

    PubMed

    Huang, Hen-Wei; Sakar, Mahmut Selman; Petruska, Andrew J; Pané, Salvador; Nelson, Bradley J

    2016-07-22

    Nature provides a wide range of inspiration for building mobile micromachines that can navigate through confined heterogenous environments and perform minimally invasive environmental and biomedical operations. For example, microstructures fabricated in the form of bacterial or eukaryotic flagella can act as artificial microswimmers. Due to limitations in their design and material properties, these simple micromachines lack multifunctionality, effective addressability and manoeuvrability in complex environments. Here we develop an origami-inspired rapid prototyping process for building self-folding, magnetically powered micromachines with complex body plans, reconfigurable shape and controllable motility. Selective reprogramming of the mechanical design and magnetic anisotropy of body parts dynamically modulates the swimming characteristics of the micromachines. We find that tail and body morphologies together determine swimming efficiency and, unlike for rigid swimmers, the choice of magnetic field can subtly change the motility of soft microswimmers.

  5. Photolithographic surface micromachining of polydimethylsiloxane (PDMS).

    PubMed

    Chen, Weiqiang; Lam, Raymond H W; Fu, Jianping

    2012-01-21

    A major technical hurdle in microfluidics is the difficulty in achieving high fidelity lithographic patterning on polydimethylsiloxane (PDMS). Here, we report a simple yet highly precise and repeatable PDMS surface micromachining method using direct photolithography followed by reactive ion etching (RIE). Our method to achieve surface patterning of PDMS applied an O(2) plasma treatment to PDMS to activate its surface to overcome the challenge of poor photoresist adhesion on PDMS for photolithography. Our photolithographic PDMS surface micromachining technique is compatible with conventional soft lithography techniques and other silicon-based surface and bulk micromachining methods. To illustrate the general application of our method, we demonstrated fabrication of large microfiltration membranes and free-standing beam structures in PDMS.

  6. Photolithographic surface micromachining of polydimethylsiloxane (PDMS)

    PubMed Central

    Chen, Weiqiang; Lam, Raymond H. W.

    2014-01-01

    A major technical hurdle in microfluidics is the difficulty in achieving high fidelity lithographic patterning on polydimethylsiloxane (PDMS). Here, we report a simple yet highly precise and repeatable PDMS surface micromachining method using direct photolithography followed by reactive ion etching (RIE). Our method to achieve surface patterning of PDMS applied an O2 plasma treatment to PDMS to activate its surface to overcome the challenge of poor photoresist adhesion on PDMS for photolithography. Our photolithographic PDMS surface micromachining technique is compatible with conventional soft lithography techniques and other silicon-based surface and bulk micromachining methods. To illustrate the general application of our method, we demonstrated fabrications of large microfiltration membranes and free-standing beam structures in PDMS. PMID:22089984

  7. Abrasion of eroded and sound enamel by a dentifrice containing diamond abrasive particles

    PubMed

    Wegehaupt, Florian J.; Hoegger, Vanessa G. M.; Attin, Thomas

    2017-07-24

    Eroded enamel is more susceptible to abrasive wear than sound enamel. New toothpastes utilizing diamond particles as abrasives have been developed. The present study investigated the abrasive wear of eroded enamel by three commercially available toothpastes (one containing diamond particles) and compared it to the respective wear of sound enamel caused by these toothpastes. Seventy-two bovine enamel samples were randomly allocated to six groups (S1–S3 and E1–E3; n=12). Samples were submitted to an abrasive (S1–S3) or erosion plus abrasion (E1–E3) cycling. Per cycle, all samples were brushed (abrasion; 20 brushing stokes) with the following toothpastes: S1/E1: Signal WHITE SYSTEM, S2/E2: elmex KARIESSCHUTZ and S3-E3: Candida WHITE DIAMOND (diamond particles). Groups E1–E3 were additionally eroded with HCl (pH 3.0) for 2 min before each brushing procedure. After 30, 60 and 90 cycles enamel wear was measured by surface profilometry. Within the same toothpaste and same number of cycles, enamel wear due to erosion plus abrasion was significantly higher than due to mere abrasion. After 30, 60 and 90 cycles, no significant difference in the wear in groups S1 and S2 was observed while the wear in group E1 was significantly (p<0.05, ANOVA, Scheffecyc) lower than that in group E2. After 90 cycles, wear in group S3 was about 5 times higher than that in group S2, while wear in group E3 was about 1.3 times higher than that in group E2. As compared to the other two investigated toothpastes, the dentifrice containing diamond particles caused slightly higher abrasive wear of eroded enamel and distinctly higher wear of sound enamel compared to the conventional toothpastes under investigation.

  8. Review on the importance of measurement technique in micromachine technology

    NASA Astrophysics Data System (ADS)

    Umeda, Akira

    1996-09-01

    In the beginning stage of MITI micromachine project, the committee on the standardization established in Micromachine Center recognized the importance of measurement technique for the promotion and the systemization of the micromachine technology. Micromachine Center is the organizing body for private sectors working in the MITI micromachine project which started in 1991. MITI stands for Ministry of International Trade and Industry in Japan. In order to known the requirements on the measurement technologies, the questionnaire was organized by the measurement working group in the committee. This talk covers the questionnaire and its results, and some research results obtained at National Research Laboratory of Metrology working as a member in the project.

  9. Silicon Micromachining for Terahertz Component Development

    NASA Technical Reports Server (NTRS)

    Chattopadhyay, Goutam; Reck, Theodore J.; Jung-Kubiak, Cecile; Siles, Jose V.; Lee, Choonsup; Lin, Robert; Mehdi, Imran

    2013-01-01

    Waveguide component technology at terahertz frequencies has come of age in recent years. Essential components such as ortho-mode transducers (OMT), quadrature hybrids, filters, and others for high performance system development were either impossible to build or too difficult to fabricate with traditional machining techniques. With micromachining of silicon wafers coated with sputtered gold it is now possible to fabricate and test these waveguide components. Using a highly optimized Deep Reactive Ion Etching (DRIE) process, we are now able to fabricate silicon micromachined waveguide structures working beyond 1 THz. In this paper, we describe in detail our approach of design, fabrication, and measurement of silicon micromachined waveguide components and report the results of a 1 THz canonical E-plane filter.

  10. Sorting Rotating Micromachines by Variations in Their Magnetic Properties

    NASA Astrophysics Data System (ADS)

    Howell, Taylor A.; Osting, Braxton; Abbott, Jake J.

    2018-05-01

    We consider sorting for the broad class of micromachines (also known as microswimmers, microrobots, micropropellers, etc.) propelled by rotating magnetic fields. We present a control policy that capitalizes on the variation in magnetic properties between otherwise-homogeneous micromachines to enable the sorting of a select fraction of a group from the remainder and prescribe its net relative movement, using a uniform magnetic field that is applied equally to all micromachines. The method enables us to accomplish this sorting task using open-loop control, without relying on a structured environment or localization information of individual micromachines. With our method, the control time to perform the sort is invariant to the number of micromachines. The method is verified through simulations and scaled experiments. Finally, we include an extended discussion about the limitations of the method and address open questions related to its practical application.

  11. Effect of abrasive grit size on wear of manganese-zinc ferrite under three-body abrasion

    NASA Technical Reports Server (NTRS)

    Miyoshi, Kazuhisa

    1987-01-01

    Wear experiments were conducted using replication electron microscopy and reflection electron diffraction to study abrasion and deformed layers produced in single-crystal Mn-Zn ferrites under three-body abrasion. The abrasion mechanism of Mn-Zn ferrite changes drastically with the size of abrasive grits. With 15-micron (1000-mesh) SiC grits, abrasion of Mn-Zn ferrite is due principally to brittle fracture; while with 4- and 2-micron (4000- and 6000-mesh) SiC grits, abrasion is due to plastic deformation and fracture. Both microcracking and plastic flow produce polycrystalline states on the wear surfaces of single-crystal Mn-Zn ferrites. Coefficient of wear, total thickness of the deformed layers, and surface roughness of the wear surfaces increase markedly with an increase in abrasive grit size. The total thicknesses of the deformed layers are 3 microns for the ferrite abraded by 15-micron SiC, 0.9 microns for the ferrite abraded by 4-micron SiC, and 0.8 microns for the ferrite abraded by 1-micron SiC.

  12. Method of drying passivated micromachines by dewetting from a liquid-based process

    DOEpatents

    Houston, Michael R.; Howe, Roger T.; Maboudian, Roya; Srinivasan, Uthara

    2000-01-01

    A method of fabricating a micromachine includes the step of constructing a low surface energy film on the micromachine. The micromachine is then rinsed with a rinse liquid that has a high surface energy, relative to the low surface energy film, to produce a contact angle of greater than 90.degree. between the low surface energy film and the rinse liquid. This relatively large contact angle causes any rinse liquid on the micromachine to be displaced from the micromachine when the micromachine is removed from the rinse liquid. In other words, the micromachine is dried by dewetting from a liquid-based process. Thus, a separate evaporative drying step is not required, as the micromachine is removed from the liquid-based process in a dry state. The relatively large contact angle also operates to prevent attractive capillary forces between micromachine components, thereby preventing contact and adhesion between adjacent microstructure surfaces. The low surface energy film may be constructed with a fluorinated self-assembled monolayer film. The processing of the invention avoids the use of environmentally harmful, health-hazardous chemicals.

  13. Do Abrasives Play a Role in Toothpaste Efficacy against Erosion/Abrasion?

    PubMed

    Ganss, Carolina; Möllers, Maike; Schlueter, Nadine

    2017-01-01

    Abrasives may counteract the efficacy of anti-erosion toothpastes either due to physical effects or due to interaction with active agents. This study aimed to investigate whether the amount of abrasives is a determinant for the efficacy of Sn2+-containing toothpastes with or without chitosan additive. Enamel samples were eroded (0.50 wt% citric acid, pH 2.5; 6 × 2 min/day) on a shaking desk - 30/min in experiment 1 (E1) and 35/min in experiments 2 (E2) and 3 (E3) - and immersed in toothpaste slurries (2 × 2 min). Half of the samples were additionally brushed (15 s, load 200 g) within the immersion time. The toothpastes contained 0, 5, 10, 15, and 20% silica. In E1 and E2 the active ingredients were F- (700 ppm as amine fluoride, 700 ppm as NaF) and Sn2+ (3,500 ppm as SnCl2); in E3 chitosan (0.5%) was additionally added. The placebo contained 20% silica. Tissue loss was determined profilometrically. In E1, slurries completely inhibited tissue loss; distinct surface deposits occurred. With brushing, tissue loss significantly increased up to an abrasive content of 10%, but decreased significantly with higher amounts; 20% silica revealed similar values as the abrasive-free formulation. In E2, all slurries inhibited tissue loss distinctly irrespective of the amounts of abrasives. With brushing, a similar trend as in E1 was observed but with much less efficacy. The chitosan-containing formulations in E3 were much more effective; similar results as in E1 were found. In conclusion, the amount of abrasives had no effect when toothpastes were applied as slurries, but played an important role with brushing. © 2016 S. Karger AG, Basel.

  14. Physics of loose abrasive microgrinding.

    PubMed

    Golini, D; Jacobs, S D

    1991-07-01

    This study examined the physics of loose abrasive microgrinding (grinding with micron and submicron sized abrasives). More specifically, it focused on the transition from brittle to ductile mode grinding which occurs in this region of abrasive sizes. Process dependency on slurry chemistry was the primary area of emphasis and was studied for diamond abrasives varying in size from 3.0 to 0.75 microm on both ULE and Zerodur, with emphasis on ULE. Ductile mode grinding was achieved with smaller abrasives, as expected, however two significant discoveries were made. The first observation was that by simply changing slurry chemistry, it was possible to induce the transition from brittle fracture to ductile mode grinding in ULE. This transition point could be intentionally moved about for diamonds 3.0-0.75 microm in diameter. For any given abrasive size within these limits, either brittle fracture or ductile removal may be achieved, depending on the slurry used to suspend the diamonds. Several slurries were studied, including water, a series of homologous n-alcohols, and other solvents chosen for properties varying from molecular size to dielectric constant and zeta potential. The study revealed that this slurry dependency is primarily a Rebinder effect. The second finding was that a tremendous amount of surface stress is introduced in loose abrasive ductile mode grinding. This stress was observed when the Twyman Effect in ULE plates increased by a factor of 4 in the transition from the brittle to the ductile mode. An assessment of the cause of this stress is discussed.

  15. Abrasion of acrylic veneers by simulated toothbrushing.

    PubMed

    Xu, H C; Söremark, R; Wiktorsson, G; Wang, T; Liu, W Y

    1984-12-01

    The abrasion responses were tested on four acrylic veneer materials, K + B Plus, K + B 75, Isosit, and Ivocron. The studies were performed in two independent research laboratories. Two different brushing machines were used with an abrasive slurry. The results were used for comparing the degree of abrasion for the resin materials. Three analytical methods of measuring the degree of abrasive wear were used: surface profile measurement, microscopic evaluation, and measurement of loss of volume. Isosit showed the best abrasion resistance of the four materials tested.

  16. Micromachined Artificial Haircell

    NASA Technical Reports Server (NTRS)

    Liu, Chang (Inventor); Engel, Jonathan (Inventor); Chen, Nannan (Inventor); Chen, Jack (Inventor)

    2010-01-01

    A micromachined artificial sensor comprises a support coupled to and movable with respect to a substrate. A polymer, high-aspect ratio cilia-like structure is disposed on and extends out-of-plane from the support. A strain detector is disposed with respect to the support to detect movement of the support.

  17. An epidemiologic approach to toothbrushing and dental abrasion.

    PubMed

    Bergström, J; Lavstedt, S

    1979-02-01

    Abrasion lesions were recorded in 818 individuals representing the adult population of 430,000 residents of the Stockholm region, Sweden. The subjects were asked about toothbrushing habits, toothbrush quality and dentifrice usage; these factors were related to abrasion criteria. Abrasion was prevalent in 30% and wedge-like or deep depressions were observed in 12%. The relationship between abrasion and toothbrushing was evident, the prevalence and severity of abrasion being correlated to toothbrushing consumption. The importance of the toothbrushing technique for the development of abrasion lesions was elucidated. Horizontal brushing technique was strongly correlated to abrasion. It was demonstrated by treating the data with the statistical AID analysis that toothbrushing factors related to the individual (brushing frequency and brushing technique) exert a greater influence than material-oriented toothbrushing factor such as dentifrice abrasivity and bristle stiffness.

  18. Omega-X micromachining system

    DOEpatents

    Miller, Donald M.

    1978-01-01

    A micromachining tool system with X- and omega-axes is used to machine spherical, aspherical, and irregular surfaces with a maximum contour error of 100 nonometers (nm) and surface waviness of no more than 0.8 nm RMS. The omega axis, named for the angular measurement of the rotation of an eccentric mechanism supporting one end of a tool bar, enables the pulse increments of the tool toward the workpiece to be as little as 0 to 4.4 nm. A dedicated computer coordinates motion in the two axes to produce the workpiece contour. Inertia is reduced by reducing the mass pulsed toward the workpiece to about one-fifth of its former value. The tool system includes calibration instruments to calibrate the micromachining tool system. Backlash is reduced and flexing decreased by using a rotary table and servomotor to pulse the tool in the omega-axis instead of a ball screw mechanism. A thermally-stabilized spindle rotates the workpiece and is driven by a motor not mounted on the micromachining tool base through a torque-smoothing pulley and vibrationless rotary coupling. Abbe offset errors are almost eliminated by tool setting and calibration at spindle center height. Tool contour and workpiece contour are gaged on the machine; this enables the source of machining errors to be determined more readily, because the workpiece is gaged before its shape can be changed by removal from the machine.

  19. Micromachined patch-clamp apparatus

    DOEpatents

    Okandan, Murat

    2012-12-04

    A micromachined patch-clamp apparatus is disclosed for holding one or more cells and providing electrical, chemical, or mechanical stimulation to the cells during analysis with the patch-clamp technique for studying ion channels in cell membranes. The apparatus formed on a silicon substrate utilizes a lower chamber formed from silicon nitride using surface micromachining and an upper chamber formed from a molded polymer material. An opening in a common wall between the chambers is used to trap and hold a cell for analysis using the patch-clamp technique with sensing electrodes on each side of the cell. Some embodiments of the present invention utilize one or more electrostatic actuators formed on the substrate to provide mechanical stimulation to the cell being analyzed, or to provide information about mechanical movement of the cell in response to electrical or chemical stimulation.

  20. Low-loss LIGA-micromachined conductor-backed coplanar waveguide.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Forman, Michael A.

    2004-12-01

    A mesoscale low-loss LIGA-micromachined conductor-backed coplanar waveguide is presented. The 517 {micro}m lines are the tallest uniplanar LIGA-fabricated microwave transmission lines to date, as well as the first to be constructed of copper rather than nickel. The conductor-backed micromachined CPW on quartz achieves a measured attenuation of 0.064 dB/cm at 15.5 GHz.

  1. Surface-micromachined chain for use in microelectromechanical structures

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Vernon, Sr., George E.

    2001-01-01

    A surface-micromachined chain and a microelectromechanical (MEM) structure incorporating such a chain are disclosed. The surface-micromachined chain can be fabricated in place on a substrate (e.g. a silicon substrate) by depositing and patterning a plurality of alternating layers of a chain-forming material (e.g. polycrystalline silicon) and a sacrificial material (e.g. silicon dioxide or a silicate glass). The sacrificial material is then removed by etching to release the chain for movement. The chain has applications for forming various types of MEM devices which include a microengine (e.g. an electrostatic motor) connected to rotate a drive sprocket, with the surface-micromachined chain beingmore » connected between the drive sprocket and one or more driven sprockets.« less

  2. Dual axis operation of a micromachined rate gyroscope

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Juneau, T.; Pisano, A.P.; Smith, J.

    Since micromachining technology has raised the prospect of fabricating high performance sensors without the associated high cost and large size, many researchers have investigated micromachined rate gyroscopes. The vast majority of research has focused on single input axis rate gyroscopes, but this paper presents work on a dual input axis micromachined rate gyroscope. The key to successful simultaneous dual axis operation is the quad symmetry of the circular oscillating rotor design. Untuned gyroscopes with mismatched modes yielded random walk as low as 10{degrees}/{radical}hour with cross sensitivity ranging from 6% to 16%. Mode frequency matching via electrostatic tuning allowed performance bettermore » than 2{degrees}/{radical}hour, but at the expense of excessive cross sensitivity.« less

  3. Micromachined pressure sensors: Review and recent developments

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Eaton, W.P.; Smith, J.H.

    1997-03-01

    Since the discovery of piezoresistivity in silicon in the mid 1950s, silicon-based pressure sensors have been widely produced. Micromachining technology has greatly benefited from the success of the integrated circuits industry, burrowing materials, processes, and toolsets. Because of this, microelectromechanical systems (MEMS) are now poised to capture large segments of existing sensor markets and to catalyze the development of new markets. Given the emerging importance of MEMS, it is instructive to review the history of micromachined pressure sensors, and to examine new developments in the field. Pressure sensors will be the focus of this paper, starting from metal diaphragm sensorsmore » with bonded silicon strain gauges, and moving to present developments of surface-micromachined, optical, resonant, and smart pressure sensors. Considerations for diaphragm design will be discussed in detail, as well as additional considerations for capacitive and piezoresistive devices.« less

  4. Single neuronal recordings using surface micromachined polysilicon microelectrodes.

    PubMed

    Muthuswamy, Jit; Okandan, Murat; Jackson, Nathan

    2005-03-15

    Bulk micromachining techniques of silicon have been used successfully in the past several years to microfabricate microelectrodes for monitoring single neurons in acute and chronic experiments. In this study we report for the first time a novel surface micromachining technique to microfabricate a very thin polysilicon microelectrode that can be used for monitoring single-unit activity in the central nervous system. The microelectrodes are 3 mm long and 50 microm x 3.75 microm in cross-section. Excellent signal to noise ratios in the order of 25-35 dB were obtained while recording neuronal action potentials. The microelectrodes successfully penetrated the brains after a microincision of the dura mater. Chronic implantation of the microprobe for up to 33 days produced only minor gliosis. Since the polysilicon shank acts as a conductor, additional processing steps involved in laying conductor lines on silicon substrates are avoided. Further, surface micromachining allows for fabricating extremely thin microelectrodes which could result in decreased inflammatory responses. We conclude that the polysilicon microelectrode reported here could be a complementary approach to bulk-micromachined silicon microelectrodes for chronic monitoring of single neurons in the central nervous system.

  5. The use of water-jetting technology in prostheses revision surgery-first results of parameter studies on bone and bone cement.

    PubMed

    Honl, M; Rentzsch, R; Müller, G; Brandt, C; Bluhm, A; Hille, E; Louis, H; Morlock, M

    2000-01-01

    Water-jet cutting techniques have been used in industrial applications for many different materials. Recently these techniques have been developed into a revolutionary cutting tool for soft tissues in visceral surgery. The present study investigates the usage of this cutting technology for the revision surgery of endoprostheses. In the first part of the study, samples of bovine bone and acrylic bone cement (PMMA) were cut using an industrial jet cutting device with pure water. Below 400 bar, only PMMA was cut; above 400 bar, bone was also cut, but only pressures above 800 bar resulted in clinically useful rates of material removal (cut depth 2. 4 mm at 10 mm/min traverse speed). In the second part of the study, the effect of adding biocompatible abrasives to the water in order to reduce the required pressure was investigated, resulting in a significantly higher removal of material. At 600 bar, PMMA was cut 5. 2 mm deep with plain water and 15.2 mm deep with added abrasives. The quality of the cuts was increased by the abrasive. Though there was no clear selectivity between bone and PMMA any more, the rate of material removal at similar pressures was significantly higher for PMMA than for bone (600 bar: 1.6 mm cut depth for bone samples, 15.2 mm for PMMA). The measured cut depths with either method were not influenced by a change of the cutting direction with respect to the main direction of the osteons in the bone. However, a reduction of the jet surface angle (90 degrees to 23 degrees ) resulted for bone in a significantly lower cut depth at 600 bar (plain water: 0.62 mm vs. 0.06 mm; abrasive: 1.61 mm vs. 0.60 mm). The laboratory experiments indicate that abrasive water jets may be suitable for cutting biomaterials like bone and bone cement. Copyright 2000 John Wiley & Sons, Inc.

  6. Study on design of light-weight super-abrasive wheel

    NASA Astrophysics Data System (ADS)

    Nohara, K.; Yanagihara, K.; Ogawa, M.

    2018-01-01

    Fixed-abrasive tool, also called a grinding wheel, is produced by furnacing abrasive compound which contains abrasive grains and binding powder such as vitrified materials or resins. Fixed-abrasive tool is installed on spindle of grinding machine. And it is given 1,800-2,000 min-1 of spindle rotation for the usage. The centrifugal fracture of the compound of fixed- abrasive tool is one of the careful respects in designing. In recent years, however, super-abrasive wheel as a fixed-abrasive tool has been developed and applied widely. One of the most characteristic respects is that metal is applied for the body of grinding-wheel. The strength to hold abrasive grain and the rigidity of wheel become stronger than those of general grinding wheel, also the lifespan of fixed-abrasive tool becomes longer. The weight of fixed-abrasive tool, however, becomes heavier. Therefore, when the super-abrasive wheel is used, the power consumption of spindle motor becomes larger. It also becomes difficult for the grinding-wheel to respond to sudden acceleration or deceleration. Thus, in order to reduce power consumption in grinding and to obtain quicker frequency response of super-abrasive wheel, the new wheel design is proposed. The design accomplishes 46% weight reduction. Acceleration that is one second quicker than that of conventional grinding wheel is obtained.

  7. A micro-machined source transducer for a parametric array in air.

    PubMed

    Lee, Haksue; Kang, Daesil; Moon, Wonkyu

    2009-04-01

    Parametric array applications in air, such as highly directional parametric loudspeaker systems, usually rely on large radiators to generate the high-intensity primary beams required for nonlinear interactions. However, a conventional transducer, as a primary wave projector, requires a great deal of electrical power because its electroacoustic efficiency is very low due to the large characteristic mechanical impedance in air. The feasibility of a micro-machined ultrasonic transducer as an efficient finite-amplitude wave projector was studied. A piezoelectric micro-machined ultrasonic transducer array consisting of lead zirconate titanate uni-morph elements was designed and fabricated for this purpose. Theoretical and experimental evaluations showed that a micro-machined ultrasonic transducer array can be used as an efficient source transducer for a parametric array in air. The beam patterns and propagation curves of the difference frequency wave and the primary wave generated by the micro-machined ultrasonic transducer array were measured. Although the theoretical results were based on ideal parametric array models, the theoretical data explained the experimental results reasonably well. These experiments demonstrated the potential of micro-machined primary wave projector.

  8. Micromachined magnetohydrodynamic actuators and sensors

    DOEpatents

    Lee, Abraham P.; Lemoff, Asuncion V.

    2000-01-01

    A magnetohydrodynamic (MHD) micropump and microsensor which utilizes micromachining to integrate the electrodes with microchannels and includes a magnet for producing magnetic fields perpendicular to both the electrical current direction and the fluid flow direction. The magnet can also be micromachined and integrated with the micropump using existing technology. The MHD micropump, for example, can generate continuous, reversible flow, with readily controllable flow rates. The flow can be reversed by either reversing the electrical current flow or reversing the magnetic field. By mismatching the electrodes, a swirling vortex flow can be generated for potential mixing applications. No moving parts are necessary and the dead volume is minimal. The micropumps can be placed at any position in a fluidic circuit and a combination of micropumps can generate fluidic plugs and valves.

  9. Micromachined cutting blade formed from {211}-oriented silicon

    DOEpatents

    Fleming, James G.; Sniegowski, Jeffry J.; Montague, Stephen

    2003-09-09

    A cutting blade is disclosed fabricated of micromachined silicon. The cutting blade utilizes a monocrystalline silicon substrate having a {211} crystalline orientation to form one or more cutting edges that are defined by the intersection of {211} crystalline planes of silicon with {111} crystalline planes of silicon. This results in a cutting blade which has a shallow cutting-edge angle .theta. of 19.5.degree.. The micromachined cutting blade can be formed using an anisotropic wet etching process which substantially terminates etching upon reaching the {111} crystalline planes of silicon. This allows multiple blades to be batch fabricated on a common substrate and separated for packaging and use. The micromachined cutting blade, which can be mounted to a handle in tension and optionally coated for increased wear resistance and biocompatibility, has multiple applications including eye surgery (LASIK procedure).

  10. Micromachined cutting blade formed from {211}-oriented silicon

    DOEpatents

    Fleming, James G [Albuquerque, NM; Fleming, legal representative, Carol; Sniegowski, Jeffry J [Tijeras, NM; Montague, Stephen [Albuquerque, NM

    2011-08-09

    A cutting blade is disclosed fabricated of micromachined silicon. The cutting blade utilizes a monocrystalline silicon substrate having a {211} crystalline orientation to form one or more cutting edges that are defined by the intersection of {211} crystalline planes of silicon with {111} crystalline planes of silicon. This results in a cutting blade which has a shallow cutting-edge angle .theta. of 19.5.degree.. The micromachined cutting blade can be formed using an anisotropic wet etching process which substantially terminates etching upon reaching the {111} crystalline planes of silicon. This allows multiple blades to be batch fabricated on a common substrate and separated for packaging and use. The micromachined cutting blade, which can be mounted to a handle in tension and optionally coated for increased wear resistance and biocompatibility, has multiple applications including eye surgery (LASIK procedure).

  11. Performance analysis of cutting graphite-epoxy composite using a 90,000psi abrasive waterjet

    NASA Astrophysics Data System (ADS)

    Choppali, Aiswarya

    Graphite-epoxy composites are being widely used in many aerospace and structural applications because of their properties: which include lighter weight, higher strength to weight ratio and a greater flexibility in design. However, the inherent anisotropy of these composites makes it difficult to machine them using conventional methods. To overcome the major issues that develop with conventional machining such as fiber pull out, delamination, heat generation and high tooling costs, an effort is herein made to study abrasive waterjet machining of composites. An abrasive waterjet is used to cut 1" thick graphite epoxy composites based on baseline data obtained from the cutting of ¼" thick material. The objective of this project is to study the surface roughness of the cut surface with a focus on demonstrating the benefits of using higher pressures for cutting composites. The effects of major cutting parameters: jet pressure, traverse speed, abrasive feed rate and cutting head size are studied at different levels. Statistical analysis of the experimental data provides an understanding of the effect of the process parameters on surface roughness. Additionally, the effect of these parameters on the taper angle of the cut is studied. The data is analyzed to obtain a set of process parameters that optimize the cutting of 1" thick graphite-epoxy composite. The statistical analysis is used to validate the experimental data. Costs involved in the cutting process are investigated in term of abrasive consumed to better understand and illustrate the practical benefits of using higher pressures. It is demonstrated that, as pressure increased, ultra-high pressure waterjets produced a better surface quality at a faster traverse rate with lower costs.

  12. The Cooling and Lubrication Performance of Graphene Platelets in Micro-Machining Environments

    NASA Astrophysics Data System (ADS)

    Chu, Bryan

    The research presented in this thesis is aimed at investigating the use of graphene platelets (GPL) to address the challenges of excessive tool wear, reduced part quality, and high specific power consumption encountered in micro-machining processes. There are two viable methods of introducing GPL into micro-machining environments, viz., the embedded delivery method, where the platelets are embedded into the part being machined, and the external delivery method, where graphene is carried into the cutting zone by jetting or atomizing a carrier fluid. The study involving the embedded delivery method is focused on the micro-machining performance of hierarchical graphene composites. The results of this study show that the presence of graphene in the epoxy matrix improves the machinability of the composite. In general, the tool wear, cutting forces, surface roughness, and extent of delamination are all seen to be lower for the hierarchical composite when compared to the conventional two-phase glass fiber composite. These improvements are attributed to the fact that graphene platelets improve the thermal conductivity of the matrix, provide lubrication at the tool-chip interface and also improve the interface strength between the glass fibers and the matrix. The benefits of graphene are seen to also carry over to the external delivery method. The platelets provide improved cooling and lubrication performance to both environmentally-benign cutting fluids as well as to semi-synthetic cutting fluids used in micro-machining. The cutting performance is seen to be a function of the geometry (i.e., lateral size and thickness) and extent of oxygen-functionalization of the platelet. Ultrasonically exfoliated platelets (with 2--3 graphene layers and lowest in-solution characteristic lateral length of 120 nm) appear to be the most favorable for micro-machining applications. Even at the lowest concentration of 0.1 wt%, they are capable of providing a 51% reduction in the cutting

  13. Micromachined peristaltic pumps

    NASA Technical Reports Server (NTRS)

    Hartley, Frank T. (Inventor)

    1999-01-01

    Micromachined pumps including a channel formed between a first membrane and a substrate or between first and second flexible membranes. A series of electrically conductive strips is applied to a surface of the substrate or one of the membranes. Application of a sequential voltage to the series of strips causes a region of closure to progress down the channel to achieve a pumping action.

  14. Corneal Abrasions

    MedlinePlus

    ... the doctor looks at the eye under a light that is filtered cobalt blue. The fluorescein causes the abrasion to glow bright green under the light. The doctor also might do a standard ophthalmic ...

  15. Ceramic-bonded abrasive grinding tools

    DOEpatents

    Holcombe, C.E. Jr.; Gorin, A.H.; Seals, R.D.

    1994-11-22

    Abrasive grains such as boron carbide, silicon carbide, alumina, diamond, cubic boron nitride, and mullite are combined with a cement primarily comprised of zinc oxide and a reactive liquid setting agent and solidified into abrasive grinding tools. Such grinding tools are particularly suitable for grinding and polishing stone, such as marble and granite.

  16. Ceramic-bonded abrasive grinding tools

    DOEpatents

    Holcombe, Jr., Cressie E.; Gorin, Andrew H.; Seals, Roland D.

    1994-01-01

    Abrasive grains such as boron carbide, silicon carbide, alumina, diamond, cubic boron nitride, and mullite are combined with a cement primarily comprised of zinc oxide and a reactive liquid setting agent and solidified into abrasive grinding tools. Such grinding tools are particularly suitable for grinding and polishing stone, such as marble and granite.

  17. A silicon micromachined resonant pressure sensor

    NASA Astrophysics Data System (ADS)

    Tang, Zhangyang; Fan, Shangchun; Cai, Chenguang

    2009-09-01

    This paper describes the design, fabrication and test of a silicon micromachined resonant pressure sensor. A square membrane and a doubly clamped resonant beam constitute a compound structure. The former senses the pressure directly, while the latter changes its resonant frequency according to deformation of the membrane. The final output relation between the resonant frequency and the applied pressure is deducted according to the structure mechanical properties. Sensors are fabricated by micromachining technology, and then sealed in vaccum. These sensors are tested by open-loop and close-loop system designed on purpose. The experiment results demonstrate that the sensor has a sensitivity of 49.8Hz/kPa and repeatability of 0.08%.

  18. Design of electrostatically levitated micromachined rotational gyroscope based on UV-LIGA technology

    NASA Astrophysics Data System (ADS)

    Cui, Feng; Chen, Wenyuan; Su, Yufeng; Zhang, Weiping; Zhao, Xiaolin

    2004-12-01

    The prevailing micromachined vibratory gyroscope typically has a proof mass connected to the substrate by a mechanical suspension system, which makes it face a tough challenge to achieve tactical or inertial grade performance levels. With a levitated rotor as the proof mass, a micromachined rotational gyroscope will potentially have higher performance than vibratory gyroscope. Besides working as a moment rebalance dual-axis gyroscope, the micromachined rotational gyroscope based on a levitated rotor can simultaneously work as a force balance tri-axis accelerometer. Micromachined rotational gyroscope based on an electrostatically levitated silicon micromachined rotor has been notably developed. In this paper, factors in designing a rotational gyro/accelerometer based on an electrostatically levitated disc-like rotor, including gyroscopic action of micro rotor, methods of stable levitation, micro displacement detection and control, rotation drive and speed control, vacuum packaging and microfabrication, are comprehensively considered. Hence a design of rotational gyro/accelerometer with an electroforming nickel rotor employing low cost UV-LIGA technology is presented. In this design, a wheel-like flat rotor is proposed and its basic dimensions, diameter and thickness, are estimated according to the required loading capability. Finally, its micromachining methods based on UV-LIGA technology and assembly technology are discussed.

  19. Surface-Micromachined Planar Arrays of Thermopiles

    NASA Technical Reports Server (NTRS)

    Foote, Marc C.

    2003-01-01

    Planar two-dimensional arrays of thermopiles intended for use as thermal-imaging detectors are to be fabricated by a process that includes surface micromachining. These thermopile arrays are designed to perform better than do prior two-dimensional thermopile arrays. The lower performance of prior two-dimensional thermopile arrays is attributed to the following causes: The thermopiles are made from low-performance thermoelectric materials. The devices contain dielectric supporting structures, the thermal conductances of which give rise to parasitic losses of heat from detectors to substrates. The bulk-micromachining processes sometimes used to remove substrate material under the pixels, making it difficult to incorporate low-noise readout electronic circuitry. The thermoelectric lines are on the same level as the infrared absorbers, thereby reducing fill factor. The improved pixel design of a thermopile array of the type under development is expected to afford enhanced performance by virtue of the following combination of features: Surface-micromachined detectors are thermally isolated through suspension above readout circuitry. The thermopiles are made of such high-performance thermoelectric materials as Bi-Te and Bi-Sb-Te alloys. Pixel structures are supported only by the thermoelectric materials: there are no supporting dielectric structures that could leak heat by conduction to the substrate.

  20. Abrasion by aeolian particles: Earth and Mars

    NASA Technical Reports Server (NTRS)

    Greeley, R.; Marshall, J. R.; White, B. R.; Pollack, J. B.; Marshall, J.; Krinsley, D.

    1984-01-01

    Estimation of the rate of aeolian abrasion of rocks on Mars requires knowledge of: (1) particle flux, (2) susceptibilities to abrasion of various rocks, and (3) wind frequencies on Mars. Fluxes and susceptibilities for a wide range of conditions were obtained in the laboratory and combined with wind data from the Viking meteorology experiment. Assuming an abundant supply of sand-sized particles, estimated rates range up to 2.1 x 10 to the minus 2 power cm of abrasion per year in the vicinity of Viking Lander 1. This rate is orders of magnitude too great to be in agreement with the inferred age of the surface based on models of impact crater flux. The discrepancy in the estimated rate of abrasion and the presumed old age of the surface cannot be explained easily by changes in climate or exhumation of ancient surfaces. The primary reason is thought to be related to the agents of abrasion. At least some sand-sized (approx. 100 micrometers) grains appear to be present, as inferred from both lander and orbiter observations. High rates of abrasion occur for all experimental cases involving sands of quartz, basalt, or ash. However, previous studies have shown that sand is quickly comminuted to silt- and clay-sized grains in the martian aeolian regime. Experiments also show that these fine grains are electrostatically charged and bond together as sand-sized aggregates. Laboratory simulations of wind abrasion involving aggregates show that at impact velocities capable of destroying sand, aggregates from a protective veneer on the target surface and can give rise to extremely low abrasion rates.

  1. The effect of microstructure on abrasive wear of steel

    NASA Astrophysics Data System (ADS)

    Kešner, A.; Chotëborský, R.; Linda, M.

    2017-09-01

    Abrasive wear of agricultural tools is one of the biggest problems in currently being. The amount of abrasive wear, depending on the microstructure, has been investigated in this work. Steels 25CrMo4 and 51CrV4 were used in this work to determine the effect of the microstructure on the abrasive wear. These steels are commonly used for components that have to withstand abrasive wear.SEM analysis was used to detect the microstructure. The standardized ASTM G65 method was used to compare the abrasive wear of steels. The results show that the abrasive wear depends on the microstructure of steels.

  2. Micro-machined resonator oscillator

    DOEpatents

    Koehler, Dale R.; Sniegowski, Jeffry J.; Bivens, Hugh M.; Wessendorf, Kurt O.

    1994-01-01

    A micro-miniature resonator-oscillator is disclosed. Due to the miniaturization of the resonator-oscillator, oscillation frequencies of one MHz and higher are utilized. A thickness-mode quartz resonator housed in a micro-machined silicon package and operated as a "telemetered sensor beacon" that is, a digital, self-powered, remote, parameter measuring-transmitter in the FM-band. The resonator design uses trapped energy principles and temperature dependence methodology through crystal orientation control, with operation in the 20-100 MHz range. High volume batch-processing manufacturing is utilized, with package and resonator assembly at the wafer level. Unique design features include squeeze-film damping for robust vibration and shock performance, capacitive coupling through micro-machined diaphragms allowing resonator excitation at the package exterior, circuit integration and extremely small (0.1 in. square) dimensioning. A family of micro-miniature sensor beacons is also disclosed with widespread applications as bio-medical sensors, vehicle status monitors and high-volume animal identification and health sensors. The sensor family allows measurement of temperatures, chemicals, acceleration and pressure. A microphone and clock realization is also available.

  3. Micro-machined resonator oscillator

    DOEpatents

    Koehler, D.R.; Sniegowski, J.J.; Bivens, H.M.; Wessendorf, K.O.

    1994-08-16

    A micro-miniature resonator-oscillator is disclosed. Due to the miniaturization of the resonator-oscillator, oscillation frequencies of one MHz and higher are utilized. A thickness-mode quartz resonator housed in a micro-machined silicon package and operated as a telemetered sensor beacon'' that is, a digital, self-powered, remote, parameter measuring-transmitter in the FM-band. The resonator design uses trapped energy principles and temperature dependence methodology through crystal orientation control, with operation in the 20--100 MHz range. High volume batch-processing manufacturing is utilized, with package and resonator assembly at the wafer level. Unique design features include squeeze-film damping for robust vibration and shock performance, capacitive coupling through micro-machined diaphragms allowing resonator excitation at the package exterior, circuit integration and extremely small (0.1 in. square) dimensioning. A family of micro-miniature sensor beacons is also disclosed with widespread applications as bio-medical sensors, vehicle status monitors and high-volume animal identification and health sensors. The sensor family allows measurement of temperatures, chemicals, acceleration and pressure. A microphone and clock realization is also available. 21 figs.

  4. Ultrasonic Abrasive Removal Of EDM Recast

    NASA Technical Reports Server (NTRS)

    Mandel, Johnny L.; Jacobson, Marlowe S.

    1990-01-01

    Ultrasonic abrasive process removes layer of recast material generated during electrical-discharge machining (EDM) of damper pocket on turbine blade. Form-fitted tool vibrated ultrasonically in damper pocket from which material removed. Vibrations activate abrasive in pocket. Amount of material removed controlled precisely.

  5. Exposure to crystalline silica in abrasive blasting operations where silica and non-silica abrasives are used.

    PubMed

    Radnoff, Diane L; Kutz, Michelle K

    2014-01-01

    Exposure to respirable crystalline silica is a hazard common to many industries in Alberta but particularly so in abrasive blasting. Alberta occupational health and safety legislation requires the consideration of silica substitutes when conducting abrasive blasting, where reasonably practicable. In this study, exposure to crystalline silica during abrasive blasting was evaluated when both silica and non-silica products were used. The crystalline silica content of non-silica abrasives was also measured. The facilities evaluated were preparing metal products for the application of coatings, so the substrate should not have had a significant contribution to worker exposure to crystalline silica. The occupational sampling results indicate that two-thirds of the workers assessed were potentially over-exposed to respirable crystalline silica. About one-third of the measurements over the exposure limit were at the work sites using silica substitutes at the time of the assessment. The use of the silica substitute, by itself, did not appear to have a large effect on the mean airborne exposure levels. There are a number of factors that may contribute to over-exposures, including the isolation of the blasting area, housekeeping, and inappropriate use of respiratory protective equipment. However, the non-silica abrasives themselves also contain silica. Bulk analysis results for non-silica abrasives commercially available in Alberta indicate that many contain crystalline silica above the legislated disclosure limit of 0.1% weight of silica per weight of product (w/w) and this information may not be accurately disclosed on the material safety data sheet for the product. The employer may still have to evaluate the potential for exposure to crystalline silica at their work site, even when silica substitutes are used. Limited tests on recycled non-silica abrasive indicated that the silica content had increased. Further study is required to evaluate the impact of product recycling

  6. Micromachined capacitive ultrasonic immersion transducer array

    NASA Astrophysics Data System (ADS)

    Jin, Xuecheng

    Capacitive micromachined ultrasonic transducers (cMUTs) have emerged as an attractive alternative to conventional piezoelectric ultrasonic transducers. They offer performance advantages of wide bandwidth and sensitivity that have heretofore been attainable. In addition, micromachining technology, which has benefited from the fast-growing microelectronics industry, enables cMUT array fabrication and electronics integration. This thesis describes the design and fabrication of micromachined capacitive ultrasonic immersion transducer arrays. The basic transducer electrical equivalent circuit is derived from Mason's theory. The effects of Lamb waves and Stoneley waves on cross coupling and acoustic losses are discussed. Electrical parasitics such as series resistance and shunt capacitance are also included in the model of the transducer. Transducer fabrication technology is systematically studied. Device dimension control in both vertical and horizontal directions, process alternatives and variations in membrane formation, via etch and cavity sealing, and metalization as well as their impact on transducer performance are summarized. Both 64 and 128 element 1-D array transducers are fabricated. Transducers are characterized in terms of electrical input impedance, bandwidth, sensitivity, dynamic range, impulse response and angular response, and their performance is compared with theoretical simulation. Various schemes for cross coupling reduction is analyzed, implemented, and verified with both experiments and theory. Preliminary results of immersion imaging are presented using 64 elements 1-D array transducers for active source imaging.

  7. New Rock Abrasivity Test Method for Tool Life Assessments on Hard Rock Tunnel Boring: The Rolling Indentation Abrasion Test (RIAT)

    NASA Astrophysics Data System (ADS)

    Macias, F. J.; Dahl, F.; Bruland, A.

    2016-05-01

    The tunnel boring machine (TBM) method has become widely used and is currently an important presence within the tunnelling industry. Large investments and high geological risk are involved using TBMs, and disc cutter consumption has a great influence on performance and cost, especially in hard rock conditions. Furthermore, reliable cutter life assessments facilitate the control of risk as well as avoiding delays and budget overruns. Since abrasive wear is the most common process affecting cutter consumption, good laboratory tests for rock abrasivity assessments are needed. A new abrasivity test method by rolling disc named Rolling Indentation Abrasion Test (RIAT) has been developed. The goal of the new test design and procedure is to reproduce wear behaviour on hard rock tunnel boring in a more realistic way than the traditionally used methods. Wear by rolling contact on intact rock samples is introduced and several rock types, covering a wide rock abrasiveness range, have been tested by RIAT. The RIAT procedure indicates a great ability of the testing method to assess abrasive wear on rolling discs. In addition and to evaluate the newly developed RIAT test method, a comprehensive laboratory testing programme including the most commonly used abrasivity test methods and the mineral composition were carried out. Relationships between the achieved results from conventional testing and RIAT results have been analysed.

  8. Testing of Alternative Abrasives for Water-Jet Cutting at C Tank Farm

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Krogstad, Eirik J.

    2013-08-01

    Legacy waste from defense-related activities at the Hanford Site has predominantly been stored in underground tanks, some of which have leaked; others may be at risk to do so. The U.S. Department of Energy’s goal is to empty the tanks and transform their contents into more stable waste forms. To do so requires breaking up, and creating a slurry from, solid wastes in the bottoms of the tanks. A technology developed for this purpose is the Mobile Arm Retrieval System. This system is being used at some of the older single shell tanks at C tank farm. As originally planned,more » access ports for the Mobile Arm Retrieval System were to be cut using a high- pressure water-jet cutter. However, water alone was found to be insufficient to allow effective cutting of the steel-reinforced tank lids, especially when cutting the steel reinforcing bar (“rebar”). The abrasive added in cutting the hole in Tank C-107 was garnet, a complex natural aluminosilicate. The hardness of garnet (Mohs hardness ranging from H 6.5 to 7.5) exceeds that of solids currently in the tanks, and was regarded to be a threat to Hanford Waste Treatment and Immobilization Plant systems. Olivine, an iron-magnesium silicate that is nearly as hard as garnet (H 6.5 to 7), has been proposed as an alternative to garnet. Pacific Northwest National Laboratory proposed to test pyrite (FeS2), whose hardness is slightly less (H 6 to 6.5) for 1) cutting effectiveness, and 2) propensity to dissolve (or disintegrate by chemical reaction) in chemical conditions similar to those of tank waste solutions. Cutting experiments were conducted using an air abrader system and a National Institute of Standards and Technology Standard Reference Material (SRM 1767 Low Alloy Steel), which was used as a surrogate for rebar. The cutting efficacy of pyrite was compared with that of garnet and olivine in identical size fractions. Garnet was found to be most effective in removing steel from the target; olivine and pyrite were

  9. Surface micromachined microengine as the driver for micromechanical gears

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Garcia, E.J.; Sniegowski, J.J.

    1995-05-01

    The transmission of mechanical power is often accomplished through the use of gearing. The recently developed surface micromachined microengine provides us with an actuator which is suitable for driving surface micromachined geared systems. In this paper we will present aspects of the microengine as they relate to the driving of geared mechanisms, issues relating to the design of micro gear mechanisms, and details of a design of a microengine-driven geared shutter mechanism.

  10. Characterization of fine abrasive particles for optical fabrication

    NASA Astrophysics Data System (ADS)

    Funkenbusch, Paul D.; Zhou, Y. Y.; Takahashi, Toshio; Quesnel, David J.; Lambropoulos, John C.

    1995-08-01

    Material removal during fine grinding operations is accomplished primarily by the action of individual abrasive particles on the glass surface. The mechanical properties of the abrasive are therefore important. Unfortunately it is difficult to directly measure the mechanical response of abrasives once they reach the scale of approximately 10 microns. As a result mechanical properties of fine abrasives are sometimes characterized in terms of an empirical `friability', based on the response of the abrasive to crushing by a metal ball in a vial. In this paper we report on modeling/experiments designed to more precisely quantify the mechanical properties of fine abrasives and ultimately to relate them to the conditions experienced by bound particles during grinding. Experiments have been performed on various types and sizes of diamond abrasives. The response of the particles is a strong function of the loading conditions and can be tracked by changing the testing parameters. Diamond size is also found to play a critical role, with finer diamonds less susceptible to fracture. A micromechanical model from the literature is employed estimate the forces likely to be seen during testing. We are also developing dynamic models to better predict the forces experienced during `friability' testing as a function of the testing parameters.

  11. Optical Micromachining

    NASA Technical Reports Server (NTRS)

    1998-01-01

    Under an SBIR (Small Business Innovative Research) with Marshall Space Flight Center, Potomac Photonics, Inc., constructed and demonstrated a unique tool that fills a need in the area of diffractive and refractive micro-optics. It is an integrated computer-aided design and computer-aided micro-machining workstation that will extend the benefits of diffractive and micro-optic technology to optical designers. Applications of diffractive optics include sensors and monitoring equipment, analytical instruments, and fiber optic distribution and communication. The company has been making diffractive elements with the system as a commercial service for the last year.

  12. Experimental Rock-on-Rock Abrasive Wear Under Aqueous Conditions: its Role in Subglacial Abrasion

    NASA Astrophysics Data System (ADS)

    Rutter, E. H.; Lee, A. G.

    2003-12-01

    We have determined experimentally the rate of abrasive wear of rock on rock for a range of rock types as a function of normal stress and shear displacement. Unlike abrasive wear in fault zones, where wear products accumulate as a thickening gouge zone, in our experiments wear particles were removed by flowing water. The experiments are thus directly pertinent to one of the most important processes in subglacial erosion, and to some extent in river incision. Wear was produced between rotating discs machined from rock samples and measured from the progressive approach of the disc axes towards each other under various levels of normal load. Shear displacements of several km were produced. Optical and scanning electron microscopy were used to study the worn rock surfaces, and particle size distributions in wear products were characterized using a laser particle size analyzer. Rock types studied were sandstones of various porosities and cement characteristics, schists and a granite. In all cases abrasion rate decreased logarithmically with displacement by up to 2 orders of magnitude until a steady state was approached, but only after at least 1 km displacement. The more porous, less-well cemented rocks wore fastest. Amount of abrasion could be characterized quantitatively using an exponentially decaying plus a steady-state term. Wear rate increased non-linearly with normal contact stress, apparently to an asymptote defined by the unconfined compressive strength. Microstructural study showed that the well-cemented and/or lowest porosity rocks wore by progressive abrasion of grains without plucking, whereas whole grains were plucked out of weakly-cemented and/or more porous rocks. This difference in behavior was reflected in wear-product particle size distributions. Where whole-grain plucking was possible, wear products were dominated by particles of the original grain size rather than finer rock flour. Comparison of our results to glacier basal abrasive wear estimated

  13. Vascular tissue engineering by computer-aided laser micromachining.

    PubMed

    Doraiswamy, Anand; Narayan, Roger J

    2010-04-28

    Many conventional technologies for fabricating tissue engineering scaffolds are not suitable for fabricating scaffolds with patient-specific attributes. For example, many conventional technologies for fabricating tissue engineering scaffolds do not provide control over overall scaffold geometry or over cell position within the scaffold. In this study, the use of computer-aided laser micromachining to create scaffolds for vascular tissue networks was investigated. Computer-aided laser micromachining was used to construct patterned surfaces in agarose or in silicon, which were used for differential adherence and growth of cells into vascular tissue networks. Concentric three-ring structures were fabricated on agarose hydrogel substrates, in which the inner ring contained human aortic endothelial cells, the middle ring contained HA587 human elastin and the outer ring contained human aortic vascular smooth muscle cells. Basement membrane matrix containing vascular endothelial growth factor and heparin was to promote proliferation of human aortic endothelial cells within the vascular tissue networks. Computer-aided laser micromachining provides a unique approach to fabricate small-diameter blood vessels for bypass surgery as well as other artificial tissues with complex geometries.

  14. CFD-DEM Analysis of Particle Attrition in a Jet in a Fluidised Bed

    NASA Astrophysics Data System (ADS)

    Fulchini, F.; Nan, W.; Ghadiri, M.; Yazdan Panah, M.; Bertholin, S.; Amblard, B.; Cloupet, A.; Gauthier, T.

    2017-06-01

    In fluidised bed processes, the solids are in vigorous motion and thus inevitably subjected to mechanical stresses due to inter-particle and particle-wall impacts. These stresses lead to a gradual degradation of the particles by surface wear, abrasion and body fragmentation commonly termed attrition. One significant contribution of attrition comes from the air jets of the fluidised bed distributor. Particles are entrained into the air jet, where they get accelerated and impacted onto the fluidised bed particles. The jet induced attrition only affects the part of the bed which is limited by the jet length, where the mode of attrition is largely collisional. The overall jet attrition rate is therefore the result of the combination of the single particle damage and the flux of particles entering into that region. The attrition behaviour of particles in the jet region is analysed by evaluating their propensity of breakage experimentally and by simulating an air-jet in a bed of particles by CFD-DEM. The frequency of collisions and impact velocities are estimated from which the attrition due to a single air-jet is predicted.

  15. A batch process micromachined thermoelectric energy harvester: fabrication and characterization

    NASA Astrophysics Data System (ADS)

    Su, J.; Leonov, V.; Goedbloed, M.; van Andel, Y.; de Nooijer, M. C.; Elfrink, R.; Wang, Z.; Vullers, R. J. M.

    2010-10-01

    Micromachined thermopiles are considered as a cost-effective solution for energy harvesters working at a small temperature difference and weak heat flows typical for, e.g., the human body. They can be used for powering autonomous wireless sensor nodes in a body area network. In this paper, a micromachined thermoelectric energy harvester with 6 µm high polycrystalline silicon germanium (poly-SiGe) thermocouples fabricated on a 6 inch wafer is presented. An open circuit voltage of 1.49 V and an output power of 0.4 µW can be generated with 3.5 K temperature difference in a model of a wearable micromachined energy harvester of the discussed design, which has a die size of 1.0 mm × 2.5 mm inside a watch-size generator.

  16. Tool calibration system for micromachining system

    DOEpatents

    Miller, Donald M.

    1979-03-06

    A tool calibration system including a tool calibration fixture and a tool height and offset calibration insert for calibrating the position of a tool bit in a micromachining tool system. The tool calibration fixture comprises a yokelike structure having a triangular head, a cavity in the triangular head, and a port which communicates a side of the triangular head with the cavity. Yoke arms integral with the triangular head extend along each side of a tool bar and a tool head of the micromachining tool system. The yoke arms are secured to the tool bar to place the cavity around a tool bit which may be mounted to the end of the tool head. Three linear variable differential transformer's (LVDT) are adjustably mounted in the triangular head along an X axis, a Y axis, and a Z axis. The calibration insert comprises a main base which can be mounted in the tool head of the micromachining tool system in place of a tool holder and a reference projection extending from a front surface of the main base. Reference surfaces of the calibration insert and a reference surface on a tool bar standard length are used to set the three LVDT's of the calibration fixture to the tool reference position. These positions are transferred permanently to a mastering station. The tool calibration fixture is then used to transfer the tool reference position of the mastering station to the tool bit.

  17. Solidification/stabilization of spent abrasives and use as nonstructural concrete

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Brabrand, D.J.; Loehr, R.C.

    1993-01-01

    Tons of spent abrasives result each year from the removal of old paint from bridges. Because the spent abrasives contain metals from the paint, some spent abrasives may be considered hazardous by the Toxicity Characteristic (TC) criteria. Incorporation of the spent blasting abrasives in nonstructural concrete (rip-rap, dolphins) offers an opportunity to recycle the spent abrasives while immobilizing potentially leachable metals. This study focused on the Portland Cement Solidification/Stabilization (S/S) of spent blasting abrasives taken from a bridge located in Southeast Texas. The study examined (a) the cadmium, chromium, and lead concentrations in extracts obtained by using the Toxicity Characteristicmore » Leaching Procedure (TCLP) and (b) the compressive strengths of Portland Cement mixes that contained different amounts of the spent abrasives. Performance was measured by meeting the TC criteria as well as the requirements for compressive strength. Study results indicated that considerable quantities of these spent abrasives can be solidified/stabilized while reducing the leachability of cadmium, chromium, and lead and producing compressive strengths over 6,895 kN/m[sup 2] (1,000 psi).« less

  18. [The application of air abrasion in dentistry].

    PubMed

    Mandinić, Zoran; Vulićević, Zoran R; Beloica, Milos; Radović, Ivana; Mandić, Jelena; Carević, Momir; Tekić, Jasmina

    2014-01-01

    One of the main objectives of contemporary dentistry is to preserve healthy tooth structure by applying techniques of noninvasive treatment. Air abrasion is a minimally invasive nonmechanical technique of tooth preparation that uses kinetic energy to remove carious tooth structure. A powerful narrow stream of moving aluminum-oxide particles hit the tooth surface and they abrade it without heat, vibration or noise. Variables that affect speed of cutting include air pressure, particle size, powder flow, tip's size, angle and distance from the tooth. It has been proposed that air abrasion can be used to diagnose early occlusal-surface lesions and treat them with minimal tooth preparation using magnifier. Reported advantages of air abrasion include reduced noise, vibration and sensitivity. Air abrasion cavity preparations have more rounded internal contours than those prepared with straight burs. This may increase the longevity of placed restorations because it reduces the incidence of fractures and a consequence of decreased internal stresses. However, air abrasion cannot be used for all patients, i.e. in cases involving severe dust allergy, asthma, chronic obstructive lung disease, recent extraction or other oral surgery, open wounds, advanced periodontal disease, recent placement of orthodontic appliances and oral abrasions, or subgingival caries removal. Many of these conditions increase the risk of air embolism in the oral soft tissues. Dust control is a challenge, and it necessitates the use of rubber dam, high-volume evacuation, protective masks and safety eyewear for both the patient and the therapist.

  19. Micro benchtop optics by bulk silicon micromachining

    DOEpatents

    Lee, Abraham P.; Pocha, Michael D.; McConaghy, Charles F.; Deri, Robert J.

    2000-01-01

    Micromachining of bulk silicon utilizing the parallel etching characteristics of bulk silicon and integrating the parallel etch planes of silicon with silicon wafer bonding and impurity doping, enables the fabrication of on-chip optics with in situ aligned etched grooves for optical fibers, micro-lenses, photodiodes, and laser diodes. Other optical components that can be microfabricated and integrated include semi-transparent beam splitters, micro-optical scanners, pinholes, optical gratings, micro-optical filters, etc. Micromachining of bulk silicon utilizing the parallel etching characteristics thereof can be utilized to develop miniaturization of bio-instrumentation such as wavelength monitoring by fluorescence spectrometers, and other miniaturized optical systems such as Fabry-Perot interferometry for filtering of wavelengths, tunable cavity lasers, micro-holography modules, and wavelength splitters for optical communication systems.

  20. Trends in laser micromachining

    NASA Astrophysics Data System (ADS)

    Gaebler, Frank; van Nunen, Joris; Held, Andrew

    2016-03-01

    Laser Micromachining is well established in industry. Depending on the application lasers with pulse length from μseconds to femtoseconds and wavelengths from 1064nm and its harmonics up to 5μm or 10.6μm are used. Ultrafast laser machining using pulses with pico or femtosecond duration pulses is gaining traction, as it offers very precise processing of materials with low thermal impact. Large-scale industrial ultrafast laser applications show that the market can be divided into various sub segments. One set of applications demand low power around 10W, compact footprint and are extremely sensitive to the laser price whilst still demanding 10ps or shorter laser pulses. A second set of applications are very power hungry and only become economically feasible for large scale deployments at power levels in the 100+W class. There is also a growing demand for applications requiring fs-laser pulses. In our presentation we would like to describe these sub segments by using selected applications from the automotive and electronics industry e.g. drilling of gas/diesel injection nozzles, dicing of LED substrates. We close the presentation with an outlook to micromachining applications e.g. glass cutting and foil processing with unique new CO lasers emitting 5μm laser wavelength.

  1. Micromachined microfluidic chemiluminescent system for explosives detection

    NASA Astrophysics Data System (ADS)

    Park, Yoon; Neikirk, Dean P.; Anslyn, Eric V.

    2007-04-01

    Results will be reported from efforts to develop a self-contained micromachined microfluidic detection system for the presence of specific target analytes under the US Office of Naval Research Counter IED Basic Research Program. Our efforts include improving/optimizing a dedicated micromachined sensor array with integrated photodetectors and the synthesis of chemiluminescent receptors for nitramine residues. Our strategy for developing chemiluminescent synthetic receptors is to use quenched peroxyoxalate chemiluminescence; the presence of the target analyte would then trigger chemiluminescence. Preliminary results are encouraging as we have been able to measure large photo-currents from the reaction. We have also fabricated and demonstrated the feasibility of integrating photodiodes within an array of micromachined silicon pyramidal cavities. One particular advantage of such approach over a conventional planar photodiode would be its collection efficiency without the use of external optical components. Unlike the case of a normal photodetector coupled to a focused or collimated light source, the photodetector for such a purpose must couple to an emitting source that is approximately hemispherical; hence, using the full sidewalls of the bead's confining cavity as the detector allows the entire structure to act as its own integrating sphere. At the present time, our efforts are concentrating on improving the signal-to-noise ratio by reducing the leakage current by optimizing the fabrication sequence and the design.

  2. 21 CFR 872.6010 - Abrasive device and accessories.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... (CONTINUED) MEDICAL DEVICES DENTAL DEVICES Miscellaneous Devices § 872.6010 Abrasive device and accessories... crowns. The device is attached to a shank that is held by a handpiece. The device includes the abrasive...

  3. 21 CFR 872.6010 - Abrasive device and accessories.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... (CONTINUED) MEDICAL DEVICES DENTAL DEVICES Miscellaneous Devices § 872.6010 Abrasive device and accessories... crowns. The device is attached to a shank that is held by a handpiece. The device includes the abrasive...

  4. 21 CFR 872.6010 - Abrasive device and accessories.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... (CONTINUED) MEDICAL DEVICES DENTAL DEVICES Miscellaneous Devices § 872.6010 Abrasive device and accessories... crowns. The device is attached to a shank that is held by a handpiece. The device includes the abrasive...

  5. 21 CFR 872.6010 - Abrasive device and accessories.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... (CONTINUED) MEDICAL DEVICES DENTAL DEVICES Miscellaneous Devices § 872.6010 Abrasive device and accessories... crowns. The device is attached to a shank that is held by a handpiece. The device includes the abrasive...

  6. 21 CFR 872.6010 - Abrasive device and accessories.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... (CONTINUED) MEDICAL DEVICES DENTAL DEVICES Miscellaneous Devices § 872.6010 Abrasive device and accessories... crowns. The device is attached to a shank that is held by a handpiece. The device includes the abrasive...

  7. Micromachined Millimeter- and Submillimeter-Wave SIS Heterodyne Receivers for Remote Sensing

    NASA Technical Reports Server (NTRS)

    Hu, Qing

    1998-01-01

    A heterodyne mixer with a micromachined horn antenna and a superconductor -insulator-superconductor (SIS) tunnel junction as mixing element is tested in the W-band (75-115 GHz) frequency range. Micromachined integrated horn antennas consist of a dipole antenna suspended on a thin Si3N4 dielectric membrane inside a pyramidal cavity etched in silicon. The mixer performance is optimized by using a backing plane behind the dipole antenna to tune out the capacitance of the tunnel junction. The lowest receiver noise temperature of 30+/-3 K without any correction) is measured at 106 GHz with a 3-dB bandwidth of 8 GHz. This sensitivity is comparable to the state-of-the-art waveguide and quasi-optical SIS receivers, showing the potential use of micromachined horn antennas in imaging arrays.

  8. Dentifrice fluoride and abrasivity interplay on artificial caries lesions.

    PubMed

    Nassar, Hani M; Lippert, Frank; Eckert, George J; Hara, Anderson T

    2014-01-01

    Incipient caries lesions on smooth surfaces may be subjected to toothbrushing, potentially leading to remineralization and/or abrasive wear. The interplay of dentifrice abrasivity and fluoride on this process is largely unknown and was investigated on three artificially created lesions with different mineral content/distribution. 120 bovine enamel specimens were randomly allocated to 12 groups (n = 10), resulting from the association of (1) lesion type [methylcellulose acid gel (MeC); carboxymethylcellulose solution (CMC); hydroxyethylcellulose gel (HEC)], (2) slurry abrasive level [low (REA 4/ RDA 69); high (REA 7/RDA 208)], and (3) fluoride concentration [0/275 ppm (14.5 mM) F as NaF]. After lesion creation, specimens were brushed in an automated brushing machine with the test slurries (50 strokes 2×/day). Specimens were kept in artificial saliva in between brushings and overnight. Enamel surface loss (SL) was determined by optical profilometry after lesion creation, 1, 3 and 5 days. Two enamel sections (from baseline and post-brushing areas) were obtained and analyzed microradiographically. Data were analyzed by analysis of variance and Tukey's tests (α = 5%). Brushing with high-abrasive slurry caused more SL than brushing with low-abrasive slurry. For MeC and CMC lesions, fluoride had a protective effect on SL from day 3 on. Furthermore, for MeC and CMC, there was a significant mineral gain in the remaining lesions except when brushed with high-abrasive slurries and 0 ppm F. For HEC, a significant mineral gain took place when low-abrasive slurry was used with fluoride. The tested lesions responded differently to the toothbrushing procedures. Both slurry fluoride content and abrasivity directly impacted SL and mineral gain of enamel caries lesions.

  9. Analysis of Abrasive Blasting of DOP-26 Iridium Alloy

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ohriner, Evan Keith; Zhang, Wei; Ulrich, George B

    2012-01-01

    The effects of abrasive blasting on the surface geometry and microstructure of DOP-26 iridium alloy (Ir-0.3% W-0.006% Th 0.005% Al) have been investigated. Abrasive blasting has been used to control emissivity of components operating at elevated temperature. The effects of abrasive blasting conditions on surface morphology were investigated both experimentally and by numerical modeling. The simplified model, based on finite element analysis of a single angular particle impacting on Ir alloy disk, calculates the surface deformation and residual strain distribution. The experimental results and modeling results both indicate that the surface geometry is not sensitive to the abrasive blast processmore » conditions of nozzle pressure and standoff distance considered in this study. On the other hand, the modeling results suggest that the angularity of the abrasive particle has an important role in determining surface geometry, which in turn, affects the emissivity. Abrasive blasting causes localized surface strains and localized recrystallization, but it does not affect grain size following extended exposure at elevated temperature. The dependence of emissivity of the DOP-26 alloy on mean surface slope follows a similar trend to that reported for pure iridium.« less

  10. High speed micromachining with high power UV laser

    NASA Astrophysics Data System (ADS)

    Patel, Rajesh S.; Bovatsek, James M.

    2013-03-01

    Increasing demand for creating fine features with high accuracy in manufacturing of electronic mobile devices has fueled growth for lasers in manufacturing. High power, high repetition rate ultraviolet (UV) lasers provide an opportunity to implement a cost effective high quality, high throughput micromachining process in a 24/7 manufacturing environment. The energy available per pulse and the pulse repetition frequency (PRF) of diode pumped solid state (DPSS) nanosecond UV lasers have increased steadily over the years. Efficient use of the available energy from a laser is important to generate accurate fine features at a high speed with high quality. To achieve maximum material removal and minimal thermal damage for any laser micromachining application, use of the optimal process parameters including energy density or fluence (J/cm2), pulse width, and repetition rate is important. In this study we present a new high power, high PRF QuasarR 355-40 laser from Spectra-Physics with TimeShiftTM technology for unique software adjustable pulse width, pulse splitting, and pulse shaping capabilities. The benefits of these features for micromachining include improved throughput and quality. Specific example and results of silicon scribing are described to demonstrate the processing benefits of the Quasar's available power, PRF, and TimeShift technology.

  11. Solid Lubrication Fundamentals and Applications. Chapter 5; Abrasion: Plowing and Cutting

    NASA Technical Reports Server (NTRS)

    Miyoshi, Kazuhisa

    2001-01-01

    Chapter 5 discusses abrasion, a common wear phenomenon of great economic importance. It has been estimated that 50% of the wear encountered in industry is due to abrasion. Also, it is the mechanism involved in the finishing of many surfaces. Experiments are described to help in understanding the complex abrasion process and in predicting friction and wear behavior in plowing and/or cutting. These experimental modelings and measurements used a single spherical pin (asperity) and a single wedge pin (asperity). Other two-body and three-body abrasion studies used hard abrasive particles.

  12. An investigation into magnetic electrolytic abrasive turning

    NASA Astrophysics Data System (ADS)

    Mahdy, M. A. M.; Ismaeial, A. L.; Aly, F. F.

    2013-07-01

    The magnetic electrolytic abrasive turning (MEAT) process as a non-traditional machining is used to obtain surface finishing like mirror. MEAT provides one of the best alternatives for producing complex shapes with good finish in advanced materials used in aircraft and aerospace industries. The improvement of machining accuracy of MEAT continues to be a major challenge for modern industry. MEAT is a hybrid machining which combines two or more processes to remove material. The present research focuses on the development of precision electrochemical turning (ECT) under the effects of magnetic field and abrasives. The effect of magnetic flux density, electrochemical conditions and abrasive parameters on finishing efficiency and surface roughness are investigated. An empirical relationship is deduced.

  13. Process Monitoring Evaluation and Implementation for the Wood Abrasive Machining Process

    PubMed Central

    Saloni, Daniel E.; Lemaster, Richard L.; Jackson, Steven D.

    2010-01-01

    Wood processing industries have continuously developed and improved technologies and processes to transform wood to obtain better final product quality and thus increase profits. Abrasive machining is one of the most important of these processes and therefore merits special attention and study. The objective of this work was to evaluate and demonstrate a process monitoring system for use in the abrasive machining of wood and wood based products. The system developed increases the life of the belt by detecting (using process monitoring sensors) and removing (by cleaning) the abrasive loading during the machining process. This study focused on abrasive belt machining processes and included substantial background work, which provided a solid base for understanding the behavior of the abrasive, and the different ways that the abrasive machining process can be monitored. In addition, the background research showed that abrasive belts can effectively be cleaned by the appropriate cleaning technique. The process monitoring system developed included acoustic emission sensors which tended to be sensitive to belt wear, as well as platen vibration, but not loading, and optical sensors which were sensitive to abrasive loading. PMID:22163477

  14. Surface-Micromachined Microfluidic Devices

    DOEpatents

    Galambos, Paul C.; Okandan, Murat; Montague, Stephen; Smith, James H.; Paul, Phillip H.; Krygowski, Thomas W.; Allen, James J.; Nichols, Christopher A.; Jakubczak, II, Jerome F.

    2004-09-28

    Microfluidic devices are disclosed which can be manufactured using surface-micromachining. These devices utilize an electroosmotic force or an electromagnetic field to generate a flow of a fluid in a microchannel that is lined, at least in part, with silicon nitride. Additional electrodes can be provided within or about the microchannel for separating particular constituents in the fluid during the flow based on charge state or magnetic moment. The fluid can also be pressurized in the channel. The present invention has many different applications including electrokinetic pumping, chemical and biochemical analysis (e.g. based on electrophoresis or chromatography), conducting chemical reactions on a microscopic scale, and forming hydraulic actuators. Microfluidic devices are disclosed which can be manufactured using surface-micromachining. These devices utilize an electroosmotic force or an electromagnetic field to generate a flow of a fluid in a microchannel that is lined, at least in part, with silicon nitride. Additional electrodes can be provided within or about the microchannel for separating particular constituents in the fluid during the flow based on charge state or magnetic moment. The fluid can also be pressurized in the channel. The present invention has many different applications including electrokinetic pumping, chemical and biochemical analysis (e.g. based on electrophoresis or chromatography), conducting chemical reactions on a microscopic scale, and forming hydraulic actuators.

  15. Field evidence of two-phase abrasion process

    NASA Astrophysics Data System (ADS)

    Miller, K. L.; Szabo, T.; Jerolmack, D. J.; Domokos, G.

    2013-12-01

    The rounded shape of river rocks is clear evidence that abrasion due to bed load transport is a significant agent for mass loss. Its contribution to downstream fining, however, is typically assumed to be negligible - as diminution trends may be explained solely by size-selective transport. A recent theory has predicted that pebble abrasion occurs in two well separated phases: in Phase 1, an intially-polyhedral pebble rounds to the shape of an inscribed ellipsoid without any change in axis dimensions; in Phase II, axis dimensions are slowly reduced. Importantly, Phase I abrasion means that an initially-blocky pebble may lose up to half its mass without any apparent change in 'size', which is only measured as the length of a single pebble axis by most field researchers. We hypothesize that field studies have significantly underestimated the importance of abrasion because they do not quantify pebble shape, and we set out to demonstrate that two-phase abrasion occurs in a natural stream. Our study examines downstream trends in pebble size and shape along a 10-km stretch of the Rio Mameyes within the Luquillo Critical Zone observatory, where volcaniclastic cobbles and boulders are transported by bed load at slopes up to 10%. The upper reaches of the stream consist of alluviated bedrock valleys that preclude sediment storage and thus minimize size-selective transport, which allows us to isolate the effects of abrasion. The lower 5 km is an alluvial river in which size-selective transport becomes operative. We quantified the shape and size of thousands of pebbles along the profile using hand and image-based techniques. The data provide the first field validation of two-phase abrasion; in the bedrock reaches, pebbles clearly evolve toward ellipsoids without any significant change in axis dimensions (rounding), while in the lower reaches pebbles slowly reduce their axis dimensions with little or no change in roundness. Results also show that shape metrics determined from

  16. Microwave sintering of sol-gel derived abrasive grain

    DOEpatents

    Plovnick, Ross; Celikkaya, Ahmet; Blake, Rodger D.

    1997-01-01

    A method is provided for making microwave-sintered, free flowing alpha alumina-based ceramic abrasive grain, under conditions effective to couple microwaves with calcined alpha alumina-based abrasive gain precursor and sinter it at a temperature of at least about 1150.degree. C.

  17. Micromachined Thin-Film Sensors for SOI-CMOS Co-Integration

    NASA Astrophysics Data System (ADS)

    Laconte, Jean; Flandre, D.; Raskin, Jean-Pierre

    Co-integration of sensors with their associated electronics on a single silicon chip may provide many significant benefits regarding performance, reliability, miniaturization and process simplicity without significantly increasing the total cost. Micromachined Thin-Film Sensors for SOI-CMOS Co-integration covers the challenges and interests and demonstrates the successful co-integration of gas flow sensors on dielectric membrane, with their associated electronics, in CMOS-SOI technology. We firstly investigate the extraction of residual stress in thin layers and in their stacking and the release, in post-processing, of a 1 μm-thick robust and flat dielectric multilayered membrane using Tetramethyl Ammonium Hydroxide (TMAH) silicon micromachining solution.

  18. 21 CFR 872.6030 - Oral cavity abrasive polishing agent.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... (CONTINUED) MEDICAL DEVICES DENTAL DEVICES Miscellaneous Devices § 872.6030 Oral cavity abrasive polishing.... The abrasive polish is applied to the teeth by a handpiece attachment (prophylaxis cup). (b...

  19. 21 CFR 872.6030 - Oral cavity abrasive polishing agent.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... (CONTINUED) MEDICAL DEVICES DENTAL DEVICES Miscellaneous Devices § 872.6030 Oral cavity abrasive polishing.... The abrasive polish is applied to the teeth by a handpiece attachment (prophylaxis cup). (b...

  20. 21 CFR 872.6030 - Oral cavity abrasive polishing agent.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... (CONTINUED) MEDICAL DEVICES DENTAL DEVICES Miscellaneous Devices § 872.6030 Oral cavity abrasive polishing.... The abrasive polish is applied to the teeth by a handpiece attachment (prophylaxis cup). (b...

  1. 21 CFR 872.6030 - Oral cavity abrasive polishing agent.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... (CONTINUED) MEDICAL DEVICES DENTAL DEVICES Miscellaneous Devices § 872.6030 Oral cavity abrasive polishing.... The abrasive polish is applied to the teeth by a handpiece attachment (prophylaxis cup). (b...

  2. 21 CFR 872.6030 - Oral cavity abrasive polishing agent.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... (CONTINUED) MEDICAL DEVICES DENTAL DEVICES Miscellaneous Devices § 872.6030 Oral cavity abrasive polishing.... The abrasive polish is applied to the teeth by a handpiece attachment (prophylaxis cup). (b...

  3. Study of Abrasive Wear Volume Map for PTFE and PTFE Composites

    NASA Astrophysics Data System (ADS)

    Unal, H.; Sen, U.; Mimaroglu, A.

    2007-11-01

    The potential of this work is based on consideration of wear volume map for the evaluation of abrasive wear performance of polytetrafluoroethylene (PTFE) and PTFE composites. The fillers used in the composite are 25% bronze, 35% graphite and 17% glass fibre glass (GFR). The influence of filler materials, abrasion surface roughness and applied load values on abrasive wear performance of PTFE and PTFE composites were studied and evaluated. Experimental abrasive wear tests were carried out at atmospheric condition on pin-on-disc wear tribometer. Tests were performed under 4, 6, 8 and 10 N load values, travelling speed of 1 m/sec and abrasion surface roughness values of 5, 20 and 45 µm. Wear volume maps were obtained and the results showed that the lowest wear volume rate for PTFE is reached using GFR filler. Furthermore, the results also showed that the higher is the applied load and the roughness of the abrasion surface, the higher is the wear rate. Finally it is also concluded that abrasive wear process mechanism include ploughing and cutting mechanisms.

  4. Micromachined Precision Inertial Instruments

    DTIC Science & Technology

    2003-11-01

    vol. 40, pp. 903-908, 1993. [9] J. D. Zook, D. W. Burns, H. Guckel, J. J. Sniegowski, R . L. Engelstad, and Z. Feng, "Characteristics of polysilicon...285-288, 2000. [14] B. E. Boser and R . T. Howe, "Surface micromachined accelerometers," IEEE Journal of Solid-State Circuits, vol. 31, pp. 366-375...pp. 81-84, 2003. [23] I. O. Inc., "Si-Flex 1500-ULND Evaluation Board, Single Channel Digital Output," 2003. [24] H. Luo, G. K. Fedder, and L. R

  5. Optimization of micromachined membrane switches

    NASA Astrophysics Data System (ADS)

    Hiltmann, Kai; Lang, Walter

    1997-09-01

    We have determined the minimum dimensions for micromachined membrane switches in several experiments, both regarding the strength of the membranes themselves and the elongations required for safe switching performance. Based on these data, pressure switches for voltages of 10 - 100 V were made as single and multiple elements and tested. Test results, with scatter of pressure threshold data in the ten per cent range, prove very encouraging for further development.

  6. Effect of Er,Cr:YSGG laser, air abrasion, and silane application on repaired shear bond strength of composites.

    PubMed

    Cho, S D; Rajitrangson, P; Matis, B A; Platt, J A

    2013-01-01

    Aged resin composites have a limited number of carbon-carbon double bonds to adhere to a new layer of resin. Study objectives were to 1) evaluate various surface treatments on repaired shear bond strength between aged and new resin composites and 2) to assess the influence of a silane coupling agent after surface treatments. Eighty disk-shape resin composite specimens were fabricated and thermocycled 5000 times prior to surface treatment. Specimens were randomly assigned to one of the three surface treatment groups (n=20): 1) air abrasion with 50-μm aluminum oxide, 2) tribochemical silica coating (CoJet), or 3) Er,Cr:YSGG (erbium, chromium: yttrium-scandium-gallium-garnet) laser or to a no-treatment control group (n=20). Specimens were etched with 35% phosphoric acid, rinsed, and dried. Each group was divided into two subgroups (n=10): A) no silanization and B) with silanization. The adhesive agent was applied and new resin composite was bonded to each conditioned surface. Shear bond strength was evaluated and data analyzed using two-way analysis of variance (ANOVA). Air abrasion with 50-μm aluminum oxide showed significantly higher repair bond strength than the Er,Cr:YSGG laser and control groups. Air abrasion with 50-μm aluminum oxide was not significantly different from tribochemical silica coating. Tribochemical silica coating had significantly higher repair bond strength than Er,Cr:YSGG laser and the control. Er,Cr:YSGG laser and the control did not have significantly different repair bond strengths. Silanization had no influence on repair bond strength for any of the surface treatment methods. Air abrasion with 50-μm aluminum oxide and tribochemical silica followed by the application of bonding agent provided the highest repair shear bond strength values, suggesting that they might be adequate methods to improve the quality of repairs of resin composites.

  7. Investigation into the mechanisms of closed three-body abrasive wear

    NASA Astrophysics Data System (ADS)

    Dwyer-Joyce, R. S.; Sayles, R. S.; Ioannides, E.

    1994-06-01

    Contacting components frequently fail by abrasion caused by solid contaminants in the lubricant. This process can be classified as a closed three-body abrasive wear process. The mechanisms by which trapped particles cause material removal are not fully understood. This paper describes tests using model elastohydrodynamic contacts to study these mechanisms. An optical elastohydrodynamic lubrication rig has been used to study the deformation and fracture of ductile and brittle lubricant-borne debris. A ball-on-disk machine was used to study the behavior of the particles in partially sliding contacts. Small diamond particles were used as abrasives since these were thought not to break down in the contact; wear could then be directly related to particles of a known size. The particles were found to embed in the softer surface and to scratch the harder. The mass of material worn from the ball surface was approximately proportional to the particle sliding distance and abrasive concentration. Small particles tumbled through the contact, while larger particles ploughed. Mass loss was found to increase with abrasive particle size. Individual abrasion scratches have been measured and related to the abrading particle. A simple model of the abrasive process has been developed and compared with experimental data. The discrepancies are thought to be the result of the uncertainty about the entrainment of particles into the contact.

  8. Control technology for crystalline silica exposures in construction: wet abrasive blasting.

    PubMed

    Golla, Vijay; Heitbrink, William

    2004-03-01

    This study was designed to document the effect that wet abrasive blasting has on reducing worker exposure to crystalline silica, which has been associated with silicosis and premature death. In this study, worker exposure to respirable crystalline silica was monitored during wet abrasive blasting on the exterior walls of a parking garage to remove surface concrete and expose the underlying aggregate. In this process a wet sand mix comprised of 80% dry sand and 20% water was used. Sampling and analysis revealed that the geometric mean respirable quartz concentration was 0.2 mg/m(3) for workers conducting abrasive blasting and 0.06 mg/m(3) for helpers. When abrasive blasting was conducted in areas that apparently had reduced natural ventilation, dust exposures appeared to increase. When compared with other published data, this case study suggests that wet abrasive blasting causes less exposure to crystalline silica than dry abrasive blasting.

  9. Friction and abrasion of elastomeric materials

    NASA Technical Reports Server (NTRS)

    Gent, A. N.

    1975-01-01

    An abrasion apparatus is described. Experimental measurements are reported for four representative elastomeric materials, including a typical high-quality tire tread material and a possible replacement material for aircraft tire treads based on transpolypentenamer (TPPR). Measurements are carried out at different levels of frictional work input, corresponding to different severities of wear, and at both ambient temperature and at 100 C. Results indicate the marked superiority in abrasion resistance of the material based on TPPR, especially at 100 C, in comparison with the other materials examined.

  10. Abrasive wear of ceramic wear protection at ambient and high temperatures

    NASA Astrophysics Data System (ADS)

    Varga, M.; Adam, K.; Tumma, M.; Alessio, K. O.

    2017-05-01

    Ceramic wear protection is often applied in abrasive conditions due to their excellent wear resistance. This is especially necessary in heavy industries conveying large amounts of raw materials, e.g. in steel industry. Some plants also require material transport at high temperatures and velocities, making the need of temperature stable and abrasion resistant wear protection necessary. Various types and wear behaviour of ceramic protection are known. Hence, the goal of this study is to identify the best suitable ceramic materials for abrasive conditions in harsh environments at temperatures up to 950°C and severe thermal gradients. Chamottes, known for their excellent thermal shock resistance are compared to high abrasion resistant ceramic wear tiles and a cost efficient cement-bounded hard compound. Testing was done under high-stress three-body abrasion regime with a modified ASTM G65 apparatus enabling for investigations up to ~950°C. Thereto heated abrasive is introduced into the wear track and also preheated ceramic samples were used and compared to ambient temperature experiments. Results indicate a significant temperature influence on chamottes and the hard compound. While the chamottes benefit from temperature increase, the cement-bounded hard compound showed its limitation at abrasive temperatures of 950°C. The high abrasion resistant wear tiles represented the materials with the best wear resistance and less temperature influence in the investigated range.

  11. UV laser-assisted wire stripping and micro-machining

    NASA Astrophysics Data System (ADS)

    Martyniuk, Jerry

    1994-02-01

    Results are reported for the use of a 266 nm frequency quadrupled Nd:YAG ultraviolet laser in the areas of wire stripping of small coaxial type transmission lines and for micro-machining of various materials including copper, glass, polyimide and DuPont TEFLONTM. This new laser is typically run with a 2 KHz repetition rate, 40 ns FWHM pulse and a fluence of about 50 joules/cm2 which makes it possible to micro-machine metals, polymers, glasses and ceramics. The high fluence of this laser allows shielding structures such as Al-MylarTM, Al-KaptonTM or the plated copper used in small coaxial cables to be precisely cut. Cut rates are reported for the above materials as well as results and photos of wire stripping and micro- machining.

  12. Interaction between attrition,abrasion and erosion in tooth wear.

    PubMed

    Addy, M; Shellis, R P

    2006-01-01

    Tooth wear is the result of three processes: abrasion (wear produced by interaction between teeth and other materials), attrition (wear through tooth-tooth contact) and erosion (dissolution of hard tissue by acidic substances). A further process (abfraction) might potentiate wear by abrasion and/or erosion. Both clinical and experimental observations show that individual wear mechanisms rarely act alone but interact with each other. The most important interaction is the potentiation of abrasion by erosive damage to the dental hard tissues. This interaction seems to be the major factor in occlusal and cervical wear. The available evidence seems insufficient to establish whether abfraction is an important contributor to tooth wear in vivo. Saliva can modulate erosive/abrasive tooth wear through formation of pellicle and by remineralisation but cannot prevent it.

  13. Atmospheric particulate emissions from dry abrasive blasting using coal slag.

    PubMed

    Kura, Bhaskar; Kambham, Kalpalatha; Sangameswaran, Sivaramakrishnan; Potana, Sandhya

    2006-08-01

    Coal slag is one of the widely used abrasives in dry abrasive blasting. Atmospheric emissions from this process include particulate matter (PM) and heavy metals, such as chromium, lead, manganese, nickel. Quantities and characteristics of PM emissions depend on abrasive characteristics and process parameters. Emission factors are key inputs to estimate emissions. Experiments were conducted to study the effect of blast pressure, abrasive feed rate, and initial surface contamination on total PM (TPM) emission factors for coal slag. Rusted and painted mild steel surfaces were used as base plates. Blasting was carried out in an enclosed chamber, and PM was collected from an exhaust duct using U.S. Environment Protection Agency source sampling methods for stationary sources. Results showed that there is significant effect of blast pressure, feed rate, and surface contamination on TPM emissions. Mathematical equations were developed to estimate emission factors in terms of mass of emissions per unit mass of abrasive used, as well as mass of emissions per unit of surface area cleaned. These equations will help industries in estimating PM emissions based on blast pressure and abrasive feed rate. In addition, emissions can be reduced by choosing optimum operating conditions.

  14. Effect of Axial Force on the Performance of Micromachined Vibratory Rate Gyroscopes

    PubMed Central

    Hou, Zhanqiang; Xiao, Dingbang; Wu, Xuezhong; Dong, Peitao; Chen, Zhihua; Niu, Zhengyi; Zhang, Xu

    2011-01-01

    It is reported in the published literature that the resonant frequency of a silicon micromachined gyroscope decreases linearly with increasing temperature. However, when the axial force is considerable, the resonant frequency might increase as the temperature increases. The axial force is mainly induced by thermal stress due to the mismatch between the thermal expansion coefficients of the structure and substrate. In this paper, two types of micromachined suspended vibratory gyroscopes with slanted beams were proposed to evaluate the effect of the axial force. One type was suspended with a clamped-free (C-F) beam and the other one was suspended with a clamped-clamped (C-C) beam. Their drive modes are the bending of the slanted beam, and their sense modes are the torsion of the slanted beam. The relationships between the resonant frequencies of the two types were developed. The prototypes were packaged by vacuum under 0.1 mbar and an analytical solution for the axial force effect on the resonant frequency was obtained. The temperature dependent performances of the operated mode responses of the micromachined gyroscopes were measured. The experimental values of the temperature coefficients of resonant frequencies (TCF) due to axial force were 101.5 ppm/°C for the drive mode and 21.6 ppm/°C for the sense mode. The axial force has a great influence on the modal frequency of the micromachined gyroscopes suspended with a C-C beam, especially for the flexure mode. The quality factors of the operated modes decreased with increasing temperature, and changed drastically when the micromachined gyroscopes worked at higher temperatures. PMID:22346578

  15. Micromachined TWTs for THz Radiation Sources

    NASA Technical Reports Server (NTRS)

    Booske, John H.; vanderWeide, Daniel W.; Kory, Carol L.; Limbach, S.; Downey, Alan (Technical Monitor)

    2001-01-01

    The Terahertz (THz) region of the electromagnetic spectrum (about 300 - 3000 GHz in frequency or about 0.1 - 1 mm free space wavelength) has enormous potential for high-data-rate communications, spectroscopy, astronomy, space research, medicine, biology, surveillance, remote sensing, industrial process control, etc. It has been characterized as the most scientifically rich, yet under-utilized, region of the electromagnetic spectrum. The most critical roadblock to full exploitation of the THz band is lack of coherent radiation sources that are powerful (0.001 - 1.0 W continuous wave), efficient (> 1%), frequency agile (instantaneously tunable over 1% bandwidths or more), reliable, and comparatively inexpensive. To develop vacuum electron device (VED) radiation sources satisfying these requirements, fabrication and packaging approaches must be heavily considered to minimize costs, in addition to the basic interaction physics and circuit design. To minimize size of the prime power supply, beam voltage must be minimized, preferably 10 kV. Solid state sources satisfy the low voltage requirement, but are many orders of magnitude below power, efficiency, and bandwidth requirements. On the other hand, typical fast-wave VED sources in this regime (e.g., gyrotrons, FELs) tend to be large, expensive, high voltage and very high power devices unsuitable for most of the applications cited above. VEDs based on grating or inter-digital (ID) circuits have been researched and developed. However, achieving forward-wave amplifier operation with instantaneous fractional bandwidths > 1% is problematic for these devices with low-energy (< 15 kV) electron beams. Moreover, the interaction impedance is quite low unless the beam-circuit spacing is kept particularly narrow, often leading to significant beam interception. One solution to satisfy the THz source requirements mentioned above is to develop micromachined VEDs, or "micro-VEDs". Among other benefits, micro-machining technologies

  16. Method for forming an abrasive surface on a tool

    DOEpatents

    Seals, Roland D.; White, Rickey L.; Swindeman, Catherine J.; Kahl, W. Keith

    1999-01-01

    A method for fabricating a tool used in cutting, grinding and machining operations, is provided. The method is used to deposit a mixture comprising an abrasive material and a bonding material on a tool surface. The materials are propelled toward the receiving surface of the tool substrate using a thermal spray process. The thermal spray process melts the bonding material portion of the mixture, but not the abrasive material. Upon impacting the tool surface, the mixture or composition solidifies to form a hard abrasive tool coating.

  17. Modeling of Micro Deval abrasion loss based on some rock properties

    NASA Astrophysics Data System (ADS)

    Capik, Mehmet; Yilmaz, Ali Osman

    2017-10-01

    Aggregate is one of the most widely used construction material. The quality of the aggregate is determined using some testing methods. Among these methods, the Micro Deval Abrasion Loss (MDAL) test is commonly used for the determination of the quality and the abrasion resistance of aggregate. The main objective of this study is to develop models for the prediction of MDAL from rock properties, including uniaxial compressive strength, Brazilian tensile strength, point load index, Schmidt rebound hardness, apparent porosity, void ratio Cerchar abrasivity index and Bohme abrasion test are examined. Additionally, the MDAL is modeled using simple regression analysis and multiple linear regression analysis based on the rock properties. The study shows that the MDAL decreases with the increase of uniaxial compressive strength, Brazilian tensile strength, point load index, Schmidt rebound hardness and Cerchar abrasivity index. It is also concluded that the MDAL increases with the increase of apparent porosity, void ratio and Bohme abrasion test. The modeling results show that the models based on Bohme abrasion test and L type Schmidt rebound hardness give the better forecasting performances for the MDAL. More models, including the uniaxial compressive strength, the apparent porosity and Cerchar abrasivity index, are developed for the rapid estimation of the MDAL of the rocks. The developed models were verified by statistical tests. Additionally, it can be stated that the proposed models can be used as a forecasting for aggregate quality.

  18. Effect of nanofillers' size on surface properties after toothbrush abrasion.

    PubMed

    Cavalcante, Larissa M; Masouras, Konstantinos; Watts, David C; Pimenta, Luiz A; Silikas, Nick

    2009-02-01

    To investigate the effect of filler-particle size of experimental and commercial resin composites, undergoing toothbrush abrasion, on three surface properties: surface roughness (SR), surface gloss (G) and color stability (CS). Four model (Ivoclar/Vivadent) and one commercial resin composite (Tokuyama) with varying filler-size from 100-1000 nm were examined. Six discs (10 mm x 2 mm) from each product were prepared and mechanically polished. The samples were then submitted to 20,000 brushing strokes in a toothbrush abrasion machine. SR parameters (Ra, Rt and RSm), G, and CS were measured before and after toothbrush abrasion. Changes in SR and G were analyzed by 2-way ANOVA, with Bonferroni post hoc test. CS values were submitted to one-way ANOVA and Bonferroni post hoc test (alpha=0.05). Initial G values ranged between 73-87 gloss units (GU) and were reduced after toothbrush abrasion to a range of 8-64 GU. Toothbrush abrasion resulted in significant modifications in SR and G amongst the materials tested, attributed to filler sizes. There was statistically significant difference in color (delta E* ranged from 0.38-0.88). Filler size did not affect color stability. Toothbrush abrasion resulted in rougher and matte surfaces for all materials tested. Although the individual differences in surface roughness among filler sizes were not always significant, the correlation showed a trend that larger filler sizes resulted in higher surface roughness after abrasion for the SR parameters Ra and Rt (r = 0.95; r = 0.93, respectively). RSm showed an increase after toothbrush abrasion for all resin composites, however no significant correlation was detected (r = 0.21).There was a significant correlation between G and Ra ratios (r = - 0.95).

  19. Computation of Static Shapes and Voltages for Micromachined Deformable Mirrors with Nonlinear Electrostatic Actuators

    NASA Technical Reports Server (NTRS)

    Wang, P. K. C.; Hadaegh, F. Y.

    1996-01-01

    In modeling micromachined deformable mirrors with electrostatic actuators whose gap spacings are of the same order of magnitude as those of the surface deformations, it is necessary to use nonlinear models for the actuators. In this paper, we consider micromachined deformable mirrors modeled by a membrane or plate equation with nonlinear electrostatic actuator characteristics. Numerical methods for computing the mirror deformation due to given actuator voltages and the actuator voltages required for producing the desired deformations at the actuator locations are presented. The application of the proposed methods to circular deformable mirrors whose surfaces are modeled by elastic membranes is discussed in detail. Numerical results are obtained for a typical circular micromachined mirror with electrostatic actuators.

  20. A Low-noise Micromachined Millimeter-Wave Heterodyne Mixer using Nb Superconducting Tunnel Junctions

    NASA Technical Reports Server (NTRS)

    DeLange, Gert; Jacobson, Brian R.; Hu, Qing

    1996-01-01

    A heterodyne mixer with a micromachined horn antenna and a superconductor-insulator-superconductor (SIS) tunnel junction as mixing element is tested in the W-band (75-115 GHz) frequency range. Micromachined integrated horn antennas consist of a dipole antenna suspended on a thin Si3N4 dielectric membrane inside a pyramidal cavity etched in silicon. The mixer performance is optimized by using a backing plane behind the dipole antenna to tune out the capacitance of the tunnel junction. The lowest receiver noise temperature of 30 +/- 3 K (without any correction) is measured at 106 GHz with a 3-dB bandwidth of 8 GHz. This sensitivity is comparable to the state-of-the-art waveguide and quasi-optical SIS receivers, showing the potential use of micromachined horn antennas in imaging arrays.

  1. Mars Pathfinder: The Wheel Abrasion Experiment

    NASA Technical Reports Server (NTRS)

    1996-01-01

    NASA Lewis Research Center's Wheel Abrasion Experiment (WAE) will measure the amount of wear on wheel surfaces of the Mars Pathfinder rover. WAE uses thin films of Al, Ni, and Pt (ranging in thickness from 200 to 1000 angstroms) deposited on black, anodized Al strips attached to the rover wheel. As the wheel moves across the martian surface, changes in film reflectivity will be monitored by reflected sunlight. These changes, measured as output from a special photodetector mounted on the rover chassis, will be due to abrasion of the metal films by martian surface sand, dust, and clay.

  2. Micro-machined calorimetric biosensors

    DOEpatents

    Doktycz, Mitchel J.; Britton, Jr., Charles L.; Smith, Stephen F.; Oden, Patrick I.; Bryan, William L.; Moore, James A.; Thundat, Thomas G.; Warmack, Robert J.

    2002-01-01

    A method and apparatus are provided for detecting and monitoring micro-volumetric enthalpic changes caused by molecular reactions. Micro-machining techniques are used to create very small thermally isolated masses incorporating temperature-sensitive circuitry. The thermally isolated masses are provided with a molecular layer or coating, and the temperature-sensitive circuitry provides an indication when the molecules of the coating are involved in an enthalpic reaction. The thermally isolated masses may be provided singly or in arrays and, in the latter case, the molecular coatings may differ to provide qualitative and/or quantitative assays of a substance.

  3. Wear resistance and mechanisms of composite hardfacings at abrasive impact erosion wear

    NASA Astrophysics Data System (ADS)

    Surzhenkov, A.; Viljus, M.; Simson, T.; Tarbe, R.; Saarna, M.; Casesnoves, F.

    2017-05-01

    Tungsten carbide based hardmetal containing sprayed and melted composite hardfacings are prospective for protection against abrasive wear. For selection of abrasive wear resistant hardfacings under intensive impact wear conditions, both mechanical properties (hardness, fracture toughness, etc.) and abrasive wear conditions (type of abrasive, impact velocity, etc.) should be considered. This study focuses on the wear (wear rate and mechanisms) of thick metal-matrix composite hardfacings with hardmetal (WC-Co) reinforcement produced by powder metallurgy technology. The influence of the hardmetal reinforcement type on the wear resistance at different abrasive impact erosion wear (AIEW) conditions was studied. An optimal reinforcement for various wear conditions is described. Based on wear mechanism studies, a mathematical model for wear prediction was drafted.

  4. Phase-sensitive techniques applied to a micromachined vacuum sensor

    NASA Astrophysics Data System (ADS)

    Chapman, Glenn H.; Sawadsky, N.; Juneja, P. P.

    1996-09-01

    Phase sensitive AC measurement techniques are particularly applicable to micromachined sensors detecting temperature changes at a sensor caused by a microheater. The small mass produces rapid thermal response to AC signals which are easily detectable with lock-in amplifiers. Phase sensitive measurements were applied to a CMOS compatible micromachined pressure sensor consisting a polysilicon sense line, 760 microns long, on an oxide microbridge separated by 6 microns on each horizontal side from similar polysilicon heaters, all over a micromachined cavity. Sinusoidal heater signals at 32 Hz induced temperature caused sense line resistance changes at 64 Hz. The lock-in detected this as a first harmonic sense resistor voltage from a DC constant sense current. By observing the first harmonic the lock-in rejects all AC coupling of noise by capacitance or inductance, by measuring only those signals at the 64 Hz frequency and with a fixed phase relationship to the heater driver signals. This sensor produces large signals near atmospheric pressure, declining to 7 (mu) V below 0.1 mTorr. Phase measurements between 760 and 100 Torr where the air's thermal conductivity changes little, combined with amplitude changes at low pressure generate a pressure measurement accurate at 5 percent from 760 Torr to 10 mTorr, sensing of induced temperature changes of 0.001 degree C.

  5. Modeling and experimental study on characterization of micromachined thermal gas inertial sensors.

    PubMed

    Zhu, Rong; Ding, Henggao; Su, Yan; Yang, Yongjun

    2010-01-01

    Micromachined thermal gas inertial sensors based on heat convection are novel devices that compared with conventional micromachined inertial sensors offer the advantages of simple structures, easy fabrication, high shock resistance and good reliability by virtue of using a gaseous medium instead of a mechanical proof mass as key moving and sensing elements. This paper presents an analytical modeling for a micromachined thermal gas gyroscope integrated with signal conditioning. A simplified spring-damping model is utilized to characterize the behavior of the sensor. The model relies on the use of the fluid mechanics and heat transfer fundamentals and is validated using experimental data obtained from a test-device and simulation. Furthermore, the nonideal issues of the sensor are addressed from both the theoretical and experimental points of view. The nonlinear behavior demonstrated in experimental measurements is analyzed based on the model. It is concluded that the sources of nonlinearity are mainly attributable to the variable stiffness of the sensor system and the structural asymmetry due to nonideal fabrication.

  6. Emerging leadership of surface micromachined MEMS for wavelength switching in telecommunications systems

    NASA Astrophysics Data System (ADS)

    Staple, Bevan D.; Muller, Lilac; Miller, David C.

    2003-01-01

    We introduce the Network Photonics" CrossWave as the first commercially-available, MEMS-based wavelength selective switch. The CrossWave combines the functionality of signal de-multiplexing, switching and re-multiplexing in a single all-optical operation using a dispersive element and 1-D MEMS. 1-D MEMS, where micromirrors are configured in a single array with a single mirror per wavelength, are fabricated in a standard surface micromachining process. In this paper we present three generations of micromirror designs. With proper design optimization and process improvements we have demonstrated exceptional mirror flatness (<16.2m-1 curvature), surface error (micromachining. This excellent optical performance in combination with a CMOS-like approach of the SUMMiT IV process (currently available at a commercial foundry) have demonstrated the emerging leadership of surface micromachining for upcoming optical telecom-munication applications.

  7. Mangrove Cultivation For Dealing With Coastal Abrasion Case Study Of Karangsong

    NASA Astrophysics Data System (ADS)

    Fatimatuzzahroh, Feti; Hadi, Sudharto P.; Purnaweni, Hartuti

    2018-02-01

    Coastal abrasion is consequence from destructive waves and sea current. One of cause is human intervention. The effort to solve of abrasion is by mangrove cultivation. Mangroves are halophyte plant that can restrain the sea wave. Mangrove cultivation required participation community that give awareness the importance of mangrove in coastal sustainability. Mangroves in coastal Karangsong, Indramayu west java, in 2007 was through abrasion approximately 127.30 ha. Mangrove cultivation in Karangsong has been replanting since 1998 to 2003, but there was no maintenance and management. In 2007 until 2015 Karangsong replanting mangroves and has been succeed. Karangsong became the center of mangrove study for west java area in 2015. This achievement is result of cooperation between community, NGO, and local government. In addition, this effort made not only overcome the abrasion problem but also give community awareness about the importance of mangrove cultivation in preventing coastal abrasion throughout community development. This paper reviews abrasion in Karangsong and the impact for local community and empowerment in mangrove cultivation. To achieve the success mangrove cultivation required community development approach from planning process, planting, maintenance and management.

  8. 7 CFR 3201.66 - Cuts, burns, and abrasions ointments.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... 7 Agriculture 15 2014-01-01 2014-01-01 false Cuts, burns, and abrasions ointments. 3201.66 Section... PROCUREMENT Designated Items § 3201.66 Cuts, burns, and abrasions ointments. (a) Definition. Products designed..., in accordance with this part, will give a procurement preference for qualifying biobased cuts, burns...

  9. 7 CFR 3201.66 - Cuts, burns, and abrasions ointments.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... 7 Agriculture 15 2013-01-01 2013-01-01 false Cuts, burns, and abrasions ointments. 3201.66 Section... PROCUREMENT Designated Items § 3201.66 Cuts, burns, and abrasions ointments. (a) Definition. Products designed..., in accordance with this part, will give a procurement preference for qualifying biobased cuts, burns...

  10. 7 CFR 3201.66 - Cuts, burns, and abrasions ointments.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... 7 Agriculture 15 2012-01-01 2012-01-01 false Cuts, burns, and abrasions ointments. 3201.66 Section... PROCUREMENT Designated Items § 3201.66 Cuts, burns, and abrasions ointments. (a) Definition. Products designed..., in accordance with this part, will give a procurement preference for qualifying biobased cuts, burns...

  11. Development of micromachine tool prototypes for microfactories

    NASA Astrophysics Data System (ADS)

    Kussul, E.; Baidyk, T.; Ruiz-Huerta, L.; Caballero-Ruiz, A.; Velasco, G.; Kasatkina, L.

    2002-11-01

    At present, many areas of industry have strong tendencies towards miniaturization of products. Mechanical components of these products as a rule are manufactured using conventional large-scale equipment or micromechanical equipment based on microelectronic technology (MEMS). The first method has some drawbacks because conventional large-scale equipment consumes much energy, space and material. The second method seems to be more advanced but has some limitations, for example, two-dimensional (2D) or 2.5-dimensional shapes of components and materials compatible with silicon technology. In this paper, we consider an alternative technology of micromechanical device production. This technology is based on micromachine tools (MMT) and microassembly devices, which can be produced as sequential generations of microequipment. The first generation can be produced by conventional large-scale equipment. The machine tools of this generation can have overall sizes of 100-200 mm. Using microequipment of this generation, second generation microequipment having smaller overall sizes can be produced. This process can be repeated to produce generations of micromachine tools having overall sizes of some millimetres. In this paper we describe the efforts and some results of first generation microequipment prototyping. A micromachining centre having an overall size of 130 × 160 × 85 mm3 was produced and characterized. This centre has allowed us to manufacture micromechanical details having sizes from 50 µm to 5 mm. These details have complex three-dimensional shapes (for example, screw, gear, graduated shaft, conic details, etc), and are made from different materials, such as brass, steel, different plastics etc. We have started to investigate and to make prototypes of the assembly microdevices controlled by a computer vision system. In this paper we also describe an example of the applications (microfilters) for the proposed technology.

  12. Valve for abrasive material

    DOEpatents

    Gardner, Harold S.

    1982-01-01

    A ball valve assembly for controlling the flow of abrasive particulates including an enlarged section at the bore inlet and an enlarged section at the bore outlet. A refractory ceramic annular deflector is positioned in each of the enlarged sections, substantially extending the useful life of the valve.

  13. Optical-model abrasion cross sections for high-energy heavy ions

    NASA Technical Reports Server (NTRS)

    Townsend, L. W.

    1981-01-01

    Within the context of eikonal scattering theory, a generalized optical model potential approximation to the nucleus-nucleus multiple scattering series is used in an abrasion-ablation collision model to predict abrasion cross sections for relativistic projectile heavy ions. Unlike the optical limit of Glauber theory, which cannot be used for very light nuclei, the abrasion formalism is valid for any projectile target combination at any incident kinetic energy for which eikonal scattering theory can be utilized. Results are compared with experimental results and predictions from Glauber theory.

  14. A Review on Parametric Analysis of Magnetic Abrasive Machining Process

    NASA Astrophysics Data System (ADS)

    Khattri, Krishna; Choudhary, Gulshan; Bhuyan, B. K.; Selokar, Ashish

    2018-03-01

    The magnetic abrasive machining (MAM) process is a highly developed unconventional machining process. It is frequently used in manufacturing industries for nanometer range surface finishing of workpiece with the help of Magnetic abrasive particles (MAPs) and magnetic force applied in the machining zone. It is precise and faster than conventional methods and able to produce defect free finished components. This paper provides a comprehensive review on the recent advancement of MAM process carried out by different researcher till date. The effect of different input parameters such as rotational speed of electromagnet, voltage, magnetic flux density, abrasive particles size and working gap on the performances of Material Removal Rate (MRR) and surface roughness (Ra) have been discussed. On the basis of review, it is observed that the rotational speed of electromagnet, voltage and mesh size of abrasive particles have significant impact on MAM process.

  15. Abrasion Plus Local Fibrin Sealant Instillation Produces Pleurodesis Similar to Pleurectomy in Rabbits.

    PubMed

    Marchi, Evaldo; de Carvalho, Marcus V H; Ventureli, Tiago R; Fruchi, Andre J; Lazaro, Ariane; do Carmo, Deborah C; Barreto, Thayssa Y A S; Dias, Bruno V B; Acencio, Milena M P; Teixeira, Lisete R; Light, Richard W

    2016-09-01

    Pleurodesis performed either by pleurectomy or pleural abrasion is recommended in the approach to primary spontaneous pneumothorax to avoid recurrence. However, the efficacy of parietal pleural abrasion in producing pleurodesis is questioned. This study aims to determine the efficacy of apical abrasion alone, abrasion plus fibrin sealant application, and pleurectomy in producing pleurodesis in rabbits. Rabbits were subjected to video-assisted thoracic surgery alone (control) or to video-assisted thoracic surgery with apical gauze abrasion, abrasion plus fibrin sealant instillation, or apical pleurectomy. Blood samples were collected preoperatively and 48 h and 28 days postoperatively to measure total leukocytes (white blood cell count), neutrophil counts, and serum interleukin (IL)-8 levels. After 28 days the animals were sacrificed for macroscopic evaluation of the degree of apical pleurodesis and microscopic evaluation of local pleural fibrosis and collagen deposition. White blood cell and neutrophil counts were similar in all groups, whereas the serum IL-8 level peaked at 48 h in all groups and decreased after 28 days, except in the pleurectomy group. After 28 days the abrasion plus fibrin sealant and pleurectomy groups had significantly more pleural adhesions, pleural fibrosis, and collagen deposition than the abrasion alone group, mainly due to thick mature fibers. Abrasion with local fibrin sealant instillation is as effective as pleurectomy in producing pleurodesis in rabbits. Apical pleurectomy elicits a more persistent elevation of serum IL-8 levels than apical abrasion alone or abrasion plus fibrin adhesive instillation. Copyright © 2016 American College of Chest Physicians. Published by Elsevier Inc. All rights reserved.

  16. Aliasing Signal Separation of Superimposed Abrasive Debris Based on Degenerate Unmixing Estimation Technique.

    PubMed

    Li, Tongyang; Wang, Shaoping; Zio, Enrico; Shi, Jian; Hong, Wei

    2018-03-15

    Leakage is the most important failure mode in aircraft hydraulic systems caused by wear and tear between friction pairs of components. The accurate detection of abrasive debris can reveal the wear condition and predict a system's lifespan. The radial magnetic field (RMF)-based debris detection method provides an online solution for monitoring the wear condition intuitively, which potentially enables a more accurate diagnosis and prognosis on the aviation hydraulic system's ongoing failures. To address the serious mixing of pipe abrasive debris, this paper focuses on the superimposed abrasive debris separation of an RMF abrasive sensor based on the degenerate unmixing estimation technique. Through accurately separating and calculating the morphology and amount of the abrasive debris, the RMF-based abrasive sensor can provide the system with wear trend and sizes estimation of the wear particles. A well-designed experiment was conducted and the result shows that the proposed method can effectively separate the mixed debris and give an accurate count of the debris based on RMF abrasive sensor detection.

  17. Aliasing Signal Separation of Superimposed Abrasive Debris Based on Degenerate Unmixing Estimation Technique

    PubMed Central

    Li, Tongyang; Wang, Shaoping; Zio, Enrico; Shi, Jian; Hong, Wei

    2018-01-01

    Leakage is the most important failure mode in aircraft hydraulic systems caused by wear and tear between friction pairs of components. The accurate detection of abrasive debris can reveal the wear condition and predict a system’s lifespan. The radial magnetic field (RMF)-based debris detection method provides an online solution for monitoring the wear condition intuitively, which potentially enables a more accurate diagnosis and prognosis on the aviation hydraulic system’s ongoing failures. To address the serious mixing of pipe abrasive debris, this paper focuses on the superimposed abrasive debris separation of an RMF abrasive sensor based on the degenerate unmixing estimation technique. Through accurately separating and calculating the morphology and amount of the abrasive debris, the RMF-based abrasive sensor can provide the system with wear trend and sizes estimation of the wear particles. A well-designed experiment was conducted and the result shows that the proposed method can effectively separate the mixed debris and give an accurate count of the debris based on RMF abrasive sensor detection. PMID:29543733

  18. Micromachined Tunable Fabry-Perot Filters for Infrared Astronomy

    NASA Technical Reports Server (NTRS)

    Barclay, Richard; Bier, Alexander; Chen, Tina; DiCamillo, Barbara; Deming, Drake; Greenhouse, Matthew; Henry, Ross; Hewagama, Tilak; Jacobson, Mindy; Loughlin, James; hide

    2002-01-01

    Micromachined Fabry-Perot tunable filters with a large clear aperture (12.5 to 40 mm) are being developed as an optical component for wide-field imaging 1:1 spectroscopy. This program applies silicon micromachining fabrication techniques to miniaturize Fabry-Perot filters for astronomical science instruments. The filter assembly consists of a stationary etalon plate mated to a plate in which the etalon is free to move along the optical axis on silicon springs attached to a stiff silicon support ring. The moving etalon is actuated electrostatically by electrode pairs on the fixed and moving etalons. To reduce mass, both etalons are fabricated by applying optical coatings to a thin freestanding silicon nitride film held flat in drumhead tension rather than to a thick optical substrate. The design, electro-mechanical modeling, fabrication, and initial results will be discussed. The potential application of the miniature Fabry-Perot filters will be briefly discussed with emphasis on the detection of extra-solar planets.

  19. Shoe heel abrasion and its possible biomechanical cause: a transversal study with infantry recruits.

    PubMed

    Baumfeld, Daniel; Raduan, Fernando C; Macedo, Benjamim; Silva, Thiago Alexandre Alves; Baumfeld, Tiago; Favato, Danilo Fabrino; de Andrade, Marco Antonio Percope; Nery, Caio

    2015-11-19

    Excessive shoe heel abrasion is of concern to patients and shoe manufacturers, but little scientific information is available about this feature and its possible causes. The purpose of this study was to relate this phenomenon with biomechanical factors that could predispose to shoe heel abrasion. Ninety-seven recruits (median age 25) were enrolled in this study. Shoe abrasion was assessed manually with a metric plastic tape on the posterior part of the heel that comes in contact with the ground. The number of sprains, foot alignment, and calf muscle shortening (Silfverskiold test) was also assessed in order to relate it with shoe heel abrasion. After using our exclusion criteria, 86 recruits and 172 were considered for this study. The most common abrasion site was the lateral portion of the heel surface (50 %). Forty-four percent of the participants had neutral hind-foot alignment and 39 % had valgus alignment. Twenty-six (30 %) patients have had previous ankle or foot sprains. Neutral foot was related with less calf muscle shortening. On the other hand, valgus hind-foot alignment was more associated with Achilles shortening (p < 0.05). Patients with neutral alignment were associated with more uniform shoe heel abrasion and varus feet were associated with more central and lateral abrasion (p < 0.05). The pattern of shoe heel abrasion was not statistically related with calf muscle shortening nor with number of sprains. This study was able to correlate shoe heel abrasion with biomechanical causes (neutral alignment-uniform abrasion/varus alignment-central and lateral abrasion). More effort has to be done to continue evaluating outsole abrasion with its possible biomechanical cause in order to predict and treat possible associated injuries.

  20. [Brushing abrasion of the enamel surface after erosion].

    PubMed

    Lipei, Chen; Xiangke, Ci; Xiaoyan, Ou

    2017-08-01

    Objective A study was conducted to compare the effect of different enamel remineralization periods after erosion on the depth of brushing abrasion. Methods Ten volunteers were selected for a 4-day experiment. A total of 60 enamels were randomly assigned into six groups (A-F) and placed in intraoral palatal devices. On the first day, the palatal devices were placed in oral cavity (24 h) . On the following three days, brushing experiments were performed extraorally, two times per day. The specific experimental method of brushing follows these next steps. First, the group F specimens were covered with a film of wax, and then acid etched for 2 min. Subsequently, the film of wax was detached. The groups from A to D were brushed after remineralization at the following time intervals: group A, 0 min; group B, 20 min; group C, 40 min; group D, 60 min. Erosion and remineralization were performed on group E, but without brushing. Remineralization was performed on group F, but without acid etching and brushing. The depth of enamel abrasion was determined by a mechanical profilometer. The surface morphology of the enamel blocks was observed using a scanning electron microscope. Results 1) The depth of abrasion was different in varied enamel remineralization time after acid etching. The statistical significant differences between groups were as follows. 2) When the time of enamel remineralization after acid etching was short, the surface depression in the electron microscope was deep, and the surface morphology was rough. Conclusion Brushing immediately after acid etching would cause much serious abrasion to the enamel surface. Brushing after 60 min can effectively reduce the abrasion of acid etching enamel.

  1. Surface-micromachined microfluidic devices

    DOEpatents

    Galambos, Paul C.; Okandan, Murat; Montague, Stephen; Smith, James H.; Paul, Phillip H.; Krygowski, Thomas W.; Allen, James J.; Nichols, Christopher A.; Jakubczak, II, Jerome F.

    2003-01-01

    Microfluidic devices are disclosed which can be manufactured using surface-micromachining. These devices utilize an electroosmotic force or an electromagnetic field to generate a flow of a fluid in a microchannel that is lined, at least in part, with silicon nitride. Additional electrodes can be provided within or about the microchannel for separating particular constituents in the fluid during the flow based on charge state or magnetic moment. The fluid can also be pressurized in the channel. The present invention has many different applications including electrokinetic pumping, chemical and biochemical analysis (e.g. based on electrophoresis or chromatography), conducting chemical reactions on a microscopic scale, and forming hydraulic actuators.

  2. Numerical simulation analysis of four-stage mutation of solid-liquid two-phase grinding

    NASA Astrophysics Data System (ADS)

    Li, Junye; Liu, Yang; Hou, Jikun; Hu, Jinglei; Zhang, Hengfu; Wu, Guiling

    2018-03-01

    In order to explore the numerical simulation of solid-liquid two-phase abrasive grain polishing and abrupt change tube, in this paper, the fourth order abrupt change tube was selected as the research object, using the fluid mechanics software to simulate,based on the theory of solid-liquid two-phase flow dynamics, study on the mechanism of AFM micromachining a workpiece during polishing.Analysis at different inlet pressures, the dynamic pressure distribution pipe mutant fourth order abrasive flow field, turbulence intensity, discuss the influence of the inlet pressure of different abrasive flow polishing effect.

  3. Separation and Detection of Toxic Gases with a Silicon Micromachined Gas Chromatography System

    NASA Technical Reports Server (NTRS)

    Kolesar, Edward S.; Reston, Rocky R.

    1995-01-01

    A miniature gas chromatography (GC) system was designed and fabricated using silicon micromachining and integrated circuit (IC) processing techniques. The silicon micromachined gas chromatography system (SMGCS) is composed of a miniature sample injector that incorporates a 10 microliter sample loop; a 0.9 meter long, rectangular shaped (300 micrometer width and 10 micrometer height) capillary column coated with a 0.2 micrometer thick copper phthalocyanine (CuPc) stationary phase; and a dual detector scheme based upon a CuPc-coated chemiresistor and a commercially available 125 micrometer diameter thermal conductivity detector (TCD) bead. Silicon micromachining was employed to fabricate the interface between the sample injector and the GC column, the column itself, and the dual detector cavity. A novel IC thin-film processing technique was developed to sublime the CuPc stationary phase coating on the column walls that were micromachined in the host silicon wafer substrate and Pyrex (r) cover plate, which were then electrostatically bonded together. The SMGCS can separate binary gas mixtures composed of parts-per-million (ppm) concentrations of ammonia (NH3) and nitrogen dioxide (NO2) when isothermally operated (55-80 degrees C). With a helium carrier gas and nitrogen diluent, a 10 microliter sample volume containing ammonia and nitrogen dioxide injected at 40 psi ((2.8 x 10(exp 5)Pa)) can be separated in less than 30 minutes.

  4. Evaluation of abrasion resistance of pipe and pipe lining materials.

    DOT National Transportation Integrated Search

    2007-09-01

    This project summarizes an evaluation of pipe material resistance to abrasion over a 5-year period (2001-2006) at a site known to be abrasive. : The key focus of the project was to gather more information to compare against existing guidance to desig...

  5. The interactions between attrition, abrasion and erosion in tooth wear.

    PubMed

    Shellis, R Peter; Addy, Martin

    2014-01-01

    Tooth wear is the result of three processes: abrasion (wear produced by interaction between teeth and other materials), attrition (wear through tooth-tooth contact) and erosion (dissolution of hard tissue by acidic substances). A further process (abfraction) might potentiate wear by abrasion and/or erosion. Knowledge of these tooth wear processes and their interactions is reviewed. Both clinical and experimental observations show that individual wear mechanisms rarely act alone but interact with each other. The most important interaction is the potentiation of abrasion by erosive damage to the dental hard tissues. This interaction seems to be the major factor in occlusal and cervical wear. The available evidence is insufficient to establish whether abfraction is an important contributor to tooth wear in vivo. Saliva can modulate erosive/abrasive tooth wear, especially through formation of pellicle, but cannot prevent it. © 2014 S. Karger AG, Basel.

  6. Micromachined electrode array

    DOEpatents

    Okandan, Murat; Wessendorf, Kurt O.

    2007-12-11

    An electrode array is disclosed which has applications for neural stimulation and sensing. The electrode array, in certain embodiments, can include a plurality of electrodes each of which is flexibly attached to a common substrate using a plurality of springs to allow the electrodes to move independently. In other embodiments of the electrode array, the electrodes can be fixed to the substrate. The electrode array can be formed from a combination of bulk and surface micromachining, and can include electrode tips having an electroplated metal (e.g. platinum, iridium, gold or titanium) or a metal oxide (e.g. iridium oxide) for biocompatibility. The electrode array can be used to form a part of a neural prosthesis, and is particularly well adapted for use in an implantable retinal prosthesis.

  7. Pleurectomy versus pleural abrasion for primary spontaneous pneumothorax in children.

    PubMed

    Joharifard, Shahrzad; Coakley, Brian A; Butterworth, Sonia A

    2017-05-01

    Primary spontaneous pneumothorax (PSP) represents a common indication for urgent surgical intervention in children. First episodes are often managed with thoracostomy tube, whereas recurrent episodes typically prompt surgery involving apical bleb resection and pleurodesis, either via pleurectomy or pleural abrasion. The purpose of this study was to assess whether pleurectomy or pleural abrasion was associated with lower postoperative recurrence. The records of patients undergoing surgery for PSP between February 2005 and December 2015 were retrospectively reviewed. Recurrence was defined as an ipsilateral pneumothorax requiring surgical intervention. Bivariate logistic regressions were used to identify factors associated with recurrence. Fifty-two patients underwent 64 index operations for PSP (12 patients had surgery for contralateral pneumothorax, and each instance was analyzed separately). The mean age was 15.7±1.2years, and 79.7% (n=51) of patients were male. In addition to apical wedge resection, 53.1% (n=34) of patients underwent pleurectomy, 39.1% (n=25) underwent pleural abrasion, and 7.8% (n=5) had no pleural treatment. The overall recurrence rate was 23.4% (n=15). Recurrence was significantly lower in patients who underwent pleurectomy rather than pleural abrasion (8.8% vs. 40%, p<0.01). In patients who underwent pleural abrasion without pleurectomy, the relative risk of recurrence was 2.36 [1.41-3.92, p<0.01]. Recurrence of PSP is significantly reduced in patients undergoing pleurectomy compared to pleural abrasion. Level III, retrospective comparative therapeutic study. Copyright © 2017 Elsevier Inc. All rights reserved.

  8. Study of Dominant Factors Affecting Cerchar Abrasivity Index

    NASA Astrophysics Data System (ADS)

    Rostami, Jamal; Ghasemi, Amireza; Alavi Gharahbagh, Ehsan; Dogruoz, Cihan; Dahl, Filip

    2014-09-01

    The Cerchar abrasion index is commonly used to represent rock abrasion for estimation of bit life and wear in various mining and tunneling applications. Although the test is simple and fast, there are some discrepancies in the test results related to the equipment used, condition of the rock surface, operator skills, and procedures used in conducting and measuring the wear surface. This paper focuses on the background of the test and examines the influence of various parameters on Cerchar testing including pin hardness, surface condition of specimens, petrographical and geomechanical properties, test speed, applied load, and method of measuring wear surface. Results of Cerchar tests on a set of rock specimens performed at different laboratories are presented to examine repeatability of the tests. In addition, the preliminary results of testing with a new device as a potential alternative testing system for rock abrasivity measurement are discussed.

  9. Terahertz-Regime, Micro-VEDs: Evaluation of Micromachined TWT Conceptual Designs

    NASA Technical Reports Server (NTRS)

    Booske, John H.; Kory, Carol L.; Gallagher, D.; van der Weide, Daniel W.; Limbach, S; Gustafson, P; Lee, W.-J.; Gallagher, S.; Jain, K.

    2001-01-01

    Summary form only given. The Terahertz (THz) region of the electromagnetic spectrum (approx.300-3000 GHz) has enormous potential for high-data-rate communications, spectroscopy, astronomy, space research, medicine, biology, surveillance, remote sensing, industrial process control, etc. The most critical roadblock to full exploitation of the THz band is lack of coherent radiation sources that are powerful (0.01-10.0 W continuous wave), efficient (>1 %), frequency agile (instantaneously tunable over 1% bandwidths or more), reliable, and relatively inexpensive. Micro-machined Vacuum Electron Devices (micro-VEDs) represent a promising solution. We describe prospects for miniature, THz-regime TWTs fabricated using micromachining techniques. Several approx.600 GHz conceptual designs are compared. Their expected performance has been analyzed using SD, 2.51), and 3D TWT codes. A folded waveguide (FWG) TWT forward-wave amplifier design is presented based on a Northrop Grumman (NGC) optimized design procedure. This conceptual device is compared to the simulated performance of a novel, micro-VED helix TWT. Conceptual FWG TWT backward-wave amplifiers and oscillators are also discussed. A scaled (100 GHz) FWG TWT operating at a relatively low voltage (-12 kV) is under development at NGC. Also, actual-size micromachining experiments are planned to evaluate the feasibility of arrays of micro-VED TWTs. Progress and results of these efforts are described. This work was supported, in part by AFOSR, ONR, and NSF.

  10. Effects of Jet Pressure on the Ground Surface Quality and CBN Wheel Wear in Grinding AISI 690 Nickel-Based Superalloy

    NASA Astrophysics Data System (ADS)

    Guitouni, Ahmed; Chaieb, Iheb; Rhouma, Amir Ben; Fredj, Nabil Ben

    2016-11-01

    Fluid application in grinding is getting attention as higher stock removal rates, higher surface integrity and longer wheel life are required. It is necessary to define proper conditions of application for meeting high productivity goals by lowering the specific grinding energy and reducing the temperature of the contact zone. The present study investigated the capacity of the jet pressure of a spot nozzle to improve the wear of a CBN wheel when grinding the AISI 690 superalloy. Grinding experiments were conducted with an emulsion-type cooling fluid delivered at pressure ranging from 0.1 to 4 MPa. Results show that the maximum stock removal, reached at 4 MPa, is 5 times the stock removal obtained at 0.1 MPa, while the grinding ratio at 4 MPa is 8 times that at 0.1 MPa, and there is a critical pressure ( P c) around 1.5 MPa corresponding to the minimum specific grinding energy. Scanning electron microscopy of the grain tips showed that the wear mechanism shifts from breaking and dislodgment at low jet pressure to micro-fracture resulting in continuous self-sharpening of the abrasive grains. By lubricating at jet pressure close to P c, there is less thermal damage due to plowing and sliding and the resulting lower loading of the abrasive grains favors the micro-fracture of grains and thus a longer wheel life.

  11. Baking soda as an abrasive in toothpastes: Mechanism of action and safety and effectiveness considerations.

    PubMed

    Hara, Anderson T; Turssi, Cecilia P

    2017-11-01

    Toothpastes can be formulated with different abrasive systems, depending on their intended clinical application. This formulation potentially affects their effectiveness and safety and, therefore, requires proper understanding. In this article, the authors focused on abrasive aspects of toothpastes containing sodium bicarbonate (baking soda), which have gained considerable attention because of their low abrasivity and good compatibility, while providing clinical effectiveness (further detailed in the other articles of this special issue). The authors first appraised the role of toothpaste abrasivity on tooth wear, exploring some underlying processes and the existing methods to determine toothpaste abrasivity. The authors reviewed the available data on the abrasivity of toothpastes containing baking soda and reported a summary of findings highlighting the clinical implications. On the basis of the collected evidence, baking soda has an intrinsic low-abrasive nature because of its comparatively lower hardness in relation to enamel and dentin. Baking soda toothpastes also may contain other ingredients, which can increase their stain removal effectiveness and, consequently, abrasivity. Even those formulations have abrasivity well within the safety limit regulatory agencies have established and, therefore, can be considered safe. Copyright © 2017 American Dental Association. Published by Elsevier Inc. All rights reserved.

  12. Three-Body Abrasion Testing Using Lunar Dust Simulants to Evaluate Surface System Materials

    NASA Technical Reports Server (NTRS)

    Kobrick, Ryan L.; Budinski, Kenneth G.; Street, Kenneth W., Jr.; Klaus, David M.

    2010-01-01

    Numerous unexpected operational issues relating to the abrasive nature of lunar dust, such as scratched visors and spacesuit pressure seal leaks, were encountered during the Apollo missions. To avoid reoccurrence of these unexpected detrimental equipment problems on future missions to the Moon, a series of two- and three-body abrasion tests were developed and conducted in order to begin rigorously characterizing the effect of lunar dust abrasiveness on candidate surface system materials. Two-body scratch tests were initially performed to examine fundamental interactions of a single particle on a flat surface. These simple and robust tests were used to establish standardized measurement techniques for quantifying controlled volumetric wear. Subsequent efforts described in the paper involved three-body abrasion testing designed to be more representative of actual lunar interactions. For these tests, a new tribotester was developed to expose samples to a variety of industrial abrasives and lunar simulants. The work discussed in this paper describes the three-body hardware setup consisting of a rotating rubber wheel that applies a load on a specimen as a loose abrasive is fed into the system. The test methodology is based on ASTM International (ASTM) B611, except it does not mix water with the abrasive. All tests were run under identical conditions. Abraded material specimens included poly(methyl methacrylate) (PMMA), hardened 1045 steel, 6061-T6 aluminum (Al) and 1018 steel. Abrasives included lunar mare simulant JSC- 1A-F (nominal size distribution), sieved JSC-1A-F (<25 m particle diameter), lunar highland simulant NU-LHT-2M, alumina (average diameter of 50 m used per ASTM G76), and silica (50/70 mesh used per ASTM G65). The measured mass loss from each specimen was converted using standard densities to determine total wear volume in cm3. Abrasion was dominated by the alumina and the simulants were only similar to the silica (i.e., sand) on the softer materials of

  13. Micromachined Parts Advance Medicine, Astrophysics, and More

    NASA Technical Reports Server (NTRS)

    2015-01-01

    In the mid-1990s, Marshall Space Flight Center awarded two SBIR contracts to Potomac Photonics, now based in Baltimore, for the development of computerized workstations capable of mass-producing tiny, intricate, diffractive optical elements. While the company has since discontinued the workstations, those contracts set the stage for Potomac Photonics to be a leader in the micromachining industry, where NASA remains one of its clients.

  14. Microhardness evaluation of silorane and methacrylate composites submitted to erosion and abrasion processes

    PubMed Central

    Gazola, Eloá Aguiar; Rego, Marcos Augusto; Brandt, William Cunha; D’Arce, Maria Beatriz Freitas; Liporoni, Priscila Christiane Suzy

    2015-01-01

    Abstract Objective: The aim of this study was to evaluate the Knoop hardness number (KHN) of methacrylate (MC) and silorane (SC) composites after being submitted to erosion and abrasion processes. Material and methods: Forty samples were made with each composite: MC and SC. The samples were divided into eight groups (n = 10) according to the type of composite (G1–G4, MC; G5–G8, SC) and the beverages involved in the erosion process (G1 and G5 – Control (C), without erosion, with abrasion; G2 and G6 – Orange Juice (OJ), abrasion; G3 and G7 – Smirnoff Ice® (SI), abrasion; G4 and G8 – Gatorade® (GA), abrasion). The KHN test was performed 24 h after the last cycle of erosion/abrasion. Results: The MC groups showed smaller KHN values for the SI group (p < 0.05) when compared to the Control and OJ groups; however, for the SC groups, no differences were found (p > 0.05). Conclusion: Methacrylate composite when submitted to acidic beverages erosive challenge combined with abrasive process might alter its surface microhardness. However, the beverages used in the present study were not able to interfere in silorane composite surface microhardness. PMID:28642903

  15. Performance Analysis of Abrasive Waterjet Machining Process at Low Pressure

    NASA Astrophysics Data System (ADS)

    Murugan, M.; Gebremariam, MA; Hamedon, Z.; Azhari, A.

    2018-03-01

    Normally, a commercial waterjet cutting machine can generate water pressure up to 600 MPa. This range of pressure is used to machine a wide variety of materials. Hence, the price of waterjet cutting machine is expensive. Therefore, there is a need to develop a low cost waterjet machine in order to make the technology more accessible for the masses. Due to its low cost, such machines may only be able to generate water pressure at a much reduced rate. The present study attempts to investigate the performance of abrasive water jet machining process at low cutting pressure using self-developed low cost waterjet machine. It aims to study the feasibility of machining various materials at low pressure which later can aid in further development of an effective low cost water jet machine. A total of three different materials were machined at a low pressure of 34 MPa. The materials are mild steel, aluminium alloy 6061 and plastics Delrin®. Furthermore, a traverse rate was varied between 1 to 3 mm/min. The study on cutting performance at low pressure for different materials was conducted in terms of depth penetration, kerf taper ratio and surface roughness. It was found that all samples were able to be machined at low cutting pressure with varied qualities. Also, the depth of penetration decreases with an increase in the traverse rate. Meanwhile, the surface roughness and kerf taper ratio increase with an increase in the traverse rate. It can be concluded that a low cost waterjet machine with a much reduced rate of water pressure can be successfully used for machining certain materials with acceptable qualities.

  16. Surface characterization of current composites after toothbrush abrasion.

    PubMed

    Takahashi, Rena; Jin, Jian; Nikaido, Toru; Tagami, Junji; Hickel, Reinhard; Kunzelmann, Karl-Heinz

    2013-01-01

    The present study was designed to evaluate the surface roughness and the gloss of current composites before and after toothbrush abrasion. We assessed forty dimensionally standardized composite specimens (n=8/group) from five composites: two nanohybrids (i. e., IPS Empress Direct Enamel and IPS Empress Direct Dentin), two microhybrids (i. e., Clearfil AP-X and Filtek Z250) and one organically modified ceramics (Admira). All of the specimens were polished with 4000-grid silicon carbide papers. Surface roughness was measured with a profilometer and gloss was measured with a glossmeter before and after powered toothbrush abrasion with a 1:1 slurry (dentifrice/tap water) at 12,000 strokes in a toothbrush simulator. There was a significant increase in the surface roughness and a reduction in gloss after toothbrush abrasion in all of the composites except Clearfil AP-X (p<0.05). Simple regression analysis showed that there was not an association between the surface roughness and the gloss (R(2)=0.191, p<0.001).

  17. Study of Effect of Impacting Direction on Abrasive Nanometric Cutting Process with Molecular Dynamics

    NASA Astrophysics Data System (ADS)

    Li, Junye; Meng, Wenqing; Dong, Kun; Zhang, Xinming; Zhao, Weihong

    2018-01-01

    Abrasive flow polishing plays an important part in modern ultra-precision machining. Ultrafine particles suspended in the medium of abrasive flow removes the material in nanoscale. In this paper, three-dimensional molecular dynamics (MD) simulations are performed to investigate the effect of impacting direction on abrasive cutting process during abrasive flow polishing. The molecular dynamics simulation software Lammps was used to simulate the cutting of single crystal copper with SiC abrasive grains at different cutting angles (0o-45o). At a constant friction coefficient, we found a direct relation between cutting angle and cutting force, which ultimately increases the number of dislocation during abrasive flow machining. Our theoretical study reveal that a small cutting angle is beneficial for improving surface quality and reducing internal defects in the workpiece. However, there is no obvious relationship between cutting angle and friction coefficient.

  18. Study of Effect of Impacting Direction on Abrasive Nanometric Cutting Process with Molecular Dynamics.

    PubMed

    Li, Junye; Meng, Wenqing; Dong, Kun; Zhang, Xinming; Zhao, Weihong

    2018-01-11

    Abrasive flow polishing plays an important part in modern ultra-precision machining. Ultrafine particles suspended in the medium of abrasive flow removes the material in nanoscale. In this paper, three-dimensional molecular dynamics (MD) simulations are performed to investigate the effect of impacting direction on abrasive cutting process during abrasive flow polishing. The molecular dynamics simulation software Lammps was used to simulate the cutting of single crystal copper with SiC abrasive grains at different cutting angles (0 o -45 o ). At a constant friction coefficient, we found a direct relation between cutting angle and cutting force, which ultimately increases the number of dislocation during abrasive flow machining. Our theoretical study reveal that a small cutting angle is beneficial for improving surface quality and reducing internal defects in the workpiece. However, there is no obvious relationship between cutting angle and friction coefficient.

  19. Measurement of phase difference for micromachined gyros driven by rotating aircraft.

    PubMed

    Zhang, Zengping; Zhang, Fuxue; Zhang, Wei

    2013-08-21

    This paper presents an approach for realizing a phase difference measurement of a new gyro. A silicon micromachined gyro was mounted on rotating aircraft for aircraft attitude control. Aircraft spin drives the silicon pendulum of a gyro rotating at a high speed so that it can sense the transverse angular velocity of the rotating aircraft based on the gyroscopic precession principle when the aircraft has transverse rotation. In applications of the rotating aircraft single channel control system, such as damping in the attitude stabilization loop, the gyro signal must be kept in sync with the control signal. Therefore, the phase difference between both signals needs to be measured accurately. Considering that phase difference is mainly produced by both the micromachined part and the signal conditioning circuit, a mathematical model has been established and analyzed to determine the gyro's phase frequency characteristics. On the basis of theoretical analysis, a dynamic simulation has been done for a case where the spin frequency is 15 Hz. Experimental results with the proposed measurement method applied to a silicon micromachined gyro driven by a rotating aircraft demonstrate that it is effective in practical applications. Measured curve and numerical analysis of phase frequency characteristic are in accordance, and the error between measurement and simulation is only 5.3%.

  20. Stress-induced curvature engineering in surface-micromachined devices

    NASA Astrophysics Data System (ADS)

    Aksyuk, Vladimir A.; Pardo, Flavio; Bishop, David J.

    1999-03-01

    Residual stress and stress gradients play an important role in determining equilibrium shape and behavior of various Si surface-micromachined devices under applied loads. This is particularly true for system having large-area plates and long beams where curvature resulting from stress can lead to significant deviations from stress-free shape. To gain better understanding of these properties, we have measured the equilibrium shapes of various structures built on the MCNC MUMPs using an interferometric profiler. The structures were square plates and long beams composed of various combinations of polysilicon an oxide layers. Some of the structures had additional MUMPs metal layer on top, while on others in-house chromium-gold stacks of varying thickness have been deposited. Temperature dependence of the curvature was measured for some plates. We have used these data in conjunction with simple models to significantly improve the performance of our micromachined devices. While for some structures such as large area reflectors the curvature had to be minimized, it could be advantageously exploited by others, for example vertical actuators for self-assembly.

  1. Dentin abrasivity of various desensitizing toothpastes.

    PubMed

    Arnold, W H; Gröger, Ch; Bizhang, M; Naumova, E A

    2016-04-02

    The aim of this study was to compare the abrasivity of various commercially available toothpastes that claim to reduce dentin hypersensitivity. Dentin discs were prepared from 70 human extracted molars. The discs were etched with lemon juice for 5 min, and one half of the discs were covered with aluminum tape. Following this, they were brushed with 6 different toothpastes, simulating a total brushing time of 6 months. As a negative control, discs were brushed with tap water only. The toothpastes contained pro-arginine and calcium carbonate, strontium acetate, stannous fluoride, zinc carbonate and hydroxyapatite, new silica, or tetrapotassium pyrophosphate and hydroxyapatite. After brushing, the height differences between the control halves and the brushed halves were determined with a profilometer and statistically compared using a Mann-Whitney U test for independent variables. A significant difference (p < 0.001) in height difference between the controls and the toothpaste-treated samples was found in all cases, except for the stannous fluoride-containing toothpaste (p = 0.583). The highest abrasion was found in the toothpaste containing zinc carbonate and hydroxyapatite, and the lowest was found in the toothpaste containing pro-arginine and calcium carbonate. Desensitizing toothpastes with different desensitizing ingredients have different levels of abrasivity, which may have a negative effect on their desensitizing abilities over a long period of time.

  2. Abrasion-ablation model for neutron production in heavy ion reactions

    NASA Technical Reports Server (NTRS)

    Cucinotta, Francis A.; Wilson, John W.; Townsend, Lawrence W.

    1995-01-01

    In heavy ion reactions, neutron production at forward angles is observed to occur with a Gaussian shape that is centered near the beam energy and extends to energies well above that of the beam. This paper presents an abrasion-ablation model for making quantitative predictions of the neutron spectrum. To describe neutrons produced from the abrasion step of the reaction where the projectile and target overlap, the authors use the Glauber model and include effects of final-state interactions. They then use the prefragment mass distribution from abrasion with a statistical evaporation model to estimate the neutron spectrum resulting from ablation. Measurements of neutron production from Ne and Nb beams are compared with calculations, and good agreement is found.

  3. Modelling of micromachining of human tooth enamel by erbium laser radiation

    NASA Astrophysics Data System (ADS)

    Belikov, A. V.; Skrypnik, A. V.; Shatilova, K. V.

    2014-08-01

    We consider a 3D cellular model of human tooth enamel and a photomechanical cellular model of enamel ablation by erbium laser radiation, taking into account the structural peculiarities of enamel, energy distribution in the laser beam cross section and attenuation of laser energy in biological tissue. The surface area of the texture in enamel is calculated after its micromachining by erbium laser radiation. The influence of the surface area on the bond strength of enamel with dental filling materials is discussed. A good correlation between the computer simulation of the total work of adhesion and experimentally measured bond strength between the dental filling material and the tooth enamel after its micromachining by means of YAG : Er laser radiation is attained.

  4. Surface--micromachined rotatable member having a low-contact-area hub

    DOEpatents

    Rodgers, M. Steven; Sniegowski, Jeffry J.

    2002-01-01

    A surface-micromachined rotatable member formed on a substrate and a method for manufacturing thereof are disclosed. The surface-micromachined rotatable member, which can be a gear or a rotary stage, has a central hub, and an annulus connected to the central hub by an overarching bridge. The hub includes a stationary axle support attached to the substrate and surrounding an axle. The axle is retained within the axle support with an air-gap spacing therebetween of generally 0.3 .mu.m or less. The rotatable member can be formed by alternately depositing and patterning layers of a semiconductor (e.g. polysilicon or a silicon-germanium alloy) and a sacrificial material and then removing the sacrificial material, at least in part. The present invention has applications for forming micromechanical or microelectromechanical devices requiring lower actuation forces, and providing improved reliability.

  5. Surface-micromachined rotatable member having a low-contact-area hub

    DOEpatents

    Rodgers, M. Steven; Sniegowski, Jeffry J.; Krygowski, Thomas W.

    2003-11-18

    A surface-micromachined rotatable member formed on a substrate and a method for manufacturing thereof are disclosed. The surface-micromachined rotatable member, which can be a gear or a rotary stage, has a central hub, and an annulus connected to the central hub by an overarching bridge. The hub includes a stationary axle support attached to the substrate and surrounding an axle. The axle is retained within the axle support with an air-gap spacing therebetween of generally 0.3 .mu.m or less. The rotatable member can be formed by alternately depositing and patterning layers of a semiconductor (e.g. polysilicon or a silicon-germanium alloy) and a sacrificial material and then removing the sacrificial material, at least in part. The present invention has applications for forming micromechanical or microelectromechanical devices requiring lower actuation forces, and providing improved reliability.

  6. Micromachined ultrasonic droplet generator based on a liquid horn structure

    NASA Astrophysics Data System (ADS)

    Meacham, J. M.; Ejimofor, C.; Kumar, S.; Degertekin, F. L.; Fedorov, A. G.

    2004-05-01

    A micromachined ultrasonic droplet generator is developed and demonstrated for drop-on-demand fluid atomization. The droplet generator comprises a bulk ceramic piezoelectric transducer for ultrasound generation, a reservoir for the ejection fluid, and a silicon micromachined liquid horn structure as the nozzle. The nozzles are formed using a simple batch microfabrication process that involves wet etching of (100) silicon in potassium hydroxide solution. Device operation is demonstrated by droplet ejection of water through 30 μm orifices at 1.49 and 2.30 MHz. The finite-element simulations of the acoustic fields in the cavity and electrical impedance of the device are in agreement with the measurements and indicate that the device utilizes cavity resonances in the 1-5 MHz range in conjunction with acoustic wave focusing by the pyramidally shaped nozzles to achieve low power operation.

  7. Surface Abrasive Torsion for Improved Mechanical Properties and Microstructure

    NASA Astrophysics Data System (ADS)

    Moon, Ji Hyun; Baek, Seung Mi; Lee, Seok Gyu; Yoon, Jae Ik; Lee, Sunghak; Kim, Hyoung Seop

    2018-05-01

    A novel process of discrete surface abrasion during simple torsion (ST), named "surface abrasive torsion (SAT)," is proposed to overcome the limitation of ST, i.e., insufficient strain for severe plastic deformation (SPD) due to cracks initiated on the surface, by removing the roughened surface region. The effect of SAT on delayed crack initiation was explained using finite element simulations. Larger shear deformation applicable to the specimen in SAT than ST was demonstrated experimentally.

  8. Behaviors of 40Cr steel treated by laser quenching on impact abrasive wear

    NASA Astrophysics Data System (ADS)

    Chen, Zhikai; Zhu, Qinghai; Wang, Jing; Yun, Xiao; He, Bing; Luo, Jingshuai

    2018-07-01

    In present work, laser quenching had been carried out to improve the impact abrasive wear resistance of 40Cr steel. The distinct microstructure between original and quenched region was demonstrated after laser quenching. Since the effect of temperature and cooling rate, the phase combinations were apparently different for quenched layer in depth. The impact abrasive wear resistance of sample was experimentally investigated and the improved level was assessed in light of the average mass loss of three repetitive tests. Worn surface was detected by means of SEM, OM and EDS, and results showed that three typical failure modes were performed during the processing of impact abrasive wear, including abrasive wear, impact effect and rolling contact fatigue. Basing on the different worn surface profile, the mainly failure mode was respectively pointed out for matrix and quenched sample, which was significantly in accordance with the result of impact abrasive wear.

  9. Damping control of micromachined lowpass mechanical vibration isolation filters using electrostatic actuation with electronic signal processing

    NASA Astrophysics Data System (ADS)

    Dean, Robert; Flowers, George; Sanders, Nicole; MacAllister, Ken; Horvath, Roland; Hodel, A. S.; Johnson, Wayne; Kranz, Michael; Whitley, Michael

    2005-05-01

    Some harsh environments, such as those encountered by aerospace vehicles and various types of industrial machinery, contain high frequency/amplitude mechanical vibrations. Unfortunately, some very useful components are sensitive to these high frequency mechanical vibrations. Examples include MEMS gyroscopes and resonators, oscillators and some micro optics. Exposure of these components to high frequency mechanical vibrations present in the operating environment can result in problems ranging from an increased noise floor to component failure. Passive micromachined silicon lowpass filter structures (spring-mass-damper) have been demonstrated in recent years. However, the performance of these filter structures is typically limited by low damping (especially if operated in near-vacuum environments) and a lack of tunability after fabrication. Active filter topologies, such as piezoelectric, electrostrictive-polymer-film and SMA have also been investigated in recent years. Electrostatic actuators, however, are utilized in many micromachined silicon devices to generate mechanical motion. They offer a number of advantages, including low power, fast response time, compatibility with silicon micromachining, capacitive position measurement and relative simplicity of fabrication. This paper presents an approach for realizing active micromachined mechanical lowpass vibration isolation filters by integrating an electrostatic actuator with the micromachined passive filter structure to realize an active mechanical lowpass filter. Although the electrostatic actuator can be used to adjust the filter resonant frequency, the primary application is for increasing the damping to an acceptable level. The physical size of these active filters is suitable for use in or as packaging for sensitive electronic and MEMS devices, such as MEMS vibratory gyroscope chips.

  10. Evaluation of Needle Gun and Abrasive Blasting Technologies in Bridge Paint Removal Practices.

    PubMed

    Randall, Paul M; Kranz, Paul B; Sonntag, Mary L; Stadelmaier, James E

    1998-03-01

    This paper reviews the results of a U.S. Environmental Protection Agency (EPA) study that assessed needle gun technology as an alternative to conventional abrasive blasting technology to remove lead-based paint from steel bridges in western New York State. The study analyzed the operational and logistical aspects as they relate to worker health and safety, environmental protection, hazardous waste generation, and costs as compared to those arising from conventional abrasive blasting. In this 1992 EPA study, the costs and the product quality aspects favored conventional abrasive blasting over the needle gun technology for removing lead paint. However, abrasive blasting exposed workers to airborne lead levels that exceeded Permissible Exposure Limits (PELs) as established by the Occupational Safety and Health Administration (OSHA), as well as emitting high levels of lead-contaminated dusts and debris into the environment. It was estimated that more than 500 lbs of lead-contaminated spent abrasives and paint waste were released into the environment during paint removal operations. The needle gun system reduced (up to 97.5%) the generation of hazardous waste and the airborne concentrations (up to 99%) of respirable dusts and lead-containing particulates generated during paint removal operations. However, labor costs for the needle gun were three times higher than those for abrasive blasting primarily because of slower production rates that necessitated more operating personnel. The higher labor costs of the needle gun are partially offset by the increased costs associated with the expendable abrasive blast media and hazardous waste disposal. In the EPA study, the productivity of the needle gun system was 12.2 ft 2 /hr vs. 147.5 ft 2 /hr for abrasive blasting. A post blast was needed for the needle gun system to meet surface preparation specifications. When factoring in the costs of full containment structures to meet OSHA's 1993 Lead Exposure in Construction regulation

  11. Optical network of silicon micromachined sensors

    NASA Astrophysics Data System (ADS)

    Wilson, Mark L.; Burns, David W.; Zook, J. David

    1996-03-01

    The Honeywell Technology Center, in collaboration with the University of Wisconsin and the Mobil Corporation, and under funding from this ARPA sponsored program, are developing a new type of `hybrid' micromachined silicon/fiber optic sensor that utilizes the best attributes of each technology. Fiber optics provide a noise free method to read out the sensor without electrical power required at the measurement point. Micromachined silicon sensor techniques provide a method to design many different types of sensors such as temperature, pressure, acceleration, or magnetic field strength and report the sensor data using FDM methods. Our polysilicon resonant microbeam structures have a built in Fabry-Perot interferometer that offers significant advantages over other configurations described in the literature. Because the interferometer is an integral part of the structure, the placement of the fiber becomes non- critical, and packaging issues become considerably simpler. The interferometer spacing are determined by the thin-film fabrication processes and therefore can be extremely well controlled. The main advantage, however, is the integral vacuum cavity that ensures high Q values. Testing results have demonstrated relaxed alignment tolerances in packaging these devices, with an excellent Signal to Noise Ratio. Networks of 16 or more sensors are currently being developed. STORM (Strain Transduction by Optomechanical Resonant Microbeams) sensors can also provide functionality and self calibration information which can be used to improve the overall system reliability. Details of the sensor and network design, as well as test results, are presented.

  12. Systematic analysis of CMOS-micromachined inductors with application to mixer matching circuits

    NASA Astrophysics Data System (ADS)

    Wu, Jerry Chun-Li

    The growing demand for consumer voice and data communication systems and military communication applications has created a need for low-power, low-cost, high-performance radio-frequency (RF) front-end. To achieve this goal, bringing passive components, especially inductors, to silicon is imperative. On-chip passive components such as inductors and capacitors generally enhance the reliability and efficiency of silicon-integrated RF cells. They can provide circuit solutions with superior performance and contribute to a higher level of integration. With passive components on chip, there is a great opportunity to have transformers, filters, and matching networks on chip. However, inductors on silicon have a low quality factor (Q) due to both substrate and metal loss. This dissertation demonstrates the systematic analysis of inductors fabricated using standard complementary metal-oxide-semiconductor (CMOS) and micro-electro-mechanical (MEMS) system technologies. We report system-on-chip inductor modeling, simulation, and measurements of effective inductance and quality factors. In this analysis methodology, a number of systematic simulations are performed on regular and micromachined inductors with different parameters such as spiral topology, number of turns, outer diameter, thickness, and percentage of substrate removed by using micromachining technologies. Three different novel support structures of the micromachined spiral inductor are proposed, analyzed, and implemented for larger size suspended inductors. The sensitivity of the structure support and different degree of substrate etching by post-processing is illustrated. The results provide guidelines for the selection of inductor parameters, post-processing methodologies, and its spiral supports to meet the RF design specifications and the stability requirements for mobile communication. The proposed CMOS-micromachined inductor is used in a low cost-effective double-balanced Gilbert mixer with on-chip matching

  13. Development of feedback-speed-control system of fixed-abrasive tool for mat-surface fabrication

    NASA Astrophysics Data System (ADS)

    Yanagihara, K.; Kita, R.

    2018-01-01

    This study deals with the new method to fabricate a mat-surface by using fixed-abrasive tool. Mat-surface is a surface with microscopic irregularities whose dimensions are close to the wavelengths of visible light (400-700 nanometers). In order to develop the new method to fabricate mat-surface without pre-masking and large scale back up facility, utilization of fixed-abrasive tool is discussed. The discussion clarifies that abrasives in shot blasting are given kinetic energy along to only plunge-direction while excluding traverse-direction. If the relative motion between tool and work in fixed-abrasive process can be realized as that in blasting, mat-surface will be accomplished with fixed-abrasive process. To realize the proposed idea, new surface-fabrication system to which is adopted feedback-speed-control of abrasive wheel has been designed. The system consists of micro-computer unit (MPU), work-speed sensor, fixed-abrasive wheel, and wheel driving unit. The system can control relative speed between work and wheel in optimum range to produce mat-surface. Finally experiment to verify the developed system is carried out. The results of experiments show that the developed system is effective and it can produce the surface from grinding to mat-surface seamlessly.

  14. Toothbrushing abrasion susceptibility of enamel and dentin bleached with calcium-supplemented hydrogen peroxide gel.

    PubMed

    Borges, A B; Santos, L F T F; Augusto, M G; Bonfiette, D; Hara, A T; Torres, C R G

    2016-06-01

    The objective of this study was to evaluate enamel and dentin susceptibility to toothbrushing abrasion, after bleaching with 7.5% hydrogen peroxide (HP) gel supplemented or not with 0.5% calcium gluconate (Ca). Toothbrushing was performed immediately and 1h after bleaching, with two suspensions (high and low abrasivity). Bovine enamel and dentin specimens were divided into 12 groups (n=10) according to the bleaching gel (with and without Ca), slurry abrasivity (high or low) and elapsed time after bleaching (immediately and after 1h). As control, a group was not bleached, but abraded. The treatment cycle (7 d) consisted of bleaching (1h) and toothbrushing (135 strokes/day) immediatelly or after 1h of artificial saliva exposure. Surface roughness and surface loss (μm) were measured by profilometry and analysed by three-way ANOVA (5%). Surface roughness means were significantly influenced by slurry abrasivity (p<0.0001). For enamel loss, significant triple interaction was observed (p<0.0001). HP-bleached groups and immediately brushed with high-abrasive slurry exhibited increased loss (1.41±0.14) compared to other groups (μm). Control and HP+Ca-bleached groups brushed after 1h with low abrasive slurry presented the lowest loss (0.21±0.03/0.27±0.02). For dentin loss, significant interaction was observed for bleaching and interval factors (p<0.001). 7.5%HP-bleached groups and immediately brushed showed significantly higher loss (8.71±2.45) than the other groups. It was concluded that surface roughness increased when high abrasive was used, independently of bleaching. 7.5%HP increased enamel and dentin loss, mainly with high abrasive slurries. Calcium supplementation of bleaching gel reduced surface loss. Additionally, in order to minimize tooth wear susceptibility, it is recommended to delay brushing after bleaching. After bleaching gel application, postponing toothbrushing is recommended, as well as brushing with low abrasive dentifrices. Additionally

  15. Abrasive rolling effects on material removal and surface finish in chemical mechanical polishing analyzed by molecular dynamics simulation

    NASA Astrophysics Data System (ADS)

    Si, Lina; Guo, Dan; Luo, Jianbin; Lu, Xinchun; Xie, Guoxin

    2011-04-01

    In an abrasive chemical mechanical polishing (CMP) process, materials were considered to be removed by abrasive sliding and rolling. Abrasive sliding has been investigated by many molecular dynamics (MD) studies; while abrasive rolling was usually considered to be negligible and therefore was rarely investigated. In this paper, an MD simulation was used to study the effects of abrasive rolling on material removal and surface finish in the CMP process. As the silica particle rolled across the silicon substrate, some atoms of the substrate were dragged out from their original positions and adhered to the silica particle, leaving some atomic vacancies on the substrate surface. Meanwhile, a high quality surface could be obtained. During the abrasive rolling process, the influencing factors of material removal, e.g., external down force and driving force, were also discussed. Finally, MD simulations were carried out to examine the effects of abrasive sliding on material removal under the same external down force as abrasive rolling. The results showed that the ability of abrasive rolling to remove material on the atomic scale was not notably inferior to that of abrasive sliding. Therefore, it can be proposed that both abrasive sliding and rolling play important roles in material removal in the abrasive CMP of the silicon substrate.

  16. Contact-lens type of micromachined hydrogenated amorphous Si fluorescence detector coupled with microfluidic electrophoresis devices

    NASA Astrophysics Data System (ADS)

    Kamei, Toshihiro; Wada, Takehito

    2006-09-01

    A 5.8-μm-thick SiO2/Ta2O5 multilayer optical interference filter was monolithically integrated and micromachined on a hydrogenated amorphous Si (a-Si :H) pin photodiode to form a fluorescence detector. A microfluidic electrophoresis device was mounted on a detection platform comprising a fluorescence-collecting half-ball lens and the micromachined fluorescence detector. The central aperture of the fluorescence detector allows semiconductor laser light to pass up through the detector and to irradiate an electrophoretic separation channel. The limit of detection is as low as 7nM of the fluorescein solution, and high-speed DNA fragment sizing can be achieved with high separation efficiency. The micromachined a-Si :H fluorescence detector exhibits high sensitivity for practical fluorescent labeling dyes as well as integration flexibility on various substances, making it ideal for application to portable microfluidic bioanalysis devices.

  17. Target correlation effects on neutron-nucleus total, absorption, and abrasion cross sections

    NASA Technical Reports Server (NTRS)

    Cucinotta, Francis A.; Townsend, Lawrence W.; Wilson, John W.

    1991-01-01

    Second order optical model solutions to the elastic scattering amplitude were used to evaluate total, absorption, and abrasion cross sections for neutron nucleus scattering. Improved agreement with experimental data for total and absorption cross sections is found when compared with first order (coherent approximation) solutions, especially below several hundred MeV. At higher energies, the first and second order solutions are similar. There are also large differences in abrasion cross section calculations; these differences indicate a crucial role for cluster knockout in the abrasion step.

  18. Electron Microscopy Abrasion Analysis of Candidate Fabrics for Planetary Space Suit Protective Overgarment Application

    NASA Technical Reports Server (NTRS)

    Hennessy, Mary J.

    1992-01-01

    The Electron Microscopy Abrasion Analysis of Candidate Fabrics for Planetary Space Suit Protective Overgarment Application is in support of the Abrasion Resistance Materials Screening Test. The fundamental assumption made for the SEM abrasion analysis was that woven fabrics to be used as the outermost layer of the protective overgarment in the design of the future, planetary space suits perform best when new. It is the goal of this study to determine which of the candidate fabrics was abraded the least in the tumble test. The sample that was abraded the least will be identified at the end of the report as the primary candidate fabric for further investigation. In addition, this analysis will determine if the abrasion seen by the laboratory tumbled samples is representative of actual EVA Apollo abrasion.

  19. Impact Capacity Reduction in Railway Prestressed Concrete Sleepers with Surface Abrasions

    NASA Astrophysics Data System (ADS)

    Ngamkhanong, Chayut; Li, Dan; Kaewunruen, Sakdirat

    2017-10-01

    Railway sleepers (also called ‘railroad tie’ in North America) embedded in ballasted railway tracks are a main part of railway track structures. Its important role is to transfer the loads evenly from the rails to a wider area of ballast bed and to secure rail gauge and enable safe passages of rolling stocks. By nature, railway infrastructure is nonlinear, evidenced by its behaviours, geometry and alignment, wheel-rail contact and operational parameters such as tractive efforts. Based on our critical review, the dynamic behaviour of railway sleepers has not been fully investigated, especially when the sleepers are deteriorated by excessive wears. In fact, the ballast angularity causes differential abrasions on the soffit or bottom surface of sleepers (especially at railseat zone). Furthermore, in sharp curves and rapid gradient change, longitudinal and lateral dynamics of rails increase the likelihood of railseat abrasions in concrete sleepers due to the unbalanced loading conditions. This paper presents a structural capacity of concrete sleepers under dynamic transient loading. The modified compression field theory for ultimate strength design of concrete sleepers under impact loading will be highlighted in this study. The influences of surface abrasions, including surface abrasion and soffit abrasion, on the dynamic behaviour of prestressed concrete sleepers, are firstly highlighted. The outcome of this study will improve the rail maintenance and inspection criteria in order to establish appropriate and sensible remote track condition monitoring network in practice. Moreover, this study will also improve the understanding of the fundamental dynamic behaviour of prestressed concrete sleepers with surface abrasions. The insight into these behaviours will not only improve safety and reliability of railway infrastructure but will enhance the structural safety of other concrete structures.

  20. Neural network approximation of tip-abrasion effects in AFM imaging

    NASA Astrophysics Data System (ADS)

    Bakucz, Peter; Yacoot, Andrew; Dziomba, Thorsten; Koenders, Ludger; Krüger-Sehm, Rolf

    2008-06-01

    The abrasion (wear) of tips used in scanning force microscopy (SFM) directly influences SFM image quality and is therefore of great relevance to quantitative SFM measurements. The increasing implementation of automated SFM measurement schemes has become a strong driving force for increasing efforts towards the prediction of tip wear, as it needs to be ensured that the probe is exchanged before a level of tip wear is reached that adversely affects the measurement quality. In this paper, we describe the identification of tip abrasion in a system of SFM measurements. We attempt to model the tip-abrasion process as a concatenation of a mapping from the measured AFM data to a regression vector and a nonlinear mapping from the regressor space to the output space. The mapping is formed as a basis function expansion. Feedforward neural networks are used to approximate this mapping. The one-hidden layer network gave a good quality of fit for the training and test sets for the tip-abrasion system. We illustrate our method with AFM measurements of both fine periodic structures and randomly oriented sharp features and compare our neural network results with those obtained using other methods.

  1. A profilometry-based dentifrice abrasion Method for V8 brushing machines. Part I: Introduction to RDA-PE.

    PubMed

    White, Donald J; Schneiderman, Eva; Colón, Ellen; St John, Samuel

    2015-01-01

    This paper describes the development and standardization of a profilometry-based method for assessment of dentifrice abrasivity called Radioactive Dentin Abrasivity - Profilometry Equivalent (RDA-PE). Human dentine substrates are mounted in acrylic blocks of precise standardized dimensions, permitting mounting and brushing in V8 brushing machines. Dentin blocks are masked to create an area of "contact brushing." Brushing is carried out in V8 brushing machines and dentifrices are tested as slurries. An abrasive standard is prepared by diluting the ISO 11609 abrasivity reference calcium pyrophosphate abrasive into carboxymethyl cellulose/glycerin, just as in the RDA method. Following brushing, masked areas are removed and profilometric analysis is carried out on treated specimens. Assessments of average abrasion depth (contact or optical profilometry) are made. Inclusion of standard calcium pyrophosphate abrasive permits a direct RDA equivalent assessment of abrasion, which is characterized with profilometry as Depth test/Depth control x 100. Within the test, the maximum abrasivity standard of 250 can be created in situ simply by including a treatment group of standard abrasive with 2.5x number of brushing strokes. RDA-PE is enabled in large part by the availability of easy-to-use and well-standardized modern profilometers, but its use in V8 brushing machines is enabled by the unique specific conditions described herein. RDA-PE permits the evaluation of dentifrice abrasivity to dentin without the requirement of irradiated teeth and infrastructure for handling them. In direct comparisons, the RDA-PE method provides dentifrice abrasivity assessments comparable to the gold industry standard RDA technique.

  2. Micromachined Integrated Quantum Circuit Containing a Superconducting Qubit

    NASA Astrophysics Data System (ADS)

    Brecht, T.; Chu, Y.; Axline, C.; Pfaff, W.; Blumoff, J. Z.; Chou, K.; Krayzman, L.; Frunzio, L.; Schoelkopf, R. J.

    2017-04-01

    We present a device demonstrating a lithographically patterned transmon integrated with a micromachined cavity resonator. Our two-cavity, one-qubit device is a multilayer microwave-integrated quantum circuit (MMIQC), comprising a basic unit capable of performing circuit-QED operations. We describe the qubit-cavity coupling mechanism of a specialized geometry using an electric-field picture and a circuit model, and obtain specific system parameters using simulations. Fabrication of the MMIQC includes lithography, etching, and metallic bonding of silicon wafers. Superconducting wafer bonding is a critical capability that is demonstrated by a micromachined storage-cavity lifetime of 34.3 μ s , corresponding to a quality factor of 2 ×106 at single-photon energies. The transmon coherence times are T1=6.4 μ s , and T2echo=11.7 μ s . We measure qubit-cavity dispersive coupling with a rate χq μ/2 π =-1.17 MHz , constituting a Jaynes-Cummings system with an interaction strength g /2 π =49 MHz . With these parameters we are able to demonstrate circuit-QED operations in the strong dispersive regime with ease. Finally, we highlight several improvements and anticipated extensions of the technology to complex MMIQCs.

  3. Silicon micromachined waveguides for millimeter and submillimeter wavelengths

    NASA Technical Reports Server (NTRS)

    Yap, Markus; Tai, Yu-Chong; Mcgrath, William R.; Walker, Christopher

    1992-01-01

    The majority of radio receivers, transmitters, and components operating at millimeter and submillimeter wavelengths utilize rectangular waveguides in some form. However, conventional machining techniques for waveguides operating above a few hundred GHz are complicated and costly. This paper reports on the development of silicon micromachining techniques to create silicon-based waveguide circuits which can operate at millimeter and submillimeter wavelengths. As a first step, rectangular WR-10 waveguide structures have been fabricated from (110) silicon wafers using micromachining techniques. The waveguide is split along the broad wall. Each half is formed by first etching a channel completely through a wafer. Potassium hydroxide is used to etch smooth mirror-like vertical walls and LPCVD silicon nitride is used as a masking layer. This wafer is then bonded to another flat wafer using a polyimide bonding technique and diced into the U-shaped half wavelengths. Finally, a gold layer is applied to the waveguide walls. Insertion loss measurements show losses comparable to those of standard metal waveguides. It is suggested that active devices and planar circuits can be integrated with the waveguides, solving the traditional mounting problems. Potential applications in terahertz instrumentation technology are further discussed.

  4. Laser micromachining of biofactory-on-a-chip devices

    NASA Astrophysics Data System (ADS)

    Burt, Julian P.; Goater, Andrew D.; Hayden, Christopher J.; Tame, John A.

    2002-06-01

    Excimer laser micromachining provides a flexible means for the manufacture and rapid prototyping of miniaturized systems such as Biofactory-on-a-Chip devices. Biofactories are miniaturized diagnostic devices capable of characterizing, manipulating, separating and sorting suspension of particles such as biological cells. Such systems operate by exploiting the electrical properties of microparticles and controlling particle movement in AC non- uniform stationary and moving electric fields. Applications of Biofactory devices are diverse and include, among others, the healthcare, pharmaceutical, chemical processing, environmental monitoring and food diagnostic markets. To achieve such characterization and separation, Biofactory devices employ laboratory-on-a-chip type components such as complex multilayer microelectrode arrays, microfluidic channels, manifold systems and on-chip detection systems. Here we discuss the manufacturing requirements of Biofactory devices and describe the use of different excimer laser micromachined methods both in stand-alone processes and also in conjunction with conventional fabrication processes such as photolithography and thermal molding. Particular attention is given to the production of large area multilayer microelectrode arrays and the manufacture of complex cross-section microfluidic channel systems for use in simple distribution and device interfacing.

  5. Modelling of micromachining of human tooth enamel by erbium laser radiation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Belikov, A V; Skrypnik, A V; Shatilova, K V

    We consider a 3D cellular model of human tooth enamel and a photomechanical cellular model of enamel ablation by erbium laser radiation, taking into account the structural peculiarities of enamel, energy distribution in the laser beam cross section and attenuation of laser energy in biological tissue. The surface area of the texture in enamel is calculated after its micromachining by erbium laser radiation. The influence of the surface area on the bond strength of enamel with dental filling materials is discussed. A good correlation between the computer simulation of the total work of adhesion and experimentally measured bond strength betweenmore » the dental filling material and the tooth enamel after its micromachining by means of YAG : Er laser radiation is attained. (laser biophotonics)« less

  6. Abrasion resistant heat pipe

    DOEpatents

    Ernst, D.M.

    1984-10-23

    A specially constructed heat pipe is described for use in fluidized bed combustors. Two distinct coatings are spray coated onto a heat pipe casing constructed of low thermal expansion metal, each coating serving a different purpose. The first coating forms aluminum oxide to prevent hydrogen permeation into the heat pipe casing, and the second coating contains stabilized zirconium oxide to provide abrasion resistance while not substantially affecting the heat transfer characteristics of the system.

  7. Impact of dentifrice abrasivity and remineralization time on erosive tooth wear in vitro.

    PubMed

    Buedel, Sarah; Lippert, Frank; Zero, Domenick T; Eckert, George J; Hara, Anderson T

    2018-02-01

    To investigate the in vitro effects of simulated dentifrice slurry abrasivity (L-low, M-medium and H-high) and remineralization time (0, 30, 60 and 120 minutes) on erosive tooth wear. Enamel and root dentin specimens were prepared from bovine incisors (n= 8) and submitted to a cycling protocol including erosion, remineralization at the test times, and brushing with each of the tested slurries, for 5 days. Dental surface loss (SL) was determined by optical profilometry. Data was analyzed using mixed-model ANOVA and Fisher's PLSD tests (alpha= 0.05). SL generally increased along with the increase in slurry abrasive level, with significance dependent upon the specific substrate and remineralization times. H showed the highest SL on both enamel and dentin; remineralization for 30 minutes reduced SL significantly (P< 0.05), but only for enamel. M showed intermediate SL values, with remineralization benefit clearly seen only after 120 minutes of remineralization (P< 0.05). L caused the least SL for both enamel and dentin, which was further reduced after remineralization for 120 and 30 minutes, respectively (both P< 0.05). Overall, root dentin had significantly higher SL than enamel. Less abrasive dentifrice slurries were able to reduce toothbrushing abrasion on both enamel and root dentin. This protection was enhanced by remineralization for all abrasive levels on enamel, but only for L on root dentin. High-risk erosion patients should avoid highly abrasive toothpastes, as remineralization can only partially compensate for their deleterious effects on eroded dental surfaces. Lower abrasive toothpastes are recommended. Copyright©American Journal of Dentistry.

  8. Abrasion of Candidate Spacesuit Fabrics by Simulated Lunar Dust

    NASA Technical Reports Server (NTRS)

    Gaier, James R.; Meador, Mary Ann; Rogers, Kerry J.; Sheehy, Brennan H.

    2009-01-01

    A protocol has been developed that produced the type of lunar soil abrasion damage observed on Apollo spacesuits. This protocol was then applied to four materials (Kevlar (DuPont), Vectran (Kuraray Co., Ltd.), Orthofabric, and Tyvek (DuPont)) that are candidates for advanced spacesuits. Three of the four new candidate fabrics (all but Vectran) were effective at keeping the dust from penetrating to layers beneath. In the cases of Kevlar and Orthofabric this was accomplished by the addition of a silicone layer. In the case of Tyvek, the paper structure was dense enough to block dust transport. The least abrasive damage was suffered by the Tyvek. This was thought to be due in large part to its non-woven paper structure. The woven structures were all abraded where the top of the weave was struck by the abrasive. Of these, the Orthofabric suffered the least wear, with both Vectran and Kevlar suffering considerably more extensive filament breakage.

  9. Quantitative image analysis for evaluating the abrasion resistance of nanoporous silica films on glass

    PubMed Central

    Nielsen, Karsten H.; Karlsson, Stefan; Limbach, Rene; Wondraczek, Lothar

    2015-01-01

    The abrasion resistance of coated glass surfaces is an important parameter for judging lifetime performance, but practical testing procedures remain overly simplistic and do often not allow for direct conclusions on real-world degradation. Here, we combine quantitative two-dimensional image analysis and mechanical abrasion into a facile tool for probing the abrasion resistance of anti-reflective (AR) coatings. We determine variations in the average coated area, during and after controlled abrasion. Through comparison with other experimental techniques, we show that this method provides a practical, rapid and versatile tool for the evaluation of the abrasion resistance of sol-gel-derived thin films on glass. The method yields informative data, which correlates with measurements of diffuse reflectance and is further supported by qualitative investigations through scanning electron microscopy. In particular, the method directly addresses degradation of coating performance, i.e., the gradual areal loss of antireflective functionality. As an exemplary subject, we studied the abrasion resistance of state-of-the-art nanoporous SiO2 thin films which were derived from 5–6 wt% aqueous solutions of potassium silicates, or from colloidal suspensions of SiO2 nanoparticles. It is shown how abrasion resistance is governed by coating density and film adhesion, defining the trade-off between optimal AR performance and acceptable mechanical performance. PMID:26656260

  10. Surface-micromachined 2D optical scanners with optically flat single-crystalline silicon micromirrors

    NASA Astrophysics Data System (ADS)

    Su, John G.; Patterson, Pamela R.; Wu, Ming C.

    2001-05-01

    We have developed a novel wafer-scale single-crystalline silicon micromirror bonding process to fabricate optically flat micromirrors on polysilicon surface-micromachined 2D scanners. The electrostatically actuated 2D scanner has a mirror area of 450 micrometers x 450 micrometers and an optical scan angle of +/- +/-7.5 degree(s). Compared to micromirrors made with a standard polysilicon surface-micromachining process, the radius of curvature of the micromirror has been improved by 1 50 times from 1.8 cm to 265 cm, with surface roughness < 10 nm. Besides, single-crystalline honeycomb micromirrors derived from silicon on insulator (SOI) have been developed to reduce the mass of the bonded mirror.

  11. Micromachined Thermoelectric Sensors and Arrays and Process for Producing

    NASA Technical Reports Server (NTRS)

    Foote, Marc C. (Inventor); Jones, Eric W. (Inventor); Caillat, Thierry (Inventor)

    2000-01-01

    Linear arrays with up to 63 micromachined thermopile infrared detectors on silicon substrates have been constructed and tested. Each detector consists of a suspended silicon nitride membrane with 11 thermocouples of sputtered Bi-Te and Bi-Sb-Te thermoelectric elements films. At room temperature and under vacuum these detectors exhibit response times of 99 ms, zero frequency D* values of 1.4 x 10(exp 9) cmHz(exp 1/2)/W and responsivity values of 1100 V/W when viewing a 1000 K blackbody source. The only measured source of noise above 20 mHz is Johnson noise from the detector resistance. These results represent the best performance reported to date for an array of thermopile detectors. The arrays are well suited for uncooled dispersive point spectrometers. In another embodiment, also with Bi-Te and Bi-Sb-Te thermoelectric materials on micromachined silicon nitride membranes, detector arrays have been produced with D* values as high as 2.2 x 10(exp 9) cm Hz(exp 1/2)/W for 83 ms response times.

  12. Precision Control Module For UV Laser 3D Micromachining

    NASA Astrophysics Data System (ADS)

    Wu, Wen-Hong; Hung, Min-Wei; Chang, Chun-Li

    2011-01-01

    UV laser has been widely used in various micromachining such as micro-scribing or patterning processing. At present, most of the semiconductors, LEDs, photovoltaic solar panels and touch panels industries need the UV laser processing system. However, most of the UV laser processing applications in the industries utilize two dimensional (2D) plane processing. And there are tremendous business opportunities that can be developed, such as three dimensional (3D) structures of micro-electromechanical (MEMS) sensor or the precision depth control of indium tin oxide (ITO) thin films edge insulation in touch panels. This research aims to develop a UV laser 3D micromachining module that can create the novel applications for industries. By special designed beam expender in optical system, the focal point of UV laser can be adjusted quickly and accurately through the optical path control lens of laser beam expender optical system. Furthermore, the integrated software for galvanometric scanner and focal point adjustment mechanism is developed as well, so as to carry out the precise 3D microstructure machining.

  13. Brushing force of manual and sonic toothbrushes affects dental hard tissue abrasion.

    PubMed

    Wiegand, Annette; Burkhard, John Patrik Matthias; Eggmann, Florin; Attin, Thomas

    2013-04-01

    This study aimed to determine the brushing forces applied during in vivo toothbrushing with manual and sonic toothbrushes and to analyse the effect of these brushing forces on abrasion of sound and eroded enamel and dentin in vitro. Brushing forces of a manual and two sonic toothbrushes (low and high frequency mode) were measured in 27 adults before and after instruction of the respective brushing technique and statistically analysed by repeated measures analysis of variance (ANOVA). In the in vitro experiment, sound and eroded enamel and dentin specimens (each subgroup n = 12) were brushed in an automatic brushing machine with the respective brushing forces using a fluoridated toothpaste slurry. Abrasion was determined by profilometry and statistically analysed by one-way ANOVA. Average brushing force of the manual toothbrush (1.6 ± 0.3 N) was significantly higher than for the sonic toothbrushes (0.9 ± 0.2 N), which were not significantly different from each other. Brushing force prior and after instruction of the brushing technique was not significantly different. The manual toothbrush caused highest abrasion of sound and eroded dentin, but lowest on sound enamel. No significant differences were detected on eroded enamel. Brushing forces of manual and sonic toothbrushes are different and affect their abrasive capacity. Patients with severe tooth wear and exposed and/or eroded dentin surfaces should use sonic toothbrushes to reduce abrasion, while patients without tooth wear or with erosive lesions confining only to enamel do not benefit from sonic toothbrushes with regard to abrasion.

  14. Optical micromachined ultrasound transducers (OMUT)--a new approach for high-frequency transducers.

    PubMed

    Tadayon, Mohammad Amin; Ashkenazi, Shai

    2013-09-01

    The sensitivity and reliability of piezoelectric ultrasound transducers severely degrade in applications requiring high frequency and small element size. Alternative technologies such as capacitive micromachined ultrasound transducers (CMUT) and optical sensing and generation of ultrasound have been proposed and studied for several decades. In this paper, we present a new type of device based on optical micromachined ultrasound transducer (OMUT) technology. OMUTs rely on microfabrication techniques to construct micrometerscale air cavities capped by an elastic membrane. A modified photoresist bonding process has been developed to facilitate the fabrication of these devices. We will describe the design, fabrication, and testing of prototype OMUT devices which implement a receive-only function. Future design modifications are proposed for incorporating complete transmit¿receive functionality in a single element.

  15. Rates of Eolian Rock Abrasion in the Ice-Free Valleys, Antarctica

    NASA Astrophysics Data System (ADS)

    Hallet, B.; Malin, M. C.; Sletten, R. S.

    2016-12-01

    Eolian abrasion is a principal surface process in dry regions of Earth and Mars and there is evidence for wind processes active on Venus and Titan. Rock abrasion also has practical significance in diverse fields ranging from preservation of cultural material (artifacts, monuments) to damage of solar panels and windshields in arid regions. Despite its scientific and practical importance, and there have ben only few studies that define rates of rock abrasion quantitatively under natural conditions. Herein we report abrasion rates that have been exceptionally well characterized through a unique long-term (30+-year) field experiment in the ice-free McMurdo Dry Valleys, Antarctica. In 1983 and 1984, over 5000 rock targets of several lithologies (25.4 mm-diameter and 5 mm-thick disks of dolerite, basalt, tuff and sandstone) were installed at five heights (7,14, 21, 35, and 70 cm) facing the 4 cardinal directions at 10 locations (one additional site contains fewer targets). Sequential collections of rock targets exposed to abrasion enable definition of mass loss after 1, 5, 10, 30 and 31 years of exposure; the latter were retrieved during the 2014-2015 season. The abrasion rates generally show striking consistency for each lithology at any site; the multiple targets permit definition of intrinsic differences in mass loss. The rates vary considerably from site to site owing to differences in availability of transportable sediment, wind regime, and surface roughness, and at each site, owing to target orientation relative to the dominant winds and, secondarily, to height above the ground. For the hardest targets, basalt and dolerite, mass loss in 30+ years ranged from essentially zero at some sites to 1/3 of the deployed mass (2.59 g; equivalent to a rock thickness >1.8 mm) where abrasion was most active (Site 7, Central Wright Valley). The tuff targets showed the greatest mass loss, and in many cases were entirely abraded away by the end of the experiment.Current work is

  16. Kinetic energy density and agglomerate abrasion rate during blending of agglomerates into powders.

    PubMed

    Willemsz, Tofan A; Hooijmaijers, Ricardo; Rubingh, Carina M; Tran, Thanh N; Frijlink, Henderik W; Vromans, Herman; van der Voort Maarschalk, Kees

    2012-01-23

    Problems related to the blending of a cohesive powder with a free flowing bulk powder are frequently encountered in the pharmaceutical industry. The cohesive powder often forms lumps or agglomerates which are not dispersed during the mixing process and are therefore detrimental to blend uniformity. Achieving sufficient blend uniformity requires that the blending conditions are able to break up agglomerates, which is often an abrasion process. This study was based on the assumption that the abrasion rate of agglomerates determines the required blending time. It is shown that the kinetic energy density of the moving powder bed is a relevant parameter which correlates with the abrasion rate of agglomerates. However, aspects related to the strength of agglomerates should also be considered. For this reason the Stokes abrasion number (St(Abr)) has been defined. This parameter describes the ratio between the kinetic energy density of the moving powder bed and the work of fracture of the agglomerate. The St(Abr) number is shown to predict the abrasion potential of agglomerates in the dry-mixing process. It appeared possible to include effects of filler particle size and impeller rotational rate into this concept. A clear relationship between abrasion rate of agglomerates and the value of St(Abr) was demonstrated. Copyright © 2011 Elsevier B.V. All rights reserved.

  17. Femtosecond laser micromachining of compound parabolic concentrator fiber tipped glucose sensors.

    PubMed

    Hassan, Hafeez Ul; Lacraz, Amédée; Kalli, Kyriacos; Bang, Ole

    2017-03-01

    We report on highly accurate femtosecond (fs) laser micromachining of a compound parabolic concentrator (CPC) fiber tip on a polymer optical fiber (POF). The accuracy is reflected in an unprecedented correspondence between the numerically predicted and experimentally found improvement in fluorescence pickup efficiency of a Förster resonance energy transfer-based POF glucose sensor. A Zemax model of the CPC-tipped sensor predicts an optimal improvement of a factor of 3.96 compared to the sensor with a plane-cut fiber tip. The fs laser micromachined CPC tip showed an increase of a factor of 3.5, which is only 11.6% from the predicted value. Earlier state-of-the-art fabrication of the CPC-shaped tip by fiber tapering was of so poor quality that the actual improvement was 43% lower than the predicted improvement of the ideal CPC shape.

  18. Femtosecond laser micromachining of compound parabolic concentrator fiber tipped glucose sensors

    NASA Astrophysics Data System (ADS)

    Hassan, Hafeez Ul; Lacraz, Amédée; Kalli, Kyriacos; Bang, Ole

    2017-03-01

    We report on highly accurate femtosecond (fs) laser micromachining of a compound parabolic concentrator (CPC) fiber tip on a polymer optical fiber (POF). The accuracy is reflected in an unprecedented correspondence between the numerically predicted and experimentally found improvement in fluorescence pickup efficiency of a Förster resonance energy transfer-based POF glucose sensor. A Zemax model of the CPC-tipped sensor predicts an optimal improvement of a factor of 3.96 compared to the sensor with a plane-cut fiber tip. The fs laser micromachined CPC tip showed an increase of a factor of 3.5, which is only 11.6% from the predicted value. Earlier state-of-the-art fabrication of the CPC-shaped tip by fiber tapering was of so poor quality that the actual improvement was 43% lower than the predicted improvement of the ideal CPC shape.

  19. Aeolian abrasion on Venus: Preliminary results from the Venus simulator

    NASA Technical Reports Server (NTRS)

    Marshall, J. R.; Greeley, Ronald; Tucker, D. W.; Pollack, J. B.

    1987-01-01

    The role of atmospheric pressure on aeolian abrasion was examined in the Venus Simulator with a constant temperature of 737 K. Both the rock target and the impactor were fine-grained basalt. The impactor was a 3 mm diameter angular particle chosen to represent a size of material that is entrainable by the dense Venusian atmosphere and potentially abrasive by virtue of its mass. It was projected at the target 10 to the 5 power times at a velocity of 0.7 m/s. The impactor showed a weight loss of approximately 1.2 x 10 to the -9 power gm per impact with the attrition occurring only at the edges. Results from scanning electron microscope analysis, profilometry, and weight measurement are summarized. It is concluded that particles can incur abrasion at Venusian temperatures even with low impact velocities expected for Venus.

  20. Relationships Between Abrasive Wear, Hardness, and Surface Grinding Characteristics of Titanium-Based Metal Matrix Composites

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Blau, Peter Julian; Jolly, Brian C

    2009-01-01

    The objective of this work was to support the development of grinding models for titanium metal-matrix composites (MMCs) by investigating possible relationships between their indentation hardness, low-stress belt abrasion, high-stress belt abrasion, and the surface grinding characteristics. Three Ti-based particulate composites were tested and compared with the popular titanium alloy Ti-6Al-4V. The three composites were a Ti-6Al-4V-based MMC with 5% TiB{sub 2} particles, a Ti-6Al-4V MMC with 10% TiC particles, and a Ti-6Al-4V/Ti-7.5%W binary alloy matrix that contained 7.5% TiC particles. Two types of belt abrasion tests were used: (a) a modified ASTM G164 low-stress loop abrasion test, and (b)more » a higher-stress test developed to quantify the grindability of ceramics. Results were correlated with G-ratios (ratio of stock removed to abrasives consumed) obtained from an instrumented surface grinder. Brinell hardness correlated better with abrasion characteristics than microindentation or scratch hardness. Wear volumes from low-stress and high-stress abrasive belt tests were related by a second-degree polynomial. Grindability numbers correlated with hard particle content but were also matrix-dependent.« less

  1. Ultra-high pressure water jetting for coating removal and surface preparation

    NASA Technical Reports Server (NTRS)

    Johnson, Spencer T.

    1995-01-01

    This paper shall examine the basics of water technology with particular attention paid to systems currently in use and some select new applications. By providing an overview of commercially available water jet systems in the context of recent case histories, potential users may evaluate the process for future applications. With the on going introduction of regulations prohibiting the use of chemical paint strippers, manual scrapping and dry abrasive media blasting, the need for an environmentally compliant coating removal process has been mandated. Water jet cleaning has been a traditional part of many industrial processed for year, although it has only been in the last few years that reliable pumping equipment capable of ultra-high pressure operation have become available. With the advent of water jet pumping equipment capable of sustaining pressures in excess of 36,000 psi. there has been shift away from lower pressure, high water volume systems. One of the major factors in driving industry to seek higher pressures is the ability to offer higher productivity rates while lowering the quantity of water used and subsequently reprocessed. Among benefits of the trend toward higher pressure/lower volume systems is the corresponding reduction in water jet reaction forces making hand held water jetting practical and safe. Other unique applications made possible by these new generation pumping systems include the use of alternative fluids including liquid ammonia for specialized and hazardous material removal applications. A review of the equipment used and the required modifications will be presented along with the conclusions reached reached during this test program.

  2. Femtosecond laser micromachining of polylactic acid/graphene composites for designing interdigitated microelectrodes for sensor applications

    NASA Astrophysics Data System (ADS)

    Paula, Kelly T.; Gaál, Gabriel; Almeida, G. F. B.; Andrade, M. B.; Facure, Murilo H. M.; Correa, Daniel S.; Riul, Antonio; Rodrigues, Varlei; Mendonça, Cleber R.

    2018-05-01

    There is an increasing interest in the last years towards electronic applications of graphene-based materials and devices fabricated from patterning techniques, with the ultimate goal of high performance and temporal resolution. Laser micromachining using femtosecond pulses is an attractive methodology to integrate graphene-based materials into functional devices as it allows changes to the focal volume with a submicrometer spatial resolution due to the efficient nonlinear nature of the absorption, yielding rapid prototyping for innovative applications. We present here the patterning of PLA-graphene films spin-coated on a glass substrate using a fs-laser at moderate pulse energies to fabricate interdigitated electrodes having a minimum spatial resolution of 5 μm. Raman spectroscopy of the PLA-graphene films indicated the presence of multilayered graphene fibers. Subsequently, the PLA-graphene films were micromachined using a femtosecond laser oscillator delivering 50-fs pulses and 800 nm, where the pulse energy and scanning speed was varied in order to determine the optimum irradiation parameters (16 nJ and 100 μm/s) to the fabrication of microstructures. The micromachined patterns were characterized by optical microscopy and submitted to electrical measurements in liquid samples, clearly distinguishing all tastes tested. Our results confirm the femtosecond laser micromachining technique as an interesting approach to efficiently pattern PLA-graphene filaments with high precision and minimal mechanical defects, allowing the easy fabrication of interdigitated structures and an alternative method to those produced by conventional photolithography.

  3. Microscope Cells Containing Multiple Micromachined Wells

    NASA Technical Reports Server (NTRS)

    Turner, Walter; Skupinski, Robert

    2003-01-01

    Tech Briefs, May 2003 19 Manufacturing Microscope Cells Containing Multiple Micromachined Wells The cost per cell has been reduced substantially. John H. Glenn Research Center, Cleveland, Ohio An improved design for multiple-well microscope cells and an associated improved method of fabricating them have been devised. [As used here, "well" denotes a cavity that has a volume of about 1 or 2 L and that is used to hold a sample for examination under a microscope. As used here, "cell" denotes a laminate, based on a standard 1- by 3-in. (2.54- by 7.62-cm) microscope slide, that comprises (1) the slide as the lower layer, (2) an intermediate layer that contains holes that serve as the wells, and (3) a top layer that either consists of, or is similar to, a standard microscope-slide cover slip.] The improved design and method of fabrication make it possible to increase (relative to a prior design and method of fabrication) the number of wells per cell while reducing the fabrication loss and reducing the cost per cell to about one-tenth of the prior value. In the prior design and method, the slide, well, and cover-slip layers were made from silicate glass. The fabrication of each cell was a labor-intensive process that included precise cutting and grinding of the glass components, fusing of the glass components, and then more grinding and polishing to obtain desired dimensions. Cells of the prior design were expensive and fragile, the rate of loss in fabrication was high, and the nature of the glass made it difficult to increase the number of cells per well. Efforts to execute alternative prior designs in plastic have not yielded satisfactory results because, for typical applications, plastics are not sufficiently thermally or chemically stable, not sufficiently optically clear, and/or not hard enough to resist scratching. The figure depicts a cell of the present improved type. The slide and cover-slip layers are made of a low-thermal-expansion glass (Pyrex(TradeMark) or

  4. Surface assessment and modification of concrete using abrasive blasting

    NASA Astrophysics Data System (ADS)

    Millman, Lauren R.

    Composite systems are applied to concrete substrates to strengthen and extend the service life. Successful restoration or rehabilitation requires surface preparation prior to the application of the overlay. Surface coatings, waterproofing systems, and other external surface applications also require surface preparation prior to application. Abrasive blast media is often used to clean and uniformly roughen the substrate. The appropriate surface roughness is necessary to facilitate a strong bond between the existing substrate and overlay. Thus, surface modification using abrasive blast media (sand and dry ice), their respective environmental effects, surface roughness characterization prior to and after blasting, and the adhesion between the substrate and overlay are the focus of this dissertation. This dissertation is comprised of an introduction, a literature review, and four chapters, the first of which addresses the environmental effects due to abrasive blasting using sand, water, and dry ice. The assessment considered four response variables: carbon dioxide (CO2) emissions, fuel and energy consumption, and project duration. The results indicated that for sand blasting and water jetting, the primary factor contributing to environmental detriment was CO22 emissions from vehicular traffic near the construction site. The second chapter is an analysis of the International Concrete Repair Institute's (ICRI) concrete surface profiles (CSPs) using 3-D optical profilometry. The primary objective was to evaluate the suitability of approximating the 3-D surface (areal) parameters with those extracted from 2-D (linear) profiles. Four profile directions were considered: two diagonals, and lines parallel and transverse to the longitudinal direction of the mold. For any CSP mold, the estimation of the 3-D surface roughness using a 2-D linear profile resulted in underestimation and overestimation errors exceeding 50%, demonstrating the inadequacy of 2-D linear profiles to

  5. Characterization of Conventional and High-Translucency Y-TZP Dental Ceramics Submitted to Air Abrasion.

    PubMed

    Tostes, Bhenya Ottoni; Guimarães, Renato Bastos; Noronha-Filho, Jaime Dutra; Botelho, Glauco Dos Santos; Guimarães, José Guilherme Antunes; Silva, Eduardo Moreira da

    2017-01-01

    This study evaluated the effect of air-abrasion on t®m phase transformation, roughness, topography and the elemental composition of three Y-TZP (Yttria-stabilized tetragonal zirconia polycrystal) dental ceramics: two conventional (Lava Frame and IPS ZirCad) and one with high-translucency (Lava Plus). Plates obtained from sintered blocks of each ceramic were divided into four groups: AS (as-sintered); 30 (air-abrasion with 30 mm Si-coated Al2O3 particles); 50 (air-abrasion with 50 mm Al2O3 particles) and 150 (air-abrasion with 150 mm Al2O3 particles). After the treatments, the plates were submitted to X-ray diffractometry; 3-D profilometry and SEM/EDS. The AS surfaces were composed of Zr and t phases. All treatments produced t®m phase transformation in the ceramics. The diameter of air-abrasion particles influenced the roughness (150>50>30>AS) and the topography. SEM analysis showed that the three treatments produced groove-shaped microretentions on the ceramic surfaces, which increased with the diameter of air-abrasion particles. EDS showed a decrease in Zr content along with the emergence of O and Al elements after air-abrasion. Presence of Si was also detected on the plates air-abraded with 30 mm Si-coated Al2O3 particles. It was concluded that irrespective of the type and diameter of the particles, air-abrasion produced t®m phase transformation, increased the roughness and changed the elemental composition of the three Y-TZP dental ceramics. Lava Plus also behaved similarly to the conventional Y-TZP ceramics, indicating that this high translucency ceramic could be more suitable to build monolithic ceramic restorations in the aesthetic restorative dentistry field.

  6. Micromachined low frequency rocking accelerometer with capacitive pickoff

    DOEpatents

    Lee, Abraham P.; Simon, Jonathon N.; McConaghy, Charles F.

    2001-01-01

    A micro electro mechanical sensor that uses capacitive readout electronics. The sensor involves a micromachined low frequency rocking accelerometer with capacitive pickoff fabricated by deep reactive ion etching. The accelerometer includes a central silicon proof mass, is suspended by a thin polysilicon tether, and has a moving electrode (capacitor plate or interdigitated fingers) located at each end the proof mass. During movement (acceleration), the tethered mass moves relative to the surrounding packaging, for example, and this defection is measured capacitively by a plate capacitor or interdigitated finger capacitor, having the cooperating fixed electrode (capacitor plate or interdigitated fingers) positioned on the packaging, for example. The micromachined rocking accelerometer has a low frequency (<500 Hz), high sensitivity (.mu.G), with minimal power usage. The capacitors are connected to a power supply (battery) and to sensor interface electronics, which may include an analog to digital (A/D) converter, logic, RF communication link, antenna, etc. The sensor (accelerometer) may be, for example, packaged along with the interface electronics and a communication system in a 2".times.2".times.2" cube. The proof mass may be asymmetric or symmetric. Additional actuating capacitive plates may be used for feedback control which gives a greater dynamic range.

  7. Abrasion Testing of Candidate Outer Layer Fabrics for Lunar EVA Space Suits

    NASA Technical Reports Server (NTRS)

    Mitchell, Kathryn

    2009-01-01

    During the Apollo program, the space suit outer layer fabrics were severely abraded after just a few Extravehicular Activities (EVAs). For example, the Apollo 12 commander reported abrasive wear on the boots, which penetrated the outer layer fabric into the thermal protection layers after less than eight hours of surface operations. Current plans for the Constellation Space Suit Element require the space suits to support hundreds of hours of EVA on the Lunar surface, creating a challenge for space suit designers to utilize materials advances made over the last forty years and improve upon the space suit fabrics used in the Apollo program. A test methodology has been developed by the NASA Johnson Space Center Crew and Thermal Systems Division for establishing comparative abrasion wear characteristics between various candidate space suit outer layer fabrics. The abrasion test method incorporates a large rotary drum tumbler with rocks and loose lunar simulant material to induce abrasion in fabric test cylinder elements, representative of what might occur during long term planetary surface EVAs. Preliminary materials screening activities were conducted to determine the degree of wear on representative space suit outer layer materials and the corresponding dust permeation encountered between subsequent sub-layers of thermal protective materials when exposed to a simulated worst case eight hour EVA. The test method was used to provide a preliminary evaluation of four candidate outer layer fabrics for future planetary surface space suit applications. This paper provides a review of previous abrasion studies on space suit fabrics, details the methodologies used for abrasion testing in this particular study, shares the results of the testing, and provides recommendations for future work.

  8. Abrasion Testing of Candidate Outer Layer Fabrics for Lunar EVA Space Suits

    NASA Technical Reports Server (NTRS)

    Mitchell, Kathryn C.

    2010-01-01

    During the Apollo program, the space suit outer layer fabrics were badly abraded after just a few Extravehicular Activities (EVAs). For example, the Apollo 12 commander reported abrasive wear on the boots, which penetrated the outer layer fabric into the thermal protection layers after less than eight hours of surface operations. Current plans for the Constellation Space Suit Element require the space suits to support hundreds of hours of EVA on the Lunar surface, creating a challenge for space suit designers to utilize materials advances made over the last forty years and improve upon the space suit fabrics used in the Apollo program. A test methodology has been developed by the NASA Johnson Space Center Crew and Thermal Systems Division for establishing comparative abrasion wear characteristics between various candidate space suit outer layer fabrics. The abrasion test method incorporates a large rotary drum tumbler with rocks and loose lunar simulant material to induce abrasion in fabric test cylinder elements, representative of what might occur during long term planetary surface EVAs. Preliminary materials screening activities were conducted to determine the degree of wear on representative space suit outer layer materials and the corresponding dust permeation encountered between subsequent sub -layers of thermal protective materials when exposed to a simulated worst case eight hour EVA. The test method was used to provide a preliminary evaluation of four candidate outer layer fabrics for future planetary surface space suit applications. This Paper provides a review of previous abrasion studies on space suit fabrics, details the methodologies used for abrasion testing in this particular study, and shares the results and conclusions of the testing.

  9. Impact of brushing force on abrasion of acid-softened and sound enamel.

    PubMed

    Wiegand, A; Köwing, L; Attin, T

    2007-11-01

    The study aimed to analyse the effects of different brushing loads on abrasion of acid-softened and sound enamel surfaces. Sound and acid-softened surfaces of each 10 human enamel samples were submitted to brushing abrasion in an automatic brushing machine at 1.5 N (A), 2.5 N (B), 3.5 N (C) or 4.5 N (D) brushing load. Prior to abrasion, demineralisation of half of each enamel surface was performed by storage in hydrochloric acid (pH 2.0) for 60s. Brushing was carried out (1000 strokes) using a manual toothbrush and toothpaste slurry in a ratio of 1:3. Enamel loss was measured after 10, 20, 50, 100, 150, 200, 250, 300, 350 and 1000 brushing strokes (BS). Pre- and post-brushing values of Knoop indentation length (5 indentations each sample) were measured and mean enamel loss was calculated from the change in indentation depth. Within- and between-group comparisons were performed by ANOVA and t-test followed by Bonferroni-correction. Enamel loss of acid-softened surfaces was significantly influenced by the brushing load applied and was mostly significantly higher in group D (10-1000 BS: 225-462 nm) compared to A (10-1000 BS: 164-384), B (10-1000 BS: 175-370 nm) and C (10-1000 BS: 191-396 nm). Abrasion of acid-softened enamel was fourfold higher compared to sound surfaces. Sound enamel was significantly influenced by the brushing force at 20-200 brushing strokes only, but revealed no significant differences between groups A-D. Brushing load influences abrasion of briefly eroded enamel, but might be of minor importance for abrasion of sound enamel surfaces.

  10. Method of protecting surfaces from abrasion and abrasion resistant articles of manufacture

    DOEpatents

    Hirschfeld, T.B.

    1988-06-09

    Surfaces of fabricated structures are protected from damage by impacting particulates by a coating of hard material formed as a mass of thin flexible filaments having root ends secured to the surface and free portions which can flex and overlap to form a resilient cushioning mat which resembles hair or fur. The filamentary coating covers the underlying surface with hard abrasion resistance material while also being compliant and capable of local accommodation to particle impacts. The coating can also function as thermal and/or acoustical insulation and has a friction reducing effect. 11 figs.

  11. VIEW OF MICROMACHINING, HIGH PRECISION EQUIPMENT USED TO CUSTOM MAKE ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    VIEW OF MICRO-MACHINING, HIGH PRECISION EQUIPMENT USED TO CUSTOM MAKE SMALL PARTS. LUMPS OF CLAY; SHOWN IN THE PHOTOGRAPH, WERE USED TO STABILIZE PARTS BEING MACHINED. (11/1/87) - Rocky Flats Plant, Stainless Steel & Non-Nuclear Components Manufacturing, Southeast corner of intersection of Cottonwood & Third Avenues, Golden, Jefferson County, CO

  12. A Broadband Micro-Machined Far-Infrared Absorber

    NASA Technical Reports Server (NTRS)

    Wollack, E. J.; Datesman, A. M.; Jhabvala, C. A.; Miller, K. H.; Quijada, M. A.

    2016-01-01

    The experimental investigation of a broadband far-infrared meta-material absorber is described. The observed absorptance is greater than 0.95 from 1 to 20 terahertz (300-15 microns) over a temperature range spanning 5-300 degrees Kelvin. The meta-material, realized from an array of tapers approximately 100 microns in length, is largely insensitive to the detailed geometry of these elements and is cryogenically compatible with silicon-based micro-machined technologies. The electromagnetic response is in general agreement with a physically motivated transmission line model.

  13. A simultaneous deep micromachining and surface passivation method suitable for silicon-based devices

    NASA Astrophysics Data System (ADS)

    Babaei, E.; Gharooni, M.; Mohajerzadeh, S.; Soleimani, E. A.

    2018-07-01

    Three novel methods for simultaneous micromachining and surface passivation of silicon are reported. A thin passivation layer is achieved using continuous and sequential plasma processes based on SF6, H2 and O2 gases. Reducing the recombination by surface passivation is crucial for the realization of high-performance nanosized optoelectronic devices. The passivation of the surface as an important step, is feasible by plasma processing based on hydrogen pulses in proper time-slots or using a mixture of H2 and O2, and SF6 gases. The passivation layer which is formed in situ during the micromachining process obviates a separate passivation step needed in conventional methods. By adjusting the plasma parameters such as power, duration, and flows of gases, the process can be controlled for the best results and acceptable under-etching at the same time. Moreover, the pseudo-oxide layer which is formed during the micromachining processes will also improve the electrical characteristics of the surface, which can be used as an add-on for micro and nanowire applications. To quantify the effect of surface passivation in our method, ellipsometry, lifetime measurements, x-ray photoelectron spectroscopy, current–voltage and capacitance–voltage measurements and solar cell testing have been employed.

  14. Fabrication and characterization of piezoelectric micromachined ultrasonic transducers with thick composite PZT films.

    PubMed

    Wang, Zhihong; Zhu, Weiguang; Zhu, Hong; Miao, Jianmin; Chao, Chen; Zhao, Changlei; Tan, Ooi Kiang

    2005-12-01

    Ferroelectric microelectromechanical systems (MEMS) has been a growing area of research in past decades, in which ferroelectric films are combined with silicon technology for a variety of applications, such as piezo-electric micromachined ultrasonic transducers (pMUTs), which represent a new approach to ultrasound detection and generation. For ultrasound-radiating applications, thicker PZT films are preferred because generative force and response speed of the diaphragm-type transducers increase with increasing film thickness. However, integration of 4- to 20-microm thick PZT films on silicon wafer, either the deposition or the patterning, is still a bottleneck in the micromachining process. This paper reports on a diaphragm-type pMUT. A composite coating technique based on chemical solution deposition and high-energy ball milled powder has been used to fabricate thick PZT films. Micromachining of the pMUTs using such thick films has been investigated. The fabricated pMUT with crack-free PZT films up to 7-microm thick was evaluated as an ultrasonic transmitter. The generated sound pressure level of up to 120 dB indicates that the fabricated pMUT has very good ultrasound-radiating performance and, therefore, can be used to compose pMUT arrays for generating ultrasound beam with high directivity in numerous applications. The pMUT arrays also have been demonstrated.

  15. Release of carbon nanotubes from an epoxy-based nanocomposite during an abrasion process.

    PubMed

    Schlagenhauf, Lukas; Chu, Bryan T T; Buha, Jelena; Nüesch, Frank; Wang, Jing

    2012-07-03

    The abrasion behavior of an epoxy/carbon nanotube (CNT) nanocomposite was investigated. An experimental setup has been established to perform abrasion, particle measurement, and collection all in one. The abraded particles were characterized by particle size distribution and by electron microscopy. The abrasion process was carried out with a Taber Abraser, and the released particles were collected by a tube for further investigation. The particle size distributions were measured with a scanning mobility particle sizer (SMPS) and an aerodynamic particle sizer (APS) and revealed four size modes for all measured samples. The mode corresponding to the smallest particle sizes of 300-400 nm was measured with the SMPS and showed a trend of increasing size with increasing nanofiller content. The three measured modes with particle sizes from 0.6 to 2.5 μm, measured with the APS, were similar for all samples. The measured particle concentrations were between 8000 and 20,000 particles/cm(3) for measurements with the SMPS and between 1000 and 3000 particles/cm(3) for measurements with the APS. Imaging by transmission electron microscopy (TEM) revealed that free-standing individual CNTs and agglomerates were emitted during abrasion.

  16. Laser abrasion for cosmetic and medical treatment of facial actinic damage

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    David, L.M.; Lask, G.P.; Glassberg, E.

    1989-06-01

    Previous studies have shown the carbon dioxide (CO/sub 2/) laser to be effective in the treatment of actinic cheilitis. After CO/sub 2/ laser abrasion, normal skin and marked cosmetic improvement of the lip were noted. In our study, twenty-three patients were treated with CO/sub 2/ laser abrasions for cosmetic improvement of facial lines and actinic changes. Pre- and postoperative histopathologic examinations were made on two patients. Preoperative examination of specimens from actinically damaged skin showed atypical keratinocytes in the basal layer of the epidermis, with overlying dense compact orthokeratosis and parakeratosis. Abundant solar elastosis was seen in the papillary dermis.more » Postoperative histologic specimens showed a normal-appearing epidermis with fibrosis in the papillary dermis and minimal solar elastosis (about four weeks after laser treatment). At present, various modalities are available for the regeneration of the aged skin, including chemical peels and dermabrasion. Significantly fewer complications were noted with CO/sub 2/ laser abrasion than with these methods. Thus, CO/sub 2/ laser abrasion can be useful in the cosmetic and medical treatment of the aged skin. Marked clinical and histologic improvement has been demonstrated.« less

  17. Effect of dried sunflower seeds on incisal edge abrasion: A rare case report.

    PubMed

    Rath, Avita; Ramamurthy, Priyadarshini H; Fernandes, Bennete Aloysius; Sidhu, Preena

    2017-01-01

    Tooth surface loss (TSL) is a complex phenomenon characterized by the loss of hard tooth structure at various locations of the teeth, usually due to more than one factor. TSL due to abrasion can be significant in patients consuming coarse, abrasive diet. The present case reports an interesting incisal edge abrasion in a female patient, attributed to a particular dietary behavior of long-term consumption of sunflower seeds. All her family members and most of the people from her native place were also reported to have similar lesions by the patient. Larger epidemiological studies to assess the prevalence and severity of such abrasive lesions in geographic areas with this particular dietary habit need to be carried out so that people may be made aware and educated about alternative ways of eating sunflower seeds that will not cause any form of tooth wear.

  18. Abrasion resistant composition

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Fischer, Keith D; Barnes, Christopher A; Henderson, Stephen L

    A surface covering composition of abrasion resistant character adapted for disposition in overlying bonded relation to a metal substrate. The surface covering composition includes metal carbide particles within a metal matrix at a packing factor of not less than about 0.6. Not less than about 40 percent by weight of the metal carbide particles are characterized by an effective diameter in the range of +14-32 mesh prior to introduction to the metal matrix. Not less than about 3 percent by weight of the metal carbide particles are characterized by an effective diameter of +60 mesh prior to introduction to themore » metal matrix.« less

  19. Research on operation mode of abrasive grain during grinding

    NASA Astrophysics Data System (ADS)

    Ivanova, T. N.; Dement’ev, V. B.; Nikitina, O. V.

    2018-03-01

    The processing of materials by cutting with an abrasive tool is carried out by means of thousands of grains bonded together as a single whole. The quality of the abrasive tool is defined by cutting properties of abrasive grains and depends on features of spreading the temperature field in time and in the abrasive grain volume. Grains are exposed to heating and cooling during work. It leads to undesired effects such as a decrease of durability of grain retention in the binder, hardness, intensification of diffusion and oxidation processes between the binder and the grain, the occurrence of considerable temperature stresses in the grain itself. The obtained equation which allows calculation of temperature field of grain for one rotation of grinding wheel shows that the temperature of the wheel depends on grinding modes and thermophysical properties of abrasive material. Thus, as the time of contact of grain with processed material increases, the temperature in the cutting area rises. As thermophysical properties increase, the temperature in cutting area decreases. Thermal working conditions are determined to be different from each other depending on contact time of the grain and the material. For example, in case of creep-feed grinding, the peak value of temperature is higher than during multistep grinding; the depth of expansion is greater. While the speed of the thermal process in creep-feed grinding is 2-3 times lower than in multistep grinding, the gradient reduces 3-4 times. The analysis of machining methods shows that creep-feed grinding ensures greater depth of grain heating, a smaller heating rate and a reduced velocity gradient. It causes a decrease of probable allotropic modifications and prevents from occurring of heat strokes - cracking of grains due to high temperature falls. Consequently, it is necessary to employ creep-feed grinding to increase the efficiency of abrasive tool employing. Three operation modes of grinding wheel including blunting, full

  20. Development of a two-body wet abrasion test method with attention to the effects of reused abradant

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Blau, Peter Julian; Dehoff, Ryan R

    2012-01-01

    Abrasive wear is among the most common and costliest causes for material wastage, and it occurs in many forms. A simple method has been developed to quantify the response of metals and alloys to two-body wet abrasion. A metallographic polishing machine was modified to create a disk-on-flat sliding test rig. Adhesive-backed SiC grinding papers were used under fixed load and speed to rank the abrasive wear of seven alloy steels, some of which are candidates for drill cones for geothermal drilling. Standardized two-body abrasion tests, like those described in ASTM G132, feed unused abrasive into the contact; however, the currentmore » work investigated whether useful rankings could still be obtained with a simpler testing configuration in which specimens repeatedly slide on the same wear path under water-lubricated conditions. Tests using abrasive grit sizes of 120 and 180 resulted in the same relative ranking of the alloys although the coarser grit produced more total wear. Wear decreased when the same abrasive disk was re-used for up to five runs, but the relative rankings of the steels remained the same. This procedure was presented to ASTM Committee G2 on Wear and Erosion as a potential standard test for wet two-body abrasive wear.« less

  1. Prepolishing on a CNC platform with bound abrasive contour tools

    NASA Astrophysics Data System (ADS)

    Schoeffler, Adrienne E.; Gregg, Leslie L.; Schoen, John M.; Fess, Edward M.; Hakiel, Michael; Jacobs, Stephen D.

    2003-05-01

    Deterministic microgrinding (DMG) of optical glasses and ceramics is the commercial manufacturing process of choice to shape glass surfaces prior to final finishing. This process employs rigid bound matrix diamond tooling resulting in surface roughness values of 3-5μm peak to valley and 100-400nm rms, as well as mid-spatial frequency tool marks that require subsequent removal in secondary finishing steps. The ability to pre-polish optical surfaces within the grinding platform would reduce final finishing process times. Bound abrasive contour wheels containing cerium oxide, alumina or zirconia abrasives were constructed with an epoxy matrix. The effects of abrasive type, composition, and erosion promoters were examined for tool hardness (Shore D), and tested with commercial optical glasses in an Optipro CNC grinding platform. Metrology protocols were developed to examine tool wear and subsequent surface roughness. Work is directed to demonstrating effective material removal, improved surface roughness and cutter mark removal.

  2. Response of capacitive micromachined ultrasonic transducers

    NASA Astrophysics Data System (ADS)

    Ge, Lifeng

    2008-10-01

    Capacitive micromachined ultrasonic transducers (CMUTs) have been developed for airborne ultrasonic applications, acoustic imaging, and chemical and biological detections. Much attention is also paid how to optimize their performance, so that the accurate simulation of the transmitting response of the CMUTs becomes extremely significant. This paper focuses on determining the total input mechanical impedance accountings for damping, and its resistance part is obtained by the calculated natural frequency and equivalent lumped parameters, and the typical 3-dB bandwidth. Thus, the transmitting response can be calculated by using the input mechanical impedance. Moreover, the equivalent electrical circuit can be also established by the determined lumped parameters.

  3. Acceleration sensitivity of micromachined pressure sensors

    NASA Astrophysics Data System (ADS)

    August, Richard; Maudie, Theresa; Miller, Todd F.; Thompson, Erik

    1999-08-01

    Pressure sensors serve a variety of automotive applications, some which may experience high levels of acceleration such as tire pressure monitoring. To design pressure sensors for high acceleration environments it is important to understand their sensitivity to acceleration especially if thick encapsulation layers are used to isolate the device from the hostile environment in which they reside. This paper describes a modeling approach to determine their sensitivity to acceleration that is very general and is applicable to different device designs and configurations. It also describes the results of device testing of a capacitive surface micromachined pressure sensor at constant acceleration levels from 500 to 2000 g's.

  4. New vibration-assisted magnetic abrasive polishing (VAMAP) method for microstructured surface finishing.

    PubMed

    Guo, Jiang; Kum, Chun Wai; Au, Ka Hing; Tan, Zhi'En Eddie; Wu, Hu; Liu, Kui

    2016-06-13

    In order to polish microstructured surface without deteriorating its profile, we propose a new vibration-assisted magnetic abrasive polishing (VAMAP) method. In this method, magnetic force guarantees that the magnetic abrasives can well contact the microstructured surface and access the corners of microstructures while vibration produces a relative movement between microstructures and magnetic abrasives. As the vibration direction is parallel to the microstructures, the profile of the microstructures will not be deteriorated. The relation between vibration and magnetic force was analyzed and the feasibility of this method was experimentally verified. The results show that after polishing, the surface finish around microstructures was significantly improved while the profile of microstructures was well maintained.

  5. Ultrafast disk technology enables next generation micromachining laser sources

    NASA Astrophysics Data System (ADS)

    Heckl, Oliver H.; Weiler, Sascha; Luzius, Severin; Zawischa, Ivo; Sutter, Dirk

    2013-02-01

    Ultrashort pulsed lasers based on thin disk technology have entered the 100 W regime and deliver several tens of MW peak power without chirped pulse amplification. Highest uptime and insensitivity to back reflections make them ideal tools for efficient and cost effective industrial micromachining. Frequency converted versions allow the processing of a large variety of materials. On one hand, thin disk oscillators deliver more than 30 MW peak power directly out of the resonator in laboratory setups. These peak power levels are made possible by recent progress in the scaling of the pulse energy in excess of 40 μJ. At the corresponding high peak intensity, thin disk technology profits from the limited amount of material and hence the manageable nonlinearity within the resonator. Using new broadband host materials like for example the sesquioxides will eventually reduce the pulse duration during high power operation and further increase the peak power. On the other hand industry grade amplifier systems deliver even higher peak power levels. At closed-loop controlled 100W, the TruMicro Series 5000 currently offers the highest average ultrafast power in an industry proven product, and enables efficient micromachining of almost any material, in particular of glasses, ceramics or sapphire. Conventional laser cutting of these materials often requires UV laser sources with pulse durations of several nanoseconds and an average power in the 10 W range. Material processing based on high peak power laser sources makes use of multi-photon absorption processes. This highly nonlinear absorption enables micromachining driven by the fundamental (1030 nm) or frequency doubled (515 nm) wavelength of Yb:YAG. Operation in the IR or green spectral range reduces the complexity and running costs of industrial systems initially based on UV light sources. Where UV wavelength is required, the TruMicro 5360 with a specified UV crystal life-time of more than 10 thousand hours of continues

  6. Micromachined High Frequency PMN-PT/Epoxy 1-3 Composite Ultrasonic Annular Array

    PubMed Central

    Liu, Changgeng; Djuth, Frank; Li, Xiang; Chen, Ruimin; Zhou, Qifa; Shung, K. Kirk

    2013-01-01

    This paper reports the design, fabrication, and performance of miniature micromachined high frequency PMN-PT/epoxy 1-3 composite ultrasonic annular arrays. The PMN-PT single crystal 1-3 composites were made with micromachining techniques. The area of a single crystal pillar was 9 μm × 9 μm. The width of the kerf among pillars was ~ 5 μm and the kerfs were filled with a polymer. The composite thickness was 25 μm. A six-element annular transducer of equal element area of 0.2 mm2 with 16 μm kerf widths between annuli was produced. The aperture size the array transducer is about 1.5 mm in diameter. A novel electrical interconnection strategy for high density array elements was implemented. After the transducer was attached to the electric connection board and packaged, the array transducer was tested in a pulse/echo arrangement, whereby the center frequency, bandwidth, two-way insertion loss (IL), and cross talk between adjacent elements were measured for each annulus. The center frequency was 50 MHz and -6 dB bandwidth was 90%. The average insertion loss was 19.5 dB at 50 MHz and the crosstalk between adjacent elements was about -35 dB. The micromachining techniques described in this paper are promising for the fabrication of other types of high frequency transducers e.g. 1D and 2D arrays. PMID:22119324

  7. A Study on Postmortem Wound Dating by Gross and Histopathological Examination of Abrasions.

    PubMed

    Vinay, Javaregowda; Harish, Sathyanarayana; Mangala, Gouri S R; Hugar, Basappa S

    2017-06-01

    Abrasions are the most common blunt force injuries. The precise dating of injury is extremely important in forensic medicine practice. As we know, the wound healing occurs in well-orchestrated sequence, consisting of inflammation, proliferation, and maturation.A study of occurrence of such phases will help in understanding the sequence of events in wound healing. In this context, this study of wound dating from gross and microscopic level was taken. Postmortem study of wound dating by gross and histopathological examination of abrasions was carried out in the Department of Forensic Medicine, in M.S. Ramaiah Medical College. A total of 101 abrasions were correlated to time frame the occurrence of different gross changes and microscopic changes that follow the blunt trauma. Abrasions ranging from 0 hour to a maximum of 45 days were studied. The gross changes of abrasions were in correlation with the microscopic changes; however, the role of the comorbid conditions is significant because the results showed variations with respect to healing process. This study signifies that, if naked eye examination is studied along with histopathological examination, the reliability and accuracy of dating of wound increase. Whenever accurate determination of age is required, the autopsy surgeon can subject the samples for histopathological examination and correlate before opining the age of injury.

  8. Cracking of porcelain surfaces arising from abrasive grinding with a dental air turbine.

    PubMed

    Chang, Chee W; Waddell, J Neil; Lyons, Karl M; Swain, Michael V

    2011-12-01

    The purpose of this in vitro study was to evaluate porcelain cracking induced by abrasive grinding with a conventional dental air turbine and abrasive diamond burs. Four commercially available porcelains were examined-Wieland ALLUX, Wieland ZIROX, IPS e.max Ceram, and IPS Empress Esthetic Veneering porcelain. Sixty discs of each porcelain type were fabricated according to manufacturer instructions, followed by an auto-glaze cycle. Abrasive grinding using fine, extra-fine, and ultra-fine diamond burs was carried out, using a conventional dental air turbine. The grinding parameters were standardized with regard to the magnitude of the force applied, rotational speed of the diamond bur, and flow rate of the water coolant. A testing apparatus was used to control the magnitude of force applied during the grinding procedure. The ground surfaces were then examined under scanning electron microscope. Cracking was seen for all porcelain types when ground with the fine bur. Cracking was not seen for specimens ground with the extra-fine or the ultra-fine bur. Wet abrasive grinding with a conventional dental air turbine and fine grit diamond burs has the potential to cause cracking in the four porcelain types tested. Similar abrasive grinding with smaller grit size particles does not cause similar observable cracking. © 2011 by the American College of Prosthodontists.

  9. A micromachined device describing over a hundred orders of parametric resonance

    NASA Astrophysics Data System (ADS)

    Jia, Yu; Du, Sijun; Arroyo, Emmanuelle; Seshia, Ashwin A.

    2018-04-01

    Parametric resonance in mechanical oscillators can onset from the periodic modulation of at least one of the system parameters, and the behaviour of the principal (1st order) parametric resonance has long been well established. However, the theoretically predicted higher orders of parametric resonance, in excess of the first few orders, have mostly been experimentally elusive due to the fast diminishing instability intervals. A recent paper experimentally reported up to 28 orders in a micromachined membrane oscillator. This paper reports the design and characterisation of a micromachined membrane oscillator with a segmented proof mass topology, in an attempt to amplify the inherent nonlinearities within the membrane layer. The resultant oscillator device exhibited up to over a hundred orders of parametric resonance, thus experimentally validating these ultra-high orders as well as overlapping instability transitions between these higher orders. This research introduces design possibilities for the transducer and dynamic communities, by exploiting the behaviour of these previously elusive higher order resonant regimes.

  10. High peak power solid-state laser for micromachining of hard materials

    NASA Astrophysics Data System (ADS)

    Herbst, Ludolf; Quitter, John P.; Ray, Gregory M.; Kuntze, Thomas; Wiessner, Alexander O.; Govorkov, Sergei V.; Heglin, Mike

    2003-06-01

    Laser micromachining has become a key enabling technology in the ever-continuing trend of miniaturization in microelectronics, micro-optics, and micromechanics. New applications have become commercially viable due to the emergence of innovative laser sources, such as diode pumped solid-state lasers (DPSSL), and the progress in processing technology. Examples of industrial applications are laser-drilled micro-injection nozzles for highly efficient automobile engines, or manufacturing of complex spinnerets for production of synthetic fibers. The unique advantages of laser-based techniques stem from their ability to produce high aspect ratio holes, while yielding low heat affected zones with exceptional surface quality, roundness and taper tolerances. Additionally, the ability to drill blind holes and slots in very hard materials such as diamond, silicon, sapphire, ceramics and steel is of great interest for many applications in microelectronics, semiconductor and automotive industry. This kind of high quality, high aspect ratio micromachining requires high peak power and short pulse durations.

  11. Effect of ceramic coating by aerosol deposition on abrasion resistance of a resin composite material.

    PubMed

    Taira, Yohsuke; Hatono, Hironori; Mizukane, Masahiro; Tokita, Masahiro; Atsuta, Mitsuru

    2006-12-01

    Aerosol deposition (AD coating) is a novel technique to coat solid substances with a ceramic film. The purpose of the present study was to investigate the effect of AD coating on abrasion resistance of a resin composite material. A 5-microm-thick aluminum oxide layer was created on the polymerized resin composite. The specimen was cyclically abraded using a toothbrush abrasion simulator for 100,000 cycles. Abraded surface was then measured with a profilometer to determine the average roughness (Ra) and maximum roughness (Rmax). It was found that abrasion cycling increased the Ra value of the No-AD-coating group, but decreased the Ra and Rmax values of the AD coating group. Moreover, the AD coating group showed significantly smaller Ra and Rmax values after 100,000 abrasion cycles as compared to the No-coating control group. Microscopic observation supported these findings. In conclusion, the resistance of the resin composite against toothbrush abrasion was improved by AD coating.

  12. Finishing of display glass for mobile electronics using 3M Trizact diamond tile abrasive pads

    NASA Astrophysics Data System (ADS)

    Zheng, Lianbin; Fletcher, Tim; Na, Tee Koon; Sventek, Bruce; Romero, Vince; Lugg, Paul S.; Kim, Don

    2010-10-01

    This paper will describe a new method being used during the finishing of glass displays for mobile electronics including mobile hand held devices and notebook computers. The new method consists of using 3M TrizactTM Diamond Tile Abrasive Pads. TrizactTM Diamond Tile is a structured fixed abrasive grinding technology developed by 3M Company. The TrizactTM Diamond Tile structured abrasive pad consists of an organic (polymeric binder) - inorganic (abrasive mineral, i.e., diamond) composite that is used with a water-based coolant. TrizactTM Diamond Tile technology can be applied in both double and single side grinding applications. A unique advantage of TrizactTM Diamond Tile technology is the combination of high stock removal and low sub-surface damage. Grinding results will be presented for both 9 micron and 20 micron grades of TrizactTM Diamond Tile abrasive pads used to finish several common display glasses including Corning GorillaTM glass and Soda Lime glass.

  13. Review of Artificial Abrasion Test Methods for PV Module Technology

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Miller, David C.; Muller, Matt T.; Simpson, Lin J.

    This review is intended to identify the method or methods--and the basic details of those methods--that might be used to develop an artificial abrasion test. Methods used in the PV literature were compared with their closest implementation in existing standards. Also, meetings of the International PV Quality Assurance Task Force Task Group 12-3 (TG12-3, which is concerned with coated glass) were used to identify established test methods. Feedback from the group, which included many of the authors from the PV literature, included insights not explored within the literature itself. The combined experience and examples from the literature are intended tomore » provide an assessment of the present industry practices and an informed path forward. Recommendations toward artificial abrasion test methods are then identified based on the experiences in the literature and feedback from the PV community. The review here is strictly focused on abrasion. Assessment methods, including optical performance (e.g., transmittance or reflectance), surface energy, and verification of chemical composition were not examined. Methods of artificially soiling PV modules or other specimens were not examined. The weathering of artificial or naturally soiled specimens (which may ultimately include combined temperature and humidity, thermal cycling and ultraviolet light) were also not examined. A sense of the purpose or application of an abrasion test method within the PV industry should, however, be evident from the literature.« less

  14. Validation of Proposed Metrics for Two-Body Abrasion Scratch Test Analysis Standards

    NASA Technical Reports Server (NTRS)

    Street, Kenneth W., Jr.; Kobrick, Ryan L.; Klaus, David M.

    2013-01-01

    Abrasion of mechanical components and fabrics by soil on Earth is typically minimized by the effects of atmosphere and water. Potentially abrasive particles lose sharp and pointed geometrical features through erosion. In environments where such erosion does not exist, such as the vacuum of the Moon, particles retain sharp geometries associated with fracturing of their parent particles by micrometeorite impacts. The relationship between hardness of the abrasive and that of the material being abraded is well understood, such that the abrasive ability of a material can be estimated as a function of the ratio of the hardness of the two interacting materials. Knowing the abrasive nature of an environment (abrasive)/construction material is crucial to designing durable equipment for use in such surroundings. The objective of this work was to evaluate a set of standardized metrics proposed for characterizing a surface that has been scratched from a two-body abrasion test. This is achieved by defining a new abrasion region termed Zone of Interaction (ZOI). The ZOI describes the full surface profile of all peaks and valleys, rather than just measuring a scratch width. The ZOI has been found to be at least twice the size of a standard width measurement; in some cases, considerably greater, indicating that at least half of the disturbed surface area would be neglected without this insight. The ZOI is used to calculate a more robust data set of volume measurements that can be used to computationally reconstruct a resultant profile for de tailed analysis. Documenting additional changes to various surface roughness par ameters also allows key material attributes of importance to ultimate design applications to be quantified, such as depth of penetration and final abraded surface roughness. Further - more, by investigating the use of custom scratch tips for specific needs, the usefulness of having an abrasion metric that can measure the displaced volume in this standardized

  15. Wheel Abrasion Experiment Metals Selection for Mars Pathfinder Mission

    NASA Technical Reports Server (NTRS)

    Hepp, Aloysius F.; Fatemi, Navid S.; Wilt, David M.; Ferguson, Dale C.; Hoffman, Richard; Hill, Maria M.; Kaloyeros, Alain E.

    1996-01-01

    A series of metals was examined for suitability for the Wheel Abrasion Experiment, one of ten microrover experiments of the Mars Pathfinder Mission. The seven candidate metals were: Ag, Al, Au, Cu, Ni, Pt, and W. Thin films of candidate metals from 0.1 to 1.0 micrometer thick were deposited on black anodized aluminum coupons by e-beam and resistive evaporation and chemical vapor deposition. Optical, corrosion, abrasion, and adhesion criteria were used to select Al, Ni, and Pt. A description is given of the deposition and testing of thin films, followed by a presentation of experimental data and a brief discussion of follow-on testing and flight qualification.

  16. Optimization of design parameters for bulk micromachined silicon membranes for piezoresistive pressure sensing application

    NASA Astrophysics Data System (ADS)

    Belwanshi, Vinod; Topkar, Anita

    2016-05-01

    Finite element analysis study has been carried out to optimize the design parameters for bulk micro-machined silicon membranes for piezoresistive pressure sensing applications. The design is targeted for measurement of pressure up to 200 bar for nuclear reactor applications. The mechanical behavior of bulk micro-machined silicon membranes in terms of deflection and stress generation has been simulated. Based on the simulation results, optimization of the membrane design parameters in terms of length, width and thickness has been carried out. Subsequent to optimization of membrane geometrical parameters, the dimensions and location of the high stress concentration region for implantation of piezoresistors have been obtained for sensing of pressure using piezoresistive sensing technique.

  17. Bio-active glass air-abrasion has the potential to remove resin composite restorative material selectively

    NASA Astrophysics Data System (ADS)

    Milly, Hussam; Andiappan, Manoharan; Thompson, Ian; Banerjee, Avijit

    2014-06-01

    The aims of this study were to assess: (a) the chemistry, morphology and bioactivity of bio-active glass (BAG) air-abrasive powder, (b) the effect of three air-abrasion operating parameters: air pressure, powder flow rate (PFR) and the abrasive powder itself, on the selective removal of resin composite and (c) the required "time taken". BAG abrasive particles were characterised using scanning electron microscopy-energy dispersive X-ray spectrometry (SEM-EDX) and Fourier-transform infrared spectroscopy (FTIR). Standardised resin composite restorations created within an enamel analogue block (Macor™) in vitro, were removed using air-abrasion undersimulated clinical conditions. 90 standardised cavities were scanned before and after resin composite removal using laser profilometry and the volume of the resulting 3D images calculated. Multilevel linear model was used to identify the significant factors affecting Macor™ removal. BAG powder removed resin composite more selectively than conventional air-abrasion alumina powder using the same operating parameters (p < 0.001) and the effect of altering the unit's operating parameters was significant (p < 0.001). In conclusion, BAG powder is more efficient than alumina in the selective removal of resin composite particularly under specific operating parameters, and therefore may be recommended clinically as a method of preserving sound enamel structure when repairing and removing defective resin composite restorations.

  18. Robotic edge machining using elastic abrasive tool

    NASA Astrophysics Data System (ADS)

    Sidorova, A. V.; Semyonov, E. N.; Belomestnykh, A. S.

    2018-03-01

    The article describes a robotic center designed for automation of finishing operations, and analyzes technological aspects of an elastic abrasive tool applied for edge machining. Based on the experimental studies, practical recommendations on the application of the robotic center for finishing operations were developed.

  19. The Effect of Pleural Abrasion on the Treatment of Primary Spontaneous Pneumothorax: A Systematic Review of Randomized Controlled Trials

    PubMed Central

    Ming, Mo-yu; Cai, Shuang-qi; Chen, Yi-Qiang

    2015-01-01

    Background Pleural abrasion has been widely used to control the recurrence of primary spontaneous pneumothorax (PSP). However, controversy still exists regarding the advantages and disadvantages of pleural abrasion compared with other interventions in preventing the recurrence of PSP. Methods The PubMed, Embase, and Cochrane Central Register of Controlled Trials databases were searched up to December 15, 2014 to identify randomized controlled trials (RCTs) that compared the effects of pleural abrasion with those of other interventions in the treatment of PSP. The study outcomes included the PSP recurrence rate and the occurrence rate of adverse effects. Results Mechanical pleural abrasion and apical pleurectomy after thoracoscopic stapled bullectomy exhibited similarly persistent postoperative air leak occurrence rates (p = 0.978) and 1-year PSP recurrence rates (p = 0.821), whereas pleural abrasion led to reduced residual chest pain and discomfort (p = 0.001) and a smaller rate of hemothorax (p = 0.036) than did apical pleurectomy. However, the addition of minocycline pleurodesis to pleural abrasion did not reduce the pneumothorax recurrence rate compared with apical pleurectomy (3.8% for both procedures) but was associated with fewer complications. There was no statistical difference in the pneumothorax recurrence rate between mechanical pleural abrasion and chemical pleurodesis with minocycline on either an intention-to-treat basis (4 of 42 versus 0 of 42, p = 0.12; Fisher exact test) or after exclusions (2 of 40 versus 0 of 42, p = 0.24; Fisher exact test). Pleural abrasion plus minocycline pleurodesis also did not reduce the pneumothorax recurrence rate compared with pleural abrasion alone (p = 0.055). Moreover, pleural abrasion plus minocycline pleurodesis was associated with more intense acute chest pain. The postoperative overall recurrence rate in patients who underwent staple line coverage with absorbable cellulose mesh and fibrin glue was similar to that

  20. Monolithic Micromachined Quartz Resonator based Infrared Focal Plane Arrays

    DTIC Science & Technology

    2012-05-05

    following categories: PaperReceived Ping Kao, Srinivas Tadigadapa. Micromachined quartz resonator based infrared detector array, Sensors and...0. doi: 10.1088/0957-0233/20/12/124007 2012/05/08 19:47:37 6 S Tadigadapa, K Mateti. Piezoelectric MEMS sensors : state-of-the-art and perspectives...Ping Kao, David L. Allara, Srinivas Tadigadapa. Study of Adsorption of Globular Proteins on Hydrophobic Surfaces, IEEE Sensors Journal, (11 2011): 0

  1. The abrasive effect of commercial whitening toothpastes on eroded enamel.

    PubMed

    Mosquim, Victor; Martines Souza, Beatriz; Foratori Junior, Gerson Aparecido; Wang, Linda; Magalhães, Ana Carolina

    2017-06-01

    To evaluate the in vitro abrasive effect of commercial whitening toothpastes on eroded bovine enamel samples in respect to erosive tooth wear. 72 bovine crowns were embedded, polished and subjected to the baseline profile analysis. The samples were then protected in 2/3 of the enamel surface and were randomly assigned to six groups (n= 12/group): G1: Oral-B 3D White, G2: Close-up Diamond Attraction Power White, G3: Sorriso Xtreme White 4D, G4: Colgate Luminous White, G5: Crest (conventional toothpaste), G6:erosion only (control). All samples were submitted to an erosive pH cycling (4 x 90 seconds in 0.1% citric acid, pH 2.5, per day) and abrasive challenges (2 x 15 seconds, per day) for 7 days. After the first and the last daily cycles, the samples were subjected to abrasive challenges, using a toothbrushing machine, soft toothbrushes and slurry of the tested toothpastes (1.5 N). Between the challenges, the samples were immersed in artificial saliva. The final profile was obtained and overlaid to the baseline profile for the calculation of the erosive tooth wear (μm). The data were subjected to Kruskal-Wallis/Dunn tests (P< 0.05). G1 promoted the highest enamel wear (3.68±1.06 μm), similarly to G3 (3.17± 0.80 μm) and G4 (3.44± 1.29 μm). G3 and G4 performed similarly between them and compared with G5 (2.35± 1.44 μm). G2 (1.51± 0.95 μm) and G6 (0.85± 0.36 μm) showed the lowest enamel wear, which did not differ between them and from G5. Oral-B 3D White showed the highest abrasive potential while Close-up Diamond Attraction Power White showed the lowest abrasive potential on eroded enamel in vitro. This study showed that some commercial whitening toothpastes, especially those containing pyrophosphate associated with hydrated silica, enhanced enamel erosive wear.

  2. Biasing of Capacitive Micromachined Ultrasonic Transducers.

    PubMed

    Caliano, Giosue; Matrone, Giulia; Savoia, Alessandro Stuart

    2017-02-01

    Capacitive micromachined ultrasonic transducers (CMUTs) represent an effective alternative to piezoelectric transducers for medical ultrasound imaging applications. They are microelectromechanical devices fabricated using silicon micromachining techniques, developed in the last two decades in many laboratories. The interest for this novel transducer technology relies on its full compatibility with standard integrated circuit technology that makes it possible to integrate on the same chip the transducers and the electronics, thus enabling the realization of extremely low-cost and high-performance devices, including both 1-D or 2-D arrays. Being capacitive transducers, CMUTs require a high bias voltage to be properly operated in pulse-echo imaging applications. The typical bias supply residual ripple of high-quality high-voltage (HV) generators is in the millivolt range, which is comparable with the amplitude of the received echo signals, and it is particularly difficult to minimize. The aim of this paper is to analyze the classical CMUT biasing circuits, highlighting the features of each one, and to propose two novel HV generator architectures optimized for CMUT biasing applications. The first circuit proposed is an ultralow-residual ripple (<5 [Formula: see text]) HV generator that uses an extremely stable sinusoidal power oscillator topology. The second circuit employs a commercially available integrated step-up converter characterized by a particularly efficient switching topology. The circuit is used to bias the CMUT by charging a buffer capacitor synchronously with the pulsing sequence, thus reducing the impact of the switching noise on the received echo signals. The small area of the circuit (about 1.5 cm 2 ) makes it possible to generate the bias voltage inside the probe, very close to the CMUT, making the proposed solution attractive for portable applications. Measurements and experiments are shown to demonstrate the effectiveness of the new approaches

  3. Self inflicted corneal abrasions due to delusional parasitosis

    PubMed Central

    Meraj, Adeel; Din, Amad U; Larsen, Lynn; Liskow, Barry I

    2011-01-01

    The authors report a case of self inflicted bilateral corneal abrasions and skin damage due to ophthalmic and cutaneous delusional parasitosis. A male in his 50s presented with a 10 year history of believing that parasites were colonizing his skin and biting into his skin and eyes. The patient had received extensive medical evaluations that found no evidence that symptoms were due to a medical cause. He was persistent in his belief and had induced bilateral corneal abrasions and skin damage by using heat lamps and hair dryers in an attempt to disinfect his body. The patient was treated with olanzapine along with treatment for his skin and eyes. His delusional belief system persisted but no further damage to his eyes and skin was noted on initial follow-up. PMID:22689836

  4. The Research into the Quality of Rock Surfaces Obtained by Abrasive Water Jet Cutting

    NASA Astrophysics Data System (ADS)

    Młynarczuk, Mariusz; Skiba, Marta; Sitek, Libor; Hlaváček, Petr; Kožušníková, Alena

    2014-12-01

    In recent years, water jet cutting technology has been being used more and more often, in various domains of human activity. Its numerous applications include cutting different materials - among them, rock materials. The present paper discusses the results of the research that aimed at determining - in a quantitative manner - the way in which the water jet cutting parameters (such as the traverse speed of the head, and the distance between the high-pressure inlet of the water jet and the cut material) influence the quality of the processed surface. Additionally, the impact of these parameters on the surface of various materials was investigated. The materials used were three granites differing with respect to the size of grains. In the course of the research, the standard parameters defined by the ISO norms were analyzed. It was also proposed that variograms be used to analyze the quality of the cut surface. Technologia cięcia strumieniem wodnym staje się w ostatnich latach coraz intensywniej wykorzystywana w różnych dziedzinach działalności człowieka. Jest ona wykorzystywana do obróbki różnorodnych materiałów, również materiałów skalnych. W ramach badań analizowano trzy granity różniące się m.in. wielkościami ziarn, które były przecinane przy różnych prędkościach przesuwu głowicy z wlotem strumienia wodnego. Analizowano standardowe parametry zdefiniowane w normach ISO jak również zaproponowano wykorzystanie wariogramów do analizy jakości wyciętej powierzchni. W pracy opisano w sposób ilościowy zmiany jakości powierzchni skał ciętych strumieniem wodnym ze ścierniwem w zależności od prędkości przesuwu głowicy, jak również w zależności od odległości przecinanego fragmentu powierzchni od wlotu strumienia wodnego do materiału. Wyniki uzyskane w pomiarach wskazują też na wpływ wielkości uziarnienia skały na jakość otrzymanej powierzchni. Jest to szczególnie widoczne dla najmniej optymalnych parametrów ci

  5. Air powder abrasive treatment as an implant surface cleaning method: a literature review.

    PubMed

    Tastepe, Ceylin S; van Waas, Rien; Liu, Yuelian; Wismeijer, Daniel

    2012-01-01

    To evaluate the air powder abrasive treatment as an implant surface cleaning method for peri-implantitis based on the existing literature. A PubMed search was conducted to find articles that reported on air powder abrasive treatment as an implant surface cleaning method for peri-implantitis. The studies evaluated cleaning efficiency and surface change as a result of the method. Furthermore, cell response toward the air powder abrasive-treated discs, reosseointegration, and clinical outcome after treatment is also reported. The PubMed search resulted in 27 articles meeting the inclusion criteria. In vitro cleaning efficiency of the method is reported to be high. The method resulted in minor surface changes on titanium specimens. Although the air powder abrasive-treated specimens showed sufficient levels of cell attachment and cell viability, the cell response decreased compared with sterile discs. Considerable reosseointegration between 39% and 46% and improved clinical parameters were reported after treatment when applied in combination with surgical treatment. The results of the treatment are influenced by the powder type used, the application time, and whether powder was applied surgically or nonsurgically. The in vivo data on air powder abrasive treatment as an implant surface cleaning method is not sufficient to draw definitive conclusions. However, in vitro results allow the clinician to consider the method as a promising option for implant surface cleaning in peri-implantitis treatment.

  6. A Study on Postmortem Wound Dating by Gross and Histopathological Examination of Abrasions

    PubMed Central

    Vinay, Javaregowda; Harish, Sathyanarayana; Mangala, Gouri S.R.; Hugar, Basappa S.

    2017-01-01

    Introduction Abrasions are the most common blunt force injuries. The precise dating of injury is extremely important in forensic medicine practice. As we know, the wound healing occurs in well-orchestrated sequence, consisting of inflammation, proliferation, and maturation. A study of occurrence of such phases will help in understanding the sequence of events in wound healing. In this context, this study of wound dating from gross and microscopic level was taken. Materials and Methods Postmortem study of wound dating by gross and histopathological examination of abrasions was carried out in the Department of Forensic Medicine, in M.S. Ramaiah Medical College. A total of 101 abrasions were correlated to time frame the occurrence of different gross changes and microscopic changes that follow the blunt trauma. Abrasions ranging from 0 hour to a maximum of 45 days were studied. Results The gross changes of abrasions were in correlation with the microscopic changes; however, the role of the comorbid conditions is significant because the results showed variations with respect to healing process. Conclusions This study signifies that, if naked eye examination is studied along with histopathological examination, the reliability and accuracy of dating of wound increase. Whenever accurate determination of age is required, the autopsy surgeon can subject the samples for histopathological examination and correlate before opining the age of injury. PMID:28418938

  7. Aeolian Rat Tails (ARTs): A New Morphological Indicator of Abrasion Direction

    NASA Astrophysics Data System (ADS)

    Favaro, E. A.; Hugenholtz, C.; Barchyn, T.

    2016-12-01

    Aeolian rat tails (ARTs) are a previously undocumented aeolian abrasion feature observed on ignimbrite surfaces in the Puna Plateau of Northwest Argentina and bare morphological similarity to small-scale features on Mars. We describe the terrestrial features and present an evolutionary sequence from inception to demise. ARTs are regionally-ubiquitous and characterized by a windward abrasion-resistant lithic clast and a downwind-tapering tail. The size of ARTs is controlled by the diameter of the windward lithic clast, observed on the sub-decimeter to meter scale. Their distribution throughout the Campo de Piedra Pómez, and adjacent regions is determined by the ignimbrite clast content. ARTs develop under a uni-modal abrasion direction when lithic clasts are eroded out of the ignimbrite matrix, protrude from the surface, and shelter material directly behind the clast. As the surrounding material is eroded away, a downwind-tapered tail develops. Continued erosion of the adjacent surface leads to the undercutting of clasts, liberating them from the feature where, if small enough, the clasts can be transported downwind, leading to the destruction of the tail and ultimately the feature. This evolutionary sequence accounts not only for the morphology of the feature, but also the presence of loose clasts on the ignimbrite surface, which plays a role in the development of other enigmatic landforms in the area, such as periodic bedrock ridges, yardangs, and megaripples. The significance of the identification of ARTs is due to the necessity of uni-modal abrasion direction for their development, thereby making their orientation a diagnostic indicator of long-term aeolian abrasion direction. ARTs are likely analogs of features identified by MSL Curiosity Rover on Mars, possibly providing information on past and present wind regimes.

  8. Micromachined piconewton force sensor for biophysics investigations

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Koch, Steven J.; Thayer, Gayle E.; Corwin, Alex D.

    2006-10-23

    We describe a micromachined force sensor that is able to measure forces as small as 1 pN in both air and water. First, we measured the force field produced by an electromagnet on individual 2.8 {mu}m magnetic beads glued to the sensor. By repeating with 11 different beads, we measured a 9% standard deviation in saturation magnetization. We next demonstrated that the sensor was fully functional when immersed in physiological buffer. These results show that the force sensors can be useful for magnetic force calibration and also for measurement of biophysical forces on chip.

  9. Experimental Evidence that Abrasion of Carbonate Sand is a Significant Source of Carbonate Mud

    NASA Astrophysics Data System (ADS)

    Trower, L.; Kivrak, L.; Lamb, M. P.; Fischer, W. W.

    2017-12-01

    Carbonate mud is a major sedimentary component of modern and ancient tropical carbonate environments, yet its enigmatic origin remains debated. Early views on the origin of carbonate mud considered the abrasion of carbonate sand during sediment transport as a possible mechanism. In recent decades, however, prevailing thought has generally settled on a binary explanation: 1) precipitation of aragonite needles within the water column, and 2) post-mortem dispersal of biological aragonite, in particular from algae, and perhaps aided by fish. To test these different hypotheses, we designed a model and a set of laboratory experiments to quantify the rates of mud production associated with sediment transport. We adapted a recent model of ooid abrasion rate to predict the rate of mud production by abrasion of carbonate sand as a function of grain size and sediment transport mode. This model predicts large mud production rates, ranging from 103 to 104 g CaCO3/m2/yr for typical grain sizes and transport conditions. These rate estimates are at least one order of magnitude more rapid than the 102 g CaCO3/m2/yr estimates for other mechanisms like algal biomineralization, indicating that abrasion could produce much larger mud fluxes per area as other mechanisms. We tested these estimates using wet abrasion mill experiments; these experiments generated mud through mechanical abrasion of both ooid and skeletal carbonate sand for grain sizes ranging from 250 µm to >1000 µm over a range of sediment transport modes. Experiments were run in artificial seawater, including a series of controls demonstrating that no mud was produced via homogenous nucleation and precipitation in the absence of sand. Our experimental rates match the model predictions well, although we observed small systematic differences in rates between abrasion ooid sand and skeletal carbonate sand that likely stems from innate differences in grain angularity. Electron microscopy of the experimental products revealed

  10. Micro-abrasion-corrosion behaviour of a biomedical Ti-25Nb-3Mo-3Zr-2Sn alloy in simulated physiological fluid.

    PubMed

    Wang, Zhenguo; Li, Yan; Huang, Weijiu; Chen, Xiaoli; He, Haoran

    2016-10-01

    The micro-abrasion-corrosion behaviour of the biomedical Ti-25Nb-3Mo-3Zr-2Sn alloy in Hank׳s solution with protein has been investigated using electrochemical measurements, tribological tests and scanning electron microscope (SEM) observations. The potentiodynamic polarization tests showed that the corrosion potential (Ecorr) exhibits the maximum value at the abrasive concentration of 0.05gcm(-3) despite of the load level. The tribological results indicated that the total material loss of the Ti-25Nb-3Mo-3Zr-2Sn alloy during micro-abrasion increased with the increasing abrasive concentration at a certain applied load. When the abrasive concentration is no more than 0.15gcm(-3), the total material loss increases with increasing load, while the total material loss exhibits the maximum value at a moderate load in case of higher abrasive concentration levels. This was ascribed to the three-body or two-body micro-abrasion-corrosion at different abrasive concentration levels. The wastage map, abrasion mode map and synergy map associated with the applied load and the abrasive concentration were constructed to evaluate the micro-abrasion-corrosion behaviour of the Ti-25Nb-3Mo-3Zr-2Sn alloy in potential biomedical applications. Copyright © 2016 Elsevier Ltd. All rights reserved.

  11. Construction and evaluation of a capillary array DNA sequencer based on a micromachined sheath-flow cuvette.

    PubMed

    Crabtree, H J; Bay, S J; Lewis, D F; Zhang, J; Coulson, L D; Fitzpatrick, G A; Delinger, S L; Harrison, D J; Dovichi, N J

    2000-04-01

    A capillary array electrophoresis DNA sequencer is reported based on a micromachined sheath-flow cuvette as the detection chamber. This cuvette is equipped with a set of micromachined features that hold the capillaries in precise registration to ensure uniform spacing between the capillaries, in order to generate uniform hydrodynamic flow in the cuvette. A laser beam excites all of the samples simultaneously, and a microscope objective images fluorescence onto a set of avalanche photodiodes, which operate in the analog mode. A high-gain transimpedance amplifier is used for each photodiode, providing high duty-cycle detection of fluorescence.

  12. The laser micro-machining system for diamond anvil cell experiments and general precision machining applications at the High Pressure Collaborative Access Team

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hrubiak, Rostislav; Sinogeikin, Stanislav; Rod, Eric

    We have designed and constructed a new system for micro-machining parts and sample assemblies used for diamond anvil cells and general user operations at the High Pressure Collaborative Access Team, sector 16 of the Advanced Photon Source. The new micro-machining system uses a pulsed laser of 400 ps pulse duration, ablating various materials without thermal melting, thus leaving a clean edge. With optics designed for a tight focus, the system can machine holes any size larger than 3 μm in diameter. Unlike a standard electrical discharge machining drill, the new laser system allows micro-machining of non-conductive materials such as: amorphousmore » boron and silicon carbide gaskets, diamond, oxides, and other materials including organic materials such as polyimide films (i.e., Kapton). An important feature of the new system is the use of gas-tight or gas-flow environmental chambers which allow the laser micro-machining to be done in a controlled (e.g., inert gas) atmosphere to prevent oxidation and other chemical reactions in air sensitive materials. The gas-tight workpiece enclosure is also useful for machining materials with known health risks (e.g., beryllium). Specialized control software with a graphical interface enables micro-machining of custom 2D and 3D shapes. The laser-machining system was designed in a Class 1 laser enclosure, i.e., it includes laser safety interlocks and computer controls and allows for routine operation. Though initially designed mainly for machining of the diamond anvil cell gaskets, the laser-machining system has since found many other micro-machining applications, several of which are presented here.« less

  13. Adhesive and abrasive wear mechanisms in ion implanted metals

    NASA Astrophysics Data System (ADS)

    Dearnaley, G.

    1985-03-01

    The distinction between adhesive and abrasive wear processes was introduced originally by Burwell during the nineteen-fifties, though some authors prefer to classify wear according to whether it is mild or severe. It is argued here that, on the basis of the performance of a variety of ion implanted metal surfaces, exposed to different modes of wear, the Burwell distinction is a valid one which, moreover, enables us to predict under which circumstances a given treatment will perform well. It is shown that, because wear rates under abrasive conditions are very sensitive to the ratio of the hardness of the surface to that of the abrasive particles, large increases in working life are attainable as a result of ion implantation. Under adhesive wear conditions, the wear rate appears to fall inversely as the hardness increases, and it is advantageous to implant species which will create and retain a hard surface oxide or other continuous film in order to reduce metal-metal contact. By the appropriate combination of physico-chemical changes in an implanted layer it has been possible to reduce wear rates by up to three orders of magnitude. Such rates compensate for the shallow depths achievable by ion implantation.

  14. Nanoelectrospray ion generation for high-throughput mass spectrometry using a micromachined ultrasonic ejector array

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Aderogba, S.; Meacham, J.M.; Degertekin, F.L.

    2005-05-16

    Ultrasonic electrospray ionization (ESI) for high-throughput mass spectrometry is demonstrated using a silicon micromachined microarray. The device uses a micromachined ultrasonic atomizer operating in the 900 kHz-2.5 MHz range for droplet generation and a metal electrode in the fluid cavity for ionization. Since the atomization and ionization processes are separated, the ultrasonic ESI source shows the potential for operation at low voltages with a wide range of solvents in contrast with conventional capillary ESI technology. This is demonstrated using the ultrasonic ESI microarray to obtain the mass spectrum of a 10 {mu}M reserpine sample on a time of flight massmore » spectrometer with 197:1 signal-to-noise ratio at an ionization potential of 200 V.« less

  15. A Micromachined Capacitive Pressure Sensor Using a Cavity-Less Structure with Bulk-Metal/Elastomer Layers and Its Wireless Telemetry Application

    PubMed Central

    Takahata, Kenichi; Gianchandani, Yogesh B.

    2008-01-01

    This paper reports a micromachined capacitive pressure sensor intended for applications that require mechanical robustness. The device is constructed with two micromachined metal plates and an intermediate polymer layer that is soft enough to deform in a target pressure range. The plates are formed of micromachined stainless steel fabricated by batch-compatible micro-electro-discharge machining. A polyurethane room-temperature-vulcanizing liquid rubber of 38-μm thickness is used as the deformable material. This structure eliminates both the vacuum cavity and the associated lead transfer challenges common to micromachined capacitive pressure sensors. For frequency-based interrogation of the capacitance, passive inductor-capacitor tanks are fabricated by combining the capacitive sensor with an inductive coil. The coil has 40 turns of a 127-μm-diameter copper wire. Wireless sensing is demonstrated in liquid by monitoring the variation in the resonant frequency of the tank via an external coil that is magnetically coupled with the tank. The sensitivity at room temperature is measured to be 23-33 ppm/KPa over a dynamic range of 340 KPa, which is shown to match a theoretical estimation. Temperature dependence of the tank is experimentally evaluated. PMID:27879824

  16. Comparative evaluation of enamel abrasivity by toothbrush and velcro: An in vitro scanning electron microscope study

    PubMed Central

    Ojha, Saroj Kumar; Javdekar, Sadashiv Bhaskar; Dhir, Sangeeta

    2015-01-01

    Context: Plaque control has been shown to be pivotal in maintaining the optimal periodontal health. Mechanical plaque control is the most popular option for establishing the optimal oral health. Toothbrushes have been the novel tool for mechanical cleansing. However, the abrasive potential of the toothbrushes on the enamel surface is an area in gray. Aims: The aim of this in vitro study is to evaluate the abrasivity of the toothbrush versus the velcro fasteners. Materials and Methods: The mounted teeth of both the groups were subjected to abrasion test, and the tooth surfaces were observed for the possible abrasions from the oscillating strokes (toothbrush) and frictional contacts (hook and loop velcro) and examined under the scanning electron microscope. Results: Comparative assessment of both velcro (hook and loop) and toothbrush bristles did not reveal any evidence of abrasion on the tooth specimens. Conclusions: Veclro fasteners are safe and qualitatively at par to the manual toothbrush for their efficacy and efficiency in teeth cleansing PMID:26229264

  17. Pre-polishing on a CNC platform with bound abrasive contour tools

    NASA Astrophysics Data System (ADS)

    Schoeffer, Adrienne E.

    2003-05-01

    Deterministic micorgrinding (DMG) of optical glasses and ceramics is the commercial manufacturing process of choice to shape glass surfaces prior to final finishing. This process employs rigid bound matrix diamond tooling resulting in surface roughness values of 3-51.tm peak to valley and 100-400nm rms, as well as mid-spatial frequency tool marks that require subsequent removal in secondary finishing steps. The ability to pre-polish optical surfaces within the grinding platform would reduce final finishing process times. Bound abrasive contour wheels containing cerium oxide, alumina or zirconia abrasives were constructed with an epoxy matrix. The effects of abrasive type, composition, and erosion promoters were examined for tool hardness (Shore D), and tested with commercial optical glasses in an OptiproTM CNC grinding platform. Metrology protocols were developed to examine tool wear and subsequent surface roughness. Work is directed to demonstrating effective material removal, improved surface roughness and cutter mark removal.

  18. Hybrid micromachining using a nanosecond pulsed laser and micro EDM

    NASA Astrophysics Data System (ADS)

    Kim, Sanha; Kim, Bo Hyun; Chung, Do Kwan; Shin, Hong Shik; Chu, Chong Nam

    2010-01-01

    Micro electrical discharge machining (micro EDM) is a well-known precise machining process that achieves micro structures of excellent quality for any conductive material. However, the slow machining speed and high tool wear are main drawbacks of this process. Though the use of deionized water instead of kerosene as a dielectric fluid can reduce the tool wear and increase the machine speed, the material removal rate (MRR) is still low. In contrast, laser ablation using a nanosecond pulsed laser is a fast and non-wear machining process but achieves micro figures of rather low quality. Therefore, the integration of these two processes can overcome the respective disadvantages. This paper reports a hybrid process of a nanosecond pulsed laser and micro EDM for micromachining. A novel hybrid micromachining system that combines the two discrete machining processes is introduced. Then, the feasibility and characteristics of the hybrid machining process are investigated compared to conventional EDM and laser ablation. It is verified experimentally that the machining time can be effectively reduced in both EDM drilling and milling by rapid laser pre-machining prior to micro EDM. Finally, some examples of complicated 3D micro structures fabricated by the hybrid process are shown.

  19. Influence of micromachined targets on laser accelerated proton beam profiles

    NASA Astrophysics Data System (ADS)

    Dalui, Malay; Permogorov, Alexander; Pahl, Hannes; Persson, Anders; Wahlström, Claes-Göran

    2018-03-01

    High intensity laser-driven proton acceleration from micromachined targets is studied experimentally in the target-normal-sheath-acceleration regime. Conical pits are created on the front surface of flat aluminium foils of initial thickness 12.5 and 3 μm using series of low energy pulses (0.5-2.5 μJ). Proton acceleration from such micromachined targets is compared with flat foils of equivalent thickness at a laser intensity of 7 × 1019 W cm-2. The maximum proton energy obtained from targets machined from 12.5 μm thick foils is found to be slightly lower than that of flat foils of equivalent remaining thickness, and the angular divergence of the proton beam is observed to increase as the depth of the pit approaches the foil thickness. Targets machined from 3 μm thick foils, on the other hand, show evidence of increasing the maximum proton energy when the depths of the structures are small. Furthermore, shallow pits on 3 μm thick foils are found to be efficient in reducing the proton beam divergence by a factor of up to three compared to that obtained from flat foils, while maintaining the maximum proton energy.

  20. Abrasive Wear of Four Direct Restorative Materials by Standard and Whitening Dentifrices

    DTIC Science & Technology

    2013-06-01

    after an acidic challenge . Enamel loss was significantly greater when erosive and abrasive effects were combined. They concluded that acid-softened...surrounding soft tissues. Another benefit of restoration is the elimination of a challenging area for the patient and hygienist to clean. These areas...abrasion challenge ; the resin cement with the smallest sized filler particles had the smallest weight loss and maintained the smoothest surface of all the

  1. Fiber laser micromachining of magnesium alloy tubes for biocompatible and biodegradable cardiovascular stents

    NASA Astrophysics Data System (ADS)

    Demir, Ali Gökhan; Previtali, Barbara; Colombo, Daniele; Ge, Qiang; Vedani, Maurizio; Petrini, Lorenza; Wu, Wei; Biffi, Carlo Alberto

    2012-02-01

    Magnesium alloys constitute an attractive solution for cardiovascular stent applications due to their intrinsic properties of biocompatibility and relatively low corrosion resistance in human-body fluids, which results in as a less intrusive treatment. Laser micromachining is the conventional process used to cut the stent mesh, which plays the key role for the accurate reproduction of the mesh design and the surface quality of the produced stent that are important factors in ensuring the mechanical and corrosion resistance properties of such a kind of devices. Traditionally continuous or pulsed laser systems working in microsecond pulse regime are employed for stent manufacturing. Pulsed fiber lasers on the other hand, are a relatively new solution which could balance productivity and quality aspects with shorter ns pulse durations and pulse energies in the order of mJ. This work reports the study of laser micromachining and of AZ31 magnesium alloy for the manufacturing of cardiovascular stents with a novel mesh design. A pulsed active fiber laser system operating in nanosecond pulse regime was employed for the micromachining. Laser parameters were studied for tubular cutting on a common stent material, AISI 316L tubes with 2 mm in diameter and 0.2 mm in thickness and on AZ31 tubes with 2.5 mm in diameter and 0.2 in thickness. In both cases process parameters conditions were examined for reactive and inert gas cutting solutions and the final stent quality is compared.

  2. Micromachined Millimeter- and Submillimeter-wave SIS Heterodyne Receivers for Remote Sensing

    NASA Technical Reports Server (NTRS)

    Hu, Qing

    1997-01-01

    This is a progress report for the second year of a NASA-sponsored project. The report discusses the design and fabrication of micromachined Superconductor Insulator Superconductor (SIS) heterodyne receivers with integrated tuning elements. These receivers tune out the functional capacitance at desired frequencies, resulting in less noise, lower temperatures and broader bandwidths. The report also discusses the design and fabrication of the first monolithic 3x3 focal-plane arrays for a frequency range of 170-210 GHz. Also addressed is the construction of a 9-channel bias and read-out system, as well as the redesign of the IF connections to reduce cross talk between SIS junctions, which become significant a frequency of 1.5 GHz IF. Uniformity of the junction arrays were measured and antenna beam patterns of several array elements under operating conditions also were measured. Finally, video and heterodyne responses of our focal-plane arrays were measured as well. Attached is a paper on: 'Development of a 170-210 GHz 3x3 micromachined SIS imaging array'.

  3. Gingival abrasion and recession in manual and oscillating–rotating power brush users

    PubMed Central

    Rosema, NAM; Adam, R; Grender, JM; Van der Sluijs, E; Supranoto, SC; Van der Weijden, GA

    2014-01-01

    Objective To assess gingival recession (GR) in manual and power toothbrush users and evaluate the relationship between GR and gingival abrasion scores (GA). Methods This was an observational (cross-sectional), single-centre, examiner-blind study involving a single-brushing exercise, with 181 young adult participants: 90 manual brush users and 91 oscillating–rotating power brush users. Participants were assessed for GR and GA as primary response variables. Secondary response variables were the level of gingival inflammation, plaque score reduction and brushing duration. Pearson correlation was used to describe the relationship between number of recession sites and number of abrasions. Prebrushing (baseline) and post-brushing GA and plaque scores were assessed and differences analysed using paired tests. Two-sample t-test was used to analyse group differences; ancova was used for analyses of post-brushing changes with baseline as covariate. Results Overall, 97.8% of the study population had at least one site of ≥1 mm of gingival recession. For the manual group, this percentage was 98.9%, and for the power group, this percentage was 96.7% (P = 0.621). Post-brushing, the power group showed a significantly smaller GA increase than the manual group (P = 0.004); however, there was no significant correlation between number of recession sites and number of abrasions for either group (P ≥ 0.327). Conclusions Little gingival recession was observed in either toothbrush user group; the observed GR levels were comparable. Lower post-brushing gingival abrasion levels were seen in the power group. There was no correlation between gingival abrasion as a result of brushing and the observed gingival recession following use of either toothbrush. PMID:24871587

  4. Effects of Load and Speed on Wear Rate of Abrasive Wear for 2014 Al Alloy

    NASA Astrophysics Data System (ADS)

    Odabas, D.

    2018-01-01

    In this paper, the effects of the normal load and sliding speed on wear rate of two-body abrasive wear for 2014 Al Alloy were investigated in detail. In order to understand the variation in wear behaviour with load and speed, wear tests were carried out at a sliding distance of 11 m, a speed of 0.36 m/s, a duration of 30 s and loads in the range 3-11 N using 220 grit abrasive paper, and at a speed range 0.09-0.90 m/s, a load of 5 N and an average sliding distance of 11 m using abrasive papers of 150 grit size under dry friction conditions. Before the wear tests, solution treatment of the 2014 Al alloy was carried out at temperatures of 505 and 520 °C for 1 h in a muffle furnace and then quenched in cold water at 15 °C. Later, the ageing treatment was carried out at 185 °C for 8 h in the furnace. Generally, wear rate due to time increased linearly and linear wear resistance decreased with increasing loads. However, the wear rate was directly proportional to the load up to a critical load of 7 N. After this load, the slope of the curves decreased because the excessive deformation of the worn surface and the instability of the abrasive grains began to increase. When the load on an abrasive grain reaches a critical value, the groove width is about 0.17 of the abrasive grain diameter, and the abrasive grains begin to fail. The wear rate due to time increased slightly as the sliding speed increased in the range 0.09-0.90 m/s. The reason for this is that changes arising from strain rate and friction heating are expected with increasing sliding speeds.

  5. Assessment of thermal spray coatings for wear and abrasion resistance applications

    NASA Astrophysics Data System (ADS)

    Karode, Ishaan Nitin

    Thermal spray cermet and metallic coatings are extensively used for wear, abrasion and corrosion control in a variety of industries. The first part of the thesis focuses mainly on testing of sand erosion resistance of thermal spray coatings on carbon composites used in the manufacture of helicopter rotor blades. The test set-up employed is a sand blasting machine and is an effort to duplicate the in-flight conditions especially those encountered in hot arid conditions. The technique adopted follows the Department of Defence test method standard. Carbon Composites have excellent stiffness, strength and low weight/density. The strength to weight ratio is high. Hence, these are used in aerospace applications to a large extent. However, the biggest problem encountered with carbon composites is its low abrasion resistance as its surface is very weak. Hence, thermal spray coatings are used to improve the surface properties of CFRP. Zinc bond coats and WC-Co coatings were tested. However, high amount of thermal stresses were developed between the substrate and the coating due to large differences in the CTE's of the both, leading to high mass losses within two minutes and just 130 grams of sand sprayed on to the coatings with the sand blasting machine built; and hence the coatings with CC as a substrate could not qualify for the application. The second part of the thesis focuses on the assessment of different thermal spray coatings used for manufacture of mechanical seals in pumps and analyze the best coating material for the wear resistance application through detail quantification of material loss by block-on-ring test set-up. A machine based on Block-on-ring test set-up following ASTM G77 (Measurement of Adhesive wear resistance of thermal spray coatings) standards was built to duplicate the pump conditions. Thermally sprayed coated materials were tested in different conditions (Load, time, abrasive). WC-Co had the highest wear resistance (lower volume losses) and

  6. Controls on wind abrasion patterns through a fractured bedrock landscape

    NASA Astrophysics Data System (ADS)

    Perkins, J. P.; Finnegan, N. J.

    2017-12-01

    Wind abrasion is an important geomorphic process for understanding arid landscape evolution on Earth and interpreting the post-fluvial history of Mars. Both the presence and orientation of wind-abraded landforms provide potentially important constraints on paleo-climatic conditions; however, such interpretations can be complicated by lithologic and structural heterogeneity. To explore the influence of pre-existing structure on wind abrasion, we exploit a natural experiment along the 10.2 Ma Lower Rio San Pedro ignimbrite in northern Chile. Here, a 3.2 Ma andesite flow erupted from Cerro de las Cuevas and deposited atop the ignimbrite, supplying wind-transportable sediment and initiating a phase of downwind abrasion. Additionally, the lava flow provides a continually varying degree of upwind topographic shielding along the ignimbrite that is reflected in a range of surface morphologies. Where fully shielded the ignimbrite surface is partially blanketed by sediment. However, as relief decreases the surface morphology shifts from large polygonal structures that emerge due to the concentration of wind abrasion along pre-existing fracture sets, to polygons that are bisected by wind-parallel grooves that cross-cut fracture sets, to linear sets of yardangs. We reconstruct the ignimbrite surface using a high-resolution digital elevation model, and calculate erosion rates ranging from 0.002 to 0.45 mm/kyr that vary strongly with degree of topographic shielding (R2 = 0.97). We use measured abrasion rates together with nearby weather station data to estimate the nondimensional Rouse number and Inertial Parameter for a range of particle sizes. From these calculations, we hypothesize that the change from fracture-controlled to flow-controlled morphology reflects increases in the grain size and inertia of particles in the suspension cloud. Where the ignimbrite experiences persistent high winds, large particles may travel in suspension and are largely insensitive to topographic

  7. The worn dentition--pathognomonic patterns of abrasion and erosion.

    PubMed

    Abrahamsen, Thomas C

    2005-01-01

    Historically, the dental literature has revealed various causes of tooth wear, yet it has failed to provide a conclusive method of differentiation and diagnosis of the condition. The categories of tooth wear encountered most commonly in dental practice are abrasion and erosion. The major causes of wear from abrasion are bruxism and toothpaste abuse, and the major causes of wear from erosion are regurgitation, coke-swishing and fruit-mulling. Through in-depth clinical study of these causes, this paper provides a diagnostic system that will enable dental professionals to determine and differentiate the exact aetiology of the worn dentition simply by the recognition of the pathognomonic wear patterns on diagnostic casts, which are based upon the position and quantity of the non-carious loss of tooth structure.

  8. Abrasion and deformed layer formation of manganese-zinc ferrite in sliding contact with lapping tapes

    NASA Technical Reports Server (NTRS)

    Miyoshi, K.; Buckley, D. H.; Tanaka, K.

    1986-01-01

    Wear experiments were conducted using replication electron microscopy and reflection electron diffraction to study abrasion and the deformed layers produced in single-crystal Mn-Zn ferrite simulated heads during contact with lapping tapes. The crystaline state of the head is changed drastically during the abrasion process. Crystalline states ranging from nearly amorphous to highly textured polycrystalline can be produced on the wear surface of a single-crystal Mn-Zn ferrite head. The total thickness of the deformed layer was approximately 0.8 microns. This thickness increased as the load and abrasive grit size increased. The anisotropic wear of the ferrite was found to be inversely proportional to the hardness of the wear surface. The wear was lower in the order 211 111 10 0110. The wear of the ferrite increased markedly with an increase in sliding velocity and abrasive grit size.

  9. Martian and Terrestrial Rock Abrasion from Wind Tunnel and Field Studies

    NASA Technical Reports Server (NTRS)

    Bridges, N. T.; Greeley, R.; Eddlemon, E.; Laity, J. E.; Meyer, C.; Phoreman, J.; White, B. R.

    2003-01-01

    Earth and Mars exhibit ventifacts, rocks that have been abraded by saltating sand. Previous theoretical and laboratory studies have determined abrasion susceptibilities of rocks as a function of sand type and impact angle and rock material strengths. For the last two years we have been engaged in wind tunnel and field studies to better understand the fundamental factors which control and influence rock abrasion and ventifact formation on Earth and Mars. In particular, we are examining: 1) What types of rocks (composition, texture, and shape) preferentially erode and what are the relative rates of one type vs. another? 2) What are the controlling factors of the aeolian sand cloud (flux, particle speed, surface roughness, etc) which favor rock abrasion?, 3) How do specific ventifact characteristics tie into their mode of formation and rock properties? We find several important factors: 1) Initial rock shape controls the rate of abrasion, with steeper faces abrading faster than shallower ones. The relationship is partly dependent on angle-dependent flux (proportional to sin[theta]) but exhibits additional non-linear effects from momentum transfer efficiency and rebound effects that vary with incidence angle. 2) Irregular targets with pits or grooves abrade at greater rates than targets with smooth surfaces, with indentations generally enlarging with time. Surfaces become rougher with time. 3) Targets also abrade via slope retreat, which is roughly dependent on the slope of the front face. The formation of basal sills is common, as observed on terrestrial and Martian ventifacts.

  10. Development of a femtosecond micromachining workstation by use of spectral interferometry.

    PubMed

    Bera, Sudipta; Sabbah, A J; Durfee, Charles G; Squier, Jeff A

    2005-02-15

    A workstation that permits real-time measurement of ablation depth while micromachining with femtosecond laser pulses is demonstrated. This method incorporates the unamplified pulse train that is available in a chirped-pulse amplification system as the probe in an arrangement that uses spectral interferometry to measure the ablation depth while cutting with the amplified pulse in thin metal films.

  11. The role of erosion, abrasion and attrition in tooth wear.

    PubMed

    Barbour, Michele E; Rees, Gareth D

    2006-01-01

    There is increasing clinical awareness of erosion of enamel and dentine by dietary acids and the consequent increased susceptibility to physical wear. Enamel erosion is characterized by acid-mediated surface softening that, if unchecked, will progress to irreversible loss of surface tissue, potentially exposing the underlying dentine. In comparison, dentine erosion is less well understood as the composition and microstructure are more heterogeneous. Factors which affect the erosive potential of a solution include pH, titratable acidity, common ion concentrations, and frequency and method of exposure. Abrasion and attrition are sources of physical wear and are commonly associated with tooth brushing and tooth-to-tooth contact, respectively. A combination of erosion and abrasion or attrition exacerbates wear; however, further research is required to understand the role of fluoride in protecting mineralized tissues from such processes. Abrasive wear may be seen in a wide range of patients, whereas attritive loss is usually seen in individuals with bruxism. Wear processes are implicated in the development of dentine hypersensitivity. Saliva confers the major protective function against wear due to its role in pellicle formation, buffering, acid clearance, and hard tissue remineralization. This review focuses on the physiochemical factors impacting tooth wear.

  12. Control of brushing variables for the in vitro assessment of toothpaste abrasivity using a novel laboratory model.

    PubMed

    Parry, Jason; Harrington, Edward; Rees, Gareth D; McNab, Rod; Smith, Anthony J

    2008-02-01

    Design and construct a tooth-brushing simulator incorporating control of brushing variables including brushing force, speed and temperature, thereby facilitating greater understanding of their importance in toothpaste abrasion testing methodologies. A thermostable orbital shaker was selected as a base unit and 16- and 24-specimen brushing rigs were constructed to fit inside, consisting of: a square bath partitioned horizontally to provide brushing channels, specimen holders for 25 mm diameter mounted specimens to fit the brushing channels and individually weighted brushing arms, able to support four toothbrush holders suspended over the brushing channels. Brush head holders consisted of individually weighted blocks of Delrin, or PTFE onto which toothbrush heads were fixed. Investigating effects of key design criteria involved measuring abrasion depths of polished human enamel and dentine. The brushing simulator demonstrated good reproducibility of abrasion on enamel and dentine across consecutive brushing procedures. Varying brushing parameters had a significant impact on wear results: increased brushing force demonstrated a trend towards increased wear, with increased reproducibility for greater abrasion levels, highlighting the importance of achieving sufficient wear to optimise accuracy; increasing brushing temperature demonstrated increased enamel abrasion for silica and calcium carbonate systems, which may be related to slurry viscosities and particle suspension; varying brushing speed showed a small effect on abrasion of enamel at lower brushing speed, which may indicate the importance of maintenance of the abrasive in suspension. Adjusting key brushing variables significantly affected wear behaviour. The brushing simulator design provides a valuable model system for in vitro assessment of toothpaste abrasivity and the influence of variables in a controlled manner. Control of these variables will allow more reproducible study of in vitro tooth wear processes.

  13. Micromachined actuators/sensors for intratubular positioning/steering

    DOEpatents

    Lee, Abraham P.; Krulevitch, Peter A.; Northrup, M. Allen; Trevino, Jimmy C.

    1998-01-01

    Micromachined thin film cantilever actuators having means for individually controlling the deflection of the cantilevers, valve members, and rudders for steering same through blood vessels, or positioning same within a blood vessel, for example. Such cantilever actuators include tactile sensor arrays mounted on a catheter or guide wire tip for navigation and tissues identification, shape-memory alloy film based catheter/guide wire steering mechanisms, and rudder-based steering devices that allow the selective actuation of rudders that use the flowing blood itself to help direct the catheter direction through the blood vessel. While particularly adapted for medical applications, these cantilever actuators can be used for steering through piping and tubing systems.

  14. Focused ion beam direct micromachining of DOEs

    NASA Astrophysics Data System (ADS)

    Khan Malek, Chantal; Hartley, Frank T.; Neogi, Jayant

    2000-09-01

    We discuss here the capability of direct manufacture of various high- resolution diffractive optics, in particular regarding micromachining of DOEs in 3D. Preliminary demonstrations were made in 2-D using an automated FIB system operated at 30 KeV with a Gallium liquid metal ion source and equipped with a gas injection system (GIS). Gratings with a 20 nm line width and zone plates with 32 nm outer ring were milled in a reactive atmosphere (iodine) directly through 3.5 (mu) m and 800 nm of gold respectively. Plans for combining FIB and X-ray lithography to make diffractive optical elements (DOEs) for JPL are also mentioned.

  15. Use of chemical mechanical polishing in micromachining

    DOEpatents

    Nasby, Robert D.; Hetherington, Dale L.; Sniegowski, Jeffry J.; McWhorter, Paul J.; Apblett, Christopher A.

    1998-01-01

    A process for removing topography effects during fabrication of micromachines. A sacrificial oxide layer is deposited over a level containing functional elements with etched valleys between the elements such that the sacrificial layer has sufficient thickness to fill the valleys and extend in thickness upwards to the extent that the lowest point on the upper surface of the oxide layer is at least as high as the top surface of the functional elements in the covered level. The sacrificial oxide layer is then polished down and planarized by chemical-mechanical polishing. Another layer of functional elements is then formed upon this new planarized surface.

  16. Use of chemical mechanical polishing in micromachining

    DOEpatents

    Nasby, R.D.; Hetherington, D.L.; Sniegowski, J.J.; McWhorter, P.J.; Apblett, C.A.

    1998-09-08

    A process for removing topography effects during fabrication of micromachines. A sacrificial oxide layer is deposited over a level containing functional elements with etched valleys between the elements such that the sacrificial layer has sufficient thickness to fill the valleys and extend in thickness upwards to the extent that the lowest point on the upper surface of the oxide layer is at least as high as the top surface of the functional elements in the covered level. The sacrificial oxide layer is then polished down and planarized by chemical-mechanical polishing. Another layer of functional elements is then formed upon this new planarized surface. 4 figs.

  17. Active micromachines: Microfluidics powered by mesoscale turbulence

    PubMed Central

    Thampi, Sumesh P.; Doostmohammadi, Amin; Shendruk, Tyler N.; Golestanian, Ramin; Yeomans, Julia M.

    2016-01-01

    Dense active matter, from bacterial suspensions and microtubule bundles driven by motor proteins to cellular monolayers and synthetic Janus particles, is characterized by mesoscale turbulence, which is the emergence of chaotic flow structures. By immersing an ordered array of symmetric rotors in an active fluid, we introduce a microfluidic system that exploits spontaneous symmetry breaking in mesoscale turbulence to generate work. The lattice of rotors self-organizes into a spin state where neighboring discs continuously rotate in permanent alternating directions due to combined hydrodynamic and elastic effects. Our virtual prototype demonstrates a new research direction for the design of micromachines powered by the nematohydrodynamic properties of active turbulence. PMID:27419229

  18. Air-propelled abrasive grit can damage the perennial weed, quackgrass, Elytrigia repens (L.) Nevski

    USDA-ARS?s Scientific Manuscript database

    New techniques are needed to control quackgrass in organic crops. With greater than or equal to 2 applications of abrasive air-propelled (800 kPa) corncob grit to 15 cm tall quackgrass tillers, regrowth was minimal at 5 weeks after treatment. Abrasive grits may be effective tools to help manage pere...

  19. High definition surface micromachining of LiNbO 3 by ion implantation

    NASA Astrophysics Data System (ADS)

    Chiarini, M.; Bentini, G. G.; Bianconi, M.; De Nicola, P.

    2010-10-01

    High Energy Ion Implantation (HEII) of both medium and light mass ions has been successfully applied for the surface micromachining of single crystal LiNbO 3 (LN) substrates. It has been demonstrated that the ion implantation process generates high differential etch rates in the LN implanted areas, when suitable implantation parameters, such as ion species, fluence and energy, are chosen. In particular, when traditional LN etching solutions are applied to suitably ion implanted regions, etch rates values up to three orders of magnitude higher than the typical etching rates of the virgin material, are registered. Further, the enhancement in the etching rate has been observed on x, y and z-cut single crystalline material, and, due to the physical nature of the implantation process, it is expected that it can be equivalently applied also to substrates with different crystallographic orientations. This technique, associated with standard photolithographic technologies, allows to generate in a fast and accurate way very high aspect ratio relief micrometric structures on LN single crystal surface. In this work a description of the developed technology is reported together with some examples of produced micromachined structures: in particular very precisely defined self sustaining suspended structures, such as beams and membranes, generated on LN substrates, are presented. The developed technology opens the way to actual three dimensional micromachining of LN single crystals substrates and, due to the peculiar properties characterising this material, (pyroelectric, electro-optic, acousto-optic, etc.), it allows the design and the production of complex integrated elements, characterised by micrometric features and suitable for the generation of advanced Micro Electro Optical Systems (MEOS).

  20. Monitoring of the Abrasion Processes (by the Example of Alakol Lake, Republic of Kazakhstan)

    ERIC Educational Resources Information Center

    Abitbayeva, Ainagul; Valeyev, Adilet; Yegemberdiyeva, Kamshat; Assylbekova, Aizhan; Ryskeldieva, Aizhan

    2016-01-01

    The purpose of the study is to analyze the abrasion processes in the regions of dynamically changing Alakol lake shores. Using the field method, methods of positioning by the GPS receiver and interpretation of remote sensing data, the authors determined that abrasion processes actively contributed to the formation the modern landscape, causing the…

  1. Dichotomy of Solar Coronal Jets: Standard Jets and Blowout Jets

    NASA Technical Reports Server (NTRS)

    Moore, R. L.; Cirtain, J. W.; Sterling, A. C.; Falconer, D. A.

    2010-01-01

    By examining many X-ray jets in Hinode/XRT coronal X-ray movies of the polar coronal holes, we found that there is a dichotomy of polar X-ray jets. About two thirds fit the standard reconnection picture for coronal jets, and about one third are another type. We present observations indicating that the non-standard jets are counterparts of erupting-loop H alpha macrospicules, jets in which the jet-base magnetic arch undergoes a miniature version of the blowout eruptions that produce major CMEs. From the coronal X-ray movies we present in detail two typical standard X-ray jets and two typical blowout X-ray jets that were also caught in He II 304 Angstrom snapshots from STEREO/EUVI. The distinguishing features of blowout X-ray jets are (1) X-ray brightening inside the base arch in addition to the outside bright point that standard jets have, (2) blowout eruption of the base arch's core field, often carrying a filament of cool (T 10(exp 4) - 10(exp 5) K) plasma, and (3) an extra jet-spire strand rooted close to the bright point. We present cartoons showing how reconnection during blowout eruption of the base arch could produce the observed features of blowout X-ray jets. We infer that (1) the standard-jet/blowout-jet dichotomy of coronal jets results from the dichotomy of base arches that do not have and base arches that do have enough shear and twist to erupt open, and (2) there is a large class of spicules that are standard jets and a comparably large class of spicules that are blowout jets.

  2. Gingival abrasion and recession in manual and oscillating-rotating power brush users.

    PubMed

    Rosema, N A M; Adam, R; Grender, J M; Van der Sluijs, E; Supranoto, S C; Van der Weijden, G A

    2014-11-01

    To assess gingival recession (GR) in manual and power toothbrush users and evaluate the relationship between GR and gingival abrasion scores (GA). This was an observational (cross-sectional), single-centre, examiner-blind study involving a single-brushing exercise, with 181 young adult participants: 90 manual brush users and 91 oscillating-rotating power brush users. Participants were assessed for GR and GA as primary response variables. Secondary response variables were the level of gingival inflammation, plaque score reduction and brushing duration. Pearson correlation was used to describe the relationship between number of recession sites and number of abrasions. Prebrushing (baseline) and post-brushing GA and plaque scores were assessed and differences analysed using paired tests. Two-sample t-test was used to analyse group differences; ancova was used for analyses of post-brushing changes with baseline as covariate. Overall, 97.8% of the study population had at least one site of ≥1 mm of gingival recession. For the manual group, this percentage was 98.9%, and for the power group, this percentage was 96.7% (P = 0.621). Post-brushing, the power group showed a significantly smaller GA increase than the manual group (P = 0.004); however, there was no significant correlation between number of recession sites and number of abrasions for either group (P ≥ 0.327). Little gingival recession was observed in either toothbrush user group; the observed GR levels were comparable. Lower post-brushing gingival abrasion levels were seen in the power group. There was no correlation between gingival abrasion as a result of brushing and the observed gingival recession following use of either toothbrush. © 2014 The Authors International Journal of Dental Hygiene Published by John Wiley & Sons Ltd.

  3. Experimental determination of micromachined discrete and continuous device spring constants using nanoindentation method

    NASA Astrophysics Data System (ADS)

    Chan, M. L.; Tay, Francis E.; Logeeswaran, V. J.; Zeng, Kaiyang; Shen, Lu; Chau, Fook S.

    2002-04-01

    A rapid and accurate static and quasi-static method for determining the out-of-plane spring constraints of cantilevers and a micromachined vibratory sensor is presented. In the past, much of the effort in nanoindentation application was to investigate the thin-film mechanical properties. In this paper, we have utilized the nanoindentation method to measure directly some micromachined device (e.g. microgyroscope) spring constants. The cantilevers and devices tested were fabricated using the MUMPS process and an SOI process (patent pending). Spring constants are determined using a commercial nanoindentation apparatus UMIS-2000 configured with both Berkovich and spherical indenter tip that can be placed onto the device with high accuracy. Typical load resolution is 20micrometers N to 0.5N and a displacement resolution of 0.05nm. Information was deduced from the penetration depth versus load curves during both loading and unloading.

  4. Assessment of Rail Seat Abrasion Patterns and Environment

    DOT National Transportation Integrated Search

    2012-05-01

    Rail seat abrasion (RSA) of concrete ties is manifested by the loss of material under the rail seat area and, in extreme cases, results in loss of rail clip holding power, reverse rail cant, and gauge widening. RSA was measured in several curves on t...

  5. Tribological properties of multifunctional coatings with Shape Memory Effect in abrasive wear

    NASA Astrophysics Data System (ADS)

    Blednova, Zh. M.; Dmitrenko, D. V.; Balaev, E. U. O.

    2018-01-01

    The article gives research results of the abrasive wear process on samples made of Steel 1045, U10 and with applied composite surface layer "Nickel-Multicomponent material with Shape Memory Effect (SME) based on TiNi". For the tests we have chosen TiNiZr, which is in the martensite state and TiNiHfCu, which is in the austenitic state at the test temperature. The formation of the surface layer was carried out by high-speed oxygen-fuel deposition in a protective atmosphere of argon. In the wear test, Al2O3 corundum powder was used as an abrasive. It is shown that the wear rate of samples with a composite surface layer of multicomponent materials with SME is significantly reduced in comparison with the base, which is explained by reversible phase transformations of the surface layer with SME. After carrying out the additional surface plastic deformation (SPD), the resistance of the laminated composition to abrasion wear has greatly enhanced, due to the reinforcing effect of the SPD. It is recommended for products working in conditions of abrasive wear and high temperatures to use the complex formation technology of the surface composition "steel-nickel-material with high-temperature SME", including preparation of the substrate surface and the deposited material, high-speed spraying in the protective atmosphere of argon, followed by SPD.

  6. Scratching technique for the study and analysis of soil surface abrasion mechanism

    NASA Astrophysics Data System (ADS)

    Ta, Wanquan

    2007-11-01

    Aeolian abrasion is the most fundamental and active surface process that takes place in arid and semi-arid environments. Its nature is a wear process for wind blown grains impinging on a soil or sediment surface, which causes particles and aggregates to fracture from the soil surface through a series of plastic and brittle cracking deformation such as cutting, ploughing and brittle fracturing. Using a Universal Micro-Tribometer (UMT), a scratching test was carried out on six soil surfaces (sandy soil, sand loam, silt loam, loam, silt clay loam, and silt clay). The results indicate that traces of normal and tangential force vs. time show a jagged curve, which can reflect the plastic deformation and brittle fracturing of aggregates and particles of various sizes fractured from the soil surfaces. The jagged curve peaks, and the area enclosed underneath, may represent the bonding forces and bonding energies of some aggregates and grains on the soil surface, respectively. Connecting the scratching test with an impact abrasion experiment furthermore demonstrates that soil surface abrasion rates are proportional to the square of speeds of impacting particles and to the 2.6 power of mean soil grain size, and inversely proportional to the 1.5 power of specific surface abrasive energy or to the 1.7 power of specific surface hardness.

  7. Resistance to abrasion of extrinsic porcelain esthetic characterization techniques.

    PubMed

    Chi, Woo J; Browning, William; Looney, Stephen; Mackert, J Rodway; Windhorn, Richard J; Rueggeberg, Frederick

    2017-01-01

    A novel esthetic porcelain characterization technique involves mixing an appropriate amount of ceramic colorants with clear, low-fusing porcelain (LFP), applying the mixture on the external surfaces, and firing the combined components onto the surface of restorations in a porcelain oven. This method may provide better esthetic qualities and toothbrush abrasion resistance compared to the conventional techniques of applying color-corrective porcelain colorants alone, or applying a clear glaze layer over the colorants. However, there is no scientific literature to support this claim. This research evaluated toothbrush abrasion resistance of a novel porcelain esthetic characterization technique by subjecting specimens to various durations of simulated toothbrush abrasion. The results were compared to those obtained using the conventional characterization techniques of colorant application only or colorant followed by placement of a clear over-glaze. Four experimental groups, all of which were a leucite reinforced ceramic of E TC1 (Vita A1) shade, were prepared and fired in a porcelain oven according to the manufacturer's instructions. Group S (stain only) was characterized by application of surface colorants to provide a definitive shade of Vita A3.5. Group GS (glaze over stain) was characterized by application of a layer of glaze over the existing colorant layer as used for Group S. Group SL (stain+LFP) was characterized by application of a mixture of colorants and clear low-fusing add-on porcelain to provide a definitive shade of Vita A3.5. Group C (Control) was used as a control without any surface characterization. The 4 groups were subjected to mechanical toothbrushing using a 1:1 water-to-toothpaste solution for a simulated duration of 32 years of clinical use. The amount of wear was measured at time intervals simulating every 4 years of toothbrushing. These parameters were evaluated longitudinally for all groups as well as compared at similar time points among

  8. Dependence of Non-Prestonian Behavior of Ceria Slurry with Anionic Surfactant on Abrasive Concentration and Size in Shallow Trench Isolation Chemical Mechanical Polishing

    NASA Astrophysics Data System (ADS)

    Kang, Hyun‑Goo; Kim, Dae‑Hyeong; Katoh, Takeo; Kim, Sung‑Jun; Paik, Ungyu; Park, Jea‑Gun

    2006-05-01

    The dependencies of the non-Prestonian behavior of ceria slurry with anionic surfactant on the size and concentration of abrasive particles were investigated by performing chemical mechanical polishing (CMP) experiments using blanket wafers. We found that not only the abrasive size but also the abrasive concentration with surfactant addition influences the non-Prestonian behavior. Such behavior is clearly exhibited with small abrasive sizes and a higher concentrations of abrasives with surfactant addition, because the abrasive particles can locally contact the film surface more effectively with applied pressure. We introduce a factor to quantify these relations with the non-Prestonian behavior of a slurry. For ceria slurry, this non-Prestonian factor, βNP, was determined to be almost independent of the abrasive concentration for a larger size and a smaller weight conentration of abrasive particles, but it increased with the surfactant concentration for a smaller size and a higher concentration of abrasives with surfactant addition.

  9. Feasibility and Economics Study of the Treatment, Recycling and Disposal of Spent Abrasives

    DTIC Science & Technology

    1999-04-09

    compression, and film stripping. The recycling performance testing plan is summarized in Table 2. (The test plan is discussed in detail in Appendix B: Law...D1188 Yes Yes Immersion Compression ................... ASTM C4867 Yes Yes Film Stripping................................... CalTrans 302 Yes Yes...from 10% to 20% for aluminum oxide abrasives, and 15% to 30% for garnet abrasives. 9 Data Intepretation SSPC-AB 1 requires that the conductivitiy of

  10. Simple and inexpensive micromachined aluminum microfluidic devices for acoustic focusing of particles and cells.

    PubMed

    Gautam, Gayatri P; Burger, Tobias; Wilcox, Andrew; Cumbo, Michael J; Graves, Steven W; Piyasena, Menake E

    2018-05-01

    We introduce a new method to construct microfluidic devices especially useful for bulk acoustic wave (BAW)-based manipulation of cells and microparticles. To obtain efficient acoustic focusing, BAW devices require materials that have high acoustic impedance mismatch relative to the medium in which the cells/microparticles are suspended and materials with a high-quality factor. To date, silicon and glass have been the materials of choice for BAW-based acoustofluidic channel fabrication. Silicon- and glass-based fabrication is typically performed in clean room facilities, generates hazardous waste, and can take several hours to complete the microfabrication. To address some of the drawbacks in fabricating conventional BAW devices, we explored a new approach by micromachining microfluidic channels in aluminum substrates. Additionally, we demonstrate plasma bonding of poly(dimethylsiloxane) (PDMS) onto micromachined aluminum substrates. Our goal was to achieve an approach that is both low cost and effective in BAW applications. To this end, we micromachined aluminum 6061 plates and enclosed the systems with a thin PDMS cover layer. These aluminum/PDMS hybrid microfluidic devices use inexpensive materials and are simply constructed outside a clean room environment. Moreover, these devices demonstrate effectiveness in BAW applications as demonstrated by efficient acoustic focusing of polystyrene microspheres, bovine red blood cells, and Jurkat cells and the generation of multiple focused streams in flow-through systems. Graphical abstract The aluminum acoustofluidic device and the generation of multinode focusing of particles.

  11. DICHOTOMY OF SOLAR CORONAL JETS: STANDARD JETS AND BLOWOUT JETS

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Moore, Ronald L.; Cirtain, Jonathan W.; Sterling, Alphonse C.

    2010-09-01

    By examining many X-ray jets in Hinode/X-Ray Telescope coronal X-ray movies of the polar coronal holes, we found that there is a dichotomy of polar X-ray jets. About two thirds fit the standard reconnection picture for coronal jets, and about one third are another type. We present observations indicating that the non-standard jets are counterparts of erupting-loop H{alpha} macrospicules, jets in which the jet-base magnetic arch undergoes a miniature version of the blowout eruptions that produce major coronal mass ejections. From the coronal X-ray movies we present in detail two typical standard X-ray jets and two typical blowout X-ray jetsmore » that were also caught in He II 304 A snapshots from STEREO/EUVI. The distinguishing features of blowout X-ray jets are (1) X-ray brightening inside the base arch in addition to the outside bright point that standard jets have, (2) blowout eruption of the base arch's core field, often carrying a filament of cool (T {approx} 10{sup 4} - 10{sup 5} K) plasma, and (3) an extra jet-spire strand rooted close to the bright point. We present cartoons showing how reconnection during blowout eruption of the base arch could produce the observed features of blowout X-ray jets. We infer that (1) the standard-jet/blowout-jet dichotomy of coronal jets results from the dichotomy of base arches that do not have and base arches that do have enough shear and twist to erupt open, and (2) there is a large class of spicules that are standard jets and a comparably large class of spicules that are blowout jets.« less

  12. Effect of air-abrasion regimens and fine diamond bur grinding on flexural strength, Weibull modulus and phase transformation of zirconium dioxide.

    PubMed

    Michida, Silvia Masae de Araújo; Kimpara, Estevão Tomomitsu; dos Santos, Claudinei; Souza, Rodrigo Othavio Assunção; Bottino, Marco Antonio; Özcan, Mutlu

    2015-10-16

    This study evaluated the effect of air abrasion and polishing regimens on the flexural strength of yttrium stabilized polycrystalline tetragonal zirconia (Y-TZP). From Y-TZP blocks (InCeram 2000 YZ Cubes; Vita Zahnfabrik, Bad Säckingen, Germany) 120 bars (25 mm × 4 mm × 1.2 mm) were obtained according to ISO 6872:2008 and randomly divided into 4 groups: Group C: (control) without surface treatment (n = 30); Group APA: Air abrasion with aluminum oxide (44 µm) (n = 30); Group SC: Silica-coating (CoJet, 30 µm) (n = 30); Group FD: Fine diamond bur (n = 30). Subsequently, all specimens were subjected to 4-point bending test (in distilled water at 37 °C) in a universal testing machine (EMIC DL 1000; São José dos Pinhais, Paraná, Brazil); cross-head speed: 0.5 mm/min). The characteristic strength (σ0) of each specimen was obtained from the flexural strength test and evaluated using Weibull analysis. X-ray diffraction analysis was utilized to quantity the monoclinic phase. The surface topography of specimens was analyzed using 3D optical profilometer and scanning electron microscopy (SEM) after surface conditioning methods. The flexural strength data (σ4p) were statistically analyzed by 1-way ANOVA, Tukey test (α = 0.05) and Weibull (m = modulus, σ0 = characteristic strength) were calculated. The mean ± standard deviations (MPa) of the groups were as follows: C: 1196.2 ± 284.2a; APA: 1369.7 ± 272.3a; SC: 1207.1 ± 229.7a and FD: 874.4 ± 365.4b. The values (m) and (σ0) were as follows: C: 4.5 and 1308.12; APA: 5.9 and 1477.88; SC: 6.0 and 1300.28; and FD: 2.6 and 985.901, respectively. Air particle abrasion with neither silica nor alumina showed significant difference compared to the control group but grinding with fine diamond bur impaired the flexural strength of the zirconia tested.

  13. Micro-Abrasion Wear Resistance of Borided 316L Stainless Steel and AISI 1018 Steel

    NASA Astrophysics Data System (ADS)

    Reséndiz-Calderon, C. D.; Rodríguez-Castro, G. A.; Meneses-Amador, A.; Campos-Silva, I. E.; Andraca-Adame, J.; Palomar-Pardavé, M. E.; Gallardo-Hernández, E. A.

    2017-11-01

    The 316L stainless steel has high corrosion resistance but low tribological performance. In different industrial sectors (biomedical, chemical, petrochemical, and nuclear engineering), improvement upon wear resistance of 316L stainless steel components using accessible and inexpensive methods is critical. The AISI 1018 steel is widely used in industry, but its tribological performance is not the best among steels. Therefore, in this study the behavior of the borided 316L stainless steel and 1018 steel is evaluated under micro-abrasion wear. The boriding was carried out at 1223 K over 6 h of exposure time, resulting in a biphase layer composed of FeB/Fe2B phases. In order to evaluate Fe2B phase with no influence from FeB phase, AISI 1018 steel samples were borided at 1273 K for over 20 min and then diffusion annealed at 1273 K over 2 h to obtain a Fe2B mono-phase layer. Micro-abrasion wear resistance was evaluated by a commercial micro-abrasion testing rig using a mix of F-1200 SiC particles with deionized water as abrasive slurry. The obtained wear rates for FeB and Fe2B phases and for the 316L stainless steel were compared. Wear resistance of 316L stainless steel increases after boriding. The wear mechanisms for both phases and for the stainless steel were identified. Also, transient conditions for rolling and grooving abrasion were determined for the FeB and Fe2B phases.

  14. Micromachined integrated quantum circuit containing a superconducting qubit

    NASA Astrophysics Data System (ADS)

    Brecht, Teresa; Chu, Yiwen; Axline, Christopher; Pfaff, Wolfgang; Blumoff, Jacob; Chou, Kevin; Krayzman, Lev; Frunzio, Luigi; Schoelkopf, Robert

    We demonstrate a functional multilayer microwave integrated quantum circuit (MMIQC). This novel hardware architecture combines the high coherence and isolation of three-dimensional structures with the advantages of integrated circuits made with lithographic techniques. We present fabrication and measurement of a two-cavity/one-qubit prototype, including a transmon coupled to a three-dimensional microwave cavity micromachined in a silicon wafer. It comprises a simple MMIQC with competitive lifetimes and the ability to perform circuit QED operations in the strong dispersive regime. Furthermore, the design and fabrication techniques that we have developed are extensible to more complex quantum information processing devices.

  15. [Polyethylene abrasion: cause or consequence of an endoprosthesis loosening? Investigations of firm and loosened hip implants].

    PubMed

    Busse, B; Niecke, M; Püschel, K; Delling, G; Katzer, A; Hahn, M

    2007-01-01

    Periprosthetic tissue was analysed by the combination of different investigation techniques without destruction. The localisation and geometry of polyethylene abrasion particles were determined quantitatively to differentiate between abrasion due to function and abrasion due to implant loosening. Non-polyethylene particles from implant components which contaminate the tissue were micro-analytically measured. The results will help us to understand loosening mechanisms and thus lead to implant optimisations. A non-destructive particle analysis using highly sensitive proton-induced X-ray emission (PIXE) was developed to achieve a better histological allocation. Five autopsy cases with firmly fitting hip endoprosthesis (2 x Endo-Modell Mark III, 1 x St. Georg Mark II, LINK, Germany; 2 x Spongiosa Metal II, ESKA, Germany) were prepared as ground tissue specimens. Wear investigations were accomplished with a combined application of different microscopic techniques and microanalysis. The abrasion due to implant loosening was histologically evaluated on 293 loosened cup implants (St. Georg Mark II, LINK, Germany). Wear particles are heterogeneously distributed in the soft tissue. In cases of cemented prostheses, cement particles are dominating whereas metal particles could rarely be detected. The concentration of the alloy constituent cobalt (Co) is increased in the mineralised bone tissue. The measured co-depositions depend on the localisation and/or lifetime of an implant. Functional polyethylene (PE) abrasion needs to be differentiated from PE abrasion of another genesis (loosening, impingement) morphologically and by different tissue reactions. In the past a reduction of abrasion was targeted primarily by the optimisation of the bearing surfaces and tribology. The interpretation of our findings indicates that different mechanisms of origin in terms of tissue contamination with wear debris and the alloy should be included in the improvement of implants or implantation

  16. Removal of millimeter-scale rolled edges using bevel-cut-like tool influence function in magnetorheological jet polishing.

    PubMed

    Yang, Hao; Cheng, Haobo; Feng, Yunpeng; Jing, Xiaoli

    2018-05-01

    Subaperture polishing techniques usually produce rolled edges due to edge effect. The rolled edges, especially those in millimeter scale on small components, are difficult to eliminate using conventional polishing methods. Magnetorheological jet polishing (MJP) offers the possibility of the removal of these structures, owing to its small tool influence function (TIF) size. Hence, we investigate the removal characters of inclined MJP jetting models by means of computational fluid dynamics (CFD) simulations and polishing experiments. A discrete phase model (DPM) is introduced in the simulation to get the influence of abrasive particle concentration on the removal mechanism. Therefore, a more accurate model for MJP removal mechanisms is built. With several critical problems solved, a small bevel-cut-like TIF (B-TIF), which has fine acentric and unimodal characteristics, is obtained through inclined jetting. The B-TIF proves to have little edge effect and is applied in surface polishing of thin rolled edges. Finally, the RMS of the experimental section profile converges from 10.5 nm to 1.4 nm, and the rolled edges are successfully suppressed. Consequently, it is validated that the B-TIF has remarkable ability in the removal of millimeter-scale rolled edges.

  17. Jet in jet in M87

    NASA Astrophysics Data System (ADS)

    Sob'yanin, Denis Nikolaevich

    2017-11-01

    New high-resolution Very Long Baseline Interferometer observations of the prominent jet in the M87 radio galaxy show a persistent triple-ridge structure of the transverse 15-GHz profile with a previously unobserved ultra-narrow central ridge. This radio structure can reflect the intrinsic structure of the jet, so that the jet as a whole consists of two embedded coaxial jets. A relativistic magnetohydrodynamic model is considered in which an inner jet is placed inside a hollow outer jet and the electromagnetic fields, pressures and other physical quantities are found. The entire jet is connected to the central engine that plays the role of a unipolar inductor generating voltage between the jets and providing opposite electric currents, and the charge neutrality and current closure together with the electromagnetic fields between the jets can contribute to the jet stabilization. The constant voltage is responsible for the similar widening laws observed for the inner and outer jets. This jet-in-jet structure can indicate simultaneous operation of two different jet-launching mechanisms, one relating to the central supermassive black hole and the other to the surrounding accretion disc. An inferred magnetic field of 80 G at the base is sufficient to provide the observed jet luminosity.

  18. Micromachined actuators/sensors for intratubular positioning/steering

    DOEpatents

    Lee, A.P.; Krulevitch, P.A.; Northrup, M.A.; Trevino, J.C.

    1998-06-30

    Micromachined thin film cantilever actuators having means for individually controlling the deflection of the cantilevers, valve members, and rudders for steering same through blood vessels, or positioning same within a blood vessel, for example. Such cantilever actuators include tactile sensor arrays mounted on a catheter or guide wire tip for navigation and tissues identification, shape-memory alloy film based catheter/guide wire steering mechanisms, and rudder-based steering devices that allow the selective actuation of rudders that use the flowing blood itself to help direct the catheter direction through the blood vessel. While particularly adapted for medical applications, these cantilever actuators can be used for steering through piping and tubing systems. 14 figs.

  19. Erosion of enamel by non-carbonated soft drinks with and without toothbrushing abrasion.

    PubMed

    Hemingway, C A; Parker, D M; Addy, M; Barbour, M E

    2006-10-07

    To investigate how enamel loss due to erosion, and due to cycling of erosion and abrasion, depends on compositional parameters of soft drinks, and particularly whether the thickness of the erosive softened layer is a function of drink composition. University dental hospital research laboratory in the UK, 2004. Six drinks were chosen based on their popularity and composition: apple juice, orange juice, apple drink, orange drink, cranberry drink and 'ToothKind' blackcurrant drink. Group A samples (n = 36) were exposed to soft drinks at 36 degrees C for six consecutive 10 minute periods. Group B samples (n = 36) were subjected to alternating erosion and toothbrushing, repeated six times. Enamel loss was measured using optical profilometry. Group A: significant enamel loss was seen for all drinks (p < 0.001). Erosion was correlated with pH and calcium concentration but not phosphate concentration or titratable acidity. Group B: significant additional material loss due to toothbrush abrasion occurred with all drinks. Abrasive enamel loss differed between the drinks and was positively correlated with drink erosive potential. Enamel loss by erosion is exacerbated by subsequent abrasion. The amount of softened enamel removed by toothbrushing is a function of the chemical composition of the erosive medium.

  20. Design, Fabrication and Levitation Experiments of a Micromachined Electrostatically Suspended Six-Axis Accelerometer

    PubMed Central

    Cui, Feng; Liu, Wu; Chen, Wenyuan; Zhang, Weiping; Wu, Xiaosheng

    2011-01-01

    A micromachined electrostatically suspended six-axis accelerometer, with a square plate as proof mass housed by a top stator and bottom stator, is presented. The device structure and related techniques concerning its operating principles, such as calculation of capacitances and electrostatic forces/moments, detection and levitation control of the proof mass, acceleration measurement, and structural parameters design, are described. Hybrid MEMS manufacturing techniques, including surface micromachining fabrication of thin film electrodes and interconnections, integration fabrication of thick nickel structures about 500 μm using UV-LIGA by successful removal of SU-8 photoresist mold, DRIE of silicon proof mass in thickness of 450 μm, microassembly and solder bonding, were employed to fabricate this prototype microdevice. A levitation experiment system for the fabricated microaccelerometer chip is introduced, and levitation results show that fast initial levitation within 10 ms and stable full suspension of the proof mass have been successfully demonstrated. PMID:22247662

  1. ZnO thin film piezoelectric micromachined microphone with symmetric composite vibrating diaphragm

    NASA Astrophysics Data System (ADS)

    Li, Junhong; Wang, Chenghao; Ren, Wei; Ma, Jun

    2017-05-01

    Residual stress is an important factor affecting the sensitivity of piezoelectric micromachined microphone. A symmetric composite vibrating diaphragm was adopted in the micro electro mechanical systems piezoelectric microphone to decrease the residual stress and improve the sensitivity of microphone in this paper. The ZnO film was selected as piezoelectric materials of microphone for its higher piezoelectric coefficient d 31 and lower relative dielectric constant. The thickness optimization of piezoelectric film on square diaphragm is difficult to be fulfilled by analytic method. To optimize the thickness of ZnO films, the stress distribution in ZnO film was analyzed by finite element method and the average stress in different thickness of ZnO films was given. The ZnO films deposited using dc magnetron sputtering exhibits a densely packed structure with columnar crystallites preferentially oriented along (002) plane. The diaphragm of microphone fabricated by micromachining techniques is flat and no wrinkling at corners, and the sensitivity of microphone is higher than 1 mV Pa-1. These results indicate the diaphragm has lower residual stress.

  2. Micromachined electron tunneling infrared sensors

    NASA Technical Reports Server (NTRS)

    Kenny, T. W.; Kaiser, W. J.; Podosek, J. A.; Rockstad, H. K.; Reynolds, J. K.

    1993-01-01

    The development of an improved Golay cell is reported. This new sensor is constructed entirely from micromachined silicon components. A silicon oxynitride (SiO(x)N(y)) membrane is deflected by the thermal expansion of a small volume of trapped gas. To detect the motion of the membrane, an electron tunneling transducer is used. This sensor detects electrons which tunnel through the classically forbidden barrier between a tip and a surface; the electron current is exponentially dependent on the separation between the tip and the surface. The sensitivity of tunneling transducers constructed was typically better than 10(exp -3) A/square root of Hz. Through use of the electron tunneling transducer, the scaling laws which have prevented the miniaturization of the Golay cell are avoided. This detector potentially offers low cost fabrication, compatibility with silicon readout electronics, and operation without cooling. Most importantly, this detector may offer better sensitivity than any other uncooled infrared sensor, with the exception of the original Golay cell.

  3. Micromachined probes for laboratory plasmas

    NASA Astrophysics Data System (ADS)

    Chiang, Franklin Changta

    As we begin to find more applications for plasmas in our everyday lives, the ability to characterize and understand their inner workings becomes increasingly important. Much of our current understanding of plasma physics comes from investigations conducted in diffuse, outer space plasmas where experimenters have no control over the environment or experimental conditions and one measures interesting phenomena only by chance when the spacecraft or satellite passes through them. Ideally, experiments should be performed in a controlled environment, where plasma events can be deliberately and reliably created when wanted and probes placed precisely within the plasma. Unfortunately, often due to their size, probes used in outer space are unsuitable for use in high-density laboratory plasmas, and constructing probes that can be used in terrestrial plasmas is a considerable challenge. This dissertation presents the development, implementation, and experimental results of three micromachined probes capable of measuring voltage and electric field, ion energies, and changing magnetic fields (B-dot) in laboratory plasmas.

  4. A cochlear implant fabricated using a bulk silicon-surface micromachining process

    NASA Astrophysics Data System (ADS)

    Bell, Tracy Elizabeth

    1999-11-01

    This dissertation presents the design and fabrication of two generations of a silicon microelectrode array for use in a cochlear implant. A cochlear implant is a device that is inserted into the inner ear and uses electrical stimulation to provide sound sensations to the profoundly deaf. The first-generation silicon cochlear implant is a passive device fabricated using silicon microprobe technology developed at the University of Michigan. It contains twenty-two iridium oxide (IrO) stimulating sites that are 250 mum in diameter and spaced at 750 mum intervals. In-vivo recordings were made in guinea pig auditory cortex in response to electrical stimulation with this device, verifying its ability to electrically evoke an auditory response. Auditory thresholds as low as 78 muA were recorded. The second-generation implant is a thirty-two site, four-channel device with on-chip CMOS site-selection circuitry and integrated position sensing. It was fabricated using a novel bulk silicon surface micromachining process which was developed as a part of this dissertation work. While the use of semiconductor technology offers many advantages in fabricating cochlear implants over the methods currently used, it was felt that even further advantages could be gained by developing a new micromachining process which would allow circuitry to be distributed along the full length of the cochlear implant substrate. The new process uses electropolishing of an n+ bulk silicon sacrificial layer to undercut and release n- epitaxial silicon structures from the wafer. An extremely abrupt etch-stop between the n+ and n- silicon is obtained, with no electropolishing taking place in the n-type silicon that is doped lower than 1 x 1017 cm-3 in concentration. Lateral electropolishing rates of up to 50 mum/min were measured using this technique, allowing one millimeter-wide structures to be fully undercut in as little as 10 minutes. The new micromachining process was integrated with a standard p

  5. Quality factors, antioxidant activity, and sensory properties of jet-tube dried rabbiteye blueberries.

    PubMed

    Pallas, Laura A; Pegg, Ronald B; Kerr, William L

    2013-06-01

    Rabbiteye blueberries are an excellent source of nutrients and phytochemicals. They are often dried, which can degrade health-promoting compounds. Means of shortening exposure to high-temperature drying air are desirable. Five cultivars of rabbiteye blueberries ('Premier', 'Tifblue', 'Brightwell', 'Alapaha', and 'Powderblue') were dried in a jet-tube fluidized bed air dryer with varying pretreatments including mechanical abrasion and osmotic dehydration. Drying time ranged from 66 to 95 min at 107 °C, achieving a final water activity of 0.347-0.605. Prior osmotic dehydration significantly reduced the drying time. Vacuum osmotic dehydration for 70 min achieved similar moisture contents to soaking blueberries for 24 h. Jet-tube dried blueberries exhibited greater color saturation than commercially available blueberries. While drying reduced the total monomeric anthocyanin (TMA) content, this occurred to a lesser extent than by other processing methods. The total phenolics content (TPC) and antioxidant capacity (H-ORACFL values) increased after drying. 'Premier' was the most preferred vacuum-infused dried blueberry, with a water activity (aw) of 0.53 and 157 g H2O kg(-1). 'Tifblue' was most preferred amongst the overnight-infused and also unsweetened dried blueberries. Jet-tube drying can substantially reduce drying times while yielding blueberries with good color, sensory properties, TMA, TPC, and H-ORACFL values. Furthermore, some cultivars produce better-quality dried blueberries than others. © 2012 Society of Chemical Industry.

  6. Abrasion Resistance of Nano Silica Modified Roller Compacted Rubbercrete: Cantabro Loss Method and Response Surface Methodology Approach

    NASA Astrophysics Data System (ADS)

    Adamu, Musa; Mohammed, Bashar S.; Shafiq, Nasir

    2018-04-01

    Roller compacted concrete (RCC) when used for pavement is subjected to skidding/rubbing by wheels of moving vehicles, this causes pavement surface to wear out and abrade. Therefore, abrasion resistance is one of the most important properties of concern for RCC pavement. In this study, response surface methodology was used to design, evaluate and analyze the effect of partial replacement of fine aggregate with crumb rubber, and addition of nano silica on the abrasion resistance of roller compacted rubbercrete (RCR). RCR is the terminology used for RCC pavement where crumb rubber was used as partial replacement to fine aggregate. The Box-Behnken design method was used to develop the mixtures combinations using 10%, 20%, and 30% crumb rubber with 0%, 1%, and 2% nano silica. The Cantabro loss method was used to measure the abrasion resistance. The results showed that the abrasion resistance of RCR decreases with increase in crumb rubber content, and increases with increase in addition of nano silica. The analysis of variance shows that the model developed using response surface methodology (RSM) has a very good degree of correlation, and can be used to predict the abrasion resistance of RCR with a percentage error of 5.44%. The combination of 10.76% crumb rubber and 1.59% nano silica yielded the best combinations of RCR in terms of abrasion resistance of RCR.

  7. 29 CFR 1926.303 - Abrasive wheels and tools.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... and tools. (a) Power. All grinding machines shall be supplied with sufficient power to maintain the spindle speed at safe levels under all conditions of normal operation. (b) Guarding. (1) Grinding machines..., nut, and outer flange may be exposed on machines designed as portable saws. (c) Use of abrasive wheels...

  8. 29 CFR 1926.303 - Abrasive wheels and tools.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... and tools. (a) Power. All grinding machines shall be supplied with sufficient power to maintain the spindle speed at safe levels under all conditions of normal operation. (b) Guarding. (1) Grinding machines..., nut, and outer flange may be exposed on machines designed as portable saws. (c) Use of abrasive wheels...

  9. 29 CFR 1926.303 - Abrasive wheels and tools.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... and tools. (a) Power. All grinding machines shall be supplied with sufficient power to maintain the spindle speed at safe levels under all conditions of normal operation. (b) Guarding. (1) Grinding machines..., nut, and outer flange may be exposed on machines designed as portable saws. (c) Use of abrasive wheels...

  10. Toothbrush abrasion of paint-on resins for shade modification and crown resins: effect of water absorption.

    PubMed

    Fujii, Koichi; Arikawa, Hiroyuki; Kanie, Takahito; Ban, Seiji

    2004-06-01

    In order to investigate the clinical application of paint-on resins, the effect of water absorption on toothbrush abrasion and light transmittance of ten crown resins including three paint-on resins was examined. Water absorption into each material ranged from 0.29 to 0.89 mg/cm2 after storage in distilled-water for 6 weeks and their hardnesses decreased by 3.5-22.3%. Maximum surface roughness (Rmax) of the materials stored in distilled water for 6 weeks increased with an increasing number of toothbrush abrasion cycles and ranged from 1.9 to 10.5 microm after 100,000 cycles. Also, Maximum depth and weight loss as an indicator of the amount of each material lost by abrasion showed similar behaviors similar to Rmax. These results indicated that the abrasion resistance of paint-on resins was located in the middle among all materials examined.

  11. Project: Micromachined High-Frequency Circuits For Sub-mm-wave Sensors

    NASA Technical Reports Server (NTRS)

    Papapolymerou, Ioannis John

    2004-01-01

    A novel micromachined resonator at 45 GHz based on a defect in a periodic electromagnetic bandgap structure (EBG) and a two-pole Tchebysbev filter with 1.4% 0.15 dB equiripple bandwidth and 2.3 dB loss employing this resonator are presented in this letter. The periodic bandgap structure is realized on a 400 micron thick high-resistivity silicon wafer using deep reactive ion etching techniques. The resonator and filter can be accessed via coplanar waveguide feeds.

  12. Fabricating and using a micromachined magnetostatic relay or switch

    NASA Technical Reports Server (NTRS)

    Tai, Yu-Chong (Inventor); Wright, John A. (Inventor)

    2001-01-01

    A micromachined magnetostatic relay or switch includes a springing beam on which a magnetic actuation plate is formed. The springing beam also includes an electrically conductive contact. In the presence of a magnetic field, the magnetic material causes the springing beam to bend, moving the electrically conductive contact either toward or away from another contact, and thus creating either an electrical short-circuit or an electrical open-circuit. The switch is fabricated from silicon substrates and is particularly useful in forming a MEMs commutation and control circuit for a miniaturized DC motor.

  13. Micromachined needles and lancets with design adjustable bevel angles

    NASA Astrophysics Data System (ADS)

    Sparks, Douglas; Hubbard, Timothy

    2004-08-01

    A new method of micromachining hollow needles and two-dimensional needle arrays from single crystal silicon is described. The process involves a combination of fusion bonding, photolithography and anisotropic plasma etching. The cannula produced with this process can have design adjustable bevel angles, wall thickness and channel dimensions. A subset of processing steps can be employed to produce silicon blades and lancets with design adjustable bevel angles and shaft dimensions. Applications for this technology include painless drug infusion, blood diagnosis, glucose monitoring, cellular injection and the manufacture of microkeratomes for ocular, vascular and neural microsurgery.

  14. High-power ultrashort fiber laser for solar cells micromachining

    NASA Astrophysics Data System (ADS)

    Lecourt, J.-B.; Duterte, C.; Liegeois, F.; Lekime, D.; Hernandez, Y.; Giannone, D.

    2012-02-01

    We report on a high-power ultra-short fiber laser for thin film solar cells micromachining. The laser is based on Chirped Pulse Amplification (CPA) scheme. The pulses are stretched to hundreds of picoseconds prior to amplification and can be compressed down to picosecond at high energy. The repetition rate is adjustable from 100 kHz to 1 MHz and the optical average output power is close to 13 W (before compression). The whole setup is fully fibred, except the compressor achieved with bulk gratings, resulting on a compact and reliable solution for cold ablation.

  15. Pelton turbine Needle erosion prediction based on 3D three- phase flow simulation

    NASA Astrophysics Data System (ADS)

    Chongji, Z.; Yexiang, X.; Wei, Z.; Yangyang, Y.; Lei, C.; Zhengwei, W.

    2014-03-01

    Pelton turbine, which applied to the high water head and small flow rate, is widely used in the mountainous area. During the operation period the sediment contained in the water does not only induce the abrasion of the buckets, but also leads to the erosion at the nozzle which may damage the needle structure. The nozzle and needle structure are mainly used to form high quality cylindrical jet and increase the efficiency of energy exchange in the runner to the most. Thus the needle erosion will lead to the deformation of jet, and then may cause the efficiency loss and cavitation. The favourable prediction of abrasion characteristic of needle can effectively guide the optimization design and maintenance of needle structure. This paper simulated the unsteady three-dimensional multi-phase flow in the nozzle and injected jet flow. As the jet containing water and sediment is injected into the free atmosphere air with high velocity, the VOF model was adopted to predict the water and air flow. The sediment is simplified into round solid particle and the discrete particle model (DPM) was employed to predict the needle abrasion characteristic. The sand particle tracks were analyzed to interpret the mechanism of sand erosion on the needle surface. And the numerical result of needle abrasion was obtained and compared with the abrasion field observation. The similarity of abrasion pattern between the numerical results and field observation illustrated the validity of the 3D multi-phase flow simulation method.

  16. The importance of measuring toothpaste abrasivity in both a quantitative and qualitative way

    PubMed Central

    Tellefsen, Georg; Johannsen, Annsofi; Liljeborg, Anders

    2013-01-01

    Objective. To evaluate the relative abrasivity of different toothpastes and polishing pastes both qualitatively and quantitatively. Materials and methods. Acrylic plates were exposed to brushing in a brushing machine with a toothpaste/water slurry for 1 and 6 h. Twelve different toothpastes were used and also four different polishing pastes. The results were evaluated using a profilometer after 1 and 6 h of brushing (corresponding to 2000 and 12 000 double strokes, respectively). A surface roughness value (Ra-value) and also a volume loss value were calculated from the profilometer measurements. These values were then correlated to each other. An unpaired t-test for the difference in the abrasion values between the toothpastes and the abrasion values over time was used. Results. The polishing paste RDA® 170 yielded higher Ra-values than RDA 250®, both after 1 and 6 h of brushing (1.01 ± 0.22 and 8.99 ± 1.55 compared to 0.63 ± 0.26 and 7.83 ± 5.89, respectively) as well as volume loss values (3.71 ± 0.17 and 20.20 ± 2.41 compared to 2.15 ± 1.41 and 14.79 ± 11.76, respectively), thus poor correlations between the RDA and Ra and Volume loss values were shown. Among the toothpastes, Apotekets® showed the highest Ra value after 1 h of brushing and Pepsodent® whitening after 6 h of brushing. Pepsodent® whitening also showed the highest volume loss values, both after 1 and 6 h of brushing. Conclusion. This study emphasizes the importance of not only considering the RDA value, but also a roughness value, when describing the abrasivity of a toothpaste. Furthermore, it can be concluded that so called ‘whitening' toothpastes do not necessarily have a higher abrasive effect than other toothpastes. PMID:22746180

  17. The importance of measuring toothpaste abrasivity in both a quantitative and qualitative way.

    PubMed

    Johannsen, Gunnar; Tellefsen, Georg; Johannsen, Annsofi; Liljeborg, Anders

    2013-01-01

    To evaluate the relative abrasivity of different toothpastes and polishing pastes both qualitatively and quantitatively. Acrylic plates were exposed to brushing in a brushing machine with a toothpaste/water slurry for 1 and 6 h. Twelve different toothpastes were used and also four different polishing pastes. The results were evaluated using a profilometer after 1 and 6 h of brushing (corresponding to 2000 and 12 000 double strokes, respectively). A surface roughness value (Ra-value) and also a volume loss value were calculated from the profilometer measurements. These values were then correlated to each other. An unpaired t-test for the difference in the abrasion values between the toothpastes and the abrasion values over time was used. The polishing paste RDA® 170 yielded higher Ra-values than RDA 250®, both after 1 and 6 h of brushing (1.01 ± 0.22 and 8.99 ± 1.55 compared to 0.63 ± 0.26 and 7.83 ± 5.89, respectively) as well as volume loss values (3.71 ± 0.17 and 20.20 ± 2.41 compared to 2.15 ± 1.41 and 14.79 ± 11.76, respectively), thus poor correlations between the RDA and Ra and Volume loss values were shown. Among the toothpastes, Apotekets® showed the highest Ra value after 1 h of brushing and Pepsodent® whitening after 6 h of brushing. Pepsodent® whitening also showed the highest volume loss values, both after 1 and 6 h of brushing. This study emphasizes the importance of not only considering the RDA value, but also a roughness value, when describing the abrasivity of a toothpaste. Furthermore, it can be concluded that so called 'whitening' toothpastes do not necessarily have a higher abrasive effect than other toothpastes.

  18. Micromachine friction test apparatus

    DOEpatents

    deBoer, Maarten P.; Redmond, James M.; Michalske, Terry A.

    2002-01-01

    A microelectromechanical (MEM) friction test apparatus is disclosed for determining static or dynamic friction in MEM devices. The friction test apparatus, formed by surface micromachining, is based on a friction pad supported at one end of a cantilevered beam, with the friction pad overlying a contact pad formed on the substrate. A first electrostatic actuator can be used to bring a lower surface of the friction pad into contact with an upper surface of the contact pad with a controlled and adjustable force of contact. A second electrostatic actuator can then be used to bend the cantilevered beam, thereby shortening its length and generating a relative motion between the two contacting surfaces. The displacement of the cantilevered beam can be measured optically and used to determine the static or dynamic friction, including frictional losses and the coefficient of friction between the surfaces. The test apparatus can also be used to assess the reliability of rubbing surfaces in MEM devices by producing and measuring wear of those surfaces. Finally, the friction test apparatus, which is small in size, can be used as an in situ process quality tool for improving the fabrication of MEM devices.

  19. Effect of etching and airborne particle abrasion on the microstructure of different dental ceramics.

    PubMed

    Borges, Gilberto Antonio; Sophr, Ana Maria; de Goes, Mario Fernando; Sobrinho, Lourenço Correr; Chan, Daniel C N

    2003-05-01

    The ceramic composition and microstructure surface of all-ceramic restorations are important components of an effective bonding substrate. Both hydrofluoric acid etching and airborne aluminum oxide particle abrasion produce irregular surfaces necessary for micromechanical bonding. Although surface treatments of feldspathic and leucite porcelains have been studied previously, the high alumina-containing and lithium disilicate ceramics have not been fully investigated. The purpose of this study was to assess the surface topography of 6 different ceramics after treatment with either hydrofluoric acid etching or airborne aluminum oxide particle abrasion. Five copings each of IPS Empress, IPS Empress 2 (0.8 mm thick), Cergogold (0.7 mm thick), In-Ceram Alumina, In-Ceram Zirconia, and Procera (0.8 mm thick) were fabricated following the manufacturer's instructions. Each coping was longitudinally sectioned into 4 equal parts by a diamond disk. The resulting sections were then randomly divided into 3 groups depending on subsequent surface treatments: Group 1, specimens without additional surface treatments, as received from the laboratory (control); Group 2, specimens treated by use of airborne particle abrasion with 50-microm aluminum oxide; and Group 3, specimens treated with 10% hydrofluoric acid etching (20 seconds for IPS Empress 2; 60 seconds for IPS Empress and Cergogold; and 2 minutes for In-Ceram Alumina, In-Ceram Zirconia, and Procera). Airborne particle abrasion changed the morphologic surface of IPS Empress, IPS Empress 2, and Cergogold ceramics. The surface topography of these ceramics exhibited shallow irregularities not evident in the control group. For Procera, the 50-microm aluminum oxide airborne particle abrasion produced a flattened surface. Airborne particle abrasion of In-Ceram Alumina and In-Ceram Zirconia did not change the morphologic characteristics and the same shallows pits found in the control group remained. For IPS Empress 2, 10% hydrofluoric

  20. Micromachined quartz crystal resonator arrays for bioanalytical applications

    NASA Astrophysics Data System (ADS)

    Kao, Ping

    This work presents the design, fabrication and investigation of high frequency quartz crystal resonator arrays and their application for analyzing interfacial layers and sensing purposes. An 8-pixel micromachined quartz crystal resonator array with a fundamental resonance frequency of ˜66 MHz has been fabricated, tested and used in this work. One dimensional model for the characterization of resonator behavior for single or multiple viscoelastic layers under liquid ambient are developed by continuum mechanics approach as well as using an equivalent electrical admittance analysis approach. The investigation of thin interfacial layer between solid (electrode) and liquid phases are reported in terms of the improved resolution of viscoelasitc characteristics of adsorbed layer arising from the use of high frequency resonators. Analyzed layers include globular proteins layer under phosphate buffer solution (PBS) with molecular weights spanning three orders of magnitude, multilayers of avidin and biotin labeled bovine albumin under PBS and diffuse double layer induced by DC bias under 0.5 M sulfuric acid solution. The second half of the dissertation focuses on biosensing applications of quartz resonator arrays. The selective functionalization of 3,3'-Dithiobis (sulfosuccinimidylpropionate) (DTSSP) by physical masking method was first used for specifically detecting avidin molecules. The selective immobilization of thiol modified single stranded DNA probes via electrochemical methods was used for the specific detection of Respiratory Syncytial Virus (RSV) G-gene. The work demonstrates that micromachined quartz crystal resonator arrays could be a powerful analytical tool of investigating interfacial region and can be readily configured as biosenors that can be used for label-free, quantitative assays using extremely small volumes of analytes.

  1. Micromachined optical microphone structures with low thermal-mechanical noise levels.

    PubMed

    Hall, Neal A; Okandan, Murat; Littrell, Robert; Bicen, Baris; Degertekin, F Levent

    2007-10-01

    Micromachined microphones with diffraction-based optical displacement detection have been introduced previously [Hall et al., J. Acoust. Soc. Am. 118, 3000-3009 (2005)]. The approach has the advantage of providing high displacement detection resolution of the microphone diaphragm independent of device size and capacitance-creating an unconstrained design space for the mechanical structure itself. Micromachined microphone structures with 1.5-mm-diam polysilicon diaphragms and monolithically integrated diffraction grating electrodes are presented in this work with backplate architectures that deviate substantially from traditional perforated plate designs. These structures have been designed for broadband frequency response and low thermal mechanical noise levels. Rigorous experimental characterization indicates a diaphragm displacement detection resolution of 20 fm radicalHz and a thermal mechanical induced diaphragm displacement noise density of 60 fm radicalHz, corresponding to an A-weighted sound pressure level detection limit of 24 dB(A) for these structures. Measured thermal mechanical displacement noise spectra are in excellent agreement with simulations based on system parameters derived from dynamic frequency response characterization measurements, which show a diaphragm resonance limited bandwidth of approximately 20 kHz. These designs are substantial improvements over initial prototypes presented previously. The high performance-to-size ratio achievable with this technology is expected to have an impact on a variety of instrumentation and hearing applications.

  2. A low-power, high-sensitivity micromachined optical magnetometer

    NASA Astrophysics Data System (ADS)

    Mhaskar, R.; Knappe, S.; Kitching, J.

    2012-12-01

    We demonstrate an optical magnetometer based on a microfabricated 87Rb vapor cell in a micromachined silicon sensor head. The alkali atom density in the vapor cell is increased by heating the cell with light brought to the sensor through an optical fiber, and absorbed by colored filters attached to the cell windows. A second fiber-optically coupled beam optically pumps and interrogates the atoms. The magnetometer operates on 140 mW of heating power and achieves a sensitivity below 20 fT/√Hz throughout most of the frequency band from 15 Hz to 100 Hz. Such a sensor can measure magnetic fields from the human heart and brain.

  3. Effect of Bioactive Glass air Abrasion on Shear Bond Strength of Two Adhesive Resins to Decalcified Enamel

    PubMed Central

    Eshghi, Alireza; Khoroushi, Maryam; Rezvani, Alireza

    2014-01-01

    Objective: Bioactive glass air abrasion is a conservative technique to remove initial decalcified tissue and caries. This study examined the shear bond strength of composite resin to sound and decalcified enamel air-abraded by bioactive glass (BAG) or alumina using etch-and-rinse and self-etch adhesives. Materials and Methods: Forty-eight permanent molars were root-amputated and sectioned mesiodistally. The obtained 96 specimens were mounted in acrylic resin; the buccal and lingual surfaces remained exposed. A demineralizing solution was used to decalcify half the specimens. Both sound and decalcified specimens were divided into two groups of alumina and bioactive glass air abrasion. In each group, the specimens were subdivided into two subgroups of Clearfil SE Bond or OptiBond FL adhesives (n=12). Composite resin cylinders were bonded on enamel surfaces cured and underwent thermocycling. The specimens were tested for shear bond strength. Data were analyzed using SPSS 16.0 and three-way ANOVA (α=0.05). Similar to the experimental groups, the enamel surface of one specimen underwent SEM evaluation. Results: No significant differences were observed in composite resin bond strength subsequent to alumina or bioactive glass air abrasion preparation techniques (P=0.987). There were no statistically significant differences between the bond strength of etch-and-rinse and self-etch adhesive groups (P=1). Also, decalcified or intact enamel groups had no significant difference (P=0.918). However, SEM analysis showed much less enamel irregularities with BAG air abrasion compared to alumina air abrasion. Conclusion: Under the limitations of this study, preparation of both intact and decalcified enamel surfaces with bioactive glass air abrasion results in similar bond strength of composite resin in comparison with alumina air abrasion using etch-&-rinse or self-etch adhesives. PMID:25628694

  4. Investigating selective transport and abrasion on an alluvial fan using quantitative grain size and shape analysis

    NASA Astrophysics Data System (ADS)

    Litwin, K. L.; Jerolmack, D. J.

    2011-12-01

    Selective sorting and abrasion are the two major fluvial processes that are attributed to the downstream fining of sediments in rivers and alluvial fans. Selective transport is the process by which smaller grains are preferentially transported downstream while larger grains are deposited closer to the source. Abrasion is defined by the production of fine sediments and sand that occurs by saltation of gravel, where particle-to-particle collisions supply the energy required to break apart grains. We hypothesize that abrasion results in the gradual fining of large grains and the production of fine sands and silts, while sorting accounts for the differences in transport of these two grain-size fractions produced from abrasion, thereby creating the abrupt gravel-sand transition observed in many channel systems. In this research, we explore both selective transport and abrasion processes on the Dog Canyon alluvial fan near Alamogordo, New Mexico. We complete an extensive grain size analysis down the main channel of the fan employing an image-based technique that utilizes an autocorrelation process. We also characterize changes in grain shape using standard shape parameters, as well as Fourier analysis, which allows the study of contributions of grain roughness on a variety of length scales. Sorting appears to dominate the upper portion of the fan; the grain-size distribution narrows moving downstream until reaching a point of equal mobility, at which point sorting ceases. Abrasion exerts a subtle but persistent effect on grains during transport down the fan. Shape analysis reveals that particles become more rounded by the removal of small-scale textural features, a process that is expected to only modestly influence grain size of gravel, but should produce significant quantities of sand. This study provides a better understanding of the importance of grain abrasion and sorting on the downstream fining of channel grains in an alluvial fan, as well as an improved knowledge

  5. Sliding-gate valve for use with abrasive materials

    DOEpatents

    Ayers, Jr., William J.; Carter, Charles R.; Griffith, Richard A.; Loomis, Richard B.; Notestein, John E.

    1985-01-01

    The invention is a flow and pressure-sealing valve for use with abrasive solids. The valve embodies special features which provide for long, reliable operating lifetimes in solids-handling service. The valve includes upper and lower transversely slidable gates, contained in separate chambers. The upper gate provides a solids-flow control function, whereas the lower gate provides a pressure-sealing function. The lower gate is supported by means for (a) lifting that gate into sealing engagement with its seat when the gate is in its open and closed positions and (b) lowering the gate out of contact with its seat to permit abrasion-free transit of the gate between its open and closed positions. When closed, the upper gate isolates the lower gate from the solids. Because of this shielding action, the sealing surface of the lower gate is not exposed to solids during transit or when it is being lifted or lowered. The chamber containing the lower gate normally is pressurized slightly, and a sweep gas is directed inwardly across the lower-gate sealing surface during the vertical translation of the gate.

  6. Characterization and optimization of polycrystalline Si70%Ge30% for surface micromachined thermopiles in human body applications

    NASA Astrophysics Data System (ADS)

    Wang, Ziyang; Fiorini, Paolo; Leonov, Vladimir; Van Hoof, Chris

    2009-09-01

    This paper presents the material characterization methods, characterization results and the optimization scheme for polycrystalline Si70%Ge30% (poly-SiGe) from the perspective of its application in a surface micromachined thermopile. Due to its comparative advantages, such as lower thermal conductivity and ease of processing, over other materials, poly-SiGe is chosen to fabricate a surface micromachined thermopile and eventually a wearable thermoelectric generator (TEG) to be used on a human body. To enable optimal design of advanced thermocouple microstructures, poly-SiGe sample materials prepared by two different techniques, namely low-pressure chemical vapor deposition (LPCVD) with in situ doping and rapid thermal chemical vapor deposition (RTCVD) with ion implantation, have been characterized. Relevant material properties, including electrical resistivity, Seebeck coefficient, thermal conductivity and specific contact resistance, have been reported. For the determination of thermal conductivity, a novel surface-micromachined test structure based on the Seebeck effect is designed, fabricated and measured. Compared to the traditional test structures, it is more advantageous for sample materials with a relatively large Seebeck coefficient, such as poly-SiGe. Based on the characterization results, a further optimization scheme is suggested to allow independent respective optimization of the figure of merit and the specific contact resistance.

  7. Nanosecond pulsed laser micromachining for experimental fatigue life study of Ti-3Al-2.5V tubes

    NASA Astrophysics Data System (ADS)

    Lin, Yaomin; Gupta, Mool C.; Taylor, Robert E.; Lei, Charles; Stone, William; Spidel, Tom; Yu, Michael; Williams, Reanne

    2009-01-01

    Defects on external surface of in-service hydraulic tubes can reduce total life cycles for operation. Evaluation of fatigue life of the tubes with damage is thus critical for safety reasons. A methodology of generating defects in the Ti-3Al-2.5V tube—a widely used pipeline in hydraulic systems of aircrafts—using nanosecond pulsed laser for experimental fatigue life study is described in this paper. Straight tubes of five different sizes were laser micromachined to generate notches of given length and depths on the outside surface. Approaches were developed to precisely control the notch dimensions. The laser-notched tubes were tested with cyclic internal impulse pressure and fatigue life was measured. The laser notches and fatigue cracks were characterized after the test. It is concluded that laser micromachining generated consistent notches, and the influence of notch depth on fatigue life of the tube is significant. Based on the experimental test results, the relationship between the fatigue life of the Ti-3Al-2.5V tube and the notch depth was revealed. The research demonstrated that laser micromachining is applicable for experimental fatigue life study of titanium tubes. The presented test data are useful for estimating the damage limits of the titanium tubes in service environment and for further theoretical studies.

  8. Abrasive wear behavior of in-situ RZ5-10wt%TiC composite

    NASA Astrophysics Data System (ADS)

    Mehra, Deepak; Mahapatra, M. M.; Harsha, S. P.

    2018-05-01

    RZ5 Magnesium alloys containing zinc, rare earth and zirconium are well-known to have high specific strength, good creep resistance widely used in aerospace components. The incorporation of hard ceramic strengthens RZ5 mg alloy. The RZ5-10wt%TiC composite has been fabricated in situ using RZ5 mg alloy as matrix and TiC as reinforcement by self propagating high temperature synthesis (SHS) technique. This paper investigates the abrasive wear behavior of RZ5-10wt%TiC. Tests were performed using pin-on-disc apparatus against 600 grit abrasive paper by varying the sliding distance and applied load. The results showed improvement in the wear resistance of testing composite as compared to the unreinforced RZ5 Mg alloy. The coefficient of friction and weight loss increased linearly as applied load and sliding distance increased. The field emission scanning electron microscopic (FESEM) showed dominate wear mechanisms: abrasion, ploughing grooves.

  9. Abrasion-Resistant Coating for Flexible Insulation

    NASA Technical Reports Server (NTRS)

    Mui, D.; Headding, R. E.

    1986-01-01

    Ceramic coating increases durability and heat resistance of flexible high-temperature insulation. Coating compatible with quartz-fabric insulation allowing it to remain flexible during and after repeated exposures to temperatures of 1,800 degree F (982 degree C). Prevents fabric from becoming brittle while increasing resistance to aerodynamic abrasion and loading. Coating consists of penetrating precoat and topcoat. Major ingredients high-purity colloidal silica binder and ground silica filler, which ensure stability and compatibility with fabric at high temperatures. Both precoat and topcoat cured at room temperature.

  10. Microtensile Test of AN Ordered-Reinforced Electrophoretic Polymer Matrix Composite Fabricated by Surface Micromachining

    NASA Astrophysics Data System (ADS)

    Yang, Zhuoqing; Wang, Hong; Zhang, Zhenjie; Ding, Guifu; Zhao, Xiaolin

    A novel ordered-reinforced microscale polymer matrix composite based on electrophoresis and surface micromachining technologies has been proposed in the present work. The braid angle, volume content and width of the reinforcement in the composite has been designed and simulated by ANSYS finite element software. Based on the simulation and optimization, the Ni fibers reinforced polymer matrix composite sample (3 mm length × 0.6 mm width × 0.04 mm thickness) was successfully fabricated utilizing the surface micromachining process. The fabricated samples were characterized by microtensile test on the dynamic mechanical analysis (DMA) equipment. It is indicated that the tested tensile strength and Young's modulus are 285 MPa and 6.8 GPa, respectively. In addition, the fracture section of the composite sample has been observed by scanning electron microscope (SEM) and the corresponding fracture process was also explained and analyzed in detail. The new presented composite is promising for hot embossing mold in microfluidic chip and several transducers used in accurately controlled biomedical systems.

  11. Abrasion Resistance and Mechanical Properties of Waste-Glass-Fiber-Reinforced Roller-compacted Concrete

    NASA Astrophysics Data System (ADS)

    Yildizel, S. A.; Timur, O.; Ozturk, A. U.

    2018-05-01

    The potential use of waste glass fibers in roller-compacted concrete (RCC) was investigated with the aim to improve its performance and reduce environmental effects. The research was focused on the abrasion resistance and compressive and flexural strengths of the reinforced concrete relative to those of reference mixes without fibers. The freeze-thaw resistance of RCC mixes was also examined. It was found that the use of waste glass fibers at a rate of 2 % increased the abrasion resistance of the RCC mixes considerably.

  12. The jet-disk symbiosis without maximal jets: 1D hydrodynamical jets revisited

    NASA Astrophysics Data System (ADS)

    Crumley, Patrick; Ceccobello, Chiara; Connors, Riley M. T.; Cavecchi, Yuri

    2017-05-01

    In this work we discuss the recent criticism by Zdziarski (2016, A&A, 586, A18) of the maximal jet model derived in Falcke & Biermann (1995, A&A, 293, 665). We agree with Zdziarski that in general a jet's internal energy is not bounded by its rest-mass energy density. We describe the effects of the mistake on conclusions that have been made using the maximal jet model and show when a maximal jet is an appropriate assumption. The maximal jet model was used to derive a 1D hydrodynamical model of jets in agnjet, a model that does multiwavelength fitting of quiescent/hard state X-ray binaries and low-luminosity active galactic nuclei. We correct algebraic mistakes made in the derivation of the 1D Euler equation and relax the maximal jet assumption. We show that the corrections cause minor differences as long as the jet has a small opening angle and a small terminal Lorentz factor. We find that the major conclusion from the maximal jet model, the jet-disk symbiosis, can be generally applied to astrophysical jets. We also show that isothermal jets are required to match the flat radio spectra seen in low-luminosity X-ray binaries and active galactic nuclei, in agreement with other works.

  13. Defining an Abrasion Index for Lunar Surface Systems as a Function of Dust Interaction Modes and Variable Concentration Zones

    NASA Technical Reports Server (NTRS)

    Kobrick, Ryan L.; Klaus, David M.; Street, Kenneth W., Jr.

    2010-01-01

    Unexpected issues were encountered during the Apollo era of lunar exploration due to detrimental abrasion of materials upon exposure to the fine-grained, irregular shaped dust on the surface of the Moon. For critical design features involving contact with the lunar surface and for astronaut safety concerns, operational concepts and dust tolerance must be considered in the early phases of mission planning. To systematically define material selection criteria, dust interaction can be characterized by two-body or three-body abrasion testing, and subcategorically by physical interactions of compression, rolling, sliding and bending representing specific applications within the system. Two-body abrasion occurs when a single particle or asperity slides across a given surface removing or displacing material. Three-body abrasion occurs when multiple particles interact with a solid surface, or in between two surfaces, allowing the abrasives to freely rotate and interact with the material(s), leading to removal or displacement of mass. Different modes of interaction are described in this paper along with corresponding types of tests that can be utilized to evaluate each configuration. In addition to differential modes of abrasion, variable concentrations of dust in different zones can also be considered for a given system design and operational protocol. These zones include: (1) outside the habitat where extensive dust exposure occurs, (2) in a transitional zone such as an airlock or suitport, and (3) inside the habitat or spacesuit with a low particle count. These zones can be used to help define dust interaction frequencies, and corresponding risks to the systems and/or crew can be addressed by appropriate mitigation strategies. An abrasion index is introduced that includes the level of risk, R, the hardness of the mineralogy, H, the severity of the abrasion mode, S, and the frequency of particle interactions, F.

  14. 9 CFR 311.14 - Abrasions, bruises, abscesses, pus, etc.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 9 Animals and Animal Products 2 2010-01-01 2010-01-01 false Abrasions, bruises, abscesses, pus, etc. 311.14 Section 311.14 Animals and Animal Products FOOD SAFETY AND INSPECTION SERVICE, DEPARTMENT... AND VOLUNTARY INSPECTION AND CERTIFICATION DISPOSAL OF DISEASED OR OTHERWISE ADULTERATED CARCASSES AND...

  15. Abrasion resistant coating and method of making the same

    DOEpatents

    Sordelet, Daniel J.; Besser, Matthew F.

    2001-06-05

    An abrasion resistant coating is created by adding a ductile phase to a brittle matrix phase during spray coating where an Al--Cu--Fe quasicrystalline phase (brittle matrix) and an FeAl intermetallic (ductile phase) are combined. This composite coating produces a coating mostly of quasicrystal phase and an inter-splat layer of the FeAl phase to help reduce porosity and cracking within the coating. Coatings are prepared by plasma spraying unblended and blended quasicrystal and intermetallic powders. The blended powders contain 1, 5, 10 and 20 volume percent of the intermetallic powders. The unblended powders are either 100 volume percent quasicrystalline or 100 volume percent intermetallic; these unblended powders were studied for comparison to the others. Sufficient ductile phase should be added to the brittle matrix to transform abrasive wear mode from brittle fracture to plastic deformation, while at the same time the hardness of the composite should not be reduced below that of the original brittle phase material.

  16. Abrasion-resistant concrete mix designs for precast bridge deck panels.

    DOT National Transportation Integrated Search

    2010-08-01

    The report documents laboratory investigations undertaken to develop high performance concrete (HPC) for precast and pre-stressed bridge deck components that would reduce the life-cycle cost of bridges by improving the studded tire wear (abrasion) re...

  17. Influence of different toothpaste abrasives on the bristle end-rounding quality of toothbrushes.

    PubMed

    de Oliveira, G J P L; de Aveiro, J M; Pavone, C; Marcantonio, R A C

    2015-02-01

    To evaluate the influence of different toothpaste abrasives on the bristle wear and bristle tip morphology of toothbrushes with different degrees of hardness. Ninety samples of bovine incisor teeth were used in this study. The samples were randomly divided into three groups according to the bristle hardness of the toothbrush used: soft bristles (S); extra-soft bristles (ES); hard bristles (H). The toothbrushes of each group were randomly divided into six subgroups with five toothbrushes each, according to the abrasive of the toothpaste used in the simulation: Negative control (distilled water); toothpaste 1 (silica); toothpaste 2 (hydrated silica); toothpaste 3 (calcium carbonate, calcium bicarbonate and silica); toothpaste 4 (tetrapotassium pyrophosphate, silica and titanium dioxide); toothpaste 5 (calcium carbonate). The samples were placed in a toothbrushing simulating machine that simulating three months of brushing. The toothbrush bristles were evaluated by the bristle wear index, and the bristle tips morphology was evaluated by the bristle tip morphology index. The ES brush presented the highest bristle wear among the toothbrushes. Additionally, the S brushes showed better morphology of the bristles followed by ES and H brushes. The type of abrasive only influenced the bristle tip morphology of the ES brushes. The toothpaste 3 induced the worse bristle tip morphology than all the other toothpastes. Different abrasives have influence only on the bristle tip morphology of the ES brushes. © 2014 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  18. Topical non-steroidal anti-inflammatory drugs for analgesia in traumatic corneal abrasions.

    PubMed

    Wakai, Abel; Lawrenson, John G; Lawrenson, Annali L; Wang, Yongjun; Brown, Michael D; Quirke, Michael; Ghandour, Omar; McCormick, Ryan; Walsh, Cathal D; Amayem, Ahmed; Lang, Eddy; Harrison, Nick

    2017-05-18

    Traumatic corneal abrasions are relatively common and there is a lack of consensus about analgesia in their management. It is therefore important to document the clinical efficacy and safety profile of topical ophthalmic non-steroidal anti-inflammatory drugs (NSAIDs) in the management of traumatic corneal abrasions. To identify and evaluate all randomised controlled trials (RCTs) comparing the use of topical NSAIDs with placebo or any alternative analgesic interventions in adults with traumatic corneal abrasions (including corneal abrasions arising from foreign body removal), to reduce pain, and its effects on healing time. We searched the Cochrane Central Register of Controlled Trials (CENTRAL) (which contains the Cochrane Eyes and Vision Trials Register) (2017, Issue 2), MEDLINE Ovid (1946 to 30 March 2017), Embase Ovid (1947 to 30 March 2017), LILACS (Latin American and Caribbean Health Sciences Literature Database) (1982 to 30 March 2017), OpenGrey (System for Information on Grey Literature in Europe) (www.opengrey.eu/); searched 30 March 2017, ZETOC (1993 to 30 March 2017), the ISRCTN registry (www.isrctn.com/editAdvancedSearch); searched 30 March 2017, ClinicalTrials.gov (www.clinicaltrials.gov); searched 30 March 2017 and the WHO International Clinical Trials Registry Platform (ICTRP) (www.who.int/ictrp/search/en); searched 30 March 2017. We did not use any date or language restrictions in the electronic searches for trials.We checked the reference lists of identified trials to search for further potentially relevant studies. RCTs comparing topical NSAIDs to placebo or any alternative analgesic interventions in adults with traumatic corneal abrasions. Two review authors independently performed data extraction and assessed risks of bias in the included studies. We rated the certainty of the evidence using GRADE. We included nine studies that met the inclusion criteria, reporting data on 637 participants.The studies took place in the UK, USA, Israel, Italy

  19. High-pressure jet cutters improve capping operations

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Abel, L.W.; Campbell, P.J.; Bowden, J.R. Sr.

    1995-05-08

    Advances in abrasive cutting technology have improved the methods for removing damaged equipment and preparing wellheads for capping. This technology, much of which was refined during well control operations in Kuwait in 1991, can improve the safety and efficiency of capping jobs by cutting wellheads or casing quickly and cleanly. The majority of well control jobs involve one of three types of capping operations: capping to a flange, capping by installing a wellhead, or capping to a casing stub. Capping operations are often the first major step in regaining control of the well during blowout intervention. Proper planning of amore » capping operation must take into account the mass flow rate, combustible nature of the flow, well bore geometry, and operations in the post-capping phase of the project. The paper discusses capping vehicles, tree removal, jet cutters, capping to a flange, capping to a stub, swallowing the stub, spin-on technique, capping on fire, stinging, offshore blowouts, firefighting, pollution control, intervention equipment, and rig removal.« less

  20. Abrasive wear of resin composites as related to finishing and polishing procedures.

    PubMed

    Turssi, Cecilia P; Ferracane, Jack L; Serra, Mônica C

    2005-07-01

    Finishing and polishing procedures may cause topographical changes and introduce subsurface microcracks in dental composite restoratives. Since both of these effects may contribute toward the kinetics of wear, the purpose of this study was to assess and correlate the wear and surface roughness of minifilled and nanofilled composites finished and polished by different methods. Specimens (n=10) made of a minifilled and a nanofilled composite were finished and polished with one of the four sequences: (1) tungsten carbide burs plus Al(2)O(3)-impregnated brush (CbBr) or (2) tungsten carbide burs plus diamond-impregnated cup (CbCp), (3) diamond burs plus brush (DmBr) or (4) diamond burs plus cup (DmCp). As a control, abrasive papers were used. After surface roughness had been quantified, three-body abrasion was simulated using the OHSU wear machine. The wear facets were then scanned to measure wear depth and post-testing roughness. All sets of data were subjected to ANOVA and Tukey's tests (alpha=0.05). Pearson's correlation test was applied to check for the existence of a relationship between pre-testing roughness and wear. Significantly smoother surfaces were attained with the sequences CbBr and CbCp, whereas DmCp yielded the roughest surface. Regardless of the finishing/polishing technique, the nanofilled composite exhibited the lowest pre-testing roughness and wear. There was no correlation between the surface roughness achieved after finishing/polishing procedures and wear (p=0.3899). Nano-sized materials may have improved abrasive wear resistance over minifilled composites. The absence of correlation between wear and surface roughness produced by different finishing/polishing methods suggests that the latter negligibly influences material loss due to three-body abrasion.

  1. CMOS micromachined capacitive cantilevers for mass sensing

    NASA Astrophysics Data System (ADS)

    Li, Ying-Chung; Ho, Meng-Han; Hung, Shi-Jie; Chen, Meng-Huei; S-C Lu, Michael

    2006-12-01

    In this paper, we present the design, fabrication and characterization of the CMOS micromachined cantilevers for mass sensing in the femtogram range. The cantilevers consisting of multiple metal and dielectric layers are fabricated after completion of a conventional CMOS process by dry etching steps. The cantilevers are electrostatically actuated to resonance by in-plane electrodes. The mechanical resonant frequency is detected capacitively with on-chip circuitry, where the modulation technique is applied to eliminate capacitive feedthrough from the driving port and to lessen the effect of flicker noise. The highest resonant frequency of the cantilevers is measured at 396.46 kHz with a quality factor of 2600 at 10 mTorr. The resonant frequency shift after deposition of a 0.1 µm SiO2 layer is 140 Hz, averaging 353 fg Hz-1.

  2. To Evaluate Effect of Airborne Particle Abrasion using Different Abrasives Particles and Compare Two Commercial Available Zirconia on Flexural Strength on Heat Treatment.

    PubMed

    Prasad, Hari A; Pasha, Naveed; Hilal, Mohammed; Amarnath, G S; Kundapur, Vinaya; Anand, M; Singh, Sumeet

    2017-06-01

    airborne-particle abrasion using 50 µm Al 2 O 3 particles and 50 µm silica coated Al 2 O 3 are applied to the upper and lower surfaces of the specimens. Each specimen is held under a pressure of 30 psi for 15 seconds at a direction perpendicular to the surface and at a distance of 30mm with an airborne particle abrasion device for the specimens in the airborne particle abraded groups. Heat treatments were performed at a starting temperature of 500°C, heating rate of 100°c/ min, ending at a temperature of 1000°C and 15 minutes holding time without vacuum for the specimens in the group 4, 5, 9 and 10. Airborne-particle abrasion mimicking the preparation for cementation was applied to the lower surfaces with 50 µm alumina and silica coated alumina particles for the specimens in the groups 6, 7, 8, 9 and 10. The specimens were cleaned for 15 minutes in an ultrasonic bath containing distilled water. To determine the fracture strength, a disc of 10 mm diameter was used to place 3 hardened steel balls of 3 mm diameter separated each other by 120 degrees (described in the ISO standard 6872 for dental ceramics). Each specimen was centrally placed on this disc. The lower surface mimicking the internal surface of zirconia was the tension side, facing the supporting device testing, while the upper surface mimicking the external surface of the zirconia core was loaded with a flat punch (1 mm in diameter). A universal testing machine was used to perform the test at a cross head speed of 1mm/min. The failure stress was calculated with the equation listed in ISO 6872. The results were then statistically analyzed. A post hoc test was used for pair wise comparisons. The mean fracture strength of commercially available Zirconia Ceramill (AMANNGIRBACH) showed a significant higher value compared to the ZR-White (UPCERA) Zirconia ( P <0.001), Airborne abrasion treatment to the specimens showed a significant difference between the abraded groups and the control group ( P <0.001); further

  3. To Evaluate Effect of Airborne Particle Abrasion using Different Abrasives Particles and Compare Two Commercial Available Zirconia on Flexural Strength on Heat Treatment

    PubMed Central

    Prasad, Hari A.; Pasha, Naveed; Hilal, Mohammed; Amarnath, G. S.; Kundapur, Vinaya; Anand, M; Singh, Sumeet

    2017-01-01

    specimens each. Heat treatment after airborne-particle abrasion using 50 µm Al2O3 particles and 50 µm silica coated Al2O3 are applied to the upper and lower surfaces of the specimens. Each specimen is held under a pressure of 30 psi for 15 seconds at a direction perpendicular to the surface and at a distance of 30mm with an airborne particle abrasion device for the specimens in the airborne particle abraded groups. Heat treatments were performed at a starting temperature of 500°C, heating rate of 100°c/ min, ending at a temperature of 1000°C and 15 minutes holding time without vacuum for the specimens in the group 4, 5, 9 and 10. Airborne-particle abrasion mimicking the preparation for cementation was applied to the lower surfaces with 50 µm alumina and silica coated alumina particles for the specimens in the groups 6, 7, 8, 9 and 10. The specimens were cleaned for 15 minutes in an ultrasonic bath containing distilled water. To determine the fracture strength, a disc of 10 mm diameter was used to place 3 hardened steel balls of 3 mm diameter separated each other by 120 degrees (described in the ISO standard 6872 for dental ceramics). Each specimen was centrally placed on this disc. The lower surface mimicking the internal surface of zirconia was the tension side, facing the supporting device testing, while the upper surface mimicking the external surface of the zirconia core was loaded with a flat punch (1 mm in diameter). A universal testing machine was used to perform the test at a cross head speed of 1mm/min. The failure stress was calculated with the equation listed in ISO 6872. The results were then statistically analyzed. A post hoc test was used for pair wise comparisons. Result: The mean fracture strength of commercially available Zirconia Ceramill (AMANNGIRBACH) showed a significant higher value compared to the ZR-White (UPCERA) Zirconia (P<0.001), Airborne abrasion treatment to the specimens showed a significant difference between the abraded groups and the

  4. Abrasion resistance of direct and indirect resins as a function of a sealant veneer.

    PubMed

    Ferraz Caneppele, Taciana Marco; Rocha, Daniel Maranha; Màximo Araujo, Maria Amelia; Valera, Màrcia Carneiro; Salazar Marocho, Susana MarIa

    2014-01-01

    Abrasive wear is one of the most common type of wear that not only affect teeth, as also dental restorations. Thus to investigate one of the etiological factors as tooth brushing procedure is clinical relevant in order to select the best material combination that may prevent damage of resin dental restoration's abrasion. This study evaluated the influence of tooth brushing on mass loss and surface roughness of direct Venus (Vs) and indirect Signum (Sg) resin composites, with and without a surface sealant, Fortify (F). Twenty-four specimens were prepared with each resin composite, using their proprietary curing units, according to manufacturer's instructions. All the specimens were polished and ultrasonically cleaned in distilled water for 5 minutes. Half of the specimens of each resin (n = 12) were covered with F (Vs F and Sg F ), except for the control (C) specimens (Vs C and Sg C ), which were not sealed. Mass loss (ML) as well as surface roughness (Ra ) was measured for all the specimens. Then, the specimens were subjected to toothbrush-dentifrice abrasion, using a testing machine for 67.000 brushing strokes, in an abrasive slurry. After brushing simulation, the specimens were removed from the holder, rinsed thoroughly and blot dried with soft absorbent paper. The abrasion of the material was quantitatively determined with final measurements of ML and surface roughness, using the method described above. ML data were analyzed by two-way analysis of variance (ANOVA) and the analysis indicated that resin composites were not statistically different; however, the specimens sealed with F showed higher ML. Ra mean values of the groups Vs F and Sg F significantly increased. Tooth brushing affects mainly the roughness of the direct and indirect resin composites veneered with a sealant.

  5. Twin Jet

    NASA Technical Reports Server (NTRS)

    Henderson, Brenda; Bozak, Rick

    2010-01-01

    Many subsonic and supersonic vehicles in the current fleet have multiple engines mounted near one another. Some future vehicle concepts may use innovative propulsion systems such as distributed propulsion which will result in multiple jets mounted in close proximity. Engine configurations with multiple jets have the ability to exploit jet-by-jet shielding which may significantly reduce noise. Jet-by-jet shielding is the ability of one jet to shield noise that is emitted by another jet. The sensitivity of jet-by-jet shielding to jet spacing and simulated flight stream Mach number are not well understood. The current experiment investigates the impact of jet spacing, jet operating condition, and flight stream Mach number on the noise radiated from subsonic and supersonic twin jets.

  6. Method and apparatus for jet-assisted drilling or cutting

    DOEpatents

    Summers, David Archibold; Woelk, Klaus Hubert; Oglesby, Kenneth Doyle; Galecki, Grzegorz

    2012-09-04

    An abrasive cutting or drilling system, apparatus and method, which includes an upstream supercritical fluid and/or liquid carrier fluid, abrasive particles, a nozzle and a gaseous or low-density supercritical fluid exhaust abrasive stream. The nozzle includes a throat section and, optionally, a converging inlet section, a divergent discharge section, and a feed section.

  7. Method and apparatus for jet-assisted drilling or cutting

    DOEpatents

    Summers, David Archibold; Woelk, Klaus Hubert; Oglesby, Kenneth Doyle; Galecki, Grzegorz

    2013-07-02

    An abrasive cutting or drilling system, apparatus and method, which includes an upstream supercritical fluid and/or liquid carrier fluid, abrasive particles, a nozzle and a gaseous or low-density supercritical fluid exhaust abrasive stream. The nozzle includes a throat section and, optionally, a converging inlet section, a divergent discharge section, and a feed section.

  8. Evolution and diagnostic utility of aeolian rat-tails: A new type of abrasion feature on Earth and Mars

    NASA Astrophysics Data System (ADS)

    Favaro, Elena A.; Hugenholtz, Christopher H.; Barchyn, Thomas E.

    2017-10-01

    Aeolian rat-tails (ARTs) are a previously undocumented, regionally-ubiquitous aeolian abrasion feature observed on matrix-supported ignimbrite surfaces in the Puna Plateau of Northwest Argentina. ARTs consist of an abrasion-resistant lithic clast projecting above the surface with a lee tail or 'keel' in the more erodible matrix. Size is controlled by the dimensions of the windward lithic clast, ranging from centimetre to meter scale; spatial density varies with clast content, which may reflect variations in ignimbrite facies. Field observations suggest ARTs follow a definable evolutionary sequence. First, an abrasion-resistant lithic clast contained within the ignimbrite is exposed to abrasion at the surface. Impacts from abrading particles erode the softer ignimbrite matrix adjacent to the clast. The clast shelters the leeward surface under a unimodal abrasion direction, creating a tail that tapers downwind and elongates as the clast emerges. Clasts become dislodged from the matrix as the surrounding surface erodes, ultimately destroying the feature if the clast is small enough to be mobilized directly by wind or impacting particles. This evolutionary sequence explains the morphology of ARTs and the presence of loose clasts on the ignimbrite surface, which contributes to the development of other landforms in the region, such as periodic bedrock ridges, yardangs, and megaripples. Satellite and rover images suggest similar features also exist on Mars. Because the formation and preservation of ARTs is contingent on unimodal abrasion direction, their orientation can be used as an indicator of long-term aeolian sediment transport direction.

  9. Micromachined modulator arrays for use in free-space optical communication systems

    NASA Astrophysics Data System (ADS)

    Lewis, Keith L.; Ridley, Kevin D.; McNie, Mark E.; Smith, Gilbert W.; Scott, Andrew M.

    2004-12-01

    A summary is presented of some of the design criteria relevant to the realisation of silicon micromachined modulator arrays for use in free-space optical communication systems. Theoretical performance levels achievable are compared with values measured on experimental devices produced using a modified Multi-User MEMS Process (MUMPS). Devices capable of realising modulation rates in excess of 300 kHz are described and their optical characteristics compared with published data on devices based on multiple quantum well technology.

  10. Theoretical study on removal rate and surface roughness in grinding a RB-SiC mirror with a fixed abrasive.

    PubMed

    Wang, Xu; Zhang, Xuejun

    2009-02-10

    This paper is based on a microinteraction principle of fabricating a RB-SiC material with a fixed abrasive. The influence of the depth formed on a RB-SiC workpiece by a diamond abrasive on the material removal rate and the surface roughness of an optical component are quantitatively discussed. A mathematical model of the material removal rate and the simulation results of the surface roughness are achieved. In spite of some small difference between the experimental results and the theoretical anticipation, which is predictable, the actual removal rate matches the theoretical prediction very well. The fixed abrasive technology's characteristic of easy prediction is of great significance in the optical fabrication industry, so this brand-new fixed abrasive technology has wide application possibilities.

  11. Interfacing superhydrophobic silica nanoparticle films with graphene and thermoplastic polyurethane for wear/abrasion resistance.

    PubMed

    Naderizadeh, Sara; Athanassiou, Athanassia; Bayer, Ilker S

    2018-06-01

    Nanoparticle films are one of the most suitable platforms for obtaining sub-micrometer and nanometer dual-scale surface texture required for liquid repellency. The assembly of superhydrophobic nanoparticles into conformal and strongly adherent films having abrasion-induced wear resistance still poses a significant challenge. Various techniques have been developed over the years to render nanoparticle films with good liquid repellent properties and transparency. However, forming abrasion resistant superhydrophobic nanoparticle films on hard surfaces is challenging. One possibility is to partially embed or weld nanoparticles in thin thermoplastic primers applied over metals. Hexamethyldisilazane-functionalized fumed silica nanoparticle films spray deposited on aluminum surfaces were rendered abrasion resistant by thermally welding them into thermoplastic polyurethane (TPU) primer applied a priori over aluminum. Different solvents, nanoparticle concentrations and annealing temperatures were studied to optimize nanoparticle film morphology and hydrophobicity. Thermal annealing at 150 °C enhanced stability and wear resistance of nanoparticle films. A thin thermal interface layer of graphene nanoplatelets (GnPs) between the primer and the nanoparticle film significantly improved superhydrophobic wear resistance after annealing. As such, superhydrophobic nanocomposite films with the GnPs thermal interface layer displayed superior abrasion-induced wear resistance under 20 kPa compared to films having no GnPs-based thermal interface. Copyright © 2018 Elsevier Inc. All rights reserved.

  12. NK cells are necessary for recovery of corneal CD11c+ dendritic cells after epithelial abrasion injury

    USDA-ARS?s Scientific Manuscript database

    Mechanisms controlling CD11c(+) MHCII(+) DCs during corneal epithelial wound healing were investigated in a murine model of corneal abrasion. Selective depletion of NKp46(+) CD3- NK cells that normally migrate into the cornea after epithelial abrasion resulted in >85% reduction of the epithelial CD1...

  13. Abrasive slurry composition for machining boron carbide

    DOEpatents

    Duran, E.L.

    1984-11-29

    An abrasive slurry particularly suited for use in drilling or machining boron carbide consists essentially of a suspension of boron carbide and/or silicon carbide grit in a carrier solution consisting essentially of a dilute solution of alkylaryl polyether alcohol in octyl alcohol. The alkylaryl polyether alcohol functions as a wetting agent which improves the capacity of the octyl alcohol for carrying the grit in suspension, yet without substantially increasing the viscosity of the carrier solution.

  14. Abrasive slurry composition for machining boron carbide

    DOEpatents

    Duran, Edward L.

    1985-01-01

    An abrasive slurry particularly suited for use in drilling or machining boron carbide consists essentially of a suspension of boron carbide and/or silicon carbide grit in a carrier solution consisting essentially of a dilute solution of alkylaryl polyether alcohol in octyl alcohol. The alkylaryl polyether alcohol functions as a wetting agent which improves the capacity of the octyl alcohol for carrying the grit in suspension, yet without substantially increasing the viscosity of the carrier solution.

  15. Micromachined fragment capturer for biomedical applications.

    PubMed

    Choi, Young-Soo; Lee, Dong-Weon

    2011-11-01

    Due to changes in modern diet, a form of heart disease called chronic total occlusion has become a serious disease to be treated as an emergency. In this study, we propose a micromachined capturer that is designed and fabricated to collect plaque fragments generated during surgery to remove the thrombus. The fragment capturer consists of a plastic body made by rapid prototyping, SU-8 mesh structures using MEMS techniques, and ionic polymer metal composite (IPMC) actuators. An array of IPMC actuators combined with the SU-8 net structure was optimized to effectively collect plaque fragments. The evaporation of solvent through the actuator's surface was prevented using a coating of SU-8 and polydimethylsiloxane thin film on the actuator. This approach improved the available operating time of the IPMC, which primarily depends on solvent loss. Our preliminary results demonstrate the possibility of using the capturer for biomedical applications. © 2011 American Institute of Physics

  16. Bonding to new CAD/CAM resin composites: influence of air abrasion and conditioning agents as pretreatment strategy.

    PubMed

    Reymus, Marcel; Roos, Malgorzata; Eichberger, Marlis; Edelhoff, Daniel; Hickel, Reinhard; Stawarczyk, Bogna

    2018-04-27

    Because of their industrially standardized process of manufacturing, CAD/CAM resin composites show a high degree of conversion, making a reliable bond difficult to achieve. The purpose of this experiment was to investigate the tensile bond strength (TBS) of luting composite to CAD/CAM resin composite materials as influenced by air abrasion and pretreatment strategies. The treatment factors of the present study were (1) brand of the CAD/CAM resin composite (Brilliant Crios [Coltene/Whaledent], Cerasmart [GC Europe], Shofu Block HC [Shofu], and Lava Ultimate [3M]); (2) air abrasion vs. no air abrasion; and (3) pretreatment using a silane primer (Clearfil Ceramic Primer, Kuraray) vs. a resin primer (One Coat 7 Universal, Coltene/Whaledent). Subsequently, luting composite (DuoCem, Coltene/Whaledent) was polymerized onto the substrate surface using a mold. For each combination of the levels of the three treatment factors (4 (materials) × 2 (air abrasion vs. no air abrasion; resin) × 2 (primer vs. silane primer)), n = 15, specimens were prepared. After 24 h of water storage at 37 °C and 5000 thermo-cycles (5/55 °C), TBS was measured and failure types were examined. The resulting data was analyzed using Kaplan-Meier estimates of the cumulative failure distribution function with Breslow-Gehan tests and non-parametric ANOVA (Kruskal-Wallis test) followed by the multiple pairwise Mann-Whitney U test with α-error adjustment using the Benjamini-Hochberg procedure and chi-square test (p < 0.05). The additional air abrasion step increased TBS values and lowered failure rates. Specimens pretreated using a resin primer showed significantly higher TBS and lower failure rates than those pretreated using a silane primer. The highest failure rates were observed for groups pretreated with a silane primer. Within the Shofu Block HC group, all specimens without air abrasion and pretreatment with a silane primer debonded during the aging procedure. Before fixation of CAD

  17. Abrasive wear behavior of heat-treated ABC-silicon carbide

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zhang, Xiao Feng; Lee, Gun Y.; Chen, Da

    2002-06-17

    Hot-pressed silicon carbide, containing aluminum, boron, and carbon additives (ABC-SiC), was subjected to three-body and two-body wear testing using diamond abrasives over a range of sizes. In general, the wear resistance of ABC-SiC, with suitable heat treatment, was superior to that of commercial SiC.

  18. Optical tools for high-throughput screening of abrasion resistance of combinatorial libraries of organic coatings

    NASA Astrophysics Data System (ADS)

    Potyrailo, Radislav A.; Chisholm, Bret J.; Olson, Daniel R.; Brennan, Michael J.; Molaison, Chris A.

    2002-02-01

    Design, validation, and implementation of an optical spectroscopic system for high-throughput analysis of combinatorially developed protective organic coatings are reported. Our approach replaces labor-intensive coating evaluation steps with an automated system that rapidly analyzes 8x6 arrays of coating elements that are deposited on a plastic substrate. Each coating element of the library is 10 mm in diameter and 2 to 5 micrometers thick. Performance of coatings is evaluated with respect to their resistance to wear abrasion because this parameter is one of the primary considerations in end-use applications. Upon testing, the organic coatings undergo changes that are impossible to quantitatively predict using existing knowledge. Coatings are abraded using industry-accepted abrasion test methods at single-or multiple-abrasion conditions, followed by high- throughput analysis of abrasion-induced light scatter. The developed automated system is optimized for the analysis of diffusively scattered light that corresponds to 0 to 30% haze. System precision of 0.1 to 2.5% relative standard deviation provides capability for the reliable ranking of coatings performance. While the system was implemented for high-throughput screening of combinatorially developed organic protective coatings for automotive applications, it can be applied to a variety of other applications where materials ranking can be achieved using optical spectroscopic tools.

  19. Abrasion resistance of muscovite in aeolian and subaqueous transport experiments

    NASA Astrophysics Data System (ADS)

    Anderson, Calvin J.; Struble, Alexander; Whitmore, John H.

    2017-02-01

    Complementary aeolian and subaqueous transport experiments showed a trend in muscovite abrasion that may be useful for identifying ancient sandstones as aeolian or subaqueous in origin. We found that our experimental aeolian processes pulverized the micas quickly, while our subaqueous processes did not. In a pair of abrasion resistance experiments conducted with micaceous quartz sand, it was found that large muscovite grains were (1) reduced by aeolian processes to less than 500 μm in just 4 days, and (2) preserved by subaqueous processes to 610 ± 90 μm even after 356 days. At 20 days of aeolian transport no loose micas could be found even under the microscope, but after a year of subaqueous transport loose muscovite grains could still be seen with the naked eye. Thus, the occurrence and character of micas in a sandstone, particularly muscovite, may be helpful in determining the ancient depositional process.

  20. A micromachined calorimetric gas sensor: an application of electrodeposited nanostructured palladium for the detection of combustible gases.

    PubMed

    Bartlett, Philip N; Guerin, Samuel

    2003-01-01

    Palladium films with regular nanoarchitectures were electrochemically deposited from the hexagonal (H1) lyotropic liquid crystalline phase of the nonionic surfactant octaethyleneglycol monohexadecyl ether (C16EO8) onto micromachined silicon hotplate structures. The H1-e Pd films were shown to have high surface areas (approximately 28 m2 g(-1)) and to act as effective and stable catalysts for the detection of methane in air on heating to 500 degrees C. The response of the H1-e Pd-coated planar pellistors was found to be linearly proportional to the concentration of methane between 0 and 2.5% in air with a detection limit below 0.125%. Our results show that the electrochemical deposition of nanostructured metal films offers a promising approach to the fabrication of micromachined calorimetric gas sensors for combustible gases.

  1. Micro-scale abrasive wear behavior of medical implant material Ti-25Nb-3Mo-3Zr-2Sn alloy on various friction pairs.

    PubMed

    Wang, Zhenguo; Huang, Weijiu; Ma, Yanlong

    2014-09-01

    The micro-scale abrasion behaviors of surgical implant materials have often been reported in the literature. However, little work has been reported on the micro-scale abrasive wear behavior of Ti-25Nb-3Mo-3Zr-2Sn (TLM) titanium alloy in simulated body fluids, especially with respect to friction pairs. Therefore, a TE66 Micro-Scale Abrasion Tester was used to study the micro-scale abrasive wear behavior of the TLM alloy. This study covers the friction coefficient and wear loss of the TLM alloy induced by various friction pairs. Different friction pairs comprised of ZrO2, Si3N4 and Al2O3 ceramic balls with 25.4mm diameters were employed. The micro-scale abrasive wear mechanisms and synergistic effect between corrosion and micro-abrasion of the TLM alloy were investigated under various wear-corrosion conditions employing an abrasive, comprised of SiC (3.5 ± 0.5 μm), in two test solutions, Hanks' solution and distilled water. Before the test, the specimens were heat treated at 760°C/1.0/AC+550°C/6.0/AC. It was discovered that the friction coefficient values of the TLM alloy are larger than those in distilled water regardless of friction pairs used, because of the corrosive Hanks' solution. It was also found that the value of the friction coefficient was volatile at the beginning of wear testing, and it became more stable with further experiments. Because the ceramic balls have different properties, especially with respect to the Vickers hardness (Hv), the wear loss of the TLM alloy increased as the ball hardness increased. In addition, the wear loss of the TLM alloy in Hanks' solution was greater than that in distilled water, and this was due to the synergistic effect of micro-abrasion and corrosion, and this micro-abrasion played a leading role in the wear process. The micro-scale abrasive wear mechanism of the TLM alloy gradually changed from two-body to mixed abrasion and then to three-body abrasion as the Vickers hardness of the balls increased. Copyright

  2. Validation of Proposed Metrics for Two-Body Abrasion Scratch Test Analysis Standards

    NASA Technical Reports Server (NTRS)

    Kobrick, Ryan L.; Klaus, David M.; Street, Kenneth W., Jr.

    2011-01-01

    The objective of this work was to evaluate a set of standardized metrics proposed for characterizing a surface that has been scratched from a two-body abrasion test. This is achieved by defining a new abrasion region termed Zone of Interaction (ZOI). The ZOI describes the full surface profile of all peaks and valleys, rather than just measuring a scratch width as currently defined by the ASTM G 171 Standard. The ZOI has been found to be at least twice the size of a standard width measurement, in some cases considerably greater, indicating that at least half of the disturbed surface area would be neglected without this insight. The ZOI is used to calculate a more robust data set of volume measurements that can be used to computationally reconstruct a resultant profile for detailed analysis. Documenting additional changes to various surface roughness parameters also allows key material attributes of importance to ultimate design applications to be quantified, such as depth of penetration and final abraded surface roughness. Data are presented to show that different combinations of scratch tips and abraded materials can actually yield the same scratch width, but result in different volume displacement or removal measurements and therefore, the ZOI method is more discriminating than the ASTM method scratch width. Furthermore, by investigating the use of custom scratch tips for our specific needs, the usefulness of having an abrasion metric that can measure the displaced volume in this standardized manner, and not just by scratch width alone, is reinforced. This benefit is made apparent when a tip creates an intricate contour having multiple peaks and valleys within a single scratch. This work lays the foundation for updating scratch measurement standards to improve modeling and characterization of three-body abrasion test results.

  3. The change in retentive force of magnetic attachment by abrasion.

    PubMed

    Huang, Yuanjin; Tawada, Yasuyuki; Hata, Yoshiaki; Watanabe, Fumihiko

    2008-07-01

    Magnets are frequently applied to removable dentures as retentive attachments. A magnet-retained removable overdenture might be slightly shifted from side to side by eccentric movement in the mouth, and the surface of magnetic attachment may be worn as a result. However, the relationship between the retentive force of magnetic attachment and its surface abrasion has not been reported. The purpose of this research is to investigate this relationship. Ten Mgfit DX 400 magnetic attachments for natural tooth roots were used for this experiment. The magnetic attachments were embedded in autopolymerizing acrylic resin, and ten pairs of specimens were fabricated. A 5-mm repeated gliding motion was applied on each pair of specimens until 30 000, 50 000, or 90 000 cycles had been achieved. The abrasion machine was under 5 kg loading, and the slide speed was 60 times/min. The retentive force of magnetic attachment was measured with a tension gauge at (1) before gliding; (2) after 30 000 gliding cycles; (3)after 50 000 gliding cycles; or (4) after 90 000 gliding cycles. The average change of retentive force of ten magnetic attachments after 30 000, 50 000, and 90 000 gliding cycles was 0.016 N, 0.003 N, and -0.008 N, respectively. The change was statistically analyzed using a paired-sample t test, which showed that the number of gliding cycles did not affect the retentive force of magnetic attachment significantly. The surface of magnetic attachment after gliding was observed by a microscope, and the abrasion of this attachment surface is clearly seen.

  4. Method for making a micromachined microwave signal control device

    DOEpatents

    Forman, Michael A [Mountain House, CA

    2011-02-15

    A method for fabricating a signal controller, e.g., a filter or a switch, for a coplanar waveguide during the LIGA fabrication process of the waveguide. Both patterns for the waveguide and patterns for the signal controllers are created on a mask. Radiation travels through the mask and reaches a photoresist layer on a substrate. The irradiated portions are removed and channels are formed on the substrate. A metal is filled into the channels to form the conductors of the waveguide and the signal controllers. Micromachined quasi-lumped elements are used alone or together as filters. The switch includes a comb drive, a spring, a metal plunger, and anchors.

  5. Jet angularity measurements for single inclusive jet production

    NASA Astrophysics Data System (ADS)

    Kang, Zhong-Bo; Lee, Kyle; Ringer, Felix

    2018-04-01

    We study jet angularity measurements for single-inclusive jet production at the LHC. Jet angularities depend on a continuous parameter a allowing for a smooth interpolation between different traditional jet shape observables. We establish a factorization theorem within Soft Collinear Effective Theory (SCET) where we consistently take into account in- and out-of-jet radiation by making use of semi-inclusive jet functions. For comparison, we elaborate on the differences to jet angularities measured on an exclusive jet sample. All the necessary ingredients for the resummation at next-to-leading logarithmic (NLL) accuracy are presented within the effective field theory framework. We expect semiinclusive jet angularity measurements to be feasible at the LHC and we present theoretical predictions for the relevant kinematic range. In addition, we investigate the potential impact of jet angularities for quark-gluon discrimination.

  6. Explosibility and Ignitability of Plastic Abrasive Media.

    DTIC Science & Technology

    1987-06-01

    Polyplus Is an alpha cellulose filled urea formaldehyde with a hardness or 3.5. Type III is a urea melamine formaldehyde with a hardness of 4. A fourth...is a thermoplastic acrylic media and the Kopper’s media are thermoset formaldehydes . o The greatest potential for dust explosions is in the baghouss...type or plastio media trom E. I. Du Pont de Nemours and Company was also tested. This Type L Solidstrip plastic stripping abrasive is an acrylic resin

  7. A micro-machined gyroscope for rotating aircraft.

    PubMed

    Yan, Qingwen; Zhang, Fuxue; Zhang, Wei

    2012-01-01

    In this paper we present recent work on the design, fabrication by silicon micromachining, and packaging of a new gyroscope for stabilizing the autopilot of rotating aircraft. It operates based on oscillation of the silicon pendulum between two torsion girders for detecting the Coriolis force. The oscillation of the pendulum is initiated by the rolling and deflecting motion of the rotating carrier. Therefore, the frequency and amplitude of the oscillation are proportional to the rolling frequency and deflecting angular rate of the rotating carrier, and are measured by the sensing electrodes. A modulated pulse with constant amplitude and unequal width is obtained by a linearizing process of the gyroscope output signal and used to control the deflection of the rotating aircraft. Experimental results show that the gyroscope has a resolution of 0.008 °/s and a bias of 56.18 °/h.

  8. Rock Abrasion Tool Exhibits the Deep Red Pigment of Mars

    NASA Image and Video Library

    2006-07-21

    This image shows the round, metallic working end of the rock abrasion tool at the end of a metallic cylinder. The flat grinding face, attached brush, and much of the smooth, metallic exterior of cylinder are covered with a deep reddish-brown layer of dust

  9. 3D Printed Microtransporters: Compound Micromachines for Spatiotemporally Controlled Delivery of Therapeutic Agents.

    PubMed

    Huang, Tian-Yun; Sakar, Mahmut Selman; Mao, Angelo; Petruska, Andrew J; Qiu, Famin; Chen, Xue-Bo; Kennedy, Stephen; Mooney, David; Nelson, Bradley J

    2015-11-01

    Functional compound micromachines are fabricated by a design methodology using 3D direct laser writing and selective physical vapor deposition of magnetic materials. Microtransporters with a wirelessly controlled Archimedes screw pumping mechanism are engineered. Spatiotemporally controlled collection, transport, and delivery of micro particles, as well as magnetic nanohelices inside microfluidic channels are demonstrated. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  10. A Profilometry-Based Dentifrice Abrasion Method for V8 Brushing Machines Part II: Comparison of RDA-PE and Radiotracer RDA Measures.

    PubMed

    Schneiderman, Eva; Colón, Ellen; White, Donald J; St John, Samuel

    2015-01-01

    The purpose of this study was to compare the abrasivity of commercial dentifrices by two techniques: the conventional gold standard radiotracer-based Radioactive Dentin Abrasivity (RDA) method; and a newly validated technique based on V8 brushing that included a profilometry-based evaluation of dentin wear. This profilometry-based method is referred to as RDA-Profilometry Equivalent, or RDA-PE. A total of 36 dentifrices were sourced from four global dentifrice markets (Asia Pacific [including China], Europe, Latin America, and North America) and tested blindly using both the standard radiotracer (RDA) method and the new profilometry method (RDA-PE), taking care to follow specific details related to specimen preparation and treatment. Commercial dentifrices tested exhibited a wide range of abrasivity, with virtually all falling well under the industry accepted upper limit of 250; that is, 2.5 times the level of abrasion measured using an ISO 11609 abrasivity reference calcium pyrophosphate as the reference control. RDA and RDA-PE comparisons were linear across the entire range of abrasivity (r2 = 0.7102) and both measures exhibited similar reproducibility with replicate assessments. RDA-PE assessments were not just linearly correlated, but were also proportional to conventional RDA measures. The linearity and proportionality of the results of the current study support that both methods (RDA or RDA-PE) provide similar results and justify a rationale for making the upper abrasivity limit of 250 apply to both RDA and RDA-PE.

  11. Surface pre-conditioning with bioactive glass air-abrasion can enhance enamel white spot lesion remineralization.

    PubMed

    Milly, Hussam; Festy, Frederic; Andiappan, Manoharan; Watson, Timothy F; Thompson, Ian; Banerjee, Avijit

    2015-05-01

    To evaluate the effect of pre-conditioning enamel white spot lesion (WSL) surfaces using bioactive glass (BAG) air-abrasion prior to remineralization therapy. Ninety human enamel samples with artificial WSLs were assigned to three WSL surface pre-conditioning groups (n=30): (a) air-abrasion with BAG-polyacrylic acid (PAA-BAG) powder, (b) acid-etching using 37% phosphoric acid gel (positive control) and (c) unconditioned (negative control). Each group was further divided into three subgroups according to the following remineralization therapy (n=10): (I) BAG paste (36 wt.% BAG), (II) BAG slurry (100 wt.% BAG) and (III) de-ionized water (negative control). The average surface roughness and the lesion step height compared to intra-specimen sound enamel reference points were analyzed using non-contact profilometry. Optical changes within the lesion subsurface compared to baseline scans were assessed using optical coherence tomography (OCT). Knoop microhardness evaluated the WSLs' mechanical properties. Raman micro-spectroscopy measured the v-(CO3)(2-)/v1-(PO4)(3-) ratio. Structural changes in the lesion were observed using confocal laser scanning microscopy (CLSM) and scanning electron microscopy-energy dispersive X-ray spectrometry (SEM-EDX). All comparisons were considered statistically significant if p<0.05. PAA-BAG air-abrasion removed 5.1 ± 0.6 μm from the lesion surface, increasing the WSL surface roughness. Pre-conditioning WSL surfaces with PAA-BAG air-abrasion reduced subsurface light scattering, increased the Knoop microhardness and the mineral content of the remineralized lesions (p<0.05). SEM-EDX revealed mineral depositions covering the lesion surface. BAG slurry resulted in a superior remineralization outcome, when compared to BAG paste. Pre-conditioning WSL surfaces with PAA-BAG air-abrasion modified the lesion surface physically and enhanced remineralization using BAG 45S5 therapy. Copyright © 2015 Academy of Dental Materials. Published by Elsevier

  12. A quantitative estimation of the exhaust, abrasion and resuspension components of particulate traffic emissions using electron microscopy

    NASA Astrophysics Data System (ADS)

    Weinbruch, Stephan; Worringen, Annette; Ebert, Martin; Scheuvens, Dirk; Kandler, Konrad; Pfeffer, Ulrich; Bruckmann, Peter

    2014-12-01

    The contribution of the three traffic-related components exhaust, abrasion, and resuspension to kerbside and urban background PM10 and PM1 levels was quantified based on the analysis of individual particles by scanning electron microscopy. A total of 160 samples was collected on 38 days between February and September 2009 at a kerbside and an urban background station in the urban/industrial Ruhr area (Germany). Based on size, morphology, chemical composition and stability under electron bombardment, the 111,003 particles studied in detail were classified into the following 14 particle classes: traffic/exhaust, traffic/abrasion, traffic/resuspension, carbonaceous/organic, industry/metallurgy, industry/power plants, secondary particles, (aged) sea salt, silicates, Ca sulfates, carbonates, Fe oxides/hydroxides, biological particles, and other particles. The traffic/exhaust component consists predominantly of externally mixed soot particles and soot internally mixed with secondary particles. The traffic/abrasion component contains all particles with characteristic tracer elements (Fe, Cu, Ba, Sb, Zn) for brake and tire abrasion. The traffic/resuspension component is defined by the mixing state and comprises all internally mixed particles with a high proportion of silicates or Fe oxides/hydroxides which contain soot or abrasion particles as minor constituent. In addition, silicates and Fe oxides/hydroxides internally mixed with chlorine and sulphur containing particles were also assigned to the traffic/resuspension component. The total contribution of traffic to PM10 was found to be 27% at the urban background station and 48% at the kerbside station, the corresponding values for PM1 are 15% and 39%. These values lie within the range reported in previous literature. The relative share of the different traffic components for PM10 at the kerbside station was 27% exhaust, 15% abrasion, and 58% resuspension (38%, 8%, 54% for PM1). For the urban background, the following

  13. Erosion and abrasion on dental structures undergoing at-home bleaching

    PubMed Central

    Demarco, Flávio Fernando; Meireles, Sônia Saeger; Sarmento, Hugo Ramalho; Dantas, Raquel Venâncio Fernandes; Botero, Tatiana; Tarquinio, Sandra Beatriz Chaves

    2011-01-01

    This review investigates erosion and abrasion in dental structures undergoing at- home bleaching. Dental erosion is a multifactorial condition that may be idiopathic or caused by a known acid source. Some bleaching agents have a pH lower than the critical level, which can cause changes in the enamel mineral content. Investigations have shown that at-home tooth bleaching with low concentrations of hydrogen or carbamide peroxide have no significant damaging effects on enamel and dentin surface properties. Most studies where erosion was observed were in vitro. Even though the treatment may cause side effects like sensitivity and gingival irritation, these usually disappear at the end of treatment. Considering the literature reviewed, we conclude that tooth bleaching agents based on hydrogen or carbamide peroxide have no clinically significant influence on enamel/dentin mineral loss caused by erosion or abrasion. Furthermore, the treatment is tolerable and safe, and any adverse effects can be easily reversed and controlled. PMID:23674914

  14. Comparison between different interdental stripping methods and evaluation of abrasive strips: SEM analysis.

    PubMed

    Grippaudo, Cristina; Cancellieri, Daniela; Grecolini, Maria E; Deli, Roberto

    2010-01-01

    The aim of this study was to evaluate the morphological effects and the surface irregularities produced by different methods of mechanical stripping (abrasive strips and burs) and chemical stripping (37% orthophosphoric acid) and the surface changes following the finishing procedures (polishing strips) or the subsequent application of sealants, in order to establish the right stripping method that can guarantee the smoothest surface. We have also analysed the level of wear on the different abrasive strips employed, according to their structure. 160 proximal surfaces of 80 sound molar teeth extracted for orthodontic and periodontal reasons, were divided into: 1 control group with non-treated enamel proximal surfaces and 5 different groups according to the stripping method used, were observed with scanning electron microscopy (SEM). Each one of the 5 treated groups was also divided into 3 different subgroups according to the finishing procedures or the subsequent application of sealants. The finishing stage following the manual reduction proves to be fundamental in reducing the number and depth of grooves created by the stripping. After the air rotor stripping method, the use of sealants is advised in order to obtain a smoother surface. The analysis of the combinations of mechanical and chemical stripping showed unsatisfactory results. Concerning the wear of the strips, we have highlighted a different abrasion degree for the different types of strips analysed with SEM. The enamel damages are limited only if the finishing procedure is applied, independently of the type of abrasive strip employed. It would be advisable, though clinically seldom possible, the use of sealants after the air rotor stripping technique. Copyright © 2010 Società Italiana di Ortodonzia SIDO. Published by Elsevier Srl. All rights reserved.

  15. Micromachined silicon electrostatic chuck

    DOEpatents

    Anderson, R.A.; Seager, C.H.

    1996-12-10

    An electrostatic chuck is faced with a patterned silicon plate, created by micromachining a silicon wafer, which is attached to a metallic base plate. Direct electrical contact between the chuck face (patterned silicon plate`s surface) and the silicon wafer it is intended to hold is prevented by a pattern of flat-topped silicon dioxide islands that protrude less than 5 micrometers from the otherwise flat surface of the chuck face. The islands may be formed in any shape. Islands may be about 10 micrometers in diameter or width and spaced about 100 micrometers apart. One or more concentric rings formed around the periphery of the area between the chuck face and wafer contain a low-pressure helium thermal-contact gas used to assist heat removal during plasma etching of a silicon wafer held by the chuck. The islands are tall enough and close enough together to prevent silicon-to-silicon electrical contact in the space between the islands, and the islands occupy only a small fraction of the total area of the chuck face, typically 0.5 to 5 percent. The pattern of the islands, together with at least one hole bored through the silicon veneer into the base plate, will provide sufficient gas-flow space to allow the distribution of the helium thermal-contact gas. 6 figs.

  16. Micromachined silicon electrostatic chuck

    DOEpatents

    Anderson, Robert A.; Seager, Carleton H.

    1996-01-01

    An electrostatic chuck is faced with a patterned silicon plate 11, created y micromachining a silicon wafer, which is attached to a metallic base plate 13. Direct electrical contact between the chuck face 15 (patterned silicon plate's surface) and the silicon wafer 17 it is intended to hold is prevented by a pattern of flat-topped silicon dioxide islands 19 that protrude less than 5 micrometers from the otherwise flat surface of the chuck face 15. The islands 19 may be formed in any shape. Islands may be about 10 micrometers in diameter or width and spaced about 100 micrometers apart. One or more concentric rings formed around the periphery of the area between the chuck face 15 and wafer 17 contain a low-pressure helium thermal-contact gas used to assist heat removal during plasma etching of a silicon wafer held by the chuck. The islands 19 are tall enough and close enough together to prevent silicon-to-silicon electrical contact in the space between the islands, and the islands occupy only a small fraction of the total area of the chuck face 15, typically 0.5 to 5 percent. The pattern of the islands 19, together with at least one hole 12 bored through the silicon veneer into the base plate, will provide sufficient gas-flow space to allow the distribution of the helium thermal-contact gas.

  17. Drill Holes and Predation Traces versus Abrasion-Induced Artifacts Revealed by Tumbling Experiments

    PubMed Central

    Gorzelak, Przemysław; Salamon, Mariusz A.; Trzęsiok, Dawid; Niedźwiedzki, Robert

    2013-01-01

    Drill holes made by predators in prey shells are widely considered to be the most unambiguous bodies of evidence of predator-prey interactions in the fossil record. However, recognition of traces of predatory origin from those formed by abiotic factors still waits for a rigorous evaluation as a prerequisite to ascertain predation intensity through geologic time and to test macroevolutionary patterns. New experimental data from tumbling various extant shells demonstrate that abrasion may leave holes strongly resembling the traces produced by drilling predators. They typically represent singular, circular to oval penetrations perpendicular to the shell surface. These data provide an alternative explanation to the drilling predation hypothesis for the origin of holes recorded in fossil shells. Although various non-morphological criteria (evaluation of holes for non-random distribution) and morphometric studies (quantification of the drill hole shape) have been employed to separate biological from abiotic traces, these are probably insufficient to exclude abrasion artifacts, consequently leading to overestimate predation intensity. As a result, from now on, we must adopt more rigorous criteria to appropriately distinguish abrasion artifacts from drill holes, such as microstructural identification of micro-rasping traces. PMID:23505530

  18. Effect of Whitening Toothpastes on Dentin Abrasion: An In Vitro Study.

    PubMed

    Vieira, Gustavo Henrique Apolinario; Nogueira, Marcia Bessa; Gaio, Eduardo Jose; Rosing, Cassiano Kuchenbecker; Santiago, Sergio Lima; Rego, Rodrigo Otavio

    To compare the effect of toothbrushing abrasion with hydrated silica-based whitening and regular toothpastes on root dentin using contact profilometry. Ninety dentin specimens (4 x 4 x 2 mm) were randomly divided into five experimental groups (n = 18) according to the toothpaste: three whitening (W1, W2 and W3) and two regular toothpastes (R1 and R2) produced by two different manufacturers. Using a brushing machine, each specimen was brushed with a constant load of 300 g for 2500 cycles (4.5 cycles/s). The toothpastes were diluted at a ratio of 1:3 w/w (dentifrice:distilled water). The brush diamond tip of the profilometer moved at a constant speed of 0.05 mm/s with a force of 0.7 mN. The average value of brushing abrasion in μm (mean ± SD) was obtained from five consecutive measurements of each specimen: W1 = 8.86 ± 1.58, W2 = 7.59 ± 1.04, W3 = 8.27 ± 2.39, R1 = 2.89 ± 1.05 and R2= 2.94 ± 1.29. There was a significant difference between groups (ANOVA, p<0.0001). Post-hoc Tukey's test for multiple comparisons showed differences between all the whitening and regular toothpastes, but not among the whitening nor among the regular toothpastes. The whitening toothpastes tested can cause more dentin abrasion than the regular ones.

  19. Property-process relations in simulated clinical abrasive adjusting of dental ceramics.

    PubMed

    Yin, Ling

    2012-12-01

    This paper reports on property-process correlations in simulated clinical abrasive adjusting of a wide range of dental restorative ceramics using a dental handpiece and diamond burs. The seven materials studied included four mica-containing glass ceramics, a feldspathic porcelain, a glass-infiltrated alumina, and a yttria-stabilized tetragonal zirconia. The abrasive adjusting process was conducted under simulated clinical conditions using diamond burs and a clinical dental handpiece. An attempt was made to establish correlations between process characteristics in terms of removal rate, chipping damage, and surface finish and material mechanical properties of hardness, fracture toughness and Young's modulus. The results show that the removal rate is mainly a function of hardness, which decreases nonlinearly with hardness. No correlations were noted between the removal rates and the complex relations of hardness, Young's modulus and fracture toughness. Surface roughness was primarily a linear function of diamond grit size and was relatively independent of materials. Chipping damage in terms of the average chipping width decreased with fracture toughness except for glass-infiltrated alumina. It also had higher linear correlations with critical strain energy release rates (R²=0.66) and brittleness (R²=0.62) and a lower linear correlation with indices of brittleness (R²=0.32). Implications of these results can provide guidance for the microstructural design of dental ceramics, optimize performance, and guide the proper selection of technical parameters in clinical abrasive adjusting conducted by dental practitioners. Copyright © 2012 Elsevier Ltd. All rights reserved.

  20. Abrasive-assisted Nickel Electroforming Process with Moving Cathode

    NASA Astrophysics Data System (ADS)

    REN, Jianhua; ZHU, Zengwei; XIA, Chunqiu; QU, Ningsong; ZHU, Di

    2017-03-01

    In traditional electroforming process for revolving parts with complex profiles, the drawbacks on surface of deposits, such as pinholes and nodules, will lead to varying physical and mechanical properties on different parts of electroformed components. To solve the problem, compositely moving cathode is employed in abrasive-assisted electroforming of revolving parts with complicated profiles. The cathode translates and rotates simultaneously to achieve uniform friction effect on deposits without drawbacks. The influences of current density and translation speed on the microstructure and properties of the electroformed nickel layers are investigated. It is found that abrasive-assisted electroforming with compound cathode motion can effectively remove the pinholes and nodules, positively affect the crystal nucleation, and refine the grains of layer. The increase of current density will lead to coarse microstructure and lower micro hardness, from 325 HV down to 189 HV. While, faster translational linear speed produces better surface quality and higher micro hardness, from 236 HV up to 283 HV. The weld-ability of the electroformed layers are also studied through the metallurgical analysis of welded joints between nickel layer and 304 stainless steel. The electrodeposited nickel layer shows fine performance in welding. The novel compound motion of cathode promotes the mechanical properties and refines the microstructure of deposited layer.

  1. Clogging in micromachined Joule-Thomson coolers: Mechanism and preventive measures

    NASA Astrophysics Data System (ADS)

    Cao, H. S.; Vanapalli, S.; Holland, H. J.; Vermeer, C. H.; ter Brake, H. J. M.

    2013-07-01

    Micromachined Joule-Thomson coolers can be used for cooling small electronic devices. However, a critical issue for long-term operation of these microcoolers is the clogging caused by the deposition of water that is present as impurity in the working fluid. We present a model that describes the deposition process considering diffusion and kinetics of water molecules. In addition, the deposition and sublimation process was imaged, and the experimental observation fits well to the modeling predictions. By changing the temperature profile along the microcooler, the operating time of the microcooler under test at 105 K extends from 11 to 52 h.

  2. Deflection of jets induced by jet-cloud and jet-galaxy interactions

    NASA Astrophysics Data System (ADS)

    Mendoza, S.; Longair, M. S.

    2001-06-01

    The model first introduced by Raga & Cantó in which astrophysical jets are deflected on passing through an isothermal high-density region is generalized by taking into account gravitational effects on the motion of the jet as it crosses the high-density cloud. The problem is also generalized for relativistic jets in which gravitational effects induced by the cloud are neglected. Two further cases, classical and relativistic, are discussed for the cases in which the jet is deflected on passing through the interstellar gas of a galaxy in which a dark matter halo dominates the gravitational potential. The criteria for the stability of jets due to the formation of internal shocks are also discussed.

  3. Randomized Controlled Trial to Explore the Effect of Experimental Low Abrasivity Dentifrices on Enamel Gloss and Smoothness, and the Build-up of Extrinsic Tooth Stain.

    PubMed

    Milleman, Kimberly R; Milleman, Jeffery L; Young, Sarah; Parkinson, Charles

    2017-06-01

    To evaluate and compare examiner-assessed changes in enamel gloss, extrinsic dental stain, and surface smoothness following one, two, four, and eight weeks of twice-daily use of an experimental low abrasivity desensitizing dentifrice (relative dentin abrasivity [RDA] ~40) containing 5% sodium tripolyphosphate (STP) chemical cleaning agent and 1% aluminum trioxide abrasive. This was compared with an ultra-low abrasivity dentifrice (5% STP only; RDA ~13), a moderate abrasivity fluoride dentifrice (RDA ~80), and a higher abrasivity marketed whitening dentifrice (RDA ~142). This was a single-center, examiner-blind, randomized, controlled, parallel group study in healthy adults stratified by gloss score and age. Following a washout period with a conventional silica abrasive dentifrice, subjects received a dental scale and polish and were randomized to treatment. Subjects brushed their teeth for two minutes, twice daily, with their assigned dentifrice. Enamel gloss was assessed visually by comparing the facial surfaces of the maxillary incisors to the Sturzenberger gloss standards. Extrinsic dental stain was measured on the 12 anterior teeth (facial and lingual) using the Macpherson modification of the Lobene Stain Index (MLSI). Tooth smoothness was assessed using scanning electron microscope (SEM) analysis of a silicone impression of the central incisors. Of 120 screened subjects, 95 were randomized to the study. Subjects using the low abrasivity aluminum trioxide/STP dentifrice demonstrated statistically significant (p < 0.05) and increasing improvements in surface gloss over baseline at all time points, with a significant treatment effect compared to all other study dentifrices from Week 2 (p < 0.05). With respect to dental stain, the low abrasivity dentifrice group had the lowest stain score at each post-treatment time point and demonstrated statistically significantly less stain compared to all study dentifrices at Weeks 2 (p < 0.05) and 8 (p < 0.01). For tooth

  4. Propelled abrasive grit for weed control in organic silage corn

    USDA-ARS?s Scientific Manuscript database

    Weed management in organic farming requires many strategies to accomplish acceptable control and maintain crop yields. This two-year field study used air propelled abrasive grit for in-row weed control in a silage corn system. Corncob grit was applied as a single application at corn vegetative growt...

  5. High-intensity fibre laser design for micro-machining applications

    NASA Astrophysics Data System (ADS)

    Ortiz-Neria, D. I.; Martinez-Piñón, F.; Hernandez-Escamilla, H.; Alvarez-Chavez, J. A.

    2010-11-01

    This work is focused on the design of a 250W high-intensity continuous-wave fibre optic laser with a 15μm spot size beam and a beam parameter product (BPP) of 1.8 for its use on Laser-assisted Cold Spray process (LCS) in the micro-machining areas. The metal-powder deposition process LCS, is a novel method based on Cold Spray technique (CS) assisted by laser technology. The LCS accelerates metal powders by the use of a high-pressure gas in order to achieve flash welding of particles over substrate. In LCS, the critical velocity of impact is lower with respect with CS while the powder particle is heated before the deposition by a laser beam. Furthermore, LCS does not heat the powder to achieve high temperatures as it happens in plasma processes. This property puts aside cooling problems which normally happen in sintered processes with high oxygen/nitrogen concentration levels. LCS will be used not only in deposition of thin layers. After careful design, proof of concept, experimental data, and prototype development, it should be feasible to perform micro-machining precise work with the use of the highintensity fibre laser presented in this work, and selective deposition of particles, in a similar way to the well-known Direct Metal Laser Sintering process (DMLS). The fibre laser consists on a large-mode area, Yb3+-doped, semi-diffraction limited, 25-m fibre laser cavity, operating in continuous wave regime. The fibre shows an arguably high slope-efficiency with no signs of roll-over. The measured M2 value is 1.8 and doping concentration of 15000ppm. It was made with a slight modification of the traditional MCVD technique. A full optical characterization will be presented.

  6. Tooth brush abrasion of paint-on resins for shade modification of crown and bridge resins.

    PubMed

    Fujii, Koichi; Ban, Seiji; McCabe, John F

    2003-09-01

    The purpose of this study was to evaluate the surface roughness and resistance to toothbrush abrasion of three experimental paint-on composite resins developed for the shade modification of crown and bridge resins. The paint-on resins had less filler volume fraction than restorative composites or the crown and bridge resins and consequently were of low viscosity. The maximum surface roughness (Rmax) and the maximum depth loss by abrasion for the paint-on resins following 40,000 cycles of brushing ranged from 2.45 to 4.07 microm and 8.63 to 13.67 microm, respectively. Rmax values were 37.7-67.5% lower than that for the crown and bridge resin subjected to the same test. Wear depth was 19.9-49.4% lower than for the crown and bridge resin. These results suggest that the paint-on resins are expected to have adequate resistance to toothbrush abrasion and may therefore be suitable for clinical use.

  7. The rock abrasion record at Gale Crater: Mars Science Laboratory results from Bradbury Landing to Rocknest

    USGS Publications Warehouse

    Bridges, N.T.; Calef, F.J.; Hallett, B.W.; Herkenhoff, Kenneth E.; Lanza, N.L.; Le Mouélic, S.; Newman, C.E.; Blaney, D.L.; de Pablo, M.A.; Kocurek, G.A.; Langevin, Y.; Lewis, K.W.; Mangold, N.; Maurice, S.; Meslin, P.-Y.; Pinet, P.; Renno, N.O.; Rice, CM.S.; Richardson, M.E.; Sautter, V.; Sletten, R.S.; Wiens, R.C.; Yingst, R.A.

    2014-01-01

    Ventifacts, rocks abraded by wind-borne particles, are found in Gale Crater, Mars. In the eastward drive from “Bradbury Landing” to “Rocknest,” they account for about half of the float and outcrop seen by Curiosity's cameras. Many are faceted and exhibit abrasion textures found at a range of scales, from submillimeter lineations to centimeter-scale facets, scallops, flutes, and grooves. The drive path geometry in the first 100 sols of the mission emphasized the identification of abrasion facets and textures formed by westerly flow. This upwind direction is inconsistent with predictions based on models and the orientation of regional dunes, suggesting that these ventifact features formed from very rare high-speed winds. The absence of active sand and evidence for deflation in the area indicates that most of the ventifacts are fossil features experiencing little abrasion today.

  8. Micromachining of silicon carbide on silicon fabricated by low-pressure chemical vapour deposition

    NASA Astrophysics Data System (ADS)

    Behrens, Ingo; Peiner, Erwin; Bakin, Andrey S.; Schlachetzki, Andreas

    2002-07-01

    We describe the fabrication of silicon carbide layers for micromechanical applications using low-pressure metal-organic chemical vapour deposition at temperatures below 1000 °C. The layers can be structured by lift-off using silicon dioxide as a sacrificial layer. A large selectivity with respect to silicon can be exploited for bulk micromachining. Thin membranes are fabricated which exhibit high mechanical quality, as necessary for applications in harsh environments.

  9. Compact Micromachined Infrared Bandpass Filters for Planetary Spectroscopy

    NASA Technical Reports Server (NTRS)

    Merrell, Willie C., II; Aslam, Shahid; Brown, Ari D.; Chervenak, James A.; Huang, Wei-Chung; Quijada, Manuel; Wollack, Edward

    2011-01-01

    The future needs of space based observational planetary and astronomy missions include low mass and small volume radiometric instruments that can operate in high radiation and low temperature environments. Here we focus on a central spectroscopic component, the bandpass filter. We model the bandpass response of the filters to target the wavelength of the resonance peaks at 20, 40, and 60 micrometers and report good agreement between the modeled and measured response. We present a technique of using common micromachining processes for semiconductor fabrication to make compact, free standing resonant metal mesh filter arrays with silicon support frames. The process can accommodate multiple detector array architectures and the silicon frame provides lightweight mechanical support with low form factor. We also present a conceptual hybridization of the filters with a detector array.

  10. Capacitive micromachined ultrasonic transducers (CMUTs) with isolation posts.

    PubMed

    Huang, Yongli; Zhuang, Xuefeng; Haeggstrom, Edward O; Ergun, A Sanli; Cheng, Ching-Hsiang; Khuri-Yakub, Butrus T

    2008-03-01

    In this paper, an improved design of a capacitive micromachined ultrasonic transducer (CMUT) is presented. The design improvement aims to address the reliability issues of a CMUT and to extend the device operation beyond the contact (collapse) voltage. The major design novelty is the isolation posts in the vacuum cavities of the CMUT cells instead of full-coverage insulation layers in conventional CMUTs. This eliminates the contact voltage drifting due to charging caused by the insulation layer, and enables repeatable CMUT operation in the post-contact regime. Ultrasonic tests of the CMUTs with isolation posts (PostCMUTs) in air (electrical input impedance and capacitance vs. bias voltage) and immersion (transmission and reception) indicate acoustic performance similar to that obtained from conventional CMUTs while no undesired side effects of this new design is observed.

  11. 3D capacitive tactile sensor using DRIE micromachining

    NASA Astrophysics Data System (ADS)

    Chuang, Chiehtang; Chen, Rongshun

    2005-07-01

    This paper presents a three dimensional micro capacitive tactile sensor that can detect normal and shear forces which is fabricated using deep reactive ion etching (DRIE) bulk silicon micromachining. The tactile sensor consists of a force transmission plate, a symmetric suspension system, and comb electrodes. The sensing character is based on the changes of capacitance between coplanar sense electrodes. High sensitivity is achieved by using the high aspect ratio interdigital electrodes with narrow comb gaps and large overlap areas. The symmetric suspension mechanism of this sensor can easily solve the coupling problem of measurement and increase the stability of the structure. In this paper, the sensor structure is designed, the capacitance variation of the proposed device is theoretically analyzed, and the finite element analysis of mechanical behavior of the structures is performed.

  12. Micromachined microbial and photosynthetic fuel cells

    NASA Astrophysics Data System (ADS)

    Chiao, Mu; Lam, Kien B.; Lin, Liwei

    2006-12-01

    This paper presents two types of fuel cells: a miniature microbial fuel cell (µMFC) and a miniature photosynthetic electrochemical cell (µPEC). A bulk micromachining process is used to fabricate the fuel cells, and the prototype has an active proton exchange membrane area of 1 cm2. Two different micro-organisms are used as biocatalysts in the anode: (1) Saccharomyces cerevisiae (baker's yeast) is used to catalyze glucose and (2) Phylum Cyanophyta (blue-green algae) is used to produce electrons by a photosynthetic reaction under light. In the dark, the µPEC continues to generate power using the glucose produced under light. In the cathode, potassium ferricyanide is used to accept electrons and electric power is produced by the overall redox reactions. The bio-electrical responses of µMFCs and µPECs are characterized with the open-circuit potential measured at an average value of 300-500 mV. Under a 10 ohm load, the power density is measured as 2.3 nW cm-2 and 0.04 nW cm-2 for µMFCs and µPECs, respectively.

  13. Toothbrush abrasion, simulated tongue friction and attrition of eroded bovine enamel in vitro.

    PubMed

    Vieira, A; Overweg, E; Ruben, J L; Huysmans, M C D N J M

    2006-05-01

    Enamel erosion results in the formation of a softened layer that is susceptible to disruption by mechanical factors such as brushing abrasion, tongue friction and attrition. The aim of this study was to investigate the individual contribution of those mechanical insults to the enamel loss caused by dental erosion. Forty two bovine enamel samples were randomly divided into seven groups (n=6 per group) that were submitted to 3cycles of one of the following regimes: erosion and remineralization (er/remin); toothbrush abrasion and remineralization (abr/remin); erosion, toothbrush abrasion and remineralization (er/abr/remin); attrition and remineralization (at/remin); erosion, attrition and remineralization (er/at/remin); simulated tongue friction and remineralization (tg/remin); erosion, simulated tongue friction and remineralization (er/tg/remin). Erosion took place in a demineralization solution (50mM citric acid, pH 3) for 10min under agitation. Brushing abrasion, tongue friction and attrition were simulated for 1min using a home-made wear device. Remineralization was carried out in artificial saliva for 2h. Enamel loss was quantified using optical profilometry. One-way ANOVA indicated a significant difference between the amounts of enamel lost due to the different wear regimes (p

  14. Abrasive Wear Resistance of Tool Steels Evaluated by the Pin-on-Disc Testing

    NASA Astrophysics Data System (ADS)

    Bressan, José Divo; Schopf, Roberto Alexandre

    2011-05-01

    Present work examines tool steels abrasion wear resistance and the abrasion mechanisms which are one main contributor to failure of tooling in metal forming industry. Tooling used in cutting and metal forming processes without lubrication fails due to this type of wear. In the workshop and engineering practice, it is common to relate wear resistance as function of material hardness only. However, there are others parameters which influences wear such as: fracture toughness, type of crystalline structure and the occurrence of hard precipitate in the metallic matrix and also its nature. In the present investigation, the wear mechanisms acting in tool steels were analyzed and, by normalized tests, wear resistance performance of nine different types of tool steels were evaluated by pin-on-disc testing. Conventional tool steels commonly used in tooling such as AISI H13 and AISI A2 were compared in relation to tool steels fabricated by sintering process such as Crucible CPM 3V, CPM 9V and M4 steels. Friction and wear testing were carried out in a pin-on-disc automated equipment which pin was tool steel and the counter-face was a abrasive disc of silicon carbide. Normal load of 5 N, sliding velocity of 0.45 m/s, total sliding distance of 3000 m and room temperature were employed. The wear rate was calculated by the Archard's equation and from the plotted graphs of pin cumulated volume loss versus sliding distance. Specimens were appropriately heat treated by quenching and three tempering cycles. Percentage of alloying elements, metallographic analyses of microstructure and Vickers microhardness of specimens were performed, analyzed and correlated with wear rate. The work is concluded by the presentation of a rank of tool steel wear rate, comparing the different tool steel abrasion wear resistance: the best tool steel wear resistance evaluated was the Crucible CPM 9V steel.

  15. Correlating field and laboratory rates of particle abrasion, Rio Medio, Sangre de Cristo Mountains, New Mexico

    NASA Astrophysics Data System (ADS)

    Polito, P. J.; Sklar, L. S.

    2006-12-01

    River bed sediments commonly fine downstream due to a combination of particle abrasion, selective transport of finer grains, and fining of the local sediment supply from hillslopes and tributaries. Particle abrasion rates can be directly measured in the laboratory using tumbling barrels and annular flumes, however, scaling experimental particle abrasion rates to the field has proven difficult due to the confounding effects of selective transport and local supply variations. Here we attempt to correlate laboratory and field rates of particle abrasion in a field setting where these confounding effects can be controlled. The Rio Medio, which flows westward from the crest of the Sangre de Cristo Mountains in north central New Mexico, is one of several streams studied by John P. Miller in the early 1960's. Several kilometers downstream of its headwaters, the river crosses the Picuris-Pecos fault. Upstream of the fault the river receives quartzite, sandstone and shale clasts from the Ortega Formation, while downstream sediments are supplied by the Embudo Granite. Because the upstream lithologies are not resupplied downstream of the fault, any observed fining of these clasts should be due only to abrasion and selective transport. We hypothesize that we can account for the effects of selective transport by comparing relative fining rates for the different upstream lithologies from both the field and a laboratory tumbler. By correlating laboratory abrasion rates with rock strength, we can predict the relative fining rates due solely to abrasion expected in the field; differences between the predicted and observed fining rates could then be attributed to selective transport. We used point counts to measure bed surface sediment grain size distributions at 15 locations along a 25 kilometer reach of the Rio Medio, beginning just downstream of the fault and ending upstream of a developed area with disturbed channel conditions. We recorded intermediate particle diameter as well

  16. Continuous Monitoring of Pin Tip Wear and Penetration into Rock Surface Using a New Cerchar Abrasivity Testing Device

    NASA Astrophysics Data System (ADS)

    Hamzaban, Mohammad-Taghi; Memarian, Hossein; Rostami, Jamal

    2014-03-01

    Evaluation of rock abrasivity is important when utilizing mechanized excavation in various mining and civil projects in hard rock. This is due to the need for proper selection of the rock cutting tools, estimation of the tool wear, machine downtime for cutter change, and costs. The Cerchar Abrasion Index (CAI) test is one of the simplest and most widely used methods for evaluating rock abrasivity. In this study, a new device for the determination of frictional forces and depth of pin penetration into the rock surface during a Cerchar test is discussed. The measured parameters were used to develop an analytical model for calculation of the size of the wear flat (and hence a continuous measure of CAI as the pin moves over the sample) and pin tip penetration into the rock during the test. Based on this model, continuous curves of CAI changes and pin tip penetration into the rock were plotted. Results of the model were used for introduction of a new parameter describing rock-pin interaction and classification of rock abrasion.

  17. Air abrasion experiments in U-Pb dating of zircon

    USGS Publications Warehouse

    Goldich, S.S.; Fischer, L.B.

    1986-01-01

    Air abrasion of zircon grains can remove metamict material that has lost radiogenic Pb and zircon overgrowths that were added during younger events and thereby improve the precision of the age measurements and permit closer estimates of the original age. Age discordance that resulted from a single disturbance of the U-Pb isotopic decay systems, as had been demonstrated by T.E. Krogh, can be considerably reduced, and, under favorable conditions, the ages brought into concordancy. Two or more events complicate the U-Pb systematics, but a series of abrasion experiments can be helpful in deciphering the geologic history and in arriving at a useful interpretation of the probable times of origin and disturbances. In east-central Minnesota, U.S.A., Penokean tonalite gneiss is dated at 1869 ?? 5 Ma, and sheared granite gneiss is shown to have been a high-level granite intrusion at 1982 ?? 5 Ma in the McGrath Gneiss precursor. Tonalite gneiss and a mafic granodiorite in the Rainy Lake area, Ontario, Canada, are dated at 2736 ?? 16 and 2682 ?? 4 Ma, respectively. The tonalitic phase of the Morton Gneiss, southwestern Minnesota, is dated at 3662 ?? 42 Ma. ?? 1986.

  18. Fabrication of an integrated high-quality-factor (high-Q) optofluidic sensor by femtosecond laser micromachining.

    PubMed

    Song, Jiangxin; Lin, Jintian; Tang, Jialei; Liao, Yang; He, Fei; Wang, Zhaohui; Qiao, Lingling; Sugioka, Koji; Cheng, Ya

    2014-06-16

    We report on fabrication of a microtoroid resonator of a high-quality factor (i.e., Q-factor of ~3.24 × 10(6) measured under the critical coupling condition) integrated in a microfluidic channel using femtosecond laser three-dimensional (3D) micromachining. Coupling of light into and out of the microresonator has been realized with a fiber taper that is reliably assembled with the microtoroid. The assembly of the fiber to the microtoroid is achieved by welding the fiber taper onto the sidewall of the microtoroid using CO2 laser irradiation. The integrated microresonator maintains a high Q-factor of 3.21 × 10(5) as measured in air, which should still be sufficient for many sensing applications. We test the functionality of the integrated optofluidic sensor by performing bulk refractive index sensing of purified water doped with tiny amount of salt. It is shown that a detection limit of ~1.2 × 10(-4) refractive index unit can be achieved. Our result showcases the capability of integration of high-Q microresonators with complex microfluidic systems using femtosecond laser 3D micromachining.

  19. Spent coffee grounds as air-propelled abrasive grit for weed control

    USDA-ARS?s Scientific Manuscript database

    Spent coffee grounds (SCG) represent a significant food waste residue. Value-added uses for this material would be beneficial. Gritty agricultural residues, such as corncob grit, can be employed as abrasive air-propelled agents for organically-compatible postemergence shredding of weed seedlings sel...

  20. Hydrodynamic Stability Analysis of Multi-jet Effects in Swirling Jet Combustors

    NASA Astrophysics Data System (ADS)

    Emerson, Benjamin; Lieuwen, Tim

    2016-11-01

    Many practical combustion devices use multiple swirling jets to stabilize flames. However, much of the understanding of swirling jet dynamics has been generated from experimental and computational studies of single reacting, swirling jets. A smaller body of literature has begun to explore the effects of multi-jet systems and the role of jet-jet interactions on the macro-system dynamics. This work uses local temporal and spatio-temporal stability analyses to isolate the hydrodynamic interactions of multiple reacting, swirling jets, characterized by jet diameter, D, and spacing, L. The results first identify the familiar helical modes in the single jet. Comparison to the multi-jet configuration reveals these same familiar modes simultaneously oscillating in each of the jets. Jet-jet interaction is mostly limited to a spatial synchronization of each jet's oscillations at the jet spacing values analyzed here (L/D =3.5). The presence of multiple jets vs a single jet has little influence on the temporal and absolute growth rates. The biggest difference between the single and multi-jet configurations is the presence of nearly degenerate pairs of hydrodynamic modes in the multi-jet case, with one mode dominated by oscillations in the inner jet, and the other in the outer jets. The close similarity between the single and multi-jet hydrodynamics lends insight into experiments from our group.

  1. The role of the microfissuration of the rock matrix in the abrasion resistance of ornamental granitic rocks

    NASA Astrophysics Data System (ADS)

    Rodríguez-Rey, Angel; Sanchez-Delgado, Nuria; Camino, Clara; Calleja, Lope; Ruiz de Argandoña, Vicente G.; Setien, Alexia

    2015-04-01

    The microcrack density and the abrasion resistance of five ornamental granites (Albero, Gris Alba, Mondariz, Rosa Porriño and Traspieles) from Galicia (NW Spain) have been quantified as part of a research aimed to interpret the cuttability of the rocks in relation to the petrophysical properties of the rock matrix. Large blocks from the quarries have been cut with an industrial saw and the microcrack density and the abrasion resistance have been measured in two surfaces: H, parallel to the cut surface; T, perpendicular both to the cut surface and the cutting direction. Both planes are perpendicular to the rift plane, as it is known in quarry works. The microcrack density has been quantified following an stereological procedure applied to polished sections imaged under scanning electron microscopy. The magnification of the images allowed the study of microcracks as narrow as 2 microns in aperture. The density has been quantified in terms of length of microcrack traces per surface unit so possible anisotropies of the microcrack network could be detected. The obtained values are in the typical range for this type of rocks although the Traspieles granite shows a higher value due to its weathering degree (H: 5.11, T: 5.37 mm/mm2). The values measured in the two surfaces (H and T) are quite similar in four of the rocks; only the Albero granite shows a marked anisotropy (H: 2.76 T: 3.53 mm/mm2). The abrasion resistance of the rocks has been measured following the european standard EN 14157:2004 using the capon method. The rocks can be classified in two groups according to their abrasion resistance. Rosa Porriño, Gris Alba and Mondariz granites are the more resistant to abrasion with values around 16-17 mm. Albero and Traspieles granites are less resistant with values higher than 19 mm. The results show a good correlation between the microcrack density and the abrasion resistance. As can be expected the rocks with high microcrack density show low abrasion resistance. The

  2. Particle size and composition distribution analysis of automotive brake abrasion dusts for the evaluation of antimony sources of airborne particulate matter

    NASA Astrophysics Data System (ADS)

    Iijima, Akihiro; Sato, Keiichi; Yano, Kiyoko; Tago, Hiroshi; Kato, Masahiko; Kimura, Hirokazu; Furuta, Naoki

    Abrasion dusts from three types of commercially available non-steel brake pads were generated by a brake dynamometer at disk temperatures of 200, 300 and 400 °C. The number concentration of the abrasion dusts and their aerodynamic diameters ( Dp) were measured by using an aerodynamic particle sizer (APS) spectrometer with high temporal and size resolution. Simultaneously, the abrasion dusts were also collected based on their size by using an Andersen low-volume sampler, and the concentrations of metallic elements (K, Ti, Fe, Cu, Zn, Sb and Ba) in the size-classified dusts were measured by ICP-AES and ICP-MS. The number distributions of the brake abrasion dusts had a peak at Dp values of 1 and 2 μm; this peak shifted to the coarse side with an increase in the disk temperature. The mass distributions calculated from the number distributions have peaks between Dp values of 3 and 6 μm. The shapes of the elemental mass distributions (Ti, Fe, Cu, Zn, Sb and Ba) in size-classified dusts were very similar to the total mass distributions of the brake abrasion dusts. These experimental results indicated that the properties of brake abrasion dusts were consistent with the characteristics of Sb-enriched fine airborne particulate matter. Based on these findings and statistical data, the estimation of Sb emission as airborne particulate matter from friction brakes was also discussed.

  3. Fuzzy jets

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mackey, Lester; Nachman, Benjamin; Schwartzman, Ariel

    Collimated streams of particles produced in high energy physics experiments are organized using clustering algorithms to form jets . To construct jets, the experimental collaborations based at the Large Hadron Collider (LHC) primarily use agglomerative hierarchical clustering schemes known as sequential recombination. We propose a new class of algorithms for clustering jets that use infrared and collinear safe mixture models. These new algorithms, known as fuzzy jets , are clustered using maximum likelihood techniques and can dynamically determine various properties of jets like their size. We show that the fuzzy jet size adds additional information to conventional jet tagging variablesmore » in boosted topologies. Furthermore, we study the impact of pileup and show that with some slight modifications to the algorithm, fuzzy jets can be stable up to high pileup interaction multiplicities.« less

  4. Fuzzy jets

    DOE PAGES

    Mackey, Lester; Nachman, Benjamin; Schwartzman, Ariel; ...

    2016-06-01

    Collimated streams of particles produced in high energy physics experiments are organized using clustering algorithms to form jets . To construct jets, the experimental collaborations based at the Large Hadron Collider (LHC) primarily use agglomerative hierarchical clustering schemes known as sequential recombination. We propose a new class of algorithms for clustering jets that use infrared and collinear safe mixture models. These new algorithms, known as fuzzy jets , are clustered using maximum likelihood techniques and can dynamically determine various properties of jets like their size. We show that the fuzzy jet size adds additional information to conventional jet tagging variablesmore » in boosted topologies. Furthermore, we study the impact of pileup and show that with some slight modifications to the algorithm, fuzzy jets can be stable up to high pileup interaction multiplicities.« less

  5. Micromachined microwave signal control device and method for making same

    DOEpatents

    Forman, Michael A [San Francisco, CA

    2008-09-02

    A method for fabricating a signal controller, e.g., a filter or a switch, for a coplanar waveguide during the LIGA fabrication process of the waveguide. Both patterns for the waveguide and patterns for the signal controllers are created on a mask. Radiation travels through the mask and reaches a photoresist layer on a substrate. The irradiated portions are removed and channels are formed on the substrate. A metal is filled into the channels to form the conductors of the waveguide and the signal controllers. Micromachined quasi-lumped elements are used alone or together as filters. The switch includes a comb drive, a spring, a metal plunger, and anchors.

  6. Optical properties of micromachined polysilicon reflective surfaces with etching holes

    NASA Astrophysics Data System (ADS)

    Zou, Jun; Byrne, Colin; Liu, Chang; Brady, David J.

    1998-08-01

    MUMPS (Multi-User MEMS Process) is receiving increasingly wide use in micro optics. We have investigated the optical properties of the polysilicon reflective surface in a typical MUMPS chip within the visible light spectrum. The effect of etching holes on the reflected laser beam is studied. The reflectivity and diffraction patterns at five different wavelengths have been measured. The optical properties of the polysilicon reflective surface are greatly affected by the surface roughness, the etching holes, as well as the material. The etching holes contribute to diffraction and reduction of reflectivity. This study provides a basis for optimal design of micromachined free-space optical systems.

  7. Micromachined devices for interfacing neurons

    NASA Astrophysics Data System (ADS)

    Stieglitz, Thomas; Beutel, Hansjoerg; Blau, Cornelia; Meyer, Joerg-Uwe

    1998-07-01

    Micromachining technologies were established to fabricate microelectrode arrays and devices for interfacing parts of the central or peripheral nervous system. The devices were part of a neural prosthesis that allows simultaneous multichannel recording and multisite stimulation of neurons. Overcoming the brittle mechanics of silicon devices and challenging housing demands close to the nerve we established a process technology to fabricate light-weighted and highly flexible polyimide based devices. Platinum and iridium thin-film electrodes were embedded in the polyimide. With reactive ion etching we got the possibility to simply integrate interconnections and to form nearly arbitrary outer shapes of the devices. We designed multichannel devices with up to 24 electrodes in the shape of plates, hooks and cuffs for different applications. In vitro tests exhibited stable electrode properties and no cytotoxicity of the materials and the devices. Sieve electrodes were chronically implanted in rats to interface the regenerating sciatic nerve. After six months, recordings and stimulation of the nerve via electrodes on the micro-device proved functional reinnervation of the limb. Concentric circular structures were designed for a retina implant for the blind. In preliminary studies in rabbits, evoked potentials in the visual cortex corresponded to stimulation sites of the implant.

  8. Abrasion and Fragmentation Processes in Marly Sediment Transport

    NASA Astrophysics Data System (ADS)

    Le Bouteiller, C.; Naaim, F.; Mathys, N.; Lave, J.; Kaitna, R.

    2009-04-01

    In the highly erosive marly catchments of Draix (Southern Alps, France), downstream fining of sediments has been observed and can not be explained by selective sorting. Moreover, high concentrations of suspended fine sediment (up to 800 g/L) are measured during flood events in these basins. These observations lead to the hypothesis that abrasion and fragmentation of marly sediments during transport play an important role in the production of fine sediments. Several experiments are conducted in order to quantify these processes: material from the river bed is introduced into the water flow in a circular flume as well as in a large scale rotating drum. Abrasion rates range from 5 to 15%/km, depending on the lithology: marls from the upper basin are more erosive than those from the lower basin. Modifications of grain size distribution in the rough fraction are also observed. Field measurements are also conducted. Downstream of the main marly sediment sources, the river bed is composed of marls and limestone pebbles. We have sampled the river bed for analysis of grain size distribution and lithology. First results show a decrease of the proportion of marls along the river bed. This is in accordance with the high erosion rates observed in our laboratory experiments. Further investigations are planned in order to study more precisely marl grain size distribution, especially in the finer fraction.

  9. Surface micromachined counter-meshing gears discrimination device

    DOEpatents

    Polosky, Marc A.; Garcia, Ernest J.; Allen, James J.

    2000-12-12

    A surface micromachined Counter-Meshing Gears (CMG) discrimination device which functions as a mechanically coded lock. Each of two CMG has a first portion of its perimeter devoted to continuous driving teeth that mesh with respective pinion gears. Each EMG also has a second portion of its perimeter devoted to regularly spaced discrimination gear teeth that extend outwardly on at least one of three levels of the CMG. The discrimination gear teeth are designed so as to pass each other without interference only if the correct sequence of partial rotations of the CMG occurs in response to a coded series of rotations from the pinion gears. A 24 bit code is normally input to unlock the device. Once unlocked, the device provides a path for an energy or information signal to pass through the device. The device is designed to immediately lock up if any portion of the 24 bit code is incorrect.

  10. Fabrication of a novel quartz micromachined gyroscope

    NASA Astrophysics Data System (ADS)

    Xie, Liqiang; Xing, Jianchun; Wang, Haoxu; Wu, Xuezhong

    2015-04-01

    A novel quartz micromachined gyroscope is proposed in this paper. The novel gyroscope is realized by quartz anisotropic wet etching and 3-dimensional electrodes deposition. In the quartz wet etching process, the quality of Cr/Au mask films affecting the process are studied by experiment. An excellent mask film with 100 Å Cr and 2000 Å Au is achieved by optimization of experimental parameters. Crystal facets after etching seriously affect the following sidewall electrodes deposition process and the structure's mechanical behaviours. Removal of crystal facets is successfully implemented by increasing etching time based on etching rate ratios between facets and crystal planes. In the electrodes deposition process, an aperture mask evaporation method is employed to prepare electrodes on 3-dimensional surfaces of the gyroscope structure. The alignments among the aperture masks are realized by the ABM™ Mask Aligner System. Based on the processes described above, a z-axis quartz gyroscope is fabricated successfully.

  11. Prediction Of Abrasive And Diffusive Tool Wear Mechanisms In Machining

    NASA Astrophysics Data System (ADS)

    Rizzuti, S.; Umbrello, D.

    2011-01-01

    Tool wear prediction is regarded as very important task in order to maximize tool performance, minimize cutting costs and improve the quality of workpiece in cutting. In this research work, an experimental campaign was carried out at the varying of cutting conditions with the aim to measure both crater and flank tool wear, during machining of an AISI 1045 with an uncoated carbide tool P40. Parallel a FEM-based analysis was developed in order to study the tool wear mechanisms, taking also into account the influence of the cutting conditions and the temperature reached on the tool surfaces. The results show that, when the temperature of the tool rake surface is lower than the activation temperature of the diffusive phenomenon, the wear rate can be estimated applying an abrasive model. In contrast, in the tool area where the temperature is higher than the diffusive activation temperature, the wear rate can be evaluated applying a diffusive model. Finally, for a temperature ranges within the above cited values an adopted abrasive-diffusive wear model furnished the possibility to correctly evaluate the tool wear phenomena.

  12. Comparative study on the processing of armour steels with various unconventional technologies

    NASA Astrophysics Data System (ADS)

    Herghelegiu, E.; Schnakovszky, C.; Radu, M. C.; Tampu, N. C.; Zichil, V.

    2017-08-01

    The aim of the current paper is to analyse the suitability of three unconventional technologies - abrasive water jet (AWJ), plasma and laser - to process armour steels. In view of this, two materials (Ramor 400 and Ramor 550) were selected to carry out the experimental tests and the quality of cuts was quantified by considering the following characteristics: width of the processed surface at the jet inlet (Li), width of the processed surface at the jet outlet (Lo), inclination angle (a), deviation from perpendicularity (u), surface roughness (Ra) and surface hardness. It was fond that in terms of cut quality and environmental impact, the best results are offered by abrasive water jet technology. However, it has the lowest productivity comparing to the other two technologies.

  13. Release of copper-amended particles from micronized copper-pressure-treated wood during mechanical abrasion.

    PubMed

    Civardi, Chiara; Schlagenhauf, Lukas; Kaiser, Jean-Pierre; Hirsch, Cordula; Mucchino, Claudio; Wichser, Adrian; Wick, Peter; Schwarze, Francis W M R

    2016-11-28

    We investigated the particles released due to abrasion of wood surfaces pressure-treated with micronized copper azole (MCA) wood preservative and we gathered preliminary data on its in vitro cytotoxicity for lung cells. The data were compared with particles released after abrasion of untreated, water (0% MCA)-pressure-treated, chromated copper (CC)-pressure-treated wood, and varnished wood. Size, morphology, and composition of the released particles were analyzed. Our results indicate that the abrasion of MCA-pressure-treated wood does not cause an additional release of nanoparticles from the unreacted copper (Cu) carbonate nanoparticles from of the MCA formulation. However, a small amount of released Cu was detected in the nanosized fraction of wood dust, which could penetrate the deep lungs. The acute cytotoxicity studies were performed on a human lung epithelial cell line and human macrophages derived from a monocytic cell line. These cell types are likely to encounter the released wood particles after inhalation. Our findings indicate that under the experimental conditions chosen, MCA does not pose a specific additional nano-risk, i.e. there is no additional release of nanoparticles and no specific nano-toxicity for lung epithelial cells and macrophages.

  14. Comparative Efficacy of a Soft Toothbrush with Tapered-tip Bristles to an ADA Reference Toothbrush on Gingival Abrasion over a 12-Week Period.

    PubMed

    Gallob, John; Petrone, Dolores M; Mateo, Luis R; Chaknis, Patricia; Morrison, Boyce M; Panagakos, Foti; Williams, Malcolm

    2016-06-01

    Evaluation of the impact of a soft toothbrush with tapered-tip (Test Toothbrush) bristles and an ADA reference toothbrush (ADA Toothbrush) on gingival abrasion over a 12-week period. This was a randomized, single-center, examiner-blind, two-cell, parallel clinical research study and used the Danser Gingival Abrasion Index to assess the level of gingival abrasion after a single brushing, as well as after six weeks and 12 weeks of twice-daily brushing. Adult male and female subjects from the Central New Jersey, USA area refrained from all oral hygiene procedures for 24 hours. They reported to the study site after refraining from eating, drinking, and smoking for four hours. Following a qualifying examination using plaque and gingivitis scores along with a baseline gingival abrasion examination, subjects were randomized into two balanced groups, each group using one of the two study toothbrushes. Subjects were instructed to brush their teeth for one minute, under supervision, with their assigned toothbrush and a commercially available fluoride toothpaste (Colgate© Cavity Protection Toothpaste), after which they were again evaluated for gingival abrasion. Subjects were dismissed from the study site with their assigned toothbrush and toothpaste, and instructed to brush twice daily at home for the next 12 weeks. The subjects were instructed to brush for one minute during each tooth brushing. The subjects reported to the study site after six weeks and 12 weeks of product use, at which time they were evaluated for gingival abrasion. Seventy-one (71) subjects complied with the protocol and completed the clinical study. The results of this study showed that the Test Toothbrush provided statistically significantly (p < 0.05) greater reductions in gingival abrasion scores as compared to the gingival abrasion scores of the ADA Toothbrush after a single tooth brushing, after six weeks, and after 12 weeks of product use (75.0%, 85.5%, 73.9%, respectively). The soft toothbrush

  15. Structural design considerations for micromachined solid-oxide fuel cells

    NASA Astrophysics Data System (ADS)

    Srikar, V. T.; Turner, Kevin T.; Andrew Ie, Tze Yung; Spearing, S. Mark

    Micromachined solid-oxide fuel cells (μSOFCs) are among a class of devices being investigated for portable power generation. Optimization of the performance and reliability of such devices requires robust, scale-dependent, design methodologies. In this first analysis, we consider the structural design of planar, electrolyte-supported, μSOFCs from the viewpoints of electrochemical performance, mechanical stability and reliability, and thermal behavior. The effect of electrolyte thickness on fuel cell performance is evaluated using a simple analytical model. Design diagrams that account explicitly for thermal and intrinsic residual stresses are presented to identify geometries that are resistant to fracture and buckling. Analysis of energy loss due to in-plane heat conduction highlights the importance of efficient thermal isolation in microscale fuel cell design.

  16. Fabricating micro-instruments in surface-micromachined polycrystalline silicon

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Comtois, J.H.; Michalicek, M.A.; Barron, C.C.

    1997-04-01

    Smaller, lighter instruments can be fabricated as Micro-Electro-Mechanical Systems (MEMS), having micron scale moving parts packaged together with associated control and measurement electronics. Batch fabrication of these devices will make economical applications such as condition-based machine maintenance and remote sensing. The choice of instrumentation is limited only by the designer`s imagination. This paper presents one genre of MEMS fabrication, surface-micromachined polycrystalline silicon (polysilicon). Two currently available but slightly different polysilicon processes are presented. One is the ARPA-sponsored ``Multi-User MEMS ProcesS`` (MUMPS), available commercially through MCNC; the other is the Sandia National Laboratories ``Sandia Ultra-planar Multilevel MEMS Technology`` (SUMMiT). Example componentsmore » created in both processes will be presented, with an emphasis on actuators, actuator force testing instruments, and incorporating actuators into larger instruments.« less

  17. Biomachining - A new approach for micromachining of metals

    NASA Astrophysics Data System (ADS)

    Vigneshwaran, S. C. Sakthi; Ramakrishnan, R.; Arun Prakash, C.; Sashank, C.

    2018-04-01

    Machining is the process of removal of material from workpiece. Machining can be done by physical, chemical or biological methods. Though physical and chemical methods have been widely used in machining process, they have their own disadvantages such as development of heat affected zone and usage of hazardous chemicals. Biomachining is the machining process in which bacteria is used to remove material from the metal parts. Chemolithotrophic bacteria such as Acidothiobacillus ferroxidans has been used in biomachining of metals like copper, iron etc. These bacteria are used because of their property of catalyzing the oxidation of inorganic substances. Biomachining is a suitable process for micromachining of metals. This paper reviews the biomachining process and various mechanisms involved in biomachining. This paper also briefs about various parameters/factors to be considered in biomachining and also the effect of those parameters on metal removal rate.

  18. Micromachined poly-SiGe bolometer arrays for infrared imaging and spectroscopy

    NASA Astrophysics Data System (ADS)

    Leonov, Vladimir N.; Perova, Natalia A.; De Moor, Piet; Du Bois, Bert; Goessens, Claus; Grietens, Bob; Verbist, Agnes; Van Hoof, Chris A.; Vermeiren, Jan P.

    2003-03-01

    The state-of-the-art characteristics of micromachined polycrystalline SiGe microbolometer arrays are reported. An average NETD of 85 mK at a time constant of 14 ms is already achievable on typical self-supported 50 μm pixels in a linear 64-element array. In order to reach these values, the design optimization was performed based on the performance characteristics of linear 32-, 64- and 128-element arrays of 50-, 60- and 75-μm-pixel bolometers on several detector lots. The infrared and thermal modeling accounting for the read-out properties and self-heating effect in bolometers resulted in improved designs and competitive NETD values of 80 mK on 50 μm pixels in a 160x128 format at standard frame rates and f-number of 1. In parallel, the TCR-to-1/f noise ratio and the mechanical design of the pixels were improved making poly-SiGe a good candidate for a low-cost uncooled thermal array. The technological CMOS-based process possesses an attractive balance between characteristics and price, and allows the micromachining of thin structures, less than 0.2 μm. The resistance and TCR non-uniformity with σ/μ better than 0.2% combined with 99.93% yield are demonstrated. The first lots of fully processed linear arrays have already come from the IMEC process line and the results of characterization are presented. Next year, the first linear and small 2D arrays will be introduced on the market.

  19. Mars Pathfinder Wheel Abrasion Experiment Ground Test

    NASA Technical Reports Server (NTRS)

    Keith, Theo G., Jr.; Siebert, Mark W.

    1998-01-01

    The National Aeronautics and Space Administration (NASA) sent a mission to the martian surface, called Mars Pathfinder. The mission payload consisted of a lander and a rover. The primary purpose of the mission was demonstrating a novel entry, descent, and landing method that included a heat shield, a parachute, rockets, and a cocoon of giant air bags. Once on the surface, the spacecraft returned temperature measurements near the Martian surface, atmosphere pressure, wind speed measurements, and images from the lander and rover. The rover obtained 16 elemental measurements of rocks and soils, performed soil-mechanics, atmospheric sedimentation measurements, and soil abrasiveness measurements.

  20. Photodetector Development for the Wheel Abrasion Experiment on the Sojourner Microrover of the Mars Pathfinder Mission

    NASA Technical Reports Server (NTRS)

    Wilt, David M.; Jenkins, Phillip P.; Scheiman, David A.

    1997-01-01

    On-board the Mars Pathfinder spacecraft, launched in December of 1996, is a small roving vehicle named Sojourner. On Sojourner is an experiment to determine the abrasive characteristics of the Martian surface, called the Wheel Abrasion Experiment (WAE). The experiment works as follows: one of the wheels of the rover has a strip of black anodized aluminum bonded to the tread. The aluminum strip has thin coatings of aluminum, nickel and platinum deposited in patches. There are five (5) patches or samples of each metal, and the patches range in thickness from 200 A to 1000 A. The different metals were chosen for their differing hardness and their environmental stability. As the wheel is spun in the Martian soil, the thin patches of metal are abraded away, exposing the black anodization. The abrasion is monitored by measuring the amount of light reflected off of the samples. A photodetector was developed for this purpose, and that is the subject of this paper.

  1. Design and evaluation of high-volume fly ash (HVFA) concrete mixes, report D : creep, shrinkage, and abrasion resistance of HVFA concrete.

    DOT National Transportation Integrated Search

    2012-10-01

    The main objective of this study was to determine the effect on shrinkage, creep, : and abrasion resistance of high-volume fly ash (HVFA) concrete. The HVFA concrete : test program consisted of comparing the shrinkage, creep, and abrasion performance...

  2. 40 CFR 438.2 - General definitions.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... conversion coating operations. (d) Metal-bearing operations means one or more of the following: abrasive jet... descaling; shot tower—lead shot manufacturing; soldering; solder flux cleaning; solder fusing; solder...) Oily operations means one or more of the following: abrasive blasting; adhesive bonding; alkaline...

  3. 40 CFR 438.2 - General definitions.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... conversion coating operations. (d) Metal-bearing operations means one or more of the following: abrasive jet... descaling; shot tower—lead shot manufacturing; soldering; solder flux cleaning; solder fusing; solder...) Oily operations means one or more of the following: abrasive blasting; adhesive bonding; alkaline...

  4. Comparison of effectiveness of abrasive and enzymatic action of whitening toothpastes in removal of extrinsic stains - a clinical trial.

    PubMed

    Patil, P A; Ankola, A V; Hebbal, M I; Patil, A C

    2015-02-01

    To compare the effectiveness of abrasive component (perlite/calcium carbonate) and enzymatic component (papain and bromelain) of whitening toothpaste in removal of extrinsic stains. This study is a randomized, triple blind and parallel group study in which 90 subjects aged 18-40 years were included. At baseline, stains scores were assessed by Macpherson's modification of Lobene Stain Index and subjects were randomly assigned to two groups with 45 subjects in each. Group 1 used whitening toothpaste with enzymatic action and group 2 with abrasive action. After 1 month, stain scores were assessed for the effectiveness of the two toothpastes and 2 months later to check the stain prevention efficacy. Wilcoxson's test was used to compare between baseline 1 and 2 months stain scores, and Mann-Witney U-test was applied for intragroup comparison. The mean baseline total stain score for the subjects allocated to the enzymatic toothpaste was 37.24 ± 2.11 which reduced to 30.77 ± 2.48 in 1 month, and for the abrasive paste, total stain reduced from 35.08 ± 2.96 to 32.89 ± 1.95. The reductions in total stain scores with both the pastes were significant compared with baseline stain scores (at 1 month Group 1, P = 0.0233 and Group 2, P = 0.0324; at 2 months, Group 1 P = 0.0356). Both the toothpastes proved to be equally good in removal of extrinsic stains; however, the enzymatic paste showed better results as compared to abrasive toothpaste. Whitening toothpaste with abrasive action and enzymatic action are equally effective in removal of extrinsic stains; however, whitening toothpaste with abrasive action needs to be used with caution. © 2014 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  5. Pebble abrasion during fluvial transport: Experimental results and implications for the evolution of the sediment load along rivers

    NASA Astrophysics Data System (ADS)

    Attal, Mikaël; Lavé, Jérôme

    2009-12-01

    In actively eroding landscapes, fluvial abrasion modifies the characteristics of the sediment carried by rivers and consequently has a direct impact on the ability of mountain rivers to erode their bedrock and on the characteristics and volume of the sediment exported from upland catchments. In this experimental study, we use a novel flume replicating hydrodynamic conditions prevailing in mountain rivers to investigate the role played by different controlling variables on pebble abrasion during fluvial transport. Lithology controls abrasion rates and processes, with differences in abrasion rates exceeding two orders of magnitude. Attrition as well as breaking and splitting are efficient processes in reducing particle size. Mass loss by attrition increases with particle velocity but is weakly dependent on particle size. Fragment production is enhanced by the use of large particles, high impact velocities and the presence of joints. Based on our experimental results, we extrapolate a preliminary generic relationship between pebble attrition rate and transport stage (τ*/τ*c), where τ* = fluvial Shields stress and τ*c = critical Shields stress for incipient pebble motion. This relationship predicts that attrition rates are independent of transport stage for (τ*/τ*c) ≤ 3 and increase linearly with transport stage beyond this value. We evaluate the extent to which abrasion rates control downstream fining in several different natural settings. A simplified model predicts that the most resistant lithologies control bed load flux and fining ratio and that the concavity of transport-limited river profiles should rarely exceed 0.25 in the absence of deposition and sorting.

  6. The influence of ArF excimer laser micromachining on physicochemical properties of bioresorbable poly(L-lactide)

    NASA Astrophysics Data System (ADS)

    Stepak, Bogusz D.; Antończak, Arkadiusz J.; Szustakiewicz, Konrad; Pezowicz, Celina; Abramski, Krzysztof M.

    2016-03-01

    The main advantage of laser processing is a non-contact character of material removal and high precision attainable thanks to low laser beam dimensions. This technique enables forming a complex, submillimeter geometrical shapes such as vascular stents which cannot be manufactured using traditional techniques e.g. injection moulding or mechanical treatment. In the domain of nanosecond laser sources, an ArF excimer laser appears as a good candidate for laser micromachining of bioresorbable polymers such as poly(L-lactide). Due to long pulse duration, however, there is a risk of heat diffusion and accumulation in the material. In addition, due to short wavelength (193 nm) photochemical process can modify the chemical composition of ablated surfaces. The motivation for this research was to evaluate the influence of laser micromachining on physicochemical properties of poly(L-lactide). We performed calorimetric analysis of laser machined samples by using differential scanning calorimetry (DSC). It allowed us to find the optimal process parameters for heat affected zone (HAZ) reduction. The chemical composition of the ablated surface was investigated by FTIR in attenuated total reflectance (ATR) mode.

  7. The efficacy of a highly concentrated fluoride dentifrice on bovine enamel subjected to erosion and abrasion.

    PubMed

    Rios, Daniela; Magalhães, Ana Carolina; Polo, Renata Ocon Braga; Wiegand, Annette; Attin, Thomas; Buzalaf, Marilia Afonso Rabelo

    2008-12-01

    Researchers have proposed the use of fluoride for the prevention of enamel wear; however, only limited information is available about the impact of fluoridated dentifrices. Because tooth wear is a well-recognized dental problem, the authors conducted an in situ, ex vivo study to assess the efficacy of a highly concentrated fluoride dentifrice on bovine enamel subjected to erosion and abrasion. The authors conducted a double-blind, crossover in situ study consisting of three phases (seven days each). In each phase, the authors tested one of the dentifrices (5,000 parts per million fluoride [F]; 1,100 ppm F; no F). They performed erosive challenges with the use of cola drink (60 seconds, four times per day) and abrasive challenges via toothbrushing (30 seconds, four times per day). The authors determined the enamel loss via profilometry. The authors tested the data by using two-way analysis of variance (P < .05). For the erosion-plus-abrasion condition, the study results showed that enamel wear was significantly higher than that with erosion alone. The findings showed no significant differences between the dentifrices regarding enamel wear. Within the in situ, ex vivo conditions of this study, the authors concluded that the highly concentrated fluoride dentifrice did not have a protective effect on enamel against erosion and erosion plus toothbrushing abrasion. Patients at risk of developing enamel erosion should benefit from preventive measures other than fluoride dentifrice, because even a highly concentrated fluoride dentifrice does not appear to prevent enamel erosion.

  8. Microball-bearing-supported electrostatic micromachines with polymer dielectric films for electromechanical power conversion

    NASA Astrophysics Data System (ADS)

    Modafe, A.; Ghalichechian, N.; Frey, A.; Lang, J. H.; Ghodssi, R.

    2006-09-01

    This paper presents our latest research activities toward the development of electrostatic micromotors/microgenerators with a microball-bearing support mechanism and benzocyclobutene (BCB) low-k polymer insulating layers. The primary applications of these devices are long-range, high-speed micropositioning, high-speed micro pumping and micro power generation. In this paper, we present the development of the first generation of microball-bearing-supported micromachines. This device is a 6-phase, bottom-drive, linear, variable-capacitance micromotor. The design and fabrication of the linear micromotor, and characterization of the motor capacitance, force and motion in 3-phase and 6-phase excitation modes are presented. The micromotor consists of a silicon stator, a silicon slider and four stainless-steel microballs. The aligning force profile of the micromotor was extracted from simulated and measured capacitances of all phases. An average total aligning force of 0.27 mN with a maximum of 0.41 mN at 100 V dc was measured. The ac operation of the micromotor was verified by applying square-wave voltages and characterizing the slider motion. An average slider speed of 7.32 mm s-1 at 40 Hz and 120 V P-P was reached without losing the synchronization. The design, fabrication and characterization methods presented in this paper can be used as a technology platform for developing rotary micromachines.

  9. Apparatus for precision micromachining with lasers

    DOEpatents

    Chang, Jim J.; Dragon, Ernest P.; Warner, Bruce E.

    1998-01-01

    A new material processing apparatus using a short-pulsed, high-repetition-rate visible laser for precision micromachining utilizes a near diffraction limited laser, a high-speed precision two-axis tilt-mirror for steering the laser beam, an optical system for either focusing or imaging the laser beam on the part, and a part holder that may consist of a cover plate and a back plate. The system is generally useful for precision drilling, cutting, milling and polishing of metals and ceramics, and has broad application in manufacturing precision components. Precision machining has been demonstrated through percussion drilling and trepanning using this system. With a 30 W copper vapor laser running at multi-kHz pulse repetition frequency, straight parallel holes with size varying from 500 microns to less than 25 microns and with aspect ratios up to 1:40 have been consistently drilled with good surface finish on a variety of metals. Micromilling and microdrilling on ceramics using a 250 W copper vapor laser have also been demonstrated with good results. Materialogroaphic sections of machined parts show little (submicron scale) recast layer and heat affected zone.

  10. Apparatus for precision micromachining with lasers

    DOEpatents

    Chang, J.J.; Dragon, E.P.; Warner, B.E.

    1998-04-28

    A new material processing apparatus using a short-pulsed, high-repetition-rate visible laser for precision micromachining utilizes a near diffraction limited laser, a high-speed precision two-axis tilt-mirror for steering the laser beam, an optical system for either focusing or imaging the laser beam on the part, and a part holder that may consist of a cover plate and a back plate. The system is generally useful for precision drilling, cutting, milling and polishing of metals and ceramics, and has broad application in manufacturing precision components. Precision machining has been demonstrated through percussion drilling and trepanning using this system. With a 30 W copper vapor laser running at multi-kHz pulse repetition frequency, straight parallel holes with size varying from 500 microns to less than 25 microns and with aspect ratios up to 1:40 have been consistently drilled with good surface finish on a variety of metals. Micromilling and microdrilling on ceramics using a 250 W copper vapor laser have also been demonstrated with good results. Materialographic sections of machined parts show little (submicron scale) recast layer and heat affected zone. 1 fig.

  11. Self-healing of the superhydrophobicity by ironing for the abrasion durable superhydrophobic cotton fabrics

    PubMed Central

    Wu, Jingxia; Li, Jingye; Deng, Bo; Jiang, Haiqing; Wang, Ziqiang; Yu, Ming; Li, Linfan; Xing, Chenyang; Li, Yongjin

    2013-01-01

    Self-healing of the superhydrophobic cotton fabric (SCF) obtained by the radiation-induced graft polymerization of lauryl methacrylate (LMA) and n-hexyl methacrylate (HMA), can be achieved by ironing. Through the steam ironing process, the superhydrophobicity of the SCFs will be regenerated even after the yarns are ruptured during the abrasion test under a load pressure of 44.8 kPa. SCFs made from LMA grafted cotton fabric can ultimately withstand at least 24,000 cycles of abrasion with periodic steam ironing. The FT-IR microscope results show that the migration of the polymethacrylates graft chains from the interior to the surface is responsible for the self-healing effect. PMID:24135813

  12. Micromachined array tip for multifocus fiber-based optical coherence tomography.

    PubMed

    Yang, Victor X D; Munce, Nigel; Pekar, Julius; Gordon, Maggie L; Lo, Stewart; Marcon, Norman E; Wilson, Brian C; Vitkin, I Alex

    2004-08-01

    High-resolution optical coherence tomography demands a large detector bandwidth and a high numerical aperture for real-time imaging, which is difficult to achieve over a large imaging depth. To resolve these conflicting requirements we propose a novel multifocus fiber-based optical coherence tomography system with a micromachined array tip. We demonstrate the fabrication of a prototype four-channel tip that maintains a 9-14-microm spot diameter with more than 500 microm of imaging depth. Images of a resolution target and a human tooth were obtained with this tip by use of a four-channel cascaded Michelson fiber-optic interferometer, scanned simultaneously at 8 kHz with geometric power distribution across the four channels.

  13. Air-particle abrasion on zirconia ceramic using different protocols: effects on biaxial flexural strength after cyclic loading, phase transformation and surface topography.

    PubMed

    Souza, Rodrigo O A; Valandro, Luiz F; Melo, Renata M; Machado, João P B; Bottino, Marco A; Ozcan, Mutlu

    2013-10-01

    This study evaluated the effect of different air-particle abrasion protocols on the biaxial flexural strength and structural stability of zirconia ceramics. Zirconia ceramic specimens (ISO 6872) (Lava, 3M ESPE) were obtained (N=336). The specimens (N=118, n=20 per group) were randomly assigned to one of the air-abrasion protocols: Gr1: Control (as-sintered); Gr2: 50 µm Al2O3 (2.5 bar); Gr3: 50 µm Al2O3 (3.5 bar); Gr4: 110 µm Al2O3(2.5 bar); Gr5: 110 µm Al2O3 (3.5 bar); Gr6: 30 µm SiO2 (2.5 bar) (CoJet); Gr7: 30 µm SiO2(3.5 bar); Gr8: 110 µm SiO2 (2.5 bar) (Rocatec Plus); and Gr9: 110 µm SiO2 (3.5 bar) (duration: 20 s, distance: 10 mm). While half of the specimens were tested immediately, the other half was subjected to cyclic loading in water (100,000 cycles; 50 N, 4 Hz, 37 °°C) prior to biaxial flexural strength test (ISO 6872). Phase transformation (t→m), relative amount of transformed monoclinic zirconia (FM), transformed zone depth (TZD) and surface roughness were measured. Particle type (p=0.2746), pressure (p=0.5084) and cyclic loading (p=0.1610) did not influence the flexural strength. Except for the air-abraded group with 110 µm Al2O3 at 3.5 bar, all air-abrasion protocols increased the biaxial flexural strength (MPa) (Controlnon-aged: 1,030 ± 153, Controlaged: 1,138 ± 138; Experimentalnon-aged: 1,307 ± 184-1,554 ± 124; Experimentalaged: 1,308 ± 118-1,451 ± 135) in both non-aged and aged conditions, respectively. Surface roughness (Ra) was the highest with 110 µm Al2O3(0.84 µm. FM values ranged from 0% to 27.21%, higher value for the Rocatec Plus (110 µm SiO2) and 110 µm Al2O3 groups at 3.5 bar pressure. TZD ranged between 0 and 1.43 µm, with the highest values for Rocatec Plus and 110 µm Al2O3 groups at 3.5 bar pressure. Copyright © 2013 Elsevier Ltd. All rights reserved.

  14. Degradation of the Crystalline Structure of ZnS Ceramics under Abrasive Damage

    NASA Astrophysics Data System (ADS)

    Shcherbakov, I. P.; Dunaev, A. A.; Chmel, A. E.

    2018-04-01

    Stability of optical elements based on ZnS ceramics to dust and rain erosion is usually estimated from the loss of material mass in a directional flow of solid particles or atmospheric precipitates. In this case, the mechanism of degradation and fracture of the surface layer of an optical element is not considered. The photoluminescence (PL) method was used for investigating the crystal lattice response to the abrasive action and the formation of cleavage in ZnS ceramics, which differ in manufacturing technology and, accordingly, in the grain size by two orders of magnitude. It is shown that during abrasive treatment of samples, their spectra exhibit changes typical of degradation of the crystal lattice of material grains. The PL spectra of cleavage surfaces reveal almost complete degradation of the structure of crystallite grains with a size from 1-2 to 100-200 μm.

  15. Micromachined mold-type double-gated metal field emitters

    NASA Astrophysics Data System (ADS)

    Lee, Yongjae; Kang, Seokho; Chun, Kukjin

    1997-12-01

    Electron field emitters with double gates were fabricated using micromachining technology and the effect of the electric potential of the focusing gate (or second gate) was experimentally evaluated. The molybdenum field emission tip was made by filling a cusplike mold formed when a conformal film was deposited on the hole-trench that had been patterned on stacked metals and dielectric layers. The hole-trench was patterned by electron beam lithography and reactive ion etching. Each field emitter has a 0960-1317/7/4/009/img1 diameter extraction gate (or first gate) and a 0960-1317/7/4/009/img2 diameter focusing gate (or second gate). To make a path for the emitted electrons, silicon bulk was etched anisotropically in KOH and EDP (ethylene-diamine pyrocatechol) solution successively. The I - V characteristics and anode current change due to the focusing gate potential were measured.

  16. A Micromachined Piezoresistive Pressure Sensor with a Shield Layer

    PubMed Central

    Cao, Gang; Wang, Xiaoping; Xu, Yong; Liu, Sheng

    2016-01-01

    This paper presents a piezoresistive pressure sensor with a shield layer for improved stability. Compared with the conventional piezoresistive pressure sensors, the new one reported in this paper has an n-type shield layer that covers p-type piezoresistors. This shield layer aims to minimize the impact of electrical field and reduce the temperature sensitivity of piezoresistors. The proposed sensors have been successfully fabricated by bulk-micromachining techniques. A sensitivity of 0.022 mV/V/kPa and a maximum non-linearity of 0.085% FS are obtained in a pressure range of 1 MPa. After numerical simulation, the role of the shield layer has been experimentally investigated. It is demonstrated that the shield layer is able to reduce the drift caused by electrical field and ambient temperature variation. PMID:27529254

  17. Capacitive micromachined ultrasonic transducers for medical imaging and therapy.

    PubMed

    Khuri-Yakub, Butrus T; Oralkan, Omer

    2011-05-01

    Capacitive micromachined ultrasonic transducers (CMUTs) have been subject to extensive research for the last two decades. Although they were initially developed for air-coupled applications, today their main application space is medical imaging and therapy. This paper first presents a brief description of CMUTs, their basic structure, and operating principles. Our progression of developing several generations of fabrication processes is discussed with an emphasis on the advantages and disadvantages of each process. Monolithic and hybrid approaches for integrating CMUTs with supporting integrated circuits are surveyed. Several prototype transducer arrays with integrated frontend electronic circuits we developed and their use for 2-D and 3-D, anatomical and functional imaging, and ablative therapies are described. The presented results prove the CMUT as a MEMS technology for many medical diagnostic and therapeutic applications.

  18. Capacitive micromachined ultrasonic transducers for medical imaging and therapy

    PubMed Central

    Khuri-Yakub, Butrus T.; Oralkan, Ömer

    2011-01-01

    Capacitive micromachined ultrasonic transducers (CMUTs) have been subject to extensive research for the last two decades. Although they were initially developed for air-coupled applications, today their main application space is medical imaging and therapy. This paper first presents a brief description of CMUTs, their basic structure, and operating principles. Our progression of developing several generations of fabrication processes is discussed with an emphasis on the advantages and disadvantages of each process. Monolithic and hybrid approaches for integrating CMUTs with supporting integrated circuits are surveyed. Several prototype transducer arrays with integrated frontend electronic circuits we developed and their use for 2-D and 3-D, anatomical and functional imaging, and ablative therapies are described. The presented results prove the CMUT as a MEMS technology for many medical diagnostic and therapeutic applications. PMID:21860542

  19. A micromachined carbon nanotube film cantilever-based energy cell

    NASA Astrophysics Data System (ADS)

    Gong, Zhongcheng; He, Yuan; Tseng, Yi-Hsuan; O'Neal, Chad; Que, Long

    2012-08-01

    This paper reports a new type of energy cell based on micromachined carbon nanotube film (CNF)-lead zirconate titanate cantilevers that is fabricated on silicon substrates. Measurements found that this type of micro-energy cell generates both AC voltages due to the self-reciprocation of the microcantilevers and DC voltages due to the thermoelectric effect upon exposure to light and thermal radiation, resulting from the unique optical and thermal properties of the CNF. Typically the measured power density of the micro-energy cell can be from 4 to 300 μW cm-2 when it is exposed to sunlight under different operational conditions. It is anticipated that hundreds of integrated micro-energy cells can generate power in the range of milliwatts, paving the way for the construction of self-powered micro- or nanosystems.

  20. Far Noise Field of Air Jets and Jet Engines

    NASA Technical Reports Server (NTRS)

    Callaghan, Edmund E; Coles, Willard D

    1957-01-01

    An experimental investigation was conducted to study and compare the acoustic radiation of air jets and jet engines. A number of different nozzle-exit shapes were studied with air jets to determine the effect of exit shape on noise generation. Circular, square, rectangular, and elliptical convergent nozzles and convergent-divergent and plug nozzles were investigated. The spectral distributions of the sound power for the engine and the air jet were in good agreement for the case where the engine data were not greatly affected by reflection or jet interference effects. Such power spectra for a subsonic or slightly choked engine or air jet show that the peaks of the spectra occur at a Strouhal number of 0.3.

  1. Platelet recruitment promotes keratocyte repopulation following corneal epithelial abrasion in the mouse

    USDA-ARS?s Scientific Manuscript database

    Corneal abrasion not only damages the epithelium but also induces stromal keratocyte death at the site of injury. While a coordinated cascade of inflammatory cell recruitment facilitates epithelial restoration, it is unclear if this cascade is necessary for keratocyte recovery. Since platelet and ne...

  2. The slope and incision length of affected local cross abrasion and accretion using ASTER GDEM image analysis

    NASA Astrophysics Data System (ADS)

    Anugrahadi, A.

    2018-01-01

    Remote sensing technology is to support the identification and assessment of resources and disasters in coastal areas and oceans, because it has the advantage of covering large areas and the highest of the spatial and temporal resolution. Aster GDEM image is used to determine the slope and the length of cross the incision on exposed area abrasion and accretion. Western coastal of Banten Province has experienced abrasion with the furthest distance of 125.05 m to 274.73 m. and experienced accretion with the furthest distance of 31.65 m to 111, 58 m. ASTER GDEM results of image analysis in areas of abrasion has a slope about 1.4° to 3.3° and cross the incision length is approximately 350.52 meters to 506.57 meters. At the accretion region has a slope about 2.0° to 3.1° and cross the incision length about 306.62 m to 562.05 m.

  3. A molded surface-micromachining and bulk etching release (MOSBE) fabrication platform on (1 1 1) Si for MOEMS

    NASA Astrophysics Data System (ADS)

    Wu, Mingching; Fang, Weileun

    2006-02-01

    This work attempts to integrate poly-Si thin film and single-crystal-silicon (SCS) structures in a monolithic process. The process integrated multi-depth DRIE (deep reactive ion etching), trench-refilled molding, a two poly-Si MUMPs process and (1 1 1) Si bulk micromachining to accomplish multi-thickness and multi-depth structures for superior micro-optical devices. In application, a SCS scanning mirror driven by self-aligned vertical comb-drive actuators was demonstrated. The stiffness of the mirror was significantly increased by thick SCS structures. The thin poly-Si film served as flexible torsional springs and electrical routings. The depth difference of the vertical comb electrodes was tuned by DRIE to increase the devices' stroke. Finally, a large moving space was available after the bulk Si etching. In summary, the present fabrication process, named (1 1 1) MOSBE (molded surface-micromachining and bulk etching release on (1 1 1) Si substrate), can further integrate with the MUMPs devices to establish a more powerful platform.

  4. Simplified Abrasion Test Methodology for Candidate EVA Glove Lay-Ups

    NASA Technical Reports Server (NTRS)

    Rabel, Emily; Aitchison, Lindsay

    2015-01-01

    During the Apollo Program, space suit outer-layer fabrics were badly abraded after performing just a few extravehicular activities (EVAs). For example, the Apollo 12 commander reported abrasive wear on the boots that penetrated the outer-layer fabric into the thermal protection layers after less than 8 hrs of surface operations. Current plans for the exploration planetary space suits require the space suits to support hundreds of hours of EVA on a lunar or Martian surface, creating a challenge for space suit designers to utilize materials advances made over the last 40 years and improve on the space suit fabrics used in the Apollo Program. Over the past 25 years the NASA Johnson Space Center Crew and Thermal Systems Division has focused on tumble testing as means of simulating wear on the outer layer of the space suit fabric. Most recently, in 2009, testing was performed on 4 different candidate outer layers to gather baseline data for future use in design of planetary space suit outer layers. In support of the High Performance EVA Glove Element of the Next Generation Life Support Project, testing a new configuration was recently attempted in which require 10% of the fabric per replicate of that need in 2009. The smaller fabric samples allowed for reduced per sample cost and flexibility to test small samples from manufacturers without the overhead to have a production run completed. Data collected from this iteration was compared to that taken in 2009 to validate the new test method. In addition the method also evaluated the fabrics and fabric layups used in a prototype thermal micrometeoroid garment (TMG) developed for EVA gloves under the NASA High Performance EVA Glove Project. This paper provides a review of previous abrasion studies on space suit fabrics, details methodologies used for abrasion testing in this particular study, results of the validation study, and results of the TMG testing.

  5. Piezoelectric micromachined ultrasonic transducers and micropumps: from design to optomicrofluidic applications

    NASA Astrophysics Data System (ADS)

    Khazaaleh, Shadi; Saeed, Numan; Taha, Inas; Madzik, Mateusz T.; Viegas, Jaime

    2017-02-01

    In this work, we present the experimental results of a new wafer-level production platform for aluminum nitride based piezoelectric micromachined ultrasonic transducers (PMUTs), operated by lower than 10 V peak-to-peak signals, and covering ultrasonic frequency ranges from 200 kHz up to 10 MHz, with measured axial displacements ranging from a few nanometers up to 600 nm. The fabricated devices have a low footprint of (130x130) μm2. The experimental results are in excellent agreement with finite-element method simulations. The small footprint and driving voltages of these piezo-microactuators are well suited for the development of micropump and micromixer designs for portable microfluidics applications.

  6. Assessment of the influence of vegetarian diet on the occurrence of erosive and abrasive cavities in hard tooth tissues.

    PubMed

    Herman, Katarzyna; Czajczyńska-Waszkiewicz, Agnieszka; Kowalczyk-Zając, Małgorzata; Dobrzyński, Maciej

    2011-11-25

    The aim of the study was to determine the potential relation between vegetarian diet and tooth erosion and abrasion. The examination included 46 vegetarians and the same number in the control group. Clinical research was carried out in order to detect the presence of abrasive and erosive changes and the level of hygiene in oral cavities. The questionnaire survey concerned dietary and hygienic habits. Statistical analysis of the data was conducted with Chi-square test and Mann-Whitney U test. The relations between following a vegetarian diet and the occurrence of non-carious cavities was tested with models of logistic regression. Tooth erosion was present among 39.1% of vegetarians and 23.9% of controls, while abrasion appeared among 26.1% and 10.9%, respectively, and the differences were statistically insignificant. The distribution of the changes was similar in both groups. Among vegetarians, significantly more frequent consumption of sour products (predominantly raw vegetables and fruit and tomatoes) was observed. The level of oral hygiene and hygienic habits were similar in both groups. The analysis of statistical regression did not reveal any relations between following a vegetarian diet and the occurrence of tooth erosion and abrasion. The results did not reveal any direct influence of vegetarian diet on the occurrence of erosive and abrasive changes. However, in the vegetarian group, more frequent consumption of some sour products and more commonly used horizontal brushing method were observed, with a slightly higher occurrence of non-carious cavities. Further research is required to obtain unambiguous conclusions.

  7. Zircon geochronology and ca. 400 Ma exhumation of Norwegian ultrahigh-pressure rocks: An ion microprobe and chemical abrasion study

    USGS Publications Warehouse

    Root, D.B.; Hacker, B.R.; Mattinson, J.M.; Wooden, J.L.

    2004-01-01

    Understanding the formation and exhumation of the remarkable ultrahigh-pressure (UHP) rocks of the Western Gneiss Region, Norway, hinges on precise determination of the time of eclogite recrystallization. We conducted detailed thermal ionization mass spectrometry, chemical abrasion analysis and sensitive high-resolution ion-microprobe analysis of zircons from four ultrahigh- and high-pressure (HP) rocks. Ion-microprobe analyses from the Flatraket eclogite yielded a broad range of apparently concordant Caledonian ages, suggesting long-term growth. In contrast, higher precision thermal ionization mass spectrometry analysis of zircon subject to combined thermal annealing and multi-step chemical abrasion yielded moderate Pb loss from the first (lowest temperature) abrasion step, possible minor Pb loss or minor growth at 400 Ma from the second step and a 407-404 Ma cluster of slightly discordant 206Pb/238U ages, most likely free from Pb loss, from the remaining abrasion steps. We interpret the latter to reflect zircon crystallization at ???405-400 Ma with minor discordance from inherited cores. Zircon crystallization occurred at eclogite-facies, possibly post-peak conditions, based on compositions of garnet inclusions in zircon as well as nearly flat HREE profiles and lack of Eu anomalies in zircon fractions subjected to chemical abrasion. These ages are significantly younger than the 425 Ma age often cited for western Norway eclogite recrystallization, implying faster rates of exhumation (>2.5-8.5 km/Myr), and coeval formation of eclogites across the UHP portion of the Western Gneiss Region. ?? 2004 Published by Elsevier B.V.

  8. Stretched Inertial Jets

    NASA Astrophysics Data System (ADS)

    Ghabache, Elisabeth; Antkowiak, Arnaud; Seon, Thomas; Villermaux, Emmanuel

    2015-11-01

    Liquid jets often arise as short-lived bursting liquid flows. Cavitation or impact-driven jets, bursting champagne bubbles, shaped-charge jets, ballistospores or drop-on-demand inkjet printing are a few examples where liquid jets are suddenly released. The trademark of all these discharge jets is the property of being stretched, due to the quenching injection. the present theoretical and experimental investigation, the structure of the jet flow field will be unraveled experimentally for a few emblematic occurrences of discharge jets. Though the injection markedly depends on each flow configuration, the jet velocity field will be shown to be systematically and rapidly attracted to the universal stretching flow z/t. The emergence of this inertial attractor actually only relies on simple kinematic ingredients, and as such is fairly generic. The universality of the jet velocity structure will be discussed.

  9. Factorization for jet radius logarithms in jet mass spectra at the LHC

    DOE PAGES

    Kolodrubetz, Daniel W.; Pietrulewicz, Piotr; Stewart, Iain W.; ...

    2016-12-14

    To predict the jet mass spectrum at a hadron collider it is crucial to account for the resummation of logarithms between the transverse momentum of the jet and its invariant mass m J . For small jet areas there are additional large logarithms of the jet radius R, which affect the convergence of the perturbative series. We present an analytic framework for exclusive jet production at the LHC which gives a complete description of the jet mass spectrum including realistic jet algorithms and jet vetoes. It factorizes the scales associated with m J , R, and the jet veto, enablingmore » in addition the systematic resummation of jet radius logarithms in the jet mass spectrum beyond leading logarithmic order. We discuss the factorization formulae for the peak and tail region of the jet mass spectrum and for small and large R, and the relations between the different regimes and how to combine them. Regions of experimental interest are classified which do not involve large nonglobal logarithms. We also present universal results for nonperturbative effects and discuss various jet vetoes.« less

  10. Fabrication of a sensing module using micromachined biosensors.

    PubMed

    Suzuki, H; Arakawa, H; Karube, I

    2001-12-01

    Micromachining is a powerful tool in constructing micro biosensors and micro systems which incorporate them. A sensing module for blood components was fabricated using the technology. The analytes include glucose, urea, uric acid, creatine, and creatinine. Transducers used to construct the corresponding sensors were a Severinghaus-type carbon dioxide electrode for the urea sensor and a Clark-type oxygen electrode for the other analytes. In these electrodes, detecting electrode patterns were formed on a glass substrate by photolithography and the micro container for the internal electrolyte solution was formed on a silicon substrate by anisotropic etching. A through-hole was formed in the sensitive area, where a silicone gas-permeable membrane was formed and an enzyme was immobilized. The sensors were characterized in terms of pH and temperature dependence and calibration curves along with detection limits. Furthermore, the sensors were incorporated in an acrylate flow cell. Simultaneous operation of these sensors was successfully conducted and distinct and stable responses were observed for respective sensors.

  11. Manufacture of radio frequency micromachined switches with annealing.

    PubMed

    Lin, Cheng-Yang; Dai, Ching-Liang

    2014-01-17

    The fabrication and characterization of a radio frequency (RF) micromachined switch with annealing were presented. The structure of the RF switch consists of a membrane, coplanar waveguide (CPW) lines, and eight springs. The RF switch is manufactured using the complementary metal oxide semiconductor (CMOS) process. The switch requires a post-process to release the membrane and springs. The post-process uses a wet etching to remove the sacrificial silicon dioxide layer, and to obtain the suspended structures of the switch. In order to improve the residual stress of the switch, an annealing process is applied to the switch, and the membrane obtains an excellent flatness. The finite element method (FEM) software CoventorWare is utilized to simulate the stress and displacement of the RF switch. Experimental results show that the RF switch has an insertion loss of 0.9 dB at 35 GHz and an isolation of 21 dB at 39 GHz. The actuation voltage of the switch is 14 V.

  12. Manufacture of Radio Frequency Micromachined Switches with Annealing

    PubMed Central

    Lin, Cheng-Yang; Dai, Ching-Liang

    2014-01-01

    The fabrication and characterization of a radio frequency (RF) micromachined switch with annealing were presented. The structure of the RF switch consists of a membrane, coplanar waveguide (CPW) lines, and eight springs. The RF switch is manufactured using the complementary metal oxide semiconductor (CMOS) process. The switch requires a post-process to release the membrane and springs. The post-process uses a wet etching to remove the sacrificial silicon dioxide layer, and to obtain the suspended structures of the switch. In order to improve the residual stress of the switch, an annealing process is applied to the switch, and the membrane obtains an excellent flatness. The finite element method (FEM) software CoventorWare is utilized to simulate the stress and displacement of the RF switch. Experimental results show that the RF switch has an insertion loss of 0.9 dB at 35 GHz and an isolation of 21 dB at 39 GHz. The actuation voltage of the switch is 14 V. PMID:24445415

  13. Compact Micromachined Bandpass Filters for Infrared Planetary Spectroscopy

    NASA Technical Reports Server (NTRS)

    Brown, Ari D.; Aslam, Shahid; Chervenak, James A.; Huang, Wei-Chung; Merrell, Willie; Quijada, Manuel

    2011-01-01

    The thermal instrument strawman payload of the Jupiter Europa Orbiter on the Europa Jupiter Science Mission will map out thermal anomalies, the structure, and atmospheric conditions of Europa and Jupiter within the 7-100 micron spectral range. One key requirement for the payload is that the mass cannot exceed 3.7 kg. Consequently, a new generation of light-weight miniaturized spectrometers needs to be developed. On the path toward developing these spectrometers is development of ancillary miniaturized spectroscopic components. In this paper, we present a strategy for making radiation hard and low mass FIR band pass metal mesh filters. Our strategy involves using MEMS-based fabrication techniques, which will permit the quasi-optical filter structures to be made with micron-scale precision. This will enable us to achieve tight control over both the pass band of the filter and the micromachined silicon support structure architecture, which will facilitate integration of the filters for a variety of applications.

  14. Thickness-Independent Ultrasonic Imaging Applied to Abrasive Cut-Off Wheels: An Advanced Aerospace Materials Characterization Method for the Abrasives Industry. A NASA Lewis Research Center Technology Transfer Case History

    NASA Technical Reports Server (NTRS)

    Roth, Don J.; Farmer, Donald A.

    1998-01-01

    Abrasive cut-off wheels are at times unintentionally manufactured with nonuniformity that is difficult to identify and sufficiently characterize without time-consuming, destructive examination. One particular nonuniformity is a density variation condition occurring around the wheel circumference or along the radius, or both. This density variation, depending on its severity, can cause wheel warpage and wheel vibration resulting in unacceptable performance and perhaps premature failure of the wheel. Conventional nondestructive evaluation methods such as ultrasonic c-scan imaging and film radiography are inaccurate in their attempts at characterizing the density variation because a superimposing thickness variation exists as well in the wheel. In this article, the single transducer thickness-independent ultrasonic imaging method, developed specifically to allow more accurate characterization of aerospace components, is shown to precisely characterize the extent of the density variation in a cut-off wheel having a superimposing thickness variation. The method thereby has potential as an effective quality control tool in the abrasives industry for the wheel manufacturer.

  15. Fabrication of Microhotplates Based on Laser Micromachining of Zirconium Oxide

    NASA Astrophysics Data System (ADS)

    Oblov, Konstantin; Ivanova, Anastasia; Soloviev, Sergey; Samotaev, Nikolay; Lipilin, Alexandr; Vasiliev, Alexey; Sokolov, Andrey

    We present a novel approach to the fabrication of MEMS devices, which can be used for gas sensors operating in harsh environment in wireless and autonomous information systems. MEMS platforms based on ZrO2/Y2O3 (YSZ) are applied in these devices. The methods of ceramic MEMS devices fabrication with laser micromachining are considered. It is shown that the application of YSZ membranes permits a decrease in MEMS power consumption at 4500C down to ∼75 mW at continuous heating and down to ∼ 1 mW at pulse heating mode. The application of the platforms is not restricted by gas sensors: they can be used for fast thermometers, bolometric matrices, flowmeteres and other MEMS devices working under harsh environmental conditions.

  16. Micro-electro-optical devices in a five-level polysilicon surface-micromachining technology

    NASA Astrophysics Data System (ADS)

    Smith, James H.; Rodgers, M. Steven; Sniegowski, Jeffry J.; Miller, Samuel L.; Hetherington, Dale L.; McWhorter, Paul J.; Warren, Mial E.

    1998-09-01

    We recently reported on the development of a 5-level polysilicon surface micromachine fabrication process consisting of four levels of mechanical poly plus an electrical interconnect layer and its application to complex mechanical systems. This paper describes the application of this technology to create micro-optical systems-on-a-chip. These are demonstration systems, which show that give levels of polysilicon provide greater performance, reliability, and significantly increased functionality. This new technology makes it possible to realize levels of system complexity that have so far only existed on paper, while simultaneously adding to the robustness of many of the individual subassemblies.

  17. A bulk micromachined lead zinconate titanate cantilever energy harvester with inter-digital IrO(x) electrodes.

    PubMed

    Park, Jongcheol; Park, Jae Yeong

    2013-10-01

    A piezoelectric vibration energy harvester with inter-digital IrO(x) electrode was developed by using silicon bulk micromachining technology. Most PZT cantilever based energy harvesters have utilized platinum electrode material. However, the PZT fatigue characteristics and adhesion/delamination problems caused by the platinum electrode might be serious problem in reliability of energy harvester. To address these problems, the iridium oxide was newly applied. The proposed energy harvester was comprised of bulk micromachined silicon cantilever with 800 x 1000 x 20 microm3, which having a silicon supporting membrane, sol-gel-spin coated Pb(Zr52, Ti48)O3 thin film, and sputtered inter-digitally shaped IrO(x) electrodes, and silicon inertial mass with 1000 x 1000 x 500 microm3 to adjust its resonant frequency. The fabricated energy harvester generated 1 microW of electrical power to 470 komega of load resistance and 1.4 V(peak-to-peak) from a vibration of 0.4 g at 1.475 kHz. The corresponding power density was 6.25 mW x cm(-3) x g(-2). As expected, its electrical failure was significantly improved.

  18. Silicon Micromachined Microlens Array for THz Antennas

    NASA Technical Reports Server (NTRS)

    Lee, Choonsup; Chattopadhyay, Goutam; Mehdi, IImran; Gill, John J.; Jung-Kubiak, Cecile D.; Llombart, Nuria

    2013-01-01

    5 5 silicon microlens array was developed using a silicon micromachining technique for a silicon-based THz antenna array. The feature of the silicon micromachining technique enables one to microfabricate an unlimited number of microlens arrays at one time with good uniformity on a silicon wafer. This technique will resolve one of the key issues in building a THz camera, which is to integrate antennas in a detector array. The conventional approach of building single-pixel receivers and stacking them to form a multi-pixel receiver is not suited at THz because a single-pixel receiver already has difficulty fitting into mass, volume, and power budgets, especially in space applications. In this proposed technique, one has controllability on both diameter and curvature of a silicon microlens. First of all, the diameter of microlens depends on how thick photoresist one could coat and pattern. So far, the diameter of a 6- mm photoresist microlens with 400 m in height has been successfully microfabricated. Based on current researchers experiences, a diameter larger than 1-cm photoresist microlens array would be feasible. In order to control the curvature of the microlens, the following process variables could be used: 1. Amount of photoresist: It determines the curvature of the photoresist microlens. Since the photoresist lens is transferred onto the silicon substrate, it will directly control the curvature of the silicon microlens. 2. Etching selectivity between photoresist and silicon: The photoresist microlens is formed by thermal reflow. In order to transfer the exact photoresist curvature onto silicon, there needs to be etching selectivity of 1:1 between silicon and photoresist. However, by varying the etching selectivity, one could control the curvature of the silicon microlens. The figure shows the microfabricated silicon microlens 5 x5 array. The diameter of the microlens located in the center is about 2.5 mm. The measured 3-D profile of the microlens surface has a

  19. Synthetic Jets in Cross-flow. Part 1; Round Jet

    NASA Technical Reports Server (NTRS)

    Zaman, K. B. M. Q.; Milanovic, Ivana M.

    2003-01-01

    Results of an experimental investigation on synthetic jets from round orifices with and without cross-flow are presented. Jet Reynolds number up to 46,000 with a fully turbulent approach boundary layer, and Stokes number up to 400. are covered. The threshold of stroke length for synthetic jet formation. in the absence of the cross-flow, is found to be Lo /D approximately 0.5. Above Lo /D is approximately 10, the profiles of normalized centerline mean velocity appear to become invariant. It is reasoned that the latter threshold may be related to the phenomenon of saturation of impulsively generated vortices. In the presence of the cross-flow, the penetration height of a synthetic jet is found to depend on the momentum- flux ratio . When this ratio is defined in terms of the maximum jet velocity and the cross-flow velocity. not only all data collapse but also the jet trajectory is predicted well by correlation equation available for steady jets-in-cross-flow. Distributions of mean velocity, streamwise vorticity as well as turbulence intensity for a synthetic jet in cross-flow are found to be similar to those of a steady jet-in-cross-flow. A pair of counter-rotating streamwise vortices, corresponding to the bound vortex pair of the steady case, is clearly observed. Mean velocity distribution exhibits a dome of low momentum fluid pulled up from the boundary layer, and the entire domain is characterized by high turbulence.

  20. Report D : self-consolidating concrete (SCC) for infrastructure elements - creep, shrinkage and abrasion resistance.

    DOT National Transportation Integrated Search

    2012-08-01

    Concrete specimens were fabricated for shrinkage, creep, and abrasion resistance : testing. Variations of self-consolidating concrete (SCC) and conventional concrete were : all tested. The results were compared to previous similar testing programs an...

  1. Multiple jet study data correlations. [data correlation for jet mixing flow of air jets

    NASA Technical Reports Server (NTRS)

    Walker, R. E.; Eberhardt, R. G.

    1975-01-01

    Correlations are presented which allow determination of penetration and mixing of multiple cold air jets injected normal to a ducted subsonic heated primary air stream. Correlations were obtained over jet-to-primary stream momentum flux ratios of 6 to 60 for locations from 1 to 30 jet diameters downstream of the injection plane. The range of geometric and operating variables makes the correlations relevant to gas turbine combustors. Correlations were obtained for the mixing efficiency between jets and primary stream using an energy exchange parameter. Also jet centerplane velocity and temperature trajectories were correlated and centerplane dimensionless temperature distributions defined. An assumption of a Gaussian vertical temperature distribution at all stations is shown to result in a reasonable temperature field model. Data are presented which allow comparison of predicted and measured values over the range of conditions specified above.

  2. Heat sealable, flame and abrasion resistant coated fabric

    NASA Technical Reports Server (NTRS)

    Tschirch, R. P.; Sidman, K. R. (Inventor)

    1983-01-01

    Flame retardant, abrasion resistant elastomeric compositions are disclosed which are comprised of thermoplastic polyurethane polymer and flame retarding amounts of a filler selected from decabromodiphenyloxide and antimony oxide in a 3:1 weight ratio, and decabromodiphenyloxide, antimony oxide, and ammonium polyphosphate in a 3:1:3 weight ratio respectively. Heat sealable coated fabrics employing such elastomeric compositions as coating film are produced by dissolving the elastomeric composition to form a solution, casting the solution onto a release paper and drying it to form an elastomeric film. The film is then bonded to a woven, knitted, or felted fabric.

  3. The grain-size distribution of pyroclasts: Primary fragmentation, conduit sorting or abrasion?

    NASA Astrophysics Data System (ADS)

    Kueppers, U.; Schauroth, J.; Taddeucci, J.

    2013-12-01

    Explosive volcanic eruptions expel a mixture of pyroclasts and lithics. Pyroclasts, fragments of the juvenile magma, record the state of the magma at fragmentation in terms of porosity and crystallinity. The grain size distribution of pyroclasts is generally considered to be a direct consequence of the conditions at magma fragmentation that is mainly driven by gas overpressure in bubbles, high shear rates, contact with external water or a combination of these factors. Stress exerted by any of these processes will lead to brittle fragmentation by overcoming the magma's relaxation timescale. As a consequence, most pyroclasts exhibit angular shapes. Upon magma fragmentation, the gas pyroclast mixture is accelerated upwards and eventually ejected from the vent. The total grain size distribution deposited is a function of fragmentation conditions and transport related sorting. Porous pyroclasts are very susceptible to abrasion by particle-particle or particle-conduit wall interaction. Accordingly, pyroclastic fall deposits with angular clasts should proof a low particle abrasion upon contact to other surfaces. In an attempt to constrain the degree of particle interaction during conduit flow, monomodal batches of washed pyroclasts have been accelerated upwards by rapid decompression and subsequently investigated for their grain size distribution. In our set-up, we used a vertical cylindrical tube without surface roughness as conduit. We varied grain size (0.125-0.25; 0.5-1; 1-2 mm), porosity (0; 10; 30 %), gas-particle ratio (10 and 40%), conduit length (10 and 28 cm) and conduit diameter (2.5 and 6 cm). All ejected particles were collected after settling at the base of a 3.3 m high tank and sieved at one sieve size below starting size (half-Φ). Grain size reduction showed a positive correlation with starting grain size, porosity and overpressure at the vent. Although milling in a volcanic conduit may take place, porous pyroclasts are very likely to be a primary product

  4. Active Region Jets II: Triggering and Evolution of Violent Jets

    NASA Astrophysics Data System (ADS)

    Sterling, Alphonse C.; Moore, Ronald L.; Falconer, David; Panesar, Navdeep K.; Martinez, Francisco

    2017-08-01

    We study a series of X-ray-bright, rapidly evolving active-region coronal jets outside the leading sunspot of AR 12259, using Hinode/XRT, SDO/AIA and HMI, and IRIS/SJ data. The detailed evolution of such rapidly evolving “violent” jets remained a mystery after our previous investigation of active region jets (Sterling et al. 2016, ApJ, 821, 100). The jets we investigate here erupt from three localized subregions, each containing a rapidly evolving (positive) minority-polarity magnetic-flux patch bathed in a (majority) negative-polarity magnetic-flux background. At least several of the jets begin with eruptions of what appear to be thin (thickness ˜<2‧‧) miniature-filament (minifilament) “strands” from a magnetic neutral line where magnetic flux cancelation is ongoing, consistent with the magnetic configuration presented for coronal-hole jets in Sterling et al. (2015, Nature, 523, 437). For some jets strands are difficult/ impossible to detect, perhaps due to their thinness, obscuration by surrounding bright or dark features, or the absence of erupting cool-material minifilaments in those jets. Tracing in detail the flux evolution in one of the subregions, we find bursts of strong jetting occurring only during times of strong flux cancelation. Averaged over seven jetting episodes, the cancelation rate was ~1.5×10^19 Mx/hr. An average flux of ~5×10^18 Mx canceled prior to each episode, arguably building up ~10^28—10^29 ergs of free magnetic energy per jet. From these and previous observations, we infer that flux cancelation is the fundamental process responsible for the pre-eruption buildup and triggering of at least many jets in active regions, quiet regions, and coronal holes.

  5. Active control of continuous air jet with bifurcated synthetic jets

    NASA Astrophysics Data System (ADS)

    Dančová, Petra; Vít, Tomáš; Jašíková, Darina; Novosád, Jan

    The synthetic jets (SJs) have many significant applications and the number of applications is increasing all the time. In this research the main focus is on the primary flow control which can be used effectively for the heat transfer increasing. This paper deals with the experimental research of the effect of two SJs worked in the bifurcated mode used for control of an axisymmetric air jet. First, the control synthetic jets were measured alone. After an adjustment, the primary axisymmetric jet was added in to the system. For comparison, the primary flow without synthetic jets control was also measured. All experiments were performed using PIV method whereby the synchronization between synthetic jets and PIV system was necessary to do.

  6. Micromachining technology for thermal ink-jet products

    NASA Astrophysics Data System (ADS)

    Verdonckt-Vandebroek, Sophie

    1997-09-01

    This paper reviews recent trends and evolutions in the low- end color printing market which is currently dominated by thermal inkjet (TIJ) based products. Micro electromechanical systems technology has been an enabler for the unprecedented cost/performance ratio of these printing products. The generic TIJ operating principles are based on an intimate blend of thermodynamics, fluid dynamics and LSI electronics. The key principles and design issues are outlined and the fabrication of TIJ printheads illustrated with an implementation by the Xerox Corporation.

  7. Intra-jet shocks in two counter-streaming, weakly collisional plasma jets

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ryutov, D. D.; Kugland, N. L.; Park, H.-S.

    2012-07-15

    Counterstreaming laser-generated plasma jets can serve as a test-bed for the studies of a variety of astrophysical phenomena, including collisionless shock waves. In the latter problem, the jet's parameters have to be chosen in such a way as to make the collisions between the particles of one jet with the particles of the other jet very rare. This can be achieved by making the jet velocities high and the Coulomb cross-sections correspondingly low. On the other hand, the intra-jet collisions for high-Mach-number jets can still be very frequent, as they are determined by the much lower thermal velocities of themore » particles of each jet. This paper describes some peculiar properties of intra-jet hydrodynamics in such a setting: the steepening of smooth perturbations and shock formation affected by the presence of the 'stiff' opposite flow; the role of a rapid electron heating in shock formation; ion heating by the intrajet shock. The latter effect can cause rapid ion heating which is consistent with recent counterstreaming jet experiments by Ross et al.[Phys. Plasmas 19, 056501 (2012)].« less

  8. Rapid Confined Mixing Using Transverse Jets Part 2: Multiple Jets

    NASA Astrophysics Data System (ADS)

    Forliti, David; Salazar, David

    2012-11-01

    An experimental study has been conducted at the Air Force Research Laboratory at Edwards Air Force Base to investigate the properties of confined mixing devices that employ transverse jets. The experiment considers the mixing of water with a mixture of water and fluorescein, and planar laser induced fluorescence was used to measure instantaneous mixture fraction distributions in the cross section view. Part one of this study presents the scaling law development and results for a single confined transverse jet. Part two will describe the results of configurations including multiple transverse jets. The different regimes of mixing behavior, ranging from under to overpenetration of the transverse jets, are characterized in terms of a new scaling law parameter presented in part one. The level of unmixedness, a primary metric for mixing device performance, is quantified for different jet diameters, number of jets, and relative flow rates. It is apparent that the addition of a second transverse jet provides enhanced scalar uniformity in the main pipe flow cross section compared to a single jet. Three and six jet configurations also provide highly uniform scalar distributions. Turbulent scalar fluctuation intensities, spectral features, and spatial eigenfunctions using the proper orthogonal decomposition will be presented. Distribution A: Public Release, Public Affairs Clearance Number: 12656.

  9. Novel cavitation fluid jet polishing process based on negative pressure effects.

    PubMed

    Chen, Fengjun; Wang, Hui; Tang, Yu; Yin, Shaohui; Huang, Shuai; Zhang, Guanghua

    2018-04-01

    Traditional abrasive fluid jet polishing (FJP) is limited by its high-pressure equipment, unstable material removal rate, and applicability to ultra-smooth surfaces because of the evident air turbulence, fluid expansion, and a large polishing spot in high-pressure FJP. This paper presents a novel cavitation fluid jet polishing (CFJP) method and process based on FJP technology. It can implement high-efficiency polishing on small-scale surfaces in a low-pressure environment. CFJP uses the purposely designed polishing equipment with a sealed chamber, which can generate a cavitation effect in negative pressure environment. Moreover, the collapse of cavitation bubbles can spray out a high-energy microjet and shock wave to enhance the material removal. Its feasibility is verified through researching the flow behavior and the cavitation results of the negative pressure cavitation machining of pure water in reversing suction flow. The mechanism is analyzed through a computational fluid dynamics simulation. Thus, its cavitation and surface removal mechanisms in the vertical CFJP and inclined CFJP are studied. A series of polishing experiments on different materials and polishing parameters are conducted to validate its polishing performance compared with FJP. The maximum removal depth increases, and surface roughness gradually decreases with increasing negative outlet pressures. The surface becomes smooth with the increase of polishing time. The experimental results confirm that the CFJP process can realize a high material removal rate and smooth surface with low energy consumption in the low-pressure environment, together with compatible surface roughness to FJP. Copyright © 2017 Elsevier B.V. All rights reserved.

  10. Turbulence measurements in axisymmetric jets of air and helium. I - Air jet. II - Helium jet

    NASA Technical Reports Server (NTRS)

    Panchapakesan, N. R.; Lumley, J. L.

    1993-01-01

    Results are presented of measurements on turbulent round jets of air and of helium of the same nozzle momentum efflux, using, for the air jets, x-wire hot-wire probes mounted on a moving shuttle and, for He jets, a composite probe consisting of an interference probe of the Way-Libby type and an x-probe. Current models for scalar triple moments were evaluated. It was found that the performance of the model termed the Full model, which includes all terms except advection, was very good for both the air and the He jets.

  11. Rock Abrasion as Seen by the MSL Curiosity Rover: Insights on Physical Weathering on Mars

    NASA Astrophysics Data System (ADS)

    Bridges, N.; Day, M. D.; Le Mouelic, S.; Martin-Torres, F. J.; Newsom, H. E.; Sullivan, R. J., Jr.; Ullan, A.; Wiens, R. C.; Zorzano, M. P.

    2014-12-01

    Mars is a dry planet, with actively blowing sand in many regions. In the absence of stable liquid water and an active hydrosphere, rates of chemical weathering are slow, such that aeolian abrasion is a dominant agent of landscape modification where sand is present and winds above threshold occur at sufficient frequency. Reflecting this activity, ventifacts, rocks that have been abraded by windborne particles, and wind-eroded outcrops, are common. They provide invaluable markers of the Martian wind record and insight into climate and landscape modification. Ventifacts are distributed along the traverse of the Mars Science Laboratory Curiosity rover. They contain one or more diagnostic features and textures: Facets, keels, basal sills, elongated pits, scallops/flutes, grooves, rock tails, and lineations. Keels at the junction of facets are sharp enough to pose a hazard MSL's wheels in some areas. Geomorphic and textural patterns on outcrops indicate retreat of windward faces. Moonlight Valley and other depressions are demarcated by undercut walls and scree boulders, with the valley interiors containing fewer rocks, most of which show evidence for significant abrasion. Together, this suggests widening and undercutting of the valley walls, and erosion of interior rocks, by windblown sand. HiRISE images do not show any dark sand dunes in the traverse so far, in contrast to the large dune field to the south that is migrating up to 2 m per year. In addition, ChemCam shows that the rock Bathurst has a rind rich in mobile elements that would be removed in an abrading environment. This indicates that rock abrasion was likely more dominant in the past, a hypothesis consistent with rapid scarp retreat as suggested by the cosmogenic noble gases in Yellowknife Bay. Ventifacts and evidence for bedrock abrasion have also been found at the Pathfinder, Spirit, and Opportunity sites, areas, like the Curiosity traverse so far, that lack evidence for current high sand fluxes. Yardangs

  12. Tooth wear: attrition, erosion, and abrasion.

    PubMed

    Litonjua, Luis A; Andreana, Sebastiano; Bush, Peter J; Cohen, Robert E

    2003-06-01

    Attrition, erosion, and abrasion result in alterations to the tooth and manifest as tooth wear. Each classification acts through a distinct process that is associated with unique clinical characteristics. Accurate prevalence data for each classification are not available since indices do not necessarily measure one specific etiology, or the study populations may be too diverse in age and characteristics. The treatment of teeth in each classification will depend on identifying the factors associated with each etiology. Some cases may require specific restorative procedures, while others will not require treatment. A review of the literature points to the interaction of the three entities in the initiation and progression of lesions that may act synchronously or sequentially, synergistically or additively, or in conjunction with other entities to mask the true nature of tooth wear, which appears to be multifactorial.

  13. Spiral jet

    NASA Astrophysics Data System (ADS)

    Istomin, Ya N.

    2018-05-01

    We show that a quasi-cylindrical configuration of a jet in the central region, where direct electric current flows, is confined in a radial equilibrium by a spiral wave at the periphery of a jet. A spiral wave means that in a coordinate system moving with the velocity of the matter along the axis of the jet, all quantities are proportional to exp {ik∥z + imϕ}, z is the longitudinal coordinate, and ϕ is the azimuthal angle. The luminosity of such a jet corresponds to observations. It is also shown that the jet slowly expands with distance z from its base by the power law, R(z) ∝ zk, where the exponent k varies from ≃0.5 to ≃1.

  14. Etude de la degradation des refractaires aluminosiliceux par abrasion, chocs thermiques et corrosion par l'aluminium: Correlation et interaction des mecanismes

    NASA Astrophysics Data System (ADS)

    Ntakaburimvo, Nicodeme

    Aluminosilicate refractories used for melting and holding furnaces on which the present work was focused are submitted to mechanical abuse such as abrasion, mechanical impact and erosion, on one hand; and to chemical degradation by corrosion, as well as to thermal stresses, mostly due to thermal shocks; on the other hand. This thesis is focused on four main objectives. The first one is related to the designing of an experimental set-up allowing abrasion testing of refractories. The second deals with the separate study of the deterioration of aluminosilicate refractories by abrasion, thermal shock and corrosion. The third is the correlation between these three mechanisms while the fourth is related to the interaction between thermal shock and corrosion. One of the contributions of this thesis is the realisation of the above mentioned experimental set-up, which permits to carry out refractories abrasion testing, as well as at room and high temperature, in the absence or in the presence of molten metal. The fact of testing refractory resistance when it is submitted separately and simultaneously to the action of dynamic corrosion, erosion and abrasion leads to the studying of the influence of each of these three mechanisms on the other. One of the characteristics of the designed set-up is the fact that it allows to adjust the seventy testing conditions according to the mechanical resistance of the test material. The other important point is related to the fact the abrasion tests were carried out in such manner to permit degradation quantification, otherwise than by the traditional method of loss of weight measurement; particularly by measuring the wear depth and the residual material properties, such as the rupture force and the strength. A perfect correlation was observed between the wear depth and the loss of weight, both being negatively correlated with the residual rupture force. The abrasion resistance was found to be globally positively correlated with the

  15. A laser-abrasive method for the cutting of enamel and dentin.

    PubMed

    Altshuler, G B; Belikov, A V; Sinelnik, Y A

    2001-01-01

    This paper introduced a new method for the removal of hard dental tissue based upon the use of particles accelerated by laser irradiation, which the authors have called the laser-abrasive method. The particles used were sapphire as powder or an aqueous suspension. The effect of the products of enamel ablation was also investigated. The particles were accelerated using submillisecond pulses of Er:YAG and Nd:YAG lasers. A strobing CCD camera was used to measure the speed of the ejected particles. The additional contribution of these particles to the efficiency of laser ablation of enamel and dentin was also investigated. The results showed that the enamel particles produced by the beam-tissue interaction were also accelerated by this process of ablation and were effective in the removal of enamel and dentin. The use of an aqueous suspension of sapphire particles increased the efficiency of enamel removal threefold when compared with the use of an Er:YAG laser with water spray. The laser-abrasive method allowed for the removal of enamel and dentin at speeds approaching those of the high-speed turbine. Copyright 2001 Wiley-Liss, Inc.

  16. Rapid Confined Mixing with Transverse Jets Part 1: Single Jet

    NASA Astrophysics Data System (ADS)

    Salazar, David; Forliti, David

    2012-11-01

    Transverse jets have been studied extensively due to their relevance and efficiency in fluid mixing applications. Gas turbine burners, film cooling, and chemical reactors are some examples of rapid transverse jet mixing. Motivated by a lack of universal scaling laws for confined and unconfined transverse jets, a newly developed momentum transfer parameter was found to improve correlation of literature data. Jet column drag and entrainment arguments for momentum transfer are made to derive the parameter. A liquid-phase mixing study was conducted to investigate confined mixing for a low number of jets. Planar laser induced fluorescence was implemented to measure mixture fraction for a single confined transverse jet. Time-averaged cross-sectional images were taken with a light sheet located three diameters downstream of transverse injection. A mixture of water and sodium fluorescein was used to distinguish jet fluid from main flow fluid for the test section images. Image data suggest regimes for under- and overpenetration of jet fluid into the main flow. The scaling parameter is found to correlate optimum unmixedness for multiple diameter ratios at a parameter value of 0.75. Distribution A: Public Release, Public Affairs Clearance Number: 12655.

  17. Understanding jet noise.

    PubMed

    Karabasov, S A

    2010-08-13

    Jets are one of the most fascinating topics in fluid mechanics. For aeronautics, turbulent jet-noise modelling is particularly challenging, not only because of the poor understanding of high Reynolds number turbulence, but also because of the extremely low acoustic efficiency of high-speed jets. Turbulent jet-noise models starting from the classical Lighthill acoustic analogy to state-of-the art models were considered. No attempt was made to present any complete overview of jet-noise theories. Instead, the aim was to emphasize the importance of sound generation and mean-flow propagation effects, as well as their interference, for the understanding and prediction of jet noise.

  18. A flexible ultrasound transducer array with micro-machined bulk PZT.

    PubMed

    Wang, Zhe; Xue, Qing-Tang; Chen, Yuan-Quan; Shu, Yi; Tian, He; Yang, Yi; Xie, Dan; Luo, Jian-Wen; Ren, Tian-Ling

    2015-01-23

    This paper proposes a novel flexible piezoelectric micro-machined ultrasound transducer, which is based on PZT and a polyimide substrate. The transducer is made on the polyimide substrate and packaged with medical polydimethylsiloxane. Instead of etching the PZT ceramic, this paper proposes a method of putting diced PZT blocks into holes on the polyimide which are pre-etched. The device works in d31 mode and the electromechanical coupling factor is 22.25%. Its flexibility, good conformal contacting with skin surfaces and proper resonant frequency make the device suitable for heart imaging. The flexible packaging ultrasound transducer also has a good waterproof performance after hundreds of ultrasonic electric tests in water. It is a promising ultrasound transducer and will be an effective supplementary ultrasound imaging method in the practical applications.

  19. Silicon Micromachining in RF and Photonic Applications

    NASA Technical Reports Server (NTRS)

    Lin, Tsen-Hwang; Congdon, Phil; Magel, Gregory; Pang, Lily; Goldsmith, Chuck; Randall, John; Ho, Nguyen

    1995-01-01

    Texas Instruments (TI) has developed membrane and micromirror devices since the late 1970s. An eggcrate space membrane was used as the spatial light modulator in the early years. Discrete micromirrors supported by cantilever beams created a new era for micromirror devices. Torsional micromirror and flexure-beam micromirror devices were promising for mass production because of their stable supports. TI's digital torsional micromirror device is an amplitude modulator (known as the digital micromirror device (DMD) and is in production development, discussed elsewhere. We also use a torsional device for a 4 x 4 fiber-optic crossbar switch in a 2 cm x 2 cm package. The flexure-beam micromirror device is an analog phase modulator and is considered more efficient than amplitude modulators for use in optical processing systems. TI also developed millimeter-sized membranes for integrated optical switches for telecommunication and network applications. Using a member in radio frequency (RF) switch applications is a rapidly growing area because of the micromechanical device performance in microsecond-switching characteristics. Our preliminary membrane RF switch test structure results indicate promising speed and RF switching performance. TI collaborated with MIT for modeling of metal-based micromachining.

  20. Effect of consolidation on adhesive and abrasive wear of ultra high molecular weight polyethylene.

    PubMed

    Gul, Rizwan M; McGarry, Frederick J; Bragdon, Charles R; Muratoglu, Orhun K; Harris, William H

    2003-08-01

    Total hip replacement (THR) is widely performed to recover hip joint functions lost by trauma or disease and to relieve pain. The major cause of failure in THR is the wear of the ultra high molecular weight polyethylene (UHMWPE) component. The dominant wear mechanism in THR occurs through adhesion and abrasion. While poor consolidation of UHMWPE is known to increase the incidence of a different damage mode, delamination, which is the dominant wear mechanism in tibial inserts but uncommon in THR, the effect of consolidation on adhesive and abrasive wear of UHMWPE is not clear. In this study UHMWPE resin was subjected to hot isostatic pressing under a pressure of 138MPa at different temperatures (210 degrees C, 250 degrees C, and 300 degrees C) to achieve varying degrees of consolidation. The extent of consolidation was determined by optical microscopy using thin sections, and by scanning electron microscopy using cryofractured and solvent etched specimens. Wear behavior of the samples with varying degree of consolidation was determined using a bi-directional pin-on-disc machine simulating conditions in a hip joint. Increasing the processing temperature decreased the incidence of fusion defects and particle boundaries reflecting the powder flakes of the virgin resin, improving the consolidation. However, the bi-directional pin-on-disc wear rate did not change with the processing temperature, indicating that adhesive and abrasive wear is independent of the extent of consolidation in the range of parameters studied here.