Sample records for abs alkyl benzenesulfonates

  1. 40 CFR 721.9220 - Reaction products of secondary alkyl amines with a substituted benzenesulfonic acid and sulfuric...

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 40 Protection of Environment 31 2011-07-01 2011-07-01 false Reaction products of secondary alkyl... Reaction products of secondary alkyl amines with a substituted benzenesulfonic acid and sulfuric acid... substances identified generically as reaction products of secondary alkyl amines with a substituted...

  2. 40 CFR 721.9220 - Reaction products of secondary alkyl amines with a substituted benzenesulfonic acid and sulfuric...

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 40 Protection of Environment 30 2010-07-01 2010-07-01 false Reaction products of secondary alkyl... Reaction products of secondary alkyl amines with a substituted benzenesulfonic acid and sulfuric acid... substances identified generically as reaction products of secondary alkyl amines with a substituted...

  3. Inert Reassessment Document for Alkyl (C8-C24)

    EPA Pesticide Factsheets

    Inert Ingredient Tolerance Reassessments: Two Exemptions from theRequirement of a Tolerance for Alkyl (C8-C24) Benzenesulfonic Acid and its Ammonium, Calcium, Magnesium, Potassium, Sodium, and Zinc Salts

  4. 40 CFR 721.1643 - Benzenesulfonic acid, amino substituted phenylazo-.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 40 Protection of Environment 31 2011-07-01 2011-07-01 false Benzenesulfonic acid, amino... Specific Chemical Substances § 721.1643 Benzenesulfonic acid, amino substituted phenylazo-. (a) Chemical... as a benzenesulfonic acid, amino substituted phenylazo- (PMN P-95-86) is subject to reporting under...

  5. 40 CFR 721.1643 - Benzenesulfonic acid, amino substituted phenylazo-.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 40 Protection of Environment 30 2010-07-01 2010-07-01 false Benzenesulfonic acid, amino... Specific Chemical Substances § 721.1643 Benzenesulfonic acid, amino substituted phenylazo-. (a) Chemical... as a benzenesulfonic acid, amino substituted phenylazo- (PMN P-95-86) is subject to reporting under...

  6. 40 CFR 721.1648 - Substituted benzenesulfonic acid salt (generic).

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ...) TOXIC SUBSTANCES CONTROL ACT SIGNIFICANT NEW USES OF CHEMICAL SUBSTANCES Significant New Uses for Specific Chemical Substances § 721.1648 Substituted benzenesulfonic acid salt (generic). (a) Chemical substance and significant new uses subject to reporting. (1) The chemical substance identified generically...

  7. The impact of alkyl sulfate surfactant geometry and electrolyte on the co-adsorption of anionic surfactants with model perfumes at the air-solution interface.

    PubMed

    Bradbury, Robert; Penfold, Jeffrey; Thomas, Robert K; Tucker, Ian M; Petkov, Jordan T; Jones, Craig

    2013-08-01

    The impact of surfactant geometry and electrolyte on the co-adsorption of anionic surfactants and model perfumes at the air-solution interface has been studied by neutron reflectivity. The more hydrophobic perfume linalool, competes more favourably for the surface with sodium dodecylsulfate than was previously reported for the anionic surfactant, sodium dodecyl 6-benzenesulfonate. Due to an increase in surface activity of the sodium dodecylsulfate, the addition of electrolyte results in a reduction in the linalool adsorption. Changing the alkyl chain length affects the relative adsorption of linalool and surfactant at the interface. Similar measurements for the different alkyl sulfates and with electrolyte with the more hydrophilic perfume phenyl ethanol, reveal broadly similar trends. Although the relative adsorption of phenyl ethanol with sodium dodecylsulfate is substantially enhanced compared to sodium dodecyl-6-benzenesulfonate the effects are not as significant as was observed with linalool. The variations with alkyl chain geometry show the importance of the hydrophobic interaction between the perfume and surfactant and changes in the packing constraints on the relative adsorption. The results highlight the importance of the specific interaction between the surfactant and perfume, and the surfactant and perfume geometries on the relative adsorption at the interface. Copyright © 2013 Elsevier Inc. All rights reserved.

  8. 40 CFR 721.10097 - Disubstituted benzenesulfonic acid, alkali metal salt (generic).

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ..., alkali metal salt (generic). 721.10097 Section 721.10097 Protection of Environment ENVIRONMENTAL... metal salt (generic). (a) Chemical substance and significant new uses subject to reporting. (1) The chemical substance identified generically as disubstituted benzenesulfonic acid, alkali metal salt (PMN P...

  9. 40 CFR 721.10097 - Disubstituted benzenesulfonic acid, alkali metal salt (generic).

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ..., alkali metal salt (generic). 721.10097 Section 721.10097 Protection of Environment ENVIRONMENTAL... metal salt (generic). (a) Chemical substance and significant new uses subject to reporting. (1) The chemical substance identified generically as disubstituted benzenesulfonic acid, alkali metal salt (PMN P...

  10. 40 CFR 721.9790 - Benzenesulfonic acid, 2,2′-(1,2-ethenediyl)bis[5-[[4-[bis(2-hydroxypropyl) amino]- 6-[(3...

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    .... with 2,2′,2″-nitrilotris[ethanol] (1:2); Benzenesulfonic acid, 5-[[4-[bis(2-hydroxyethyl)amino]-6-[(3... 40 Protection of Environment 31 2011-07-01 2011-07-01 false Benzenesulfonic acid, 2,2â²-(1,2-ethenediyl)bis[5-[[4-[bis(2-hydroxypropyl) amino]- 6-[(3-sulfophenyl)amino]-1,3,5-triazin-2-yl]amino...

  11. 40 CFR 721.9790 - Benzenesulfonic acid, 2,2′-(1,2-ethenediyl)bis[5-[[4-[bis(2-hydroxypropyl) amino]- 6-[(3...

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    .... with 2,2′,2″-nitrilotris[ethanol] (1:2); Benzenesulfonic acid, 5-[[4-[bis(2-hydroxyethyl)amino]-6-[(3... 40 Protection of Environment 30 2010-07-01 2010-07-01 false Benzenesulfonic acid, 2,2â²-(1,2-ethenediyl)bis[5-[[4-[bis(2-hydroxypropyl) amino]- 6-[(3-sulfophenyl)amino]-1,3,5-triazin-2-yl]amino...

  12. 40 CFR 721.9790 - Benzenesulfonic acid, 2,2′-(1,2-ethenediyl)bis[5-[[4-[bis(2-hydroxypropyl) amino]- 6-[(3...

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ...]-, disodium salt, compd. with 2,2â²,2â³-nitrilo-tris[ethanol] (1:2); Benzenesulfonic acid, 5-[[4-[bis(2.... with 2,2â²,2â³-nitrilotris[ethanol] (1:2). 721.9790 Section 721.9790 Protection of Environment...]-, disodium salt, compd. with 2,2′,2″-nitrilo-tris[ethanol] (1:2); Benzenesulfonic acid, 5-[[4-[bis(2...

  13. 40 CFR 721.9790 - Benzenesulfonic acid, 2,2′-(1,2-ethenediyl)bis[5-[[4-[bis(2-hydroxypropyl) amino]- 6-[(3...

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ...]-, disodium salt, compd. with 2,2â²,2â³-nitrilo-tris[ethanol] (1:2); Benzenesulfonic acid, 5-[[4-[bis(2.... with 2,2â²,2â³-nitrilotris[ethanol] (1:2). 721.9790 Section 721.9790 Protection of Environment...]-, disodium salt, compd. with 2,2′,2″-nitrilo-tris[ethanol] (1:2); Benzenesulfonic acid, 5-[[4-[bis(2...

  14. 40 CFR 721.9790 - Benzenesulfonic acid, 2,2′-(1,2-ethenediyl)bis[5-[[4-[bis(2-hydroxypropyl) amino]- 6-[(3...

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ...]-, disodium salt, compd. with 2,2â²,2â³-nitrilo-tris[ethanol] (1:2); Benzenesulfonic acid, 5-[[4-[bis(2.... with 2,2â²,2â³-nitrilotris[ethanol] (1:2). 721.9790 Section 721.9790 Protection of Environment...]-, disodium salt, compd. with 2,2′,2″-nitrilo-tris[ethanol] (1:2); Benzenesulfonic acid, 5-[[4-[bis(2...

  15. 40 CFR 721.9795 - Benzenesulfonic acid, 2,2′-(1,2-ethenediyl)bis[(4,6-dichloro-1,3,5-triazin-2-yl) amino...

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... benzenesulfonic acid, 2,2′-(1,2-ethenediyl)bis[(4,6-dichloro-1,3,5-triazin-2-yl)amino]-, disodium salt... 40 Protection of Environment 31 2011-07-01 2011-07-01 false Benzenesulfonic acid, 2,2â²-(1,2-ethenediyl)bis[(4,6-dichloro-1,3,5-triazin-2-yl) amino]-, disodium salt, substituted with dialkyl amines...

  16. 40 CFR 721.9795 - Benzenesulfonic acid, 2,2′-(1,2-ethenediyl)bis[(4,6-dichloro-1,3,5-triazin-2-yl) amino...

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... benzenesulfonic acid, 2,2′-(1,2-ethenediyl)bis[(4,6-dichloro-1,3,5-triazin-2-yl)amino]-, disodium salt... 40 Protection of Environment 30 2010-07-01 2010-07-01 false Benzenesulfonic acid, 2,2â²-(1,2-ethenediyl)bis[(4,6-dichloro-1,3,5-triazin-2-yl) amino]-, disodium salt, substituted with dialkyl amines...

  17. 40 CFR 721.9798 - Benzenesulfonic acid, 2,2′-(1,2-ethenediyl)bis[5-[[4-substituted-6-substituted-1,3,5-triazin-2-yl...

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 40 Protection of Environment 30 2010-07-01 2010-07-01 false Benzenesulfonic acid, 2,2â²-(1,2-ethenediyl)bis[5-[[4-substituted-6-substituted-1,3,5-triazin-2-yl]amino]-, sodium salt (generic). 721.9798... Substances § 721.9798 Benzenesulfonic acid, 2,2′-(1,2-ethenediyl)bis[5-[[4-substituted-6-substituted-1,3,5...

  18. 40 CFR 721.9798 - Benzenesulfonic acid, 2,2′-(1,2-ethenediyl)bis[5-[[4-substituted-6-substituted-1,3,5-triazin-2-yl...

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 40 Protection of Environment 31 2011-07-01 2011-07-01 false Benzenesulfonic acid, 2,2â²-(1,2-ethenediyl)bis[5-[[4-substituted-6-substituted-1,3,5-triazin-2-yl]amino]-, sodium salt (generic). 721.9798... Substances § 721.9798 Benzenesulfonic acid, 2,2′-(1,2-ethenediyl)bis[5-[[4-substituted-6-substituted-1,3,5...

  19. HeI photoelectron spectroscopic studies on the electronic structure of alkyl nitrosamines

    NASA Astrophysics Data System (ADS)

    Jiang, Peng; Qian, Ximei; Li, Chunhui; Qiao, Chunhua; Wang, Dianxun

    1997-10-01

    HeI photoelectron spectroscopic (PES) studies on the electronic structure of alkyl nitrosamines R 2N 2O (R = CH 3-, CH 3CH 2-, and CH 3CH 2CH 2-) are reported. The assignment of the PES bands for this series of compounds has been made with the aid of the band shapes, the band intensity and ab initio SCF MO calculations based on the 631 ∗ G basis sets. Both PES experiment and the ab initio SCF MO calculations show that the detoxification ability of nitrosamine with longer alkyl chain is stronger.

  20. SK3/TRPC1/Orai1 complex regulates SOCE-dependent colon cancer cell migration: a novel opportunity to modulate anti-EGFR mAb action by the alkyl-lipid Ohmline

    PubMed Central

    Guéguinou, Maxime; Harnois, Thomas; Crottes, David; Uguen, Arnaud; Deliot, Nadine; Gambade, Audrey; Chantôme, Aurélie; Haelters, Jean Pierre; Jaffrès, Paul Alain; Jourdan, Marie Lise; Weber, Günther; Soriani, Olivier; Bougnoux, Philippe; Mignen, Olivier; Bourmeyster, Nicolas; Constantin, Bruno; Lecomte, Thierry

    2016-01-01

    Background Barely 10-20% of patients with metastatic colorectal cancer (mCRC) receive a clinical benefit from the use of anti-EGFR monoclonal antibodies (mAbs). We hypothesized that this could depends on their efficiency to reduce Store Operated Calcium Entry (SOCE) that are known to enhance cancer cells. Results In the present study, we demonstrate that SOCE promotes migration of colon cancer cell following the formation of a lipid raft ion channel complex composed of TRPC1/Orai1 and SK3 channels. Formation of this complex is stimulated by the phosphorylation of the reticular protein STIM1 by EGF and activation of the Akt pathway. Our data show that, in a positive feedback loop SOCE activates both Akt pathway and SK3 channel activity which lead to SOCE amplification. This amplification occurs through the activation of Rac1/Calpain mediated by Akt. We also show that Anti-EGFR mAbs can modulate SOCE and cancer cell migration through the Akt pathway. Interestingly, the alkyl-lipid Ohmline, which we previously showed to be an inhibitor of SK3 channel, can dissociated the lipid raft ion channel complex through decreased phosphorylation of Akt and modulation of mAbs action. Conclusions This study demonstrates that the inhibition of the SOCE-dependent colon cancer cell migration trough SK3/TRPC1/Orai1 channel complex by the alkyl-lipid Ohmline may be a novel strategy to modulate Anti-EGFR mAb action in mCRC. PMID:27102434

  1. 40 CFR 721.1645 - Benzenesulfonic acid, 4-methyl-, reaction products with oxirane mono[(C10-16-alkyloxy)methyl...

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ...-, reaction products with oxirane mono[(C10-16-alkyloxy)methyl] derivatives and 2,2,4(or 2,4,4)-trimethyl-1,6... Specific Chemical Substances § 721.1645 Benzenesulfonic acid, 4-methyl-, reaction products with oxirane...-methyl-, reaction products with oxirane mono[(C10-16-alkyloxy)methyl] derivatives and 2,2,4(or 2,4,4...

  2. 40 CFR 721.1645 - Benzenesulfonic acid, 4-methyl-, reaction products with oxirane mono[(C10-16-alkyloxy)methyl...

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ...-, reaction products with oxirane mono[(C10-16-alkyloxy)methyl] derivatives and 2,2,4(or 2,4,4)-trimethyl-1,6... Specific Chemical Substances § 721.1645 Benzenesulfonic acid, 4-methyl-, reaction products with oxirane...-methyl-, reaction products with oxirane mono[(C10-16-alkyloxy)methyl] derivatives and 2,2,4(or 2,4,4...

  3. Ab initio evaluation of the thermodynamic and electrochemical properties of alkyl halides and radicals and their mechanistic implications for atom transfer radical polymerization.

    PubMed

    Lin, Ching Yeh; Coote, Michelle L; Gennaro, Armando; Matyjaszewski, Krzysztof

    2008-09-24

    High-level ab initio molecular orbital calculations are used to study the thermodynamics and electrochemistry relevant to the mechanism of atom transfer radical polymerization (ATRP). Homolytic bond dissociation energies (BDEs) and standard reduction potentials (SRPs) are reported for a series of alkyl halides (R-X; R = CH 2CN, CH(CH 3)CN, C(CH 3) 2CN, CH 2COOC 2H 5, CH(CH 3)COOCH 3, C(CH 3) 2COOCH 3, C(CH 3) 2COOC 2H 5, CH 2Ph, CH(CH 3)Ph, CH(CH 3)Cl, CH(CH 3)OCOCH 3, CH(Ph)COOCH 3, SO 2Ph, Ph; X = Cl, Br, I) both in the gas phase and in two common organic solvents, acetonitrile and dimethylformamide. The SRPs of the corresponding alkyl radicals, R (*), are also examined. The computational results are in a very good agreement with the experimental data. For all alkyl halides examined, it is found that, in the solution phase, one-electron reduction results in the fragmentation of the R-X bond to the corresponding alkyl radical and halide anion; hence it may be concluded that a hypothetical outer-sphere electron transfer (OSET) in ATRP should occur via concerted dissociative electron transfer rather than a two-step process with radical anion intermediates. Both the homolytic and heterolytic reactions are favored by electron-withdrawing substituents and/or those that stabilize the product alkyl radical, which explains why monomers such as acrylonitrile and styrene require less active ATRP catalysts than vinyl chloride and vinyl acetate. The rate constant of the hypothetical OSET reaction between bromoacetonitrile and Cu (I)/TPMA complex was estimated using Marcus theory for the electron-transfer processes. The estimated rate constant k OSET = approximately 10 (-11) M (-1) s (-1) is significantly smaller than the experimentally measured activation rate constant ( k ISET = approximately 82 M (-1) s (-1) at 25 degrees C in acetonitrile) for the concerted atom transfer mechanism (inner-sphere electron transfer, ISET), implying that the ISET mechanism is preferred. For

  4. Biodegradation of phenol, salicylic acid, benzenesulfonic acid, and iomeprol by Pseudomonas fluorescens in the capillary fringe

    NASA Astrophysics Data System (ADS)

    Hack, Norman; Reinwand, Christian; Abbt-Braun, Gudrun; Horn, Harald; Frimmel, Fritz H.

    2015-12-01

    Mass transfer and biological transformation phenomena in the capillary fringe were studied using phenol, salicylic acid, benzenesulfonic acid, and the iodinated X-ray contrast agent iomeprol as model organic compounds and the microorganism strain Pseudomonas fluorescens. Three experimental approaches were used: Batch experiments (uniform water saturation and transport by diffusion), in static columns (with a gradient of water saturation and advective transport in the capillaries) and in a flow-through cell (with a gradient of water saturation and transport by horizontal and vertical flow: 2-dimension flow-through microcosm). The reactors employed for the experiments were filled with quartz sand of defined particle size distribution (dp = 200…600 μm, porosity ε = 0.42). Batch experiments showed that phenol and salicylic acid have a high, whereas benzenesulfonic acid and iomeprol have a quite low potential for biodegradation under aerobic conditions and in a matrix nearly close to water saturation. Batch experiments under anoxic conditions with nitrate as electron acceptor revealed that the biodegradation of the model compounds was lower than under aerobic conditions. Nevertheless, the experiments showed that the moisture content was also responsible for an optimized transport in the liquid phase of a porous medium. Biodegradation in the capillary fringe was found to be influenced by both the moisture content and availability of the dissolved substrate, as seen in static column experiments. The gas-liquid mass transfer of oxygen also played an important role for the biological activity. In static column experiments under aerobic conditions, the highest biodegradation was found in the capillary fringe (e.g. βt/β0 (phenol) = 0 after t = 6 d) relative to the zone below the water table and unsaturated zone. The highest biodegradation occurred in the flow-through cell experiment where the height of the capillary fringe was largest.

  5. Biodegradation of phenol, salicylic acid, benzenesulfonic acid, and iomeprol by Pseudomonas fluorescens in the capillary fringe.

    PubMed

    Hack, Norman; Reinwand, Christian; Abbt-Braun, Gudrun; Horn, Harald; Frimmel, Fritz H

    2015-12-01

    Mass transfer and biological transformation phenomena in the capillary fringe were studied using phenol, salicylic acid, benzenesulfonic acid, and the iodinated X-ray contrast agent iomeprol as model organic compounds and the microorganism strain Pseudomonas fluorescens. Three experimental approaches were used: Batch experiments (uniform water saturation and transport by diffusion), in static columns (with a gradient of water saturation and advective transport in the capillaries) and in a flow-through cell (with a gradient of water saturation and transport by horizontal and vertical flow: 2-dimension flow-through microcosm). The reactors employed for the experiments were filled with quartz sand of defined particle size distribution (dp=200...600 μm, porosity ε=0.42). Batch experiments showed that phenol and salicylic acid have a high, whereas benzenesulfonic acid and iomeprol have a quite low potential for biodegradation under aerobic conditions and in a matrix nearly close to water saturation. Batch experiments under anoxic conditions with nitrate as electron acceptor revealed that the biodegradation of the model compounds was lower than under aerobic conditions. Nevertheless, the experiments showed that the moisture content was also responsible for an optimized transport in the liquid phase of a porous medium. Biodegradation in the capillary fringe was found to be influenced by both the moisture content and availability of the dissolved substrate, as seen in static column experiments. The gas-liquid mass transfer of oxygen also played an important role for the biological activity. In static column experiments under aerobic conditions, the highest biodegradation was found in the capillary fringe (e.g. βt/β0 (phenol)=0 after t=6 d) relative to the zone below the water table and unsaturated zone. The highest biodegradation occurred in the flow-through cell experiment where the height of the capillary fringe was largest. Copyright © 2015 Elsevier B.V. All rights

  6. Alkyl–Alkyl Suzuki Cross-Couplings of Unactivated Secondary Alkyl Chlorides**

    PubMed Central

    Lu, Zhe; Fu, Gregory C.

    2010-01-01

    The first method for achieving alkyl–alkyl Suzuki reactions of unactivated secondary alkyl chlorides has been developed. Carbon–carbon bond formation occurs under mild conditions (at room temperature) with the aid of commercially available catalyst components. This method has proved to be versatile: without modification, it can be applied to Suzuki reactions of secondary and primary alkyl bromides and iodides, as well as primary alkyl chlorides. Mechanistic investigations suggest that oxidative addition is not the turnover-limiting step of the catalytic cycle for unactivated secondary alkyl iodides and bromides, whereas it may be (partially) for chlorides. PMID:20715038

  7. 40 CFR 721.9595 - Alkyl benzene sulfonic acids and alkyl sulfates, amine salts (generic).

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 40 Protection of Environment 31 2011-07-01 2011-07-01 false Alkyl benzene sulfonic acids and alkyl... Significant New Uses for Specific Chemical Substances § 721.9595 Alkyl benzene sulfonic acids and alkyl...) The chemical substances identified generically as alkyl benzene sulfonic acids and alkyl sulfates...

  8. 40 CFR 721.9595 - Alkyl benzene sulfonic acids and alkyl sulfates, amine salts (generic).

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 40 Protection of Environment 31 2014-07-01 2014-07-01 false Alkyl benzene sulfonic acids and alkyl... Significant New Uses for Specific Chemical Substances § 721.9595 Alkyl benzene sulfonic acids and alkyl...) The chemical substances identified generically as alkyl benzene sulfonic acids and alkyl sulfates...

  9. 40 CFR 721.9595 - Alkyl benzene sulfonic acids and alkyl sulfates, amine salts (generic).

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 40 Protection of Environment 32 2012-07-01 2012-07-01 false Alkyl benzene sulfonic acids and alkyl... Significant New Uses for Specific Chemical Substances § 721.9595 Alkyl benzene sulfonic acids and alkyl...) The chemical substances identified generically as alkyl benzene sulfonic acids and alkyl sulfates...

  10. 40 CFR 721.9595 - Alkyl benzene sulfonic acids and alkyl sulfates, amine salts (generic).

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 40 Protection of Environment 30 2010-07-01 2010-07-01 false Alkyl benzene sulfonic acids and alkyl... Significant New Uses for Specific Chemical Substances § 721.9595 Alkyl benzene sulfonic acids and alkyl...) The chemical substances identified generically as alkyl benzene sulfonic acids and alkyl sulfates...

  11. 40 CFR 721.9595 - Alkyl benzene sulfonic acids and alkyl sulfates, amine salts (generic).

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 40 Protection of Environment 32 2013-07-01 2013-07-01 false Alkyl benzene sulfonic acids and alkyl... Significant New Uses for Specific Chemical Substances § 721.9595 Alkyl benzene sulfonic acids and alkyl...) The chemical substances identified generically as alkyl benzene sulfonic acids and alkyl sulfates...

  12. 40 CFR 721.1875 - Boric acid, alkyl and substituted alkyl esters (generic name).

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 40 Protection of Environment 31 2014-07-01 2014-07-01 false Boric acid, alkyl and substituted... Significant New Uses for Specific Chemical Substances § 721.1875 Boric acid, alkyl and substituted alkyl... chemical substance boric acid, alkyl and substituted alkyl esters (PMN P-86-1252) is subject to reporting...

  13. 40 CFR 721.1875 - Boric acid, alkyl and substituted alkyl esters (generic name).

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 40 Protection of Environment 32 2012-07-01 2012-07-01 false Boric acid, alkyl and substituted... Significant New Uses for Specific Chemical Substances § 721.1875 Boric acid, alkyl and substituted alkyl... chemical substance boric acid, alkyl and substituted alkyl esters (PMN P-86-1252) is subject to reporting...

  14. 40 CFR 721.1875 - Boric acid, alkyl and substituted alkyl esters (generic name).

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 40 Protection of Environment 30 2010-07-01 2010-07-01 false Boric acid, alkyl and substituted... Significant New Uses for Specific Chemical Substances § 721.1875 Boric acid, alkyl and substituted alkyl... chemical substance boric acid, alkyl and substituted alkyl esters (PMN P-86-1252) is subject to reporting...

  15. 40 CFR 721.1875 - Boric acid, alkyl and substituted alkyl esters (generic name).

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 40 Protection of Environment 32 2013-07-01 2013-07-01 false Boric acid, alkyl and substituted... Significant New Uses for Specific Chemical Substances § 721.1875 Boric acid, alkyl and substituted alkyl... chemical substance boric acid, alkyl and substituted alkyl esters (PMN P-86-1252) is subject to reporting...

  16. 40 CFR 721.1875 - Boric acid, alkyl and substituted alkyl esters (generic name).

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 40 Protection of Environment 31 2011-07-01 2011-07-01 false Boric acid, alkyl and substituted... Significant New Uses for Specific Chemical Substances § 721.1875 Boric acid, alkyl and substituted alkyl... chemical substance boric acid, alkyl and substituted alkyl esters (PMN P-86-1252) is subject to reporting...

  17. [Alkylating agents].

    PubMed

    Pourquier, Philippe

    2011-11-01

    With the approval of mechlorethamine by the FDA in 1949 for the treatment of hematologic malignancies, alkylating agents are the oldest class of anticancer agents. Even though their clinical use is far beyond the use of new targeted therapies, they still occupy a major place in specific indications and sometimes represent the unique option for the treatment of refractory diseases. Here, we are reviewing the major classes of alkylating agents and their mechanism of action, with a particular emphasis for the new generations of alkylating agents. As for most of the chemotherapeutic agents used in the clinic, these compounds are derived from natural sources. With a complex but original mechanism of action, they represent new interesting alternatives for the clinicians, especially for tumors that are resistant to conventional DNA damaging agents. We also briefly describe the different strategies that have been or are currently developed to potentiate the use of classical alkylating agents, especially the inhibition of pathways that are involved in the repair of DNA lesions induced by these agents. In this line, the development of PARP inhibitors is a striking example of the recent regain of interest towards the "old" alkylating agents.

  18. The Scarlet Letter of Alkylation: A Mini Review of Selective Alkylating Agents

    PubMed Central

    Oronsky, Bryan T; Reid, Tony; Knox, Susan J; Scicinski, Jan J

    2012-01-01

    If there were a stigma scale for chemotherapy, alkylating agents would be ranked at the top of the list. The chemical term alkylation is associated with nonselective toxicity, an association that dates back to the use of nitrogen mustards during World War I as chemical warfare agents. That this stigma persists and extends to compounds that, through selectivity, attempt to “tame” the indiscriminate destructive potential of alkylation is the subject of this review. Selective alkylation, as it is referred to herein, constitutes an extremely nascent and dynamic field in oncology. The pharmacodynamic response to this selective strategy depends on a delicate kinetic balance between specificity and the rate and extent of binding. Three representative compounds are presented: RRx-001, 3-bromopyruvate, and TH-302. The main impetus for the development of these compounds has been the avoidance of the serious complications of traditional alkylating agents; therefore, it is the thesis of this review that they should not experience stigma by association. PMID:22937173

  19. Developing force fields when experimental data is sparse: AMBER/GAFF-compatible parameters for inorganic and alkyl oxoanions.

    PubMed

    Kashefolgheta, Sadra; Vila Verde, Ana

    2017-08-09

    We present a set of Lennard-Jones parameters for classical, all-atom models of acetate and various alkylated and non-alkylated forms of sulfate, sulfonate and phosphate ions, optimized to reproduce their interactions with water and with the physiologically relevant sodium, ammonium and methylammonium cations. The parameters are internally consistent and are fully compatible with the Generalized Amber Force Field (GAFF), the AMBER force field for proteins, the accompanying TIP3P water model and the sodium model of Joung and Cheatham. The parameters were developed primarily relying on experimental information - hydration free energies and solution activity derivatives at 0.5 m concentration - with ab initio, gas phase calculations being used for the cases where experimental information is missing. The ab initio parameterization scheme presented here is distinct from other approaches because it explicitly connects gas phase binding energies to intermolecular interactions in solution. We demonstrate that the original GAFF/AMBER parameters often overestimate anion-cation interactions, leading to an excessive number of contact ion pairs in solutions of carboxylate ions, and to aggregation in solutions of divalent ions. GAFF/AMBER parameters lead to excessive numbers of salt bridges in proteins and of contact ion pairs between sodium and acidic protein groups, issues that are resolved by using the optimized parameters presented here.

  20. Adsorption behavior of benzenesulfonic acid by novel weakly basic anion exchange resins.

    PubMed

    Sun, Yue; Zuo, Peng; Luo, Junfen; Singh, Rajendra Prasad

    2017-04-01

    Two novel weakly basic anion exchange resins (SZ-1 and SZ-2) were prepared via the reaction of macroporous chloromethylated polystyrene-divinylbenzene (Cl-PS-DVB) beads with dicyclohexylamine and piperidine, respectively. The physicochemical structures of the resulting resins were characterized using Fourier Transform Infrared Spectroscopy and pore size distribution analysis. The adsorption behavior of SZ-1 and SZ-2 for benzenesulfonic acid (BA) was evaluated, and the common commercial weakly basic anion exchanger D301 was also employed for comparison purpose. Adsorption isotherms and influence of solution pH, temperature and coexisting competitive inorganic salts (Na 2 SO 4 and NaCl) on adsorption behavior were investigated and the optimum desorption agent was obtained. Adsorption isotherms of BA were found to be well represented by the Langmuir model. Thermodynamic parameters involving ΔH, ΔG and ΔS were also calculated and the results indicate that adsorption is an exothermic and spontaneous process. Enhanced selectivity of BA sorption over sulfate on the two novel resins was observed by comparison with the commercial anion exchanger D301. The fact that the tested resins loaded with BA can be efficiently regenerated by NaCl solution indicates the reversible sorption process. From a mechanistic viewpoint, this observation clearly suggests that electrostatic interaction is the predominant adsorption mechanism. Furthermore, results of column tests show that SZ-1 possesses a better adsorption property than D301, which reinforces the feasibility of SZ-1 for potential industrial application. Copyright © 2016. Published by Elsevier B.V.

  1. Method of making alkyl esters

    DOEpatents

    Elliott, Brian

    2010-09-14

    Methods of making alkyl esters are described herein. The methods are capable of using raw, unprocessed, low-cost feedstocks and waste grease. Generally, the method involves converting a glyceride source to a fatty acid composition and esterifying the fatty acid composition to make alkyl esters. In an embodiment, a method of making alkyl esters comprises providing a glyceride source. The method further comprises converting the glyceride source to a fatty acid composition comprising free fatty acids and less than about 1% glyceride by mass. Moreover, the method comprises esterifying the fatty acid composition in the presence of a solid acid catalyst at a temperature ranging firm about 70.degree. C. to about 120.degree. C. to produce alkyl esters, such that at least 85% of the free fatty acids are converted to alkyl esters. The method also incorporates the use of packed bed reactors for glyceride conversion and/or fatty acid esterification to make alkyl esters.

  2. Stereoconvergent Amine-Directed Alkyl–Alkyl Suzuki Reactions of Unactivated Secondary Alkyl Chlorides

    PubMed Central

    Lu, Zhe; Wilsily, Ashraf; Fu, Gregory C.

    2011-01-01

    A new family of stereoconvergent cross-couplings of unactivated secondary alkyl electrophiles has been developed, specifically, arylamine-directed alkyl–alkyl Suzuki reactions. This represents the first such investigation to be focused on the use of alkyl chlorides as substrates. Structure-enantioselectivity studies are consistent with the nitrogen, not the aromatic ring, serving as the primary site of coordination of the arylamine to the catalyst. The rate law for this asymmetric cross-coupling is compatible with transmetalation being the turnover-limiting step of the catalytic cycle. PMID:21553917

  3. Alkylation of enolates: An electrophilicity perspective

    NASA Astrophysics Data System (ADS)

    Elango, M.; Parthasarathi, R.; Subramanian, V.; Chattaraj, P. K.

    Enolates are ambient nucleophiles, and alkylation can occur either at a carbon or at an oxygen site. It is known that the ratio of C/O alkylation depends significantly on various factors, including the type of enolate, alkylating agent, site of alkylation, and solvent environment. Analysis of regioselectivity and solvent effects on alkylation of lithium enolates is investigated using various reactivity descriptors, including generalized philicity. These results point out the reliability of both global and local reactivity descriptors in providing significant information about site selectivity and chemical reactivity of lithium enolates.

  4. Thioimidazolium Ionic Liquids as Tunable Alkylating Agents.

    PubMed

    Guterman, Ryan; Miao, Han; Antonietti, Markus

    2018-01-19

    Alkylating ionic liquids based on the thioimidazolium structure combine the conventional properties of ionic liquids, including low melting point and nonvolatility, with the alkylating function. Alkyl transfer occurs exclusively from the S-alkyl position, thus allowing for easy derivatization of the structure without compromising specificity. We apply this feature to tune the electrophilicty of the cation to profoundly affect the reactivity of these alkylating ionic liquids, with a caffeine-derived compound possessing the highest reactivity. Anion choice was found to affect reaction rates, with iodide anions assisting in the alkylation reaction through a "shuttling" process. The ability to tune the properties of the alkylating agent using the toolbox of ionic liquid chemistry highlights the modular nature of these compounds as a platform for alkylating agent design and integration in to future systems.

  5. Transition-Metal-Catalyzed C-H Alkylation Using Alkenes.

    PubMed

    Dong, Zhe; Ren, Zhi; Thompson, Samuel J; Xu, Yan; Dong, Guangbin

    2017-07-12

    Alkylation reactions represent an important organic transformation to form C-C bonds. In addition to conventional approaches with alkyl halides or sulfonates as alkylating agents, the use of unactivated olefins for alkylations has become attractive from both cost and sustainability viewpoints. This Review summarizes transition-metal-catalyzed alkylations of various carbon-hydrogen bonds (addition of C-H bonds across olefins) using regular olefins or 1,3-dienes up to May 2016. According to the mode of activation, the Review is divided into two sections: alkylation via C-H activation and alkylation via olefin activation.

  6. Photoinduced, copper-catalyzed alkylation of amides with unactivated secondary alkyl halides at room temperature.

    PubMed

    Do, Hien-Quang; Bachman, Shoshana; Bissember, Alex C; Peters, Jonas C; Fu, Gregory C

    2014-02-05

    The development of a mild and general method for the alkylation of amides with relatively unreactive alkyl halides (i.e., poor substrates for SN2 reactions) is an ongoing challenge in organic synthesis. We describe herein a versatile transition-metal-catalyzed approach: in particular, a photoinduced, copper-catalyzed monoalkylation of primary amides. A broad array of alkyl and aryl amides (as well as a lactam and a 2-oxazolidinone) couple with unactivated secondary (and hindered primary) alkyl bromides and iodides using a single set of comparatively simple and mild conditions: inexpensive CuI as the catalyst, no separate added ligand, and C-N bond formation at room temperature. The method is compatible with a variety of functional groups, such as an olefin, a carbamate, a thiophene, and a pyridine, and it has been applied to the synthesis of an opioid receptor antagonist. A range of mechanistic observations, including reactivity and stereochemical studies, are consistent with a coupling pathway that includes photoexcitation of a copper-amidate complex, followed by electron transfer to form an alkyl radical.

  7. Polyimides with pendant alkyl groups

    NASA Technical Reports Server (NTRS)

    Jensen, B. J.; Young, P. R.

    1982-01-01

    The effect on selected polyimide properties when pendant alkyl groups were attached to the polymer backbone was investigated. A series of polymers were prepared using benzophenone tetracarboxylic acid dianhydride (BTDA) and seven different p-alkyl-m,p'-diaminobenzophenone monomers. The alkyl groups varied in length from C(1) (methyl) to C(9) (nonyl). The polyimide prepared from BTDA and m,p'-diaminobenzophenone was included as a control. All polymers were characterized by various chromatographic, spectroscopic, thermal, and mechanical techniques. Increasing the length of the pendant alkyl group resulted in a systematic decrease in glass transition temperature (Tg) for vacuum cured films. A 70 C decrease in Tg to 193 C was observed for the nonyl polymer compared to the Tg for the control. A corresponding systematic increase in Tg indicative of crosslinking, was observed for air cured films. Thermogravimetric analysis revealed a slight sacrifice in thermal stability with increasing alkyl length. No improvement in film toughness was observed.

  8. Molecular design of sequence specific DNA alkylating agents.

    PubMed

    Minoshima, Masafumi; Bando, Toshikazu; Shinohara, Ken-ichi; Sugiyama, Hiroshi

    2009-01-01

    Sequence-specific DNA alkylating agents have great interest for novel approach to cancer chemotherapy. We designed the conjugates between pyrrole (Py)-imidazole (Im) polyamides and DNA alkylating chlorambucil moiety possessing at different positions. The sequence-specific DNA alkylation by conjugates was investigated by using high-resolution denaturing polyacrylamide gel electrophoresis (PAGE). The results showed that polyamide chlorambucil conjugates alkylate DNA at flanking adenines in recognition sequences of Py-Im polyamides, however, the reactivities and alkylation sites were influenced by the positions of conjugation. In addition, we synthesized conjugate between Py-Im polyamide and another alkylating agent, 1-(chloromethyl)-5-hydroxy-1,2-dihydro-3H-benz[e]indole (seco-CBI). DNA alkylation reactivies by both alkylating polyamides were almost comparable. In contrast, cytotoxicities against cell lines differed greatly. These comparative studies would promote development of appropriate sequence-specific DNA alkylating polyamides against specific cancer cells.

  9. Mass spectral analysis of long chain alkyl aromatic compounds synthesized from alpha-olefin alkylation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Cheng, M.T.; Hudson, J.D.

    1994-12-31

    Long chain alkyl aromatic compounds are important petrochemicals with many applications. They are generally synthesized by alkylating the corresponding aromatic nucleus. In this report, the authors will describe the mass spectral fragmentation of alkylphenols and alkylsalicylates.

  10. 40 CFR 721.9892 - Alkylated urea.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 40 Protection of Environment 30 2010-07-01 2010-07-01 false Alkylated urea. 721.9892 Section 721... Alkylated urea. (a) Chemical substance and significant new uses subject to reporting. (1) The chemical substance identified generically as an alkylated urea (PMN P-93-1649) is subject to reporting under this...

  11. Stereocontrolled Alkylative Construction of Quaternary Carbon Centers

    PubMed Central

    Kummer, David A.; Chain, William J.; Morales, Marvin R.; Quiroga, Olga; Myers, Andrew G.

    2009-01-01

    Protocols for the stereodefined formation of α,α-disubstituted enolates of pseudoephedrine amides are presented followed by the implementation of these in diastereoselective alkylation reactions. Direct alkylation of α,α-disubstituted pseudoephedrine amide substrates is demonstrated to be both efficient and diastereoselective across a range of substrates, as exemplified by alkylation of the diastereomeric pseudoephedrine α-methylbutyramides, where both substrates are found to undergo stereospecific replacement of the α-C-H bond with α-C-alkyl, with retention of stereochemistry. This is shown to arise by sequential stereospecific enolization and alkylation reactions, with the alkyl halide attacking a common π-face of the E- and Z-enolates, proposed to be that opposite the pseudoephedrine alkoxide side-chain. Pseudoephedrine α-phenylbutyramides are found to undergo highly stereoselective but not stereospecific α-alkylation reactions, which evidence suggests is due to facile enolate isomerization. Also, we show that α, α-disubstituted pseudoephedrine amide enolates can be generated in a highly stereocontrolled fashion by conjugate addition of an alkyllithium reagent to the s-cis-conformer of an α-alkyl-α,β-unsaturated pseudoephedrine amide, providing α,α-disubstituted enolate substrates that undergo alkylation in the same sense as those formed by direct deprotonation. Methods are presented to transform the α-quaternary pseudoephedrine amide products into optically active carboxylic acids, ketones, primary alcohols, and aldehydes. PMID:18788739

  12. Studies on the growth, structural, spectral and third-order nonlinear optical properties of ammonium 3-carboxy-4-hydroxy benzenesulfonate monohydrate single crystal.

    PubMed

    Silambarasan, A; Krishna Kumar, M; Thirunavukkarasu, A; Mohan Kumar, R; Umarani, P R

    2015-01-25

    An organic nonlinear optical bulk single crystal, Ammonium 3-carboxy-4-hydroxy benzenesulfonate monohydrate (ACHBS) was successfully grown by solution growth technique. Single crystal X-ray diffraction study confirms that, the grown crystal belongs to P21/c space group. Powder X-ray diffraction and high resolution X-ray diffraction analyses revealed the crystallinity of the grown crystal. Infrared spectral analysis showed the vibrational behavior of chemical bonds and its functional groups. The thermal stability and decomposition stages of the grown crystal were studied by TG-DTA analysis. UV-Visible transmittance studies showed the transparency region and cut-off wavelength of the grown crystal. The third-order nonlinear optical susceptibility of the grown crystal was estimated by Z-scan technique using He-Ne laser source. The mechanical property of the grown crystal was studied by using Vicker's microhardness test. Copyright © 2014 Elsevier B.V. All rights reserved.

  13. Photoinduced, Copper-Catalyzed Carbon-Carbon Bond Formation with Alkyl Electrophiles: Cyanation of Unactivated Secondary Alkyl Chlorides at Room Temperature.

    PubMed

    Ratani, Tanvi S; Bachman, Shoshana; Fu, Gregory C; Peters, Jonas C

    2015-11-04

    We have recently reported that, in the presence of light and a copper catalyst, nitrogen nucleophiles such as carbazoles and primary amides undergo C-N coupling with alkyl halides under mild conditions. In the present study, we establish that photoinduced, copper-catalyzed alkylation can also be applied to C-C bond formation, specifically, that the cyanation of unactivated secondary alkyl chlorides can be achieved at room temperature to afford nitriles, an important class of target molecules. Thus, in the presence of an inexpensive copper catalyst (CuI; no ligand coadditive) and a readily available light source (UVC compact fluorescent light bulb), a wide array of alkyl halides undergo cyanation in good yield. Our initial mechanistic studies are consistent with the hypothesis that an excited state of [Cu(CN)2](-) may play a role, via single electron transfer, in this process. This investigation provides a rare example of a transition metal-catalyzed cyanation of an alkyl halide, as well as the first illustrations of photoinduced, copper-catalyzed alkylation with either a carbon nucleophile or a secondary alkyl chloride.

  14. Palladium-Catalyzed Borylation of Primary Alkyl Bromides

    PubMed Central

    Joshi-Pangu, Amruta; Ma, Xinghua; Diane, Mohamed; Iqbal, Sidra; Kribs, Robert J.; Huang, Richard; Wang, Chao-Yuan

    2012-01-01

    A mild Pd-catalyzed process for the borylation of alkyl bromides has been developed using bis(pinacolato)diboron as a boron source. This process accommodates the use of a wide range of functional groups on the alkyl bromide substrate. Primary bromides react with complete selectivity in the presence of a secondary bromide. The generality of this approach is demonstrated by its extension to the use of alkyl iodides and alkyl tosylates, as well as borylation reactions employing bis(neopentyl glycolato)diboron as the boron source. PMID:22774861

  15. Aryl sulfonate based anticancer alkylating agents.

    PubMed

    Sheikh, Hamdullah Khadim; Arshad, Tanzila; Kanwal, Ghazala

    2018-05-01

    This research work revolves around synthesis of antineoplastic alkylating sulfonate esters with dual alkylating sites for crosslinking of the DNA strands. These molecules were evaluated as potential antineoplastic cross linking alkylating agents by reaction with the nucleoside of Guanine DNA nucleobase at both ends of the synthesized molecule. Synthesis of the alkylating molecules and the crosslinking with the guanosine nucleoside was monitored by MALDITOF mass spectroscopy. The synthesized molecule's crosslinking or adduct forming rate with the nucleoside was compared with that of 1,4 butane disulfonate (busulfan), in form of time taken for the appearance of [M+H] + . It was found that aryl sulfonate leaving group was causing higher rate of nucleophilic attack by the Lewis basic site of the nucleobase. Furthermore, the rate was also found to be a function of electron withdrawing or donating nature of the substituent on the aryl ring. Compound with strong electron withdrawing substituent on the para position of the ring reacted fastest. Hence, new alkylating agents were synthesized with optimized or desired reactivity.

  16. Enhancement of alkylation catalysts for improved supercritical fluid regeneration

    DOEpatents

    Ginosar, Daniel M [Idaho Falls, ID; Petkovic, Lucia [Idaho Falls, ID

    2009-09-22

    A method of modifying an alkylation catalyst to reduce the formation of condensed hydrocarbon species thereon. The method comprises providing an alkylation catalyst comprising a plurality of active sites. The plurality of active sites on the alkylation catalyst may include a plurality of weakly acidic active sites, intermediate acidity active sites, and strongly acidic active sites. A base is adsorbed to a portion of the plurality of active sites, such as the strongly acidic active sites, selectively poisoning the strongly acidic active sites. A method of modifying the alkylation catalyst by providing an alkylation catalyst comprising a pore size distribution that sterically constrains formation of the condensed hydrocarbon species on the alkylation catalyst or by synthesizing the alkylation catalyst to comprise a decreased number of strongly acidic active sites is also disclosed, as is a method of improving a regeneration efficiency of the alkylation catalyst.

  17. Enhancement of alkylation catalysts for improved supercritical fluid regeneration

    DOEpatents

    Ginosar, Daniel M.; Petkovic, Lucia M.

    2010-12-28

    A method of modifying an alkylation catalyst to reduce the formation of condensed hydrocarbon species thereon. The method comprises providing an alkylation catalyst comprising a plurality of active sites. The plurality of active sites on the alkylation catalyst may include a plurality of weakly acidic active sites, intermediate acidity active sites, and strongly acidic active sites. A base is adsorbed to a portion of the plurality of active sites, such as the strongly acidic active sites, selectively poisoning the strongly acidic active sites. A method of modifying the alkylation catalyst by providing an alkylation catalyst comprising a pore size distribution that sterically constrains formation of the condensed hydrocarbon species on the alkylation catalyst or by synthesizing the alkylation catalyst to comprise a decreased number of strongly acidic active sites is also disclosed, as is a method of improving a regeneration efficiency of the alkylation catalyst.

  18. Electrochemical and ab initio investigations to design a new phenothiazine based organic redox polymeric material for metal-ion battery cathodes.

    PubMed

    Godet-Bar, T; Leprêtre, J-C; Le Bacq, O; Sanchez, J-Y; Deronzier, A; Pasturel, A

    2015-10-14

    Different N-substituted phenothiazines have been synthesized and their electrochemical behavior has been investigated in CH3CN in order to design the best polyphenothiazine based cathodic material candidate for lithium batteries. These compounds exhibit two successive reversible one-electron oxidation processes. Ab initio calculations demonstrate that the potential of the first process is a result of both the hybridization effects between the substituent and the phenothiazine unit as well as the change of conformation of the phenothiazine heterocycle during the oxidation process. More specifically, we show that an asymmetric molecular orbital spreading throughout an external cycle of the phenothiazine unit and the alkyl fragment is formed only if the alkyl fragment is long enough (from the methyl moiety onwards) and is at the origin of the bent conformation for N-substituted phenothiazines during oxidation. Electrochemical investigations supported by ab initio calculations allow the selection of a phenothiazinyl unit which is then polymerized by a Suzuki coupling strategy to avoid the common solubilization issue in carbonate-based liquid electrolytes of lithium cells. The first electrochemical measurements performed show that phenothiazine derivatives pave the way for a promising family of redox polymers intended to be used as organic positives for lithium batteries.

  19. Mesophase stabilization in ionic liquid crystals through pairing equally shaped mesogenic cations and anions

    DOE PAGES

    Stappert, Kathrin; Lipinski, Gregor; Kopiec, Gabriel; ...

    2015-07-23

    The synthesis and properties of a set of novel ionic liquid crystals with congruently shaped cations and anions are reported to check whether pairing mesogenic cations with mesogenic anions leads to a stabilization of a liquid crystalline phase. To that avail 1-alkyl-3-methyl-triazolium cations with an alkyl chain length of 10, 12, and 14 carbon atoms have been combined with p-alkyloxy-benzenesulfonate anions with different alkyl chain lengths (n = 10, 12, and 14). The corresponding triazolium iodides have been synthesized as reference compounds where the cation and anion have strong size and shape mismatch. The mesomorphic behavior of all compounds ismore » studied by differential scanning calorimetry and polarizing optical microscopy. All compounds except 1-methyl-3-decyltriazolium iodide, which qualifies as an ionic liquid, are thermotropic ionic liquid crystals. All other compounds adopt smectic A phases. As a result, a comparison of the thermal phase behavior of the 1-methyl-3-decyltriazolium bromides to the corresponding p-alkoxy-benzensulfonates reveals that definitely the mesophase is stabilized by pairing the rod-shaped 1-alkyl-3-methyltriazolium cation with a rod-like anion of similar size.« less

  20. Sorbate-nitrite interactions: acetonitrile oxide as an alkylating agent.

    PubMed

    Pérez-Prior, M Teresa; Gómez-Bombarelli, Rafael; González-Pérez, Marina; Manso, José A; García-Santos, M Pilar; Calle, Emilio; Casado, Julio

    2009-07-01

    Because chemical species with DNA-damaging and mutagenic activity are formed in sorbate-nitrite mixtures and because sorbic acid sometimes coexists with nitrite occurring naturally or incorporated as a food additive, the study of sorbate-nitrite interactions is important. Here, the alkylating potential of the products resulting from such interactions was investigated. Drawn were the following conclusions: (i) Acetonitrile oxide (ACNO) is the compound responsible for the alkylating capacity of sorbate-nitrite mixtures; (ii) ACNO alkylates 4-(p-nitrobenzyl)pyridine (NBP), a trap for alkylating agents with nucleophilic characteristics similar to those of DNA bases, forming an adduct (AD; epsilon = 1.4 x 10(4) M(-1) cm(-1); lambda = 519 nm); (iii) the NBP alkylation reaction complies with the rate equation, r = d[AD]/dt = k(alk)(ACNO)[ACNO][NBP]-k(hyd)(AD)[AD], k(alk)(ACNO) being the NBP alkylation rate constant for ACNO and k(hyd)(AD) the rate constant for the adduct hydrolysis reaction; (iv) the small fraction of ACNO forming the adduct with NBP, as well as the small magnitude of the quotient (k(alk) (ACNO)/k(hyd)(ACNO)) as compared with those reported for other alkylating agents, such as some lactones and N-alkyl-N-nitrosoureas, reveals the ACNO effective alkylating capacity to be less significant; (v) the low value of the NBP-ACNO adduct life (defined as the total amount of adduct present along the progression of the NBP alkylation per unit of alkylating agent concentration) points to the high instability of this adduct; and (vi) the obtained results are in accordance with the low carcinogenicity of ACNO.

  1. The formation of quasi-alicyclic rings in alkyl-aromatic compounds

    NASA Astrophysics Data System (ADS)

    Straka, Pavel; Buryan, Petr; Bičáková, Olga

    2018-02-01

    The alkyl side chains of n-alkyl phenols, n-alkyl benzenes and n-alkyl naphthalenes are cyclised, as demonstrated by GC measurements, FTIR spectroscopy and molecular mechanics calculations. Cyclisation occurs due to the intramolecular interaction between an aromatic ring (-δ) and a hydrogen of the terminal methyl group (+δ) of an alkyl chain. In fact, conventional molecules are not aliphatic-aromatic, but quasi-alicyclic-aromatic. With the aromatic molecules formed with a quasi-alicyclic ring, the effect of van der Waals attractive forces increases not only intramolecularly but also intermolecularly. This effect is strong in molecules with propyl and higher alkyl substituents. The increase of intermolecular van der Waals attractive forces results in bi-linearity in the GC retention time of the compounds in question, observed in the dependence of the logarithm of the relative retention time on the number of carbons in a molecule in both polar and nonpolar stationary phases with both capillary and packed columns. The role of van der Waals forces has been demonstrated using the potential energies of covalent and noncovalent interactions for 2-n-alkyl phenols, n-alkyl benzenes and 1-n-alkyl- and 2-n-alkyl naphthalenes.

  2. Alkylsilyl Peroxides as Alkylating Agents in the Copper-Catalyzed Selective Mono-N-Alkylation of Primary Amides and Arylamines.

    PubMed

    Sakamoto, Ryu; Sakurai, Shunya; Maruoka, Keiji

    2017-07-06

    The copper-catalyzed selective mono-N-alkylation of primary amides or arylamines using alkylsilyl peroxides as alkylating agents is reported. The reaction proceeds under mild reaction conditions and exhibits a broad substrate scope with respect to the alkylsilyl peroxides, as well as to the primary amides and arylamines. Mechanistic studies suggest that the present reaction should proceed through a free-radical process that includes alkyl radicals generated from the alkylsilyl peroxides. © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  3. Reactions of Tributylstannyl Anioniods with Alkyl Bromides.

    DTIC Science & Technology

    1981-09-28

    g (12 mmol) of cesium tert-butoxide was added to the reaction vessel before the addition of n-butyllithium. Alkylation of Tributylstannyl Anionoids...Dry reaction vessels were purged with argon. The desired alkyl halide (1.0 mmol unless noted) and any desired additive were added to the reaction ...OFFICE OF NAVAL RESEARCH Contract N00014-79-C-0584 Task No. NR 053-714 TECHNICAL REPORT No. 2 Reactions of Tributylstannyl Anionoids with Alkyl

  4. Alkylation Damage by Lipid Electrophiles Targets Functional Protein Systems*

    PubMed Central

    Codreanu, Simona G.; Ullery, Jody C.; Zhu, Jing; Tallman, Keri A.; Beavers, William N.; Porter, Ned A.; Marnett, Lawrence J.; Zhang, Bing; Liebler, Daniel C.

    2014-01-01

    Protein alkylation by reactive electrophiles contributes to chemical toxicities and oxidative stress, but the functional impact of alkylation damage across proteomes is poorly understood. We used Click chemistry and shotgun proteomics to profile the accumulation of proteome damage in human cells treated with lipid electrophile probes. Protein target profiles revealed three damage susceptibility classes, as well as proteins that were highly resistant to alkylation. Damage occurred selectively across functional protein interaction networks, with the most highly alkylation-susceptible proteins mapping to networks involved in cytoskeletal regulation. Proteins with lower damage susceptibility mapped to networks involved in protein synthesis and turnover and were alkylated only at electrophile concentrations that caused significant toxicity. Hierarchical susceptibility of proteome systems to alkylation may allow cells to survive sublethal damage while protecting critical cell functions. PMID:24429493

  5. Alkylating agents for Waldenstrom's macroglobulinaemia.

    PubMed

    Yang, Kun; Tan, Jianlong; Wu, Taixiang

    2009-01-21

    Waldenstrom's macroglobulinaemia (WM) is an uncommon B-cell lymphoproliferative disorder characterized by bone marrow infiltration and production of monoclonal immunoglobulin. Uncertainty remains if alkylating agents, such as chlorambucil, melphalan or cyclophosphamide, are an effective form of management. To assess the effects and safety of the alkylating agents on Waldenstrom's macroglobulinaemia (WM). We searched the Cochrane Central Register of Controlled Trials (Issue 1, 2008), MEDLINE (1966 to 2008), EMBASE (1980 to 2008), the Chinese Biomedical Base (1982 to 2008) and reference lists of articles.We also handsearched relevant conference proceedings from 1990 to 2008. Randomised controlled trials (RCTs) comparing alkylating agents given concomitantly with radiotherapy, splenectomy, plasmapheresis, stem-cell transplantation in patients with a confirmed diagnosis of WM. Two authors independently assessed trial quality and extracted data. We contacted study authors for additional information. We collected adverse effects information from the trials. One trial involving 92 participants with pretreated/relapsed WM compared the effect of fludarabine versus the combination of cyclophosphamide (the alkylating agent), doxorubicin and prednisone (CAP). Compared to CAP, the Hazard ratio (HR) for deaths of treatment with fludarabine was estimated to be 1.04, with a standard error of 0.30 (95% CI 0.58 to 1.48) and it indicated that the mean difference of median survival time was -4.00 months, and 16.00 months for response duration. The relative risks (RR) of response rate was 2.80 (95% CI 1.10 to 7.12). There were no statistically difference in overall survival rate and median survival months, while on the basis of response rate and response duration, fludarabine seemed to be superior to CAP for pretreated/relapsed patients with macroglobulinaemia. Although alkylating agents have been used for decades they have never actually been tested in a proper randomised trial. This

  6. Alkyl phosphonic acids and sulfonic acids in the Murchison meteorite

    NASA Technical Reports Server (NTRS)

    Cooper, George W.; Onwo, Wilfred M.; Cronin, John R.

    1992-01-01

    Homologous series of alkyl phosphonic acids and alkyl sulfonic acids, along with inorganic orthophosphate and sulfate, are identified in water extracts of the Murchison meteorite after conversion to their t-butyl dimethylsilyl derivatives. The methyl, ethyl, propyl, and butyl compounds are observed in both series. Five of the eight possible alkyl phosphonic acids and seven of the eight possible alkyl sulfonic acids through C4 are identified. Abundances decrease with increasing carbon number as observed of other homologous series indigenous to Murchison. Concentrations range downward from approximately 380 nmol/gram in the alkyl sulfonic acid series, and from 9 nmol/gram in the alkyl phosphonic acid series.

  7. 40 CFR 721.2420 - Alkoxylated dialkyldiethylenetriamine, alkyl sulfate salt.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ..., alkyl sulfate salt. 721.2420 Section 721.2420 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY... Specific Chemical Substances § 721.2420 Alkoxylated dialkyldiethylenetriamine, alkyl sulfate salt. (a... generically as an alkoxylated dialkyldiethylenetriamine, alkyl sulfate salt (PMN P-91-288) is subject to...

  8. 40 CFR 721.2420 - Alkoxylated dialkyldiethylenetriamine, alkyl sulfate salt.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ..., alkyl sulfate salt. 721.2420 Section 721.2420 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY... Specific Chemical Substances § 721.2420 Alkoxylated dialkyldiethylenetriamine, alkyl sulfate salt. (a... generically as an alkoxylated dialkyldiethylenetriamine, alkyl sulfate salt (PMN P-91-288) is subject to...

  9. 40 CFR 721.2410 - Alkoxylated alkyldiethylenetriamine, alkyl sulfate salts.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ..., alkyl sulfate salts. 721.2410 Section 721.2410 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY... Specific Chemical Substances § 721.2410 Alkoxylated alkyldiethylenetriamine, alkyl sulfate salts. (a... generically as alkoxylated dialkyldiethylenetriamine, alkyl sulfate salts (PMN P-94-325, 326, and 327) are...

  10. 40 CFR 721.2410 - Alkoxylated alkyldiethylenetriamine, alkyl sulfate salts.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ..., alkyl sulfate salts. 721.2410 Section 721.2410 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY... Specific Chemical Substances § 721.2410 Alkoxylated alkyldiethylenetriamine, alkyl sulfate salts. (a... generically as alkoxylated dialkyldiethylenetriamine, alkyl sulfate salts (PMN P-94-325, 326, and 327) are...

  11. 40 CFR 721.2420 - Alkoxylated dialkyldiethylenetriamine, alkyl sulfate salt.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ..., alkyl sulfate salt. 721.2420 Section 721.2420 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY... Specific Chemical Substances § 721.2420 Alkoxylated dialkyldiethylenetriamine, alkyl sulfate salt. (a... generically as an alkoxylated dialkyldiethylenetriamine, alkyl sulfate salt (PMN P-91-288) is subject to...

  12. 40 CFR 721.2420 - Alkoxylated dialkyldiethylenetriamine, alkyl sulfate salt.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ..., alkyl sulfate salt. 721.2420 Section 721.2420 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY... Specific Chemical Substances § 721.2420 Alkoxylated dialkyldiethylenetriamine, alkyl sulfate salt. (a... generically as an alkoxylated dialkyldiethylenetriamine, alkyl sulfate salt (PMN P-91-288) is subject to...

  13. 40 CFR 721.2410 - Alkoxylated alkyldiethylenetriamine, alkyl sulfate salts.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ..., alkyl sulfate salts. 721.2410 Section 721.2410 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY... Specific Chemical Substances § 721.2410 Alkoxylated alkyldiethylenetriamine, alkyl sulfate salts. (a... generically as alkoxylated dialkyldiethylenetriamine, alkyl sulfate salts (PMN P-94-325, 326, and 327) are...

  14. 40 CFR 721.2410 - Alkoxylated alkyldiethylenetriamine, alkyl sulfate salts.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ..., alkyl sulfate salts. 721.2410 Section 721.2410 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY... Specific Chemical Substances § 721.2410 Alkoxylated alkyldiethylenetriamine, alkyl sulfate salts. (a... generically as alkoxylated dialkyldiethylenetriamine, alkyl sulfate salts (PMN P-94-325, 326, and 327) are...

  15. Polymerization of Conducting Polymers Confined to Free Surfaces: A comparison of the Langmuir-Blodgett Polymerization of 3-Alkyl Pyrroles and 2- Alkyl Anilines

    DTIC Science & Technology

    1992-05-19

    Confined to Free Surfaces: A Comparison of the Langmuir-Blodgett Polymerization of 3- Alkyl Pyrroles and 2- Alkyl Anilines Submitted for Publication in...Surfaces: A Comparison of the Langmuir Blodgett Polymerizations of 3- alkyl pyrroles and 2- alkyl anilines R. S. Duran and H.C. Zhou Dept. of Chemistry...polymerization reactions in more detail and compare them. To do this, the polymerization reactions were run under two conditions. In the first case

  16. 21 CFR 176.120 - Alkyl ketene dimers.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... section. (a) The alkyl ketene dimers are manufactured by the dehydrohalogenation of the acyl halides derived from the fatty acids of animal or vegetable fats and oils. (b) The alkyl ketene dimers are used as...

  17. A Concentration-Dependent Insulin Immobilization Behavior of Alkyl-Modified Silica Vesicles: The Impact of Alkyl Chain Length.

    PubMed

    Zhang, Jun; Zhang, Long; Lei, Chang; Huang, Xiaodan; Yang, Yannan; Yu, Chengzhong

    2018-05-01

    The insulin immobilization behaviors of silica vesicles (SV) before and after modification with hydrophobic alkyl -C 8 and -C 18 groups have been studied and correlated to the grafted alkyl chain length. In order to minimize the influence from the other structural parameters, monolayered -C 8 or -C 18 groups are grafted onto SV with controlled density. The insulin immobilization capacity of SV is dependent on the initial insulin concentrations (IIC). At high IIC (2.6-3.0 mg/mL), the trend of insulin immobilization capacity of SV is SV-OH > SV-C 8 > SV-C 18 , which is determined mainly by the surface area of SV. At medium IIC (0.6-1.9 mg/mL), the trend changes to SV-C 8 ≥ SV-C 18 > SV-OH as both the surface area and alkyl chain length contribute to the insulin immobilization. At an extremely low IIC, the hydrophobic-hydrophobic interaction between the alkyl group and insulin molecules plays the most significant role. Consequently, SV-C 18 with longer alkyl groups and the highest hydrophobicity show the best insulin enrichment performance compared to SV-C 8 and SV-OH, as evidenced by an insulin detection limit of 0.001 ng/mL in phosphate buffered saline (PBS) and 0.05 ng/mL in artficial urine determined by mass spectrometry (MS).

  18. IONIC LIQUID-CATALYZED ALKYLATION OF ISOBUTANE WITH 2-BUTENE

    EPA Science Inventory

    A detailed study of the alkylation of isobutane with 2-butene in ionic liquid media has been conducted using 1-alkyl-3-methylimidazolium halides?aluminum chloride encompassing various alkyl groups (butyl-, hexyl-, and octyl-) and halides (Cl, Br, and I) on its cations and anions,...

  19. 40 CFR 721.1878 - Alkali metal alkyl borohydride (generic).

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 40 Protection of Environment 30 2010-07-01 2010-07-01 false Alkali metal alkyl borohydride... Specific Chemical Substances § 721.1878 Alkali metal alkyl borohydride (generic). (a) Chemical substance... alkali metal alkyl borohydride (PMN P-00-1089) is subject to reporting under this section for the...

  20. 40 CFR 721.1878 - Alkali metal alkyl borohydride (generic).

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 40 Protection of Environment 31 2011-07-01 2011-07-01 false Alkali metal alkyl borohydride... Specific Chemical Substances § 721.1878 Alkali metal alkyl borohydride (generic). (a) Chemical substance... alkali metal alkyl borohydride (PMN P-00-1089) is subject to reporting under this section for the...

  1. Extended 3{beta}-alkyl steranes and 3-alkyl triaromatic steroids in crude oils and rock extracts

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Dahl, J.; Moldowan, J.M.; Summons, R.E.

    1995-09-01

    In oils and Precambian- to Miocene-age source rocks from varying depositional environments, we have conclusively identified several novel 3-alkyl sterane and triaromatic steroid series, including (1) 3{beta}-n-pentyl steranes, (2) 3{beta}-isopentyl steranes, (3) 3{beta}-n-hexyl steranes, (4) 3{beta}-n-hepatyl steranes, (5) 3,4-dimethyl steranes, (6) 3{beta}-butyl,4-methyl steranes, (7) triaromatic 3-n-pentyl steroids, and (8) triaromatic 3-isopentyl steroids. We have also tentatively identified additional homologs with 3-alkyl substituents as large as C{sub 11}. The relative abundances of these compounds vary substantially between samples, as indicated by (1) the ratio of 3{beta}-n-pentyl steranes to 3{beta}-isopentyl steranes and (2) the ratio of 3-n-pentyl triaromatic steroids to 3-isopentyl triaromaticmore » steroids. These data suggest possible utility for these parameters as tools for oil-source rock correlations and reconstruction of depositional environments. Although no 3-alkyl steroid natural products are currently known, several lines of evidence suggest that 3{beta}-alkyl steroids result from bacterial side-chain additions to diagenetic {delta}{sup 2}-sterenes.« less

  2. Polyimide characterization studies - Effect of pendant alkyl groups

    NASA Technical Reports Server (NTRS)

    Jensen, B. J.; Young, P. R.

    1984-01-01

    The effect on selected polyimide properties when pendant alkyl groups were attached to the polymer backbone was investigated. A series of polymers were prepared using benzophenone tetracarboxylic acid dianhydride (BTDA) and seven different p-alkyl-m,p'-diaminobenzophenone monomers. The alkyl groups varied in length from C(1) (methyl) to C(9) (nonyl). The polyimide prepared from BTDA and m,p'-diaminobenzophenone was included as a control. All polymers were characterized by various chromatographic, spectroscopic, thermal, and mechanical techniques. Increasing the length of the pendant alkyl group resulted in a systematic decrease in glass transition temperature (Tg) for vacuum cured films. A 70 C decrease in Tg to 193 C was observed for the nonyl polymer compared to the Tg for the control. A corresponding systematic increase in Tg indicative of crosslinking, was observed for air cured films. Thermogravimetric analysis revealed a slight sacrifice in thermal stability with increasing alkyl length. No improvement in film toughness was observed.

  3. Isomeric Detergent Comparison for Membrane Protein Stability: Importance of Inter-Alkyl-Chain Distance and Alkyl Chain Length

    PubMed Central

    Cho, Kyung Ho; Hariharan, Parameswaran; Mortensen, Jonas S.; Du, Yang; Nielsen, Anne K.; Byrne, Bernadette; Kobilka, Brian K.; Loland, Claus J.; Guan, Lan

    2017-01-01

    Membrane proteins encapsulated by detergent micelles are widely used for structural study. Because of their amphipathic property, detergents have the ability to maintain protein solubility and stability in an aqueous medium. However, conventional detergents have serious limitations in their scope and utility, particularly for eukaryotic membrane proteins and membrane protein complexes. Thus, a number of new agents have been devised; some have made significant contributions to membrane protein structural studies. However, few detergent design principles are available. In this study, we prepared meta and ortho isomers of the previously reported para-substituted xylene-linked maltoside amphiphiles (XMAs), along with alkyl chain-length variation. The isomeric XMAs were assessed with three membrane proteins, and the meta isomer with a C12 alkyl chain was most effective at maintaining solubility/stability of the membrane proteins. We propose that interplay between the hydrophile–lipophile balance (HLB) and alkyl chain length is of central importance for high detergent efficacy. In addition, differences in inter-alkyl-chain distance between the isomers influence the ability of the detergents to stabilise membrane proteins. PMID:27981750

  4. A Convenient Approach to Synthesizing Peptide C-Terminal N-Alkyl Amides

    PubMed Central

    Fang, Wei-Jie; Yakovleva, Tatyana; Aldrich, Jane V.

    2014-01-01

    Peptide C-terminal N-alkyl amides have gained more attention over the past decade due to their biological properties, including improved pharmacokinetic and pharmacodynamic profiles. However, the synthesis of this type of peptide on solid phase by current available methods can be challenging. Here we report a convenient method to synthesize peptide C-terminal N-alkyl amides using the well-known Fukuyama N-alkylation reaction on a standard resin commonly used for the synthesis of peptide C-terminal primary amides, the PAL-PEG-PS (Peptide Amide Linker-polyethylene glycol-polystyrene) resin. The alkylation and oNBS deprotection were conducted under basic conditions and were therefore compatible with this acid labile resin. The alkylation reaction was very efficient on this resin with a number of different alkyl iodides or bromides, and the synthesis of model enkephalin N-alkyl amide analogs using this method gave consistently high yields and purities, demonstrating the applicability of this methodology. The synthesis of N-alkyl amides was more difficult on a Rink amide resin, especially the coupling of the first amino acid to the N-alkyl amine, resulting in lower yields for loading the first amino acid onto the resin. This method can be widely applied in the synthesis of peptide N-alkyl amides. PMID:22252422

  5. 40 CFR 721.10677 - Alkyl phosphonate (generic).

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... CONTROL ACT SIGNIFICANT NEW USES OF CHEMICAL SUBSTANCES Significant New Uses for Specific Chemical Substances § 721.10677 Alkyl phosphonate (generic). (a) Chemical substance and significant new uses subject to reporting. (1) The chemical substance identified generically as alkyl phosphonate (PMN P-12-584...

  6. PREPARATION OF ALKYL PYROPHOSPHATE EXTRACTANTS

    DOEpatents

    Levine, C.A.; Skiens, W.E.; Moore, G.R.

    1960-08-01

    A process for providing superior solvent extractants for metal recovery processes is given wherein the extractant comprises an alkyl pyrophosphoric acid ester dissolved in an organic solvent diluent. Finely divided solid P/sub 2/O/ sub 5/ is slurried in an organic solvent-diluent selected from organic solvents such as kerosene, benzene, chlorobenzene, toluene, etc. An alcohol selected from the higher alcohols having 4 to 17 carbon atoms. e.g.. hexanol-1. heptanol-3, octanol-1. 2.6-dimethyl-heptanol-4, and decanol-1, is rapidly added to the P/sub 2/O/sub 5/ slurry in the amount of about 2 moles of alcohol to 1 mole of P/sub 2/ O/sub 5/. The temperature is maintained below about 110 deg C during the course of the P/sub 2/O/sub 5/-alcohol reaction. An alkyl pyrophosphate extractant compound is formed as a consequence of the reaction process. The alkyl pyrophosphate solvent-diluent extractant phase is useful in solvent extraction metal recovery processes.

  7. Antioxidant activity of alkyl gallates and glycosyl alkyl gallates in fish oil in water emulsions: relevance of their surface active properties and of the type of emulsifier.

    PubMed

    González, María J; Medina, Isabel; Maldonado, Olivia S; Lucas, Ricardo; Morales, Juan C

    2015-09-15

    The antioxidant activity of gallic acid and a series of alkyl gallates (C4-C18) and glycosylated alkyl gallates (C4-C18) on fish oil-in-water emulsions was studied. Three types of emulsifiers, lecithin, Tween-20 and sodium dodecyl sulphate (SDS) were tested. A nonlinear behavior of the antioxidant activity of alkyl gallates when increasing alkyl chain length was observed for emulsions prepared with lecithin. Medium-size alkyl gallates (C6-C12) were the best antioxidants. In contrast, for emulsions prepared with Tween-20, the antioxidants seem to follow the polar paradox. Glucosyl alkyl gallates were shown previously to be better surfactants than alkyl gallates. Nevertheless, they exhibited a worse antioxidant capacity than their corresponding alkyl gallates, in emulsions prepared with lecithin or Tween-20, indicating the greater relevance of having three OH groups at the polar head in comparison with having improved surfactant properties but just a di-ortho phenolic structure in the antioxidant. Copyright © 2015 Elsevier Ltd. All rights reserved.

  8. Effect of the C-2 hydroxyl group on the mesomorphism of alkyl glycosides: synthesis and thermotropic behavior of alkyl 2-deoxy-D-arabino-hexopyranosides.

    PubMed

    Singh, Madan Kumar; Jayaraman, Narayanaswamy; Rao, D S Shankar; Prasad, S Krishna

    2008-10-01

    A homologous series of alkyl 2-deoxy-alpha-d-arabino-hexopyranosides and alkyl 2-deoxy-beta-d-arabino-hexopyranosides were synthesized, upon glycosylation of 1-alkanols (from C8 to C18 alkanols) with ethyl 2-deoxy-3,4,6-tri-O-acetyl-1-thio-d-arabino-hexopyranoside, followed by a deprotection. The thermotropic behavior of these new types of alkyl glycosides was investigated. It was observed that the beta-anomers of these alkyl glycosides, bearing nonyl to tetradecyl alkyl chain are mesomorphic, exhibiting monotropic smectic A phase. In contrast, the alpha-anomers are all non-mesomorphic. An effort to identify the liquid crystalline behavior of binary mixtures of the alpha- and beta-anomers was undertaken and it was found that mixtures containing equimolar amounts of the anomers exhibited mesomorphic behavior. A fine balance of the hydrophilic and hydrophobic components within the molecule is also found to be important for the alkyl 2-deoxy glycosides to form the mesophase.

  9. Direct N-alkylation of unprotected amino acids with alcohols

    PubMed Central

    Yan, Tao; Feringa, Ben L.; Barta, Katalin

    2017-01-01

    N-alkyl amino acids find widespread application as highly valuable, renewable building blocks. However, traditional synthesis methodologies to obtain these suffer from serious limitations, providing a major challenge to develop sustainable alternatives. We report the first powerful catalytic strategy for the direct N-alkylation of unprotected α-amino acids with alcohols. This method is highly selective, produces water as the only side product leading to a simple purification procedure, and a variety of α-amino acids are mono- or di-N-alkylated, in most cases with excellent retention of optical purity. The hydrophobicity of the products is tunable, and even simple peptides are selectively alkylated. An iron-catalyzed route to mono-N-alkyl amino acids using renewable fatty alcohols is also described that represents an ideal green transformation for obtaining fully bio-based surfactants. PMID:29226249

  10. Isomeric Detergent Comparison for Membrane Protein Stability: Importance of Inter-Alkyl-Chain Distance and Alkyl Chain Length.

    PubMed

    Cho, Kyung Ho; Hariharan, Parameswaran; Mortensen, Jonas S; Du, Yang; Nielsen, Anne K; Byrne, Bernadette; Kobilka, Brian K; Loland, Claus J; Guan, Lan; Chae, Pil Seok

    2016-12-14

    Membrane proteins encapsulated by detergent micelles are widely used for structural study. Because of their amphipathic property, detergents have the ability to maintain protein solubility and stability in an aqueous medium. However, conventional detergents have serious limitations in their scope and utility, particularly for eukaryotic membrane proteins and membrane protein complexes. Thus, a number of new agents have been devised; some have made significant contributions to membrane protein structural studies. However, few detergent design principles are available. In this study, we prepared meta and ortho isomers of the previously reported para-substituted xylene-linked maltoside amphiphiles (XMAs), along with alkyl chain-length variation. The isomeric XMAs were assessed with three membrane proteins, and the meta isomer with a C 12 alkyl chain was most effective at maintaining solubility/stability of the membrane proteins. We propose that interplay between the hydrophile-lipophile balance (HLB) and alkyl chain length is of central importance for high detergent efficacy. In addition, differences in inter-alkyl-chain distance between the isomers influence the ability of the detergents to stabilise membrane proteins. © 2016 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  11. Salvage of failed protein targets by reductive alkylation.

    PubMed

    Tan, Kemin; Kim, Youngchang; Hatzos-Skintges, Catherine; Chang, Changsoo; Cuff, Marianne; Chhor, Gekleng; Osipiuk, Jerzy; Michalska, Karolina; Nocek, Boguslaw; An, Hao; Babnigg, Gyorgy; Bigelow, Lance; Joachimiak, Grazyna; Li, Hui; Mack, Jamey; Makowska-Grzyska, Magdalena; Maltseva, Natalia; Mulligan, Rory; Tesar, Christine; Zhou, Min; Joachimiak, Andrzej

    2014-01-01

    The growth of diffraction-quality single crystals is of primary importance in protein X-ray crystallography. Chemical modification of proteins can alter their surface properties and crystallization behavior. The Midwest Center for Structural Genomics (MCSG) has previously reported how reductive methylation of lysine residues in proteins can improve crystallization of unique proteins that initially failed to produce diffraction-quality crystals. Recently, this approach has been expanded to include ethylation and isopropylation in the MCSG protein crystallization pipeline. Applying standard methods, 180 unique proteins were alkylated and screened using standard crystallization procedures. Crystal structures of 12 new proteins were determined, including the first ethylated and the first isopropylated protein structures. In a few cases, the structures of native and methylated or ethylated states were obtained and the impact of reductive alkylation of lysine residues was assessed. Reductive methylation tends to be more efficient and produces the most alkylated protein structures. Structures of methylated proteins typically have higher resolution limits. A number of well-ordered alkylated lysine residues have been identified, which make both intermolecular and intramolecular contacts. The previous report is updated and complemented with the following new data; a description of a detailed alkylation protocol with results, structural features, and roles of alkylated lysine residues in protein crystals. These contribute to improved crystallization properties of some proteins.

  12. Salvage of Failed Protein Targets by Reductive Alkylation

    PubMed Central

    Tan, Kemin; Kim, Youngchang; Hatzos-Skintges, Catherine; Chang, Changsoo; Cuff, Marianne; Chhor, Gekleng; Osipiuk, Jerzy; Michalska, Karolina; Nocek, Boguslaw; An, Hao; Babnigg, Gyorgy; Bigelow, Lance; Joachimiak, Grazyna; Li, Hui; Mack, Jamey; Makowska-Grzyska, Magdalena; Maltseva, Natalia; Mulligan, Rory; Tesar, Christine; Zhou, Min; Joachimiak, Andrzej

    2014-01-01

    The growth of diffraction-quality single crystals is of primary importance in protein X-ray crystallography. Chemical modification of proteins can alter their surface properties and crystallization behavior. The Midwest Center for Structural Genomics (MCSG) has previously reported how reductive methylation of lysine residues in proteins can improve crystallization of unique proteins that initially failed to produce diffraction-quality crystals. Recently, this approach has been expanded to include ethylation and isopropylation in the MCSG protein crystallization pipeline. Applying standard methods, 180 unique proteins were alkylated and screened using standard crystallization procedures. Crystal structures of 12 new proteins were determined, including the first ethylated and the first isopropylated protein structures. In a few cases, the structures of native and methylated or ethylated states were obtained and the impact of reductive alkylation of lysine residues was assessed. Reductive methylation tends to be more efficient and produces the most alkylated protein structures. Structures of methylated proteins typically have higher resolution limits. A number of well-ordered alkylated lysine residues have been identified, which make both intermolecular and intramolecular contacts. The previous report is updated and complemented with the following new data; a description of a detailed alkylation protocol with results, structural features, and roles of alkylated lysine residues in protein crystals. These contribute to improved crystallization properties of some proteins. PMID:24590719

  13. Balancing repair and tolerance of DNA damage caused by alkylating agents.

    PubMed

    Fu, Dragony; Calvo, Jennifer A; Samson, Leona D

    2012-01-12

    Alkylating agents constitute a major class of frontline chemotherapeutic drugs that inflict cytotoxic DNA damage as their main mode of action, in addition to collateral mutagenic damage. Numerous cellular pathways, including direct DNA damage reversal, base excision repair (BER) and mismatch repair (MMR), respond to alkylation damage to defend against alkylation-induced cell death or mutation. However, maintaining a proper balance of activity both within and between these pathways is crucial for a favourable response of an organism to alkylating agents. Furthermore, the response of an individual to alkylating agents can vary considerably from tissue to tissue and from person to person, pointing to genetic and epigenetic mechanisms that modulate alkylating agent toxicity.

  14. Asymmetric synthesis of α-amino acids via homologation of Ni(II) complexes of glycine Schiff bases; Part 1: alkyl halide alkylations.

    PubMed

    Sorochinsky, Alexander E; Aceña, José Luis; Moriwaki, Hiroki; Sato, Tatsunori; Soloshonok, Vadim A

    2013-10-01

    Alkylations of chiral or achiral Ni(II) complexes of glycine Schiff bases constitute a landmark in the development of practical methodology for asymmetric synthesis of α-amino acids. Straightforward, easy preparation as well as high reactivity of these Ni(II) complexes render them ready available and inexpensive glycine equivalents for preparing a wide variety of α-amino acids, in particular on a relatively large scale. In the case of Ni(II) complexes containing benzylproline moiety as a chiral auxiliary, their alkylation proceeds with high thermodynamically controlled diastereoselectivity. Similar type of Ni(II) complexes derived from alanine can also be used for alkylation providing convenient access to quaternary, α,α-disubstituted α-amino acids. Achiral type of Ni(II) complexes can be prepared from picolinic acid or via recently developed modular approach using simple secondary or primary amines. These Ni(II) complexes can be easily mono/bis-alkylated under homogeneous or phase-transfer catalysis conditions. Origin of diastereo-/enantioselectivity in the alkylations reactions, aspects of practicality, generality and limitations of this methodology is critically discussed.

  15. Identification of alkyl carbazoles and alkyl benzocarbazoles in Brazilian petroleum derivatives.

    PubMed

    Oliveira, Eniz Conceição; Vaz de Campos, Maria Cecília; Rodrigues, Maria Regina Alves; Pérez, Valéria Flores; Melecchi, Maria Inês Soares; Vale, Maria Goreti Rodrigues; Zini, Cláudia Alcaraz; Caramão, Elina Bastos

    2006-02-10

    Carbozoles are important compounds in crude oils, as they may be used as geochemical tracers, being the major type of nitrogen compounds in petroleum. At the same time, they are regarded as undesirable due to the problems they may cause in the refining process, such as catalyst poisoning, corrosion, gum or color formation in final products. As separation and identification of carbazoles are challenging goals, this work presents a chromatographic method, made of a pre-fractionation on neutral alumina followed by the separation and identification of two classes of carbazoles using FeCl(3)/Chromossorb W and gas chromatograph with mass spectrometer (GC/MS) (SIM-single ion monitoring mode) analysis. For the first time, a series of alkyl carbazoles and alkyl benzocarbazoles were identified in heavy gas oil (HGO) and atmospheric residue of distillation (ARD) obtained from Brazilian petroleum.

  16. 40 CFR 721.10548 - Mixed alkyl phosphate esters alkoxylated (generic).

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 40 Protection of Environment 32 2013-07-01 2013-07-01 false Mixed alkyl phosphate esters... Specific Chemical Substances § 721.10548 Mixed alkyl phosphate esters alkoxylated (generic). (a) Chemical... as mixed alkyl phosphate esters alkoxylated (PMN P-04-624) is subject to reporting under this section...

  17. 40 CFR 721.10548 - Mixed alkyl phosphate esters alkoxylated (generic).

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 40 Protection of Environment 31 2014-07-01 2014-07-01 false Mixed alkyl phosphate esters... Specific Chemical Substances § 721.10548 Mixed alkyl phosphate esters alkoxylated (generic). (a) Chemical... as mixed alkyl phosphate esters alkoxylated (PMN P-04-624) is subject to reporting under this section...

  18. 40 CFR 721.5380 - Mixed alkyl phenolic novolak resin (generic).

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 40 Protection of Environment 31 2014-07-01 2014-07-01 false Mixed alkyl phenolic novolak resin... Specific Chemical Substances § 721.5380 Mixed alkyl phenolic novolak resin (generic). (a) Chemical... as mixed alkyl phenolic novolak resin (PMN P-98-718) is subject to reporting under this section for...

  19. 40 CFR 721.5380 - Mixed alkyl phenolic novolak resin (generic).

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 40 Protection of Environment 32 2012-07-01 2012-07-01 false Mixed alkyl phenolic novolak resin... Specific Chemical Substances § 721.5380 Mixed alkyl phenolic novolak resin (generic). (a) Chemical... as mixed alkyl phenolic novolak resin (PMN P-98-718) is subject to reporting under this section for...

  20. 40 CFR 721.5380 - Mixed alkyl phenolic novolak resin (generic).

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 40 Protection of Environment 30 2010-07-01 2010-07-01 false Mixed alkyl phenolic novolak resin... Specific Chemical Substances § 721.5380 Mixed alkyl phenolic novolak resin (generic). (a) Chemical... as mixed alkyl phenolic novolak resin (PMN P-98-718) is subject to reporting under this section for...

  1. 40 CFR 721.5380 - Mixed alkyl phenolic novolak resin (generic).

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 40 Protection of Environment 31 2011-07-01 2011-07-01 false Mixed alkyl phenolic novolak resin... Specific Chemical Substances § 721.5380 Mixed alkyl phenolic novolak resin (generic). (a) Chemical... as mixed alkyl phenolic novolak resin (PMN P-98-718) is subject to reporting under this section for...

  2. 40 CFR 721.5380 - Mixed alkyl phenolic novolak resin (generic).

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 40 Protection of Environment 32 2013-07-01 2013-07-01 false Mixed alkyl phenolic novolak resin... Specific Chemical Substances § 721.5380 Mixed alkyl phenolic novolak resin (generic). (a) Chemical... as mixed alkyl phenolic novolak resin (PMN P-98-718) is subject to reporting under this section for...

  3. 40 CFR 721.10493 - Tris-alkyl-alkoxy melamine polymer (generic).

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 40 Protection of Environment 32 2013-07-01 2013-07-01 false Tris-alkyl-alkoxy melamine polymer... Specific Chemical Substances § 721.10493 Tris-alkyl-alkoxy melamine polymer (generic). (a) Chemical... as tris-alkyl-alkoxy melamine polymer (PMN P-05-417) is subject to reporting under this section for...

  4. 40 CFR 721.10493 - Tris-alkyl-alkoxy melamine polymer (generic).

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 40 Protection of Environment 31 2014-07-01 2014-07-01 false Tris-alkyl-alkoxy melamine polymer... Specific Chemical Substances § 721.10493 Tris-alkyl-alkoxy melamine polymer (generic). (a) Chemical... as tris-alkyl-alkoxy melamine polymer (PMN P-05-417) is subject to reporting under this section for...

  5. Selective alkylation of T–T mismatched DNA using vinyldiaminotriazine–acridine conjugate

    PubMed Central

    Onizuka, Kazumitsu; Usami, Akira; Yamaoki, Yudai; Kobayashi, Tomohito; Hazemi, Madoka E; Chikuni, Tomoko; Sato, Norihiro; Sasaki, Kaname; Katahira, Masato

    2018-01-01

    Abstract The alkylation of the specific higher-order nucleic acid structures is of great significance in order to control its function and gene expression. In this report, we have described the T–T mismatch selective alkylation with a vinyldiaminotriazine (VDAT)–acridine conjugate. The alkylation selectively proceeded at the N3 position of thymidine on the T–T mismatch. Interestingly, the alkylated thymidine induced base flipping of the complementary base in the duplex. In a model experiment for the alkylation of the CTG repeats DNA which causes myotonic dystrophy type 1 (DM1), the observed reaction rate for one alkylation increased in proportion to the number of T–T mismatches. In addition, we showed that primer extension reactions with DNA polymerase and transcription with RNA polymerase were stopped by the alkylation. The alkylation of the repeat DNA will efficiently work for the inhibition of replication and transcription reactions. These functions of the VDAT–acridine conjugate would be useful as a new biochemical tool for the study of CTG repeats and may provide a new strategy for the molecular therapy of DM1. PMID:29309639

  6. Alkyl chitosan film-high strength, functional biomaterials.

    PubMed

    Lu, Li; Xing, Cao; Xin, Shen; Shitao, Yu; Feng, Su; Shiwei, Liu; Fusheng, Liu; Congxia, Xie

    2017-11-01

    Biofilm with strong tensile strength is a topic item in the area of tissue engineering, medicine engineering, and so forth. Here we introduced an alkyl chitosan film with strong tensile strength and its possibility for an absorbable anticoagulation material in vivo was tested in the series of blood test, such as dynamic coagulation time, plasma recalcification time and hemolysis. Alkyl chitosan film was a better biomaterial than traditional chitosan film in the anticoagulation, tissue compatibility and cell compatibility. The unique trait of alkyl chitosan film may be for its greater contact angle and hydrophobicity ability to reduce the adsorption capacity for the blood component and the activity of fibrinolytic enzymes, enhance the antibacterial capacity than chitosan film. Moreover, none of chitosan film or butyl chitosan film exhibited quick inflammation or other disadvantage and degraded quickly by implanted test. Therefore, Alkyl chitosan film is of prospective properties as an implantable, absorbable agent for tissue heals, and this material need further research. © 2017 Wiley Periodicals, Inc. J Biomed Mater Res Part A: 105A: 3034-3041, 2017. © 2017 Wiley Periodicals, Inc.

  7. 40 CFR 721.2565 - Alkylated sulfonated diphenyl oxide, alkali and amine salts.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 40 Protection of Environment 30 2010-07-01 2010-07-01 false Alkylated sulfonated diphenyl oxide... New Uses for Specific Chemical Substances § 721.2565 Alkylated sulfonated diphenyl oxide, alkali and... substances identified as alkylated sulfonated diphenyl oxide, alkali salt (PMN P-93-352) and alkylated...

  8. 40 CFR 721.2565 - Alkylated sulfonated diphenyl oxide, alkali and amine salts.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 40 Protection of Environment 31 2011-07-01 2011-07-01 false Alkylated sulfonated diphenyl oxide... New Uses for Specific Chemical Substances § 721.2565 Alkylated sulfonated diphenyl oxide, alkali and... substances identified as alkylated sulfonated diphenyl oxide, alkali salt (PMN P-93-352) and alkylated...

  9. Detection and identification of alkylating agents by using a bioinspired "chemical nose".

    PubMed

    Hertzog-Ronen, Carmit; Borzin, Elena; Gerchikov, Yulia; Tessler, Nir; Eichen, Yoav

    2009-10-12

    Alkylating agents are simple and reactive molecules that are commonly used in many and diverse fields such as organic synthesis, medicine, and agriculture. Some highly reactive alkylating species are also being used as blister chemical-warfare agents. The detection and identification of alkylating agents is not a trivial issue because of their high reactivity and simple structure. Herein, we report on a new multispot luminescence-based approach to the detection and identification of alkylating agents. In order to demonstrate the potential of the approach, seven pi-conjugated oligomers and polymers bearing nucleophilic pyridine groups, 1-7, were adsorbed onto a solid support and exposed to vapors of alkylators 8-15. The alkylation-induced color-shift patterns of the seven-spot array allow clear discrimination of the different alkylators. The spots are sensitive to minute concentrations of alkylators and, because the detection is based on the formation of new covalent bonds, these spots saturate at about 50 ppb.

  10. Structure-biocompatibility and transfection activity relationships of cationic polyaspartamides with (dialkylamino)alkyl and alkyl or hydroxyalkyl side groups.

    PubMed

    Salakhieva, Diana; Shevchenko, Vesta; Németh, Csaba; Gyarmati, Benjámin; Szilágyi, András; Abdullin, Timur

    2017-01-30

    A series of 14 cationic derivatives of poly(aspartic acid) i.e. cationic polyaspartamides with different (dialkylamino)alkyl and alkyl or hydroxyalkyl side groups was synthesized by nucleophilic addition on polysuccinimide. The resulting polyaspartamides have moderate amphiphilic properties. Relationships between the structure and ratio of side groups and in vitro properties of polyaspartamides, including their cytotoxic and membrane-damaging activity towards human cell lines, primary skin fibroblasts and erythrocytes, were established and discussed. Cationic polyaspartamides vary in their DNA-binding, condensing and nuclease-protecting characteristics depending on the concentration ratio of (dialkylamino)alkyl and alkyl or hydroxyalkyl side groups. Effective cell transfection was achieved upon polyaspartamide-mediated plasmid DNA delivery in serum-free medium in the presence of chloroquine. Effect of serum proteins adsorption onto polyaspartamide based polyplexes, and the role of concentration of polyplexes in culture medium in their colloidal stability and transfection process were demonstrated. Synthesized polyaspartamides are biocompatible and long-acting gene carriers, which are applied to cells after dilution and without washing, thus providing transfection level comparable to that of commercial transfection reagent. Copyright © 2016 Elsevier B.V. All rights reserved.

  11. Mechanisms of chemoresistance to alkylating agents in malignant glioma.

    PubMed

    Sarkaria, Jann N; Kitange, Gaspar J; James, C David; Plummer, Ruth; Calvert, Hilary; Weller, Michael; Wick, Wolfgang

    2008-05-15

    Intrinsic or acquired chemoresistance to alkylating agents is a major cause of treatment failure in patients with malignant brain tumors. Alkylating agents, the mainstay of treatment for brain tumors, damage the DNA and induce apoptosis, but the cytotoxic activity of these agents is dependent on DNA repair pathways. For example, O6-methylguanine DNA adducts can cause double-strand breaks, but this is dependent on a functional mismatch repair pathway. Thus, tumor cell lines deficient in mismatch repair are resistant to alkylating agents. Perhaps the most important mechanism of resistance to alkylating agents is the DNA repair enzyme O6-methylguanine methyltransferase, which can eliminate the cytotoxic O6-methylguanine DNA adduct before it causes harm. Another mechanism of resistance to alkylating agents is the base excision repair (BER) pathway. Consequently, efforts are ongoing to develop effective inhibitors of BER. Poly(ADP-ribose)polymerase plays a pivotal role in BER and is an important therapeutic target. Developing effective strategies to overcome chemoresistance requires the identification of reliable preclinical models that recapitulate human disease and which can be used to facilitate drug development. This article describes the diverse mechanisms of chemoresistance operating in malignant glioma and efforts to develop reliable preclinical models and novel pharmacologic approaches to overcome resistance to alkylating agents.

  12. Alcohols as alkylating agents in heteroarene C-H functionalization

    NASA Astrophysics Data System (ADS)

    Jin, Jian; MacMillan, David W. C.

    2015-09-01

    Redox processes and radical intermediates are found in many biochemical processes, including deoxyribonucleotide synthesis and oxidative DNA damage. One of the core principles underlying DNA biosynthesis is the radical-mediated elimination of H2O to deoxygenate ribonucleotides, an example of `spin-centre shift', during which an alcohol C-O bond is cleaved, resulting in a carbon-centred radical intermediate. Although spin-centre shift is a well-understood biochemical process, it is underused by the synthetic organic chemistry community. We wondered whether it would be possible to take advantage of this naturally occurring process to accomplish mild, non-traditional alkylation reactions using alcohols as radical precursors. Because conventional radical-based alkylation methods require the use of stoichiometric oxidants, increased temperatures or peroxides, a mild protocol using simple and abundant alkylating agents would have considerable use in the synthesis of diversely functionalized pharmacophores. Here we describe the development of a dual catalytic alkylation of heteroarenes, using alcohols as mild alkylating reagents. This method represents the first, to our knowledge, broadly applicable use of unactivated alcohols as latent alkylating reagents, achieved via the successful merger of photoredox and hydrogen atom transfer catalysis. The value of this multi-catalytic protocol has been demonstrated through the late-stage functionalization of the medicinal agents, fasudil and milrinone.

  13. Alcohols as alkylating agents in heteroarene C-H functionalization.

    PubMed

    Jin, Jian; MacMillan, David W C

    2015-09-03

    Redox processes and radical intermediates are found in many biochemical processes, including deoxyribonucleotide synthesis and oxidative DNA damage. One of the core principles underlying DNA biosynthesis is the radical-mediated elimination of H2O to deoxygenate ribonucleotides, an example of 'spin-centre shift', during which an alcohol C-O bond is cleaved, resulting in a carbon-centred radical intermediate. Although spin-centre shift is a well-understood biochemical process, it is underused by the synthetic organic chemistry community. We wondered whether it would be possible to take advantage of this naturally occurring process to accomplish mild, non-traditional alkylation reactions using alcohols as radical precursors. Because conventional radical-based alkylation methods require the use of stoichiometric oxidants, increased temperatures or peroxides, a mild protocol using simple and abundant alkylating agents would have considerable use in the synthesis of diversely functionalized pharmacophores. Here we describe the development of a dual catalytic alkylation of heteroarenes, using alcohols as mild alkylating reagents. This method represents the first, to our knowledge, broadly applicable use of unactivated alcohols as latent alkylating reagents, achieved via the successful merger of photoredox and hydrogen atom transfer catalysis. The value of this multi-catalytic protocol has been demonstrated through the late-stage functionalization of the medicinal agents, fasudil and milrinone.

  14. Memories of AB

    NASA Astrophysics Data System (ADS)

    Vaks, V. G.

    2013-06-01

    I had the good fortune to be a student of A. B. Migdal - AB, as we called him in person or in his absence - and to work in the sector he headed at the Kurchatov Institute, along with his other students and my friends, including Vitya Galitsky, Spartak Belyayev and Tolya Larkin. I was especially close with AB in the second half of the 1950s, the years most important for my formation, and AB's contribution to this formation was very great. To this day, I've often quoted AB on various occasions, as it's hard to put things better or more precisely than he did; I tell friends stories heard from AB, because these stories enhance life as AB himself enhanced it; my daughter is named Tanya after AB's wife Tatyana Lvovna, and so on. In what follows, I'll recount a few episodes in my life in which AB played an important or decisive role, and then will share some other memories of AB...

  15. 40 CFR 721.10711 - Alkyl substituted catechol (generic).

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ...) TOXIC SUBSTANCES CONTROL ACT SIGNIFICANT NEW USES OF CHEMICAL SUBSTANCES Significant New Uses for Specific Chemical Substances § 721.10711 Alkyl substituted catechol (generic). (a) Chemical substance and significant new uses subject to reporting. (1) The chemical substance identified generically as alkyl...

  16. 40 CFR 721.840 - Alkyl substituted diaromatic hydrocarbons.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... hydrocarbons. 721.840 Section 721.840 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED... Specific Chemical Substances § 721.840 Alkyl substituted diaromatic hydrocarbons. (a) Chemical substance... alkyl substituted di-aro-matic hydrocarbons (PMN P-91-710) is subject to reporting under this section...

  17. 40 CFR 721.840 - Alkyl substituted diaromatic hydrocarbons.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... hydrocarbons. 721.840 Section 721.840 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED... Specific Chemical Substances § 721.840 Alkyl substituted diaromatic hydrocarbons. (a) Chemical substance... alkyl substituted di-aro-matic hydrocarbons (PMN P-91-710) is subject to reporting under this section...

  18. Effect of alkyl chain length on the rotational diffusion of nonpolar and ionic solutes in 1-alkyl-3-methylimidazolium-bis(trifluoromethylsulfonyl)imides.

    PubMed

    Gangamallaiah, V; Dutt, G B

    2013-10-10

    Rotational diffusion of a nonpolar solute 9-phenylanthracene (9-PA) and a cationic solute rhodamine 110 (R110) has been examined in a series of 1-alkyl-3-methylimidazolium (alkyl = octyl, decyl, dodecyl, tetradecyl, hexadecyl, and octadecyl) bis(trifluoromethylsulfonyl)imides to understand the influence of alkyl chain length on solute rotation. In this study, reorientation times (τr) have been measured as a function of viscosity (η) by varying the temperature (T) of the solvents. These results have been analyzed using the Stokes-Einstein-Debye (SED) hydrodynamic theory along with the ones obtained for the same solutes in 1-alkyl-3-methylimidazolium (alkyl = methyl, ethyl, propyl, butyl, and hexyl) bis(trifluoromethylsulfonyl)imides (Gangamallaiah and Dutt, J. Phys. Chem. B 2012, 116, 12819-12825). It has been noticed that the data for 9-PA and R110 follows the relation τr = A(η/T)(n) with A being the ratio of hydrodynamic volume of the solute to the Boltzmann constant and n = 1 as envisaged by the SED theory. However, upon increasing the alkyl chain length from methyl to octadecyl significant deviations from the SED theory have been observed especially from the octyl derivative onward. From methyl to octadecyl derivatives, the value of A decreases by a factor of 3 for both the solutes and n by a factor of 1.4 and 1.6 for 9-PA and R110, respectively. These observations have been rationalized by taking into consideration the organized structure of the ionic liquids, whose influence appears to be pronounced when the number of carbon atoms in the alkyl chain attached to the imidazolium cation exceeds eight.

  19. Copper-catalyzed radical carbooxygenation: alkylation and alkoxylation of styrenes.

    PubMed

    Liao, Zhixiong; Yi, Hong; Li, Zheng; Fan, Chao; Zhang, Xu; Liu, Jie; Deng, Zixin; Lei, Aiwen

    2015-01-01

    A simple copper-catalyzed direct radical carbooxygenation of styrenes is developed utilizing alkyl bromides as radical resources. This catalytic radical difunctionalization accomplishes both alkylation and alkoxylation of styrenes in one pot. A broad range of styrenes and alcohols are well tolerated in this transformation. The EPR experiment shows that alkyl halides could oxidize Cu(I) to Cu(II) in this transformation. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  20. Lithium perchlorate-nitromethane-promoted alkylation of anilines with arylmethanols.

    PubMed

    Zhou, Jun; Mao, Hai-Feng; Wang, Lu; Zou, Jian-Ping; Zhang, Wei

    2011-11-01

    A new application of lithium perchlorate-nitromethane (LPNM) for the formation of aromatic C-N and C-C bonds is introduced. LPNM-promoted reactions of anilines with diarylmethanols selectively generate N-alkylated anilines or mono and double Friedel-Crafts alkylation products under different conditions by changing the reaction time, reaction temperature, and the ratio of the reactants. This method does not require the use of transition metal catalysts to prepare alkylated aniline derivatives.

  1. Chiral Brønsted Base-Promoted Nitroalkane Alkylation: Enantioselective Synthesis of sec-Alkyl-3-Substituted Indoles

    PubMed Central

    Dobish, Mark C.; Johnston, Jeffrey N.

    2010-01-01

    A Brønsted base-catalyzed reaction of nitroalkanes with alkyl electrophiles provides indole heterocycles substituted at C3 bearing a sec-alkyl group with good enantioselectivity (up to 90% ee). Denitration by hydrogenolysis provides a product with equally high ee. An indolenine intermediate is implicated in the addition step, and surprisingly, water cosolvent was found to have a beneficial effect in this step, leading to a one-pot protocol for elimination/enantioselective addition using PBAM, a bis(amidine) chiral nonracemic base. PMID:21090654

  2. Odd-even effect on the formation of aqueous biphasic systems formed by 1-alkyl-3-methylimidazolium chloride ionic liquids and salts

    NASA Astrophysics Data System (ADS)

    Belchior, Diana C. V.; Sintra, Tânia E.; Carvalho, Pedro J.; Soromenho, Mário R. C.; Esperança, José M. S. S.; Ventura, Sónia P. M.; Rogers, Robin D.; Coutinho, João A. P.; Freire, Mara G.

    2018-05-01

    This work provides a comprehensive evaluation of the effect of the cation alkyl side chain length of the 1-alkyl-3-methylimidazolium chloride series ([CnC1im]Cl, n = 2-14) of ionic liquids (ILs) on their capability to form aqueous biphasic systems (ABSs) with salts and self-aggregation derived properties. The liquid-liquid phase behavior of ternary systems composed of [CnC1im]Cl, water, and K3PO4 or K2CO3 and the respective Setschenow salting-out coefficients (ks), a quantitative measure of the two-phase formation ability, were determined. An odd-even effect in the ks values along the number of methylene groups of the longest IL cation alkyl side chain was identified for the ABS formed by K2CO3, a weaker salting-out agent where the phenomenon is clearly identified. In general, cations with even alkyl side chains, being likely to display higher molar volumes, are more easily salted-out and thus more prone to undergo phase separation. The odd-even effect in the ks values is, however, more significant in ILs up to n = 6, where the nanostructuration/nanosegregation of ILs plays a less relevant role. Still, with the [CnC1im]Cl (n = 7-14) series of ILs, an odd-even effect was also identified in the ILs' ionization degree, molar conductivity, and conductivity at infinite dilution. In summary, it is shown here that the ILs' odd-even effect occurs in IL aqueous solutions and not just in neat ILs, an already well-established phenomenon occurring in a series of ILs' properties described as a result of the orientation of the terminal methyl groups to the imidazolium ring cation and consequent effect in the ILs' cohesive energy.

  3. Sleep-inducing N-alkyl-5-[m-(trifluoromethyl)phenyl]-5-hydroxy-2-pyrrolidinones and N-alkyl-3-(trifluoromethyl)cinnamamides.

    PubMed

    Houlihan, W J; Gogerty, J H; Ryan, E A; Schmitt, G

    1985-01-01

    A series of N-alkyl-3-[m-(trifluoromethyl)phenyl]-5-hydroxy-2-pyrrolidinones and N-alkyl-3-(trifluoromethyl)-cinnamamides were prepared and screened in a series of tests designed to detect potential sleep inducers. The more active members of the series were evaluated for their ability to induce sleep in Cebus monkeys. The most active compound, N-methyl-5-[m-(trifluoromethyl)phenyl]-5-hydroxy-2-pyrrolidinone, was equal to methaqualone.

  4. Synthesis and characterization of chitosan alkyl urea.

    PubMed

    Wang, Jing; Jiang, Ji-Zhou; Chen, Wei; Bai, Zheng-Wu

    2016-07-10

    Chitosan is a versatile material employed for various purposes in many fields including the development of chiral stationary phases for enantioseparation. Chitosan alkyl urea is a kind of intermediate used to prepare enantioseparation materials. In order to synthesize the intermediates, in the present work, a new way to prepare chitosan alkyl urea has been established: chitosan was first reacted with methyl chloroformate yielding N-methoxyformylated chitosan, which was then converted to chitosan alkyl urea through amine-ester exchange reaction. With a large excess of methyl chloroformate and primary amine of low stereohindrance, the amino group in chitosan could be almost completely converted to ureido group. The as-prepared chitosan alkyl urea derivatives were characterized by IR, (1)H NMR, (13)C NMR,(1)H-(1)H COSY and (1)H-(13)C HSQC NMR spectra. The chemical shifts of hydrogen and carbon atoms of glucose unit were assigned. It was found that the degree of substitution was obviously lower if cyclopropyl amine, aniline, tert-butyl amine and diethyl amine were used as reactants for the amine-ester exchange reaction. The reason was explained with the aid of theoretical calculations. Copyright © 2016 Elsevier Ltd. All rights reserved.

  5. Alcohols as alkylating agents in heteroarene C–H functionalization

    PubMed Central

    Jin, Jian; MacMillan, David W. C.

    2015-01-01

    Redox processes and radical intermediates are found in many biochemical processes, including deoxyribonucleotide synthesis and oxidative DNA damage1. One of the core principles that underlies DNA biosynthesis is the radical-mediated elimnation of H2O to deoxygenate ribonucleotides, an example of ‘spin-center shift’ (SCS)2, during which an alcohol C–O bond is cleaved, resulting in a carbon-centered radical intermediate. While SCS is a well-understood biochemical process, it is underutilized by the synthetic organic chemistry community. We wondered whether it would be possible to take advantage of this naturally occurring process to accomplish mild, non-traditional alkylations using alcohols as radical precursors. Considering traditional radical-based alkylation methods require the use of stoichiometric oxidants, elevated temperatures, or peroxides3–7, the development of a mild protocol using simple and abundant alkylating agents would have significant utility in the synthesis of diversely functionalized pharmacophores. In this manuscript, we describe the successful execution of this idea via the development of a dual catalytic alkylation of heteroarenes using alcohols as mild alkylating reagents. This method represents the first broadly applicable use of unactivated alcohols as latent alkylating reagents, achieved via the successful merger of photoredox and hydrogen atom transfer (HAT) catalysis. The utility of this multi-catalytic protocol has been demonstrated through the late-stage functionalization of the medicinal agents, fasudil and milrinone. PMID:26308895

  6. Detection of Alkylating Agents using Electrical and Mechanical Means

    NASA Astrophysics Data System (ADS)

    Gerchikov, Yulia; Borzin, Elena; Gannot, Yair; Shemesh, Ariel; Meltzman, Shai; Hertzog-Ronen, Carmit; Tal, Shay; Stolyarova, Sara; Nemirovsky, Yael; Tessler, Nir; Eichen, Yoav

    2011-08-01

    Alkylating agents are reactive molecules having at least one polar bond between a carbon atom and a good leaving group. These often simple molecules are frequently used in organic synthesis, as sterilizing agents in agriculture and even as anticancer agents in medicine. Unfortunately, for over a century, some of the highly reactive alkylating agents are also being used as blister chemical warfare agents. Being relatively simple to make, the risk is that these will be applied by terrorists as poor people warfare agents. The detection and identification of such alkylating agents is not a simple task because of their high reactivity and simple structure of the reactive site. Here we report on new approaches to the detection and identification of such alkylating agents using electrical (organic field effect transistors) and mechanical (microcantilevers) means.

  7. Safety Assessment of Alkyl PEG/PPG Ethers as Used in Cosmetics.

    PubMed

    Fiume, Monice M; Heldreth, Bart; Bergfeld, Wilma F; Belsito, Donald V; Hill, Ronald A; Klaassen, Curtis D; Liebler, Daniel C; Marks, James G; Shank, Ronald C; Slaga, Thomas J; Snyder, Paul W; Andersen, F Alan

    2016-07-01

    The Cosmetic Ingredient Review (CIR) Expert Panel assessed the safety of 131 alkyl polyethylene glycol (PEG)/polypropylene glycol ethers as used in cosmetics, concluding that these ingredients are safe in the present practices of use and concentration described in this safety assessment when formulated to be nonirritating. Most of the alkyl PEG/PPG ethers included in this review are reported to function in cosmetics as surfactants, skin-conditioning agents, and/or emulsifying agents. The alkyl PEG/PPG ethers share very similar physiochemical properties as the alkyl PEG ethers, which were reviewed previously by the CIR Expert Panel and found safe when formulated to be nonirritating. The alkyl PEG ethers differ by the inclusion of PPG repeat units, which are used to fine-tune the surfactant properties of this group. The Panel relied heavily on data on analogous ingredients, extracted from the alkyl PEG ethers and PPG reports, when making its determination of safety. © The Author(s) 2016.

  8. Optical absorption and photoconductivity in iodine-excess ionic liquids: the case of 1-alkyl-3-methyl imidazolium iodides.

    PubMed

    Aono, Masami; Miyazaki, Hisashi; Takekiyo, Takahiro; Tsuzuki, Seiji; Abe, Hiroshi

    2018-02-21

    We investigated the optical absorption and photoconductivity of iodine-excess ionic liquids (ILs) based on 1-alkyl-3-methyl imidazolium iodide ([C n mim][I]; n = 3, 4, and 6). The iodide concentration m was 2 ≦ m ≦ 8, which was determined by the molar fraction [C n mim] +  : [I m ] - = 1 : m. By adding iodine, an absorption edge shifted from 282 nm in the UV region to around 600 nm in the visible-light region. The optical bandgaps E o decreased gradually from 2.3 eV to 1.9 eV with increasing m from 2 to 8. The alkyl-side chain lengths of the cations have little effect on the E o . This experimental result was confirmed by ab initio molecular orbital calculations. The effects were reflected in the photoconductivity of the ILs, as expected. [C 4 mim][I m ] exhibited greater photo-induced electron generation compared with [C 3 mim][I m ] and [C 6 mim][I m ]. The photoconductivity in both [C 3 mim][I m ] and [C 6 mim][I m ] increased slightly with increasing m. The trend of photoconductivity in [C 4 mim][I m ] exhibited an N-shaped form. The highest photoconductivity 1.6 was observed in [C 4 mim][I 8 ].

  9. Alkylation of 6-mercaptopurine (6-MP) with N-alkyl-N-alkoxycarbonylaminomethyl chlorides: S6-(N-alkyl-N-alkoxycarbonyl)aminomethyl-6-MP prodrug structure effect on the dermal delivery of 6-MP.

    PubMed

    Siver, K G; Sloan, K B

    1990-01-01

    The S6-(N-alkyl-N-alkoxycarbonyl)aminomethyl-6-MP (6-CARB-6-MP) prodrugs 5-20 were synthesized from the reaction of 6-MP with N-alkyl-N-alkyoxycarbonylaminomethyl chlorides (4) in dimethyl sulfoxide in overall yields of 5-62%, depending on the N-alkyl and the alkoxy groups involved. The derivatives were fully characterized by spectral and microanalyses. The assignment of the substitution pattern as S6-alkyl was based on comparisons of the UV, 1H NMR and 13C NMR spectra with model compounds. A S6, 9-bis-alkyl derivative was obtained from the reaction of 2 equivalents of 4 with 6-MP but the product was unstable and decomposed on standing to a 9-alkyl derivative. The 6-CARB-6-MP prodrugs reverted to 6-MP in water by an SN1-type mechanism involving unimolecular charge separation in the transition state of the rate determining step. There was no effect of dermal enzymes on the rate of hydrolysis. The solubilities in isopropyl myristate (IPM) for all of the 6-CARB-6-MP prodrugs were significantly greater than the solubility of 6-MP in IPM but only one prodrug (5) was apparently even as soluble as 6-MP in water. Selected 6-CARB-6-MP prodrugs were examined in diffusion cell experiments. Only the N-methyl-N-methoxycarbonyl derivative 5 gave a steady-state rate of delivery of 6-MP from IPM that was significantly greater than the steady-state rate of delivery of 6-MP from 6-MP in IPM. All the other derivatives gave steady-state rates of delivery of 6-MP from IPM that were either not significantly different, or were significantly lower than the rate obtained from 6-MP in IPM. In all cases, the effect of the 6-CARB-6-MP:IPM suspensions on the permeability of the skin, as determined by the second application flux of theophylline:propylene glycol, was of the same magnitude as the effect of IPM alone.

  10. Ultrasound promoted N-alkylation of pyrrole using potassium superoxide as base in crown ether.

    PubMed

    Yim, E S; Park, M K; Han, B H

    1997-04-01

    Ultrasound accelerates the N-alkylation of pyrrole by alkylating reagents using potassium superoxide as base in the presence of 18-crown-6. A much lower yield of N-alkylated pyrrole was realized in the absence of ultrasound. N-alkylating reagents employed for pyrrole are methyl iodide, ethyl bromide, benzyl bromide, as well as acrylonitrile allyl cyanide and methyl acrylate. In an extension of this work, we have found that ultrasound was not necessary for the N-alkylation of indole and alkyl amine, such as diphenyl amine and piperidine with alkyl halides using our reagents. In all cases we observed that the 18-crown-6 catalyzed N-alkylation reaction gives higher yields of N-alkylated products than that without crown ether, when potassium superoxide was used as base. These observations are probably due to the potassium-crown complex which can be released when the reaction goes to completion.

  11. Bifunctional Molybdenum Polyoxometalates for the Combined Hydrodeoxygenation and Alkylation of Lignin-Derived Model Phenolics.

    PubMed

    Anderson, Eric; Crisci, Anthony; Murugappan, Karthick; Román-Leshkov, Yuriy

    2017-05-22

    Reductive catalytic fractionation of biomass has recently emerged as a powerful lignin extraction and depolymerization method to produce monomeric aromatic oxygenates in high yields. Here, bifunctional molybdenum-based polyoxometalates supported on titania (POM/TiO 2 ) are shown to promote tandem hydrodeoxygenation (HDO) and alkylation reactions, converting lignin-derived oxygenated aromatics into alkylated benzenes and alkylated phenols in high yields. In particular, anisole and 4-propylguaiacol were used as model compounds for this gas-phase study using a packed-bed flow reactor. For anisole, 30 % selectivity for alkylated aromatic compounds (54 % C-alkylation of the methoxy groups by methyl balance) with an overall 72 % selectivity for HDO at 82 % anisole conversion was observed over H 3 PMo 12 O 40 /TiO 2 at 7 h on stream. Under similar conditions, 4-propylguaiacol was mainly converted into 4-propylphenol and alkylated 4-propylphenols with a selectivity to alkylated 4-propylphenols of 42 % (77 % C-alkylation) with a total HDO selectivity to 4-propylbenzene and alkylated 4-propylbenzenes of 4 % at 92 % conversion (7 h on stream). Higher catalyst loadings pushed the 4-propylguaiacol conversion to 100 % and resulted in a higher selectivity to propylbenzene of 41 %, alkylated aromatics of 21 % and alkylated phenols of 17 % (51 % C-alkylation). The reactivity studies coupled with catalyst characterization revealed that Lewis acid sites act synergistically with neighboring Brønsted acid sites to simultaneously promote alkylation and hydrodeoxygenation activity. A reaction mechanism is proposed involving activation of the ether bond on a Lewis acid site, followed by methyl transfer and C-alkylation. Mo-based POMs represent a versatile catalytic platform to simultaneously upgrade lignin-derived oxygenated aromatics into alkylated arenes. © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  12. 40 CFR 721.5985 - Fatty alkyl phosphate, alkali metal salt (generic).

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 40 Protection of Environment 30 2010-07-01 2010-07-01 false Fatty alkyl phosphate, alkali metal... Specific Chemical Substances § 721.5985 Fatty alkyl phosphate, alkali metal salt (generic). (a) Chemical... as a fatty alkyl phosphate, alkali metal salt (PMN P-99-0385) is subject to reporting under this...

  13. 40 CFR 721.5985 - Fatty alkyl phosphate, alkali metal salt (generic).

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 40 Protection of Environment 31 2011-07-01 2011-07-01 false Fatty alkyl phosphate, alkali metal... Specific Chemical Substances § 721.5985 Fatty alkyl phosphate, alkali metal salt (generic). (a) Chemical... as a fatty alkyl phosphate, alkali metal salt (PMN P-99-0385) is subject to reporting under this...

  14. 40 CFR 721.2094 - N,N′-di(alkyl heteromonocycle)amino chlorotriazine.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 40 Protection of Environment 31 2011-07-01 2011-07-01 false N,Nâ²-di(alkyl heteromonocycle)amino... Specific Chemical Substances § 721.2094 N,N′-di(alkyl heteromonocycle)amino chlorotriazine. (a) Chemical... as N,N′-di(alkyl heteromonocycle)amino chlorotriazine (PMN P-93-1369) is subject to reporting under...

  15. 40 CFR 721.2094 - N,N′-di(alkyl heteromonocycle)amino chlorotriazine.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 40 Protection of Environment 30 2010-07-01 2010-07-01 false N,Nâ²-di(alkyl heteromonocycle)amino... Specific Chemical Substances § 721.2094 N,N′-di(alkyl heteromonocycle)amino chlorotriazine. (a) Chemical... as N,N′-di(alkyl heteromonocycle)amino chlorotriazine (PMN P-93-1369) is subject to reporting under...

  16. 40 CFR 721.520 - Alanine, N-(2-carboxyethyl)-N-alkyl-, salt.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 40 Protection of Environment 31 2011-07-01 2011-07-01 false Alanine, N-(2-carboxyethyl)-N-alkyl... Specific Chemical Substances § 721.520 Alanine, N-(2-carboxyethyl)-N-alkyl-, salt. (a) Chemical substance... alanine, N-(2-carboxyethyl)-N- alkyl-, salt (P-89-336) is subject to reporting under this section for the...

  17. 40 CFR 721.520 - Alanine, N-(2-carboxyethyl)-N-alkyl-, salt.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 40 Protection of Environment 30 2010-07-01 2010-07-01 false Alanine, N-(2-carboxyethyl)-N-alkyl... Specific Chemical Substances § 721.520 Alanine, N-(2-carboxyethyl)-N-alkyl-, salt. (a) Chemical substance... alanine, N-(2-carboxyethyl)-N- alkyl-, salt (P-89-336) is subject to reporting under this section for the...

  18. 40 CFR 721.644 - Amines, C12-14-tert-alkyl, sulfonates.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 40 Protection of Environment 31 2011-07-01 2011-07-01 false Amines, C12-14-tert-alkyl, sulfonates... Substances § 721.644 Amines, C12-14-tert-alkyl, sulfonates. (a) Chemical substance and significant new uses subject to reporting. (1) The chemical substance identified as amines, C12-14-tert-alkyl, sulfonates (PMN...

  19. 40 CFR 721.644 - Amines, C12-14-tert-alkyl, sulfonates.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 40 Protection of Environment 30 2010-07-01 2010-07-01 false Amines, C12-14-tert-alkyl, sulfonates... Substances § 721.644 Amines, C12-14-tert-alkyl, sulfonates. (a) Chemical substance and significant new uses subject to reporting. (1) The chemical substance identified as amines, C12-14-tert-alkyl, sulfonates (PMN...

  20. Absolute configuration in 4-alkyl- and 4-aryl-3,4-dihydro-2(1H)-pyrimidones: a combined theoretical and experimental investigation.

    PubMed

    Uray, G; Verdino, P; Belaj, F; Kappe, C O; Fabian, W M

    2001-10-05

    Structural features (orientation of the carboxyl group, ring puckering), electronic absorption, and circular dichroism spectra of 4-alkyl- and 4-aryl-dihydropyrimidones 1-5 are calculated by semiempirical (AM1, INDO/S), ab initio (HF/6-31G, CIS/6-31G, RPA/6-31G), and density functional theory (B3LYP/6-31G) methods. These calculations allow an assignment of the absolute configuration by comparison of simulated and experimental CD spectra. Although the ab initio methods greatly overestimate electronic transition energies, the general appearance of the experimental CD spectra is quite nicely reproduced by these calculations. Thus, comparison of experimental with calculated CD spectra is a reliable tool for the assignment of the absolute configuration. For 4-methyl derivatives 1, the first enantiopure DHPM examples with no additional aromatic substituent, the stereochemistry at C4 provided by the theoretical results is confirmed by X-ray structure determination of the diastereomeric salt 6. Additional support is the consistent HPLC elution order found for all investigated DHPMs on a cellulose-derived chiral stationary phase.

  1. Alkylation sensitivity screens reveal a conserved cross-species functionome

    PubMed Central

    Svilar, David; Dyavaiah, Madhu; Brown, Ashley R.; Tang, Jiang-bo; Li, Jianfeng; McDonald, Peter R.; Shun, Tong Ying; Braganza, Andrea; Wang, Xiao-hong; Maniar, Salony; St Croix, Claudette M.; Lazo, John S.; Pollack, Ian F.; Begley, Thomas J.; Sobol, Robert W.

    2013-01-01

    To identify genes that contribute to chemotherapy resistance in glioblastoma, we conducted a synthetic lethal screen in a chemotherapy-resistant glioblastoma derived cell line with the clinical alkylator temozolomide (TMZ) and an siRNA library tailored towards “druggable” targets. Select DNA repair genes in the screen were validated independently, confirming the DNA glycosylases UNG and MYH as well as MPG to be involved in the response to high dose TMZ. The involvement of UNG and MYH is likely the result of a TMZ-induced burst of reactive oxygen species. We then compared the human TMZ sensitizing genes identified in our screen with those previously identified from alkylator screens conducted in E. coli and S. cerevisiae. The conserved biological processes across all three species composes an Alkylation Functionome that includes many novel proteins not previously thought to impact alkylator resistance. This high-throughput screen, validation and cross-species analysis was then followed by a mechanistic analysis of two essential nodes: base excision repair (BER) DNA glycosylases (UNG, human and mag1, S. cerevisiae) and protein modification systems, including UBE3B and ICMT in human cells or pby1, lip22, stp22 and aim22 in S. cerevisiae. The conserved processes of BER and protein modification were dual targeted and yielded additive sensitization to alkylators in S. cerevisiae. In contrast, dual targeting of BER and protein modification genes in human cells did not increase sensitivity, suggesting an epistatic relationship. Importantly, these studies provide potential new targets to overcome alkylating agent resistance. PMID:23038810

  2. Regulation of DNA Alkylation Damage Repair: Lessons and Therapeutic Opportunities

    PubMed Central

    Soll, Jennifer M.; Sobol, Robert W.; Mosammaparast, Nima

    2016-01-01

    Alkylation chemotherapy is one of the most widely used systemic therapies for cancer. While somewhat effective, clinical responses and toxicities of these agents are highly variable. A major contributing factor for this variability is the numerous distinct lesions that are created upon alkylation damage. These adducts activate multiple repair pathways. There is mounting evidence that the individual pathways function cooperatively, suggesting that coordinated regulation of alkylation repair is critical to prevent toxicity. Furthermore, some alkylating agents produce adducts that overlap with newly discovered methylation marks, making it difficult to distinguish between bona fide damaged bases and so called ‘epigenetic’ adducts. We discuss new efforts aimed at deciphering the mechanisms that regulate these repair pathways, emphasizing their implications for cancer chemotherapy. PMID:27816326

  3. Palladium-catalyzed Heck-type cross-couplings of unactivated alkyl iodides.

    PubMed

    McMahon, Caitlin M; Alexanian, Erik J

    2014-06-02

    A palladium-catalyzed, intermolecular Heck-type coupling of alkyl iodides and alkenes is described. This process is successful with a variety of primary and secondary unactivated alkyl iodides as reaction partners, including those with hydrogen atoms in the β position. The mild catalytic conditions enable intermolecular C-C bond formations with a diverse set of alkyl iodides and alkenes, including substrates containing base- or nucleophile-sensitive functionality. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  4. mAbs

    PubMed Central

    2009-01-01

    The twenty two monoclonal antibodies (mAbs) currently marketed in the U.S. have captured almost half of the top-20 U.S. therapeutic biotechnology sales for 2007. Eight of these products have annual sales each of more than $1 B, were developed in the relatively short average period of six years, qualified for FDA programs designed to accelerate drug approval, and their cost has been reimbursed liberally by payers. With growth of the product class driven primarily by advancements in protein engineering and the low probability of generic threats, mAbs are now the largest class of biological therapies under development. The high cost of these drugs and the lack of generic competition conflict with a financially stressed health system, setting reimbursement by payers as the major limiting factor to growth. Advances in mAb engineering are likely to result in more effective mAb drugs and an expansion of the therapeutic indications covered by the class. The parallel development of biomarkers for identifying the patient subpopulations most likely to respond to treatment may lead to a more cost-effective use of these drugs. To achieve the success of the current top-tier mAbs, companies developing new mAb products must adapt to a significantly more challenging commercial environment. PMID:20061824

  5. Chiral Alkyl Halides: Underexplored Motifs in Medicine

    PubMed Central

    Gál, Bálint; Bucher, Cyril; Burns, Noah Z.

    2016-01-01

    While alkyl halides are valuable intermediates in synthetic organic chemistry, their use as bioactive motifs in drug discovery and medicinal chemistry is rare in comparison. This is likely attributable to the common misconception that these compounds are merely non-specific alkylators in biological systems. A number of chlorinated compounds in the pharmaceutical and food industries, as well as a growing number of halogenated marine natural products showing unique bioactivity, illustrate the role that chiral alkyl halides can play in drug discovery. Through a series of case studies, we demonstrate in this review that these motifs can indeed be stable under physiological conditions, and that halogenation can enhance bioactivity through both steric and electronic effects. Our hope is that, by placing such compounds in the minds of the chemical community, they may gain more traction in drug discovery and inspire more synthetic chemists to develop methods for selective halogenation. PMID:27827902

  6. Selective sp3 C-H alkylation via polarity-match-based cross-coupling.

    PubMed

    Le, Chip; Liang, Yufan; Evans, Ryan W; Li, Ximing; MacMillan, David W C

    2017-07-06

    The functionalization of carbon-hydrogen (C-H) bonds is one of the most attractive strategies for molecular construction in organic chemistry. The hydrogen atom is considered to be an ideal coupling handle, owing to its relative abundance in organic molecules and its availability for functionalization at almost any stage in a synthetic sequence. Although many C-H functionalization reactions involve C(sp 3 )-C(sp 2 ) coupling, there is a growing demand for C-H alkylation reactions, wherein sp 3 C-H bonds are replaced with sp 3 C-alkyl groups. Here we describe a polarity-match-based selective sp 3 C-H alkylation via the combination of photoredox, nickel and hydrogen-atom transfer catalysis. This methodology simultaneously uses three catalytic cycles to achieve hydridic C-H bond abstraction (enabled by polarity matching), alkyl halide oxidative addition, and reductive elimination to enable alkyl-alkyl fragment coupling. The sp 3 C-H alkylation is highly selective for the α-C-H of amines, ethers and sulphides, which are commonly found in pharmaceutically relevant architectures. This cross-coupling protocol should enable broad synthetic applications in de novo synthesis and late-stage functionalization chemistry.

  7. mTOR target NDRG1 confers MGMT-dependent resistance to alkylating chemotherapy.

    PubMed

    Weiler, Markus; Blaes, Jonas; Pusch, Stefan; Sahm, Felix; Czabanka, Marcus; Luger, Sebastian; Bunse, Lukas; Solecki, Gergely; Eichwald, Viktoria; Jugold, Manfred; Hodecker, Sibylle; Osswald, Matthias; Meisner, Christoph; Hielscher, Thomas; Rübmann, Petra; Pfenning, Philipp-Niklas; Ronellenfitsch, Michael; Kempf, Tore; Schnölzer, Martina; Abdollahi, Amir; Lang, Florian; Bendszus, Martin; von Deimling, Andreas; Winkler, Frank; Weller, Michael; Vajkoczy, Peter; Platten, Michael; Wick, Wolfgang

    2014-01-07

    A hypoxic microenvironment induces resistance to alkylating agents by activating targets in the mammalian target of rapamycin (mTOR) pathway. The molecular mechanisms involved in this mTOR-mediated hypoxia-induced chemoresistance, however, are unclear. Here we identify the mTOR target N-myc downstream regulated gene 1 (NDRG1) as a key determinant of resistance toward alkylating chemotherapy, driven by hypoxia but also by therapeutic measures such as irradiation, corticosteroids, and chronic exposure to alkylating agents via distinct molecular routes involving hypoxia-inducible factor (HIF)-1alpha, p53, and the mTOR complex 2 (mTORC2)/serum glucocorticoid-induced protein kinase 1 (SGK1) pathway. Resistance toward alkylating chemotherapy but not radiotherapy was dependent on NDRG1 expression and activity. In posttreatment tumor tissue of patients with malignant gliomas, NDRG1 was induced and predictive of poor response to alkylating chemotherapy. On a molecular level, NDRG1 bound and stabilized methyltransferases, chiefly O(6)-methylguanine-DNA methyltransferase (MGMT), a key enzyme for resistance to alkylating agents in glioblastoma patients. In patients with glioblastoma, MGMT promoter methylation in tumor tissue was not more predictive for response to alkylating chemotherapy in patients who received concomitant corticosteroids.

  8. Aag DNA Glycosylase Promotes Alkylation-Induced Tissue Damage Mediated by Parp1

    PubMed Central

    Calvo, Jennifer A.; Moroski-Erkul, Catherine A.; Lake, Annabelle; Eichinger, Lindsey W.; Shah, Dharini; Jhun, Iny; Limsirichai, Prajit; Bronson, Roderick T.; Christiani, David C.; Meira, Lisiane B.; Samson, Leona D.

    2013-01-01

    Alkylating agents comprise a major class of front-line cancer chemotherapeutic compounds, and while these agents effectively kill tumor cells, they also damage healthy tissues. Although base excision repair (BER) is essential in repairing DNA alkylation damage, under certain conditions, initiation of BER can be detrimental. Here we illustrate that the alkyladenine DNA glycosylase (AAG) mediates alkylation-induced tissue damage and whole-animal lethality following exposure to alkylating agents. Aag-dependent tissue damage, as observed in cerebellar granule cells, splenocytes, thymocytes, bone marrow cells, pancreatic β-cells, and retinal photoreceptor cells, was detected in wild-type mice, exacerbated in Aag transgenic mice, and completely suppressed in Aag −/− mice. Additional genetic experiments dissected the effects of modulating both BER and Parp1 on alkylation sensitivity in mice and determined that Aag acts upstream of Parp1 in alkylation-induced tissue damage; in fact, cytotoxicity in WT and Aag transgenic mice was abrogated in the absence of Parp1. These results provide in vivo evidence that Aag-initiated BER may play a critical role in determining the side-effects of alkylating agent chemotherapies and that Parp1 plays a crucial role in Aag-mediated tissue damage. PMID:23593019

  9. mTOR target NDRG1 confers MGMT-dependent resistance to alkylating chemotherapy

    PubMed Central

    Weiler, Markus; Blaes, Jonas; Pusch, Stefan; Sahm, Felix; Czabanka, Marcus; Luger, Sebastian; Bunse, Lukas; Solecki, Gergely; Eichwald, Viktoria; Jugold, Manfred; Hodecker, Sibylle; Osswald, Matthias; Meisner, Christoph; Hielscher, Thomas; Rübmann, Petra; Pfenning, Philipp-Niklas; Ronellenfitsch, Michael; Kempf, Tore; Schnölzer, Martina; Abdollahi, Amir; Lang, Florian; Bendszus, Martin; von Deimling, Andreas; Winkler, Frank; Weller, Michael; Vajkoczy, Peter; Platten, Michael; Wick, Wolfgang

    2014-01-01

    A hypoxic microenvironment induces resistance to alkylating agents by activating targets in the mammalian target of rapamycin (mTOR) pathway. The molecular mechanisms involved in this mTOR-mediated hypoxia-induced chemoresistance, however, are unclear. Here we identify the mTOR target N-myc downstream regulated gene 1 (NDRG1) as a key determinant of resistance toward alkylating chemotherapy, driven by hypoxia but also by therapeutic measures such as irradiation, corticosteroids, and chronic exposure to alkylating agents via distinct molecular routes involving hypoxia-inducible factor (HIF)-1alpha, p53, and the mTOR complex 2 (mTORC2)/serum glucocorticoid-induced protein kinase 1 (SGK1) pathway. Resistance toward alkylating chemotherapy but not radiotherapy was dependent on NDRG1 expression and activity. In posttreatment tumor tissue of patients with malignant gliomas, NDRG1 was induced and predictive of poor response to alkylating chemotherapy. On a molecular level, NDRG1 bound and stabilized methyltransferases, chiefly O6-methylguanine-DNA methyltransferase (MGMT), a key enzyme for resistance to alkylating agents in glioblastoma patients. In patients with glioblastoma, MGMT promoter methylation in tumor tissue was not more predictive for response to alkylating chemotherapy in patients who received concomitant corticosteroids. PMID:24367102

  10. Selective sp3 C-H alkylation via polarity-match-based cross-coupling

    NASA Astrophysics Data System (ADS)

    Le, Chip; Liang, Yufan; Evans, Ryan W.; Li, Ximing; MacMillan, David W. C.

    2017-07-01

    The functionalization of carbon-hydrogen (C-H) bonds is one of the most attractive strategies for molecular construction in organic chemistry. The hydrogen atom is considered to be an ideal coupling handle, owing to its relative abundance in organic molecules and its availability for functionalization at almost any stage in a synthetic sequence. Although many C-H functionalization reactions involve C(sp3)-C(sp2) coupling, there is a growing demand for C-H alkylation reactions, wherein sp3 C-H bonds are replaced with sp3 C-alkyl groups. Here we describe a polarity-match-based selective sp3 C-H alkylation via the combination of photoredox, nickel and hydrogen-atom transfer catalysis. This methodology simultaneously uses three catalytic cycles to achieve hydridic C-H bond abstraction (enabled by polarity matching), alkyl halide oxidative addition, and reductive elimination to enable alkyl-alkyl fragment coupling. The sp3 C-H alkylation is highly selective for the α-C-H of amines, ethers and sulphides, which are commonly found in pharmaceutically relevant architectures. This cross-coupling protocol should enable broad synthetic applications in de novo synthesis and late-stage functionalization chemistry.

  11. 21 CFR 74.2101 - FD&C Blue No. 1.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ...-[(ethylphenylamino)methyl] benzenesulfonic acid, and smaller amounts of 4-[(ethylphenylamino)methyl] benzenesulfonic acid and 2-[(ethylphenylamino)methyl] benzenesulfonic acid to form the leuco base. The leuco base is... inner salt. Additionally, FD&C Blue No. 1 is manufactured by the acid catalyzed condensation of one mole...

  12. 21 CFR 74.2101 - FD&C Blue No. 1.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ...-[(ethylphenylamino)methyl] benzenesulfonic acid, and smaller amounts of 4-[(ethylphenylamino)methyl] benzenesulfonic acid and 2-[(ethylphenylamino)methyl] benzenesulfonic acid to form the leuco base. The leuco base is... inner salt. Additionally, FD&C Blue No. 1 is manufactured by the acid catalyzed condensation of one mole...

  13. 21 CFR 74.2101 - FD&C Blue No. 1.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ...-[(ethylphenylamino)methyl] benzenesulfonic acid, and smaller amounts of 4-[(ethylphenylamino)methyl] benzenesulfonic acid and 2-[(ethylphenylamino)methyl] benzenesulfonic acid to form the leuco base. The leuco base is... inner salt. Additionally, FD&C Blue No. 1 is manufactured by the acid catalyzed condensation of one mole...

  14. The Impact of Commonly Used Alkylating Agents on Artifactual Peptide Modification.

    PubMed

    Hains, Peter G; Robinson, Phillip J

    2017-09-01

    Iodoacetamide is by far the most commonly used agent for alkylation of cysteine during sample preparation for proteomics. An alternative, 2-chloroacetamide, has recently been suggested to reduce the alkylation of residues other than cysteine, such as the N-terminus, Asp, Glu, Lys, Ser, Thr, and Tyr. Here we show that although 2-chloroacetamide reduces the level of off-target alkylation, it exhibits a range of adverse effects. The most significant of these is methionine oxidation, which increases to a maximum of 40% of all Met-containing peptides, compared with 2-5% with iodoacetamide. Increases were also observed for mono- and dioxidized tryptophan. No additional differences between the alkylating reagents were observed for a range of other post-translational modifications and digestion parameters. The deleterious effects were observed for 2-chloroacetamide from three separate suppliers. The adverse impact of 2-chloroacetamide on methionine oxidation suggests that it is not the ideal alkylating reagent for proteomics.

  15. Alkyl gallates, intensifiers of beta-lactam susceptibility in methicillin-resistant Staphylococcus aureus.

    PubMed

    Shibata, Hirofumi; Kondo, Kyoko; Katsuyama, Ryo; Kawazoe, Kazuyoshi; Sato, Yoichi; Murakami, Kotaro; Takaishi, Yoshihisa; Arakaki, Naokatu; Higuti, Tomihiko

    2005-02-01

    We found that ethyl gallate purified from a dried pod of tara (Caesalpinia spinosa) intensified beta-lactam susceptibility in methicillin-resistant and methicillin-sensitive strains of Staphylococcus aureus (MRSA and MSSA strains, respectively). This compound and several known alkyl gallates were tested with MRSA and MSSA strains to gain new insights into their structural functions in relation to antimicrobial and beta-lactam susceptibility-intensifying activities. The maximum activity of alkyl gallates against MRSA and MSSA strains occurred at 1-nonyl and 1-decyl gallate, with an MIC at which 90% of the isolates tested were inhibited of 15.6 microg/ml. At concentrations lower than the MIC, alkyl gallates synergistically elevated the susceptibility of MRSA and MSSA strains to beta-lactam antibiotics. Such a synergistic activity of the alkyl gallates appears to be specific for beta-lactam antibiotics, because no significant changes were observed in the MICs of other classes of antibiotics examined in this study. The length of the alkyl chain was also associated with the modifying activity of the alkyl gallates, and the optimum length was C5 to C6. The present work clearly demonstrates that the length of the alkyl chain has a key role in the elevation of susceptibility to beta-lactam antibiotics.

  16. 40 CFR 721.10517 - Alkyl methacrylates, polymer with substituted carbomonocycle, hydroxymethyl acrylamide and...

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 40 Protection of Environment 32 2013-07-01 2013-07-01 false Alkyl methacrylates, polymer with... Substances § 721.10517 Alkyl methacrylates, polymer with substituted carbomonocycle, hydroxymethyl acrylamide... reporting. (1) The chemical substance identified generically as alkyl methacrylates, polymer with...

  17. Ultrasonic Relaxation Study of 1-Alkyl-3-methylimidazolium-Based Room-Temperature Ionic Liquids: Probing the Role of Alkyl Chain Length in the Cation.

    PubMed

    Zorębski, Michał; Zorębski, Edward; Dzida, Marzena; Skowronek, Justyna; Jężak, Sylwia; Goodrich, Peter; Jacquemin, Johan

    2016-04-14

    Ultrasound absorption spectra of four 1-alkyl-3-methylimidazolium bis(trifluoromethylsulfonyl)imides were determined as a function of the alkyl chain length on the cation from 1-propyl to 1-hexyl from 293.15 to 323.15 K at ambient pressure. Herein, the ultrasound absorption measurements were carried out using a standard pulse technique within a frequency range from 10 to 300 MHz. Additionally, the speed of sound, density, and viscosity have been measured. The presence of strong dissipative processes during the ultrasound wave propagation was found experimentally, i.e., relaxation processes in the megahertz range were observed for all compounds over the whole temperature range. The relaxation spectra (both relaxation amplitude and relaxation frequency) were shown to be dependent on the alkyl side chain length of the 1-alkyl-3-methylimidazolium ring. In most cases, a single-Debye model described the absorption spectra very well. However, a comparison of the determined spectra with the spectra of a few other imidazolium-based ionic liquids reported in the literature (in part recalculated in this work) shows that the complexity of the spectra increases rapidly with the elongation of the alkyl chain length on the cation. This complexity indicates that both the volume viscosity and the shear viscosity are involved in relaxation processes even in relatively low frequency ranges. As a consequence, the sound velocity dispersion is present at relatively low megahertz frequencies.

  18. 40 CFR 721.3900 - Alkyl polyethylene glycol phosphate, potassium salt.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ..., potassium salt. 721.3900 Section 721.3900 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY... Specific Chemical Substances § 721.3900 Alkyl polyethylene glycol phosphate, potassium salt. (a) Chemical... as alkyl polyethylene glycol phosphate, potassium salt (P-90-481), is subject to reporting under this...

  19. 40 CFR 721.3900 - Alkyl polyethylene glycol phosphate, potassium salt.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ..., potassium salt. 721.3900 Section 721.3900 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY... Specific Chemical Substances § 721.3900 Alkyl polyethylene glycol phosphate, potassium salt. (a) Chemical... as alkyl polyethylene glycol phosphate, potassium salt (P-90-481), is subject to reporting under this...

  20. 40 CFR 721.3900 - Alkyl polyethylene glycol phosphate, potassium salt.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ..., potassium salt. 721.3900 Section 721.3900 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY... Specific Chemical Substances § 721.3900 Alkyl polyethylene glycol phosphate, potassium salt. (a) Chemical... as alkyl polyethylene glycol phosphate, potassium salt (P-90-481), is subject to reporting under this...

  1. 40 CFR 721.3900 - Alkyl polyethylene glycol phosphate, potassium salt.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ..., potassium salt. 721.3900 Section 721.3900 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY... Specific Chemical Substances § 721.3900 Alkyl polyethylene glycol phosphate, potassium salt. (a) Chemical... as alkyl polyethylene glycol phosphate, potassium salt (P-90-481), is subject to reporting under this...

  2. When alcohol is the answer: trapping, identifying and quantifying simple alkylating species in aqueous environments

    PubMed Central

    Penketh, P. G.; Shyam, K.; Baumann, R. P; Zhu, Rui; Ishiguro, K.; Sartorelli, A. C.; Ratner, E. S.

    2016-01-01

    Alkylating agents are a significant class of environmental carcinogens as well as commonly used anticancer therapeutics. Traditional alkylating activity assays have utilized the colorimetric reagent 4-(4-nitrobenzyl)pyridine (4NBP). However, 4NBP based assays have a relatively low sensitivity towards harder, more oxophilic alkylating species and are not well suited for the identification of the trapped alkyl moiety due to adduct instability. Herein we describe a method using water as the trapping agent which permits the trapping of simple alkylating electrophiles with a comparatively wide range of softness/hardness and permits the identification of donated simple alkyl moieties. PMID:27188264

  3. Enantioselective toxicities of chiral ionic liquids 1-alkyl-3-methyl imidazolium tartrate on Scenedesmus obliquus.

    PubMed

    Liu, Huijun; Zhang, Xiaoqiang; Dong, Ying; Chen, Caidong; Zhu, Shimin; Ma, Xiangjuan

    2015-12-01

    Ionic liquids (ILs) are being used in various industries during the last few decades, while the good solubility and high stability of ILs may pose a potential threat to the aquatic environment. Effect of chiral ionic liquids (CILs) 1-alkyl-3-methyl imidazolium tartrate (RMIM T) on Scenedesmus obliquus (S.obliquus) was studied. The growth rate inhibition and cell membrane permeability increased with increasing RMIM T concentration and increasing alkyl chain lengths. The IC50 values of D-(-)-tartrate 1-hexyl-3-methyl imidazolium (D-(-)-HMIM T) were 28.30, 12.23,10.15 and 14.41 mg/L, respectively, at 24, 48, 72 and 96h. While that of L-(+)-tartrate 1-hexyl-3-methyl imidazolium (L-(+)-HMIM T) were 15.97, 7.91, 9.43 and 12.04 mg/L respectively. The concentration of chl a, chl b and chl (a+b) decreased with increasing RMIM T concentration. The chlorophyll fluorescence parameters (F0, Fv/Fm, Fv/F0, Y(II), ETR and NPQ) were affected by RMIM T, indicating that the RMIM T will damage the PSII, inhibit the transmission of excitation energy, decrease the efficiency of photosynthesis. The results showed that there were enantioselective toxicity of RMIM T to algae, and the toxicity of L-(+)-RMIM T was greater than that of D-(-)-RMIM T, but the enantioselective difference becomes smaller with increasing exposure time, and with the increasing carbon chain length of cation, indicating that cation properties may have a larger effect on toxicity than anion properties. Copyright © 2015 Elsevier B.V. All rights reserved.

  4. Extended exposure to alkylator chemotherapy: delayed appearance of myelodysplasia.

    PubMed

    Chamberlain, Marc C; Raizer, Jeffrey

    2009-06-01

    A case series of gliomas treated with alkylator-based chemotherapy who subsequently developed myelodysplastic syndrome (tMDS) or acute myelocytic leukemia (AML). Alkylator-based chemotherapy is recognized to be leukemogenic; however, it is infrequently described as a delayed consequence of anti-glioma treatment. Seven patients (4 men; 3 women) ages 34-69 years (median 44), with gliomas (3 Grade 2; 4 Grade 3) were treated with surgery, all but one with involved-field radiotherapy and all with alkylator-based chemotherapy (temozolomide; 6 patients, nitrosoureas; 5 patients, both agents; 5 patients). Exposure to alkylator-based chemotherapy ranged from 8 to 30 months (median 24). The diagnosis of tMDS was determined by bone marrow biopsy in 7 patients. Seven patients showed chromosomal abnormalities consistent with chemotherapy induced MDS. Three patients were diagnosed with AML as well (in two determined by bone marrow and one at autopsy). Interval from last chemotherapy exposure to diagnosis of tMDS/AML ranged from 3 to 31 months (median 24 months). Two patients were treated with bone marrow transplantation and 5 received supportive care only. Five patients have died, 2 as a consequence of recurrent brain tumor, 1 as a complication of transplantation, and 2 due to AML. Although rare, induction of tMDS/AML following extended use of alkylator-based chemotherapy may become more relevant with the evolving practice to treat gliomas for protracted periods. Future work to determine at risk patients would be important.

  5. Alkyl Glucosides in Contact Dermatitis.

    PubMed

    Loranger, Camille; Alfalah, Maisa; Ferrier Le Bouedec, Marie-Christine; Sasseville, Denis

    Ecologically sound because they are synthesized from natural and renewable sources, the mild surfactants alkyl glucosides are being rediscovered by the cosmetic industry. They are currently found in rinse-off products such as shampoos, liquid cleansers, and shower gels, but also in leave-on products that include moisturizers, deodorants, and sunscreens. During the past 15 years, numerous cases of allergic contact dermatitis have been published, mostly to lauryl and decyl glucosides, and these compounds are considered emergent allergens. Interestingly, the sunscreen Tinosorb M contains decyl glucoside as a hidden allergen, and most cases of allergic contact dermatitis reported to this sunscreen ingredient are probably due to sensitization to decyl glucoside. This article will review the chemistry of alkyl glucosides, their sources of exposure, as well as their cutaneous adverse effects reported in the literature and encountered in various patch testing centers.

  6. C2-Selective Branched Alkylation of Benzimidazoles by Rhodium(I)-Catalyzed C-H Activation.

    PubMed

    Tran, Gaël; Confair, Danielle; Hesp, Kevin D; Mascitti, Vincent; Ellman, Jonathan A

    2017-09-01

    Herein, we report a Rh(I)/bisphosphine/K 3 PO 4 catalytic system allowing for the first time the selective branched C-H alkylation of benzimidazoles with Michael acceptors. Branched alkylation with N,N-dimethyl acrylamide was successfully applied to the alkylation of a broad range of benzimidazoles incorporating a variety of N-substituents and with both electron-rich and -poor functionality displayed at different sites of the arene. Moreover, the introduction of a quaternary carbon was achieved by alkylation with ethyl methacrylate. The method was also shown to be applicable to the C2-selective branched alkylation of azabenzimidazoles.

  7. Selective sp3 C–H alkylation via polarity-match-based cross-coupling

    PubMed Central

    Le, Chip; Liang, Yufan; Evans, Ryan W.; Li, Ximing; MacMillan, David W. C.

    2017-01-01

    The functionalization of carbon–hydrogen (C–H) bonds is one of the most attractive strategies for molecular construction in organic chemistry. The hydrogen atom is considered to be an ideal coupling handle, owing to its relative abundance in organic molecules and its availability for functionalization at almost any stage in a synthetic sequence1. Although many C–H functionalization reactions involve C(sp3)–C(sp2) coupling, there is a growing demand for C–H alkylation reactions, wherein sp3 C–H bonds are replaced with sp3 C–alkyl groups. Here we describe a polarity-match-based selective sp3 C–H alkylation via the combination of photoredox, nickel and hydrogen-atom transfer catalysis. This methodology simultaneously uses three catalytic cycles to achieve hydridic C–H bond abstraction (enabled by polarity matching), alkyl halide oxidative addition, and reductive elimination to enable alkyl–alkyl fragment coupling. The sp3 C–H alkylation is highly selective for the α-C–H of amines, ethers and sulphides, which are commonly found in pharmaceutically relevant architectures. This cross-coupling protocol should enable broad synthetic applications in de novo synthesis and late-stage functionalization chemistry. PMID:28636596

  8. Discovery and identification of a series of alkyl decalin isomers in petroleum geological samples.

    PubMed

    Wang, Huitong; Zhang, Shuichang; Weng, Na; Zhang, Bin; Zhu, Guangyou; Liu, Lingyan

    2015-07-07

    The comprehensive two-dimensional gas chromatography/time-of-flight mass spectrometry (GC × GC/TOFMS) has been used to characterize a crude oil and a source rock extract sample. During the process, a series of pairwise components between monocyclic alkanes and mono-aromatics have been discovered. After tentative assignments of decahydronaphthalene isomers, a series of alkyl decalin isomers have been synthesized and used for identification and validation of these petroleum compounds. From both the MS and chromatography information, these pairwise compounds were identified as 2-alkyl-decahydronaphthalenes and 1-alkyl-decahydronaphthalenes. The polarity of 1-alkyl-decahydronaphthalenes was stronger. Their long chain alkyl substituent groups may be due to bacterial transformation or different oil cracking events. This systematic profiling of alkyl-decahydronaphthalene isomers provides further understanding and recognition of these potential petroleum biomarkers.

  9. When alcohol is the answer: Trapping, identifying and quantifying simple alkylating species in aqueous environments.

    PubMed

    Penketh, Philip G; Shyam, Krishnamurthy; Baumann, Raymond P; Zhu, Rui; Ishiguro, Kimiko; Sartorelli, Alan C; Ratner, Elena S

    2016-09-01

    Alkylating agents are a significant class of environmental carcinogens as well as commonly used anticancer therapeutics. Traditional alkylating activity assays have utilized the colorimetric reagent 4-(4-nitrobenzyl)pyridine (4NBP). However, 4NBP based assays have a relatively low sensitivity towards harder, more oxophilic alkylating species and are not well suited for the identification of the trapped alkyl moiety due to adduct instability. Herein we describe a method using water as the trapping agent which permits the trapping of simple alkylating electrophiles with a comparatively wide range of softness/hardness and permits the identification of donated simple alkyl moieties. Copyright © 2016 Elsevier Inc. All rights reserved.

  10. Nickel-Catalyzed Reductive Allylation of Tertiary Alkyl Halides with Allylic Carbonates.

    PubMed

    Chen, Haifeng; Jia, Xiao; Yu, Yingying; Qian, Qun; Gong, Hegui

    2017-10-09

    The construction of all C(sp 3 ) quaternary centers has been successfully achieved under Ni-catalyzed cross-electrophile coupling of allylic carbonates with unactivated tertiary alkyl halides. For allylic carbonates bearing C1 or C3 substituents, the reaction affords excellent regioselectivity through the addition of alkyl groups to the unsubstituted allylic carbon terminus. The allylic alkylation method also exhibits excellent functional-group compatibility, and delivers the products with high E selectivity. © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  11. Hybrid ligand-alkylating agents targeting telomeric G-quadruplex structures.

    PubMed

    Doria, Filippo; Nadai, Matteo; Folini, Marco; Di Antonio, Marco; Germani, Luca; Percivalle, Claudia; Sissi, Claudia; Zaffaroni, Nadia; Alcaro, Stefano; Artese, Anna; Richter, Sara N; Freccero, Mauro

    2012-04-14

    The synthesis, physico-chemical properties and biological effects of a new class of naphthalene diimides (NDIs) capable of reversibly binding telomeric DNA and alkylate it through an electrophilic quinone methide moiety (QM), are reported. FRET and circular dichroism assays showed a marked stabilization and selectivity towards telomeric G4 DNA folded in a hybrid topology. NDI-QMs' alkylating properties revealed a good reactivity on single nucleosides and selectivity towards telomeric G4. A selected NDI was able to significantly impair the growth of melanoma cells by causing telomere dysfunction and down-regulation of telomerase expression. These findings points to our hybrid ligand-alkylating NDIs as possible tools for the development of novel targeted anticancer therapies. This journal is © The Royal Society of Chemistry 2012

  12. Alkyl Azides, Diazides, Haloazides and Bridged Polycyclic Diazides

    DTIC Science & Technology

    1991-05-16

    temperature. Most of the methyl ether was removed during this process. The ehtyl ether was distilled from the reaction mixture using a water aspirator into a...Street PROGRAM IPROJECT ITASK IWORK li1111? ArliiqIoh, VA 22217-5000 EILIMENT NO I NO. I oACCESSION P10) Alkyl Azides, Dlazides, laloazides and...REPRODUCE LEGIBLY. ALKYL AZIDES, DIAZIDES, HALOAZIDES AND BRIDGED POLYCYCLIC DIAZIDES Final REPORTe July 1, 1989-November 14, 1990 A6jd.%4gi0 F’or

  13. Enantiomerically Pure Acetals in Organic Synthesis: Resolutions and Diastereoselective Alkylations of Alpha-Hydroxy Esters

    DTIC Science & Technology

    1990-01-01

    sensitivity of the alkylating agent to the reaction conditions. In either case , a decision was made to use 5-iodo-2- methyl -l-pentene as the alkylating ...agent, and the reaction conditions. In most cases the diastereomeric products of the alkylation were also separated by column chromatography. This...equatorially substituted product. Oxidation of the alcohol to the ketone followed by treatment with an alkyl Grignard reagent gave only the product which

  14. Synthesis and Tuberculostatic Activity Evaluation of Novel Benzazoles with Alkyl, Cycloalkyl or Pyridine Moiety.

    PubMed

    Krause, Malwina; Foks, Henryk; Augustynowicz-Kopeć, Ewa; Napiórkowska, Agnieszka; Szczesio, Małgorzata; Gobis, Katarzyna

    2018-04-23

    Compounds possessing benzimidazole system exhibit significant antituberculous activity. In order to examine how structure modifications affect tuberculostatic activity, a series of benzazole derivatives were synthesized and screened for their antitubercular activity. The compounds 1 ⁻ 20 were obtained by the reaction between o -diamine, o -aminophenol, or o -aminothiophenol with carboxylic acids or thioamides. The newly synthesized compounds were characterized by IR, ¹H-NMR, 13 C-NMR spectra, and elemental analysis. Synthesized benzazoles were evaluated for their tuberculostatic activity toward Mycobacterium tuberculosis strains. Quantum chemical calculations were performed to study the molecular geometry and the electronic structure of benzimidazoles GK-151B, 4 , 6 , and benzoxazole 11 , using the Gaussian 03W software (Gaussian, Inc., Wallingford, CT, USA). Three-dimensional structure of benzimidazoles 1 ⁻ 3 , MC-9, and GK-151B was determined by ab initio calculation using Gamess-US software. The activity of the received benzimidazoles was moderate or good. All of the benzoxazoles and benzothiazoles demonstrated much lower activity. Benzoxazoles were less active by about 50 times, and benzothiazole by 100 times than the benzimidazole analogs. Quantum chemical calculations showed differences in the distribution of electrostatic potential in the benzazole system of benzimidazoles and benzoxazoles. Three-dimensional structure calculations revealed how the parity of the alkyl substituent at the C2 position impacts the activity. Benzimidazole system is essential for the antituberculosis activity that is associated with the presence of the imine nitrogen atom in N-1 position. Its replacement by an oxygen or sulfur atom results in a decrease of the activity. The parity of the alkyl substituent at the C-2 position also modifies the activity.

  15. 40 CFR 721.5860 - Methylphenol, bis(sub-sti-tuted)alkyl.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... SUBSTANCES CONTROL ACT SIGNIFICANT NEW USES OF CHEMICAL SUBSTANCES Significant New Uses for Specific Chemical Substances § 721.5860 Methylphenol, bis(sub-sti-tuted)alkyl. (a) Chemical substance and significant new uses...-ed)alkyl (P-84-417) is subject to reporting under this section for the significant new uses described...

  16. Direct β-Alkylation of Aldehydes via Photoredox Organocatalysis

    PubMed Central

    2015-01-01

    Direct β-alkylation of saturated aldehydes has been accomplished by synergistically combining photoredox catalysis and organocatalysis. Photon-induced enamine oxidation provides an activated β-enaminyl radical intermediate, which readily combines with a wide range of Michael acceptors to produce β-alkyl aldehydes in a highly efficient manner. Furthermore, this redox-neutral, atom-economical C–H functionalization protocol can be achieved both inter- and intramolecularly. Mechanistic studies by various spectroscopic methods suggest that a reductive quenching pathway is operable. PMID:24754456

  17. From old alkylating agents to new minor groove binders.

    PubMed

    Puyo, Stéphane; Montaudon, Danièle; Pourquier, Philippe

    2014-01-01

    Alkylating agents represent the oldest class of anticancer agents with the approval of mechloretamine by the FDA in 1949. Even though their clinical use is far beyond the use of new targeted therapies, they still occupy a major place in the treatment of specific malignancies, sometimes representing the unique option for the treatment of refractory tumors. Here, we are reviewing the major classes of alkylating agents, with a particular focus on the latest generations of compounds that specifically target the minor groove of the DNA. These naturally occurring derivatives have a unique mechanism of action that explains the recent regain of interest in developing new classes of alkylating agents that could be used in combination with other anticancer drugs to enhance tumor response in the clinic. Copyright © 2013 Elsevier Ireland Ltd. All rights reserved.

  18. Methods of producing alkylated hydrocarbons from an in situ heat treatment process liquid

    DOEpatents

    Roes, Augustinus Wilhelmus Maria [Houston, TX; Mo, Weijian [Sugar Land, TX; Muylle, Michel Serge Marie [Houston, TX; Mandema, Remco Hugo [Houston, TX; Nair, Vijay [Katy, TX

    2009-09-01

    A method for producing alkylated hydrocarbons is disclosed. Formation fluid is produced from a subsurface in situ heat treatment process. The formation fluid is separated to produce a liquid stream and a first gas stream. The first gas stream includes olefins. The liquid stream is fractionated to produce at least a second gas stream including hydrocarbons having a carbon number of at least 3. The first gas stream and the second gas stream are introduced into an alkylation unit to produce alkylated hydrocarbons. At least a portion of the olefins in the first gas stream enhance alkylation.

  19. 40 CFR 721.3812 - Substituted phenols and formaldehyde polymer, alkylated (generic).

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... polymer, alkylated (generic). 721.3812 Section 721.3812 Protection of Environment ENVIRONMENTAL PROTECTION... New Uses for Specific Chemical Substances § 721.3812 Substituted phenols and formaldehyde polymer... substance identified generically as substituted phenols and formaldehyde polymer, alkylated (PMN P-00-0542...

  20. 40 CFR 721.3812 - Substituted phenols and formaldehyde polymer, alkylated (generic).

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... polymer, alkylated (generic). 721.3812 Section 721.3812 Protection of Environment ENVIRONMENTAL PROTECTION... New Uses for Specific Chemical Substances § 721.3812 Substituted phenols and formaldehyde polymer... substance identified generically as substituted phenols and formaldehyde polymer, alkylated (PMN P-00-0542...

  1. 40 CFR 721.3812 - Substituted phenols and formaldehyde polymer, alkylated (generic).

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... polymer, alkylated (generic). 721.3812 Section 721.3812 Protection of Environment ENVIRONMENTAL PROTECTION... New Uses for Specific Chemical Substances § 721.3812 Substituted phenols and formaldehyde polymer... substance identified generically as substituted phenols and formaldehyde polymer, alkylated (PMN P-00-0542...

  2. 40 CFR 721.3812 - Substituted phenols and formaldehyde polymer, alkylated (generic).

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... polymer, alkylated (generic). 721.3812 Section 721.3812 Protection of Environment ENVIRONMENTAL PROTECTION... New Uses for Specific Chemical Substances § 721.3812 Substituted phenols and formaldehyde polymer... substance identified generically as substituted phenols and formaldehyde polymer, alkylated (PMN P-00-0542...

  3. 40 CFR 721.3812 - Substituted phenols and formaldehyde polymer, alkylated (generic).

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... polymer, alkylated (generic). 721.3812 Section 721.3812 Protection of Environment ENVIRONMENTAL PROTECTION... New Uses for Specific Chemical Substances § 721.3812 Substituted phenols and formaldehyde polymer... substance identified generically as substituted phenols and formaldehyde polymer, alkylated (PMN P-00-0542...

  4. Alkylation Induced DNA Repair and Mutagenesis in Escherichia coli.

    DTIC Science & Technology

    1987-11-23

    III (Gates and inn, 1977), Micrococcus luteus UV endo- nuclease (Grossman et al, 1978) and bacteriophage T UV endonuclease (Warner et al, 1980) have DNA...34, Garland Publishing, Inc. New York & London USA. Ather, A., Z. Ahmed and S. Riazxxddin, 1984. Adaptive response of Micrococcus luteus to alkylating...Laval, J., 3. Pierre and F. Laval. 1981. Release of 7-nmthylguanine residues frain alkylated ENA by extracts of Micrococcus luteus and Escherichia

  5. 40 CFR 721.10621 - Distillation bottoms, alkylated benzene by-product (generic).

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... benzene by-product (generic). 721.10621 Section 721.10621 Protection of Environment ENVIRONMENTAL... Significant New Uses for Specific Chemical Substances § 721.10621 Distillation bottoms, alkylated benzene by... substance identified generically as distillation bottoms, alkylated benzene by-product (PMN P-12-196) is...

  6. 40 CFR 721.10621 - Distillation bottoms, alkylated benzene by-product (generic).

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... benzene by-product (generic). 721.10621 Section 721.10621 Protection of Environment ENVIRONMENTAL... Significant New Uses for Specific Chemical Substances § 721.10621 Distillation bottoms, alkylated benzene by... substance identified generically as distillation bottoms, alkylated benzene by-product (PMN P-12-196) is...

  7. 40 CFR 721.10702 - Polyfluorinated alkyl thio polyacrylic acid-acrylamide (generic).

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... acid-acrylamide (generic). 721.10702 Section 721.10702 Protection of Environment ENVIRONMENTAL... Significant New Uses for Specific Chemical Substances § 721.10702 Polyfluorinated alkyl thio polyacrylic acid... substance identified generically as polyfluorinated alkyl thio polyacrylic acid-acrylamide (PMN P-11-534) is...

  8. Thermodynamic Interactions between Polystyrene and Long-Chain Poly(n-Alkyl Acrylates) Derived from Plant Oils.

    PubMed

    Wang, Shu; Robertson, Megan L

    2015-06-10

    Vegetable oils and their fatty acids are promising sources for the derivation of polymers. Long-chain poly(n-alkyl acrylates) and poly(n-alkyl methacrylates) are readily derived from fatty acids through conversion of the carboxylic acid end-group to an acrylate or methacrylate group. The resulting polymers contain long alkyl side-chains with around 10-22 carbon atoms. Regardless of the monomer source, the presence of alkyl side-chains in poly(n-alkyl acrylates) and poly(n-alkyl methacrylates) provides a convenient mechanism for tuning their physical properties. The development of structured multicomponent materials, including block copolymers and blends, containing poly(n-alkyl acrylates) and poly(n-alkyl methacrylates) requires knowledge of the thermodynamic interactions governing their self-assembly, typically described by the Flory-Huggins interaction parameter χ. We have investigated the χ parameter between polystyrene and long-chain poly(n-alkyl acrylate) homopolymers and copolymers: specifically we have included poly(stearyl acrylate), poly(lauryl acrylate), and their random copolymers. Lauryl and stearyl acrylate were chosen as model alkyl acrylates derived from vegetable oils and have alkyl side-chain lengths of 12 and 18 carbon atoms, respectively. Polystyrene is included in this study as a model petroleum-sourced polymer, which has wide applicability in commercially relevant multicomponent polymeric materials. Two independent methods were employed to measure the χ parameter: cloud point measurements on binary blends and characterization of the order-disorder transition of triblock copolymers, which were in relatively good agreement with one another. The χ parameter was found to be independent of the alkyl side-chain length (n) for large values of n (i.e., n > 10). This behavior is in stark contrast to the n-dependence of the χ parameter predicted from solubility parameter theory. Our study complements prior work investigating the interactions between

  9. SERIES: Genomic instability in cancer Balancing repair and tolerance of DNA damage caused by alkylating agents

    PubMed Central

    Fu, Dragony; Calvo, Jennifer A.; Samson, Leona D

    2013-01-01

    Alkylating agents comprise a major class of frontline chemotherapeutic drugs that inflict cytotoxic DNA damage as their main mode of action, in addition to collateral mutagenic damage. Numerous cellular pathways, including direct DNA damage reversal, base excision repair (BER), and mismatch repair (MMR) respond to alkylation damage to defend against alkylation-induced cell death or mutation. However, maintaining a proper balance of activity both within and between these pathways is crucial for an organism's favorable response to alkylating agents. Furthermore, an individual's response to alkylating agents can vary considerably from tissue to tissue and from person to person, pointing to genetic and epigenetic mechanisms that modulate alkylating agent toxicity. PMID:22237395

  10. Poly(ethyleneoxide) functionalization through alkylation

    DOEpatents

    Sivanandan, Kulandaivelu; Eitouni, Hany Basam; Li, Yan; Pratt, Russell Clayton

    2015-04-21

    A new and efficient method of functionalizing high molecular weight polymers through alkylation using a metal amide base is described. This novel procedure can also be used to synthesize polymer-based macro-initiators containing radical initiating groups at the chain-ends for synthesis of block copolymers.

  11. Versatile assembly of p-carboxylatocalix[4]arene-O-alkyl ethers

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kennedy, Stuart; Teat, Simon J.; Dalgarno, Scott J.

    Crystallisation of lower-rim tetra-O-alkylated p-carboxylatocalix[4]arenes from pyridine results in the formation of both bi-layer and pillar type supramolecular motifs. Full alkylation at the calixarene lower rim has significant influence over the supramolecular self-assembly motif, including preclusion of pyridine guest molecules from the calixarene cavity in the solid state.

  12. 40 CFR 721.10044 - Metal oxide, modified with alkyl and vinyl terminated polysiloxanes (generic).

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 40 Protection of Environment 31 2011-07-01 2011-07-01 false Metal oxide, modified with alkyl and... SUBSTANCES Significant New Uses for Specific Chemical Substances § 721.10044 Metal oxide, modified with alkyl... to reporting. (1) The chemical substance identified generically as metal oxide, modified with alkyl...

  13. Oxidative 1,2-carboamination of alkenes with alkyl nitriles and amines toward γ-amino alkyl nitriles

    NASA Astrophysics Data System (ADS)

    Liu, Yan-Yun; Yang, Xu-Heng; Song, Ren-Jie; Luo, Shenglian; Li, Jin-Heng

    2017-04-01

    Difunctionalization of alkenes has become a powerful tool for quickly increasing molecular complexity in synthesis. Despite significant progress in the area of alkene difunctionalization involving the incorporation of a nitrogen atom across the C-C double bonds, approaches for the direct 1,2-carboamination of alkenes to produce linear N-containing molecules are scarce and remain a formidable challenge. Here we describe a radical-mediated oxidative intermolecular 1,2-alkylamination of alkenes with alkyl nitriles and amines involving C(sp3)-H oxidative functionalization catalysed by a combination of Ag2CO3 with iron Lewis acids. This three-component alkene 1,2-alkylamination method is initiated by the C(sp3)-H oxidative radical functionalization, which enables one-step formation of two new chemical bonds, a C-C bond and a C-N bond, to selectively produce γ-amino alkyl nitriles.

  14. Safety Assessment of Alkyl Ethylhexanoates as Used in Cosmetics.

    PubMed

    Fiume, Monice; Heldreth, Bart; Bergfeld, Wilma F; Belsito, Donald V; Hill, Ronald A; Klaassen, Curtis D; Liebler, Daniel C; Marks, James G; Shank, Ronald C; Slaga, Thomas J; Snyder, Paul W; Andersen, F Alan

    2015-01-01

    The Cosmetic Ingredient Review (CIR) Expert Panel (Panel) assessed the safety of 16 alkyl ethylhexanoates for use in cosmetics, concluding that these ingredients are safe in cosmetic formulations in the present practices of use and concentrations when formulated to be nonirritating. The alkyl ethylhexanoates primarily function as skin-conditioning agents in cosmetics. The highest concentration of use reported for any of the alkyl ethylhexanoates is 77.3% cetyl ethylhexanoate in rinse-off formulations used near the eye, and the highest leave-on use reported is 52% cetyl ethylhexanoate in lipstick formulations. The Panel reviewed available animal and clinical data related to these ingredients, and the similarities in structure, properties, functions, and uses of ingredients from previous CIR assessments on constituent alcohols that allowed for extrapolation of the available toxicological data to assess the safety of the entire group. © The Author(s) 2015.

  15. Experimental and QSAR study on the surface activities of alkyl imidazoline surfactants

    NASA Astrophysics Data System (ADS)

    Kong, Xiangjun; Qian, Chengduo; Fan, Weiyu; Liang, Zupei

    2018-03-01

    15 alkyl imidazoline surfactants with different structures were synthesized and their critical micelle concentration (CMC) and surface tension under the CMC (σcmc) in aqueous solution were measured at 298 K. 54 kinds of molecular structure descriptors were selected as independent variables and the quantitative structure-activity relationship (QSAR) between surface activities of alkyl imidazoline and molecular structure were built through the genetic function approximation (GFA) method. Experimental results showed that the maximum surface excess of alkyl imidazoline molecules at the gas-liquid interface increased and the area occupied by each surfactant molecule and the free energies of micellization ΔGm decreased with increasing carbon number (NC) of the hydrophobic chain or decreasing hydrophilicity of counterions, which resulted in a CMC and σcmc decrease, while the log CMC and NC had a linear relationship and a negative correlation. The GFA-QSAR model, which was generated by a training set composed of 13 kinds of alkyl imidazoline though GFA method regression analysis, was highly correlated with predicted values and experimental values of the CMC. The correlation coefficient R was 0.9991, which means high prediction accuracy. The prediction error of 2 kinds of alkyl imidazoline CMCs in the Validation Set that quantitatively analyzed the influence of the alkyl imidazoline molecular structure on the CMC was less than 4%.

  16. Extensive reprogramming of the genetic code for genetically encoded synthesis of highly N-alkylated polycyclic peptidomimetics.

    PubMed

    Kawakami, Takashi; Ishizawa, Takahiro; Murakami, Hiroshi

    2013-08-21

    Cyclic structures can increase the proteolytic stability and conformational rigidity of peptides, and N-alkylation of the peptide backbone can make peptides more cell-permeable and resistant to proteolysis. Therefore, cyclic N-alkyl amino acids are expected to be useful building blocks to increase simultaneously these pharmacological properties of peptides. In this study, we screened various cyclic N-alkyl amino acids for their ribosomal incorporation into peptides and identified cyclic N-alkyl amino acids that can be efficiently and successively incorporated. We also demonstrated genetic code reprogramming for reassigning 16 NNU codons to 16 different cyclic N-alkyl amino acids with high fidelity to synthesize highly N-alkylated polycyclic peptidomimetics and an mRNA-displayed library of completely N-alkylated polycyclic peptidomimetics by using our recently developed TRAP (transcription/translation coupled with association of puromycin linker) display. In vitro selection from a highly diverse library of such completely N-alkylated polycyclic peptidomimetics could become a powerful means to discover small-molecule ligands such as drug candidates that can be targeted to biomolecules inside living cells.

  17. Stochastic resonance algorithm applied to quantitative analysis for weak chromatographic signals of alkyl halides and alkyl benzenes in water samples.

    PubMed

    Xiang, Suyun; Wang, Wei; Xia, Jia; Xiang, Bingren; Ouyang, Pingkai

    2009-09-01

    The stochastic resonance algorithm is applied to the trace analysis of alkyl halides and alkyl benzenes in water samples. Compared to encountering a single signal when applying the algorithm, the optimization of system parameters for a multicomponent is more complex. In this article, the resolution of adjacent chromatographic peaks is first involved in the optimization of parameters. With the optimized parameters, the algorithm gave an ideal output with good resolution as well as enhanced signal-to-noise ratio. Applying the enhanced signals, the method extended the limit of detection and exhibited good linearity, which ensures accurate determination of the multicomponent.

  18. Persistence of DNA adducts, hypermutation and acquisition of cellular resistance to alkylating agents in glioblastoma.

    PubMed

    Head, R J; Fay, M F; Cosgrove, L; Y C Fung, K; Rundle-Thiele, D; Martin, J H

    2017-12-02

    Glioblastoma is a lethal form of brain tumour usually treated by surgical resection followed by radiotherapy and an alkylating chemotherapeutic agent. Key to the success of this multimodal approach is maintaining apoptotic sensitivity of tumour cells to the alkylating agent. This initial treatment likely establishes conditions contributing to development of drug resistance as alkylating agents form the O 6 -methylguanine adduct. This activates the mismatch repair (MMR) process inducing apoptosis and mutagenesis. This review describes key juxtaposed drivers in the balance between alkylation induced mutagenesis and apoptosis. Mutations in MMR genes are the probable drivers for alkylation based drug resistance. Critical to this interaction are the dose-response and temporal interactions between adduct formation and MMR mutations. The precision in dose interval, dose-responses and temporal relationships dictate a role for alkylating agents in either promoting experimental tumour formation or inducing tumour cell death with chemotherapy. Importantly, this resultant loss of chemotherapeutic selective pressure provides opportunity to explore novel therapeutics and appropriate combinations to minimise alkylation based drug resistance and tumour relapse.

  19. Charge properties and bacterial contact-killing of hyperbranched polyurea-polyethyleneimine coatings with various degrees of alkylation

    NASA Astrophysics Data System (ADS)

    Roest, Steven; van der Mei, Henny C.; Loontjens, Ton J. A.; Busscher, Henk J.

    2015-11-01

    Coatings of immobilized-quaternary-ammonium-ions (QUAT) uniquely kill adhering bacteria upon contact. QUAT-coatings require a minimal cationic-charge surface density for effective contact-killing of adhering bacteria of around 1014 cm-2. Quaternization of nitrogen is generally achieved through alkylation. Here, we investigate the contribution of additional alkylation with methyl-iodide to the cationic-charge density of hexyl-bromide alkylated, hyperbranched polyurea-polyethyleneimine coatings measuring charge density with fluorescein staining. X-ray-photoelectron-spectroscopy was used to determine the at.% alkylated-nitrogen. Also streaming potentials, water contact-angles and bacterial contact-killing were measured. Cationic-charge density increased with methyl-iodide alkylation times up to 18 h, accompanied by an increase in the at.% alkylated-nitrogen. Zeta-potentials became more negative upon alkylation as a result of shielding of cationiccharges by hydrophobic alkyl-chains. Contact-killing of Gram-positive Staphylococci only occurred when the cationic-charge density exceeded 1016 cm-2 and was carried by alkylated-nitrogen (electron-binding energy 401.3 eV). Gram-negative Escherichia coli was not killed upon contact with the coatings. There with this study reveals that cationic-charge density is neither appropriate nor sufficient to determine the ability of QUAT-coatings to kill adhering bacteria. Alternatively, the at.% of alkylated-nitrogen at 401.3 eV is proposed, as it reflects both cationic-charge and its carrier. The at.% N401.3 eV should be above 0.45 at.% for Gram-positive bacterial contact-killing.

  20. The AB Doradus system revisited: The dynamical mass of AB Dor A/C

    NASA Astrophysics Data System (ADS)

    Azulay, R.; Guirado, J. C.; Marcaide, J. M.; Martí-Vidal, I.; Ros, E.; Tognelli, E.; Jauncey, D. L.; Lestrade, J.-F.; Reynolds, J. E.

    2017-10-01

    Context. The study of pre-main-sequence (PMS) stars with model-independent measurements of their masses is essential to check the validity of theoretical models of stellar evolution. The well-known PMS binary AB Dor A/C is an important benchmark for this task, since it displays intense and compact radio emission, which makes possible the application of high-precision astrometric techniques to this system. Aims: We aim to revisit the dynamical masses of the components of AB Dor A/C to refine earlier comparisons between the measurements of stellar parameters and the predictions of stellar models. Methods: We observed in phase-reference mode the binary AB Dor A/C, 0.2'' separation, with the Australian Long Baseline Array at 8.4 GHz. The astrometric information resulting from our observations was analyzed along with previously reported VLBI, optical (Hipparcos), and infrared measurements. Results: The main star AB Dor A is clearly detected in all the VLBI observations, which allowed us to analyze the orbital motion of the system and to obtain model-independent dynamical masses of 0.90 ± 0.08 M⊙ and 0.090 ± 0.008 M⊙, for AB Dor A and AB Dor C, respectively. Comparisons with PMS stellar evolution models favor and age of 40-50 Myr for AB Dor A and of 25-120 Myr for AB Dor C. Conclusions: We show that the orbital motion of the AB Dor A/C system is remarkably well determined, leading to precise estimates of the dynamical masses. Comparison of our results with the prediction of evolutionary models support the observational evidence that theoretical models tend to slightly underestimate the mass of the low-mass stars.

  1. Safety Assessment of Alkyl PEG Sulfosuccinates as Used in Cosmetics.

    PubMed

    Johnson, Wilbur; Heldreth, Bart; Bergfeld, Wilma F; Belsito, Donald V; Hill, Ronald A; Klaassen, Curtis D; Liebler, Daniel C; Marks, James G; Shank, Ronald C; Slaga, Thomas J; Snyder, Paul W; Andersen, F Alan

    2015-09-01

    The Cosmetic Ingredient Review (CIR) Expert Panel (Panel) reviewed the safety of alkyl polyethylene glycol (PEG) sulfosuccinates, which function in cosmetics mostly as surfactants/cleansing agents. Although these ingredients may cause ocular and skin irritation, dermal penetration is unlikely because of the substantial polarity and molecular size of these ingredients. The Panel considered the negative oral carcinogenicity and reproductive and developmental toxicity data on chemically related laureths (PEG lauryl ethers) and negative repeated dose toxicity and skin sensitization data on disodium laureth sulfosuccinate supported the safety of these alkyl PEG sulfosuccinates in cosmetic products, but. The CIR Expert Panel concluded that the alkyl PEG sulfosuccinates are safe in the present practices of use and concentration when formulated to be nonirritating. © The Author(s) 2015.

  2. ATM regulates 3-Methylpurine-DNA glycosylase and promotes therapeutic resistance to alkylating agents

    PubMed Central

    Agnihotri, Sameer; Burrell, Kelly; Buczkowicz, Pawel; Remke, Marc; Golbourn, Brian; Chornenkyy, Yevgen; Gajadhar, Aaron; Fernandez, Nestor A.; Clarke, Ian D.; Barszczyk, Mark S.; Pajovic, Sanja; Ternamian, Christian; Head, Renee; Sabha, Nesrin; Sobol, Robert W.; Taylor, Michael D; Rutka, James T.; Jones, Chris; Dirks, Peter B.; Zadeh, Gelareh; Hawkins, Cynthia

    2014-01-01

    Alkylating agents are a frontline therapy for the treatment of several aggressive cancers including pediatric glioblastoma, a lethal tumor in children. Unfortunately, many tumors are resistant to this therapy. We sought to identify ways of sensitizing tumor cells to alkylating agents while leaving normal cells unharmed; increasing therapeutic response while minimizing toxicity. Using a siRNA screen targeting over 240 DNA damage response genes, we identified novel sensitizers to alkylating agents. In particular the base excision repair (BER) pathway, including 3-methylpurine-DNA glycosylase (MPG), as well as ataxia telangiectasia mutated (ATM) were identified in our screen. Interestingly, we identified MPG as a direct novel substrate of ATM. ATM-mediated phosphorylation of MPG was required for enhanced MPG function. Importantly, combined inhibition or loss of MPG and ATM resulted in increased alkylating agent-induced cytotoxicity in vitro and prolonged survival in vivo. The discovery of the ATM-MPG axis will lead to improved treatment of alkylating agent-resistant tumors. PMID:25100205

  3. Optoelectronic functional materials based on alkylated-π molecules: self-assembled architectures and nonassembled liquids.

    PubMed

    Li, Hongguang; Choi, Jiyoung; Nakanishi, Takashi

    2013-05-07

    The engineering of single molecules into higher-order hierarchical assemblies is a current research focus in molecular materials chemistry. Molecules containing π-conjugated units are an important class of building blocks because their self-assembly is not only of fundamental interest, but also the key to fabricating functional systems for organic electronic and photovoltaic applications. Functionalizing the π-cores with "alkyl chains" is a common strategy in the molecular design that can give the system desirable properties, such as good solubility in organic solvents for solution processing. Moreover, the alkylated-π system can regulate the self-assembly behavior by fine-tuning the intermolecular forces. The optimally assembled structures can then exhibit advanced functions. However, while some general rules have been revealed, a comprehensive understanding of the function played by the attached alkyl chains is still lacking, and current methodology is system-specific in many cases. Better clarification of this issue requires contributions from carefully designed libraries of alkylated-π molecular systems in both self-assembly and nonassembly materialization strategies. Here, based on recent efforts toward this goal, we show the power of the alkyl chains in controlling the self-assembly of soft molecular materials and their resulting optoelectronic properties. The design of alkylated-C60 is selected from our recent research achievements, as the most attractive example of such alkylated-π systems. Some other closely related systems composed of alkyl chains and π-units are also reviewed to indicate the universality of the methodology. Finally, as a contrast to the self-assembled molecular materials, nonassembled, solvent-free, novel functional liquid materials are discussed. In doing so, a new journey toward the ultimate organic "soft" materials is introduced, based on alkylated-π molecular design.

  4. Comparison of In Vitro Activity of Liposomal Nystatin against Aspergillus Species with Those of Nystatin, Amphotericin B (AB) Deoxycholate, AB Colloidal Dispersion, Liposomal AB, AB Lipid Complex, and Itraconazole

    PubMed Central

    Oakley, Karen L.; Moore, Caroline B.; Denning, David W.

    1999-01-01

    We compared the in vitro activity of liposomal nystatin (Nyotran) with those of other antifungal agents against 60 Aspergillus isolates. Twelve isolates were itraconazole resistant. For all isolates, geometric mean (GM) MICs (micrograms per milliliter) were 2.30 for liposomal nystatin, 0.58 for itraconazole, 0.86 for amphotericin B (AB) deoxycholate, 9.51 for nystatin, 2.07 for liposomal AB, 2.57 for AB lipid complex, and 0.86 for AB colloidal dispersion. Aspergillus terreus (GM, 8.72 μg/ml; range, 8 to 16 μg/ml) was significantly less susceptible to all of the polyene drugs than all other species (P = 0.0001). PMID:10223948

  5. Synthesis and Performance of a Biomimetic Indicator for Alkylating Agents.

    PubMed

    Provencher, Philip A; Love, Jennifer A

    2015-10-02

    4-(4-Nitrobenzyl)pyridine (NBP) is a colorimetric indicator compound for many types of carcinogenic alkylating agents. Because of the similar reactivity of NBP and guanine in DNA, NBP serves as a DNA model. NBP assays are used in the toxicological screening of pharmaceutical compounds, detection of chemical warfare agents, environmental hygiene technology, preliminary toxicology tests, mutagenicity of medicinal compounds, and other chemical analyses. Nevertheless, the use of NBP as a DNA model suffers from the compound's low water solubility, its lack of reactive oxygen sites, and dissimilar steric encumbrance compared to DNA. We report herein the design and synthesis of NBP derivatives that address some of these issues. These derivatives have been tested in solution and found to be superior in the colorimetric assay of the alkylating anticancer drug cyclophosphamide. The derivatives have also been integrated into a polymeric silica material which changes color upon the exposure to dangerous alkylating agents, such as iodomethane vapor, without the need for an exogenous base. This material modernizes the NBP assay from a time-consuming laboratory analysis to a real-time solid state sensor, which requires neither solvent nor additional reagents and can detect both gas- and solution-phase alkylating agents.

  6. ATM regulates 3-methylpurine-DNA glycosylase and promotes therapeutic resistance to alkylating agents.

    PubMed

    Agnihotri, Sameer; Burrell, Kelly; Buczkowicz, Pawel; Remke, Marc; Golbourn, Brian; Chornenkyy, Yevgen; Gajadhar, Aaron; Fernandez, Nestor A; Clarke, Ian D; Barszczyk, Mark S; Pajovic, Sanja; Ternamian, Christian; Head, Renee; Sabha, Nesrin; Sobol, Robert W; Taylor, Michael D; Rutka, James T; Jones, Chris; Dirks, Peter B; Zadeh, Gelareh; Hawkins, Cynthia

    2014-10-01

    Alkylating agents are a first-line therapy for the treatment of several aggressive cancers, including pediatric glioblastoma, a lethal tumor in children. Unfortunately, many tumors are resistant to this therapy. We sought to identify ways of sensitizing tumor cells to alkylating agents while leaving normal cells unharmed, increasing therapeutic response while minimizing toxicity. Using an siRNA screen targeting over 240 DNA damage response genes, we identified novel sensitizers to alkylating agents. In particular, the base excision repair (BER) pathway, including 3-methylpurine-DNA glycosylase (MPG), as well as ataxia telangiectasia mutated (ATM), were identified in our screen. Interestingly, we identified MPG as a direct novel substrate of ATM. ATM-mediated phosphorylation of MPG was required for enhanced MPG function. Importantly, combined inhibition or loss of MPG and ATM resulted in increased alkylating agent-induced cytotoxicity in vitro and prolonged survival in vivo. The discovery of the ATM-MPG axis will lead to improved treatment of alkylating agent-resistant tumors. Inhibition of ATM and MPG-mediated BER cooperate to sensitize tumor cells to alkylating agents, impairing tumor growth in vitro and in vivo with no toxicity to normal cells, providing an ideal therapeutic window. ©2014 American Association for Cancer Research.

  7. Near Infrared Spectroscopic Identification of Alkyl Aromatic Esters and Phenyl Ketones

    NASA Astrophysics Data System (ADS)

    Nelyubov, D. V.; Vazhenin, D. A.; Kudriavtsev, A. A.; Buzolina, A. Yu.

    2018-03-01

    Bands characterizing the content of carbon atoms in alkyl (7177-7205 cm-1) and phenyl structural fragments (9175-9192 cm-1) in organic molecules were revealed by studying the near infrared spectra of such compounds. The optical density at the maxima of these absorption bands was shown to depend strongly on the fraction of carbon atoms in the corresponding fragments. The developed models proved to be adequate for determining the fraction of carbon atoms in alkyl aromatic esters and phenyl ketones. The feasibility of modeling the molecular structure of alkyl aromatic esters using regression models was demonstrated for the product of the condensation of oleic acid and benzyl alcohol.

  8. Electrochemical and thermal grafting of alkyl grignard reagents onto (100) silicon surfaces.

    PubMed

    Vegunta, Sri Sai S; Ngunjiri, Johnpeter N; Flake, John C

    2009-11-03

    Passivation of (100) silicon surfaces using alkyl Grignard reagents is explored via electrochemical and thermal grafting methods. The electrochemical behavior of silicon in methyl or ethyl Grignard reagents in tetrahydrofuran is investigated using cyclic voltammetry. Surface morphology and chemistry are investigated using atomic force microscopy, Fourier transform infrared spectroscopy, and X-ray photoelectron spectroscopy (XPS). Results show that electrochemical pathways provide an efficient and more uniform passivation method relative to thermal methods, and XPS results demonstrate that electrografted terminations are effective at limiting native oxide formation for more than 55 days in ambient conditions. A two-electron per silicon mechanism is proposed for electrografting a single (1:1) alkyl group per (100) silicon atom. The mechanism includes oxidation of two Grignard species and subsequent hydrogen abstraction and alkylation reaction resulting in a covalent attachment of alkyl groups with silicon.

  9. Deciphering the genomic targets of alkylating polyamide conjugates using high-throughput sequencing

    PubMed Central

    Chandran, Anandhakumar; Syed, Junetha; Taylor, Rhys D.; Kashiwazaki, Gengo; Sato, Shinsuke; Hashiya, Kaori; Bando, Toshikazu; Sugiyama, Hiroshi

    2016-01-01

    Chemically engineered small molecules targeting specific genomic sequences play an important role in drug development research. Pyrrole-imidazole polyamides (PIPs) are a group of molecules that can bind to the DNA minor-groove and can be engineered to target specific sequences. Their biological effects rely primarily on their selective DNA binding. However, the binding mechanism of PIPs at the chromatinized genome level is poorly understood. Herein, we report a method using high-throughput sequencing to identify the DNA-alkylating sites of PIP-indole-seco-CBI conjugates. High-throughput sequencing analysis of conjugate 2 showed highly similar DNA-alkylating sites on synthetic oligos (histone-free DNA) and on human genomes (chromatinized DNA context). To our knowledge, this is the first report identifying alkylation sites across genomic DNA by alkylating PIP conjugates using high-throughput sequencing. PMID:27098039

  10. Synthesis and evaluation of novel caged DNA alkylating agents bearing 3,4-epoxypiperidine structure.

    PubMed

    Kawada, Yuji; Kodama, Tetsuya; Miyashita, Kazuyuki; Imanishi, Takeshi; Obika, Satoshi

    2012-07-14

    Previously, we reported that the 3,4-epoxypiperidine structure, whose design was based on the active site of DNA alkylating antitumor antibiotics, azinomycins A and B, possesses prominent DNA cleavage activity. In this report, novel caged DNA alkylating agents, which were designed to be activated by UV irradiation, were synthesized by the introduction of four photo-labile protecting groups to a 3,4-epoxypiperidine derivative. The DNA cleavage activity and cytotoxicity of the caged DNA alkylating agents were examined under UV irradiation. Four caged DNA alkylating agents showed various degrees of bioactivity depending on the photosensitivity of the protecting groups.

  11. Profound impairment of adaptive immune responses by alkylating chemotherapy

    PubMed Central

    Litterman, Adam J.; Zellmer, David M.; Grinnen, Karen L.; Hunt, Matthew A.; Dudek, Arkadiusz Z.; Salazar, Andres M.; Ohlfest, John R.

    2013-01-01

    Cancer vaccines have overall had a record of failure as an adjuvant therapy for malignancies that are treated with alkylating chemotherapy, and the contribution of standard treatment to that failure remains unclear. Vaccines aim to harness the proliferative potential of the immune system by expanding a small number of tumor-specific lymphocytes into a large number of anti-tumor effectors. Clinical trials are often conducted after treatment with alkylating chemotherapy, given either as standard therapy or for immunomodulatory effect. There is mounting evidence for synergy between chemotherapy and adoptive immunotherapy or vaccination against self-antigens; however, the impact of chemotherapy on lymphocytes primed against tumor neo-antigens remains poorly defined. We report here that clinically relevant dosages of standard alkylating chemotherapies such as temozolomide and cyclophosphamide significantly inhibit the proliferative abilities of lymphocytes in mice. This proliferative impairment was long lasting and led to quantitative and qualitative defects in B and T cell responses to neo-antigen vaccines. High affinity responder lymphocytes receiving the strongest proliferative signals from vaccines experienced the greatest DNA damage responses, skewing the response toward lower affinity responders with inferior functional characteristics. Together these defects lead to inferior efficacy and overall survival in murine tumor models treated by neo-antigen vaccines. These results suggest that clinical protocols for cancer vaccines should be designed to avoid exposing responder lymphocytes to alkylating chemotherapy. PMID:23686484

  12. Persubstituted p-benzoquinone monoxime alkyl ethers and their molecular structure

    NASA Astrophysics Data System (ADS)

    Slaschinin, D. G.; Alemasov, Y. A.; Ilushkin, D. I.; Sokolenko, W. A.; Tovbis, M. S.; Kirik, S. D.

    2012-05-01

    Theoretical and experimental approaches were applied for the investigation of the reactivity of persubstituted 4-nitrosophenols in the reaction with alkyl iodides, in particular the potassium salt of 2,6-di(alkoxycarbonyl)-3,5-dimethyl-4-nitrosophenol. Hartre-Fock calculations showed that the anion negative charge was located mostly on the oxygen of hydroxyl group, while estimation of the total energy of the alkylated products pointed out the benefit of alkylation on the oxygen atom of the nitroso group yielding p-benzoquinone monoxime alkyl ethers. Methylation and ethylation of persubstituted nitrosophenols were carried out. The products obtained were investigated using X-ray diffraction, 1Н NMR spectroscopy and mass spectrometry. The crystal structure of the methyl ether of 2,6-di(alkoxycarbonyl)-3,5-dimethyl-1,4-benzoquinone-1-oxime (С15H19NO6) (I) was determined by the X-ray powder diffraction technique. The unit cell parameters were: a = 7.3322(6) Å, b = 10.5039(12) Å, c = 21.1520(20) Å, β = 93.742(6)°, V = 1625.58(2) Å3Z = 4, Sp.Gr. P21/c. The structure modeling was made in direct space by the Monte-Carlo approach using rigid and soft restrictions. The structure refinement was completed by the Rietveld method. It was established that the alkylation occurred on the oxygen atom of the nitroso group. The molecules (I) in the crystal structure were packed in columns along the axis a with pairwise convergence in a column up to the distance of 3.63 Å due to a 180° turn of every second molecule around the column axis. In the molecular structure the methyloxime group was oriented in the benzene plane and had π-conjugation with the ring. The ethoxycarbonyl groups were turned nearly perpendicular to the ring. Other compounds obtained had the structure of the alkyl ethers of 1.4-benzoquinone-1-oxime, which was proved by 1Н NMR spectroscopy and mass-spectrometry.

  13. One-step formation of bifunctionnal aryl/alkyl grafted films on conducting surfaces by the reduction of diazonium salts in the presence of alkyl iodides.

    PubMed

    Hetemi, Dardan; Hazimeh, Hassan; Decorse, Philippe; Galtayries, Anouk; Combellas, Catherine; Kanoufi, Frédéric; Pinson, Jean; Podvorica, Fetah I

    2015-05-19

    The formation of partial perfluoroalkyl or alkyl radicals from partial perfluoroalkyl or alkyl iodides (ICH2CH2C6F13 and IC6H13) and their reaction with surfaces takes place at low driving force (∼-0.5 V/SCE) when the electrochemical reaction is performed in acetonitrile in the presence of diazonium salts (ArN2(+)), at a potential where the latter is reduced. By comparison to the direct grafting of ICH2CH2C6F13, this corresponds to a gain of ∼2.1 V in the case of 4-nitrobenzenediazonium. Such electrochemical reaction permits the modification of gold surfaces (and also carbon, iron, and copper) with mixed aryl-alkyl groups (Ar = 3-CH3-C6H4, 4-NO2-C6H4, and 4-Br-C6H4, R = C6H13 or (CH2)2-C6F13). These strongly bonded mixed layers are characterized by IRRAS, XPS, ToF-SIMS, ellipsometry, water contact angles, and cyclic voltammetry. The relative proportions of grafted aryl and alkyl groups can be varied along with the relative concentrations of diazonium and iodide components in the grafting solution. The formation of the films is assigned to the reaction of aryl and alkyl radicals on the surface and on the first grafted layer. The former is obtained from the electrochemical reduction of the diazonium salt; the latter results from the abstraction of an iodine atom by the aryl radical. The mechanism involved in the growth of the film provides an example of complex surface radical chemistry.

  14. Design and synthesis of 2-nitroimidazoles with variable alkylating and acylating functionality.

    PubMed

    Winters, Thomas; Sercel, Anthony; Suto, Carla; Elliott, William; Leopold, Wilbur; Leopold, Judith; Showalter, Hollis

    2014-01-01

    The synthesis of a small series of 2-nitroimidazoles in which the β-amino alcohol side chain was amidated with a range of alkylating/acylating functionality is described. Synthetic methodologies were developed that generally provided for selective N-acyl versus N,O-bisacyl products. In vitro, target analogs showed minimal radiosensitization activity, with only a few exhibiting a sensitizer enhancement ratio (SER) >2.0 and C(1.6) values comparable to reference agents RB-6145 and RSU-1069. In an assay to determine potential to alkylate biomolecules, representative analogs showed <1% of the alkylating activity of RSU-1069. In vivo, one analog showed an enhancement ratio of 1.6 relative to vehicle control when tested in B6C3F1 mice with an implanted KHT sarcoma. The data reinforce prior findings that there is a correlation between alkylation potential and in vivo activity.

  15. The clinical pharmacology of alkylating agents in high-dose chemotherapy.

    PubMed

    Huitema, A D; Smits, K D; Mathôt, R A; Schellens, J H; Rodenhuis, S; Beijnen, J H

    2000-08-01

    Alkylating agents are widely used in high-dose chemotherapy regimens in combination with hematological support. Knowledge about the pharmacokinetics and pharmacodynamics of these agents administered in high doses is critical for the safe and efficient use of these regimens. The aim of this review is to summarize the clinical pharmacology of the alkylating agents (including the platinum compounds) in high-dose chemotherapy. Differences between conventional and high doses will be discussed.

  16. Kinetic study of the anaerobic biodegradation of alkyl polyglucosides and the influence of their structural parameters.

    PubMed

    Ríos, Francisco; Fernández-Arteaga, Alejandro; Lechuga, Manuela; Jurado, Encarnación; Fernández-Serrano, Mercedes

    2016-05-01

    This paper reports a study of the anaerobic biodegradation of non-ionic surfactants alkyl polyglucosides applying the method by measurement of the biogas production in digested sludge. Three alkyl polyglucosides with different length alkyl chain and degree of polymerization of the glucose units were tested. The influence of their structural parameters was evaluated, and the characteristics parameters of the anaerobic biodegradation were determined. Results show that alkyl polyglucosides, at the standard initial concentration of 100 mgC L(-1), are not completely biodegradable in anaerobic conditions because they inhibit the biogas production. The alkyl polyglucoside having the shortest alkyl chain showed the fastest biodegradability and reached the higher percentage of final mineralization. The anaerobic process was well adjusted to a pseudo first-order equation using the carbon produced as gas during the test; also, kinetics parameters and a global rate constant for all the involved metabolic process were determined. This modeling is helpful to evaluate the biodegradation or the persistence of alkyl polyglucosides under anaerobic conditions in the environment and in the wastewater treatment.

  17. N-Alkyl-PEI Functional Iron Oxide Nanocluster for Efficient siRNA Delivery**

    PubMed Central

    Liu, Gang; Xie, Jin; Zhang, Fan; Wang, Zhi-Yong; Luo, Kui; Zhu, Lei; Quan, Qi-Meng; Niu, Gang; Lee, Seulki

    2013-01-01

    Small interfering RNA (siRNA) is an emerging class of therapeutics, working by regulating the expression of a specific gene involved in disease progression. Despite the promises, effective transport of siRNA with minimal side effects remains a challenge. In this study, a non-viral nanoparticle gene carrier has been developed and its efficiency for siRNA delivery and transfection has been validated at both in vitro and in vivo levels. Such a nanocarrier, abbreviated as Alkyl-PEI2k-IO, was constructed with a core of iron oxide (IO) and a shell of alkylated PEI2000 (Alkyl-PEI2k). It was found to be able to bind with siRNA, resulting in well-dispersed nanoparticles with a controlled clustering structure and narrow size distribution. Electrophoresis studies showed that the Alkyl-PEI2k-IOs could retard siRNA completely at N/P ratios above 10, protect siRNA from enzymatic degradation in serum and release complexed siRNA efficiently in the presence of polyanionic heparin. The knockdown efficiency of the siRNA loaded nanocarriers was assessed with 4T1 cells stably expressing luciferase (fluc-4T1) and further, with a fluc-4T1 xenograft model. Significant downregulation of luciferase was observed, and unlike the high molecular weight analogs, the Alkyl-PEI2k coated IOs showed a good biocompatibility. In conclusion, Alkyl-PEI2k-IOs demonstrate highly efficient delivery of siRNA and an innocuous toxic profile, making it a potential carrier for gene therapy. PMID:21861295

  18. Formation of furan fatty alkyl esters from their bis-epoxide fatty esters

    USDA-ARS?s Scientific Manuscript database

    Reactions of epoxidized alkyl soyate with four different alcohols: ethanol, isopropyl alcohol, 2-ethylhexanol, and benzyl alcohol were investigated in the presence of Bronsted acid catalyst. Products not reported in prior studies of similar reactions were found. These were furan fatty acid alkyl est...

  19. In vitro induction of micronuclei by monofunctional methanesulphonic acid esters: possible role of alkylation mechanisms.

    PubMed

    Eder, Erwin; Kütt, Wolfgang; Deininger, Christoph

    2006-12-01

    Six monofunctional alkylating methanesulphonates of widely varying structures were investigated in the in vitro micronucleus assay with Syrian hamster embryo fibroblast cells. The results were compared with the alkylating activities measured in the 4-(nitrobenzyl)pyridine test (NBP-test) and the N-methyl mercaptoimidazole (MMI-test) as measures for S(N)2 reactivity as well as in the triflouoroacetic acid (TFA) solvolysis and the hydrolysis reaction as measures for S(N)1 reactivity in order to provide insights into the role of alkylation mechanisms on induction of micronuclei. Moreover we compared the results of micronucleus assay with those of the Ames tests in strain TA 100 and TA1535 and with those of the SOS chromotest with the strains PQ37, PQ243, PM21 and GC 4798. The potency of methanesulphonates to induce micronuclei depended only to a certain degree, on the total alkylating activity (S(N)1 and S(N)2 reactivity). An inverse, significant correlation between the Ames test and the micronucleus assay was observed and an inverse correlation between the micronucleus assay and the SOS chromotest with the different strains. The results indicate that the primary mechanism leading to induction of micronuclei is not O-alkylation in DNA as it is the case in the Ames test with the hisG46 strains TA1535 and TA100 and not N-alkylation as with the SOS chromotest. There is evidence that protein alkylation, e.g. in the spindle apparatus in mitosis is decisive for induction of micronuclei by alkylating compounds. The structurally voluminous methanesulphonates 2-phenyl ethyl methanesulphonate and 1-phenyl-2-propyl methanesulphonate show a clear higher micronuclei inducing potency than the other tested though the bulky methanesulphonates possess a lower total alkylating activity than the others. This effect can be explained by a higher disturbance during mitosis after alkylation of the spindle apparatus with the structurally more bulky methanesulphonates.

  20. Chemotherapy-induced pulmonary hypertension: role of alkylating agents.

    PubMed

    Ranchoux, Benoît; Günther, Sven; Quarck, Rozenn; Chaumais, Marie-Camille; Dorfmüller, Peter; Antigny, Fabrice; Dumas, Sébastien J; Raymond, Nicolas; Lau, Edmund; Savale, Laurent; Jaïs, Xavier; Sitbon, Olivier; Simonneau, Gérald; Stenmark, Kurt; Cohen-Kaminsky, Sylvia; Humbert, Marc; Montani, David; Perros, Frédéric

    2015-02-01

    Pulmonary veno-occlusive disease (PVOD) is an uncommon form of pulmonary hypertension (PH) characterized by progressive obstruction of small pulmonary veins and a dismal prognosis. Limited case series have reported a possible association between different chemotherapeutic agents and PVOD. We evaluated the relationship between chemotherapeutic agents and PVOD. Cases of chemotherapy-induced PVOD from the French PH network and literature were reviewed. Consequences of chemotherapy exposure on the pulmonary vasculature and hemodynamics were investigated in three different animal models (mouse, rat, and rabbit). Thirty-seven cases of chemotherapy-associated PVOD were identified in the French PH network and systematic literature analysis. Exposure to alkylating agents was observed in 83.8% of cases, mostly represented by cyclophosphamide (43.2%). In three different animal models, cyclophosphamide was able to induce PH on the basis of hemodynamic, morphological, and biological parameters. In these models, histopathological assessment confirmed significant pulmonary venous involvement highly suggestive of PVOD. Together, clinical data and animal models demonstrated a plausible cause-effect relationship between alkylating agents and PVOD. Clinicians should be aware of this uncommon, but severe, pulmonary vascular complication of alkylating agents. Copyright © 2015 American Society for Investigative Pathology. Published by Elsevier Inc. All rights reserved.

  1. Diode laser surgery. Ab interno and ab externo versus conventional surgery in rabbits.

    PubMed

    Karp, C L; Higginbotham, E J; Edward, D P; Musch, D C

    1993-10-01

    Fibroblastic proliferation of subconjunctival tissues remains a primary mechanism of failure in filtration surgery. Minimizing the surgical manipulation of episcleral tissues may reduce scarring. Laser sclerostomy surgery involves minimal tissue dissection, and is gaining attention as a method of potentially improving filter duration in high-risk cases. Twenty-five New Zealand rabbits underwent filtration surgery in one eye, and the fellow eye remained as the unoperated control. Ten rabbits underwent ab externo diode laser sclerostomy surgery, ten underwent ab interno diode sclerostomy surgery, and five had posterior sclerostomy procedures. Filtration failure was defined as a less-than-4-mmHg intraocular pressure (IOP) difference between the operative and control eyes. The mean time to failure for the ab externo, ab interno, and conventional posterior sclerostomy techniques measured 17.4 +/- 11.5, 13.1 +/- 6.7, and 6.0 +/- 3.1 days, respectively. In a comparison of the laser-treated groups with the conventional procedure, the time to failure was significantly longer (P = 0.02) for the ab externo filter. The mean ab interno sclerostomy duration was longer than the posterior lip procedure, but this difference was not statistically significant (P = 0.15). The overall level of IOP reduction was similar in the three groups. These data suggest that diode laser sclerostomy is a feasible technique in rabbits, and the ab externo approach resulted in longer filter duration than the conventional posterior lip procedure in this model.

  2. 40 CFR 721.10145 - Modified reaction products of alkyl alcohol, halogenated alkane, substituted epoxide, and amino...

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 40 Protection of Environment 31 2011-07-01 2011-07-01 false Modified reaction products of alkyl... Modified reaction products of alkyl alcohol, halogenated alkane, substituted epoxide, and amino compound... identified generically as modified reaction products of alkyl alcohol, halogenated alkane, substituted...

  3. 40 CFR 721.10145 - Modified reaction products of alkyl alcohol, halogenated alkane, substituted epoxide, and amino...

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 40 Protection of Environment 30 2010-07-01 2010-07-01 false Modified reaction products of alkyl... Modified reaction products of alkyl alcohol, halogenated alkane, substituted epoxide, and amino compound... identified generically as modified reaction products of alkyl alcohol, halogenated alkane, substituted...

  4. Anti-GD2 mAbs and next-generation mAb-based agents for cancer therapy

    PubMed Central

    Perez Horta, Zulmarie; Goldberg, Jacob L; Sondel, Paul M

    2016-01-01

    Tumor-specific monoclonal antibodies (mAbs) have demonstrated efficacy in the clinic, becoming an important approach for cancer immunotherapy. Due to its limited expression on normal tissue, the GD2 disialogangloside expressed on neuroblastoma cells is an excellent candidate for mAb therapy. In 2015, dinutuximab (an anti-GD2 mAb) was approved by the US FDA and is currently used in a combination immunotherapeutic regimen for the treatment of children with high-risk neuroblastoma. Here, we review the extensive preclinical and clinical development of anti-GD2 mAbs and the different mechanisms by which they mediate tumor cell killing. In addition, we discuss different mAb-based strategies that capitalize on the targeting ability of anti-GD2 mAbs to potentially deliver, as monotherapy, or in combination with other treatments, improved antitumor efficacy. PMID:27485082

  5. Theoretical studies of alkyl radicals in the NaY and HY zeolites.

    PubMed

    Ghandi, Khashayar; Zahariev, Federico E; Wang, Yan Alexander

    2005-08-18

    Interplay of quantum mechanical calculations and experimental data on hyperfine coupling constants of ethyl radical in zeolites at several temperatures was engaged to study the geometries and binding energies and to predict the temperature dependence of hyperfine splitting of a series of alkyl radicals in zeolites for the first time. The main focus is on the hyperfine interaction of alkyl radicals in the NaY and HY zeolites. The hyperfine splitting for neutral free radicals and free radical cations is predicted for different zeolite environments. This information can be used to establish the nature of the muoniated alkyl radicals in the NaY and HY zeolites via muSR experiments. The muon hyperfine coupling constants of the ethane radical cation in these zeolites are very large with relatively little dependence on temperature. It was found that the intramolecular dynamics of alkyl free radicals are only weakly affected by their strong binding to zeolites. In contrast, the substrate binding has a significant effect on their intermolecular dynamics.

  6. Catalytic enantioselective synthesis of atropisomeric biaryls by a cation-directed O-alkylation

    NASA Astrophysics Data System (ADS)

    Jolliffe, John D.; Armstrong, Roly J.; Smith, Martin D.

    2017-06-01

    Axially chiral biaryls, as exemplified by 1,1‧-bi-2-naphthol (BINOL), are key components of catalysts, natural products and medicines. These materials are synthesized conventionally in enantioenriched form through metal-mediated cross coupling, de novo construction of an aromatic ring, point-to-axial chirality transfer or an atropselective transformation of an existing biaryl. Here, we report a highly enantioselective organocatalytic method for the synthesis of atropisomeric biaryls by a cation-directed O-alkylation. Treatment of racemic 1-aryl-2-tetralones with a chiral quinidine-derived ammonium salt under basic conditions in the presence of an alkylating agent leads to atropselective O-alkylation with e.r. up to 98:2. Oxidation with DDQ gives access to C2-symmetric and non-symmetric BINOL derivatives without compromising e.r. We propose that the chiral ammonium counterion differentiates between rapidly equilibrating atropisomeric enolates, leading to highly atropselective O-alkylation. This dynamic kinetic resolution process offers a general approach to the synthesis of enantioenriched atropisomeric materials.

  7. Effect of the alkyl chain length on the rotational dynamics of nonpolar and dipolar solutes in a series of N-alkyl-N-methylmorpholinium ionic liquids.

    PubMed

    Khara, Dinesh Chandra; Kumar, Jaini Praveen; Mondal, Navendu; Samanta, Anunay

    2013-05-02

    Rotational dynamics of two dipolar solutes, 4-aminophthalimide (AP) and 6-propionyl-2-dimethylaminonaphthalene (PRODAN), and a nonpolar solute, anthracene, have been studied in N-alkyl-N-methylmorpholinium (alkyl = ethyl, butyl, hexyl, and octyl) bis(trifluoromethansulfonyl)imide (Tf2N) ionic liquids as a function of temperature and excitation wavelength to probe the microheterogeneous nature of these ionic liquids, which are recently reported to be more structured than the imidazolium ionic liquids (Khara and Samanta, J. Phys. Chem. B2012, 116, 13430-13438). Analysis of the measured rotational time constants of the solutes in terms of the Stokes-Einstein-Debye (SED) hydrodynamic theory reveals that with increase in the alkyl chain length attached to the cationic component of the ionic liquids, AP shows stick to superstick behavior, PRODAN rotation lies between stick and slip boundary conditions, whereas anthracene exhibits slip to sub slip behavior. The contrasting rotational dynamics of these probe molecules is a reflection of their location in distinct environments of the ionic liquids thus demonstrating the heterogeneity of these ionic liquids. The microheterogeneity of these media, in particular, those with the long alkyl chain, is further evidence from the excitation wavelength dependence study of the rotational diffusion of the dipolar probe molecules.

  8. 21 CFR 176.120 - Alkyl ketene dimers.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ..., processing, preparing, treating, packaging, transporting, or holding food, subject to the provisions of this... paperboard. (c) The alkyl ketene dimers may be used in the form of an aqueous emulsion which may contain...

  9. Enantioconvergent Cross-Couplings of Racemic Alkylmetal Reagents with Unactivated Secondary Alkyl Electrophiles: Catalytic Asymmetric Negishi α-Alkylations of N-Boc-pyrrolidine

    PubMed Central

    Cordier, Christopher J.; Lundgren, Rylan J.; Fu, Gregory C.

    2013-01-01

    Although enantioconvergent alkyl-alkyl couplings of racemic electrophiles have been developed, there have been no reports of the corresponding reactions of racemic nucleophiles. Herein, we describe Negishi cross-couplings of racemic α-zincated N-Boc-pyrrolidine with unactivated secondary halides, thus providing a one-pot, catalytic asymmetric method for the synthesis of a range of 2-alkylpyrrolidines (an important family of target molecules) from N-Boc-pyrrolidine, a commercially available precursor. Preliminary mechanistic studies indicate that two of the most straightforward mechanisms for enantioconvergence (a dynamic kinetic resolution of the organometallic coupling partner and a simple β-hydride elimination/β-migratory insertion pathway) are unlikely to be operative. PMID:23869442

  10. 46 CFR 151.50-86 - Alkyl (C7-C9) nitrates.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 46 Shipping 5 2011-10-01 2011-10-01 false Alkyl (C7-C9) nitrates. 151.50-86 Section 151.50-86... CARRYING BULK LIQUID HAZARDOUS MATERIAL CARGOES Special Requirements § 151.50-86 Alkyl (C7-C9) nitrates. (a) The carriage temperature of octyl nitrates must be maintained below 100 °C (212 °F) in order to...

  11. 46 CFR 151.50-86 - Alkyl (C7-C9) nitrates.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... 46 Shipping 5 2014-10-01 2014-10-01 false Alkyl (C7-C9) nitrates. 151.50-86 Section 151.50-86... CARRYING BULK LIQUID HAZARDOUS MATERIAL CARGOES Special Requirements § 151.50-86 Alkyl (C7-C9) nitrates. (a) The carriage temperature of octyl nitrates must be maintained below 100 °C (212 °F) in order to...

  12. 46 CFR 151.50-86 - Alkyl (C7-C9) nitrates.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... 46 Shipping 5 2012-10-01 2012-10-01 false Alkyl (C7-C9) nitrates. 151.50-86 Section 151.50-86... CARRYING BULK LIQUID HAZARDOUS MATERIAL CARGOES Special Requirements § 151.50-86 Alkyl (C7-C9) nitrates. (a) The carriage temperature of octyl nitrates must be maintained below 100 °C (212 °F) in order to...

  13. 46 CFR 151.50-86 - Alkyl (C7-C9) nitrates.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 46 Shipping 5 2013-10-01 2013-10-01 false Alkyl (C7-C9) nitrates. 151.50-86 Section 151.50-86... CARRYING BULK LIQUID HAZARDOUS MATERIAL CARGOES Special Requirements § 151.50-86 Alkyl (C7-C9) nitrates. (a) The carriage temperature of octyl nitrates must be maintained below 100 °C (212 °F) in order to...

  14. 46 CFR 151.50-86 - Alkyl (C7-C9) nitrates.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 46 Shipping 5 2010-10-01 2010-10-01 false Alkyl (C7-C9) nitrates. 151.50-86 Section 151.50-86... CARRYING BULK LIQUID HAZARDOUS MATERIAL CARGOES Special Requirements § 151.50-86 Alkyl (C7-C9) nitrates. (a) The carriage temperature of octyl nitrates must be maintained below 100 °C (212 °F) in order to...

  15. 40 CFR 721.10417 - Biphenyl alkyl morpholino ketone (generic) (P-11-338).

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... (generic) (P-11-338). 721.10417 Section 721.10417 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY... Specific Chemical Substances § 721.10417 Biphenyl alkyl morpholino ketone (generic) (P-11-338). (a... generically as biphenyl alkyl morpholino ketone (PMN P-11-338) is subject to reporting under this section for...

  16. 40 CFR 721.10417 - Biphenyl alkyl morpholino ketone (generic) (P-11-338).

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... (generic) (P-11-338). 721.10417 Section 721.10417 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY... Specific Chemical Substances § 721.10417 Biphenyl alkyl morpholino ketone (generic) (P-11-338). (a... generically as biphenyl alkyl morpholino ketone (PMN P-11-338) is subject to reporting under this section for...

  17. 40 CFR 721.10417 - Biphenyl alkyl morpholino ketone (generic) (P-11-338).

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... (generic) (P-11-338). 721.10417 Section 721.10417 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY... Specific Chemical Substances § 721.10417 Biphenyl alkyl morpholino ketone (generic) (P-11-338). (a... generically as biphenyl alkyl morpholino ketone (PMN P-11-338) is subject to reporting under this section for...

  18. Spatially-dependent alkyl quinolone signaling responses to antibiotics in Pseudomonas aeruginosa swarms.

    PubMed

    Morales-Soto, Nydia; Dunham, Sage J B; Baig, Nameera F; Ellis, Joseph F; Madukoma, Chinedu S; Bohn, Paul W; Sweedler, Jonathan V; Shrout, Joshua D

    2018-03-27

    There is a general lack of understanding about how communities of bacteria respond to exogenous toxins such as antibiotics. Most of our understanding of community-level stress responses comes from the study of stationary biofilm communities. Although several community behaviors and production of specific biomolecules affecting biofilm development and associated behavior have been described for Pseudomonas aeruginosa and other bacteria, we have little appreciation for the production and dispersal of secreted metabolites within the 2D and 3D spaces they occupy as they colonize, spread, and grow on surfaces. Here we specifically studied the phenotypic responses and spatial variability of alkyl quinolones, including the Pseudomonas quinolone signal (PQS) and members of the alkyl hydroxyquinoline (AQNO) subclass, in P. aeruginosa plate-assay swarming communities. We found that PQS production was not a universal signaling response to antibiotics as tobramycin elicited an alkyl quinolone response while carbenicillin did not. We also found that PQS and AQNO profiles in response to tobramycin were markedly distinct and influenced these swarms on different spatial scales. The distribution of alkyl quinolones varied by several orders of magnitude within the same swarm. At some tobramycin exposures, P. aeruginosa swarms produced alkyl quinolones in the range of 150 µM PQS and 400 µM AQNO that accumulated as aggregates. Our collective findings show that the distribution of alkyl quinolones can vary by several orders of magnitude within the same swarming community.  More notably, our results suggest that multiple intercellular signals acting on different spatial scales can be triggered by one common cue. Published under license by The American Society for Biochemistry and Molecular Biology, Inc.

  19. The photochemical alkylation and reduction of heteroarenes.

    PubMed

    McCallum, T; Pitre, S P; Morin, M; Scaiano, J C; Barriault, L

    2017-11-01

    The functionalization of heteroarenes has been integral to the structural diversification of medicinally active molecules such as quinolines, pyridines, and phenanthridines. Electron-deficient heteroarenes are electronically compatible to react with relatively nucleophilic free radicals such as hydroxyalkyl. However, the radical functionalization of such heteroarenes has been marked by the use of transition-metal catalyzed processes that require initiators and stoichiometric oxidants. Herein, we describe the photochemical alkylation of quinolines, pyridines and phenanthridines, where through direct excitation of the protonated heterocycle, alcohols and ethers, such as methanol and THF, can serve as alkylating agents. We also report the discovery of a photochemical reduction of these heteroarenes using only iPrOH and HCl. Mechanistic studies to elucidate the underlying mechanism of these transformations, and preliminary results on catalytic methylations are also reported.

  20. Endocrine disrupting potential of PAHs and their alkylated analogues associated with oil spills.

    PubMed

    Lee, Sangwoo; Hong, Seongjin; Liu, Xiaoshan; Kim, Cheolmin; Jung, Dawoon; Yim, Un Hyuk; Shim, Won Joon; Khim, Jong Seong; Giesy, John P; Choi, Kyungho

    2017-09-20

    Polycyclic aromatic hydrocarbons (PAHs) and alkylated PAHs are known to be major toxic contaminants in spills of petroleum hydrocarbons (oil). Spilled oil undergoes weathering and over time, PAHs go through a series of compositional changes. PAHs can disrupt endocrine functions, and the type of functions affected and associated potencies vary with the type and alkylation status of PAH. In this study, the potential of five major PAHs of crude oil, i.e., naphthalene, fluorene, dibenzothiophene, phenanthrene, and chrysene, and their alkylated analogues (n = 25), to disrupt endocrine functions was evaluated by use of MVLN-luc and H295R cell lines. In the MVLN-luc bioassay, seven estrogen receptor (ER) agonists were detected among 30 tested PAHs. The greatest ER-mediated potency was observed for 1-methylchrysene (101.4%), followed by phenanthrene and its alkylated analogues (range of %-E2max from 1.6% to 47.3%). In the H295R bioassay, significantly greater syntheses of steroid hormones were observed for 20 PAHs. For major PAHs and their alkylated analogues, disruption of steroidogenesis appeared to be more significant than ER-mediated effects. The number and locations of alkyl-moieties alone could not explain differences in the types or the potencies of toxicities. This observation shows that disruption of endocrine functions by some constituents of oil spills could be underestimated if only parent compounds are considered in assessments of hazard and risk.

  1. 'Petite' mutagenesis and mitotic crossing-over in yeast by DNA-targeted alkylating agents.

    PubMed

    Ferguson, L R; Turner, P M; Gourdie, T A; Valu, K K; Denny, W A

    1989-12-01

    Although the biological properties (cytotoxicity, mutagenicity and carcinogenicity) of alkylating agents result from their bonding interactions with DNA, such compounds generally do not show any special binding affinity for DNA. A series of acridine-linked aniline mustards of widely-varying alkylator reactivity have been designed as DNA-directed alkylating agents. We have considered whether such DNA targeting has an effect on mutagenic properties by evaluating this series of drugs in comparison with their untargeted counterparts for toxic, recombinogenic and mutagenic properties in Saccharomyces cerevisiae strain D5. The simple untargeted aniline mustards are effective inducers of mitotic crossing-over in this strain, but resemble other reported alkylators in being rather inefficient inducers of the "petite" or mitochondrial mutation in yeast. However, the majority of the DNA-targeted mustards were very efficient petite mutagens, while showing little evidence of mitotic crossing-over or other nuclear events. The 100% conversion of cells into petites and the lack of a differential between growing and non-growing cells are similar to the effects of the well characterised mitochondrial mutagen ethidium bromide. These data suggest very different modes of action between the DNA-targeted alkylators and their non-targeted counterparts.

  2. Practical Alkoxythiocarbonyl Auxiliaries for Iridium(I)-Catalyzed C-H Alkylation of Azacycles.

    PubMed

    Tran, Anh T; Yu, Jin-Quan

    2017-08-21

    The development of new and practical 3-pentoxythiocarbonyl auxiliaries for Ir I -catalyzed C-H alkylation of azacycles is described. This method allows for the α-C-H alkylation of a variety of substituted pyrrolidines, piperidines, and tetrahydroisoquinolines through alkylation with alkenes. While the practicality of these simple carbamate-type auxiliaries is underscored by the ease of installation and removal, the method's utility is demonstrated in its ability to functionalize biologically relevant l-proline and l-trans-hydroxyproline, delivering unique 2,5-dialkylated amino acid analogues that are not accessible by other C-H functionalization methods. © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  3. Alkylation effects on the energy transfer of highly vibrationally excited naphthalene.

    PubMed

    Hsu, Hsu Chen; Tsai, Ming-Tsang; Dyakov, Yuri A; Ni, Chi-Kung

    2011-11-04

    The energy transfer of highly vibrationally excited isomers of dimethylnaphthalene and 2-ethylnaphthalene in collisions with krypton were investigated using crossed molecular beam/time-of-flight mass spectrometer/time-sliced velocity map ion imaging techniques at a collision energy of approximately 300 cm(-1). Angular-resolved energy-transfer distribution functions were obtained directly from the images of inelastic scattering. The results show that alkyl-substituted naphthalenes transfer more vibrational energy to translational energy than unsubstituted naphthalene. Alkylation enhances the V→T energy transfer in the range -ΔE(d)=-100~-1500 cm(-1) by approximately a factor of 2. However, the maximum values of V→T energy transfer for alkyl-substituted naphthalenes are about 1500~2000 cm(-1), which is similar to that of naphthalene. The lack of rotation-like wide-angle motion of the aromatic ring and no enhancement in very large V→T energy transfer, like supercollisions, indicates that very large V→T energy transfer requires special vibrational motions. This transfer cannot be achieved by the low-frequency vibrational motions of alkyl groups. Copyright © 2011 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  4. DNA Damage Induced by Alkylating Agents and Repair Pathways

    PubMed Central

    Kondo, Natsuko; Takahashi, Akihisa; Ono, Koji; Ohnishi, Takeo

    2010-01-01

    The cytotoxic effects of alkylating agents are strongly attenuated by cellular DNA repair processes, necessitating a clear understanding of the repair mechanisms. Simple methylating agents form adducts at N- and O-atoms. N-methylations are removed by base excision repair, AlkB homologues, or nucleotide excision repair (NER). O6-methylguanine (MeG), which can eventually become cytotoxic and mutagenic, is repaired by O6-methylguanine-DNA methyltransferase, and O6MeG:T mispairs are recognized by the mismatch repair system (MMR). MMR cannot repair the O6MeG/T mispairs, which eventually lead to double-strand breaks. Bifunctional alkylating agents form interstrand cross-links (ICLs) which are more complex and highly cytotoxic. ICLs are repaired by complex of NER factors (e.g., endnuclease xeroderma pigmentosum complementation group F-excision repair cross-complementing rodent repair deficiency complementation group 1), Fanconi anemia repair, and homologous recombination. A detailed understanding of how cells cope with DNA damage caused by alkylating agents is therefore potentially useful in clinical medicine. PMID:21113301

  5. Structural Characterization of N-Alkylated Twisted Amides: Consequences for Amide Bond Resonance and N-C Cleavage.

    PubMed

    Hu, Feng; Lalancette, Roger; Szostak, Michal

    2016-04-11

    Herein, we describe the first structural characterization of N-alkylated twisted amides prepared directly by N-alkylation of the corresponding non-planar lactams. This study provides the first experimental evidence that N-alkylation results in a dramatic increase of non-planarity around the amide N-C(O) bond. Moreover, we report a rare example of a molecular wire supported by the same amide C=O-Ag bonds. Reactivity studies demonstrate rapid nucleophilic addition to the N-C(O) moiety of N-alkylated amides, indicating the lack of n(N) to π*(C=O) conjugation. Most crucially, we demonstrate that N-alkylation activates the otherwise unreactive amide bond towards σ N-C cleavage by switchable coordination. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  6. REVISITING CLASSICAL NUCLEOPHILIC SUBSTITUTIONS IN AQUEOUS MEDIUM: MICROWAVE-ASSISTED SYNTHESIS OF ALKYL AZIDES

    EPA Science Inventory

    An efficient and clean synthesis of alkyl azides using microwave (MW) radiation is described in aqueous medium by reacting alkyl halides or tosylates with alkali azides. This general and expeditious MW-enhanced approach to nucleophilic substitution reactions is applicable to the ...

  7. A novel type of highly effective nonionic gemini alkyl O-glucoside surfactants: a versatile strategy of design.

    PubMed

    Liu, Songbai; Sang, Ruocheng; Hong, Shan; Cai, Yujing; Wang, Hua

    2013-07-09

    A novel type of highly effective gemini alkyl glucosides has been rationally designed and synthesized. The gemini surfactants have been readily prepared by glycosylation of the gemini alkyl chains that are synthesized with regioselective ring-opening of ethylene glycol epoxides by the alkyl alcohols. The new gemini alkyl glucosides exhibit significantly better surface activity than the known results. Then rheological, DLS, and TEM studies have revealed the intriguing self-assembly behavior of the novel gemini surfactants. This study has proved the effectiveness of the design of gemini alkyl glucosides which is modular, extendable, and synthetically simple. The new gemini surfactants have great potential as nano carriers in drug and gene delivery.

  8. Alkyl hydrogen atom abstraction reactions of the CN radical with ethanol

    NASA Astrophysics Data System (ADS)

    Athokpam, Bijyalaxmi; Ramesh, Sai G.

    2018-04-01

    We present a study of the abstraction of alkyl hydrogen atoms from the β and α positions of ethanol by the CN radical in solution using the Empirical Valence Bond (EVB) method. We have built separate 2 × 2 EVB models for the Hβ and Hα reactions, where the atom transfer is parameterized using ab initio calculations. The intra- and intermolecular potentials of the reactant and product molecules were modelled with the General AMBER Force Field, with some modifications. We have carried out the dynamics in water and chloroform, which are solvents of contrasting polarity. We have computed the potential of mean force for both abstractions in each of the solvents. They are found to have a small and early barrier along the reaction coordinate with a large energy release. Analyzing the solvent structure around the reaction system, we have found two solvents to have little effect on either reaction. Simulating the dynamics from the transition state, we also study the fate of the energies in the HCN vibrational modes. The HCN molecule is born vibrationally hot in the CH stretch in both reactions and additionally in the HCN bends for the Hα abstraction reaction. In the early stage of the dynamics, we find that the CN stretch mode gains energy at the expense of the energy in CH stretch mode.

  9. Lithiated imines: solvent-dependent aggregate structures and mechanisms of alkylation.

    PubMed

    Zuend, Stephan J; Ramirez, Antonio; Lobkovsky, Emil; Collum, David B

    2006-05-03

    We describe efforts to understand the structure and reactivity of lithiated cyclohexanone N-cyclohexylimine. The lithioimine affords complex solvent-dependent distributions of monomers, dimers, and trimers in a number of ethereal solvents. Careful selection of solvent provides exclusively monosolvated dimers. Rate studies on the C-alkylations reveal chronic mixtures of monomer- and dimer-based pathways. We explore the factors influencing reactants and alkylation transition structures and the marked differences between lithioimines and isostructural lithium dialkylamides with the aid of density functional theory calculations.

  10. Revealing strategies of quorum sensing in Azospirillum brasilense strains Ab-V5 and Ab-V6.

    PubMed

    Fukami, Josiane; Abrantes, Julia Laura Fernandes; Del Cerro, Pablo; Nogueira, Marco Antonio; Ollero, Francisco Javier; Megías, Manuel; Hungria, Mariangela

    2018-01-01

    Azospirillum brasilense is an important plant-growth promoting bacterium (PGPB) that requires several critical steps for root colonization, including biofilm and exopolysaccharide (EPS) synthesis and cell motility. In several bacteria these mechanisms are mediated by quorum sensing (QS) systems that regulate the expression of specific genes mediated by the autoinducers N-acyl-homoserine lactones (AHLs). We investigated QS mechanisms in strains Ab-V5 and Ab-V6 of A. brasilense, which are broadly used in commercial inoculants in Brazil. Neither of these strains carries a luxI gene, but there are several luxR solos that might perceive AHL molecules. By adding external AHLs we verified that biofilm and EPS production and cell motility (swimming and swarming) were regulated via QS in Ab-V5, but not in Ab-V6. Differences were observed not only between strains, but also in the specificity of LuxR-type receptors to AHL molecules. However, Ab-V6 was outstanding in indole acetic acid (IAA) synthesis and this molecule might mimic AHL signals. We also applied the quorum quenching (QQ) strategy, obtaining transconjugants of Ab-V5 and Ab-V6 carrying a plasmid with acyl-homoserine lactonase. When maize (Zea mays L.) was inoculated with the wild-type and transconjugant strains, plant growth was decreased with the transconjugant of Ab-V5-confirming the importance of an AHL-mediated QS system-but did not affect plant growth promotion by Ab-V6.

  11. 40 CFR 721.950 - Sodium salt of an alkylated, sulfonated aromatic (generic name).

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ..., sulfonated aromatic (generic name). 721.950 Section 721.950 Protection of Environment ENVIRONMENTAL... Significant New Uses for Specific Chemical Substances § 721.950 Sodium salt of an alkylated, sulfonated... chemical substance identified generically as a sodium salt of an alkylated, sulfonated aromatic (PMN P-84...

  12. 40 CFR 721.950 - Sodium salt of an alkylated, sulfonated aromatic (generic name).

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ..., sulfonated aromatic (generic name). 721.950 Section 721.950 Protection of Environment ENVIRONMENTAL... Significant New Uses for Specific Chemical Substances § 721.950 Sodium salt of an alkylated, sulfonated... chemical substance identified generically as a sodium salt of an alkylated, sulfonated aromatic (PMN P-84...

  13. Comparison of the reactivity of alkyl and alkyl amine precursors with native oxide GaAs(100) and InAs(100) surfaces

    NASA Astrophysics Data System (ADS)

    Henegar, A. J., , Dr.; Gougousi, T., , Prof.

    2016-12-01

    In this manuscript we compare the interaction of alkyl (trimethyl aluminum) and alkyl amine (tetrakis dimethylamino titanium) precursors during thermal atomic layer deposition with III-V native oxides. For that purpose we deposit Al2O3 and TiO2, using H2O as the oxidizer, on GaAs(100) and InAs(100) native oxide surfaces. We find that there are distinct differences in the behavior of the two films. For the Al2O3 ALD very little native oxide removal happens after the first few ALD cycles while the interaction of the alkyl amine precursor for TiO2 and the native oxides continues well after the surface has been covered with 2 nm of TiO2. This difference is traced to the superior properties of Al2O3 as a diffusion barrier. Differences are also found in the behavior of the arsenic oxides of the InAs and GaAs substrates. The arsenic oxides from the InAs surface are found to mix more efficiently in the growing dielectric film than those from the GaAs surface. This difference is attributed to lower native oxide stability as well as an initial diffusion path formation by the indium oxides.

  14. Lanthanide alkyl and silyl compounds: Synthesis, reactivity and catalysts for green

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Pindwal, Aradhana

    2016-01-01

    The last few decades have witnessed enormous research in the field of organometallic lanthanide chemistry. Our research group has developed a few rare earth alkyl compounds containing tris(dimethylsilyl)methyl ligand and explored their reactivity. This thesis focusses on extending the study of lanthanide alkyl and silyl compounds to develop strategies for their synthesis and explore their reactivity and role as catalysts in processes such as hydrosilylation and cross-dehydrocoupling.

  15. Undoing Gender Through Legislation and Schooling: the Case of AB 537 and AB 394 IN California, USA

    NASA Astrophysics Data System (ADS)

    Knotts, Greg

    2009-11-01

    This article investigates California laws AB 537: The Student Safety and Violence Prevention Act of 2000, and the recently enacted AB 394: Safe Place to Learn Act. Both demand that gender identity and sexual orientation be added to the lexicon of anti-harassment protection in public education. However, despite these progressive measures, schools have an unconscious acceptance of heteronormativity and gendered norms, which undermines both the spirit and language of these laws. This paper examines how California schools can both change standard practices and realise the transformative social change that laws like AB 537 and AB 394 can instigate. I assert that the systemic implementation of these laws, through the adoption, enforcement and evaluation of existing AB 537 Task Force Recommendations, is necessary for their success. My second assertion is that AB 537 and AB 394 have the potential to change and reconstitute gender-based and heteronormative standards at school sites.

  16. Data and Analysis of the Double Stars STFA 10AB and STFA 1744AB

    NASA Astrophysics Data System (ADS)

    Arcilla, Marisa; Bowden, Sam; DeBlase, Jacqueline; Hall, Anthony; Hall, Corielyn; Hernandez, Alyssa; Renna, Danielle; Rodriguez, Fatima; Salazar, Cassandra; Sanchez, Andres; Teeter, Dayton; Brewer, Mark; Funk, Benjamin; Gillette, Travis; Sharpe, Scott

    2017-04-01

    Eighth grade students at Vanguard Preparatory School measured the double stars STFA 10AB and STFA 1744AB. A 22-inch Newtonian Alt/Az telescope and a 14-inch Celestron Schmidt Cassegrain telescope were used. The star Bellatrix was used as the calibration star to determine the scale constant of the 22-inch telescope to be 7.8 “/tick marks. The double star STFA 1744AB was used as the calibration star to determine the scale constant of the 14-inch telescope to be 5.1 “/tick marks. The separation and position angle of STFA 10AB was determined by the 22-inch telescope to be 347.9” and 339.3°. The separation and position angle of STFA 1744AB was determined by the 14-inch telescope to be 3.6” and 158.1°. The measurements that were calculated were compared to the most recent measurements listed in the Washington Double Star Catalog.

  17. Binding of alkylphenols and alkylated non-phenolics to rainbow trout (Oncorhynchus mykiss) hepatic estrogen receptors.

    PubMed

    Tollefsen, Knut-Erik; Julie Nilsen, Anja

    2008-02-01

    Alkylphenols are well-known endocrine disrupters, mediating effects through the estrogen receptor (ER). In the present work, the interaction of alkylphenols and alkylated non-phenolics with hepatic rainbow trout (Oncorhynchus mykiss) estrogen receptors (rtERs) was determined. The role of alkyl chain length and branching, substituent position, number of alkylated groups, and the requirement of a phenolic ring structure was assessed. The results showed that the rtERs bound most alkylphenols, although with 20,000 to 2 million times lower affinity than the endogenous estrogen 17beta-estradiol. Mono-substituted alkylphenols with moderate (C4-C6) and long (C8 and C12) alkyl chain length in the para position exhibited the highest affinity for the rtERs. Substitution with multiple alkyl groups, presence of substituents in the ortho- and meta-position, and lack of a hydroxyl group on the benzene ring reduced the binding affinity. The rtERs resembled the reported binding specificity of the human ER for alkylphenols, although some exceptions were identified.

  18. Enhanced Synthesis of Alkyl Amino Acids in Miller's 1958 H2S Experiment

    NASA Technical Reports Server (NTRS)

    Parker, Eric T.; Cleaves, H. James; Callahan, Michael P.; Dworkin, James P.; Glavin, Daniel P.; Lazcano, Antonio; Bada, Jeffrey L.

    2011-01-01

    Stanley Miller's 1958 H2S-containing experiment, which included a simulated prebiotic atmosphere of methane (CH4), ammonia (NH3), carbon dioxide (CO2), and hydrogen sulfide (H2S) produced several alkyl amino acids, including the alpha-, beta-, and gamma-isomers of aminobutyric acid (ABA) in greater relative yields than had previously been reported from his spark discharge experiments. In the presence of H2S, aspariic and glutamic acids could yield alkyl amino acids via the formation of thioimide intermediates. Radical chemistry initiated by passing H2S through a spark discharge could have also enhanced alkyl amino acid synthesis by generating alkyl radicals that can help form the aldehyde and ketone precursors to these amino acids. We propose mechanisms that may have influenced the synthesis of certain amino acids in localized environments rich in H2S and lightning discharges, similar to conditions near volcanic systems on the early Earth, thus contributing to the prebiotic chemical inventory of the primordial Earth.

  19. Influence of N-alkylation on organ distribution of radioiodinated amphetamines

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Machulla, H.J.; Schmidt, U.; Mehdorn, H.M.

    1985-05-01

    In spite of numerous animal data and the widespread clinical application of p-(I-123)-N-isopropyl-amphetamine, questions remain open about the role of N-alkylation. Therefore, amphetamine (AP), N-methyl- (MeAP), and N-isopropyl-amphetamine (IsAP) were radioiodinated in the para position and the organ distribution was determined in male mice (Freiburg tribe) 10 weeks of age. In the lungs, all derivatives showed principally the same kinetics. In brain, the maximum uptake was reached after 30 min with 12%/g for AP and MeAP, and 10.5%/g for IsAP. In liver, the radioactivity similarly increased during the first 15 min to approx. 12%/g; afterwards, AP clearly decreased but MeAPmore » remained almost constant up to 120 min and, even more, IsAP increased to a maximum of 18%/g at 30 min. The same brain uptake kinetics for all 3 substances exclude the importance of lipophilicity increased by the N-alkylation. Furthermore, the differences in the liver kinetics of AP and both MeAP and IsAP indicate the importance of liver metabolism on the alkylated amphetamines. The results support the hypothesis that the first important metabolite of the N-alkylated derivatives is the amphetamine which accumulates in the brain as do MeAP and IsAP. On the basis of these findings, AP was applied clinically showing the same efficient brain uptake and distribution in SPECT as IsAP.« less

  20. 40 CFR 721.2520 - Alkylated diphenyls.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... reporting. (1) The chemical substances identified generically as alkylated diphenyls (PMN Nos. P-90-237, P-90-248, and P-90-249) are subject to reporting under this section for the significant new uses.... Requirements as specified in § 721.90 (a)(4), (b)(4), and (c)(4) (where N = 1 ppb). (ii) [Reserved] (b...

  1. Mechanism of Phenol Alkylation in Zeolite H-BEA Using In Situ Solid-State NMR Spectroscopy

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zhao, Zhenchao; Shi, Hui; Wan, Chuan

    Alkylation of phenolic compounds in the liquid phase is of fundamental and practical importance to the conversion of biomass-derived feedstocks into fuels and chemicals. In this work, the reaction mechanism for phenol alkylation with cyclohexanol and cyclohexene has been investigated on a commercial HBEA zeolite by in situ 13C MAS NMR, using decalin as the solvent. From the variable temperature 13C MAS NMR measurements of phenol and cyclohexanol adsorption on HBEA from decalin solutions, it is shown that the two molecules have similar adsorption strength in the HBEA pore. Phenol alkylation with cyclohexanol, however, becomes significantly measurable only after cyclohexanolmore » is largely converted to cyclohexene via dehydration. This is in contrast to the initially rapid alkylation of phenol when using cyclohexene as the co-reactant. 13C isotope scrambling results demonstrate that the electrophile, presumably cyclohexyl carbenium ion, is directly formed in a protonation step when cyclohexene is the co-reactant, but requires re-adsorption of the alcohol dehydration product, cyclohexene, when cyclohexanol dimer is the dominant surface species (e.g., at 0.5 M cyclohexanol concentration) that is unable to generate carbenium ion. At the initial reaction stage of phenol-cyclohexanol alkylation on HBEA, the presence of the cyclohexanol dimer species hinders the adsorption of cyclohexene at the Brønsted acid site and the subsequent activation of the more potent electrophile (carbenium ion). Isotope scrambling data also show that intramolecular rearrangement of cyclohexyl phenyl ether, the O-alkylation product, does not significantly contribute to the formation of C-alkylation products.« less

  2. Melamine-bridged alkyl resorcinol modified urea - formaldehyde resin for bonding hardwood plywood

    Treesearch

    Chung-Yun Hse; Mitsuo Higuchi

    2010-01-01

    A powdery product was obtained by the reaction of methylolated melamine with alkyl resorcinols to form melamine-bridged alkyl resorcinols (MARs). The effects of the addition of this powder on the bonding strength and formaldehyde emission of urea–formaldehyde (UF) resins were investigated. Three types of UF resins with a formaldehyde/urea molar ratio of 1.3 synthesized...

  3. Glutamine deficiency induces DNA alkylation damage and sensitizes cancer cells to alkylating agents through inhibition of ALKBH enzymes.

    PubMed

    Tran, Thai Q; Ishak Gabra, Mari B; Lowman, Xazmin H; Yang, Ying; Reid, Michael A; Pan, Min; O'Connor, Timothy R; Kong, Mei

    2017-11-01

    Driven by oncogenic signaling, glutamine addiction exhibited by cancer cells often leads to severe glutamine depletion in solid tumors. Despite this nutritional environment that tumor cells often experience, the effect of glutamine deficiency on cellular responses to DNA damage and chemotherapeutic treatment remains unclear. Here, we show that glutamine deficiency, through the reduction of alpha-ketoglutarate, inhibits the AlkB homolog (ALKBH) enzymes activity and induces DNA alkylation damage. As a result, glutamine deprivation or glutaminase inhibitor treatment triggers DNA damage accumulation independent of cell death. In addition, low glutamine-induced DNA damage is abolished in ALKBH deficient cells. Importantly, we show that glutaminase inhibitors, 6-Diazo-5-oxo-L-norleucine (DON) or CB-839, hypersensitize cancer cells to alkylating agents both in vitro and in vivo. Together, the crosstalk between glutamine metabolism and the DNA repair pathway identified in this study highlights a potential role of metabolic stress in genomic instability and therapeutic response in cancer.

  4. Glutamine deficiency induces DNA alkylation damage and sensitizes cancer cells to alkylating agents through inhibition of ALKBH enzymes

    PubMed Central

    Tran, Thai Q.; Ishak Gabra, Mari B.; Lowman, Xazmin H.; Yang, Ying; Reid, Michael A.; Pan, Min; O’Connor, Timothy R.

    2017-01-01

    Driven by oncogenic signaling, glutamine addiction exhibited by cancer cells often leads to severe glutamine depletion in solid tumors. Despite this nutritional environment that tumor cells often experience, the effect of glutamine deficiency on cellular responses to DNA damage and chemotherapeutic treatment remains unclear. Here, we show that glutamine deficiency, through the reduction of alpha-ketoglutarate, inhibits the AlkB homolog (ALKBH) enzymes activity and induces DNA alkylation damage. As a result, glutamine deprivation or glutaminase inhibitor treatment triggers DNA damage accumulation independent of cell death. In addition, low glutamine-induced DNA damage is abolished in ALKBH deficient cells. Importantly, we show that glutaminase inhibitors, 6-Diazo-5-oxo-L-norleucine (DON) or CB-839, hypersensitize cancer cells to alkylating agents both in vitro and in vivo. Together, the crosstalk between glutamine metabolism and the DNA repair pathway identified in this study highlights a potential role of metabolic stress in genomic instability and therapeutic response in cancer. PMID:29107960

  5. Ionic liquids as refolding additives: N′-alkyl and N′-(ω-hydroxyalkyl) N-methylimidazolium chlorides

    PubMed Central

    Lange, Christian; Patil, Ganesh; Rudolph, Rainer

    2005-01-01

    The purpose of this work was to investigate the influence of a series of N′-alkyl and N′-(ω-hydroxy-alkyl)-N-methylimidazolium chlorides on the renaturation of two model proteins, namely hen egg white lysozyme and the single-chain antibody fragment ScFvOx. All tested ionic liquids acted as refolding enhancers, with varying efficacies and efficiencies. The results of the refolding screening could be interpreted by taking into account the effect of the studied ionic liquids on protein aggregation, together with the systematic variations of their influence on the stability of native proteins in solution. More hydrophobic imidazolium cations carrying longer alkyl chains were increasingly destabilizing, while terminal hydroxylation of the alkyl chain made the salts more compatible with protein stability. The studied ionic liquids can be classified as preferentially bound, slightly to moderately chaotropic cosolvents for proteins. PMID:16195554

  6. Direct α-alkylation of ketones with alcohols in water.

    PubMed

    Xu, Guoqiang; Li, Qiong; Feng, Jiange; Liu, Qiang; Zhang, Zuojun; Wang, Xicheng; Zhang, Xiaoyun; Mu, Xindong

    2014-01-01

    The direct α-alkylation of ketones with alcohols has emerged as a new green protocol to construct C-C bonds with H2 O as the sole byproduct. In this work, a very simple and convenient Pd/C catalytic system for the direct α-alkylation of ketones with primary alcohols in pure water is developed. Based on this catalytic system, aqueous mixtures of dilute acetone, 1-butanol, and ethanol (mimicking ABE fermentation products) can be directly transformed into C5 -C11 or longer-chain ketones and alcohols, which are precursors to fuels. Copyright © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  7. 40 CFR 721.10058 - Reaction product of alkylphenol, aromatic cyclicamine, alkyl diglycidyl dibenzene, and...

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 40 Protection of Environment 31 2011-07-01 2011-07-01 false Reaction product of alkylphenol... Reaction product of alkylphenol, aromatic cyclicamine, alkyl diglycidyl dibenzene, and formaldehyde... identified generically as reaction product of alkylphenol, aromatic cyclicamine, alkyl diglycidyl dibenzene...

  8. 40 CFR 721.10059 - Reaction product of alkylphenyl glycidyl ether, polyalkylenepolyamine, and alkyl diglycidyl...

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 40 Protection of Environment 31 2011-07-01 2011-07-01 false Reaction product of alkylphenyl... Reaction product of alkylphenyl glycidyl ether, polyalkylenepolyamine, and alkyl diglycidyl dibenzene... identified generically as reaction product of alkylphenyl glycidyl ether, polyalkylenepolyamine, and alkyl...

  9. 40 CFR 721.10059 - Reaction product of alkylphenyl glycidyl ether, polyalkylenepolyamine, and alkyl diglycidyl...

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 40 Protection of Environment 30 2010-07-01 2010-07-01 false Reaction product of alkylphenyl... Reaction product of alkylphenyl glycidyl ether, polyalkylenepolyamine, and alkyl diglycidyl dibenzene... identified generically as reaction product of alkylphenyl glycidyl ether, polyalkylenepolyamine, and alkyl...

  10. 40 CFR 721.10058 - Reaction product of alkylphenol, aromatic cyclicamine, alkyl diglycidyl dibenzene, and...

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 40 Protection of Environment 30 2010-07-01 2010-07-01 false Reaction product of alkylphenol... Reaction product of alkylphenol, aromatic cyclicamine, alkyl diglycidyl dibenzene, and formaldehyde... identified generically as reaction product of alkylphenol, aromatic cyclicamine, alkyl diglycidyl dibenzene...

  11. ALKBH7 drives a tissue and sex-specific necrotic cell death response following alkylation-induced damage

    PubMed Central

    Jordan, Jennifer J; Chhim, Sophea; Margulies, Carrie M; Allocca, Mariacarmela; Bronson, Roderick T; Klungland, Arne; Samson, Leona D; Fu, Dragony

    2017-01-01

    Regulated necrosis has emerged as a major cell death mechanism in response to different forms of physiological and pharmacological stress. The AlkB homolog 7 (ALKBH7) protein is required for regulated cellular necrosis in response to chemotherapeutic alkylating agents but its role within a whole organism is unknown. Here, we show that ALKBH7 modulates alkylation-induced cellular death through a tissue and sex-specific mechanism. At the whole-animal level, we find that ALKBH7 deficiency confers increased resistance to MMS-induced toxicity in male but not female mice. Moreover, ALKBH7-deficient mice exhibit protection against alkylation-mediated cytotoxicity in retinal photoreceptor and cerebellar granule cells, two cell types that undergo necrotic death through the initiation of the base excision repair pathway and hyperactivation of the PARP1/ARTD1 enzyme. Notably, the protection against alkylation-induced cerebellar degeneration is specific to ALKBH7-deficient male but not female mice. Our results uncover an in vivo role for ALKBH7 in mediating a sexually dimorphic tissue response to alkylation damage that could influence individual responses to chemotherapies based upon alkylating agents. PMID:28726787

  12. Alkyl ether lipids, ion channels and lipid raft reorganization in cancer therapy.

    PubMed

    Jaffrès, Paul-Alain; Gajate, Consuelo; Bouchet, Ana Maria; Couthon-Gourvès, Hélène; Chantôme, Aurélie; Potier-Cartereau, Marie; Besson, Pierre; Bougnoux, Philippe; Mollinedo, Faustino; Vandier, Christophe

    2016-09-01

    Synthetic alkyl lipids, such as the ether lipids edelfosine (1-O-octadecyl-2-O-methyl-rac-glycero-3-phosphocholine) and ohmline (1-O-hexadecyl-2-O-methyl-rac-glycero-3-β-lactose), are forming a class of antitumor agents that target cell membranes to induce apoptosis and to decrease cell migration/invasion, leading to the inhibition of tumor and metastasis development. In this review, we present the structure-activity relationship of edelfosine and ohmline, and we point out differences and similarities between these two amphiphilic compounds. We also discuss the mechanisms of action of these synthetic alkyl ether lipids (involving, among other structures and molecules, membrane domains, Fas/CD95 death receptor signaling, and ion channels), and highlight a key role for lipid rafts in the underlying process. The reorganization of lipid raft membrane domains induced by these alkyl lipids affects the function of death receptors and ion channels, thus leading to apoptosis and/or inhibition of cancer cell migration. The possible therapeutic use of these alkyl lipids and the clinical perspectives for these lipids in prevention or/and treatment of tumor development and metastasis are also discussed. Copyright © 2016 Elsevier Inc. All rights reserved.

  13. Alkylation of phenol by alcohols in the presence of aluminum phenolate

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Koshchii, V.A.; Kozlikovskii, Ya.B.; Matyusha, A.A.

    1988-12-20

    The reaction of phenol with alcohols in the presence of aluminum phenolate leads to a mixture of 2- and 4-alkylphenols, of which the former predominate in the case of benzyl, tert-butyl, and cyclohexyl alcohols, and the latter in the case of dimethylphenyl- and diphenylmethylcarbinols. Only triphenyl(4-hydroxyphenyl)-methane is formed during the alkylation of phenol by triphenylcarbinol. In individual experiments the formation of small amounts of alkyl phenyl ethers and 2,6-dialkylphenols was observed.

  14. Registration of nine sorghum seed parent (A/B) lines

    USDA-ARS?s Scientific Manuscript database

    Nine sorghum [Sorghum bicolor (L.) Moench] A1 cyto plasmic-genic male sterile seed parent (A) and their maintainer (B) lines [KS 133A/B, KS 134A/B, KS 135A/B, KS 136A/B, KS 137A/B, KS 138A/B, KS 139A/B, KS 140A/B and KS 141A/B] were released by the Kansas State University, Agricultural Research Cent...

  15. Selective Hydrodeoxygenation of Alkyl Lactates to Alkyl Propionates with Fe-based Bimetallic Supported Catalysts.

    PubMed

    Khokarale, Santosh Govind; He, Jian; Schill, Leonhard; Yang, Song; Riisager, Anders; Saravanamurugan, Shunmugavel

    2018-02-22

    Hydrodeoxygenation (HDO) of methyl lactate (ML) to methyl propionate (MP) was performed with various base-metal supported catalysts. A high yield of 77 % MP was obtained with bimetallic Fe-Ni/ZrO 2 in methanol at 220 °C and 50 bar H 2 . A synergistic effect of Ni increased the yield of MP significantly when using Fe-Ni/ZrO 2 instead of Fe/ZrO 2 alone. Moreover, the ZrO 2 support contributed to improve the yield as a phase transition of ZrO 2 from tetragonal to monoclinic occurred after metal doping giving rise to fine dispersion of the Fe and Ni on the ZrO 2 , resulting in a higher catalytic activity of the material. Interestingly, it was observed that Fe-Ni/ZrO 2 also effectively catalyzed methanol reforming to produce H 2 in situ, followed by HDO of ML, yielding 60 % MP at 220 °C with 50 bar N 2 instead of H 2 . Fe-Ni/ZrO 2 also catalyzed HDO of other short-chain alkyl lactates to the corresponding alkyl propionates in high yields around 70 %. No loss of activity of Fe-Ni/ZrO 2 occurred in five consecutive reaction runs demonstrating the high durability of the catalyst system. © 2018 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  16. mAbs: a business perspective.

    PubMed

    Scolnik, Pablo A

    2009-01-01

    The twenty two monoclonal antibodies (mAbs) currently marketed in the U.S. have captured almost half of the top-20 U.S. therapeutic biotechnology sales for 2007. Eight of these products have annual sales each of more than $1 B, were developed in the relatively short average period of six years, qualified for FDA programs designed to accelerate drug approval, and their cost has been reimbursed liberally by payers. With growth of the product class driven primarily by advancements in protein engineering and the low probability of generic threats, mAbs are now the largest class of biological therapies under development. The high cost of these drugs and the lack of generic competition conflict with a financially stressed health system, setting reimbursement by payers as the major limiting factor to growth. Advances in mAb engineering are likely to result in more effective mAb drugs and an expansion of the therapeutic indications covered by the class. The parallel development of biomarkers for identifying the patient subpopulations most likely to respond to treatment may lead to a more cost-effective use of these drugs. To achieve the success of the current top-tier mAbs, companies developing new mAb products must adapt to a significantly more challenging commercial environment.

  17. Thermally Reduced Graphene Oxide Electrochemically Activated by Bis-Spiro Quaternary Alkyl Ammonium for Capacitors.

    PubMed

    He, Tieshi; Meng, Xiangling; Nie, Junping; Tong, Yujin; Cai, Kedi

    2016-06-08

    Thermally reduced graphene oxide (RGO) electrochemically activated by a quaternary alkyl ammonium-based organic electrolytes/activated carbon (AC) electrode asymmetric capacitor is proposed. The electrochemical activation process includes adsorption of anions into the pores of AC in the positive electrode and the interlayer intercalation of cations into RGO in the negative electrode under high potential (4.0 V). The EA process of RGO by quaternary alkyl ammonium was investigated by X-ray diffraction and electrochemical measurements, and the effects of cation size and structure were extensively evaluated. Intercalation by quaternary alkyl ammonium demonstrates a small degree of expansion of the whole crystal lattice (d002) and a large degree of expansion of the partial crystal lattice (d002) of RGO. RGO electrochemically activated by bis-spiro quaternary alkyl ammonium in propylene carbonate/AC asymmetric capacitor exhibits good activated efficiency, high specific capacity, and stable cyclability.

  18. Ada response - a strategy for repair of alkylated DNA in bacteria.

    PubMed

    Mielecki, Damian; Grzesiuk, Elżbieta

    2014-06-01

    Alkylating agents are widespread in the environment and also occur endogenously. They can be cytotoxic or mutagenic to the cells introducing alkylated bases to DNA or RNA. All organisms have evolved multiple DNA repair mechanisms to counteract the effects of DNA alkylation: the most cytotoxic lesion, N(3)-methyladenine (3meA), is excised by AlkA glycosylase initiating base excision repair (BER); toxic N(1)-methyladenine (1meA) and N(3)-methylcytosine (3meC), induced in DNA and RNA, are removed by AlkB dioxygenase; and mutagenic and cytotoxic O(6)-methylguanine (O(6) meG) is repaired by Ada methyltransferase. In Escherichia coli, Ada response involves the expression of four genes, ada, alkA, alkB, and aidB, encoding respective proteins Ada, AlkA, AlkB, and AidB. The Ada response is conserved among many bacterial species; however, it can be organized differently, with diverse substrate specificity of the particular proteins. Here, an overview of the organization of the Ada regulon and function of individual proteins is presented. We put special effort into the characterization of AlkB dioxygenases, their substrate specificity, and function in the repair of alkylation lesions in DNA/RNA. © 2014 The Authors. FEMS Microbiology Letters published by John Wiley & Sons Ltd on behalf of Federation of European Microbiological Societies.

  19. Enzymic aromatization of 6-alkyl-substituted androgens, potent competitive and mechanism-based inhibitors of aromatase.

    PubMed Central

    Numazawa, M; Yoshimura, A; Oshibe, M

    1998-01-01

    To gain insight into the relationships between the aromatase inhibitory activity of 6-alkyl-substituted androgens, potent competitive inhibitors, and their ability to serve as a substrate of aromatase, we studied the aromatization of a series of 6alpha- and 6beta-alkyl (methyl, ethyl, n-propyl, n-pentyl and n-heptyl)-substituted androst-4-ene-3,17-diones (ADs) and their androsta-1,4-diene-3,17-dione (ADD) derivatives with human placental aromatase, by gas chromatography-mass spectrometry. Among the inhibitors examined, ADD and its 6alpha-alkyl derivatives with alkyl functions less than three carbons long, together with 6beta-methyl ADD, are suicide substrates of aromatase. All of the steroids, except for 6beta-n-pentyl ADD and its n-heptyl analogue as well as 6beta-n-heptyl AD, were found to be converted into the corresponding 6-alkyl oestrogens. The 6-methyl steroids were aromatized most efficiently in each series, and the aromatization rate essentially decreased in proportion to the length of the 6-alkyl chains in each series, where the 6alpha-alkyl androgens were more efficient substrates than the corresponding 6beta isomers. The Vmax of 6alpha-methyl ADD was approx. 2.5-fold that of the natural substrate AD and approx. 3-fold that of the parent ADD. On the basis of this, along with the facts that the rates of a mechanism-based inactivation of aromatase by ADD and its 6alpha-methyl derivative are similar, it is implied that alignment of 6alpha-methyl ADD in the active site could favour the pathway leading to oestrogen over the inactivation pathway, compared with that of ADD. The relative apparent Km values for the androgens obtained in this study are different from the relative Ki values obtained previously, indicating that there is a difference between the ability to serve as an inhibitor and the ability to serve as a substrate in the 6-alkyl androgen series. PMID:9405288

  20. PROCESS FOR PRODUCING ALKYL ORTHOPHOSPHORIC ACID EXTRACTANTS

    DOEpatents

    Grinstead, R.R.

    1962-01-23

    A process is given for producing superior alkyl orthophosphoric acid extractants for use in solvent extraction methods to recover and purify various metals such as uranium and vanadium. The process comprises slurrying P/sub 2/O/ sub 5/ in a solvent diluent such as kerosene, benzene, isopropyl ether, and the like. An alipbatic alcohol having from nine to seventeen carbon atoms, and w- hcrein ihc OH group is situated inward of the terminal carbon atoms, is added to the slurry while the reaction temperature is mainiained below 60 deg C. The alcohol is added in the mole ratio of about 2 to l, alcohol to P/sub 2/O/sub 5/. A pyrophosphate reaotion product is formed in the slurry-alcohol mixture. Subsequently, the pyrophosphate reaction product is hydrolyzed with dilute mineral acid to produce the desired alkyl orthophosphoric aeid extractant. The extraetant may then be separated and utilized in metal-recovery, solvent- extraction processes. (AEC)

  1. Merging Photoredox with 1,2-Metallate Rearrangements: The Photochemical Alkylation of Vinyl Boronate Complexes.

    PubMed

    Silvi, Mattia; Sandford, Christopher; Aggarwal, Varinder K

    2017-04-26

    Vinyl boronates react with electron-deficient alkyl iodides in the presence of visible light to give boronic esters in which two new C-C bonds have been created. The reaction occurs by radical addition of an electron-deficient alkyl radical to the vinyl boronate followed by electron transfer with another molecule of alkyl iodide, continuing the chain, and triggering a 1,2-metalate rearrangement. In a number of cases, the use of a photoredox catalyst enhances yields significantly. The scope of the radical precursor includes α-iodo ketones, esters, nitriles, primary amides, α-fluorinated halo-acetates and perfluoroalkyl iodides.

  2. Synthesis and Reactivity of Alkyl-1,1,1-trisphosphonate Esters

    PubMed Central

    Smits, Jacqueline P.; Wiemer, David F.

    2011-01-01

    The α–trisphosphonic acid esters provide a unique spatial arrangement of three phosphonate groups, and may represent an attractive motif for inhibitors of enzymes that utilize di- or triphosphate substrates. To advance studies of this unique functionality, a general route to alkyl derivatives of the parent system (R = H) has been developed. A set of new α-alkyl-1,1,1-trisphosphonate esters has been prepared through phosphinylation and subsequent oxidation of tetraethyl alkylbisphosphonates, and the reactivity of these new compounds has been studied in representative reactions that afford additional examples of this functionality. PMID:21916407

  3. Alkyl phospholipid antihypertensive agents in method of lowering blood pressure

    DOEpatents

    Snyder, Fred L.; Blank, Merle L.; Muirhead, Ernest E.; Leach, deceased, Byron E.; Byers, Lawrence W.

    1988-01-01

    The composition of this invention is 1-O-alkyl-2-acetoyl-sn-glycero-3-phosphocholine, having the ionic structural formula; ##STR1## wherein R is saturated alkyl having 9-21 carbon atoms, or salts or hydrates of the composition. Preferably R has 13-19 carbon atoms and most preferably R has 15 carbon atoms. The composition of this invention is useful for reducing hypertension in warm-blooded animals, including humans, when administered either orally or by injection or innoculation, e.g., intravenous injection. The composition can be prepared from naturally occurring lipids or synthetically from commercially available material.

  4. 40 CFR 721.8700 - Halogenated alkyl pyridine.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... CONTROL ACT SIGNIFICANT NEW USES OF CHEMICAL SUBSTANCES Significant New Uses for Specific Chemical Substances § 721.8700 Halogenated alkyl pyridine. (a) Chemical substances and significant new uses subject to... subject to reporting under this section for the significant new uses described in paragraph (a)(1)(i) of...

  5. 40 CFR 721.8700 - Halogenated alkyl pyridine.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... CONTROL ACT SIGNIFICANT NEW USES OF CHEMICAL SUBSTANCES Significant New Uses for Specific Chemical Substances § 721.8700 Halogenated alkyl pyridine. (a) Chemical substances and significant new uses subject to... subject to reporting under this section for the significant new uses described in paragraph (a)(1)(i) of...

  6. Methods of making alkyl esters

    DOEpatents

    Elliott, Brian

    2010-08-03

    A method comprising contacting an alcohol, a feed comprising one or more glycerides and equal to or greater than 2 wt % of one or more free fatty acids, and a solid acid catalyst, a nanostructured polymer catalyst, or a sulfated zirconia catalyst in one or more reactors, and recovering from the one or more reactors an effluent comprising equal to or greater than about 75 wt % alkyl ester and equal to or less than about 5 wt % glyceride.

  7. Mild and Low-Pressure fac-Ir(ppy)3 -Mediated Radical Aminocarbonylation of Unactivated Alkyl Iodides through Visible-Light Photoredox Catalysis.

    PubMed

    Chow, Shiao Y; Stevens, Marc Y; Åkerbladh, Linda; Bergman, Sara; Odell, Luke R

    2016-06-27

    A novel, mild and facile preparation of alkyl amides from unactivated alkyl iodides employing a fac-Ir(ppy)3 -catalyzed radical aminocarbonylation protocol has been developed. Using a two-chambered system, alkyl iodides, fac-Ir(ppy)3 , amines, reductants, and CO gas (released ex situ from Mo(CO)6 ), were combined and subjected to an initial radical reductive dehalogenation generating alkyl radicals, and a subsequent aminocarbonylation with amines affording a wide range of alkyl amides in moderate to excellent yields. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  8. Ab initio vel ex eventu

    NASA Astrophysics Data System (ADS)

    Thiessen, P. A.; Treder, H.-J.

    Der gegenwärtige Stand der physikalischen Erkenntnis, in Sonderheit die Atomistik und die Quantentheorie, ermöglicht (in wohldefinierten Energie-Bereichen) eine ab initio-Berechnung aller physikalischen und chemischen Prozesse und Strukturen. Die Schrödinger-Gleichung erlaubt zusammen mit den Prinzipien der Quantenstatistik (Pauli-Prinzip) aus dem Planckschen Wirkungsquantum h und den atomischen Konstanten die Berechnung aller Energieumsätze, Zeitabläufe etc., die insbesondere die chemische Physik bestimmen. Die Rechenresultate gelten auch quantitativ bis auf die unvermeidliche Stochastik.Die ab initio-Berechnungen korrespondieren einerseits und sind andererseits komplementär zu den auf den Methoden der theoretischen Chemie und der klassischen Thermodynamik beruhenden Ergebnissen ex eventu. Die theoretische Behandlung ab initio führt zu mathematischen Experimenten, die die Laboratoriums-Experimente ergänzen oder auch substituieren.Translated AbstractAb initio vel ex eventuThe present state of physical knowledge, in peculiar atomistic and quantum theory, makes an ab initio calculation of all physical and chemical processes and structures possible (in well defined reaches of energy). The Schrödinger equation together with the principles of quantum statistics (Pauli principle) permits from the Planck and atomistic constants to calculate all exchanges of energy, courses of time, etc. which govern chemical physics. The calculated results are valid even quantitatively apart from the unavoidable stochastics.These ab initio calculations on the one hand correspond and are on the other complimentary to results ex eventu based on the methods of theoretical chemistry and classical thermodynamics. Theoretical treatment ab initio leads to mathematical experiments which add to or even substitute experiments in the laboratory.

  9. Ada response – a strategy for repair of alkylated DNA in bacteria

    PubMed Central

    Mielecki, Damian; Grzesiuk, Elżbieta

    2014-01-01

    Alkylating agents are widespread in the environment and also occur endogenously. They can be cytotoxic or mutagenic to the cells introducing alkylated bases to DNA or RNA. All organisms have evolved multiple DNA repair mechanisms to counteract the effects of DNA alkylation: the most cytotoxic lesion, N3-methyladenine (3meA), is excised by AlkA glycosylase initiating base excision repair (BER); toxic N1-methyladenine (1meA) and N3-methylcytosine (3meC), induced in DNA and RNA, are removed by AlkB dioxygenase; and mutagenic and cytotoxic O6-methylguanine (O6meG) is repaired by Ada methyltransferase. In Escherichia coli, Ada response involves the expression of four genes, ada, alkA, alkB, and aidB, encoding respective proteins Ada, AlkA, AlkB, and AidB. The Ada response is conserved among many bacterial species; however, it can be organized differently, with diverse substrate specificity of the particular proteins. Here, an overview of the organization of the Ada regulon and function of individual proteins is presented. We put special effort into the characterization of AlkB dioxygenases, their substrate specificity, and function in the repair of alkylation lesions in DNA/RNA. PMID:24810496

  10. Rotational diffusion of nonpolar and ionic solutes in 1-alkyl-3-methylimidazolium bis(trifluoromethylsulfonyl)imides: is solute rotation always influenced by the length of the alkyl chain on the imidazolium cation?

    PubMed

    Gangamallaiah, V; Dutt, G B

    2012-10-25

    In an attempt to find out whether the length of the alkyl chain on the imidazolium cation has a bearing on solute rotation, temperature-dependent fluorescence anisotropies of three structurally similar solutes have been measured in a series of 1-alkyl-3-methylimidazolium (alkyl = methyl, ethyl, propyl, butyl, and hexyl) bis(trifluoromethylsulfonyl)imides. Solute-solvent coupling constants obtained from the experimentally measured reorientation times with the aid of Stokes-Einstein-Debye hydrodynamic theory indicate that there is no influence of the length of the alkyl chain on the rotation of nonpolar, anionic, and cationic solutes 9-phenylanthracene (9-PA), fluorescein (FL), and rhodamine 110 (R110), respectively. It has also been noticed that the rotational diffusion of 9-PA is closer to the predictions of slip hydrodynamics, whereas the rotation of negatively charged FL and positively charged R110 is almost identical and follows stick hydrodynamics in these ionic liquids. Despite having similar shape and size, ionic solutes rotate slower by a factor of 3-4 compared to the nonpolar solute. Interplay of specific and electrostatic interactions between FL and the imidazolium cation of the ionic liquids, and between R110 and the bis(trifluoromethylsulfonyl)imide anion, appear to be responsible for the observed behavior. These results are an indication that the length of the alkyl chain on the imidazolium cation does not alter their physical properties in a manner that has an effect on solute rotation.

  11. The photodissociation dynamics of alkyl radicals

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Giegerich, Jens; Fischer, Ingo, E-mail: ingo.fischer@uni-wuerzburg.de

    2015-01-28

    The photodisscociation dynamics of the alkyl radicals i-propyl (CH(CH{sub 3}){sub 2}) and t-butyl (C(CH{sub 3}){sub 3}) are investigated by H-atom photofragment imaging. While i-propyl is excited at 250 nm, the photodynamics of t-butyl are explored over a large energy range using excitation wavelengths between 347 nm and 233 nm. The results are compared to those obtained previously for ethyl, CH{sub 3}CH{sub 2}, and to those reported for t-butyl using 248 nm excitation. The translational energy (E{sub T}) distribution of the H-atom photofragments is bimodal and appears rather similar for all three radicals. The low E{sub T} part of the distributionmore » shows an isotropic photofragment angular distribution, while the high E{sub T} part is associated with a considerable anisotropy. Thus, for t-butyl, two H-atom loss channels of roughly equal importance have been identified in addition to the CH{sub 3}-loss channel reported previously. A mechanism for the photodissociation of alkyl radicals is suggested that is based on interactions between Rydberg- and valence states.« less

  12. Nitric oxide donors attenuate clongenic potential in rat C6 glioma cells treated with alkylating chemotherapeutic agents.

    PubMed

    Yang, Jir-Jei; Yin, Jiu-Haw; Yang, Ding-I

    2007-05-11

    1,3-Bis(2-chloroethyl)-1-nitrosourea (BCNU) kills tumor cells via multiple actions including alkylation and carbamoylation. Previously, we have reported that formation of S-nitrosoglutathione (GSNO) in glioma cells overexpressing inducible nitric oxide synthase (iNOS) contributed to nitric oxide (NO)-dependent carbamoylating chemoresistance against BCNU. To further characterize the effects of NO on alkylating cytotoxicity, colony formation assay was applied to evaluate the effects of various NO donors on rat C6 glioma cells challenged with alkylating agents. We demonstrate that NO donors including GSNO, diethylamine NONOate (DEA/NO), and sodium nitroprusside (SNP) substantially reduced the extent of colony formation in glioma cells treated with alkylating agents, namely methyl methanesulfonate (MMS), N-methyl-N-nitrosourea (MNU), and N-ethyl-N-nitrosourea (ENU). Without alkylating agents these NO-releasing agents alone had no effects on clongenic potential of rat C6 glioma cells. Among these three NO donors used, the effectiveness in potentiating alkylating cytotoxicity is in the order of "GSNO>DEA/NO>SNP" when applied at the same dosages. GSNO also exerted similar synergistic actions reducing the extents of colony formation when co-administrated with 1,2-bis(methylsulfonyl)-1-(2-chloroethyl)-hydrazine (compound #1), another alkylating agent that mimics the chloroethylating action of BCNU. Together with our previous findings, we propose that NO donors may be used as adjunct chemotherapy with alkylating agents for such malignant brain tumors as glioblastoma multiforme (GBM). In contrast, production of NO as a result of iNOS induction, such as that occurring after surgical resection of brain tumors, may compromise the efficacy of carbamoylating chemotherapy.

  13. Alkylating agent (MNU)-induced mutation in space environment

    NASA Astrophysics Data System (ADS)

    Ohnishi, T.; Takahashi, A.; Ohnishi, K.; Takahashi, S.; Masukawa, M.; Sekikawa, K.; Amano, T.; Nakano, T.; Nagaoka, S.

    2001-01-01

    In recent years, some contradictory data about the effects of microgravity on radiation-induced biological responses in space experiments have been reported. We prepared a damaged template DNA produced with an alkylating agent (N-methyl-N-nitroso urea; MNU) to measure incorrect base-incorporation during DNA replication in microgravity. We examined whether mutation frequency is affected by microgravity during DNA replication for a DNA template damaged by an alkylating agent. Using an in vitro enzymatic reaction system, DNA synthesis by Taq polymerase or polymerase III was done during a US space shuttle mission (Discovery, STS-91). After the flight, DNA replication and mutation frequencies were measured. We found that there was almost no effect of microgravity on DNA replication and mutation frequency. It is suggested that microgravity might not affect at the stage of substrate incorporation in induced-mutation frequency.

  14. 46 CFR 153.560 - Special requirements for Alkyl (C7-C9) nitrates.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 46 Shipping 5 2011-10-01 2011-10-01 false Special requirements for Alkyl (C7-C9) nitrates. 153.560... Equipment Special Requirements § 153.560 Special requirements for Alkyl (C7-C9) nitrates. (a) The carriage temperature of octyl nitrates must be maintained below 100 °C (212 °F) in order to prevent the occurrence of a...

  15. 46 CFR 153.560 - Special requirements for Alkyl (C7-C9) nitrates.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 46 Shipping 5 2013-10-01 2013-10-01 false Special requirements for Alkyl (C7-C9) nitrates. 153.560... Equipment Special Requirements § 153.560 Special requirements for Alkyl (C7-C9) nitrates. (a) The carriage temperature of octyl nitrates must be maintained below 100 °C (212 °F) in order to prevent the occurrence of a...

  16. 46 CFR 153.560 - Special requirements for Alkyl (C7-C9) nitrates.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... 46 Shipping 5 2014-10-01 2014-10-01 false Special requirements for Alkyl (C7-C9) nitrates. 153.560... Equipment Special Requirements § 153.560 Special requirements for Alkyl (C7-C9) nitrates. (a) The carriage temperature of octyl nitrates must be maintained below 100 °C (212 °F) in order to prevent the occurrence of a...

  17. 46 CFR 153.560 - Special requirements for Alkyl (C7-C9) nitrates.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... 46 Shipping 5 2012-10-01 2012-10-01 false Special requirements for Alkyl (C7-C9) nitrates. 153.560... Equipment Special Requirements § 153.560 Special requirements for Alkyl (C7-C9) nitrates. (a) The carriage temperature of octyl nitrates must be maintained below 100 °C (212 °F) in order to prevent the occurrence of a...

  18. 46 CFR 153.560 - Special requirements for Alkyl (C7-C9) nitrates.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 46 Shipping 5 2010-10-01 2010-10-01 false Special requirements for Alkyl (C7-C9) nitrates. 153.560... Equipment Special Requirements § 153.560 Special requirements for Alkyl (C7-C9) nitrates. (a) The carriage temperature of octyl nitrates must be maintained below 100 °C (212 °F) in order to prevent the occurrence of a...

  19. 40 CFR 721.10038 - Trimellitic anhydride, polymer with substituted glycol, alkyl phenols and ethoxylated nonylphenol...

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 40 Protection of Environment 30 2010-07-01 2010-07-01 false Trimellitic anhydride, polymer with... Trimellitic anhydride, polymer with substituted glycol, alkyl phenols and ethoxylated nonylphenol (generic... identified generically as trimellitic anhydride, polymer with substituted glycol, alkyl phenols and...

  20. 40 CFR 721.10038 - Trimellitic anhydride, polymer with substituted glycol, alkyl phenols and ethoxylated nonylphenol...

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 40 Protection of Environment 31 2011-07-01 2011-07-01 false Trimellitic anhydride, polymer with... Trimellitic anhydride, polymer with substituted glycol, alkyl phenols and ethoxylated nonylphenol (generic... identified generically as trimellitic anhydride, polymer with substituted glycol, alkyl phenols and...

  1. 40 CFR 721.10038 - Trimellitic anhydride, polymer with substituted glycol, alkyl phenols and ethoxylated nonylphenol...

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 40 Protection of Environment 32 2012-07-01 2012-07-01 false Trimellitic anhydride, polymer with... Trimellitic anhydride, polymer with substituted glycol, alkyl phenols and ethoxylated nonylphenol (generic... identified generically as trimellitic anhydride, polymer with substituted glycol, alkyl phenols and...

  2. 40 CFR 721.10038 - Trimellitic anhydride, polymer with substituted glycol, alkyl phenols and ethoxylated nonylphenol...

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 40 Protection of Environment 32 2013-07-01 2013-07-01 false Trimellitic anhydride, polymer with... Trimellitic anhydride, polymer with substituted glycol, alkyl phenols and ethoxylated nonylphenol (generic... identified generically as trimellitic anhydride, polymer with substituted glycol, alkyl phenols and...

  3. 40 CFR 721.10038 - Trimellitic anhydride, polymer with substituted glycol, alkyl phenols and ethoxylated nonylphenol...

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 40 Protection of Environment 31 2014-07-01 2014-07-01 false Trimellitic anhydride, polymer with... Trimellitic anhydride, polymer with substituted glycol, alkyl phenols and ethoxylated nonylphenol (generic... identified generically as trimellitic anhydride, polymer with substituted glycol, alkyl phenols and...

  4. Structural and Biophysical Characterization of Bacillus thuringiensis Insecticidal Proteins Cry34Ab1 and Cry35Ab1

    PubMed Central

    Kelker, Matthew S.; Berry, Colin; Evans, Steven L.; Pai, Reetal; McCaskill, David G.; Wang, Nick X.; Russell, Joshua C.; Baker, Matthew D.; Yang, Cheng; Pflugrath, J. W.; Wade, Matthew; Wess, Tim J.; Narva, Kenneth E.

    2014-01-01

    Bacillus thuringiensis strains are well known for the production of insecticidal proteins upon sporulation and these proteins are deposited in parasporal crystalline inclusions. The majority of these insect-specific toxins exhibit three domains in the mature toxin sequence. However, other Cry toxins are structurally and evolutionarily unrelated to this three-domain family and little is known of their three dimensional structures, limiting our understanding of their mechanisms of action and our ability to engineer the proteins to enhance their function. Among the non-three domain Cry toxins, the Cry34Ab1 and Cry35Ab1 proteins from B. thuringiensis strain PS149B1 are required to act together to produce toxicity to the western corn rootworm (WCR) Diabrotica virgifera virgifera Le Conte via a pore forming mechanism of action. Cry34Ab1 is a protein of ∼14 kDa with features of the aegerolysin family (Pfam06355) of proteins that have known membrane disrupting activity, while Cry35Ab1 is a ∼44 kDa member of the toxin_10 family (Pfam05431) that includes other insecticidal proteins such as the binary toxin BinA/BinB. The Cry34Ab1/Cry35Ab1 proteins represent an important seed trait technology having been developed as insect resistance traits in commercialized corn hybrids for control of WCR. The structures of Cry34Ab1 and Cry35Ab1 have been elucidated to 2.15 Å and 1.80 Å resolution, respectively. The solution structures of the toxins were further studied by small angle X-ray scattering and native electrospray ion mobility mass spectrometry. We present here the first published structure from the aegerolysin protein domain family and the structural comparisons of Cry34Ab1 and Cry35Ab1 with other pore forming toxins. PMID:25390338

  5. Safety Assessment of Alkyl Esters as Used in Cosmetics.

    PubMed

    Fiume, Monice M; Heldreth, Bart A; Bergfeld, Wilma F; Belsito, Donald V; Hill, Ronald A; Klaassen, Curtis D; Liebler, Daniel C; Marks, James G; Shank, Ronald C; Slaga, Thomas J; Snyder, Paul W; Andersen, F Alan

    2015-09-01

    The Cosmetic Ingredient Review Expert Panel (Panel) assessed the safety of 237 alkyl esters for use in cosmetics. The alkyl esters included in this assessment have a variety of reported functions in cosmetics, with skin-conditioning agent being the most common function. The Panel reviewed available animal and clinical data in making its determination of safety on these ingredients, and where there were data gaps, similarity in structure, properties, functions, and uses of these ingredients allowed for extrapolation of the available toxicological data to assess the safety of the entire group. The Panel concluded that these ingredients are safe in cosmetic formulations in the present practices of use and concentration when formulated to be nonirritating. © The Author(s) 2015.

  6. Synthesis of Alkyl-Glycerolipids Standards for Gas Chromatography Analysis: Application for Chimera and Shark Liver Oils

    PubMed Central

    Pinault, Michelle; Guimaraes, Cyrille; Couthon, Hélène; Thibonnet, Jérôme; Fontaine, Delphine; Chantôme, Aurélie; Chevalier, Stephan; Jaffrès, Paul-Alain; Vandier, Christophe

    2018-01-01

    Natural O-alkyl-glycerolipids, also known as alkyl-ether-lipids (AEL), feature a long fatty alkyl chain linked to the glycerol unit by an ether bond. AEL are ubiquitously found in different tissues but, are abundant in shark liver oil, breast milk, red blood cells, blood plasma, and bone marrow. Only a few AEL are commercially available, while many others with saturated or mono-unsaturated alkyl chains of variable length are not available. These compounds are, however, necessary as standards for analytical methods. Here, we investigated different reported procedures and we adapted some of them to prepare a series of 1-O-alkyl-glycerols featuring mainly saturated alkyl chains of various lengths (14:0, 16:0, 17:0, 19:0, 20:0, 22:0) and two monounsaturated chains (16:1, 18:1). All of these standards were fully characterized by NMR and GC-MS. Finally, we used these standards to identify the AEL subtypes in shark and chimera liver oils. The distribution of the identified AEL were: 14:0 (20–24%), 16:0 (42–54%) and 18:1 (6–16%) and, to a lesser extent, (0.2–2%) for each of the following: 16:1, 17:0, 18:0, and 20:0. These standards open the possibilities to identify AEL subtypes in tumours and compare their composition to those of non-tumour tissues. PMID:29570630

  7. Alkyl nitrate (C1-C3) depth profiles in the tropical Pacific Ocean

    NASA Astrophysics Data System (ADS)

    Dahl, E. E.; Yvon-Lewis, S. A.; Saltzman, E. S.

    2007-01-01

    This paper reports the first depth profile measurements of methyl, ethyl, isopropyl and n-propyl nitrates in the tropical Pacific Ocean. Depth profile measurements were made at 22 stations during the Project Halocarbon Air Sea Exchange cruise, in warm pool, equatorial, subequatorial, and gyre waters. The highest concentrations, up to several hundred pM of methyl nitrate, were observed in the central Pacific within 8 degrees of the equator. In general, alkyl nitrate levels were highest in the surface mixed layer, and decreased with depth below the mixed layer. The spatial distribution of the alkyl nitrates suggests that there is a strong source associated with biologically productive ocean regions, that is characterized by high ratios of methyl:ethyl nitrate. However, the data do not allow discrimination between direct biological emissions and photochemistry as production mechanisms. Alkyl nitrates were consistently detectable at several hundred meters depth. On the basis of the estimated chemical loss rate of these compounds, we conclude that deep water alkyl nitrates must be produced in situ. Possible sources include free radical processes initiated by radioactive decay or cosmic rays, enzymatically mediated reactions involving bacteria, or unidentified chemical mechanisms involving dissolved organic matter.

  8. BIODEGRADABILITY OF ALKYLATES AS A SOLE CARBON SOURCE IN THE PRESENCE OF ETHANOL OR BTEX

    EPA Science Inventory

    The biodegradability of alkylate compounds in serum bottles was investigated in the presence and absence of ethanol or benzene, toluene, ethylbenzene, and p-xylene (BTEX). The biomass was acclimated to three different alkylates, 2,3-dimethylpentane, 2,4-dimethylpentane, an...

  9. Fluorinated Alkyl Ether Epoxy Resin Compositions and Applications Thereof

    NASA Technical Reports Server (NTRS)

    Connell, John W. (Inventor); Wohl, Christopher J. (Inventor); Siochi, Emilie J. (Inventor); Gardner, John M. (Inventor); Smith, Joseph G. (Inventor); Palmieri, Frank M. (Inventor)

    2017-01-01

    Epoxy resin compositions prepared using amino terminated fluoro alkyl ethers. The epoxy resin compositions exhibit low surface adhesion properties making them useful as coatings, paints, moldings, adhesives, and fiber reinforced composites.

  10. Solvent (acetone-butanol: ab) production

    USDA-ARS?s Scientific Manuscript database

    This article describes production of butanol [acetone-butanol-ethanol, (also called AB or ABE or solvent)] by fermentation using both traditional and current technologies. AB production from agricultural commodities, such as corn and molasses, was an important historical fermentation. Unfortunately,...

  11. S - and N-alkylating agents diminish the fluorescence of fluorescent dye-stained DNA.

    PubMed

    Giesche, Robert; John, Harald; Kehe, Kai; Schmidt, Annette; Popp, Tanja; Balzuweit, Frank; Thiermann, Horst; Gudermann, Thomas; Steinritz, Dirk

    2017-01-25

    Sulfur mustard (SM), a chemical warfare agent, causes DNA alkylation, which is believed to be the main cause of its toxicity. SM DNA adducts are commonly used to verify exposure to this vesicant. However, the required analytical state-of-the-art mass-spectrometry methods are complex, use delicate instruments, are not mobile, and require laboratory infrastructure that is most likely not available in conflict zones. Attempts have thus been made to develop rapid detection methods that can be used in the field. The analysis of SM DNA adducts (HETE-G) by immunodetection is a convenient and suitable method. For a diagnostic assessment, HETE-G levels must be determined in relation to the total DNA in the sample. Total DNA can be easily visualized by the use of fluorescent DNA dyes. This study examines whether SM and related compounds affect total DNA staining, an issue that has not been investigated before. After pure DNA was extracted from human keratinocytes (HaCaT cells), DNA was exposed to different S- and N-alkylating agents. Our experiments revealed a significant, dose-dependent decrease in the fluorescence signal of fluorescent dye-stained DNA after exposure to alkylating agents. After mass spectrometry and additional fluorescence measurements ruled out covalent modifications of ethidium bromide (EthBr) by SM, we assumed that DNA crosslinks caused DNA condensation and thereby impaired access of the fluorescent dyes to the DNA. DNA digestion by restriction enzymes restored fluorescence, a fact that strengthened our hypothesis. However, monofunctional agents, which are unable to crosslink DNA, also decreased the fluorescence signal. In subsequent experiments, we demonstrated that protons produced during DNA alkylation caused a pH decrease that was found responsible for the reduction in fluorescence. The use of an appropriate buffer system eliminated the adverse effect of alkylating agents on DNA staining with fluorescent dyes. An appropriate buffer system is thus

  12. 40 CFR 721.647 - Alkoxylated alkyl amine (generic).

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ....647 Section 721.647 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) TOXIC SUBSTANCES CONTROL ACT SIGNIFICANT NEW USES OF CHEMICAL SUBSTANCES Significant New Uses for Specific Chemical Substances § 721.647 Alkoxylated alkyl amine (generic). (a) Chemical substance and significant new uses...

  13. 40 CFR 721.2155 - Alkoxyamino-alkyl-coumarin (generic).

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ...). 721.2155 Section 721.2155 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) TOXIC SUBSTANCES CONTROL ACT SIGNIFICANT NEW USES OF CHEMICAL SUBSTANCES Significant New Uses for Specific Chemical Substances § 721.2155 Alkoxyamino-alkyl-coumarin (generic). (a) Chemical substance and significant new uses...

  14. In Vitro Study of Bacteriophage AB3 Endolysin LysAB3 Activity Against Acinetobacter baumannii Biofilm and Biofilm-Bound A. baumannii.

    PubMed

    Zhang, Jie; Xu, Lu-Lu; Gan, Dan; Zhang, Xingping

    2018-06-01

    The increase in the prevalence of drug-resistant Acinetobacter baumannii is a serious public health concern, which is closely linked to the formation of biofilm. It is reported that the bacteriophage and its endolysin have a good ability to degrade biofilms. The goals of this study were to compare the ability of A. baumannii bacteriophage AB3, its endolysin AB3, and three antibiotics to degrade A. baumannii biofilm and biofilm-bound A. baumannii and to understand the antibacterial mechanism of LysAB3. The 558-bp sequence of the LysAB3 gene was amplified by polymerase chain reaction (PCR); the fragment was cloned into pET28a (+) to construct the recombinant plasmid pET28a-LysAB3, which was then expressed in E. coli BL21 (DE3) to obtain the LysAB3. Differences in A. baumannii biofilm and biofilm-bound A. baumannii after treatment with bacteriophage AB3, LysAB3 or three antibiotics were examined using the crystal violet staining method and an MTT (3-[4,5-dimethylthiazole-2-yl]-2,5-diphenyltetrazolium bromide) assay. Changes in biofilm morphology and thickness in each treatment group were observed by laser scanning confocal microscopy. In addition, a LysAB3 construct with the amphiphilic peptide structural region removed (LysAB3-D) was assessed for its antibacterial activity. After 24-hour treatment with either bacteriophage AB3 and its LysAB3, A. baumannii biofilms were significantly degraded, and the number of viable biofilm-bound A. baumannii were also significantly decreased. After removing the amphiphilic peptide structure motif from LysAB3, the antibacterial activity decreased from 95.8% to 33.3%. Thus, LysAB3 can effectively degrade A. baumannii biofilm and biofilm-bound A. baumannii in vitro. The antibacterial mechanism of LysAB3 may be associated with the ability of the amphiphilic peptide structural region to enhance the permeability of cytoplasmic membrane of A. baumannii by degradation of bacterial wall peptidoglycan.

  15. Ab-initio calculation of electronic structure and optical properties of AB-stacked bilayer α-graphyne

    NASA Astrophysics Data System (ADS)

    Behzad, Somayeh

    2016-09-01

    Monolayer α-graphyne is a new two-dimensional carbon allotrope with many special features. In this work the electronic properties of AA- and AB-stacked bilayers of this material and then the optical properties are studied, using first principle plane wave method. The electronic spectrum has two Dirac cones for AA stacked bilayer α-graphyne. For AB-stacked bilayer, the interlayer interaction changes the linear bands into parabolic bands. The optical spectra of the most stable AB-stacked bilayer closely resemble to that of the monolayer, except for small shifts of peak positions and increasing of their intensity. For AB-stacked bilayer, a pronounced peak has been found at low energies under the perpendicular polarization. This peak can be clearly ascribed to the transitions at the Dirac point as a result of the small degeneracy lift in the band structure.

  16. Inducible repair of alkylated DNA in microorganisms.

    PubMed

    Mielecki, Damian; Wrzesiński, Michał; Grzesiuk, Elżbieta

    2015-01-01

    Alkylating agents, which are widespread in the environment, also occur endogenously as primary and secondary metabolites. Such compounds have intrinsically extremely cytotoxic and frequently mutagenic effects, to which organisms have developed resistance by evolving multiple repair mechanisms to protect cellular DNA. One such defense against alkylation lesions is an inducible Adaptive (Ada) response. In Escherichia coli, the Ada response enhances cell resistance by the biosynthesis of four proteins: Ada, AlkA, AlkB, and AidB. The glycosidic bonds of the most cytotoxic lesion, N3-methyladenine (3meA), together with N3-methylguanine (3meG), O(2)-methylthymine (O(2)-meT), and O(2)-methylcytosine (O(2)-meC), are cleaved by AlkA DNA glycosylase. Lesions such as N1-methyladenine (1meA) and N3-methylcytosine (3meC) are removed from DNA and RNA by AlkB dioxygenase. Cytotoxic and mutagenic O(6)-methylguanine (O(6)meG) is repaired by Ada DNA methyltransferase, which transfers the methyl group onto its own cysteine residue from the methylated oxygen. We review (i) the individual Ada proteins Ada, AlkA, AlkB, AidB, and COG3826, with emphasis on the ubiquitous and versatile AlkB and its prokaryotic and eukaryotic homologs; (ii) the organization of the Ada regulon in several bacterial species; (iii) the mechanisms underlying activation of Ada transcription. In vivo and in silico analysis of various microorganisms shows the widespread existence and versatile organization of Ada regulon genes, including not only ada, alkA, alkB, and aidB but also COG3826, alkD, and other genes whose roles in repair of alkylated DNA remain to be elucidated. This review explores the comparative organization of Ada response and protein functions among bacterial species beyond the classical E. coli model. Copyright © 2014 Elsevier B.V. All rights reserved.

  17. Field Trial Performance of Herculex XTRA (Cry34Ab1/Cry35Ab1) and SmartStax (Cry34Ab1/Cry35Ab1 + Cry3Bb1) Hybrids and Soil Insecticides Against Western and Northern Corn Rootworms (Coleoptera: Chrysomelidae).

    PubMed

    Johnson, K D; Campbell, L A; Lepping, M D; Rule, D M

    2017-06-01

    Western corn rootworm, Diabrotica virgifera virgifera LeConte (Coleoptera: Chrysomelidae), and northern corn rootworm, Diabrotica barberi Smith and Lawrence (Coleoptera: Chrysomelidae), are important insect pests in corn, Zea mays L. For more than a decade, growers have been using transgenic plants expressing proteins from the bacterium Bacillus thuringiensis (Bt) to protect corn roots from feeding. In 2011, western corn rootworm populations were reported to have developed resistance to Bt hybrids expressing Cry3Bb1 and later found to be cross-resistant to hybrids expressing mCry3A and eCry3.1Ab. The identification of resistance to Cry3 (Cry3Bb1, mCry3A, and eCry3.1Ab) hybrids led to concerns about durability and efficacy of products with single traits and of products containing a pyramid of a Cry3 protein and the binary Bt proteins Cry34Ab1 and Cry35Ab1. From 2012 to 2014, 43 field trials were conducted across the central United States to estimate root protection provided by plants expressing Cry34Ab1/Cry35Ab1 alone (Herculex RW) or pyramided with Cry3Bb1 (SmartStax). These technologies were evaluated with and without soil-applied insecticides to determine if additional management measures provided benefit where Cry3 performance was reduced. Trials were categorized for analysis based on rootworm damage levels on Cry3-expressing hybrids and rootworm feeding pressure within each trial. Across scenarios, Cry34Ab1/Cry35Ab1 hybrids provided excellent root protection. Pyramided traits provided greater root and yield protection than non-Bt plus a soil-applied insecticide, and only in trials where larval feeding pressure exceeded two nodes of damage did Cry34Ab1/Cry35Ab1 single-trait hybrids and pyramided hybrids show greater root protection from the addition of soil-applied insecticides. © The Authors 2017. Published by Oxford University Press on behalf of Entomological Society of America. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

  18. Synthesis and Antioxidant Activity of Hydroxytyrosol Alkyl-Carbonate Derivatives.

    PubMed

    Fernandez-Pastor, Ignacio; Fernandez-Hernandez, Antonia; Rivas, Francisco; Martinez, Antonio; Garcia-Granados, Andres; Parra, Andres

    2016-07-22

    Three procedures have been investigated for the isolation of tyrosol (1) and hydroxytyrosol (2) from a phenolic extract obtained from the solid residue of olive milling. These three methods, which facilitated the recovery of these phenols, were chemical or enzymatic acetylation, benzylation, and carbomethoxylation, and subsequent carbonylation or acetonation reactions. Several new lipophilic alkyl-carbonate derivatives of hydroxytyrosol have been synthesized, coupling the primary hydroxy group of this phenol, through a carbonate linker, using alcohols with different chain lengths. The antioxidant properties of these lipophilic derivatives have been evaluated by different methods and compared with free hydroxytyrosol (2) and also with the well-known antioxidants BHT and α-tocopherol. Three methods were used for the determination of this antioxidant activity: FRAP and ABTS assays, to test the antioxidant power in hydrophilic media, and the Rancimat test, to evaluate the antioxidant capacity in a lipophilic matrix. These new alkyl-carbonate derivatives of hydroxytyrosol enhanced the antioxidant activity of this natural phenol, with their antioxidant properties also being higher than those of the commercial antioxidants BHT and α-tocopherol. There was no clear influence of the side-chain length on the antioxidant properties of the alkyl-carbonate derivatives of 2, although the best results were achieved mainly by the compounds with a longer chain on the primary hydroxy group of this natural phenolic substance.

  19. Cu/Mn bimetallic catalysis enables carbonylative Suzuki-Miyaura coupling with unactivated alkyl electrophiles.

    PubMed

    Pye, Dominic R; Cheng, Li-Jie; Mankad, Neal P

    2017-07-01

    A bimetallic system consisting of Cu-carbene and Mn-carbonyl co-catalysts was employed for carbonylative C-C coupling of arylboronic esters with alkyl halides, allowing for the convergent synthesis of ketones. The system operates under mild conditions and exhibits complementary reactivity to Pd catalysis. The method is compatible with a wide range of arylboronic ester nucleophiles and proceeds smoothly for both primary and secondary alkyl iodide electrophiles. Preliminary mechanistic experiments corroborate a hypothetical catalytic mechanism consisting of co-dependent cycles wherein the Cu-carbene co-catalyst engages in transmetallation to generate an organocopper nucleophile, while the Mn-carbonyl co-catalyst activates the alkyl halide electrophile by single-electron transfer and then undergoes reversible carbonylation to generate an acylmanganese electrophile. The two cycles then intersect with a heterobimetallic, product-releasing C-C coupling step.

  20. Ab initio study of chain branching reactions involving second generation products in hydrocarbon combustion mechanisms.

    PubMed

    Davis, Alexander C; Francisco, Joseph S

    2012-01-28

    sec-Alkyl radicals are key reactive intermediates in the hydrocarbon combustion and atmospheric decomposition mechanisms that are formed by the abstraction of hydrogen from an alkane, or as a second generation product of n-alkyl H-migrations, C-C bond scissions in branched alkyl radicals, or the bimolecular reaction between olefins and n-alkyl radicals. Since alkanes and branched alkanes, which the sec-alkyl radicals are derived from, make up roughly 40-50% of traditional fuels an understanding of their chemistry is essential to improving combustion systems. The present work investigates all H-migration reactions initiated from an sec-alkyl radical that involve the movement of a secondary hydrogen, for the 2-butyl through 4-octyl radicals, using the CBS-Q, G2, and G4 composite methods. The resulting thermodynamic and kinetic parameters are compared to similar reactions in n-alkyl radicals in order to determine underlying trends. Particular attention is paid to the effect of cis/trans and 1,3-diaxial interactions on activation energies and rate coefficients. When combined with our previous work on n-alkyl radical H-migrations, a complete picture of H-migrations in unbranched alkyl radicals is obtained. This full data set suggests that the directionality of the remaining branched chains has a minimal effect on the rate coefficients for all but the largest viable transition states, which is in stark contrast to the differences predicted by the structurally similar dimethylcycloalkanes. In fact the initial location of the secondary radical site has a greater effect on the rate than does the directionality of the remaining alkyl chains. The activation energies for secondary to secondary reactions are much closer to those of the secondary to primary H-migrations. However, the rate coefficients are found to be closer to the corresponding primary to primary reaction values. A significant ramification of these results is that there will be multiple viable reaction pathways

  1. Theoretical DFT, vibrational and NMR studies of benzimidazole and alkyl derivatives

    NASA Astrophysics Data System (ADS)

    Infante-Castillo, Ricardo; Rivera-Montalvo, Luis A.; Hernández-Rivera, Samuel P.

    2008-04-01

    Benzimidazoles are heterocyclic compounds that have awaked great interest during the last few years because of their proven biological activity as antiviral, antimicrobial, and antitumoral agents. For this reason, the development of a systematic FT-IR, FT-Raman and NMR study of 1-substituted compounds in 2-methylbenzimidazole constitutes a significant tool in understanding the molecular dynamics and the structural parameters that govern their behavior. Two new 1-alkyl-2-methylbenzimidazoles compounds were synthesized from reaction of 2-methylbenzimidazole with primary and secondary alkyl halides using a strong base as a catalyst. These compounds were purified and characterized by elemental analysis and different spectroscopic methods. The comparative analysis of vibrational modes of benzimidazole and its alkyl derivatives show that regions of absorption are very similar in all of them. However, changes are produced at low frequencies specifically in the C-H out of plane deformations, ring breathing and ring skeletal vibrations. The ring out-of plane bending modes shift by 10-15 cm -1 in some cases as results of alkyl substitution. The theoretical calculated spectra, using Density Functional Theory (DFT) approximation, and experimental results were consistent with each other. The GIAO method was used to calculate absolute shieldings, which agree consistently with those measured by 1H and 13C NMR. The consistency and efficiency of the GIAO 13C and 1H NMR calculations were thoroughly checked by the analysis of statistical parameters concerning computed and experimental 13C and 1H NMR chemical shift values of the studied compounds.

  2. Alkyl Caffeates Improve the Antioxidant Activity, Antitumor Property and Oxidation Stability of Edible Oil

    PubMed Central

    Wang, Jun; Gu, Shuang-Shuang; Pang, Na; Wang, Fang-Qin; Pang, Fei; Cui, Hong-Sheng; Wu, Xiang-Yang; Wu, Fu-An

    2014-01-01

    Caffeic acid (CA) is distributed widely in nature and possesses strong antioxidant activity. However, CA has lower solubility in non-polar media, which limits its application in fat-soluble food. To increase the lipophilicity of natural antioxidant CA, a series of alkyl caffeates were synthesized and their antioxidant and antitumor activities were investigated. The antioxidant parameters, including the induction period, acid value and unsaturated fatty acid content, of the alkyl caffeates in edible oil were firstly investigated. The results indicated that alkyl caffeates had a lower DPPH IC50 (14–23 µM) compared to CA, dibutyl hydroxy toluene (BHT) and Vitamin C (24–51 µM), and significantly inhibited four human cancer cells (SW620, SW480, SGC7901 and HepG2) with inhibition ratio of 71.4–78.0% by a MTT assay. With regard to the induction period and acid value assays, methyl and butyl caffeates had higher abilities than BHT to restrain the oxidation process and improve the stability of edible oil. The addition of ethyl caffeate to oil allowed maintenance of a higher unsaturated fatty acid methyl ester content (68.53%) at high temperatures. Overall, the alkyl caffeats with short chain length (n<5) assessed better oxidative stability than those with long chain length. To date, this is the first report to the correlations among the antioxidant activity, anticancer activity and oxidative stability of alkyl caffeates. PMID:24760050

  3. 40 CFR 721.6477 - Alkyl polycarboxylic acids, esters with ethoxylated fatty alcohols, reaction products with maleic...

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... with ethoxylated fatty alcohols, reaction products with maleic anhydride. 721.6477 Section 721.6477... Alkyl polycarboxylic acids, esters with ethoxylated fatty alcohols, reaction products with maleic... identified generically as alkyl polycarboxylic acids, esters with ethoxylated fatty alcohols, reaction...

  4. 40 CFR 721.6477 - Alkyl polycarboxylic acids, esters with ethoxylated fatty alcohols, reaction products with maleic...

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... with ethoxylated fatty alcohols, reaction products with maleic anhydride. 721.6477 Section 721.6477... Alkyl polycarboxylic acids, esters with ethoxylated fatty alcohols, reaction products with maleic... identified generically as alkyl polycarboxylic acids, esters with ethoxylated fatty alcohols, reaction...

  5. Safety Assessment of Amino Acid Alkyl Amides as Used in Cosmetics.

    PubMed

    Burnett, Christina L; Heldreth, Bart; Bergfeld, Wilma F; Belsito, Donald V; Hill, Ronald A; Klaassen, Curtis D; Liebler, Daniel C; Marks, James G; Shank, Ronald C; Slaga, Thomas J; Snyder, Paul W; Andersen, F Alan

    The Cosmetic Ingredient Review Expert Panel (Panel) reviewed the product use, formulation, and safety data of 115 amino acid alkyl amides, which function as skin and hair conditioning agents and as surfactants-cleansing agents in personal care products. Safety test data on dermal irritation and sensitization for the ingredients with the highest use concentrations, lauroyl lysine and sodium lauroyl glutamate, were reviewed and determined to adequately support the safe use of the ingredients in this report. The Panel concluded that amino acid alkyl amides are safe in the present practices of use and concentration in cosmetics, when formulated to be nonirritating.

  6. Effect of alkyl glycerophosphate on the activation of peroxisome proliferator-activated receptor gamma and glucose uptake in C2C12 cells

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Tsukahara, Tamotsu, E-mail: ttamotsu@shinshu-u.ac.jp; Haniu, Hisao; Matsuda, Yoshikazu

    Highlights: •Alkyl-LPA specifically interacts with PPARγ. •Alkyl-LPA treatments induces lipid accumulation in C2C12 cells. •Alkyl-LPA enhanced glucose uptake in C2C12 cells. •Alkyl-LPA-treated C2C12 cells express increased amounts of GLUT4 mRNA. •Alkyl-LPA is a novel therapeutic agent that can be used for the treatment of obesity and diabetes. -- Abstract: Studies on the effects of lipids on skeletal muscle cells rarely examine the effects of lysophospholipids. Through our recent studies, we identified select forms of phospholipids, such as alkyl-LPA, as ligands for the intracellular receptor peroxisome proliferator-activated receptor gamma (PPARγ). PPARγ is a nuclear hormone receptor implicated in many human diseases,more » including diabetes and obesity. We previously showed that alkyl-LPA is a specific agonist of PPARγ. However, the mechanism by which the alkyl-LPA–PPARγ axis affects skeletal muscle cells is poorly defined. Our objective in the present study was to determine whether alkyl-LPA and PPARγ activation promotes glucose uptake in skeletal muscle cells. Our findings indicate that PPARγ1 mRNA is more abundant than PPARγ2 mRNA in C2C12 cells. We showed that alkyl-LPA (3 μM) significantly activated PPARγ and increased intracellular glucose levels in skeletal muscle cells. We also showed that incubation of C2C12 cells with alkyl-LPA led to lipid accumulation in the cells. These findings suggest that alkyl-LPA activates PPARγ and stimulates glucose uptake in the absence of insulin in C2C12 cells. This may contribute to the plasma glucose-lowering effect in the treatment of insulin resistance.« less

  7. Occurrence and Biosynthesis of Alkyl Hydroxycinnamates in Plant Lipid Barriers

    PubMed Central

    Domergue, Frédéric; Kosma, Dylan K.

    2017-01-01

    The plant lipid barriers cuticle and suberin represent one of the largest biological interfaces on the planet. They are comprised of an insoluble polymeric domain with associated organic solvent-soluble waxes. Suberin-associated and plant cuticular waxes contain mixtures of aliphatic components that may include alkyl hydroxycinnamates (AHCs). The canonical alkyl hydroxycinnamates are comprised of phenylpropanoids, typically coumaric, ferulic, or caffeic acids, esterified with long chain to very long chain fatty alcohols. However, many related structures are also present in the plant kingdom. Although their functions remain elusive, much progress has been made on understanding the distribution, biosynthesis, and deposition of AHCs. Herein a summary of the current state of knowledge on plant AHCs is provided. PMID:28665304

  8. HHV-6A/B Integration and the Pathogenesis Associated with the Reactivation of Chromosomally Integrated HHV-6A/B.

    PubMed

    Collin, Vanessa; Flamand, Louis

    2017-06-26

    Unlike other human herpesviruses, human herpesvirus 6A and 6B (HHV-6A/B) infection can lead to integration of the viral genome in human chromosomes. When integration occurs in germinal cells, the integrated HHV-6A/B genome can be transmitted to 50% of descendants. Such individuals, carrying one copy of the HHV-6A/B genome in every cell, are referred to as having inherited chromosomally-integrated HHV-6A/B (iciHHV-6) and represent approximately 1% of the world's population. Interestingly, HHV-6A/B integrate their genomes in a specific region of the chromosomes known as telomeres. Telomeres are located at chromosomes' ends and play essential roles in chromosomal stability and the long-term proliferative potential of cells. Considering that the integrated HHV-6A/B genome is mostly intact without any gross rearrangements or deletions, integration is likely used for viral maintenance into host cells. Knowing the roles played by telomeres in cellular homeostasis, viral integration in such structure is not likely to be without consequences. At present, the mechanisms and factors involved in HHV-6A/B integration remain poorly defined. In this review, we detail the potential biological and medical impacts of HHV-6A/B integration as well as the possible chromosomal integration and viral excision processes.

  9. Identification of isopropylbiphenyl, alkyl diphenylmethanes, diisopropylnaphthalene, linear alkyl benzenes and other polychlorinated biphenyl replacement compounds in effluents, sediments and fish in the Fox River System, Wisconsin

    USGS Publications Warehouse

    Peterman, Paul H.; Delfino, Joseph J.

    1990-01-01

    Five polychlorinated biphenyl replacement dye solvents and a diluent present in carbonless copy paper were identified by gas chromatography/mass spectrometry in the following matrices: effluents from a de-inking–recycling paper mill and a municipal wastewater treatment plant receiving wastewaters from a carbonless copy paper manufacturing plant; sediments; and fish collected near both discharges in the Fox River System, Wisconsin. An isopropylbiphenyl dye solvent mixture included mono-, di- and triisopropylbiphenyls. Also identified were two dye solvent mixtures marketed under the trade name Santosol. Santosol 100 comprised ethyl-diphenylmethanes (DPMs), benzyl-ethyl-DPMs, and dibenzyl-ethyl-DPMs. Similarly, Santosol 150 comprised dimethyl-DPMs, benzyl-dimethyl-DPMs, and dibenzyl-dimethyl-DPMs. Diisopropylnaphthalenes, widely used as a dye solvent in Japan, were identified for the first time in the US environment. sec-Butylbiphenyls and di-sec-butylbiphenyls, likely constituents of a sec-butylbiphenyl dye solvent mixture, were tentatively identified. Linear alkyl benzenes (C10 to C13-LABs) constituted the Alkylate 215 diluent mixture. Although known to occur as minor constituents in linear alkyl sulfonate detergents, LAB residues have not been previously attributed to commercial use of LABs.

  10. Read-across of ready biodegradability based on the substrate specificity of N-alkyl polypropylene polyamine-degrading microorganisms.

    PubMed

    Geerts, R; van Ginkel, C G; Plugge, C M

    2017-04-01

    The biodegradation of N-alkyl polypropylene polyamines (NAPPs) was studied using pure and mixed cultures to enable read-across of ready biodegradability test results. Two Pseudomonas spp. were isolated from activated sludge with N-oleyl alkyl propylene diamine and N-coco alkyl dipropylene triamine, respectively. Both strains utilized all NAPPs tested as the sole source of carbon, nitrogen and energy for growth. Mineralization of NAPPs was independent of the alkyl chain length and the size of the polyamine moiety. NAPPs degraded in closed bottle tests (CBTs) using both river water and activated sludge. However, ready biodegradability of NAPPs with alkyl chain lengths of 16-18 carbon atoms and polyamine moieties with three and four nitrogen atoms could not be demonstrated. Biodegradation in the CBT was hampered by their limited bioavailability, making assessment of the true ready biodegradability of these highly adsorptive surfactants impossible. All NAPPs are therefore classified as readily biodegradable through read-across. Read-across is justified by the broad substrate specificity of NAPP-degrading microorganisms, their omnipresence and the mineralization of NAPPs.

  11. Binding of alkylphenols and alkylated non-phenolics to the rainbow trout (Oncorhynchus mykiss) plasma sex steroid-binding protein.

    PubMed

    Tollefsen, K-E

    2007-09-01

    Alkylphenols are well-known endocrine disrupters, mediating effects through the estrogen receptor (ER). Although the estrogenic properties of the alkylphenols are well documented, alternative mechanisms of action are poorly described. In the present work, the interaction of a range of alkyl-substituted phenols and alkyl-substituted non-phenolics with the rainbow trout (Oncorhynchus mykiss) sex steroid-binding protein (rtSBP) were determined by competitive ligand-binding studies. The role of alkyl chain length and branching, substituent position, number of alkylated groups, and the requirement of a phenolic ring structure were assessed. The results showed that the rtSBP binds to most chemical structures tested, although the highest affinity was obtained for mono-substituted alkylphenols with a chain length of four to eight methyl groups. Interestingly, rtSBP binding was also observed for non-phenolic compounds such as 4-t-butylcyclohexanol and 4-t-butylnitrobenzene suggesting that the rtSBP has a broad binding specificity for alkylphenols and alkylated non-phenolics.

  12. Understanding the effect of alkyl chains of gemini cations on the physicochemical and cellular properties of polyurethane micelles.

    PubMed

    Pan, Zhicheng; Fang, Danxuan; Song, Yuanqing; Song, Nijia; Ding, Mingming; Li, Jiehua; Luo, Feng; Li, Jianshu; Tan, Hong; Fu, Qiang

    2018-06-06

    Cationic gemini quaternary ammonium (GQA) has been used as a cell internalization promoter to improve the permeability of the cell membrane and enhance the cellular uptake. However, the effect of the alkyl chain length on the cellular properties of nanocarriers has not been elucidated yet. In this study, we developed a series of polyurethane micelles containing GQAs with various alkyl chain lengths. The alteration of the gemini alkyl chain length was found to change the distribution of GQA surfactants in the micellar structure and affect the surface charge exposure, stability, and the protein absorption properties of nanocarriers. Moreover, we also clarified the role of the alkyl chain length in tumor cell internalization and macrophage uptake of polyurethane micelles. This work provides a new understanding on the effect of the GQA alkyl chain length on the physicochemical and biological properties of nanomedicines, and offers guidance on the rational design of effective drug delivery systems where the issue of functional group exposure at the micellar surface should be considered.

  13. Mechanism of the Reaction between Alkyl- and Aryl Grignard Reagents and Hexachlorocyclotriphosphazene: An Explanation of Bi(Cyclophosphazene Formation).

    DTIC Science & Technology

    1982-06-24

    ADAI& "I PENNSYLVANIA STATE UNIV UNIVERSITY PARK DEPT OF CHEMISTRY F/S 7/3 ADA MECHANISM OF THE REACTION BETWEEN ALKYL - AND ARYL GRIGNARD REMG-ETC (U...TITLE (and Subliflo) S. TYPE OF REPORT A PERIOD COVERED MECHANISM OF THE REACTION BETWEEN ALKYL - AND ARYL GRIGNARD REAGENTS AND HEXACHLOROCYCLOTRIPHOS...Report No. 27 MECHANISM OF THE REACTION BETWEEN ALKYL - AND ARYL GRIGNARD REAGENTS AND HEXACHLOROCYCLOTRIPHOSPHAZENE: AN EXPLANATION OF BI(CYCLOPHOSPHAZENE

  14. 40 CFR 721.6183 - Amides, from ammonium hydroxide - maleic anhydride polymer and hydrogenated tallow alkyl amines...

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... - maleic anhydride polymer and hydrogenated tallow alkyl amines, sodium salts, compds. with ethanolamine... Substances § 721.6183 Amides, from ammonium hydroxide - maleic anhydride polymer and hydrogenated tallow... anhydride polymer and hydrogenated tallow alkyl amines, sodium salts, compds. with ethanolamine (PMN P-00...

  15. 40 CFR 721.6183 - Amides, from ammonium hydroxide - maleic anhydride polymer and hydrogenated tallow alkyl amines...

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... - maleic anhydride polymer and hydrogenated tallow alkyl amines, sodium salts, compds. with ethanolamine... Substances § 721.6183 Amides, from ammonium hydroxide - maleic anhydride polymer and hydrogenated tallow... anhydride polymer and hydrogenated tallow alkyl amines, sodium salts, compds. with ethanolamine (PMN P-00...

  16. 40 CFR 721.10625 - Distillation bottoms, alkylated benzene by-product, brominated and bromo diphenyl alkane (generic).

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... benzene by-product, brominated and bromo diphenyl alkane (generic). 721.10625 Section 721.10625 Protection... Distillation bottoms, alkylated benzene by-product, brominated and bromo diphenyl alkane (generic). (a... generically as distillation bottoms, alkylated benzene by-product, brominated and bromo diphenyl alkane (PMNs...

  17. 40 CFR 721.10625 - Distillation bottoms, alkylated benzene by-product, brominated and bromo diphenyl alkane (generic).

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... benzene by-product, brominated and bromo diphenyl alkane (generic). 721.10625 Section 721.10625 Protection... Distillation bottoms, alkylated benzene by-product, brominated and bromo diphenyl alkane (generic). (a... generically as distillation bottoms, alkylated benzene by-product, brominated and bromo diphenyl alkane (PMNs...

  18. Relationship between Antimalarial Activity and Heme Alkylation for Spiro- and Dispiro-1,2,4-Trioxolane Antimalarials▿

    PubMed Central

    Creek, Darren J.; Charman, William N.; Chiu, Francis C. K.; Prankerd, Richard J.; Dong, Yuxiang; Vennerstrom, Jonathan L.; Charman, Susan A.

    2008-01-01

    The reaction of spiro- and dispiro-1,2,4-trioxolane antimalarials with heme has been investigated to provide further insight into the mechanism of action for this important class of antimalarials. A series of trioxolanes with various antimalarial potencies was found to be unreactive in the presence of Fe(III) hemin, but all were rapidly degraded by reduced Fe(II) heme. The major reaction product from the heme-mediated degradation of biologically active trioxolanes was an alkylated heme adduct resulting from addition of a radical intermediate. Under standardized reaction conditions, a correlation (R2 = 0.88) was found between the extent of heme alkylation and in vitro antimalarial activity, suggesting that heme alkylation may be related to the mechanism of action for these trioxolanes. Significantly less heme alkylation was observed for the clinically utilized artemisinin derivatives compared to the equipotent trioxolanes included in this study. PMID:18268087

  19. Activation of heteroallenes by coordinatively unsaturated nickel(ii) alkyl complexes supported by the hydrotris(3-phenyl-5-methyl)pyrazolyl borate (Tp(Ph,Me)) ligand.

    PubMed

    Abubekerov, Mark; Eymann, Léonard Y M; Gianetti, Thomas L; Arnold, John

    2016-10-07

    Activation of sulfur containing heteroallenes by nickel(ii) alkyl complexes supported by the bulky hydrotris(3-phenyl-5-methylpyrazolyl)borate (Tp(Ph,Me)) ligand is described. Exposure of Tp(Ph,Me)NiCH2Ph (1a) and Tp(Ph,Me)NiCH2Si(CH3)3 (1b) to CS2 resulted in formation of the insertion products Tp(Ph,Me)Ni(η(2)-CS2)CH2Ph (2a) and Tp(Ph,Me)Ni(η(2)-CS2)CH2Si(CH3)3 (2b) in moderate yields. Reaction of 1a and MeNCS produced two species in a 1 : 1 ratio, identified as Tp(Ph,Me)Ni(η(2)-MeNC)CH2Ph (3) and Tp(Ph,Me)Ni(η(2)-MeNCS)SCH2Ph (4). Isolation of the unexpected insertion product (3) prompted an investigation into the activity of 1a-b in the presence of isocyanides (i.e.(t)BuNC), which resulted in isolation of Tp(Ph,Me)Ni(η(2-t)BuNC)CH2Ph (5a) and Tp(Ph,Me)Ni(η(2-t)BuNC)CH2Si(CH3)3 (5b). Similarly, reaction of 1a with OCS led to the isolation of a rare example of a Ni(i) carbonyl species Tp(Ph,Me)NiCO (6). Alternatively, complex 6 was also formed by exposure of 1a-b to an atmosphere of CO. Isolation of the intermediate species (Tp(Ph,Me)Ni(η(2)-CO)CH2TMS (7b) and Tp(Ph,Me)Ni(CO)(C(O)R, (8a-b) with R = Ph, TMS)) shed light on the formation of such species.

  20. 40 CFR 721.555 - Alkyl amino nitriles (generic).

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... (c). A full face shield is required if splashing or spraying occurs. (ii) Hazard communication... to reporting. (1) The chemical substances identified generically as alkyl amino nitriles (PMNs P-96-1674 and P-96-1675) are subject to reporting under this section for the significant new uses described...

  1. Stereospecific Cross-Coupling of Secondary Alkyl β-Trifluoroboratoamides

    PubMed Central

    Sandrock, Deidre L.; Jean-Gérard, Ludivine; Chen, Cheng-yi; Dreher, Spencer D.; Molander, Gary A.

    2010-01-01

    The stereospecific cross-coupling of enantioenriched non-benzylic secondary alkyl boron compounds has been achieved. The high selectivity toward product formation over an undesired β-H elimination pathway is achieved via an intramolecular coordination of an ancillary carbonyl to the metal center in the diorganopalladium intermediate. PMID:21077687

  2. Regioselective N1-alkylation of 3,4-dihydropyrimidine-2(1H)-ones: screening of their biological activities against Ca(2+)-ATPase.

    PubMed

    Putatunda, Salil; Chakraborty, Srabasti; Ghosh, Swatilekha; Nandi, Pinki; Chakraborty, Supriya; Sen, Parimal C; Chakraborty, Arijit

    2012-08-01

    A regioselective N1-alkylation of 3,4-dihydropyrimidin-2(1H)-ones using a very efficient mild base Cs(2)CO(3) and alkyl halides at room temperature has been reported. The selectivity of this methodology is excellent and the yields of the alkylated products are very good. Furthermore inhibitory action of both the 3,4-dihydropyrimidin-2(1H)-ones and the N1-alkylated derivatives were tested on Ca(2+)-ATPase, which revealed that the parent compounds can act as Ca(2+)-ATPase inhibitors whereas the N1-alkylated derivatives are inefficient for this purpose. Copyright © 2012 Elsevier Masson SAS. All rights reserved.

  3. SdAb heterodimer formation using leucine zippers

    NASA Astrophysics Data System (ADS)

    Goldman, Ellen R.; Anderson, George P.; Brozozog-Lee, P. Audrey; Zabetakis, Dan

    2013-05-01

    Single domain antibodies (sdAb) are variable domains cloned from camel, llama, or shark heavy chain only antibodies, and are among the smallest known naturally derived antigen binding fragments. SdAb derived from immunized llamas are able to bind antigens with high affinity, and most are capable of refolding after heat or chemical denaturation to bind antigen again. We hypothesized that the ability to produce heterodimeric sdAb would enable reagents with the robust characteristics of component sdAb, but with dramatically improved overall affinity through increased avidity. Previously we had constructed multimeric sdAb by genetically linking sdAb that bind non-overlapping epitopes on the toxin, ricin. In this work we explored a more flexible approach; the construction of multivalent binding reagents using multimerization domains. We expressed anti-ricin sdAb that recognize different epitopes on the toxin as fusions with differently charged leucine zippers. When the initially produced homodimers are mixed the leucine zipper domains will pair to produce heterodimers. We used fluorescence resonance energy transfer to confirm heterodimer formation. Surface plasmon resonance, circular dichroism, enzyme linked immunosorbent assays, and fluid array assays were used to characterize the multimer constructs, and evaluate their utility in toxin detection.

  4. DNA injection and genetic recombination of alkylated bacteriophage T7 in the presence of nalidixic acid.

    PubMed Central

    Karska-Wysocki, B; Mamet-Bratley, M D; Przewlocki, G

    1977-01-01

    Marker rescue experiments with alkylated T7 bacteriophage carried out in the presence and in the absence of nalidixic acid suggest that the gradient in rescue is due to two alkylation-induced causes: a DNA injection defect and an interference with DNA synthesis. PMID:916036

  5. Alkylating chemotherapy may exert a uniquely deleterious effect upon neo-antigen-targeting anticancer vaccination

    PubMed Central

    Litterman, Adam J; Dudek, Arkadiusz Z; Largaespada, David A

    2013-01-01

    Alkylating chemotherapy exerts both antineoplastic and immunostimulatory effects. However, in addition to depleting regulatory T cells (Treg), alkylating agents also mediate a long lasting antiproliferative effect on responder lymphocytes. Our recent findings indicate that this antiproliferative effect profoundly impairs vaccination-induced immune responses, especially in the case of vaccines that target specific tumor-associated neo-antigens that do not require Treg depletion. PMID:24251080

  6. 40 CFR 721.10200 - Benzenacetonitrile, cyclohexylidene-alkyl substituted (generic).

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 40 Protection of Environment 30 2010-07-01 2010-07-01 false Benzenacetonitrile, cyclohexylidene-alkyl substituted (generic). 721.10200 Section 721.10200 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) TOXIC SUBSTANCES CONTROL ACT SIGNIFICANT NEW USES OF CHEMICAL SUBSTANCES...

  7. Estrogenicity of alkylphenols and alkylated non-phenolics in a rainbow trout (Oncorhynchus mykiss) primary hepatocyte culture.

    PubMed

    Tollefsen, K-E; Eikvar, Sissel; Finne, Eivind Farmen; Fogelberg, Oscar; Gregersen, Inger Katharina

    2008-10-01

    Alkylphenols act as estrogen mimics by binding to and transactivating estrogen receptors (ERs) in fish. In the present study, activation of ER-mediated production of the estrogenic biomarker vitellogenin (vtg) in a primary culture of rainbow trout (Oncorhynchus mykiss) hepatocytes was used to construct a structure-activity relationship for this ubiquitous group of aquatic pollutants. The role of alkyl chain length and branching, substituent position, number of alkylated groups, and the requirement of a phenolic ring structure was assessed. The results showed that most alkylphenols were estrogenic, although with 3-300 thousand times lower affinity than the endogenous estrogen 17beta-estradiol. Mono-substituted tertiary alkylphenols with moderate (C4-C5) and long alkyl chain length (C8-C9) in the para position exhibited the highest estrogenic potency. Substitution with multiple alkyl groups, presence of substituents in the ortho- and meta-position and lack of a hydroxyl group on the benzene ring reduced the estrogenic activity, although several estrogenic alkylated non-phenolics were identified. Co-exposures with the natural estrogen 17beta-estradiol led to identification of additional estrogenic compounds as well as some anti-estrogens. A combination of low affinity for the ER and cytotoxicity was identified as factors rendering some of the alkylphenols non-estrogenic in the bioassay when tested alone.

  8. Reductive alkylation of ribosomes as a probe to the topography of ribosomal proteins*

    PubMed Central

    Moore, Graham; Crichton, Robert R.

    1974-01-01

    Escherichia coli ribosomes were treated with a number of different aldehydes of various sizes in the presence of NaBH4. After incorporation of either 3H or 14C, the ribosomal proteins were separated by two-dimensional polyacrylamide-gel electrophoresis and the extent of alkylation of the lysine residues in each protein was measured. The same pattern of alkylation was observed with the four reagents used, namely formaldehyde, acetone, benzaldehyde and 3,4,5-trimethoxybenzaldehyde. Every protein in 30S and 50S subunits was modified, although there was considerable variation in the degree of alkylation of individual proteins. A topographical classification of ribosomal proteins is presented, based on the degree of exposure of lysine residues. The data indicate that every protein of the ribosome has at least one lysine residue exposed at or near the surface of the ribonucleo-protein complex. PMID:4462744

  9. On the Boiling Points of the Alkyl Halides.

    ERIC Educational Resources Information Center

    Correia, John

    1988-01-01

    Discusses the variety of explanations in organic chemistry textbooks of a physical property of organic compounds. Focuses on those concepts explaining attractive forces between molecules. Concludes that induction interactions play a major role in alkyl halides and other polar organic molecules and should be given wider exposure in chemistry texts.…

  10. 40 CFR 174.506 - Bacillus thuringiensis Cry34Ab1 and Cry35Ab1 proteins in corn; exemption from the requirement of...

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... Cry35Ab1 proteins in corn; exemption from the requirement of a tolerance. 174.506 Section 174.506... thuringiensis Cry34Ab1 and Cry35Ab1 proteins in corn; exemption from the requirement of a tolerance. Residues of Bacillus thuringiensis Cry34Ab1 and Cry35Ab1 proteins in corn are exempted from the requirement of a...

  11. 40 CFR 174.506 - Bacillus thuringiensis Cry34Ab1 and Cry35Ab1 proteins in corn; exemption from the requirement of...

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... Cry35Ab1 proteins in corn; exemption from the requirement of a tolerance. 174.506 Section 174.506... thuringiensis Cry34Ab1 and Cry35Ab1 proteins in corn; exemption from the requirement of a tolerance. Residues of Bacillus thuringiensis Cry34Ab1 and Cry35Ab1 proteins in corn are exempted from the requirement of a...

  12. 40 CFR 174.506 - Bacillus thuringiensis Cry34Ab1 and Cry35Ab1 proteins in corn; exemption from the requirement of...

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... Cry35Ab1 proteins in corn; exemption from the requirement of a tolerance. 174.506 Section 174.506... thuringiensis Cry34Ab1 and Cry35Ab1 proteins in corn; exemption from the requirement of a tolerance. Residues of Bacillus thuringiensis Cry34Ab1 and Cry35Ab1 proteins in corn are exempted from the requirement of a...

  13. 40 CFR 174.506 - Bacillus thuringiensis Cry34Ab1 and Cry35Ab1 proteins in corn; exemption from the requirement of...

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... Cry35Ab1 proteins in corn; exemption from the requirement of a tolerance. 174.506 Section 174.506... thuringiensis Cry34Ab1 and Cry35Ab1 proteins in corn; exemption from the requirement of a tolerance. Residues of Bacillus thuringiensis Cry34Ab1 and Cry35Ab1 proteins in corn are exempted from the requirement of a...

  14. 40 CFR 174.506 - Bacillus thuringiensis Cry34Ab1 and Cry35Ab1 proteins in corn; exemption from the requirement of...

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... Cry35Ab1 proteins in corn; exemption from the requirement of a tolerance. 174.506 Section 174.506... thuringiensis Cry34Ab1 and Cry35Ab1 proteins in corn; exemption from the requirement of a tolerance. Residues of Bacillus thuringiensis Cry34Ab1 and Cry35Ab1 proteins in corn are exempted from the requirement of a...

  15. Synthesis of 4-alkyl and 4-(beta-alkylvinyl) derivatives of primaquine as potential antimalarials.

    PubMed

    Carroll, F I; Berrang, B D; Linn, C P

    1979-11-01

    4(beta-Alkylvinyl)-6-methoxy-8-nitroquinolines (6) were prepared from 6-methoxy-8-nitroquinoline-4-carboxaldehyde (5) via a Wittig reaction. Stannous chloride reduction of 6 gave 4-(beta-alkylvinyl)-8-amino-6-methoxyquinolines (8), whereas catalytic reduction of 6 using Raney nickel catalyst gave 4-alkyl-8-amino-6-methoxyquinolines (7). Alkylation of 7 and 8 with 4-iodo-1-phthalimidopentane, followed by removal of the phthaloyl-protecting group with hydrazine, gave 4-alkyl and 4-(beta-alkylvinyl) derivatives of primiquine, respectively. These compounds were evaluated for antimalarial activity against P. berghei and P. berghei yoelii in mice and against P. cynomolgi in rhesus monkeys. Several of the compounds were active in the P. bergheii yoelii screen. None of the compounds showed significant activity in the other two screens.

  16. Multidimensional Self-Assembled Structures of Alkylated Cellulose Oligomers Synthesized via in Vitro Enzymatic Reactions.

    PubMed

    Yataka, Yusuke; Sawada, Toshiki; Serizawa, Takeshi

    2016-10-04

    The self-assembly of biomolecules into highly ordered nano-to-macroscale structures is essential in the construction of biological tissues and organs. A variety of biomolecular assemblies composed of nucleic acids, peptides, and lipids have been used as molecular building units for self-assembled materials. However, crystalline polysaccharides have rarely been utilized in self-assembled materials. In this study, we describe multidimensional self-assembled structures of alkylated cellulose oligomers synthesized via in vitro enzymatic reactions. We found that the alkyl chain length drastically affected the assembled morphologies and allomorphs of cellulose moieties. The modulation of the intermolecular interactions of cellulose oligomers by alkyl substituents was highly effective at controlling their assembly into multidimensional structures. This study proposes a new potential of crystalline oligosaccharides for structural components of molecular assemblies with controlled morphologies and crystal structures.

  17. Oxidation of Alkyl-substituted Cyclic Hydrocarbons by a Nocardia during Growth on n-Alkanes

    PubMed Central

    Davis, J. B.; Raymond, R. L.

    1961-01-01

    Nocardia 107-332, a soil isolate, oxidizes short-chain alkyl-substituted cyclic hydrocarbons to cyclic acids while growing on n-alkanes. Cyclic acids are produced also from relatively long-chain alkyl-substituted cyclics such as n-nonylbenzene or n-dodecylbenzene which alone support growth in a mineral-salts medium. ω-Oxidation of the alkyl substituents is followed by β-oxidation. It is of particular interest that cyclic acids such as cyclohexaneacetic and phenylacetic with C2 residual carboxylic acid substituents are resistant to further oxidation by the nocardia but cyclic acids with C1 or C3 substituents are readily oxidized and utilized for growth. The specificity of microbial oxidations is demonstrated by the conversion of p-isopropyltoluene (p-cymene) to p-isopropylbenzoic acid in n-alkane, growth-supported nocardia cultures. PMID:13720182

  18. Antibiotic stewardship through the EU project "ABS International".

    PubMed

    Allerberger, Franz; Frank, Annegret; Gareis, Roland

    2008-01-01

    The increasing problem of antimicrobial resistance requires implementation of antibiotic stewardship (ABS) programs. The project "ABS International--implementing antibiotic strategies for appropriate use of antibiotics in hospitals in member states of the European Union" was started in September 2006 in Austria, Belgium, the Czech Republic, Germany, Hungary, Italy, Poland, Slovenia and Slovakia. A training program for national ABS trainers was prepared and standard templates for ABS tools (antibiotic list, guides for antibiotic treatment and surgical prophylaxis, antibiotic-related organization) and valid process measures, as well as quality indicators for antibiotic use were developed. Specific ABS tools are being implemented in up to five healthcare facilities in each country. Although ABS International clearly focuses on healthcare institutions, future antimicrobial stewardship programs must also cover public education and antibiotic prescribing in primary care.

  19. Ionic liquid containing hydroxamate and N-alkyl sulfamate ions

    DOEpatents

    Friesen, Cody A.; Wolfe, Derek; Johnson, Paul Bryan

    2016-03-15

    Embodiments of the invention are related to ionic liquids and more specifically to ionic liquids used in electrochemical metal-air cells in which the ionic liquid includes a cation and an anion selected from hydroxamate and/or N-alkyl sulfamate anions.

  20. 40 CFR 721.2410 - Alkoxylated alkyldiethylenetriamine, alkyl sulfate salts.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... (CONTINUED) TOXIC SUBSTANCES CONTROL ACT SIGNIFICANT NEW USES OF CHEMICAL SUBSTANCES Significant New Uses for Specific Chemical Substances § 721.2410 Alkoxylated alkyldiethylenetriamine, alkyl sulfate salts. (a) Chemical substances and significant new uses subject to reporting. (1) The chemical substances identified...

  1. 40 CFR 721.655 - Ethoxylated alkyl quaternary ammonium compound.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ...) TOXIC SUBSTANCES CONTROL ACT SIGNIFICANT NEW USES OF CHEMICAL SUBSTANCES Significant New Uses for Specific Chemical Substances § 721.655 Ethoxylated alkyl quaternary ammonium compound. (a) Chemical substance and significant new uses subject to reporting. (1) The chemical substance identified generically...

  2. Characterization of alkyl carbon in forest soils by CPMAS 13C NMR spectroscopy and dipolar dephasing

    USGS Publications Warehouse

    Kogel-Knabner, I.; Hatcher, P.G.

    1989-01-01

    Samples obtained from forest soils at different stages of decomposition were treated sequentially with chloroform/methanol (extraction of lipids), sulfuric acid (hydrolysis), and sodium chlorite (delignification) to enrich them in refractory alkyl carbon. As revealed by NMR spectroscopy, this treatment yielded residues with high contents of alkyl carbon. In the NMR spectra of residues obtained from litter samples, resonances for carbohydrates are also present, indicating that these carbohydrates are tightly bound to the alkyl carbon structures. During decomposition in the soils this resistant carbohydrate fraction is lost almost completely. In the litter samples the alkyl carbon shows a dipolar dephasing behavior indicative of two structural components, a rigid and a more mobile component. As depth and decomposition increase, only the rigid component is observed. This fact could be due to selective degradation of the mobile component or to changes in molecular mobility during decomposition, e.g., because of an increase in cross linking or contact with the mineral matter of the soil.

  3. A new procedure for N1-alkylation of imidazolidin-4-ones and its NMR characterization

    NASA Astrophysics Data System (ADS)

    Vale, Nuno; Figueiredo, Patrícia

    2016-12-01

    N1-unsubstituted imidazolidin-4-ones of primaquine (PQ) can be stabilized by N1-alkylation under basic conditions. Here we report the development, with our conditions, of peptidomimetic derivatives of PQ with L-amino acid and alkyl derivatives. The new derivatives represent potential new therapeutics for use against protozoan parasites, through enzymatic protection of aminopeptidases.

  4. Synthesis and antifungal activity of natural product-based 6-alkyl-2 3 4 5-tetrahydropyridines

    USDA-ARS?s Scientific Manuscript database

    Seven 6-alkyl-2,3,4,5-tetrahydropyridines (5a–5g) that mimic the natural products piperideines that were recently identified in the fire ant venom have been synthesized. Compounds 5c–5g with the C-6 alkyl chain lengths from C14 to C18 showed varying degrees of antifungal activities, with 5e (6-hexa...

  5. Vapor pressures of 1,3-dialkylimidazolium bis(trifluoromethylsulfonyl)imide ionic liquids with long alkyl chains

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Rocha, Marisa A. A., E-mail: lbsantos@fc.up.pt, E-mail: marisa.alexandra.rocha@gmail.com; Department of Chemical Engineering and Chemistry, Eindhoven University of Technology, Den Dolech 2, 5612 AZ Eindhoven; Coutinho, João A. P.

    2014-10-07

    This work presents the vapor pressure at several temperatures for the 1,3-dialkylimidazolium bis(trifluoromethylsulfonyl)imide series, [C{sub N/2}C{sub N/2}im][NTf{sub 2}] (N = 14, 16, 18, and 20), measured by a Knudsen effusion method combined with a quartz crystal microbalance. The thermodynamic properties of vaporization of the ionic liquids under study are analysed together with the results obtained previously for the shorter alkyl chain length [C{sub N/2}C{sub N/2}im][NTf{sub 2}] (N = 2, 4, 6, 8, 10, and 12), in order to evaluate the effect of the alkyl side chains of the cation and to get additional insights concerning the nanostructuration of ionic liquids.more » The symmetry effect is explored, based on the comparison with the asymmetric imidazolium based ionic liquids, [C{sub N-1}C{sub 1}im][NTf{sub 2}]. A trend shift on the thermodynamic properties of vaporization along the alkyl side chains of the extended symmetric ionic liquids, around [C{sub 6}C{sub 6}im][NTf{sub 2}], was detected. An intensification of the odd-even effect was observed starting from [C{sub 6}C{sub 6}im][NTf{sub 2}], with higher enthalpies and entropies of vaporization for the odd numbered ionic liquids, [C{sub 7}C{sub 7}im][NTf{sub 2}] and [C{sub 9}C{sub 9}im][NTf{sub 2}]. Similar, but less pronounced, odd-even effect was found for the symmetric ionic liquids with lower alkyl side chains length, [C{sub N/2}C{sub N/2}im][NTf{sub 2}] (with N = 4, 6, 8, 10, and 12). This effect is related with the predominant orientation of the terminal methyl group of the alkyl chain to the imidazolium ring and their influence in the cation-anion interaction. The same Critical Alkyl length at the hexyl, (C{sub 6}C{sub 1}and C{sub 6}C{sub 6}) was found for both asymmetric and symmetric series indicating that the nanostructuration of the ionic liquids is related with alkyl chain length.« less

  6. Influence of some DNA-alkylating drugs on thermal stability, acid and osmotic resistance of the membrane of whole human erythrocytes and their ghosts.

    PubMed

    Ivanov, I T; Gadjeva, V

    2000-09-01

    Human erythrocytes and their resealed ghosts were alkylated under identical conditions using three groups of alkylating antitumor agents: mustards, triazenes and chloroethyl nitrosoureas. Osmotic fragility, acid resistance and thermal stability of membranes were changed only in alkylated ghosts in proportion to the concentration of the alkylating agent. All the alkylating agents decreased acid resistance in ghosts. The clinically used drugs sarcolysine, dacarbazine and lomustine all decreased osmotic fragility and thermal stability of ghost membranes depending on their lipophilicity. DM-COOH did not decrease osmotic fragility and thermal stability of ghost membranes, while NEM increased thermal stability of membranes. The preliminary but not subsequent treatment of ghosts with DM-COOH fully abolished the alkylation-induced thermal labilization of ghost membrane proteins while NEM had a partial effect only. The present study gives direct evidence that alkylating agents, having a high therapeutic activity against malignant growth, bind covalently to proteins of cellular membranes.

  7. Mechanism of the protective effects of long chain n-alkyl glucopyranosides against ultrasound-induced cytolysis of HL-60 cells.

    PubMed

    Cheng, Jason Y; Riesz, Peter

    2007-07-01

    Recently it has been shown that long chain (C5-C8) n-alkyl glucopyranosides completely inhibit ultrasound-induced cytolysis [J.Z. Sostaric, N. Miyoshi, P. Riesz, W.G. DeGraff, and J.B. Mitchell, Free Radical Biol. Med., 39 (2005) 1539]. This protective effect has possible applications in HIFU (high intensity focused ultrasound) for tumor treatment, and in ultrasound assisted drug delivery and gene therapy. n-Alkyl glucopyranosides with hexyl (5mM), heptyl (3mM), octyl (2mM) n-alkyl chains protected 100% of HL-60 cells in vitro from 1.057 MHz ultrasound-induced cytolysis under a range of conditions that resulted in 35-100% cytolysis in the absence of glucopyranosides. However the hydrophilic methyl-beta-d-glucopyranoside did not protect cells. The surface active n-alkyl glucopyranosides accumulate at the gas-liquid interface of cavitation bubbles. The OH radicals and H atoms formed in collapsing cavitation bubbles react by H-atom abstraction from either the n-alkyl chain or the glucose moiety of the n-alkyl glucopyranosides. Owing to the high concentration of the long chain surfactants at the gas-liquid interface of cavitation bubbles, the initially formed carbon radicals on the alkyl chains are transferred to the glucose moieties to yield radicals which react with oxygen leading to the formation of hydrogen peroxide. In this work, we find that the sonochemically produced hydrogen peroxide yields from oxygen-saturated solutions of long chain (hexyl, octyl) n-alkyl glucopyranosides at 614 kHz and 1.057 MHz ultrasound increase with increasing n-alkyl glucopyranoside concentration but are independent of concentration for methyl-beta-D-glucopyranoside. These results are consistent with the previously proposed mechanism of sonoprotection [J.Z. Sostaric, N. Miyoshi, P. Riesz, W.G. DeGraff, and J.B. Mitchell, Free Radical Biol. Med., 39 (2005) 1539]. This sequence of events prevents sonodynamic cell killing by initiation of lipid peroxidation chain reactions in cellular

  8. Solubilization of cyclohexane in aqueous solutions of sodium. cap alpha. -alkyl alkanoates

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sagitani, H.; Suzuki, T.; Nagai, M.

    1982-01-01

    The effect of branched alkyl chain length and the position of the COONa group on the solubilizing power of n-alkane sodium carboxylates was studied. The lipophilic property and the amount of solubilized cyclohexane increased with the branched chain length of branched soaps, and with the change of the position of the -COONa group from 3 to 7 in the alkyl chain of pentadecane -3, -5, and -7 sodium carboxylates. Alpha-branched soaps having proper branched alkyl chains were better solubilizers for cyclohexane than straight chain compounds. The amount of cyclohexane solublized by C/sub 10/ H/sub 21/ CH(C/sub 6/H/sub 13/) COONa wasmore » about three times greater than the amount solubilized by C/sub 17/ H/sub 35/ COONa. There was a marked increase in the solubilization of cyclohexane replacing ..cap alpha..-branched fatty acid soaps with optimum amount of cosurfactants such as C/sub 8/H/sub 17/ (OCH/sub 2/CH/sub 2/)/sub 2/OH. Namely, solubilization increased markedly at the optimum hydrophile-lipophile balance of mixed surfactant. 21 references.« less

  9. Synthesis and DNA cleavage activity of Bis-3-chloropiperidines as alkylating agents.

    PubMed

    Zuravka, Ivonne; Roesmann, Rolf; Sosic, Alice; Wende, Wolfgang; Pingoud, Alfred; Gatto, Barbara; Göttlich, Richard

    2014-09-01

    Nitrogen mustards are an important class of bifunctional alkylating agents routinely used in chemotherapy. They react with DNA as electrophiles through the formation of highly reactive aziridinium ion intermediates. The antibiotic 593A, with potential antitumor activity, can be considered a naturally occurring piperidine mustard containing a unique 3-chloropiperidine ring. However, the total synthesis of this antibiotic proved to be rather challenging. With the aim of designing simplified analogues of this natural product, we developed an efficient bidirectional synthetic route to bis-3-chloropiperidines joined by flexible, conformationally restricted, or rigid diamine linkers. The key step involves an iodide-catalyzed double cyclization of unsaturated bis-N-chloroamines to simultaneously generate both piperidine rings. Herein we describe the synthesis and subsequent evaluation of a series of novel nitrogen-bridged bis-3-chloropiperidines, enabling the study of the impact of the linker structure on DNA alkylation properties. Our studies reveal that the synthesized compounds possess DNA alkylating abilities and induce strand cleavage, with a strong preference for guanine residues. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  10. 40 CFR 721.648 - Alkyl dialkylamino phenylsulfonyl alkenoate (generic).

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... (CONTINUED) TOXIC SUBSTANCES CONTROL ACT SIGNIFICANT NEW USES OF CHEMICAL SUBSTANCES Significant New Uses for Specific Chemical Substances § 721.648 Alkyl dialkylamino phenylsulfonyl alkenoate (generic). (a) Chemical substance and significant new uses subject to reporting. (1) The chemical substance identified generically...

  11. Atorvastatin Downregulates In Vitro Methyl Methanesulfonate and Cyclophosphamide Alkylation-Mediated Cellular and DNA Injuries

    PubMed Central

    Christoni, Larissa S. A.; Justo, Graça; Soeiro, Maria N. C.

    2018-01-01

    Statins are 3-hydroxy-3-methylglutaryl-coenzyme A (HMG-CoA) reductase inhibitors, and this class of drugs has been studied as protective agents against DNA damages. Alkylating agents (AAs) are able to induce alkylation in macromolecules, causing DNA damage, as DNA methylation. Our objective was to evaluate atorvastatin (AVA) antimutagenic, cytoprotective, and antigenotoxic potentials against DNA lesions caused by AA. AVA chemopreventive ability was evaluated using antimutagenicity assays (Salmonella/microsome assay), cytotoxicity, cell cycle, and genotoxicity assays in HepG2 cells. The cells were cotreated with AVA and the AA methyl methanesulfonate (MMS) or cyclophosphamide (CPA). Our datum showed that AVA reduces the alkylation-mediated DNA damage in different in vitro experimental models. Cytoprotection of AVA at low doses (0.1–1.0 μM) was observed after 24 h of cotreatment with MMS or CPA at their LC50, causing an increase in HepG2 survival rates. After all, AVA at 10 μM and 25 μM had decreased effect in micronucleus formation in HepG2 cells and restored cell cycle alterations induced by MMS and CPA. This study supports the hypothesis that statins can be chemopreventive agents, acting as antimutagenic, antigenotoxic, and cytoprotective components, specifically against alkylating agents of DNA. PMID:29849914

  12. Biological alkylation and colloid formation of selenium in methanogenic UASB reactors.

    PubMed

    Lenz, Markus; Smit, Martijn; Binder, Patrick; van Aelst, Adriaan C; Lens, Piet N L

    2008-01-01

    Bioalkylation and colloid formation of selenium during selenate removal in upflow anaerobic sludge bed (UASB) bioreactors was investigated. The mesophilic (30 degrees C) UASB reactor (pH = 7.0) was operated for 175 d with lactate as electron donor at an organic loading rate of 2 g COD L(-1) d(-1) and a selenium loading rate of 3.16 mg Se L(-1) d(-1). Combining sequential filtration with ion chromatographic analysis for selenium oxyanions and solid phase micro extraction gas chromatography mass spectrometry (SPME-GC-MS) for alkylated selenium compounds allowed to entirely close the selenium mass balance in the liquid phase for most of the UASB operational runtime. Although selenate was removed to more than 98.6% from the liquid phase, a less efficient removal of dissolved selenium was observed due to the presence of dissolved alkylated selenium species (dimethylselenide and dimethyldiselenide) and colloidal selenium particles in the effluent. The alkylated and the colloidal fractions contributed up to 15 and 31%, respectively, to the dissolved selenium concentration. The size fractions of the colloidal dispersion were: 4 to 0.45 mum: up to 21%, 0.45 to 0.2 mum: up to 11%, and particles smaller than 0.2 mum: up to 8%. Particles of 4 to 0.45 mum were formed in the external settler, but did not settle. SEM-EDX analysis showed that microorganisms form these selenium containing colloidal particles extracellularly on their surface. Lowering the temperature by 10 degrees C for 6 h resulted in drastically reduced selenate removal efficiencies (after a delay of 1.5 d), accompanied by the temporary formation of an unknown, soluble, organic selenium species. This study shows that a careful process control is a prerequisite for selenium treatment in UASB bioreactors, as disturbances in the operational conditions induce elevated selenium effluent concentrations by alkylation and colloid formation.

  13. Catalyst-free dehydrative α-alkylation of ketones with alcohols: green and selective autocatalyzed synthesis of alcohols and ketones.

    PubMed

    Xu, Qing; Chen, Jianhui; Tian, Haiwen; Yuan, Xueqin; Li, Shuangyan; Zhou, Chongkuan; Liu, Jianping

    2014-01-03

    Direct dehydrative α-alkylation reactions of ketones with alcohols are now realized under simple, practical, and green conditions without using external catalysts. These catalyst-free autocatalyzed alkylation methods can efficiently afford useful alkylated ketone or alcohol products in a one-pot manner and on a large scale by CC bond formation of the in situ generated intermediates with subsequent controllable and selective Meerwein-Pondorf-Verley-Oppenauer-type redox processes. Copyright © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  14. Surface Structures Formed by a Copper(II) Complex of Alkyl-Derivatized Indigo

    PubMed Central

    Honda, Akinori; Noda, Keisuke; Tamaki, Yoshinori; Miyamura, Kazuo

    2016-01-01

    Assembled structures of dyes have great influence on their coloring function. For example, metal ions added in the dyeing process are known to prevent fading of color. Thus, we have investigated the influence of an addition of copper(II) ion on the surface structure of alkyl-derivatized indigo. Scanning tunneling microscope (STM) analysis revealed that the copper(II) complexes of indigo formed orderly lamellar structures on a HOPG substrate. These lamellar structures of the complexes are found to be more stable than those of alkyl-derivatized indigos alone. Furthermore, 2D chirality was observed. PMID:28773957

  15. Involvement of Escherichia coli DNA Polymerase IV in Tolerance of Cytotoxic Alkylating DNA Lesions in Vivo

    PubMed Central

    Bjedov, Ivana; Dasgupta, Chitralekha Nag; Slade, Dea; Le Blastier, Sophie; Selva, Marjorie; Matic, Ivan

    2007-01-01

    Escherichia coli PolIV, a DNA polymerase capable of catalyzing synthesis past replication-blocking DNA lesions, belongs to the most ubiquitous branch of Y-family DNA polymerases. The goal of this study is to identify spontaneous DNA damage that is bypassed specifically and accurately by PolIV in vivo. We increased the amount of spontaneous DNA lesions using mutants deficient for different DNA repair pathways and measured mutation frequency in PolIV-proficient and -deficient backgrounds. We found that PolIV performs an error-free bypass of DNA damage that accumulates in the alkA tag genetic background. This result indicates that PolIV is involved in the error-free bypass of cytotoxic alkylating DNA lesions. When the amount of cytotoxic alkylating DNA lesions is increased by the treatment with chemical alkylating agents, PolIV is required for survival in an alkA tag-proficient genetic background as well. Our study, together with the reported involvement of the mammalian PolIV homolog, Polκ, in similar activity, indicates that Y-family DNA polymerases from the DinB branch can be added to the list of evolutionarily conserved molecular mechanisms that counteract cytotoxic effects of DNA alkylation. This activity is of major biological relevance because alkylating agents are continuously produced endogenously in all living cells and are also present in the environment. PMID:17483416

  16. 40 CFR 721.10087 - Substituted alkyl phosphine oxide (generic).

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... are: (i) Industrial, commercial, and consumer activities. Requirements as specified in § 721.80(s... 40 Protection of Environment 30 2010-07-01 2010-07-01 false Substituted alkyl phosphine oxide (generic). 721.10087 Section 721.10087 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED...

  17. Neighbor-directed histidine N(τ) alkylation. A route to imidazolium-containing phosphopeptide macrocycles

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Qian, Wen-Jian; Park, Jung-Eun; Grant, Robert

    2015-07-07

    Our recently discovered, selective, on-resin route to N(τ)-alkylated imidazolium-containing histidine residues affords new strategies for peptide mimetic design. In this, we demonstrate the use of this chemistry to prepare a series of macrocyclic phosphopeptides, in which imidazolium groups serve as ring-forming junctions. These cationic moieties subsequently serve to charge-mask the phosphoamino acid group that directed their formation. Furthermore, neighbor-directed histidine N(τ)-alkylation opens the door to new families of phosphopeptidomimetics for use in a range of chemical biology contexts.

  18. Mechanism for stabilization of the molten globule state of papain by sodium n-alkyl sulfates: spectroscopic and calorimetric approaches.

    PubMed

    Chamani, J; Heshmati, M

    2008-06-01

    Papain exists in a molten globule (MG) state at pH 2 and in this state protein tends to aggregate in the presence of lower concentrations of guanidine hydrochloride (GuHCl). Such aggregation is prevented if low concentrations of sodium n-alkyl sulfates are also present in the buffer; in addition, stabilization of the protein is also induced. The guanidine hydrochloride and temperature-induced unfolding of papain, in the presence of n-alkyl sulfates, indicate stabilization of the protein as seen from the higher transition midpoints when monitored by fluorescence, circular dichroism, and differential scanning calorimetry. However, a similar phenomenon is not seen under neutral conditions in the presence of n-alkyl sulfate concentrations. The effect of n-alkyl sulfates on the structure of the MG state of papain was utilized to investigate the contribution of hydrophobic interaction to the stability of the MG state. The Td values of the MG states of papain in the presence of n-alkyl sulfates at different concentrations showed substantial variation. The enhancement of Td values at the stability criterion of MG states corresponded with increasing chain length of the cited n-alkyl sulfates. The present results suggest that the hydrophobic interactions play important roles in stabilizing and preventing the aggregation of the MG state of papain.

  19. Enantioselective Decarboxylative Alkylation Reactions: Catalyst Development, Substrate Scope, and Mechanistic Studies

    PubMed Central

    Behenna, Douglas C.; Mohr, Justin T.; Sherden, Nathaniel H.; Marinescu, Smaranda C.; Harned, Andrew M.; Tani, Kousuke; Seto, Masaki; Ma, Sandy; Novák, Zoltán; Krout, Michael R.; McFadden, Ryan M.; Roizen, Jennifer L.; Enquist, John A.; White, David E.; Levine, Samantha R.; Petrova, Krastina V.; Iwashita, Akihiko; Virgil, Scott C.; Stoltz, Brian M.

    2012-01-01

    α-Quaternary ketones are accessed through novel enantioselective alkylations of allyl and propargyl electrophiles by unstabilized prochiral enolate nucleophiles in the presence of palladium complexes with various phosphinooxazoline (PHOX) ligands. Excellent yields and high enantiomeric excesses are obtained from three classes of enolate precursors: enol carbonates, enol silanes, and racemic β-ketoesters. Each of these substrate classes functions with nearly identical efficiency in terms of yield and enantioselectivity. Catalyst discovery and development, the optimization of reaction conditions, the exploration of reaction scope, and applications in target-directed synthesis are reported. Experimental observations suggest that these alkylation reactions occur through an unusual inner-sphere mechanism involving binding of the prochiral enolate nucleophile directly to the palladium center. PMID:22083969

  20. ALKYL PYROPHOSPHATE METAL SOLVENT EXTRACTANTS AND PROCESS

    DOEpatents

    Long, R.L.

    1958-09-30

    A process is presented for the recovery of uranium from aqueous mineral acidic solutions by solvent extraction. The extractant is a synmmetrical dialkyl pyrophosphate in which the alkyl substituents have a chain length of from 4 to 17 carbon atoms. Mentioned as a preferred extractant is dioctyl pyrophosphate. The uranium is precipitated irom the organic extractant phase with an agent such as HF, fluoride salts. alcohol, or ammonia.

  1. Alkyl amine and vegetable oil mixture-a viable candidate for CO2 capture and utilization.

    PubMed

    Uma Maheswari, A; Palanivelu, K

    2017-02-01

    In this present work, the absorption of CO 2 in alkyl amines and vegetable oil mixture has been evaluated. The results showed that the absorption is higher in alkyl amines and vegetable oil mixture compared with the aqueous alkyl amines. In addition to that, by employing the greener and non-toxic vegetable oil media, the CO 2 gas has been captured as well as converted into value-added products, such as carbamates of ethylenediamine, diethylenetriamine, and triethylenetetramine. The carbamates have been isolated and characterized by Fourier transform infrared and 1 H and 13 C nuclear magnetic resonance spectroscopic techniques. The formation of these products in precipitate form has not been observed in the case of aqueous medium. Among the various alkyl amine and vegetable oil combinations, triethylenetetramine in coconut oil medium showed the maximum CO 2 capture capacity of 72%. The coconut oil used for the process has been recovered, recycled, and reused for 3 cycles. Thus, this novel scheme seems to be a better alternative to conquer the drawback of aqueous amine-based CO 2 capture as well as for the capture and utilization of the CO 2 gas to gain the value-added products.

  2. Long alkyl-chain imidazolium ionic liquids: Antibiofilm activity against phototrophic biofilms.

    PubMed

    Reddy, G Kiran Kumar; Nancharaiah, Y V; Venugopalan, V P

    2017-07-01

    Biofilm formation is problematic and hence undesirable in medical and industrial settings. In addition to bacteria, phototrophic organisms are an integral component of biofilms that develop on surfaces immersed in natural waters. 1-Alkyl-3-methyl imidazolium ionic liquids (IL) with varying alkyl chain length were evaluated for their influence on the formation of monospecies (Navicula sp.) and multispecies biofilms under phototrophic conditions. An IL with a long alkyl side chain, 1-hexadecyl-3-methylimidaazolium chloride ([C 16 (MIM)][Cl]) retarded growth, adhesion and biofilm formation of Navicula sp. at concentrations as low as 5μM. Interestingly, [C 16 (MIM)][Cl] was very effective in preventing multispecies phototrophic biofilms on fibre reinforced plastic surfaces immersed in natural waters (fresh and seawater). SYTOX ® Green staining and chlorophyll leakage assay confirmed that the biocidal activity of the IL was exerted through cell membrane disruption. The data show that [C 16 (MIM)][Cl] is a potent inhibitor of phototrophic biofilms at micromolar concentrations and a promising agent for biofilm control in re-circulating cooling water systems. This is the first report that ionic liquids inhibit biofilm formation by phototrophic organisms which are important members of biofilms in streams and cooling towers. Copyright © 2017 Elsevier B.V. All rights reserved.

  3. Quantitative Determination of Fluorinated Alkyl Substances by Large-Volume-Injection LC/MS/MS—Characterization of Municipal Wastewaters

    PubMed Central

    Schultz, Melissa M.; Barofsky, Douglas F.; Field, Jennifer A.

    2008-01-01

    A quantitative method was developed for the determination of fluorinated alkyl substances in municipal wastewater influents and effluents. The method consisted of centrifugation followed by large-volume injection (500 μL) of the supernatant onto a liquid chromatograph with a reverse-phase column and detection by electrospray ionization, and tandem mass spectrometry (LC/MS/MS). The fluorinated analytes studied include perfluoroalkyl sulfonates, fluorotelomer sulfonates, perfluorocarboxylates, and select fluorinated alkyl sulfonamides. Recoveries of the fluorinated analytes from wastewater treatment plant (WWTP) raw influents and final effluent ranged from 77% – 96% and 80% – 99%, respectively. The lower limit of quantitation ranged from 0.5 to 3.0 ng/L depending on the analyte. The method was applied to flow-proportional composites of raw influent and final effluent collected over a 24 hr period from ten WWTPs nationwide. Fluorinated alkyl substances were observed in wastewater at all treatment plants and each plant exhibited unique distributions of fluorinated alkyl substances despite similarities in treatment processes. In nine out of the ten plants sampled, at least one class of fluorinated alkyl substances exhibited increased concentrations in the effluent as compared to the influent concentrations. In some instances, decreases in certain fluorinated analyte concentrations were observed and attributed to sorption to sludge. PMID:16433363

  4. PAH phototoxicity: Identification of sensitive marine infaunal crustaceans and the effects of alkylation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Boese, B.; Swartz, R.; Lamberson, J.

    1995-12-31

    The toxicity of some polycyclic aromatic hydrocarbons (PAHs) has been shown to be greatly enhanced in the presence of UV light. The objectives of the research were to: (1) test for PAH phototoxicity using seven marine infaunal crustacean species, (2) determine if the sensitivity to PAH phototoxicity was related to their potential exposure to sunlight in nature, and (3) determine if alkylation alters PAH phototoxicity. The first objective was accomplished by exposing test species to fluoranthene in 4-day, water-only bioassays. Survivors of the tests were then exposed to UV light in an exposure chamber for one hour. The differences betweenmore » EC50s (the ability to bury in sediment) before and after UV exposure were used to access phototoxicity. The results indicated that species having the greatest potential for natural exposure to sunlight were the least sensitive UV-enhanced fluoranthene toxicity. The amphipod, Rhepoxynius abronius, which in nature has the least potential for exposure to sunlight among the organisms tested, was the most sensitive. Rhepoxynius abronius was subsequently used in a series of tests to determine if alkylation of PAHs alters phototoxicity. This was done by conducting standard 10-day sediment bioassay using alkylated and unalkylated PAHs. As in the water-only tests, EC{sub 50}s were determined before and after UV light exposures. The results indicated that alkylation of PAHs, in general, did not alter phototoxicity.« less

  5. Ab initio investigation of the thermal decomposition of n-butylcyclohexane.

    PubMed

    Ali, Mohamad Akbar; Dillstrom, V Tyler; Lai, Jason Y W; Violi, Angela

    2014-02-13

    Environmental and energy security concerns have motivated an increased focus on developing clean, efficient combustors, which increasingly relies on insight into the combustion chemistry of fuels. In particular, naphthenes (cycloalkanes and alkylcycloalkanes) are important chemical components of distillate fuels, such as diesel and jet fuels. As such, there is a growing interest in describing napthene reactivity with kinetic mechanisms. Use of these mechanisms in predictive combustion models aids in the development of combustors. This study focuses on the pyrolysis of n-butylcyclohexane (n-BCH), an important representative of naphthenes in jet fuels. Seven different unimolecular decomposition pathways of C-C bond fission were explored utilizing ab initio/DFT methods. Accurate reaction energies were computed using the high-level quantum composite G3B3 method. Variational transition state theory, Rice-Ramsperger-Kassel-Marcus/master equation simulations provided temperature- and pressure-dependent rate constants. Implementation of these pathways into an existing chemical kinetic mechanism improved the prediction of experimental OH radical and H2O speciation in shock tube oxidation. Simulations of this combustion showed a change in the expected decomposition chemistry of n-BCH, predicting increased production of cyclic alkyl radicals instead of straight-chain alkenes. The most prominent reaction pathway for the decomposition of n-BCH is n-BCH = C3H7 + C7H13. The results of this study provide insight into the combustion of n-BCH and will aid in the future development of naphthene kinetic mechanisms.

  6. 40 CFR 721.2420 - Alkoxylated dialkyldiethylenetriamine, alkyl sulfate salt.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 40 Protection of Environment 30 2010-07-01 2010-07-01 false Alkoxylated dialkyldiethylenetriamine, alkyl sulfate salt. 721.2420 Section 721.2420 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) TOXIC SUBSTANCES CONTROL ACT SIGNIFICANT NEW USES OF CHEMICAL SUBSTANCES Significant New Uses for Specific Chemical Substances §...

  7. Isolation of the antibiotic pseudopyronine B and SAR evaluation of C3/C6 alkyl analogs.

    PubMed

    Bouthillette, Leah M; Darcey, Catherine A; Handy, Tess E; Seaton, Sarah C; Wolfe, Amanda L

    2017-06-15

    Natural products are an abundant source of structurally diverse compounds with antibacterial activity that can be used to develop new and potent antibiotics. One such class of natural products is the pseudopyronines. Here we present the isolation of pseudopyronine B (2) from a Pseudomonas species found in garden soil in Western North Carolina, and SAR evaluation of C3 and C6 alkyl analogs of the natural product for antibacterial activity against Gram-positive and Gram-negative bacteria. We found a direct relationship between antibacterial activity and C3/C6 alkyl chain length. For inhibition of Gram-positive bacteria, alkyl chain lengths between 6 and 7 carbons were found to be the most active (IC 50 =0.04-3.8µg/mL) whereas short alkyl chain analogs showed modest activity against Gram-negative bacteria (IC 50 =223-304µg/mL). This demonstrates the potential for this class of natural products to be optimized for selective activity against either Gram-positive or Gram-negative bacteria. Copyright © 2017 Elsevier Ltd. All rights reserved.

  8. Reevaluation of the effect of ellagic acid on N-methyl-N-nitrosourea DNA alkylation and mutagenicity

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lord, H.L.; Josephy, P.D.; Snieckus, V.A.

    N-Methyl-N-nitrosourea (MNU) is a reactive, mutagenic methylating agent. MNU methylates DNA at various sites, including guanine N{sup 7}, guanine O{sup 6}, and adenine N{sup 3}. Dixit and Gold ((1986) Proc. Natl, Acad. Sci. U.S.A. 83, 8039-8043) reported that ellagic acid, a phenolic natural product, inhibited the mutagenicity of MNU in Salmonella typhimurium strain TA 100, inhibited salmon sperm DNA alkylation by ({sup 3}H)MNU, and also greatly reduced the ratio of guanine O{sup 6} to guanine N{sup 7} alkylation. We have examined the MNU-induced alkylation of calf thymus DNA and evaluated the effect of ellagic acid on this binding. Ellagic acidmore » had only a slight effect on total alkylation and did not alter the ratio of methylation at guanine-O{sup 6} and -N{sup 7} positions. In further experiments, ellagic acid did not significantly inhibit MNU mutagenicity. These findings do not support the potential use of ellagic acid as an inhibitor of biological damage induced by nitrosoureas.« less

  9. Synthesis and evaluation of thermo-rheological behaviour and ionotropic crosslinking of new gellan gum-alkyl derivatives.

    PubMed

    Agnello, Stefano; Palumbo, Fabio Salvatore; Pitarresi, Giovanna; Fiorica, Calogero; Giammona, Gaetano

    2018-04-01

    This paper reports the synthesis and the physicochemical characterization of two series of gellan gum (GG) derivatives functionalized with alkyl chains with different number of carbon, from 8 to 18. In particular, low molecular weight gellan gum samples with 52.6 or 96.7 kDa, respectively, were functionalized with octylamine (C 8 ), dodecylamine (C 12 ) and octadecylamine (C 18 ) by using bis(4-nitrophenyl) carbonate (4-NPBC) as a coupling agent. Thermo-rheological and ionotropic crosslinking properties of these gellan gum-alkyl derivatives were evaluated and related to the degree of derivatization in alkyl chains. Results suggested as length and degree of derivatization differently influenced coil-to-helix gelation mechanism of GG derivatives, ionotropic crosslinking, and strength of crosslinked hydrogels obtained in CaCl 2 0.102 M and NaCl 0.15 M. Statement of hypothesis: The insertion of alkyl chains on the gellan gum backbone interferes with coil-to-helix transition mechanism and allows the production of hydrophobically assembled hydrogels. Copyright © 2018 Elsevier Ltd. All rights reserved.

  10. Direct, enantioselective α-alkylation of aldehydes using simple olefins.

    PubMed

    Capacci, Andrew G; Malinowski, Justin T; McAlpine, Neil J; Kuhne, Jerome; MacMillan, David W C

    2017-11-01

    Although the α-alkylation of ketones has already been established, the analogous reaction using aldehyde substrates has proven surprisingly elusive. Despite the structural similarities between the two classes of compounds, the sensitivity and unique reactivity of the aldehyde functionality has typically required activated substrates or specialized additives. Here, we show that the synergistic merger of three catalytic processes-photoredox, enamine and hydrogen-atom transfer (HAT) catalysis-enables an enantioselective α-aldehyde alkylation reaction that employs simple olefins as coupling partners. Chiral imidazolidinones or prolinols, in combination with a thiophenol, iridium photoredox catalyst and visible light, have been successfully used in a triple catalytic process that is temporally sequenced to deliver a new hydrogen and electron-borrowing mechanism. This multicatalytic process enables both intra- and intermolecular aldehyde α-methylene coupling with olefins to construct both cyclic and acyclic products, respectively. With respect to atom and step-economy ideals, this stereoselective process allows the production of high-value molecules from feedstock chemicals in one step while consuming only photons.

  11. Method for reactivating solid catalysts used in alkylation reactions

    DOEpatents

    Ginosar, Daniel M.; Thompson, David N.; Coates, Kyle; Zalewski, David J.; Fox, Robert V.

    2003-06-17

    A method for reactivating a solid alkylation catalyst is provided which can be performed within a reactor that contains the alkylation catalyst or outside the reactor. Effective catalyst reactivation is achieved whether the catalyst is completely deactivated or partially deactivated. A fluid reactivating agent is employed to dissolve catalyst fouling agents and also to react with such agents and carry away the reaction products. The deactivated catalyst is contacted with the fluid reactivating agent under pressure and temperature conditions such that the fluid reactivating agent is dense enough to effectively dissolve the fouling agents and any reaction products of the fouling agents and the reactivating agent. Useful pressures and temperatures for reactivation include near-critical, critical, and supercritical pressures and temperatures for the reactivating agent. The fluid reactivating agent can include, for example, a branched paraffin containing at least one tertiary carbon atom, or a compound that can be isomerized to a molecule containing at least one tertiary carbon atom.

  12. Direct, enantioselective α-alkylation of aldehydes using simple olefins

    NASA Astrophysics Data System (ADS)

    Capacci, Andrew G.; Malinowski, Justin T.; McAlpine, Neil J.; Kuhne, Jerome; MacMillan, David W. C.

    2017-11-01

    Although the α-alkylation of ketones has already been established, the analogous reaction using aldehyde substrates has proven surprisingly elusive. Despite the structural similarities between the two classes of compounds, the sensitivity and unique reactivity of the aldehyde functionality has typically required activated substrates or specialized additives. Here, we show that the synergistic merger of three catalytic processes—photoredox, enamine and hydrogen-atom transfer (HAT) catalysis—enables an enantioselective α-aldehyde alkylation reaction that employs simple olefins as coupling partners. Chiral imidazolidinones or prolinols, in combination with a thiophenol, iridium photoredox catalyst and visible light, have been successfully used in a triple catalytic process that is temporally sequenced to deliver a new hydrogen and electron-borrowing mechanism. This multicatalytic process enables both intra- and intermolecular aldehyde α-methylene coupling with olefins to construct both cyclic and acyclic products, respectively. With respect to atom and step-economy ideals, this stereoselective process allows the production of high-value molecules from feedstock chemicals in one step while consuming only photons.

  13. Sources and proxy potential of long chain alkyl diols in lacustrine environments

    NASA Astrophysics Data System (ADS)

    Rampen, Sebastiaan W.; Datema, Mariska; Rodrigo-Gámiz, Marta; Schouten, Stefan; Reichart, Gert-Jan; Sinninghe Damsté, Jaap S.

    2014-11-01

    Long chain 1,13- and 1,15-alkyl diols form the base of a number of recently proposed proxies used for climate reconstruction. However, the sources of these lipids and environmental controls on their distribution are still poorly constrained. We have analyzed the long chain alkyl diol (LCD) composition of cultures of ten eustigmatophyte species, with three species from different families grown at various temperatures, to identify the effect of species composition and growth temperature on the LCD distribution. The results were compared with the LCD distribution of sixty-two lake surface sediments, and with previously reported LCD distributions from marine environments. The different families within the Eustigmatophyceae show distinct LCD patterns, with the freshwater family Eustigmataceae most closely resembling LCD distributions in both marine and lake environments. Unlike the other two eustigmatophyte families analyzed (Monodopsidaceae and Goniochloridaceae), C28 and C30 1,13-alkyl diols and C30 and C32 1,15-alkyl diols are all relatively abundant in the family Eustigmataceae, while the mono-unsaturated C32 1,15-alkyl diol was below detection limit. In contrast to the marine environment, LCD distributions in lakes did not show a clear relationship with temperature. The Long chain Diol Index (LDI), a proxy previously proposed for sea surface temperature reconstruction, showed a relatively weak correlation (R2 = 0.33) with mean annual air temperature used as an approximation for annual mean surface temperature of the lakes. A much-improved correlation (R2 = 0.74, p-value <0.001) was observed applying a multiple linear regression analysis between LCD distributions and lake temperatures reconstructed using branched tetraether lipid distributions. The obtained regression model provides good estimates of temperatures for cultures of the family Eustigmataceae, suggesting that algae belonging to this family have an important role as a source for LCDs in lacustrine

  14. Effect of monoclonal antibodies (MoAb) to class I and class II HLA antigens on lectin- and MoAb OKT3-induced lymphocyte proliferation.

    PubMed

    Akiyama, Y; Zicht, R; Ferrone, S; Bonnard, G D; Herberman, R B

    1985-04-01

    We have examined the effect of several monoclonal antibodies (MoAb) to monomorphic determinants of class II HLA antigens, and MoAb to monomorphic determinants of class I HLA antigens and to beta-2-microglobulin (beta 2-mu) on lectin- and MoAb OKT3-induced proliferation of human peripheral blood mononuclear cells (PBMNC) and cultured T cells (CTC). Some, but not all, anti-class II HLA MoAb inhibited the proliferative response of PBMNC to MoAb OKT3 and pokeweed mitogen (PWM). The degree of inhibitory effect varied considerably. This effect was not limited to anti-class II HLA MoAb since anti-class I HLA MoAb and anti-beta 2-mu MoAb also inhibited MoAb OKT3- or PWM-induced proliferative responses. In contrast, the response of PBMNC to phytohemagglutinin (PHA) and concanavalin A (Con A) was not blocked by any anti-class II HLA MoAb. However, some anti-class II HLA MoAb also inhibited the proliferative response of CTC plus allogeneic peripheral blood adherent accessory cells (AC) to PHA or Con A as well as to MoAb OKT3 or PWM. This may be attributable to the substantially greater class II HLA antigen expression by CTC than by fresh lymphocytes. Pretreatment of either CTC or AC with anti-class II HLA MoAb inhibited OKT3-induced proliferation. In contrast, pretreatment of CTC, but not AC, with anti-class I HLA MoAb inhibited the proliferative response of CTC to OKT3. Pretreatment of CTC with anti-class I HLA MoAb inhibited PHA-, Con A and PWM-induced proliferation, to a greater degree than the anti-class II HLA MoAb. It appears as if lymphocyte activation by different mitogens exhibits variable requirements for the presence of cells expressing major histocompatibility determinants. Binding of Ab to membrane markers may interfere with lymphocyte-AC cooperation, perhaps by inhibiting binding of mitogens to their receptors or by interfering with lymphocyte and AC function. We also have examined the role of class II HLA antigens on CTC by depleting class II HLA-positive cells

  15. Protective mAbs and Cross-Reactive mAbs Raised by Immunization with Engineered Marburg Virus GPs.

    PubMed

    Fusco, Marnie L; Hashiguchi, Takao; Cassan, Robyn; Biggins, Julia E; Murin, Charles D; Warfield, Kelly L; Li, Sheng; Holtsberg, Frederick W; Shulenin, Sergey; Vu, Hong; Olinger, Gene G; Kim, Do H; Whaley, Kevin J; Zeitlin, Larry; Ward, Andrew B; Nykiforuk, Cory; Aman, M Javad; Berry, Jody D; Berry, Jody; Saphire, Erica Ollmann

    2015-06-01

    The filoviruses, which include the marburg- and ebolaviruses, have caused multiple outbreaks among humans this decade. Antibodies against the filovirus surface glycoprotein (GP) have been shown to provide life-saving therapy in nonhuman primates, but such antibodies are generally virus-specific. Many monoclonal antibodies (mAbs) have been described against Ebola virus. In contrast, relatively few have been described against Marburg virus. Here we present ten mAbs elicited by immunization of mice using recombinant mucin-deleted GPs from different Marburg virus (MARV) strains. Surprisingly, two of the mAbs raised against MARV GP also cross-react with the mucin-deleted GP cores of all tested ebolaviruses (Ebola, Sudan, Bundibugyo, Reston), but these epitopes are masked differently by the mucin-like domains themselves. The most efficacious mAbs in this panel were found to recognize a novel "wing" feature on the GP2 subunit that is unique to Marburg and does not exist in Ebola. Two of these anti-wing antibodies confer 90 and 100% protection, respectively, one hour post-exposure in mice challenged with MARV.

  16. Masses and activity of AB Doradus B a/b. The age of the AB Dor quadruple system revisited

    NASA Astrophysics Data System (ADS)

    Wolter, U.; Czesla, S.; Fuhrmeister, B.; Robrade, J.; Engels, D.; Wieringa, M.; Schmitt, J. H. M. M.

    2014-10-01

    We present a multiwavelength study of the close binary AB Dor Ba/b (Rst137B). Our study comprises astrometric orbit measurements, optical spectroscopy, X-ray and radio observations. Using all available adaptive optics images of AB Dor B taken with VLT/NACO from 2004 to 2009, we tightly constrain its orbital period to 360.6 ± 1.5 days. We present the first orbital solution of Rst 137B and estimate the combined mass of AB Dor Ba+b as 0.69+0.02-0.24 M⊙, slightly exceeding previous estimates based on IR photometry. Our determined orbital inclination of Rst 137B is close to the axial inclination of AB Dor A inferred from Doppler imaging. Our VLT/UVES spectra yield high rotational velocities of ≥30 km s-1 for both components Ba and Bb, in accord with previous measurements, which corresponds to rotation periods significantly shorter than one day. Our combined spectral model, using PHOENIX spectra, yields an effective temperature of 3310 ± 50 K for the primary and approximately 60 K less for the secondary. The optical spectra presumably cover a chromospheric flare and show that at least one component of Rst 137B is significantly active. Activity and weak variations are also found in our simultaneous XMM-Newton observations, while our ATCA radio data yield constant fluxes at the level of previous measurements. Using evolutionary models, our newly determined stellar parameters confirm that the age of Rst 137B is between 50 and 100 Myr. Based on observations collected at the European Southern Observatory, Paranal, Chile, 383.D-1002(A) and the ESO Science Archive Facility. Using data obtained with XMM-Newton, an ESA science mission with instruments and contributions directly funded by ESA Member states and NASA. Using data obtained with the Australia Telescope Compact Array (ATCA) operated by the Commonwealth Scientific and Industrial Research Organisation (CSIRO).

  17. Inducible Alkylation of DNA by a Quinone Methide-Peptide Nucleic Acid Conjugate†

    PubMed Central

    Liu, Yang; Rokita, Steven E.

    2012-01-01

    The reversibility of alkylation by a quinone methide intermediate (QM) avoids the irreversible consumption that plagues most reagents based on covalent chemistry and allows for site specific reaction that is controlled by the thermodynamics rather than kinetics of target association. This characteristic was originally examined with an oligonucleotide QM conjugate but broad application depends on alternative derivatives that are compatible with a cellular environment. Now, a peptide nucleic acid (PNA) derivative has been constructed and shown to exhibit an equivalent ability to delivery the reactive QM in a controlled manner. This new conjugate demonstrates high selectivity for a complementary sequence of DNA even when challenged with an alternative sequence containing a single T/T mismatch. Alkylation of non-complementary sequences is only possible when a template strand is present to co-localize the conjugate and its target. For efficient alkylation in this example, a single-stranded region of the target is required adjacent to the QM conjugate. Most importantly, the intrastrand self adducts formed between the PNA and its attached QM remained active and reversible over more than eight days in aqueous solution prior to reaction with a chosen target added subsequently. PMID:22243337

  18. Environmental Impact of Alkyl Lead(IV) Derivatives: Perspective after Their Phase-out.

    PubMed

    Filella, Montserrat; Bonet, Josep

    2017-04-10

    The use of alkyl lead derivatives as antiknock agents in gasoline can be considered as one of the main pollution disasters of the 20th century because of both the global character of the pollution emitted and the seriousness of the impact on human health. Alkyl lead derivatives in themselves cannot be considered to be persistent pollutants because they readily degrade either before being released from the tailpipes or soon afterwards in the atmosphere. However, the inorganic lead they produced has been deposited in soils all over the planet, largely, but not exclusively in urban areas and along motorways, since the direct emission of lead into the atmosphere favored its dispersal over great distances: The signal of the massive use of alkyl lead derivatives has been found all over the world, including in remote sites such as polar areas. The short residence time of lead in the atmosphere implies that this compartment is highly responsive to changes in emissions. This was demonstrated when leaded gasoline was phased-out and is in striking contrast to the very long permanence of inorganic lead in soils, where resuspension is a permanent source of toxic lead.

  19. Simultaneous determination of the potential carcinogen 1,4-dioxane and malodorous alkyl-1,3-dioxanes and alkyl-1,3-dioxolanes in environmental waters by solid-phase extraction and gas chromatography tandem mass spectrometry.

    PubMed

    Carrera, Guillem; Vegué, Lídia; Boleda, Mª Rosa; Ventura, Francesc

    2017-03-03

    1,4-dioxane is a synthetic industrial solvent used in various industrial processes, and it is a probable human carcinogen whose presence in the aquatic environment is frequently reported. Alkyl-1,3-dioxanes and alkyl-1,3-dioxolanes are compounds that have been identified as causing several odor episodes in waters over the last years, with the result of downtime of drinking water treatment plants. According to published studies, some of these episodes may be caused either by resins synthesis processes, or by industrial residues added to dehydrated sludge in wastewater treatment plants (WWTPs) in order to increase biogas production efficiency. Analytical methods based on closed loop stripping analysis (CLSA) are routinely used when taste and odor events appear, but this technique has demonstrated to be unsuitable to determine 1,4-dioxane at trace levels. In this context, drinking water companies tend to focus on determining odorous compounds, but not on those compounds that are potentially harmful. The suitability of a SPE method and further analysis by GC/MS-MS to simultaneously determine 1,4-dioxane and alkyl-1,3-dioxanes and dioxolanes has been demonstrated. Recoveries in surface waters spiked at 25ng/L ranged from 76% to 105%, whereas method quantification limits (MQLs) varied from 0.7 to 26ng/L for dioxanes, and dioxolanes and 50ng/L for 1,4-dioxane. Uncertainties were evaluated at two different concentrations, 0.02μg/L and 0.4μg/L, with values of 25% for 1,4-dioxane, and of 16-28% for alkyl-1,3-dioxanes and alkyl-1,3-dioxolanes for the later. The methodology has been successfully applied to samples from the aquifer of the Llobregat River (NE. Spain). Copyright © 2017 Elsevier B.V. All rights reserved.

  20. Modeling study of the ABS relay valve

    NASA Astrophysics Data System (ADS)

    Lei, Ming; Lin, Min; Guo, Bin; Luo, Zai; Xu, Weidong

    2011-05-01

    The ABS (anti-lock braking system) relay valve is the key component of anti-lock braking system in most commercial vehicles such as trucks, tractor-trailers, etc. In this paper, structure of ABS relay valve and its work theory were analyzed. Then a mathematical model of ABS relay valve, which was investigated by dividing into electronic part, magnetic part, pneumatic part and mechanical part, was set up. The displacement of spools and the response of pressure increasing, holding, releasing of ABS relay valve were simulated and analyzed under conditions of control pressure 500 KPa, braking pressure 600 KPa, atmospheric pressure 100 KPa and air temperature 310 K. Thisarticle provides reliable theory for improving the performance and efficiency of anti-lock braking system of vehicles.

  1. Catalytic Gas-Phase Production of Lactide from Renewable Alkyl Lactates.

    PubMed

    De Clercq, Rik; Dusselier, Michiel; Makshina, Ekaterina; Sels, Bert F

    2018-03-12

    A new route to lactide, which is a key building block of the bioplastic polylactic acid, is proposed involving a continuous catalytic gas-phase transesterification of renewable alkyl lactates in a scalable fixed-bed setup. Supported TiO 2 /SiO 2 catalysts are highly selective to lactide, with only minimal lactide racemization. The solvent-free process allows for easy product separation and recycling of unconverted alkyl lactates and recyclable lactyl intermediates. The catalytic activity of TiO 2 /SiO 2 catalysts was strongly correlated to their optical properties by DR UV/Vis spectroscopy. Catalysts with high band-gap energy of the supported TiO 2 phase, indicative of a high surface spreading of isolated Ti centers, show the highest turnover frequency per Ti site. © 2018 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  2. Solid catalyzed isoparaffin alkylation at supercritical fluid and near-supercritical fluid conditions

    DOEpatents

    Ginosar, Daniel M.; Fox, Robert V.; Kong, Peter C.

    2000-01-01

    This invention relates to an improved method for the alkylation reaction of isoparaffins with olefins over solid catalysts including contacting a mixture of an isoparaffin, an olefin and a phase-modifying material with a solid acid catalyst member under alkylation conversion conditions at either supercritical fluid, or near-supercritical fluid conditions, at a temperature and a pressure relative to the critical temperature(T.sub.c) and the critical pressure(P.sub.c) of the reaction mixture. The phase-modifying phase-modifying material is employed to promote the reaction's achievement of either a supercritical fluid state or a near-supercritical state while simultaneously allowing for decreased reaction temperature and longer catalyst life.

  3. A Theoretical Study of the Mechanism of the Alkylation of Guanine by N- Nitroso Compounds.

    DTIC Science & Technology

    1992-01-01

    Later, Loveless isolated an 0 6 - methylated product from treatment with MNU and was the first to suggest a relevance of O6 alkylation 11 to the...replication. The ultimate metabolite involved in the alkylation reaction has generally been thought to be an alkyldiazonium ion or, its decomposition... Methylation of Formamide by the Methyldiazonium Ion .................... 60 Table 3.10: Intrinsic Barriers for Degenerate SN 2 Reactions .......... 66 Table

  4. A New Family of Ionic Liquids 1-amino-3-alkyl-1,2,3-Triazolium Nitrates

    NASA Technical Reports Server (NTRS)

    Drake, Greg; Kaplan, Greg; Hall, Leslie; Hawkins, Tommy; Larue, Joann

    2004-01-01

    A new class of ionic liquids based upon 1-amino-3-alkyl-1,2,3-triazolium nitrates (alkyl = methyl, ethyl, n-propyl, 2-propeny1, and n-butyl) have been synthesized and characterized by vibrational spectra, multinuclear NMR, elemental analysis, and DSC studies. A single crystal x-ray study was carried out for 1-amino-3-methyl-1,2,3-triazolium nitrate and the details will be presented.

  5. Perfluorinated Alkyl Compounds: Challenges To Develop Robust And Reliable Methods

    EPA Science Inventory

    An increasing number of studies have been conducted to investigate the environmental distribution of perfluorinated alkyl compounds (PFCs), some of which are known to be toxic in laboratory studies. Despite growing public concerns, environmental monitoring data are still limited...

  6. Alkyl Aryl Ether Bond Formation with PhenoFluor**

    PubMed Central

    Shen, Xiao; Neumann, Constanze N.; Kleinlein, Claudia; Claudia, Nathaniel W.; Ritter, Tobias

    2015-01-01

    An alkyl aryl ether bond formation reaction between phenols and primary and secondary alcohols with PhenoFluor has been developed. The reaction features a broad substrate scope and tolerates many functional groups, and substrates that are challenging for more conventional ether bond forming processes may be coupled. A preliminary mechanistic study indicates reactivity distinct from conventional ether bond formation. PMID:25800679

  7. Parallel and automated library synthesis of 2-long alkyl chain benzoazoles and azole[4,5-b]pyridines under microwave irradiation.

    PubMed

    Martínez-Palou, Rafael; Zepeda, L Gerardo; Höpfl, Herbert; Montoya, Ascensión; Guzmán-Lucero, Diego J; Guzmán, Javier

    2005-01-01

    A versatile route to 40-membered library of 2-long alkyl chain substituted benzoazoles (1 and 2) and azole[4,5-b]pyridines (3 and 4) via microwave-assisted combinatorial synthesis was developed. The reactions were carried out in both monomode and multimode microwave oven. With the latter, all reactions were performed in high-throughput experimental settings consisting of an 8 x 5 combinatorial library designed to synthesize 40 compounds. Each step, from the addition of reagents to the recovery of final products, was automated. The microwave-assisted N-long chain alkylation reactions of 2-alkyl-1H-benzimidazole (1) and 2-alkyl-1H-benzimidazole[4,5-b] pyridines (3) were also studied.

  8. Activated-Sludge Nitrification in the Presence of Linear and Branched-Chain Alkyl Benzene Sulfonates

    PubMed Central

    Baillod, Charles R.; Boyle, W. C.

    1968-01-01

    The effects of biodegradable linear alkyl benzene sulfonate and branched-chain alkyl benzene sulfonate detergents on activated-sludge nitrification were investigated by administering a synthetic waste containing up to 23 mg of each detergent per liter to eight bench-scale, batch, activated-sludge units. It was found that both detergents tended to promote complete oxidation of ammonia to nitrate, whereas control units produced approximately equal amounts of nitrite and nitrate. Various hypotheses are offered to explain the phenomenon. PMID:5636474

  9. Poly(alkyl methacrylate) Brush-Grafted Silica Nanoparticles as Oil Lubricant Additives: Effects of Alkyl Pendant Groups on Oil Dispersibility, Stability, and Lubrication Property

    DOE PAGES

    Seymour, Bryan T.; Wright, Roger A. E.; Parrott, Alexander C.; ...

    2017-07-03

    This paper reports on the synthesis of a series of poly(alkyl methacrylate) brush-grafted, 23 nm silica nanoparticles (hairy NPs) and the study of the effect of alkyl pendant length on their use as oil lubricant additives for friction and wear reduction. The hairy NPs were prepared by surface-initiated reversible addition–fragmentation chain transfer polymerization from trithiocarbonate chain transfer agent (CTA)-functionalized silica NPs in the presence of a free CTA. We found that hairy NPs with sufficiently long alkyl pendant groups (containing >8 carbon atoms, such as 12, 13, 16, and 18 in this study) could be readily dispersed in poly(alphaolefin) (PAO),more » forming clear, homogeneous dispersions, and exhibited excellent stability at low and high temperatures as revealed by visual inspection and dynamic light scattering studies. Whereas poly(n-hexyl methacrylate) hairy NPs cannot be dispersed in PAO under ambient conditions or at 80 °C, interestingly, poly(2-ethylhexyl methacrylate) hairy NPs can be dispersed in PAO at 80 °C but not at room temperature, with a reversible clear-to-cloudy transition observed upon cooling. High-contact-stress ball-on-flat reciprocating sliding tribological tests at 100 °C showed significant reductions in both the coefficient of friction (up to 38%) and wear volume (up to 90% for iron flat) for transparent, homogeneous dispersions of hairy NPs in PAO at a concentration of 1.0 wt % compared with neat PAO. Finally, the formation of a load-bearing tribofilm at the rubbing interface was confirmed using scanning electron microscopy coupled with energy-dispersive X-ray spectroscopy.« less

  10. Poly(alkyl methacrylate) Brush-Grafted Silica Nanoparticles as Oil Lubricant Additives: Effects of Alkyl Pendant Groups on Oil Dispersibility, Stability, and Lubrication Property

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Seymour, Bryan T.; Wright, Roger A. E.; Parrott, Alexander C.

    This paper reports on the synthesis of a series of poly(alkyl methacrylate) brush-grafted, 23 nm silica nanoparticles (hairy NPs) and the study of the effect of alkyl pendant length on their use as oil lubricant additives for friction and wear reduction. The hairy NPs were prepared by surface-initiated reversible addition–fragmentation chain transfer polymerization from trithiocarbonate chain transfer agent (CTA)-functionalized silica NPs in the presence of a free CTA. We found that hairy NPs with sufficiently long alkyl pendant groups (containing >8 carbon atoms, such as 12, 13, 16, and 18 in this study) could be readily dispersed in poly(alphaolefin) (PAO),more » forming clear, homogeneous dispersions, and exhibited excellent stability at low and high temperatures as revealed by visual inspection and dynamic light scattering studies. Whereas poly(n-hexyl methacrylate) hairy NPs cannot be dispersed in PAO under ambient conditions or at 80 °C, interestingly, poly(2-ethylhexyl methacrylate) hairy NPs can be dispersed in PAO at 80 °C but not at room temperature, with a reversible clear-to-cloudy transition observed upon cooling. High-contact-stress ball-on-flat reciprocating sliding tribological tests at 100 °C showed significant reductions in both the coefficient of friction (up to 38%) and wear volume (up to 90% for iron flat) for transparent, homogeneous dispersions of hairy NPs in PAO at a concentration of 1.0 wt % compared with neat PAO. Finally, the formation of a load-bearing tribofilm at the rubbing interface was confirmed using scanning electron microscopy coupled with energy-dispersive X-ray spectroscopy.« less

  11. A Green Alternative to Aluminum Chloride Alkylation of Xylene

    ERIC Educational Resources Information Center

    Sereda, Grigoriy A.; Rajpara, Vikul B.

    2007-01-01

    An acutely less toxic 2-bromobutane is used to develop a simple graphite-promoted procedure of alkylation of p-xylene. It is further demonstrated that aluminum chloride is not required, the need for aqueous workup is eliminated, waste solutions are not produced and the multiple use of the catalyst is allowed.

  12. FTA-ABS test

    MedlinePlus

    ... rule out a possible false-negative result. Normal Results A negative or nonreactive result means that you ... meaning of your specific test results. What Abnormal Results Mean A positive FTA-ABS is often a ...

  13. Pharmacology of dimethanesulfonate alkylating agents: busulfan and treosulfan.

    PubMed

    Galaup, Ariane; Paci, Angelo

    2013-03-01

    Among the dimethanesulfonates, busulfan, in combination with other alkylating agents or nucleoside analogues, is the cornerstone of high-dose chemotherapy. It is used, and followed hematopoietic stem cell transplantation, for the treatment of various hematologic malignancies and immunodeficiencies. Treosulfan, which is a hydrophilic analogue of busulfan, was the first dimethanesufonate registered for the treatment of ovarian cancer. Recently, treosulfan has been investigated for the treatment of hematologic malignancies in combination with the same second agents before hematopoietic stem cell transplantation. This work reviews the pharmacological data of these two dimethanesulfonates alkylating agents. Specifically, the article looks at their chemistry, metabolism, anticancer activity, and their pharmacokinetics and pharmacodynamics. Busulfan has been investigated widely for more than three decades leading to a large and precise handling of this agent with numerous studies on activity and pharmacokinetics and pharmacodynamics. In contrast, the behavior of treosulfan is still under investigation and not fully described. The complexity of treosulfan's metabolism and mechanism of action gives rise to the need of a deeper understanding of its pharmacological activity in a context of high-dose chemotherapy. Specifically, there is a great need to better understand its pharmacokinetics/pharmacodynamics relationship.

  14. Quantitative chemoproteomics for site-specific analysis of protein alkylation by 4-hydroxy-2-nonenal in cells.

    PubMed

    Yang, Jing; Tallman, Keri A; Porter, Ned A; Liebler, Daniel C

    2015-03-03

    Protein alkylation by 4-hydroxy-2-nonenal (HNE), an endogenous lipid derived electrophile, contributes to stress signaling and cellular toxicity. Although previous work has identified protein targets for HNE alkylation, the sequence specificity of alkylation and dynamics in a cellular context remain largely unexplored. We developed a new quantitative chemoproteomic platform, which uses isotopically tagged, photocleavable azido-biotin reagents to selectively capture and quantify the cellular targets labeled by the alkynyl analogue of HNE (aHNE). Our analyses site-specifically identified and quantified 398 aHNE protein alkylation events (386 cysteine sites and 12 histidine sites) in intact cells. This data set expands by at least an order of magnitude the number of such modification sites previously reported. Although adducts formed by Michael addition are thought to be largely irreversible, we found that most aHNE modifications are lost rapidly in situ. Moreover, aHNE adduct turnover occurs only in intact cells and loss rates are site-selective. This quantitative chemoproteomics platform provides a versatile general approach to map bioorthogonal-chemically engineered post-translational modifications and their cellular dynamics in a site-specific and unbiased manner.

  15. Undoing Gender through Legislation and Schooling: The Case of AB 537 and AB 394 in California, USA

    ERIC Educational Resources Information Center

    Knotts, Greg

    2009-01-01

    This article investigates California laws AB 537: The Student Safety and Violence Prevention Act of 2000, and the recently enacted AB 394: Safe Place to Learn Act. Both demand that gender identity and sexual orientation be added to the lexicon of anti-harassment protection in public education. However, despite these progressive measures, schools…

  16. 40 CFR 721.625 - Alkylated diarylamine, sul-furized (generic name).

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... (CONTINUED) TOXIC SUBSTANCES CONTROL ACT SIGNIFICANT NEW USES OF CHEMICAL SUBSTANCES Significant New Uses for Specific Chemical Substances § 721.625 Alkylated diarylamine, sul-furized (generic name). (a) Chemical substance and significant new uses subject to reporting. (1) The chemical substance identified generically...

  17. Rituximab, alkylating agents or combination therapy for gastric mucosa-associated lymphoid tissue lymphoma: a monocentric non-randomised observational study.

    PubMed

    Amiot, A; Lévy, M; Copie-Bergman, C; Dupuis, J; Szablewski, V; Le Baleur, Y; Baia, M; Belhadj, K; Sobhani, I; Leroy, K; Haioun, C; Delchier, J-C

    2014-03-01

    There is no consensus on the standard treatment of gastric mucosa-associated lymphoid tissue (MALT) lymphoma for Helicobacter pylori-negative patients and for patients with persistent disease despite H. pylori eradication. To evaluate the comparative efficacy and safety of alkylating agents and rituximab alone or in combination. In this monocentric retrospective study, which included 106 patients who had not been previously treated with anti-cancer agents, we evaluated the efficacy and safety of oral alkylating agents monotherapy (n = 48), rituximab monotherapy (n = 28) and the therapy combining both drugs (n = 30). Evaluations were performed at weeks 6 (W6), 25 (W25), and 52 (W52) and after 2 years (W104). After a median follow-up period of 4.9 years (range 0.4-17.2 years), complete remission and overall response were significantly higher in patients in the combination therapy group at W104 (92% and 100% respectively) compared with patients treated with alkylating agents alone (66% and 68%) and rituximab alone (64% and 73%). The 5-year progression-free survival probabilities were 68%, 70% and 89% in patients treated with alkylating agents alone, rituximab alone and combination therapy respectively. Haematological adverse events were reported in 32 (30%) patients (mostly grade 1) and were more frequent in the two groups receiving alkylating agents (P = 0.05 and P < 0.001). No toxicity-related death was reported. The use of anti-cancer systemic therapy is safe and efficient in gastric MALT lymphoma. In this retrospective study, the combination of rituximab plus chlorambucil seems more efficient than rituximab or alkylating agents alone. Rituximab has a better safety profile than regimens containing alkylating agents. © 2014 John Wiley & Sons Ltd.

  18. Oncometabolite D-2-Hydroxyglutarate Inhibits ALKBH DNA Repair Enzymes and Sensitizes IDH Mutant Cells to Alkylating Agents.

    PubMed

    Wang, Pu; Wu, Jing; Ma, Shenghong; Zhang, Lei; Yao, Jun; Hoadley, Katherine A; Wilkerson, Matthew D; Perou, Charles M; Guan, Kun-Liang; Ye, Dan; Xiong, Yue

    2015-12-22

    Chemotherapy of a combination of DNA alkylating agents, procarbazine and lomustine (CCNU), and a microtubule poison, vincristine, offers a significant benefit to a subset of glioma patients. The benefit of this regimen, known as PCV, was recently linked to IDH mutation that occurs frequently in glioma and produces D-2-hydroxyglutarate (D-2-HG), a competitive inhibitor of α-ketoglutarate (α-KG). We report here that D-2-HG inhibits the α-KG-dependent alkB homolog (ALKBH) DNA repair enzymes. Cells expressing mutant IDH display reduced repair kinetics, accumulate more DNA damages, and are sensitized to alkylating agents. The observed sensitization to alkylating agents requires the catalytic activity of mutant IDH to produce D-2-HG and can be reversed by the deletion of mutant IDH allele or overexpression of ALKBH2 or AKLBH3. Our results suggest that impairment of DNA repair may contribute to tumorigenesis driven by IDH mutations and that alkylating agents may merit exploration for treating IDH-mutated cancer patients. Copyright © 2015 The Authors. Published by Elsevier Inc. All rights reserved.

  19. Evolving trends in mAb production processes

    PubMed Central

    Wolfe, Leslie S.; Mostafa, Sigma S.; Norman, Carnley

    2017-01-01

    Abstract Monoclonal antibodies (mAbs) have established themselves as the leading biopharmaceutical therapeutic modality. The establishment of robust manufacturing platforms are key for antibody drug discovery efforts to seamlessly translate into clinical and commercial successes. Several drivers are influencing the design of mAb manufacturing processes. The advent of biosimilars is driving a desire to achieve lower cost of goods and globalize biologics manufacturing. High titers are now routinely achieved for mAbs in mammalian cell culture. These drivers have resulted in significant evolution in process platform approaches. Additionally, several new trends in bioprocessing have arisen in keeping with these needs. These include the consideration of alternative expression systems, continuous biomanufacturing and non‐chromatographic separation formats. This paper discusses these drivers in the context of the kinds of changes they are driving in mAb production processes. PMID:29313024

  20. Ab Initio-Based Predictions of Hydrocarbon Combustion Chemistry

    DTIC Science & Technology

    2015-07-15

    There are two prime objectives of the research. One is to develop and apply efficient methods for using ab initio potential energy surfaces (PESs...31-Mar-2015 Approved for Public Release; Distribution Unlimited Final Report: Ab Initio -Based Predictions of Hydrocarbon Combustion Chemistry The...Office P.O. Box 12211 Research Triangle Park, NC 27709-2211 hydrocarbon combustion, ab initio quantum chemistry, potential energy surfaces, chemical

  1. Effect of alkyl glycerophosphate on the activation of peroxisome proliferator-activated receptor gamma and glucose uptake in C2C12 cells.

    PubMed

    Tsukahara, Tamotsu; Haniu, Hisao; Matsuda, Yoshikazu

    2013-04-12

    Studies on the effects of lipids on skeletal muscle cells rarely examine the effects of lysophospholipids. Through our recent studies, we identified select forms of phospholipids, such as alkyl-LPA, as ligands for the intracellular receptor peroxisome proliferator-activated receptor gamma (PPARγ). PPARγ is a nuclear hormone receptor implicated in many human diseases, including diabetes and obesity. We previously showed that alkyl-LPA is a specific agonist of PPARγ. However, the mechanism by which the alkyl-LPA-PPARγ axis affects skeletal muscle cells is poorly defined. Our objective in the present study was to determine whether alkyl-LPA and PPARγ activation promotes glucose uptake in skeletal muscle cells. Our findings indicate that PPARγ1 mRNA is more abundant than PPARγ2 mRNA in C2C12 cells. We showed that alkyl-LPA (3 μM) significantly activated PPARγ and increased intracellular glucose levels in skeletal muscle cells. We also showed that incubation of C2C12 cells with alkyl-LPA led to lipid accumulation in the cells. These findings suggest that alkyl-LPA activates PPARγ and stimulates glucose uptake in the absence of insulin in C2C12 cells. This may contribute to the plasma glucose-lowering effect in the treatment of insulin resistance. Copyright © 2013 Elsevier Inc. All rights reserved.

  2. Alkyltransferase-like proteins: brokers dealing with alkylated DNA bases.

    PubMed

    Schärer, Orlando D

    2012-07-13

    A new pathway for the repair of DNA alkylation damage is described in this issue of Molecular Cell (Latypov et al., 2012). Alkyltransferase-like enzymes mark O(6)-alkylguanine lesions and, depending on adduct size, channel them into global genome or transcription-coupled nucleotide excision repair pathways. Copyright © 2012 Elsevier Inc. All rights reserved.

  3. Anti-biofilm action of nitric oxide-releasing alkyl-modified poly(amidoamine) dendrimers against Streptococcus mutans.

    PubMed

    Backlund, Christopher J; Worley, Brittany V; Schoenfisch, Mark H

    2016-01-01

    The effect of nitric oxide (NO)-releasing dendrimer hydrophobicity on Streptococcus mutans killing and biofilm disruption was examined at pH 7.4 and 6.4, the latter relevant to dental caries. Generation 1 (G1) poly(amidoamine) (PAMAM) dendrimers were modified with alkyl epoxides to generate propyl-, butyl-, hexyl-, octyl-, and dodecyl-functionalized dendrimers. The resulting secondary amines were reacted with NO to form N-diazeniumdiolate NO donor-modified dendrimer scaffolds (total NO ∼1μmol/mg). The bactericidal action of the NO-releasing dendrimers against both planktonic and biofilm-based S. mutans proved greatest with increasing alkyl chain length and at lower pH. Improved bactericidal efficacy at pH 6.4 was attributed to increased scaffold surface charge that enhanced dendrimer-bacteria association and ensuing membrane damage. For shorter alkyl chain (i.e., propyl and butyl) dendrimer modifications, increased antibacterial action at pH 6.4 was due to faster NO-release kinetics from proton-labile N-diazeniumdiolate NO donors. Octyl- and dodecyl-modified PAMAM dendrimers proved most effective for eradicating S. mutans biofilms with NO release mitigating dendrimer scaffold cytotoxicity. We report the antibacterial and anti-biofilm efficacy of dual-action nitric oxide (NO)-releasing dendrimers against S. mutans, an etiological agent in dental caries. This work was undertaken to enhance the anti-biofilm action of these scaffolds by employing various alkyl chain modifications. Furthermore, we evaluated the ability of NO to eradicate cariogenic biofilms. We found that at the lower pH associated with dental caries (pH ∼6.4), NO has a more pronounced antibacterial effect for alkyl modifications less capable of biofilm penetration and membrane disruption. Of greatest significance, we introduce dendrimers as a new macromolecular antibacterial agent against the cariogenic bacteria S. mutans. Copyright © 2015 Acta Materialia Inc. Published by Elsevier Ltd. All

  4. The effect of the cation alkyl chain branching on mutual solubilities with water and toxicities.

    PubMed

    Kurnia, Kiki A; Sintra, Tânia E; Neves, Catarina M S S; Shimizu, Karina; Canongia Lopes, José N; Gonçalves, Fernando; Ventura, Sónia P M; Freire, Mara G; Santos, Luís M N B F; Coutinho, João A P

    2014-10-07

    The design of ionic liquids has been focused on the cation-anion combinations but other more subtle approaches can be used. In this work the effect of the branching of the cation alkyl chain on the design of ionic liquids (ILs) is evaluated. The mutual solubilities with water and toxicities of a series of bis(trifluoromethylsulfonyl)-based ILs, combined with imidazolium, pyridinium, pyrrolidinium, and piperidinium cations with linear or branched alkyl chains, are reported. The mutual solubility measurements were carried out in the temperature range from (288.15 to 323.15) K. From the obtained experimental data, the thermodynamic properties of the solution (in the water-rich phase) were determined and discussed. The COnductor like Screening MOdel for Real Solvents (COSMO-RS) was used to predict the liquid-liquid equilibrium. Furthermore, molecular dynamic simulations were also carried out aiming to get a deeper understanding of these fluids at the molecular level. The results show that the increase in the number of atoms at the cation ring (from five to six) leads to a decrease in the mutual solubilities with water while increasing their toxicity, and as expected from the well-established relationship between toxicities and hydrophobicities of ILs. The branching of the alkyl chain was observed to decrease the water solubility in ILs, while increasing the ILs solubility in water. The inability of COSMO-RS to correctly predict the effect of branching alkyl chains toward water solubility on them was confirmed using molecular dynamic simulations to be due to the formation of nano-segregated structures of the ILs that are not taken into account by the COSMO-RS model. In addition, the impact of branched alkyl chains on the toxicity is shown to be not trivial and to depend on the aromatic nature of the ILs.

  5. Direct, enantioselective α-alkylation of aldehydes using simple olefins

    PubMed Central

    Capacci, Andrew G.; Malinowski, Justin T.; McAlpine, Neil J.; Kuhne, Jerome; MacMillan, David W. C.

    2017-01-01

    Although the α-alkylation of ketones has already been established, the analogous reaction using aldehyde substrates has proven surprisingly elusive. Despite the structural similarities between the two classes of compounds, the sensitivity and unique reactivity of the aldehyde functionality has typically required activated substrates or specialized additives. Here, we show that the synergistic merger of three catalytic processes—photoredox, enamine and hydrogen-atom transfer (HAT) catalysis—enables an enantioselective α-aldehyde alkylation reaction that employs simple olefins as coupling partners. Chiral imidazolidinones or prolinols, in combination with a thiophenol, iridium photoredox catalyst and visible light, have been successfully used in a triple catalytic process that is temporally sequenced to deliver a new hydrogen and electron-borrowing mechanism. This multicatalytic process enables both intra- and intermolecular aldehyde α-methylene coupling with olefins to construct both cyclic and acyclic products, respectively. With respect to atom and step-economy ideals, this stereoselective process allows the production of high-value molecules from feedstock chemicals in one step while consuming only photons. PMID:29064486

  6. Cyclic 3-alkyl pyridinium alkaloid monomers from a New Zealand Haliclona sp. marine sponge.

    PubMed

    Damodaran, Vidhiya; Ryan, Jason L; Keyzers, Robert A

    2013-10-25

    Bioassay and NMR approaches have been used to guide the isolation of one known and two new cyclic 3-alkyl pyridinium alkaloid (3-APA) monomers from the New Zealand marine sponge Haliclona sp. The new compounds, dehydrohaliclocyclins C (3) and F (4), are the first reported examples of cyclic 3-APA monomers with unsaturation in the alkyl chain. The known compound haliclocyclin C (2) was also isolated from a mixture with 4. The structures of compounds 2-4 were elucidated using NMR spectroscopy, mass spectrometry, and chemical degradation.

  7. The Scope of Direct Alkylation of Gold Surface with Solutions of C1-C4 n-Alkylstannanes.

    PubMed

    Kaletová, Eva; Kohutová, Anna; Hajduch, Jan; Kaleta, Jiří; Bastl, Zdeněk; Pospíšil, Lubomír; Stibor, Ivan; Magnera, Thomas F; Michl, Josef

    2015-09-23

    Treatment of cleaned gold surfaces with dilute tetrahydrofuran or chloroform solutions of tetraalkylstannanes (alkyl = methyl, ethyl, n-propyl, n-butyl) or di-n-butylmethylstannyl tosylate under ambient conditions causes a self-limited growth of disordered monolayers consisting of alkyls and tin oxide. Extensive use of deuterium labeling showed that the alkyls originate from the stannane and not from ambient impurities, and that trialkylstannyl groups are absent in the monolayers, contrary to previous proposals. Methyl groups attached to the Sn atom are not transferred to the surface. Ethyl groups are transferred slowly, and propyl and butyl rapidly. In all cases, tin oxide is codeposited in submonolayer amounts. The monolayers were characterized by ellipsometry, contact angle goniometry, polarization modulated IR reflection absorption spectroscopy, X-ray photoelectron spectroscopy, and electrochemical impedance spectroscopy with ferrocyanide/ferricyanide, which revealed a very low charge-transfer resistance. The thermal stability of the monolayers and their resistance to solvents are comparable with those of an n-octadecanethiol monolayer. A preliminary examination of the kinetics of monolayer deposition from a THF solution of tetra-n-butylstannane revealed an approximately half-order dependence on the bulk solution concentration of the stannane, hinting that more than one alkyl can be transferred from a single stannane molecule. A detailed structure of the attachment of the alkyl groups is not known, and it is proposed that it involves direct single or multiple bonding of one or more C atoms to one or more Au atoms.

  8. Synthesis of prostaglandins by conjugate addition and alkylation of a directed enolate ion. 4,5-allenyl prostaglandins

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Patterson, J.W.

    1990-09-28

    Over the previous two decades many elegant syntheses of prostaglandins, which in more sophisticated forms, allow the stereospecific introduction of the various asymmetric carbons have been accomplished. However, among these approaches the cuprate addition/enolate alkylation of suitable cyclopentenone {sup 2} stands out because of brevity and convergence. The recent reports by Noyori{sup 3} and Corey{sup 4} and their colleagues have reduced to practice the conversion of 4-alkoxycyclopentenones to prostaglandin E{sub 2} (PGE{sub 2}) by conjugate addition of an organocopper derivative of the lower side chain followed by alkylation of the resulting carbanion with methyl 7-halohept-2-enoate. The subject of this papermore » is application of the Tardella tin enolate alkylation developed by Noyori to the synthesis of 4, 5-allenic prostaglandins, a pharmacologically important class of compounds. The authors results demonstrate that the tandem alkylation of an enone precursor with a cuprate reagent followed by alkylation of the corresponding tin enolate with bromide reagent is a viable synthetic method for 4,5-didehydro-PGE{sub 2}. Because the optically active forms of 1 and the vinyl iodide precursor of the PGE{sub 2} lower side chain have been employed to produce a single enantiomer of PGE{sub 2}, the extension of the methodology described here to the synthesis of single enantiomers of 4a awaits only the preparation of the separate enantiomers of allene 14.« less

  9. Cooperative alpha-helix formation of beta-lactoglobulin induced by sodium n-alkyl sulfates.

    PubMed

    Chamani, J; Moosavi-Movahedi, A A; Rajabi, O; Gharanfoli, M; Momen-Heravi, M; Hakimelahi, G H; Neamati-Baghsiah, A; Varasteh, A R

    2006-01-01

    It is generally assumed that folding intermediates contain partially formed native-like secondary structures. However, if we consider the fact that the conformational stability of the intermediate state is simpler than that of the native state, it would be expected that the secondary structures in a folding intermediate would not necessarily be similar to those of the native state. beta-Lactoglobulin is a predominantly beta-sheet protein, although it has a markedly high intrinsic preference for alpha-helical structure. The formation of non-native alpha-helical intermediate of beta-lactoglobulin was induced by n-alkyl sulfates including sodium octyl sulfate, SOS; sodium decyl sulfate, SDeS; sodium dodecyl sulfate, SDS; and sodium tetradecyl sulfate, STS at special condition. The effect of n-alkyl sulfates on the structure of native beta-lactoglobulin at pH 2 was utilized to investigate the contribution of hydrophobic interactions to the stability of non-native alpha-helical intermediate. The addition of various concentrations of n-alkyl sulfates to the native state of beta-lactoglobulin (pH 2) appears to support the stabilized form of non-native alpha-helical intermediate at pH 2. The m values of the intermediate state of beta-lactoglobulin by SOS, SDeS, SDS and STS showed substantial variation. The enhancement of m values as the stability criterion of non-native alpha-helical intermediate state corresponded with increasing chain length of the cited n-alkyl sulfates. The present results suggest that the folding reaction of beta-lactoglobulin follows a non-hierarchical mechanism and hydrophobic interactions play important roles in stabilizing the non-native alpha-helical intermediate state.

  10. 1,6-Conjugate addition of zinc alkyls to para-quinone methides in a continuous-flow microreactor.

    PubMed

    Jadhav, Abhijeet S; Anand, Ramasamy Vijaya

    2016-12-20

    An efficient method for the synthesis of alkyl diarylmethanes through the 1,6-conjugate addition of dialkylzinc reagents to para-quinone methides (p-QMs) has been developed under continuous flow conditions using a microreactor. This protocol allows to access unsymmetrical alkyl diarylmethanes in moderate to excellent yields using a wide range of p-QMs and dialkylzinc reagents. Interestingly, this transformation worked well without the requirement of a catalyst.

  11. Aerobic and anaerobic degradation of a range of alkyl sulfides by a denitrifying marine bacterium

    USGS Publications Warehouse

    Visscher, P.T.; Taylor, B.F.

    1993-01-01

    A pure culture of a bacterium was obtained from a marine microbial mat by using an anoxic medium containing dimethyl sulfide (DMS) and nitrate. The isolate grew aerobically or anaerobically as a denitrifier on alkyl sulfides, including DMS, dimethyl disulfide, diethyl sulfide (DES), ethyl methyl sulfide, dipropyl sulfide, dibutyl sulfide, and dibutyl disulfide. Cells grown on an alkyl sulfide or disulfide also oxidized the corresponding thiols, namely, methanethiol, ethanethiol, propanethiol, or butanethiol. Alkyl sulfides were metabolized by induced or derepressed cells with oxygen, nitrate, or nitrite as electron acceptor. Cells grown on DMS immediately metabolized DMS, but there was a lag before DES was consumed; with DES-grown cells, DES was immediately used but DMS was used only after a lag. Chloramphenicol prevented the eventual use of DES by DMS-grown cells and DMS use by DES-grown cells, respectively, indicating separate enzymes for the metabolism of methyl and ethyl groups. Growth was rapid on formate, acetate, propionate, and butyrate but slow on methanol. The organism also grew chemolithotrophically on thiosulfate with a decrease in pH; growth required carbonate in the medium. Growth on sulfide was also carbonate dependent but slow. The isolate was identified as a Thiobacillus sp. and designated strain ASN-1. It may have utility for removing alkyl sulfides, and also nitrate, nitrite, and sulfide, from wastewaters.

  12. Cobalt-catalyzed cross-coupling reactions of alkyl halides with allylic and benzylic Grignard reagents and their application to tandem radical cyclization/cross-coupling reactions.

    PubMed

    Ohmiya, Hirohisa; Tsuji, Takashi; Yorimitsu, Hideki; Oshima, Koichiro

    2004-11-05

    Details of cobalt-catalyzed cross-coupling reactions of alkyl halides with allylic Grignard reagents are disclosed. A combination of cobalt(II) chloride and 1,2-bis(diphenylphosphino)ethane (DPPE) or 1,3-bis(diphenylphosphino)propane (DPPP) is suitable as a precatalyst and allows secondary and tertiary alkyl halides--as well as primary ones--to be employed as coupling partners for allyl Grignard reagents. The reaction offers a facile synthesis of quaternary carbon centers, which has practically never been possible with palladium, nickel, and copper catalysts. Benzyl, methallyl, and crotyl Grignard reagents can all couple with alkyl halides. The benzylation definitely requires DPPE or DPPP as a ligand. The reaction mechanism should include the generation of an alkyl radical from the parent alkyl halide. The mechanism can be interpreted in terms of a tandem radical cyclization/cross-coupling reaction. In addition, serendipitous tandem radical cyclization/cyclopropanation/carbonyl allylation of 5-alkoxy-6-halo-4-oxa-1-hexene derivatives is also described. The intermediacy of a carbon-centered radical results in the loss of the original stereochemistry of the parent alkyl halides, creating the potential for asymmetric cross-coupling of racemic alkyl halides.

  13. Tris(thioimidazolyl)borate-zinc-thiolate complexes for the modeling of biological thiolate alkylations.

    PubMed

    Ibrahim, Mohamed M; Seebacher, Jan; Steinfeld, Gunther; Vahrenkamp, Heinrich

    2005-11-14

    The S3Zn-SR coordination of thiolate-alkylating enzymes such as the Ada DNA repair protein was reproduced in tris(thioimidazolyl)borate-zinc-thiolate complexes Tti(R)Zn-SR'. Four different Tti(R) ligands and nine different thiolates were employed, yielding a total of 12 new complexes. In addition, one Tti(R)Zn-SH complex and two thiolate-bridged [Tti(R)-SEt-Tti(R)]+ complexes were obtained. A selection of six thiolate complexes was converted with methyl iodide to the corresponding methyl thioethers and Tti(R)Zn-I. According to a kinetic analysis these reactions are second-order processes, which implies that the alkylations are likely to occur at the zinc-bound thiolates. They are much faster than the alkylations of zinc thiolates with N3 or N2S tripod ligands. The most reactive thiolate, Tti(Xyl)Zn-SEt, reacts slowly with trimethyl phosphate in a nonpolar medium at room temperature, yielding methyl-ethyl-thioether and Tti(Xyl)Zn-OPO(OMe)2 which can be converted back to the thiolate complex with NaSEt. This is the closest reproduction of the Ada repair process so far.

  14. MULTISPECTRAL IDENTIFICATION OF ALKYL AND CHLOROALKYL PHOSPHATES FROM AN INDUSTRIAL EFFLUENT

    EPA Science Inventory

    Multispectral techniques (gas chromatography combined with low and high resolution electron-impact mass spectrometry, low and high resolution chemical ionization mass spectrometry, and Fourier transform infrared mass spectroscopy) were used to identify 13 alkyl and chloralkyl pho...

  15. Students' Understanding of Alkyl Halide Reactions in Undergraduate Organic Chemistry

    ERIC Educational Resources Information Center

    Cruz-Ramirez de Arellano, Daniel

    2013-01-01

    Organic chemistry is an essential subject for many undergraduate students completing degrees in science, engineering, and pre-professional programs. However, students often struggle with the concepts and skills required to successfully solve organic chemistry exercises. Since alkyl halides are traditionally the first functional group that is…

  16. Interfacial assignment of branched-alkyl benzene sulfonates: A molecular simulation

    NASA Astrophysics Data System (ADS)

    Liu, Zi-Yu; Wei, Ning; Wang, Ce; Zhou, He; Zhang, Lei; Liao, Qi; Zhang, Lu

    2015-11-01

    A molecular dynamics simulation was conducted to analyze orientations of sodium branched-alkyl benzene sulfonates molecules at nonane/water interface, which is helpful to design optimal surfactant structures to achieve ultralow interfacial tension (IFT). Through the two dimensional density profiles, monolayer collapses are found when surfactant concentration continues to increase. Thus the precise scope of monolayer is certain and orientation can be analyzed. Based on the simulated results, we verdict the interfacial assignment of branched-alkyl benzene sulfonates at the oil-water interface, and discuss the effect of hydrophobic tail structure on surfactant assignment. Bigger hydrophobic size can slow the change rate of surfactant occupied area as steric hindrance, and surfactant meta hydrophobic tails have a stronger tendency to stretch to the oil phase below the collapsed concentration. Furthermore, an interfacial model with reference to collapse, increasing steric hindrance and charge repulsive force between interfacial surfactant molecules, responsible for effecting of surfactant concentration and structure has been supposed.

  17. Asymmetric Benzylic Allylic Alkylation Reaction of 3-Furfural Derivatives by Dearomatizative Dienamine Activation.

    PubMed

    He, Xiao-Long; Zhao, Hui-Ru; Duan, Chuan-Qi; Han, Xu; Du, Wei; Chen, Ying-Chun

    2018-04-20

    The dearomatizative dienamine-type ortho-quinodimethane species are smoothly generated between 2-alkyl-3-furfurals and chiral secondary amine catalysts, which undergo asymmetric benzylic allylic alkylation reactions with 2-nitroallylic acetates efficiently. A spectrum of densely functionalized 3-furfural derivatives are delivered in moderate to high yields with good to excellent diastereo- and enantioselectivity (up to 98 % yield, >19:1 d.r., >99 % ee). The latent transformations allow the facile production of some enantioenriched architectures, such as 1,1,2,2-tetraarylethanes and triarylmethanes, which are not easily available from other protocols. © 2018 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  18. Simple introduction of carboxyl head group with alkyl spacer onto multiwalled carbon nanotubes by solution plasma process

    NASA Astrophysics Data System (ADS)

    Nemoto, Shimpei; Ueno, Tomonaga; Watthanaphanit, Anyarat; Hieda, Junko; Bratescu, Maria Antoaneta; Saito, Nagahiro

    2017-09-01

    A simple method of fabricating carboxyl-terminated multiwalled carbon nanotubes (MWCNTs) with alkyl spacers was developed to improve the dispersion quality of MWCNTs in aqueous solutions using solution plasma (SP) in a 6-aminocaproic acid solution. The formation of SP in the solution led to better dispersion of MWCNTs in aqueous solutions. Fourier transform infrared spectroscopy (FT-IR) results indicate that a carboxyl group with an alkyl spacer can be introduced by SP treatment in the 6-aminocaproic acid solution. Sedimentation tests show that the SP-treated MWCNTs in the 6-aminocaproic acid solution retained their good dispersion quality in aqueous solutions of pHs 5, 6, and 9. The alkyl spacer plays an important role in the preservation of dispersion states particularly at pH 6.

  19. Profiling the nucleobase and structure selectivity of anticancer drugs and other DNA alkylating agents by RNA sequencing.

    PubMed

    Gillingham, Dennis; Sauter, Basilius

    2018-05-06

    Drugs that covalently modify DNA are components of most chemotherapy regimens, often serving as first-line treatments. Classically the chemical reactivity of DNA alkylators has been determined in vitro with short oligonucleotides. Here we use next generation RNA sequencing to report on the chemoselectivity of alkylating agents. We develop the method with the well-known clinically used DNA modifiying drugs streptozotocin and temozolomide, and then apply the technique to profile RNA modification with uncharacterized alkylation reactions such as with powerful electrophiles like trimethylsilyldiazomethane. The multiplexed and massively parallel format of NGS offers analyses of chemical reactivity in nucleic acids to be accomplished in less time with greater statistical power. © 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  20. A mild hand cleanser, alkyl ether sulphate supplemented with alkyl ether carboxylic acid and alkyl glucoside, improves eczema on the hand and prevents the growth of Staphylococcus aureus on the skin surface.

    PubMed

    Fukui, S; Morikawa, T; Hirahara, M; Terada, Y; Shimizu, M; Takeuchi, K; Takagi, Y

    2016-12-01

    Washing the hands using cleansers with antiseptic materials is the most popular method for hand hygiene and helps maintain health by preventing food poisoning and bacterial infections. However, repeated hand washing tends to induce eczema of the hand, such as dryness, cracking and erythema. Moreover, eczema on the hand leads to increased levels in Staphylococcus aureus (S. aureus) on the skin surface in contrast to expectations. Thus, mild hand cleansers which induce less eczema even with repeated washings are desired. Here, we evaluated the efficacy of a hand cleanser formulated with alkyl ether sulphate (AES), alkyl ether carboxylic acid (AEC) and alkyl glucoside (AG) that contains isopropyl methylphenol (IPMP) on skin symptoms and S. aureus levels. Eczema of the hand and the presence of S. aureus on the skin surface were analysed prior to and following 4 weeks of usage of the hand cleanser. A soap-based hand cleanser with IPMP was used as a reference cleanser. Eczema and cutaneous conditions were evaluated by visual grading, transepidermal water loss (TEWL), stratum corneum moisture-retention ability (MRA) and skin surface pH. The repeated use of the soap-based hand cleanser significantly worsened the hand dryness, scaling and cracks on the tips of the fingers and significantly increased the TEWL and decreased the MRA. In contrast, usage of the test cleanser only induced a significant increase in skin dryness but did not induce skin scaling or cracking and did not increase TEWL or decrease the MRA. Corresponding to these changes in skin symptoms, the presence of S. aureus increased the following use of the reference cleanser but not the test cleanser. There was no significant difference in skin surface pH between the two cleansers. Moreover, the increase in S. aureus was significantly correlated to the worsening of skin dryness and scaling. These results suggest that not only antimicrobial activity but also the mildness, which minimizes cutaneous effects

  1. Topological Semimetals Studied by Ab Initio Calculations

    NASA Astrophysics Data System (ADS)

    Hirayama, Motoaki; Okugawa, Ryo; Murakami, Shuichi

    2018-04-01

    In topological semimetals such as Weyl, Dirac, and nodal-line semimetals, the band gap closes at points or along lines in k space which are not necessarily located at high-symmetry positions in the Brillouin zone. Therefore, it is not straightforward to find these topological semimetals by ab initio calculations because the band structure is usually calculated only along high-symmetry lines. In this paper, we review recent studies on topological semimetals by ab initio calculations. We explain theoretical frameworks which can be used for the search for topological semimetal materials, and some numerical methods used in the ab initio calculations.

  2. Rapid screening of fatty acid alkyl esters in olive oils by time domain reflectometry.

    PubMed

    Berardinelli, Annachiara; Ragni, Luigi; Bendini, Alessandra; Valli, Enrico; Conte, Lanfranco; Guarnieri, Adriano; Toschi, Tullia Gallina

    2013-11-20

    The main aim of the present research is to assess the possibility of quickly screening fatty acid alkyl esters (FAAE) in olive oils using time domain reflectometry (TDR) and partial least-squares (PLS) multivariate statistical analysis. Eighteen virgin olive oil samples with fatty acid alkyl ester contents and fatty acid ethyl ester/methyl ester ratios (FAEE/FAME) ranging from 3 to 100 mg kg(-1) and from 0.3 to 2.6, respectively, were submitted to tests with time domain resolution of 1 ps. The results obtained in test set validation demonstrated that this new and fast analytical approach is able to predict FAME, FAEE, and FAME + FAEE contents with R(2) values of 0.905, 0.923, and 0.927, respectively. Further measurements on mixtures between olive oil and FAAE standards confirmed that the prediction is based on a direct influence of fatty acid alkyl esters on the TDR signal. The suggested technique appeared potentially suitable for monitoring one of the most important quality attribute of the olive oil in the extraction process.

  3. 40 CFR 721.10556 - Poly(oxy-1,2-ethanediyl), .alpha.- (2-methyl-2-propen-1-yl) -.omega.-hydroxy-,C12-15-alkyl ethers.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ....- (2-methyl-2-propen-1-yl) -.omega.-hydroxy-,C12-16-alkyl ethers (PMN P-06-452; CAS No. 675869-05-3...-methyl-2-propen-1-yl) -.omega.-hydroxy-,C12-15-alkyl ethers. 721.10556 Section 721.10556 Protection of...-ethanediyl), .alpha.- (2-methyl-2-propen-1-yl) -.omega.-hydroxy-,C12-15-alkyl ethers. (a) Chemical substance...

  4. 40 CFR 721.10556 - Poly(oxy-1,2-ethanediyl), .alpha.- (2-methyl-2-propen-1-yl) -.omega.-hydroxy-,C12-15-alkyl ethers.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ....- (2-methyl-2-propen-1-yl) -.omega.-hydroxy-,C12-16-alkyl ethers (PMN P-06-452; CAS No. 675869-05-3...-methyl-2-propen-1-yl) -.omega.-hydroxy-,C12-15-alkyl ethers. 721.10556 Section 721.10556 Protection of...-ethanediyl), .alpha.- (2-methyl-2-propen-1-yl) -.omega.-hydroxy-,C12-15-alkyl ethers. (a) Chemical substance...

  5. 40 CFR 721.10558 - Poly(oxy-1,2-ethanediyl), .alpha.- (2-methyl-2-propen-1-yl) -.omega.-hydroxy-,C12-16-alkyl ethers.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ....- (2-methyl-2-propen-1-yl) -.omega.-hydroxy-,C12-16-alkyl ethers (PMN P-06-452; CAS No. 675869-05-3...-methyl-2-propen-1-yl) -.omega.-hydroxy-,C12-16-alkyl ethers. 721.10558 Section 721.10558 Protection of...-ethanediyl), .alpha.- (2-methyl-2-propen-1-yl) -.omega.-hydroxy-,C12-16-alkyl ethers. (a) Chemical substance...

  6. 40 CFR 721.10557 - Poly(oxy-1,2-ethanediyl), .alpha.- (2-methyl-2-propen-1-yl) -.omega.-hydroxy-,C10-16-alkyl ethers.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ....- (2-methyl-2-propen-1-yl) -.omega.-hydroxy-,C12-16-alkyl ethers (PMN P-06-452; CAS No. 675869-05-3...-methyl-2-propen-1-yl) -.omega.-hydroxy-,C10-16-alkyl ethers. 721.10557 Section 721.10557 Protection of...-ethanediyl), .alpha.- (2-methyl-2-propen-1-yl) -.omega.-hydroxy-,C10-16-alkyl ethers. (a) Chemical substance...

  7. 40 CFR 721.10558 - Poly(oxy-1,2-ethanediyl), .alpha.- (2-methyl-2-propen-1-yl) -.omega.-hydroxy-,C12-16-alkyl ethers.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ....- (2-methyl-2-propen-1-yl) -.omega.-hydroxy-,C12-16-alkyl ethers (PMN P-06-452; CAS No. 675869-05-3...-methyl-2-propen-1-yl) -.omega.-hydroxy-,C12-16-alkyl ethers. 721.10558 Section 721.10558 Protection of...-ethanediyl), .alpha.- (2-methyl-2-propen-1-yl) -.omega.-hydroxy-,C12-16-alkyl ethers. (a) Chemical substance...

  8. 40 CFR 721.10557 - Poly(oxy-1,2-ethanediyl), .alpha.- (2-methyl-2-propen-1-yl) -.omega.-hydroxy-,C10-16-alkyl ethers.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ....- (2-methyl-2-propen-1-yl) -.omega.-hydroxy-,C12-16-alkyl ethers (PMN P-06-452; CAS No. 675869-05-3...-methyl-2-propen-1-yl) -.omega.-hydroxy-,C10-16-alkyl ethers. 721.10557 Section 721.10557 Protection of...-ethanediyl), .alpha.- (2-methyl-2-propen-1-yl) -.omega.-hydroxy-,C10-16-alkyl ethers. (a) Chemical substance...

  9. Protic ammonium carboxylate ionic liquids: insight into structure, dynamics and thermophysical properties by alkyl group functionalization.

    PubMed

    Reddy, Th Dhileep N; Mallik, Bhabani S

    2017-04-19

    This study is aimed at characterising the structure, dynamics and thermophysical properties of five alkylammonium carboxylate ionic liquids (ILs) from classical molecular dynamics simulations. The structural features of these ILs were characterised by calculating the site-site radial distribution functions, g(r), spatial distribution functions and structure factors. The structural properties demonstrate that ILs show greater interaction between cations and anions when alkyl chain length increases on the cation or anion. In all ILs, spatial distribution functions show that the anion is close to the acidic hydrogen atoms of the ammonium cation. We determined the role of alkyl group functionalization of the charged entities, cations and anions, in the dynamical behavior and the transport coefficients of this family of ionic liquids. The dynamics of ILs are described by studying the mean square displacement (MSD) of the centres of mass of the ions, diffusion coefficients, ionic conductivities and hydrogen bonds as well as residence dynamics. The diffusion coefficients and ionic conductivity decrease with an increase in the size of the cation or anion. The effect of alkyl chain length on ionic conductivity calculated in this article is consistent with the findings of other experimental studies. Hydrogen bond lifetimes and residence times along with structure factors were also calculated, and are related to alkyl chain length.

  10. Influence of alkyl chain length compatibility on microemulsion structure and solubilization

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bansal, V.K.; O'Connell, J.P.; Shah, D.O.

    1980-06-01

    The water solubilization capacity of water/oil microemulsions is studied as a function of alkyl chain length of oil (C/sub 8/ to C/sub 16/), surfactant (C/sub 14/ and C/sub 18/ fatty acid soaps), and alcohol (C/sub 4/ to C/sub 7/). Sodium stearate and sodium myristate were used as surfactants. For n-butanol microemulsions the maximum amount of water solubilized in the microemulsion decreased continuously with increasing oil chain length; for n-heptanol it increased continuously. For n-pentanol and n-hexanol systems, water solubilization reached a maximum when the oil chain length plus alcohol chain length was equal to that of the surfactant. The electricmore » resistance and dielectric constant of the microemulsions also are measured as a function of alkyl chain length of the oil. 48 references.« less

  11. Formation of 2-alkyl-(2H)-thiapyrans and 2-alkylthiophenes in cooked beef and lamb.

    PubMed

    Elmore, J S; Mottram, D S

    2000-06-01

    2-Alkyl-(2H)-thiapyrans and 2-alkylthiophenes have been identified in the volatiles of cooked beef and lamb. The quantities of both groups of compounds were higher in the meat of animals fed lipid supplements high in n-3 polyunsaturated fatty acids. 2-Alkyl-(2H)-thiapyrans were formed when (E,E)-2,4-dienals (C(6)-C(11)) and hydrogen sulfide were heated at 140 degrees C for 30 min. This confirmed their proposed route of formation in cooked meat from lipid-derived aldehydes and hydrogen sulfide; the latter was produced from the degradation of cysteine, via the Maillard reaction. The mass spectra and NMR spectra of these thiapyrans are reported for the first time. Although 2-alkyl-(2H)-thiapyrans were found to have only low odor potency, the reactions by which they are formed may have important implications for meat flavor. These reactions may remove potent aroma compounds and their intermediates from meat, thus modifying the overall aroma profile.

  12. Phylogenetic and environmental diversity of DsrAB-type dissimilatory (bi)sulfite reductases

    PubMed Central

    Müller, Albert Leopold; Kjeldsen, Kasper Urup; Rattei, Thomas; Pester, Michael; Loy, Alexander

    2015-01-01

    The energy metabolism of essential microbial guilds in the biogeochemical sulfur cycle is based on a DsrAB-type dissimilatory (bi)sulfite reductase that either catalyzes the reduction of sulfite to sulfide during anaerobic respiration of sulfate, sulfite and organosulfonates, or acts in reverse during sulfur oxidation. Common use of dsrAB as a functional marker showed that dsrAB richness in many environments is dominated by novel sequence variants and collectively represents an extensive, largely uncharted sequence assemblage. Here, we established a comprehensive, manually curated dsrAB/DsrAB database and used it to categorize the known dsrAB diversity, reanalyze the evolutionary history of dsrAB and evaluate the coverage of published dsrAB-targeted primers. Based on a DsrAB consensus phylogeny, we introduce an operational classification system for environmental dsrAB sequences that integrates established taxonomic groups with operational taxonomic units (OTUs) at multiple phylogenetic levels, ranging from DsrAB enzyme families that reflect reductive or oxidative DsrAB types of bacterial or archaeal origin, superclusters, uncultured family-level lineages to species-level OTUs. Environmental dsrAB sequences constituted at least 13 stable family-level lineages without any cultivated representatives, suggesting that major taxa of sulfite/sulfate-reducing microorganisms have not yet been identified. Three of these uncultured lineages occur mainly in marine environments, while specific habitat preferences are not evident for members of the other 10 uncultured lineages. In summary, our publically available dsrAB/DsrAB database, the phylogenetic framework, the multilevel classification system and a set of recommended primers provide a necessary foundation for large-scale dsrAB ecology studies with next-generation sequencing methods. PMID:25343514

  13. Reduction and alkylation of peanut allergen isoforms Ara h 2 and Ara h 6; characterization of intermediate- and end products.

    PubMed

    Apostolovic, Danijela; Luykx, Dion; Warmenhoven, Hans; Verbart, Dennis; Stanic-Vucinic, Dragana; de Jong, Govardus A H; Velickovic, Tanja Cirkovic; Koppelman, Stef J

    2013-12-01

    Conglutins, the major peanut allergens, Ara h 2 and Ara h 6, are highly structured proteins stabilized by multiple disulfide bridges and are stable towards heat-denaturation and digestion. We sought a way to reduce their potent allergenicity in view of the development of immunotherapy for peanut allergy. Isoforms of conglutin were purified, reduced with dithiothreitol and subsequently alkylated with iodoacetamide. The effect of this modification was assessed on protein folding and IgE-binding. We found that all disulfide bridges were reduced and alkylated. As a result, the secondary structure lost α-helix and gained some β-structure content, and the tertiary structure stability was reduced. On a functional level, the modification led to a strongly decreased IgE-binding. Using conditions for limited reduction and alkylation, partially reduced and alkylated proteins were found with rearranged disulfide bridges and, in some cases, intermolecular cross-links were found. Peptide mass finger printing was applied to control progress of the modification reaction and to map novel disulfide bonds. There was no preference for the order in which disulfides were reduced, and disulfide rearrangement occurred in a non-specific way. Only minor differences in kinetics of reduction and alkylation were found between the different conglutin isoforms. We conclude that the peanut conglutins Ara h 2 and Ara h 6 can be chemically modified by reduction and alkylation, such that they substantially unfold and that their allergenic potency decreases. © 2013.

  14. Alkylation of organic aromatic compounds

    DOEpatents

    Smith, L.A. Jr.

    1989-07-18

    Aromatic compounds are alkylated in a catalytic distillation, wherein the catalyst structure also serves as a distillation component by contacting the aromatic compound with a C[sub 2] to C[sub 10] olefin in the catalyst bed under 0.25 to 50 atmospheres of pressure and at temperatures in the range of 80 C to 500 C, using as the catalyst a mole sieve characterized as acidic or an acidic cation exchange resin. For example, ethyl benzene is produced by feeding ethylene below the catalyst bed while benzene is conveniently added through the reflux in molar excess to that required to react with ethylene, thereby reacting substantially all of the ethylene and recovering benzene as the principal overhead and ethyl benzene in the bottoms. 1 fig.

  15. Alkylation of organic aromatic compounds

    DOEpatents

    Smith, Jr., Lawrence A.; Arganbright, Robert P.; Hearn, Dennis

    1994-01-01

    Aromatic compounds are alkylated in a catalytic distillation, wherein the catalyst structure also serves as a distillation component by contacting the aromatic compound with a C.sub.2 to C.sub.10 olefin in the catalyst bed under 0.25 to 50 atmospheres of pressure and at temperatures in the range of 80.degree. C. to 500.degree. C., using as the catalyst a mole sieve characterized as acidic or an acidic cation exchange resin. For example, ethyl benzene is produced by feeding ethylene below the catalyst bed while benzene is conveniently added through the reflux in molar excess to that required to react with ethylene, thereby reacting substantially all of the ethylene and recovering benzene as the principal overhead and ethyl benzene in the bottoms.

  16. Alkylation of organic aromatic compounds

    DOEpatents

    Smith, Jr., Lawrence A.

    1989-01-01

    Aromatic compounds are alkylated in a catalytic distillation, wherein the catalyst structure also serves as a distillation component by contacting the aromatic compound with a C.sub.2 to C.sub.10 olefin in the catalyst bed under 0.25 to 50 atmospheres of pressure and at temperatures in the range of 80.degree. C. to 500.degree. C., using as the catalyst a mole sieve characterized as acidic or an acidic cation exchange resin. For example, ethyl benzene is produced by feeding ethylene below the catalyst bed while benzene is conveniently added through the reflux in molar excess to that required to react with ethylene, thereby reacting substantially all of the ethylene and recovering benzene as the principal overhead and ethyl benzene in the bottoms.

  17. Alkylation of organic aromatic compounds

    DOEpatents

    Smith, L.A. Jr.; Arganbright, R.P.; Hearn, D.

    1994-06-14

    Aromatic compounds are alkylated in a catalytic distillation, wherein the catalyst structure also serves as a distillation component by contacting the aromatic compound with a C[sub 2] to C[sub 10] olefin in the catalyst bed under 0.25 to 50 atmospheres of pressure and at temperatures in the range of 80 C to 500 C, using as the catalyst a molecular sieve characterized as acidic or an acidic cation exchange resin. For example, ethyl benzene is produced by feeding ethylene below the catalyst bed while benzene is conveniently added through the reflux in molar excess to that required to react with ethylene, thereby reacting substantially all of the ethylene and recovering benzene as the principal overhead and ethyl benzene in the bottoms. 1 fig.

  18. Synthesis and antiviral evaluation of novel 2,3-dihydroxypropyl nucleosides from 2- and 4-thiouracils.

    PubMed

    Abdel-Rahman, Adel A-H; El-Etrawy, Abd-Allah Sh; Abdel-Megied, Ahmed E-S; Zeid, Ibrahim F; El Ashry, El Sayed H

    2008-12-01

    Regioselective alkylation of 2-thiouracils 1a-c and 4-thiouracils 7a,b with 2,3-O-isopropylidene-2,3-dihydroxypropyl chloride (2) afforded 2-[[(2,2-Dimethyl-1,3-dioxolan-4-yl) methyl]thio]pyrimidin-4(1H)-ones 3a-c and 4-[[(2,2-Dimethyl-1,3-dioxolan-4-yl)methyl]thio] pyrimidin-2(1H)-ones 8a,b, respectively. Further alkylation with 2 and/or 2,3-O-isopropylidine-1-O-(4-toluenesulfonyl)-glycerol (4) gave the acyclo N-nucleosides 5a-c and 9a,b whose deprotection afforded 6a-c and 10a,b. 2-(Methylthio)pyrimidin-4(1H)-ones 11a-c and 4-(methylthio)pyrimidin-2(1H)-ones 14a,b were treated with 2 and/or 4 to give 12a-c and 15a,b which were deprotected to give 13a-c and 16a,b. Pyrimidine-2,4(1H,3H)-dithiones 17a-c were treated with two equivalents of 2 to give 2,4-bis[[(2,2-dimethyl-1,3-dioxolan-4-yl)methyl]thio] pyrimidines 18a-c. Deprotection of compounds 18a-c gave 2,4-bis[(2,3-dihydroxypropyl)thio]pyrimidines 19a-c. The activity of the deprotected nucleosides against Hepatitis B virus was evaluated and showed moderate inhibition activity against HBV with mild cytotoxicity.

  19. Microbial biodegradation of aromatic alkanoic naphthenic acids is affected by the degree of alkyl side chain branching

    PubMed Central

    Johnson, Richard J; Smith, Ben E; Sutton, Paul A; McGenity, Terry J; Rowland, Steven J; Whitby, Corinne

    2011-01-01

    Naphthenic acids (NAs) occur naturally in oil sands and enter the environment through natural and anthropogenic processes. NAs comprise toxic carboxylic acids that are difficult to degrade. Information on NA biodegradation mechanisms is limited, and there are no studies on alkyl branched aromatic alkanoic acid biodegradation, despite their contribution to NA toxicity and recalcitrance. Increased alkyl side chain branching has been proposed to explain NA recalcitrance. Using soil enrichments, we examined the biodegradation of four aromatic alkanoic acid isomers that differed in alkyl side chain branching: (4′-n-butylphenyl)-4-butanoic acid (n-BPBA, least branched); (4′-iso-butylphenyl)-4-butanoic acid (iso-BPBA); (4′-sec-butylphenyl)-4-butanoic acid (sec-BPBA) and (4′-tert-butylphenyl)-4-butanoic acid (tert-BPBA, most branched). n-BPBA was completely metabolized within 49 days. Mass spectral analysis confirmed that the more branched isomers iso-, sec- and tert-BPBA were transformed to their butylphenylethanoic acid (BPEA) counterparts at 14 days. The BPEA metabolites were generally less toxic than BPBAs as determined by Microtox assay. n-BPEA was further transformed to a diacid, showing that carboxylation of the alkyl side chain occurred. In each case, biodegradation of the carboxyl side chain proceeded through beta-oxidation, which depended on the degree of alkyl side chain branching, and a BPBA degradation pathway is proposed. Comparison of 16S rRNA gene sequences at days 0 and 49 showed an increase and high abundance at day 49 of Pseudomonas (sec-BPBA), Burkholderia (n-, iso-, tert-BPBA) and Sphingomonas (n-, sec-BPBA). PMID:20962873

  20. AN INTERLABORATORY STUDY OF PERFLUORINATED ALKYL COMPOUND LEVELS IN HUMAN PLASMA

    EPA Science Inventory

    The present study was designed to investigate intra- and interlaboratory variability in results from six laboratories experienced in the analysis of perfluorinated alkyl compounds in blood matrices and that use stringent procedures to control and assure accuracy and precision. Ea...

  1. Versatile Alkylation of (Hetero)Aryl Iodides with Ketones via β-C(sp3)-H Activation.

    PubMed

    Zhu, Ru-Yi; Liu, Luo-Yan; Park, Han Seul; Hong, Kai; Wu, Yongwei; Senanayake, Chris H; Yu, Jin-Quan

    2017-11-15

    We report Pd(II)-catalyzed β-C(sp 3 )-H (hetero)arylation of a variety of ketones using a commercially available 2,2-dimethyl aminooxyacetic acid auxiliary. Facile installation and removal of the auxiliary as well as its superior scope for both ketones and (hetero)aryl iodides overcome the significant limitations of the previously reported β-C(sp 3 )-H arylation of ketones. The ready availability of ketones renders this reaction a broadly useful method for alkyl-(hetero)aryl coupling involving both primary and secondary alkyls.

  2. Ab Initio Studies of Stratospheric Ozone Depletion Chemistry

    NASA Technical Reports Server (NTRS)

    Lee, Timothy J.; Head-Gordon, Martin; Langhoff, Stephen R. (Technical Monitor)

    1995-01-01

    An overview of the current understanding of ozone depletion chemistry, particularly with regards the formation of the so-called Antarctic ozone hole, will be presented together with an outline as to how ab initio quantum chemistry can be used to further our understanding of stratospheric chemistry. The ability of modern state-of-the art ab initio quantum chemical techniques to characterize reliably the gas-phase molecular structure, vibrational spectrum, electronic spectrum, and thermal stability of fluorine, chlorine, bromine and nitrogen oxide species will be demonstrated by presentation of some example studies. The ab initio results will be shown to be in excellent agreement with the available experimental data, and where the experimental data are either not known or are inconclusive, the theoretical results are shown to fill in the gaps and to resolve experimental controversies. In addition, ab initio studies in which the electronic spectra and the characterization of excited electronic states of halogen oxide species will also be presented. Again where available, the ab initio results are compared to experimental observations, and are used to aid in the interpretation of experimental studies.

  3. Clinical performance of the novel DiaSorin LIAISON(®) XL murex: HBsAg Quant, HCV-Ab, HIV-Ab/Ag assays.

    PubMed

    Krawczyk, Adalbert; Hintze, Christian; Ackermann, Jessica; Goitowski, Birgit; Trippler, Martin; Grüner, Nico; Neumann-Fraune, Maria; Verheyen, Jens; Fiedler, Melanie

    2014-01-01

    The fully automated and closed LIAISON(®)XL platform was developed for reliable detection of infection markers like hepatitis B virus (HBV) surface antigen (HBsAg), hepatitis C virus (HCV) antibodies (Ab) or human immunodeficiency virus (HIV)-Ag/Ab. To date, less is known about the diagnostic performance of this system in direct comparison to the common Abbott ARCHITECT(®) platform. We compared the diagnostic performance and usability of the DiaSorin LIAISON(®)XL with the commonly used Abbott ARCHITECT(®) system. The qualitative performance of the above mentioned assays was compared in about 500 sera. Quantitative tests were performed for HBsAg-positive samples from patients under therapy (n=289) and in vitro expressed mutants (n=37). For HCV-Ab, a total number of 155 selected samples from patients chronically infected with different HCV genotypes were tested. The concordance between both systems was 99.4% for HBsAg, 98.81% for HCV-Ab, and 99.6% for HIV-Ab/Ag. The quantitative LIAISON(®)XL murex HBsAg assay detected all mutants in comparable amounts to the HBsAg wild type and yielded highly reliable HBsAg kinetics in patients treated with antiviral drugs. Dilution experiments using the 2nd International Standard for HBsAg (WHO) showed a high accuracy of this test. HCV-Ab from patients infected with genotypes 1-3 were equally detected in both systems. Interestingly, S/CO levels of HCV-Ab from patients infected with genotype 3 seem to be relatively low using both systems. The LIAISON(®)XL platform proved to be an excellent system for diagnostics of HBV, HCV, and HIV with equal performance compared to the ARCHITECT(®) system. Copyright © 2013 Elsevier B.V. All rights reserved.

  4. Copper-catalyzed transformation of ketones to amides via C(CO)-C(alkyl) bond cleavage directed by picolinamide.

    PubMed

    Ma, Haojie; Zhou, Xiaoqiang; Zhan, Zhenzhen; Wei, Daidong; Shi, Chong; Liu, Xingxing; Huang, Guosheng

    2017-09-13

    Copper catalyzed chemoselective cleavage of the C(CO)-C(alkyl) bond leading to C-N bond formation with chelation assistance of N-containing directing groups is described. Inexpensive Cu(ii)-acetate serves as a convenient catalyst for this transformation. This method highlights the emerging strategy to transform unactivated alkyl ketones into amides in organic synthesis and provides a new strategy for C-C bond cleavage.

  5. A detachable ester bond enables perfect Z-alkylations of olefins for the synthesis of tri- and tetrasubstituted alkenes.

    PubMed

    Nishikata, Takashi; Nakamura, Kimiaki; Inoue, Yuki; Ishikawa, Shingo

    2015-06-25

    2-Vinyl-substituted phenol and an alpha-bromoester undergo a tandem esterification-alkylation reaction in the presence of a Cu-amine catalyst system to produce benzene-fused lactone. Z-Alkylated styrene is obtained after hydrolysis of the lactone with perfect selectivity. The simple protocol developed in this work opens a new avenue in the multi-substitution chemistry of alkenes.

  6. Catalytic alkylation of remote C-H bonds enabled by proton-coupled electron transfer

    NASA Astrophysics Data System (ADS)

    Choi, Gilbert J.; Zhu, Qilei; Miller, David C.; Gu, Carol J.; Knowles, Robert R.

    2016-11-01

    Despite advances in hydrogen atom transfer (HAT) catalysis, there are currently no molecular HAT catalysts that are capable of homolysing the strong nitrogen-hydrogen (N-H) bonds of N-alkyl amides. The motivation to develop amide homolysis protocols stems from the utility of the resultant amidyl radicals, which are involved in various synthetically useful transformations, including olefin amination and directed carbon-hydrogen (C-H) bond functionalization. In the latter process—a subset of the classical Hofmann-Löffler-Freytag reaction—amidyl radicals remove hydrogen atoms from unactivated aliphatic C-H bonds. Although powerful, these transformations typically require oxidative N-prefunctionalization of the amide starting materials to achieve efficient amidyl generation. Moreover, because these N-activating groups are often incorporated into the final products, these methods are generally not amenable to the direct construction of carbon-carbon (C-C) bonds. Here we report an approach that overcomes these limitations by homolysing the N-H bonds of N-alkyl amides via proton-coupled electron transfer. In this protocol, an excited-state iridium photocatalyst and a weak phosphate base cooperatively serve to remove both a proton and an electron from an amide substrate in a concerted elementary step. The resultant amidyl radical intermediates are shown to promote subsequent C-H abstraction and radical alkylation steps. This C-H alkylation represents a catalytic variant of the Hofmann-Löffler-Freytag reaction, using simple, unfunctionalized amides to direct the formation of new C-C bonds. Given the prevalence of amides in pharmaceuticals and natural products, we anticipate that this method will simplify the synthesis and structural elaboration of amine-containing targets. Moreover, this study demonstrates that concerted proton-coupled electron transfer can enable homolytic activation of common organic functional groups that are energetically inaccessible using

  7. Catalytic alkylation of remote C-H bonds enabled by proton-coupled electron transfer.

    PubMed

    Choi, Gilbert J; Zhu, Qilei; Miller, David C; Gu, Carol J; Knowles, Robert R

    2016-11-10

    Despite advances in hydrogen atom transfer (HAT) catalysis, there are currently no molecular HAT catalysts that are capable of homolysing the strong nitrogen-hydrogen (N-H) bonds of N-alkyl amides. The motivation to develop amide homolysis protocols stems from the utility of the resultant amidyl radicals, which are involved in various synthetically useful transformations, including olefin amination and directed carbon-hydrogen (C-H) bond functionalization. In the latter process-a subset of the classical Hofmann-Löffler-Freytag reaction-amidyl radicals remove hydrogen atoms from unactivated aliphatic C-H bonds. Although powerful, these transformations typically require oxidative N-prefunctionalization of the amide starting materials to achieve efficient amidyl generation. Moreover, because these N-activating groups are often incorporated into the final products, these methods are generally not amenable to the direct construction of carbon-carbon (C-C) bonds. Here we report an approach that overcomes these limitations by homolysing the N-H bonds of N-alkyl amides via proton-coupled electron transfer. In this protocol, an excited-state iridium photocatalyst and a weak phosphate base cooperatively serve to remove both a proton and an electron from an amide substrate in a concerted elementary step. The resultant amidyl radical intermediates are shown to promote subsequent C-H abstraction and radical alkylation steps. This C-H alkylation represents a catalytic variant of the Hofmann-Löffler-Freytag reaction, using simple, unfunctionalized amides to direct the formation of new C-C bonds. Given the prevalence of amides in pharmaceuticals and natural products, we anticipate that this method will simplify the synthesis and structural elaboration of amine-containing targets. Moreover, this study demonstrates that concerted proton-coupled electron transfer can enable homolytic activation of common organic functional groups that are energetically inaccessible using

  8. Effect of ionic strength and cationic DNA affinity binders on the DNA sequence selective alkylation of guanine N7-positions by nitrogen mustards

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hartley, J.A.; Forrow, S.M.; Souhami, R.L.

    Large variations in alkylation intensities exist among guanines in a DNA sequence following treatment with chemotherapeutic alkylating agents such as nitrogen mustards, and the substituent attached to the reactive group can impose a distinct sequence preference for reaction. In order to understand further the structural and electrostatic factors which determine the sequence selectivity of alkylation reactions, the effect of increase ionic strength, the intercalator ethidium bromide, AT-specific minor groove binders distamycin A and netropsin, and the polyamine spermine on guanine N7-alkylation by L-phenylalanine mustard (L-Pam), uracil mustard (UM), and quinacrine mustard (QM) was investigated with a modification of the guanine-specificmore » chemical cleavage technique for DNA sequencing. The result differed with both the nitrogen mustard and the cationic agent used. The effect, which resulted in both enhancement and suppression of alkylation sites, was most striking in the case of netropsin and distamycin A, which differed from each other. DNA footprinting indicated that selective binding to AT sequences in the minor groove of DNA can have long-range effects on the alkylation pattern of DNA in the major groove.« less

  9. Chain length effects on the vibrational structure and molecular interactions in the liquid normal alkyl alcohols

    NASA Astrophysics Data System (ADS)

    Kiefer, Johannes; Wagenfeld, Sabine; Kerlé, Daniela

    2018-01-01

    Alkyl alcohols are widely used in academia, industry, and our everyday lives, e.g. as cleaning agents and solvents. Vibrational spectroscopy is commonly used to identify and quantify these compounds, but also to study their structure and behavior. However, a comprehensive investigation and comparison of all normal alkanols that are liquid at room temperature has not been performed, surprisingly. This study aims at bridging this gap with a combined experimental and computational effort. For this purpose, the alkyl alcohols from methanol to undecan-1-ol have been analyzed using infrared and Raman spectroscopy. A detailed assignment of the individual peaks is presented and the influence of the alkyl chain length on the hydrogen bonding network is discussed. A 2D vibrational mapping allows a straightforward visualization of the effects. The conclusions drawn from the experimental data are backed up with results from Monte Carlo simulations using the simulation package Cassandra.

  10. Impact of Therapy Sequence with Alkylating Agents and MGMT Status in Patients with Advanced Neuroendocrine Tumors.

    PubMed

    Krug, Sebastian; Boch, Michael; Rexin, Peter; Gress, Thomas M; Michl, Patrick; Rinke, Anja

    2017-05-01

    Alkylating chemotherapeutics with either a streptozotocin-(STZ) or temozolomide-(TEM) backbone are routinely used in patients with progressive and unresectable pancreatic neuroendocrine tumors (PNET). In addition, dacarbazine (DTIC) was described as an alternative alkylating therapy option for PNETs. The optimal treatment sequence with alkylating compounds and a potential use of O6-methylguanine-DNA methyltransferase (MGMT) level as predictive biomarker have not yet been sufficiently elucidated. The aim of our study was the evaluation of therapy sequence with either STZ-based treatment followed by DTIC (group A) or the inverse schedule with upfront DTIC (group B) and to correlate MGMT status with clinicopathological characteristics and response to therapy. We retrospectively analyzed 28 patients with neuroendocrine tumors (NET) who were treated with STZ-based therapy and DTIC. Additionally, in a second group MGMT immunohistochemistry was performed from primary and metastatic tumor sites. For statistical evaluation Kaplan-Meier analysis, Cox regression methods and Fisher's exact test were used. There was no difference of objective response and disease control between either STZ-based therapy followed by DTIC treatment (group A) after progression or the reverse sequence (group B). Median time to progression (TTP) was estimated to be 21 months in both arms. First-line STZ-based chemotherapy was not superior to first-line DTIC treatment (16 vs. 13 months; p=0.8). MGMT status did not correlate with clinicopathological characteristics or response to therapy with these alkylating agents. Upfront chemotherapy with either STZ-based treatment or DTIC monotherapy showed similar efficacy and median TTP rates. In this study, MGMT protein expression assessed by immunohistochemistry did not play an important role as a predictive marker for alkylating agents. Copyright© 2017, International Institute of Anticancer Research (Dr. George J. Delinasios), All rights reserved.

  11. Tunneling conductance of amine-linked alkyl chains.

    PubMed

    Prodan, Emil; Car, Roberto

    2008-06-01

    The tunneling transport theory developed in ref 9 (Phys. Rev. B 2007, 76, 115102) is applied to molecular devices made of alkyl chains linked to gold electrodes via amine groups. Using the analytic expression of the tunneling conductance derived in our previous work, we identify the key physical quantities that characterize the conductance of these devices. By investigating the transport characteristics of three devices, containing four, six, and eight methyl groups, we extract the dependence of the tunneling conductance on the chain's length, which is an exponential decay law in agreement with recent experimental data.

  12. Copper-Catalyzed Cyclopropanol Ring Opening Csp(3)-Csp(3) Cross-Couplings with (Fluoro)Alkyl Halides.

    PubMed

    Ye, Zhishi; Gettys, Kristen E; Shen, Xingyu; Dai, Mingji

    2015-12-18

    Novel and general copper-catalyzed cyclopropanol ring opening cross-coupling reactions with difluoroalkyl bromides, perfluoroalkyl iodides, monofluoroalkyl bromides, and 2-bromo-2-alkylesters to synthesize various β-(fluoro)alkylated ketones are reported. The reactions feature mild conditions and excellent functional group compatibility and can be scaled up to gram scale. Preliminary mechanistic studies suggest the involvement of radical intermediates. The difluoroalkyl-alkyl cross-coupling products can also be readily converted to more valuable and diverse gem-difluoro-containing compounds by taking advantage of the carbonyl group resulting from cyclopropanol ring opening.

  13. Spin labeled antioxidants protect bacteria against the toxicity of alkylating antitumor drug CCNU.

    PubMed

    Gadjeva, Vesselina; Lazarova, Grozdanka; Zheleva, Antoaneta

    2003-10-15

    We have studied the toxic effect of the alkylating antitumor drug N'-cyclohexyl-N-(2-chloroethyl)-N-nitrosourea (lomustine, CCNU) on Escherichia coli (E. coli) and Staphylococcus aureus (S. aureus) strains, alone and in presence of oxygen radical-scavenging substances [Vitamin E, stable nitroxyl radical 2,2,6,6-tetramethylpiperidine-N-oxyl (TMPO), and spin labeled (nitroxyl free radical moiety containing) analogues of CCNU] and compared with that of the alkylating antitumor drug 5-(3,3-dimethyltriazene-1-yl)-imidazole-4-carboxamide (dacarbazine, DTIC). All spin labeled compounds tested were almost no toxic at doses of 50-500 microM/ml, whereas the alkylating antitumor drug CCNU showed toxicity in a dose dependent manner. Even low doses of spin labeled nitrosoureas provided protection against the toxicity caused by the antitumor drug CCNU alone. The lowest toxicity against E. coli and S. aureus were achieved when 500 microM/ml of CCNU was combined with 200 microM/ml of spin labeled nitrosourea N-[N'-(2-chloroethyl)-N'-nitrosocarbamoyl]-glycine amid of 2,2,6,6-tetramethyl-4-aminopiperidine-1-oxyl (SLCNUgly). A combination of TMPO with vitamin E completely abolished the toxicity of CCNU. Endogenous formation of oxygen radicals and their possible involvement in CCNU toxicity towards the bacteria strains tested have been also discussed.

  14. Monoalkyl sulfates as alkylating agents in water, alkylsulfatase rate enhancements, and the “energy-rich” nature of sulfate half-esters

    PubMed Central

    Wolfenden, Richard; Yuan, Yang

    2007-01-01

    Alkyl sulfate monoesters are involved in cell signaling and structure. Alkyl sulfates are also present in many commercial detergents. Here, we show that monomethyl sulfate acts as an efficient alkylating agent in water, reacting spontaneously with oxygen nucleophiles >100-fold more rapidly than do alkylsulfonium ions, the usual methyl donors in living organisms. These reactions of methyl sulfate, which are much more rapid than its hydrolysis, are insensitive to the nature of the attacking nucleophile, with a Brønsted βnuc value of −0.01. Experiments at elevated temperatures indicate a rate constant of 2 × 10−11 s−1 for the uncatalyzed hydrolysis of methyl sulfate at 25°C (t1/2 = 1,100 y), corresponding to a rate enhancement of ≈1011-fold by a human alkylsulfatase. Equilibria of formation of methyl sulfate from methanol and sodium hydrogen sulfate indicate a group transfer potential (ΔG′pH7) of −8.9 kcal/mol for sulfate ester hydrolysis. The magnitude of that value, involving release of the strong acid HSO4−, helps to explain the need for harnessing the free energy of hydrolysis of two ATP molecules in activating sulfate for the biosynthesis of sulfate monoesters. The “energy-rich” nature of monoalkyl sulfate esters, coupled with their marked resistance to hydrolysis, renders them capable of acting as sulfating or alkylating agents under relatively mild conditions. These findings raise the possibility that, under appropriate circumstances, alkyl groups may undergo transfer from alkyl sulfate monoesters to biological target molecules. PMID:17182738

  15. Cytochrome c oxidase inhibition in the rice weevil Sitophilus oryzae (L.) by formate, the toxic metabolite of volatile alkyl formates.

    PubMed

    Haritos, V S; Dojchinov, G

    2003-10-01

    Volatile alkyl formates are potential replacements for the ozone-depleting fumigant, methyl bromide, as postharvest insecticides and here we have investigated their mode of insecticidal action. Firstly, a range of alkyl esters, ethanol and formic acid were tested in mortality bioassays with adults of the rice weevil, Sitophilus oryzae (L.) and the grain borer, Rhyzopertha dominica (F.) to determine whether the intact ester or one of its components was the toxic moiety. Volatile alkyl formates and formic acid caused similar levels of mortality (LC(50) 131-165 micromol l(-1)) to S. oryzae and were more potent than non-formate containing alkyl esters and ethanol (LC(50)>275 micromol l(-1)). The order of potency was the same in R. dominica. Ethyl formate was rapidly metabolised in vitro to formic acid when incubated with insect homogenates, presumably through the action of esterases. S. oryzae and R. dominica fumigated with a lethal dose of ethyl formate had eight and 17-fold higher concentrations of formic acid, respectively, in their bodies than untreated controls. When tested against isolated mitochondria from S. oryzae, alkyl esters, alcohols, acetate and propionate salts were not inhibitory towards cytochrome c oxidase (EC 1.9.3.1), but sodium cyanide and sodium formate were inhibitory with IC(50) values of 0.0015 mM and 59 mM, respectively. Volatile formate esters were more toxic than other alkyl esters, and this was found to be due, at least in part, to their hydrolysis to formic acid and its inhibition of cytochrome c oxidase.

  16. [The biochemical mechanisms of the action of N-alkyl-N-nitrosoureas. The possible reasons for drug resistance to these compounds].

    PubMed

    Syrkin, A B; Gorbacheva, L B

    1996-01-01

    N-alkyl-N-nitrosoureas exhibit a wide spectrum of antitumor activity. They react as alkylating agents at nucleophilic sites in purine and pyrimidine moieties of DNA. The predominant site of this alkylation is N7 of guanine, which is followed by the site N3 of adenine and 06 of guanine. The formation and persistence of 0(6)-alkylguanine (0(6)-AG) may be of primary importance in cytotoxicity of the nitrosoureas. 0(6)-AG adducts of DNA of the tumor cells are repaired by protein 0(6)-alkylguanine-DNA transferase (0(6)-AGT) which transfers the alkyl group to internal cysteine residue being the acceptor protein for the alkyl group in an irreversible transfer reaction. 0(6)-AGT can protect the tumor cells against 0(6)-AG adducts by the way of inhibiting the formation of the DNA interstrand cross-links 0(6)-AGT plays an important role in the drug resistance because it repairs the DNA alkyl adducts at the 0(6) position of guanine. The 0(6)-AGT activity inversely correlates with the cytotoxic effect of the nitrosoureas. The agents like 0(6)-methylguanosine, 0(6)-methyl-2'-deoxyguanosine, and some 0(6)-benzylated guanine derivatives are effective inactivators of 0(6)-AGT, and thus can be used to enhance the cytotoxicity of N-nitrosoureas. The activation of 0(6)-AGT and other repairing enzymes such as alpha and beta DNA-polymerases as well as an increase in the level of reduced glutathione may be used in developing the resistance to the nitrosoureas.

  17. [Kidney allotransplantation from the AB0-incompatible donors].

    PubMed

    Goriaĭnov, V A; Kaabak, M M; Babenko, N N; Shishlo, L A; Morozova, M M; Ragimov, A A; Dazhkova, N G; Salimov, E L

    2013-01-01

    The experience of 28 kidney allotransplantations from the AB0-incompatible donors was analyzed. The comparative group consisted of 38 patients, who received the AB0-compatible organ. The results were assessed using the following parameters: renal function, morphology of the biopsy samples of the transplanted kidney and actuary survival of the recipients with functioning transplants in both groups. The comparative analysis showed no significant difference between the two groups, giving the right to consider the kidney allotransplantation from the AB0-incompatible donors safe and effective.

  18. ABO Mistyping of cis-AB Blood Group by the Automated Microplate Technique.

    PubMed

    Chun, Sejong; Ryu, Mi Ra; Cha, Seung-Yeon; Seo, Ji-Young; Cho, Duck

    2018-01-01

    The cis -AB phenotype, although rare, is the relatively most frequent of ABO subgroups in Koreans. To prevent ABO mistyping of cis -AB samples, our hospital has applied a combination of the manual tile method with automated devices. Herein, we report cases of ABO mistyping detected by the combination testing system. Cases that showed discrepant results by automated devices and the manual tile method were evaluated. These samples were also tested by the standard tube method. The automated devices used in this study were a QWALYS-3 and Galileo NEO. Exons 6 and 7 of the ABO gene were sequenced. 13 cases that had the cis -AB allele showed results suggestive of the cis -AB subgroup by manual methods, but were interpreted as AB by either automated device. This happened in 87.5% of these cases by QWALYS-3 and 70.0% by Galileo NEO. Genotyping results showed that 12 cases were ABO*cis-AB01/ABO*O01 or ABO*cis-AB01/ABO*O02 , and one case was ABO*cis-AB01/ ABO*A102. Cis -AB samples were mistyped as AB by the automated microplate technique in some cases. We suggest that the manual tile method can be a simple supplemental test for the detection of the cis -AB phenotype, especially in countries with relatively high cis- AB prevalence.

  19. Molecular Engineering of Liquid Crystalline Polymers by Living Polymerization. 8. Influence of Molecular Weight on the Phase Behavior pf Poly(Omega-((4-cyano-4’Biphenyl)oxy)alkyl Vinyl Ether)s with Ethyl, Propyl and Butyl Alkyl Groups

    DTIC Science & Technology

    1990-10-16

    methanol (15 ml). The mixture was refluxed for 12 hr. After cooling and filtration (to remove the catalyst ) the solvent was distilled in a rotavapor and...was controlled by the monomer/initiator ([M]/[I]0 ) ratio. After quenching the polymerization with ammoniacal methanol , the reaction mixture was...The Phase Behavior of Poly(co-[(4-cyano-4’- biphenyl)oxy] alkyl Vinyl Ether]s with Ethyl, Propyl and Butyl Alkyl Groups Acc,--.o ,; ., x .... V

  20. Inhibition of the acetoclastic methanogenic activity by phenol and alkyl phenols.

    PubMed

    Olguin-Lora, P; Puig-Grajales, L; Razo-Flores, E

    2003-08-01

    Chemical and petrochemical industries are important sources of aromatic pollutants. Petrochemical processes like caustic washing of middle distillates produce the spent caustic liquors highly concentrated in phenol and alkyl phenols. The anaerobic technology is considered a feasible strategy for petrochemical wastewater pre-treatment although high concentrations of phenol could limit its efficiency. The goal of this work was to determine the toxicity of both selected alkyl phenols and a synthetic "spent-caustic phenols mixture" on the acetoclastic Specific Methanogenic Activity (SMA) of unadapted and phenol-adapted granular sludge. Alkyl phenols were responsible for 50% (IC50) and 100% (IC100) inhibition of the SMA at concentrations ranging from 1.6 to 5.0 mM and from 4.1 to 27.5 mM, respectively, for un-adapted granular sludge. In the case of phenol-adapted granular sludge, the inhibitory concentrations ranged from 1.7 to 14.9 mM and from 4.0 to 83.0 for IC50 and IC100, respectively, highlighting the impact of sludge acclimation. The inhibition produced by 2-ethylphenol was more acute compared to phenol and was not reduced by the phenol acclimation process. The IC50 and IC100 values obtained for the synthetic "spent-caustic phenols mixture" were 9.5 mM and 88.4 mM, respectively. The inhibitory concentrations of phenol compounds were closely correlated with compound apolarity (log P), indicating that the lipophilic character of the tested compounds was responsible for their methanogenic toxicity. An inhibition model is confirmed to estimate the IC50 and IC100.

  1. 40 CFR 721.642 - Amines, N-(C14-18 and C16-16 unsaturated alkyl)] dipropylene-tri-, tripropylenetetra-, and...

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... substances amines, N-(C14-18 and C16-18 unsaturated alkyl)] dipropylenetri-, (PMN P-94-1244... 40 Protection of Environment 30 2010-07-01 2010-07-01 false Amines, N-(C14-18 and C16-16... Amines, N-(C14-18 and C16-16 unsaturated alkyl)] dipropylene-tri-, tripropylenetetra-, and...

  2. Friedel-Crafts Alkylation Using Elemental Aluminum Catalyst: An Undergraduate Laboratory Experiment.

    ERIC Educational Resources Information Center

    Meeks, B. Spencer; Lucas, Anita R.

    1989-01-01

    Provides methodology for carrying out the synthesis of sec-butyltoluene by the Friedel-Crafts alkylation of toluene. Suggests using simple elemental aluminum as the catalyst in place of AlCl3 or amalgamated aluminum. Notes satisfactory results for both macro- and microscale operations. (MVL)

  3. Alkylation of organic aromatic compounds

    DOEpatents

    Smith, L.A. Jr.; Arganbright, R.P.; Hearn, D.

    1993-09-07

    Aromatic compounds are alkylated in a catalytic distillation, wherein the catalyst structure also serves as a distillation component by contacting the aromatic compound with a C[sub 2] to C[sub 10] olefin in the catalyst bed under 0.25 to 50 atmospheres of pressure and at temperatures in the range of 80 C to 500 C, using as the catalyst a molecular sieve characterized as acidic or an acidic cation exchange resin. For example, ethyl benzene is produced by feeding ethylene to about the mid point of the catalyst bed while benzene is conveniently added through the reflux in molar excess to that required to react with ethylene, thereby reacting substantially all of the ethylene and recovering benzene as the principal overhead and ethyl benzene in the bottoms. 1 figures.

  4. Alkylation of organic aromatic compounds

    DOEpatents

    Smith, Jr., Lawrence A.; Arganbright, Robert P.; Hearn, Dennis

    1993-01-01

    Aromatic compounds are alkylated in a catalytic distillation, wherein the catalyst structure also serves as a distillation component by contacting the aromatic compound with a C.sub.2 to C.sub.10 olefin in the catalyst bed under 0.25 to 50 atmospheres of pressure and at temperatures in the range of 80.degree. C. to 500.degree. C., using as the catalyst a mole sieve characterized as acidic or an acidic cation exchange resin. For example, ethyl benzene is produced by feeding ethylene to about the mid point of the catalyst bed while benzene is conveniently added through the reflux in molar excess to that required to react with ethylene, thereby reacting substantially all of the ethylene and recovering benzene as the principal overhead and ethyl benzene in the bottoms.

  5. Photo-triggered fluorescent theranostic prodrugs as DNA alkylating agents for mechlorethamine release and spatiotemporal monitoring.

    PubMed

    Cao, Yanting; Pan, Rong; Xuan, Weimin; Wei, Yongyi; Liu, Kejian; Zhou, Jiahong; Wang, Wei

    2015-06-28

    We describe a new theranostic strategy for selective delivery and spatiotemporal monitoring of mechlorethamine, a DNA alkylating agent. A photo-responsive prodrug is designed and composed of a photolabile o-nitrophenylethyl group, a DNA alkylating mechlorethamine drug and a coumarin fluorophore. Masking of the "N" in mechlorethamine in a positively charged state in the prodrug renders it inactive, non-toxic, selective and non-fluorescent. Indeed, the stable prodrug shows negligible cytotoxicity towards normal cells with and without UV activation and is completely non-fluorescent. However, upon photo-irradiation, the active mechlorethamine is released and induces efficient DNA cross-links, accompanied by a strong fluorescence enhancement (152 fold). Furthermore, DNA cross-linking activity from the release can be transformed into anticancer activity observed in in vitro studies of tumor cells. Importantly, the drug release progress and the movement can be conveniently monitored by fluorescence spectroscopy. The mechanistic study proves that the DNA cross-linking activity is mainly due to the release of DNA alkylating mechlorethamine. Altogether, the studies show the power of the theranostic strategy for efficient therapy in cancer treatment.

  6. Quantitative assessment of the dose-response of alkylating agents in DNA repair proficient and deficient ames tester strains.

    PubMed

    Tang, Leilei; Guérard, Melanie; Zeller, Andreas

    2014-01-01

    Mutagenic and clastogenic effects of some DNA damaging agents such as methyl methanesulfonate (MMS) and ethyl methanesulfonate (EMS) have been demonstrated to exhibit a nonlinear or even "thresholded" dose-response in vitro and in vivo. DNA repair seems to be mainly responsible for these thresholds. To this end, we assessed several mutagenic alkylators in the Ames test with four different strains of Salmonella typhimurium: the alkyl transferases proficient strain TA1535 (Ogt+/Ada+), as well as the alkyl transferases deficient strains YG7100 (Ogt+/Ada-), YG7104 (Ogt-/Ada+) and YG7108 (Ogt-/Ada-). The known genotoxins EMS, MMS, temozolomide (TMZ), ethylnitrosourea (ENU) and methylnitrosourea (MNU) were tested in as many as 22 concentration levels. Dose-response curves were statistically fitted by the PROAST benchmark dose model and the Lutz-Lutz "hockeystick" model. These dose-response curves suggest efficient DNA-repair for lesions inflicted by all agents in strain TA1535. In the absence of Ogt, Ada is predominantly repairing methylations but not ethylations. It is concluded that the capacity of alkyl-transferases to successfully repair DNA lesions up to certain dose levels contributes to genotoxicity thresholds. Copyright © 2013 Wiley Periodicals, Inc.

  7. Rapid Conversion of Hindered Arylsulfonates to Alkyl Chlorides with Retention of Configuration

    PubMed Central

    Bhunia, Anjan K.; Mondal, Deboprosad; Cohn, Pamela C.; Lefkowitz, Craig

    2008-01-01

    Arylsulfonates of hindered secondary alcohols are converted to the corresponding alkyl chlorides very rapidly and in good yields in the presence of titanium tetrachloride at low temperatures. These reactions proceed with exclusive retention of configuration. PMID:16599631

  8. Students' Understanding of Alkyl Halide Reactions in Undergraduate Organic Chemistry

    ERIC Educational Resources Information Center

    Cruz-Ramírez de Arellano, Daniel; Towns, Marcy H.

    2014-01-01

    Organic chemistry is an essential subject for many undergraduate students completing degrees in science, engineering, and pre-professional programs. However, students often struggle with the concepts and skills required to successfully solve organic chemistry exercises. Since alkyl halides are traditionally the first functional group that is…

  9. Synthetic, structural, and computational investigations of N-alkyl benzo-2,1,3-selenadiazolium iodides and their supramolecular aggregates.

    PubMed

    Lee, Lucia M; Corless, Victoria B; Tran, Michael; Jenkins, Hilary; Britten, James F; Vargas-Baca, Ignacio

    2016-02-28

    Despite their versatility, the application of telluradiazoles as supramolecular building blocks is considerably constrained by their sensitivity to moisture. Albeit more robust, their selenium analogues form weaker supramolecular interactions. These, however, are enhanced when one nitrogen atom is bonded to an alkyl group. Here we investigate general methods for the synthesis of such derivatives. Methyl, iso-propyl and tert-butyl benzo-2,1,3-selenadiazolium cations were prepared by direct alkylation or cyclo-condensation of the alkyl-phenylenediamine with selenous acid. While the former reaction only proceeds with the primary and tertiary alkyl iodides, the latter is very efficient. Difficulties reported in earlier literature are attributable to the formation of adducts of benzoselenadiazole with its alkylated cations and side reactions initiated by aerobic oxidation of iodide. However, the cations themselves are resilient to oxidation and stable in acidic to neutral aqueous medium. X-ray crystallography was used in the identification and characterization of the following compounds: [C6H4N2(R)Se](+)X(-), (R = CH(CH3)2, C(CH3)3; X = I(-), I3(-)], [C6H4N2(CH3)Se](+)I(-), and [C6H4N2Se][C6H4N2(CH3)Se]2I2. Formation of SeN secondary bonding interactions (chalcogen bonds) was only observed in the last structure as anion binding to selenium is a strong competitor. The relative strengths of those forces and the structural preferences they enforce were assessed with DFT-D3 calculations supplemented by AIM analysis of the electron density.

  10. In vivo study on alkylation site in DNA by the bifunctional dianhydrogalactitol.

    PubMed

    Institoris, E

    1981-05-01

    In vivo alkylation of Yoshida sarcoma cell DNA by 3H-labelled 1,2:5,6-dianhydrogalactitol (DAG) yielded N-7 monogalactitylguanines and 1,6-di-(guanin-7-yl)-galactitol, similar to the alkylated products obtained by in vitro reaction of DNA with dianhydrogalactitol in neutral solution. The ratio between monoalkylguanines and diguaninyl product was 2-2.5, slightly increasing with doses. Persistence of alkylated products in DNA was followed in function of time. There was no significant loss of either monoalkylated bases or diguaninyl derivative during the observation period i.e. 7-24 h after treatment. In contrast, the physical measurements of the amount of renaturable DNA showed a rapid opening of cross-links in the same period. Taking the presence of diguaninyl moiety as an indicator of cross-links in DNA, these two latter findings show an apparent contradiction which could be reconciled however by the mechanism proposed by Reid and Walker (Biochim. Biophys. Acta, 179 (1969) 179) for the removal of cross-linkage induced by HN2. Accordingly, one arm of the cross-links is removed, probably enzymically, leaving the DNA non-renaturable, while the other arm of cross-link is still covalently attached to the DNA molecule rendering possible the detection of diguaninyl moiety in DNA at some later time. This concept for the removal of cross-links from DNA seems to be supported by our results too.

  11. Alkylation of Staurosporine to Derive a Kinase Probe for Fluorescence Applications.

    PubMed

    Disney, Alexander J M; Kellam, Barrie; Dekker, Lodewijk V

    2016-05-06

    The natural product staurosporine is a high-affinity inhibitor of nearly all mammalian protein kinases. The labelling of staurosporine has proven effective as a means of generating protein kinase research tools. Most tools have been generated by acylation of the 4'-methylamine of the sugar moiety of staurosporine. Herein we describe the alkylation of this group as a first step to generate a fluorescently labelled staurosporine. Following alkylation, a polyethylene glycol linker was installed, allowing subsequent attachment of fluorescein. We report that this fluorescein-staurosporine conjugate binds to cAMP-dependent protein kinase in the nanomolar range. Furthermore, its binding can be antagonised with unmodified staurosporine as well as ATP, indicating it targets the ATP binding site in a similar fashion to native staurosporine. This reagent has potential application as a screening tool for protein kinases of interest. © 2015 The Authors. Published by Wiley-VCH Verlag GmbH & Co. KGaA.

  12. HTB140 melanoma cells under proton irradiation and/or alkylating agents

    NASA Astrophysics Data System (ADS)

    Korićanac, L.; Petrović, I.; Privitera, G.; Cuttone, G.; Ristić-Fira, A.

    2007-09-01

    Chemoresistance is a major problem in the treatment of malignant melanoma. The mainstay of treatment for melanoma is the DNA-alkylating agent dacarbazine (DTIC). Fotemustine (FM), a member of the chloroethylnitrosourea group of alkylating agents, has also demonstrated significant antitumor effects in malignant melanoma. However, the intrinsic and acquired resistance of melanoma limits the clinical application of these drugs. Melanomas are also extremely radioresistant. With the objective of enhancing growth inhibition of melanoma cells, combined treatments of FM or DTIC with proton irradiation have been investigated. These effects were studied on HTB140 melanoma cell viability and proliferation. Cells exposed to treatment with FM and protons have shown inhibition of cell growth and significant reduction of proliferation capacity compared to single irradiation or drug treatment. Treatment with DTIC and protons has shown improved growth inhibition compared to appropriate single drug treatment, while the effects of single proton irradiation have been the most pronounced.

  13. Synthesis of 3-alkyl naphthalenes as novel estrogen receptor ligands

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Fang, Jing; Akwabi-Ameyaw, Adwoa; Britton, Jonathan E.

    2009-06-24

    A series of estrogen receptor ligands based on a 3-alkyl naphthalene scaffold was synthesized using an intramolecular enolate-alkyne cycloaromatization as the key step. Several of these compounds bearing a C6-OH group were shown to be high affinity ligands. All compounds had similar ER{alpha} and ER{beta} binding affinity ranging from micromolar to low nanomolar.

  14. Synthesis and antiprotozoan evaluation of new alkyl-linked bis(2-thioxo-[1,3,5]thiadiazinan-3-yl) carboxylic acids.

    PubMed

    Coro, Julieta; Pérez, Rolando; Rodríguez, Hortensia; Suárez, Margarita; Vega, Celeste; Rolón, Miriam; Montero, David; Nogal, Juan José; Gómez-Barrio, Alicia

    2005-05-16

    Two new series of several alkyl-linked bis(2-thioxo-[1,3,5]thiadiazinan-3-yl) carboxylic acids were synthesized in a two step procedure from the corresponding alkyl bis-dithiocarbamic salt intermediary. The novel compounds were evaluated for their activity in vitro against Trypanosoma cruzi strain CL (clone CL B5) and Trichomonas vaginalis strain JH 31A.

  15. Acrolein-induced activation of mitogen-activated protein kinase signaling is mediated by alkylation of thioredoxin reductase and thioredoxin 1.

    PubMed

    Randall, Matthew J; Spiess, Page C; Hristova, Milena; Hondal, Robert J; van der Vliet, Albert

    2013-01-01

    Cigarette smoking remains a major health concern worldwide, and many of the adverse effects of cigarette smoke (CS) can be attributed to its abundant electrophilic aldehydes, such as acrolein (2-propenal). Previous studies indicate that acrolein readily reacts with thioredoxin reductase 1 (TrxR1), a critical enzyme involved in regulation of thioredoxin (Trx)-mediated redox signaling, by alkylation at its selenocysteine (Sec) residue. Because alkylation of Sec within TrxR1 has significant implications for its enzymatic function, we explored the potential importance of TrxR1 alkylation in acrolein-induced activation or injury of bronchial epithelial cells. Exposure of human bronchial epithelial HBE1 cells to acrolein (1-30 μM) resulted in dose-dependent loss of TrxR thioredoxin reductase activity, which coincided with its alkylation, as determined by biotin hydrazide labeling, and was independent of initial GSH status. To test the involvement of TrxR1 in acrolein responses in HBE1 cells, we suppressed TrxR1 using siRNA silencing or augmented TrxR1 by cell supplementation with sodium selenite. Acrolein exposure of HBE1 cells induced dose-dependent activation of the MAP kinases, extracellular regulated kinase (ERK), c-Jun N-terminal kinase (JNK), and p38, and activation of JNK was markedly enhanced after selenite-mediated induction of TrxR1, and was associated with increased alkylation of TrxR1. Conversely, siRNA silencing of TrxR1 significantly suppressed the ability of acrolein to activate JNK, and also appeared to attenuate acrolein-dependent activation of ERK and p38. Alteration of initial TrxR1 levels by siRNA or selenite supplementation also affected initial Trx1 redox status and acrolein-mediated alkylation of Trx1, but did not significantly affect acrolein-mediated activation of HO-1 or cytotoxicity. Collectively, our findings indicate that alkylation of TrxR1 and/or Trx1 may contribute directly to acrolein-mediated activation of MAP kinases such as JNK, and

  16. Vinylcyclopropylacyl and polyeneacyl radicals. Intramolecular ketene alkyl radical additions in ring synthesis.

    PubMed

    De Boeck, Benoit; Herbert, Nicola M A; Harrington-Frost, Nicole M; Pattenden, Gerald

    2005-01-21

    Treatment of a variety of substituted vinylcyclopropyl selenyl esters, e.g. 11, with Bu(3)SnH-AIBN in refluxing benzene leads to the corresponding acyl radical intermediates, which undergo rearrangement and intramolecular cyclisations via their ketene alkyl radical equivalents producing cyclohexenones in 50-60% yield. By contrast, treatment of conjugated triene selenyl esters, e.g. 32, with Bu(3)SnH-AIBN produces substituted 2-cyclopentenones via intramolecular cyclisations of their ketene alkyl radical intermediates. Under the same radical-initiating conditions the selenyl esters derived from o-vinylbenzoic acid and o-vinylcinnamic acid undergo intramolecular cyclisations producing 1-indanone and 5,6-dihydrobenzocyclohepten-7-one respectively in 60-70% yields. A tandem radical cyclisation from the alpha,beta,gamma,delta-diene selenyl ester 31 provides an expeditious synthesis of the diquinane 35 in 69% yield.

  17. Ruthenium-catalyzed alkylation of indoles with tertiary amines by oxidation of a sp3 C-H bond and Lewis acid catalysis.

    PubMed

    Wang, Ming-Zhong; Zhou, Cong-Ying; Wong, Man-Kin; Che, Chi-Ming

    2010-05-17

    Ruthenium porphyrins (particularly [Ru(2,6-Cl(2)tpp)CO]; tpp=tetraphenylporphinato) and RuCl(3) can act as oxidation and/or Lewis acid catalysts for direct C-3 alkylation of indoles, giving the desired products in high yields (up to 82% based on 60-95% substrate conversions). These ruthenium compounds catalyze oxidative coupling reactions of a wide variety of anilines and indoles bearing electron-withdrawing or electron-donating substituents with high regioselectivity when using tBuOOH as an oxidant, resulting in the alkylation of N-arylindoles to 3-{[(N-aryl-N-alkyl)amino]methyl}indoles (yield: up to 82%, conversion: up to 95%) and the alkylation of N-alkyl or N-H indoles to 3-[p-(dialkylamino)benzyl]indoles (yield: up to 73%, conversion: up to 92%). A tentative reaction mechanism involving two pathways is proposed: an iminium ion intermediate may be generated by oxidation of an sp(3) C-H bond of the alkylated aniline by an oxoruthenium species; this iminium ion could then either be trapped by an N-arylindole (pathway A) or converted to formaldehyde, allowing a subsequent three-component coupling reaction of the in situ generated formaldehyde with an N-alkylindole and an aniline in the presence of a Lewis acid catalyst (pathway B). The results of deuterium-labeling experiments are consistent with the alkylation of N-alkylindoles via pathway B. The relative reaction rates of [Ru(2,6-Cl(2)tpp)CO]-catalyzed oxidative coupling reactions of 4-X-substituted N,N-dimethylanilines with N-phenylindole (using tBuOOH as oxidant), determined through competition experiments, correlate linearly with the substituent constants sigma (R(2)=0.989), giving a rho value of -1.09. This rho value and the magnitudes of the intra- and intermolecular deuterium isotope effects (k(H)/k(D)) suggest that electron transfer most likely occurs during the initial stage of the oxidation of 4-X-substituted N,N-dimethylanilines. Ruthenium-catalyzed three-component reaction of N-alkyl/N-H indoles

  18. Development of Anti-lock Braking System (ABS) for Vehicles Braking

    NASA Astrophysics Data System (ADS)

    Minh, Vu Trieu; Oamen, Godwin; Vassiljeva, Kristina; Teder, Leo

    2016-11-01

    This paper develops a real laboratory of anti-lock braking system (ABS) for vehicle and conducts real experiments to verify the ability of this ABS to prevent the vehicle wheel from being locked while braking. Two controllers of PID and fuzzy logic are tested for analysis and comparison. This ABS laboratory is designed for bachelor and master students to simulate and analyze performances of ABS with different control techniques on various roads and load conditions. This paper provides educational theories and practices on the design of control for system dynamics.

  19. Alkyl halide-free heteroatom alkylation and epoxidation facilitated by a recyclable polymer-supported oxidant for the in-flow preparation of diazo compounds.

    PubMed

    Nicolle, Simon M; Hayes, Christopher J; Moody, Christopher J

    2015-03-16

    Highly reactive metal carbenes, generated from simple ketones via diazo compounds, including diazo-amides and -phosphonates, using a recyclable reagent in-flow, are transient but versatile electrophiles for heteroatom alkylation reactions and for epoxide formation. The method produces no organic waste, with the only by-products being water, KI and nitrogen, without the attendant hazards of isolation of intermediate diazo compounds. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  20. [VDRL and FTA-ABS reactivity in cerebrospinal fluid: our experience].

    PubMed

    García-Rodríguez, J A; Martín-Sánchez, A M; Canut, A; García-García, L; Cacho, J

    1990-01-01

    The reactivity of 194 samples of CSF against VDRL and FTA-ABS was studied in patients attending the Clinical Hospital in Salamanca over a five years period. This laboratory was asked to rule out an etiology of syphilis. Twelve samples of CSF proved to be reactive (6.2%) against VDRL and/or FTA-ABS. Seven of these corresponded to six adults diagnosed as suffering from neurosyphilis and one to an infant with early congenital syphilis without neurological alterations; these had in common the presence of active syphilis and a reactive FTA-ABS in serum. In the CSF of the six cases of neurosyphilis, VDRL was reactive in two patients (33.3%) and FTA-ABS in five (83.3%). One minimally reactive VDRL and four FTA-ABS were detected in the remaining five patients, with no known previous history of syphilis, that were suffering from different neurological alterations and that had a nonreactive FTA-ABS in serum. The results obtained in this study point to inappropriate use in CSF of VDRL and FTA-ABS to exclude neurosyphilis in our hospital since only 3.6% of the CSF studied corresponded to patients diagnosed as suffering from neurosyphilis and also to the need for improving the criteria for patient selection.