Sample records for absolute copy number

  1. aCNViewer: Comprehensive genome-wide visualization of absolute copy number and copy neutral variations

    PubMed Central

    Wang-Renault, Shu-Fang; Letouzé, Eric; Imbeaud, Sandrine; Zucman-Rossi, Jessica; Deleuze, Jean-François; How-Kit, Alexandre

    2017-01-01

    Motivation Copy number variations (CNV) include net gains or losses of part or whole chromosomal regions. They differ from copy neutral loss of heterozygosity (cn-LOH) events which do not induce any net change in the copy number and are often associated with uniparental disomy. These phenomena have long been reported to be associated with diseases and particularly in cancer. Losses/gains of genomic regions are often correlated with lower/higher gene expression. On the other hand, loss of heterozygosity (LOH) and cn-LOH are common events in cancer and may be associated with the loss of a functional tumor suppressor gene. Therefore, identifying recurrent CNV and cn-LOH events can be important as they may highlight common biological components and give insights into the development or mechanisms of a disease. However, no currently available tools allow a comprehensive whole-genome visualization of recurrent CNVs and cn-LOH in groups of samples providing absolute quantification of the aberrations leading to the loss of potentially important information. Results To overcome these limitations, we developed aCNViewer (Absolute CNV Viewer), a visualization tool for absolute CNVs and cn-LOH across a group of samples. aCNViewer proposes three graphical representations: dendrograms, bi-dimensional heatmaps showing chromosomal regions sharing similar abnormality patterns, and quantitative stacked histograms facilitating the identification of recurrent absolute CNVs and cn-LOH. We illustrated aCNViewer using publically available hepatocellular carcinomas (HCCs) Affymetrix SNP Array data (Fig 1A). Regions 1q and 8q present a similar percentage of total gains but significantly different copy number gain categories (p-value of 0.0103 with a Fisher exact test), validated by another cohort of HCCs (p-value of 5.6e-7) (Fig 2B). Availability and implementation aCNViewer is implemented in python and R and is available with a GNU GPLv3 license on GitHub https

  2. aCNViewer: Comprehensive genome-wide visualization of absolute copy number and copy neutral variations.

    PubMed

    Renault, Victor; Tost, Jörg; Pichon, Fabien; Wang-Renault, Shu-Fang; Letouzé, Eric; Imbeaud, Sandrine; Zucman-Rossi, Jessica; Deleuze, Jean-François; How-Kit, Alexandre

    2017-01-01

    Copy number variations (CNV) include net gains or losses of part or whole chromosomal regions. They differ from copy neutral loss of heterozygosity (cn-LOH) events which do not induce any net change in the copy number and are often associated with uniparental disomy. These phenomena have long been reported to be associated with diseases and particularly in cancer. Losses/gains of genomic regions are often correlated with lower/higher gene expression. On the other hand, loss of heterozygosity (LOH) and cn-LOH are common events in cancer and may be associated with the loss of a functional tumor suppressor gene. Therefore, identifying recurrent CNV and cn-LOH events can be important as they may highlight common biological components and give insights into the development or mechanisms of a disease. However, no currently available tools allow a comprehensive whole-genome visualization of recurrent CNVs and cn-LOH in groups of samples providing absolute quantification of the aberrations leading to the loss of potentially important information. To overcome these limitations, we developed aCNViewer (Absolute CNV Viewer), a visualization tool for absolute CNVs and cn-LOH across a group of samples. aCNViewer proposes three graphical representations: dendrograms, bi-dimensional heatmaps showing chromosomal regions sharing similar abnormality patterns, and quantitative stacked histograms facilitating the identification of recurrent absolute CNVs and cn-LOH. We illustrated aCNViewer using publically available hepatocellular carcinomas (HCCs) Affymetrix SNP Array data (Fig 1A). Regions 1q and 8q present a similar percentage of total gains but significantly different copy number gain categories (p-value of 0.0103 with a Fisher exact test), validated by another cohort of HCCs (p-value of 5.6e-7) (Fig 2B). aCNViewer is implemented in python and R and is available with a GNU GPLv3 license on GitHub https://github.com/FJD-CEPH/aCNViewer and Docker https

  3. GeneCount: genome-wide calculation of absolute tumor DNA copy numbers from array comparative genomic hybridization data

    PubMed Central

    Lyng, Heidi; Lando, Malin; Brøvig, Runar S; Svendsrud, Debbie H; Johansen, Morten; Galteland, Eivind; Brustugun, Odd T; Meza-Zepeda, Leonardo A; Myklebost, Ola; Kristensen, Gunnar B; Hovig, Eivind; Stokke, Trond

    2008-01-01

    Absolute tumor DNA copy numbers can currently be achieved only on a single gene basis by using fluorescence in situ hybridization (FISH). We present GeneCount, a method for genome-wide calculation of absolute copy numbers from clinical array comparative genomic hybridization data. The tumor cell fraction is reliably estimated in the model. Data consistent with FISH results are achieved. We demonstrate significant improvements over existing methods for exploring gene dosages and intratumor copy number heterogeneity in cancers. PMID:18500990

  4. BACOM2.0 facilitates absolute normalization and quantification of somatic copy number alterations in heterogeneous tumor

    NASA Astrophysics Data System (ADS)

    Fu, Yi; Yu, Guoqiang; Levine, Douglas A.; Wang, Niya; Shih, Ie-Ming; Zhang, Zhen; Clarke, Robert; Wang, Yue

    2015-09-01

    Most published copy number datasets on solid tumors were obtained from specimens comprised of mixed cell populations, for which the varying tumor-stroma proportions are unknown or unreported. The inability to correct for signal mixing represents a major limitation on the use of these datasets for subsequent analyses, such as discerning deletion types or detecting driver aberrations. We describe the BACOM2.0 method with enhanced accuracy and functionality to normalize copy number signals, detect deletion types, estimate tumor purity, quantify true copy numbers, and calculate average-ploidy value. While BACOM has been validated and used with promising results, subsequent BACOM analysis of the TCGA ovarian cancer dataset found that the estimated average tumor purity was lower than expected. In this report, we first show that this lowered estimate of tumor purity is the combined result of imprecise signal normalization and parameter estimation. Then, we describe effective allele-specific absolute normalization and quantification methods that can enhance BACOM applications in many biological contexts while in the presence of various confounders. Finally, we discuss the advantages of BACOM in relation to alternative approaches. Here we detail this revised computational approach, BACOM2.0, and validate its performance in real and simulated datasets.

  5. Diversity of human copy number variation and multicopy genes.

    PubMed

    Sudmant, Peter H; Kitzman, Jacob O; Antonacci, Francesca; Alkan, Can; Malig, Maika; Tsalenko, Anya; Sampas, Nick; Bruhn, Laurakay; Shendure, Jay; Eichler, Evan E

    2010-10-29

    Copy number variants affect both disease and normal phenotypic variation, but those lying within heavily duplicated, highly identical sequence have been difficult to assay. By analyzing short-read mapping depth for 159 human genomes, we demonstrated accurate estimation of absolute copy number for duplications as small as 1.9 kilobase pairs, ranging from 0 to 48 copies. We identified 4.1 million "singly unique nucleotide" positions informative in distinguishing specific copies and used them to genotype the copy and content of specific paralogs within highly duplicated gene families. These data identify human-specific expansions in genes associated with brain development, reveal extensive population genetic diversity, and detect signatures consistent with gene conversion in the human species. Our approach makes ~1000 genes accessible to genetic studies of disease association.

  6. DNA copy number, including telomeres and mitochondria, assayed using next-generation sequencing.

    PubMed

    Castle, John C; Biery, Matthew; Bouzek, Heather; Xie, Tao; Chen, Ronghua; Misura, Kira; Jackson, Stuart; Armour, Christopher D; Johnson, Jason M; Rohl, Carol A; Raymond, Christopher K

    2010-04-16

    DNA copy number variations occur within populations and aberrations can cause disease. We sought to develop an improved lab-automatable, cost-efficient, accurate platform to profile DNA copy number. We developed a sequencing-based assay of nuclear, mitochondrial, and telomeric DNA copy number that draws on the unbiased nature of next-generation sequencing and incorporates techniques developed for RNA expression profiling. To demonstrate this platform, we assayed UMC-11 cells using 5 million 33 nt reads and found tremendous copy number variation, including regions of single and homogeneous deletions and amplifications to 29 copies; 5 times more mitochondria and 4 times less telomeric sequence than a pool of non-diseased, blood-derived DNA; and that UMC-11 was derived from a male individual. The described assay outputs absolute copy number, outputs an error estimate (p-value), and is more accurate than array-based platforms at high copy number. The platform enables profiling of mitochondrial levels and telomeric length. The assay is lab-automatable and has a genomic resolution and cost that are tunable based on the number of sequence reads.

  7. DNA copy number, including telomeres and mitochondria, assayed using next-generation sequencing

    PubMed Central

    2010-01-01

    Background DNA copy number variations occur within populations and aberrations can cause disease. We sought to develop an improved lab-automatable, cost-efficient, accurate platform to profile DNA copy number. Results We developed a sequencing-based assay of nuclear, mitochondrial, and telomeric DNA copy number that draws on the unbiased nature of next-generation sequencing and incorporates techniques developed for RNA expression profiling. To demonstrate this platform, we assayed UMC-11 cells using 5 million 33 nt reads and found tremendous copy number variation, including regions of single and homogeneous deletions and amplifications to 29 copies; 5 times more mitochondria and 4 times less telomeric sequence than a pool of non-diseased, blood-derived DNA; and that UMC-11 was derived from a male individual. Conclusion The described assay outputs absolute copy number, outputs an error estimate (p-value), and is more accurate than array-based platforms at high copy number. The platform enables profiling of mitochondrial levels and telomeric length. The assay is lab-automatable and has a genomic resolution and cost that are tunable based on the number of sequence reads. PMID:20398377

  8. Application of droplet digital PCR to determine copy number of endogenous genes and transgenes in sugarcane.

    PubMed

    Sun, Yue; Joyce, Priya Aiyar

    2017-11-01

    Droplet digital PCR combined with the low copy ACT allele as endogenous reference gene, makes accurate and rapid estimation of gene copy number in Q208 A and Q240 A attainable. Sugarcane is an important cultivated crop with both high polyploidy and aneuploidy in its 10 Gb genome. Without a known copy number reference gene, it is difficult to accurately estimate the copy number of any gene of interest by PCR-based methods in sugarcane. Recently, a new technology, known as droplet digital PCR (ddPCR) has been developed which can measure the absolute amount of the target DNA in a given sample. In this study, we deduced the true copy number of three endogenous genes, actin depolymerizing factor (ADF), adenine phosphoribosyltransferase (APRT) and actin (ACT) in three Australian sugarcane varieties, using ddPCR by comparing the absolute amounts of the above genes with a transgene of known copy number. A single copy of the ACT allele was detected in Q208 A , two copies in Q240 A , but was absent in Q117. Copy number variation was also observed for both APRT and ADF, and ranged from 9 to 11 in the three tested varieties. Using this newly developed ddPCR method, transgene copy number was successfully determined in 19 transgenic Q208 A and Q240 A events using ACT as the reference endogenous gene. Our study demonstrates that ddPCR can be used for high-throughput genetic analysis and is a quick, accurate and reliable alternative method for gene copy number determination in sugarcane. This discovered ACT allele would be a suitable endogenous reference gene for future gene copy number variation and dosage studies of functional genes in Q208 A and Q240 A .

  9. Mitochondrial DNA Copy Number in Sleep Duration Discordant Monozygotic Twins.

    PubMed

    Wrede, Joanna E; Mengel-From, Jonas; Buchwald, Dedra; Vitiello, Michael V; Bamshad, Michael; Noonan, Carolyn; Christiansen, Lene; Christensen, Kaare; Watson, Nathaniel F

    2015-10-01

    Mitochondrial DNA (mtDNA) copy number is an important component of mitochondrial function and varies with age, disease, and environmental factors. We aimed to determine whether mtDNA copy number varies with habitual differences in sleep duration within pairs of monozygotic twins. Academic clinical research center. 15 sleep duration discordant monozygotic twin pairs (30 twins, 80% female; mean age 42.1 years [SD 15.0]). Sleep duration was phenotyped with wrist actigraphy. Each twin pair included a "normal" (7-9 h/24) and "short" (< 7 h/24) sleeping twin. Fasting peripheral blood leukocyte DNA was assessed for mtDNA copy number via the n-fold difference between qPCR measured mtDNA and nuclear DNA creating an mtDNA measure without absolute units. We used generalized estimating equation linear regression models accounting for the correlated data structure to assess within-pair effects of sleep duration on mtDNA copy number. Mean within-pair sleep duration difference per 24 hours was 94.3 minutes (SD 62.6 min). We found reduced sleep duration (β = 0.06; 95% CI 0.004, 0.12; P < 0.05) and sleep efficiency (β = 0.51; 95% CI 0.06, 0.95; P < 0.05) were significantly associated with reduced mtDNA copy number within twin pairs. Thus every 1-minute decrease in actigraphy-defined sleep duration was associated with a decrease in mtDNA copy number of 0.06. Likewise, a 1% decrease in actigraphy-defined sleep efficiency was associated with a decrease in mtDNA copy number of 0.51. Reduced sleep duration and sleep efficiency were associated with reduced mitochondrial DNA copy number in sleep duration discordant monozygotic twins offering a potential mechanism whereby short sleep impairs health and longevity through mitochondrial stress. © 2015 Associated Professional Sleep Societies, LLC.

  10. Mitochondrial DNA Copy Number in Sleep Duration Discordant Monozygotic Twins

    PubMed Central

    Wrede, Joanna E.; Mengel-From, Jonas; Buchwald, Dedra; Vitiello, Michael V.; Bamshad, Michael; Noonan, Carolyn; Christiansen, Lene; Christensen, Kaare; Watson, Nathaniel F.

    2015-01-01

    Study Objectives: Mitochondrial DNA (mtDNA) copy number is an important component of mitochondrial function and varies with age, disease, and environmental factors. We aimed to determine whether mtDNA copy number varies with habitual differences in sleep duration within pairs of monozygotic twins. Setting: Academic clinical research center. Participants: 15 sleep duration discordant monozygotic twin pairs (30 twins, 80% female; mean age 42.1 years [SD 15.0]). Design: Sleep duration was phenotyped with wrist actigraphy. Each twin pair included a “normal” (7–9 h/24) and “short” (< 7 h/24) sleeping twin. Fasting peripheral blood leukocyte DNA was assessed for mtDNA copy number via the n-fold difference between qPCR measured mtDNA and nuclear DNA creating an mtDNA measure without absolute units. We used generalized estimating equation linear regression models accounting for the correlated data structure to assess within-pair effects of sleep duration on mtDNA copy number. Measurements and Results: Mean within-pair sleep duration difference per 24 hours was 94.3 minutes (SD 62.6 min). We found reduced sleep duration (β = 0.06; 95% CI 0.004, 0.12; P < 0.05) and sleep efficiency (β = 0.51; 95% CI 0.06, 0.95; P < 0.05) were significantly associated with reduced mtDNA copy number within twin pairs. Thus every 1-minute decrease in actigraphy-defined sleep duration was associated with a decrease in mtDNA copy number of 0.06. Likewise, a 1% decrease in actigraphy-defined sleep efficiency was associated with a decrease in mtDNA copy number of 0.51. Conclusions: Reduced sleep duration and sleep efficiency were associated with reduced mitochondrial DNA copy number in sleep duration discordant monozygotic twins offering a potential mechanism whereby short sleep impairs health and longevity through mitochondrial stress. Citation: Wrede JE, Mengel-From J, Buchwald D, Vitiello MV, Bamshad M, Noonan C, Christiansen L, Christensen K, Watson NF. Mitochondrial DNA copy number

  11. Sequenza: allele-specific copy number and mutation profiles from tumor sequencing data.

    PubMed

    Favero, F; Joshi, T; Marquard, A M; Birkbak, N J; Krzystanek, M; Li, Q; Szallasi, Z; Eklund, A C

    2015-01-01

    Exome or whole-genome deep sequencing of tumor DNA along with paired normal DNA can potentially provide a detailed picture of the somatic mutations that characterize the tumor. However, analysis of such sequence data can be complicated by the presence of normal cells in the tumor specimen, by intratumor heterogeneity, and by the sheer size of the raw data. In particular, determination of copy number variations from exome sequencing data alone has proven difficult; thus, single nucleotide polymorphism (SNP) arrays have often been used for this task. Recently, algorithms to estimate absolute, but not allele-specific, copy number profiles from tumor sequencing data have been described. We developed Sequenza, a software package that uses paired tumor-normal DNA sequencing data to estimate tumor cellularity and ploidy, and to calculate allele-specific copy number profiles and mutation profiles. We applied Sequenza, as well as two previously published algorithms, to exome sequence data from 30 tumors from The Cancer Genome Atlas. We assessed the performance of these algorithms by comparing their results with those generated using matched SNP arrays and processed by the allele-specific copy number analysis of tumors (ASCAT) algorithm. Comparison between Sequenza/exome and SNP/ASCAT revealed strong correlation in cellularity (Pearson's r = 0.90) and ploidy estimates (r = 0.42, or r = 0.94 after manual inspecting alternative solutions). This performance was noticeably superior to previously published algorithms. In addition, in artificial data simulating normal-tumor admixtures, Sequenza detected the correct ploidy in samples with tumor content as low as 30%. The agreement between Sequenza and SNP array-based copy number profiles suggests that exome sequencing alone is sufficient not only for identifying small scale mutations but also for estimating cellularity and inferring DNA copy number aberrations. © The Author 2014. Published by Oxford University Press on behalf of

  12. Copy Number Variation across European Populations

    PubMed Central

    Chen, Wanting; Hayward, Caroline; Wright, Alan F.; Hicks, Andrew A.; Vitart, Veronique; Knott, Sara; Wild, Sarah H.; Pramstaller, Peter P.; Wilson, James F.; Rudan, Igor; Porteous, David J.

    2011-01-01

    Genome analysis provides a powerful approach to test for evidence of genetic variation within and between geographical regions and local populations. Copy number variants which comprise insertions, deletions and duplications of genomic sequence provide one such convenient and informative source. Here, we investigate copy number variants from genome wide scans of single nucleotide polymorphisms in three European population isolates, the island of Vis in Croatia, the islands of Orkney in Scotland and the South Tyrol in Italy. We show that whereas the overall copy number variant frequencies are similar between populations, their distribution is highly specific to the population of origin, a finding which is supported by evidence for increased kinship correlation for specific copy number variants within populations. PMID:21829696

  13. Selection of suitable endogenous reference genes for relative copy number detection in sugarcane.

    PubMed

    Xue, Bantong; Guo, Jinlong; Que, Youxiong; Fu, Zhiwei; Wu, Luguang; Xu, Liping

    2014-05-19

    Transgene copy number has a great impact on the expression level and stability of exogenous gene in transgenic plants. Proper selection of endogenous reference genes is necessary for detection of genetic components in genetically modification (GM) crops by quantitative real-time PCR (qPCR) or by qualitative PCR approach, especially in sugarcane with polyploid and aneuploid genomic structure. qPCR technique has been widely accepted as an accurate, time-saving method on determination of copy numbers in transgenic plants and on detection of genetically modified plants to meet the regulatory and legislative requirement. In this study, to find a suitable endogenous reference gene and its real-time PCR assay for sugarcane (Saccharum spp. hybrids) DNA content quantification, we evaluated a set of potential "single copy" genes including P4H, APRT, ENOL, CYC, TST and PRR, through qualitative PCR and absolute quantitative PCR. Based on copy number comparisons among different sugarcane genotypes, including five S. officinarum, one S. spontaneum and two S. spp. hybrids, these endogenous genes fell into three groups: ENOL-3--high copy number group, TST-1 and PRR-1--medium copy number group, P4H-1, APRT-2 and CYC-2--low copy number group. Among these tested genes, P4H, APRT and CYC were the most stable, while ENOL and TST were the least stable across different sugarcane genotypes. Therefore, three primer pairs of P4H-3, APRT-2 and CYC-2 were then selected as the suitable reference gene primer pairs for sugarcane. The test of multi-target reference genes revealed that the APRT gene was a specific amplicon, suggesting this gene is the most suitable to be used as an endogenous reference target for sugarcane DNA content quantification. These results should be helpful for establishing accurate and reliable qualitative and quantitative PCR analysis of GM sugarcane.

  14. 40 CFR 262.22 - Number of copies.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 40 Protection of Environment 26 2011-07-01 2011-07-01 false Number of copies. 262.22 Section 262...) STANDARDS APPLICABLE TO GENERATORS OF HAZARDOUS WASTE The Manifest § 262.22 Number of copies. The manifest consists of at least the number of copies which will provide the generator, each transporter, and the owner...

  15. 40 CFR 262.22 - Number of copies.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 40 Protection of Environment 27 2012-07-01 2012-07-01 false Number of copies. 262.22 Section 262...) STANDARDS APPLICABLE TO GENERATORS OF HAZARDOUS WASTE The Manifest § 262.22 Number of copies. The manifest consists of at least the number of copies which will provide the generator, each transporter, and the owner...

  16. 40 CFR 262.22 - Number of copies.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 40 Protection of Environment 25 2010-07-01 2010-07-01 false Number of copies. 262.22 Section 262...) STANDARDS APPLICABLE TO GENERATORS OF HAZARDOUS WASTE The Manifest § 262.22 Number of copies. The manifest consists of at least the number of copies which will provide the generator, each transporter, and the owner...

  17. CCL3L1 copy number and susceptibility to malaria

    PubMed Central

    Carpenter, Danielle; Färnert, Anna; Rooth, Ingegerd; Armour, John A.L.; Shaw, Marie-Anne

    2012-01-01

    Copy number variation can contribute to the variation observed in susceptibility to complex diseases. Here we present the first study to investigate copy number variation of the chemokine gene CCL3L1 with susceptibility to malaria. We present a family-based genetic analysis of a Tanzanian population (n = 922), using parasite load, mean number of clinical infections of malaria and haemoglobin levels as phenotypes. Copy number of CCL3L1 was measured using the paralogue ratio test (PRT) and the dataset exhibited copy numbers ranging between 1 and 10 copies per diploid genome (pdg). Association between copy number and phenotypes was assessed. Furthermore, we were able to identify copy number haplotypes in some families, using microsatellites within the copy variable region, for transmission disequilibrium testing. We identified a high level of copy number haplotype diversity and find some evidence for an association of low CCL3L1 copy number with protection from anaemia. PMID:22484763

  18. CCL3L1 copy number and susceptibility to malaria.

    PubMed

    Carpenter, Danielle; Färnert, Anna; Rooth, Ingegerd; Armour, John A L; Shaw, Marie-Anne

    2012-07-01

    Copy number variation can contribute to the variation observed in susceptibility to complex diseases. Here we present the first study to investigate copy number variation of the chemokine gene CCL3L1 with susceptibility to malaria. We present a family-based genetic analysis of a Tanzanian population (n=922), using parasite load, mean number of clinical infections of malaria and haemoglobin levels as phenotypes. Copy number of CCL3L1 was measured using the paralogue ratio test (PRT) and the dataset exhibited copy numbers ranging between 1 and 10 copies per diploid genome (pdg). Association between copy number and phenotypes was assessed. Furthermore, we were able to identify copy number haplotypes in some families, using microsatellites within the copy variable region, for transmission disequilibrium testing. We identified a high level of copy number haplotype diversity and find some evidence for an association of low CCL3L1 copy number with protection from anaemia. Copyright © 2012 Elsevier B.V. All rights reserved.

  19. Functional effects of CCL3L1 copy number

    PubMed Central

    Carpenter, Danielle; McIntosh, Richard S; Pleass, Richard J; Armour, John AL

    2012-01-01

    Copy number variation (CNV) is becoming increasingly important as a feature of human variation in disease susceptibility studies. However, the consequences of copy number variation are not so well understood. Here we present data exploring the functional consequences of copy number variation of CCL3L1 in 55 independent UK samples with no known clinical phenotypes. Copy number of CCL3L1 was determined by the paralogue ratio test (PRT), and expression levels of MIP-1α and mRNA from stimulated monocytes were measured and analysed. The data show no statistically significant association of MIP-1α protein levels with copy number. However, there was a significant correlation between copy number and CCL3L1:CCL3 mRNA ratio. The data also provide evidence that expression of CCL3 predominates in both protein and mRNA, and therefore the observed variation of CCL3 is potentially more important biologically than that of copy number variation of CCL3L1. PMID:22476153

  20. Measurement methods and accuracy in copy number variation: failure to replicate associations of beta-defensin copy number with Crohn's disease.

    PubMed

    Aldhous, Marian C; Abu Bakar, Suhaili; Prescott, Natalie J; Palla, Raquel; Soo, Kimberley; Mansfield, John C; Mathew, Christopher G; Satsangi, Jack; Armour, John A L

    2010-12-15

    The copy number variation in beta-defensin genes on human chromosome 8 has been proposed to underlie susceptibility to inflammatory disorders, but presents considerable challenges for accurate typing on the scale required for adequately powered case-control studies. In this work, we have used accurate methods of copy number typing based on the paralogue ratio test (PRT) to assess beta-defensin copy number in more than 1500 UK DNA samples including more than 1000 cases of Crohn's disease. A subset of 625 samples was typed using both PRT-based methods and standard real-time PCR methods, from which direct comparisons highlight potentially serious shortcomings of a real-time PCR assay for typing this variant. Comparing our PRT-based results with two previous studies based only on real-time PCR, we find no evidence to support the reported association of Crohn's disease with either low or high beta-defensin copy number; furthermore, it is noteworthy that there are disagreements between different studies on the observed frequency distribution of copy number states among European controls. We suggest safeguards to be adopted in assessing and reporting the accuracy of copy number measurement, with particular emphasis on integer clustering of results, to avoid reporting of spurious associations in future case-control studies.

  1. A comprehensive profile of DNA copy number variations in a Korean population: identification of copy number invariant regions among Koreans.

    PubMed

    Jeon, Jae Pil; Shim, Sung Mi; Jung, Jong Sun; Nam, Hye Young; Lee, Hye Jin; Oh, Berm Seok; Kim, Kuchan; Kim, Hyung Lae; Han, Bok Ghee

    2009-09-30

    To examine copy number variations among the Korean population, we compared individual genomes with the Korean reference genome assembly using the publicly available Korean HapMap SNP 50 k chip data from 90 individuals. Korean individuals exhibited 123 copy number variation regions (CNVRs) covering 27.2 mb, equivalent to 1.0% of the genome in the copy number variation (CNV) analysis using the combined criteria of P value (P<0.01) and standard deviation of copy numbers (SD>or= 0.25) among study subjects. In contrast, when compared to the Affymetrix reference genome assembly from multiple ethnic groups, considerably more CNVRs (n=643) were detected in larger proportions (5.0%) of the genome covering 135.1 mb even by more stringent criteria (P<0.001 and SD>or=0.25), reflecting ethnic diversity of structural variations between Korean and other populations. Some CNVRs were validated by the quantitative multiplex PCR of short fluorescent fragment (QMPSF) method, and then copy number invariant regions were detected among the study subjects. These copy number invariant regions would be used as good internal controls for further CNV studies. Lastly, we demonstrated that the CNV information could stratify even a single ethnic population with a proper reference genome assembly from multiple heterogeneous populations.

  2. Measurement methods and accuracy in copy number variation: failure to replicate associations of beta-defensin copy number with Crohn's disease

    PubMed Central

    Aldhous, Marian C.; Abu Bakar, Suhaili; Prescott, Natalie J.; Palla, Raquel; Soo, Kimberley; Mansfield, John C.; Mathew, Christopher G.; Satsangi, Jack; Armour, John A.L.

    2010-01-01

    The copy number variation in beta-defensin genes on human chromosome 8 has been proposed to underlie susceptibility to inflammatory disorders, but presents considerable challenges for accurate typing on the scale required for adequately powered case–control studies. In this work, we have used accurate methods of copy number typing based on the paralogue ratio test (PRT) to assess beta-defensin copy number in more than 1500 UK DNA samples including more than 1000 cases of Crohn's disease. A subset of 625 samples was typed using both PRT-based methods and standard real-time PCR methods, from which direct comparisons highlight potentially serious shortcomings of a real-time PCR assay for typing this variant. Comparing our PRT-based results with two previous studies based only on real-time PCR, we find no evidence to support the reported association of Crohn's disease with either low or high beta-defensin copy number; furthermore, it is noteworthy that there are disagreements between different studies on the observed frequency distribution of copy number states among European controls. We suggest safeguards to be adopted in assessing and reporting the accuracy of copy number measurement, with particular emphasis on integer clustering of results, to avoid reporting of spurious associations in future case–control studies. PMID:20858604

  3. Hacking DNA copy number for circuit engineering.

    PubMed

    Wu, Feilun; You, Lingchong

    2017-07-27

    DNA copy number represents an essential parameter in the dynamics of synthetic gene circuits but typically is not explicitly considered. A new study demonstrates how dynamic control of DNA copy number can serve as an effective strategy to program robust oscillations in gene expression circuits.

  4. 22 CFR 1429.25 - Number of copies.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 22 Foreign Relations 2 2010-04-01 2010-04-01 true Number of copies. 1429.25 Section 1429.25 Foreign Relations FOREIGN SERVICE LABOR RELATIONS BOARD; FEDERAL LABOR RELATIONS AUTHORITY; GENERAL... AND GENERAL REQUIREMENTS General Requirements § 1429.25 Number of copies. Unless otherwise provided by...

  5. DNA replication stress restricts ribosomal DNA copy number

    PubMed Central

    Salim, Devika; Bradford, William D.; Freeland, Amy; Cady, Gillian; Wang, Jianmin

    2017-01-01

    Ribosomal RNAs (rRNAs) in budding yeast are encoded by ~100–200 repeats of a 9.1kb sequence arranged in tandem on chromosome XII, the ribosomal DNA (rDNA) locus. Copy number of rDNA repeat units in eukaryotic cells is maintained far in excess of the requirement for ribosome biogenesis. Despite the importance of the repeats for both ribosomal and non-ribosomal functions, it is currently not known how “normal” copy number is determined or maintained. To identify essential genes involved in the maintenance of rDNA copy number, we developed a droplet digital PCR based assay to measure rDNA copy number in yeast and used it to screen a yeast conditional temperature-sensitive mutant collection of essential genes. Our screen revealed that low rDNA copy number is associated with compromised DNA replication. Further, subculturing yeast under two separate conditions of DNA replication stress selected for a contraction of the rDNA array independent of the replication fork blocking protein, Fob1. Interestingly, cells with a contracted array grew better than their counterparts with normal copy number under conditions of DNA replication stress. Our data indicate that DNA replication stresses select for a smaller rDNA array. We speculate that this liberates scarce replication factors for use by the rest of the genome, which in turn helps cells complete DNA replication and continue to propagate. Interestingly, tumors from mini chromosome maintenance 2 (MCM2)-deficient mice also show a loss of rDNA repeats. Our data suggest that a reduction in rDNA copy number may indicate a history of DNA replication stress, and that rDNA array size could serve as a diagnostic marker for replication stress. Taken together, these data begin to suggest the selective pressures that combine to yield a “normal” rDNA copy number. PMID:28915237

  6. DNA replication stress restricts ribosomal DNA copy number.

    PubMed

    Salim, Devika; Bradford, William D; Freeland, Amy; Cady, Gillian; Wang, Jianmin; Pruitt, Steven C; Gerton, Jennifer L

    2017-09-01

    Ribosomal RNAs (rRNAs) in budding yeast are encoded by ~100-200 repeats of a 9.1kb sequence arranged in tandem on chromosome XII, the ribosomal DNA (rDNA) locus. Copy number of rDNA repeat units in eukaryotic cells is maintained far in excess of the requirement for ribosome biogenesis. Despite the importance of the repeats for both ribosomal and non-ribosomal functions, it is currently not known how "normal" copy number is determined or maintained. To identify essential genes involved in the maintenance of rDNA copy number, we developed a droplet digital PCR based assay to measure rDNA copy number in yeast and used it to screen a yeast conditional temperature-sensitive mutant collection of essential genes. Our screen revealed that low rDNA copy number is associated with compromised DNA replication. Further, subculturing yeast under two separate conditions of DNA replication stress selected for a contraction of the rDNA array independent of the replication fork blocking protein, Fob1. Interestingly, cells with a contracted array grew better than their counterparts with normal copy number under conditions of DNA replication stress. Our data indicate that DNA replication stresses select for a smaller rDNA array. We speculate that this liberates scarce replication factors for use by the rest of the genome, which in turn helps cells complete DNA replication and continue to propagate. Interestingly, tumors from mini chromosome maintenance 2 (MCM2)-deficient mice also show a loss of rDNA repeats. Our data suggest that a reduction in rDNA copy number may indicate a history of DNA replication stress, and that rDNA array size could serve as a diagnostic marker for replication stress. Taken together, these data begin to suggest the selective pressures that combine to yield a "normal" rDNA copy number.

  7. 14 CFR 221.92 - Number of copies required.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... 14 Aeronautics and Space 4 2014-01-01 2014-01-01 false Number of copies required. 221.92 Section 221.92 Aeronautics and Space OFFICE OF THE SECRETARY, DEPARTMENT OF TRANSPORTATION (AVIATION PROCEEDINGS) ECONOMIC REGULATIONS TARIFFS Filing Tariff Publications With Department § 221.92 Number of copies...

  8. High BAALC copy numbers in peripheral blood prior to allogeneic transplantation predict early relapse in acute myeloid leukemia patients.

    PubMed

    Jentzsch, Madlen; Bill, Marius; Grimm, Juliane; Schulz, Julia; Goldmann, Karoline; Beinicke, Stefanie; Häntschel, Janine; Pönisch, Wolfram; Franke, Georg-Nikolaus; Vucinic, Vladan; Behre, Gerhard; Lange, Thoralf; Niederwieser, Dietger; Schwind, Sebastian

    2017-10-20

    High BAALC expression levels at acute myeloid leukemia diagnosis have been linked to adverse outcomes. Recent data indicate that high BAALC expression levels may also be used as marker for residual disease following acute myeloid leukemia treatment. Allogeneic hematopoietic stem cell transplantation (HSCT) offers a curative treatment for acute myeloid leukemia patients. However, disease recurrence remains a major clinical challenge and identification of high-risk patients prior to HSCT is crucial to improve outcomes. We performed absolute quantification of BAALC copy numbers in peripheral blood prior (median 7 days) to HSCT in complete remission (CR) or CR with incomplete peripheral recovery in 82 acute myeloid leukemia patients using digital droplet PCR (ddPCR) technology. An optimal cut-off of 0.14 BAALC / ABL1 copy numbers was determined and applied to define patients with high or low BAALC / ABL1 copy numbers. High pre-HSCT BAALC / ABL1 copy numbers significantly associated with higher cumulative incidence of relapse and shorter overall survival in univariable and multivariable models. Patients with high pre-HSCT BAALC / ABL1 copy numbers were more likely to experience relapse within 100 days after HSCT. Evaluation of pre-HSCT BAALC / ABL1 copy numbers in peripheral blood by ddPCR represents a feasible and rapid way to identify acute myeloid leukemia patients at high risk of early relapse after HSCT. The prognostic impact was also observed independently of other known clinical, genetic, and molecular prognosticators. In the future, prospective studies should evaluate whether acute myeloid leukemia patients with high pre-HSCT BAALC / ABL1 copy numbers benefit from additional treatment before or early intervention after HSCT.

  9. High BAALC copy numbers in peripheral blood prior to allogeneic transplantation predict early relapse in acute myeloid leukemia patients

    PubMed Central

    Jentzsch, Madlen; Bill, Marius; Grimm, Juliane; Schulz, Julia; Goldmann, Karoline; Beinicke, Stefanie; Häntschel, Janine; Pönisch, Wolfram; Franke, Georg-Nikolaus; Vucinic, Vladan; Behre, Gerhard; Lange, Thoralf; Niederwieser, Dietger; Schwind, Sebastian

    2017-01-01

    High BAALC expression levels at acute myeloid leukemia diagnosis have been linked to adverse outcomes. Recent data indicate that high BAALC expression levels may also be used as marker for residual disease following acute myeloid leukemia treatment. Allogeneic hematopoietic stem cell transplantation (HSCT) offers a curative treatment for acute myeloid leukemia patients. However, disease recurrence remains a major clinical challenge and identification of high-risk patients prior to HSCT is crucial to improve outcomes. We performed absolute quantification of BAALC copy numbers in peripheral blood prior (median 7 days) to HSCT in complete remission (CR) or CR with incomplete peripheral recovery in 82 acute myeloid leukemia patients using digital droplet PCR (ddPCR) technology. An optimal cut-off of 0.14 BAALC/ABL1 copy numbers was determined and applied to define patients with high or low BAALC/ABL1 copy numbers. High pre-HSCT BAALC/ABL1 copy numbers significantly associated with higher cumulative incidence of relapse and shorter overall survival in univariable and multivariable models. Patients with high pre-HSCT BAALC/ABL1 copy numbers were more likely to experience relapse within 100 days after HSCT. Evaluation of pre-HSCT BAALC/ABL1 copy numbers in peripheral blood by ddPCR represents a feasible and rapid way to identify acute myeloid leukemia patients at high risk of early relapse after HSCT. The prognostic impact was also observed independently of other known clinical, genetic, and molecular prognosticators. In the future, prospective studies should evaluate whether acute myeloid leukemia patients with high pre-HSCT BAALC/ABL1 copy numbers benefit from additional treatment before or early intervention after HSCT. PMID:29152132

  10. Different Facets of Copy Number Changes: Permanent, Transient, and Adaptive

    PubMed Central

    Mishra, Sweta

    2016-01-01

    Chromosomal copy number changes are frequently associated with harmful consequences and are thought of as an underlying mechanism for the development of diseases. However, changes in copy number are observed during development and occur during normal biological processes. In this review, we highlight the causes and consequences of copy number changes in normal physiologic processes as well as cover their associations with cancer and acquired drug resistance. We discuss the permanent and transient nature of copy number gains and relate these observations to a new mechanism driving transient site-specific copy gains (TSSGs). Finally, we discuss implications of TSSGs in generating intratumoral heterogeneity and tumor evolution and how TSSGs can influence the therapeutic response in cancer. PMID:26755558

  11. rrndb: the Ribosomal RNA Operon Copy Number Database

    PubMed Central

    Klappenbach, Joel A.; Saxman, Paul R.; Cole, James R.; Schmidt, Thomas M.

    2001-01-01

    The Ribosomal RNA Operon Copy Number Database (rrndb) is an Internet-accessible database containing annotated information on rRNA operon copy number among prokaryotes. Gene redundancy is uncommon in prokaryotic genomes, yet the rRNA genes can vary from one to as many as 15 copies. Despite the widespread use of 16S rRNA gene sequences for identification of prokaryotes, information on the number and sequence of individual rRNA genes in a genome is not readily accessible. In an attempt to understand the evolutionary implications of rRNA operon redundancy, we have created a phylogenetically arranged report on rRNA gene copy number for a diverse collection of prokaryotic microorganisms. Each entry (organism) in the rrndb contains detailed information linked directly to external websites including the Ribosomal Database Project, GenBank, PubMed and several culture collections. Data contained in the rrndb will be valuable to researchers investigating microbial ecology and evolution using 16S rRNA gene sequences. The rrndb web site is directly accessible on the WWW at http://rrndb.cme.msu.edu. PMID:11125085

  12. Gene copy number variation and its significance in cyanobacterial phylogeny

    PubMed Central

    2012-01-01

    Background In eukaryotes, variation in gene copy numbers is often associated with deleterious effects, but may also have positive effects. For prokaryotes, studies on gene copy number variation are rare. Previous studies have suggested that high numbers of rRNA gene copies can be advantageous in environments with changing resource availability, but further association of gene copies and phenotypic traits are not documented. We used one of the morphologically most diverse prokaryotic phyla to test whether numbers of gene copies are associated with levels of cell differentiation. Results We implemented a search algorithm that identified 44 genes with highly conserved copies across 22 fully sequenced cyanobacterial taxa. For two very basal cyanobacterial species, Gloeobacter violaceus and a thermophilic Synechococcus species, distinct phylogenetic positions previously found were supported by identical protein coding gene copy numbers. Furthermore, we found that increased ribosomal gene copy numbers showed a strong correlation to cyanobacteria capable of terminal cell differentiation. Additionally, we detected extremely low variation of 16S rRNA sequence copies within the cyanobacteria. We compared our results for 16S rRNA to three other eubacterial phyla (Chroroflexi, Spirochaetes and Bacteroidetes). Based on Bayesian phylogenetic inference and the comparisons of genetic distances, we could confirm that cyanobacterial 16S rRNA paralogs and orthologs show significantly stronger conservation than found in other eubacterial phyla. Conclusions A higher number of ribosomal operons could potentially provide an advantage to terminally differentiated cyanobacteria. Furthermore, we suggest that 16S rRNA gene copies in cyanobacteria are homogenized by both concerted evolution and purifying selection. In addition, the small ribosomal subunit in cyanobacteria appears to evolve at extraordinary slow evolutionary rates, an observation that has been made previously for morphological

  13. The relationship between mitochondrial DNA copy number and stallion sperm function.

    PubMed

    Darr, Christa R; Moraes, Luis E; Connon, Richard E; Love, Charles C; Teague, Sheila; Varner, Dickson D; Meyers, Stuart A

    2017-05-01

    Mitochondrial DNA (mtDNA) copy number has been utilized as a measure of sperm quality in several species including mice, dogs, and humans, and has been suggested as a potential biomarker of fertility in stallion sperm. The results of the present study extend this recent discovery using sperm samples from American Quarter Horse stallions of varying age. By determining copy number of three mitochondrial genes, cytochrome b (CYTB), NADH dehydrogenase 1 (ND1) and NADH dehydrogenase 4 (ND4), instead of a single gene, we demonstrate an improved understanding of mtDNA fate in stallion sperm mitochondria following spermatogenesis. Sperm samples from 37 stallions ranging from 3 to 24 years old were collected at four breeding ranches in north and central Texas during the 2015 breeding season. Samples were analyzed for sperm motion characteristics, nuclear DNA denaturability and mtDNA copy number. Mitochondrial DNA content in individual sperm was determined by real-time qPCR and normalized with a single copy nuclear gene, Beta actin. Exploratory correlation analysis revealed that total motility was negatively correlated with CYTB copy number and sperm chromatin structure. Stallion age did not have a significant effect on copy number for any of the genes. Copy number differences existed between the three genes with CYTB having the greatest number of copies (20.6 ± 1.2 copies, range: 6.0 to 41.1) followed by ND4 (15.5 ± 0.8 copies, range: 6.7 to 27.8) and finally ND1 (12.0 ± 1.0 copies, range: 0.4 to 26.6) (P < 0.05). Varying copy number across mitochondrial genes is likely to be a result of mtDNA fragmentation and degradation since downregulation of sperm mtDNA occurs during spermatogenesis and may be important for normal sperm function. Beta regression analysis suggested that for every unit increase in mtDNA copy number of CYTB, there was a 4% decrease in the odds of sperm movement (P = 0.001). Influential analysis suggested that results are robust and not highly

  14. 18 CFR 33.8 - Number of copies.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... ENERGY REGULATIONS UNDER THE FEDERAL POWER ACT APPLICATIONS UNDER FEDERAL POWER ACT SECTION 203 § 33.8 Number of copies. An original and eight copies of the application under this part must be submitted. If..., the applicant must submit all such information in electronic format (e.g., on computer diskette or on...

  15. 14 CFR 221.92 - Number of copies required.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... PROCEEDINGS) ECONOMIC REGULATIONS TARIFFS Filing Tariff Publications With Department § 221.92 Number of copies required. Two copies of each paper tariff, tariff revision and adoption notice to be filed shall be sent to...

  16. Use of autocorrelation scanning in DNA copy number analysis.

    PubMed

    Zhang, Liangcai; Zhang, Li

    2013-11-01

    Data quality is a critical issue in the analyses of DNA copy number alterations obtained from microarrays. It is commonly assumed that copy number alteration data can be modeled as piecewise constant and the measurement errors of different probes are independent. However, these assumptions do not always hold in practice. In some published datasets, we find that measurement errors are highly correlated between probes that interrogate nearby genomic loci, and the piecewise-constant model does not fit the data well. The correlated errors cause problems in downstream analysis, leading to a large number of DNA segments falsely identified as having copy number gains and losses. We developed a simple tool, called autocorrelation scanning profile, to assess the dependence of measurement error between neighboring probes. Autocorrelation scanning profile can be used to check data quality and refine the analysis of DNA copy number data, which we demonstrate in some typical datasets. lzhangli@mdanderson.org. Supplementary data are available at Bioinformatics online.

  17. Phylogenetic Copy-Number Factorization of Multiple Tumor Samples.

    PubMed

    Zaccaria, Simone; El-Kebir, Mohammed; Klau, Gunnar W; Raphael, Benjamin J

    2018-04-16

    Cancer is an evolutionary process driven by somatic mutations. This process can be represented as a phylogenetic tree. Constructing such a phylogenetic tree from genome sequencing data is a challenging task due to the many types of mutations in cancer and the fact that nearly all cancer sequencing is of a bulk tumor, measuring a superposition of somatic mutations present in different cells. We study the problem of reconstructing tumor phylogenies from copy-number aberrations (CNAs) measured in bulk-sequencing data. We introduce the Copy-Number Tree Mixture Deconvolution (CNTMD) problem, which aims to find the phylogenetic tree with the fewest number of CNAs that explain the copy-number data from multiple samples of a tumor. We design an algorithm for solving the CNTMD problem and apply the algorithm to both simulated and real data. On simulated data, we find that our algorithm outperforms existing approaches that either perform deconvolution/factorization of mixed tumor samples or build phylogenetic trees assuming homogeneous tumor samples. On real data, we analyze multiple samples from a prostate cancer patient, identifying clones within these samples and a phylogenetic tree that relates these clones and their differing proportions across samples. This phylogenetic tree provides a higher resolution view of copy-number evolution of this cancer than published analyses.

  18. Low copy number of the salivary amylase gene predisposes to obesity.

    PubMed

    Falchi, Mario; El-Sayed Moustafa, Julia Sarah; Takousis, Petros; Pesce, Francesco; Bonnefond, Amélie; Andersson-Assarsson, Johanna C; Sudmant, Peter H; Dorajoo, Rajkumar; Al-Shafai, Mashael Nedham; Bottolo, Leonardo; Ozdemir, Erdal; So, Hon-Cheong; Davies, Robert W; Patrice, Alexandre; Dent, Robert; Mangino, Massimo; Hysi, Pirro G; Dechaume, Aurélie; Huyvaert, Marlène; Skinner, Jane; Pigeyre, Marie; Caiazzo, Robert; Raverdy, Violeta; Vaillant, Emmanuel; Field, Sarah; Balkau, Beverley; Marre, Michel; Visvikis-Siest, Sophie; Weill, Jacques; Poulain-Godefroy, Odile; Jacobson, Peter; Sjostrom, Lars; Hammond, Christopher J; Deloukas, Panos; Sham, Pak Chung; McPherson, Ruth; Lee, Jeannette; Tai, E Shyong; Sladek, Robert; Carlsson, Lena M S; Walley, Andrew; Eichler, Evan E; Pattou, Francois; Spector, Timothy D; Froguel, Philippe

    2014-05-01

    Common multi-allelic copy number variants (CNVs) appear enriched for phenotypic associations compared to their biallelic counterparts. Here we investigated the influence of gene dosage effects on adiposity through a CNV association study of gene expression levels in adipose tissue. We identified significant association of a multi-allelic CNV encompassing the salivary amylase gene (AMY1) with body mass index (BMI) and obesity, and we replicated this finding in 6,200 subjects. Increased AMY1 copy number was positively associated with both amylase gene expression (P = 2.31 × 10(-14)) and serum enzyme levels (P < 2.20 × 10(-16)), whereas reduced AMY1 copy number was associated with increased BMI (change in BMI per estimated copy = -0.15 (0.02) kg/m(2); P = 6.93 × 10(-10)) and obesity risk (odds ratio (OR) per estimated copy = 1.19, 95% confidence interval (CI) = 1.13-1.26; P = 1.46 × 10(-10)). The OR value of 1.19 per copy of AMY1 translates into about an eightfold difference in risk of obesity between subjects in the top (copy number > 9) and bottom (copy number < 4) 10% of the copy number distribution. Our study provides a first genetic link between carbohydrate metabolism and BMI and demonstrates the power of integrated genomic approaches beyond genome-wide association studies.

  19. Counting numbers of synaptic proteins: absolute quantification and single molecule imaging techniques

    PubMed Central

    Patrizio, Angela; Specht, Christian G.

    2016-01-01

    Abstract. The ability to count molecules is essential to elucidating cellular mechanisms, as these often depend on the absolute numbers and concentrations of molecules within specific compartments. Such is the case at chemical synapses, where the transmission of information from presynaptic to postsynaptic terminals requires complex interactions between small sets of molecules. Be it the subunit stoichiometry specifying neurotransmitter receptor properties, the copy numbers of scaffold proteins setting the limit of receptor accumulation at synapses, or protein packing densities shaping the molecular organization and plasticity of the postsynaptic density, all of these depend on exact quantities of components. A variety of proteomic, electrophysiological, and quantitative imaging techniques have yielded insights into the molecular composition of synaptic complexes. In this review, we compare the different quantitative approaches and consider the potential of single molecule imaging techniques for the quantification of synaptic components. We also discuss specific neurobiological data to contextualize the obtained numbers and to explain how they aid our understanding of synaptic structure and function. PMID:27335891

  20. Counting numbers of synaptic proteins: absolute quantification and single molecule imaging techniques.

    PubMed

    Patrizio, Angela; Specht, Christian G

    2016-10-01

    The ability to count molecules is essential to elucidating cellular mechanisms, as these often depend on the absolute numbers and concentrations of molecules within specific compartments. Such is the case at chemical synapses, where the transmission of information from presynaptic to postsynaptic terminals requires complex interactions between small sets of molecules. Be it the subunit stoichiometry specifying neurotransmitter receptor properties, the copy numbers of scaffold proteins setting the limit of receptor accumulation at synapses, or protein packing densities shaping the molecular organization and plasticity of the postsynaptic density, all of these depend on exact quantities of components. A variety of proteomic, electrophysiological, and quantitative imaging techniques have yielded insights into the molecular composition of synaptic complexes. In this review, we compare the different quantitative approaches and consider the potential of single molecule imaging techniques for the quantification of synaptic components. We also discuss specific neurobiological data to contextualize the obtained numbers and to explain how they aid our understanding of synaptic structure and function.

  1. Functional effects of CCL3L1 copy number.

    PubMed

    Carpenter, D; McIntosh, R S; Pleass, R J; Armour, J A L

    2012-07-01

    Copy number variation (CNV) is becoming increasingly important as a feature of human variation in disease susceptibility studies. However, the consequences of CNV are not so well understood. Here, we present data exploring the functional consequences of CNV of CCL3L1 in 55 independent UK samples with no known clinical phenotypes. The copy number of CCL3L1 was determined by the paralogue ratio test, and expression levels of macrophage inflammatory protein-1α (MIP-1α) and mRNA from stimulated monocytes were measured and analysed. The data show no statistically significant association of MIP-1α protein levels with copy number. However, there was a significant correlation between copy number and CCL3L1:CCL3 mRNA ratio. The data also provide evidence that expression of CCL3 predominates in both protein and mRNA, and therefore the observed variation of CCL3 is potentially more important biologically than that of CNV of CCL3L1.

  2. Gene copy number evolution during tetraploid cotton radiation.

    PubMed

    Rong, J; Feltus, F A; Liu, L; Lin, L; Paterson, A H

    2010-11-01

    After polyploid formation, retention or loss of duplicated genes is not random. Genes with some functional domains are convergently restored to 'singleton' state after many independent genome duplications, and have been referred to as 'duplication-resistant' (DR) genes. To further explore the timeframe for their restoration to the singleton state, 27 cotton homologs of genes found to be 'DR' in Arabidopsis were selected based on diagnostic Pfam domains. Their copy numbers were studied using southern hybridization and sequence analysis in five tetraploid species and their ancestral A and D genome diploids. DR genes had significantly lower copy number than gene families hybridizing to randomly selected cotton ESTs. Three DR genes showed complete loss of D genome-derived homoeologs in some or all tetraploid species. Prior analysis has shown gene loss in polyploid cotton to be rare, and herein only one randomly selected gene showed loss of a homoeolog in only one of the five tetraploid species (Gossypium mustelinum). BAC sequencing confirmed two cases of gene loss in tetraploid cotton. Divergence among 5' sequences of DR genes amplified from G. arboreum, G. raimondii, and Gossypioides kirkii was correlated with gene copy number. These results show that genes containing Pfam domains associated with duplication resistance in Arabidopsis have also been preferentially restored to low copy number after a more recent polyploidization event in cotton. In tetraploid cotton, genes from the progenitor D genome seem to experience more gene copy number divergence than genes from the A genome. Together with D subgenome-biased alterations in gene expression, perhaps gene loss may contribute to the relatively larger portion of quantitative trait variation attributable to D than A subgenome chromosomes of tetraploid cotton.

  3. Screening for common copy-number variants in cancer genes.

    PubMed

    Tyson, Jess; Majerus, Tamsin M O; Walker, Susan; Armour, John A L

    2010-12-01

    For most cases of colorectal cancer that arise without a family history of the disease, it is proposed that an appreciable heritable component of predisposition is the result of contributions from many loci. Although progress has been made in identifying single nucleotide variants associated with colorectal cancer risk, the involvement of low-penetrance copy number variants is relatively unexplored. We have used multiplex amplifiable probe hybridization (MAPH) in a fourfold multiplex (QuadMAPH), positioned at an average resolution of one probe per 2 kb, to screen a total of 1.56 Mb of genomic DNA for copy number variants around the genes APC, AXIN1, BRCA1, BRCA2, CTNNB1, HRAS, MLH1, MSH2, and TP53. Two deletion events were detected, one upstream of MLH1 in a control individual and the other in APC in a colorectal cancer patient, but these do not seem to correspond to copy number polymorphisms with measurably high population frequencies. In summary, by means of our QuadMAPH assay, copy number measurement data were of sufficient resolution and accuracy to detect any copy number variants with high probability. However, this study has demonstrated a very low incidence of deletion and duplication variants within intronic and flanking regions of these nine genes, in both control individuals and colorectal cancer patients. Copyright © 2010 Elsevier Inc. All rights reserved.

  4. A remark on copy number variation detection methods.

    PubMed

    Li, Shuo; Dou, Xialiang; Gao, Ruiqi; Ge, Xinzhou; Qian, Minping; Wan, Lin

    2018-01-01

    Copy number variations (CNVs) are gain and loss of DNA sequence of a genome. High throughput platforms such as microarrays and next generation sequencing technologies (NGS) have been applied for genome wide copy number losses. Although progress has been made in both approaches, the accuracy and consistency of CNV calling from the two platforms remain in dispute. In this study, we perform a deep analysis on copy number losses on 254 human DNA samples, which have both SNP microarray data and NGS data publicly available from Hapmap Project and 1000 Genomes Project respectively. We show that the copy number losses reported from Hapmap Project and 1000 Genome Project only have < 30% overlap, while these reports are required to have cross-platform (e.g. PCR, microarray and high-throughput sequencing) experimental supporting by their corresponding projects, even though state-of-art calling methods were employed. On the other hand, copy number losses are found directly from HapMap microarray data by an accurate algorithm, i.e. CNVhac, almost all of which have lower read mapping depth in NGS data; furthermore, 88% of which can be supported by the sequences with breakpoint in NGS data. Our results suggest the ability of microarray calling CNVs and the possible introduction of false negatives from the unessential requirement of the additional cross-platform supporting. The inconsistency of CNV reports from Hapmap Project and 1000 Genomes Project might result from the inadequate information containing in microarray data, the inconsistent detection criteria, or the filtration effect of cross-platform supporting. The statistical test on CNVs called from CNVhac show that the microarray data can offer reliable CNV reports, and majority of CNV candidates can be confirmed by raw sequences. Therefore, the CNV candidates given by a good caller could be highly reliable without cross-platform supporting, so additional experimental information should be applied in need instead of

  5. aCGH Local Copy Number Aberrations Associated with Overall Copy Number Genomic Instability in Colorectal Cancer: Coordinate Involvement of the Regions Including BCR and ABL

    PubMed Central

    Bartos, Jeremy D.; Gaile, Daniel P.; McQuaid, Devin E.; Conroy, Jeffrey M.; Darbary, Huferesh; Nowak, Norma J.; Block, Annemarie; Petrelli, Nicholas J.; Mittelman, Arnold; Stoler, Daniel L.; Anderson, Garth R.

    2007-01-01

    In order to identify small regions of the genome whose specific copy number alteration is associated with high genomic instability in the form of overall genome-wide copy number aberrations, we have analyzed array-based comparative genomic hybridization (aCGH) data from 33 sporadic colorectal carcinomas. Copy number changes of a small number of specific regions were significantly correlated with elevated overall amplifications and deletions scattered throughout the entire genome. One significant region at 9q34 includes the c-ABL gene Another region spanning 22q11–13 includes the breakpoint cluster region (BCR) of the Philadelphia chromosome Coordinate 22q11–13 alterations were observed in nine of eleven tumors with the 9q34 alteration Additional regions on 1q and 14q were associated with overall genome-wide copy number changes, while copy number aberrations on chromosome 7p, 7q, and 13q21.1–31.3 were found associated with this instability only in tumors from patients with a smoking history Our analysis demonstrates there are a small number of regions of the genome where gain or loss is commonly associated with a tumor’s overall level of copy number aberrations Our finding BCR and ABL located within two of the instability-associated regions, and the involvement of these two regions occurring coordinately, suggests a system akin to the BCR-ABL translocation of CML may be involved in genomic instability in about one-third of human colorectal carcinomas. PMID:17196995

  6. Quantification of Plasmid Copy Number with Single Colour Droplet Digital PCR.

    PubMed

    Plotka, Magdalena; Wozniak, Mateusz; Kaczorowski, Tadeusz

    2017-01-01

    Bacteria can be considered as biological nanofactories that manufacture a cornucopia of bioproducts most notably recombinant proteins. As such, they must perfectly match with appropriate plasmid vectors to ensure successful overexpression of target genes. Among many parameters that correlate positively with protein productivity plasmid copy number plays pivotal role. Therefore, development of new and more accurate methods to assess this critical parameter will result in optimization of expression of plasmid-encoded genes. In this study, we present a simple and highly accurate method for quantifying plasmid copy number utilizing an EvaGreen single colour, droplet digital PCR. We demonstrate the effectiveness of this method by examining the copy number of the pBR322 vector within Escherichia coli DH5α cells. The obtained results were successfully validated by real-time PCR. However, we observed a strong dependency of the plasmid copy number on the method chosen for isolation of the total DNA. We found that application of silica-membrane-based columns for DNA purification or DNA isolation with use of bead-beating, a mechanical cell disruption lead to determination of an average of 20.5 or 7.3 plasmid copies per chromosome, respectively. We found that recovery of the chromosomal DNA from purification columns was less efficient than plasmid DNA (46.5 ± 1.9% and 87.4 ± 5.5%, respectively) which may lead to observed differences in plasmid copy number. Besides, the plasmid copy number variations dependent on DNA template isolation method, we found that droplet digital PCR is a very convenient method for measuring bacterial plasmid content. Careful determination of plasmid copy number is essential for better understanding and optimization of recombinant proteins production process. Droplet digital PCR is a very precise method that allows performing thousands of individual PCR reactions in a single tube. The ddPCR does not depend on running standard curves and is a

  7. Quantification of Plasmid Copy Number with Single Colour Droplet Digital PCR

    PubMed Central

    Plotka, Magdalena; Wozniak, Mateusz; Kaczorowski, Tadeusz

    2017-01-01

    Bacteria can be considered as biological nanofactories that manufacture a cornucopia of bioproducts most notably recombinant proteins. As such, they must perfectly match with appropriate plasmid vectors to ensure successful overexpression of target genes. Among many parameters that correlate positively with protein productivity plasmid copy number plays pivotal role. Therefore, development of new and more accurate methods to assess this critical parameter will result in optimization of expression of plasmid-encoded genes. In this study, we present a simple and highly accurate method for quantifying plasmid copy number utilizing an EvaGreen single colour, droplet digital PCR. We demonstrate the effectiveness of this method by examining the copy number of the pBR322 vector within Escherichia coli DH5α cells. The obtained results were successfully validated by real-time PCR. However, we observed a strong dependency of the plasmid copy number on the method chosen for isolation of the total DNA. We found that application of silica-membrane-based columns for DNA purification or DNA isolation with use of bead-beating, a mechanical cell disruption lead to determination of an average of 20.5 or 7.3 plasmid copies per chromosome, respectively. We found that recovery of the chromosomal DNA from purification columns was less efficient than plasmid DNA (46.5 ± 1.9% and 87.4 ± 5.5%, respectively) which may lead to observed differences in plasmid copy number. Besides, the plasmid copy number variations dependent on DNA template isolation method, we found that droplet digital PCR is a very convenient method for measuring bacterial plasmid content. Careful determination of plasmid copy number is essential for better understanding and optimization of recombinant proteins production process. Droplet digital PCR is a very precise method that allows performing thousands of individual PCR reactions in a single tube. The ddPCR does not depend on running standard curves and is a

  8. 17 CFR 270.8b-11 - Number of copies; signatures; binding.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 17 Commodity and Securities Exchanges 3 2010-04-01 2010-04-01 false Number of copies; signatures... (CONTINUED) RULES AND REGULATIONS, INVESTMENT COMPANY ACT OF 1940 § 270.8b-11 Number of copies; signatures... manner prescribed by the appropriate form. Unsigned copies shall be conformed. If the signature of any...

  9. Performance evaluation of DNA copy number segmentation methods.

    PubMed

    Pierre-Jean, Morgane; Rigaill, Guillem; Neuvial, Pierre

    2015-07-01

    A number of bioinformatic or biostatistical methods are available for analyzing DNA copy number profiles measured from microarray or sequencing technologies. In the absence of rich enough gold standard data sets, the performance of these methods is generally assessed using unrealistic simulation studies, or based on small real data analyses. To make an objective and reproducible performance assessment, we have designed and implemented a framework to generate realistic DNA copy number profiles of cancer samples with known truth. These profiles are generated by resampling publicly available SNP microarray data from genomic regions with known copy-number state. The original data have been extracted from dilutions series of tumor cell lines with matched blood samples at several concentrations. Therefore, the signal-to-noise ratio of the generated profiles can be controlled through the (known) percentage of tumor cells in the sample. This article describes this framework and its application to a comparison study between methods for segmenting DNA copy number profiles from SNP microarrays. This study indicates that no single method is uniformly better than all others. It also helps identifying pros and cons of the compared methods as a function of biologically informative parameters, such as the fraction of tumor cells in the sample and the proportion of heterozygous markers. This comparison study may be reproduced using the open source and cross-platform R package jointseg, which implements the proposed data generation and evaluation framework: http://r-forge.r-project.org/R/?group_id=1562. © The Author 2014. Published by Oxford University Press.

  10. Integrative pipeline for profiling DNA copy number and inferring tumor phylogeny.

    PubMed

    Urrutia, Eugene; Chen, Hao; Zhou, Zilu; Zhang, Nancy R; Jiang, Yuchao

    2018-06-15

    Copy number variation is an important and abundant source of variation in the human genome, which has been associated with a number of diseases, especially cancer. Massively parallel next-generation sequencing allows copy number profiling with fine resolution. Such efforts, however, have met with mixed successes, with setbacks arising partly from the lack of reliable analytical methods to meet the diverse and unique challenges arising from the myriad experimental designs and study goals in genetic studies. In cancer genomics, detection of somatic copy number changes and profiling of allele-specific copy number (ASCN) are complicated by experimental biases and artifacts as well as normal cell contamination and cancer subclone admixture. Furthermore, careful statistical modeling is warranted to reconstruct tumor phylogeny by both somatic ASCN changes and single nucleotide variants. Here we describe a flexible computational pipeline, MARATHON, which integrates multiple related statistical software for copy number profiling and downstream analyses in disease genetic studies. MARATHON is publicly available at https://github.com/yuchaojiang/MARATHON. Supplementary data are available at Bioinformatics online.

  11. 40 CFR 761.209 - Number of copies of a manifest.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ..., AND USE PROHIBITIONS PCB Waste Disposal Records and Reports § 761.209 Number of copies of a manifest... 40 Protection of Environment 31 2014-07-01 2014-07-01 false Number of copies of a manifest. 761.209 Section 761.209 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) TOXIC...

  12. 40 CFR 761.209 - Number of copies of a manifest.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ..., AND USE PROHIBITIONS PCB Waste Disposal Records and Reports § 761.209 Number of copies of a manifest... 40 Protection of Environment 32 2013-07-01 2013-07-01 false Number of copies of a manifest. 761.209 Section 761.209 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) TOXIC...

  13. 10 CFR 205.324 - Form and style; number of copies.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 10 Energy 3 2010-01-01 2010-01-01 false Form and style; number of copies. 205.324 Section 205.324 Energy DEPARTMENT OF ENERGY OIL ADMINISTRATIVE PROCEDURES AND SANCTIONS Electric Power System Permits and... Electric Energy at International Boundaries § 205.324 Form and style; number of copies. All applicants...

  14. 10 CFR 205.324 - Form and style; number of copies.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 10 Energy 3 2011-01-01 2011-01-01 false Form and style; number of copies. 205.324 Section 205.324 Energy DEPARTMENT OF ENERGY OIL ADMINISTRATIVE PROCEDURES AND SANCTIONS Electric Power System Permits and... Electric Energy at International Boundaries § 205.324 Form and style; number of copies. All applicants...

  15. DNA Copy Number Signature to Predict Recurrence in Early Stage Ovarian Cancer

    DTIC Science & Technology

    2016-08-01

    AWARD NUMBER: W81XWH-14-1-0194 TITLE: DNA Copy Number Signature to Predict Recurrence in Early-Stage Ovarian Cancer PRINCIPAL INVESTIGATOR...SUBTITLE 5a. CONTRACT NUMBER DNA Copy Number Signature to Predict Recurrence in Early-Stage Ovarian Cancer 5b. GRANT NUMBER W81XWH-14-1-0194 5c. PROGRAM...determine the copy number gain and loss for early stage high grade ovarian cancers through IlluminaHumanOmniExpress-FFPE BeadChip system • Subtask 1 DNA

  16. iCopyDAV: Integrated platform for copy number variations—Detection, annotation and visualization

    PubMed Central

    Vogeti, Sriharsha

    2018-01-01

    Discovery of copy number variations (CNVs), a major category of structural variations, have dramatically changed our understanding of differences between individuals and provide an alternate paradigm for the genetic basis of human diseases. CNVs include both copy gain and copy loss events and their detection genome-wide is now possible using high-throughput, low-cost next generation sequencing (NGS) methods. However, accurate detection of CNVs from NGS data is not straightforward due to non-uniform coverage of reads resulting from various systemic biases. We have developed an integrated platform, iCopyDAV, to handle some of these issues in CNV detection in whole genome NGS data. It has a modular framework comprising five major modules: data pre-treatment, segmentation, variant calling, annotation and visualization. An important feature of iCopyDAV is the functional annotation module that enables the user to identify and prioritize CNVs encompassing various functional elements, genomic features and disease-associations. Parallelization of the segmentation algorithms makes the iCopyDAV platform even accessible on a desktop. Here we show the effect of sequencing coverage, read length, bin size, data pre-treatment and segmentation approaches on accurate detection of the complete spectrum of CNVs. Performance of iCopyDAV is evaluated on both simulated data and real data for different sequencing depths. It is an open-source integrated pipeline available at https://github.com/vogetihrsh/icopydav and as Docker’s image at http://bioinf.iiit.ac.in/icopydav/. PMID:29621297

  17. Statistical tools for transgene copy number estimation based on real-time PCR.

    PubMed

    Yuan, Joshua S; Burris, Jason; Stewart, Nathan R; Mentewab, Ayalew; Stewart, C Neal

    2007-11-01

    As compared with traditional transgene copy number detection technologies such as Southern blot analysis, real-time PCR provides a fast, inexpensive and high-throughput alternative. However, the real-time PCR based transgene copy number estimation tends to be ambiguous and subjective stemming from the lack of proper statistical analysis and data quality control to render a reliable estimation of copy number with a prediction value. Despite the recent progresses in statistical analysis of real-time PCR, few publications have integrated these advancements in real-time PCR based transgene copy number determination. Three experimental designs and four data quality control integrated statistical models are presented. For the first method, external calibration curves are established for the transgene based on serially-diluted templates. The Ct number from a control transgenic event and putative transgenic event are compared to derive the transgene copy number or zygosity estimation. Simple linear regression and two group T-test procedures were combined to model the data from this design. For the second experimental design, standard curves were generated for both an internal reference gene and the transgene, and the copy number of transgene was compared with that of internal reference gene. Multiple regression models and ANOVA models can be employed to analyze the data and perform quality control for this approach. In the third experimental design, transgene copy number is compared with reference gene without a standard curve, but rather, is based directly on fluorescence data. Two different multiple regression models were proposed to analyze the data based on two different approaches of amplification efficiency integration. Our results highlight the importance of proper statistical treatment and quality control integration in real-time PCR-based transgene copy number determination. These statistical methods allow the real-time PCR-based transgene copy number estimation

  18. 10 CFR 205.307 - Form and style; number of copies

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 10 Energy 3 2010-01-01 2010-01-01 false Form and style; number of copies 205.307 Section 205.307 Energy DEPARTMENT OF ENERGY OIL ADMINISTRATIVE PROCEDURES AND SANCTIONS Electric Power System Permits and... Electric Energy to A Foreign Country § 205.307 Form and style; number of copies An original and two...

  19. 10 CFR 205.307 - Form and style; number of copies

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 10 Energy 3 2011-01-01 2011-01-01 false Form and style; number of copies 205.307 Section 205.307 Energy DEPARTMENT OF ENERGY OIL ADMINISTRATIVE PROCEDURES AND SANCTIONS Electric Power System Permits and... Electric Energy to A Foreign Country § 205.307 Form and style; number of copies An original and two...

  20. Getting DNA copy numbers without control samples.

    PubMed

    Ortiz-Estevez, Maria; Aramburu, Ander; Rubio, Angel

    2012-08-16

    The selection of the reference to scale the data in a copy number analysis has paramount importance to achieve accurate estimates. Usually this reference is generated using control samples included in the study. However, these control samples are not always available and in these cases, an artificial reference must be created. A proper generation of this signal is crucial in terms of both noise and bias.We propose NSA (Normality Search Algorithm), a scaling method that works with and without control samples. It is based on the assumption that genomic regions enriched in SNPs with identical copy numbers in both alleles are likely to be normal. These normal regions are predicted for each sample individually and used to calculate the final reference signal. NSA can be applied to any CN data regardless the microarray technology and preprocessing method. It also finds an optimal weighting of the samples minimizing possible batch effects. Five human datasets (a subset of HapMap samples, Glioblastoma Multiforme (GBM), Ovarian, Prostate and Lung Cancer experiments) have been analyzed. It is shown that using only tumoral samples, NSA is able to remove the bias in the copy number estimation, to reduce the noise and therefore, to increase the ability to detect copy number aberrations (CNAs). These improvements allow NSA to also detect recurrent aberrations more accurately than other state of the art methods. NSA provides a robust and accurate reference for scaling probe signals data to CN values without the need of control samples. It minimizes the problems of bias, noise and batch effects in the estimation of CNs. Therefore, NSA scaling approach helps to better detect recurrent CNAs than current methods. The automatic selection of references makes it useful to perform bulk analysis of many GEO or ArrayExpress experiments without the need of developing a parser to find the normal samples or possible batches within the data. The method is available in the open-source R package

  1. Determining absolute protein numbers by quantitative fluorescence microscopy.

    PubMed

    Verdaasdonk, Jolien Suzanne; Lawrimore, Josh; Bloom, Kerry

    2014-01-01

    Biological questions are increasingly being addressed using a wide range of quantitative analytical tools to examine protein complex composition. Knowledge of the absolute number of proteins present provides insights into organization, function, and maintenance and is used in mathematical modeling of complex cellular dynamics. In this chapter, we outline and describe three microscopy-based methods for determining absolute protein numbers--fluorescence correlation spectroscopy, stepwise photobleaching, and ratiometric comparison of fluorescence intensity to known standards. In addition, we discuss the various fluorescently labeled proteins that have been used as standards for both stepwise photobleaching and ratiometric comparison analysis. A detailed procedure for determining absolute protein number by ratiometric comparison is outlined in the second half of this chapter. Counting proteins by quantitative microscopy is a relatively simple yet very powerful analytical tool that will increase our understanding of protein complex composition. © 2014 Elsevier Inc. All rights reserved.

  2. Age-related decline in mitochondrial DNA copy number in isolated human pancreatic islets.

    PubMed

    Cree, L M; Patel, S K; Pyle, A; Lynn, S; Turnbull, D M; Chinnery, P F; Walker, M

    2008-08-01

    Pancreatic beta cell function has been shown to decline with age in man. Depletion of mitochondrial DNA (mtDNA) copy number is associated with impaired insulin secretion in pancreatic beta cell lines, and decreased mtDNA copy number has been observed with age in skeletal muscle in man. We investigated whether mtDNA copy number decreases with age in human pancreatic beta cells, which might in turn contribute to the age-related decline in insulin secretory capacity. We quantified mtDNA copy number in isolated human islet preparations from 15 pancreas donors aged between 17 and 75 years. Islets (n = 20) were individually hand-picked and pooled from each donor isolate for the quantification of mtDNA copy number and deleted mtDNA (%), which were determined using real-time PCR methods. There was a significant negative correlation between mtDNA copy number and islet donor age (r = -0.53, p = 0.044). mtDNA copy number was significantly decreased in islet preparations from donors aged > or =50 years (n = 8) compared with those aged <50 years (n = 7) (median [interquartile range]: 418 [236-503] vs 596 [554-729] mtDNA copy number/diploid genome; p = 0.032). None of the islet preparations harboured high levels of deleted mtDNA affecting the major arc. Given the correlation between mtDNA content and respiratory chain activity, the age-related decrease in mtDNA copy number that we observed in human pancreatic islet preparations may contribute to the age-dependent decline in pancreatic beta cell insulin secretory capacity.

  3. SG-ADVISER CNV: copy-number variant annotation and interpretation.

    PubMed

    Erikson, Galina A; Deshpande, Neha; Kesavan, Balachandar G; Torkamani, Ali

    2015-09-01

    Copy-number variants have been associated with a variety of diseases, especially cancer, autism, schizophrenia, and developmental delay. The majority of clinically relevant events occur de novo, necessitating the interpretation of novel events. In this light, we present the Scripps Genome ADVISER CNV annotation pipeline and Web server, which aims to fill the gap between copy number variant detection and interpretation by performing in-depth annotations and functional predictions for copy number variants. The Scripps Genome ADVISER CNV suite includes a Web server interface to a high-performance computing environment for calculations of annotations and a table-based user interface that allows for the execution of numerous annotation-based variant filtration strategies and statistics. The annotation results include details regarding location, impact on the coding portion of genes, allele frequency information (including allele frequencies from the Scripps Wellderly cohort), and overlap information with other reference data sets (including ClinVar, DGV, DECIPHER). A summary variant classification is produced (ADVISER score) based on the American College of Medical Genetics and Genomics scoring guidelines. We demonstrate >90% sensitivity/specificity for detection of pathogenic events. Scripps Genome ADVISER CNV is designed to allow users with no prior bioinformatics expertise to manipulate large volumes of copy-number variant data. Scripps Genome ADVISER CNV is available at http://genomics.scripps.edu/ADVISER/.

  4. Aluminum tolerance in maize is associated with higher MATE1 gene copy number

    PubMed Central

    Maron, Lyza G.; Guimarães, Claudia T.; Kirst, Matias; Albert, Patrice S.; Birchler, James A.; Bradbury, Peter J.; Buckler, Edward S.; Coluccio, Alison E.; Danilova, Tatiana V.; Kudrna, David; Magalhaes, Jurandir V.; Piñeros, Miguel A.; Schatz, Michael C.; Wing, Rod A.; Kochian, Leon V.

    2013-01-01

    Genome structure variation, including copy number variation and presence/absence variation, comprises a large extent of maize genetic diversity; however, its effect on phenotypes remains largely unexplored. Here, we describe how copy number variation underlies a rare allele that contributes to maize aluminum (Al) tolerance. Al toxicity is the primary limitation for crop production on acid soils, which make up 50% of the world’s potentially arable lands. In a recombinant inbred line mapping population, copy number variation of the Al tolerance gene multidrug and toxic compound extrusion 1 (MATE1) is the basis for the quantitative trait locus of largest effect on phenotypic variation. This expansion in MATE1 copy number is associated with higher MATE1 expression, which in turn results in superior Al tolerance. The three MATE1 copies are identical and are part of a tandem triplication. Only three maize inbred lines carrying the three-copy allele were identified from maize and teosinte diversity panels, indicating that copy number variation for MATE1 is a rare, and quite likely recent, event. These maize lines with higher MATE1 copy number are also Al-tolerant, have high MATE1 expression, and originate from regions of highly acidic soils. Our findings show a role for copy number variation in the adaptation of maize to acidic soils in the tropics and suggest that genome structural changes may be a rapid evolutionary response to new environments. PMID:23479633

  5. DNA copy number changes define spatial patterns of heterogeneity in colorectal cancer

    PubMed Central

    Mamlouk, Soulafa; Childs, Liam Harold; Aust, Daniela; Heim, Daniel; Melching, Friederike; Oliveira, Cristiano; Wolf, Thomas; Durek, Pawel; Schumacher, Dirk; Bläker, Hendrik; von Winterfeld, Moritz; Gastl, Bastian; Möhr, Kerstin; Menne, Andrea; Zeugner, Silke; Redmer, Torben; Lenze, Dido; Tierling, Sascha; Möbs, Markus; Weichert, Wilko; Folprecht, Gunnar; Blanc, Eric; Beule, Dieter; Schäfer, Reinhold; Morkel, Markus; Klauschen, Frederick; Leser, Ulf; Sers, Christine

    2017-01-01

    Genetic heterogeneity between and within tumours is a major factor determining cancer progression and therapy response. Here we examined DNA sequence and DNA copy-number heterogeneity in colorectal cancer (CRC) by targeted high-depth sequencing of 100 most frequently altered genes. In 97 samples, with primary tumours and matched metastases from 27 patients, we observe inter-tumour concordance for coding mutations; in contrast, gene copy numbers are highly discordant between primary tumours and metastases as validated by fluorescent in situ hybridization. To further investigate intra-tumour heterogeneity, we dissected a single tumour into 68 spatially defined samples and sequenced them separately. We identify evenly distributed coding mutations in APC and TP53 in all tumour areas, yet highly variable gene copy numbers in numerous genes. 3D morpho-molecular reconstruction reveals two clusters with divergent copy number aberrations along the proximal–distal axis indicating that DNA copy number variations are a major source of tumour heterogeneity in CRC. PMID:28120820

  6. 17 CFR 260.7a-3 - Number of copies; filing; signatures; binding.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 17 Commodity and Securities Exchanges 3 2010-04-01 2010-04-01 false Number of copies; filing; signatures; binding. 260.7a-3 Section 260.7a-3 Commodity and Securities Exchanges SECURITIES AND EXCHANGE... § 260.7a-3 Number of copies; filing; signatures; binding. (a) Three copies of the complete application...

  7. 17 CFR 260.5a-3 - Number of copies; filing; signatures; binding.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 17 Commodity and Securities Exchanges 3 2010-04-01 2010-04-01 false Number of copies; filing; signatures; binding. 260.5a-3 Section 260.5a-3 Commodity and Securities Exchanges SECURITIES AND EXCHANGE... § 260.5a-3 Number of copies; filing; signatures; binding. (a) Three copies of each statement of...

  8. 17 CFR 260.4c-3 - Number of copies; filing; signatures; binding.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 17 Commodity and Securities Exchanges 3 2010-04-01 2010-04-01 false Number of copies; filing; signatures; binding. 260.4c-3 Section 260.4c-3 Commodity and Securities Exchanges SECURITIES AND EXCHANGE... § 260.4c-3 Number of copies; filing; signatures; binding. (a) Three copies of every application and of...

  9. Copy number variation of individual cattle genomes using next-generation sequencing

    USDA-ARS?s Scientific Manuscript database

    Copy number variations (CNVs) affect a wide range of phenotypic traits; however, CNVs in or near segmental duplication regions are often intractable. Using a read depth approach based on next-generation sequencing, we examined genome-wide copy number differences among five taurine (three Angus, one ...

  10. Peripheral artery disease, calf skeletal muscle mitochondrial DNA copy number, and functional performance.

    PubMed

    McDermott, Mary M; Peterson, Charlotte A; Sufit, Robert; Ferrucci, Luigi; Guralnik, Jack M; Kibbe, Melina R; Polonsky, Tamar S; Tian, Lu; Criqui, Michael H; Zhao, Lihui; Stein, James H; Li, Lingyu; Leeuwenburgh, Christiaan

    2018-05-01

    In people without lower extremity peripheral artery disease (PAD), mitochondrial DNA copy number declines with aging, and this decline is associated with declines in mitochondrial activity and functional performance. However, whether lower extremity ischemia is associated with lower mitochondrial DNA copy number and whether mitochondrial DNA copy number is associated with the degree of functional impairment in people with PAD is unknown. In people with and without PAD, age 65 years and older, we studied associations of the ankle-brachial index (ABI) with mitochondrial DNA copy number and associations of mitochondrial DNA copy number with functional impairment. Calf muscle biopsies were obtained from 34 participants with PAD (mean age: 73.5 years (SD 6.4), mean ABI: 0.67 (SD 0.15), mean 6-minute walk distance: 1191 feet (SD 223)) and 10 controls without PAD (mean age: 73.1 years (SD 4.7), mean ABI: 1.14 (SD 0.07), mean 6-minute walk distance: 1387 feet (SD 488)). Adjusting for age and sex, lower ABI values were associated with higher mitochondrial DNA copy number, measured in relative copy number (ABI<0.60: 914, ABI 0.60-0.90: 731, ABI 0.90-1.50: 593; p trend=0.016). The association of mitochondrial DNA copy number with the 6-minute walk distance and 4-meter walking velocity differed significantly between participants with versus without PAD ( p-value for interaction=0.001 and p=0.015, respectively). The correlation coefficient between mitochondrial DNA copy number and the 6-minute walk distance was 0.653 ( p=0.056) among people without PAD and -0.254 ( p=0.154) among people with PAD and ABI < 0.90. In conclusion, lower ABI values are associated with increased mitochondrial DNA copy number. Associations of mitochondrial DNA copy number with the 6-minute walk distance and 4-meter walking velocity significantly differed between people with versus without PAD, with stronger positive associations observed in people without PAD than in people with PAD. The cross

  11. Prognostic Impact of PHIP Copy Number in Melanoma: Linkage to Ulceration

    PubMed Central

    Nosrati, Mehdi; Tong, Schuyler; Wu, Clayton; Thummala, Suresh; Dar, Altaf A.; Leong, Stanley P.L.; Cleaver, James E.; Sagebiel, Richard W.; Miller, James R.; Kashani-Sabet, Mohammed

    2013-01-01

    Ulceration is an important prognostic factor in melanoma whose biologic basis is poorly understood. Here we assessed the prognostic impact of pleckstrin homology domain-interacting protein (PHIP) copy number and its relationship to ulceration. PHIP copy number was determined using fluorescence in situ hybridization (FISH) in a tissue microarray cohort of 238 melanomas. Elevated PHIP copy number was associated with significantly reduced DMFS (P = 0.01) and DSS (P = 0.009) by Kaplan-Meier analyses. PHIP FISH scores were independently predictive of DMFS (P = 0.03) and DSS (P = 0.03). Increased PHIP copy number was an independent predictor of ulceration status (P = 0.04). The combined impact of increased PHIP copy number and tumor vascularity on ulceration status was highly significant (P< 0.0001). Stable suppression of PHIP in human melanoma cells resulted in significantly reduced glycolytic activity in vitro, with lower expression of LDH5, HIF1A, and VEGF, and was accompanied by reduced microvessel density in vivo. These results provide further support for PHIP as a molecular prognostic marker of melanoma, and reveal a significant linkage between PHIP levels and ulceration. Moreover, they suggest that ulceration may be driven by increased glycolysis and angiogenesis. PMID:24005052

  12. Copy number variation of individual cattle genomes using next-generation sequencing

    USDA-ARS?s Scientific Manuscript database

    Copy Number Variations (CNVs) affect a wide range of phenotypic traits; however, CNVs in or near segmental duplication regions are often difficult to track. Using a read depth approach based on next generation sequencing, we examined genome-wide copy number differences among five taurine (three Angu...

  13. RUBIC identifies driver genes by detecting recurrent DNA copy number breaks

    PubMed Central

    van Dyk, Ewald; Hoogstraat, Marlous; ten Hoeve, Jelle; Reinders, Marcel J. T.; Wessels, Lodewyk F. A.

    2016-01-01

    The frequent recurrence of copy number aberrations across tumour samples is a reliable hallmark of certain cancer driver genes. However, state-of-the-art algorithms for detecting recurrent aberrations fail to detect several known drivers. In this study, we propose RUBIC, an approach that detects recurrent copy number breaks, rather than recurrently amplified or deleted regions. This change of perspective allows for a simplified approach as recursive peak splitting procedures and repeated re-estimation of the background model are avoided. Furthermore, we control the false discovery rate on the level of called regions, rather than at the probe level, as in competing algorithms. We benchmark RUBIC against GISTIC2 (a state-of-the-art approach) and RAIG (a recently proposed approach) on simulated copy number data and on three SNP6 and NGS copy number data sets from TCGA. We show that RUBIC calls more focal recurrent regions and identifies a much larger fraction of known cancer genes. PMID:27396759

  14. Application of Nexus copy number software for CNV detection and analysis.

    PubMed

    Darvishi, Katayoon

    2010-04-01

    Among human structural genomic variation, copy number variants (CNVs) are the most frequently known component, comprised of gains/losses of DNA segments that are generally 1 kb in length or longer. Array-based comparative genomic hybridization (aCGH) has emerged as a powerful tool for detecting genomic copy number variants (CNVs). With the rapid increase in the density of array technology and with the adaptation of new high-throughput technology, a reliable and computationally scalable method for accurate mapping of recurring DNA copy number aberrations has become a main focus in research. Here we introduce Nexus Copy Number software, a platform-independent tool, to analyze the output files of all types of commercial and custom-made comparative genomic hybridization (CGH) and single-nucleotide polymorphism (SNP) arrays, such as those manufactured by Affymetrix, Agilent Technologies, Illumina, and Roche NimbleGen. It also supports data generated by various array image-analysis software tools such as GenePix, ImaGene, and BlueFuse. (c) 2010 by John Wiley & Sons, Inc.

  15. Copy-number variations associated with autism spectrum disorder.

    PubMed

    Kakinuma, Hiroaki; Sato, Hitoshi

    2008-08-01

    Autism spectrum disorder (ASD) is a clinically heterogeneous developmental disorder with a strong genetic component. Rare genetic disorders and various chromosomal abnormalities are thought to account for approximately 10% of people with ASD. The etiology of the remaining cases remains unknown. Recent advances in array-based technology have increased the resolution in detecting submicroscopic deletions and duplications, referred to as copy-number variations. ASD-associated copy-number variations, which are considered to be present in individuals with ASD but not in unaffected individuals, have been extensively investigated. These data will provide us with an opportunity not only to search for genes causing or contributing to ASDs but also to understand the genetics of ASD.

  16. Getting DNA copy numbers without control samples

    PubMed Central

    2012-01-01

    Background The selection of the reference to scale the data in a copy number analysis has paramount importance to achieve accurate estimates. Usually this reference is generated using control samples included in the study. However, these control samples are not always available and in these cases, an artificial reference must be created. A proper generation of this signal is crucial in terms of both noise and bias. We propose NSA (Normality Search Algorithm), a scaling method that works with and without control samples. It is based on the assumption that genomic regions enriched in SNPs with identical copy numbers in both alleles are likely to be normal. These normal regions are predicted for each sample individually and used to calculate the final reference signal. NSA can be applied to any CN data regardless the microarray technology and preprocessing method. It also finds an optimal weighting of the samples minimizing possible batch effects. Results Five human datasets (a subset of HapMap samples, Glioblastoma Multiforme (GBM), Ovarian, Prostate and Lung Cancer experiments) have been analyzed. It is shown that using only tumoral samples, NSA is able to remove the bias in the copy number estimation, to reduce the noise and therefore, to increase the ability to detect copy number aberrations (CNAs). These improvements allow NSA to also detect recurrent aberrations more accurately than other state of the art methods. Conclusions NSA provides a robust and accurate reference for scaling probe signals data to CN values without the need of control samples. It minimizes the problems of bias, noise and batch effects in the estimation of CNs. Therefore, NSA scaling approach helps to better detect recurrent CNAs than current methods. The automatic selection of references makes it useful to perform bulk analysis of many GEO or ArrayExpress experiments without the need of developing a parser to find the normal samples or possible batches within the data. The method is

  17. Psoriasis is associated with increased beta-defensin genomic copy number

    PubMed Central

    Hollox, Edward J.; Huffmeier, Ulrike; Zeeuwen, Patrick L.J.M.; Palla, Raquel; Lascorz, Jesús; Rodijk-Olthuis, Diana; van de Kerkhof, Peter C.M.; Traupe, Heiko; de Jongh, Gys; den Heijer, Martin; Reis, André; Armour, John A.L.; Schalkwijk, Joost

    2008-01-01

    Psoriasis is a common inflammatory skin disease with a strong genetic component. We have analysed the genomic copy number polymorphism of the beta-defensin region on human chromosome 8 in 179 Dutch psoriasis patients and 272 controls, and in 319 German psoriasis patients and 305 controls. Comparisons in both cohorts show a significant association between higher genomic copy number for beta-defensin genes and the risk of psoriasis. PMID:18059266

  18. Dietary Variation and Evolution of Gene Copy Number among Dog Breeds

    PubMed Central

    Reiter, Taylor; Jagoda, Evelyn; Capellini, Terence D.

    2016-01-01

    Prolonged human interactions and artificial selection have influenced the genotypic and phenotypic diversity among dog breeds. Because humans and dogs occupy diverse habitats, ecological contexts have likely contributed to breed-specific positive selection. Prior to the advent of modern dog-feeding practices, there was likely substantial variation in dietary landscapes among disparate dog breeds. As such, we investigated one type of genetic variant, copy number variation, in three metabolic genes: glucokinase regulatory protein (GCKR), phytanol-CoA 2-hydroxylase (PHYH), and pancreatic α-amylase 2B (AMY2B). These genes code for proteins that are responsible for metabolizing dietary products that originate from distinctly different food types: sugar, meat, and starch, respectively. After surveying copy number variation among dogs with diverse dietary histories, we found no correlation between diet and positive selection in either GCKR or PHYH. Although it has been previously demonstrated that dogs experienced a copy number increase in AMY2B relative to wolves during or after the dog domestication process, we demonstrate that positive selection continued to act on amylase copy number in dog breeds that consumed starch-rich diets in time periods after domestication. Furthermore, we found that introgression with wolves is not responsible for deterioration of positive selection on AMY2B among diverse dog breeds. Together, this supports the hypothesis that the amylase copy number expansion is found universally in dogs. PMID:26863414

  19. Dietary Variation and Evolution of Gene Copy Number among Dog Breeds.

    PubMed

    Reiter, Taylor; Jagoda, Evelyn; Capellini, Terence D

    2016-01-01

    Prolonged human interactions and artificial selection have influenced the genotypic and phenotypic diversity among dog breeds. Because humans and dogs occupy diverse habitats, ecological contexts have likely contributed to breed-specific positive selection. Prior to the advent of modern dog-feeding practices, there was likely substantial variation in dietary landscapes among disparate dog breeds. As such, we investigated one type of genetic variant, copy number variation, in three metabolic genes: glucokinase regulatory protein (GCKR), phytanol-CoA 2-hydroxylase (PHYH), and pancreatic α-amylase 2B (AMY2B). These genes code for proteins that are responsible for metabolizing dietary products that originate from distinctly different food types: sugar, meat, and starch, respectively. After surveying copy number variation among dogs with diverse dietary histories, we found no correlation between diet and positive selection in either GCKR or PHYH. Although it has been previously demonstrated that dogs experienced a copy number increase in AMY2B relative to wolves during or after the dog domestication process, we demonstrate that positive selection continued to act on amylase copy number in dog breeds that consumed starch-rich diets in time periods after domestication. Furthermore, we found that introgression with wolves is not responsible for deterioration of positive selection on AMY2B among diverse dog breeds. Together, this supports the hypothesis that the amylase copy number expansion is found universally in dogs.

  20. Exploiting rRNA operon copy number to investigate bacterial reproductive strategies.

    PubMed

    Roller, Benjamin R K; Stoddard, Steven F; Schmidt, Thomas M

    2016-09-12

    The potential for rapid reproduction is a hallmark of microbial life, but microbes in nature must also survive and compete when growth is constrained by resource availability. Successful reproduction requires different strategies when resources are scarce and when they are abundant 1,2 , but a systematic framework for predicting these reproductive strategies in bacteria has not been available. Here, we show that the number of ribosomal RNA operons (rrn) in bacterial genomes predicts two important components of reproduction-growth rate and growth efficiency-which are favoured under contrasting regimes of resource availability 3,4 . We find that the maximum reproductive rate of bacteria doubles with a doubling of rrn copy number, and the efficiency of carbon use is inversely related to maximal growth rate and rrn copy number. We also identify a feasible explanation for these patterns: the rate and yield of protein synthesis mirror the overall pattern in maximum growth rate and growth efficiency. Furthermore, comparative analysis of genomes from 1,167 bacterial species reveals that rrn copy number predicts traits associated with resource availability, including chemotaxis and genome streamlining. Genome-wide patterns of orthologous gene content covary with rrn copy number, suggesting convergent evolution in response to resource availability. Our findings imply that basic cellular processes adapt in contrasting ways to long-term differences in resource availability. They also establish a basis for predicting changes in bacterial community composition in response to resource perturbations using rrn copy number measurements 5 or inferences 6,7 .

  1. Extensive Copy-Number Variation of Young Genes across Stickleback Populations

    PubMed Central

    Eizaguirre, Christophe; Samonte, Irene E.; Kalbe, Martin; Lenz, Tobias L.; Stoll, Monika; Bornberg-Bauer, Erich; Milinski, Manfred; Reusch, Thorsten B. H.

    2014-01-01

    Duplicate genes emerge as copy-number variations (CNVs) at the population level, and remain copy-number polymorphic until they are fixed or lost. The successful establishment of such structural polymorphisms in the genome plays an important role in evolution by promoting genetic diversity, complexity and innovation. To characterize the early evolutionary stages of duplicate genes and their potential adaptive benefits, we combine comparative genomics with population genomics analyses to evaluate the distribution and impact of CNVs across natural populations of an eco-genomic model, the three-spined stickleback. With whole genome sequences of 66 individuals from populations inhabiting three distinct habitats, we find that CNVs generally occur at low frequencies and are often only found in one of the 11 populations surveyed. A subset of CNVs, however, displays copy-number differentiation between populations, showing elevated within-population frequencies consistent with local adaptation. By comparing teleost genomes to identify lineage-specific genes and duplications in sticklebacks, we highlight rampant gene content differences among individuals in which over 30% of young duplicate genes are CNVs. These CNV genes are evolving rapidly at the molecular level and are enriched with functional categories associated with environmental interactions, depicting the dynamic early copy-number polymorphic stage of genes during population differentiation. PMID:25474574

  2. Genomic characteristics of cattle copy number variations

    USDA-ARS?s Scientific Manuscript database

    We performed a systematic analysis of cattle copy number variations (CNVs) using the Bovine HapMap SNP genotyping data, including 539 animals of 21 modern cattle breeds and 6 outgroups. After correcting genomic waves and considering the trio information, we identified 682 candidate CNV regions (CNVR...

  3. 17 CFR 260.10a-3 - Number of copies-Filing-Signatures.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 17 Commodity and Securities Exchanges 3 2010-04-01 2010-04-01 false Number of copies-Filing-Signatures. 260.10a-3 Section 260.10a-3 Commodity and Securities Exchanges SECURITIES AND EXCHANGE COMMISSION... Number of copies—Filing—Signatures. (a) Three copies of every application pursuant to rule 10a-1 (§ 260...

  4. 17 CFR 240.12b-11 - Number of copies; signatures; binding.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 17 Commodity and Securities Exchanges 3 2010-04-01 2010-04-01 false Number of copies; signatures... Under the Securities Exchange Act of 1934 Formal Requirements § 240.12b-11 Number of copies; signatures... bound on the left side in such a manner as to leave the reading matter legible. (d) Signatures. Where...

  5. 17 CFR 260.5b-3 - Number of copies-Filing-Signatures.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 17 Commodity and Securities Exchanges 3 2010-04-01 2010-04-01 false Number of copies-Filing-Signatures. 260.5b-3 Section 260.5b-3 Commodity and Securities Exchanges SECURITIES AND EXCHANGE COMMISSION... Number of copies—Filing—Signatures. (a) Three copies of every application pursuant to rule 5b-1 (§ 260.5b...

  6. Allelic recombination between distinct genomic locations generates copy number diversity in human β-defensins

    PubMed Central

    Bakar, Suhaili Abu; Hollox, Edward J.; Armour, John A. L.

    2009-01-01

    β-Defensins are small secreted antimicrobial and signaling peptides involved in the innate immune response of vertebrates. In humans, a cluster of at least 7 of these genes shows extensive copy number variation, with a diploid copy number commonly ranging between 2 and 7. Using a genetic mapping approach, we show that this cluster is at not 1 but 2 distinct genomic loci ≈5 Mb apart on chromosome band 8p23.1, contradicting the most recent genome assembly. We also demonstrate that the predominant mechanism of change in β-defensin copy number is simple allelic recombination occurring in the interval between the 2 distinct genomic loci for these genes. In 416 meiotic transmissions, we observe 3 events creating a haplotype copy number not found in the parent, equivalent to a germ-line rate of copy number change of ≈0.7% per gamete. This places it among the fastest-changing copy number variants currently known. PMID:19131514

  7. tRNA gene copy number variation in humans

    PubMed Central

    Iben, James R.; Maraia, Richard J.

    2014-01-01

    The human tRNAome consists of more than 500 interspersed tRNA genes comprising 51 anticodon families of largely unequal copy number. We examined tRNA gene copy number variation (tgCNV) in six individuals; two kindreds of two parents and a child, using high coverage whole genome sequence data. Such differences may be important because translation of some mRNAs is sensitive to the relative amounts of tRNAs and because tRNA competition determines translational efficiency vs. fidelity and production of native vs. misfolded proteins. We identified several tRNA gene clusters with CNV, which in some cases were part of larger iterations. In addition there was an isolated tRNALysCUU gene that was absent as a homozygous deletion in one of the parents. When assessed by semiquantitative PCR in 98 DNA samples representing a wide variety of ethnicities, this allele was found deleted in hetero- or homozygosity in all groups at ~50% frequency. This is the first report of copy number variation of human tRNA genes. We conclude that tgCNV exists at significant levels among individual humans and discuss the results in terms of genetic diversity and prior genome wide association studies (GWAS) that suggest the importance of the ratio of tRNALys isoacceptors in Type-2 diabetes. PMID:24342656

  8. Measurement of locus copy number by hybridisation with amplifiable probes

    PubMed Central

    Armour, John A. L.; Sismani, Carolina; Patsalis, Philippos C.; Cross, Gareth

    2000-01-01

    Despite its fundamental importance in genome analysis, it is only recently that systematic approaches have been developed to assess copy number at specific genetic loci, or to examine genomic DNA for submicroscopic deletions of unknown location. In this report we show that short probes can be recovered and amplified quantitatively following hybridisation to genomic DNA. This simple observation forms the basis of a new approach to determining locus copy number in complex genomes. The power and specificity of multiplex amplifiable probe hybridisation is demonstrated by the simultaneous assessment of copy number at a set of 40 human loci, including detection of deletions causing Duchenne muscular dystrophy and Prader–Willi/Angelman syndromes. Assembly of other probe sets will allow novel, technically simple approaches to a wide variety of genetic analyses, including the potential for extension to high resolution genome-wide screens for deletions and amplifications. PMID:10606661

  9. Measurement of locus copy number by hybridisation with amplifiable probes.

    PubMed

    Armour, J A; Sismani, C; Patsalis, P C; Cross, G

    2000-01-15

    Despite its fundamental importance in genome analysis, it is only recently that systematic approaches have been developed to assess copy number at specific genetic loci, or to examine genomic DNA for submicro-scopic deletions of unknown location. In this report we show that short probes can be recovered and amplified quantitatively following hybridisation to genomic DNA. This simple observation forms the basis of a new approach to determining locus copy number in complex genomes. The power and specificity of multiplex amplifiable probe hybridisation is demonstrated by the simultaneous assessment of copy number at a set of 40 human loci, including detection of deletions causing Duchenne muscular dystrophy and Prader-Willi/Angelman syndromes. Assembly of other probe sets will allow novel, technically simple approaches to a wide variety of genetic analyses, including the potential for extension to high resolution genome-wide screens for deletions and amplifications.

  10. TEGS-CN: A Statistical Method for Pathway Analysis of Genome-wide Copy Number Profile.

    PubMed

    Huang, Yen-Tsung; Hsu, Thomas; Christiani, David C

    2014-01-01

    The effects of copy number alterations make up a significant part of the tumor genome profile, but pathway analyses of these alterations are still not well established. We proposed a novel method to analyze multiple copy numbers of genes within a pathway, termed Test for the Effect of a Gene Set with Copy Number data (TEGS-CN). TEGS-CN was adapted from TEGS, a method that we previously developed for gene expression data using a variance component score test. With additional development, we extend the method to analyze DNA copy number data, accounting for different sizes and thus various numbers of copy number probes in genes. The test statistic follows a mixture of X (2) distributions that can be obtained using permutation with scaled X (2) approximation. We conducted simulation studies to evaluate the size and the power of TEGS-CN and to compare its performance with TEGS. We analyzed a genome-wide copy number data from 264 patients of non-small-cell lung cancer. With the Molecular Signatures Database (MSigDB) pathway database, the genome-wide copy number data can be classified into 1814 biological pathways or gene sets. We investigated associations of the copy number profile of the 1814 gene sets with pack-years of cigarette smoking. Our analysis revealed five pathways with significant P values after Bonferroni adjustment (<2.8 × 10(-5)), including the PTEN pathway (7.8 × 10(-7)), the gene set up-regulated under heat shock (3.6 × 10(-6)), the gene sets involved in the immune profile for rejection of kidney transplantation (9.2 × 10(-6)) and for transcriptional control of leukocytes (2.2 × 10(-5)), and the ganglioside biosynthesis pathway (2.7 × 10(-5)). In conclusion, we present a new method for pathway analyses of copy number data, and causal mechanisms of the five pathways require further study.

  11. 18 CFR 33.8 - Number of copies.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... ENERGY REGULATIONS UNDER THE FEDERAL POWER ACT APPLICATIONS UNDER FEDERAL POWER ACT SECTION 203 § 33.8 Number of copies. The applicant must submit the application or petition to the Secretary of the..., the applicant must submit all such information in electronic format (e.g., on computer diskette or on...

  12. 18 CFR 33.8 - Number of copies.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... ENERGY REGULATIONS UNDER THE FEDERAL POWER ACT APPLICATIONS UNDER FEDERAL POWER ACT SECTION 203 § 33.8 Number of copies. The applicant must submit the application or petition to the Secretary of the..., the applicant must submit all such information in electronic format (e.g., on computer diskette or on...

  13. Haplotype Phasing and Inheritance of Copy Number Variants in Nuclear Families

    PubMed Central

    Palta, Priit; Kaplinski, Lauris; Nagirnaja, Liina; Veidenberg, Andres; Möls, Märt; Nelis, Mari; Esko, Tõnu; Metspalu, Andres; Laan, Maris; Remm, Maido

    2015-01-01

    DNA copy number variants (CNVs) that alter the copy number of a particular DNA segment in the genome play an important role in human phenotypic variability and disease susceptibility. A number of CNVs overlapping with genes have been shown to confer risk to a variety of human diseases thus highlighting the relevance of addressing the variability of CNVs at a higher resolution. So far, it has not been possible to deterministically infer the allelic composition of different haplotypes present within the CNV regions. We have developed a novel computational method, called PiCNV, which enables to resolve the haplotype sequence composition within CNV regions in nuclear families based on SNP genotyping microarray data. The algorithm allows to i) phase normal and CNV-carrying haplotypes in the copy number variable regions, ii) resolve the allelic copies of rearranged DNA sequence within the haplotypes and iii) infer the heritability of identified haplotypes in trios or larger nuclear families. To our knowledge this is the first program available that can deterministically phase null, mono-, di-, tri- and tetraploid genotypes in CNV loci. We applied our method to study the composition and inheritance of haplotypes in CNV regions of 30 HapMap Yoruban trios and 34 Estonian families. For 93.6% of the CNV loci, PiCNV enabled to unambiguously phase normal and CNV-carrying haplotypes and follow their transmission in the corresponding families. Furthermore, allelic composition analysis identified the co-occurrence of alternative allelic copies within 66.7% of haplotypes carrying copy number gains. We also observed less frequent transmission of CNV-carrying haplotypes from parents to children compared to normal haplotypes and identified an emergence of several de novo deletions and duplications in the offspring. PMID:25853576

  14. Haplotype phasing and inheritance of copy number variants in nuclear families.

    PubMed

    Palta, Priit; Kaplinski, Lauris; Nagirnaja, Liina; Veidenberg, Andres; Möls, Märt; Nelis, Mari; Esko, Tõnu; Metspalu, Andres; Laan, Maris; Remm, Maido

    2015-01-01

    DNA copy number variants (CNVs) that alter the copy number of a particular DNA segment in the genome play an important role in human phenotypic variability and disease susceptibility. A number of CNVs overlapping with genes have been shown to confer risk to a variety of human diseases thus highlighting the relevance of addressing the variability of CNVs at a higher resolution. So far, it has not been possible to deterministically infer the allelic composition of different haplotypes present within the CNV regions. We have developed a novel computational method, called PiCNV, which enables to resolve the haplotype sequence composition within CNV regions in nuclear families based on SNP genotyping microarray data. The algorithm allows to i) phase normal and CNV-carrying haplotypes in the copy number variable regions, ii) resolve the allelic copies of rearranged DNA sequence within the haplotypes and iii) infer the heritability of identified haplotypes in trios or larger nuclear families. To our knowledge this is the first program available that can deterministically phase null, mono-, di-, tri- and tetraploid genotypes in CNV loci. We applied our method to study the composition and inheritance of haplotypes in CNV regions of 30 HapMap Yoruban trios and 34 Estonian families. For 93.6% of the CNV loci, PiCNV enabled to unambiguously phase normal and CNV-carrying haplotypes and follow their transmission in the corresponding families. Furthermore, allelic composition analysis identified the co-occurrence of alternative allelic copies within 66.7% of haplotypes carrying copy number gains. We also observed less frequent transmission of CNV-carrying haplotypes from parents to children compared to normal haplotypes and identified an emergence of several de novo deletions and duplications in the offspring.

  15. Individualized cattle copy number and segmental duplication maps using next generation sequencing

    USDA-ARS?s Scientific Manuscript database

    Copy Number Variations (CNVs) affect a wide range of phenotypic traits; however, CNVs in or near segmental duplication regions are often intractable. Using a read depth approach based on next generation sequencing, we examined genome-wide copy number differences among five taurine (three Angus, one ...

  16. Copy-number and gene dependency analysis reveals partial copy loss of wild-type SF3B1 as a novel cancer vulnerability. | Office of Cancer Genomics

    Cancer.gov

    Genomic instability is a hallmark of human cancer, and results in widespread somatic copy number alterations. We used a genome-scale shRNA viability screen in human cancer cell lines to systematically identify genes that are essential in the context of particular copy-number alterations (copy-number associated gene dependencies). The most enriched class of copy-number associated gene dependencies was CYCLOPS (Copy-number alterations Yielding Cancer Liabilities Owing to Partial losS) genes, and spliceosome components were the most prevalent.

  17. 18 CFR 45.7 - Form of application; number of copies.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 18 Conservation of Power and Water Resources 1 2010-04-01 2010-04-01 false Form of application; number of copies. 45.7 Section 45.7 Conservation of Power and Water Resources FEDERAL ENERGY REGULATORY... in accordance with § 131.60 of this chapter. Each copy shall bear the date and signature that appear...

  18. Lepton number violation in theories with a large number of standard model copies

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kovalenko, Sergey; Schmidt, Ivan; Paes, Heinrich

    2011-03-01

    We examine lepton number violation (LNV) in theories with a saturated black hole bound on a large number of species. Such theories have been advocated recently as a possible solution to the hierarchy problem and an explanation of the smallness of neutrino masses. On the other hand, the violation of the lepton number can be a potential phenomenological problem of this N-copy extension of the standard model as due to the low quantum gravity scale black holes may induce TeV scale LNV operators generating unacceptably large rates of LNV processes. We show, however, that this issue can be avoided bymore » introducing a spontaneously broken U{sub 1(B-L)}. Then, due to the existence of a specific compensation mechanism between contributions of different Majorana neutrino states, LNV processes in the standard model copy become extremely suppressed with rates far beyond experimental reach.« less

  19. Identification of copy number variants in horses.

    PubMed

    Doan, Ryan; Cohen, Noah; Harrington, Jessica; Veazey, Kylee; Veazy, Kylee; Juras, Rytis; Cothran, Gus; McCue, Molly E; Skow, Loren; Dindot, Scott V

    2012-05-01

    Copy number variants (CNVs) represent a substantial source of genetic variation in mammals. However, the occurrence of CNVs in horses and their subsequent impact on phenotypic variation is unknown. We performed a study to identify CNVs in 16 horses representing 15 distinct breeds (Equus caballus) and an individual gray donkey (Equus asinus) using a whole-exome tiling array and the array comparative genomic hybridization methodology. We identified 2368 CNVs ranging in size from 197 bp to 3.5 Mb. Merging identical CNVs from each animal yielded 775 CNV regions (CNVRs), involving 1707 protein- and RNA-coding genes. The number of CNVs per animal ranged from 55 to 347, with median and mean sizes of CNVs of 5.3 kb and 99.4 kb, respectively. Approximately 6% of the genes investigated were affected by a CNV. Biological process enrichment analysis indicated CNVs primarily affected genes involved in sensory perception, signal transduction, and metabolism. CNVs also were identified in genes regulating blood group antigens, coat color, fecundity, lactation, keratin formation, neuronal homeostasis, and height in other species. Collectively, these data are the first report of copy number variation in horses and suggest that CNVs are common in the horse genome and may modulate biological processes underlying different traits observed among horses and horse breeds.

  20. ALK gene copy number gain and immunohistochemical expression status using three antibodies in neuroblastoma.

    PubMed

    Kim, Eun Kyung; Kim, Sewha

    2016-03-17

    Anaplastic lymphoma kinase (ALK) gene aberrations-such as mutations, amplifications, and copy number gains-represent a major genetic predisposition to neuroblastoma (NB). This study aimed to evaluate the correlation between ALK gene copy number status, ALK protein expression, and clinicopathological parameters. We retrospectively retrieved 30 cases of poorly differentiated NB and constructed tissue microarrays (TMAs). ALK copy number changes were assessed by fluorescence in situ hybridization (FISH) assays, and ALK immunohistochemistry (IHC) testing was performed using three different antibodies (ALK1, D5F3, and 5A4 clones). ALK amplification and copy number gain were observed in 10% (3/30) and 53.3% (16/30) of the cohort, respectively. There were positive correlations between ALK copy number and IHC positive rate in ALK1 and 5A4 antibodies (p= < 0.001 and 0.019, respectively). ALK1, D5F3, and 5A4 antibodies equally showed 100% sensitivity in detecting ALK amplification. However, the sensitivity for detecting copy number gain differed among the three antibodies, with 75% sensitivity in D5F3 and 0% sensitivity in ALK1. ALK-amplified NBs were correlated with synchronous MYCN amplification and chromosome 1p deletion. ALK IHC positivity was frequently observed in INSS stage IV and high-risk group patients. In conclusion, this study identified that an increase in the ALK copy number is a frequent genetic alteration in poorly differentiated NB. ALK-amplified NBs showed consistent ALK IHC positivity with all kinds of antibodies. In contrast, the detection performance of ALK copy number gain was antibody dependent, with the D5F3 antibody showing the best sensitivity.

  1. ALK Gene Copy Number Gain and Immunohistochemical Expression Status Using Three Antibodies in Neuroblastoma.

    PubMed

    Kim, Eun Kyung; Kim, Sewha

    2017-01-01

    Anaplastic lymphoma kinase ( ALK) gene aberrations-such as mutations, amplifications, and copy number gains-represent a major genetic predisposition to neuroblastoma (NB). This study aimed to evaluate the correlation between ALK gene copy number status, ALK protein expression, and clinicopathological parameters. We retrospectively retrieved 30 cases of poorly differentiated NB and constructed tissue microarrays (TMAs). ALK copy number changes were assessed by fluorescence in situ hybridization (FISH) assays, and ALK immunohistochemistry (IHC) testing was performed using three different antibodies (ALK1, D5F3, and 5A4 clones). ALK amplification and copy number gain were observed in 10% (3/30) and 53.3% (16/30) of the cohort, respectively. There were positive correlations between ALK copy number and IHC-positive rate in ALK1 and 5A4 antibodies ( P < 0.001 and P = 0.019, respectively). ALK1, D5F3, and 5A4 antibodies equally showed 100% sensitivity in detecting ALK amplification. However, the sensitivity for detecting copy number gain differed among the three antibodies, with 75% sensitivity in D5F3 and 0% sensitivity in ALK1. ALK-amplified NBs were correlated with synchronous MYCN amplification and chromosome 1p deletion. ALK IHC positivity was frequently observed in INSS stage IV and high-risk group patients. In conclusion, this study identified that an increase in the ALK copy number is a frequent genetic alteration in poorly differentiated NB. ALK-amplified NBs showed consistent ALK IHC positivity with all kinds of antibodies. In contrast, the detection performance of ALK copy number gain was antibody dependent, with the D5F3 antibody showing the best sensitivity.

  2. 47 CFR 1.742 - Place of filing, fees, and number of copies.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 47 Telecommunication 1 2010-10-01 2010-10-01 false Place of filing, fees, and number of copies. 1..., fees, and number of copies. All applications which do not require a fee shall be filed at the... then forwarded to the Wireline Competition Bureau. All applications accompanied by a fee payment should...

  3. Two-color fluorescence analysis of individual virions determines the distribution of the copy number of proteins in herpes simplex virus particles.

    PubMed

    Clarke, Richard W; Monnier, Nilah; Li, Haitao; Zhou, Dejian; Browne, Helena; Klenerman, David

    2007-08-15

    We present a single virion method to determine absolute distributions of copy number in the protein composition of viruses and apply it to herpes simplex virus type 1. Using two-color coincidence fluorescence spectroscopy, we determine the virion-to-virion variability in copy numbers of fluorescently labeled tegument and envelope proteins relative to a capsid protein by analyzing fluorescence intensity ratios for ensembles of individual dual-labeled virions and fitting the resulting histogram of ratios. Using EYFP-tagged capsid protein VP26 as a reference for fluorescence intensity, we are able to calculate the mean and also, for the first time to our knowledge, the variation in numbers of gD, VP16, and VP22 tegument. The measurement of the number of glycoprotein D molecules was in good agreement with independent measurements of average numbers of these glycoproteins in bulk virus preparations, validating the method. The accuracy, straightforward data processing, and high throughput of this technique make it widely applicable to the analysis of the molecular composition of large complexes in general, and it is particularly suited to providing insights into virus structure, assembly, and infectivity.

  4. Analysis of copy number variations among cattle breeds

    USDA-ARS?s Scientific Manuscript database

    Genomic structural variation is an important and abundant source of genetic and phenotypic variation. Here we describe the first systematic and genome-wide analysis of copy number variations (CNVs) in the modern domesticated cattle using array comparative genomic hybridization (array CGH) and quanti...

  5. Higher DEFB4 genomic copy number in SLE and ANCA-associated small vasculitis.

    PubMed

    Zhou, Xu-Jie; Cheng, Fa-Juan; Lv, Ji-Cheng; Luo, Huan; Yu, Feng; Chen, Min; Zhao, Ming-Hui; Zhang, Hong

    2012-06-01

    Evidence shows that defensins are involved in the pathogenesis of SLE and ANCA-associated small vasculitis (AASV). The copy number variation of DEFB4 has been proposed to be susceptible to inflammatory disorders. This study aims to investigate whether the DEFB4 genomic copy number variations associate with the susceptibility to these two autoimmune diseases. A total of 1178 Chinese people were enrolled, including panel 1 comprising 240 SLE patients and 275 matched controls, panel 2 comprising 303 SLE patients and 248 matched controls and panel 3 with 112 AASV patients. The DEFB4 copy number was typed by a paralogue ratio test (PRT), and all the subjects in panel 1 were also typed using the restriction enzyme digest variant ratio (REDVR) for validation. The results from PRT and REDVR were highly concordant (R = 0.911, P = 3.85 × 10(-199)) and allowed copy numbers to be assigned into integer classes with high confidence. Comparison of mean DEFB4 copy number revealed a small increase in cases with SLE both in Panel 1 (P = 0.063) and Panel 2 (P = 0.017). When pooling panels 1 and 2 together, the association was reinforced (P = 0.002) in SLE. Such association was also observed in AASV (P = 0.009). We found that a higher DEFB4 gene copy number was associated with both SLE and AASV.

  6. Reduced mtDNA copy number increases the sensitivity of tumor cells to chemotherapeutic drugs.

    PubMed

    Mei, H; Sun, S; Bai, Y; Chen, Y; Chai, R; Li, H

    2015-04-02

    Many cancer drugs are toxic to cells by activating apoptotic pathways. Previous studies have shown that mitochondria have key roles in apoptosis in mammalian cells, but the role of mitochondrial DNA (mtDNA) copy number variation in the pathogenesis of tumor cell apoptosis remains largely unknown. We used the HEp-2, HNE2, and A549 tumor cell lines to explore the relationship between mtDNA copy number variation and cell apoptosis. We first induced apoptosis in three tumor cell lines and one normal adult human skin fibroblast cell line (HSF) with cisplatin (DDP) or doxorubicin (DOX) treatment and found that the mtDNA copy number significantly increased in apoptotic tumor cells, but not in HSF cells. We then downregulated the mtDNA copy number by transfection with shRNA-TFAM plasmids or treatment with ethidium bromide and found that the sensitivity of tumor cells to DDP or DOX was significantly increased. Furthermore, we observed that levels of reactive oxygen species (ROS) increased significantly in tumor cells with lower mtDNA copy numbers, and this might be related to a low level of antioxidant gene expression. Finally, we rescued the increase of ROS in tumor cells with lipoic acid or N-acetyl-L-cysteine and found that the apoptosis rate decreased. Our studies suggest that the increase of mtDNA copy number is a self-protective mechanism of tumor cells to prevent apoptosis and that reduced mtDNA copy number increases ROS levels in tumor cells, increases the tumor cells' sensitivity to chemotherapeutic drugs, and increases the rate of apoptosis. This research provides evidence that mtDNA copy number variation might be a promising new therapeutic target for the clinical treatment of tumors.

  7. Accurate, high-throughput typing of copy number variation using paralogue ratios from dispersed repeats

    PubMed Central

    Armour, John A. L.; Palla, Raquel; Zeeuwen, Patrick L. J. M.; den Heijer, Martin; Schalkwijk, Joost; Hollox, Edward J.

    2007-01-01

    Recent work has demonstrated an unexpected prevalence of copy number variation in the human genome, and has highlighted the part this variation may play in predisposition to common phenotypes. Some important genes vary in number over a high range (e.g. DEFB4, which commonly varies between two and seven copies), and have posed formidable technical challenges for accurate copy number typing, so that there are no simple, cheap, high-throughput approaches suitable for large-scale screening. We have developed a simple comparative PCR method based on dispersed repeat sequences, using a single pair of precisely designed primers to amplify products simultaneously from both test and reference loci, which are subsequently distinguished and quantified via internal sequence differences. We have validated the method for the measurement of copy number at DEFB4 by comparison of results from >800 DNA samples with copy number measurements by MAPH/REDVR, MLPA and array-CGH. The new Paralogue Ratio Test (PRT) method can require as little as 10 ng genomic DNA, appears to be comparable in accuracy to the other methods, and for the first time provides a rapid, simple and inexpensive method for copy number analysis, suitable for application to typing thousands of samples in large case-control association studies. PMID:17175532

  8. [Relationship between mitochondrial DNA copy number, membrane potential of human embryo and embryo morphology].

    PubMed

    Zhao, H; Teng, X M; Li, Y F

    2017-11-25

    Objective: To explore the relationship between the embryo with the different morphological types in the third day and its mitochondrial copy number, the membrane potential. Methods: Totally 117 embryos with poor development after normal fertilization and were not suitable transferred in the fresh cycle and 106 frozen embryos that were discarded voluntarily by infertility patients with in vitro fertilization-embryo transfer after successful pregnancy were selected. According to evaluation of international standard in embryos, all cleavage stage embryos were divided into class Ⅰ frozen embryo group ( n= 64), class Ⅱ frozen embryo group ( n= 42) and class Ⅲ fresh embryonic group (not transplanted embryos; n= 117). Real-time PCR and confocal microscopy methods were used to detect mitochondrial DNA (mtDNA) copy number and the mitochondrial membrane potential of a single embryo. The differences between embryo quality and mtDNA copy number and membrane potential of each group were compared. Results: The copy number of mtDNA and the mitochondrial membrane potential in class Ⅲ fresh embryonic group [(1.7±1.0)×10(5) copy/μl, 1.56±0.32] were significantly lower than those in class Ⅰ frozen embryo group [(3.4±1.7)×10(5) copy/μl, 2.66±0.21] and class Ⅱ frozen embryo group [(2.6±1.2)×10(5) copy/μl, 1.80±0.32; all P< 0.05]. The copy number of mtDNA and the mitochondrial membrane potential in classⅠ frozen embryo group were significantly higher than those in classⅡ frozen embryo group (both P< 0.05). Conclusion: The mtDNA copy number and the mitochondrial membrane potential of embryos of the better quality embryo are higher.

  9. Aluminum tolerance is associated with higher MATE1 gene copy-number in maize

    USDA-ARS?s Scientific Manuscript database

    Genome structure variation, including copy-number (CNV) and presence/absence variation (PAV), comprise a large extent of maize genetic diversity but their effect on phenotypes remains largely unexplored. Here we describe how copy-number variation in a major aluminum (Al) tolerance locus contributes ...

  10. Copy number variations in patients with electrical status epilepticus in sleep.

    PubMed

    Kevelam, Sietske H G; Jansen, Floor E; Binsbergen, Ellen van; Braun, Kees P J; Verbeek, Nienke E; Lindhout, Dick; Poot, Martin; Brilstra, Eva H

    2012-02-01

    Electrical status epilepticus in sleep syndrome is the association of the electroencephalographic pattern and deficits in language or global cognitive function and behavioral problems. The etiology is often unknown, but genetic risk factors have been implicated. Array-based comparative genomic hybridization was used to identify copy number variations in 13 children with electrical status epilepticus in sleep syndrome to identify possible underlying risk factors. Seven copy number variations were detected in 4 of the 13 patients, which consisted of 6 novel gains and 1 loss, the recurrent 15q13.3 microdeletion. Two patients carried a probable pathogenic copy number variation containing a gene involved in the cholinergic pathway. Genetic aberrations in patients with electrical status epilepticus in sleep syndrome can provide an entry in the investigation of the etiology of electrical status epilepticus in sleep. However, further studies are needed to confirm our findings.

  11. High Resolution Analysis of Copy Number Mutation in Breast Cancer

    DTIC Science & Technology

    2005-05-01

    tissues and Epstein - Barr sentations and arrays of Hind III probes additional CNPs, as would an increase in the virus -immortalized lymphoblastoid cell...software and laboratory procedures for the design of inter-phase FISH primers. We have also made progress in developing database and data processing...Cancer progression often involves alterations in DNA copy number. Newly developed microarray technologies enable simultane- ous measurement of copy

  12. Copy number ratios determined by two digital polymerase chain reaction systems in genetically modified grains

    NASA Astrophysics Data System (ADS)

    Pérez Urquiza, M.; Acatzi Silva, A. I.

    2014-02-01

    Three certified reference materials produced from powdered seeds to measure the copy number ratio sequences of p35S/hmgA in maize containing MON 810 event, p35S/Le1 in soybeans containing GTS 40-3-2 event and DREB1A/acc1 in wheat were produced according to the ISO Guides 34 and 35. In this paper, we report digital polymerase chain reaction (dPCR) protocols, performance parameters and results of copy number ratio content of genetically modified organisms (GMOs) in these materials using two new dPCR systems to detect and quantify molecular deoxyribonucleic acid: the BioMark® (Fluidigm) and the OpenArray® (Life Technologies) systems. These technologies were implemented at the National Institute of Metrology in Mexico (CENAM) and in the Reference Center for GMO Detection from the Ministry of Agriculture (CNRDOGM), respectively. The main advantage of this technique against the more-used quantitative polymerase chain reaction (qPCR) is that it generates an absolute number of target molecules in the sample, without reference to standards or an endogenous control, which is very useful when not much information is available for new developments or there are no standard reference materials in the market as in the wheat case presented, or when it was not possible to test the purity of seeds as in the maize case presented here. Both systems reported enhanced productivity, increased reliability and reduced instrument footprint. In this paper, the performance parameters and uncertainty of measurement obtained with both systems are presented and compared.

  13. Copy Number Alterations and Methylation in Ewing's Sarcoma

    PubMed Central

    Jahromi, Mona S.; Jones, Kevin B.; Schiffman, Joshua D.

    2011-01-01

    Ewing's sarcoma is the second most common bone malignancy affecting children and young adults. The prognosis is especially poor in metastatic or relapsed disease. The cell of origin remains elusive, but the EWS-FLI1 fusion oncoprotein is present in the majority of cases. The understanding of the molecular basis of Ewing's sarcoma continues to progress slowly. EWS-FLI1 affects gene expression, but other factors must also be at work such as mutations, gene copy number alterations, and promoter methylation. This paper explores in depth two molecular aspects of Ewing's sarcoma: copy number alterations (CNAs) and methylation. While CNAs consistently have been reported in Ewing's sarcoma, their clinical significance has been variable, most likely due to small sample size and tumor heterogeneity. Methylation is thought to be important in oncogenesis and balanced karyotype cancers such as Ewing's, yet it has received only minimal attention in prior studies. Future CNA and methylation studies will help to understand the molecular basis of this disease. PMID:21437220

  14. 17 CFR 260.7a-5 - Filing of amendments; number of copies.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 17 Commodity and Securities Exchanges 3 2010-04-01 2010-04-01 false Filing of amendments; number of copies. 260.7a-5 Section 260.7a-5 Commodity and Securities Exchanges SECURITIES AND EXCHANGE COMMISSION (CONTINUED) GENERAL RULES AND REGULATIONS, TRUST INDENTURE ACT OF 1939 Rules Under Section 307 § 260.7a-5 Filing of amendments; number of copie...

  15. 17 CFR 260.7a-5 - Filing of amendments; number of copies.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... 17 Commodity and Securities Exchanges 3 2013-04-01 2013-04-01 false Filing of amendments; number of copies. 260.7a-5 Section 260.7a-5 Commodity and Securities Exchanges SECURITIES AND EXCHANGE COMMISSION (CONTINUED) GENERAL RULES AND REGULATIONS, TRUST INDENTURE ACT OF 1939 Rules Under Section 307 § 260.7a-5 Filing of amendments; number of copie...

  16. 17 CFR 260.7a-5 - Filing of amendments; number of copies.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... 17 Commodity and Securities Exchanges 3 2012-04-01 2012-04-01 false Filing of amendments; number of copies. 260.7a-5 Section 260.7a-5 Commodity and Securities Exchanges SECURITIES AND EXCHANGE COMMISSION (CONTINUED) GENERAL RULES AND REGULATIONS, TRUST INDENTURE ACT OF 1939 Rules Under Section 307 § 260.7a-5 Filing of amendments; number of copie...

  17. 17 CFR 260.7a-5 - Filing of amendments; number of copies.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 17 Commodity and Securities Exchanges 3 2011-04-01 2011-04-01 false Filing of amendments; number of copies. 260.7a-5 Section 260.7a-5 Commodity and Securities Exchanges SECURITIES AND EXCHANGE COMMISSION (CONTINUED) GENERAL RULES AND REGULATIONS, TRUST INDENTURE ACT OF 1939 Rules Under Section 307 § 260.7a-5 Filing of amendments; number of copie...

  18. 17 CFR 260.7a-5 - Filing of amendments; number of copies.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... 17 Commodity and Securities Exchanges 4 2014-04-01 2014-04-01 false Filing of amendments; number of copies. 260.7a-5 Section 260.7a-5 Commodity and Securities Exchanges SECURITIES AND EXCHANGE COMMISSION (CONTINUED) GENERAL RULES AND REGULATIONS, TRUST INDENTURE ACT OF 1939 Rules Under Section 307 § 260.7a-5 Filing of amendments; number of copie...

  19. Copy Number Variations of TBK1 in Australian Patients With Primary Open-Angle Glaucoma

    PubMed Central

    AWADALLA, MONA S.; FINGERT, JOHN H.; ROOS, BENJAMIN E.; CHEN, SIMON; HOLMES, RICHARD; GRAHAM, STUART L.; CHEHADE, MARK; GALANOPOLOUS, ANNA; RIDGE, BRONWYN; SOUZEAU, EMMANUELLE; ZHOU, TIGER; SIGGS, OWEN M.; HEWITT, ALEX W.; MACKEY, DAVID A.; BURDON, KATHRYN P.; CRAIG, JAMIE E.

    2015-01-01

    PURPOSE To investigate the presence of TBK1 copy number variations in a large, well-characterized Australian cohort of patients with glaucoma comprising both normal-tension glaucoma and high-tension glaucoma cases. DESIGN A retrospective cohort study. METHODS DNA samples from patients with normal-tension glaucoma and high-tension glaucoma and unaffected controls were screened for TBK1 copy number variations using real-time quantitative polymerase chain reaction. Samples with additional copies of the TBK1 gene were further tested using custom comparative genomic hybridization arrays. RESULTS Four out of 334 normal-tension glaucoma cases (1.2%) were found to carry TBK1 copy number variations using quantitative polymerase chain reaction. One extra dose of the TBK1 gene (duplication) was detected in 3 normal-tension glaucoma patients, while 2 extra doses of the gene (triplication) were detected in a fourth normal-tension glaucoma patient. The results were further confirmed by custom comparative genomic hybridization arrays. Further, the TBK1 copy number variation segregated with normal-tension glaucoma in the family members of the probands, showing an autosomal dominant pattern of inheritance. No TBK1 copy number variations were detected in 1045 Australian patients with high-tension glaucoma or in 254 unaffected controls. CONCLUSION We report the presence of TBK1 copy number variations in our Australian normal-tension glaucoma cohort, including the first example of more than 1 extra copy of this gene in glaucoma patients (gene triplication). These results confirm TBK1 to be an important cause of normal-tension glaucoma, but do not suggest common involvement in high-tension glaucoma. PMID:25284765

  20. Beta-defensin genomic copy number is not a modifier locus for cystic fibrosis

    PubMed Central

    Hollox, Edward J; Davies, Jane; Griesenbach, Uta; Burgess, Juliana; Alton, Eric WFW; Armour, John AL

    2005-01-01

    Human beta-defensin 2 (DEFB4, also known as DEFB2 or hBD-2) is a salt-sensitive antimicrobial protein that is expressed in lung epithelia. Previous work has shown that it is encoded in a cluster of beta-defensin genes at 8p23.1, which varies in copy number between 2 and 12 in different individuals. We determined the copy number of this locus in 355 patients with cystic fibrosis (CF), and tested for correlation between beta-defensin cluster genomic copy number and lung disease associated with CF. No significant association was found. PMID:16336654

  1. Sparse representation and Bayesian detection of genome copy number alterations from microarray data.

    PubMed

    Pique-Regi, Roger; Monso-Varona, Jordi; Ortega, Antonio; Seeger, Robert C; Triche, Timothy J; Asgharzadeh, Shahab

    2008-02-01

    Genomic instability in cancer leads to abnormal genome copy number alterations (CNA) that are associated with the development and behavior of tumors. Advances in microarray technology have allowed for greater resolution in detection of DNA copy number changes (amplifications or deletions) across the genome. However, the increase in number of measured signals and accompanying noise from the array probes present a challenge in accurate and fast identification of breakpoints that define CNA. This article proposes a novel detection technique that exploits the use of piece wise constant (PWC) vectors to represent genome copy number and sparse Bayesian learning (SBL) to detect CNA breakpoints. First, a compact linear algebra representation for the genome copy number is developed from normalized probe intensities. Second, SBL is applied and optimized to infer locations where copy number changes occur. Third, a backward elimination (BE) procedure is used to rank the inferred breakpoints; and a cut-off point can be efficiently adjusted in this procedure to control for the false discovery rate (FDR). The performance of our algorithm is evaluated using simulated and real genome datasets and compared to other existing techniques. Our approach achieves the highest accuracy and lowest FDR while improving computational speed by several orders of magnitude. The proposed algorithm has been developed into a free standing software application (GADA, Genome Alteration Detection Algorithm). http://biron.usc.edu/~piquereg/GADA

  2. Quadruplex MAPH: improvement of throughput in high-resolution copy number screening.

    PubMed

    Tyson, Jess; Majerus, Tamsin Mo; Walker, Susan; Armour, John Al

    2009-09-28

    Copy number variation (CNV) in the human genome is recognised as a widespread and important source of human genetic variation. Now the challenge is to screen for these CNVs at high resolution in a reliable, accurate and cost-effective way. Multiplex Amplifiable Probe Hybridisation (MAPH) is a sensitive, high-resolution technology appropriate for screening for CNVs in a defined region, for a targeted population. We have developed MAPH to a highly multiplexed format ("QuadMAPH") that allows the user a four-fold increase in the number of loci tested simultaneously. We have used this method to analyse a genomic region of 210 kb, including the MSH2 gene and 120 kb of flanking DNA. We show that the QuadMAPH probes report copy number with equivalent accuracy to simplex MAPH, reliably demonstrating diploid copy number in control samples and accurately detecting deletions in Hereditary Non-Polyposis Colorectal Cancer (HNPCC) samples. QuadMAPH is an accurate, high-resolution method that allows targeted screening of large numbers of subjects without the expense of genome-wide approaches. Whilst we have applied this technique to a region of the human genome, it is equally applicable to the genomes of other organisms.

  3. Copy-number analysis and inference of subclonal populations in cancer genomes using Sclust.

    PubMed

    Cun, Yupeng; Yang, Tsun-Po; Achter, Viktor; Lang, Ulrich; Peifer, Martin

    2018-06-01

    The genomes of cancer cells constantly change during pathogenesis. This evolutionary process can lead to the emergence of drug-resistant mutations in subclonal populations, which can hinder therapeutic intervention in patients. Data derived from massively parallel sequencing can be used to infer these subclonal populations using tumor-specific point mutations. The accurate determination of copy-number changes and tumor impurity is necessary to reliably infer subclonal populations by mutational clustering. This protocol describes how to use Sclust, a copy-number analysis method with a recently developed mutational clustering approach. In a series of simulations and comparisons with alternative methods, we have previously shown that Sclust accurately determines copy-number states and subclonal populations. Performance tests show that the method is computationally efficient, with copy-number analysis and mutational clustering taking <10 min. Sclust is designed such that even non-experts in computational biology or bioinformatics with basic knowledge of the Linux/Unix command-line syntax should be able to carry out analyses of subclonal populations.

  4. Copy number analysis of NIPBL in a cohort of 510 patients reveals rare copy number variants and a mosaic deletion.

    PubMed

    Cheng, Yu-Wei; Tan, Christopher A; Minor, Agata; Arndt, Kelly; Wysinger, Latrice; Grange, Dorothy K; Kozel, Beth A; Robin, Nathaniel H; Waggoner, Darrel; Fitzpatrick, Carrie; Das, Soma; Del Gaudio, Daniela

    2014-03-01

    Cornelia de Lange syndrome (CdLS) is a genetically heterogeneous disorder characterized by growth retardation, intellectual disability, upper limb abnormalities, hirsutism, and characteristic facial features. In this study we explored the occurrence of intragenic NIPBL copy number variations (CNVs) in a cohort of 510 NIPBL sequence-negative patients with suspected CdLS. Copy number analysis was performed by custom exon-targeted oligonucleotide array-comparative genomic hybridization and/or MLPA. Whole-genome SNP array was used to further characterize rearrangements extending beyond the NIPBL gene. We identified NIPBL CNVs in 13 patients (2.5%) including one intragenic duplication and a deletion in mosaic state. Breakpoint sequences in two patients provided further evidence of a microhomology-mediated replicative mechanism as a potential predominant contributor to CNVs in NIPBL. Patients for whom clinical information was available share classical CdLS features including craniofacial and limb defects. Our experience in studying the frequency of NIBPL CNVs in the largest series of patients to date widens the mutational spectrum of NIPBL and emphasizes the clinical utility of performing NIPBL deletion/duplication analysis in patients with CdLS.

  5. The 2-micron plasmid as a nonselectable, stable, high copy number yeast vector

    NASA Technical Reports Server (NTRS)

    Ludwig, D. L.; Bruschi, C. V.

    1991-01-01

    The endogenous 2-microns plasmid of Saccharomyces cerevisiae has been used extensively for the construction of yeast cloning and expression plasmids because it is a native yeast plasmid that is able to be maintained stably in cells at high copy number. Almost invariably, these plasmid constructs, containing some or all 2-microns sequences, exhibit copy number levels lower than 2-microns and are maintained stably only under selective conditions. We were interested in determining if there was a means by which 2-microns could be utilized for vector construction, without forfeiting either copy number or nonselective stability. We identified sites in the 2-microns plasmid that could be used for the insertion of genetic sequences without disrupting 2-microns coding elements and then assessed subsequent plasmid constructs for stability and copy number in vivo. We demonstrate the utility of a previously described 2-microns recombination chimera, pBH-2L, for the manipulation and transformation of 2-microns as a pure yeast plasmid vector. We show that the HpaI site near the STB element in the 2-microns plasmid can be utilized to clone yeast DNA of at least 3.9 kb with no loss of plasmid stability. Additionally, the copy number of these constructs is as high as levels reported for the endogenous 2-microns.

  6. Mitochondrial genomic variation associated with higher mitochondrial copy number: the Cache County Study on Memory Health and Aging.

    PubMed

    Ridge, Perry G; Maxwell, Taylor J; Foutz, Spencer J; Bailey, Matthew H; Corcoran, Christopher D; Tschanz, JoAnn T; Norton, Maria C; Munger, Ronald G; O'Brien, Elizabeth; Kerber, Richard A; Cawthon, Richard M; Kauwe, John S K

    2014-01-01

    The mitochondria are essential organelles and are the location of cellular respiration, which is responsible for the majority of ATP production. Each cell contains multiple mitochondria, and each mitochondrion contains multiple copies of its own circular genome. The ratio of mitochondrial genomes to nuclear genomes is referred to as mitochondrial copy number. Decreases in mitochondrial copy number are known to occur in many tissues as people age, and in certain diseases. The regulation of mitochondrial copy number by nuclear genes has been studied extensively. While mitochondrial variation has been associated with longevity and some of the diseases known to have reduced mitochondrial copy number, the role that the mitochondrial genome itself has in regulating mitochondrial copy number remains poorly understood. We analyzed the complete mitochondrial genomes from 1007 individuals randomly selected from the Cache County Study on Memory Health and Aging utilizing the inferred evolutionary history of the mitochondrial haplotypes present in our dataset to identify sequence variation and mitochondrial haplotypes associated with changes in mitochondrial copy number. Three variants belonging to mitochondrial haplogroups U5A1 and T2 were significantly associated with higher mitochondrial copy number in our dataset. We identified three variants associated with higher mitochondrial copy number and suggest several hypotheses for how these variants influence mitochondrial copy number by interacting with known regulators of mitochondrial copy number. Our results are the first to report sequence variation in the mitochondrial genome that causes changes in mitochondrial copy number. The identification of these variants that increase mtDNA copy number has important implications in understanding the pathological processes that underlie these phenotypes.

  7. Isolation and characterization of novel mutations in the pSC101 origin that increase copy number

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Thompson, Mitchell G.; Sedaghatian, Nima; Barajas, Jesus F.

    pSC101 is a narrow host range, low-copy plasmid commonly used for genetically manipulating Escherichia coli. As a byproduct of a genetic screen for a more sensitive lactam biosensor, we identified multiple novel mutations that increase the copy number of plasmids with the pSC101 origin. All mutations identified in this study occurred on plasmids which also contained at least one mutation localized to the RepA protein encoded within the origin. Homology modelling predicts that many of these mutations occur within the dimerization interface of RepA. Mutant RepA resulted in plasmid copy numbers between ~31 and ~113 copies/cell, relative to ~5 copies/cellmore » in wild-type pSC101 plasmids. Combining the mutations that were predicted to disrupt multiple contacts on the dimerization interface resulted in copy numbers of ~500 copies/cell, while also attenuating growth in host strains. Fluorescent protein production expressed from an arabinose-inducible promoter on mutant origin derived plasmids did correlate with copy number. Plasmids harboring RepA with one of two mutations, E83K and N99D, resulted in fluorescent protein production similar to that from p15a- (~20 copies/cell) and ColE1- (~31 copies/cell) based plasmids, respectively. The mutant copy number variants retained compatibility with p15a, pBBR, and ColE1 origins of replication. Thus, these pSC101 variants may be useful in future metabolic engineering efforts that require medium or high-copy vectors compatible with p15a- and ColE1-based plasmids.« less

  8. Isolation and characterization of novel mutations in the pSC101 origin that increase copy number

    DOE PAGES

    Thompson, Mitchell G.; Sedaghatian, Nima; Barajas, Jesus F.; ...

    2018-01-25

    pSC101 is a narrow host range, low-copy plasmid commonly used for genetically manipulating Escherichia coli. As a byproduct of a genetic screen for a more sensitive lactam biosensor, we identified multiple novel mutations that increase the copy number of plasmids with the pSC101 origin. All mutations identified in this study occurred on plasmids which also contained at least one mutation localized to the RepA protein encoded within the origin. Homology modelling predicts that many of these mutations occur within the dimerization interface of RepA. Mutant RepA resulted in plasmid copy numbers between ~31 and ~113 copies/cell, relative to ~5 copies/cellmore » in wild-type pSC101 plasmids. Combining the mutations that were predicted to disrupt multiple contacts on the dimerization interface resulted in copy numbers of ~500 copies/cell, while also attenuating growth in host strains. Fluorescent protein production expressed from an arabinose-inducible promoter on mutant origin derived plasmids did correlate with copy number. Plasmids harboring RepA with one of two mutations, E83K and N99D, resulted in fluorescent protein production similar to that from p15a- (~20 copies/cell) and ColE1- (~31 copies/cell) based plasmids, respectively. The mutant copy number variants retained compatibility with p15a, pBBR, and ColE1 origins of replication. Thus, these pSC101 variants may be useful in future metabolic engineering efforts that require medium or high-copy vectors compatible with p15a- and ColE1-based plasmids.« less

  9. Quadruplex MAPH: improvement of throughput in high-resolution copy number screening

    PubMed Central

    Tyson, Jess; Majerus, Tamsin MO; Walker, Susan; Armour, John AL

    2009-01-01

    Background Copy number variation (CNV) in the human genome is recognised as a widespread and important source of human genetic variation. Now the challenge is to screen for these CNVs at high resolution in a reliable, accurate and cost-effective way. Results Multiplex Amplifiable Probe Hybridisation (MAPH) is a sensitive, high-resolution technology appropriate for screening for CNVs in a defined region, for a targeted population. We have developed MAPH to a highly multiplexed format ("QuadMAPH") that allows the user a four-fold increase in the number of loci tested simultaneously. We have used this method to analyse a genomic region of 210 kb, including the MSH2 gene and 120 kb of flanking DNA. We show that the QuadMAPH probes report copy number with equivalent accuracy to simplex MAPH, reliably demonstrating diploid copy number in control samples and accurately detecting deletions in Hereditary Non-Polyposis Colorectal Cancer (HNPCC) samples. Conclusion QuadMAPH is an accurate, high-resolution method that allows targeted screening of large numbers of subjects without the expense of genome-wide approaches. Whilst we have applied this technique to a region of the human genome, it is equally applicable to the genomes of other organisms. PMID:19785739

  10. Real-Time PCR for the Detection of Precise Transgene Copy Number in Wheat.

    PubMed

    Giancaspro, Angelica; Gadaleta, Agata; Blanco, Antonio

    2017-01-01

    Despite the unceasing advances in genetic transformation techniques, the success of common delivery methods still lies on the behavior of the integrated transgenes in the host genome. Stability and expression of the introduced genes are influenced by several factors such as chromosomal location, transgene copy number and interaction with the host genotype. Such factors are traditionally characterized by Southern blot analysis, which can be time-consuming, laborious, and often unable to detect the exact copy number of rearranged transgenes. Recent research in crop field suggests real-time PCR as an effective and reliable tool for the precise quantification and characterization of transgene loci. This technique overcomes most problems linked to phenotypic segregation analysis and can analyze hundreds of samples in a day, making it an efficient method for estimating a gene copy number integrated in a transgenic line. This protocol describes the use of real-time PCR for the detection of transgene copy number in durum wheat transgenic lines by means of two different chemistries (SYBR ® Green I dye and TaqMan ® probes).

  11. Single-cell copy number variation detection

    PubMed Central

    2011-01-01

    Detection of chromosomal aberrations from a single cell by array comparative genomic hybridization (single-cell array CGH), instead of from a population of cells, is an emerging technique. However, such detection is challenging because of the genome artifacts and the DNA amplification process inherent to the single cell approach. Current normalization algorithms result in inaccurate aberration detection for single-cell data. We propose a normalization method based on channel, genome composition and recurrent genome artifact corrections. We demonstrate that the proposed channel clone normalization significantly improves the copy number variation detection in both simulated and real single-cell array CGH data. PMID:21854607

  12. Mefloquine resistance in Plasmodium falciparum and increased pfmdr1 gene copy number.

    PubMed

    Price, Ric N; Uhlemann, Anne-Catrin; Brockman, Alan; McGready, Rose; Ashley, Elizabeth; Phaipun, Lucy; Patel, Rina; Laing, Kenneth; Looareesuwan, Sornchai; White, Nicholas J; Nosten, François; Krishna, Sanjeev

    The borders of Thailand harbour the world's most multidrug resistant Plasmodium falciparum parasites. In 1984 mefloquine was introduced as treatment for uncomplicated falciparum malaria, but substantial resistance developed within 6 years. A combination of artesunate with mefloquine now cures more than 95% of acute infections. For both treatment regimens, the underlying mechanisms of resistance are not known. The relation between polymorphisms in the P falciparum multidrug resistant gene 1 (pfmdr1) and the in-vitro and in-vivo responses to mefloquine were assessed in 618 samples from patients with falciparum malaria studied prospectively over 12 years. pfmdr1 copy number was assessed by a robust real-time PCR assay. Single nucleotide polymorphisms of pfmdr1, P falciparum chloroquine resistance transporter gene (pfcrt) and P falciparum Ca2+ ATPase gene (pfATP6) were assessed by PCR-restriction fragment length polymorphism. Increased copy number of pfmdr1 was the most important determinant of in-vitro and in-vivo resistance to mefloquine, and also to reduced artesunate sensitivity in vitro. In a Cox regression model with control for known confounders, increased pfmdr1 copy number was associated with an attributable hazard ratio (AHR) for treatment failure of 6.3 (95% CI 2.9-13.8, p<0.001) after mefloquine monotherapy and 5.4 (2.0-14.6, p=0.001) after artesunate-mefloquine therapy. Single nucleotide polymorphisms in pfmdr1 were associated with increased mefloquine susceptibility in vitro, but not in vivo. Amplification in pfmdr1 is the main cause of resistance to mefloquine in falciparum malaria. Multidrug resistant P falciparum malaria is common in southeast Asia, but difficult to identify and treat. Genes that encode parasite transport proteins maybe involved in export of drugs and so cause resistance. In this study we show that increase in copy number of pfmdr1, a gene encoding a parasite transport protein, is the best overall predictor of treatment failure with

  13. Engineered promoters enable constant gene expression at any copy number in bacteria.

    PubMed

    Segall-Shapiro, Thomas H; Sontag, Eduardo D; Voigt, Christopher A

    2018-04-01

    The internal environment of growing cells is variable and dynamic, making it difficult to introduce reliable parts, such as promoters, for genetic engineering. Here, we applied control-theoretic ideas to design promoters that maintained constant levels of expression at any copy number. Theory predicts that independence to copy number can be achieved by using an incoherent feedforward loop (iFFL) if the negative regulation is perfectly non-cooperative. We engineered iFFLs into Escherichia coli promoters using transcription-activator-like effectors (TALEs). These promoters had near-identical expression in different genome locations and plasmids, even when their copy number was perturbed by genomic mutations or changes in growth medium composition. We applied the stabilized promoters to show that a three-gene metabolic pathway to produce deoxychromoviridans could retain function without re-tuning when the stabilized-promoter-driven genes were moved from a plasmid into the genome.

  14. Single Color Multiplexed ddPCR Copy Number Measurements and Single Nucleotide Variant Genotyping.

    PubMed

    Wood-Bouwens, Christina M; Ji, Hanlee P

    2018-01-01

    Droplet digital PCR (ddPCR) allows for accurate quantification of genetic events such as copy number variation and single nucleotide variants. Probe-based assays represent the current "gold-standard" for detection and quantification of these genetic events. Here, we introduce a cost-effective single color ddPCR assay that allows for single genome resolution quantification of copy number and single nucleotide variation.

  15. Dietary starch intake modifies the relation between copy number variation in the salivary amylase gene and BMI.

    PubMed

    Rukh, Gull; Ericson, Ulrika; Andersson-Assarsson, Johanna; Orho-Melander, Marju; Sonestedt, Emily

    2017-07-01

    Background: Studies have shown conflicting associations between the salivary amylase gene ( AMY1 ) copy number and obesity. Salivary amylase initiates starch digestion in the oral cavity; starch is a major source of energy in the diet. Objective: We investigated the association between AMY1 copy number and obesity traits, and the effect of the interaction between AMY1 copy number and starch intake on these obesity traits. Design: We first assessed the association between AMY1 copy number (genotyped by digital droplet polymerase chain reaction) and obesity traits in 4800 individuals without diabetes (mean age: 57 y; 60% female) from the Malmö Diet and Cancer Cohort. Then we analyzed interactions between AMY1 copy number and energy-adjusted starch intake (obtained by a modified diet history method) on body mass index (BMI) and body fat percentage. Results: AMY1 copy number was not associated with BMI ( P = 0.80) or body fat percentage ( P = 0.38). We observed a significant effect of the interaction between AMY1 copy number and starch intake on BMI ( P -interaction = 0.007) and body fat percentage ( P -interaction = 0.03). Upon stratification by dietary starch intake, BMI tended to decrease with increasing AMY1 copy numbers in the low-starch intake group ( P = 0.07) and tended to increase with increasing AMY1 copy numbers in the high-starch intake group ( P = 0.08). The lowest mean BMI was observed in the group of participants with a low AMY1 copy number and a high dietary intake of starch. Conclusions: Our findings suggest an effect of the interaction between starch intake and AMY1 copy number on obesity. Individuals with high starch intake but low genetic capacity to digest starch had the lowest BMI, potentially because larger amounts of undigested starch are transported through the gastrointestinal tract, contributing to fewer calories extracted from ingested starch. © 2017 American Society for Nutrition.

  16. Glyoxalase 1 copy number variation in patients with well differentiated gastro-entero-pancreatic neuroendocrine tumours (GEP-NET)

    PubMed Central

    Xue, Mingzhan; Shafie, Alaa; Qaiser, Talha; Rajpoot, Nasir M.; Kaltsas, Gregory; James, Sean; Gopalakrishnan, Kishore; Fisk, Adrian; Dimitriadis, Georgios K.; Grammatopoulos, Dimitris K.; Rabbani, Naila; Thornalley, Paul J.; Weickert, Martin O.

    2017-01-01

    Background The glyoxalase-1 gene (GLO1) is a hotspot for copy-number variation (CNV) in human genomes. Increased GLO1 copy-number is associated with multidrug resistance in tumour chemotherapy, but prevalence of GLO1 CNV in gastro-entero-pancreatic neuroendocrine tumours (GEP-NET) is unknown. Methods GLO1 copy-number variation was measured in 39 patients with GEP-NET (midgut NET, n = 25; pancreatic NET, n = 14) after curative or debulking surgical treatment. Primary tumour tissue, surrounding healthy tissue and, where applicable, additional metastatic tumour tissue were analysed, using real time qPCR. Progression and survival following surgical treatment were monitored over 4.2 ± 0.5 years. Results In the pooled GEP-NET cohort, GLO1 copy-number in healthy tissue was 2.0 in all samples but significantly increased in primary tumour tissue in 43% of patients with pancreatic NET and in 72% of patients with midgut NET, mainly driven by significantly higher GLO1 copy-number in midgut NET. In tissue from additional metastases resection (18 midgut NET and one pancreatic NET), GLO1 copy number was also increased, compared with healthy tissue; but was not significantly different compared with primary tumour tissue. During mean 3 - 5 years follow-up, 8 patients died and 16 patients showed radiological progression. In midgut NET, a high GLO1 copy-number was associated with earlier progression. In NETs with increased GLO1 copy number, there was increased Glo1 protein expression compared to non-malignant tissue. Conclusions GLO1 copy-number was increased in a large percentage of patients with GEP-NET and correlated positively with increased Glo1 protein in tumour tissue. Analysis of GLO1 copy-number variation particularly in patients with midgut NET could be a novel prognostic marker for tumour progression. PMID:29100361

  17. Genomic Copy Number Variation in Disorders of Cognitive Development

    ERIC Educational Resources Information Center

    Morrow, Eric M.

    2010-01-01

    Objective: To highlight recent discoveries in the area of genomic copy number variation in neuropsychiatric disorders including intellectual disability, autism, and schizophrenia. To emphasize new principles emerging from this area, involving the genetic architecture of disease, pathophysiology, and diagnosis. Method: Review of studies published…

  18. Copy number rather than epigenetic alterations are the major dictator of imprinted methylation in tumors.

    PubMed

    Martin-Trujillo, Alex; Vidal, Enrique; Monteagudo-Sa Nchez, Ana; Sanchez-Delgado, Marta; Moran, Sebastian; Hernandez Mora, Jose Ramon; Heyn, Holger; Guitart, Miriam; Esteller, Manel; Monk, David

    2017-09-07

    It has been postulated that imprinting aberrations are common in tumors. To understand the role of imprinting in cancer, we have characterized copy-number and methylation in over 280 cancer cell lines and confirm our observations in primary tumors. Imprinted differentially methylated regions (DMRs) regulate parent-of-origin monoallelic expression of neighboring transcripts in cis. Unlike single-copy CpG islands that may be prone to hypermethylation, imprinted DMRs can either loose or gain methylation during tumorigenesis. Here, we show that methylation profiles at imprinted DMRs often not represent genuine epigenetic changes but simply the accumulation of underlying copy-number aberrations (CNAs), which is independent of the genome methylation state inferred from cancer susceptible loci. Our results reveal that CNAs also influence allelic expression as loci with copy-number neutral loss-of-heterozygosity or amplifications may be expressed from the appropriate parental chromosomes, which is indicative of maintained imprinting, although not observed as a single expression foci by RNA FISH.Altered genomic imprinting is frequently reported in cancer. Here, the authors analyze copy number and methylation in cancer cell lines and primary tumors to show that imprinted methylation profiles represent the accumulation of copy number alteration, rather than epigenetic alterations.

  19. Detection of medically important Candida species by absolute quantitation real-time polymerase chain reaction.

    PubMed

    Than, Leslie Thian Lung; Chong, Pei Pei; Ng, Kee Peng; Seow, Heng Fong

    2015-01-01

    The number of invasive candidiasis cases has risen especially with an increase in the number of immunosuppressed and immunocom promised patients. The early detection of Candida species which is specific and sensitive is important in determining the correct administration of antifungal drugs to patients. This study aims to develop a method for the detection, identification and quantitation of medically important Candida species through quantitative polymerase chain reaction (qPCR). The isocitrate lyase (ICL) gene which is not found in mammals was chosen as the target gene of real-time PCR. Absolute quantitation of the gene copy number was achieved by constructing the plasmid containing the ICL gene which is used to generate standard curve. Twenty fungal species, two bacterial species and human DNA were tested to check the specificity of the detection method. All eight Candida species were successfully detected, identified and quantitated based on the ICL gene. A seven-log range of the gene copy number and a minimum detection limit of 10(3) copies were achieved. A one-tube absolute quantification real-time PCR that differentiates medically important Candida species via individual unique melting temperature was achieved. Analytical sensitivity and specificity were not compromised.

  20. Measuring mRNA copy-number in individual Escherichia coli cells using single-molecule fluorescent in situ hybridization (smFISH)

    PubMed Central

    Skinner, Samuel O.; Sepúlveda, Leonardo A.; Xu, Heng; Golding, Ido

    2014-01-01

    We present a method for measuring the absolute number of mRNA molecules from a gene of interest in individual, chemically fixed Escherichia coli cells. A set of fluorescently-labeled oligonucleotide probes are hybridized to the target mRNA, so that each mRNA molecule is decorated by a known number of fluorescent dyes. Cells are then imaged using fluorescence microscopy. The number of target mRNA is estimated from the total intensity of fluorescent foci in the cell, rather than from counting discrete “spots” as in other currently available protocols. Image analysis is performed using an automated algorithm. The measured mRNA copy-number distribution obtained from many individual cells can be used to extract the parameters of stochastic gene activity, namely the frequency and size of transcription bursts from the gene of interest. The experimental procedure takes 2 days, with another 2-3 days typically required for image and data analysis. PMID:23680982

  1. Genomic DNA Copy-Number Alterations of the let-7 Family in Human Cancers

    PubMed Central

    Greshock, Joel; Shen, Liang; Yang, Xiaojun; Shao, Zhongjun; Liang, Shun; Tanyi, Janos L.; Sood, Anil K.; Zhang, Lin

    2012-01-01

    In human cancer, expression of the let-7 family is significantly reduced, and this is associated with shorter survival times in patients. However, the mechanisms leading to let-7 downregulation in cancer are still largely unclear. Since an alteration in copy-number is one of the causes of gene deregulation in cancer, we examined copy number alterations of the let-7 family in 2,969 cancer specimens from a high-resolution SNP array dataset. We found that there was a reduction in the copy number of let-7 genes in a cancer-type specific manner. Importantly, focal deletion of four let-7 family members was found in three cancer types: medulloblastoma (let-7a-2 and let-7e), breast cancer (let-7a-2), and ovarian cancer (let-7a-3/let-7b). For example, the genomic locus harboring let-7a-3/let-7b was deleted in 44% of the specimens from ovarian cancer patients. We also found a positive correlation between the copy number of let-7b and mature let-7b expression in ovarian cancer. Finally, we showed that restoration of let-7b expression dramatically reduced ovarian tumor growth in vitro and in vivo. Our results indicate that copy number deletion is an important mechanism leading to the downregulation of expression of specific let-7 family members in medulloblastoma, breast, and ovarian cancers. Restoration of let-7 expression in tumor cells could provide a novel therapeutic strategy for the treatment of cancer. PMID:22970210

  2. Punctuated Copy Number Evolution and Clonal Stasis in Triple-Negative Breast Cancer

    PubMed Central

    Gao, Ruli; Davis, Alexander; McDonald, Thomas O.; Sei, Emi; Shi, Xiuqing; Wang, Yong; Tsai, Pei-Ching; Casasent, Anna; Waters, Jill; Zhang, Hong; Meric-Bernstam, Funda; Michor, Franziska; Navin, Nicholas E.

    2016-01-01

    Aneuploidy is a hallmark of breast cancer; however, our knowledge of how these complex genomic rearrangements evolve during tumorigenesis is limited. In this study we developed a highly multiplexed single-nucleus-sequencing method to investigate copy number evolution in triple-negative breast cancer patients. We sequenced 1000 single cells from 12 patients and identified 1–3 major clonal subpopulations in each tumor that shared a common evolutionary lineage. We also identified a minor subpopulation of non-clonal cells that were classified as: 1) metastable, 2) pseudo-diploid, or 3) chromazemic. Phylogenetic analysis and mathematical modeling suggest that these data are unlikely to be explained by the gradual accumulation of copy number events over time. In contrast, our data challenge the paradigm of gradual evolution, showing that the majority of copy number aberrations are acquired at the earliest stages of tumor evolution, in short punctuated bursts, followed by stable clonal expansions that form the tumor mass. PMID:27526321

  3. Genomic and evolutionary characteristics of cattle copy number variations

    USDA-ARS?s Scientific Manuscript database

    We performed a systematic analysis of cattle copy number variations (CNVs) using the Bovine HapMap SNP genotyping data, including 539 animals of 21 modern cattle breeds and 6 outgroups. After correcting genomic waves and considering the trio information, we identified 682 candidate CNV regions (CNVR...

  4. Accurate measurement of transgene copy number in crop plants using droplet digital PCR.

    PubMed

    Collier, Ray; Dasgupta, Kasturi; Xing, Yan-Ping; Hernandez, Bryan Tarape; Shao, Min; Rohozinski, Dominica; Kovak, Emma; Lin, Jeanie; de Oliveira, Maria Luiza P; Stover, Ed; McCue, Kent F; Harmon, Frank G; Blechl, Ann; Thomson, James G; Thilmony, Roger

    2017-06-01

    Genetic transformation is a powerful means for the improvement of crop plants, but requires labor- and resource-intensive methods. An efficient method for identifying single-copy transgene insertion events from a population of independent transgenic lines is desirable. Currently, transgene copy number is estimated by either Southern blot hybridization analyses or quantitative polymerase chain reaction (qPCR) experiments. Southern hybridization is a convincing and reliable method, but it also is expensive, time-consuming and often requires a large amount of genomic DNA and radioactively labeled probes. Alternatively, qPCR requires less DNA and is potentially simpler to perform, but its results can lack the accuracy and precision needed to confidently distinguish between one- and two-copy events in transgenic plants with large genomes. To address this need, we developed a droplet digital PCR-based method for transgene copy number measurement in an array of crops: rice, citrus, potato, maize, tomato and wheat. The method utilizes specific primers to amplify target transgenes, and endogenous reference genes in a single duplexed reaction containing thousands of droplets. Endpoint amplicon production in the droplets is detected and quantified using sequence-specific fluorescently labeled probes. The results demonstrate that this approach can generate confident copy number measurements in independent transgenic lines in these crop species. This method and the compendium of probes and primers will be a useful resource for the plant research community, enabling the simple and accurate determination of transgene copy number in these six important crop species. Published 2017. This article is a U.S. Government work and is in the public domain in the USA.

  5. EPSPS Gene Copy Number and Whole-Plant Glyphosate Resistance Level in Kochia scoparia

    PubMed Central

    Gaines, Todd A.; Barker, Abigail L.; Patterson, Eric L.; Westra, Philip; Westra, Eric P.; Wilson, Robert G.; Jha, Prashant; Kumar, Vipan

    2016-01-01

    Glyphosate-resistant (GR) Kochia scoparia has evolved in dryland chemical fallow systems throughout North America and the mechanism of resistance involves 5-enolpyruvylshikimate-3-phosphate synthase (EPSPS) gene duplication. Agricultural fields in four states were surveyed for K. scoparia in 2013 and tested for glyphosate-resistance level and EPSPS gene copy number. Glyphosate resistance was confirmed in K. scoparia populations collected from sugarbeet fields in Colorado, Wyoming, and Nebraska, and Montana. Glyphosate resistance was also confirmed in K. scoparia accessions collected from wheat-fallow fields in Montana. All GR samples had increased EPSPS gene copy number, with median population values up to 11 from sugarbeet fields and up to 13 in Montana wheat-fallow fields. The results indicate that glyphosate susceptibility can be accurately diagnosed using EPSPS gene copy number. PMID:27992501

  6. EPSPS Gene Copy Number and Whole-Plant Glyphosate Resistance Level in Kochia scoparia.

    PubMed

    Gaines, Todd A; Barker, Abigail L; Patterson, Eric L; Westra, Philip; Westra, Eric P; Wilson, Robert G; Jha, Prashant; Kumar, Vipan; Kniss, Andrew R

    2016-01-01

    Glyphosate-resistant (GR) Kochia scoparia has evolved in dryland chemical fallow systems throughout North America and the mechanism of resistance involves 5-enolpyruvylshikimate-3-phosphate synthase (EPSPS) gene duplication. Agricultural fields in four states were surveyed for K. scoparia in 2013 and tested for glyphosate-resistance level and EPSPS gene copy number. Glyphosate resistance was confirmed in K. scoparia populations collected from sugarbeet fields in Colorado, Wyoming, and Nebraska, and Montana. Glyphosate resistance was also confirmed in K. scoparia accessions collected from wheat-fallow fields in Montana. All GR samples had increased EPSPS gene copy number, with median population values up to 11 from sugarbeet fields and up to 13 in Montana wheat-fallow fields. The results indicate that glyphosate susceptibility can be accurately diagnosed using EPSPS gene copy number.

  7. Plasmodium copy number variation scan: gene copy numbers evaluation in haploid genomes.

    PubMed

    Beghain, Johann; Langlois, Anne-Claire; Legrand, Eric; Grange, Laura; Khim, Nimol; Witkowski, Benoit; Duru, Valentine; Ma, Laurence; Bouchier, Christiane; Ménard, Didier; Paul, Richard E; Ariey, Frédéric

    2016-04-12

    In eukaryotic genomes, deletion or amplification rates have been estimated to be a thousand more frequent than single nucleotide variation. In Plasmodium falciparum, relatively few transcription factors have been identified, and the regulation of transcription is seemingly largely influenced by gene amplification events. Thus copy number variation (CNV) is a major mechanism enabling parasite genomes to adapt to new environmental changes. Currently, the detection of CNVs is based on quantitative PCR (qPCR), which is significantly limited by the relatively small number of genes that can be analysed at any one time. Technological advances that facilitate whole-genome sequencing, such as next generation sequencing (NGS) enable deeper analyses of the genomic variation to be performed. Because the characteristics of Plasmodium CNVs need special consideration in algorithms and strategies for which classical CNV detection programs are not suited a dedicated algorithm to detect CNVs across the entire exome of P. falciparum was developed. This algorithm is based on a custom read depth strategy through NGS data and called PlasmoCNVScan. The analysis of CNV identification on three genes known to have different levels of amplification and which are located either in the nuclear, apicoplast or mitochondrial genomes is presented. The results are correlated with the qPCR experiments, usually used for identification of locus specific amplification/deletion. This tool will facilitate the study of P. falciparum genomic adaptation in response to ecological changes: drug pressure, decreased transmission, reduction of the parasite population size (transition to pre-elimination endemic area).

  8. The cost of copy number in a selfish genetic element: the 2-μm plasmid of Saccharomyces cerevisiae.

    PubMed

    Harrison, Ellie; Koufopanou, V; Burt, A; MacLean, R C

    2012-11-01

    Many autonomously replicating genetic elements exist as multiple copies within the cell. The copy number of these elements is often assumed to have important fitness consequences for both element and host, yet the forces shaping its evolution are not well understood. The 2 μm is a multicopy plasmid of Saccharomyces yeasts, encoding just four genes that are solely involved in plasmid replication. One simple model for the fitness relationship between yeasts and 2 μm is that plasmid copy number evolves as a trade-off between selection for increased vertical transmission, favouring high copy number, and selection for decreased virulence, favouring low copy number. To test this model, we experimentally manipulated the copy number of the plasmid and directly measured the fitness cost, in terms of growth rate reduction, associated with high plasmid copy number. We find that the fitness burden imposed by the 2 μm increases with plasmid copy number, such that each copy imposes a fitness burden of 0.17% (± 0.008%), greatly exceeding the cost expected for it to be stably maintained in yeast populations. Our results demonstrate the crucial importance of copy number in the evolution of yeast per 2 μm associations and pave the way for future studies examining how selection can shape the cost of multicopy elements. © 2012 The Authors. Journal of Evolutionary Biology © 2012 European Society For Evolutionary Biology.

  9. Modulation of Mitochondrial DNA Copy Number to Induce Hepatocytic Differentiation of Human Amniotic Epithelial Cells.

    PubMed

    Vaghjiani, Vijesh; Cain, Jason E; Lee, William; Vaithilingam, Vijayaganapathy; Tuch, Bernard E; St John, Justin C

    2017-10-15

    Mitochondrial deoxyribonucleic acid (mtDNA) copy number is tightly regulated during pluripotency and differentiation. There is increased demand of cellular adenosine triphosphate (ATP) during differentiation for energy-intensive cell types such as hepatocytes and neurons to meet the cell's functional requirements. During hepatocyte differentiation, mtDNA copy number should be synchronously increased to generate sufficient ATP through oxidative phosphorylation. Unlike bone marrow mesenchymal cells, mtDNA copy number failed to increase by 28 days of differentiation of human amniotic epithelial cells (hAEC) into hepatocyte-like cells (HLC) despite their expression of some end-stage hepatic markers. This was due to higher levels of DNA methylation at exon 2 of POLGA, the mtDNA-specific replication factor. Treatment with a DNA demethylation agent, 5-azacytidine, resulted in increased mtDNA copy number, reduced DNA methylation at exon 2 of POLGA, and reduced hepatic gene expression. Depletion of mtDNA followed by subsequent differentiation did not increase mtDNA copy number, but reduced DNA methylation at exon 2 of POLGA and increased expression of hepatic and pluripotency genes. We encapsulated hAEC in barium alginate microcapsules and subsequently differentiated them into HLC. Encapsulation resulted in no net increase of mtDNA copy number but a significant reduction in DNA methylation of POLGA. RNAseq analysis showed that differentiated HLC express hepatocyte-specific genes but also increased expression of inflammatory interferon genes. Differentiation in encapsulated cells showed suppression of inflammatory genes as well as increased expression of genes associated with hepatocyte function pathways and networks. This study demonstrates that an increase in classical hepatic gene expression can be achieved in HLC through encapsulation, although they fail to effectively regulate mtDNA copy number.

  10. Mefloquine resistance in Plasmodium falciparum and increased pfmdr1 gene copy number

    PubMed Central

    Brockman, Alan; McGready, Rose; Ashley, Elizabeth; Phaipun, Lucy; Patel, Rina; Laing, Kenneth; Looareesuwan, Sornchai; White, Nicholas J; Nosten, François; Krishna, Sanjeev

    2015-01-01

    Summary Background The borders of Thailand harbour the world’s most multidrug resistant Plasmodium falciparum parasites. In 1984 mefloquine was introduced as treatment for uncomplicated falciparum malaria, but substantial resistance developed within 6 years. A combination of artesunate with mefloquine now cures more than 95% of acute infections. For both treatment regimens, the underlying mechanisms of resistance are not known. Methods The relation between polymorphisms in the P falciparum multidrug resistant gene 1 (pfmdr1) and the in-vitro and in-vivo responses to mefloquine were assessed in 618 samples from patients with falciparum malaria studied prospectively over 12 years. pfmdr1 copy number was assessed by a robust real-time PCR assay. Single nucleotide polymorphisms of pfmdr1, P falciparum chloroquine resistance transporter gene (pfcrt) and P falciparum Ca2+ ATPase gene (pfATP6) were assessed by PCR-restriction fragment length polymorphism. Findings Increased copy number of pfmdr1 was the most important determinant of in-vitro and in-vivo resistance to mefloquine, and also to reduced artesunate sensitivity in vitro. In a Cox regression model with control for known confounders, increased pfmdr1 copy number was associated with an attributable hazard ratio (AHR) for treatment failure of 6·3 (95% CI 2·9–13·8, p<0·001) after mefloquine monotherapy and 5·4 (2·0-14·6, p=0·001) after artesunate-mefloquine therapy. Single nucleotide polymorphisms in pfmdr1 were associated with increased mefloquine susceptibility in vitro, but not in vivo. Interpretation Amplification in pfmdr1 is the main cause of resistance to mefloquine in falciparum malaria. Relevance to practice Multidrug resistant P falciparum malaria is common in southeast Asia, but difficult to identify and treat. Genes that encode parasite transport proteins maybe involved in export of drugs and so cause resistance. In this study we show that increase in copy number of pfmdr1, a gene encoding a

  11. Copy number analysis reveals a novel multiexon deletion of the COLQ gene in congenital myasthenia.

    PubMed

    Wang, Wei; Wu, Yanhong; Wang, Chen; Jiao, Jinsong; Klein, Christopher J

    2016-12-01

    Congenital myasthenic syndrome (CMS) is genetically and clinically heterogeneous. 1 Despite a considerable number of causal genes discovered, many patients are left without a specific diagnosis after genetic testing. The presumption is that novel genes yet to be discovered will account for the majority of such patients. However, it is also possible that we are neglecting a type of genetic variation: copy number changes (>50 bp) as causal for some of these patients. Next-generation sequencing (NGS) can simultaneously screen all known causal genes 2 and is increasingly being validated to have a potential to identify copy number changes. 3 We present a CMS case who did not receive a genetic diagnosis from previous Sanger sequencing, but through a novel copy number analysis algorithm integrated into our targeted NGS panel, we discovered a novel copy number mutation in the COLQ gene and made a genetic diagnosis. This discovery expands the genotype-phenotype correlation of CMS, leads to improved genetic counsel, and allows for specific pharmacologic treatment. 1 .

  12. Copy number polymorphism of the salivary amylase gene: implications in human nutrition research.

    PubMed

    Santos, J L; Saus, E; Smalley, S V; Cataldo, L R; Alberti, G; Parada, J; Gratacòs, M; Estivill, X

    2012-01-01

    The salivary α-amylase is a calcium-binding enzyme that initiates starch digestion in the oral cavity. The α-amylase genes are located in a cluster on the chromosome that includes salivary amylase genes (AMY1), two pancreatic α-amylase genes (AMY2A and AMY2B) and a related pseudogene. The AMY1 genes show extensive copy number variation which is directly proportional to the salivary α-amylase content in saliva. The α-amylase amount in saliva is also influenced by other factors, such as hydration status, psychosocial stress level, and short-term dietary habits. It has been shown that the average copy number of AMY1 gene is higher in populations that evolved under high-starch diets versus low-starch diets, reflecting an intense positive selection imposed by diet on amylase copy number during evolution. In this context, a number of different aspects can be considered in evaluating the possible impact of copy number variation of the AMY1 gene on nutrition research, such as issues related to human diet gene evolution, action on starch digestion, effect on glycemic response after starch consumption, modulation of the action of α-amylases inhibitors, effect on taste perception and satiety, influence on psychosocial stress and relation to oral health. Copyright © 2012 S. Karger AG, Basel.

  13. Determination of absolute expression profiles using multiplexed miRNA analysis

    PubMed Central

    Song, Jee Hoon; Cheng, Yulan; Saeui, Christopher T.; Cheung, Douglas G.; Croce, Carlo M.; Yarema, Kevin J.; Meltzer, Stephen J.; Liu, Kelvin J.; Wang, Tza-Huei

    2017-01-01

    Accurate measurement of miRNA expression is critical to understanding their role in gene expression as well as their application as disease biomarkers. Correct identification of changes in miRNA expression rests on reliable normalization to account for biological and technological variance between samples. Ligo-miR is a multiplex assay designed to rapidly measure absolute miRNA copy numbers, thus reducing dependence on biological controls. It uses a simple 2-step ligation process to generate length coded products that can be quantified using a variety of DNA sizing methods. We demonstrate Ligo-miR’s ability to quantify miRNA expression down to 20 copies per cell sensitivity, accurately discriminate between closely related miRNA, and reliably measure differential changes as small as 1.2-fold. Then, benchmarking studies were performed to show the high correlation between Ligo-miR, microarray, and TaqMan qRT-PCR. Finally, Ligo-miR was used to determine copy number profiles in a number of breast, esophageal, and pancreatic cell lines and to demonstrate the utility of copy number analysis for providing layered insight into expression profile changes. PMID:28704432

  14. Population-genetic nature of copy number variations in the human genome.

    PubMed

    Kato, Mamoru; Kawaguchi, Takahisa; Ishikawa, Shumpei; Umeda, Takayoshi; Nakamichi, Reiichiro; Shapero, Michael H; Jones, Keith W; Nakamura, Yusuke; Aburatani, Hiroyuki; Tsunoda, Tatsuhiko

    2010-03-01

    Copy number variations (CNVs) are universal genetic variations, and their association with disease has been increasingly recognized. We designed high-density microarrays for CNVs, and detected 3000-4000 CNVs (4-6% of the genomic sequence) per population that included CNVs previously missed because of smaller sizes and residing in segmental duplications. The patterns of CNVs across individuals were surprisingly simple at the kilo-base scale, suggesting the applicability of a simple genetic analysis for these genetic loci. We utilized the probabilistic theory to determine integer copy numbers of CNVs and employed a recently developed phasing tool to estimate the population frequencies of integer copy number alleles and CNV-SNP haplotypes. The results showed a tendency toward a lower frequency of CNV alleles and that most of our CNVs were explained only by zero-, one- and two-copy alleles. Using the estimated population frequencies, we found several CNV regions with exceptionally high population differentiation. Investigation of CNV-SNP linkage disequilibrium (LD) for 500-900 bi- and multi-allelic CNVs per population revealed that previous conflicting reports on bi-allelic LD were unexpectedly consistent and explained by an LD increase correlated with deletion-allele frequencies. Typically, the bi-allelic LD was lower than SNP-SNP LD, whereas the multi-allelic LD was somewhat stronger than the bi-allelic LD. After further investigation of tag SNPs for CNVs, we conclude that the customary tagging strategy for disease association studies can be applicable for common deletion CNVs, but direct interrogation is needed for other types of CNVs.

  15. [Detection of the exogenous gene copy number of the transgenic tomato anti-caries vaccine].

    PubMed

    Bai, Guo-hui; Liu, Jian-guo; Tian, Yuan; Chen, Zhu; Bai, Peng-yuan; Han, Qi; Gu, Yu; Guan, Xiao-yan; Wang, Hai-hui

    2013-12-01

    To detect the exogenous gene copy number of the transgenic tomato anti-caries vaccine by using the SYBR Green real-time PCR. Recombinant plasmid pEAC10 and pEPC10 were used as standard to detect genome samples of exogenous gene pacA-ctxB and pacP-ctxB by SYBR green fluorescent quantitation, then the average value was calculated as gene copy number. The copy number of the transgenic tomato carrying pacA-ctxB was 1.3 and the pacP-ctxB was 3.2. The transgenic tomato plants which have high stability are low-copy transgenic plants. Supported by National Natural Science Foundation of China (30160086, 81260164), Science and Technical Fund of Guizhou Province (LKZ[2011]41), Project of Technology Innovation Team in Guizhou Province, Leading Academic Discipline Construction Project in Guizhou Province and Excellent Scientific Research Team Cultivation Project in Zunyi Medical College ([2012]12).

  16. GEAR: genomic enrichment analysis of regional DNA copy number changes.

    PubMed

    Kim, Tae-Min; Jung, Yu-Chae; Rhyu, Mun-Gan; Jung, Myeong Ho; Chung, Yeun-Jun

    2008-02-01

    We developed an algorithm named GEAR (genomic enrichment analysis of regional DNA copy number changes) for functional interpretation of genome-wide DNA copy number changes identified by array-based comparative genomic hybridization. GEAR selects two types of chromosomal alterations with potential biological relevance, i.e. recurrent and phenotype-specific alterations. Then it performs functional enrichment analysis using a priori selected functional gene sets to identify primary and clinical genomic signatures. The genomic signatures identified by GEAR represent functionally coordinated genomic changes, which can provide clues on the underlying molecular mechanisms related to the phenotypes of interest. GEAR can help the identification of key molecular functions that are activated or repressed in the tumor genomes leading to the improved understanding on the tumor biology. GEAR software is available with online manual in the website, http://www.systemsbiology.co.kr/GEAR/.

  17. Copy number variations in the amylase gene (AMY2B) in Japanese native dog breeds.

    PubMed

    Tonoike, A; Hori, Y; Inoue-Murayama, M; Konno, A; Fujita, K; Miyado, M; Fukami, M; Nagasawa, M; Mogi, K; Kikusui, T

    2015-10-01

    A recent study suggested that increased copy numbers of the AMY2B gene might be a crucial genetic change that occurred during the domestication of dogs. To investigate AMY2B expansion in ancient breeds, which are highly divergent from modern breeds of presumed European origins, we analysed copy numbers in native Japanese dog breeds. Copy numbers in the Akita and Shiba, two ancient breeds in Japan, were higher than those in wolves. However, compared to a group of various modern breeds, Akitas had fewer copy numbers, whereas Shibas exhibited the same level of expansion as modern breeds. Interestingly, average AMY2B copy numbers in the Jomon-Shiba, a unique line of the Shiba that has been bred to maintain their appearance resembling ancestors of native Japanese dogs and that originated in the same region as the Akita, were lower than those in the Shiba. These differences may have arisen from the earlier introduction of rice farming to the region in which the Shiba originated compared to the region in which the Akita and the Jomon-Shiba originated. Thus, our data provide insights into the relationship between the introduction of agriculture and AMY2B expansion in dogs. © 2015 Stichting International Foundation for Animal Genetics.

  18. 10 CFR 51.66 - Environmental report-number of copies; distribution.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... 10 Energy 2 2013-01-01 2013-01-01 false Environmental report-number of copies; distribution. 51.66 Section 51.66 Energy NUCLEAR REGULATORY COMMISSION (CONTINUED) ENVIRONMENTAL PROTECTION REGULATIONS FOR DOMESTIC LICENSING AND RELATED REGULATORY FUNCTIONS National Environmental Policy Act-Regulations...

  19. ITALICS: an algorithm for normalization and DNA copy number calling for Affymetrix SNP arrays.

    PubMed

    Rigaill, Guillem; Hupé, Philippe; Almeida, Anna; La Rosa, Philippe; Meyniel, Jean-Philippe; Decraene, Charles; Barillot, Emmanuel

    2008-03-15

    Affymetrix SNP arrays can be used to determine the DNA copy number measurement of 11 000-500 000 SNPs along the genome. Their high density facilitates the precise localization of genomic alterations and makes them a powerful tool for studies of cancers and copy number polymorphism. Like other microarray technologies it is influenced by non-relevant sources of variation, requiring correction. Moreover, the amplitude of variation induced by non-relevant effects is similar or greater than the biologically relevant effect (i.e. true copy number), making it difficult to estimate non-relevant effects accurately without including the biologically relevant effect. We addressed this problem by developing ITALICS, a normalization method that estimates both biological and non-relevant effects in an alternate, iterative manner, accurately eliminating irrelevant effects. We compared our normalization method with other existing and available methods, and found that ITALICS outperformed these methods for several in-house datasets and one public dataset. These results were validated biologically by quantitative PCR. The R package ITALICS (ITerative and Alternative normaLIzation and Copy number calling for affymetrix Snp arrays) has been submitted to Bioconductor.

  20. Inferring mechanisms of copy number change from haplotype structures at the human DEFA1A3 locus.

    PubMed

    Black, Holly A; Khan, Fayeza F; Tyson, Jess; Al Armour, John

    2014-07-21

    The determination of structural haplotypes at copy number variable regions can indicate the mechanisms responsible for changes in copy number, as well as explain the relationship between gene copy number and expression. However, obtaining spatial information at regions displaying extensive copy number variation, such as the DEFA1A3 locus, is complex, because of the difficulty in the phasing and assembly of these regions. The DEFA1A3 locus is intriguing in that it falls within a region of high linkage disequilibrium, despite its high variability in copy number (n = 3-16); hence, the mechanisms responsible for changes in copy number at this locus are unclear. In this study, a region flanking the DEFA1A3 locus was sequenced across 120 independent haplotypes with European ancestry, identifying five common classes of DEFA1A3 haplotype. Assigning DEFA1A3 class to haplotypes within the 1000 Genomes project highlights a significant difference in DEFA1A3 class frequencies between populations with different ancestry. The features of each DEFA1A3 class, for example, the associated DEFA1A3 copy numbers, were initially assessed in a European cohort (n = 599) and replicated in the 1000 Genomes samples, showing within-class similarity, but between-class and between-population differences in the features of the DEFA1A3 locus. Emulsion haplotype fusion-PCR was used to generate 61 structural haplotypes at the DEFA1A3 locus, showing a high within-class similarity in structure. Structural haplotypes across the DEFA1A3 locus indicate that intra-allelic rearrangement is the predominant mechanism responsible for changes in DEFA1A3 copy number, explaining the conservation of linkage disequilibrium across the locus. The identification of common structural haplotypes at the DEFA1A3 locus could aid studies into how DEFA1A3 copy number influences expression, which is currently unclear.

  1. [Copy number variation of trinucleotide repeat in dynamic mutation sites of autosomal dominant cerebellar ataxias related genes].

    PubMed

    Chen, Pu; Ma, Mingyi; Shang, Huifang; Su, Dan; Zhang, Sizhong; Yang, Yuan

    2009-12-01

    To standardize the experimental procedure of the gene test for autosomal dominant cerebellar ataxias (ADCA), and provide the basis for quantitative criteria of the dynamic mutation of spinocerebellar ataxia (SCA) genes in Chinese population. Genotyping of the dynamic mutation loci of the SCA1, SCA2, SCA3, SCA6 and SCA7 genes was performed, using florescence PCR-capillary electrophoresis followed by DNA sequencing, to investigate the variation range of copy number of CAG tandem repeat of the genes in 263 probands of ADCA pedigrees and 261 non-related normal controls. Based on the sequencing result, the bias of the CAG copy number estimation using capillary electrophoresis with different DNA controls was compared to analyze the technical detailes of the electrophresis method in testing the dynamic mutation sites. PCR products containing dynamic mutation loci of the SCA genes showed significantly higher mobility than that of molecular weigh marker with relatively balanced GC content. This was particularly obvious in the SCA2, SCA 6 and SCA7 genes whereas the deviation of copy number could be corrected to +/-1 when known CAG copy number fragments were used as controls. The mobility of PCR products was primarily related to the copy number of CAG repeat when the fragments contained normal CAG repeat. In the 263 ADCA pedigrees, 6 (2.28%) carried SCA1 gene mutation, 8 (3.04%) had SCA2 mutation and 81 (30.80%) harbored SCA3 mutation. The gene mutation of SCA6 and SCA7 was not found. The normal variation range of the CAG repeat was 17-36 copies in SCA1 gene, 13-30 copies in SCA2, 14-39 copies in SCA3, 6-16 copies in SCA6 and 6-13 copies in SCA7. The heterozygosity was 76.1%, 17.7%, 74.4%, 72.1% and 41.3%, respectively. The mutation range of the CAG repeat was 49-56 copies in SCA1 gene, 36-41 copies in SCA2, 59-81 copies in SCA3. Neither homozygous mutation of an SCA gene nor double heterozygous mutation of the SCA genes was observed in the study. The copy number of the CAG

  2. Why to compare absolute numbers of mitochondria.

    PubMed

    Schmitt, Sabine; Schulz, Sabine; Schropp, Eva-Maria; Eberhagen, Carola; Simmons, Alisha; Beisker, Wolfgang; Aichler, Michaela; Zischka, Hans

    2014-11-01

    Prompted by pronounced structural differences between rat liver and rat hepatocellular carcinoma mitochondria, we suspected these mitochondrial populations to differ massively in their molecular composition. Aiming to reveal these mitochondrial differences, we came across the issue on how to normalize such comparisons and decided to focus on the absolute number of mitochondria. To this end, fluorescently stained mitochondria were quantified by flow cytometry. For rat liver mitochondria, this approach resulted in mitochondrial protein contents comparable to earlier reports using alternative methods. We determined similar protein contents for rat liver, heart and kidney mitochondria. In contrast, however, lower protein contents were determined for rat brain mitochondria and for mitochondria from the rat hepatocellular carcinoma cell line McA 7777. This result challenges mitochondrial comparisons that rely on equal protein amounts as a typical normalization method. Exemplarily, we therefore compared the activity and susceptibility toward inhibition of complex II of rat liver and hepatocellular carcinoma mitochondria and obtained significant discrepancies by either normalizing to protein amount or to absolute mitochondrial number. Importantly, the latter normalization, in contrast to the former, demonstrated a lower complex II activity and higher susceptibility toward inhibition in hepatocellular carcinoma mitochondria compared to liver mitochondria. These findings demonstrate that solely normalizing to protein amount may obscure essential molecular differences between mitochondrial populations. Copyright © 2014 Elsevier B.V. and Mitochondria Research Society. All rights reserved.

  3. Analysis of copy number variations reveals differences among cattle breeds

    USDA-ARS?s Scientific Manuscript database

    Genomic structural variation is an important and abundant source of genetic and phenotypic variation. Here we describe the first systematic and genome-wide analysis of copy number variations (CNVs) in the modern domesticated cattle using array comparative genomic hybridization (array CGH) and quanti...

  4. Population-genetic properties of differentiated copy number variations in cattle

    USDA-ARS?s Scientific Manuscript database

    Copy number variations (CNVs) have been shown to be both common in mammals and important for understanding the relationship between genotype and phenotype. However, CNV differentiation, selection and its population genetic properties are not well understood across diverse populations. We performed a...

  5. rDNA Copy Number Variants Are Frequent Passenger Mutations in Saccharomyces cerevisiae Deletion Collections and de Novo Transformants

    PubMed Central

    Kwan, Elizabeth X.; Wang, Xiaobin S.; Amemiya, Haley M.; Brewer, Bonita J.; Raghuraman, M. K.

    2016-01-01

    The Saccharomyces cerevisiae ribosomal DNA (rDNA) locus is known to exhibit greater instability relative to the rest of the genome. However, wild-type cells preferentially maintain a stable number of rDNA copies, suggesting underlying genetic control of the size of this locus. We performed a screen of a subset of the Yeast Knock-Out (YKO) single gene deletion collection to identify genetic regulators of this locus and to determine if rDNA copy number correlates with yeast replicative lifespan. While we found no correlation between replicative lifespan and rDNA size, we identified 64 candidate strains with significant rDNA copy number differences. However, in the process of validating candidate rDNA variants, we observed that independent isolates of our de novo gene deletion strains had unsolicited but significant changes in rDNA copy number. Moreover, we were not able to recapitulate rDNA phenotypes from the YKO yeast deletion collection. Instead, we found that the standard lithium acetate transformation protocol is a significant source of rDNA copy number variation, with lithium acetate exposure being the treatment causing variable rDNA copy number events after transformation. As the effects of variable rDNA copy number are being increasingly reported, our finding that rDNA is affected by lithium acetate exposure suggested that rDNA copy number variants may be influential passenger mutations in standard strain construction in S. cerevisiae. PMID:27449518

  6. rDNA Copy Number Variants Are Frequent Passenger Mutations in Saccharomyces cerevisiae Deletion Collections and de Novo Transformants.

    PubMed

    Kwan, Elizabeth X; Wang, Xiaobin S; Amemiya, Haley M; Brewer, Bonita J; Raghuraman, M K

    2016-09-08

    The Saccharomyces cerevisiae ribosomal DNA (rDNA) locus is known to exhibit greater instability relative to the rest of the genome. However, wild-type cells preferentially maintain a stable number of rDNA copies, suggesting underlying genetic control of the size of this locus. We performed a screen of a subset of the Yeast Knock-Out (YKO) single gene deletion collection to identify genetic regulators of this locus and to determine if rDNA copy number correlates with yeast replicative lifespan. While we found no correlation between replicative lifespan and rDNA size, we identified 64 candidate strains with significant rDNA copy number differences. However, in the process of validating candidate rDNA variants, we observed that independent isolates of our de novo gene deletion strains had unsolicited but significant changes in rDNA copy number. Moreover, we were not able to recapitulate rDNA phenotypes from the YKO yeast deletion collection. Instead, we found that the standard lithium acetate transformation protocol is a significant source of rDNA copy number variation, with lithium acetate exposure being the treatment causing variable rDNA copy number events after transformation. As the effects of variable rDNA copy number are being increasingly reported, our finding that rDNA is affected by lithium acetate exposure suggested that rDNA copy number variants may be influential passenger mutations in standard strain construction in S. cerevisiae. Copyright © 2016 Kwan et al.

  7. Association of Higher Defensin β-4 Genomic Copy Numbers with Behçet's Disease in Iraqi Patients.

    PubMed

    Hameed, Ammar F; Jaradat, Sameh; Al-Musawi, Bassam M; Sharquie, Khalifa; Ibrahim, Mazin J; Hayani, Raafa K; Norgauer, Johannes

    2015-11-01

    Behçet's disease (BD) is an immune-mediated small vessel systemic vasculitis. Human β-defensins are antimicrobial peptides associated with many inflammatory diseases and are encoded by the β-defensin family of multiple-copy genes. However, their role in BD necessitates further investigation. The aim of the present study was to investigate the possible association of BD in its various clinical forms with defensin β-4 (DEFB4) genomic copy numbers. This case-control study was conducted from January to September 2011 and included 50 control subjects and 27 unrelated Iraqi BD patients registered at Baghdad Teaching Hospital, Bagdad, Iraq. Copy numbers of the DEFB4 gene were determined using the comparative cycle threshold method by duplex real-time polymerase chain reaction technology at the Department of Dermatology of Jena University Hospital, Jena, Germany. DEFB4 genomic copy numbers were significantly higher in the BD group compared to the control group (P = 0.010). However, no statistically significant association was found between copy numbers and clinical variables within the BD group. The DEFB4 copy number polymorphism may be associated with BD; however, it is not associated with different clinical manifestations of the disease.

  8. Genetic Structures of Copy Number Variants Revealed by Genotyping Single Sperm

    PubMed Central

    Luo, Minjie; Cui, Xiangfeng; Fredman, David; Brookes, Anthony J.; Azaro, Marco A.; Greenawalt, Danielle M.; Hu, Guohong; Wang, Hui-Yun; Tereshchenko, Irina V.; Lin, Yong; Shentu, Yue; Gao, Richeng; Shen, Li; Li, Honghua

    2009-01-01

    Background Copy number variants (CNVs) occupy a significant portion of the human genome and may have important roles in meiotic recombination, human genome evolution and gene expression. Many genetic diseases may be underlain by CNVs. However, because of the presence of their multiple copies, variability in copy numbers and the diploidy of the human genome, detailed genetic structure of CNVs cannot be readily studied by available techniques. Methodology/Principal Findings Single sperm samples were used as the primary subjects for the study so that CNV haplotypes in the sperm donors could be studied individually. Forty-eight CNVs characterized in a previous study were analyzed using a microarray-based high-throughput genotyping method after multiplex amplification. Seventeen single nucleotide polymorphisms (SNPs) were also included as controls. Two single-base variants, either allelic or paralogous, could be discriminated for all markers. Microarray data were used to resolve SNP alleles and CNV haplotypes, to quantitatively assess the numbers and compositions of the paralogous segments in each CNV haplotype. Conclusions/Significance This is the first study of the genetic structure of CNVs on a large scale. Resulting information may help understand evolution of the human genome, gain insight into many genetic processes, and discriminate between CNVs and SNPs. The highly sensitive high-throughput experimental system with haploid sperm samples as subjects may be used to facilitate detailed large-scale CNV analysis. PMID:19384415

  9. Genome-Wide Copy Number Variation Association Analyses for Age at Menarche

    PubMed Central

    Li, Jian; Pan, Rong; Shen, Hui; Tian, Qing; Zhou, Yu; Liu, Yong-Jun

    2012-01-01

    Context: Menarche is a significant physiological event for women. Age at menarche (AAM) is a heritable trait associated with many common female diseases. The genetic basis and the mechanism for AAM are largely unknown. Copy number variation (CNV) is a common type of genetic variation underlying human complex traits. The importance of CNV to AAM variation is unclear. Objective: The objective of the study was to identify CNV important to AAM variation. Design: We performed the first genome-wide CNV study of AAM in 1654 Caucasian females using Affymetrix human single-nucleotide polymorphism 6.0 array. We also replicated our findings in another Chinese cohort containing 752 women. Results: We identified a CNV, variation_38399, in the 2q14.2 region, for association with AAM (P = 1.03 × 10−3). The CNV has two variants (one copy and two copy), with a mean AAM of 14.00 yr and 12.90 yr, respectively. Interestingly, in a Chinese sample containing 752 women, this CNV has been replicated both with a marginally significant P = 0.090 and with a same direction of effect (a lower copy number for a later AAM). The CNV is located approximately 75 kb upstream of the diazepam binding inhibitor (DBI), a gene known to regulate estrogen levels, a key factor for menarche. Conclusion: Our findings for the first time identified a novel CNV and suggested the DBI-mediated endocrinological pathway as a potential mechanism for AAM regulation. PMID:22904172

  10. 10 CFR 51.58 - Environmental report-number of copies; distribution.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 10 Energy 2 2010-01-01 2010-01-01 false Environmental report-number of copies; distribution. 51.58 Section 51.58 Energy NUCLEAR REGULATORY COMMISSION (CONTINUED) ENVIRONMENTAL PROTECTION REGULATIONS FOR...)(4), each applicant for renewal of an operating or combined license for a nuclear power plant, each...

  11. 10 CFR 51.58 - Environmental report-number of copies; distribution.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... 10 Energy 2 2012-01-01 2012-01-01 false Environmental report-number of copies; distribution. 51.58 Section 51.58 Energy NUCLEAR REGULATORY COMMISSION (CONTINUED) ENVIRONMENTAL PROTECTION REGULATIONS FOR...)(4), each applicant for renewal of an operating or combined license for a nuclear power plant, each...

  12. 10 CFR 51.58 - Environmental report-number of copies; distribution.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... 10 Energy 2 2014-01-01 2014-01-01 false Environmental report-number of copies; distribution. 51.58 Section 51.58 Energy NUCLEAR REGULATORY COMMISSION (CONTINUED) ENVIRONMENTAL PROTECTION REGULATIONS FOR...)(4), each applicant for renewal of an operating or combined license for a nuclear power plant, each...

  13. 10 CFR 51.58 - Environmental report-number of copies; distribution.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... 10 Energy 2 2013-01-01 2013-01-01 false Environmental report-number of copies; distribution. 51.58 Section 51.58 Energy NUCLEAR REGULATORY COMMISSION (CONTINUED) ENVIRONMENTAL PROTECTION REGULATIONS FOR...)(4), each applicant for renewal of an operating or combined license for a nuclear power plant, each...

  14. 10 CFR 51.58 - Environmental report-number of copies; distribution.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 10 Energy 2 2011-01-01 2011-01-01 false Environmental report-number of copies; distribution. 51.58 Section 51.58 Energy NUCLEAR REGULATORY COMMISSION (CONTINUED) ENVIRONMENTAL PROTECTION REGULATIONS FOR...)(4), each applicant for renewal of an operating or combined license for a nuclear power plant, each...

  15. Mitochondrial-nuclear crosstalk, haplotype and copy number variation distinct in muscle fiber type, mitochondrial respiratory and metabolic enzyme activities.

    PubMed

    Liu, Xuan; Trakooljul, Nares; Hadlich, Frieder; Murani, Eduard; Wimmers, Klaus; Ponsuksili, Siriluck

    2017-10-25

    Genes expressed in mitochondria work in concert with those expressed in the nucleus to mediate oxidative phosphorylation (OXPHOS), a process that is relevant for muscle metabolism and meat quality. Mitochondrial genome activity can be efficiently studied and compared in Duroc and Pietrain pigs, which harbor different mitochondrial haplotypes and distinct muscle fiber types, mitochondrial respiratory activities, and fat content. Pietrain pigs homozygous-positive for malignant hyperthermia susceptibility (PiPP) carried only haplotype 8 and showed the lowest absolute mtDNA copy number accompanied by a decrease transcript abundance of mitochondrial-encoded subunits ND1, ND6, and ATP6 and nuclear-encoded subunits NDUFA11 and NDUFB8. In contrast, we found that haplotype 4 of Duroc pigs had significantly higher mitochondrial DNA (mtDNA) copy numbers and an increase transcript abundance of mitochondrial-encoded subunits ND1, ND6, and ATP6. These results suggest that the variation in mitochondrial and nuclear genetic background among these animals has an effect on mitochondrial content and OXPHOS system subunit expression. We observed the co-expression pattern of mitochondrial and nuclear encoded OXPHOS subunits suggesting that the mitochondrial-nuclear crosstalk functionally involves in muscle metabolism. The findings provide valuable information for understanding muscle biology processes and energy metabolism, and may direct use for breeding strategies to improve meat quality and animal health.

  16. Pfmdr1 copy number and arteminisin derivatives combination therapy failure in falciparum malaria in Cambodia.

    PubMed

    Lim, Pharath; Alker, Alisa P; Khim, Nimol; Shah, Naman K; Incardona, Sandra; Doung, Socheat; Yi, Poravuth; Bouth, Denis Mey; Bouchier, Christiane; Puijalon, Odile Mercereau; Meshnick, Steven R; Wongsrichanalai, Chansuda; Fandeur, Thierry; Le Bras, Jacques; Ringwald, Pascal; Ariey, Frédéric

    2009-01-12

    The combination of artesunate and mefloquine was introduced as the national first-line treatment for Plasmodium falciparum malaria in Cambodia in 2000. However, recent clinical trials performed at the Thai-Cambodian border have pointed to the declining efficacy of both artesunate-mefloquine and artemether-lumefantrine. Since pfmdr1 modulates susceptibility to mefloquine and artemisinin derivatives, the aim of this study was to assess the link between pfmdr1 copy number, in vitro susceptibility to individual drugs and treatment failure to combination therapy. Blood samples were collected from P. falciparum-infected patients enrolled in two in vivo efficacy studies in north-western Cambodia: 135 patients were treated with artemether-lumefantrine (AL group) in Sampovloun in 2002 and 2003, and 140 patients with artesunate-mefloquine (AM group) in Sampovloun and Veal Veng in 2003 and 2004. At enrollment, the in vitro IC50 was tested and the strains were genotyped for pfmdr1 copy number by real-time PCR. The pfmdr1 copy number was analysed for 115 isolates in the AM group, and for 109 isolates in the AL group. Parasites with increased pfmdr1 copy number had significantly reduced in vitro susceptibility to mefloquine, lumefantrine and artesunate. There was no association between pfmdr1 polymorphisms and in vitro susceptibilities. In the patients treated with AM, the mean pfmdr1copy number was lower in subjects with adequate clinical and parasitological response compared to those who experienced late treatment failure (n = 112, p < 0.001). This was not observed in the patients treated with AL (n = 96, p = 0.364). The presence of three or more copies of pfmdr1 were associated with recrudescence in artesunate-mefloquine treated patients (hazard ratio (HR) = 7.80 [95%CI: 2.09-29.10], N = 115), p = 0.002) but not with recrudescence in artemether-lumefantrine treated patients (HR = 1.03 [95%CI: 0.24-4.44], N = 109, p = 0.969). This study shows that pfmdr1 copy number is a

  17. Copy Number Variations Detection: Unravelling the Problem in Tangible Aspects.

    PubMed

    do Nascimento, Francisco; Guimaraes, Katia S

    2017-01-01

    In the midst of the important genomic variants associated to the susceptibility and resistance to complex diseases, Copy Number Variations (CNV) has emerged as a prevalent class of structural variation. Following the flood of next-generation sequencing data, numerous tools publicly available have been developed to provide computational strategies to identify CNV at improved accuracy. This review goes beyond scrutinizing the main approaches widely used for structural variants detection in general, including Split-Read, Paired-End Mapping, Read-Depth, and Assembly-based. In this paper, (1) we characterize the relevant technical details around the detection of CNV, which can affect the estimation of breakpoints and number of copies, (2) we pinpoint the most important insights related to GC-content and mappability biases, and (3) we discuss the paramount caveats in the tools evaluation process. The points brought out in this study emphasize common assumptions, a variety of possible limitations, valuable insights, and directions for desirable contributions to the state-of-the-art in CNV detection tools.

  18. Industrial Relevance of Chromosomal Copy Number Variation in Saccharomyces Yeasts

    PubMed Central

    Gorter de Vries, Arthur R.; Pronk, Jack T.

    2017-01-01

    ABSTRACT Chromosomal copy number variation (CCNV) plays a key role in evolution and health of eukaryotes. The unicellular yeast Saccharomyces cerevisiae is an important model for studying the generation, physiological impact, and evolutionary significance of CCNV. Fundamental studies of this yeast have contributed to an extensive set of methods for analyzing and introducing CCNV. Moreover, these studies provided insight into the balance between negative and positive impacts of CCNV in evolutionary contexts. A growing body of evidence indicates that CCNV not only frequently occurs in industrial strains of Saccharomyces yeasts but also is a key contributor to the diversity of industrially relevant traits. This notion is further supported by the frequent involvement of CCNV in industrially relevant traits acquired during evolutionary engineering. This review describes recent developments in genome sequencing and genome editing techniques and discusses how these offer opportunities to unravel contributions of CCNV in industrial Saccharomyces strains as well as to rationally engineer yeast chromosomal copy numbers and karyotypes. PMID:28341679

  19. Integrated genome-wide DNA copy number and expression analysis identifies distinct mechanisms of primary chemoresistance in ovarian carcinomas.

    PubMed

    Etemadmoghadam, Dariush; deFazio, Anna; Beroukhim, Rameen; Mermel, Craig; George, Joshy; Getz, Gad; Tothill, Richard; Okamoto, Aikou; Raeder, Maria B; Harnett, Paul; Lade, Stephen; Akslen, Lars A; Tinker, Anna V; Locandro, Bianca; Alsop, Kathryn; Chiew, Yoke-Eng; Traficante, Nadia; Fereday, Sian; Johnson, Daryl; Fox, Stephen; Sellers, William; Urashima, Mitsuyoshi; Salvesen, Helga B; Meyerson, Matthew; Bowtell, David

    2009-02-15

    A significant number of women with serous ovarian cancer are intrinsically refractory to platinum-based treatment. We analyzed somatic DNA copy number variation and gene expression data to identify key mechanisms associated with primary resistance in advanced-stage serous cancers. Genome-wide copy number variation was measured in 118 ovarian tumors using high-resolution oligonucleotide microarrays. A well-defined subset of 85 advanced-stage serous tumors was then used to relate copy number variation to primary resistance to treatment. The discovery-based approach was complemented by quantitative-PCR copy number analysis of 12 candidate genes as independent validation of previously reported associations with clinical outcome. Likely copy number variation targets and tumor molecular subtypes were further characterized by gene expression profiling. Amplification of 19q12, containing cyclin E (CCNE1), and 20q11.22-q13.12, mapping immediately adjacent to the steroid receptor coactivator NCOA3, was significantly associated with poor response to primary treatment. Other genes previously associated with copy number variation and clinical outcome in ovarian cancer were not associated with primary treatment resistance. Chemoresistant tumors with high CCNE1 copy number and protein expression were associated with increased cellular proliferation but so too was a subset of treatment-responsive patients, suggesting a cell-cycle independent role for CCNE1 in modulating chemoresponse. Patients with a poor clinical outcome without CCNE1 amplification overexpressed genes involved in extracellular matrix deposition. We have identified two distinct mechanisms of primary treatment failure in serous ovarian cancer, involving CCNE1 amplification and enhanced extracellular matrix deposition. CCNE1 copy number is validated as a dominant marker of patient outcome in ovarian cancer.

  20. LPA and PLG sequence variation and kringle IV-2 copy number in two populations.

    PubMed

    Crawford, Dana C; Peng, Ze; Cheng, Jan-Fang; Boffelli, Dario; Ahearn, Magdalena; Nguyen, Dan; Shaffer, Tristan; Yi, Qian; Livingston, Robert J; Rieder, Mark J; Nickerson, Deborah A

    2008-01-01

    Lp(a) levels have long been recognized as a potential risk factor for coronary heart disease that is almost completely under genetic control. Much of the genetics impacting Lp(a) levels has been attributed to the highly polymorphic LPA kringle IV-2 copy number variant, and most of the variance in Lp(a) levels in populations of European-descent is inversely correlated with kringle IV copy number. However, less of the variance is explained in African-descent populations for the same structural variation. African-descent populations have, on average, higher levels of Lp(a), suggesting other genetic factors contribute to Lp(a) level variability across populations. To identify potential cis-acting factors, we re-sequenced the gene LPA for single nucleotide polymorphism (SNP) discovery in 23 European-Americans and 24 African-Americans. We also re- sequenced the neighboring gene plasminogen (PLG) and genotyped the kringle IV copy number variant in the same reference samples. These data are the most comprehensive description of sequence variation in LPA and its relationship with the kringle IV copy number variant. With these data, we demonstrate that only a fraction of LPA sequence diversity has been previously documented. Also, we identify several high frequency SNPs present in the African-American sample but absent in the European-American sample. Finally, we show that SNPs within PLG are not in linkage disequilibrium with SNPs in LPA, and we show that kringle IV copy number variation is not in linkage disequilibrium with either LPA or PLG SNPs. Together, these data suggest that LPA SNPs could independently contribute to Lp(a) levels in the general population. Copyright (c) 2008 S. Karger AG, Basel.

  1. Copy number increase of ACTN4 is a prognostic indicator in salivary gland carcinoma

    PubMed Central

    Watabe, Yukio; Mori, Taisuke; Yoshimoto, Seiichi; Nomura, Takeshi; Shibahara, Takahiko; Yamada, Tesshi; Honda, Kazufumi

    2014-01-01

    Copy number increase (CNI) of ACTN4 has been associated with poor prognosis and metastatic phenotypes in various human carcinomas. To identify a novel prognostic factor for salivary gland carcinoma, we investigated the copy number of ACTN4. We evaluated DNA copy number of ACTN4 in 58 patients with salivary gland carcinoma by using fluorescent in situ hybridization (FISH). CNI of ACTN4 was recognized in 14 of 58 patients (24.1%) with salivary gland carcinoma. The cases with CNI of ACTN4 were closely associated with histological grade (P = 0.047) and vascular invasion (P = 0.033). The patients with CNI of ACTN4 had a significantly worse prognosis than the patients with normal copy number of ACTN4 (P = 0.0005 log-rank test). Univariate analysis by the Cox proportional hazards model showed that histological grade, vascular invasion, and CNI of ACTN4 were independent risk factors for cancer death. Vascular invasion (hazard ratio [HR]: 7.46; 95% confidence interval [CI]: 1.98–28.06) and CNI of ACTN4 (HR: 3.23; 95% CI: 1.08–9.68) remained as risk factors for cancer death in multivariate analysis. Thus, CNI of ACTN4 is a novel indicator for an unfavorable outcome in patients with salivary gland carcinoma. PMID:24574362

  2. Beneficial effect of a high number of copies of salivary amylase AMY1 gene on obesity risk in Mexican children.

    PubMed

    Mejía-Benítez, María A; Bonnefond, Amélie; Yengo, Loïc; Huyvaert, Marlène; Dechaume, Aurélie; Peralta-Romero, Jesús; Klünder-Klünder, Miguel; García Mena, Jaime; El-Sayed Moustafa, Julia S; Falchi, Mario; Cruz, Miguel; Froguel, Philippe

    2015-02-01

    Childhood obesity is a major public health problem in Mexico, affecting one in every three children. Genome-wide association studies identified genetic variants associated with childhood obesity, but a large missing heritability remains to be elucidated. We have recently shown a strong association between a highly polymorphic copy number variant encompassing the salivary amylase gene (AMY1 also known as AMY1A) and obesity in European and Asian adults. In the present study, we aimed to evaluate the association between AMY1 copy number and obesity in Mexican children. We evaluated the number of AMY1 copies in 597 Mexican children (293 obese children and 304 normal weight controls) through highly sensitive digital PCR. The effect of AMY1 copy number on obesity status was assessed using a logistic regression model adjusted for age and sex. We identified a marked effect of AMY1 copy number on reduced risk of obesity (OR per estimated copy 0.84, with the number of copies ranging from one to 16 in this population; p = 4.25 × 10(-6)). The global association between AMY1 copy number and reduced risk of obesity seemed to be mostly driven by the contribution of the highest AMY1 copy number. Strikingly, all children with >10 AMY1 copies were normal weight controls. Salivary amylase initiates the digestion of dietary starch, which is highly consumed in Mexico. Our current study suggests putative benefits of high number of AMY1 copies (and related production of salivary amylase) on energy metabolism in Mexican children.

  3. Copy number variation plays an important role in clinical epilepsy

    PubMed Central

    Olson, Heather; Shen, Yiping; Avallone, Jennifer; Sheidley, Beth R.; Pinsky, Rebecca; Bergin, Ann M.; Berry, Gerard T.; Duffy, Frank H.; Eksioglu, Yaman; Harris, David J.; Hisama, Fuki M.; Ho, Eugenia; Irons, Mira; Jacobsen, Christina M.; James, Philip; Kothare, Sanjeev; Khwaja, Omar; Lipton, Jonathan; Loddenkemper, Tobias; Markowitz, Jennifer; Maski, Kiran; Megerian, J. Thomas; Neilan, Edward; Raffalli, Peter C.; Robbins, Michael; Roberts, Amy; Roe, Eugene; Rollins, Caitlin; Sahin, Mustafa; Sarco, Dean; Schonwald, Alison; Smith, Sharon E.; Soul, Janet; Stoler, Joan M.; Takeoka, Masanori; Tan, Wen-Han; Torres, Alcy R.; Tsai, Peter; Urion, David K.; Weissman, Laura; Wolff, Robert; Wu, Bai-Lin; Miller, David T.; Poduri, Annapurna

    2015-01-01

    Objective To evaluate the role of copy number abnormalities detectable by chromosomal microarray (CMA) testing in patients with epilepsy at a tertiary care center. Methods We identified patients with ICD-9 codes for epilepsy or seizures and clinical CMA testing performed between October 2006 and February 2011 at Boston Children’s Hospital. We reviewed medical records and included patients meeting criteria for epilepsy. We phenotypically characterized patients with epilepsy-associated abnormalities on CMA. Results Of 973 patients who had CMA and ICD-9 codes for epilepsy or seizures, 805 patients satisfied criteria for epilepsy. We observed 437 copy number variants (CNVs) in 323 patients (1–4 per patient), including 185 (42%) deletions and 252 (58%) duplications. Forty (9%) were confirmed de novo, 186 (43%) were inherited, and parental data were unavailable for 211 (48%). Excluding full chromosome trisomies, CNV size ranged from 18 kb to 142 Mb, and 34% were over 500 kb. In at least 40 cases (5%), the epilepsy phenotype was explained by a CNV, including 29 patients with epilepsy-associated syndromes and 11 with likely disease-associated CNVs involving epilepsy genes or “hotspots.” We observed numerous recurrent CNVs including 10 involving loss or gain of Xp22.31, a region described in patients with and without epilepsy. Interpretation Copy number abnormalities play an important role in patients with epilepsy. Given that the diagnostic yield of CMA for epilepsy patients is similar to the yield in autism spectrum disorders and in prenatal diagnosis, for which published guidelines recommend testing with CMA, we recommend the implementation of CMA in the evaluation of unexplained epilepsy. PMID:24811917

  4. Modified screening and ranking algorithm for copy number variation detection.

    PubMed

    Xiao, Feifei; Min, Xiaoyi; Zhang, Heping

    2015-05-01

    Copy number variation (CNV) is a type of structural variation, usually defined as genomic segments that are 1 kb or larger, which present variable copy numbers when compared with a reference genome. The screening and ranking algorithm (SaRa) was recently proposed as an efficient approach for multiple change-points detection, which can be applied to CNV detection. However, some practical issues arise from application of SaRa to single nucleotide polymorphism data. In this study, we propose a modified SaRa on CNV detection to address these issues. First, we use the quantile normalization on the original intensities to guarantee that the normal mean model-based SaRa is a robust method. Second, a novel normal mixture model coupled with a modified Bayesian information criterion is proposed for candidate change-point selection and further clustering the potential CNV segments to copy number states. Simulations revealed that the modified SaRa became a robust method for identifying change-points and achieved better performance than the circular binary segmentation (CBS) method. By applying the modified SaRa to real data from the HapMap project, we illustrated its performance on detecting CNV segments. In conclusion, our modified SaRa method improves SaRa theoretically and numerically, for identifying CNVs with high-throughput genotyping data. The modSaRa package is implemented in R program and freely available at http://c2s2.yale.edu/software/modSaRa. Supplementary data are available at Bioinformatics online. © The Author 2014. Published by Oxford University Press. All rights reserved. For Permissions, please e-mail: journals.permissions@oup.com.

  5. Interpreting aCGH-defined karyotypic changes in gliomas using copy number status, loss of heterozygosity and allelic ratios

    PubMed Central

    Cowell, John K; Lo, Ken C; Luce, Jesse; Hawthorn, Lesleyann

    2009-01-01

    We have used SNP mapping arrays to simultaneously record copy number changes, loss of heterozygosity and allele ratios (ploidy) in a series of 13 gliomas. This combined analysis has defined novel amplification events in this tumor type involving chr1:241544532-243005121 and chr18:54716681-54917277 which contain the AKT3 and ZNF532 genes respectively. The high resolution of this analysis has also identified homozygous deletions involving chr17:25600031-26490848 and Chr19:53883612-55061878. Throughout the karyotypes of these tumors, the combined analysis revealed counter intuitive relationships between copy number and LOH that requires reinterpretation of the significance of copy number gains and losses. It was not uncommon to observe copy number gains that were associated with loss of heterozygosity as well as copy number losses that were not. These events appeared to be related to ploidy status in the tumors as determined using allelic ratio calculations. Overall, this analysis of gliomas provides evidence for the need to perform more comprehensive interpretation of the CGH data beyond copy number analysis alone to evaluate the significance of individual events in the karyotypes. PMID:19818351

  6. Mitochondrial fusion increases the mitochondrial DNA copy number in budding yeast.

    PubMed

    Hori, Akiko; Yoshida, Minoru; Ling, Feng

    2011-05-01

    Mitochondrial fusion plays an important role in mitochondrial DNA (mtDNA) maintenance, although the underlying mechanisms are unclear. In budding yeast, certain levels of reactive oxygen species (ROS) can promote recombination-mediated mtDNA replication, and mtDNA maintenance depends on the homologous DNA pairing protein Mhr1. Here, we show that the fusion of isolated yeast mitochondria, which can be monitored by the bimolecular fluorescence complementation-derived green fluorescent protein (GFP) fluorescence, increases the mtDNA copy number in a manner dependent on Mhr1. The fusion event, accompanied by the degradation of dissociated electron transport chain complex IV and transient reductions in the complex IV subunits by the inner membrane AAA proteases such as Yme1, increases ROS levels. Analysis of the initial stage of mitochondrial fusion in early log-phase cells produced similar results. Moreover, higher ROS levels in mitochondrial fusion-deficient mutant cells increased the amount of newly synthesized mtDNA, resulting in increases in the mtDNA copy number. In contrast, reducing ROS levels in yme1 null mutant cells significantly decreased the mtDNA copy number, leading to an increase in cells lacking mtDNA. Our results indicate that mitochondrial fusion induces mtDNA synthesis by facilitating ROS-triggered, recombination-mediated replication and thereby prevents the generation of mitochondria lacking DNA. © 2011 The Authors. Journal compilation © 2011 by the Molecular Biology Society of Japan/Blackwell Publishing Ltd.

  7. The human clinical phenotypes of altered CHRNA7 copy number.

    PubMed

    Gillentine, Madelyn A; Schaaf, Christian P

    2015-10-15

    Copy number variants (CNVs) have been implicated in multiple neuropsychiatric conditions, including autism spectrum disorder (ASD), schizophrenia, and intellectual disability (ID). Chromosome 15q13 is a hotspot for such CNVs due to the presence of low copy repeat (LCR) elements, which facilitate non-allelic homologous recombination (NAHR). Several of these CNVs have been overrepresented in individuals with neuropsychiatric disorders; yet variable expressivity and incomplete penetrance are commonly seen. Dosage sensitivity of the CHRNA7 gene, which encodes for the α7 nicotinic acetylcholine receptor in the human brain, has been proposed to have a major contribution to the observed cognitive and behavioral phenotypes, as it represents the smallest region of overlap to all the 15q13.3 deletions and duplications. Individuals with zero to four copies of CHRNA7 have been reported in the literature, and represent a range of clinical severity, with deletions causing generally more severe and more highly penetrant phenotypes. Potential mechanisms to account for the variable expressivity within each group of 15q13.3 CNVs will be discussed. Copyright © 2015 Elsevier Inc. All rights reserved.

  8. Effective normalization for copy number variation detection from whole genome sequencing.

    PubMed

    Janevski, Angel; Varadan, Vinay; Kamalakaran, Sitharthan; Banerjee, Nilanjana; Dimitrova, Nevenka

    2012-01-01

    Whole genome sequencing enables a high resolution view of the human genome and provides unique insights into genome structure at an unprecedented scale. There have been a number of tools to infer copy number variation in the genome. These tools, while validated, also include a number of parameters that are configurable to genome data being analyzed. These algorithms allow for normalization to account for individual and population-specific effects on individual genome CNV estimates but the impact of these changes on the estimated CNVs is not well characterized. We evaluate in detail the effect of normalization methodologies in two CNV algorithms FREEC and CNV-seq using whole genome sequencing data from 8 individuals spanning four populations. We apply FREEC and CNV-seq to a sequencing data set consisting of 8 genomes. We use multiple configurations corresponding to different read-count normalization methodologies in FREEC, and statistically characterize the concordance of the CNV calls between FREEC configurations and the analogous output from CNV-seq. The normalization methodologies evaluated in FREEC are: GC content, mappability and control genome. We further stratify the concordance analysis within genic, non-genic, and a collection of validated variant regions. The GC content normalization methodology generates the highest number of altered copy number regions. Both mappability and control genome normalization reduce the total number and length of copy number regions. Mappability normalization yields Jaccard indices in the 0.07 - 0.3 range, whereas using a control genome normalization yields Jaccard index values around 0.4 with normalization based on GC content. The most critical impact of using mappability as a normalization factor is substantial reduction of deletion CNV calls. The output of another method based on control genome normalization, CNV-seq, resulted in comparable CNV call profiles, and substantial agreement in variable gene and CNV region calls

  9. Genome-wide copy number variation (CNV) in patients with autoimmune Addison's disease

    PubMed Central

    2011-01-01

    Background Addison's disease (AD) is caused by an autoimmune destruction of the adrenal cortex. The pathogenesis is multi-factorial, involving genetic components and hitherto unknown environmental factors. The aim of the present study was to investigate if gene dosage in the form of copy number variation (CNV) could add to the repertoire of genetic susceptibility to autoimmune AD. Methods A genome-wide study using the Affymetrix GeneChip® Genome-Wide Human SNP Array 6.0 was conducted in 26 patients with AD. CNVs in selected genes were further investigated in a larger material of patients with autoimmune AD (n = 352) and healthy controls (n = 353) by duplex Taqman real-time polymerase chain reaction assays. Results We found that low copy number of UGT2B28 was significantly more frequent in AD patients compared to controls; conversely high copy number of ADAM3A was associated with AD. Conclusions We have identified two novel CNV associations to ADAM3A and UGT2B28 in AD. The mechanism by which this susceptibility is conferred is at present unclear, but may involve steroid inactivation (UGT2B28) and T cell maturation (ADAM3A). Characterization of these proteins may unravel novel information on the pathogenesis of autoimmunity. PMID:21851588

  10. Familial cases of Norrie disease detected by copy number analysis.

    PubMed

    Arai, Eisuke; Fujimaki, Takuro; Yanagawa, Ai; Fujiki, Keiko; Yokoyama, Toshiyuki; Okumura, Akihisa; Shimizu, Toshiaki; Murakami, Akira

    2014-09-01

    Norrie disease (ND, MIM#310600) is an X-linked disorder characterized by severe vitreoretinal dysplasia at birth. We report the results of causative NDP gene analysis in three male siblings with Norrie disease and describe the associated phenotypes. Three brothers with suspected Norrie disease and their mother presented for clinical examination. After obtaining informed consent, DNA was extracted from the peripheral blood of the proband, one of his brothers and his unaffected mother. Exons 1-3 of the NDP gene were amplified by polymerase chain reaction (PCR), and direct sequencing was performed. Multiplex ligation-dependent probe amplification (MLPA) was also performed to search for copy number variants in the NDP gene. The clinical findings of the three brothers included no light perception, corneal opacity, shallow anterior chamber, leukocoria, total retinal detachment and mental retardation. Exon 2 of the NDP gene was not amplified in the proband and one brother, even when the PCR primers for exon 2 were changed, whereas the other two exons showed no mutations by direct sequencing. MLPA analysis showed deletion of exon 2 of the NDP gene in the proband and one brother, while there was only one copy of exon 2 in the mother. Norrie disease was diagnosed in three patients from a Japanese family by clinical examination and was confirmed by genetic analysis. To localize the defect, confirmation of copy number variation by the MLPA method was useful in the present study.

  11. 47 CFR 3.25 - Number of copies.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... Telecommunication FEDERAL COMMUNICATIONS COMMISSION GENERAL AUTHORIZATION AND ADMINISTRATION OF ACCOUNTING... copies. One original and one copy of FCC Form 44, “Application For Certification As An Accounting... commencement of settlement activities to allow time for the Commission to review the application and to allow...

  12. DR-Integrator: a new analytic tool for integrating DNA copy number and gene expression data.

    PubMed

    Salari, Keyan; Tibshirani, Robert; Pollack, Jonathan R

    2010-02-01

    DNA copy number alterations (CNA) frequently underlie gene expression changes by increasing or decreasing gene dosage. However, only a subset of genes with altered dosage exhibit concordant changes in gene expression. This subset is likely to be enriched for oncogenes and tumor suppressor genes, and can be identified by integrating these two layers of genome-scale data. We introduce DNA/RNA-Integrator (DR-Integrator), a statistical software tool to perform integrative analyses on paired DNA copy number and gene expression data. DR-Integrator identifies genes with significant correlations between DNA copy number and gene expression, and implements a supervised analysis that captures genes with significant alterations in both DNA copy number and gene expression between two sample classes. DR-Integrator is freely available for non-commercial use from the Pollack Lab at http://pollacklab.stanford.edu/ and can be downloaded as a plug-in application to Microsoft Excel and as a package for the R statistical computing environment. The R package is available under the name 'DRI' at http://cran.r-project.org/. An example analysis using DR-Integrator is included as supplemental material. Supplementary data are available at Bioinformatics online.

  13. Polycomb repressive complex 1 provides a molecular explanation for repeat copy number dependency in FSHD muscular dystrophy.

    PubMed

    Casa, Valentina; Runfola, Valeria; Micheloni, Stefano; Aziz, Arif; Dilworth, F Jeffrey; Gabellini, Davide

    2017-02-15

    Repression of repetitive elements is crucial to preserve genome integrity and has been traditionally ascribed to constitutive heterochromatin pathways. FacioScapuloHumeral Muscular Dystrophy (FSHD), one of the most common myopathies, is characterized by a complex interplay of genetic and epigenetic events. The main FSHD form is linked to a reduced copy number of the D4Z4 macrosatellite repeat on 4q35, causing loss of silencing and aberrant expression of the D4Z4-embedded DUX4 gene leading to disease. By an unknown mechanism, D4Z4 copy-number correlates with FSHD phenotype. Here we show that the DUX4 proximal promoter (DUX4p) is sufficient to nucleate the enrichment of both constitutive and facultative heterochromatin components and to mediate a copy-number dependent gene silencing. We found that both the CpG/GC dense DNA content and the repetitive nature of DUX4p arrays are important for their repressive ability. We showed that DUX4p mediates a copy number-dependent Polycomb Repressive Complex 1 (PRC1) recruitment, which is responsible for the copy-number dependent gene repression. Overall, we directly link genetic and epigenetic defects in FSHD by proposing a novel molecular explanation for the copy number-dependency in FSHD pathogenesis, and offer insight into the molecular functions of repeats in chromatin regulation. © The Author 2016. Published by Oxford University Press.

  14. Multiply to conquer: Copy number variations at Ppd-B1 and Vrn-A1 facilitate global adaptation in wheat.

    PubMed

    Würschum, Tobias; Boeven, Philipp H G; Langer, Simon M; Longin, C Friedrich H; Leiser, Willmar L

    2015-07-29

    Copy number variation was found to be a frequent type of DNA polymorphism in the human genome often associated with diseases but its importance in crops and the effects on agronomic traits are still largely unknown. Here, we employed a large worldwide panel of 1110 winter wheat varieties to assess the frequency and the geographic distribution of copy number variants at the Photoperiod-B1 (Ppd-B1) and the Vernalization-A1 (Vrn-A1) loci as well as their effects on flowering time under field conditions. We identified a novel four copy variant of Vrn-A1 and based on the phylogenetic relationships among the lines show that the higher copy variants at both loci are likely to have arisen independently multiple times. In addition, we found that the frequency of the different copy number variants at both loci reflects the environmental conditions in the varieties' region of origin and based on multi-location field trials show that Ppd-B1 copy number has a substantial effect on the fine-tuning of flowering time. In conclusion, our results show the importance of copy number variation at Ppd-B1 and Vrn-A1 for the global adaptation of wheat making it a key factor for wheat success in a broad range of environments and in a wider context substantiate the significant role of copy number variation in crops.

  15. DNA Methylation Patterns in Normal Tissue Correlate more Strongly with Breast Cancer Status than Copy-Number Variants.

    PubMed

    Gao, Yang; Widschwendter, Martin; Teschendorff, Andrew E

    2018-05-04

    Normal tissue at risk of neoplastic transformation is characterized by somatic mutations, copy-number variation and DNA methylation changes. It is unclear however, which type of alteration may be more informative of cancer risk. We analyzed genome-wide DNA methylation and copy-number calls from the same DNA assay in a cohort of healthy breast samples and age-matched normal samples collected adjacent to breast cancer. Using statistical methods to adjust for cell type heterogeneity, we show that DNA methylation changes can discriminate normal-adjacent from normal samples better than somatic copy-number variants. We validate this important finding in an independent dataset. These results suggest that DNA methylation alterations in the normal cell of origin may offer better cancer risk prediction and early detection markers than copy-number changes. Copyright © 2018. Published by Elsevier B.V.

  16. From DNA Copy Number to Gene Expression: Local aberrations, Trisomies and Monosomies

    NASA Astrophysics Data System (ADS)

    Shay, Tal

    The goal of my PhD research was to study the effect of DNA copy number changes on gene expression. DNA copy number aberrations may be local, encompassing several genes, or on the level of an entire chromosome, such as trisomy and monosomy. The main dataset I studied was of Glioblastoma, obtained in the framework of a collaboration, but I worked also with public datasets of cancer and Down's Syndrome. The molecular basis of expression changes in Glioblastoma. Glioblastoma is the most common and aggressive type of primary brain tumors in adults. In collaboration with Prof. Hegi (CHUV, Switzerland), we analyzed a rich Glioblastoma dataset including clinical information, DNA copy number (array CGH) and expression profiles. We explored the correlation between DNA copy number and gene expression at the level of chromosomal arms and local genomic aberrations. We detected known amplification and over expression of oncogenes, as well as deletion and down-regulation of tumor suppressor genes. We exploited that information to map alterations of pathways that are known to be disrupted in Glioblastoma, and tried to characterize samples that have no known alteration in any of the studied pathways. Identifying local DNA aberrations of biological significance. Many types of tumors exhibit chromosomal losses or gains and local amplifications and deletions. A region that is aberrant in many tumors, or whose copy number change is stronger, is more likely to be clinically relevant, and not just a by-product of genetic instability. We developed a novel method that defines and prioritizes aberrations by formalizing these intuitions. The method scores each aberration by the fraction of patients harboring it, its length and its amplitude, and assesses the significance of the score by comparing it to a null distribution obtained by permutations. This approach detects genetic locations that are significantly aberrant, generating a 'genomic aberration profile' for each sample. The 'genomic

  17. Amylase activity is associated with AMY2B copy numbers in dog: implications for dog domestication, diet and diabetes

    PubMed Central

    Arendt, Maja; Fall, Tove; Lindblad-Toh, Kerstin; Axelsson, Erik

    2014-01-01

    High amylase activity in dogs is associated with a drastic increase in copy numbers of the gene coding for pancreatic amylase, AMY2B, that likely allowed dogs to thrive on a relatively starch-rich diet during early dog domestication. Although most dogs thus probably digest starch more efficiently than do wolves, AMY2B copy numbers vary widely within the dog population, and it is not clear how this variation affects the individual ability to handle starch nor how it affects dog health. In humans, copy numbers of the gene coding for salivary amylase, AMY1, correlate with both salivary amylase levels and enzyme activity, and high amylase activity is related to improved glycemic homeostasis and lower frequencies of metabolic syndrome. Here, we investigate the relationship between AMY2B copy numbers and serum amylase activity in dogs and show that amylase activity correlates with AMY2B copy numbers. We then describe how AMY2B copy numbers vary in individuals from 20 dog breeds and find strong breed-dependent patterns, indicating that the ability to digest starch varies both at the breed and individual level. Finally, to test whether AMY2B copy number is strongly associated with the risk of developing diabetes mellitus, we compare copy numbers in cases and controls as well as in breeds with varying diabetes susceptibility. Although we see no such association here, future studies using larger cohorts are needed before excluding a possible link between AMY2B and diabetes mellitus. PMID:24975239

  18. Industrial Relevance of Chromosomal Copy Number Variation in Saccharomyces Yeasts.

    PubMed

    Gorter de Vries, Arthur R; Pronk, Jack T; Daran, Jean-Marc G

    2017-06-01

    Chromosomal copy number variation (CCNV) plays a key role in evolution and health of eukaryotes. The unicellular yeast Saccharomyces cerevisiae is an important model for studying the generation, physiological impact, and evolutionary significance of CCNV. Fundamental studies of this yeast have contributed to an extensive set of methods for analyzing and introducing CCNV. Moreover, these studies provided insight into the balance between negative and positive impacts of CCNV in evolutionary contexts. A growing body of evidence indicates that CCNV not only frequently occurs in industrial strains of Saccharomyces yeasts but also is a key contributor to the diversity of industrially relevant traits. This notion is further supported by the frequent involvement of CCNV in industrially relevant traits acquired during evolutionary engineering. This review describes recent developments in genome sequencing and genome editing techniques and discusses how these offer opportunities to unravel contributions of CCNV in industrial Saccharomyce s strains as well as to rationally engineer yeast chromosomal copy numbers and karyotypes. Copyright © 2017 Gorter de Vries et al.

  19. [Gene copy number, mRNA transcription and protein expression of PD-1 gene in primary hepatocarcinoma patients].

    PubMed

    Fan, Hui-Min; Wu, Ling-Jie; Hu, Feng-Yu; Yang, Zhan

    2012-08-01

    To study the gene copy number, mRNA transcription and protien expression of programmed cell death 1 (PD-1) gene in primary hepatocellular carcinoma (PHC) patients and normal control individuals (NC) who are anti-HBs positive, and to investigate the variations in PD-1 gene copy numbers and its relationship with PHC. Real-time PCR was adopted to detect the PD-1 gene copy numbers and their mRNA expressions in peripheral blood mononuclear cells (PBMCs) from 24 samples of PHC patients and 26 of NC. Protein expression level of PD-1 on CD8+ T was analyzed by flow cytometry. In terms of number of PD-1 gene copy numbers, the percentage of cases of haploid (single) was 34.62% and 4.17% in PHC group and control group respectively while the percentage of cases of diploid (double) was 61.54% and 95.83% respectively. The difference between the two was statistically significant (chi2 = 7.639, P = 0.006). The rate of cases with double PD-1 gene copy numbers was found to be higher in patients with PHC than in control group. It was also found that the average expression of PD-1 mRNA was 2.35E-03 in control group and 1.23E-03 in PHC group. The expression level was significant lower in PHC group than that in control group when compared by using Mann-whitey technic (U = 153, P = 0.009). Furthermore, the frequency of PD-1 protein expression on CD8+ T cells was 3.72 +/- 0.32 in control group and 16.13 +/- 1.68 in PHC group. The level of PD-1 mRNA expression was higher in PHC and significant differences was shown between two groups (t = -7.073, P = 0.000). Our study suggests that the variation in PD-1 gene copy number may trigger primary hepatocellular carcinoma to HBV carriers. The relationship between the variation of PD-1 gene copy numbers and its association with primary hepatocellular carcinoma is worth further focus.

  20. Dynamics in copy numbers of five plasmids of a dairy Lactococcus lactis in dairy-related conditions including near-zero growth rates.

    PubMed

    van Mastrigt, Oscar; Lommers, Marcel M A N; de Vries, Yorick C; Abee, Tjakko; Smid, Eddy J

    2018-03-23

    Lactic acid bacteria can carry multiple plasmids affecting their performance in dairy fermentations. The expression of plasmid-encoded genes and the activity of the corresponding proteins is severely affected by changes in the number of plasmid copies. We studied the impact of growth rate on dynamics of plasmid copy numbers at high growth rates in chemostat cultures and down to near-zero growth rates in retentostat cultures. Five plasmids of the dairy strain Lactococcus lactis FM03-V1 were selected which varied in size (3 to 39 kb), in replication mechanism (theta or rolling-circle) and in putative (dairy-associated) functions. Copy numbers ranged from 1.5 to 40.5 and the copy number of theta-type replicating plasmids were negatively correlated to the plasmid size. Despite the extremely wide range of growth rates (0.0003 h -1 to 0.6 h -1 ), copy numbers of the five plasmids were stable and only slightly increased at near-zero growth rates showing that the plasmid replication rate was strictly controlled. One low-copy number plasmid, carrying a large exopolysaccharide gene cluster, was segregationally unstable during retentostat cultivations reflected in complete loss of the plasmid in one of the retentostat cultures. The copy number of the five plasmids was also hardly affected by varying the pH value, nutrient limitation or presence of citrate (maximum 2.2-fold) signifying the stability in copy number of the plasmids. Importance Lactococcus lactis is extensively used in starter cultures for dairy fermentations. Important traits for growth and survival of L. lactis in dairy fermentations are encoded by genes located on plasmids, such as genes involved in lactose and citrate metabolism, protein degradation and oligopeptide uptake and bacteriophage resistance. Because the number of plasmid copies could affect the expression of plasmid-encoded genes, it is important to know the factors that influence the plasmid copy numbers. We monitored plasmid copy numbers of L

  1. Copy number variation detection in cattle reveals potential breed specific differences

    USDA-ARS?s Scientific Manuscript database

    Copy Number Variations (CNVs) are large, common deletions or duplications of genome sequence among individuals of a species that have been linked to diseases and phenotypic traits. For example, a CNV-generating, translocation mechanism encompassing the KIT gene is responsible for color sidedness in ...

  2. Somatic copy number alterations in gastric adenocarcinomas among Asian and Western patients

    PubMed Central

    Corso, Giovanni; Ryu, Min-Hee; Kang, Yoon-Koo; Roviello, Franco; Saksena, Gordon; Peng, Shouyong; Shivdasani, Ramesh A.; Bass, Adam J.; Beroukhim, Rameen

    2017-01-01

    Gastric cancer, a leading worldwide cause of cancer mortality, shows high geographic and ethnic variation in incidence rates, which are highest in East Asia. The anatomic locations and clinical behavior also differ by geography, leading to the controversial idea that Eastern and Western forms of the disease are distinct. In view of these differences, we investigated whether gastric cancers from Eastern and Western patients show distinct genomic profiles. We used high-density profiling of somatic copy-number aberrations to analyze the largest collection to date of gastric adenocarcinomas and utilized genotyping data to rigorously annotate ethnic status. The size of this collection allowed us to accurately identify regions of significant copy-number alteration and separately to evaluate tumors arising in Eastern and Western patients. Among molecular subtypes classified by The Cancer Genome Atlas, the frequency of gastric cancers showing chromosomal instability was modestly higher in Western patients. After accounting for this difference, however, gastric cancers arising in Easterners and Westerners have highly similar somatic copy-number patterns. Only one genomic event, focal deletion of the phosphatase gene PTPRD, was significantly enriched in Western cases, though also detected in Eastern cases. Thus, despite the different risk factors and clinical features, gastric cancer appears to be a fundamentally similar disease in both populations and the divergent clinical outcomes cannot be ascribed to different underlying structural somatic genetic aberrations. PMID:28426752

  3. Allele-specific copy-number discovery from whole-genome and whole-exome sequencing

    PubMed Central

    Wang, WeiBo; Wang, Wei; Sun, Wei; Crowley, James J.; Szatkiewicz, Jin P.

    2015-01-01

    Copy-number variants (CNVs) are a major form of genetic variation and a risk factor for various human diseases, so it is crucial to accurately detect and characterize them. It is conceivable that allele-specific reads from high-throughput sequencing data could be leveraged to both enhance CNV detection and produce allele-specific copy number (ASCN) calls. Although statistical methods have been developed to detect CNVs using whole-genome sequence (WGS) and/or whole-exome sequence (WES) data, information from allele-specific read counts has not yet been adequately exploited. In this paper, we develop an integrated method, called AS-GENSENG, which incorporates allele-specific read counts in CNV detection and estimates ASCN using either WGS or WES data. To evaluate the performance of AS-GENSENG, we conducted extensive simulations, generated empirical data using existing WGS and WES data sets and validated predicted CNVs using an independent methodology. We conclude that AS-GENSENG not only predicts accurate ASCN calls but also improves the accuracy of total copy number calls, owing to its unique ability to exploit information from both total and allele-specific read counts while accounting for various experimental biases in sequence data. Our novel, user-friendly and computationally efficient method and a complete analytic protocol is freely available at https://sourceforge.net/projects/asgenseng/. PMID:25883151

  4. Amylase activity is associated with AMY2B copy numbers in dog: implications for dog domestication, diet and diabetes.

    PubMed

    Arendt, Maja; Fall, Tove; Lindblad-Toh, Kerstin; Axelsson, Erik

    2014-10-01

    High amylase activity in dogs is associated with a drastic increase in copy numbers of the gene coding for pancreatic amylase, AMY2B, that likely allowed dogs to thrive on a relatively starch-rich diet during early dog domestication. Although most dogs thus probably digest starch more efficiently than do wolves, AMY2B copy numbers vary widely within the dog population, and it is not clear how this variation affects the individual ability to handle starch nor how it affects dog health. In humans, copy numbers of the gene coding for salivary amylase, AMY1, correlate with both salivary amylase levels and enzyme activity, and high amylase activity is related to improved glycemic homeostasis and lower frequencies of metabolic syndrome. Here, we investigate the relationship between AMY2B copy numbers and serum amylase activity in dogs and show that amylase activity correlates with AMY2B copy numbers. We then describe how AMY2B copy numbers vary in individuals from 20 dog breeds and find strong breed-dependent patterns, indicating that the ability to digest starch varies both at the breed and individual level. Finally, to test whether AMY2B copy number is strongly associated with the risk of developing diabetes mellitus, we compare copy numbers in cases and controls as well as in breeds with varying diabetes susceptibility. Although we see no such association here, future studies using larger cohorts are needed before excluding a possible link between AMY2B and diabetes mellitus. © 2014 The Authors. Animal Genetics published by John Wiley & Sons Ltd on behalf of Stichting International Foundation for Animal Genetics.

  5. Integrative Genomics Reveals Mechanisms of Copy Number Alterations Responsible for Transcriptional Deregulation in Colorectal Cancer

    PubMed Central

    Camps, Jordi; Nguyen, Quang Tri; Padilla-Nash, Hesed M.; Knutsen, Turid; McNeil, Nicole E.; Wangsa, Danny; Hummon, Amanda B.; Grade, Marian; Ried, Thomas; Difilippantonio, Michael J.

    2016-01-01

    To evaluate the mechanisms and consequences of chromosomal aberrations in colorectal cancer (CRC), we used a combination of spectral karyotyping, array comparative genomic hybridization (aCGH), and array-based global gene expression profiling on 31 primary carcinomas and 15 established cell lines. Importantly, aCGH showed that the genomic profiles of primary tumors are recapitulated in the cell lines. We revealed a preponderance of chromosome breakpoints at sites of copy number variants (CNVs) in the CRC cell lines, a novel mechanism of DNA breakage in cancer. The integration of gene expression and aCGH led to the identification of 157 genes localized within high-level copy number changes whose transcriptional deregulation was significantly affected across all of the samples, thereby suggesting that these genes play a functional role in CRC. Genomic amplification at 8q24 was the most recurrent event and led to the overexpression of MYC and FAM84B. Copy number dependent gene expression resulted in deregulation of known cancer genes such as APC, FGFR2, and ERBB2. The identification of only 36 genes whose localization near a breakpoint could account for their observed deregulated expression demonstrates that the major mechanism for transcriptional deregulation in CRC is genomic copy number changes resulting from chromosomal aberrations. PMID:19691111

  6. Copy number of ArsR reporter plasmid determines its arsenite response and metal specificity.

    PubMed

    Fang, Yun; Zhu, Chunjie; Chen, Xingjuan; Wang, Yan; Xu, Meiying; Sun, Guoping; Guo, Jun; Yoo, Jinnon; Tie, Cuijuan; Jiang, Xin; Li, Xianqiang

    2018-05-16

    The key component in bacteria-based biosensors is a transcriptional reporter employed to monitor induction or repression of a reporter gene corresponding to environmental change. In this study, we made a series of reporters in order to achieve highly sensitive detection of arsenite. From these reporters, two biosensors were developed by transformation of Escherichia coli DH5α with pLHPars9 and pLLPars9, consisting of either a high or low copy number plasmid, along with common elements of ArsR-luciferase fusion and addition of two binding sequences, one each from E. coli and Acidithiobacillus ferrooxidans chromosome, in front of the R773 ArsR operon. Both of them were highly sensitive to arsenite, with a low detection limit of 0.04 μM arsenite (~ 5 μg/L). They showed a wide dynamic range of detection up to 50 μM using high copy number pLHPars9 and 100 μM using low copy number pLLPars9. Significantly, they differ in metal specificity, pLLPars9 more specific to arsenite, while pLHPars9 to both arsenite and antimonite. The only difference between pLHPars9 and pLLPars9 is their copy numbers of plasmid and corresponding ratios of ArsR to its binding promoter/operator sequence. Therefore, we propose a working model in which DNA bound-ArsR is different from its free form in metal specificity.

  7. Absolute vibrational numbering from isotope shifts in fragmentary spectroscopic data

    NASA Astrophysics Data System (ADS)

    Pashov, A.; Kowalczyk, P.; Jastrzebski, W.

    2018-05-01

    We discuss application of the isotope effect to establish the absolute vibrational numbering in electronic states of diatomic molecules. This is illustrated by examples of states with potential energy curves of both regular and irregular shape, with one or two potential minima. The minimum number of spectroscopic data (either term values or spectral line positions) necessary to provide a unique numbering is considered. We show that at favourable conditions just four term energies (or spectral lines) in one isotopologue and one term energy in the other suffice.

  8. Rare DNA copy number variants in cardiovascular malformations with extracardiac abnormalities

    USDA-ARS?s Scientific Manuscript database

    Clinically significant cardiovascular malformations (CVMs) occur in 5-8 per 1000 live births. Recurrent copy number variations (CNVs) are among the known causes of syndromic CVMs, accounting for an important fraction of cases. We hypothesized that many additional rare CNVs also cause CVMs and can be...

  9. Genetic Control of L-a and L-(Bc) Dsrna Copy Number in Killer Systems of SACCHAROMYCES CEREVISIAE

    PubMed Central

    Ball, Steven G.; Tirtiaux, Catherine; Wickner, Reed B.

    1984-01-01

    M dsRNA in yeast encodes a toxin precursor and immunity protein, whereas L-A dsRNA encodes the 81,000-dalton major protein of the intracellular particles in which both L-A and M are found. L-(BC) dsRNA(s) are found in particles with different coat proteins. We find that M dsRNA lowers the copy number of L-A, but not L-(BC). The SKI gene products lower the copy number of L-(BC), L-A, M1 and M2. This is the first known interaction of L-(BC) with any element of the killer systems. The MAK3, MAK10 and PET18 gene products are necessary for L-A maintenance and replication, but mutations in these genes do not affect L-(BC) copy number. Mutations in MAK1, MAK4, MAK7, MAK17 and MAK24 do not detectably affect copy number of L-(BC) or L-A. PMID:17246214

  10. Practical guidelines for interpreting copy number gains detected by high-resolution array in routine diagnostics

    PubMed Central

    Hanemaaijer, Nicolien M; Sikkema-Raddatz, Birgit; van der Vries, Gerben; Dijkhuizen, Trijnie; Hordijk, Roel; van Essen, Anthonie J; Veenstra-Knol, Hermine E; Kerstjens-Frederikse, Wilhelmina S; Herkert, Johanna C; Gerkes, Erica H; Leegte, Lamberta K; Kok, Klaas; Sinke, Richard J; van Ravenswaaij-Arts, Conny M A

    2012-01-01

    The correct interpretation of copy number gains in patients with developmental delay and multiple congenital anomalies is hampered by the large number of copy number variations (CNVs) encountered in healthy individuals. The variable phenotype associated with copy number gains makes interpretation even more difficult. Literature shows that inheritence, size and presence in healthy individuals are commonly used to decide whether a certain copy number gain is pathogenic, but no general consensus has been established. We aimed to develop guidelines for interpreting gains detected by array analysis using array CGH data of 300 patients analysed with the 105K Agilent oligo array in a diagnostic setting. We evaluated the guidelines in a second, independent, cohort of 300 patients. In the first 300 patients 797 gains of four or more adjacent oligonucleotides were observed. Of these, 45.4% were de novo and 54.6% were familial. In total, 94.8% of all de novo gains and 87.1% of all familial gains were concluded to be benign CNVs. Clinically relevant gains ranged from 288 to 7912 kb in size, and were significantly larger than benign gains and gains of unknown clinical relevance (P<0.001). Our study showed that a threshold of 200 kb is acceptable in a clinical setting, whereas heritability does not exclude a pathogenic nature of a gain. Evaluation of the guidelines in the second cohort of 300 patients revealed that the interpretation guidelines were clear, easy to follow and efficient. PMID:21934709

  11. Mitochondrial DNA copy number is associated with risk of head and neck squamous cell carcinoma in Chinese population.

    PubMed

    Wang, Lihua; Lv, Hong; Ji, Pei; Zhu, Xun; Yuan, Hua; Jin, Guangfu; Dai, Juncheng; Hu, Zhibin; Su, Yuxiong; Ma, Hongxia

    2018-04-19

    Mitochondria show the special role in cellular bioenergy and many essential physiological activities. Previous researches have suggested that variations of mitochondrial DNA copy number contribute to development of different types of carcinomas. However, the relationship of mtDNA copy number in peripheral blood leukocytes (PBLs) with the risk of head and neck squamous cell carcinoma (HNSCC) is still inconclusive. We investigated the association of mtDNA with HNSCC risk through a case-control study including 570 HNSCC cases and 597 cancer-free controls. mtDNA copy number in PBLs was measured by real-time qPCR. Logistic regression was performed to estimate the association between the mtDNA copy number in PBLs and HNSCC risk. A U-shaped relation between the mtDNA copy number and HNSCC risk was found. Compared with those in the second quartile group, the adjusted odds ratios (ORs) and 95% confidence interval (CI) for those in the first and the forth quartile groups were 1.95 (1.37-2.76) and 2.16 (1.53-3.04), respectively. Using restricted cubic spline analysis, we confirmed such a significant U-shaped relation. Furthermore, the U-shaped association remained significant in different subgroups stratified by age, gender, tobacco smoking, and alcohol consumption. Both extremely low and high mtDNA copy numbers had significant associations with the increased HNSCC risk. © 2018 The Authors. Cancer Medicine published by John Wiley & Sons Ltd.

  12. An evaluation of new and established methods to determine T‐DNA copy number and homozygosity in transgenic plants.

    PubMed Central

    Głowacka, Katarzyna; Kromdijk, Johannes; Leonelli, Lauriebeth; Niyogi, Krishna K.; Clemente, Tom E.

    2016-01-01

    Abstract Stable transformation of plants is a powerful tool for hypothesis testing. A rapid and reliable evaluation method of the transgenic allele for copy number and homozygosity is vital in analysing these transformations. Here the suitability of Southern blot analysis, thermal asymmetric interlaced (TAIL‐)PCR, quantitative (q)PCR and digital droplet (dd)PCR to estimate T‐DNA copy number, locus complexity and homozygosity were compared in transgenic tobacco. Southern blot analysis and ddPCR on three generations of transgenic offspring with contrasting zygosity and copy number were entirely consistent, whereas TAIL‐PCR often underestimated copy number. qPCR deviated considerably from the Southern blot results and had lower precision and higher variability than ddPCR. Comparison of segregation analyses and ddPCR of T1 progeny from 26 T0 plants showed that at least 19% of the lines carried multiple T‐DNA insertions per locus, which can lead to unstable transgene expression. Segregation analyses failed to detect these multiple copies, presumably because of their close linkage. This shows the importance of routine T‐DNA copy number estimation. Based on our results, ddPCR is the most suitable method, because it is as reliable as Southern blot analysis yet much faster. A protocol for this application of ddPCR to large plant genomes is provided. PMID:26670088

  13. A large-scale survey of genetic copy number variations among Han Chinese residing in Taiwan

    PubMed Central

    Lin, Chien-Hsing; Li, Ling-Hui; Ho, Sheng-Feng; Chuang, Tzu-Po; Wu, Jer-Yuarn; Chen, Yuan-Tsong; Fann, Cathy SJ

    2008-01-01

    Background Copy number variations (CNVs) have recently been recognized as important structural variations in the human genome. CNVs can affect gene expression and thus may contribute to phenotypic differences. The copy number inferring tool (CNIT) is an effective hidden Markov model-based algorithm for estimating allele-specific copy number and predicting chromosomal alterations from single nucleotide polymorphism microarrays. The CNIT algorithm, which was constructed using data from 270 HapMap multi-ethnic individuals, was applied to identify CNVs from 300 unrelated Han Chinese individuals in Taiwan. Results Using stringent selection criteria, 230 regions with variable copy numbers were identified in the Han Chinese population; 133 (57.83%) had been reported previously, 64 displayed greater than 1% CNV allele frequency. The average size of the CNV regions was 322 kb (ranging from 1.48 kb to 5.68 Mb) and covered a total of 2.47% of the human genome. A total of 196 of the CNV regions were simple deletions and 27 were simple amplifications. There were 449 genes and 5 microRNAs within these CNV regions; some of these genes are known to be associated with diseases. Conclusion The identified CNVs are characteristic of the Han Chinese population and should be considered when genetic studies are conducted. The CNV distribution in the human genome is still poorly characterized, and there is much diversity among different ethnic populations. PMID:19108714

  14. Copy Number Variation of KIR Genes Influences HIV-1 Control

    PubMed Central

    Shianna, Kevin V.; Feng, Sheng; Urban, Thomas J.; Ge, Dongliang; De Luca, Andrea; Martinez-Picado, Javier; Wolinsky, Steven M.; Martinson, Jeremy J.; Jamieson, Beth D.; Bream, Jay H.; Martin, Maureen P.; Borrow, Persephone; Letvin, Norman L.; McMichael, Andrew J.; Haynes, Barton F.; Telenti, Amalio; Carrington, Mary; Goldstein, David B.; Alter, Galit

    2011-01-01

    A genome-wide screen for large structural variants showed that a copy number variant (CNV) in the region encoding killer cell immunoglobulin-like receptors (KIR) associates with HIV-1 control as measured by plasma viral load at set point in individuals of European ancestry. This CNV encompasses the KIR3DL1-KIR3DS1 locus, encoding receptors that interact with specific HLA-Bw4 molecules to regulate the activation of lymphocyte subsets including natural killer (NK) cells. We quantified the number of copies of KIR3DS1 and KIR3DL1 in a large HIV-1 positive cohort, and showed that an increase in KIR3DS1 count associates with a lower viral set point if its putative ligand is present (p = 0.00028), as does an increase in KIR3DL1 count in the presence of KIR3DS1 and appropriate ligands for both receptors (p = 0.0015). We further provide functional data that demonstrate that NK cells from individuals with multiple copies of KIR3DL1, in the presence of KIR3DS1 and the appropriate ligands, inhibit HIV-1 replication more robustly, and associated with a significant expansion in the frequency of KIR3DS1+, but not KIR3DL1+, NK cells in their peripheral blood. Our results suggest that the relative amounts of these activating and inhibitory KIR play a role in regulating the peripheral expansion of highly antiviral KIR3DS1+ NK cells, which may determine differences in HIV-1 control following infection. PMID:22140359

  15. FAS Gene Copy Numbers are Associated with Susceptibility to Behçet Disease and VKH Syndrome in Han Chinese.

    PubMed

    Yu, Hongsong; Luo, Le; Wu, Lili; Zheng, Minming; Zhang, Lijun; Liu, Yunjia; Li, Hua; Cao, Qingfeng; Kijlstra, Aize; Yang, Peizeng

    2015-11-01

    Previous studies have identified that disturbed apoptosis was involved in the pathogenesis of Behçet disease (BD) and Vogt-Koyanagi-Harada (VKH) syndrome. This study aims to investigate whether copy number variations of apoptosis-related genes, including FAS, CASPASE8, CASPASE3, and BCL2, are associated with BD and VKH syndrome in Han Chinese. A two-stage association study was performed in 1,014 BD patients, 1,051 VKH syndrome patients, and 2,076 healthy controls. TaqMan(®) Copy Number Assays and real-time PCR were performed. The first-stage study showed that increased frequency of high FAS copy number (>2) was found in BD (P = 1.05 × 10(-3) ) and VKH syndrome (P = 2.56 × 10(-3) ). Replication and combined study confirmed the association of high copy number (>2) of FAS with BD (P = 3.35 × 10(-8) ) and VKH syndrome (P = 9.77 × 10(-8) ). A significant upregulated mRNA expression of FAS was observed in anti-CD3/CD28 antibodies-stimulated CD4(+) T cells from individuals carrying a high gene copy number (>2) as compared to normal diploid 2 copy number carriers (P = 0.004). Moreover, the mRNA expression of FAS both in active patients with BD and VKH syndrome was significantly higher than that in controls (P = 0.001 and P = 0.007, respectively). Our findings suggest that a high copy number of FAS gene confers risk for BD and VKH syndrome. © 2015 WILEY PERIODICALS, INC.

  16. A Likelihood-Based Framework for Association Analysis of Allele-Specific Copy Numbers.

    PubMed

    Hu, Y J; Lin, D Y; Sun, W; Zeng, D

    2014-10-01

    Copy number variants (CNVs) and single nucleotide polymorphisms (SNPs) co-exist throughout the human genome and jointly contribute to phenotypic variations. Thus, it is desirable to consider both types of variants, as characterized by allele-specific copy numbers (ASCNs), in association studies of complex human diseases. Current SNP genotyping technologies capture the CNV and SNP information simultaneously via fluorescent intensity measurements. The common practice of calling ASCNs from the intensity measurements and then using the ASCN calls in downstream association analysis has important limitations. First, the association tests are prone to false-positive findings when differential measurement errors between cases and controls arise from differences in DNA quality or handling. Second, the uncertainties in the ASCN calls are ignored. We present a general framework for the integrated analysis of CNVs and SNPs, including the analysis of total copy numbers as a special case. Our approach combines the ASCN calling and the association analysis into a single step while allowing for differential measurement errors. We construct likelihood functions that properly account for case-control sampling and measurement errors. We establish the asymptotic properties of the maximum likelihood estimators and develop EM algorithms to implement the corresponding inference procedures. The advantages of the proposed methods over the existing ones are demonstrated through realistic simulation studies and an application to a genome-wide association study of schizophrenia. Extensions to next-generation sequencing data are discussed.

  17. Allele-specific copy-number discovery from whole-genome and whole-exome sequencing.

    PubMed

    Wang, WeiBo; Wang, Wei; Sun, Wei; Crowley, James J; Szatkiewicz, Jin P

    2015-08-18

    Copy-number variants (CNVs) are a major form of genetic variation and a risk factor for various human diseases, so it is crucial to accurately detect and characterize them. It is conceivable that allele-specific reads from high-throughput sequencing data could be leveraged to both enhance CNV detection and produce allele-specific copy number (ASCN) calls. Although statistical methods have been developed to detect CNVs using whole-genome sequence (WGS) and/or whole-exome sequence (WES) data, information from allele-specific read counts has not yet been adequately exploited. In this paper, we develop an integrated method, called AS-GENSENG, which incorporates allele-specific read counts in CNV detection and estimates ASCN using either WGS or WES data. To evaluate the performance of AS-GENSENG, we conducted extensive simulations, generated empirical data using existing WGS and WES data sets and validated predicted CNVs using an independent methodology. We conclude that AS-GENSENG not only predicts accurate ASCN calls but also improves the accuracy of total copy number calls, owing to its unique ability to exploit information from both total and allele-specific read counts while accounting for various experimental biases in sequence data. Our novel, user-friendly and computationally efficient method and a complete analytic protocol is freely available at https://sourceforge.net/projects/asgenseng/. © The Author(s) 2015. Published by Oxford University Press on behalf of Nucleic Acids Research.

  18. Subtelomeric Rearrangements and Copy Number Variations in People with Intellectual Disabilities

    ERIC Educational Resources Information Center

    Christofolini, D. M.; De Paula Ramos, M. A.; Kulikowski, L. D.; Da Silva Bellucco, F. T.; Belangero, S. I. N.; Brunoni, D.; Melaragno, M. I.

    2010-01-01

    Background: The most prevalent type of structural variation in the human genome is represented by copy number variations that can affect transcription levels, sequence, structure and function of genes. Method: In the present study, we used the multiplex ligation-dependent probe amplification (MLPA) technique and quantitative PCR for the detection…

  19. Diversity in copy number and structure of a silkworm morphogenetic gene as a result of domestication.

    PubMed

    Sakudoh, Takashi; Nakashima, Takeharu; Kuroki, Yoko; Fujiyama, Asao; Kohara, Yuji; Honda, Naoko; Fujimoto, Hirofumi; Shimada, Toru; Nakagaki, Masao; Banno, Yutaka; Tsuchida, Kozo

    2011-03-01

    The carotenoid-binding protein (CBP) of the domesticated silkworm, Bombyx mori, a major determinant of cocoon color, is likely to have been substantially influenced by domestication of this species. We analyzed the structure of the CBP gene in multiple strains of B. mori, in multiple individuals of the wild silkworm, B. mandarina (the putative wild ancestor of B. mori), and in a number of other lepidopterans. We found the CBP gene copy number in genomic DNA to vary widely among B. mori strains, ranging from 1 to 20. The copies of CBP are of several types, based on the presence of a retrotransposon or partial deletion of the coding sequence. In contrast to B. mori, B. mandarina was found to possess a single copy of CBP without the retrotransposon insertion, regardless of habitat. Several other lepidopterans were found to contain sequences homologous to CBP, revealing that this gene is evolutionarily conserved in the lepidopteran lineage. Thus, domestication can generate significant diversity of gene copy number and structure over a relatively short evolutionary time. © 2011 by the Genetics Society of America

  20. Diversity in Copy Number and Structure of a Silkworm Morphogenetic Gene as a Result of Domestication

    PubMed Central

    Sakudoh, Takashi; Nakashima, Takeharu; Kuroki, Yoko; Fujiyama, Asao; Kohara, Yuji; Honda, Naoko; Fujimoto, Hirofumi; Shimada, Toru; Nakagaki, Masao; Banno, Yutaka; Tsuchida, Kozo

    2011-01-01

    The carotenoid-binding protein (CBP) of the domesticated silkworm, Bombyx mori, a major determinant of cocoon color, is likely to have been substantially influenced by domestication of this species. We analyzed the structure of the CBP gene in multiple strains of B. mori, in multiple individuals of the wild silkworm, B. mandarina (the putative wild ancestor of B. mori), and in a number of other lepidopterans. We found the CBP gene copy number in genomic DNA to vary widely among B. mori strains, ranging from 1 to 20. The copies of CBP are of several types, based on the presence of a retrotransposon or partial deletion of the coding sequence. In contrast to B. mori, B. mandarina was found to possess a single copy of CBP without the retrotransposon insertion, regardless of habitat. Several other lepidopterans were found to contain sequences homologous to CBP, revealing that this gene is evolutionarily conserved in the lepidopteran lineage. Thus, domestication can generate significant diversity of gene copy number and structure over a relatively short evolutionary time. PMID:21242537

  1. Effect of Repeat Copy Number on Variable-Number Tandem Repeat Mutations in Escherichia coli O157:H7

    PubMed Central

    Vogler, Amy J.; Keys, Christine; Nemoto, Yoshimi; Colman, Rebecca E.; Jay, Zack; Keim, Paul

    2006-01-01

    Variable-number tandem repeat (VNTR) loci have shown a remarkable ability to discriminate among isolates of the recently emerged clonal pathogen Escherichia coli O157:H7, making them a very useful molecular epidemiological tool. However, little is known about the rates at which these sequences mutate, the factors that affect mutation rates, or the mechanisms by which mutations occur at these loci. Here, we measure mutation rates for 28 VNTR loci and investigate the effects of repeat copy number and mismatch repair on mutation rate using in vitro-generated populations for 10 E. coli O157:H7 strains. We find single-locus rates as high as 7.0 × 10−4 mutations/generation and a combined 28-locus rate of 6.4 × 10−4 mutations/generation. We observed single- and multirepeat mutations that were consistent with a slipped-strand mispairing mutation model, as well as a smaller number of large repeat copy number mutations that were consistent with recombination-mediated events. Repeat copy number within an array was strongly correlated with mutation rate both at the most mutable locus, O157-10 (r2 = 0.565, P = 0.0196), and across all mutating loci. The combined locus model was significant whether locus O157-10 was included (r2 = 0.833, P < 0.0001) or excluded (r2 = 0.452, P < 0.0001) from the analysis. Deficient mismatch repair did not affect mutation rate at any of the 28 VNTRs with repeat unit sizes of >5 bp, although a poly(G) homomeric tract was destabilized in the mutS strain. Finally, we describe a general model for VNTR mutations that encompasses insertions and deletions, single- and multiple-repeat mutations, and their relative frequencies based upon our empirical mutation rate data. PMID:16740932

  2. Effect of repeat copy number on variable-number tandem repeat mutations in Escherichia coli O157:H7.

    PubMed

    Vogler, Amy J; Keys, Christine; Nemoto, Yoshimi; Colman, Rebecca E; Jay, Zack; Keim, Paul

    2006-06-01

    Variable-number tandem repeat (VNTR) loci have shown a remarkable ability to discriminate among isolates of the recently emerged clonal pathogen Escherichia coli O157:H7, making them a very useful molecular epidemiological tool. However, little is known about the rates at which these sequences mutate, the factors that affect mutation rates, or the mechanisms by which mutations occur at these loci. Here, we measure mutation rates for 28 VNTR loci and investigate the effects of repeat copy number and mismatch repair on mutation rate using in vitro-generated populations for 10 E. coli O157:H7 strains. We find single-locus rates as high as 7.0 x 10(-4) mutations/generation and a combined 28-locus rate of 6.4 x 10(-4) mutations/generation. We observed single- and multirepeat mutations that were consistent with a slipped-strand mispairing mutation model, as well as a smaller number of large repeat copy number mutations that were consistent with recombination-mediated events. Repeat copy number within an array was strongly correlated with mutation rate both at the most mutable locus, O157-10 (r2= 0.565, P = 0.0196), and across all mutating loci. The combined locus model was significant whether locus O157-10 was included (r2= 0.833, P < 0.0001) or excluded (r2= 0.452, P < 0.0001) from the analysis. Deficient mismatch repair did not affect mutation rate at any of the 28 VNTRs with repeat unit sizes of >5 bp, although a poly(G) homomeric tract was destabilized in the mutS strain. Finally, we describe a general model for VNTR mutations that encompasses insertions and deletions, single- and multiple-repeat mutations, and their relative frequencies based upon our empirical mutation rate data.

  3. nrDNA:mtDNA copy number ratios as a comparative metric for evolutionary and conservation genetics.

    PubMed

    Goodall-Copestake, William Paul

    2018-05-12

    Identifying genetic cues of functional relevance is key to understanding the drivers of evolution and increasingly important for the conservation of biodiversity. This study introduces nuclear ribosomal DNA (nrDNA) to mitochondrial DNA (mtDNA) copy number ratios as a metric with which to screen for this functional genetic variation prior to more extensive omics analyses. To illustrate the metric, quantitative PCR was used to estimate nrDNA (18S) to mtDNA (16S) copy number ratios in muscle tissue from samples of two zooplankton species: Salpa thompsoni caught near Elephant Island (Southern Ocean) and S. fusiformis sampled off Gough Island (South Atlantic). Average 18S:16S ratios in these samples were 9:1 and 3:1, respectively. nrDNA 45S arrays and mitochondrial genomes were then deep sequenced to uncover the sources of intra-individual genetic variation underlying these 18S:16S copy number differences. The deep sequencing profiles obtained were consistent with genetic changes resulting from adaptive processes, including an expansion of nrDNA and damage to mtDNA in S. thompsoni, potentially in response to the polar environment. Beyond this example from zooplankton, nrDNA:mtDNA copy number ratios offer a promising metric to help identify genetic variation of functional relevance in animals more broadly.

  4. Structural and functional impacts of copy number variations on the cattle genome

    USDA-ARS?s Scientific Manuscript database

    Although there have been significant advances in resolving the pattern and nature of single nucleotide polymorphisms (SNPs), similar realizations for larger, more complex forms of genetic variation have just emerged. Several recent publications reveal that copy number variations (CNVs) are common an...

  5. Genetic factors affecting EBV copy number in lymphoblastoid cell lines derived from the 1000 Genome Project samples.

    PubMed

    Mandage, Rajendra; Telford, Marco; Rodríguez, Juan Antonio; Farré, Xavier; Layouni, Hafid; Marigorta, Urko M; Cundiff, Caitlin; Heredia-Genestar, Jose Maria; Navarro, Arcadi; Santpere, Gabriel

    2017-01-01

    Epstein-Barr virus (EBV), human herpes virus 4, has been classically associated with infectious mononucleosis, multiple sclerosis and several types of cancers. Many of these diseases show marked geographical differences in prevalence, which points to underlying genetic and/or environmental factors. Those factors may include a different susceptibility to EBV infection and viral copy number among human populations. Since EBV is commonly used to transform B-cells into lymphoblastoid cell lines (LCLs) we hypothesize that differences in EBV copy number among individual LCLs may reflect differential susceptibility to EBV infection. To test this hypothesis, we retrieved whole-genome sequenced EBV-mapping reads from 1,753 LCL samples derived from 19 populations worldwide that were sequenced within the context of the 1000 Genomes Project. An in silico methodology was developed to estimate the number of EBV copy number in LCLs and validated these estimations by real-time PCR. After experimentally confirming that EBV relative copy number remains stable over cell passages, we performed a genome wide association analysis (GWAS) to try detecting genetic variants of the host that may be associated with EBV copy number. Our GWAS has yielded several genomic regions suggestively associated with the number of EBV genomes per cell in LCLs, unraveling promising candidate genes such as CAND1, a known inhibitor of EBV replication. While this GWAS does not unequivocally establish the degree to which genetic makeup of individuals determine viral levels within their derived LCLs, for which a larger sample size will be needed, it potentially highlighted human genes affecting EBV-related processes, which constitute interesting candidates to follow up in the context of EBV related pathologies.

  6. Low α-defensin gene copy number increases the risk for IgA nephropathy and renal dysfunction.

    PubMed

    Ai, Zhen; Li, Ming; Liu, Wenting; Foo, Jia-Nee; Mansouri, Omniah; Yin, Peiran; Zhou, Qian; Tang, Xueqing; Dong, Xiuqing; Feng, Shaozhen; Xu, Ricong; Zhong, Zhong; Chen, Jian; Wan, Jianxin; Lou, Tanqi; Yu, Jianwen; Zhou, Qin; Fan, Jinjin; Mao, Haiping; Gale, Daniel; Barratt, Jonathan; Armour, John A L; Liu, Jianjun; Yu, Xueqing

    2016-06-29

    Although a major source of genetic variation, copy number variations (CNVs) and their involvement in disease development have not been well studied. Immunoglobulin A nephropathy (IgAN) is the most common primary glomerulonephritis worldwide. We performed association analysis of the DEFA1A3 CNV locus in two independent IgAN cohorts of southern Chinese Han (total of 1189 cases and 1187 controls). We discovered three independent copy number associations within the locus: DEFA1A3 [P = 3.99 × 10(-9); odds ratio (OR), 0.88], DEFA3 (P = 6.55 × 10(-5); OR, 0.82), and a noncoding deletion variant (211bp) (P = 3.50 × 10(-16); OR, 0.75) (OR per copy, fixed-effects meta-analysis). While showing strong association with an increased risk for IgAN (P = 9.56 × 10(-20)), low total copy numbers of the three variants also showed significant association with renal dysfunction in patients with IgAN (P = 0.03; hazards ratio, 3.69; after controlling for the effects of known prognostic factors) and also with increased serum IgA1 (P = 0.02) and galactose-deficient IgA1 (P = 0.03). For replication, we confirmed the associations of DEFA1A3 (P = 4.42 × 10(-4); OR, 0.82) and DEFA3 copy numbers (P = 4.30 × 10(-3); OR, 0.74) with IgAN in a Caucasian cohort (531 cases and 198 controls) and found the 211bp variant to be much rarer in Caucasians. We also observed an association of the 211bp copy number with membranous nephropathy (P = 1.11 × 10(-7); OR, 0.74; in 493 Chinese cases and 500 matched controls), but not with diabetic kidney disease (in 806 Chinese cases and 786 matched controls). By explaining 4.96% of disease risk and influencing renal dysfunction in patients with IgAN, the DEFA1A3 CNV locus may be a potential therapeutic target for developing treatments for this disease. Copyright © 2016, American Association for the Advancement of Science.

  7. Stoichiometric balance of protein copy numbers is measurable and functionally significant in a protein-protein interaction network for yeast endocytosis.

    PubMed

    Holland, David O; Johnson, Margaret E

    2018-03-01

    Stoichiometric balance, or dosage balance, implies that proteins that are subunits of obligate complexes (e.g. the ribosome) should have copy numbers expressed to match their stoichiometry in that complex. Establishing balance (or imbalance) is an important tool for inferring subunit function and assembly bottlenecks. We show here that these correlations in protein copy numbers can extend beyond complex subunits to larger protein-protein interactions networks (PPIN) involving a range of reversible binding interactions. We develop a simple method for quantifying balance in any interface-resolved PPINs based on network structure and experimentally observed protein copy numbers. By analyzing such a network for the clathrin-mediated endocytosis (CME) system in yeast, we found that the real protein copy numbers were significantly more balanced in relation to their binding partners compared to randomly sampled sets of yeast copy numbers. The observed balance is not perfect, highlighting both under and overexpressed proteins. We evaluate the potential cost and benefits of imbalance using two criteria. First, a potential cost to imbalance is that 'leftover' proteins without remaining functional partners are free to misinteract. We systematically quantify how this misinteraction cost is most dangerous for strong-binding protein interactions and for network topologies observed in biological PPINs. Second, a more direct consequence of imbalance is that the formation of specific functional complexes depends on relative copy numbers. We therefore construct simple kinetic models of two sub-networks in the CME network to assess multi-protein assembly of the ARP2/3 complex and a minimal, nine-protein clathrin-coated vesicle forming module. We find that the observed, imperfectly balanced copy numbers are less effective than balanced copy numbers in producing fast and complete multi-protein assemblies. However, we speculate that strategic imbalance in the vesicle forming module

  8. Impact of constitutional copy number variants on biological pathway evolution.

    PubMed

    Poptsova, Maria; Banerjee, Samprit; Gokcumen, Omer; Rubin, Mark A; Demichelis, Francesca

    2013-01-23

    Inherited Copy Number Variants (CNVs) can modulate the expression levels of individual genes. However, little is known about how CNVs alter biological pathways and how this varies across different populations. To trace potential evolutionary changes of well-described biological pathways, we jointly queried the genomes and the transcriptomes of a collection of individuals with Caucasian, Asian or Yoruban descent combining high-resolution array and sequencing data. We implemented an enrichment analysis of pathways accounting for CNVs and genes sizes and detected significant enrichment not only in signal transduction and extracellular biological processes, but also in metabolism pathways. Upon the estimation of CNV population differentiation (CNVs with different polymorphism frequencies across populations), we evaluated that 22% of the pathways contain at least one gene that is proximal to a CNV (CNV-gene pair) that shows significant population differentiation. The majority of these CNV-gene pairs belong to signal transduction pathways and 6% of the CNV-gene pairs show statistical association between the copy number states and the transcript levels. The analysis suggested possible examples of positive selection within individual populations including NF-kB, MAPK signaling pathways, and Alu/L1 retrotransposition factors. Altogether, our results suggest that constitutional CNVs may modulate subtle pathway changes through specific pathway enzymes, which may become fixed in some populations.

  9. Amy2B copy number variation reveals starch diet adaptations in ancient European dogs.

    PubMed

    Ollivier, Morgane; Tresset, Anne; Bastian, Fabiola; Lagoutte, Laetitia; Axelsson, Erik; Arendt, Maja-Louise; Bălăşescu, Adrian; Marshour, Marjan; Sablin, Mikhail V; Salanova, Laure; Vigne, Jean-Denis; Hitte, Christophe; Hänni, Catherine

    2016-11-01

    Extant dog and wolf DNA indicates that dog domestication was accompanied by the selection of a series of duplications on the Amy2B gene coding for pancreatic amylase. In this study, we used a palaeogenetic approach to investigate the timing and expansion of the Amy2B gene in the ancient dog populations of Western and Eastern Europe and Southwest Asia. Quantitative polymerase chain reaction was used to estimate the copy numbers of this gene for 13 ancient dog samples, dated to between 15 000 and 4000 years before present (cal. BP). This evidenced an increase of Amy2B copies in ancient dogs from as early as the 7th millennium cal. BP in Southeastern Europe. We found that the gene expansion was not fixed across all dogs within this early farming context, with ancient dogs bearing between 2 and 20 diploid copies of the gene. The results also suggested that selection for the increased Amy2B copy number started 7000 years cal. BP, at the latest. This expansion reflects a local adaptation that allowed dogs to thrive on a starch rich diet, especially within early farming societies, and suggests a biocultural coevolution of dog genes and human culture.

  10. Amy2B copy number variation reveals starch diet adaptations in ancient European dogs

    PubMed Central

    Tresset, Anne; Bastian, Fabiola; Lagoutte, Laetitia; Arendt, Maja-Louise; Bălăşescu, Adrian; Marshour, Marjan; Sablin, Mikhail V.; Salanova, Laure; Vigne, Jean-Denis; Hitte, Christophe; Hänni, Catherine

    2016-01-01

    Extant dog and wolf DNA indicates that dog domestication was accompanied by the selection of a series of duplications on the Amy2B gene coding for pancreatic amylase. In this study, we used a palaeogenetic approach to investigate the timing and expansion of the Amy2B gene in the ancient dog populations of Western and Eastern Europe and Southwest Asia. Quantitative polymerase chain reaction was used to estimate the copy numbers of this gene for 13 ancient dog samples, dated to between 15 000 and 4000 years before present (cal. BP). This evidenced an increase of Amy2B copies in ancient dogs from as early as the 7th millennium cal. BP in Southeastern Europe. We found that the gene expansion was not fixed across all dogs within this early farming context, with ancient dogs bearing between 2 and 20 diploid copies of the gene. The results also suggested that selection for the increased Amy2B copy number started 7000 years cal. BP, at the latest. This expansion reflects a local adaptation that allowed dogs to thrive on a starch rich diet, especially within early farming societies, and suggests a biocultural coevolution of dog genes and human culture. PMID:28018628

  11. Accuracy and differential bias in copy number measurement of CCL3L1 in association studies with three auto-immune disorders.

    PubMed

    Carpenter, Danielle; Walker, Susan; Prescott, Natalie; Schalkwijk, Joost; Armour, John Al

    2011-08-18

    Copy number variation (CNV) contributes to the variation observed between individuals and can influence human disease progression, but the accurate measurement of individual copy numbers is technically challenging. In the work presented here we describe a modification to a previously described paralogue ratio test (PRT) method for genotyping the CCL3L1/CCL4L1 copy variable region, which we use to ascertain CCL3L1/CCL4L1 copy number in 1581 European samples. As the products of CCL3L1 and CCL4L1 potentially play a role in autoimmunity we performed case control association studies with Crohn's disease, rheumatoid arthritis and psoriasis clinical cohorts. We evaluate the PRT methodology used, paying particular attention to accuracy and precision, and highlight the problems of differential bias in copy number measurements. Our PRT methods for measuring copy number were of sufficient precision to detect very slight but systematic differential bias between results from case and control DNA samples in one study. We find no evidence for an association between CCL3L1 copy number and Crohn's disease, rheumatoid arthritis or psoriasis. Differential bias of this small magnitude, but applied systematically across large numbers of samples, would create a serious risk of false positive associations in copy number, if measured using methods of lower precision, or methods relying on single uncorroborated measurements. In this study the small differential bias detected by PRT in one sample set was resolved by a simple pre-treatment by restriction enzyme digestion.

  12. Accuracy and differential bias in copy number measurement of CCL3L1 in association studies with three auto-immune disorders

    PubMed Central

    2011-01-01

    Background Copy number variation (CNV) contributes to the variation observed between individuals and can influence human disease progression, but the accurate measurement of individual copy numbers is technically challenging. In the work presented here we describe a modification to a previously described paralogue ratio test (PRT) method for genotyping the CCL3L1/CCL4L1 copy variable region, which we use to ascertain CCL3L1/CCL4L1 copy number in 1581 European samples. As the products of CCL3L1 and CCL4L1 potentially play a role in autoimmunity we performed case control association studies with Crohn's disease, rheumatoid arthritis and psoriasis clinical cohorts. Results We evaluate the PRT methodology used, paying particular attention to accuracy and precision, and highlight the problems of differential bias in copy number measurements. Our PRT methods for measuring copy number were of sufficient precision to detect very slight but systematic differential bias between results from case and control DNA samples in one study. We find no evidence for an association between CCL3L1 copy number and Crohn's disease, rheumatoid arthritis or psoriasis. Conclusions Differential bias of this small magnitude, but applied systematically across large numbers of samples, would create a serious risk of false positive associations in copy number, if measured using methods of lower precision, or methods relying on single uncorroborated measurements. In this study the small differential bias detected by PRT in one sample set was resolved by a simple pre-treatment by restriction enzyme digestion. PMID:21851606

  13. Copy number variation of human AMY1 is a minor contributor to variation in salivary amylase expression and activity.

    PubMed

    Carpenter, Danielle; Mitchell, Laura M; Armour, John A L

    2017-02-20

    Salivary amylase in humans is encoded by the copy variable gene AMY1 in the amylase gene cluster on chromosome 1. Although the role of salivary amylase is well established, the consequences of the copy number variation (CNV) at AMY1 on salivary amylase protein production are less well understood. The amylase gene cluster is highly structured with a fundamental difference between odd and even AMY1 copy number haplotypes. In this study, we aimed to explore, in samples from 119 unrelated individuals, not only the effects of AMY1 CNV on salivary amylase protein expression and amylase enzyme activity but also whether there is any evidence for underlying difference between the common haplotypes containing odd numbers of AMY1 and even copy number haplotypes. AMY1 copy number was significantly correlated with the variation observed in salivary amylase production (11.7% of variance, P < 0.0005) and enzyme activity (13.6% of variance, P < 0.0005) but did not explain the majority of observed variation between individuals. AMY1-odd and AMY1-even haplotypes showed a different relationship between copy number and expression levels, but the difference was not statistically significant (P = 0.052). Production of salivary amylase is correlated with AMY1 CNV, but the majority of interindividual variation comes from other sources. Long-range haplotype structure may affect expression, but this was not significant in our data.

  14. A strategy for absolute proteome quantification with mass spectrometry by hierarchical use of peptide-concatenated standards.

    PubMed

    Kito, Keiji; Okada, Mitsuhiro; Ishibashi, Yuko; Okada, Satoshi; Ito, Takashi

    2016-05-01

    The accurate and precise absolute abundance of proteins can be determined using mass spectrometry by spiking the sample with stable isotope-labeled standards. In this study, we developed a strategy of hierarchical use of peptide-concatenated standards (PCSs) to quantify more proteins over a wider dynamic range. Multiple primary PCSs were used for quantification of many target proteins. Unique "ID-tag peptides" were introduced into individual primary PCSs, allowing us to monitor the exact amounts of individual PCSs using a "secondary PCS" in which all "ID-tag peptides" were concatenated. Furthermore, we varied the copy number of the "ID-tag peptide" in each PCS according to a range of expression levels of target proteins. This strategy accomplished absolute quantification over a wider range than that of the measured ratios. The quantified abundance of budding yeast proteins showed a high reproducibility for replicate analyses and similar copy numbers per cell for ribosomal proteins, demonstrating the accuracy and precision of this strategy. A comparison with the absolute abundance of transcripts clearly indicated different post-transcriptional regulation of expression for specific functional groups. Thus, the approach presented here is a faithful method for the absolute quantification of proteomes and provides insights into biological mechanisms, including the regulation of expressed protein abundance. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  15. Chemiluminescent Detection for Estimating Relative Copy Numbers of Porcine Endogenous Retrovirus Proviruses from Chinese Minipigs Based on Magnetic Nanoparticles.

    PubMed

    Yang, Haowen; Liu, Ming; Zhou, Bingcong; Deng, Yan; He, Nongyue; Jiang, Hesheng; Guo, Yafen; Lan, Ganqiu; Jiang, Qinyang; Yang, Xiurong; Li, Zhiyang

    2016-06-01

    Chinese Bama minipigs could be potential donors for the supply of xenografts because they are genetically stable, highly inbred, and inexpensive. However, porcine endogenous retrovirus (PERV) is commonly integrated in pig genomes and could cause a cross-species infection by xenotransplantation. For screening out the pigs with low copy numbers of PERV proviruses, we have developed a novel semiquantitative analysis approach based on magnetic nanoparticles (MNPs) and chemiluminescence (CL) for estimating relative copy numbers (RCNs) of PERV proviruses in Chinese Bama minipigs. The CL intensities of PERV proviruses and the housekeeping gene glyceraldehyde-3-phosphate dehydrogenase (GAPDH) were respectively determined with this method, and the RCNs of PERV proviruses were calculated by the equation: RCN of PERV provirus = CL intensity of PERV provirus/CL intensity of GAPDH. The results showed that PERVs were integrated in the genomes of Bama minipigs at different copy numbers, and the copy numbers of PERV-C subtype were greatly low. Two Bama minipigs with low copy numbers of PERV proviruses were detected out and could be considered as xenograft donor candidates. Although only semiquantitation can be achieved, this approach has potential for screening out safe and suitable pig donors for xenotransplantation.

  16. Copy Number Variations in the Survival Motor Neuron Genes: Implications for Spinal Muscular Atrophy and Other Neurodegenerative Diseases

    PubMed Central

    Butchbach, Matthew E. R.

    2016-01-01

    Proximal spinal muscular atrophy (SMA), a leading genetic cause of infant death worldwide, is an early-onset, autosomal recessive neurodegenerative disease characterized by the loss of spinal α-motor neurons. This loss of α-motor neurons is associated with muscle weakness and atrophy. SMA can be classified into five clinical grades based on age of onset and severity of the disease. Regardless of clinical grade, proximal SMA results from the loss or mutation of SMN1 (survival motor neuron 1) on chromosome 5q13. In humans a large tandem chromosomal duplication has lead to a second copy of the SMN gene locus known as SMN2. SMN2 is distinguishable from SMN1 by a single nucleotide difference that disrupts an exonic splice enhancer in exon 7. As a result, most of SMN2 mRNAs lack exon 7 (SMNΔ7) and produce a protein that is both unstable and less than fully functional. Although only 10–20% of the SMN2 gene product is fully functional, increased genomic copies of SMN2 inversely correlates with disease severity among individuals with SMA. Because SMN2 copy number influences disease severity in SMA, there is prognostic value in accurate measurement of SMN2 copy number from patients being evaluated for SMA. This prognostic value is especially important given that SMN2 copy number is now being used as an inclusion criterion for SMA clinical trials. In addition to SMA, copy number variations (CNVs) in the SMN genes can affect the clinical severity of other neurological disorders including amyotrophic lateral sclerosis (ALS) and progressive muscular atrophy (PMA). This review will discuss how SMN1 and SMN2 CNVs are detected and why accurate measurement of SMN1 and SMN2 copy numbers is relevant for SMA and other neurodegenerative diseases. PMID:27014701

  17. Copy-Number Gains of HUWE1 Due to Replication- and Recombination-Based Rearrangements

    PubMed Central

    Froyen, Guy; Belet, Stefanie; Martinez, Francisco; Santos-Rebouças, Cíntia Barros; Declercq, Matthias; Verbeeck, Jelle; Donckers, Lene; Berland, Siren; Mayo, Sonia; Rosello, Monica; Pimentel, Márcia Mattos Gonçalves; Fintelman-Rodrigues, Natalia; Hovland, Randi; Rodrigues dos Santos, Suely; Raymond, F. Lucy; Bose, Tulika; Corbett, Mark A.; Sheffield, Leslie; van Ravenswaaij-Arts, Conny M.A.; Dijkhuizen, Trijnie; Coutton, Charles; Satre, Veronique; Siu, Victoria; Marynen, Peter

    2012-01-01

    We previously reported on nonrecurrent overlapping duplications at Xp11.22 in individuals with nonsyndromic intellectual disability (ID) harboring HSD17B10, HUWE1, and the microRNAs miR-98 and let-7f-2 in the smallest region of overlap. Here, we describe six additional individuals with nonsyndromic ID and overlapping microduplications that segregate in the families. High-resolution mapping of the 12 copy-number gains reduced the minimal duplicated region to the HUWE1 locus only. Consequently, increased mRNA levels were detected for HUWE1, but not HSD17B10. Marker and SNP analysis, together with identification of two de novo events, suggested a paternally derived intrachromosomal duplication event. In four independent families, we report on a polymorphic 70 kb recurrent copy-number gain, which harbors part of HUWE1 (exon 28 to 3′ untranslated region), including miR-98 and let-7f-2. Our findings thus demonstrate that HUWE1 is the only remaining dosage-sensitive gene associated with the ID phenotype. Junction and in silico analysis of breakpoint regions demonstrated simple microhomology-mediated rearrangements suggestive of replication-based duplication events. Intriguingly, in a single family, the duplication was generated through nonallelic homologous recombination (NAHR) with the use of HUWE1-flanking imperfect low-copy repeats, which drive this infrequent NAHR event. The recurrent partial HUWE1 copy-number gain was also generated through NAHR, but here, the homologous sequences used were identified as TcMAR-Tigger DNA elements, a template that has not yet been reported for NAHR. In summary, we showed that an increased dosage of HUWE1 causes nonsyndromic ID and demonstrated that the Xp11.22 region is prone to recombination- and replication-based rearrangements. PMID:22840365

  18. Epidermal growth factor receptor and AKT1 gene copy numbers by multi-gene fluorescence in situ hybridization impact on prognosis in breast cancer.

    PubMed

    Li, Jiao; Su, Wei; Zhang, Sheng; Hu, Yunhui; Liu, Jingjing; Zhang, Xiaobei; Bai, Jingchao; Yuan, Weiping; Hu, Linping; Cheng, Tao; Zetterberg, Anders; Lei, Zhenmin; Zhang, Jin

    2015-05-01

    The epidermal growth factor receptor (EGFR)/PI3K/AKT signaling pathway aberrations play significant roles in breast cancer occurrence and development. However, the status of EGFR and AKT1 gene copy numbers remains unclear. In this study, we showed that the rates of EGFR and AKT1 gene copy number alterations were associated with the prognosis of breast cancer. Among 205 patients, high EGFR and AKT1 gene copy numbers were observed in 34.6% and 27.8% of cases by multi-gene fluorescence in situ hybridization, respectively. Co-heightened EGFR/AKT1 gene copy numbers were identified in 11.7% cases. No changes were found in 49.3% of patients. Although changes in EGFR and AKT1 gene copy numbers had no correlation with patients' age, tumor stage, histological grade and the expression status of other molecular makers, high EGFR (P = 0.0002) but not AKT1 (P = 0.1177) gene copy numbers correlated with poor 5-year overall survival. The patients with co-heightened EGFR/AKT1 gene copy numbers displayed a poorer prognosis than those with tumors with only high EGFR gene copy numbers (P = 0.0383). Both Univariate (U) and COX multivariate (C) analyses revealed that high EGFR and AKT1 gene copy numbers (P = 0.000 [U], P = 0.0001 [C]), similar to histological grade (P = 0.001 [U], P = 0.012 [C]) and lymph node metastasis (P = 0.046 [U], P = 0.158 [C]), were independent prognostic indicators of 5-year overall survival. These results indicate that high EGFR and AKT1 gene copy numbers were relatively frequent in breast cancer. Co-heightened EGFR/AKT1 gene copy numbers had a worse outcome than those with only high EGFR gene copy numbers, suggesting that evaluation of these two genes together may be useful for selecting patients for anti-EGFR-targeted therapy or anti-EGFR/AKT1-targeted therapy and for predicting outcomes. © 2015 The Authors. Cancer Science published by Wiley Publishing Asia Pty Ltd on behalf of Japanese Cancer Association.

  19. Computational tools for copy number variation (CNV) detection using next-generation sequencing data: features and perspectives.

    PubMed

    Zhao, Min; Wang, Qingguo; Wang, Quan; Jia, Peilin; Zhao, Zhongming

    2013-01-01

    Copy number variation (CNV) is a prevalent form of critical genetic variation that leads to an abnormal number of copies of large genomic regions in a cell. Microarray-based comparative genome hybridization (arrayCGH) or genotyping arrays have been standard technologies to detect large regions subject to copy number changes in genomes until most recently high-resolution sequence data can be analyzed by next-generation sequencing (NGS). During the last several years, NGS-based analysis has been widely applied to identify CNVs in both healthy and diseased individuals. Correspondingly, the strong demand for NGS-based CNV analyses has fuelled development of numerous computational methods and tools for CNV detection. In this article, we review the recent advances in computational methods pertaining to CNV detection using whole genome and whole exome sequencing data. Additionally, we discuss their strengths and weaknesses and suggest directions for future development.

  20. Computational tools for copy number variation (CNV) detection using next-generation sequencing data: features and perspectives

    PubMed Central

    2013-01-01

    Copy number variation (CNV) is a prevalent form of critical genetic variation that leads to an abnormal number of copies of large genomic regions in a cell. Microarray-based comparative genome hybridization (arrayCGH) or genotyping arrays have been standard technologies to detect large regions subject to copy number changes in genomes until most recently high-resolution sequence data can be analyzed by next-generation sequencing (NGS). During the last several years, NGS-based analysis has been widely applied to identify CNVs in both healthy and diseased individuals. Correspondingly, the strong demand for NGS-based CNV analyses has fuelled development of numerous computational methods and tools for CNV detection. In this article, we review the recent advances in computational methods pertaining to CNV detection using whole genome and whole exome sequencing data. Additionally, we discuss their strengths and weaknesses and suggest directions for future development. PMID:24564169

  1. Copy Number Variations in Tilapia Genomes.

    PubMed

    Li, Bi Jun; Li, Hong Lian; Meng, Zining; Zhang, Yong; Lin, Haoran; Yue, Gen Hua; Xia, Jun Hong

    2017-02-01

    Discovering the nature and pattern of genome variation is fundamental in understanding phenotypic diversity among populations. Although several millions of single nucleotide polymorphisms (SNPs) have been discovered in tilapia, the genome-wide characterization of larger structural variants, such as copy number variation (CNV) regions has not been carried out yet. We conducted a genome-wide scan for CNVs in 47 individuals from three tilapia populations. Based on 254 Gb of high-quality paired-end sequencing reads, we identified 4642 distinct high-confidence CNVs. These CNVs account for 1.9% (12.411 Mb) of the used Nile tilapia reference genome. A total of 1100 predicted CNVs were found overlapping with exon regions of protein genes. Further association analysis based on linear model regression found 85 CNVs ranging between 300 and 27,000 base pairs significantly associated to population types (R 2  > 0.9 and P > 0.001). Our study sheds first insights on genome-wide CNVs in tilapia. These CNVs among and within tilapia populations may have functional effects on phenotypes and specific adaptation to particular environments.

  2. DUF1220 copy number is linearly associated with increased cognitive function as measured by total IQ and mathematical aptitude scores

    PubMed Central

    Davis, Jonathon M.; Searles, Veronica B.; Anderson, Nathan; Keeney, Jonathon; Raznahan, Armin; Horwood, L. John; Fergusson, David M.; Kennedy, Martin A.; Giedd, Jay

    2014-01-01

    DUF1220 protein domains exhibit the greatest human lineage-specific copy number expansion of any protein-coding sequence in the genome, and variation in DUF1220 copy number has been linked to both brain size in humans and brain evolution among primates. Given these findings, we examined associations between DUF1220 subtypes CON1 and CON2 and cognitive aptitude. We identified a linear association between CON2 copy number and cognitive function in two independent populations of European descent. In North American males, an increase in CON2 copy number corresponded with an increase in WISC IQ (R2 = 0.13, p = 0.02), which may be driven by males aged 6–11 (R2 = 0.42, p = 0.003). We utilized ddPCR in a subset as a confirmatory measurement. This group had 26–33 copies of CON2 with a mean of 29, and each copy increase of CON2 was associated with a 3.3-point increase in WISC IQ (R2 = 0.22, p = 0.045). In individuals from New Zealand, an increase in CON2 copy number was associated with an increase in math aptitude ability (R2 = 0.10 p = 0.018). These were not confounded by brain size. To our knowledge, this is the first study to report a replicated association between copy number of a gene coding sequence and cognitive aptitude. Remarkably, dosage variations involving DUF1220 sequences have now been linked to human brain expansion, autism severity and cognitive aptitude, suggesting that such processes may be genetically and mechanistically inter-related. The findings presented here warrant expanded investigations in larger, well-characterized cohorts. PMID:25287832

  3. A Multi-Megabase Copy Number Gain Causes Maternal Transmission Ratio Distortion on Mouse Chromosome 2

    PubMed Central

    Didion, John P.; Morgan, Andrew P.; Clayshulte, Amelia M.-F.; Mcmullan, Rachel C.; Yadgary, Liran; Petkov, Petko M.; Bell, Timothy A.; Gatti, Daniel M.; Crowley, James J.; Hua, Kunjie; Aylor, David L.; Bai, Ling; Calaway, Mark; Chesler, Elissa J.; French, John E.; Geiger, Thomas R.; Gooch, Terry J.; Garland, Theodore; Harrill, Alison H.; Hunter, Kent; McMillan, Leonard; Holt, Matt; Miller, Darla R.; O'Brien, Deborah A.; Paigen, Kenneth; Pan, Wenqi; Rowe, Lucy B.; Shaw, Ginger D.; Simecek, Petr; Sullivan, Patrick F.; Svenson, Karen L; Weinstock, George M.; Threadgill, David W.; Pomp, Daniel; Churchill, Gary A.; Pardo-Manuel de Villena, Fernando

    2015-01-01

    Significant departures from expected Mendelian inheritance ratios (transmission ratio distortion, TRD) are frequently observed in both experimental crosses and natural populations. TRD on mouse Chromosome (Chr) 2 has been reported in multiple experimental crosses, including the Collaborative Cross (CC). Among the eight CC founder inbred strains, we found that Chr 2 TRD was exclusive to females that were heterozygous for the WSB/EiJ allele within a 9.3 Mb region (Chr 2 76.9 – 86.2 Mb). A copy number gain of a 127 kb-long DNA segment (designated as responder to drive, R2d) emerged as the strongest candidate for the causative allele. We mapped R2d sequences to two loci within the candidate interval. R2d1 is located near the proximal boundary, and contains a single copy of R2d in all strains tested. R2d2 maps to a 900 kb interval, and the number of R2d copies varies from zero in classical strains (including the mouse reference genome) to more than 30 in wild-derived strains. Using real-time PCR assays for the copy number, we identified a mutation (R2d2WSBdel1) that eliminates the majority of the R2d2WSB copies without apparent alterations of the surrounding WSB/EiJ haplotype. In a three-generation pedigree segregating for R2d2WSBdel1, the mutation is transmitted to the progeny and Mendelian segregation is restored in females heterozygous for R2d2WSBdel1, thus providing direct evidence that the copy number gain is causal for maternal TRD. We found that transmission ratios in R2d2WSB heterozygous females vary between Mendelian segregation and complete distortion depending on the genetic background, and that TRD is under genetic control of unlinked distorter loci. Although the R2d2WSB transmission ratio was inversely correlated with average litter size, several independent lines of evidence support the contention that female meiotic drive is the cause of the distortion. We discuss the implications and potential applications of this novel meiotic drive system. PMID

  4. Fluorescent in situ hybridization (FISH) assessment of chromosome copy number in sperm

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sheu, M.; Sigman, M.; Mark, H.F.L.

    Approximately 15% of all recognized pregnancies end in spontaneous abortions. The overall frequency of chromosome abnormalities in spontaneous abortions is approximately 50%. Thus aneuploidy is a significant cause of fetal wastage. In addition, structural and numerical abnormalities of chromosomes can also lead to birth defects, developmental delay, mental retardation and infertility. Conventional cytogenetic analysis via GTG- and other banding techniques is a powerful tool in the elucidation of the nature of chromosomal abnormalities. Fluorescent in situ hybridization (FISH) enables detection of numerical chromosomal abnormalities, especially trisomies, in intact cells. Using FISH and commercially available biotin-labeled probes, we have initiated amore » prospective study to assess specific chromosome copy number of preparations of unstained smears from men referred for a male infertility evaluation as well as smears from normal control males chosen randomly from the sample of sperm donors. A total of approximately 19,000 sperm nuclei have been examined thus far. Of those suitable for analysis, 7382 (38.75%) were normal possessing one copy of chromosome 8, 155 (0.81%) were disomic, and 15 (0.079%) had more than two copies of chromosome 8. Comparisons with data available in the literature will be discussed. Work is ongoing to increase the efficiency of hybridization using both reported and previously untried pretreatment and fixation protocols. We have also initiated studies using multicolor FISH with various chromosome enumeration probes. The assay described here is a potentially powerful tool for detecting rare events such as spontaneous germ cell aneuploidy, aneuploidy detected in semen from men with carcinoma in situ of the testis and aneuploidy induced by potential environmental genotoxicants. It can also be utilized for segregation analysis and for correlating chromosome copy number with germ cell morphology.« less

  5. Correlation of Clinical Outcomes with Quantitative Polymerase Chain Reaction DNA Copy Number in Patients with Acute Retinal Necrosis.

    PubMed

    Calvo, Charles M; Khan, Mohammed Ali; Mehta, Sonia; Garg, Sunir J; Dunn, James P

    2017-04-01

    To correlate visual acuity outcomes and clinical features with quantitative PCR DNA copy number in patients with acute retinal necrosis (ARN). Retrospective, consecutive case series. In total, 14 eyes of 13 patients were diagnosed with ARN, based on the American Uveitis Society criteria, and were followed for a mean of 324.5 days (median 250.5 days, SD ± 214 days). Anterior chamber fluid analyzed by quantitative PCR identified viral DNA in 11 of 14 eyes (78.5%). Varicella zoster virus (VZV) was identified in seven eyes (50%) and herpes simplex virus (HSV) in four eyes (28.5%). Mean DNA copy number was 7.9 × 10 6 /mL (median 2.10 × 10 6 /mL, range: 0-5.60 × 10 7 /mL). Eyes with quantitative PCR DNA copy number of ≥5.0 × 10 6 /mL (n = 6 eyes) had worse baseline visual acuity (logMAR 1.48 ± 0.71 vs 0.94 ± 0.76, p = 0.196) and final visual acuity (logMAR 2.10 ± 0.60 vs 0.82 ± 0.81, p = 0.007) compared with patients with a DNA copy number <5.0 × 10 6 /mL (n = 8 eyes). Patients with a DNA copy number of ≥5.0 × 10 6 /mL were more likely to have at least 5 clock hours of retinitis on funduscopic exam (p = 0.03) and developed retinal detachment more frequently (p = 0.08). Quantitative DNA copy number of ≥5.0 × 10 6 /mL is associated with more extensive retinitis, worse visual acuity, and development of retinal detachment in patients with acute retinal necrosis.

  6. Invited review DNA copy number changes as diagnostic tools for lung cancer.

    PubMed

    Bowcock, Anne M

    2014-05-01

    Lung cancer usually presents as advanced stage disease and there is a need for early diagnosis so that appropriate treatments can be provided prior to tumour progression. Copy number variation is frequently detected in tumours and can contribute to tumour progression. This is because regions harbouring DNA imbalance can contain genes encoding critical proteins whose altered dosage contributes to the neoplastic process. Three copy number variations (CNVs) from chromosomes 3p26-p11.1 (loss), 3q26.2-29 (gain) and 6q25.3-24.3 (loss) have previously been described in individuals presenting with endobronchial squamous metaplasia. These CNVs were predictors of cancer diagnosed within 44 months with 97% accuracy. An evaluation of this CNV-based classifier with an independent set of 12 samples (10 men and 2 women), each with a carcinoma in situ or invasive carcinoma at the same site at follow-up demonstrated 92% prediction accuracy. The negative predictive value of this classifier was 89%. The gain at 3q26.2-q29 contributed the most to the classification, being present in virtually all lesions. This region harbours the PIK3CA gene and evaluation of the number of copies of this gene gave very similar results to those from array comparative genomic hybridisation. This type of test can be performed on sputum or bronchial brushings. Larger cohorts now need to be examined to confirm this finding and to possibly refine the regions of CNV. This type of approach paves the way for future molecular analyses to assist in selecting subjects with endobronchial squamous metaplastic or dysplastic lesions who might benefit from more aggressive therapeutic intervention or surveillance.

  7. CNV-seq, a new method to detect copy number variation using high-throughput sequencing.

    PubMed

    Xie, Chao; Tammi, Martti T

    2009-03-06

    DNA copy number variation (CNV) has been recognized as an important source of genetic variation. Array comparative genomic hybridization (aCGH) is commonly used for CNV detection, but the microarray platform has a number of inherent limitations. Here, we describe a method to detect copy number variation using shotgun sequencing, CNV-seq. The method is based on a robust statistical model that describes the complete analysis procedure and allows the computation of essential confidence values for detection of CNV. Our results show that the number of reads, not the length of the reads is the key factor determining the resolution of detection. This favors the next-generation sequencing methods that rapidly produce large amount of short reads. Simulation of various sequencing methods with coverage between 0.1x to 8x show overall specificity between 91.7 - 99.9%, and sensitivity between 72.2 - 96.5%. We also show the results for assessment of CNV between two individual human genomes.

  8. A comparative genomic hybridization approach to study gene copy number variations among Chinese hamster cell lines.

    PubMed

    Vishwanathan, Nandita; Bandyopadhyay, Arpan; Fu, Hsu-Yuan; Johnson, Kathryn C; Springer, Nathan M; Hu, Wei-Shou

    2017-08-01

    Chinese Hamster Ovary (CHO) cells are aneuploid in nature. The genome of recombinant protein producing CHO cell lines continuously undergoes changes in its structure and organization. We analyzed nine cell lines, including parental cell lines, using a comparative genomic hybridization (CGH) array focused on gene-containing regions. The comparison of CGH with copy-number estimates from sequencing data showed good correlation. Hierarchical clustering of the gene copy number variation data from CGH data revealed the lineage relationships between the cell lines. On analyzing the clones of a clonal population, some regions with altered genomic copy number status were identified indicating genomic changes during passaging. A CGH array is thus an effective tool in quantifying genomic alterations in industrial cell lines and can provide insights into the changes in the genomic structure during cell line derivation and long term culture. Biotechnol. Bioeng. 2017;114: 1903-1908. © 2017 Wiley Periodicals, Inc. © 2017 Wiley Periodicals, Inc.

  9. Clinical relevance of copy number profiling in oral and oropharyngeal squamous cell carcinoma

    PubMed Central

    van Kempen, Pauline M W; Noorlag, Rob; Braunius, Weibel W; Moelans, Cathy B; Rifi, Widad; Savola, Suvi; Koole, Ronald; Grolman, Wilko; van Es, Robert J J; Willems, Stefan M

    2015-01-01

    Current conventional treatment modalities in head and neck squamous cell carcinoma (HNSCC) are nonselective and have shown to cause serious side effects. Unraveling the molecular profiles of head and neck cancer may enable promising clinical applications that pave the road for personalized cancer treatment. We examined copy number status in 36 common oncogenes and tumor suppressor genes in a cohort of 191 oropharyngeal squamous cell carcinomas (OPSCC) and 164 oral cavity squamous cell carcinomas (OSCC) using multiplex ligation probe amplification. Copy number status was correlated with human papillomavirus (HPV) status in OPSCC, with occult lymph node status in OSCC and with patient survival. The 11q13 region showed gain or amplifications in 59% of HPV-negative OPSCC, whereas this amplification was almost absent in HPV-positive OPSCC. Additionally, in clinically lymph node-negative OSCC (Stage I–II), gain of the 11q13 region was significantly correlated with occult lymph node metastases with a negative predictive value of 81%. Multivariate survival analysis revealed a significantly decreased disease-free survival in both HPV-negative and HPV-positive OPSCC with a gain of Wnt-induced secreted protein-1. Gain of CCND1 showed to be an independent predictor for worse survival in OSCC. These results show that copy number aberrations, mainly of the 11q13 region, may be important predictors and prognosticators which allow for stratifying patients for personalized treatment of HNSCC. PMID:26194878

  10. Evolution and selection of Rhg1, a copy-number variant nematode-resistance locus

    PubMed Central

    Lee, Tong Geon; Kumar, Indrajit; Diers, Brian W; Hudson, Matthew E

    2015-01-01

    The soybean cyst nematode (SCN) resistance locus Rhg1 is a tandem repeat of a 31.2 kb unit of the soybean genome. Each 31.2-kb unit contains four genes. One allele of Rhg1, Rhg1-b, is responsible for protecting most US soybean production from SCN. Whole-genome sequencing was performed, and PCR assays were developed to investigate allelic variation in sequence and copy number of the Rhg1 locus across a population of soybean germplasm accessions. Four distinct sequences of the 31.2-kb repeat unit were identified, and some Rhg1 alleles carry up to three different types of repeat unit. The total number of copies of the repeat varies from 1 to 10 per haploid genome. Both copy number and sequence of the repeat correlate with the resistance phenotype, and the Rhg1 locus shows strong signatures of selection. Significant linkage disequilibrium in the genome outside the boundaries of the repeat allowed the Rhg1 genotype to be inferred using high-density single nucleotide polymorphism genotyping of 15 996 accessions. Over 860 germplasm accessions were found likely to possess Rhg1 alleles. The regions surrounding the repeat show indications of non-neutral evolution and high genetic variability in populations from different geographic locations, but without evidence of fixation of the resistant genotype. A compelling explanation of these results is that balancing selection is in operation at Rhg1. PMID:25735447

  11. Stoichiometric balance of protein copy numbers is measurable and functionally significant in a protein-protein interaction network for yeast endocytosis

    PubMed Central

    2018-01-01

    Stoichiometric balance, or dosage balance, implies that proteins that are subunits of obligate complexes (e.g. the ribosome) should have copy numbers expressed to match their stoichiometry in that complex. Establishing balance (or imbalance) is an important tool for inferring subunit function and assembly bottlenecks. We show here that these correlations in protein copy numbers can extend beyond complex subunits to larger protein-protein interactions networks (PPIN) involving a range of reversible binding interactions. We develop a simple method for quantifying balance in any interface-resolved PPINs based on network structure and experimentally observed protein copy numbers. By analyzing such a network for the clathrin-mediated endocytosis (CME) system in yeast, we found that the real protein copy numbers were significantly more balanced in relation to their binding partners compared to randomly sampled sets of yeast copy numbers. The observed balance is not perfect, highlighting both under and overexpressed proteins. We evaluate the potential cost and benefits of imbalance using two criteria. First, a potential cost to imbalance is that ‘leftover’ proteins without remaining functional partners are free to misinteract. We systematically quantify how this misinteraction cost is most dangerous for strong-binding protein interactions and for network topologies observed in biological PPINs. Second, a more direct consequence of imbalance is that the formation of specific functional complexes depends on relative copy numbers. We therefore construct simple kinetic models of two sub-networks in the CME network to assess multi-protein assembly of the ARP2/3 complex and a minimal, nine-protein clathrin-coated vesicle forming module. We find that the observed, imperfectly balanced copy numbers are less effective than balanced copy numbers in producing fast and complete multi-protein assemblies. However, we speculate that strategic imbalance in the vesicle forming module

  12. Noncoding copy-number variations are associated with congenital limb malformation.

    PubMed

    Flöttmann, Ricarda; Kragesteen, Bjørt K; Geuer, Sinje; Socha, Magdalena; Allou, Lila; Sowińska-Seidler, Anna; Bosquillon de Jarcy, Laure; Wagner, Johannes; Jamsheer, Aleksander; Oehl-Jaschkowitz, Barbara; Wittler, Lars; de Silva, Deepthi; Kurth, Ingo; Maya, Idit; Santos-Simarro, Fernando; Hülsemann, Wiebke; Klopocki, Eva; Mountford, Roger; Fryer, Alan; Borck, Guntram; Horn, Denise; Lapunzina, Pablo; Wilson, Meredith; Mascrez, Bénédicte; Duboule, Denis; Mundlos, Stefan; Spielmann, Malte

    2017-10-12

    PurposeCopy-number variants (CNVs) are generally interpreted by linking the effects of gene dosage with phenotypes. The clinical interpretation of noncoding CNVs remains challenging. We investigated the percentage of disease-associated CNVs in patients with congenital limb malformations that affect noncoding cis-regulatory sequences versus genes sensitive to gene dosage effects.MethodsWe applied high-resolution copy-number analysis to 340 unrelated individuals with isolated limb malformation. To investigate novel candidate CNVs, we re-engineered human CNVs in mice using clustered regularly interspaced short palindromic repeats (CRISPR)-based genome editing.ResultsOf the individuals studied, 10% harbored CNVs segregating with the phenotype in the affected families. We identified 31 CNVs previously associated with congenital limb malformations and four novel candidate CNVs. Most of the disease-associated CNVs (57%) affected the noncoding cis-regulatory genome, while only 43% included a known disease gene and were likely to result from gene dosage effects. In transgenic mice harboring four novel candidate CNVs, we observed altered gene expression in all cases, indicating that the CNVs had a regulatory effect either by changing the enhancer dosage or altering the topological associating domain architecture of the genome.ConclusionOur findings suggest that CNVs affecting noncoding regulatory elements are a major cause of congenital limb malformations.Genetics in Medicine advance online publication, 12 October 2017; doi:10.1038/gim.2017.154.

  13. Impact of constitutional copy number variants on biological pathway evolution

    PubMed Central

    2013-01-01

    Background Inherited Copy Number Variants (CNVs) can modulate the expression levels of individual genes. However, little is known about how CNVs alter biological pathways and how this varies across different populations. To trace potential evolutionary changes of well-described biological pathways, we jointly queried the genomes and the transcriptomes of a collection of individuals with Caucasian, Asian or Yoruban descent combining high-resolution array and sequencing data. Results We implemented an enrichment analysis of pathways accounting for CNVs and genes sizes and detected significant enrichment not only in signal transduction and extracellular biological processes, but also in metabolism pathways. Upon the estimation of CNV population differentiation (CNVs with different polymorphism frequencies across populations), we evaluated that 22% of the pathways contain at least one gene that is proximal to a CNV (CNV-gene pair) that shows significant population differentiation. The majority of these CNV-gene pairs belong to signal transduction pathways and 6% of the CNV-gene pairs show statistical association between the copy number states and the transcript levels. Conclusions The analysis suggested possible examples of positive selection within individual populations including NF-kB, MAPK signaling pathways, and Alu/L1 retrotransposition factors. Altogether, our results suggest that constitutional CNVs may modulate subtle pathway changes through specific pathway enzymes, which may become fixed in some populations. PMID:23342974

  14. Variability of rRNA Operon Copy Number and Growth Rate Dynamics of Bacillus Isolated from an Extremely Oligotrophic Aquatic Ecosystem

    PubMed Central

    Valdivia-Anistro, Jorge A.; Eguiarte-Fruns, Luis E.; Delgado-Sapién, Gabriela; Márquez-Zacarías, Pedro; Gasca-Pineda, Jaime; Learned, Jennifer; Elser, James J.; Olmedo-Alvarez, Gabriela; Souza, Valeria

    2016-01-01

    The ribosomal RNA (rrn) operon is a key suite of genes related to the production of protein synthesis machinery and thus to bacterial growth physiology. Experimental evidence has suggested an intrinsic relationship between the number of copies of this operon and environmental resource availability, especially the availability of phosphorus (P), because bacteria that live in oligotrophic ecosystems usually have few rrn operons and a slow growth rate. The Cuatro Ciénegas Basin (CCB) is a complex aquatic ecosystem that contains an unusually high microbial diversity that is able to persist under highly oligotrophic conditions. These environmental conditions impose a variety of strong selective pressures that shape the genome dynamics of their inhabitants. The genus Bacillus is one of the most abundant cultivable bacterial groups in the CCB and usually possesses a relatively large number of rrn operon copies (6–15 copies). The main goal of this study was to analyze the variation in the number of rrn operon copies of Bacillus in the CCB and to assess their growth-related properties as well as their stoichiometric balance (N and P content). We defined 18 phylogenetic groups within the Bacilli clade and documented a range of from six to 14 copies of the rrn operon. The growth dynamic of these Bacilli was heterogeneous and did not show a direct relation to the number of operon copies. Physiologically, our results were not consistent with the Growth Rate Hypothesis, since the copies of the rrn operon were decoupled from growth rate. However, we speculate that the diversity of the growth properties of these Bacilli as well as the low P content of their cells in an ample range of rrn copy number is an adaptive response to oligotrophy of the CCB and could represent an ecological mechanism that allows these taxa to coexist. These findings increase the knowledge of the variability in the number of copies of the rrn operon in the genus Bacillus and give insights about the

  15. Mitochondrial DNA copy number in peripheral blood cell and hypertension risk among mining workers: a case-control study in Chinese coal miners.

    PubMed

    Lei, L; Guo, J; Shi, X; Zhang, G; Kang, H; Sun, C; Huang, J; Wang, T

    2017-09-01

    Alteration of mitochondrial DNA (mtDNA) copy number, which reflects oxidant-induced cell damage, has been observed in a wide range of human diseases. However, whether it correlates with hypertension has not been elucidated. We aimed to explore the association between mtDNA copy number and the risk of hypertension in Chinese coal miners. A case-control study was performed with 378 hypertension patients and 325 healthy controls in a large coal mining group located in North China. Face-to-face interviews were conducted by trained staffs with necessary medical knowledge. The mtDNA copy number was measured by a quantitative real-time PCR assay using DNA extracted from peripheral blood. No significant differences in mtDNA copy number were observed between hypertension patients and healthy controls. However, in both case and control groups, the mtDNA copy number was statistically significantly lower in the elder population (≥45 years old) compared with the younger subjects (<45 years old; 7.17 vs 6.64, P=0.005 and 7.21 vs 6.84, P=0.036). A significantly higher mtDNA copy number could be found in hypertension patients consuming alcohol regularly compared with no alcohol consumption patients (7.09 vs 6.69); mtDNA copy number was also positively correlated with age and alcohol consumption. Hypertension was found significantly correlated with factors such as age, work duration, monthly family income and drinking status. Our results suggest that the mtDNA copy number is not associated with hypertension in coal miners.

  16. Differentially expressed microRNAs in lung adenocarcinoma invert effects of copy number aberrations of prognostic genes

    PubMed Central

    Tokar, Tomas; Pastrello, Chiara; Ramnarine, Varune R.; Zhu, Chang-Qi; Craddock, Kenneth J.; Pikor, Larrisa A.; Vucic, Emily A.; Vary, Simon; Shepherd, Frances A.; Tsao, Ming-Sound; Lam, Wan L.; Jurisica, Igor

    2018-01-01

    In many cancers, significantly down- or upregulated genes are found within chromosomal regions with DNA copy number alteration opposite to the expression changes. Generally, this paradox has been overlooked as noise, but can potentially be a consequence of interference of epigenetic regulatory mechanisms, including microRNA-mediated control of mRNA levels. To explore potential associations between microRNAs and paradoxes in non-small-cell lung cancer (NSCLC) we curated and analyzed lung adenocarcinoma (LUAD) data, comprising gene expressions, copy number aberrations (CNAs) and microRNA expressions. We integrated data from 1,062 tumor samples and 241 normal lung samples, including newly-generated array comparative genomic hybridization (aCGH) data from 63 LUAD samples. We identified 85 “paradoxical” genes whose differential expression consistently contrasted with aberrations of their copy numbers. Paradoxical status of 70 out of 85 genes was validated on sample-wise basis using The Cancer Genome Atlas (TCGA) LUAD data. Of these, 41 genes are prognostic and form a clinically relevant signature, which we validated on three independent datasets. By meta-analysis of results from 9 LUAD microRNA expression studies we identified 24 consistently-deregulated microRNAs. Using TCGA-LUAD data we showed that deregulation of 19 of these microRNAs explains differential expression of the paradoxical genes. Our results show that deregulation of paradoxical genes is crucial in LUAD and their expression pattern is maintained epigenetically, defying gene copy number status. PMID:29507679

  17. Reactive oxygen species regulate DNA copy number in isolated yeast mitochondria by triggering recombination-mediated replication.

    PubMed

    Hori, Akiko; Yoshida, Minoru; Shibata, Takehiko; Ling, Feng

    2009-02-01

    Mitochondrial DNA (mtDNA) encodes proteins that are essential for cellular ATP production. Reactive oxygen species (ROS) are respiratory byproducts that damage mtDNA and other cellular components. In Saccharomyces cerevisiae, the oxidized base excision-repair enzyme Ntg1 introduces a double-stranded break (DSB) at the mtDNA replication origin ori5; this DSB initiates the rolling-circle mtDNA replication mediated by the homologous DNA pairing protein Mhr1. Thus, ROS may play a role in the regulation of mtDNA copy number. Here, we show that the treatment of isolated mitochondria with low concentrations of hydrogen peroxide increased mtDNA copy number in an Ntg1- and Mhr1-dependent manner. This treatment elevated the DSB levels at ori5 of hypersuppressive [rho(-)] mtDNA only if Ntg1 was active. In vitro Ntg1-treatment of hypersuppressive [rho(-)] mtDNA extracted from hydrogen peroxide-treated mitochondria revealed increased oxidative modifications at ori5 loci. We also observed that purified Ntg1 created breaks in single-stranded DNA harboring oxidized bases, and that ori5 loci have single-stranded character. Furthermore, chronic low levels of hydrogen peroxide increased in vivo mtDNA copy number. We therefore propose that ROS act as a regulator of mtDNA copy number, acting through the Mhr1-dependent initiation of rolling-circle replication promoted by Ntg1-induced DSB in the single-stranded regions at ori5.

  18. Genomic copy number gains of ErbB family members predict poor clinical outcomes in glioma patients

    PubMed Central

    Liu, Rui; Qu, Yiping; Chen, Lihong; Pu, Jun; Ma, Sharui; Zhang, Xiaozhi; Yang, Qi; Shi, Bingyin; Hou, Peng; Ji, Meiju

    2017-01-01

    The aim of this study was to investigate copy number of ErbB family members (including EGFR, HER2, HER3 and HER4) in a cohort of gliomas and benign meningiomas (control subjects), and explore the associations of their copy number with clinicopathological characteristics and clinical outcomes of glioma patients. Using real-time quantitative PCR assay, we demonstrated that copy number of EGFR, HER2, HER3 and HER4 in glioma patients was significantly increased compared to control subjects. Moreover, our data also showed that the risk of cancer-related death was positively associated with copy number gain (CNG) of EGFR, HER3 and HER4, but not HER2. CNG of EGFR and HER2 was positively related to radiotherapy, while CNG of HER3 and HER4 was negatively related to chemotherapy. Importantly, EGFR CNG significantly shortened median survival times of glioma patients regardless of gender, tumor grade and therapeutic regimens. Stratified analysis showed that CNG of HER2-4 almost did not influence the survival of male patients, patients with high-grade tumors and patients receiving chemotherapy, but dramatically shortened median survival times of female patients, those with low-grade tumors and those receiving radiotherapy. Collectively, our data not only demonstrate that the members of ErbB family are frequently amplified in gliomas, but also suggest that these common genetic events may be prognostic factors for poor clinical outcomes in glioma patients. PMID:29190914

  19. Topoisomerase-1 and -2A gene copy numbers are elevated in mismatch repair-proficient colorectal cancers.

    PubMed

    Sønderstrup, Ida Marie Heeholm; Nygård, Sune Boris; Poulsen, Tim Svenstrup; Linnemann, Dorte; Stenvang, Jan; Nielsen, Hans Jørgen; Bartek, Jiri; Brünner, Nils; Nørgaard, Peter; Riis, Lene

    2015-06-01

    Topoisomerase 1 (TOP1) and 2A (TOP2A) are potential predictive biomarkers for irinotecan and anthracycline treatment, respectively, in colorectal cancer (CRC), and we have recently reported a high frequency of gene gain of the TOP1 and TOP2A genes in CRC. Furthermore, Mismatch Repair (MMR) subtypes of CRC have been associated with benefit from adjuvant chemotherapy of primary CRC. Given the involvement of the topoisomerase enzymes in DNA replication and repair, we raised the hypothesis that an association may exist between TOP gene copy numbers and MMR proficiency/deficiency in CRC. Test cohort: FISH analysis with an in-house TOP1/CEN20 probe mix and a commercially available TOP2A/CEN17 (Dako, Glostrup, Denmark) probe mix was performed on archival formalin fixed paraffin embedded (FFPE) tissue samples from 18 patients with proficient MMR (pMMR) CRC and 18 patients with deficient MMR (dMMR) CRC. TOP1 and TOP2A gene copy numbers and their ratios per nucleus were correlated with MMR status using the Mann-Whitney test. Validation cohort: FFPE samples from 154 patients with primary stage III CRC (originally included in the RANX05 study) were classified according to MMR status by immunohistochemical analysis using validated antibodies for MLH1, MLH2, MSH6 and PMS2, and information on TOP1, CEN20, TOP2A and CEN17 status was previously published for this cohort. The observed TOP1 gene copy numbers in the 36 CRC test cohort were significantly greater (p < 0.01) in the pMMR subgroup (mean: 3.84, SD: 2.03) than in the dMMR subgroup (mean: 1.50, SD: 0.12). Similarly, the TOP2A copy numbers were significantly greater (p < 0.01) in the pMMR subgroup (mean: 1.99, SD: 0.52) than in the dMMR subgroup (mean: 1.52, SD: 0.10). These findings were confirmed in the validation cohort, where in the pMMR subgroup 51% had ≥2 extra TOP1 copies per cell, while all tumors classified as dMMR had diploid TOP1 status and mean TOP2A copy numbers were 2.30 (SD: 1.36) and 1.80 (SD: 0.31) (p = 0

  20. Mitochondrial DNA copy numbers in pyramidal neurons are decreased and mitochondrial biogenesis transcriptome signaling is disrupted in Alzheimer's disease hippocampi.

    PubMed

    Rice, Ann C; Keeney, Paula M; Algarzae, Norah K; Ladd, Amy C; Thomas, Ravindar R; Bennett, James P

    2014-01-01

    Alzheimer's disease (AD) is the major cause of adult-onset dementia and is characterized in its pre-diagnostic stage by reduced cerebral cortical glucose metabolism and in later stages by reduced cortical oxygen uptake, implying reduced mitochondrial respiration. Using quantitative PCR we determined the mitochondrial DNA (mtDNA) gene copy numbers from multiple groups of 15 or 20 pyramidal neurons, GFAP(+) astrocytes and dentate granule neurons isolated using laser capture microdissection, and the relative expression of mitochondrial biogenesis (mitobiogenesis) genes in hippocampi from 10 AD and 9 control (CTL) cases. AD pyramidal but not dentate granule neurons had significantly reduced mtDNA copy numbers compared to CTL neurons. Pyramidal neuron mtDNA copy numbers in CTL, but not AD, positively correlated with cDNA levels of multiple mitobiogenesis genes. In CTL, but not in AD, hippocampal cDNA levels of PGC1α were positively correlated with multiple downstream mitobiogenesis factors. Mitochondrial DNA copy numbers in pyramidal neurons did not correlate with hippocampal Aβ1-42 levels. After 48 h exposure of H9 human neural stem cells to the neurotoxic fragment Aβ25-35, mtDNA copy numbers were not significantly altered. In summary, AD postmortem hippocampal pyramidal neurons have reduced mtDNA copy numbers. Mitochondrial biogenesis pathway signaling relationships are disrupted in AD, but are mostly preserved in CTL. Our findings implicate complex alterations of mitochondria-host cell relationships in AD.

  1. A method for generating new datasets based on copy number for cancer analysis.

    PubMed

    Kim, Shinuk; Kon, Mark; Kang, Hyunsik

    2015-01-01

    New data sources for the analysis of cancer data are rapidly supplementing the large number of gene-expression markers used for current methods of analysis. Significant among these new sources are copy number variation (CNV) datasets, which typically enumerate several hundred thousand CNVs distributed throughout the genome. Several useful algorithms allow systems-level analyses of such datasets. However, these rich data sources have not yet been analyzed as deeply as gene-expression data. To address this issue, the extensive toolsets used for analyzing expression data in cancerous and noncancerous tissue (e.g., gene set enrichment analysis and phenotype prediction) could be redirected to extract a great deal of predictive information from CNV data, in particular those derived from cancers. Here we present a software package capable of preprocessing standard Agilent copy number datasets into a form to which essentially all expression analysis tools can be applied. We illustrate the use of this toolset in predicting the survival time of patients with ovarian cancer or glioblastoma multiforme and also provide an analysis of gene- and pathway-level deletions in these two types of cancer.

  2. SMN1 and SMN2 copy numbers in cell lines derived from patients with spinal muscular atrophy as measured by array digital PCR.

    PubMed

    Stabley, Deborah L; Harris, Ashlee W; Holbrook, Jennifer; Chubbs, Nicholas J; Lozo, Kevin W; Crawford, Thomas O; Swoboda, Kathryn J; Funanage, Vicky L; Wang, Wenlan; Mackenzie, William; Scavina, Mena; Sol-Church, Katia; Butchbach, Matthew E R

    2015-07-01

    Proximal spinal muscular atrophy (SMA) is an early-onset motor neuron disease characterized by loss of α-motor neurons and associated muscle atrophy. SMA is caused by deletion or other disabling mutation of survival motor neuron 1 (SMN1). In the human genome, a large duplication of the SMN-containing region gives rise to a second copy of this gene (SMN2) that is distinguishable by a single nucleotide change in exon 7. Within the SMA population, there is substantial variation in SMN2 copy number; in general, those individuals with SMA who have a high SMN2 copy number have a milder disease. Because SMN2 functions as a disease modifier, its accurate copy number determination may have clinical relevance. In this study, we describe the development of an assay to assess SMN1 and SMN2 copy numbers in DNA samples using an array-based digital PCR (dPCR) system. This dPCR assay can accurately and reliably measure the number of SMN1 and SMN2 copies in DNA samples. In a cohort of SMA patient-derived cell lines, the assay confirmed a strong inverse correlation between SMN2 copy number and disease severity. Array dPCR is a practical technique to determine, accurately and reliably, SMN1 and SMN2 copy numbers from SMA samples.

  3. Clinical implementation of integrated whole-genome copy number and mutation profiling for glioblastoma

    PubMed Central

    Ramkissoon, Shakti H.; Bi, Wenya Linda; Schumacher, Steven E.; Ramkissoon, Lori A.; Haidar, Sam; Knoff, David; Dubuc, Adrian; Brown, Loreal; Burns, Margot; Cryan, Jane B.; Abedalthagafi, Malak; Kang, Yun Jee; Schultz, Nikolaus; Reardon, David A.; Lee, Eudocia Q.; Rinne, Mikael L.; Norden, Andrew D.; Nayak, Lakshmi; Ruland, Sandra; Doherty, Lisa M.; LaFrankie, Debra C.; Horvath, Margaret; Aizer, Ayal A.; Russo, Andrea; Arvold, Nils D.; Claus, Elizabeth B.; Al-Mefty, Ossama; Johnson, Mark D.; Golby, Alexandra J.; Dunn, Ian F.; Chiocca, E. Antonio; Trippa, Lorenzo; Santagata, Sandro; Folkerth, Rebecca D.; Kantoff, Philip; Rollins, Barrett J.; Lindeman, Neal I.; Wen, Patrick Y.; Ligon, Azra H.; Beroukhim, Rameen; Alexander, Brian M.; Ligon, Keith L.

    2015-01-01

    Background Multidimensional genotyping of formalin-fixed paraffin-embedded (FFPE) samples has the potential to improve diagnostics and clinical trials for brain tumors, but prospective use in the clinical setting is not yet routine. We report our experience with implementing a multiplexed copy number and mutation-testing program in a diagnostic laboratory certified by the Clinical Laboratory Improvement Amendments. Methods We collected and analyzed clinical testing results from whole-genome array comparative genomic hybridization (OncoCopy) of 420 brain tumors, including 148 glioblastomas. Mass spectrometry–based mutation genotyping (OncoMap, 471 mutations) was performed on 86 glioblastomas. Results OncoCopy was successful in 99% of samples for which sufficient DNA was obtained (n = 415). All clinically relevant loci for glioblastomas were detected, including amplifications (EGFR, PDGFRA, MET) and deletions (EGFRvIII, PTEN, 1p/19q). Glioblastoma patients ≤40 years old had distinct profiles compared with patients >40 years. OncoMap testing reliably identified mutations in IDH1, TP53, and PTEN. Seventy-seven glioblastoma patients enrolled on trials, of whom 51% participated in targeted therapeutic trials where multiplex data informed eligibility or outcomes. Data integration identified patients with complete tumor suppressor inactivation, albeit rarely (5% of patients) due to lack of whole-gene coverage in OncoMap. Conclusions Combined use of multiplexed copy number and mutation detection from FFPE samples in the clinical setting can efficiently replace singleton tests for clinical diagnosis and prognosis in most settings. Our results support incorporation of these assays into clinical trials as integral biomarkers and their potential to impact interpretation of results. Limited tumor suppressor variant capture by targeted genotyping highlights the need for whole-gene sequencing in glioblastoma. PMID:25754088

  4. Obesity, starch digestion and amylase: association between copy number variants at human salivary (AMY1) and pancreatic (AMY2) amylase genes

    PubMed Central

    Carpenter, Danielle; Dhar, Sugandha; Mitchell, Laura M.; Fu, Beiyuan; Tyson, Jess; Shwan, Nzar A.A.; Yang, Fengtang; Thomas, Mark G.; Armour, John A.L.

    2015-01-01

    The human salivary amylase genes display extensive copy number variation (CNV), and recent work has implicated this variation in adaptation to starch-rich diets, and in association with body mass index. In this work, we use paralogue ratio tests, microsatellite analysis, read depth and fibre-FISH to demonstrate that human amylase CNV is not a smooth continuum, but is instead partitioned into distinct haplotype classes. There is a fundamental structural distinction between haplotypes containing odd or even numbers of AMY1 gene units, in turn coupled to CNV in pancreatic amylase genes AMY2A and AMY2B. Most haplotypes have one copy each of AMY2A and AMY2B and contain an odd number of copies of AMY1; consequently, most individuals have an even total number of AMY1. In contrast, haplotypes carrying an even number of AMY1 genes have rearrangements leading to CNVs of AMY2A/AMY2B. Read-depth and experimental data show that different populations harbour different proportions of these basic haplotype classes. In Europeans, the copy numbers of AMY1 and AMY2A are correlated, so that phenotypic associations caused by variation in pancreatic amylase copy number could be detected indirectly as weak association with AMY1 copy number. We show that the quantitative polymerase chain reaction (qPCR) assay previously applied to the high-throughput measurement of AMY1 copy number is less accurate than the measures we use and that qPCR data in other studies have been further compromised by systematic miscalibration. Our results uncover new patterns in human amylase variation and imply a potential role for AMY2 CNV in functional associations. PMID:25788522

  5. Obesity, starch digestion and amylase: association between copy number variants at human salivary (AMY1) and pancreatic (AMY2) amylase genes.

    PubMed

    Carpenter, Danielle; Dhar, Sugandha; Mitchell, Laura M; Fu, Beiyuan; Tyson, Jess; Shwan, Nzar A A; Yang, Fengtang; Thomas, Mark G; Armour, John A L

    2015-06-15

    The human salivary amylase genes display extensive copy number variation (CNV), and recent work has implicated this variation in adaptation to starch-rich diets, and in association with body mass index. In this work, we use paralogue ratio tests, microsatellite analysis, read depth and fibre-FISH to demonstrate that human amylase CNV is not a smooth continuum, but is instead partitioned into distinct haplotype classes. There is a fundamental structural distinction between haplotypes containing odd or even numbers of AMY1 gene units, in turn coupled to CNV in pancreatic amylase genes AMY2A and AMY2B. Most haplotypes have one copy each of AMY2A and AMY2B and contain an odd number of copies of AMY1; consequently, most individuals have an even total number of AMY1. In contrast, haplotypes carrying an even number of AMY1 genes have rearrangements leading to CNVs of AMY2A/AMY2B. Read-depth and experimental data show that different populations harbour different proportions of these basic haplotype classes. In Europeans, the copy numbers of AMY1 and AMY2A are correlated, so that phenotypic associations caused by variation in pancreatic amylase copy number could be detected indirectly as weak association with AMY1 copy number. We show that the quantitative polymerase chain reaction (qPCR) assay previously applied to the high-throughput measurement of AMY1 copy number is less accurate than the measures we use and that qPCR data in other studies have been further compromised by systematic miscalibration. Our results uncover new patterns in human amylase variation and imply a potential role for AMY2 CNV in functional associations. © The Author 2015. Published by Oxford University Press.

  6. Copy number variation of functional RBMY1 is associated with sperm motility: an azoospermia factor-linked candidate for asthenozoospermia.

    PubMed

    Yan, Yuanlong; Yang, Xiling; Liu, Yunqiang; Shen, Ying; Tu, Wenling; Dong, Qiang; Yang, Dong; Ma, Yongyi; Yang, Yuan

    2017-07-01

    What is the influence of copy number variation (CNV) in functional RNA binding motif protein Y-linked family 1 (RBMY1) on spermatogenic phenotypes? The RBMY1 functional copy dosage is positively correlated with sperm motility, and dosage insufficiency is an independent risk factor for asthenozoospermia. RBMY1, a multi-copy gene expressed exclusively in the adult testis, is one of the most important candidates for male infertility in the azoospermia factor (AZF) region of the Y-chromosome. RBMY1 encodes an RNA-binding protein that serves as a pre-mRNA splicing regulator during spermatogenesis, and male mice deficient in Rbmy are sterile. A total of 3127 adult males were recruited from 2009 to 2016; of this group, the dosage of RBMY1 functional copy were investigated in 486 fertile males. In the remaining 2641 males with known spermatogenesis status, 1070 Y-chromosome haplogroup (Y-hg) O3* or O3e carriers without chromosomal aberration or known AZF structure mutations responsible for spermatogenic impairment, including 506 men with normozoospermia and 564 men with oligozoospermia or/and asthenozoospermia, were screened, and the RBMY1 functional copy dosage and copy conversion were determined to explore their associations with sperm phenotypes. The correlation between RBMY1 dosage and its mRNA level or RBMY1 protein level and the correlation between sperm RBMY1 level and motility were analysed in 15 testis tissue samples and eight semen samples. Ten additional semen samples were used to confirm the subcellular localization of RBMY1 in individual sperm. All the Han volunteers donating whole blood, semen and testis tissue were from southwest China. RBMY1 copy number, copy conversion, mRNA/protein amount and protein location in sperm were detected using the AccuCopy® assay method, paralog ratio test, quantitative PCR, western blotting and immunofluorescence staining methods, respectively. This study identified Y-hg-independent CNV of functional RBMY1 in the enrolled

  7. A Coarse-Grained Biophysical Model of E. coli and Its Application to Perturbation of the rRNA Operon Copy Number

    PubMed Central

    Tadmor, Arbel D.; Tlusty, Tsvi

    2008-01-01

    We propose a biophysical model of Escherichia coli that predicts growth rate and an effective cellular composition from an effective, coarse-grained representation of its genome. We assume that E. coli is in a state of balanced exponential steady-state growth, growing in a temporally and spatially constant environment, rich in resources. We apply this model to a series of past measurements, where the growth rate and rRNA-to-protein ratio have been measured for seven E. coli strains with an rRNA operon copy number ranging from one to seven (the wild-type copy number). These experiments show that growth rate markedly decreases for strains with fewer than six copies. Using the model, we were able to reproduce these measurements. We show that the model that best fits these data suggests that the volume fraction of macromolecules inside E. coli is not fixed when the rRNA operon copy number is varied. Moreover, the model predicts that increasing the copy number beyond seven results in a cytoplasm densely packed with ribosomes and proteins. Assuming that under such overcrowded conditions prolonged diffusion times tend to weaken binding affinities, the model predicts that growth rate will not increase substantially beyond the wild-type growth rate, as indicated by other experiments. Our model therefore suggests that changing the rRNA operon copy number of wild-type E. coli cells growing in a constant rich environment does not substantially increase their growth rate. Other observations regarding strains with an altered rRNA operon copy number, such as nucleoid compaction and the rRNA operon feedback response, appear to be qualitatively consistent with this model. In addition, we discuss possible design principles suggested by the model and propose further experiments to test its validity. PMID:18437222

  8. Whole-genome copy number variation analysis in anophthalmia and microphthalmia

    PubMed Central

    Schilter, Kala F.; Reis, Linda M.; Schneider, Adele; Bardakjian, Tanya M.; Abdul-Rahman, Omar; Kozel, Beth A.; Zimmerman, Holly H.; Broeckel, Ulrich; Semina, Elena V.

    2014-01-01

    Anophthalmia and microphthalmia (A/M) represent severe developmental ocular malformations. Currently, mutations in known genes explain less than 40% of A/M cases. We performed whole genome copy number variation analysis in sixty patients affected with isolated or syndromic A/M. Pathogenic deletions of 3q26 (SOX2) were identified in four independent patients with syndromic microphthalmia. Other variants of interest included regions with a known role in human disease (likely pathogenic) as well as novel rearrangements (uncertain significance). A 2.2-Mb duplication of 3q29 in a patient with nonsyndromic anophthalmia and an 877-kb duplication of 11p13 (PAX6) and a 1.4-Mb deletion of 17q11.2 (NF1) in two independent probands with syndromic microphthalmia and other ocular defects were identified; while ocular anomalies have been previously associated with 3q29 duplications, PAX6 duplications, and NF1 mutations in some cases, the ocular phenotypes observed here are more severe than previously reported. Three novel regions of possible interest included a 2q14.2 duplication which cosegregated with microphthalmia/microcornea and congenital cataracts in one family, and 2q21 and 15q26 duplications in two additional cases; each of these regions contains genes that are active during vertebrate ocular development. Overall, this study identified causative copy number mutations and regions with a possible role in ocular disease in 17% of A/M cases. PMID:23701296

  9. Tightly regulated, high-level expression from controlled copy number vectors based on the replicon of temperate phage N15.

    PubMed

    Mardanov, Andrey V; Strakhova, Taisia S; Smagin, Vladimir A; Ravin, Nikolai V

    2007-06-15

    A new Escherichia coli host/vector system has been developed to allow a dual regulation of both the plasmid copy number and gene expression. The new pN15E vectors are low copy number plasmids based on the replicon of temperate phage N15, comprising the repA replicase gene and cB repressor gene, controlling the plasmid copy number. Regulation of pN15E copy number is achieved through arabinose-inducible expression of phage N15 antirepressor protein, AntA, whose gene was integrated into the chromosome of the host strain under control of the PBAD promoter. The host strain also carried phage N15 partition operon, sop, allowing stable inheritance of pN15E vectors in the absence of selection pressure. In the first vector, pN15E4, the same PBAD promoter controls expression of a cloned gene. The second vector, pN15E6, carries the phage T5 promoter with a double lac operator repression module thus allowing independent regulation of promoter activity and copy number. Using the lacZ gene to monitor expression in these vectors, we show that the ratio of induction/repression can be about 7600-fold for pN15E4 and more than 15,000-fold for pN15E6. The low copy number of these vectors ensures very low basal level of expression allowing cloning genes encoding toxic products that was demonstrated by the stable maintenance of a gene encoding a restriction endonuclease in pN15E4. The tight control of transcription and the potential to regulate gene activities quantitatively over wide ranges will open up new approaches in the study of gene function in vivo and controlled expression of heterologous genes.

  10. Efficient Detection of Copy Number Mutations in PMS2 Exons with a Close Homolog.

    PubMed

    Herman, Daniel S; Smith, Christina; Liu, Chang; Vaughn, Cecily P; Palaniappan, Selvi; Pritchard, Colin C; Shirts, Brian H

    2018-07-01

    Detection of 3' PMS2 copy-number mutations that cause Lynch syndrome is difficult because of highly homologous pseudogenes. To improve the accuracy and efficiency of clinical screening for these mutations, we developed a new method to analyze standard capture-based, next-generation sequencing data to identify deletions and duplications in PMS2 exons 9 to 15. The approach captures sequences using PMS2 targets, maps sequences randomly among regions with equal mapping quality, counts reads aligned to homologous exons and introns, and flags read count ratios outside of empirically derived reference ranges. The method was trained on 1352 samples, including 8 known positives, and tested on 719 samples, including 17 known positives. Clinical implementation of the first version of this method detected new mutations in the training (N = 7) and test (N = 2) sets that had not been identified by our initial clinical testing pipeline. The described final method showed complete sensitivity in both sample sets and false-positive rates of 5% (training) and 7% (test), dramatically decreasing the number of cases needing additional mutation evaluation. This approach leveraged the differences between gene and pseudogene to distinguish between PMS2 and PMS2CL copy-number mutations. These methods enable efficient and sensitive Lynch syndrome screening for 3' PMS2 copy-number mutations and may be applied similarly to other genomic regions with highly homologous pseudogenes. Copyright © 2018 American Society for Investigative Pathology and the Association for Molecular Pathology. Published by Elsevier Inc. All rights reserved.

  11. Clinical omics analysis of colorectal cancer incorporating copy number aberrations and gene expression data.

    PubMed

    Yoshida, Tsuyoshi; Kobayashi, Takumi; Itoda, Masaya; Muto, Taika; Miyaguchi, Ken; Mogushi, Kaoru; Shoji, Satoshi; Shimokawa, Kazuro; Iida, Satoru; Uetake, Hiroyuki; Ishikawa, Toshiaki; Sugihara, Kenichi; Mizushima, Hiroshi; Tanaka, Hiroshi

    2010-07-29

    Colorectal cancer (CRC) is one of the most frequently occurring cancers in Japan, and thus a wide range of methods have been deployed to study the molecular mechanisms of CRC. In this study, we performed a comprehensive analysis of CRC, incorporating copy number aberration (CRC) and gene expression data. For the last four years, we have been collecting data from CRC cases and organizing the information as an "omics" study by integrating many kinds of analysis into a single comprehensive investigation. In our previous studies, we had experienced difficulty in finding genes related to CRC, as we observed higher noise levels in the expression data than in the data for other cancers. Because chromosomal aberrations are often observed in CRC, here, we have performed a combination of CNA analysis and expression analysis in order to identify some new genes responsible for CRC. This study was performed as part of the Clinical Omics Database Project at Tokyo Medical and Dental University. The purpose of this study was to investigate the mechanism of genetic instability in CRC by this combination of expression analysis and CNA, and to establish a new method for the diagnosis and treatment of CRC. Comprehensive gene expression analysis was performed on 79 CRC cases using an Affymetrix Gene Chip, and comprehensive CNA analysis was performed using an Affymetrix DNA Sty array. To avoid the contamination of cancer tissue with normal cells, laser micro-dissection was performed before DNA/RNA extraction. Data analysis was performed using original software written in the R language. We observed a high percentage of CNA in colorectal cancer, including copy number gains at 7, 8q, 13 and 20q, and copy number losses at 8p, 17p and 18. Gene expression analysis provided many candidates for CRC-related genes, but their association with CRC did not reach the level of statistical significance. The combination of CNA and gene expression analysis, together with the clinical information

  12. Rare copy number variations in congenital heart disease patients identify unique genes in left-right patterning

    PubMed Central

    Fakhro, Khalid A.; Choi, Murim; Ware, Stephanie M.; Belmont, John W.; Towbin, Jeffrey A.; Lifton, Richard P.; Khokha, Mustafa K.; Brueckner, Martina

    2011-01-01

    Dominant human genetic diseases that impair reproductive fitness and have high locus heterogeneity constitute a problem for gene discovery because the usual criterion of finding more mutations in specific genes than expected by chance may require extremely large populations. Heterotaxy (Htx), a congenital heart disease resulting from abnormalities in left-right (LR) body patterning, has features suggesting that many cases fall into this category. In this setting, appropriate model systems may provide a means to support implication of specific genes. By high-resolution genotyping of 262 Htx subjects and 991 controls, we identify a twofold excess of subjects with rare genic copy number variations in Htx (14.5% vs. 7.4%, P = 1.5 × 10−4). Although 7 of 45 Htx copy number variations were large chromosomal abnormalities, 38 smaller copy number variations altered a total of 61 genes, 22 of which had Xenopus orthologs. In situ hybridization identified 7 of these 22 genes with expression in the ciliated LR organizer (gastrocoel roof plate), a marked enrichment compared with 40 of 845 previously studied genes (sevenfold enrichment, P < 10−6). Morpholino knockdown in Xenopus of Htx candidates demonstrated that five (NEK2, ROCK2, TGFBR2, GALNT11, and NUP188) strongly disrupted both morphological LR development and expression of pitx2, a molecular marker of LR patterning. These effects were specific, because 0 of 13 control genes from rare Htx or control copy number variations produced significant LR abnormalities (P = 0.001). These findings identify genes not previously implicated in LR patterning. PMID:21282601

  13. Rare copy number variations in congenital heart disease patients identify unique genes in left-right patterning.

    PubMed

    Fakhro, Khalid A; Choi, Murim; Ware, Stephanie M; Belmont, John W; Towbin, Jeffrey A; Lifton, Richard P; Khokha, Mustafa K; Brueckner, Martina

    2011-02-15

    Dominant human genetic diseases that impair reproductive fitness and have high locus heterogeneity constitute a problem for gene discovery because the usual criterion of finding more mutations in specific genes than expected by chance may require extremely large populations. Heterotaxy (Htx), a congenital heart disease resulting from abnormalities in left-right (LR) body patterning, has features suggesting that many cases fall into this category. In this setting, appropriate model systems may provide a means to support implication of specific genes. By high-resolution genotyping of 262 Htx subjects and 991 controls, we identify a twofold excess of subjects with rare genic copy number variations in Htx (14.5% vs. 7.4%, P = 1.5 × 10(-4)). Although 7 of 45 Htx copy number variations were large chromosomal abnormalities, 38 smaller copy number variations altered a total of 61 genes, 22 of which had Xenopus orthologs. In situ hybridization identified 7 of these 22 genes with expression in the ciliated LR organizer (gastrocoel roof plate), a marked enrichment compared with 40 of 845 previously studied genes (sevenfold enrichment, P < 10(-6)). Morpholino knockdown in Xenopus of Htx candidates demonstrated that five (NEK2, ROCK2, TGFBR2, GALNT11, and NUP188) strongly disrupted both morphological LR development and expression of pitx2, a molecular marker of LR patterning. These effects were specific, because 0 of 13 control genes from rare Htx or control copy number variations produced significant LR abnormalities (P = 0.001). These findings identify genes not previously implicated in LR patterning.

  14. Large-scale integrative network-based analysis identifies common pathways disrupted by copy number alterations across cancers

    PubMed Central

    2013-01-01

    Background Many large-scale studies analyzed high-throughput genomic data to identify altered pathways essential to the development and progression of specific types of cancer. However, no previous study has been extended to provide a comprehensive analysis of pathways disrupted by copy number alterations across different human cancers. Towards this goal, we propose a network-based method to integrate copy number alteration data with human protein-protein interaction networks and pathway databases to identify pathways that are commonly disrupted in many different types of cancer. Results We applied our approach to a data set of 2,172 cancer patients across 16 different types of cancers, and discovered a set of commonly disrupted pathways, which are likely essential for tumor formation in majority of the cancers. We also identified pathways that are only disrupted in specific cancer types, providing molecular markers for different human cancers. Analysis with independent microarray gene expression datasets confirms that the commonly disrupted pathways can be used to identify patient subgroups with significantly different survival outcomes. We also provide a network view of disrupted pathways to explain how copy number alterations affect pathways that regulate cell growth, cycle, and differentiation for tumorigenesis. Conclusions In this work, we demonstrated that the network-based integrative analysis can help to identify pathways disrupted by copy number alterations across 16 types of human cancers, which are not readily identifiable by conventional overrepresentation-based and other pathway-based methods. All the results and source code are available at http://compbio.cs.umn.edu/NetPathID/. PMID:23822816

  15. A network of epigenetic modifiers and DNA repair genes controls tissue-specific copy number alteration preference.

    PubMed

    Cramer, Dina; Serrano, Luis; Schaefer, Martin H

    2016-11-10

    Copy number alterations (CNAs) in cancer patients show a large variability in their number, length and position, but the sources of this variability are not known. CNA number and length are linked to patient survival, suggesting clinical relevance. We have identified genes that tend to be mutated in samples that have few or many CNAs, which we term CONIM genes (COpy Number Instability Modulators). CONIM proteins cluster into a densely connected subnetwork of physical interactions and many of them are epigenetic modifiers. Therefore, we investigated how the epigenome of the tissue-of-origin influences the position of CNA breakpoints and the properties of the resulting CNAs. We found that the presence of heterochromatin in the tissue-of-origin contributes to the recurrence and length of CNAs in the respective cancer type.

  16. Copy Number Variation Is a Fundamental Aspect of the Placental Genome

    PubMed Central

    Hannibal, Roberta L.; Chuong, Edward B.; Rivera-Mulia, Juan Carlos; Gilbert, David M.; Valouev, Anton; Baker, Julie C.

    2014-01-01

    Discovery of lineage-specific somatic copy number variation (CNV) in mammals has led to debate over whether CNVs are mutations that propagate disease or whether they are a normal, and even essential, aspect of cell biology. We show that 1,000N polyploid trophoblast giant cells (TGCs) of the mouse placenta contain 47 regions, totaling 138 Megabases, where genomic copies are underrepresented (UR). UR domains originate from a subset of late-replicating heterochromatic regions containing gene deserts and genes involved in cell adhesion and neurogenesis. While lineage-specific CNVs have been identified in mammalian cells, classically in the immune system where V(D)J recombination occurs, we demonstrate that CNVs form during gestation in the placenta by an underreplication mechanism, not by recombination nor deletion. Our results reveal that large scale CNVs are a normal feature of the mammalian placental genome, which are regulated systematically during embryogenesis and are propagated by a mechanism of underreplication. PMID:24785991

  17. Copy number variation is a fundamental aspect of the placental genome.

    PubMed

    Hannibal, Roberta L; Chuong, Edward B; Rivera-Mulia, Juan Carlos; Gilbert, David M; Valouev, Anton; Baker, Julie C

    2014-05-01

    Discovery of lineage-specific somatic copy number variation (CNV) in mammals has led to debate over whether CNVs are mutations that propagate disease or whether they are a normal, and even essential, aspect of cell biology. We show that 1,000 N polyploid trophoblast giant cells (TGCs) of the mouse placenta contain 47 regions, totaling 138 Megabases, where genomic copies are underrepresented (UR). UR domains originate from a subset of late-replicating heterochromatic regions containing gene deserts and genes involved in cell adhesion and neurogenesis. While lineage-specific CNVs have been identified in mammalian cells, classically in the immune system where V(D)J recombination occurs, we demonstrate that CNVs form during gestation in the placenta by an underreplication mechanism, not by recombination nor deletion. Our results reveal that large scale CNVs are a normal feature of the mammalian placental genome, which are regulated systematically during embryogenesis and are propagated by a mechanism of underreplication.

  18. Heritable heading time variation in wheat lines with the same number of Ppd-B1 gene copies.

    PubMed

    Ivaničová, Zuzana; Valárik, Miroslav; Pánková, Kateřina; Trávníčková, Martina; Doležel, Jaroslav; Šafář, Jan; Milec, Zbyněk

    2017-01-01

    The ability of plants to identify an optimal flowering time is critical for ensuring the production of viable seeds. The main environmental factors that influence the flowering time include the ambient temperature and day length. In wheat, the ability to assess the day length is controlled by photoperiod (Ppd) genes. Due to its allohexaploid nature, bread wheat carries the following three Ppd-1 genes: Ppd-A1, Ppd-B1 and Ppd-D1. While photoperiod (in)sensitivity controlled by Ppd-A1 and Ppd-D1 is mainly determined by sequence changes in the promoter region, the impact of the Ppd-B1 alleles on the heading time has been linked to changes in the copy numbers (and possibly their methylation status) and sequence changes in the promoter region. Here, we report that plants with the same number of Ppd-B1 copies may have different heading times. Differences were observed among F7 lines derived from crossing two spring hexaploid wheat varieties. Several lines carrying three copies of Ppd-B1 headed 16 days later than other plants in the population with the same number of gene copies. This effect was associated with changes in the gene expression level and methylation of the Ppd-B1 gene.

  19. Heritable heading time variation in wheat lines with the same number of Ppd-B1 gene copies

    PubMed Central

    Ivaničová, Zuzana; Valárik, Miroslav; Pánková, Kateřina; Trávníčková, Martina; Doležel, Jaroslav; Šafář, Jan

    2017-01-01

    The ability of plants to identify an optimal flowering time is critical for ensuring the production of viable seeds. The main environmental factors that influence the flowering time include the ambient temperature and day length. In wheat, the ability to assess the day length is controlled by photoperiod (Ppd) genes. Due to its allohexaploid nature, bread wheat carries the following three Ppd-1 genes: Ppd-A1, Ppd-B1 and Ppd-D1. While photoperiod (in)sensitivity controlled by Ppd-A1 and Ppd-D1 is mainly determined by sequence changes in the promoter region, the impact of the Ppd-B1 alleles on the heading time has been linked to changes in the copy numbers (and possibly their methylation status) and sequence changes in the promoter region. Here, we report that plants with the same number of Ppd-B1 copies may have different heading times. Differences were observed among F7 lines derived from crossing two spring hexaploid wheat varieties. Several lines carrying three copies of Ppd-B1 headed 16 days later than other plants in the population with the same number of gene copies. This effect was associated with changes in the gene expression level and methylation of the Ppd-B1 gene. PMID:28846721

  20. Fast Bayesian Inference of Copy Number Variants using Hidden Markov Models with Wavelet Compression

    PubMed Central

    Wiedenhoeft, John; Brugel, Eric; Schliep, Alexander

    2016-01-01

    By integrating Haar wavelets with Hidden Markov Models, we achieve drastically reduced running times for Bayesian inference using Forward-Backward Gibbs sampling. We show that this improves detection of genomic copy number variants (CNV) in array CGH experiments compared to the state-of-the-art, including standard Gibbs sampling. The method concentrates computational effort on chromosomal segments which are difficult to call, by dynamically and adaptively recomputing consecutive blocks of observations likely to share a copy number. This makes routine diagnostic use and re-analysis of legacy data collections feasible; to this end, we also propose an effective automatic prior. An open source software implementation of our method is available at http://schlieplab.org/Software/HaMMLET/ (DOI: 10.5281/zenodo.46262). This paper was selected for oral presentation at RECOMB 2016, and an abstract is published in the conference proceedings. PMID:27177143

  1. MERE1, a low-copy-number copia-type retroelement in Medicago truncatula active during tissue culture.

    PubMed

    Rakocevic, Alexandra; Mondy, Samuel; Tirichine, Leïla; Cosson, Viviane; Brocard, Lysiane; Iantcheva, Anelia; Cayrel, Anne; Devier, Benjamin; Abu El-Heba, Ghada Ahmed; Ratet, Pascal

    2009-11-01

    We have identified an active Medicago truncatula copia-like retroelement called Medicago RetroElement1-1 (MERE1-1) as an insertion in the symbiotic NSP2 gene. MERE1-1 belongs to a low-copy-number family in the sequenced Medicago genome. These copies are highly related, but only three of them have a complete coding region and polymorphism exists between the long terminal repeats of these different copies. This retroelement family is present in all M. truncatula ecotypes tested but also in other legume species like Lotus japonicus. It is active only during tissue culture in both R108 and Jemalong Medicago accessions and inserts preferentially in genes.

  2. Whole-genome copy number variation analysis in anophthalmia and microphthalmia.

    PubMed

    Schilter, K F; Reis, L M; Schneider, A; Bardakjian, T M; Abdul-Rahman, O; Kozel, B A; Zimmerman, H H; Broeckel, U; Semina, E V

    2013-11-01

    Anophthalmia/microphthalmia (A/M) represent severe developmental ocular malformations. Currently, mutations in known genes explain less than 40% of A/M cases. We performed whole-genome copy number variation analysis in 60 patients affected with isolated or syndromic A/M. Pathogenic deletions of 3q26 (SOX2) were identified in four independent patients with syndromic microphthalmia. Other variants of interest included regions with a known role in human disease (likely pathogenic) as well as novel rearrangements (uncertain significance). A 2.2-Mb duplication of 3q29 in a patient with non-syndromic anophthalmia and an 877-kb duplication of 11p13 (PAX6) and a 1.4-Mb deletion of 17q11.2 (NF1) in two independent probands with syndromic microphthalmia and other ocular defects were identified; while ocular anomalies have been previously associated with 3q29 duplications, PAX6 duplications, and NF1 mutations in some cases, the ocular phenotypes observed here are more severe than previously reported. Three novel regions of possible interest included a 2q14.2 duplication which cosegregated with microphthalmia/microcornea and congenital cataracts in one family, and 2q21 and 15q26 duplications in two additional cases; each of these regions contains genes that are active during vertebrate ocular development. Overall, this study identified causative copy number mutations and regions with a possible role in ocular disease in 17% of A/M cases. © 2013 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  3. Exploratory analysis of the copy number alterations in glioblastoma multiforme.

    PubMed

    Freire, Pablo; Vilela, Marco; Deus, Helena; Kim, Yong-Wan; Koul, Dimpy; Colman, Howard; Aldape, Kenneth D; Bogler, Oliver; Yung, W K Alfred; Coombes, Kevin; Mills, Gordon B; Vasconcelos, Ana T; Almeida, Jonas S

    2008-01-01

    The Cancer Genome Atlas project (TCGA) has initiated the analysis of multiple samples of a variety of tumor types, starting with glioblastoma multiforme. The analytical methods encompass genomic and transcriptomic information, as well as demographic and clinical data about the sample donors. The data create the opportunity for a systematic screening of the components of the molecular machinery for features that may be associated with tumor formation. The wealth of existing mechanistic information about cancer cell biology provides a natural reference for the exploratory exercise. Glioblastoma multiforme DNA copy number data was generated by The Cancer Genome Atlas project for 167 patients using 227 aCGH experiments, and was analyzed to build a catalog of aberrant regions. Genome screening was performed using an information theory approach in order to quantify aberration as a deviation from a centrality without the bias of untested assumptions about its parametric nature. A novel Cancer Genome Browser software application was developed and is made public to provide a user-friendly graphical interface in which the reported results can be reproduced. The application source code and stand alone executable are available at (http://code.google.com/p/cancergenome) and (http://bioinformaticstation.org), respectively. The most important known copy number alterations for glioblastoma were correctly recovered using entropy as a measure of aberration. Additional alterations were identified in different pathways, such as cell proliferation, cell junctions and neural development. Moreover, novel candidates for oncogenes and tumor suppressors were also detected. A detailed map of aberrant regions is provided.

  4. The positioning logic and copy number control of genes in bacteria under stress

    NASA Astrophysics Data System (ADS)

    Zhang, Qiucen; Austin, Robert; Vyawahare, Saurabh; Lau, Alexandra

    2013-03-01

    Escherichia coli (E. coli) cells when challenged with sublethal concentrations of the genotoxic antibiotic ciprofloxacin cease to divide and form long filaments which contain multiple bacterial chromosomes. These filaments are individual mesoscopic environmental niches which provide protection for a community of chromosomes (as opposed to cells) under mutagenic stress and can provide an evolutionary fitness advantage within the niche. We use comparative genomic hybridization to show that the mesoscopic niche evolves within 20 minutes of ciprofloxacin exposure via replication of multiple copies of genes expressing ATP dependent transporters. We show that this rapid genomic amplification is done in a time efficient manner via placement of the genes encoding the pumps near the origin of replication on the bacterial chromosome. The de-amplification of multiple copies back to the wild type number is a function of the duration is a function of the ciprofloxacin exposure duration: the longer the exposure, the slower the removal of the multiple copies. The project described was supported by the National Science Foundation and the National Cancer Institute

  5. CCL3L1 copy number, CCR5 genotype and susceptibility to tuberculosis.

    PubMed

    Carpenter, Danielle; Taype, Carmen; Goulding, Jon; Levin, Mike; Eley, Brian; Anderson, Suzanne; Shaw, Marie-Anne; Armour, John A L

    2014-01-09

    Tuberculosis is a major infectious disease and functional studies have provided evidence that both the chemokine MIP-1α and its receptor CCR5 play a role in susceptibility to TB. Thus by measuring copy number variation of CCL3L1, one of the genes that encode MIP-1α, and genotyping a functional promoter polymorphism -2459A > G in CCR5 (rs1799987) we investigate the influence of MIP-1α and CCR5, independently and combined, in susceptibility to clinically active TB in three populations, a Peruvian population (n = 1132), a !Xhosa population (n = 605) and a South African Coloured population (n = 221). The three populations include patients with clinically diagnosed pulmonary TB, as well as other, less prevalent forms of extrapulmonary TB. Copy number of CCL3L1 was measured using the paralogue ratio test and exhibited ranges between 0-6 copies per diploid genome (pdg) in Peru, between 0-12 pdg in !Xhosa samples and between 0-10 pdg in South African Coloured samples. The CCR5 promoter polymorphism was observed to differ significantly in allele frequency between populations (*A; Peru f = 0.67, !Xhosa f = 0.38, Coloured f = 0.48). The case-control association studies performed however find, surprisingly, no evidence for an influence of variation in genes coding for MIP-1α or CCR5 individually or together in susceptibility to clinically active TB in these populations.

  6. Parallel Evolution of Copy-Number Variation across Continents in Drosophila melanogaster

    PubMed Central

    Schrider, Daniel R.; Hahn, Matthew W.; Begun, David J.

    2016-01-01

    Genetic differentiation across populations that is maintained in the presence of gene flow is a hallmark of spatially varying selection. In Drosophila melanogaster, the latitudinal clines across the eastern coasts of Australia and North America appear to be examples of this type of selection, with recent studies showing that a substantial portion of the D. melanogaster genome exhibits allele frequency differentiation with respect to latitude on both continents. As of yet there has been no genome-wide examination of differentiated copy-number variants (CNVs) in these geographic regions, despite their potential importance for phenotypic variation in Drosophila and other taxa. Here, we present an analysis of geographic variation in CNVs in D. melanogaster. We also present the first genomic analysis of geographic variation for copy-number variation in the sister species, D. simulans, in order to investigate patterns of parallel evolution in these close relatives. In D. melanogaster we find hundreds of CNVs, many of which show parallel patterns of geographic variation on both continents, lending support to the idea that they are influenced by spatially varying selection. These findings support the idea that polymorphic CNVs contribute to local adaptation in D. melanogaster. In contrast, we find very few CNVs in D. simulans that are geographically differentiated in parallel on both continents, consistent with earlier work suggesting that clinal patterns are weaker in this species. PMID:26809315

  7. Differences in AMY1 Gene Copy Numbers Derived from Blood, Buccal Cells and Saliva Using Quantitative and Droplet Digital PCR Methods: Flagging the Pitfall.

    PubMed

    Ooi, Delicia Shu Qin; Tan, Verena Ming Hui; Ong, Siong Gim; Chan, Yiong Huak; Heng, Chew Kiat; Lee, Yung Seng

    2017-01-01

    The human salivary (AMY1) gene, encoding salivary α-amylase, has variable copy number variants (CNVs) in the human genome. We aimed to determine if real-time quantitative polymerase chain reaction (qPCR) and the more recently available Droplet Digital PCR (ddPCR) can provide a precise quantification of the AMY1 gene copy number in blood, buccal cells and saliva samples derived from the same individual. Seven participants were recruited and DNA was extracted from the blood, buccal cells and saliva samples provided by each participant. Taqman assay real-time qPCR and ddPCR were conducted to quantify AMY1 gene copy numbers. Statistical analysis was carried out to determine the difference in AMY1 gene copy number between the different biological specimens and different assay methods. We found significant within-individual difference (p<0.01) in AMY1 gene copy number between different biological samples as determined by qPCR. However, there was no significant within-individual difference in AMY1 gene copy number between different biological samples as determined by ddPCR. We also found that AMY1 gene copy number of blood samples were comparable between qPCR and ddPCR, while there is a significant difference (p<0.01) between AMY1 gene copy numbers measured by qPCR and ddPCR for both buccal swab and saliva samples. Despite buccal cells and saliva samples being possible sources of DNA, it is pertinent that ddPCR or a single biological sample, preferably blood sample, be used for determining highly polymorphic gene copy numbers like AMY1, due to the large within-individual variability between different biological samples if real time qPCR is employed.

  8. Assessment of copy number variations in 120 patients with Poland syndrome.

    PubMed

    Vaccari, Carlotta Maria; Tassano, Elisa; Torre, Michele; Gimelli, Stefania; Divizia, Maria Teresa; Romanini, Maria Victoria; Bossi, Simone; Musante, Ilaria; Valle, Maura; Senes, Filippo; Catena, Nunzio; Bedeschi, Maria Francesca; Baban, Anwar; Calevo, Maria Grazia; Acquaviva, Massimo; Lerone, Margherita; Ravazzolo, Roberto; Puliti, Aldamaria

    2016-11-25

    Poland Syndrome (PS) is a rare congenital disorder presenting with agenesis/hypoplasia of the pectoralis major muscle variably associated with thoracic and/or upper limb anomalies. Most cases are sporadic, but familial recurrence, with different inheritance patterns, has been observed. The genetic etiology of PS remains unknown. Karyotyping and array-comparative genomic hybridization (CGH) analyses can identify genomic imbalances that can clarify the genetic etiology of congenital and neurodevelopmental disorders. We previously reported a chromosome 11 deletion in twin girls with pectoralis muscle hypoplasia and skeletal anomalies, and a chromosome six deletion in a patient presenting a complex phenotype that included pectoralis muscle hypoplasia. However, the contribution of genomic imbalances to PS remains largely unknown. To investigate the prevalence of chromosomal imbalances in PS, standard cytogenetic and array-CGH analyses were performed in 120 PS patients. Following the application of stringent filter criteria, 14 rare copy number variations (CNVs) were identified in 14 PS patients in different regions outside known common copy number variations: seven genomic duplications and seven genomic deletions, enclosing the two previously reported PS associated chromosomal deletions. These CNVs ranged from 0.04 to 4.71 Mb in size. Bioinformatic analysis of array-CGH data indicated gene enrichment in pathways involved in cell-cell adhesion, DNA binding and apoptosis processes. The analysis also provided a number of candidate genes possibly causing the developmental defects observed in PS patients, among others REV3L, a gene coding for an error-prone DNA polymerase previously associated with Möbius Syndrome with variable phenotypes including pectoralis muscle agenesis. A number of rare CNVs were identified in PS patients, and these involve genes that represent candidates for further evaluation. Rare inherited CNVs may contribute to, or represent risk factors of PS

  9. Copy number determination of genetically-modified hematopoietic stem cells.

    PubMed

    Schuesler, Todd; Reeves, Lilith; Kalle, Christof von; Grassman, Elke

    2009-01-01

    Human gene transfer with gammaretroviral, murine leukemia virus (MLV) based vectors has been shown to effectively insert and express transgene sequences at a level of therapeutic benefit. However, there are numerous reports of disruption of the normal cellular processes caused by the viral insertion, even of replication deficient gammaretroviral vectors. Current gammaretroviral and lentiviral vectors do not control the site of insertion into the genome, hence, the possibility of disruption of the target cell genome. Risk related to viral insertions is linked to the number of insertions of the transgene into the cellular DNA, as has been demonstrated for replication competent and replication deficient retroviruses in experiments. At high number of insertions per cell, cell transformation due to vector induced activation of proto-oncogenes is more likely to occur, in particular since more than one transforming event is needed for oncogenesis. Thus, determination of the vector copy number in bulk transduced populations, individual colony forming units, and tissue from the recipient of the transduced cells is an increasingly important safety assay and has become a standard, though not straightforward assay, since the inception of quantitative PCR.

  10. Interpretation of clinical relevance of X-chromosome copy number variations identified in a large cohort of individuals with cognitive disorders and/or congenital anomalies.

    PubMed

    Willemsen, Marjolein H; de Leeuw, Nicole; de Brouwer, Arjan P M; Pfundt, Rolph; Hehir-Kwa, Jayne Y; Yntema, Helger G; Nillesen, Willy M; de Vries, Bert B A; van Bokhoven, Hans; Kleefstra, Tjitske

    2012-11-01

    Genome-wide array studies are now routinely being used in the evaluation of patients with cognitive disorders (CD) and/or congenital anomalies (CA). Therefore, inevitably each clinician is confronted with the challenging task of the interpretation of copy number variations detected by genome-wide array platforms in a diagnostic setting. Clinical interpretation of autosomal copy number variations is already challenging, but assessment of the clinical relevance of copy number variations of the X-chromosome is even more complex. This study provides an overview of the X-Chromosome copy number variations that we have identified by genome-wide array analysis in a large cohort of 4407 male and female patients. We have made an interpretation of the clinical relevance of each of these copy number variations based on well-defined criteria and previous reports in literature and databases. The prevalence of X-chromosome copy number variations in this cohort was 57/4407 (∼1.3%), of which 15 (0.3%) were interpreted as (likely) pathogenic. Copyright © 2012 Elsevier Masson SAS. All rights reserved.

  11. Distinct Copy Number, Coding Sequence, and Locus Methylation Patterns Underlie Rhg1-Mediated Soybean Resistance to Soybean Cyst Nematode1[W][OPEN

    PubMed Central

    Cook, David E.; Bayless, Adam M.; Wang, Kai; Guo, Xiaoli; Song, Qijian; Jiang, Jiming; Bent, Andrew F.

    2014-01-01

    Copy number variation of kilobase-scale genomic DNA segments, beyond presence/absence polymorphisms, can be an important driver of adaptive traits. Resistance to Heterodera glycines (Rhg1) is a widely utilized quantitative trait locus that makes the strongest known contribution to resistance against soybean cyst nematode (SCN), Heterodera glycines, the most damaging pathogen of soybean (Glycine max). Rhg1 was recently discovered to be a complex locus at which resistance-conferring haplotypes carry up to 10 tandem repeat copies of a 31-kb DNA segment, and three disparate genes present on each repeat contribute to SCN resistance. Here, we use whole-genome sequencing, fiber-FISH (fluorescence in situ hybridization), and other methods to discover the genetic variation at Rhg1 across 41 diverse soybean accessions. Based on copy number variation, transcript abundance, nucleic acid polymorphisms, and differentially methylated DNA regions, we find that SCN resistance is associated with multicopy Rhg1 haplotypes that form two distinct groups. The tested high-copy-number Rhg1 accessions, including plant introduction (PI) 88788, contain a flexible number of copies (seven to 10) of the 31-kb Rhg1 repeat. The identified low-copy-number Rhg1 group, including PI 548402 (Peking) and PI 437654, contains three copies of the Rhg1 repeat and a newly identified allele of Glyma18g02590 (a predicted α-SNAP [α-soluble N-ethylmaleimide–sensitive factor attachment protein]). There is strong evidence for a shared origin of the two resistance-conferring multicopy Rhg1 groups and subsequent independent evolution. Differentially methylated DNA regions also were identified within Rhg1 that correlate with SCN resistance. These data provide insights into copy number variation of multigene segments, using as the example a disease resistance trait of high economic importance. PMID:24733883

  12. Increased copy number of the DLX4 homeobox gene in breast axillary lymph node metastasis

    PubMed Central

    Torresan, Clarissa; Oliveira, Márcia M.C.; Pereira, Silma R.F.; Ribeiro, Enilze M.S.F.; Marian, Catalin; Gusev, Yuriy; Lima, Rubens S.; Urban, Cicero A.; Berg, Patricia E.; Haddad, Bassem R.; Cavalli, Iglenir J.; Cavalli, Luciane R.

    2017-01-01

    DLX4 is a homeobox gene strongly implicated in breast tumor progression and invasion. Our main objective was to determine the DLX4 copy number status in sentinel lymph node (SLN) metastasis to assess its involvement in the initial stages of the axillary metastatic process. A total of 37 paired samples of SLN metastasis and primary breast tumors (PBT) were evaluated by fluorescence in situ hybridization, quantitative polymerase chain reaction and array comparative genomic hybridization assays. DLX4 increased copy number was observed in 21.6% of the PBT and 24.3% of the SLN metastasis; regression analysis demonstrated that the DLX4 alterations observed in the SLN metastasis were dependent on the ones in the PBT, indicating that they occur in the primary tumor cell populations and are maintained in the early axillary metastatic site. In addition, regression analysis demonstrated that DLX4 alterations (and other DLX and HOXB family members) occurred independently of the ones in the HER2/NEU gene, the main amplification driver on the 17q region. Additional studies evaluating DLX4 copy number in non-SLN axillary lymph nodes and/or distant breast cancer metastasis are necessary to determine if these alterations are carried on and maintained during more advanced stages of tumor progression and if could be used as a predictive marker for axillary involvement. PMID:24947980

  13. High throughput screening of human subtelomeric DNA for copy number changes using multiplex amplifiable probe hybridisation (MAPH)

    PubMed Central

    Hollox, E; Atia, T; Cross, G; Parkin, T; Armour, J

    2002-01-01

    Background: Subtelomeric regions of the human genome are gene rich, with a high level of sequence polymorphism. A number of clinical conditions, including learning disability, have been attributed to subtelomeric deletions or duplications, but screening for deletion in these regions using conventional cytogenetic methods and fluorescence in situ hybridisation (FISH) is laborious. Here we report that a new method, multiplex amplifiable probe hybridisation (MAPH), can be used to screen for copy number at subtelomeric regions. Methods: We have constructed a set of MAPH probes with each subtelomeric region represented at least once, so that one gel lane can assay copy number at all chromosome ends in one person. Each probe has been sequenced and, where possible, its position relative to the telomere determined by comparison with mapped clones. Results: The sensitivity of the probes has been characterised on a series of cytogenetically verified positive controls and 83 normal controls were used to assess the frequency of polymorphic copy number with no apparent phenotypic effect. We have also used MAPH to test a cohort of 37 people selected from males referred for fragile X syndrome testing and found six changes that were confirmed by dosage PCR. Conclusions: MAPH can be used to screen subtelomeric regions of chromosomes for deletions and duplications before confirmation by FISH or dosage PCR. The high throughput nature of this technique allows it to be used for large scale screening of subtelomeric copy number, before confirmation by FISH. In practice, the availability of a rapid and efficient screen may allow subtelomeric analysis to be applied to a wider selection of patients than is currently possible using FISH alone. PMID:12414816

  14. High throughput screening of human subtelomeric DNA for copy number changes using multiplex amplifiable probe hybridisation (MAPH).

    PubMed

    Hollox, E J; Atia, T; Cross, G; Parkin, T; Armour, J A L

    2002-11-01

    Subtelomeric regions of the human genome are gene rich, with a high level of sequence polymorphism. A number of clinical conditions, including learning disability, have been attributed to subtelomeric deletions or duplications, but screening for deletion in these regions using conventional cytogenetic methods and fluorescence in situ hybridisation (FISH) is laborious. Here we report that a new method, multiplex amplifiable probe hybridisation (MAPH), can be used to screen for copy number at subtelomeric regions. We have constructed a set of MAPH probes with each subtelomeric region represented at least once, so that one gel lane can assay copy number at all chromosome ends in one person. Each probe has been sequenced and, where possible, its position relative to the telomere determined by comparison with mapped clones. The sensitivity of the probes has been characterised on a series of cytogenetically verified positive controls and 83 normal controls were used to assess the frequency of polymorphic copy number with no apparent phenotypic effect. We have also used MAPH to test a cohort of 37 people selected from males referred for fragile X syndrome testing and found six changes that were confirmed by dosage PCR. MAPH can be used to screen subtelomeric regions of chromosomes for deletions and duplications before confirmation by FISH or dosage PCR. The high throughput nature of this technique allows it to be used for large scale screening of subtelomeric copy number, before confirmation by FISH. In practice, the availability of a rapid and efficient screen may allow subtelomeric analysis to be applied to a wider selection of patients than is currently possible using FISH alone.

  15. Kid cleaves specific mRNAs at UUACU sites to rescue the copy number of plasmid R1

    PubMed Central

    Pimentel, Belén; Madine, Mark A; de la Cueva-Méndez, Guillermo

    2005-01-01

    Stability and copy number of extra-chromosomal elements are tightly regulated in prokaryotes and eukaryotes. Toxin Kid and antitoxin Kis are the components of the parD stability system of prokaryotic plasmid R1 and they can also function in eukaryotes. In bacteria, Kid was thought to become active only in cells that lose plasmid R1 and to cleave exclusively host mRNAs at UA(A/C/U) trinucleotide sites to eliminate plasmid-free cells. Instead, we demonstrate here that Kid becomes active in plasmid-containing cells when plasmid copy number decreases, cleaving not only host- but also a specific plasmid-encoded mRNA at the longer and more specific target sequence UUACU. This specific cleavage by Kid inhibits bacterial growth and, at the same time, helps to restore the plasmid copy number. Kid targets a plasmid RNA that encodes a repressor of the synthesis of an R1 replication protein, resulting in increased plasmid DNA replication. This mechanism resembles that employed by some human herpesviruses to regulate viral amplification during infection. PMID:16163387

  16. Frequent loss of lineages and deficient duplications accounted for low copy number of disease resistance genes in Cucurbitaceae

    PubMed Central

    2013-01-01

    Background The sequenced genomes of cucumber, melon and watermelon have relatively few R-genes, with 70, 75 and 55 copies only, respectively. The mechanism for low copy number of R-genes in Cucurbitaceae genomes remains unknown. Results Manual annotation of R-genes in the sequenced genomes of Cucurbitaceae species showed that approximately half of them are pseudogenes. Comparative analysis of R-genes showed frequent loss of R-gene loci in different Cucurbitaceae species. Phylogenetic analysis, data mining and PCR cloning using degenerate primers indicated that Cucurbitaceae has limited number of R-gene lineages (subfamilies). Comparison between R-genes from Cucurbitaceae and those from poplar and soybean suggested frequent loss of R-gene lineages in Cucurbitaceae. Furthermore, the average number of R-genes per lineage in Cucurbitaceae species is approximately 1/3 that in soybean or poplar. Therefore, both loss of lineages and deficient duplications in extant lineages accounted for the low copy number of R-genes in Cucurbitaceae. No extensive chimeras of R-genes were found in any of the sequenced Cucurbitaceae genomes. Nevertheless, one lineage of R-genes from Trichosanthes kirilowii, a wild Cucurbitaceae species, exhibits chimeric structures caused by gene conversions, and may contain a large number of distinct R-genes in natural populations. Conclusions Cucurbitaceae species have limited number of R-gene lineages and each genome harbors relatively few R-genes. The scarcity of R-genes in Cucurbitaceae species was due to frequent loss of R-gene lineages and infrequent duplications in extant lineages. The evolutionary mechanisms for large variation of copy number of R-genes in different plant species were discussed. PMID:23682795

  17. Distribution of Disease-Associated Copy Number Variants across Distinct Disorders of Cognitive Development

    ERIC Educational Resources Information Center

    Pescosolido, Matthew F.; Gamsiz, Ece D.; Nagpal, Shailender; Morrow, Eric M.

    2013-01-01

    Objective: The purpose of the present study was to discover the extent to which distinct "DSM" disorders share large, highly recurrent copy number variants (CNVs) as susceptibility factors. We also sought to identify gene mechanisms common to groups of diagnoses and/or specific to a given diagnosis based on associations with CNVs. Method:…

  18. Genomic profiling reveals extensive heterogeneity in somatic DNA copy number aberrations of canine hemangiosarcoma

    PubMed Central

    Thomas, Rachael; Borst, Luke; Rotroff, Daniel; Motsinger-Reif, Alison; Lindblad-Toh, Kerstin; Modiano, Jaime F.; Breen, Matthew

    2017-01-01

    Canine hemangiosarcoma is a highly aggressive vascular neoplasm associated with extensive clinical and anatomical heterogeneity and a grave prognosis. Comprehensive molecular characterization of hemangiosarcoma may identify novel therapeutic targets and advanced clinical management strategies, but there are no published reports of tumor-associated genome instability and disrupted gene dosage in this cancer. We performed genome-wide microarray-based somatic DNA copy number profiling of 75 primary intra-abdominal hemangiosarcomas from five popular dog breeds that are highly predisposed to this disease. The cohort exhibited limited global genomic instability, compared to other canine sarcomas studied to date, and DNA copy number aberrations (CNAs) were predominantly of low amplitude. Recurrent imbalances of several key cancer-associated genes were evident; however the global penetrance of any single CNA was low and no distinct hallmark aberrations were evident. Copy number gains of dog chromosomes 13, 24 and 31, and loss of chromosome 16, were the most recurrent CNAs involving large chromosome regions, but their relative distribution within and between cases suggests they most likely represent passenger aberrations. CNAs involving CDKN2A, VEGFA and the SKI oncogene were identified as potential driver aberrations of hemangiosarcoma development, highlighting potential targets for therapeutic modulation. CNA profiles were broadly conserved between the five breeds, although subregional variation was evident, including a near two-fold lower incidence of VEGFA gain in Golden Retrievers versus other breeds (22% versus 40%). These observations support prior transcriptional studies suggesting that the clinical heterogeneity of this cancer may reflect the existence of multiple, molecularly-distinct subtypes of canine hemangiosarcoma. PMID:24599718

  19. Genomic profiling reveals extensive heterogeneity in somatic DNA copy number aberrations of canine hemangiosarcoma.

    PubMed

    Thomas, Rachael; Borst, Luke; Rotroff, Daniel; Motsinger-Reif, Alison; Lindblad-Toh, Kerstin; Modiano, Jaime F; Breen, Matthew

    2014-09-01

    Canine hemangiosarcoma is a highly aggressive vascular neoplasm associated with extensive clinical and anatomical heterogeneity and a grave prognosis. Comprehensive molecular characterization of hemangiosarcoma may identify novel therapeutic targets and advanced clinical management strategies, but there are no published reports of tumor-associated genome instability and disrupted gene dosage in this cancer. We performed genome-wide microarray-based somatic DNA copy number profiling of 75 primary intra-abdominal hemangiosarcomas from five popular dog breeds that are highly predisposed to this disease. The cohort exhibited limited global genomic instability, compared to other canine sarcomas studied to date, and DNA copy number aberrations (CNAs) were predominantly of low amplitude. Recurrent imbalances of several key cancer-associated genes were evident; however, the global penetrance of any single CNA was low and no distinct hallmark aberrations were evident. Copy number gains of dog chromosomes 13, 24, and 31, and loss of chromosome 16, were the most recurrent CNAs involving large chromosome regions, but their relative distribution within and between cases suggests they most likely represent passenger aberrations. CNAs involving CDKN2A, VEGFA, and the SKI oncogene were identified as potential driver aberrations of hemangiosarcoma development, highlighting potential targets for therapeutic modulation. CNA profiles were broadly conserved between the five breeds, although subregional variation was evident, including a near twofold lower incidence of VEGFA gain in Golden Retrievers versus other breeds (22 versus 40 %). These observations support prior transcriptional studies suggesting that the clinical heterogeneity of this cancer may reflect the existence of multiple, molecularly distinct subtypes of canine hemangiosarcoma.

  20. Integrative analysis of copy number and gene expression data suggests novel pathogenetic mechanisms in primary myelofibrosis.

    PubMed

    Salati, Simona; Zini, Roberta; Nuzzo, Simona; Guglielmelli, Paola; Pennucci, Valentina; Prudente, Zelia; Ruberti, Samantha; Rontauroli, Sebastiano; Norfo, Ruggiero; Bianchi, Elisa; Bogani, Costanza; Rotunno, Giada; Fanelli, Tiziana; Mannarelli, Carmela; Rosti, Vittorio; Salmoiraghi, Silvia; Pietra, Daniela; Ferrari, Sergio; Barosi, Giovanni; Rambaldi, Alessandro; Cazzola, Mario; Bicciato, Silvio; Tagliafico, Enrico; Vannucchi, Alessandro M; Manfredini, Rossella

    2016-04-01

    Primary myelofibrosis (PMF) is a Myeloproliferative Neoplasm (MPN) characterized by megakaryocyte hyperplasia, progressive bone marrow fibrosis, extramedullary hematopoiesis and transformation to Acute Myeloid Leukemia (AML). A number of phenotypic driver (JAK2, CALR, MPL) and additional subclonal mutations have been described in PMF, pointing to a complex genomic landscape. To discover novel genomic lesions that can contribute to disease phenotype and/or development, gene expression and copy number signals were integrated and several genomic abnormalities leading to a concordant alteration in gene expression levels were identified. In particular, copy number gain in the polyamine oxidase (PAOX) gene locus was accompanied by a coordinated transcriptional up-regulation in PMF patients. PAOX inhibition resulted in rapid cell death of PMF progenitor cells, while sparing normal cells, suggesting that PAOX inhibition could represent a therapeutic strategy to selectively target PMF cells without affecting normal hematopoietic cells' survival. Moreover, copy number loss in the chromatin modifier HMGXB4 gene correlates with a concomitant transcriptional down-regulation in PMF patients. Interestingly, silencing of HMGXB4 induces megakaryocyte differentiation, while inhibiting erythroid development, in human hematopoietic stem/progenitor cells. These results highlight a previously un-reported, yet potentially interesting role of HMGXB4 in the hematopoietic system and suggest that genomic and transcriptional imbalances of HMGXB4 could contribute to the aberrant expansion of the megakaryocytic lineage that characterizes PMF patients. © 2015 UICC.

  1. A novel approach for copy number variation analysis by combining multiplex PCR with matrix-assisted laser desorption ionization time-of-flight mass spectrometry.

    PubMed

    Gao, Yonghui; Chen, Xiaoli; Wang, Jianhua; Shangguan, Shaofang; Dai, Yaohua; Zhang, Ting; Liu, Junling

    2013-06-20

    With the increasing interest in copy number variation as it pertains to human genomic variation, common phenotypes, and disease susceptibility, there is a pressing need for methods to accurately identify copy number. In this study, we developed a simple approach that combines multiplex PCR with matrix-assisted laser desorption ionization time-of-flight mass spectrometry for submicroscopic copy number variation detection. Two pairs of primers were used to simultaneously amplify query and endogenous control regions in the same reaction. Using a base extension reaction, the two amplicons were then distinguished and quantified in a mass spectrometry map. The peak ratio between the test region and the endogenous control region was manually calculated. The relative copy number could be determined by comparing the peak ratio between the test and control samples. This method generated a copy number measurement comparable to those produced by two other commonly used methods - multiplex ligation-dependent probe amplification and quantitative real-time PCR. Furthermore, it can discriminate a wide range of copy numbers. With a typical 384-format SpectroCHIP, at least six loci on 384 samples can be analyzed simultaneously in a hexaplex assay, making this assay adaptable for high throughput, and potentially applicable for large-scale association studies. Copyright © 2013 Elsevier B.V. All rights reserved.

  2. A trans-Dominant Form of Gag Restricts Ty1 Retrotransposition and Mediates Copy Number Control

    PubMed Central

    Saha, Agniva; Mitchell, Jessica A.; Nishida, Yuri; Hildreth, Jonathan E.; Ariberre, Joshua A.; Gilbert, Wendy V.

    2015-01-01

    ABSTRACT Saccharomyces cerevisiae and Saccharomyces paradoxus lack the conserved RNA interference pathway and utilize a novel form of copy number control (CNC) to inhibit Ty1 retrotransposition. Although noncoding transcripts have been implicated in CNC, here we present evidence that a truncated form of the Gag capsid protein (p22) or its processed form (p18) is necessary and sufficient for CNC and likely encoded by Ty1 internal transcripts. Coexpression of p22/p18 and Ty1 decreases mobility more than 30,000-fold. p22/p18 cofractionates with Ty1 virus-like particles (VLPs) and affects VLP yield, protein composition, and morphology. Although p22/p18 and Gag colocalize in the cytoplasm, p22/p18 disrupts sites used for VLP assembly. Glutathione S-transferase (GST) affinity pulldowns also suggest that p18 and Gag interact. Therefore, this intrinsic Gag-like restriction factor confers CNC by interfering with VLP assembly and function and expands the strategies used to limit retroelement propagation. IMPORTANCE Retrotransposons dominate the chromosomal landscape in many eukaryotes, can cause mutations by insertion or genome rearrangement, and are evolutionarily related to retroviruses such as HIV. Thus, understanding factors that limit transposition and retroviral replication is fundamentally important. The present work describes a retrotransposon-encoded restriction protein derived from the capsid gene of the yeast Ty1 element that disrupts virus-like particle assembly in a dose-dependent manner. This form of copy number control acts as a molecular rheostat, allowing high levels of retrotransposition when few Ty1 elements are present and inhibiting transposition as copy number increases. Thus, yeast and Ty1 have coevolved a form of copy number control that is beneficial to both “host and parasite.” To our knowledge, this is the first Gag-like retrotransposon restriction factor described in the literature and expands the ways in which restriction proteins modulate

  3. Integrative analysis of copy number alteration and gene expression profiling in ovarian clear cell adenocarcinoma.

    PubMed

    Sung, Chang Ohk; Choi, Chel Hun; Ko, Young-Hyeh; Ju, Hyunjeong; Choi, Yoon-La; Kim, Nyunsu; Kang, So Young; Ha, Sang Yun; Choi, Kyusam; Bae, Duk-Soo; Lee, Jeong-Won; Kim, Tae-Joong; Song, Sang Yong; Kim, Byoung-Gie

    2013-05-01

    Ovarian clear cell adenocarcinoma (Ov-CCA) is a distinctive subtype of ovarian epithelial carcinoma. In this study, we performed array comparative genomic hybridization (aCGH) and paired gene expression microarray of 19 fresh-frozen samples and conducted integrative analysis. For the copy number alterations, significantly amplified regions (false discovery rate [FDR] q <0.05) were 1q21.3 and 8q24.3, and significantly deleted regions were 3p21.31, 4q12, 5q13.2, 5q23.2, 5q31.1, 7p22.1, 7q11.23, 8p12, 9p22.1, 11p15.1, 12p13.31, 15q11.2, 15q21.2, 18p11.31, and 22q11.21 using the Genomic Identification of Significant Targets in Cancer (GISTIC) analysis. Integrative analysis revealed 94 genes demonstrating frequent copy number alterations (>25% of samples) that correlated with gene expression (FDR <0.05). These genes were mainly located on 8p11.21, 8p21.2-p21.3, 8q22.1, 8q24.3, 17q23.2-q23.3, 19p13.3, and 19p13.11. Among the regions, 8q24.3 was found to contain the most genes (30 of 94 genes) including PTK2. The 8q24.3 region was indicated as the most significant region, as supported by copy number, GISTIC, and integrative analysis. Pathway analysis using differentially expressed genes on 8q24.3 revealed several major nodes, including PTK2. In conclusion, we identified a set of 94 candidate genes with frequent copy number alterations that correlated with gene expression. Specific chromosomal alterations, such as the 8q24.3 gain containing PTK2, could be a therapeutic target in a subset of Ov-CCAs. Copyright © 2013. Published by Elsevier Inc.

  4. Diversity and population-genetic properties of copy number variations and multicopy genes in cattle

    USDA-ARS?s Scientific Manuscript database

    The diversity and population-genetics of copy number variation (CNV) in domesticated animals are not well understood. In this study, we analyzed 75 genomes of major taurine and indicine cattle breeds (including Angus, Brahman, Gir, Holstein, Jersey, Limousin, Nelore, Romagnola), sequenced to 11-fold...

  5. Copy number of the Adenomatous Polyposis Coli gene is not always neutral in sporadic colorectal cancers with loss of heterozygosity for the gene.

    PubMed

    Zauber, Peter; Marotta, Stephen; Sabbath-Solitare, Marlene

    2016-03-12

    Changes in the number of alleles of a chromosome may have an impact upon gene expression. Loss of heterozygosity (LOH) indicates that one allele of a gene has been lost, and knowing the exact copy number of the gene would indicate whether duplication of the remaining allele has occurred. We were interested to determine the copy number of the Adenomatous Polyposis Coli (APC) gene in sporadic colorectal cancers with LOH. We selected 38 carcinomas with LOH for the APC gene region of chromosome 5, as determined by amplification of the CA repeat region within the D5S346 loci. The copy number status of APC was ascertained using the SALSA® MLPA® P043-B1 APC Kit. LOH for the DCC gene, KRAS gene mutation, and microsatellite instability were also evaluated for each tumor, utilizing standard polymerase chain reaction methods. No tumor demonstrated microsatellite instability. LOH of the DCC gene was also present in 33 of 36 (91.7%) informative tumors. A KRAS gene mutation was present in 16 of the 38 (42.1%) tumors. Twenty-four (63.2%) of the tumors were copy number neutral, 10 (26.3%) tumors demonstrated major loss, while two (5.3%) showed partial loss. Two tumors (5.3%) had copy number gain. Results of APC and DCC LOH, KRAS and microsatellite instability indicate our colorectal cancer cases were typical of sporadic cancers following the 'chromosomal instability' pathway. The majority of our colorectal carcinomas with LOH for APC gene are copy number neutral. However, one-third of our cases showed copy number loss, suggesting that duplication of the remaining allele is not required for the development of a colorectal carcinoma.

  6. Environmental change drives accelerated adaptation through stimulated copy number variation

    PubMed Central

    Hull, Ryan M.; Cruz, Cristina; Jack, Carmen V.

    2017-01-01

    Copy number variation (CNV) is rife in eukaryotic genomes and has been implicated in many human disorders, particularly cancer, in which CNV promotes both tumorigenesis and chemotherapy resistance. CNVs are considered random mutations but often arise through replication defects; transcription can interfere with replication fork progression and stability, leading to increased mutation rates at highly transcribed loci. Here we investigate whether inducible promoters can stimulate CNV to yield reproducible, environment-specific genetic changes. We propose a general mechanism for environmentally-stimulated CNV and validate this mechanism for the emergence of copper resistance in budding yeast. By analysing a large cohort of individual cells, we directly demonstrate that CNV of the copper-resistance gene CUP1 is stimulated by environmental copper. CNV stimulation accelerates the formation of novel alleles conferring enhanced copper resistance, such that copper exposure actively drives adaptation to copper-rich environments. Furthermore, quantification of CNV in individual cells reveals remarkable allele selectivity in the rate at which specific environments stimulate CNV. We define the key mechanistic elements underlying this selectivity, demonstrating that CNV is regulated by both promoter activity and acetylation of histone H3 lysine 56 (H3K56ac) and that H3K56ac is required for CUP1 CNV and efficient copper adaptation. Stimulated CNV is not limited to high-copy CUP1 repeat arrays, as we find that H3K56ac also regulates CNV in 3 copy arrays of CUP1 or SFA1 genes. The impact of transcription on DNA damage is well understood, but our research reveals that this apparently problematic association forms a pathway by which mutations can be directed to particular loci in particular environments and furthermore that this mutagenic process can be regulated through histone acetylation. Stimulated CNV therefore represents an unanticipated and remarkably controllable pathway

  7. Copy number variation in metabolic phenotypes.

    PubMed

    Lanktree, M; Hegele, R A

    2008-01-01

    Despite successes in identifying genetic contributors to common metabolic phenotypes, only part of the heritable component of these traits has thus far been explained. Copy number variation (CNV) is likely to be responsible for some of the unexplained variation. As observed with single nucleotide changes, it is probable that both rare and common CNVs will contribute to susceptibility to metabolic disease. For instance, CNVs in the LDLR gene underlie a substantial portion of disease in patients with heterozygous familial hypercholesterolemia. As well, a common CNV in LPA encoding apolipoprotein(a) is the primary determinant of plasma lipoprotein(a) concentrations, a risk factor for atherosclerosis. Recent efforts to map CNVs in control populations have defined their size, frequency and distribution. Many of the identified CNVs overlap genes with important functions in metabolic pathways. The overlap of CNVs that were found in control datasets with functional candidate genes or genes with previous evidence of association with metabolic syndrome presents an important subset for future CNV association studies. Finally, we describe an approach to search for CNVs in a rare high-penetrance metabolic disorder, namely lipodystrophy. As methods to identify CNVs increase in precision and accuracy, the prospect of identifying their role in both rare Mendelian and common complex metabolic phenotypes will become a reality. Copyright 2009 S. Karger AG, Basel.

  8. Global copy number profiling of cancer genomes | Office of Cancer Genomics

    Cancer.gov

    In this article, we introduce a robust and efficient strategy for deriving global and allele-specific copy number alternations (CNA) from cancer whole exome sequencing data based on Log R ratios and B-allele frequencies. Applying the approach to the analysis of over 200 skin cancer samples, we demonstrate its utility for discovering distinct CNA events and for deriving ancillary information such as tumor purity. Availability and implementation: https://github.com/xfwang/CLOSE CONTACT: xuefeng.wang@stonybrook.edu or michael.krauthammer@yale.edu. (Publication Abstract)

  9. Requirements for rapid plasmid ColE1 copy number adjustments: a mathematical model of inhibition modes and RNA turnover rates.

    PubMed

    Paulsson, J; Nordström, K; Ehrenberg, M

    1998-01-01

    The random distribution of ColE1 plasmids between the daughter cells at cell division introduces large copy number variations. Statistic variation associated with limited copy number in single cells also causes fluctuations to emerge spontaneously during the cell cycle. Efficient replication control out of steady state is therefore important to tame such stochastic effects of small numbers. In the present model, the dynamic features of copy number control are divided into two parts: first, how sharply the replication frequency per plasmid responds to changes in the concentration of the plasmid-coded inhibitor, RNA I, and second, how tightly RNA I and plasmid concentrations are coupled. Single (hyperbolic)- and multiple (exponential)-step inhibition mechanisms are compared out of steady state and it is shown how the response in replication frequency depends on the mode of inhibition. For both mechanisms, sensitivity of inhibition is "bought" at the expense of a rapid turnover of a replication preprimer, RNA II. Conventional, single-step, inhibition kinetics gives a sloppy replication control even at high RNA II turnover rates, whereas multiple-step inhibition has the potential of working with unlimited precision. When plasmid concentration changes rapidly, RNA I must be degraded rapidly to be "up to date" with the change. Adjustment to steady state is drastically impaired when the turnover rate constants of RNA I decrease below certain thresholds, but is basically unaffected for a corresponding increase. Several features of copy number control that are shown to be crucial for the understanding of ColE1-type plasmids still remain to be experimentally characterized. It is shown how steady-state properties reflect dynamics at the heart of regulation and therefore can be used to discriminate between fundamentally different copy number control mechanisms. The experimental tests of the predictions made require carefully planned assays, and some suggestions for suitable

  10. Presequence-Independent Mitochondrial Import of DNA Ligase Facilitates Establishment of Cell Lines with Reduced mtDNA Copy Number

    PubMed Central

    Spadafora, Domenico; Kozhukhar, Natalia; Alexeyev, Mikhail F.

    2016-01-01

    Due to the essential role played by mitochondrial DNA (mtDNA) in cellular physiology and bioenergetics, methods for establishing cell lines with altered mtDNA content are of considerable interest. Here, we report evidence for the existence in mammalian cells of a novel, low- efficiency, presequence-independent pathway for mitochondrial protein import, which facilitates mitochondrial uptake of such proteins as Chlorella virus ligase (ChVlig) and Escherichia coli LigA. Mouse cells engineered to depend on this pathway for mitochondrial import of the LigA protein for mtDNA maintenance had severely (up to >90%) reduced mtDNA content. These observations were used to establish a method for the generation of mouse cell lines with reduced mtDNA copy number by, first, transducing them with a retrovirus encoding LigA, and then inactivating in these transductants endogenous Lig3 with CRISPR-Cas9. Interestingly, mtDNA depletion to an average level of one copy per cell proceeds faster in cells engineered to maintain mtDNA at low copy number. This makes a low-mtDNA copy number phenotype resulting from dependence on mitochondrial import of DNA ligase through presequence-independent pathway potentially useful for rapidly shifting mtDNA heteroplasmy through partial mtDNA depletion. PMID:27031233

  11. SULT1A1 copy number variation: ethnic distribution analysis in an Indian population.

    PubMed

    Almal, Suhani; Padh, Harish

    2017-11-01

    Cytosolic sulfotransferases (SULTs) are phase II detoxification enzymes involved in metabolism of numerous xenobiotics, drugs and endogenous compounds. Interindividual variation in sulfonation capacity is important for determining an individual's response to xenobiotics. SNPs in SULTs, mainly SULT1A1 have been associated with cancer risk and also with response to therapeutic agents. Copy number variation (CNVs) in SULT1A1 is found to be correlated with altered enzyme activity. This short report primarily focuses on CNV in SULT1A1 and its distribution among different ethnic populations around the globe. Frequency distribution of SULT1A1 copy number (CN) in 157 healthy Indian individuals was assessed using florescent-based quantitative PCR assay. A range of 1 to >4 copies, with a frequency of SULT1A1 CN =2 (64.9%) the highest, was observed in our (Indian) population. Upon comparative analysis of frequency distribution of SULT1A1 CN among diverse population groups, a statistically significant difference was observed between Indians (our data) and African-American (AA) (p = 0.0001) and South African (Tswana) (p < 0.0001) populations. Distribution of CNV in the Indian population was found to be similar to that in European-derived populations of American and Japanese. CNV of SULT1A1 varies significantly among world populations and may be one of the determinants of health and diseases.

  12. ALK gene copy number gain and its clinical significance in hepatocellular carcinoma.

    PubMed

    Jia, Shou-Wei; Fu, Sha; Wang, Fang; Shao, Qiong; Huang, Hong-Bing; Shao, Jian-Yong

    2014-01-07

    To examine the status and clinical significance of anaplastic lymphoma kinase (ALK) gene alterations in hepatocellular carcinoma (HCC) patients. A total of 213 cases of HCC were examined by fluorescent in situ hybridization using dual color break-apart ALK probes for the detection of chromosomal translocation and gene copy number gain. HCC tissue microarrays were constructed, and the correlation between the ALK status and clinicopathological variables was assessed by χ(2) test or Fisher's exact test. Survival analysis was estimated using the Kaplan-Meier approach with a Log-rank test. Univariate and multivariate analyses of clinical variables were performed using the Cox proportional hazards regression model. ALK gene translocation was not observed in any of the HCC cases included in the present study. ALK gene copy number gain (ALK/CNG) (≥ 4 copies/cell) was detected in 28 (13.15%) of the 213 HCC patients. The 3-year progression-free-survival (PFS) rate for ALK/CNG-positive HCC patients was significantly poorer than ALK/CNG-negative patients (27.3% vs 42.5%, P = 0.048), especially for patients with advanced stage III/IV (0% vs 33.5%, P = 0.007), and patients with grade III disease (24.8% vs 49.9%, P = 0.023). ALK/CNG-positive HCC patients had a significantly poorer prognosis than ALK/CNG-negative patients in the subgroup that was negative for serum hepatitis B virus DNA, with significantly different 3-year overall survival rates (18.2% vs 63.6%, P = 0.021) and PFS rates (18.2% vs 46.9%, P = 0.019). Multivariate Cox proportional hazards regression analysis suggested that ALK/CNG prevalence can predict death in HCC (HR = 1.596; 95%CI: 1.008-2.526, P = 0.046). ALK/CNG, but not translocation of ALK, is present in HCC and may be an unfavorable prognostic predictor.

  13. ALK gene copy number gain and its clinical significance in hepatocellular carcinoma

    PubMed Central

    Jia, Shou-Wei; Fu, Sha; Wang, Fang; Shao, Qiong; Huang, Hong-Bing; Shao, Jian-Yong

    2014-01-01

    AIM: To examine the status and clinical significance of anaplastic lymphoma kinase (ALK) gene alterations in hepatocellular carcinoma (HCC) patients. METHODS: A total of 213 cases of HCC were examined by fluorescent in situ hybridization using dual color break-apart ALK probes for the detection of chromosomal translocation and gene copy number gain. HCC tissue microarrays were constructed, and the correlation between the ALK status and clinicopathological variables was assessed by χ2 test or Fisher’s exact test. Survival analysis was estimated using the Kaplan-Meier approach with a Log-rank test. Univariate and multivariate analyses of clinical variables were performed using the Cox proportional hazards regression model. RESULTS: ALK gene translocation was not observed in any of the HCC cases included in the present study. ALK gene copy number gain (ALK/CNG) (≥ 4 copies/cell) was detected in 28 (13.15%) of the 213 HCC patients. The 3-year progression-free-survival (PFS) rate for ALK/CNG-positive HCC patients was significantly poorer than ALK/CNG-negative patients (27.3% vs 42.5%, P = 0.048), especially for patients with advanced stage III/IV (0% vs 33.5%, P = 0.007), and patients with grade III disease (24.8% vs 49.9%, P = 0.023). ALK/CNG-positive HCC patients had a significantly poorer prognosis than ALK/CNG-negative patients in the subgroup that was negative for serum hepatitis B virus DNA, with significantly different 3-year overall survival rates (18.2% vs 63.6%, P = 0.021) and PFS rates (18.2% vs 46.9%, P = 0.019). Multivariate Cox proportional hazards regression analysis suggested that ALK/CNG prevalence can predict death in HCC (HR = 1.596; 95%CI: 1.008-2.526, P = 0.046). CONCLUSION: ALK/CNG, but not translocation of ALK, is present in HCC and may be an unfavorable prognostic predictor. PMID:24415871

  14. Conserved Organisation of 45S rDNA Sites and rDNA Gene Copy Number among Major Clades of Early Land Plants

    PubMed Central

    Rosato, Marcela; Kovařík, Aleš; Garilleti, Ricardo; Rosselló, Josep A.

    2016-01-01

    Genes encoding ribosomal RNA (rDNA) are universal key constituents of eukaryotic genomes, and the nuclear genome harbours hundreds to several thousand copies of each species. Knowledge about the number of rDNA loci and gene copy number provides information for comparative studies of organismal and molecular evolution at various phylogenetic levels. With the exception of seed plants, the range of 45S rDNA locus (encoding 18S, 5.8S and 26S rRNA) and gene copy number variation within key evolutionary plant groups is largely unknown. This is especially true for the three earliest land plant lineages Marchantiophyta (liverworts), Bryophyta (mosses), and Anthocerotophyta (hornworts). In this work, we report the extent of rDNA variation in early land plants, assessing the number of 45S rDNA loci and gene copy number in 106 species and 25 species, respectively, of mosses, liverworts and hornworts. Unexpectedly, the results show a narrow range of ribosomal locus variation (one or two 45S rDNA loci) and gene copies not present in vascular plant lineages, where a wide spectrum is recorded. Mutation analysis of whole genomic reads showed higher (3-fold) intragenomic heterogeneity of Marchantia polymorpha (Marchantiophyta) rDNA compared to Physcomitrella patens (Bryophyta) and two angiosperms (Arabidopsis thaliana and Nicotiana tomentosifomis) suggesting the presence of rDNA pseudogenes in its genome. No association between phylogenetic position, taxonomic adscription and the number of rDNA loci and gene copy number was found. Our results suggest a likely evolutionary rDNA stasis during land colonisation and diversification across 480 myr of bryophyte evolution. We hypothesise that strong selection forces may be acting against ribosomal gene locus amplification. Despite showing a predominant haploid phase and infrequent meiosis, overall rDNA homogeneity is not severely compromised in bryophytes. PMID:27622766

  15. Pervasive gene content variation and copy number variation in maize and its undomesticated progenitor

    USDA-ARS?s Scientific Manuscript database

    Different individuals of the same species are generally thought to have very similar genomes. However, there is growing evidence that structural variation in the form of copy number variation (CNV) and presence-absence variation (PAV) can lead to variation in the genome content of individuals withi...

  16. CCL3L1 copy number, CCR5 genotype and susceptibility to tuberculosis

    PubMed Central

    2014-01-01

    Background Tuberculosis is a major infectious disease and functional studies have provided evidence that both the chemokine MIP-1α and its receptor CCR5 play a role in susceptibility to TB. Thus by measuring copy number variation of CCL3L1, one of the genes that encode MIP-1α, and genotyping a functional promoter polymorphism -2459A > G in CCR5 (rs1799987) we investigate the influence of MIP-1α and CCR5, independently and combined, in susceptibility to clinically active TB in three populations, a Peruvian population (n = 1132), a !Xhosa population (n = 605) and a South African Coloured population (n = 221). The three populations include patients with clinically diagnosed pulmonary TB, as well as other, less prevalent forms of extrapulmonary TB. Methods and results Copy number of CCL3L1 was measured using the paralogue ratio test and exhibited ranges between 0–6 copies per diploid genome (pdg) in Peru, between 0–12 pdg in !Xhosa samples and between 0–10 pdg in South African Coloured samples. The CCR5 promoter polymorphism was observed to differ significantly in allele frequency between populations (*A; Peru f = 0.67, !Xhosa f = 0.38, Coloured f = 0.48). Conclusions The case–control association studies performed however find, surprisingly, no evidence for an influence of variation in genes coding for MIP-1α or CCR5 individually or together in susceptibility to clinically active TB in these populations. PMID:24405814

  17. Integrated analysis of copy number alteration and RNA expression profiles of cancer using a high-resolution whole-genome oligonucleotide array.

    PubMed

    Jung, Seung-Hyun; Shin, Seung-Hun; Yim, Seon-Hee; Choi, Hye-Sun; Lee, Sug-Hyung; Chung, Yeun-Jun

    2009-07-31

    Recently, microarray-based comparative genomic hybridization (array-CGH) has emerged as a very efficient technology with higher resolution for the genome-wide identification of copy number alterations (CNA). Although CNAs are thought to affect gene expression, there is no platform currently available for the integrated CNA-expression analysis. To achieve high-resolution copy number analysis integrated with expression profiles, we established human 30k oligoarray-based genome-wide copy number analysis system and explored the applicability of this system for integrated genome and transcriptome analysis using MDA-MB-231 cell line. We compared the CNAs detected by the oligoarray with those detected by the 3k BAC array for validation. The oligoarray identified the single copy difference more accurately and sensitively than the BAC array. Seventeen CNAs detected by both platforms in MDA-MB-231 such as gains of 5p15.33-13.1, 8q11.22-8q21.13, 17p11.2, and losses of 1p32.3, 8p23.3-8p11.21, and 9p21 were consistently identified in previous studies on breast cancer. There were 122 other small CNAs (mean size 1.79 mb) that were detected by oligoarray only, not by BAC-array. We performed genomic qPCR targeting 7 CNA regions, detected by oligoarray only, and one non-CNA region to validate the oligoarray CNA detection. All qPCR results were consistent with the oligoarray-CGH results. When we explored the possibility of combined interpretation of both DNA copy number and RNA expression profiles, mean DNA copy number and RNA expression levels showed a significant correlation. In conclusion, this 30k oligoarray-CGH system can be a reasonable choice for analyzing whole genome CNAs and RNA expression profiles at a lower cost.

  18. Penicillin production in industrial strain Penicillium chrysogenum P2niaD18 is not dependent on the copy number of biosynthesis genes.

    PubMed

    Ziemons, Sandra; Koutsantas, Katerina; Becker, Kordula; Dahlmann, Tim; Kück, Ulrich

    2017-02-16

    Multi-copy gene integration into microbial genomes is a conventional tool for obtaining improved gene expression. For Penicillium chrysogenum, the fungal producer of the beta-lactam antibiotic penicillin, many production strains carry multiple copies of the penicillin biosynthesis gene cluster. This discovery led to the generally accepted view that high penicillin titers are the result of multiple copies of penicillin genes. Here we investigated strain P2niaD18, a production line that carries only two copies of the penicillin gene cluster. We performed pulsed-field gel electrophoresis (PFGE), quantitative qRT-PCR, and penicillin bioassays to investigate production, deletion and overexpression strains generated in the P. chrysogenum P2niaD18 background, in order to determine the copy number of the penicillin biosynthesis gene cluster, and study the expression of one penicillin biosynthesis gene, and the penicillin titer. Analysis of production and recombinant strain showed that the enhanced penicillin titer did not depend on the copy number of the penicillin gene cluster. Our assumption was strengthened by results with a penicillin null strain lacking pcbC encoding isopenicillin N synthase. Reintroduction of one or two copies of the cluster into the pcbC deletion strain restored transcriptional high expression of the pcbC gene, but recombinant strains showed no significantly different penicillin titer compared to parental strains. Here we present a molecular genetic analysis of production and recombinant strains in the P2niaD18 background carrying different copy numbers of the penicillin biosynthesis gene cluster. Our analysis shows that the enhanced penicillin titer does not strictly depend on the copy number of the cluster. Based on these overall findings, we hypothesize that instead, complex regulatory mechanisms are prominently implicated in increased penicillin biosynthesis in production strains.

  19. Development, Optimization, and Evaluation of a Duplex Droplet Digital PCR Assay To Quantify the T-nos/hmg Copy Number Ratio in Genetically Modified Maize.

    PubMed

    Félix-Urquídez, Dalmira; Pérez-Urquiza, Melina; Valdez Torres, José-Benigno; León-Félix, Josefina; García-Estrada, Raymundo; Acatzi-Silva, Abraham

    2016-01-05

    Certified reference materials (CRMs) are required to guarantee the reliability of analytical measurements. The CRMs available in the field of genetically modified organisms (GMOs) are characterized using real-time polymerase chain reaction (qPCR). This technology has limited application, because of its dependence on a calibrant. The objective of this study was to obtain a method with higher metrological quality, to characterize the CRMs for their contents of T-nos/hmg copy number ratio in maize. A duplex droplet digital PCR (ddPCR) assay was developed and optimized by a central composite design. The developed method achieved an absolute limit of detection (LOD) of 11 cP T-nos, a relative LOD of 0.034%, a limit of quantification (LOQ) of 23 cP (relative LOQ of 0.08%), and a dynamic range of 0.08%-100% T-nos/hmg ratio. The specificity and applicability of the assay were established for the analysis of low T-nos concentrations (0.9%) in several corn varieties. The convenience of DNA digestion to reduce measurement bias in the case of multiple-copy binding was confirmed through an enzymatic restriction assay. Given its overall performance, this method can be used to characterize CRM candidates for their contents of T-nos/hmg ratio.

  20. Development, Optimization, and Evaluation of a Duplex Droplet Digital PCR Assay To Quantify the T-nos/hmg Copy Number Ratio in Genetically Modified Maize

    PubMed Central

    2015-01-01

    Certified reference materials (CRMs) are required to guarantee the reliability of analytical measurements. The CRMs available in the field of genetically modified organisms (GMOs) are characterized using real-time polymerase chain reaction (qPCR). This technology has limited application, because of its dependence on a calibrant. The objective of this study was to obtain a method with higher metrological quality, to characterize the CRMs for their contents of T-nos/hmg copy number ratio in maize. A duplex droplet digital PCR (ddPCR) assay was developed and optimized by a central composite design. The developed method achieved an absolute limit of detection (LOD) of 11 cP T-nos, a relative LOD of 0.034%, a limit of quantification (LOQ) of 23 cP (relative LOQ of 0.08%), and a dynamic range of 0.08%–100% T-nos/hmg ratio. The specificity and applicability of the assay were established for the analysis of low T-nos concentrations (0.9%) in several corn varieties. The convenience of DNA digestion to reduce measurement bias in the case of multiple-copy binding was confirmed through an enzymatic restriction assay. Given its overall performance, this method can be used to characterize CRM candidates for their contents of T-nos/hmg ratio. PMID:26605751

  1. Genomic Copy Number Dictates a Gene-Independent Cell Response to CRISPR/Cas9 Targeting | Office of Cancer Genomics

    Cancer.gov

    The CRISPR/Cas9 system enables genome editing and somatic cell genetic screens in mammalian cells. We performed genome-scale loss-of-function screens in 33 cancer cell lines to identify genes essential for proliferation/survival and found a strong correlation between increased gene copy number and decreased cell viability after genome editing. Within regions of copy-number gain, CRISPR/Cas9 targeting of both expressed and unexpressed genes, as well as intergenic loci, led to significantly decreased cell proliferation through induction of a G2 cell-cycle arrest.

  2. Identification of a low copy number plasmid in Xylella fastidiosa Strain Stag’s Leap

    USDA-ARS?s Scientific Manuscript database

    Xylella fastidiosa (Xf) causes Pierce’s Disease (PD) in grapevine. The Stag’s Leap strain is known for its high virulence level and is a model for PD research. Research on Xf has been difficult due to its nutritional fastidiousness. One difficult research issue is the low copy number plasmid. Plasmi...

  3. Validation of copy number variants associated with prostate cancer risk and prognosis.

    PubMed

    Blackburn, August; Wilson, Desiree; Gelfond, Jonathan; Yao, Li; Hernandez, Javier; Thompson, Ian M; Leach, Robin J; Lehman, Donna M

    2014-01-01

    Two recent studies have reported novel heritable copy number variants on chromosomes 2p, 15q, and 12q to be associated with prostate cancer (PCa) risk in non-Hispanic Caucasians. The goal of this study was to determine whether these findings could be independently confirmed in the Caucasian population from the South Texas area. The study subjects consisted of participants of the San Antonio Biomarkers of Risk for PCa cohort and additional cases ascertained in the same metropolitan area. We genotyped all 7 of the reported copy number variants using real-time quantitative polymerase chain reaction in 1,536 (317 cases and 1,219 controls) non-Hispanic Caucasian men, and additionally, we genotyped 632 (191 cases and 441 controls) Hispanic Caucasian men for one of these variants, a deletion on 2p24.3. Association of the deletion on 2p24.3 with overall PCa risk did not meet our significance criteria but was consistent with previous reports (odds ratio, 1.40; 95% confidence interval 0.99-2.00; P = 0.06). Among Hispanic Caucasians, this deletion is much less prevalent (minor allele frequencies of 0.059 and 0.024 in non-Hispanic and Hispanic Caucasians, respectively) and did not show evidence of association with risk for PCa. Interestingly, among non-Hispanic Caucasians, carrying a homozygous deletion of 2p24.3 was significantly associated with high-grade PCa as defined by Gleason score sum ≥8 (odds ratio, 27.99; 95% confidence interval 1.99-392.6; P = 0.007 [the Fisher exact test]). The remaining 6 copy number variable regions either were not polymorphic in our cohort of non-Hispanic Caucasians or showed no evidence of association. Our findings are consistent with the reported observation that a heritable deletion on 2p24.3 is associated with PCa risk in non-Hispanic Caucasians. Additionally, our observations indicate that the 2p24.3 variant is associated with risk for high-grade PCa in a recessive manner. We were unable to replicate any association with PCa for the

  4. Sporophytic nondisjunction of the maize B chromosome at high copy numbers.

    PubMed

    Masonbrink, Rick E; Birchler, James A

    2010-01-01

    It has been known for decades that the maize B chromosome undergoes nondisjunction at the second pollen mitosis. Fluorescence in-situ hybridization (FISH) was used to undertake a quantitative study of maize plants with differing numbers of B chromosomes to observe if instability increases by increasing B dosage in root tip tissue. B chromosome nondisjunction was basically absent at low copy number, but increased at higher B numbers. Thus, B nondisjunction rates are dependent on the dosage of B's in the sporophyte. Differences in nondisjunction were also documented between odd and even doses of the B. In plants that have inherited odd numbered doses of the B chromosome, B loss is nearly twice as likely as B gain in a somatic division. When comparing plants with even doses of B's to plants with odd doses of B's, plants with even numbers had a significantly higher chance to increase in number. Therefore, the B's non-disjunctive capacity, previously thought to be primarily restricted to the gametophyte, is present in sporophytic cells. Copyright 2010 Institute of Genetics and Developmental Biology and the Genetics Society of China. Published by Elsevier Ltd. All rights reserved.

  5. A streamlined workflow for single-cells genome-wide copy-number profiling by low-pass sequencing of LM-PCR whole-genome amplification products.

    PubMed

    Ferrarini, Alberto; Forcato, Claudio; Buson, Genny; Tononi, Paola; Del Monaco, Valentina; Terracciano, Mario; Bolognesi, Chiara; Fontana, Francesca; Medoro, Gianni; Neves, Rui; Möhlendick, Birte; Rihawi, Karim; Ardizzoni, Andrea; Sumanasuriya, Semini; Flohr, Penny; Lambros, Maryou; de Bono, Johann; Stoecklein, Nikolas H; Manaresi, Nicolò

    2018-01-01

    Chromosomal instability and associated chromosomal aberrations are hallmarks of cancer and play a critical role in disease progression and development of resistance to drugs. Single-cell genome analysis has gained interest in latest years as a source of biomarkers for targeted-therapy selection and drug resistance, and several methods have been developed to amplify the genomic DNA and to produce libraries suitable for Whole Genome Sequencing (WGS). However, most protocols require several enzymatic and cleanup steps, thus increasing the complexity and length of protocols, while robustness and speed are key factors for clinical applications. To tackle this issue, we developed a single-tube, single-step, streamlined protocol, exploiting ligation mediated PCR (LM-PCR) Whole Genome Amplification (WGA) method, for low-pass genome sequencing with the Ion Torrent™ platform and copy number alterations (CNAs) calling from single cells. The method was evaluated on single cells isolated from 6 aberrant cell lines of the NCI-H series. In addition, to demonstrate the feasibility of the workflow on clinical samples, we analyzed single circulating tumor cells (CTCs) and white blood cells (WBCs) isolated from the blood of patients affected by prostate cancer or lung adenocarcinoma. The results obtained show that the developed workflow generates data accurately representing whole genome absolute copy number profiles of single cell and allows alterations calling at resolutions down to 100 Kbp with as few as 200,000 reads. The presented data demonstrate the feasibility of the Ampli1™ WGA-based low-pass workflow for detection of CNAs in single tumor cells which would be of particular interest for genome-driven targeted therapy selection and for monitoring of disease progression.

  6. Increased TERC gene copy number and cells in senescence in primary sclerosing cholangitis compared to colitis and control patients.

    PubMed

    Laish, Ido; Katz, Hila; Sulayev, Yael; Liberman, Meytal; Naftali, Timna; Benjaminov, Fabiana; Stein, Assaf; Kitay-Cohen, Yona; Biron-Shental, Tal; Konikoff, Fred; Amiel, Aliza

    2013-10-25

    Primary sclerosing cholangitis (PSC) is a chronic cholestatic disorder that involves inflammatory and fibrotic changes in the bile ducts. Up to 80% of patients have concomitant inflammatory bowel disease (IBD) with colitis. PSC patients are predisposed to develop hepatobiliary, colonic and other extrahepatic malignancies, probably related to inflammatory processes that might promote carcinogenesis. Telomerase is an enzyme complex that lengthens telomeres and has enhanced expression in numerous malignancies. In this study, we evaluated the TERC gene copy number, the proportion of cells in senescence and the amount of fragmentation in the senescent state. Fluorescence in situ hybridization (FISH) for the TERC gene was applied to lymphocytes retrieved from PSC (N=19), colitis (N=20) and healthy control patients (N=20) to determine the TERC copy number. On the same FISH slides, cells stained with DAPI were also analyzed for senescence-associated heterochromatin foci (SAHF) status, including the number of cells with fragments and the number of SAHF fragments in each cell. A higher TERC gene copy number was observed in cells from PSC patients compared to colitis and control group patients. It was also higher in the colitis than in the control group. Significantly more cells in the senescent state and more fragmentation in each cell were observed in the PSC group compared to colitis and control groups. The TERC gene copy number and the number of cells in the senescent state were increased in PSC patients compared to the colitis and control groups. These findings are probably related to the genetic instability parameters that reflect the higher tendency of this patient group to develop malignancies. © 2013.

  7. Reduced rDNA Copy Number Does Not Affect “Competitive” Chromosome Pairing in XYY Males of Drosophila melanogaster

    PubMed Central

    Maggert, Keith A.

    2014-01-01

    The ribosomal DNA (rDNA) arrays are causal agents in X-Y chromosome pairing in meiosis I of Drosophila males. Despite broad variation in X-linked and Y-linked rDNA copy number, polymorphisms in regulatory/spacer sequences between rRNA genes, and variance in copy number of interrupting R1 and R2 retrotransposable elements, there is little evidence that different rDNA arrays affect pairing efficacy. I investigated whether induced rDNA copy number polymorphisms affect chromosome pairing in a “competitive” situation in which complex pairing configurations were possible using males with XYY constitution. Using a common normal X chromosome, one of two different full-length Y chromosomes, and a third chromosome from a series of otherwise-isogenic rDNA deletions, I detected no differences in X-Y or Y-Y pairing or chromosome segregation frequencies that could not be attributed to random variation alone. This work was performed in the context of an undergraduate teaching program at Texas A&M University, and I discuss the pedagogical utility of this and other such experiments. PMID:24449686

  8. Identifying Potential Regions of Copy Number Variation for Bipolar Disorder

    PubMed Central

    Chen, Yi-Hsuan; Lu, Ru-Band; Hung, Hung; Kuo, Po-Hsiu

    2014-01-01

    Bipolar disorder is a complex psychiatric disorder with high heritability, but its genetic determinants are still largely unknown. Copy number variation (CNV) is one of the sources to explain part of the heritability. However, it is a challenge to estimate discrete values of the copy numbers using continuous signals calling from a set of markers, and to simultaneously perform association testing between CNVs and phenotypic outcomes. The goal of the present study is to perform a series of data filtering and analysis procedures using a DNA pooling strategy to identify potential CNV regions that are related to bipolar disorder. A total of 200 normal controls and 200 clinically diagnosed bipolar patients were recruited in this study, and were randomly divided into eight control and eight case pools. Genome-wide genotyping was employed using Illumina Human Omni1-Quad array with approximately one million markers for CNV calling. We aimed at setting a series of criteria to filter out the signal noise of marker data and to reduce the chance of false-positive findings for CNV regions. We first defined CNV regions for each pool. Potential CNV regions were reported based on the different patterns of CNV status between cases and controls. Genes that were mapped into the potential CNV regions were examined with association testing, Gene Ontology enrichment analysis, and checked with existing literature for their associations with bipolar disorder. We reported several CNV regions that are related to bipolar disorder. Two CNV regions on chromosome 11 and 22 showed significant signal differences between cases and controls (p < 0.05). Another five CNV regions on chromosome 6, 9, and 19 were overlapped with results in previous CNV studies. Experimental validation of two CNV regions lent some support to our reported findings. Further experimental and replication studies could be designed for these selected regions. PMID:27605030

  9. Segmental Duplications and Copy-Number Variation in the Human Genome

    PubMed Central

    Sharp, Andrew J. ; Locke, Devin P. ; McGrath, Sean D. ; Cheng, Ze ; Bailey, Jeffrey A. ; Vallente, Rhea U. ; Pertz, Lisa M. ; Clark, Royden A. ; Schwartz, Stuart ; Segraves, Rick ; Oseroff, Vanessa V. ; Albertson, Donna G. ; Pinkel, Daniel ; Eichler, Evan E. 

    2005-01-01

    The human genome contains numerous blocks of highly homologous duplicated sequence. This higher-order architecture provides a substrate for recombination and recurrent chromosomal rearrangement associated with genomic disease. However, an assessment of the role of segmental duplications in normal variation has not yet been made. On the basis of the duplication architecture of the human genome, we defined a set of 130 potential rearrangement hotspots and constructed a targeted bacterial artificial chromosome (BAC) microarray (with 2,194 BACs) to assess copy-number variation in these regions by array comparative genomic hybridization. Using our segmental duplication BAC microarray, we screened a panel of 47 normal individuals, who represented populations from four continents, and we identified 119 regions of copy-number polymorphism (CNP), 73 of which were previously unreported. We observed an equal frequency of duplications and deletions, as well as a 4-fold enrichment of CNPs within hotspot regions, compared with control BACs (P < .000001), which suggests that segmental duplications are a major catalyst of large-scale variation in the human genome. Importantly, segmental duplications themselves were also significantly enriched >4-fold within regions of CNP. Almost without exception, CNPs were not confined to a single population, suggesting that these either are recurrent events, having occurred independently in multiple founders, or were present in early human populations. Our study demonstrates that segmental duplications define hotspots of chromosomal rearrangement, likely acting as mediators of normal variation as well as genomic disease, and it suggests that the consideration of genomic architecture can significantly improve the ascertainment of large-scale rearrangements. Our specialized segmental duplication BAC microarray and associated database of structural polymorphisms will provide an important resource for the future characterization of human genomic

  10. MixHMM: Inferring Copy Number Variation and Allelic Imbalance Using SNP Arrays and Tumor Samples Mixed with Stromal Cells

    PubMed Central

    Schulz, Vincent; Chen, Min; Tuck, David

    2010-01-01

    Background Genotyping platforms such as single nucleotide polymorphism (SNP) arrays are powerful tools to study genomic aberrations in cancer samples. Allele specific information from SNP arrays provides valuable information for interpreting copy number variation (CNV) and allelic imbalance including loss-of-heterozygosity (LOH) beyond that obtained from the total DNA signal available from array comparative genomic hybridization (aCGH) platforms. Several algorithms based on hidden Markov models (HMMs) have been designed to detect copy number changes and copy-neutral LOH making use of the allele information on SNP arrays. However heterogeneity in clinical samples, due to stromal contamination and somatic alterations, complicates analysis and interpretation of these data. Methods We have developed MixHMM, a novel hidden Markov model using hidden states based on chromosomal structural aberrations. MixHMM allows CNV detection for copy numbers up to 7 and allows more complete and accurate description of other forms of allelic imbalance, such as increased copy number LOH or imbalanced amplifications. MixHMM also incorporates a novel sample mixing model that allows detection of tumor CNV events in heterogeneous tumor samples, where cancer cells are mixed with a proportion of stromal cells. Conclusions We validate MixHMM and demonstrate its advantages with simulated samples, clinical tumor samples and a dilution series of mixed samples. We have shown that the CNVs of cancer cells in a tumor sample contaminated with up to 80% of stromal cells can be detected accurately using Illumina BeadChip and MixHMM. Availability The MixHMM is available as a Python package provided with some other useful tools at http://genecube.med.yale.edu:8080/MixHMM. PMID:20532221

  11. 18 CFR 156.3 - Applications; number of copies; general requirements.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... copies; general requirements. 156.3 Section 156.3 Conservation of Power and Water Resources FEDERAL... requirements. (a) Applicable rules. An original and 7 conformed copies of an application under this part shall... other respects applications shall conform to the requirements of §§ 156.1 through 156.5. Amendments to...

  12. 17 CFR 230.472 - Filing of amendments; number of copies.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... exhibits and all other papers and documents filed as part of the amendment, and eight additional copies of... include the consent of the certifying accountant to the use of his certificate in connection with the... Commission three complete, unmarked copies of every amendment, including exhibits and all other papers and...

  13. 17 CFR 230.472 - Filing of amendments; number of copies.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... exhibits and all other papers and documents filed as part of the amendment, and eight additional copies of... include the consent of the certifying accountant to the use of his certificate in connection with the... Commission three complete, unmarked copies of every amendment, including exhibits and all other papers and...

  14. 17 CFR 230.472 - Filing of amendments; number of copies.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... exhibits and all other papers and documents filed as part of the amendment, and eight additional copies of... include the consent of the certifying accountant to the use of his certificate in connection with the... Commission three complete, unmarked copies of every amendment, including exhibits and all other papers and...

  15. 17 CFR 230.472 - Filing of amendments; number of copies.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... exhibits and all other papers and documents filed as part of the amendment, and eight additional copies of... include the consent of the certifying accountant to the use of his certificate in connection with the... Commission three complete, unmarked copies of every amendment, including exhibits and all other papers and...

  16. 17 CFR 230.472 - Filing of amendments; number of copies.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... exhibits and all other papers and documents filed as part of the amendment, and eight additional copies of... include the consent of the certifying accountant to the use of his certificate in connection with the... Commission three complete, unmarked copies of every amendment, including exhibits and all other papers and...

  17. Functional impact of global rare copy number variation in autism spectrum disorders.

    PubMed

    Pinto, Dalila; Pagnamenta, Alistair T; Klei, Lambertus; Anney, Richard; Merico, Daniele; Regan, Regina; Conroy, Judith; Magalhaes, Tiago R; Correia, Catarina; Abrahams, Brett S; Almeida, Joana; Bacchelli, Elena; Bader, Gary D; Bailey, Anthony J; Baird, Gillian; Battaglia, Agatino; Berney, Tom; Bolshakova, Nadia; Bölte, Sven; Bolton, Patrick F; Bourgeron, Thomas; Brennan, Sean; Brian, Jessica; Bryson, Susan E; Carson, Andrew R; Casallo, Guillermo; Casey, Jillian; Chung, Brian H Y; Cochrane, Lynne; Corsello, Christina; Crawford, Emily L; Crossett, Andrew; Cytrynbaum, Cheryl; Dawson, Geraldine; de Jonge, Maretha; Delorme, Richard; Drmic, Irene; Duketis, Eftichia; Duque, Frederico; Estes, Annette; Farrar, Penny; Fernandez, Bridget A; Folstein, Susan E; Fombonne, Eric; Freitag, Christine M; Gilbert, John; Gillberg, Christopher; Glessner, Joseph T; Goldberg, Jeremy; Green, Andrew; Green, Jonathan; Guter, Stephen J; Hakonarson, Hakon; Heron, Elizabeth A; Hill, Matthew; Holt, Richard; Howe, Jennifer L; Hughes, Gillian; Hus, Vanessa; Igliozzi, Roberta; Kim, Cecilia; Klauck, Sabine M; Kolevzon, Alexander; Korvatska, Olena; Kustanovich, Vlad; Lajonchere, Clara M; Lamb, Janine A; Laskawiec, Magdalena; Leboyer, Marion; Le Couteur, Ann; Leventhal, Bennett L; Lionel, Anath C; Liu, Xiao-Qing; Lord, Catherine; Lotspeich, Linda; Lund, Sabata C; Maestrini, Elena; Mahoney, William; Mantoulan, Carine; Marshall, Christian R; McConachie, Helen; McDougle, Christopher J; McGrath, Jane; McMahon, William M; Merikangas, Alison; Migita, Ohsuke; Minshew, Nancy J; Mirza, Ghazala K; Munson, Jeff; Nelson, Stanley F; Noakes, Carolyn; Noor, Abdul; Nygren, Gudrun; Oliveira, Guiomar; Papanikolaou, Katerina; Parr, Jeremy R; Parrini, Barbara; Paton, Tara; Pickles, Andrew; Pilorge, Marion; Piven, Joseph; Ponting, Chris P; Posey, David J; Poustka, Annemarie; Poustka, Fritz; Prasad, Aparna; Ragoussis, Jiannis; Renshaw, Katy; Rickaby, Jessica; Roberts, Wendy; Roeder, Kathryn; Roge, Bernadette; Rutter, Michael L; Bierut, Laura J; Rice, John P; Salt, Jeff; Sansom, Katherine; Sato, Daisuke; Segurado, Ricardo; Sequeira, Ana F; Senman, Lili; Shah, Naisha; Sheffield, Val C; Soorya, Latha; Sousa, Inês; Stein, Olaf; Sykes, Nuala; Stoppioni, Vera; Strawbridge, Christina; Tancredi, Raffaella; Tansey, Katherine; Thiruvahindrapduram, Bhooma; Thompson, Ann P; Thomson, Susanne; Tryfon, Ana; Tsiantis, John; Van Engeland, Herman; Vincent, John B; Volkmar, Fred; Wallace, Simon; Wang, Kai; Wang, Zhouzhi; Wassink, Thomas H; Webber, Caleb; Weksberg, Rosanna; Wing, Kirsty; Wittemeyer, Kerstin; Wood, Shawn; Wu, Jing; Yaspan, Brian L; Zurawiecki, Danielle; Zwaigenbaum, Lonnie; Buxbaum, Joseph D; Cantor, Rita M; Cook, Edwin H; Coon, Hilary; Cuccaro, Michael L; Devlin, Bernie; Ennis, Sean; Gallagher, Louise; Geschwind, Daniel H; Gill, Michael; Haines, Jonathan L; Hallmayer, Joachim; Miller, Judith; Monaco, Anthony P; Nurnberger, John I; Paterson, Andrew D; Pericak-Vance, Margaret A; Schellenberg, Gerard D; Szatmari, Peter; Vicente, Astrid M; Vieland, Veronica J; Wijsman, Ellen M; Scherer, Stephen W; Sutcliffe, James S; Betancur, Catalina

    2010-07-15

    The autism spectrum disorders (ASDs) are a group of conditions characterized by impairments in reciprocal social interaction and communication, and the presence of restricted and repetitive behaviours. Individuals with an ASD vary greatly in cognitive development, which can range from above average to intellectual disability. Although ASDs are known to be highly heritable ( approximately 90%), the underlying genetic determinants are still largely unknown. Here we analysed the genome-wide characteristics of rare (<1% frequency) copy number variation in ASD using dense genotyping arrays. When comparing 996 ASD individuals of European ancestry to 1,287 matched controls, cases were found to carry a higher global burden of rare, genic copy number variants (CNVs) (1.19 fold, P = 0.012), especially so for loci previously implicated in either ASD and/or intellectual disability (1.69 fold, P = 3.4 x 10(-4)). Among the CNVs there were numerous de novo and inherited events, sometimes in combination in a given family, implicating many novel ASD genes such as SHANK2, SYNGAP1, DLGAP2 and the X-linked DDX53-PTCHD1 locus. We also discovered an enrichment of CNVs disrupting functional gene sets involved in cellular proliferation, projection and motility, and GTPase/Ras signalling. Our results reveal many new genetic and functional targets in ASD that may lead to final connected pathways.

  18. Parallel Evolution of Copy-Number Variation across Continents in Drosophila melanogaster.

    PubMed

    Schrider, Daniel R; Hahn, Matthew W; Begun, David J

    2016-05-01

    Genetic differentiation across populations that is maintained in the presence of gene flow is a hallmark of spatially varying selection. In Drosophila melanogaster, the latitudinal clines across the eastern coasts of Australia and North America appear to be examples of this type of selection, with recent studies showing that a substantial portion of the D. melanogaster genome exhibits allele frequency differentiation with respect to latitude on both continents. As of yet there has been no genome-wide examination of differentiated copy-number variants (CNVs) in these geographic regions, despite their potential importance for phenotypic variation in Drosophila and other taxa. Here, we present an analysis of geographic variation in CNVs in D. melanogaster. We also present the first genomic analysis of geographic variation for copy-number variation in the sister species, D. simulans, in order to investigate patterns of parallel evolution in these close relatives. In D. melanogaster we find hundreds of CNVs, many of which show parallel patterns of geographic variation on both continents, lending support to the idea that they are influenced by spatially varying selection. These findings support the idea that polymorphic CNVs contribute to local adaptation in D. melanogaster In contrast, we find very few CNVs in D. simulans that are geographically differentiated in parallel on both continents, consistent with earlier work suggesting that clinal patterns are weaker in this species. © The Author 2016. Published by Oxford University Press on behalf of the Society for Molecular Biology and Evolution. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.

  19. DETECTION OF STACHYBOTRYS CHARTARUM USING rRNA, tri5, AND Β-TUBULIN PRIMERS AND DETERMINING THEIR RELATIVE COPY NUMBER BY REAL TIME PCR

    EPA Science Inventory

    This research utilizes the quantitative polymerase chain reaction (qPCR) to determine ribosomal copy number of fungal organisms found in unhealthy indoor environments. Knowing specific copy numbers will allow for greater accuracy in quantification when utilizing current pQCR tec...

  20. The Orphan Gene dauerless Regulates Dauer Development and Intraspecific Competition in Nematodes by Copy Number Variation.

    PubMed

    Mayer, Melanie G; Rödelsperger, Christian; Witte, Hanh; Riebesell, Metta; Sommer, Ralf J

    2015-06-01

    Many nematodes form dauer larvae when exposed to unfavorable conditions, representing an example of phenotypic plasticity and a major survival and dispersal strategy. In Caenorhabditis elegans, the regulation of dauer induction is a model for pheromone, insulin, and steroid-hormone signaling. Recent studies in Pristionchus pacificus revealed substantial natural variation in various aspects of dauer development, i.e. pheromone production and sensing and dauer longevity and fitness. One intriguing example is a strain from Ohio, having extremely long-lived dauers associated with very high fitness and often forming the most dauers in response to other strains' pheromones, including the reference strain from California. While such examples have been suggested to represent intraspecific competition among strains, the molecular mechanisms underlying these dauer-associated patterns are currently unknown. We generated recombinant-inbred-lines between the Californian and Ohioan strains and used quantitative-trait-loci analysis to investigate the molecular mechanism determining natural variation in dauer development. Surprisingly, we discovered that the orphan gene dauerless controls dauer formation by copy number variation. The Ohioan strain has one dauerless copy causing high dauer formation, whereas the Californian strain has two copies, resulting in strongly reduced dauer formation. Transgenic animals expressing multiple copies do not form dauers. dauerless is exclusively expressed in CAN neurons, and both CAN ablation and dauerless mutations increase dauer formation. Strikingly, dauerless underwent several duplications and acts in parallel or downstream of steroid-hormone signaling but upstream of the nuclear-hormone-receptor daf-12. We identified the novel or fast-evolving gene dauerless as inhibitor of dauer development. Our findings reveal the importance of gene duplications and copy number variations for orphan gene function and suggest daf-12 as major target for

  1. DYZ1 copy number variation, Y chromosome polymorphism and early recurrent spontaneous abortion/early embryo growth arrest.

    PubMed

    Yan, Junhao; Fan, Lingling; Zhao, Yueran; You, Li; Wang, Laicheng; Zhao, Han; Li, Yuan; Chen, Zi-Jiang

    2011-12-01

    To find the association between recurrent spontaneous abortion (RSA)/early embryo growth arrest and Y chromosome polymorphism. Peripheral blood samples of the male patients of big Y chromosome, small Y chromosome and other male patients whose partners suffered from unexplained RSA/early embryo growth arrest were collected. PCR and real-time fluorescent quantitative PCR were used to test the deletion and the copy number variation of DYZ1 region in Y chromosome of the patients. A total of 79 big Y chromosome patients (48 of whose partners suffered from RSA or early embryo growth arrest), 7 small Y chromosome patients, 106 other male patients whose partners had suffered from unexplained RSA or early embryo growth arrest, and 100 normal male controls were enrolled. There was no fraction deletion of DYZ1 detected both in big Y patients and in normal men. Of RSA patients, 1 case showed deletion of 266bp from the gene locus 25-290bp, and 2 cases showed deletion of 773bp from 1347 to 2119bp. Of only 7 small Y chromosome patients, 2 cases showed deletion of 266bp from 25 to 290bp, and 4 cases showed deletion of 773bp from 1347 to 2119bp and 275bp from 3128 to 3420bp. The mean of DYZ1 copies was 3900 in normal control men; the mean in big Y patients was 5571, in RSA patients was 2655, and in small Y patients was 1059. All of the others were significantly different (P<0.01) compared with normal control men, which meant that DYZ1 copy number in normal control men was less than that of big Y chromosome patients, and was more than that of unexplained early RSA patients and small Y patients. The integrity and copy number variation of DYZ1 are closely related to the Y chromosome length under microscope. The cause of RSA/early embryo growth arrest in some couples may be the increase (big Y patients) or decrease of DYZ1 copy number in the husbands' Y chromosome. Copyright © 2011 Elsevier Ireland Ltd. All rights reserved.

  2. Copy number variation and microdeletions of the Y chromosome linked genes and loci across different categories of Indian infertile males.

    PubMed

    Kumari, Anju; Yadav, Sandeep Kumar; Misro, Man Mohan; Ahmad, Jamal; Ali, Sher

    2015-12-07

    We analyzed 34 azoospermic (AZ), 43 oligospermic (OS), and 40 infertile males with normal spermiogram (INS) together with 55 normal fertile males (NFM) from the Indian population. AZ showed more microdeletions in the AZFa and AZFb regions whereas oligospermic ones showed more microdeletions in the AZFc region. Frequency of the AZF partial deletions was higher in males with spermatogenic impairments than in INS. Significantly, SRY, DAZ and BPY2 genes showed copy number variation across different categories of the patients and much reduced copies of the DYZ1 repeat arrays compared to that in normal fertile males. Likewise, INS showed microdeletions, sequence and copy number variation of several Y linked genes and loci. In the context of infertility, STS deletions and copy number variations both were statistically significant (p = 0.001). Thus, semen samples used during in vitro fertilization (IVF) and assisted reproductive technology (ART) must be assessed for the microdeletions of AZFa, b and c regions in addition to the affected genes reported herein. Present study is envisaged to be useful for DNA based diagnosis of different categories of the infertile males lending support to genetic counseling to the couples aspiring to avail assisted reproductive technologies.

  3. 29 CFR 501.39 - Service upon attorneys for the Department of Labor-number of copies.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 29 Labor 3 2010-07-01 2010-07-01 false Service upon attorneys for the Department of Labor-number of copies. 501.39 Section 501.39 Labor Regulations Relating to Labor (Continued) WAGE AND HOUR DIVISION, DEPARTMENT OF LABOR REGULATIONS ENFORCEMENT OF CONTRACTUAL OBLIGATIONS FOR TEMPORARY ALIEN...

  4. 29 CFR 502.39 - Service upon attorneys for the Department of Labor-number of copies.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 29 Labor 3 2010-07-01 2010-07-01 false Service upon attorneys for the Department of Labor-number of copies. 502.39 Section 502.39 Labor Regulations Relating to Labor (Continued) WAGE AND HOUR DIVISION, DEPARTMENT OF LABOR REGULATIONS ENFORCEMENT OF CONTRACTUAL OBLIGATIONS FOR TEMPORARY ALIEN...

  5. Determination of the Absolute Number of Cytokine mRNA Molecules within Individual Activated Human T Cells

    NASA Technical Reports Server (NTRS)

    Karr, Laurel J.; Marshall, Gwen; Hockett, Richard D.; Bucy, R. Pat; Curreri, Peter A. (Technical Monitor)

    2002-01-01

    A primary function of activated T cells is the expression and subsequent secretion of cytokines, which orchestrate the differentiation of other lymphocytes, modulate antigen presenting cell activity, and alter vascular endothelium to mediate an immune response. Since many features of immune regulation probably result from modest alterations of endogenous rates of multiple interacting processes, quantitative analysis of the frequency and specific activity of individual T cells is critically important. Using a coordinated set of quantitative methods, the absolute number of molecules of several key cytokine mRNA species in individual T cells has been determined. The frequency of human blood T cells activated in vitro by mitogens and recall protein antigens was determined by intracellular cytokine protein staining, in situ hybridization for cytokine mRNA, and by limiting dilution analysis for cytokine mRNA+ cells. The absolute number of mRNA molecules was simultaneously determined in both homogenates of the entire population of cells and in individual cells obtained by limiting dilution, using a quantitative, competitive RT-PCR assay. The absolute numbers of mRNA molecules in a population of cells divided by the frequency of individual positive cells, yielded essentially the same number of mRNA molecules per cell as direct analysis of individual cells by limiting dilution analysis. Mean numbers of mRNA per positive cell from both mitogen and antigen activated T cells, using these stimulation conditions, were 6000 for IL-2, 6300 for IFN-gamma, and 1600 for IL-4.

  6. K13 mutations and pfmdr1 copy number variation in Plasmodium falciparum malaria in Myanmar.

    PubMed

    Win, Aye A; Imwong, Mallika; Kyaw, Myat P; Woodrow, Charles J; Chotivanich, Kesinee; Hanboonkunupakarn, Borimas; Pukrittayakamee, Sasithon

    2016-02-24

    Artemisinin-based combination therapy has been first-line treatment for falciparum malaria in Myanmar since 2005. The wide extent of artemisinin resistance in the Greater Mekong sub-region and the presence of mefloquine resistance at the Myanmar-Thailand border raise concerns over resistance patterns in Myanmar. The availability of molecular markers for resistance to both drugs enables assessment even in remote malaria-endemic areas. A total of 250 dried blood spot samples collected from patients with Plasmodium falciparum malarial infection in five malaria-endemic areas across Myanmar were analysed for kelch 13 sequence (k13) and pfmdr1 copy number variation. K13 mutations in the region corresponding to amino acids 210-726 (including the propeller region of the protein) were detected by nested PCR amplification and sequencing, and pfmdr1 copy number variation by real-time PCR. In two sites, a sub-set of patients were prospectively followed up for assessment of day-3 parasite clearance rates after a standard course of artemether-lumefantrine. K13 mutations and pfmdr1 amplification were successfully analysed in 206 and 218 samples, respectively. Sixty-nine isolates (33.5 %) had mutations within the k13 propeller region with 53 of these (76.8 %) having mutations already known to be associated with artemisinin resistance. F446I (32 isolates) and P574L (15 isolates) were the most common examples. K13 mutation was less common in sites in western border regions (29 of 155 isolates) compared to samples from the east and north (40 of 51 isolates; p < 0.0001). The overall proportion of parasites with multiple pfmdr1 copies (greater than 1.5) was 5.5 %. Seven samples showed both k13 mutation and multiple copies of pfmdr1. Only one of 36 patients followed up after artemether-lumefantrine treatment still had parasites at day 3; molecular analysis indicated wild-type k13 and single copy pfmdr1. The proportion of P. falciparum isolates with mutations in the propeller region of k

  7. Automated design of paralogue ratio test assays for the accurate and rapid typing of copy number variation

    PubMed Central

    Veal, Colin D.; Xu, Hang; Reekie, Katherine; Free, Robert; Hardwick, Robert J.; McVey, David; Brookes, Anthony J.; Hollox, Edward J.; Talbot, Christopher J.

    2013-01-01

    Motivation: Genomic copy number variation (CNV) can influence susceptibility to common diseases. High-throughput measurement of gene copy number on large numbers of samples is a challenging, yet critical, stage in confirming observations from sequencing or array Comparative Genome Hybridization (CGH). The paralogue ratio test (PRT) is a simple, cost-effective method of accurately determining copy number by quantifying the amplification ratio between a target and reference amplicon. PRT has been successfully applied to several studies analyzing common CNV. However, its use has not been widespread because of difficulties in assay design. Results: We present PRTPrimer (www.prtprimer.org) software for automated PRT assay design. In addition to stand-alone software, the web site includes a database of pre-designed assays for the human genome at an average spacing of 6 kb and a web interface for custom assay design. Other reference genomes can also be analyzed through local installation of the software. The usefulness of PRTPrimer was tested within known CNV, and showed reproducible quantification. This software and database provide assays that can rapidly genotype CNV, cost-effectively, on a large number of samples and will enable the widespread adoption of PRT. Availability: PRTPrimer is available in two forms: a Perl script (version 5.14 and higher) that can be run from the command line on Linux systems and as a service on the PRTPrimer web site (www.prtprimer.org). Contact: cjt14@le.ac.uk Supplementary Information: Supplementary data are available at Bioinformatics online. PMID:23742985

  8. Chromosomal Copy Number Variation in Saccharomyces pastorianus Is Evidence for Extensive Genome Dynamics in Industrial Lager Brewing Strains.

    PubMed

    van den Broek, M; Bolat, I; Nijkamp, J F; Ramos, E; Luttik, M A H; Koopman, F; Geertman, J M; de Ridder, D; Pronk, J T; Daran, J-M

    2015-09-01

    Lager brewing strains of Saccharomyces pastorianus are natural interspecific hybrids originating from the spontaneous hybridization of Saccharomyces cerevisiae and Saccharomyces eubayanus. Over the past 500 years, S. pastorianus has been domesticated to become one of the most important industrial microorganisms. Production of lager-type beers requires a set of essential phenotypes, including the ability to ferment maltose and maltotriose at low temperature, the production of flavors and aromas, and the ability to flocculate. Understanding of the molecular basis of complex brewing-related phenotypic traits is a prerequisite for rational strain improvement. While genome sequences have been reported, the variability and dynamics of S. pastorianus genomes have not been investigated in detail. Here, using deep sequencing and chromosome copy number analysis, we showed that S. pastorianus strain CBS1483 exhibited extensive aneuploidy. This was confirmed by quantitative PCR and by flow cytometry. As a direct consequence of this aneuploidy, a massive number of sequence variants was identified, leading to at least 1,800 additional protein variants in S. pastorianus CBS1483. Analysis of eight additional S. pastorianus strains revealed that the previously defined group I strains showed comparable karyotypes, while group II strains showed large interstrain karyotypic variability. Comparison of three strains with nearly identical genome sequences revealed substantial chromosome copy number variation, which may contribute to strain-specific phenotypic traits. The observed variability of lager yeast genomes demonstrates that systematic linking of genotype to phenotype requires a three-dimensional genome analysis encompassing physical chromosomal structures, the copy number of individual chromosomes or chromosomal regions, and the allelic variation of copies of individual genes. Copyright © 2015, van den Broek et al.

  9. Chromosomal Copy Number Variation in Saccharomyces pastorianus Is Evidence for Extensive Genome Dynamics in Industrial Lager Brewing Strains

    PubMed Central

    van den Broek, M.; Bolat, I.; Nijkamp, J. F.; Ramos, E.; Luttik, M. A. H.; Koopman, F.; Geertman, J. M.; de Ridder, D.; Pronk, J. T.

    2015-01-01

    Lager brewing strains of Saccharomyces pastorianus are natural interspecific hybrids originating from the spontaneous hybridization of Saccharomyces cerevisiae and Saccharomyces eubayanus. Over the past 500 years, S. pastorianus has been domesticated to become one of the most important industrial microorganisms. Production of lager-type beers requires a set of essential phenotypes, including the ability to ferment maltose and maltotriose at low temperature, the production of flavors and aromas, and the ability to flocculate. Understanding of the molecular basis of complex brewing-related phenotypic traits is a prerequisite for rational strain improvement. While genome sequences have been reported, the variability and dynamics of S. pastorianus genomes have not been investigated in detail. Here, using deep sequencing and chromosome copy number analysis, we showed that S. pastorianus strain CBS1483 exhibited extensive aneuploidy. This was confirmed by quantitative PCR and by flow cytometry. As a direct consequence of this aneuploidy, a massive number of sequence variants was identified, leading to at least 1,800 additional protein variants in S. pastorianus CBS1483. Analysis of eight additional S. pastorianus strains revealed that the previously defined group I strains showed comparable karyotypes, while group II strains showed large interstrain karyotypic variability. Comparison of three strains with nearly identical genome sequences revealed substantial chromosome copy number variation, which may contribute to strain-specific phenotypic traits. The observed variability of lager yeast genomes demonstrates that systematic linking of genotype to phenotype requires a three-dimensional genome analysis encompassing physical chromosomal structures, the copy number of individual chromosomes or chromosomal regions, and the allelic variation of copies of individual genes. PMID:26150454

  10. Associations of mitochondrial haplogroups and mitochondrial DNA copy numbers with end-stage renal disease in a Han population.

    PubMed

    Zhang, Yuheng; Zhao, Ying; Wen, Shuzhen; Yan, Rengna; Yang, Qinglan; Chen, Huimei

    2017-09-01

    Mitochondrial DNA (mtDNA) is closely related to mitochondrion function, and variations have been suggested to be involved in pathogenesis of complex diseases. The present study sought to elucidate mitochondrial haplogroups and mtDNA copy number in end-stage renal disease (ESRD) in a Han population. First, the mitochondrial haplogroups of 37 ESRD patients were clustered into several haplogroups, and haplogroup A & D were taken as the candidate risk haplogroups for ESRD. Second, the frequencies of A and D were assessed in 344 ESRD patients and 438 healthy controls, respectively. Haplogroup D was found to be risk maker for ESRD in young subjects (<30 years) with an OR of 2.274. Finally, intracellular and cell-free mtDNA copy numbers were evaluated with quantitative-PCR. The ESRD patients exhibited greater cell-free mtDNA contents than the healthy controls but less intracellular mtDNA. Haplogroup D exhibited a further increase in cell-free mtDNA content and a decrease in intracellular mtDNA content among the ESRDs patients. Our findings suggest that mtNDA haplogroup D may contributes to pathogenesis of early-onset ESRD through alterations of mtDNA copy numbers.

  11. Exploratory factor analysis of pathway copy number data with an application towards the integration with gene expression data.

    PubMed

    van Wieringen, Wessel N; van de Wiel, Mark A

    2011-05-01

    Realizing that genes often operate together, studies into the molecular biology of cancer shift focus from individual genes to pathways. In order to understand the regulatory mechanisms of a pathway, one must study its genes at all molecular levels. To facilitate such study at the genomic level, we developed exploratory factor analysis for the characterization of the variability of a pathway's copy number data. A latent variable model that describes the call probability data of a pathway is introduced and fitted with an EM algorithm. In two breast cancer data sets, it is shown that the first two latent variables of GO nodes, which inherit a clear interpretation from the call probabilities, are often related to the proportion of aberrations and a contrast of the probabilities of a loss and of a gain. Linking the latent variables to the node's gene expression data suggests that they capture the "global" effect of genomic aberrations on these transcript levels. In all, the proposed method provides an possibly insightful characterization of pathway copy number data, which may be fruitfully exploited to study the interaction between the pathway's DNA copy number aberrations and data from other molecular levels like gene expression.

  12. CNV-RF Is a Random Forest-Based Copy Number Variation Detection Method Using Next-Generation Sequencing.

    PubMed

    Onsongo, Getiria; Baughn, Linda B; Bower, Matthew; Henzler, Christine; Schomaker, Matthew; Silverstein, Kevin A T; Thyagarajan, Bharat

    2016-11-01

    Simultaneous detection of small copy number variations (CNVs) (<0.5 kb) and single-nucleotide variants in clinically significant genes is of great interest for clinical laboratories. The analytical variability in next-generation sequencing (NGS) and artifacts in coverage data because of issues with mappability along with lack of robust bioinformatics tools for CNV detection have limited the utility of targeted NGS data to identify CNVs. We describe the development and implementation of a bioinformatics algorithm, copy number variation-random forest (CNV-RF), that incorporates a machine learning component to identify CNVs from targeted NGS data. Using CNV-RF, we identified 12 of 13 deletions in samples with known CNVs, two cases with duplications, and identified novel deletions in 22 additional cases. Furthermore, no CNVs were identified among 60 genes in 14 cases with normal copy number and no CNVs were identified in another 104 patients with clinical suspicion of CNVs. All positive deletions and duplications were confirmed using a quantitative PCR method. CNV-RF also detected heterozygous deletions and duplications with a specificity of 50% across 4813 genes. The ability of CNV-RF to detect clinically relevant CNVs with a high degree of sensitivity along with confirmation using a low-cost quantitative PCR method provides a framework for providing comprehensive NGS-based CNV/single-nucleotide variant detection in a clinical molecular diagnostics laboratory. Copyright © 2016 American Society for Investigative Pathology and the Association for Molecular Pathology. Published by Elsevier Inc. All rights reserved.

  13. Characterization of the Copy Number and Variants of Deformed Wing Virus (DWV) in the Pairs of Honey Bee Pupa and Infesting Varroa destructor or Tropilaelaps mercedesae.

    PubMed

    Wu, Yunfei; Dong, Xiaofeng; Kadowaki, Tatsuhiko

    2017-01-01

    Recent honey bee colony losses, particularly during the winter, have been shown to be associated with the presence of both ectoparasitic mites and Deformed Wing Virus (DWV). Whilst the role of Varroa destructor mites as a viral vector is well established, the role of Tropilaelaps mercedesae mites in viral transmission has not been fully investigated. In this study, we tested the effects that V. destructor and T. mercedesae infestation have on fluctuation of the DWV copy number and alteration of the virus variants in honey bees by characterizing individual pupae and their infesting mites. We observed that both mite species were associated with increased viral copy number in honey bee pupae. We found a positive correlation between DWV copy number in pupae and copy number in infesting mites, and the same DWV type A variant was present in either low or high copy number in both honey bee pupae and infesting V. destructor . These data also suggest that variant diversity is similar between honey bee pupae and the mites that infest them. These results support a previously proposed hypothesis that DWV suppresses the honey bee immune system when virus copy number reaches a specific threshold, promoting greater replication.

  14. UGT2B17 and SULT1A1 gene copy number variation (CNV) detection by LabChip microfluidic technology.

    PubMed

    Gaedigk, Andrea; Gaedigk, Roger; Leeder, J Steven

    2010-05-01

    Gene copy number variations (CNVs) are increasingly recognized to play important roles in the expression of genes and hence on their respective enzymatic activities. This has been demonstrated for a number of drug metabolizing genes, such as UDP-glucuronosyltransferases 2B17 (UGT2B17) and sulfotransferase 1A1 (SULT1A1), which are subject to genetic heterogeneity, including CNV. Quantitative assays to assess gene copy number are therefore becoming an integral part of accurate genotype assessment and phenotype prediction. In this study, we evaluated a microfluidics-based system, the Bio-Rad Experion system, to determine the power and utility of this platform to detect UGT2B17 and SULT1A1 CNV in DNA samples derived from blood and tissue. UGT2B17 is known to present with 0, 1 or 2 and SULT1A1 with up to 5 gene copies. Distinct clustering (p<0.001) into copy number groups was achieved for both genes. DNA samples derived from blood exhibited less inter-run variability compared to DNA samples obtained from liver tissue. This variability may be caused by tissue-specific PCR inhibitors as it could be overcome by using DNA from another tissue, or after the DNA had undergone whole genome amplification. This method produced results comparable to those reported for other quantitative test platforms.

  15. A statistical approach to detection of copy number variations in PCR-enriched targeted sequencing data.

    PubMed

    Demidov, German; Simakova, Tamara; Vnuchkova, Julia; Bragin, Anton

    2016-10-22

    Multiplex polymerase chain reaction (PCR) is a common enrichment technique for targeted massive parallel sequencing (MPS) protocols. MPS is widely used in biomedical research and clinical diagnostics as the fast and accurate tool for the detection of short genetic variations. However, identification of larger variations such as structure variants and copy number variations (CNV) is still being a challenge for targeted MPS. Some approaches and tools for structural variants detection were proposed, but they have limitations and often require datasets of certain type, size and expected number of amplicons affected by CNVs. In the paper, we describe novel algorithm for high-resolution germinal CNV detection in the PCR-enriched targeted sequencing data and present accompanying tool. We have developed a machine learning algorithm for the detection of large duplications and deletions in the targeted sequencing data generated with PCR-based enrichment step. We have performed verification studies and established the algorithm's sensitivity and specificity. We have compared developed tool with other available methods applicable for the described data and revealed its higher performance. We showed that our method has high specificity and sensitivity for high-resolution copy number detection in targeted sequencing data using large cohort of samples.

  16. Detection of MET Gene Copy Number in Cancer Samples Using the Droplet Digital PCR Method.

    PubMed

    Zhang, Yanni; Tang, En-Tzu; Du, Zhiqiang

    2016-01-01

    The analysis of MET gene copy number (CN) has been considered to be a potential biomarker to predict the response to MET-targeted therapies in various cancers. However, the current standard methods to determine MET CN are SNP 6.0 in the genomic DNA of cancer cell lines and fluorescence in situ hybridization (FISH) in tumor models, respectively, which are costly and require advanced technical skills and result in relatively subjective judgments. Therefore, we employed a novel method, droplet digital PCR (ddPCR), to determine the MET gene copy number with high accuracy and precision. The genomic DNA of cancer cell lines or tumor models were tested and compared with the MET gene CN and MET/CEN-7 ratio determined by SNP 6.0 and FISH, respectively. In cell lines, the linear association of the MET CN detected by ddPCR and SNP 6.0 is strong (Pearson correlation = 0.867). In tumor models, the MET CN detected by ddPCR was significantly different between the MET gene amplification and non-amplification groups according to FISH (mean: 15.4 vs 2.1; P = 0.044). Given that MET gene amplification is defined as MET CN >5.5 by ddPCR, the concordance rate between ddPCR and FISH was 98.0%, and Cohen's kappa coefficient was 0.760 (95% CI, 0.498-1.000; P <0.001). The results demonstrated that the ddPCR method has the potential to quantify the MET gene copy number with high precision and accuracy as compared with the results from SNP 6.0 and FISH in cancer cell lines and tumor samples, respectively.

  17. Low D4Z4 copy number and gender difference in Korean patients with facioscapulohumeral muscular dystrophy type 1.

    PubMed

    Park, Hyung Jun; Hong, Ji-Man; Lee, Jung Hwan; Lee, Hyung Seok; Shin, Ha Young; Kim, Seung Min; Ki, Chang-Seok; Lee, Ji Hyun; Choi, Young-Chul

    2015-11-01

    The objective of this study was to investigate the clinical and genetic features of Korean patients with facioscapulohumeral muscular dystrophy type 1 (FSHD), and assessed the impact of molecular defects on phenotypic expression. We enrolled 104 FSHD patients from 87 unrelated Korean families with D4Z4 repeat array of less than 11 copies on 4q35. Sixty-one men and forty-three women were enrolled. Median D4Z4 copy number was 4 units and 99 (95%) Korean patients with FSHD carried 1-6 units. The median age at symptom onset was 13 [interquartile range: 8-17] years old. In 100 symptomatic patients, muscle weakness began in facial muscles in 58 patients, shoulder-girdle muscles in 37, and pelvic-girdle muscles in 5. Disease severity was significantly correlated with D4Z4 copy number. In addition, women were more severely affected than men even though there were no differences in age at examination or in D4Z4 copy number between the two genders. This gender difference among Korean patients was the opposite of analysis on individuals of European ancestry. In conclusion, the present study demonstrated the new diagnostic threshold for FSHD in Koreans based on the D4Z4 repeat array size distribution from 1 to 6 units and expanded the clinical spectrum. Copyright © 2015 Elsevier B.V. All rights reserved.

  18. The joint effect of air pollution exposure and copy number variation on risk for autism.

    PubMed

    Kim, Dokyoon; Volk, Heather; Girirajan, Santhosh; Pendergrass, Sarah; Hall, Molly A; Verma, Shefali S; Schmidt, Rebecca J; Hansen, Robin L; Ghosh, Debashis; Ludena-Rodriguez, Yunin; Kim, Kyoungmi; Ritchie, Marylyn D; Hertz-Picciotto, Irva; Selleck, Scott B

    2017-09-01

    Autism spectrum disorder is a complex trait with a high degree of heritability as well as documented susceptibility from environmental factors. In this study the contributions of copy number variation, exposure to air pollutants, and the interaction between the two on autism risk, were evaluated in the population-based case-control Childhood Autism Risks from Genetics and Environment (CHARGE) Study. For the current investigation, we included only those CHARGE children (a) who met criteria for autism or typical development and (b) for whom our team had conducted both genetic evaluation of copy number burden and determination of environmental air pollution exposures based on mapping addresses from the pregnancy and early childhood. This sample consisted of 158 cases of children with autism and 147 controls with typical development. Multiple logistic regression models were fit with and without environmental variable-copy number burden interactions. We found no correlation between average air pollution exposure from conception to age 2 years and the child's CNV burden. We found a significant interaction in which a 1SD increase in duplication burden combined with a 1SD increase in ozone exposure was associated with an elevated autism risk (OR 3.4, P < 0.005) much greater than the increased risks associated with either genomic duplication (OR 1.85, 95% CI 1.25-2.73) or ozone (OR 1.20, 95% CI 0.93-1.54) alone. Similar results were obtained when CNV and ozone were dichotomized to compare those in the top quartile relative to those having a smaller CNV burden and lower exposure to ozone, and when exposures were assessed separately for pregnancy, the first year of life, and the second year of life. No interactions were observed for other air pollutants, even those that demonstrated main effects; ozone tends to be negatively correlated with the other pollutants examined. While earlier work has demonstrated interactions between the presence of a pathogenic CNV and an

  19. Clinical significance of ESR1 gene copy number changes in breast cancer as measured by fluorescence in situ hybridisation.

    PubMed

    Lin, Ching-Hung; Liu, Jacqueline M; Lu, Yen-Shen; Lan, Chieh; Lee, Wei-Chung; Kuo, Kuan-Ting; Wang, Chung-Chieh; Chang, Dwan-Ying; Huang, Chiun-Sheng; Cheng, Ann-Lii

    2013-02-01

    The ESR1 gene encodes for oestrogen receptor (ER) α, which plays a crucial role in mammary carcinogenesis and clinical outcome in patients with breast cancer. However, the clinical significance of the ESR1 gene copy number change for breast cancer has not been clarified. ESR1 gene copy number was determined by fluorescence in situ hybridisation (FISH) on tissue sections. A minimum of 20 tumour cells were counted per section, and a FISH ratio of ESR1 gene to CEP6 ≥ 2.0 was considered ESR1 amplification. A ratio >1.2 but <2.0 was considered ESR1 gain. The ESR1 copy number was further measured by quantitative real-time PCR (Q-PCR) with ASXL2 as a reference. FISH revealed ESR1 amplification in six cases (4.0%) and ESR1 gain in 13 cases (8.7%) from a total of 150 cases. ESR1 gain and amplification were more common in older patients (p<0.001), and correlated well with ER protein expression (p=0.03) measured by immunohistochemistry, and ESR1 copy number (p<0.001) measured by Q-PCR. Furthermore, the multivariate analysis revealed that ESR1 amplification was associated with a shorter disease-free survival (HR=5.56, p=0.03) and a shorter overall survival (HR=5.11, p=0.04). In general, the frequency of ESR1 amplification in breast cancer is low when measured by FISH in large sections. ESR1 gain and amplification in breast cancer may be associated with older age and poorer outcomes.

  20. Change in the plasmid copy number in acetic acid bacteria in response to growth phase and acetic acid concentration.

    PubMed

    Akasaka, Naoki; Astuti, Wiwik; Ishii, Yuri; Hidese, Ryota; Sakoda, Hisao; Fujiwara, Shinsuke

    2015-06-01

    Plasmids pGE1 (2.5 kb), pGE2 (7.2 kb), and pGE3 (5.5 kb) were isolated from Gluconacetobacter europaeus KGMA0119, and sequence analyses revealed they harbored 3, 8, and 4 genes, respectively. Plasmid copy numbers (PCNs) were determined by real-time quantitative PCR at different stages of bacterial growth. When KGMA0119 was cultured in medium containing 0.4% ethanol and 0.5% acetic acid, PCN of pGE1 increased from 7 copies/genome in the logarithmic phase to a maximum of 12 copies/genome at the beginning of the stationary phase, before decreasing to 4 copies/genome in the late stationary phase. PCNs for pGE2 and pGE3 were maintained at 1-3 copies/genome during all phases of growth. Under a higher concentration of ethanol (3.2%) the PCN for pGE1 was slightly lower in all the growth stages, and those of pGE2 and pGE3 were unchanged. In the presence of 1.0% acetic acid, PCNs were higher for pGE1 (10 copies/genome) and pGE3 (6 copies/genome) during the logarithmic phase. Numbers for pGE2 did not change, indicating that pGE1 and pGE3 increase their PCNs in response to acetic acid. Plasmids pBE2 and pBE3 were constructed by ligating linearized pGE2 and pGE3 into pBR322. Both plasmids were replicable in Escherichia coli, Acetobacter pasteurianus and G. europaeus, highlighting their suitability as vectors for acetic acid bacteria. Copyright © 2014 The Society for Biotechnology, Japan. Published by Elsevier B.V. All rights reserved.

  1. VCS: Tool for Visualizing Copy Number Variation and Single Nucleotide Polymorphism.

    PubMed

    Kim, HyoYoung; Sung, Samsun; Cho, Seoae; Kim, Tae-Hun; Seo, Kangseok; Kim, Heebal

    2014-12-01

    Copy number variation (CNV) or single nucleotide phlyorphism (SNP) is useful genetic resource to aid in understanding complex phenotypes or deseases susceptibility. Although thousands of CNVs and SNPs are currently avaliable in the public databases, they are somewhat difficult to use for analyses without visualization tools. We developed a web-based tool called the VCS (visualization of CNV or SNP) to visualize the CNV or SNP detected. The VCS tool can assist to easily interpret a biological meaning from the numerical value of CNV and SNP. The VCS provides six visualization tools: i) the enrichment of genome contents in CNV; ii) the physical distribution of CNV or SNP on chromosomes; iii) the distribution of log2 ratio of CNVs with criteria of interested; iv) the number of CNV or SNP per binning unit; v) the distribution of homozygosity of SNP genotype; and vi) cytomap of genes within CNV or SNP region.

  2. The effect of algorithms on copy number variant detection.

    PubMed

    Tsuang, Debby W; Millard, Steven P; Ely, Benjamin; Chi, Peter; Wang, Kenneth; Raskind, Wendy H; Kim, Sulgi; Brkanac, Zoran; Yu, Chang-En

    2010-12-30

    The detection of copy number variants (CNVs) and the results of CNV-disease association studies rely on how CNVs are defined, and because array-based technologies can only infer CNVs, CNV-calling algorithms can produce vastly different findings. Several authors have noted the large-scale variability between CNV-detection methods, as well as the substantial false positive and false negative rates associated with those methods. In this study, we use variations of four common algorithms for CNV detection (PennCNV, QuantiSNP, HMMSeg, and cnvPartition) and two definitions of overlap (any overlap and an overlap of at least 40% of the smaller CNV) to illustrate the effects of varying algorithms and definitions of overlap on CNV discovery. We used a 56 K Illumina genotyping array enriched for CNV regions to generate hybridization intensities and allele frequencies for 48 Caucasian schizophrenia cases and 48 age-, ethnicity-, and gender-matched control subjects. No algorithm found a difference in CNV burden between the two groups. However, the total number of CNVs called ranged from 102 to 3,765 across algorithms. The mean CNV size ranged from 46 kb to 787 kb, and the average number of CNVs per subject ranged from 1 to 39. The number of novel CNVs not previously reported in normal subjects ranged from 0 to 212. Motivated by the availability of multiple publicly available genome-wide SNP arrays, investigators are conducting numerous analyses to identify putative additional CNVs in complex genetic disorders. However, the number of CNVs identified in array-based studies, and whether these CNVs are novel or valid, will depend on the algorithm(s) used. Thus, given the variety of methods used, there will be many false positives and false negatives. Both guidelines for the identification of CNVs inferred from high-density arrays and the establishment of a gold standard for validation of CNVs are needed.

  3. Genomic copy number variations in three Southeast Asian populations.

    PubMed

    Ku, Chee-Seng; Pawitan, Yudi; Sim, Xueling; Ong, Rick T H; Seielstad, Mark; Lee, Edmund J D; Teo, Yik-Ying; Chia, Kee-Seng; Salim, Agus

    2010-07-01

    Research on the role of copy number variations (CNVs) in the genetic risk of diseases in Asian populations has been hampered by a relative lack of reference CNV maps for Asian populations outside the East Asians. In this article, we report the population characteristics of CNVs in Chinese, Malay, and Asian Indian populations in Singapore. Using the Illumina Human 1M Beadchip array, we identify 1,174 CNV loci in these populations that corroborated with findings when the same samples were typed on the Affymetrix 6.0 platform. We identify 441 novel loci not previously reported in the Database of Genomic Variations (DGV). We observe a considerable number of loci that span all three populations and were previously unreported, as well as population-specific loci that are quite common in the respective populations. From this we observe the distribution of CNVs in the Asian Indian population to be considerably different from the Chinese and Malay populations. About half of the deletion loci and three-quarters of duplication loci overlap UCSC genes. Tens of loci show population differentiation and overlap with genes previously known to be associated with genetic risk of diseases. One of these loci is the CYP2A6 deletion, previously linked to reduced susceptibility to lung cancer. (c) 2010 Wiley-Liss, Inc.

  4. Improving detection of copy-number variation by simultaneous bias correction and read-depth segmentation.

    PubMed

    Szatkiewicz, Jin P; Wang, WeiBo; Sullivan, Patrick F; Wang, Wei; Sun, Wei

    2013-02-01

    Structural variation is an important class of genetic variation in mammals. High-throughput sequencing (HTS) technologies promise to revolutionize copy-number variation (CNV) detection but present substantial analytic challenges. Converging evidence suggests that multiple types of CNV-informative data (e.g. read-depth, read-pair, split-read) need be considered, and that sophisticated methods are needed for more accurate CNV detection. We observed that various sources of experimental biases in HTS confound read-depth estimation, and note that bias correction has not been adequately addressed by existing methods. We present a novel read-depth-based method, GENSENG, which uses a hidden Markov model and negative binomial regression framework to identify regions of discrete copy-number changes while simultaneously accounting for the effects of multiple confounders. Based on extensive calibration using multiple HTS data sets, we conclude that our method outperforms existing read-depth-based CNV detection algorithms. The concept of simultaneous bias correction and CNV detection can serve as a basis for combining read-depth with other types of information such as read-pair or split-read in a single analysis. A user-friendly and computationally efficient implementation of our method is freely available.

  5. Screen for mitochondrial DNA copy number maintenance genes reveals essential role for ATP synthase

    PubMed Central

    Fukuoh, Atsushi; Cannino, Giuseppe; Gerards, Mike; Buckley, Suzanne; Kazancioglu, Selena; Scialo, Filippo; Lihavainen, Eero; Ribeiro, Andre; Dufour, Eric; Jacobs, Howard T

    2014-01-01

    The machinery of mitochondrial DNA (mtDNA) maintenance is only partially characterized and is of wide interest due to its involvement in disease. To identify novel components of this machinery, plus other cellular pathways required for mtDNA viability, we implemented a genome-wide RNAi screen in Drosophila S2 cells, assaying for loss of fluorescence of mtDNA nucleoids stained with the DNA-intercalating agent PicoGreen. In addition to previously characterized components of the mtDNA replication and transcription machineries, positives included many proteins of the cytosolic proteasome and ribosome (but not the mitoribosome), three proteins involved in vesicle transport, some other factors involved in mitochondrial biogenesis or nuclear gene expression, > 30 mainly uncharacterized proteins and most subunits of ATP synthase (but no other OXPHOS complex). ATP synthase knockdown precipitated a burst of mitochondrial ROS production, followed by copy number depletion involving increased mitochondrial turnover, not dependent on the canonical autophagy machinery. Our findings will inform future studies of the apparatus and regulation of mtDNA maintenance, and the role of mitochondrial bioenergetics and signaling in modulating mtDNA copy number. PMID:24952591

  6. Characterization of the Copy Number and Variants of Deformed Wing Virus (DWV) in the Pairs of Honey Bee Pupa and Infesting Varroa destructor or Tropilaelaps mercedesae

    PubMed Central

    Wu, Yunfei; Dong, Xiaofeng; Kadowaki, Tatsuhiko

    2017-01-01

    Recent honey bee colony losses, particularly during the winter, have been shown to be associated with the presence of both ectoparasitic mites and Deformed Wing Virus (DWV). Whilst the role of Varroa destructor mites as a viral vector is well established, the role of Tropilaelaps mercedesae mites in viral transmission has not been fully investigated. In this study, we tested the effects that V. destructor and T. mercedesae infestation have on fluctuation of the DWV copy number and alteration of the virus variants in honey bees by characterizing individual pupae and their infesting mites. We observed that both mite species were associated with increased viral copy number in honey bee pupae. We found a positive correlation between DWV copy number in pupae and copy number in infesting mites, and the same DWV type A variant was present in either low or high copy number in both honey bee pupae and infesting V. destructor. These data also suggest that variant diversity is similar between honey bee pupae and the mites that infest them. These results support a previously proposed hypothesis that DWV suppresses the honey bee immune system when virus copy number reaches a specific threshold, promoting greater replication. PMID:28878743

  7. The Orphan Gene dauerless Regulates Dauer Development and Intraspecific Competition in Nematodes by Copy Number Variation

    PubMed Central

    Mayer, Melanie G.; Rödelsperger, Christian; Witte, Hanh; Riebesell, Metta; Sommer, Ralf J.

    2015-01-01

    Many nematodes form dauer larvae when exposed to unfavorable conditions, representing an example of phenotypic plasticity and a major survival and dispersal strategy. In Caenorhabditis elegans, the regulation of dauer induction is a model for pheromone, insulin, and steroid-hormone signaling. Recent studies in Pristionchus pacificus revealed substantial natural variation in various aspects of dauer development, i.e. pheromone production and sensing and dauer longevity and fitness. One intriguing example is a strain from Ohio, having extremely long-lived dauers associated with very high fitness and often forming the most dauers in response to other strains´ pheromones, including the reference strain from California. While such examples have been suggested to represent intraspecific competition among strains, the molecular mechanisms underlying these dauer-associated patterns are currently unknown. We generated recombinant-inbred-lines between the Californian and Ohioan strains and used quantitative-trait-loci analysis to investigate the molecular mechanism determining natural variation in dauer development. Surprisingly, we discovered that the orphan gene dauerless controls dauer formation by copy number variation. The Ohioan strain has one dauerless copy causing high dauer formation, whereas the Californian strain has two copies, resulting in strongly reduced dauer formation. Transgenic animals expressing multiple copies do not form dauers. dauerless is exclusively expressed in CAN neurons, and both CAN ablation and dauerless mutations increase dauer formation. Strikingly, dauerless underwent several duplications and acts in parallel or downstream of steroid-hormone signaling but upstream of the nuclear-hormone-receptor daf-12. We identified the novel or fast-evolving gene dauerless as inhibitor of dauer development. Our findings reveal the importance of gene duplications and copy number variations for orphan gene function and suggest daf-12 as major target for

  8. DNA Copy Number Changes in Human Malignant Fibrous Histiocytomas by Array Comparative Genomic Hybridisation

    PubMed Central

    Kresse, Stine H.; Ohnstad, Hege O.; Bjerkehagen, Bodil; Myklebost, Ola; Meza-Zepeda, Leonardo A.

    2010-01-01

    Background Malignant fibrous histiocytomas (MFHs), or undifferentiated pleomorphic sarcomas, are in general high-grade tumours with extensive chromosomal aberrations. In order to identify recurrent chromosomal regions of gain and loss, as well as novel gene targets of potential importance for MFH development and/or progression, we have analysed DNA copy number changes in 33 MFHs using microarray-based comparative genomic hybridisation (array CGH). Principal findings In general, the tumours showed numerous gains and losses of large chromosomal regions. The most frequent minimal recurrent regions of gain were 1p33-p32.3, 1p31.3-p31.2 and 1p21.3 (all gained in 58% of the samples), as well as 1q21.2-q21.3 and 20q13.2 (both 55%). The most frequent minimal recurrent regions of loss were 10q25.3-q26.11, 13q13.3-q14.2 and 13q14.3-q21.1 (all lost in 64% of the samples), as well as 2q36.3-q37.2 (61%), 1q41 (55%) and 16q12.1-q12.2 (52%). Statistical analyses revealed that gain of 1p33-p32.3 and 1p21.3 was significantly associated with better patient survival (P = 0.021 and 0.046, respectively). Comparison with similar array CGH data from 44 leiomyosarcomas identified seven chromosomal regions; 1p36.32-p35.2, 1p21.3-p21.1, 1q32.1-q42.13, 2q14.1-q22.2, 4q33-q34.3, 6p25.1-p21.32 and 7p22.3-p13, which were significantly different in copy number between the MFHs and leiomyosarcomas. Conclusions A number of recurrent regions of gain and loss have been identified, some of which were associated with better patient survival. Several specific chromosomal regions with significant differences in copy number between MFHs and leiomyosarcomas were identified, and these aberrations may be used as additional tools for the differential diagnosis of MFHs and leiomyosarcomas. PMID:21085701

  9. Mapping copy number variation by population-scale genome sequencing.

    PubMed

    Mills, Ryan E; Walter, Klaudia; Stewart, Chip; Handsaker, Robert E; Chen, Ken; Alkan, Can; Abyzov, Alexej; Yoon, Seungtai Chris; Ye, Kai; Cheetham, R Keira; Chinwalla, Asif; Conrad, Donald F; Fu, Yutao; Grubert, Fabian; Hajirasouliha, Iman; Hormozdiari, Fereydoun; Iakoucheva, Lilia M; Iqbal, Zamin; Kang, Shuli; Kidd, Jeffrey M; Konkel, Miriam K; Korn, Joshua; Khurana, Ekta; Kural, Deniz; Lam, Hugo Y K; Leng, Jing; Li, Ruiqiang; Li, Yingrui; Lin, Chang-Yun; Luo, Ruibang; Mu, Xinmeng Jasmine; Nemesh, James; Peckham, Heather E; Rausch, Tobias; Scally, Aylwyn; Shi, Xinghua; Stromberg, Michael P; Stütz, Adrian M; Urban, Alexander Eckehart; Walker, Jerilyn A; Wu, Jiantao; Zhang, Yujun; Zhang, Zhengdong D; Batzer, Mark A; Ding, Li; Marth, Gabor T; McVean, Gil; Sebat, Jonathan; Snyder, Michael; Wang, Jun; Ye, Kenny; Eichler, Evan E; Gerstein, Mark B; Hurles, Matthew E; Lee, Charles; McCarroll, Steven A; Korbel, Jan O

    2011-02-03

    Genomic structural variants (SVs) are abundant in humans, differing from other forms of variation in extent, origin and functional impact. Despite progress in SV characterization, the nucleotide resolution architecture of most SVs remains unknown. We constructed a map of unbalanced SVs (that is, copy number variants) based on whole genome DNA sequencing data from 185 human genomes, integrating evidence from complementary SV discovery approaches with extensive experimental validations. Our map encompassed 22,025 deletions and 6,000 additional SVs, including insertions and tandem duplications. Most SVs (53%) were mapped to nucleotide resolution, which facilitated analysing their origin and functional impact. We examined numerous whole and partial gene deletions with a genotyping approach and observed a depletion of gene disruptions amongst high frequency deletions. Furthermore, we observed differences in the size spectra of SVs originating from distinct formation mechanisms, and constructed a map of SV hotspots formed by common mechanisms. Our analytical framework and SV map serves as a resource for sequencing-based association studies.

  10. Sex bias in copy number variation of olfactory receptor gene family depends on ethnicity.

    PubMed

    Shadravan, Farideh

    2013-01-01

    Gender plays a pivotal role in the human genetic identity and is also manifested in many genetic disorders particularly mental retardation. In this study its effect on copy number variation (CNV), known to cause genetic disorders was explored. As the olfactory receptor (OR) repertoire comprises the largest human gene family, it was selected for this study, which was carried out within and between three populations, derived from 150 individuals from the 1000 Genome Project. Analysis of 3872 CNVs detected among 791 OR loci, in which 307 loci showed CNV, revealed the following novel findings: Sex bias in CNV was significantly more prevalent in uncommon than common CNV variants of OR pseudogenes, in which the male genome showed more CNVs; and in one-copy number loss compared to complete deletion of OR pseudogenes; both findings implying a more recent evolutionary role for gender. Sex bias in copy number gain was also detected. Another novel finding was that the observed sex bias was largely dependent on ethnicity and was in general absent in East Asians. Using a CNV public database for sick children (International Standard Cytogenomic Array Consortium) the application of these findings for improving clinical molecular diagnostics is discussed by showing an example of sex bias in CNV among kids with autism. Additional clinical relevance is discussed, as the most polymorphic CNV-enriched OR cluster in the human genome, located on chr 15q11.2, is found near the Prader-Willi syndrome/Angelman syndrome bi-directionally imprinted region associated with two well-known mental retardation syndromes. As olfaction represents the primitive cognition in most mammals, arguably in competition with the development of a larger brain, the extensive retention of OR pseudogenes in females of this study, might point to a parent-of-origin indirect regulatory role for OR pseudogenes in the embryonic development of human brain. Thus any perturbation in the temporal regulation of olfactory

  11. A Meta-Analysis of Multiple Matched Copy Number and Transcriptomics Data Sets for Inferring Gene Regulatory Relationships

    PubMed Central

    Newton, Richard; Wernisch, Lorenz

    2014-01-01

    Inferring gene regulatory relationships from observational data is challenging. Manipulation and intervention is often required to unravel causal relationships unambiguously. However, gene copy number changes, as they frequently occur in cancer cells, might be considered natural manipulation experiments on gene expression. An increasing number of data sets on matched array comparative genomic hybridisation and transcriptomics experiments from a variety of cancer pathologies are becoming publicly available. Here we explore the potential of a meta-analysis of thirty such data sets. The aim of our analysis was to assess the potential of in silico inference of trans-acting gene regulatory relationships from this type of data. We found sufficient correlation signal in the data to infer gene regulatory relationships, with interesting similarities between data sets. A number of genes had highly correlated copy number and expression changes in many of the data sets and we present predicted potential trans-acted regulatory relationships for each of these genes. The study also investigates to what extent heterogeneity between cell types and between pathologies determines the number of statistically significant predictions available from a meta-analysis of experiments. PMID:25148247

  12. Effect of sustained elevated temperature prior to amplification on template copy number estimation using digital polymerase chain reaction.

    PubMed

    Bhat, Somanath; McLaughlin, Jacob L H; Emslie, Kerry R

    2011-02-21

    Digital polymerase chain reaction (dPCR) has the potential to enable accurate quantification of target DNA copy number provided that all target DNA molecules are successfully amplified. Following duplex dPCR analysis from a linear DNA target sequence that contains single copies of two independent template sequences, we have observed that amplification of both templates in a single partition does not always occur. To investigate this finding, we heated the target DNA solution to 95 °C for increasing time intervals and then immediately chilled on ice prior to preparing the dPCR mix. We observed an exponential decline in estimated copy number (R(2)≥ 0.98) of the two template sequences when amplified from either a linearized plasmid or a 388 base pair (bp) amplicon containing the same two template sequences. The distribution of amplifiable templates and the final concentration (copies per µL) were both affected by heat treatment of the samples at 95 °C from 0 s to 30 min. The proportion of target sequences from which only one of the two templates was amplified in a single partition (either 1507 or hmg only) increased over time, while the proportion of target sequences where both templates were amplified (1507 and hmg) in each individual partition declined rapidly from 94% to 52% (plasmid) and 88% to 31% (388 bp amplicon) suggesting an increase in number of targets from which both templates no longer amplify. A 10 min incubation at 95 °C reduced the initial amplifiable template concentration of the plasmid and the 388 bp amplicon by 59% and 91%, respectively. To determine if a similar decrease in amplifiable target occurs during the default pre-activation step of typical PCR amplification protocol, we used mastermixes with a 20 s or 10 min hot-start. The choice of mastermix and consequent pre-activation time did not affect the estimated plasmid concentration. Therefore, we conclude that prolonged exposure of this DNA template to elevated temperatures could lead to

  13. Variable Copy Number, Intra-Genomic Heterogeneities and Lateral Transfers of the 16S rRNA Gene in Pseudomonas

    PubMed Central

    Bodilis, Josselin; Nsigue-Meilo, Sandrine; Besaury, Ludovic; Quillet, Laurent

    2012-01-01

    Even though the 16S rRNA gene is the most commonly used taxonomic marker in microbial ecology, its poor resolution is still not fully understood at the intra-genus level. In this work, the number of rRNA gene operons, intra-genomic heterogeneities and lateral transfers were investigated at a fine-scale resolution, throughout the Pseudomonas genus. In addition to nineteen sequenced Pseudomonas strains, we determined the 16S rRNA copy number in four other Pseudomonas strains by Southern hybridization and Pulsed-Field Gel Electrophoresis, and studied the intra-genomic heterogeneities by Denaturing Gradient Gel Electrophoresis and sequencing. Although the variable copy number (from four to seven) seems to be correlated with the evolutionary distance, some close strains in the P. fluorescens lineage showed a different number of 16S rRNA genes, whereas all the strains in the P. aeruginosa lineage displayed the same number of genes (four copies). Further study of the intra-genomic heterogeneities revealed that most of the Pseudomonas strains (15 out of 19 strains) had at least two different 16S rRNA alleles. A great difference (5 or 19 nucleotides, essentially grouped near the V1 hypervariable region) was observed only in two sequenced strains. In one of our strains studied (MFY30 strain), we found a difference of 12 nucleotides (grouped in the V3 hypervariable region) between copies of the 16S rRNA gene. Finally, occurrence of partial lateral transfers of the 16S rRNA gene was further investigated in 1803 full-length sequences of Pseudomonas available in the databases. Remarkably, we found that the two most variable regions (the V1 and V3 hypervariable regions) had probably been laterally transferred from another evolutionary distant Pseudomonas strain for at least 48.3 and 41.6% of the 16S rRNA sequences, respectively. In conclusion, we strongly recommend removing these regions of the 16S rRNA gene during the intra-genus diversity studies. PMID:22545126

  14. Comparison of the copy numbers of bovine leukemia virus in the lymph nodes of cattle with enzootic bovine leukosis and cattle with latent infection.

    PubMed

    Somura, Yoshiko; Sugiyama, Emi; Fujikawa, Hiroshi; Murakami, Kenji

    2014-10-01

    To establish a diagnostic index for predicting enzootic bovine leukosis (EBL), proviral bovine leukemia virus (BLV) copies in whole blood, lymph nodes and spleen were examined by quantitative real-time PCR (qPCR). Cattle were divided into two groups, EBL and BLV-infected, based on meat inspection data. The number of BLV copies in all specimens of EBL cattle was significantly higher than those of BLV-infected cattle (p < 0.0001), and the number of BLV copies in the lymph nodes was particularly large. Over 70 % of the superficial cervical, medial iliac and jejunal lymph nodes from EBL cattle had more than 1,000 copies/10 ng DNA, whereas lymph nodes from BLV-infected cattle did not. These findings suggest that the cattle harboring more than 1,000 BLV copies may be diagnosed with EBL.

  15. Copy Counts

    ERIC Educational Resources Information Center

    Beaumont, Lee R.

    1970-01-01

    The level of difficulty of straight copy, which is used to measure typewriting speed, is influenced by syllable intensity (the average number of syllables per word), stroke intensity (average number of strokes per word), and high-frequency words. (CH)

  16. iGC-an integrated analysis package of gene expression and copy number alteration.

    PubMed

    Lai, Yi-Pin; Wang, Liang-Bo; Wang, Wei-An; Lai, Liang-Chuan; Tsai, Mong-Hsun; Lu, Tzu-Pin; Chuang, Eric Y

    2017-01-14

    With the advancement in high-throughput technologies, researchers can simultaneously investigate gene expression and copy number alteration (CNA) data from individual patients at a lower cost. Traditional analysis methods analyze each type of data individually and integrate their results using Venn diagrams. Challenges arise, however, when the results are irreproducible and inconsistent across multiple platforms. To address these issues, one possible approach is to concurrently analyze both gene expression profiling and CNAs in the same individual. We have developed an open-source R/Bioconductor package (iGC). Multiple input formats are supported and users can define their own criteria for identifying differentially expressed genes driven by CNAs. The analysis of two real microarray datasets demonstrated that the CNA-driven genes identified by the iGC package showed significantly higher Pearson correlation coefficients with their gene expression levels and copy numbers than those genes located in a genomic region with CNA. Compared with the Venn diagram approach, the iGC package showed better performance. The iGC package is effective and useful for identifying CNA-driven genes. By simultaneously considering both comparative genomic and transcriptomic data, it can provide better understanding of biological and medical questions. The iGC package's source code and manual are freely available at https://www.bioconductor.org/packages/release/bioc/html/iGC.html .

  17. Comparative studies of copy number variation detection methods for next-generation sequencing technologies.

    PubMed

    Duan, Junbo; Zhang, Ji-Gang; Deng, Hong-Wen; Wang, Yu-Ping

    2013-01-01

    Copy number variation (CNV) has played an important role in studies of susceptibility or resistance to complex diseases. Traditional methods such as fluorescence in situ hybridization (FISH) and array comparative genomic hybridization (aCGH) suffer from low resolution of genomic regions. Following the emergence of next generation sequencing (NGS) technologies, CNV detection methods based on the short read data have recently been developed. However, due to the relatively young age of the procedures, their performance is not fully understood. To help investigators choose suitable methods to detect CNVs, comparative studies are needed. We compared six publicly available CNV detection methods: CNV-seq, FREEC, readDepth, CNVnator, SegSeq and event-wise testing (EWT). They are evaluated both on simulated and real data with different experiment settings. The receiver operating characteristic (ROC) curve is employed to demonstrate the detection performance in terms of sensitivity and specificity, box plot is employed to compare their performances in terms of breakpoint and copy number estimation, Venn diagram is employed to show the consistency among these methods, and F-score is employed to show the overlapping quality of detected CNVs. The computational demands are also studied. The results of our work provide a comprehensive evaluation on the performances of the selected CNV detection methods, which will help biological investigators choose the best possible method.

  18. Rare De Novo Copy Number Variants in Patients with Congenital Pulmonary Atresia

    PubMed Central

    Xie, Li; Chen, Jin-Lan; Zhang, Wei-Zhi; Wang, Shou-Zheng; Zhao, Tian-Li; Huang, Can; Wang, Jian; Yang, Jin-Fu; Yang, Yi-Feng; Tan, Zhi-Ping

    2014-01-01

    Background Ongoing studies using genomic microarrays and next-generation sequencing have demonstrated that the genetic contributions to cardiovascular diseases have been significantly ignored in the past. The aim of this study was to identify rare copy number variants in individuals with congenital pulmonary atresia (PA). Methods and Results Based on the hypothesis that rare structural variants encompassing key genes play an important role in heart development in PA patients, we performed high-resolution genome-wide microarrays for copy number variations (CNVs) in 82 PA patient-parent trios and 189 controls with an Illumina SNP array platform. CNVs were identified in 17/82 patients (20.7%), and eight of these CNVs (9.8%) are considered potentially pathogenic. Five de novo CNVs occurred at two known congenital heart disease (CHD) loci (16p13.1 and 22q11.2). Two de novo CNVs that may affect folate and vitamin B12 metabolism were identified for the first time. A de novo 1-Mb deletion at 17p13.2 may represent a rare genomic disorder that involves mild intellectual disability and associated facial features. Conclusions Rare CNVs contribute to the pathogenesis of PA (9.8%), suggesting that the causes of PA are heterogeneous and pleiotropic. Together with previous data from animal models, our results might help identify a link between CHD and folate-mediated one-carbon metabolism (FOCM). With the accumulation of high-resolution SNP array data, these previously undescribed rare CNVs may help reveal critical gene(s) in CHD and may provide novel insights about CHD pathogenesis. PMID:24826987

  19. Dynamics of Copy Number Variation in Host Races of the Pea Aphid

    PubMed Central

    Duvaux, Ludovic; Geissmann, Quentin; Gharbi, Karim; Zhou, Jing-Jiang; Ferrari, Julia; Smadja, Carole M.; Butlin, Roger K.

    2015-01-01

    Copy number variation (CNV) makes a major contribution to overall genetic variation and is suspected to play an important role in adaptation. However, aside from a few model species, the extent of CNV in natural populations has seldom been investigated. Here, we report on CNV in the pea aphid Acyrthosiphon pisum, a powerful system for studying the genetic architecture of host-plant adaptation and speciation thanks to multiple host races forming a continuum of genetic divergence. Recent studies have highlighted the potential importance of chemosensory genes, including the gustatory and olfactory receptor gene families (Gr and Or, respectively), in the process of host race formation. We used targeted resequencing to achieve a very high depth of coverage, and thereby revealed the extent of CNV of 434 genes, including 150 chemosensory genes, in 104 individuals distributed across eight host races of the pea aphid. We found that CNV was widespread in our global sample, with a significantly higher occurrence in multigene families, especially in Ors. We also observed a decrease in the gene probability of being completely duplicated or deleted (CDD) with increase in coding sequence length. Genes with CDD variants were usually more polymorphic for copy number, especially in the P450 gene family where toxin resistance may be related to gene dosage. We found that Gr were overrepresented among genes discriminating host races, as were CDD genes and pseudogenes. Our observations shed new light on CNV dynamics and are consistent with CNV playing a role in both local adaptation and speciation. PMID:25234705

  20. Rare de novo copy number variants in patients with congenital pulmonary atresia.

    PubMed

    Xie, Li; Chen, Jin-Lan; Zhang, Wei-Zhi; Wang, Shou-Zheng; Zhao, Tian-Li; Huang, Can; Wang, Jian; Yang, Jin-Fu; Yang, Yi-Feng; Tan, Zhi-Ping

    2014-01-01

    Ongoing studies using genomic microarrays and next-generation sequencing have demonstrated that the genetic contributions to cardiovascular diseases have been significantly ignored in the past. The aim of this study was to identify rare copy number variants in individuals with congenital pulmonary atresia (PA). Based on the hypothesis that rare structural variants encompassing key genes play an important role in heart development in PA patients, we performed high-resolution genome-wide microarrays for copy number variations (CNVs) in 82 PA patient-parent trios and 189 controls with an Illumina SNP array platform. CNVs were identified in 17/82 patients (20.7%), and eight of these CNVs (9.8%) are considered potentially pathogenic. Five de novo CNVs occurred at two known congenital heart disease (CHD) loci (16p13.1 and 22q11.2). Two de novo CNVs that may affect folate and vitamin B12 metabolism were identified for the first time. A de novo 1-Mb deletion at 17p13.2 may represent a rare genomic disorder that involves mild intellectual disability and associated facial features. Rare CNVs contribute to the pathogenesis of PA (9.8%), suggesting that the causes of PA are heterogeneous and pleiotropic. Together with previous data from animal models, our results might help identify a link between CHD and folate-mediated one-carbon metabolism (FOCM). With the accumulation of high-resolution SNP array data, these previously undescribed rare CNVs may help reveal critical gene(s) in CHD and may provide novel insights about CHD pathogenesis.

  1. High sensitivity detection and quantitation of DNA copy number and single nucleotide variants with single color droplet digital PCR.

    PubMed

    Miotke, Laura; Lau, Billy T; Rumma, Rowza T; Ji, Hanlee P

    2014-03-04

    In this study, we present a highly customizable method for quantifying copy number and point mutations utilizing a single-color, droplet digital PCR platform. Droplet digital polymerase chain reaction (ddPCR) is rapidly replacing real-time quantitative PCR (qRT-PCR) as an efficient method of independent DNA quantification. Compared to quantative PCR, ddPCR eliminates the needs for traditional standards; instead, it measures target and reference DNA within the same well. The applications for ddPCR are widespread including targeted quantitation of genetic aberrations, which is commonly achieved with a two-color fluorescent oligonucleotide probe (TaqMan) design. However, the overall cost and need for optimization can be greatly reduced with an alternative method of distinguishing between target and reference products using the nonspecific DNA binding properties of EvaGreen (EG) dye. By manipulating the length of the target and reference amplicons, we can distinguish between their fluorescent signals and quantify each independently. We demonstrate the effectiveness of this method by examining copy number in the proto-oncogene FLT3 and the common V600E point mutation in BRAF. Using a series of well-characterized control samples and cancer cell lines, we confirmed the accuracy of our method in quantifying mutation percentage and integer value copy number changes. As another novel feature, our assay was able to detect a mutation comprising less than 1% of an otherwise wild-type sample, as well as copy number changes from cancers even in the context of significant dilution with normal DNA. This flexible and cost-effective method of independent DNA quantification proves to be a robust alternative to the commercialized TaqMan assay.

  2. Drosophila mitochondrial transcription factor B1 modulates mitochondrial translation but not transcription or DNA copy number in Schneider cells.

    PubMed

    Matsushima, Yuichi; Adán, Cristina; Garesse, Rafael; Kaguni, Laurie S

    2005-04-29

    We report the cloning and molecular analysis of Drosophila mitochondrial transcription factor (d-mtTF) B1. An RNA interference (RNAi) construct was designed that reduces expression of d-mtTFB1 to 5% of its normal level in Schneider cells. In striking contrast with our previous study on d-mtTFB2, we found that RNAi knock-down of d-mtTFB1 does not change the abundance of specific mitochondrial RNA transcripts, nor does it affect the copy number of mitochondrial DNA. In a corollary manner, overexpression of d-mtTFB1 did not increase either the abundance of mitochondrial RNA transcripts or mitochondrial DNA copy number. Our data suggest that, unlike d-mtTFB2, d-mtTFB1 does not have a critical role in either transcription or regulation of the copy number of mitochondrial DNA. Instead, because we found that RNAi knockdown of d-mtTFB1 reduces mitochondrial protein synthesis, we propose that it serves its primary role in modulating translation. Our work represents the first study to document the role of mtTFB1 in vivo and establishes clearly functional differences between mtTFB1 and mtTFB2.

  3. Multi-gene fluorescence in situ hybridization to detect cell cycle gene copy number aberrations in young breast cancer patients

    PubMed Central

    Li, Chunyan; Bai, Jingchao; Hao, Xiaomeng; Zhang, Sheng; Hu, Yunhui; Zhang, Xiaobei; Yuan, Weiping; Hu, Linping; Cheng, Tao; Zetterberg, Anders; Lee, Mong-Hong; Zhang, J

    2014-01-01

    Breast cancer is a disease of cell cycle, and the dysfunction of cell cycle checkpoints plays a vital role in the occurrence and development of breast cancer. We employed multi-gene fluorescence in situ hybridization (M-FISH) to investigate gene copy number aberrations (CNAs) of 4 genes (Rb1, CHEK2, c-Myc, CCND1) that are involved in the regulation of cell cycle, in order to analyze the impact of gene aberrations on prognosis in the young breast cancer patients. Gene copy number aberrations of these 4 genes were more frequently observed in young breast cancer patients when compared with the older group. Further, these CNAs were more frequently seen in Luminal B type, Her2 overexpression, and tiple-negative breast cancer (TNBC) type in young breast cancer patients. The variations of CCND1, Rb1, and CHEK2 were significantly correlated with poor survival in the young breast cancer patient group, while the amplification of c-Myc was not obviously correlated with poor survival in young breast cancer patients. Thus, gene copy number aberrations (CNAs) of cell cycle-regulated genes can serve as an important tool for prognosis in young breast cancer patients. PMID:24621502

  4. Copy number variation of lipocalin family genes for male-specific proteins in tilapia and its association with gender.

    PubMed

    Shirak, A; Golik, M; Lee, B-Y; Howe, A E; Kocher, T D; Hulata, G; Ron, M; Seroussi, E

    2008-11-01

    Lipocalins are involved in the binding of small molecules like sex steroids. We show here that the previously reported tilapia male-specific protein (MSP) is a lipocalin encoded by a variety of paralogous and homologous genes in different tilapia species. Exon-intron boundaries of MSP genes were typical of the six-exon genomic structure of lipocalins, and the transcripts were capable of encoding 200 amino-acid polypeptides that consisted of a putative signal peptide and a lipocalin domain. Cysteine residues are conserved in positions analogous to those forming the three disulfide bonds characteristic of the ligand pocket. The calculated molecular mass of the secreted MSP (20.4 kDa) was less than half of that observed, suggesting that it is highly glycosylated like its homologue tributyltin-binding protein. Analysis of sequence variations revealed three types of paralogs MSPA, MSPB and MSPC. Expression of both MSPA and MSPB was detected in testis. In haploid Oreochromis niloticus embryos, each of these types consisted of two closely related paralogs, and asymmetry between MSP copy numbers on the maternal (six copies) and the paternal (three copies) chromosomes was observed. Using this polymorphism we mapped MSPA and MSPC to linkage group 12 of an F(2) mapping family derived from a cross between O. niloticus and Oreochromis aureus. Females with high MSP copy number were more frequent by more than twofold than males. Gender-MSPC combinations showed significant deviation from expected Mendelian segregation (P=0.009) suggesting elimination of males with MSPC copies. We discuss different hypotheses to explain this elimination, including possibility for allelic conflict resulted by the hybridization.

  5. Associations of GBP2 gene copy number variations with growth traits and transcriptional expression in Chinese cattle.

    PubMed

    Zhang, Gui-Min; Zheng, Li; He, Hua; Song, Cheng-Chuang; Zhang, Zi-Jing; Cao, Xiu-Kai; Lei, Chu-Zhao; Lan, Xian-Yong; Qi, Xing-Lei; Chen, Hong; Huang, Yong-Zhen

    2018-03-20

    Copy number variations (CNVs) recently have been recognized as another important genetic variability followed single nucleotide polymorphisms (SNPs). The guanylate binding protein 2 (GBP2) gene plays an important role in cell proliferation. This study was performed to determine the presence of GBP2 CNV (relative to Angus cattle) in 466 individuals representing six main cattle breeds from China, identify its relationship with growth, and explore the biological effects of gene expression. There were two CNV regions in the GBP2 gene, for three types, CNV1 loss type (relative to Angus cattle) was more frequent in XN than other breeds, and CNV2 loss type (relative to Angus cattle) was more frequent in XN and CDM than other breeds. Though the GBP2 gene copy number presented no correlation with the transcriptional expression of JX (P > .05), but the transcriptional expression in heart is higher than other tissues, and the copy number in muscles and fat of JX is higher than others breeds. Statistical analysis revealed that the GBP2 gene CNV1 and CNV2 were significantly associated with growth traits (P < .05). In conclusion, this research established the correlations between CNVs of GBP2 gene and growth traits in different cattle breeds, and our results suggested that the CNVs in GBP2 gene may be considered markers for the molecular breeding of Chinese beef cattle. Copyright © 2018. Published by Elsevier B.V.

  6. Identification of Copy Number Aberrations in Breast Cancer Subtypes Using Persistence Topology

    PubMed Central

    Arsuaga, Javier; Borrman, Tyler; Cavalcante, Raymond; Gonzalez, Georgina; Park, Catherine

    2015-01-01

    DNA copy number aberrations (CNAs) are of biological and medical interest because they help identify regulatory mechanisms underlying tumor initiation and evolution. Identification of tumor-driving CNAs (driver CNAs) however remains a challenging task, because they are frequently hidden by CNAs that are the product of random events that take place during tumor evolution. Experimental detection of CNAs is commonly accomplished through array comparative genomic hybridization (aCGH) assays followed by supervised and/or unsupervised statistical methods that combine the segmented profiles of all patients to identify driver CNAs. Here, we extend a previously-presented supervised algorithm for the identification of CNAs that is based on a topological representation of the data. Our method associates a two-dimensional (2D) point cloud with each aCGH profile and generates a sequence of simplicial complexes, mathematical objects that generalize the concept of a graph. This representation of the data permits segmenting the data at different resolutions and identifying CNAs by interrogating the topological properties of these simplicial complexes. We tested our approach on a published dataset with the goal of identifying specific breast cancer CNAs associated with specific molecular subtypes. Identification of CNAs associated with each subtype was performed by analyzing each subtype separately from the others and by taking the rest of the subtypes as the control. Our results found a new amplification in 11q at the location of the progesterone receptor in the Luminal A subtype. Aberrations in the Luminal B subtype were found only upon removal of the basal-like subtype from the control set. Under those conditions, all regions found in the original publication, except for 17q, were confirmed; all aberrations, except those in chromosome arms 8q and 12q were confirmed in the basal-like subtype. These two chromosome arms, however, were detected only upon removal of three patients

  7. Gene and Chromosomal Copy Number Variations as an Adaptive Mechanism Towards a Parasitic Lifestyle in Trypanosomatids.

    PubMed

    Reis-Cunha, João Luís; Valdivia, Hugo O; Bartholomeu, Daniella Castanheira

    2018-02-01

    Trypanosomatids are a group of kinetoplastid parasites including some of great public health importance, causing debilitating and life-long lasting diseases that affect more than 24 million people worldwide. Among the trypanosomatids, Trypanosoma cruzi, Trypanosoma brucei and species from the Leishmania genus are the most well studied parasites, due to their high prevalence in human infections. These parasites have an extreme genomic and phenotypic variability, with a massive expansion in the copy number of species-specific multigene families enrolled in host-parasite interactions that mediate cellular invasion and immune evasion processes. As most trypanosomatids are heteroxenous, and therefore their lifecycles involve the transition between different hosts, these parasites have developed several strategies to ensure a rapid adaptation to changing environments. Among these strategies, a rapid shift in the repertoire of expressed genes, genetic variability and genome plasticity are key mechanisms. Trypanosomatid genomes are organized into large directional gene clusters that are transcribed polycistronically, where genes derived from the same polycistron may have very distinct mRNA levels. This particular mode of transcription implies that the control of gene expression operates mainly at post-transcriptional level. In this sense, gene duplications/losses were already associated with changes in mRNA levels in these parasites. Gene duplications also allow the generation of sequence variability, as the newly formed copy can diverge without loss of function of the original copy. Recently, aneuploidies have been shown to occur in several Leishmania species and T. cruzi strains. Although aneuploidies are usually associated with debilitating phenotypes in superior eukaryotes, recent data shows that it could also provide increased fitness in stress conditions and generate drug resistance in unicellular eukaryotes. In this review, we will focus on gene and chromosomal copy

  8. Family-Based Benchmarking of Copy Number Variation Detection Software.

    PubMed

    Nutsua, Marcel Elie; Fischer, Annegret; Nebel, Almut; Hofmann, Sylvia; Schreiber, Stefan; Krawczak, Michael; Nothnagel, Michael

    2015-01-01

    The analysis of structural variants, in particular of copy-number variations (CNVs), has proven valuable in unraveling the genetic basis of human diseases. Hence, a large number of algorithms have been developed for the detection of CNVs in SNP array signal intensity data. Using the European and African HapMap trio data, we undertook a comparative evaluation of six commonly used CNV detection software tools, namely Affymetrix Power Tools (APT), QuantiSNP, PennCNV, GLAD, R-gada and VEGA, and assessed their level of pair-wise prediction concordance. The tool-specific CNV prediction accuracy was assessed in silico by way of intra-familial validation. Software tools differed greatly in terms of the number and length of the CNVs predicted as well as the number of markers included in a CNV. All software tools predicted substantially more deletions than duplications. Intra-familial validation revealed consistently low levels of prediction accuracy as measured by the proportion of validated CNVs (34-60%). Moreover, up to 20% of apparent family-based validations were found to be due to chance alone. Software using Hidden Markov models (HMM) showed a trend to predict fewer CNVs than segmentation-based algorithms albeit with greater validity. PennCNV yielded the highest prediction accuracy (60.9%). Finally, the pairwise concordance of CNV prediction was found to vary widely with the software tools involved. We recommend HMM-based software, in particular PennCNV, rather than segmentation-based algorithms when validity is the primary concern of CNV detection. QuantiSNP may be used as an additional tool to detect sets of CNVs not detectable by the other tools. Our study also reemphasizes the need for laboratory-based validation, such as qPCR, of CNVs predicted in silico.

  9. Genome-wide patterns of copy number variation in the diversified chicken genomes using next-generation sequencing.

    PubMed

    Yi, Guoqiang; Qu, Lujiang; Liu, Jianfeng; Yan, Yiyuan; Xu, Guiyun; Yang, Ning

    2014-11-07

    Copy number variation (CNV) is important and widespread in the genome, and is a major cause of disease and phenotypic diversity. Herein, we performed a genome-wide CNV analysis in 12 diversified chicken genomes based on whole genome sequencing. A total of 8,840 CNV regions (CNVRs) covering 98.2 Mb and representing 9.4% of the chicken genome were identified, ranging in size from 1.1 to 268.8 kb with an average of 11.1 kb. Sequencing-based predictions were confirmed at a high validation rate by two independent approaches, including array comparative genomic hybridization (aCGH) and quantitative PCR (qPCR). The Pearson's correlation coefficients between sequencing and aCGH results ranged from 0.435 to 0.755, and qPCR experiments revealed a positive validation rate of 91.71% and a false negative rate of 22.43%. In total, 2,214 (25.0%) predicted CNVRs span 2,216 (36.4%) RefSeq genes associated with specific biological functions. Besides two previously reported copy number variable genes EDN3 and PRLR, we also found some promising genes with potential in phenotypic variation. Two genes, FZD6 and LIMS1, related to disease susceptibility/resistance are covered by CNVRs. The highly duplicated SOCS2 may lead to higher bone mineral density. Entire or partial duplication of some genes like POPDC3 may have great economic importance in poultry breeding. Our results based on extensive genetic diversity provide a more refined chicken CNV map and genome-wide gene copy number estimates, and warrant future CNV association studies for important traits in chickens.

  10. Assessment of circulating copy number variant detection for cancer screening.

    PubMed

    Molparia, Bhuvan; Nichani, Eshaan; Torkamani, Ali

    2017-01-01

    Current high-sensitivity cancer screening methods, largely utilizing correlative biomarkers, suffer from false positive rates that lead to unnecessary medical procedures and debatable public health benefit overall. Detection of circulating tumor DNA (ctDNA), a causal biomarker, has the potential to revolutionize cancer screening. Thus far, the majority of ctDNA studies have focused on detection of tumor-specific point mutations after cancer diagnosis for the purpose of post-treatment surveillance. However, ctDNA point mutation detection methods developed to date likely lack either the scope or analytical sensitivity necessary to be useful for cancer screening, due to the low (<1%) ctDNA fraction derived from early stage tumors. On the other hand, tumor-derived copy number variant (CNV) detection is hypothetically a superior means of ctDNA-based cancer screening for many tumor types, given that, relative to point mutations, each individual tumor CNV contributes a much larger number of ctDNA fragments to the overall pool of circulating free DNA (cfDNA). A small number of studies have demonstrated the potential of ctDNA CNV-based screening in select cancer types. Here we perform an in silico assessment of the potential for ctDNA CNV-based cancer screening across many common cancers, and suggest ctDNA CNV detection shows promise as a broad cancer screening methodology.

  11. Association of β-defensin copy number and psoriasis in three cohorts of European origin

    PubMed Central

    Stuart, Philip E; Hüffmeier, Ulrike; Nair, Rajan P; Palla, Raquel; Tejasvi, Trilokraj; Schalkwijk, Joost; Elder, James T; Reis, Andre; Armour, John AL

    2012-01-01

    A single previous study has demonstrated significant association of psoriasis with copy number of beta-defensin genes, using DNA from psoriasis cases and controls from Nijmegen and Erlangen. In this study we attempted to replicate that finding in larger new cohorts from Erlangen (N = 2017) and Michigan (N = 5412), using improved methods for beta-defensin copy number determination based on the paralog ratio test (PRT), and enhanced methods of analysis and association testing implemented in the CNVtools resource. We demonstrate that the association with psoriasis found in the discovery sample is maintained after applying improved typing and analysis methods (p = 5.5 × 10−4, OR = 1.25). We also find that the association is replicated in 2616 cases and 2526 controls from Michigan, although at reduced significance (p = 0.014), but not in new samples from Erlangen (1396 cases and 621 controls, p = 0.38). Meta-analysis across all cohorts suggests a nominally significant association (p = 6.6 × 10−3/2 × 10−4) with an effect size (OR = 1.081) much lower than found in the discovery study (OR = 1.32). This reduced effect size and significance on replication is consistent with a genuine but weak association. PMID:22739795

  12. Effects of a petunia scaffold/matrix attachment region on copy number dependency and stability of transgene expression in Nicotiana tabacum.

    PubMed

    Dietz-Pfeilstetter, Antje; Arndt, Nicola; Manske, Ulrike

    2016-04-01

    Transgenes in genetically modified plants are often not reliably expressed during development or in subsequent generations. Transcriptional gene silencing (TGS) as well as post-transcriptional gene silencing (PTGS) have been shown to occur in transgenic plants depending on integration pattern, copy number and integration site. In an effort to reduce position effects, to prevent read-through transcription and to provide a more accessible chromatin structure, a P35S-ß-glucuronidase (P35S-gus) transgene flanked by a scaffold/matrix attachment region from petunia (Petun-SAR), was introduced in Nicotiana tabacum plants by Agrobacterium tumefaciens mediated transformation. It was found that Petun-SAR mediates enhanced expression and copy number dependency up to 2 gene copies, but did not prevent gene silencing in transformants with multiple and rearranged gene copies. However, in contrast to the non-SAR transformants where silencing was irreversible and proceeded during long-term vegetative propagation and in progeny plants, gus expression in Petun-SAR plants was re-established in the course of development. Gene silencing was not necessarily accompanied by DNA methylation, while the gus transgene could still be expressed despite considerable CG methylation within the coding region.

  13. The partitioning and copy number control systems of the selfish yeast plasmid: an optimized molecular design for stable persistence in host cells

    PubMed Central

    Yen-Ting-Liu; Sau, Saumitra; Ma, Chien-Hui; Kachroo, Aashiq H; Rowley, Paul A; Chang, Keng-Ming; Fan, Hsiu-Fang; Jayaram, Makkuni

    2014-01-01

    Summary The multi-copy 2 micron plasmid of Saccharomyces cerevisiae, a resident of the nucleus, is remarkable for its high chromosome-like stability. The plasmid does not appear to contribute to the fitness of the host, nor does it impose a significant metabolic burden on the host at its steady state copy number. The plasmid may be viewed as a highly optimized selfish DNA element whose genome design is devoted entirely towards efficient replication, equal segregation and copy number maintenance. A partitioning system comprised of two plasmid coded proteins, Rep1 and Rep2, and a partitioning locus STB is responsible for equal or nearly equal segregation of plasmid molecules to mother and daughter cells. Current evidence supports a model in which the Rep-STB system promotes the physical association of the plasmid with chromosomes and thus plasmid segregation by a hitchhiking mechanism. The Flp site-specific recombination system housed by the plasmid plays a critical role in maintaining steady state plasmid copy number. A decrease in plasmid population due to rare missegregation events is rectified by plasmid amplification via a recombination induced rolling circle replication mechanism. Appropriate plasmid amplification, without runaway increase in copy number, is ensured by positive and negative regulation of FLP gene expression by plasmid coded proteins and by the control of Flp level/activity through host mediated post-translational modification(s) of Flp. The Flp system has been successfully utilized to understand mechanisms of site-specific recombination, to bring about directed genetic alterations for addressing fundamental problems in biology, and as a tool in biotechnological applications. PMID:25541598

  14. The partitioning and copy number control systems of the selfish yeast plasmid: an optimized molecular design for stable persistence in host cells.

    PubMed

    Yen-Ting-Liu; Sau, Saumitra; Ma, Chien-Hui; Kachroo, Aashiq H; Rowley, Paul A; Chang, Keng-Ming; Fan, Hsiu-Fang; Jayaram, Makkuni

    2014-10-01

    The multi-copy 2 micron plasmid of Saccharomyces cerevisiae, a resident of the nucleus, is remarkable for its high chromosome-like stability. The plasmid does not appear to contribute to the fitness of the host, nor does it impose a significant metabolic burden on the host at its steady state copy number. The plasmid may be viewed as a highly optimized selfish DNA element whose genome design is devoted entirely towards efficient replication, equal segregation and copy number maintenance. A partitioning system comprised of two plasmid coded proteins, Rep1 and Rep2, and a partitioning locus STB is responsible for equal or nearly equal segregation of plasmid molecules to mother and daughter cells. Current evidence supports a model in which the Rep-STB system promotes the physical association of the plasmid with chromosomes and thus plasmid segregation by a hitchhiking mechanism. The Flp site-specific recombination system housed by the plasmid plays a critical role in maintaining steady state plasmid copy number. A decrease in plasmid population due to rare missegregation events is rectified by plasmid amplification via a recombination induced rolling circle replication mechanism. Appropriate plasmid amplification, without runaway increase in copy number, is ensured by positive and negative regulation of FLP gene expression by plasmid coded proteins and by the control of Flp level/activity through host mediated post-translational modification(s) of Flp. The Flp system has been successfully utilized to understand mechanisms of site-specific recombination, to bring about directed genetic alterations for addressing fundamental problems in biology, and as a tool in biotechnological applications.

  15. Three Groups of Transposable Elements with Contrasting Copy Number Dynamics and Host Responses in the Maize (Zea mays ssp. mays) Genome

    PubMed Central

    Diez, Concepcion M.; Meca, Esteban; Tenaillon, Maud I.; Gaut, Brandon S.

    2014-01-01

    Most angiosperm nuclear DNA is repetitive and derived from silenced transposable elements (TEs). TE silencing requires substantial resources from the plant host, including the production of small interfering RNAs (siRNAs). Thus, the interaction between TEs and siRNAs is a critical aspect of both the function and the evolution of plant genomes. Yet the co-evolutionary dynamics between these two entities remain poorly characterized. Here we studied the organization of TEs within the maize (Zea mays ssp mays) genome, documenting that TEs fall within three groups based on the class and copy numbers. These groups included DNA elements, low copy RNA elements and higher copy RNA elements. The three groups varied statistically in characteristics that included length, location, age, siRNA expression and 24∶22 nucleotide (nt) siRNA targeting ratios. In addition, the low copy retroelements encompassed a set of TEs that had previously been shown to decrease expression within a 24 nt siRNA biogenesis mutant (mop1). To investigate the evolutionary dynamics of the three groups, we estimated their abundance in two landraces, one with a genome similar in size to that of the maize reference and the other with a 30% larger genome. For all three accessions, we assessed TE abundance as well as 22 nt and 24 nt siRNA content within leaves. The high copy number retroelements are under targeted similarly by siRNAs among accessions, appear to be born of a rapid bust of activity, and may be currently transpositionally dead or limited. In contrast, the lower copy number group of retrolements are targeted more dynamically and have had a long and ongoing history of transposition in the maize genome. PMID:24743518

  16. Clarity™ digital PCR system: a novel platform for absolute quantification of nucleic acids.

    PubMed

    Low, Huiyu; Chan, Shun-Jie; Soo, Guo-Hao; Ling, Belinda; Tan, Eng-Lee

    2017-03-01

    In recent years, digital polymerase chain reaction (dPCR) has gained recognition in biomedical research as it provides a platform for precise and accurate quantification of nucleic acids without the need for a standard curve. However, this technology has not yet been widely adopted as compared to real-time quantitative PCR due to its more cumbersome workflow arising from the need to sub-divide a PCR sample into a large number of smaller partitions prior to thermal cycling to achieve zero or at least one copy of the target RNA/DNA per partition. A recently launched platform, the Clarity™ system from JN Medsys, simplifies dPCR workflow through the use of a novel chip-in-a-tube technology for sample partitioning. In this study, the performance of Clarity™ was evaluated through quantification of the single-copy human RNase P gene. The system demonstrated high precision and accuracy and also excellent linearity across a range of over 4 orders of magnitude for the absolute quantification of the target gene. Moreover, consistent DNA copy measurements were also attained using a panel of different probe- and dye-based master mixes, demonstrating the system's compatibility with commercial master mixes. The Clarity™ was then compared to the QX100™ droplet dPCR system from Bio-Rad using a set of DNA reference materials, and the copy number concentrations derived from both systems were found to be closely associated. Collectively, the results showed that Clarity™ is a reliable, robust and flexible platform for next-generation genetic analysis.

  17. Genomic Copy Number Dictates a Gene-Independent Cell Response to CRISPR/Cas9 Targeting.

    PubMed

    Aguirre, Andrew J; Meyers, Robin M; Weir, Barbara A; Vazquez, Francisca; Zhang, Cheng-Zhong; Ben-David, Uri; Cook, April; Ha, Gavin; Harrington, William F; Doshi, Mihir B; Kost-Alimova, Maria; Gill, Stanley; Xu, Han; Ali, Levi D; Jiang, Guozhi; Pantel, Sasha; Lee, Yenarae; Goodale, Amy; Cherniack, Andrew D; Oh, Coyin; Kryukov, Gregory; Cowley, Glenn S; Garraway, Levi A; Stegmaier, Kimberly; Roberts, Charles W; Golub, Todd R; Meyerson, Matthew; Root, David E; Tsherniak, Aviad; Hahn, William C

    2016-08-01

    The CRISPR/Cas9 system enables genome editing and somatic cell genetic screens in mammalian cells. We performed genome-scale loss-of-function screens in 33 cancer cell lines to identify genes essential for proliferation/survival and found a strong correlation between increased gene copy number and decreased cell viability after genome editing. Within regions of copy-number gain, CRISPR/Cas9 targeting of both expressed and unexpressed genes, as well as intergenic loci, led to significantly decreased cell proliferation through induction of a G2 cell-cycle arrest. By examining single-guide RNAs that map to multiple genomic sites, we found that this cell response to CRISPR/Cas9 editing correlated strongly with the number of target loci. These observations indicate that genome targeting by CRISPR/Cas9 elicits a gene-independent antiproliferative cell response. This effect has important practical implications for the interpretation of CRISPR/Cas9 screening data and confounds the use of this technology for the identification of essential genes in amplified regions. We found that the number of CRISPR/Cas9-induced DNA breaks dictates a gene-independent antiproliferative response in cells. These observations have practical implications for using CRISPR/Cas9 to interrogate cancer gene function and illustrate that cancer cells are highly sensitive to site-specific DNA damage, which may provide a path to novel therapeutic strategies. Cancer Discov; 6(8); 914-29. ©2016 AACR.See related commentary by Sheel and Xue, p. 824See related article by Munoz et al., p. 900This article is highlighted in the In This Issue feature, p. 803. 2016 American Association for Cancer Research.

  18. Copy Number Variation in the Horse Genome

    PubMed Central

    Ghosh, Sharmila; Qu, Zhipeng; Das, Pranab J.; Fang, Erica; Juras, Rytis; Cothran, E. Gus; McDonell, Sue; Kenney, Daniel G.; Lear, Teri L.; Adelson, David L.; Chowdhary, Bhanu P.; Raudsepp, Terje

    2014-01-01

    We constructed a 400K WG tiling oligoarray for the horse and applied it for the discovery of copy number variations (CNVs) in 38 normal horses of 16 diverse breeds, and the Przewalski horse. Probes on the array represented 18,763 autosomal and X-linked genes, and intergenic, sub-telomeric and chrY sequences. We identified 258 CNV regions (CNVRs) across all autosomes, chrX and chrUn, but not in chrY. CNVs comprised 1.3% of the horse genome with chr12 being most enriched. American Miniature horses had the highest and American Quarter Horses the lowest number of CNVs in relation to Thoroughbred reference. The Przewalski horse was similar to native ponies and draft breeds. The majority of CNVRs involved genes, while 20% were located in intergenic regions. Similar to previous studies in horses and other mammals, molecular functions of CNV-associated genes were predominantly in sensory perception, immunity and reproduction. The findings were integrated with previous studies to generate a composite genome-wide dataset of 1476 CNVRs. Of these, 301 CNVRs were shared between studies, while 1174 were novel and require further validation. Integrated data revealed that to date, 41 out of over 400 breeds of the domestic horse have been analyzed for CNVs, of which 11 new breeds were added in this study. Finally, the composite CNV dataset was applied in a pilot study for the discovery of CNVs in 6 horses with XY disorders of sexual development. A homozygous deletion involving AKR1C gene cluster in chr29 in two affected horses was considered possibly causative because of the known role of AKR1C genes in testicular androgen synthesis and sexual development. While the findings improve and integrate the knowledge of CNVs in horses, they also show that for effective discovery of variants of biomedical importance, more breeds and individuals need to be analyzed using comparable methodological approaches. PMID:25340504

  19. The Landscape of Somatic Chromosomal Copy Number Aberrations in GEM Models of Prostate Carcinoma

    PubMed Central

    Bianchi-Frias, Daniella; Hernandez, Susana A.; Coleman, Roger; Wu, Hong; Nelson, Peter S.

    2015-01-01

    Human prostate cancer (PCa) is known to harbor recurrent genomic aberrations consisting of chromosomal losses, gains, rearrangements and mutations that involve oncogenes and tumor suppressors. Genetically engineered mouse (GEM) models have been constructed to assess the causal role of these putative oncogenic events and provide molecular insight into disease pathogenesis. While GEM models generally initiate neoplasia by manipulating a single gene, expression profiles of GEM tumors typically comprise hundreds of transcript alterations. It is unclear whether these transcriptional changes represent the pleiotropic effects of single oncogenes, and/or cooperating genomic or epigenomic events. Therefore, it was determined if structural chromosomal alterations occur in GEM models of PCa and whether the changes are concordant with human carcinomas. Whole genome array-based comparative genomic hybridization (CGH) was used to identify somatic chromosomal copy number aberrations (SCNAs) in the widely used TRAMP, Hi-Myc, Pten-null and LADY GEM models. Interestingly, very few SCNAs were identified and the genomic architecture of Hi-Myc, Pten-null and LADY tumors were essentially identical to the germline. TRAMP neuroendocrine carcinomas contained SCNAs, which comprised three recurrent aberrations including a single copy loss of chromosome 19 (encoding Pten). In contrast, cell lines derived from the TRAMP, Hi-Myc, and Pten-null tumors were notable for numerous SCNAs that included copy gains of chromosome 15 (encoding Myc) and losses of chromosome 11 (encoding p53). PMID:25298407

  20. A genomic copy number signature predicts radiation exposure in post-Chernobyl breast cancer.

    PubMed

    Wilke, Christina M; Braselmann, Herbert; Hess, Julia; Klymenko, Sergiy V; Chumak, Vadim V; Zakhartseva, Liubov M; Bakhanova, Elena V; Walch, Axel K; Selmansberger, Martin; Samaga, Daniel; Weber, Peter; Schneider, Ludmila; Fend, Falko; Bösmüller, Hans C; Zitzelsberger, Horst; Unger, Kristian

    2018-04-16

    Breast cancer is the second leading cause of cancer death among women worldwide and besides life style, age and genetic risk factors, exposure to ionizing radiation is known to increase the risk for breast cancer. Further, DNA copy number alterations (CNAs), which can result from radiation-induced double-strand breaks, are frequently occurring in breast cancer cells. We set out to identify a signature of CNAs discriminating breast cancers from radiation-exposed and non-exposed female patients. We analyzed resected breast cancer tissues from 68 exposed female Chernobyl clean-up workers and evacuees and 68 matched non-exposed control patients for CNAs by array comparative genomic hybridization analysis (aCGH). Using a stepwise forward-backward selection approach a non-complex CNA signature, that is, less than ten features, was identified in the training data set, which could be subsequently validated in the validation data set (p value < 0.05). The signature consisted of nine copy number regions located on chromosomal bands 7q11.22-11.23, 7q21.3, 16q24.3, 17q21.31, 20p11.23-11.21, 1p21.1, 2q35, 2q35, 6p22.2. The signature was independent of any clinical characteristics of the patients. In all, we identified a CNA signature that has the potential to allow identification of radiation-associated breast cancer at the individual level. © 2018 UICC.

  1. Genomic regions showing copy number variations associate with resistance or susceptibility to gastrointestinal nematodes in Angus cattle

    USDA-ARS?s Scientific Manuscript database

    Genomic structural variation is an important and abundant source of genetic and phenotypic variation. We previously reported an initial analysis of copy number variations (CNVs) in Angus cattle selected for resistance or susceptibility to gastrointestinal nematodes. In this study, we performed a lar...

  2. Evaluation of somatic copy number estimation tools for whole-exome sequencing data.

    PubMed

    Nam, Jae-Yong; Kim, Nayoung K D; Kim, Sang Cheol; Joung, Je-Gun; Xi, Ruibin; Lee, Semin; Park, Peter J; Park, Woong-Yang

    2016-03-01

    Whole-exome sequencing (WES) has become a standard method for detecting genetic variants in human diseases. Although the primary use of WES data has been the identification of single nucleotide variations and indels, these data also offer a possibility of detecting copy number variations (CNVs) at high resolution. However, WES data have uneven read coverage along the genome owing to the target capture step, and the development of a robust WES-based CNV tool is challenging. Here, we evaluate six WES somatic CNV detection tools: ADTEx, CONTRA, Control-FREEC, EXCAVATOR, ExomeCNV and Varscan2. Using WES data from 50 kidney chromophobe, 50 bladder urothelial carcinoma, and 50 stomach adenocarcinoma patients from The Cancer Genome Atlas, we compared the CNV calls from the six tools with a reference CNV set that was identified by both single nucleotide polymorphism array 6.0 and whole-genome sequencing data. We found that these algorithms gave highly variable results: visual inspection reveals significant differences between the WES-based segmentation profiles and the reference profile, as well as among the WES-based profiles. Using a 50% overlap criterion, 13-77% of WES CNV calls were covered by CNVs from the reference set, up to 21% of the copy gains were called as losses or vice versa, and dramatic differences in CNV sizes and CNV numbers were observed. Overall, ADTEx and EXCAVATOR had the best performance with relatively high precision and sensitivity. We suggest that the current algorithms for somatic CNV detection from WES data are limited in their performance and that more robust algorithms are needed. © The Author 2015. Published by Oxford University Press. For Permissions, please email: journals.permissions@oup.com.

  3. Integrative analysis of gene expression and copy number alterations using canonical correlation analysis.

    PubMed

    Soneson, Charlotte; Lilljebjörn, Henrik; Fioretos, Thoas; Fontes, Magnus

    2010-04-15

    With the rapid development of new genetic measurement methods, several types of genetic alterations can be quantified in a high-throughput manner. While the initial focus has been on investigating each data set separately, there is an increasing interest in studying the correlation structure between two or more data sets. Multivariate methods based on Canonical Correlation Analysis (CCA) have been proposed for integrating paired genetic data sets. The high dimensionality of microarray data imposes computational difficulties, which have been addressed for instance by studying the covariance structure of the data, or by reducing the number of variables prior to applying the CCA. In this work, we propose a new method for analyzing high-dimensional paired genetic data sets, which mainly emphasizes the correlation structure and still permits efficient application to very large data sets. The method is implemented by translating a regularized CCA to its dual form, where the computational complexity depends mainly on the number of samples instead of the number of variables. The optimal regularization parameters are chosen by cross-validation. We apply the regularized dual CCA, as well as a classical CCA preceded by a dimension-reducing Principal Components Analysis (PCA), to a paired data set of gene expression changes and copy number alterations in leukemia. Using the correlation-maximizing methods, regularized dual CCA and PCA+CCA, we show that without pre-selection of known disease-relevant genes, and without using information about clinical class membership, an exploratory analysis singles out two patient groups, corresponding to well-known leukemia subtypes. Furthermore, the variables showing the highest relevance to the extracted features agree with previous biological knowledge concerning copy number alterations and gene expression changes in these subtypes. Finally, the correlation-maximizing methods are shown to yield results which are more biologically

  4. LAPTM4B gene copy number gain is associated with inferior response to anthracycline-based chemotherapy in hormone receptor negative breast carcinomas.

    PubMed

    Rusz, Orsolya; Papp, Orsolya; Vízkeleti, Laura; Molnár, Béla Ákos; Bende, Kristóf Csaba; Lotz, Gábor; Ács, Balázs; Kahán, Zsuzsanna; Székely, Tamás; Báthori, Ágnes; Szundi, Csilla; Kulka, Janina; Szállási, Zoltán; Tőkés, Anna-Mária

    2018-05-16

    To determine the associations between lysosomal-associated transmembrane protein 4b (LAPTM4B) gene copy number and response to different chemotherapy regimens in hormone receptor negative (HR-) primary breast carcinomas. Two cohorts were analyzed: (1) 69 core biopsies from HR-breast carcinomas treated with neoadjuvant chemotherapy (anthracycline based in 72.5% of patients and non-anthracycline based in 27.5% of patients). (2) Tissue microarray (TMA) of 74 HR-breast carcinomas treated with adjuvant therapy (77.0% of the patients received anthracycline, 17.6% of the patients non-anthracycline-based therapy, and in 5.4% of the cases, no treatment data are available). Interphase FISH technique was applied on pretreatment core biopsies (cohort I) and on TMAs (cohort II) using custom-made dual-labelled FISH probes (LAPTM4B/CEN8q FISH probe Abnova Corp.). In the neoadjuvant cohort in the anthracycline-treated group, we observed a significant difference (p = 0.029) of average LAPTM4B copy number between the non-responder and pathological complete responder groups (4.1 ± 1.1 vs. 2.6 ± 0.1). In the adjuvant setting, the anthracycline-treated group of metastatic breast carcinomas was characterized by higher LAPTM4B copy number comparing to the non-metastatic ones (p = 0.046). In contrast, in the non-anthracycline-treated group of patients, we did not find any LAPTM4B gene copy number differences between responder vs. non-responder groups or between metastatic vs. non-metastatic groups. Our results confirm the possible role of the LAPTM4B gene in anthracycline resistance in HR- breast cancer. Analyzing LAPTM4B copy number pattern may support future treatment decision.

  5. [Copy number variation: markers and predictors for type 2 diabetes].

    PubMed

    Ramírez-Valverde, Alan Gilberto; Antúnez-Ortiz, Diana Lizzete; Méndez-Beleche, Alberto; Flores-Alfaro, Eugenia; Ascencio-Montiel, Iván Jesús; Cruz, Miguel

    2015-01-01

    Type 2 diabetes (T2D) is a disease characterized by a deficiency in production or action of insulin. It is the result mainly of the interaction of the environment, lifestyle, as well as genetic factors. It is considered as one of the major health issues in the world because it affects severely the psychological well-being and overall life quality. Recently it has been shown that DNA copy number variations (CNVs) are associated with several diseases, including obesity and T2D. The CNVs are present from 9 to 18 % of the genome and can modify the expression levels of mRNA and proteins encoded by genes located near their localization. Less is known about their contribution to the pathogenesis of metabolic diseases, which is necessary to characterize so that these variations can be potentially used as biomarkers of genetic risk CNVs of T2D.

  6. Genomic regions showing copy number variations associate with resistance or susceptibility to gastrointestinal nematodes in Angus Cattle

    USDA-ARS?s Scientific Manuscript database

    Genomic structural variation is an important and abundant source of genetic and phenotypic variation. We previously reported an initial analysis of copy number variations (CNVs) in Angus cattle selected for resistance or susceptibility to intestinal nematodes. In this study, we performed a large sca...

  7. Comparative analyses across cattle breeds reveal the pitfalls caused by artificial and lineage-differential copy number variations

    USDA-ARS?s Scientific Manuscript database

    Copy number variations (CNV) are well known genomic variants, which often complicate structural and functional genomics studies. Here, we integrated the CNV region (CNVR) result detected from 1,682 Nellore cattle with the equivalent result derived from the Bovine HapMap samples. Through comparing CN...

  8. Genome-wide copy number variant analysis reveals variants associated with 10 diverse production traits in Holstein cattle

    USDA-ARS?s Scientific Manuscript database

    Copy number variation (CNV) is an important type of genetic variation contributing to phenotypic differences among mammals and may serve as an alternative molecular marker to single nucleotide polymorphism (SNP) for genome-wide association study (GWAS). Recently, GWAS analysis using CNV has been app...

  9. The landscape of inherited and de novo copy number variants in a plasmodium falciparum genetic cross

    PubMed Central

    2011-01-01

    Background Copy number is a major source of genome variation with important evolutionary implications. Consequently, it is essential to determine copy number variant (CNV) behavior, distributions and frequencies across genomes to understand their origins in both evolutionary and generational time frames. We use comparative genomic hybridization (CGH) microarray and the resolution provided by a segregating population of cloned progeny lines of the malaria parasite, Plasmodium falciparum, to identify and analyze the inheritance of 170 genome-wide CNVs. Results We describe CNVs in progeny clones derived from both Mendelian (i.e. inherited) and non-Mendelian mechanisms. Forty-five CNVs were present in the parent lines and segregated in the progeny population. Furthermore, extensive variation that did not conform to strict Mendelian inheritance patterns was observed. 124 CNVs were called in one or more progeny but in neither parent: we observed CNVs in more than one progeny clone that were not identified in either parent, located more frequently in the telomeric-subtelomeric regions of chromosomes and singleton de novo CNVs distributed evenly throughout the genome. Linkage analysis of CNVs revealed dynamic copy number fluctuations and suggested mechanisms that could have generated them. Five of 12 previously identified expression quantitative trait loci (eQTL) hotspots coincide with CNVs, demonstrating the potential for broad influence of CNV on the transcriptional program and phenotypic variation. Conclusions CNVs are a significant source of segregating and de novo genome variation involving hundreds of genes. Examination of progeny genome segments provides a framework to assess the extent and possible origins of CNVs. This segregating genetic system reveals the breadth, distribution and dynamics of CNVs in a surprisingly plastic parasite genome, providing a new perspective on the sources of diversity in parasite populations. PMID:21936954

  10. Micro-Scale Genomic DNA Copy Number Aberrations as Another Means of Mutagenesis in Breast Cancer

    PubMed Central

    Chao, Hann-Hsiang; He, Xiaping; Parker, Joel S.; Zhao, Wei; Perou, Charles M.

    2012-01-01

    Introduction In breast cancer, the basal-like subtype has high levels of genomic instability relative to other breast cancer subtypes with many basal-like-specific regions of aberration. There is evidence that this genomic instability extends to smaller scale genomic aberrations, as shown by a previously described micro-deletion event in the PTEN gene in the Basal-like SUM149 breast cancer cell line. Methods We sought to identify if small regions of genomic DNA copy number changes exist by using a high density, gene-centric Comparative Genomic Hybridizations (CGH) array on cell lines and primary tumors. A custom tiling array for CGH (244,000 probes, 200 bp tiling resolution) was created to identify small regions of genomic change, which was focused on previously identified basal-like-specific, and general cancer genes. Tumor genomic DNA from 94 patients and 2 breast cancer cell lines was labeled and hybridized to these arrays. Aberrations were called using SWITCHdna and the smallest 25% of SWITCHdna-defined genomic segments were called micro-aberrations (<64 contiguous probes, ∼ 15 kb). Results Our data showed that primary tumor breast cancer genomes frequently contained many small-scale copy number gains and losses, termed micro-aberrations, most of which are undetectable using typical-density genome-wide aCGH arrays. The basal-like subtype exhibited the highest incidence of these events. These micro-aberrations sometimes altered expression of the involved gene. We confirmed the presence of the PTEN micro-amplification in SUM149 and by mRNA-seq showed that this resulted in loss of expression of all exons downstream of this event. Micro-aberrations disproportionately affected the 5′ regions of the affected genes, including the promoter region, and high frequency of micro-aberrations was associated with poor survival. Conclusion Using a high-probe-density, gene-centric aCGH microarray, we present evidence of small-scale genomic aberrations that can contribute to

  11. Copy number variability in Parkinson's disease: assembling the puzzle through a systems biology approach.

    PubMed

    La Cognata, Valentina; Morello, Giovanna; D'Agata, Velia; Cavallaro, Sebastiano

    2017-01-01

    Parkinson's disease (PD), the second most common progressive neurodegenerative disorder of aging, was long believed to be a non-genetic sporadic origin syndrome. The proof that several genetic loci are responsible for rare Mendelian forms has represented a revolutionary breakthrough, enabling to reveal molecular mechanisms underlying this debilitating still incurable condition. While single nucleotide polymorphisms (SNPs) and small indels constitute the most commonly investigated DNA variations accounting for only a limited number of PD cases, larger genomic molecular rearrangements have emerged as significant PD-causing mutations, including submicroscopic Copy Number Variations (CNVs). CNVs constitute a prevalent source of genomic variations and substantially participate in each individual's genomic makeup and phenotypic outcome. However, the majority of genetic studies have focused their attention on single candidate-gene mutations or on common variants reaching a significant statistical level of acceptance. This gene-centric approach is insufficient to uncover the genetic background of polygenic multifactorial disorders like PD, and potentially masks rare individual CNVs that all together might contribute to disease development or progression. In this review, we will discuss literature and bioinformatic data describing the involvement of CNVs on PD pathobiology. We will analyze the most frequent copy number changes in familiar PD genes and provide a "systems biology" overview of rare individual rearrangements that could functionally act on commonly deregulated molecular pathways. Assessing the global genome-wide burden of CNVs in PD patients may reveal new disease-related molecular mechanisms, and open the window to a new possible genetic scenario in the unsolved PD puzzle.

  12. Construction of a novel gene bank of Bacillus subtilis using a low copy number vector in Escherichia coli.

    PubMed

    Hasnain, S; Thomas, C M

    1986-07-01

    Low copy number vector plasmid pCT571 was constructed to clone Bacillus subtilis genomic fragments in Escherichia coli. pCT571 confers KmR, TcR and CmR in E. coli and CmR in B. subtilis. It has unique restriction sites within the KmR and TcR markers to allow screening for recombinant plasmids by insertional inactivation of these genes. It contains the pSC101 replicon and replicates normally at six to eight copies per chromosome equivalent in E. coli. It also contains oriVRK2, which when supplied with the product of the trfA gene of RK2 in trans, allows pCT571 to replicate at 35-40 copies per chromosome equivalent. A B. subtilis gene bank was created by cloning partially Sau3A-digested and size-fractionated fragments of B. subtilis chromosomal DNA into the BamHI site of pCT571. DNA from 1097 KmR TcS transformants was extracted and analysed electrophoretically as supercoiled DNA and after digesting with EcoRI or EcoRI and SalI. Approximately 1000 hybrid plasmids were found with reasonably sized B. subtilis fragments. The mean size of the inserts in pCT571 is 8 kb, ranging from 4 to 20 kb in different plasmids. The gene bank covers most of the B. subtilis chromosome, as demonstrated by the results of screening the gene bank for selectable nutritional markers in E. coli and B. subtilis. Hybrid plasmids which complement E. coli mutants for arg, his, lys, met, pdx, pyr and thr markers were identified from the gene bank. In B. subtilis the presence of argC, cysA, dal, hisA, ilvA, leuA, lys, metB, metC, phe, purA, purB, thr and trpC was established by transformation experiments. The effects of copy number on cloning and long-term maintenance in the bacterial strains were also investigated. At high copy number some hybrid plasmids cannot be maintained at all, while others show an increased rate of structural deletions and rearrangements.

  13. Copy Number Variants and Congenital Anomalies Surveillance: A Suggested Coding Strategy Using the Royal College of Paediatrics and Child Health Version of ICD-10.

    PubMed

    Bedard, Tanya; Lowry, R Brian; Sibbald, Barbara; Thomas, Mary Ann; Innes, A Micheil

    2016-01-01

    The use of array-based comparative genomic hybridization to assess DNA copy number is increasing in many jurisdictions. Such technology identifies more genetic causes of congenital anomalies; however, the clinical significance of some results may be challenging to interpret. A coding strategy to address cases with copy number variants has recently been implemented by the Alberta Congenital Anomalies Surveillance System and is described.

  14. Copy Number Variation Affecting the Photoperiod-B1 and Vernalization-A1 Genes Is Associated with Altered Flowering Time in Wheat (Triticum aestivum)

    PubMed Central

    Isaac, Peter; Laurie, David A.

    2012-01-01

    The timing of flowering during the year is an important adaptive character affecting reproductive success in plants and is critical to crop yield. Flowering time has been extensively manipulated in crops such as wheat (Triticum aestivum L.) during domestication, and this enables them to grow productively in a wide range of environments. Several major genes controlling flowering time have been identified in wheat with mutant alleles having sequence changes such as insertions, deletions or point mutations. We investigated genetic variants in commercial varieties of wheat that regulate flowering by altering photoperiod response (Ppd-B1 alleles) or vernalization requirement (Vrn-A1 alleles) and for which no candidate mutation was found within the gene sequence. Genetic and genomic approaches showed that in both cases alleles conferring altered flowering time had an increased copy number of the gene and altered gene expression. Alleles with an increased copy number of Ppd-B1 confer an early flowering day neutral phenotype and have arisen independently at least twice. Plants with an increased copy number of Vrn-A1 have an increased requirement for vernalization so that longer periods of cold are required to potentiate flowering. The results suggest that copy number variation (CNV) plays a significant role in wheat adaptation. PMID:22457747

  15. Copy number variations in Saudi family with intellectual disability and epilepsy.

    PubMed

    Naseer, Muhammad I; Chaudhary, Adeel G; Rasool, Mahmood; Kalamegam, Gauthaman; Ashgan, Fai T; Assidi, Mourad; Ahmed, Farid; Ansari, Shakeel A; Zaidi, Syed Kashif; Jan, Mohammed M; Al-Qahtani, Mohammad H

    2016-10-17

    Epilepsy is genetically complex but common brain disorder of the world affecting millions of people with almost of all age groups. Novel Copy number variations (CNVs) are considered as important reason for the numerous neurodevelopmental disorders along with intellectual disability and epilepsy. DNA array based studies contribute to explain a more severe clinical presentation of the disease but interoperation of many detected CNVs are still challenging. In order to study novel CNVs with epilepsy related genes in Saudi family with six affected and two normal individuals with several forms of epileptic seizures, intellectual disability (ID), and minor dysmorphism, we performed the high density whole genome Agilent sure print G3 Hmn CGH 2x 400 K array-CGH chips analysis. Our results showed de novo deletions, duplications and deletion plus duplication on differential chromosomal regions in the affected individuals that were not shown in the normal fathe and normal kids by using Agilent CytoGenomics 3.0.6.6 softwear. Copy number gain were observed in the chromosome 1, 16 and 22 with LCE3C, HPR, GSTT2, GSTTP2, DDT and DDTL genes respectively whereas the deletions observed in the chromosomal regions 8p23-p21 (4303127-4337759) and the potential gene in this region is CSMD1 (OMIM: 612279). Moreover, the array CGH results deletions and duplication were also validated by using primer design of deleted regions utilizing the flanked SNPs using simple PCR and also by using quantitative real time PCR. We found some of the de novo deletions and duplication in our study in Saudi family with intellectual disability and epilepsy. Our results suggest that array-CGH should be used as a first line of genetic test for epilepsy except there is a strong indication for a monogenic syndrome. The advanced high through put array-CGH technique used in this study aim to collect the data base and to identify new mechanisms describing epileptic disorder, may help to improve the clinical

  16. Brownian Ratchet Mechanism for Faithful Segregation of Low-Copy-Number Plasmids.

    PubMed

    Hu, Longhua; Vecchiarelli, Anthony G; Mizuuchi, Kiyoshi; Neuman, Keir C; Liu, Jian

    2017-04-11

    Bacterial plasmids are extrachromosomal DNA that provides selective advantages for bacterial survival. Plasmid partitioning can be remarkably robust. For high-copy-number plasmids, diffusion ensures that both daughter cells inherit plasmids after cell division. In contrast, most low-copy-number plasmids need to be actively partitioned by a conserved tripartite ParA-type system. ParA is an ATPase that binds to chromosomal DNA; ParB is the stimulator of the ParA ATPase and specifically binds to the plasmid at a centromere-like site, parS. ParB stimulation of the ParA ATPase releases ParA from the bacterial chromosome, after which it takes a long time to reset its DNA-binding affinity. We previously demonstrated in vitro that the ParA system can exploit this biochemical asymmetry for directed cargo transport. Multiple ParA-ParB bonds can bridge a parS-coated cargo to a DNA carpet, and they can work collectively as a Brownian ratchet that directs persistent cargo movement with a ParA-depletion zone trailing behind. By extending this model, we suggest that a similar Brownian ratchet mechanism recapitulates the full range of actively segregated plasmid motilities observed in vivo. We demonstrate that plasmid motility is tuned as the replenishment rate of the ParA-depletion zone progressively increases relative to the cargo speed, evolving from diffusion to pole-to-pole oscillation, local excursions, and, finally, immobility. When the plasmid replicates, the daughters largely display motilities similar to that of their mother, except that when the single-focus progenitor is locally excursive, the daughter foci undergo directed segregation. We show that directed segregation maximizes the fidelity of plasmid partition. Given that local excursion and directed segregation are the most commonly observed modes of plasmid motility in vivo, we suggest that the operation of the ParA-type partition system has been shaped by evolution for high fidelity of plasmid segregation

  17. Novel Population Specific Autosomal Copy Number Variation and Its Functional Analysis amongst Negritos from Peninsular Malaysia

    PubMed Central

    Mokhtar, Siti Shuhada; Marshall, Christian R.; Phipps, Maude E.; Thiruvahindrapuram, Bhooma; Lionel, Anath C.; Scherer, Stephen W.; Peng, Hoh Boon

    2014-01-01

    Copy number variation (CNV) has been recognized as a major contributor to human genome diversity. It plays an important role in determining phenotypes and has been associated with a number of common and complex diseases. However CNV data from diverse populations is still limited. Here we report the first investigation of CNV in the indigenous populations from Peninsular Malaysia. We genotyped 34 Negrito genomes from Peninsular Malaysia using the Affymetrix SNP 6.0 microarray and identified 48 putative novel CNVs, consisting of 24 gains and 24 losses, of which 5 were identified in at least 2 unrelated samples. These CNVs appear unique to the Negrito population and were absent in the DGV, HapMap3 and Singapore Genome Variation Project (SGVP) datasets. Analysis of gene ontology revealed that genes within these CNVs were enriched in the immune system (GO:0002376), response to stimulus mechanisms (GO:0050896), the metabolic pathways (GO:0001852), as well as regulation of transcription (GO:0006355). Copy number gains in CNV regions (CNVRs) enriched with genes were significantly higher than the losses (P value <0.001). In view of the small population size, relative isolation and semi-nomadic lifestyles of this community, we speculate that these CNVs may be attributed to recent local adaptation of Negritos from Peninsular Malaysia. PMID:24956385

  18. Novel population specific autosomal copy number variation and its functional analysis amongst Negritos from Peninsular Malaysia.

    PubMed

    Mokhtar, Siti Shuhada; Marshall, Christian R; Phipps, Maude E; Thiruvahindrapuram, Bhooma; Lionel, Anath C; Scherer, Stephen W; Peng, Hoh Boon

    2014-01-01

    Copy number variation (CNV) has been recognized as a major contributor to human genome diversity. It plays an important role in determining phenotypes and has been associated with a number of common and complex diseases. However CNV data from diverse populations is still limited. Here we report the first investigation of CNV in the indigenous populations from Peninsular Malaysia. We genotyped 34 Negrito genomes from Peninsular Malaysia using the Affymetrix SNP 6.0 microarray and identified 48 putative novel CNVs, consisting of 24 gains and 24 losses, of which 5 were identified in at least 2 unrelated samples. These CNVs appear unique to the Negrito population and were absent in the DGV, HapMap3 and Singapore Genome Variation Project (SGVP) datasets. Analysis of gene ontology revealed that genes within these CNVs were enriched in the immune system (GO:0002376), response to stimulus mechanisms (GO:0050896), the metabolic pathways (GO:0001852), as well as regulation of transcription (GO:0006355). Copy number gains in CNV regions (CNVRs) enriched with genes were significantly higher than the losses (P value <0.001). In view of the small population size, relative isolation and semi-nomadic lifestyles of this community, we speculate that these CNVs may be attributed to recent local adaptation of Negritos from Peninsular Malaysia.

  19. GeneBreak: detection of recurrent DNA copy number aberration-associated chromosomal breakpoints within genes.

    PubMed

    van den Broek, Evert; van Lieshout, Stef; Rausch, Christian; Ylstra, Bauke; van de Wiel, Mark A; Meijer, Gerrit A; Fijneman, Remond J A; Abeln, Sanne

    2016-01-01

    Development of cancer is driven by somatic alterations, including numerical and structural chromosomal aberrations. Currently, several computational methods are available and are widely applied to detect numerical copy number aberrations (CNAs) of chromosomal segments in tumor genomes. However, there is lack of computational methods that systematically detect structural chromosomal aberrations by virtue of the genomic location of CNA-associated chromosomal breaks and identify genes that appear non-randomly affected by chromosomal breakpoints across (large) series of tumor samples. 'GeneBreak' is developed to systematically identify genes recurrently affected by the genomic location of chromosomal CNA-associated breaks by a genome-wide approach, which can be applied to DNA copy number data obtained by array-Comparative Genomic Hybridization (CGH) or by (low-pass) whole genome sequencing (WGS). First, 'GeneBreak' collects the genomic locations of chromosomal CNA-associated breaks that were previously pinpointed by the segmentation algorithm that was applied to obtain CNA profiles. Next, a tailored annotation approach for breakpoint-to-gene mapping is implemented. Finally, dedicated cohort-based statistics is incorporated with correction for covariates that influence the probability to be a breakpoint gene. In addition, multiple testing correction is integrated to reveal recurrent breakpoint events. This easy-to-use algorithm, 'GeneBreak', is implemented in R ( www.cran.r-project.org ) and is available from Bioconductor ( www.bioconductor.org/packages/release/bioc/html/GeneBreak.html ).

  20. Fine mapping of copy number variations on two cattle genome assemblies using high density SNP array

    USDA-ARS?s Scientific Manuscript database

    Btau_4.0 and UMD3.1 are two distinct cattle reference genome assemblies. In our previous study using the low density BovineSNP50 array, we reported a copy number variation (CNV) analysis on Btau_4.0 with 521 animals of 21 cattle breeds, yielding 682 CNV regions with a total length of 139.8 megabases...

  1. Rare Copy Number Deletions Predict Individual Variation in Intelligence

    PubMed Central

    Yeo, Ronald A.; Gangestad, Steven W.; Liu, Jingyu; Calhoun, Vince D.; Hutchison, Kent E.

    2011-01-01

    Phenotypic variation in human intellectual functioning shows substantial heritability, as demonstrated by a long history of behavior genetic studies. Many recent molecular genetic studies have attempted to uncover specific genetic variations responsible for this heritability, but identified effects capture little variance and have proven difficult to replicate. The present study, motivated an interest in “mutation load” emerging from evolutionary perspectives, examined the importance of the number of rare (or infrequent) copy number variations (CNVs), and the total number of base pairs included in such deletions, for psychometric intelligence. Genetic data was collected using the Illumina 1MDuoBeadChip Array from a sample of 202 adult individuals with alcohol dependence, and a subset of these (N = 77) had been administered the Wechsler Abbreviated Scale of Intelligence (WASI). After removing CNV outliers, the impact of rare genetic deletions on psychometric intelligence was investigated in 74 individuals. The total length of the rare deletions significantly and negatively predicted intelligence (r = −.30, p = .01). As prior studies have indicated greater heritability in individuals with relatively higher parental socioeconomic status (SES), we also examined the impact of ethnicity (Anglo/White vs. Other), as a proxy measure of SES; these groups did not differ on any genetic variable. This categorical variable significantly moderated the effect of length of deletions on intelligence, with larger effects being noted in the Anglo/White group. Overall, these results suggest that rare deletions (between 5% and 1% population frequency or less) adversely affect intellectual functioning, and that pleotropic effects might partly account for the association of intelligence with health and mental health status. Significant limitations of this research, including issues of generalizability and CNV measurement, are discussed. PMID:21298096

  2. Using droplet digital PCR to analyze MYCN and ALK copy number in plasma from patients with neuroblastoma.

    PubMed

    Lodrini, Marco; Sprüssel, Annika; Astrahantseff, Kathy; Tiburtius, Daniela; Konschak, Robert; Lode, Holger N; Fischer, Matthias; Keilholz, Ulrich; Eggert, Angelika; Deubzer, Hedwig E

    2017-10-17

    The invasive nature of surgical biopsies deters sequential application, and single biopsies often fail to reflect tumor dynamics, intratumor heterogeneity and drug sensitivities likely to change during tumor evolution and treatment. Implementing molecular characterization of cell-free neuroblastoma-derived DNA isolated from blood plasma could improve disease assessment for treatment selection and monitoring of patients with high-risk neuroblastoma. We established droplet digital PCR (ddPCR) protocols for MYCN and ALK copy number status in plasma from neuroblastoma patients. Our ddPCR protocol accurately discriminated between MYCN and ALK amplification, gain and normal diploid status in a large panel of neuroblastoma cell lines, and discrepancies with reported MYCN and ALK status were detected, including a high-level MYCN amplification in NB-1, a MYCN gain in SH-SY5Y, a high-level ALK amplification in IMR-32 and ALK gains in BE(2)-C, Kelly, SH-SY5Y and LAN-6. MYCN and ALK status were also reliably determined from cell-free DNA derived from medium conditioned by the cell lines. MYCN and ALK copy numbers of subcutaneous neuroblastoma xenograft tumors were accurately determined from cell-free DNA in the mouse blood plasma. In a final validation step, we accurately distinguished MYCN and ALK copy numbers of the corresponding primary tumors using retrospectively collected blood plasma samples from 10 neuroblastoma patients. Our data justify the further development of molecular disease characterization using cell-free DNA in blood plasma from patients with neuroblastoma. This expanded molecular diagnostic palette may improve monitoring of disease progression including relapse and metastatic events as well as therapy success or failure in high-risk neuroblastoma patients.

  3. Using droplet digital PCR to analyze MYCN and ALK copy number in plasma from patients with neuroblastoma

    PubMed Central

    Lodrini, Marco; Sprüssel, Annika; Astrahantseff, Kathy; Tiburtius, Daniela; Konschak, Robert; Lode, Holger N.; Fischer, Matthias; Keilholz, Ulrich; Eggert, Angelika; Deubzer, Hedwig E.

    2017-01-01

    The invasive nature of surgical biopsies deters sequential application, and single biopsies often fail to reflect tumor dynamics, intratumor heterogeneity and drug sensitivities likely to change during tumor evolution and treatment. Implementing molecular characterization of cell-free neuroblastoma-derived DNA isolated from blood plasma could improve disease assessment for treatment selection and monitoring of patients with high-risk neuroblastoma. We established droplet digital PCR (ddPCR) protocols for MYCN and ALK copy number status in plasma from neuroblastoma patients. Our ddPCR protocol accurately discriminated between MYCN and ALK amplification, gain and normal diploid status in a large panel of neuroblastoma cell lines, and discrepancies with reported MYCN and ALK status were detected, including a high-level MYCN amplification in NB-1, a MYCN gain in SH-SY5Y, a high-level ALK amplification in IMR-32 and ALK gains in BE(2)-C, Kelly, SH-SY5Y and LAN-6. MYCN and ALK status were also reliably determined from cell-free DNA derived from medium conditioned by the cell lines. MYCN and ALK copy numbers of subcutaneous neuroblastoma xenograft tumors were accurately determined from cell-free DNA in the mouse blood plasma. In a final validation step, we accurately distinguished MYCN and ALK copy numbers of the corresponding primary tumors using retrospectively collected blood plasma samples from 10 neuroblastoma patients. Our data justify the further development of molecular disease characterization using cell-free DNA in blood plasma from patients with neuroblastoma. This expanded molecular diagnostic palette may improve monitoring of disease progression including relapse and metastatic events as well as therapy success or failure in high-risk neuroblastoma patients. PMID:29156716

  4. 17 CFR 230.402 - Number of copies; binding; signatures.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ...; signatures. 230.402 Section 230.402 Commodity and Securities Exchanges SECURITIES AND EXCHANGE COMMISSION...; binding; signatures. (a) Three copies of the complete registration statement, including exhibits and all... bound and may contain facsimile versions of manual signatures in accordance with paragraph (e) of this...

  5. Copy number variations of obesity relevant loci associated with body mass index in young Chinese.

    PubMed

    Sun, Chen; Cao, Min; Shi, Juan; Li, Lijuan; Miao, Lin; Hong, Jie; Cui, Bin; Ning, Guang

    2013-03-10

    Obesity is one of the most complex human diseases that are widely concerned and studied. More recently, copy number variations (CNVs) emerge as another important genetic marker to influence various human diseases. To elucidate the relationship between obesity and CNVs, this current study selected obesity-related candidate CNVs and analyzed their association with body mass index (BMI). Results showed that a CNV locus, 8q24.3, was significantly different (P=0.0070) in CNV frequency between the obese and healthy controls in a young eastern Chinese cohort, while no statistical significance was observed in other seven candidate loci including well reported 10q11.22 and 16p11.2 loci. The association of 8q24.3 CNVs with BMI of the subjects only showed marginal significance, while the copy number (CN) of 5p15.33 had a significant correlation with the BMI of the subject. These results suggested that 8q24.3 CN gains was associated with obesity, and 5p15.33 might also contribute to obesity pathogenesis, highlighting the importance of these CNVs for obesity risks, as well as providing new evidence for CNVs in the pathology of common diseases. Copyright © 2012 Elsevier B.V. All rights reserved.

  6. Stochastic theory of large-scale enzyme-reaction networks: Finite copy number corrections to rate equation models

    NASA Astrophysics Data System (ADS)

    Thomas, Philipp; Straube, Arthur V.; Grima, Ramon

    2010-11-01

    Chemical reactions inside cells occur in compartment volumes in the range of atto- to femtoliters. Physiological concentrations realized in such small volumes imply low copy numbers of interacting molecules with the consequence of considerable fluctuations in the concentrations. In contrast, rate equation models are based on the implicit assumption of infinitely large numbers of interacting molecules, or equivalently, that reactions occur in infinite volumes at constant macroscopic concentrations. In this article we compute the finite-volume corrections (or equivalently the finite copy number corrections) to the solutions of the rate equations for chemical reaction networks composed of arbitrarily large numbers of enzyme-catalyzed reactions which are confined inside a small subcellular compartment. This is achieved by applying a mesoscopic version of the quasisteady-state assumption to the exact Fokker-Planck equation associated with the Poisson representation of the chemical master equation. The procedure yields impressively simple and compact expressions for the finite-volume corrections. We prove that the predictions of the rate equations will always underestimate the actual steady-state substrate concentrations for an enzyme-reaction network confined in a small volume. In particular we show that the finite-volume corrections increase with decreasing subcellular volume, decreasing Michaelis-Menten constants, and increasing enzyme saturation. The magnitude of the corrections depends sensitively on the topology of the network. The predictions of the theory are shown to be in excellent agreement with stochastic simulations for two types of networks typically associated with protein methylation and metabolism.

  7. Detection of pathogenic copy number variants in children with idiopathic intellectual disability using 500 K SNP array genomic hybridization

    PubMed Central

    2009-01-01

    Background Array genomic hybridization is being used clinically to detect pathogenic copy number variants in children with intellectual disability and other birth defects. However, there is no agreement regarding the kind of array, the distribution of probes across the genome, or the resolution that is most appropriate for clinical use. Results We performed 500 K Affymetrix GeneChip® array genomic hybridization in 100 idiopathic intellectual disability trios, each comprised of a child with intellectual disability of unknown cause and both unaffected parents. We found pathogenic genomic imbalance in 16 of these 100 individuals with idiopathic intellectual disability. In comparison, we had found pathogenic genomic imbalance in 11 of 100 children with idiopathic intellectual disability in a previous cohort who had been studied by 100 K GeneChip® array genomic hybridization. Among 54 intellectual disability trios selected from the previous cohort who were re-tested with 500 K GeneChip® array genomic hybridization, we identified all 10 previously-detected pathogenic genomic alterations and at least one additional pathogenic copy number variant that had not been detected with 100 K GeneChip® array genomic hybridization. Many benign copy number variants, including one that was de novo, were also detected with 500 K array genomic hybridization, but it was possible to distinguish the benign and pathogenic copy number variants with confidence in all but 3 (1.9%) of the 154 intellectual disability trios studied. Conclusion Affymetrix GeneChip® 500 K array genomic hybridization detected pathogenic genomic imbalance in 10 of 10 patients with idiopathic developmental disability in whom 100 K GeneChip® array genomic hybridization had found genomic imbalance, 1 of 44 patients in whom 100 K GeneChip® array genomic hybridization had found no abnormality, and 16 of 100 patients who had not previously been tested. Effective clinical interpretation of these studies requires

  8. Absolute quantification of olive oil DNA by droplet digital-PCR (ddPCR): Comparison of isolation and amplification methodologies.

    PubMed

    Scollo, Francesco; Egea, Leticia A; Gentile, Alessandra; La Malfa, Stefano; Dorado, Gabriel; Hernandez, Pilar

    2016-12-15

    Olive oil is considered a premium product for its nutritional value and health benefits, and the ability to define its origin and varietal composition is a key step towards ensuring the traceability of the product. However, isolating the DNA from such a matrix is a difficult task. In this study, the quality and quantity of olive oil DNA, isolated using four different DNA isolation protocols, was evaluated using the qRT-PCR and ddPCR techniques. The results indicate that CTAB-based extraction methods were the best for unfiltered oil, while Nucleo Spin-based extraction protocols showed greater overall reproducibility. The use of both qRT-PCR and ddPCR led to the absolute quantification of the DNA copy number. The results clearly demonstrate the importance of the choice of DNA-isolation protocol, which should take into consideration the qualitative aspects of DNA and the evaluation of the amplified DNA copy number. Copyright © 2016 Elsevier Ltd. All rights reserved.

  9. Autistic-like behavioral phenotypes in a mouse model with copy number variation of the CAPS2/CADPS2 gene.

    PubMed

    Sadakata, Tetsushi; Shinoda, Yo; Oka, Megumi; Sekine, Yukiko; Furuichi, Teiichi

    2013-01-04

    Ca²⁺-dependent activator protein for secretion 2 (CAPS2 or CADPS2) facilitates secretion and trafficking of dense-core vesicles. Recent genome-wide association studies of autism have identified several microdeletions due to copy number variation (CNV) in one of the chromosome 7q31.32 alleles on which the locus for CAPS2 is located in autistic patients. To evaluate the biological significance of reducing CAPS2 copy number, we analyzed CAPS2 heterozygous mice. Our present findings suggest that adequate levels of CAPS2 protein are critical for normal brain development and behavior, and that allelic changes due to CNV may contribute to autistic symptoms in combination with deficits in other autism-associated genes. Copyright © 2012 Federation of European Biochemical Societies. Published by Elsevier B.V. All rights reserved.

  10. Worldwide distribution of transposable element copy number in natural populations of Drosophila simulans.

    PubMed

    Biémont, Christian; Nardon, Christiane; Deceliere, Grégory; Lepetit, David; Loevenbruck, Catherine; Vieira, Cristina

    2003-01-01

    Transposable elements (TEs), which promote various kinds of mutations, constitute a large fraction of the genome. How they invade natural populations and species is therefore of fundamental importance for understanding the dynamics of genetic diversity and genome composition. On the basis of 85 samples of natural populations of Drosophila simulans, we report the distributions of the genome insertion site numbers of nine TEs that were chosen because they have a low average number of sites. Most populations were found to have 0-3 insertion sites, but some of them had a significantly higher number of sites for a given TE. The populations located in regions outside Africa had the highest number of sites for all elements except HMS Beagle and Coral, suggesting a recent increase in the activity of some TEs associated with the colonization patterns of Drosophila simulans. The element Tirant had a very distinctive pattern of distribution: it was identified mainly in populations from East Africa and some islands in the Indian Ocean, and its insertion site number was low in all these populations. The data suggest that the genome of the entire species of Drosophila simulans may be being invaded by TEs from populations in which they are present in high copy number.

  11. [Analysis of genomic copy number variations in two unrelated neonates with 8p deletion and duplication associated with congenital heart disease].

    PubMed

    Mei, Mei; Yang, Lin; Zhan, Guodong; Wang, Huijun; Ma, Duan; Zhou, Wenhao; Huang, Guoying

    2014-06-01

    To screen for genomic copy number variations (CNVs) in two unrelated neonates with multiple congenital abnormalities using Affymetrix SNP chip and try to find the critical region associated with congenital heart disease. Two neonates were tested for genomic copy number variations by using Cytogenetic SNP chip.Rare CNVs with potential clinical significance were selected of which deletion segments' size was larger than 50 kb and duplication segments' size was larger than 150 kb based on the analysis of ChAs software, without false positive CNVs and segments of normal population. The identified CNVs were compared with those of the cases in DECIPHER and ISCA databases. Eleven rare CNVs with size from 546.6-27 892 kb were identified in the 2 neonates. The deletion region and size of case 1 were 8p23.3-p23.1 (387 912-11 506 771 bp) and 11.1 Mb respectively, the duplication region and size of case 1 were 8p23.1-p11.1 (11 508 387-43 321 279 bp) and 31.8 Mb respectively. The deletion region and size of case 2 were 8p23.3-p23.1 (46 385-7 809 878 bp) and 7.8 Mb respectively, the duplication region and size of case 2 were 8p23.1-p11.21 (12 260 914-40 917 092 bp) and 28.7 Mb respectively. The comparison with Decipher and ISCA databases supported previous viewpoint that 8p23.1 had been associated with congenital heart disease and the region between 7 809 878-11 506 771 bp may play a role in the severe cardiac defects associated with 8p23.1 deletions. Case 1 had serious cardiac abnormalities whose GATA4 was located in the duplication segment and the copy number increased while SOX7 was located in the deletion segment and the copy number decreased. The region between 7 809 878-11 506 771 bp in 8p23.1 is associated with heart defects and copy number variants of SOX7 and GATA4 may result in congenital heart disease.

  12. Global diversity, population stratification, and selection of human copy number variation

    PubMed Central

    Sudmant, Peter H.; Mallick, Swapan; Nelson, Bradley J.; Hormozdiari, Fereydoun; Krumm, Niklas; Huddleston, John; Coe, Bradley P.; Baker, Carl; Nordenfelt, Susanne; Bamshad, Michael; Jorde, Lynn B.; Posukh, Olga L.; Sahakyan, Hovhannes; Watkins, W. Scott; Yepiskoposyan, Levon; Abdullah, M. Syafiq; Bravi, Claudio M.; Capelli, Cristian; Hervig, Tor; Wee, Joseph T. S.; Tyler-Smith, Chris; van Driem, George; Romero, Irene Gallego; Jha, Aashish R.; Karachanak-Yankova, Sena; Toncheva, Draga; Comas, David; Henn, Brenna; Kivisild, Toomas; Ruiz-Linares, Andres; Sajantila, Antti; Metspalu, Ene; Parik, Jüri; Villems, Richard; Starikovskaya, Elena B.; Ayodo, George; Beall, Cynthia M.; Di Rienzo, Anna; Hammer, Michael; Khusainova, Rita; Khusnutdinova, Elza; Klitz, William; Winkler, Cheryl; Labuda, Damian; Metspalu, Mait; Tishkoff, Sarah A.; Dryomov, Stanislav; Sukernik, Rem; Patterson, Nick; Reich, David; Eichler, Evan E.

    2015-01-01

    In order to explore the diversity and selective signatures of duplication and deletion human copy number variants (CNVs), we sequenced 236 individuals from 125 distinct human populations. We observed that duplications exhibit fundamentally different population genetic and selective signatures than deletions and are more likely to be stratified between human populations. Through reconstruction of the ancestral human genome, we identify megabases of DNA lost in different human lineages and pinpoint large duplications that introgressed from the extinct Denisova lineage now found at high frequency exclusively in Oceanic populations. We find that the proportion of CNV base pairs to single nucleotide variant base pairs is greater among non-Africans than it is among African populations, but we conclude that this difference is likely due to unique aspects of non-African population history as opposed to differences in CNV load. PMID:26249230

  13. [Advances in congenital vertebral malformation caused by genomic copy number variation].

    PubMed

    Liu, Zhenlei; Wu, Nan; Wu, Zhihong; Zuo, Yuzhi; Qiu, Guixing

    2016-04-01

    Congenital vertebral malformation (CVM) is a congenital vertebral structural deformity caused by abnormal somitogenesis during embryonic development, of which the reason lies in gene mutation or abnormal regulation of the genes that coordinate somitogenesis during embryonic period. ICVAS had proposed a new classification algorithm for CVM, which facilitated exploration for its genetic etiology. Genomic Copy Number Variation (CNV) is a kind of DNA mutation, which is important for human evolution, phenotype polymorphism and diseases. Series of advances have been made on genetic causes of CVM, especially on CVM caused by CNV. CNVs of chromosome 16p11.2, 10q24.31, 17p11.2, 20p11, 22q11.2 and a few other regions are associated with CVM, indicating that gene dosage may play important roles in the development of the spinal cord.

  14. Anaplastic Lymphoma Kinase Gene Copy Number Gain in Inflammatory Breast Cancer (IBC): Prevalence, Clinicopathologic Features and Prognostic Implication

    PubMed Central

    Kim, Min Hwan; Lee, Soohyeon; Koo, Ja Seung; Jung, Kyung Hae; Park, In Hae; Jeong, Joon; Kim, Seung Il; Park, Seho; Park, Hyung Seok; Park, Byeong-Woo; Kim, Joo-Hang; Sohn, Joohyuk

    2015-01-01

    Background Inflammatory breast cancer (IBC) is the most aggressive form of breast cancer, and its molecular pathogenesis still remains to be elucidated. This study aimed to evaluate the prevalence and implication of anaplastic lymphoma kinase (ALK) copy number change in IBC patients. Methods We retrospectively collected formalin-fixed, paraffin-embedded tumor tissues and medical records of IBC patients from several institutes in Korea. ALK gene copy number change and rearrangement were assessed by fluorescence in situ hybridization (FISH) assay, and ALK expression status was evaluated by immunohistochemical (IHC) staining. Results Thirty-six IBC patients including those with HER2 (+) breast cancer (16/36, 44.4%) and triple-negative breast cancer (13/36, 36.1%) were enrolled in this study. ALK copy number gain (CNG) was observed in 47.2% (17/36) of patients, including one patient who harbored ALK gene amplification. ALK CNG (+) patients showed significantly worse overall survival compared to ALK CNG (-) patients in univariate analysis (24.9 months vs. 38.1 months, p = 0.033). Recurrence free survival (RFS) after curative mastectomy was also significantly shorter in ALK CNG (+) patients than in ALK CNG (-) patients (n = 22, 12.7 months vs. 43.3 months, p = 0.016). Multivariate Cox regression analysis with adjustment for HER2 and ER statuses showed significantly poorer RFS for ALK CNG (+) patients (HR 5.63, 95% CI 1.11–28.44, p = 0.037). Conclusion This study shows a significant presence of ALK CNG in IBC patients, and ALK CNG was associated with significantly poorer RFS. PMID:25803816

  15. Anaplastic lymphoma kinase gene copy number gain in inflammatory breast cancer (IBC): prevalence, clinicopathologic features and prognostic implication.

    PubMed

    Kim, Min Hwan; Lee, Soohyeon; Koo, Ja Seung; Jung, Kyung Hae; Park, In Hae; Jeong, Joon; Kim, Seung Il; Park, Seho; Park, Hyung Seok; Park, Byeong-Woo; Kim, Joo-Hang; Sohn, Joohyuk

    2015-01-01

    Inflammatory breast cancer (IBC) is the most aggressive form of breast cancer, and its molecular pathogenesis still remains to be elucidated. This study aimed to evaluate the prevalence and implication of anaplastic lymphoma kinase (ALK) copy number change in IBC patients. We retrospectively collected formalin-fixed, paraffin-embedded tumor tissues and medical records of IBC patients from several institutes in Korea. ALK gene copy number change and rearrangement were assessed by fluorescence in situ hybridization (FISH) assay, and ALK expression status was evaluated by immunohistochemical (IHC) staining. Thirty-six IBC patients including those with HER2 (+) breast cancer (16/36, 44.4%) and triple-negative breast cancer (13/36, 36.1%) were enrolled in this study. ALK copy number gain (CNG) was observed in 47.2% (17/36) of patients, including one patient who harbored ALK gene amplification. ALK CNG (+) patients showed significantly worse overall survival compared to ALK CNG (-) patients in univariate analysis (24.9 months vs. 38.1 months, p = 0.033). Recurrence free survival (RFS) after curative mastectomy was also significantly shorter in ALK CNG (+) patients than in ALK CNG (-) patients (n = 22, 12.7 months vs. 43.3 months, p = 0.016). Multivariate Cox regression analysis with adjustment for HER2 and ER statuses showed significantly poorer RFS for ALK CNG (+) patients (HR 5.63, 95% CI 1.11-28.44, p = 0.037). This study shows a significant presence of ALK CNG in IBC patients, and ALK CNG was associated with significantly poorer RFS.

  16. A genome-wide detection of copy number variation using SNP genotyping arrays in Beijing-You chickens.

    PubMed

    Zhou, Wei; Liu, Ranran; Zhang, Jingjing; Zheng, Maiqing; Li, Peng; Chang, Guobin; Wen, Jie; Zhao, Guiping

    2014-10-01

    Copy number variation (CNV) has been recently examined in many species and is recognized as being a source of genetic variability, especially for disease-related phenotypes. In this study, the PennCNV software, a genome-wide CNV detection system based on the 60 K SNP BeadChip was used on a total sample size of 1,310 Beijing-You chickens (a Chinese local breed). After quality control, 137 high confidence CNVRs covering 27.31 Mb of the chicken genome and corresponding to 2.61 % of the whole chicken genome. Within these regions, 131 known genes or coding sequences were involved. Q-PCR was applied to verify some of the genes related to disease development. Results showed that copy number of genes such as, phosphatidylinositol-5-phosphate 4-kinase II alpha, PHD finger protein 14, RHACD8 (a CD8α- like messenger RNA), MHC B-G, zinc finger protein, sarcosine dehydrogenase and ficolin 2 varied between individual chickens, which also supports the reliability of chip-detection of the CNVs. As one source of genomic variation, CNVs may provide new insight into the relationship between the genome and phenotypic characteristics.

  17. ParseCNV integrative copy number variation association software with quality tracking

    PubMed Central

    Glessner, Joseph T.; Li, Jin; Hakonarson, Hakon

    2013-01-01

    A number of copy number variation (CNV) calling algorithms exist; however, comprehensive software tools for CNV association studies are lacking. We describe ParseCNV, unique software that takes CNV calls and creates probe-based statistics for CNV occurrence in both case–control design and in family based studies addressing both de novo and inheritance events, which are then summarized based on CNV regions (CNVRs). CNVRs are defined in a dynamic manner to allow for a complex CNV overlap while maintaining precise association region. Using this approach, we avoid failure to converge and non-monotonic curve fitting weaknesses of programs, such as CNVtools and CNVassoc, and although Plink is easy to use, it only provides combined CNV state probe-based statistics, not state-specific CNVRs. Existing CNV association methods do not provide any quality tracking information to filter confident associations, a key issue which is fully addressed by ParseCNV. In addition, uncertainty in CNV calls underlying CNV associations is evaluated to verify significant results, including CNV overlap profiles, genomic context, number of probes supporting the CNV and single-probe intensities. When optimal quality control parameters are followed using ParseCNV, 90% of CNVs validate by polymerase chain reaction, an often problematic stage because of inadequate significant association review. ParseCNV is freely available at http://parsecnv.sourceforge.net. PMID:23293001

  18. ParseCNV integrative copy number variation association software with quality tracking.

    PubMed

    Glessner, Joseph T; Li, Jin; Hakonarson, Hakon

    2013-03-01

    A number of copy number variation (CNV) calling algorithms exist; however, comprehensive software tools for CNV association studies are lacking. We describe ParseCNV, unique software that takes CNV calls and creates probe-based statistics for CNV occurrence in both case-control design and in family based studies addressing both de novo and inheritance events, which are then summarized based on CNV regions (CNVRs). CNVRs are defined in a dynamic manner to allow for a complex CNV overlap while maintaining precise association region. Using this approach, we avoid failure to converge and non-monotonic curve fitting weaknesses of programs, such as CNVtools and CNVassoc, and although Plink is easy to use, it only provides combined CNV state probe-based statistics, not state-specific CNVRs. Existing CNV association methods do not provide any quality tracking information to filter confident associations, a key issue which is fully addressed by ParseCNV. In addition, uncertainty in CNV calls underlying CNV associations is evaluated to verify significant results, including CNV overlap profiles, genomic context, number of probes supporting the CNV and single-probe intensities. When optimal quality control parameters are followed using ParseCNV, 90% of CNVs validate by polymerase chain reaction, an often problematic stage because of inadequate significant association review. ParseCNV is freely available at http://parsecnv.sourceforge.net.

  19. Independent localization of MAP2, CaMKIIα and β-actin RNAs in low copy numbers.

    PubMed

    Mikl, Martin; Vendra, Georgia; Kiebler, Michael A

    2011-09-30

    Messenger RNA localization involves the assembly of ribonucleoprotein particles (RNPs) and their subsequent transport along the cytoskeleton to their final destination. Here, we provide new evidence that microtubule-associated protein 2 (MAP2), calcium/calmodulin-dependent protein kinase II (CaMKIIα) and β-actin RNAs localize to dendrites in distinct RNPs, which contain--unexpectedly--very few RNA molecules. The number of MAP2 molecules per particle is affected by synaptic activity and Staufen 2, indicating that RNP composition is tightly controlled. Our data suggest that the independent localization of individual RNAs in low copy numbers could contribute to tighter temporal and spatial control of expression in neurons and synapse-specific plasticity.

  20. Diversity and population-genetic properties of copy number variations and multicopy genes in cattle

    PubMed Central

    Bickhart, Derek M.; Xu, Lingyang; Hutchison, Jana L.; Cole, John B.; Null, Daniel J.; Schroeder, Steven G.; Song, Jiuzhou; Garcia, Jose Fernando; Sonstegard, Tad S.; Van Tassell, Curtis P.; Schnabel, Robert D.; Taylor, Jeremy F.; Lewin, Harris A.; Liu, George E.

    2016-01-01

    The diversity and population genetics of copy number variation (CNV) in domesticated animals are not well understood. In this study, we analysed 75 genomes of major taurine and indicine cattle breeds (including Angus, Brahman, Gir, Holstein, Jersey, Limousin, Nelore, and Romagnola), sequenced to 11-fold coverage to identify 1,853 non-redundant CNV regions. Supported by high validation rates in array comparative genomic hybridization (CGH) and qPCR experiments, these CNV regions accounted for 3.1% (87.5 Mb) of the cattle reference genome, representing a significant increase over previous estimates of the area of the genome that is copy number variable (∼2%). Further population genetics and evolutionary genomics analyses based on these CNVs revealed the population structures of the cattle taurine and indicine breeds and uncovered potential diversely selected CNVs near important functional genes, including AOX1, ASZ1, GAT, GLYAT, and KRTAP9-1. Additionally, 121 CNV gene regions were found to be either breed specific or differentially variable across breeds, such as RICTOR in dairy breeds and PNPLA3 in beef breeds. In contrast, clusters of the PRP and PAG genes were found to be duplicated in all sequenced animals, suggesting that subfunctionalization, neofunctionalization, or overdominance play roles in diversifying those fertility-related genes. These CNV results provide a new glimpse into the diverse selection histories of cattle breeds and a basis for correlating structural variation with complex traits in the future. PMID:27085184

  1. Genomic copy number analysis of Chernobyl papillary thyroid carcinoma in the Ukrainian–American Cohort

    PubMed Central

    Selmansberger, Martin; Braselmann, Herbert; Hess, Julia; Bogdanova, Tetiana; Abend, Michael; Tronko, Mykola; Brenner, Alina; Zitzelsberger, Horst; Unger, Kristian

    2015-01-01

    One of the major consequences of the 1986 Chernobyl reactor accident was a dramatic increase in papillary thyroid carcinoma (PTC) incidence, predominantly in patients exposed to the radioiodine fallout at young age. The present study is the first on genomic copy number alterations (CNAs) of PTCs of the Ukrainian–American cohort (UkrAm) generated by array comparative genomic hybridization (aCGH). Unsupervised hierarchical clustering of CNA profiles revealed a significant enrichment of a subgroup of patients with female gender, long latency (>17 years) and negative lymph node status. Further, we identified single CNAs that were significantly associated with latency, gender, radiation dose and BRAF V600E mutation status. Multivariate analysis revealed no interactions but additive effects of parameters gender, latency and dose on CNAs. The previously identified radiation-associated gain of the chromosomal bands 7q11.22-11.23 was present in 29% of cases. Moreover, comparison of our radiation-associated PTC data set with the TCGA data set on sporadic PTCs revealed altered copy numbers of the tumor driver genes NF2 and CHEK2. Further, we integrated the CNA data with transcriptomic data that were available on a subset of the herein analyzed cohort and did not find statistically significant associations between the two molecular layers. However, applying hierarchical clustering on a ‘BRAF-like/RAS-like’ transcriptome signature split the cases into four groups, one of which containing all BRAF-positive cases validating the signature in an independent data set. PMID:26320103

  2. CNV-TV: a robust method to discover copy number variation from short sequencing reads.

    PubMed

    Duan, Junbo; Zhang, Ji-Gang; Deng, Hong-Wen; Wang, Yu-Ping

    2013-05-02

    Copy number variation (CNV) is an important structural variation (SV) in human genome. Various studies have shown that CNVs are associated with complex diseases. Traditional CNV detection methods such as fluorescence in situ hybridization (FISH) and array comparative genomic hybridization (aCGH) suffer from low resolution. The next generation sequencing (NGS) technique promises a higher resolution detection of CNVs and several methods were recently proposed for realizing such a promise. However, the performances of these methods are not robust under some conditions, e.g., some of them may fail to detect CNVs of short sizes. There has been a strong demand for reliable detection of CNVs from high resolution NGS data. A novel and robust method to detect CNV from short sequencing reads is proposed in this study. The detection of CNV is modeled as a change-point detection from the read depth (RD) signal derived from the NGS, which is fitted with a total variation (TV) penalized least squares model. The performance (e.g., sensitivity and specificity) of the proposed approach are evaluated by comparison with several recently published methods on both simulated and real data from the 1000 Genomes Project. The experimental results showed that both the true positive rate and false positive rate of the proposed detection method do not change significantly for CNVs with different copy numbers and lengthes, when compared with several existing methods. Therefore, our proposed approach results in a more reliable detection of CNVs than the existing methods.

  3. Genome-wide copy number variation in the bovine genome detected using low coverage sequence of popular beef breeds

    USDA-ARS?s Scientific Manuscript database

    Genomic structural variations are an important source of genetic diversity. Copy number variations (CNVs), gains and losses of large regions of genomic sequence between individuals of a species, are known to be associated with both diseases and phenotypic traits. Deeply sequenced genomes are often u...

  4. Integrative analysis of copy number and gene expression in breast cancer using formalin-fixed paraffin-embedded core biopsy tissue: a feasibility study.

    PubMed

    Iddawela, Mahesh; Rueda, Oscar; Eremin, Jenny; Eremin, Oleg; Cowley, Jed; Earl, Helena M; Caldas, Carlos

    2017-07-11

    An absence of reliable molecular markers has hampered individualised breast cancer treatments, and a major limitation for translational research is the lack of fresh tissue. There are, however, abundant banks of formalin-fixed paraffin-embedded (FFPE) tissue. This study evaluated two platforms available for the analysis of DNA copy number and gene expression using FFPE samples. The cDNA-mediated annealing, selection, extension, and ligation assay (DASL™) has been developed for gene expression analysis and the Molecular Inversion Probes assay (Oncoscan™), were used for copy number analysis using FFPE tissues. Gene expression and copy number were evaluated in core-biopsy samples from patients with breast cancer undergoing neoadjuvant chemotherapy (NAC). Forty-three core-biopsies were evaluated and characteristic copy number changes in breast cancers, gains in 1q, 8q, 11q, 17q and 20q and losses in 6q, 8p, 13q and 16q, were confirmed. Regions that frequently exhibited gains in tumours showing a pathological complete response (pCR) to NAC were 1q (55%), 8q (40%) and 17q (40%), whereas 11q11 (37%) gain was the most frequent change in non-pCR tumours. Gains associated with poor survival were 11q13 (62%), 8q24 (54%) and 20q (47%). Gene expression assessed by DASL correlated with immunohistochemistry (IHC) analysis for oestrogen receptor (ER) [area under the curve (AUC) = 0.95], progesterone receptor (PR)(AUC = 0.90) and human epidermal growth factor type-2 receptor (HER-2) (AUC = 0.96). Differential expression analysis between ER+ and ER- cancers identified over-expression of TTF1, LAF-4 and C-MYB (p ≤ 0.05), and between pCR vs non-pCRs, over-expression of CXCL9, AREG, B-MYB and under-expression of ABCG2. This study was an integrative analysis of copy number and gene expression using FFPE core biopsies and showed that molecular marker data from FFPE tissues were consistent with those in previous studies using fresh-frozen samples. FFPE tissue can provide

  5. Identification of copy number variants in whole-genome data using Reference Coverage Profiles

    PubMed Central

    Glusman, Gustavo; Severson, Alissa; Dhankani, Varsha; Robinson, Max; Farrah, Terry; Mauldin, Denise E.; Stittrich, Anna B.; Ament, Seth A.; Roach, Jared C.; Brunkow, Mary E.; Bodian, Dale L.; Vockley, Joseph G.; Shmulevich, Ilya; Niederhuber, John E.; Hood, Leroy

    2015-01-01

    The identification of DNA copy numbers from short-read sequencing data remains a challenge for both technical and algorithmic reasons. The raw data for these analyses are measured in tens to hundreds of gigabytes per genome; transmitting, storing, and analyzing such large files is cumbersome, particularly for methods that analyze several samples simultaneously. We developed a very efficient representation of depth of coverage (150–1000× compression) that enables such analyses. Current methods for analyzing variants in whole-genome sequencing (WGS) data frequently miss copy number variants (CNVs), particularly hemizygous deletions in the 1–100 kb range. To fill this gap, we developed a method to identify CNVs in individual genomes, based on comparison to joint profiles pre-computed from a large set of genomes. We analyzed depth of coverage in over 6000 high quality (>40×) genomes. The depth of coverage has strong sequence-specific fluctuations only partially explained by global parameters like %GC. To account for these fluctuations, we constructed multi-genome profiles representing the observed or inferred diploid depth of coverage at each position along the genome. These Reference Coverage Profiles (RCPs) take into account the diverse technologies and pipeline versions used. Normalization of the scaled coverage to the RCP followed by hidden Markov model (HMM) segmentation enables efficient detection of CNVs and large deletions in individual genomes. Use of pre-computed multi-genome coverage profiles improves our ability to analyze each individual genome. We make available RCPs and tools for performing these analyses on personal genomes. We expect the increased sensitivity and specificity for individual genome analysis to be critical for achieving clinical-grade genome interpretation. PMID:25741365

  6. Exploiting sequence similarity to validate the sensitivity of SNP arrays in detecting fine-scaled copy number variations.

    PubMed

    Wong, Gerard; Leckie, Christopher; Gorringe, Kylie L; Haviv, Izhak; Campbell, Ian G; Kowalczyk, Adam

    2010-04-15

    High-density single nucleotide polymorphism (SNP) genotyping arrays are efficient and cost effective platforms for the detection of copy number variation (CNV). To ensure accuracy in probe synthesis and to minimize production costs, short oligonucleotide probe sequences are used. The use of short probe sequences limits the specificity of binding targets in the human genome. The specificity of these short probeset sequences has yet to be fully analysed against a normal reference human genome. Sequence similarity can artificially elevate or suppress copy number measurements, and hence reduce the reliability of affected probe readings. For the purpose of detecting narrow CNVs reliably down to the width of a single probeset, sequence similarity is an important issue that needs to be addressed. We surveyed the Affymetrix Human Mapping SNP arrays for probeset sequence similarity against the reference human genome. Utilizing sequence similarity results, we identified a collection of fine-scaled putative CNVs between gender from autosomal probesets whose sequence matches various loci on the sex chromosomes. To detect these variations, we utilized our statistical approach, Detecting REcurrent Copy number change using rank-order Statistics (DRECS), and showed that its performance was superior and more stable than the t-test in detecting CNVs. Through the application of DRECS on the HapMap population datasets with multi-matching probesets filtered, we identified biologically relevant SNPs in aberrant regions across populations with known association to physical traits, such as height, covered by the span of a single probe. This provided empirical confirmation of the existence of naturally occurring narrow CNVs as well as the sensitivity of the Affymetrix SNP array technology in detecting them. The MATLAB implementation of DRECS is available at http://ww2.cs.mu.oz.au/ approximately gwong/DRECS/index.html.

  7. Integrated DNA methylation and copy-number profiling identify three clinically and biologically relevant groups of anaplastic glioma.

    PubMed

    Wiestler, Benedikt; Capper, David; Sill, Martin; Jones, David T W; Hovestadt, Volker; Sturm, Dominik; Koelsche, Christian; Bertoni, Anna; Schweizer, Leonille; Korshunov, Andrey; Weiß, Elisa K; Schliesser, Maximilian G; Radbruch, Alexander; Herold-Mende, Christel; Roth, Patrick; Unterberg, Andreas; Hartmann, Christian; Pietsch, Torsten; Reifenberger, Guido; Lichter, Peter; Radlwimmer, Bernhard; Platten, Michael; Pfister, Stefan M; von Deimling, Andreas; Weller, Michael; Wick, Wolfgang

    2014-10-01

    The outcome of patients with anaplastic gliomas varies considerably. Whether a molecular classification of anaplastic gliomas based on large-scale genomic or epigenomic analyses is superior to histopathology for reflecting distinct biological groups, predicting outcomes and guiding therapy decisions has yet to be determined. Epigenome-wide DNA methylation analysis, using a platform which also allows the detection of copy-number aberrations, was performed in a cohort of 228 patients with anaplastic gliomas (astrocytomas, oligoastrocytomas, and oligodendrogliomas), including 115 patients of the NOA-04 trial. We further compared these tumors with a group of 55 glioblastomas. Unsupervised clustering of DNA methylation patterns revealed two main groups correlated with IDH status: CpG island methylator phenotype (CIMP) positive (77.5 %) or negative (22.5 %). CIMP(pos) (IDH mutant) tumors showed a further separation based on copy-number status of chromosome arms 1p and 19q. CIMP(neg) (IDH wild type) tumors showed hallmark copy-number alterations of glioblastomas, and clustered together with CIMP(neg) glioblastomas without forming separate groups based on WHO grade. Notably, there was no molecular evidence for a distinct biological entity representing anaplastic oligoastrocytoma. Tumor classification based on CIMP and 1p/19q status was significantly associated with survival, allowing a better prediction of outcome than the current histopathological classification: patients with CIMP(pos) tumors with 1p/19q codeletion (CIMP-codel) had the best prognosis, followed by patients with CIMP(pos) tumors but intact 1p/19q status (CIMP-non-codel). Patients with CIMP(neg) anaplastic gliomas (GBM-like) had the worst prognosis. Collectively, our data suggest that anaplastic gliomas can be grouped by IDH and 1p/19q status into three molecular groups that show clear links to underlying biology and a significant association with clinical outcome in a prospective trial cohort.

  8. Copy number variation in the region harboring SOX9 gene in dogs with testicular/ovotesticular disorder of sex development (78,XX; SRY-negative).

    PubMed

    Marcinkowska-Swojak, Malgorzata; Szczerbal, Izabela; Pausch, Hubert; Nowacka-Woszuk, Joanna; Flisikowski, Krzysztof; Dzimira, Stanislaw; Nizanski, Wojciech; Payan-Carreira, Rita; Fries, Ruedi; Kozlowski, Piotr; Switonski, Marek

    2015-10-01

    Although the disorder of sex development in dogs with female karyotype (XX DSD) is quite common, its molecular basis is still unclear. Among mutations underlying XX DSD in mammals are duplication of a long sequence upstream of the SOX9 gene (RevSex) and duplication of the SOX9 gene (also observed in dogs). We performed a comparative analysis of 16 XX DSD and 30 control female dogs, using FISH and MLPA approaches. Our study was focused on a region harboring SOX9 and a region orthologous to the human RevSex (CanRevSex), which was located by in silico analysis downstream of SOX9. Two highly polymorphic copy number variable regions (CNVRs): CNVR1 upstream of SOX9 and CNVR2 encompassing CanRevSex were identified. Although none of the detected copy number variants were specific to either affected or control animals, we observed that the average number of copies in CNVR1 was higher in XX DSD. No copy variation of SOX9 was observed. Our extensive studies have excluded duplication of SOX9 as the common cause of XX DSD in analyzed samples. However, it remains possible that the causative mutation is hidden in highly polymorphic CNVR1.

  9. Copy number variation in the region harboring SOX9 gene in dogs with testicular/ovotesticular disorder of sex development (78,XX; SRY-negative)

    PubMed Central

    Marcinkowska-Swojak, Malgorzata; Szczerbal, Izabela; Pausch, Hubert; Nowacka-Woszuk, Joanna; Flisikowski, Krzysztof; Dzimira, Stanislaw; Nizanski, Wojciech; Payan-Carreira, Rita; Fries, Ruedi; Kozlowski, Piotr; Switonski, Marek

    2015-01-01

    Although the disorder of sex development in dogs with female karyotype (XX DSD) is quite common, its molecular basis is still unclear. Among mutations underlying XX DSD in mammals are duplication of a long sequence upstream of the SOX9 gene (RevSex) and duplication of the SOX9 gene (also observed in dogs). We performed a comparative analysis of 16 XX DSD and 30 control female dogs, using FISH and MLPA approaches. Our study was focused on a region harboring SOX9 and a region orthologous to the human RevSex (CanRevSex), which was located by in silico analysis downstream of SOX9. Two highly polymorphic copy number variable regions (CNVRs): CNVR1 upstream of SOX9 and CNVR2 encompassing CanRevSex were identified. Although none of the detected copy number variants were specific to either affected or control animals, we observed that the average number of copies in CNVR1 was higher in XX DSD. No copy variation of SOX9 was observed. Our extensive studies have excluded duplication of SOX9 as the common cause of XX DSD in analyzed samples. However, it remains possible that the causative mutation is hidden in highly polymorphic CNVR1. PMID:26423656

  10. Computational correction of copy number effect improves specificity of CRISPR-Cas9 essentiality screens in cancer cells.

    PubMed

    Meyers, Robin M; Bryan, Jordan G; McFarland, James M; Weir, Barbara A; Sizemore, Ann E; Xu, Han; Dharia, Neekesh V; Montgomery, Phillip G; Cowley, Glenn S; Pantel, Sasha; Goodale, Amy; Lee, Yenarae; Ali, Levi D; Jiang, Guozhi; Lubonja, Rakela; Harrington, William F; Strickland, Matthew; Wu, Ting; Hawes, Derek C; Zhivich, Victor A; Wyatt, Meghan R; Kalani, Zohra; Chang, Jaime J; Okamoto, Michael; Stegmaier, Kimberly; Golub, Todd R; Boehm, Jesse S; Vazquez, Francisca; Root, David E; Hahn, William C; Tsherniak, Aviad

    2017-12-01

    The CRISPR-Cas9 system has revolutionized gene editing both at single genes and in multiplexed loss-of-function screens, thus enabling precise genome-scale identification of genes essential for proliferation and survival of cancer cells. However, previous studies have reported that a gene-independent antiproliferative effect of Cas9-mediated DNA cleavage confounds such measurement of genetic dependency, thereby leading to false-positive results in copy number-amplified regions. We developed CERES, a computational method to estimate gene-dependency levels from CRISPR-Cas9 essentiality screens while accounting for the copy number-specific effect. In our efforts to define a cancer dependency map, we performed genome-scale CRISPR-Cas9 essentiality screens across 342 cancer cell lines and applied CERES to this data set. We found that CERES decreased false-positive results and estimated sgRNA activity for both this data set and previously published screens performed with different sgRNA libraries. We further demonstrate the utility of this collection of screens, after CERES correction, for identifying cancer-type-specific vulnerabilities.

  11. Computational correction of copy-number effect improves specificity of CRISPR-Cas9 essentiality screens in cancer cells

    PubMed Central

    Meyers, Robin M.; Bryan, Jordan G.; McFarland, James M.; Weir, Barbara A.; Sizemore, Ann E.; Xu, Han; Dharia, Neekesh V.; Montgomery, Phillip G.; Cowley, Glenn S.; Pantel, Sasha; Goodale, Amy; Lee, Yenarae; Ali, Levi D.; Jiang, Guozhi; Lubonja, Rakela; Harrington, William F.; Strickland, Matthew; Wu, Ting; Hawes, Derek C.; Zhivich, Victor A.; Wyatt, Meghan R.; Kalani, Zohra; Chang, Jaime J.; Okamoto, Michael; Stegmaier, Kimberly; Golub, Todd R.; Boehm, Jesse S.; Vazquez, Francisca; Root, David E.; Hahn, William C.; Tsherniak, Aviad

    2017-01-01

    The CRISPR-Cas9 system has revolutionized gene editing both on single genes and in multiplexed loss-of-function screens, enabling precise genome-scale identification of genes essential to proliferation and survival of cancer cells1,2. However, previous studies reported that a gene-independent anti-proliferative effect of Cas9-mediated DNA cleavage confounds such measurement of genetic dependency, leading to false positive results in copy number amplified regions3,4. We developed CERES, a computational method to estimate gene dependency levels from CRISPR-Cas9 essentiality screens while accounting for the copy-number-specific effect. As part of our efforts to define a cancer dependency map, we performed genome-scale CRISPR-Cas9 essentiality screens across 342 cancer cell lines and applied CERES to this dataset. We found that CERES reduced false positive results and estimated sgRNA activity for both this dataset and previously published screens performed with different sgRNA libraries. Here, we demonstrate the utility of this collection of screens, upon CERES correction, in revealing cancer-type-specific vulnerabilities. PMID:29083409

  12. Normal exon copy number of the GLI2 and GLI3 genes in patients with esophageal atresia.

    PubMed

    Bednarczyk, D; Smigiel, R; Patkowski, D; Laczmanska, I; Lebioda, A; Laczmanski, L; Sasiadek, M M

    2013-01-01

    Esophageal atresia (EA) is a congenital developmental defect of the alimentary tract concerning the interruption of the esophagus with or without connection to the trachea. The incidence of EA is 1 in 3000-3500 of live-born infants, and occurs in both isolated and syndromic (in combination with abnormalities in other organ systems) forms. The molecular mechanisms underlying the development of EA are poorly understood. Knockout studies in mice indicate that genes like Sonic hedgehog, Gli2, and Gli3 play a role in the etiology of EA. These facts led us to hypothesize that Sonic hedgehog-GLI gene rearrangements are associated with EA in humans. To test this hypothesis, we screened patients with isolated and syndromic EA for GLI2 and/or GLI3 microrearrangements using methods to estimate the copy number (Multiplex Ligation-dependent Probe Amplification, real-time polymerase chain reaction). To our best knowledge this is the first study assessing copy number of GLI2 and GLI3 genes in patients with EA. © 2013 Wiley Periodicals, Inc. and the International Society for Diseases of the Esophagus.

  13. No evidence for mosaic pathogenic copy number variations in cardiac tissue from patients with congenital heart malformations.

    PubMed

    Winberg, Johanna; Berggren, Håkan; Malm, Torsten; Johansson, Sune; Johansson Ramgren, Jens; Nilsson, Boris; Liedén, Agne; Nordenskjöld, Agneta; Gustavsson, Peter; Nordgren, Ann

    2015-03-01

    The aim of this study was to investigate if pathogenic copy number variations (CNVs) are present in mosaic form in patients with congenital heart malformations. We have collected cardiac tissue and blood samples from 23 patients with congenital heart malformations that underwent cardiac surgery and screened for mosaic gene dose alterations restricted to cardiac tissue using array comparative genomic hybridization (array CGH). We did not find evidence of CNVs in mosaic form after array CGH analysis. Pathogenic CNVs that were present in both cardiac tissue and blood were detected in 2/23 patients (9%), and in addition we found several constitutional CNVs of unclear clinical significance. This is the first study investigating mosaicism for CNVs in heart tissue compared to peripheral blood and the results do not indicate that pathogenic mosaic copy number changes are common in patients with heart malformations. Importantly, in line with previous studies, our results show that constitutional pathogenic CNVs are important factors contributing to congenital heart malformations. Copyright © 2015 Elsevier Masson SAS. All rights reserved.

  14. Bamgineer: Introduction of simulated allele-specific copy number variants into exome and targeted sequence data sets.

    PubMed

    Samadian, Soroush; Bruce, Jeff P; Pugh, Trevor J

    2018-03-01

    Somatic copy number variations (CNVs) play a crucial role in development of many human cancers. The broad availability of next-generation sequencing data has enabled the development of algorithms to computationally infer CNV profiles from a variety of data types including exome and targeted sequence data; currently the most prevalent types of cancer genomics data. However, systemic evaluation and comparison of these tools remains challenging due to a lack of ground truth reference sets. To address this need, we have developed Bamgineer, a tool written in Python to introduce user-defined haplotype-phased allele-specific copy number events into an existing Binary Alignment Mapping (BAM) file, with a focus on targeted and exome sequencing experiments. As input, this tool requires a read alignment file (BAM format), lists of non-overlapping genome coordinates for introduction of gains and losses (bed file), and an optional file defining known haplotypes (vcf format). To improve runtime performance, Bamgineer introduces the desired CNVs in parallel using queuing and parallel processing on a local machine or on a high-performance computing cluster. As proof-of-principle, we applied Bamgineer to a single high-coverage (mean: 220X) exome sequence file from a blood sample to simulate copy number profiles of 3 exemplar tumors from each of 10 tumor types at 5 tumor cellularity levels (20-100%, 150 BAM files in total). To demonstrate feasibility beyond exome data, we introduced read alignments to a targeted 5-gene cell-free DNA sequencing library to simulate EGFR amplifications at frequencies consistent with circulating tumor DNA (10, 1, 0.1 and 0.01%) while retaining the multimodal insert size distribution of the original data. We expect Bamgineer to be of use for development and systematic benchmarking of CNV calling algorithms by users using locally-generated data for a variety of applications. The source code is freely available at http://github.com/pughlab/bamgineer.

  15. The effect of input DNA copy number on genotype call and characterising SNP markers in the humpback whale genome using a nanofluidic array.

    PubMed

    Bhat, Somanath; Polanowski, Andrea M; Double, Mike C; Jarman, Simon N; Emslie, Kerry R

    2012-01-01

    Recent advances in nanofluidic technologies have enabled the use of Integrated Fluidic Circuits (IFCs) for high-throughput Single Nucleotide Polymorphism (SNP) genotyping (GT). In this study, we implemented and validated a relatively low cost nanofluidic system for SNP-GT with and without Specific Target Amplification (STA). As proof of principle, we first validated the effect of input DNA copy number on genotype call rate using well characterised, digital PCR (dPCR) quantified human genomic DNA samples and then implemented the validated method to genotype 45 SNPs in the humpback whale, Megaptera novaeangliae, nuclear genome. When STA was not incorporated, for a homozygous human DNA sample, reaction chambers containing, on average 9 to 97 copies, showed 100% call rate and accuracy. Below 9 copies, the call rate decreased, and at one copy it was 40%. For a heterozygous human DNA sample, the call rate decreased from 100% to 21% when predicted copies per reaction chamber decreased from 38 copies to one copy. The tightness of genotype clusters on a scatter plot also decreased. In contrast, when the same samples were subjected to STA prior to genotyping a call rate and a call accuracy of 100% were achieved. Our results demonstrate that low input DNA copy number affects the quality of data generated, in particular for a heterozygous sample. Similar to human genomic DNA, a call rate and a call accuracy of 100% was achieved with whale genomic DNA samples following multiplex STA using either 15 or 45 SNP-GT assays. These calls were 100% concordant with their true genotypes determined by an independent method, suggesting that the nanofluidic system is a reliable platform for executing call rates with high accuracy and concordance in genomic sequences derived from biological tissue.

  16. Impact of parental Bos taurus and Bos indicus origins on copy number variation in traditional Chinese cattle breeds

    USDA-ARS?s Scientific Manuscript database

    Copy number variation (CNV) is an important component of genomic structural variation and plays a role not only in evolutionary diversification but also domestication. Chinese cattle were derived from Bos taurus and Bos indicus, and several breeds presumably are of hybrid origin, but the evolution o...

  17. Exploring the feasibility of using copy number variants as genetic markers through large-scale whole genome sequencing experiments

    USDA-ARS?s Scientific Manuscript database

    Copy number variants (CNV) are large scale duplications or deletions of genomic sequence that are caused by a diverse set of molecular phenomena that are distinct from single nucleotide polymorphism (SNP) formation. Due to their different mechanisms of formation, CNVs are often difficult to track us...

  18. Accurate measure of transgene copy number in crop plants using droplet digital PCR

    USDA-ARS?s Scientific Manuscript database

    Genetic transformation is a powerful means for the improvement of crop plants, but requires labor- and resource-intensive methods. An efficient method for identifying single-copy transgene insertion events from a population of independent transgenic lines is desirable. Currently, transgene copy numb...

  19. Copy number variants in patients with short stature

    PubMed Central

    van Duyvenvoorde, Hermine A; Lui, Julian C; Kant, Sarina G; Oostdijk, Wilma; Gijsbers, Antoinet CJ; Hoffer, Mariëtte JV; Karperien, Marcel; Walenkamp, Marie JE; Noordam, Cees; Voorhoeve, Paul G; Mericq, Verónica; Pereira, Alberto M; Claahsen-van de Grinten, Hedi L; van Gool, Sandy A; Breuning, Martijn H; Losekoot, Monique; Baron, Jeffrey; Ruivenkamp, Claudia AL; Wit, Jan M

    2014-01-01

    Height is a highly heritable and classic polygenic trait. Recent genome-wide association studies (GWAS) have revealed that at least 180 genetic variants influence adult height. However, these variants explain only about 10% of the phenotypic variation in height. Genetic analysis of short individuals can lead to the discovery of novel rare gene defects with a large effect on growth. In an effort to identify novel genes associated with short stature, genome-wide analysis for copy number variants (CNVs), using single-nucleotide polymorphism arrays, in 162 patients (149 families) with short stature was performed. Segregation analysis was performed if possible, and genes in CNVs were compared with information from GWAS, gene expression in rodents' growth plates and published information. CNVs were detected in 40 families. In six families, a known cause of short stature was found (SHOX deletion or duplication, IGF1R deletion), in two combined with a de novo potentially pathogenic CNV. Thirty-three families had one or more potentially pathogenic CNVs (n=40). In 24 of these families, segregation analysis could be performed, identifying three de novo CNVs and nine CNVs segregating with short stature. Four were located near loci associated with height in GWAS (ADAMTS17, TULP4, PRKG2/BMP3 and PAPPA). Besides six CNVs known to be causative for short stature, 40 CNVs with possible pathogenicity were identified. Segregation studies and bioinformatics analysis suggested various potential candidate genes. PMID:24065112

  20. The Role of Constitutional Copy Number Variants in Breast Cancer

    PubMed Central

    Walker, Logan C.; Wiggins, George A.R.; Pearson, John F.

    2015-01-01

    Constitutional copy number variants (CNVs) include inherited and de novo deviations from a diploid state at a defined genomic region. These variants contribute significantly to genetic variation and disease in humans, including breast cancer susceptibility. Identification of genetic risk factors for breast cancer in recent years has been dominated by the use of genome-wide technologies, such as single nucleotide polymorphism (SNP)-arrays, with a significant focus on single nucleotide variants. To date, these large datasets have been underutilised for generating genome-wide CNV profiles despite offering a massive resource for assessing the contribution of these structural variants to breast cancer risk. Technical challenges remain in determining the location and distribution of CNVs across the human genome due to the accuracy of computational prediction algorithms and resolution of the array data. Moreover, better methods are required for interpreting the functional effect of newly discovered CNVs. In this review, we explore current and future application of SNP array technology to assess rare and common CNVs in association with breast cancer risk in humans. PMID:27600231

  1. Undifferentiated Sarcomas in Children Harbor Clinically Relevant Oncogenic Fusions and Gene Copy-Number Alterations: A Report from the Children's Oncology Group.

    PubMed

    Laetsch, Theodore W; Roy, Angshumoy; Xu, Lin; Black, Jennifer O; Coffin, Cheryl M; Chi, Yueh-Yun; Tian, Jing; Spunt, Sheri L; Hawkins, Douglas S; Bridge, Julia A; Parsons, D Williams; Skapek, Stephen X

    2018-04-24

    Purpose: A comprehensive analysis of the genomics of undifferentiated sarcomas (UDS) is lacking. We analyzed copy-number alterations and fusion status in patients with UDS prospectively treated on Children's Oncology Group protocol ARST0332. Experimental Design: Copy-number alterations were assessed by OncoScan FFPE Express on 32 UDS. Whole-exome and transcriptome libraries from eight tumors with sufficient archived material were sequenced on HiSeq (2 × 100 bp). Targeted RNA-sequencing using Archer chemistry was performed on two additional cases. Results: Five-year overall survival for patients with UDS was 83% (95% CI, 69%-97%) with risk-adapted therapy (surgery, chemotherapy, and radiotherapy). Both focal and arm-level copy-number alterations were common including gain of 1q (8/32, 25%) and loss of 1p (7/32, 22%), both of which occurred more often in clinically defined high-risk tumors. Tumors with both loss of 1p and gain of 1q carried an especially poor prognosis with a 5-year event-free survival of 20%. GISTIC analysis identified recurrent amplification of FGF1 on 5q31.3 ( q = 0.03) and loss of CDKN2A and CDKN2B on 9p21.3 ( q = 0.07). Known oncogenic fusions were identified in eight of 10 cases analyzed by next-generation sequencing. Conclusions: Pediatric UDS generally has a good outcome with risk-adapted therapy. A high-risk subset of patients whose tumors have copy-number loss of 1p and gain of 1q was identified with only 20% survival. Oncogenic fusions are common in UDS, and next-generation sequencing should be considered for children with UDS to refine the diagnosis and identify potentially targetable drivers. Clin Cancer Res; 1-10. ©2018 AACR. ©2018 American Association for Cancer Research.

  2. Assessment of the role of copy-number variants in 150 patients with congenital heart defects.

    PubMed

    Derwińska, Katarzyna; Bartnik, Magdalena; Wiśniowiecka-Kowalnik, Barbara; Jagła, Mateusz; Rudziński, Andrzej; Pietrzyk, Jacek J; Kawalec, Wanda; Ziółkowska, Lidia; Kutkowska-Kaźmierczak, Anna; Gambin, Tomasz; Sykulski, Maciej; Shaw, Chad A; Gambin, Anna; Mazurczak, Tadeusz; Obersztyn, Ewa; Bocian, Ewa; Stankiewicz, Paweł

    2012-01-01

    Congenital heart defects are the most common group of major birth anomalies and one of the leading causes of infant deaths. Mendelian and chromosomal syndromes account for about 20% of congenital heart defects and in some cases are associated with other malformations, intellectual disability, and/or dysmorphic features. The remarkable conservation of genetic pathways regulating heart development in animals suggests that genetic factors can be responsible for a significantly higher percentage of cases. Assessment of the role of CNVs in the etiology of congenital heart defects using microarray studies. Genome-wide array comparative genomic hybridization, targeting genes known to play an important role in heart development or responsible for abnormal cardiac phenotype was used in the study on 150 patients. In addition, we have used multiplex ligation-dependent probe amplification specific for chromosome 22q11.2 region. We have identified 21 copy-number variants, including 13 known causative recurrent rearrangements (12 deletions 22q11.2 and one deletion 7q11.23), three potentially pathogenic duplications (5q14.2, 15q13.3, and 22q11.2), and five variants likely benign for cardiac anomalies. We suggest that abnormal copy-number of the ARRDC3 and KLF13 genes can be responsible for heart defects. Our study demonstrates that array comparative genomic hybridization enables detection of clinically significant chromosomal imbalances in patients with congenital heart defects.

  3. Genome-wide copy number variation in the bovine genome detected using low coverage sequence of popular beef breeds

    USDA-ARS?s Scientific Manuscript database

    Copy number variations (CNVs) are large insertions, deletions or duplications in the genome that vary between members of a species and are known to affect a wide variety of phenotypic traits. In this study, we identified CNVs in a population of bulls using low coverage next-generation sequence data....

  4. PPP1R12A Copy Number Is Associated with Clinical Outcomes of Stage III CRC Receiving Oxaliplatin-Based Chemotherapy

    PubMed Central

    Zhang, Chenbo; Li, Ajian; Li, Huaguang; Peng, Kangsheng; Wei, Qing; Lin, Moubin; Liu, Zhanju; Yin, Lu; Li, Jianwen

    2015-01-01

    Aim. To investigate the correlation between PPP1R12A gene copy number and clinical outcomes of oxaliplatin-based regimen in stage III colorectal cancer (CRC). Methods. A total of 139 paraffin-embedded tissue samples of stage III CRC patients who received oxaliplatin-based treatment after radical surgery were recruited. Genomic DNA was extracted and purified from paraffin-embedded sections. Quantitative PCR methods were used to detect the relative copy number (RCN) of PPP1R12A. Results. Statistical analysis demonstrated that low PPP1R12A RCN was associated with poor RFS (HR = 2.186, 95% CI: 1.293–3.696; P = 0.003) and OS (HR = 2.782, 95% CI: 1.531–5.052; P < 0.001). Additionally, when patients were stratified according to subgroups of stage III and tumor location, poor RFS and OS were also observed in the low PPP1R12A RCN group with significance (RFS: IIIB HR = 2.870, P < 0.001; colon HR = 1.910, P = 0.037; OS: IIIB HR = 3.527, P < 0.001; IIIC HR = 2.662, P = 0.049; rectum HR = 4.229, P = 0.002). Conclusion. Our findings suggest the copy number of PPP1R12A can independently predict recurrence and overall survival of stage III colorectal cancer patients receiving oxaliplatin-based chemotherapy. PMID:26113782

  5. Stable transformation of a mosquito cell line results in extraordinarily high copy numbers of the plasmid.

    PubMed Central

    Monroe, T J; Muhlmann-Diaz, M C; Kovach, M J; Carlson, J O; Bedford, J S; Beaty, B J

    1992-01-01

    Stable incorporation of high copy numbers (greater than 10,000 per cell) of a plasmid vector containing a gene conferring resistance to the antibiotic hygromycin was achieved in a cell line derived from the Aedes albopictus mosquito. Plasmid sequences were readily observed by ethidium bromide staining of cellular DNA after restriction endonuclease digestion and agarose gel electrophoresis. The plasmid was demonstrated by in situ hybridization to be present in large arrays integrated in metaphase chromosomes and in minute and double-minute replicating elements. In one subclone, approximately 60,000 copies of the plasmid were organized in a large array that resembles a chromosome, morphologically and in the segregation of its chromatids during anaphase. The original as well as modified versions of the plasmid were rescued by transformation of Escherichia coli using total cellular DNA. Southern blot analyses of recovered plasmids indicate the presence of mosquito-derived sequences. Images PMID:1631052

  6. Independent localization of MAP2, CaMKIIα and β-actin RNAs in low copy numbers

    PubMed Central

    Mikl, Martin; Vendra, Georgia; Kiebler, Michael A

    2011-01-01

    Messenger RNA localization involves the assembly of ribonucleoprotein particles (RNPs) and their subsequent transport along the cytoskeleton to their final destination. Here, we provide new evidence that microtubule-associated protein 2 (MAP2), calcium/calmodulin-dependent protein kinase II (CaMKIIα) and β-actin RNAs localize to dendrites in distinct RNPs, which contain—unexpectedly—very few RNA molecules. The number of MAP2 molecules per particle is affected by synaptic activity and Staufen 2, indicating that RNP composition is tightly controlled. Our data suggest that the independent localization of individual RNAs in low copy numbers could contribute to tighter temporal and spatial control of expression in neurons and synapse-specific plasticity. PMID:21869818

  7. Copy number gain of MYCN gene is a recurrent genetic aberration and favorable prognostic factor in Chinese pediatric neuroblastoma patients

    PubMed Central

    2013-01-01

    Background Amplification of MYCN oncogene is an established marker indicating aggressive tumor progression of neuroblastoma (NBL). But copy number analyses of MYCN gene in ganglioneuroblastoma (GNBL) and ganglioneuroma(GN) is poorly described in the literature. In the study, we evaluated the copy number aberrations of MYCN gene in clinical samples of NBLs, GNBLs and GNs and analyzed their association with clinical outcome of the patients. Methods In this study, we analyzed MYCN gene and chromosome 2 aneusomy by using fluorescence in situ hybridization (FISH) method in a total of 220 patients with NBL, GNBL and GN cases. Kaplan-Meier curves were generated by using SPSS 12.0 software. Results Of 220 patients, 178 (81.0%) were NBLs, 32 (14.5%) were GNBLs and 10 (4.5%) were GNs. MYCN gain is a recurrent genetic aberration of neuroblastic tumors (71.8%, 158/220), which was found in 129 NBLs (58.6%, 129/220), 25 GNBLs (11.4%, 25/220) and 4 GN cases (1.8%, 4/220). However, MYCN amplification was only present in 24 NBL tumors (13.5%, 24/178) and 1 GNBL case (3.1%, 1/32). Kaplan-Meier survival analysis indicated that MYCN amplification is significantly correlated with decreased overall survival in NBLs (P=0.017). Furthermore, a better prognosis trend was observed in patients with MYCN gain tumors compared with those with MYCN gene normal copy number tumors and MYCN amplification tumors (P=0.012). Conclusions In summary, the frequency of MYCN amplification in NBLs is high and is rarely observed in GNBLs and GNs, which suggest MYCN plays an important role in neuroblastic tumors differentiation. MYCN gain appeared to define a subgroup of NBLs with much better outcome and classification of MYCN gene copy number alteration as three groups (amplification, gain and normal) can provide a powerful prognostic indicator in NBLs. Virtual Slides The virtual slide(s) for this article can be found here: http://www.diagnosticpathology.diagnomx.eu/vs/6417541528559124 PMID:23320395

  8. Influences of AMY1 gene copy number and protein expression on salivary alpha-amylase activity before and after citric acid stimulation in splenic asthenia children.

    PubMed

    Yang, Zemin; Lin, Jing; Chen, Longhui; Zhang, Min; Yang, Xiaorong; Chen, Weiwen

    2015-06-01

    To compare the correlations between salivary alpha-amylase (sAA) activity and amylase, alpha 1 (salivary) gene (AMYl) copy number or its gene expression between splenic asthenia and healthy children, and investigate the reasons of attenuated sAA activity ratio before and after citric acid stimulation in splenic asthenia children. Saliva samples from 20 splenic asthenia children and 29 healthy children were collected before and after citric acid stimulation. AMYl copy number, sAA activity, and total sAA and glycosylated sAA contents were determined, and their correlations were analyzed. Although splenic asthenia and healthy children had no differences in AMY1 copy number, splenic asthenia children had positive correlations between AMY1 copy number and sAA activity before or after citric acid stimulation. Splenic asthenia children had a higher sAA glycosylated proportion ratio and glycosylated sAA content ratio, while their total sAA content ratio and sAA activity ratio were lower compared with healthy children. The glycosylated sAA content ratio was higher than the total sAA content ratio in both groups. Splenic asthenia and healthy children had positive correlations between total sAA or glycosylated sAA content and sAA activity. However, the role played by glycosylated sAA content in sAA activity in healthy children increased after citric acid stimulation, while it decreased in splenic asthenia children. Genetic factors like AMY1 copy number variations, and more importantly, sAA glycosylation abnormalities leading to attenuated sAA activity after citric acid stimulation, which were the main reasons of the attenuated sAA activity ratio in splenic asthenia children compared with healthy children.

  9. Integrated genomic classification of melanocytic tumors of the central nervous system using mutation analysis, copy number alterations and DNA methylation profiling.

    PubMed

    Griewank, Klaus; Koelsche, Christian; van de Nes, Johannes A P; Schrimpf, Daniel; Gessi, Marco; Möller, Inga; Sucker, Antje; Scolyer, Richard A; Buckland, Michael E; Murali, Rajmohan; Pietsch, Torsten; von Deimling, Andreas; Schadendorf, Dirk

    2018-06-11

    In the central nervous system, distinguishing primary leptomeningeal melanocytic tumors from melanoma metastases and predicting their biological behavior solely using histopathologic criteria can be challenging. We aimed to assess the diagnostic and prognostic value of integrated molecular analysis. Targeted next-generation-sequencing, array-based genome-wide methylation analysis and BAP1 immunohistochemistry was performed on the largest cohort of central nervous system melanocytic tumors analyzed to date, incl. 47 primary tumors of the central nervous system, 16 uveal melanomas. 13 cutaneous melanoma metastasis and 2 blue nevus-like melanomas. Gene mutation, DNA-methylation and copy-number profiles were correlated with clinicopathological features. Combining mutation, copy-number and DNA-methylation profiles clearly distinguished cutaneous melanoma metastases from other melanocytic tumors. Primary leptomeningeal melanocytic tumors, uveal melanomas and blue nevus-like melanoma showed common DNA-methylation, copy-number alteration and gene mutation signatures. Notably, tumors demonstrating chromosome 3 monosomy and BAP1 alterations formed a homogeneous subset within this group. Integrated molecular profiling aids in distinguishing primary from metastatic melanocytic tumors of the central nervous system. Primary leptomeningeal melanocytic tumors, uveal melanoma and blue nevus-like melanoma share molecular similarity with chromosome 3 and BAP1 alterations markers of poor prognosis. Copyright ©2018, American Association for Cancer Research.

  10. Distribution, functional impact, and origin mechanisms of copy number variation in the barley genome

    PubMed Central

    2013-01-01

    Background There is growing evidence for the prevalence of copy number variation (CNV) and its role in phenotypic variation in many eukaryotic species. Here we use array comparative genomic hybridization to explore the extent of this type of structural variation in domesticated barley cultivars and wild barleys. Results A collection of 14 barley genotypes including eight cultivars and six wild barleys were used for comparative genomic hybridization. CNV affects 14.9% of all the sequences that were assessed. Higher levels of CNV diversity are present in the wild accessions relative to cultivated barley. CNVs are enriched near the ends of all chromosomes except 4H, which exhibits the lowest frequency of CNVs. CNV affects 9.5% of the coding sequences represented on the array and the genes affected by CNV are enriched for sequences annotated as disease-resistance proteins and protein kinases. Sequence-based comparisons of CNV between cultivars Barke and Morex provided evidence that DNA repair mechanisms of double-strand breaks via single-stranded annealing and synthesis-dependent strand annealing play an important role in the origin of CNV in barley. Conclusions We present the first catalog of CNVs in a diploid Triticeae species, which opens the door for future genome diversity research in a tribe that comprises the economically important cereal species wheat, barley, and rye. Our findings constitute a valuable resource for the identification of CNV affecting genes of agronomic importance. We also identify potential mechanisms that can generate variation in copy number in plant genomes. PMID:23758725

  11. Detection of genome-wide copy number variants in myeloid malignancies using next-generation sequencing.

    PubMed

    Shen, Wei; Paxton, Christian N; Szankasi, Philippe; Longhurst, Maria; Schumacher, Jonathan A; Frizzell, Kimberly A; Sorrells, Shelly M; Clayton, Adam L; Jattani, Rakhi P; Patel, Jay L; Toydemir, Reha; Kelley, Todd W; Xu, Xinjie

    2018-04-01

    Genetic abnormalities, including copy number variants (CNV), copy number neutral loss of heterozygosity (CN-LOH) and gene mutations, underlie the pathogenesis of myeloid malignancies and serve as important diagnostic, prognostic and/or therapeutic markers. Currently, multiple testing strategies are required for comprehensive genetic testing in myeloid malignancies. The aim of this proof-of-principle study was to investigate the feasibility of combining detection of genome-wide large CNVs, CN-LOH and targeted gene mutations into a single assay using next-generation sequencing (NGS). For genome-wide CNV detection, we designed a single nucleotide polymorphism (SNP) sequencing backbone with 22 762 SNP regions evenly distributed across the entire genome. For targeted mutation detection, 62 frequently mutated genes in myeloid malignancies were targeted. We combined this SNP sequencing backbone with a targeted mutation panel, and sequenced 9 healthy individuals and 16 patients with myeloid malignancies using NGS. We detected 52 somatic CNVs, 11 instances of CN-LOH and 39 oncogenic mutations in the 16 patients with myeloid malignancies, and none in the 9 healthy individuals. All CNVs and CN-LOH were confirmed by SNP microarray analysis. We describe a genome-wide SNP sequencing backbone which allows for sensitive detection of genome-wide CNVs and CN-LOH using NGS. This proof-of-principle study has demonstrated that this strategy can provide more comprehensive genetic profiling for patients with myeloid malignancies using a single assay. © Article author(s) (or their employer(s) unless otherwise stated in the text of the article) 2018. All rights reserved. No commercial use is permitted unless otherwise expressly granted.

  12. The relationship of glutathione-S-transferases copy number variation and indoor air pollution to symptoms and markers of respiratory disease.

    PubMed

    Hersoug, Lars-Georg; Brasch-Andersen, Charlotte; Husemoen, Lise Lotte Nystrup; Sigsgaard, Torben; Linneberg, Allan

    2012-07-01

    Exposure to particulate matter (PM) may induce inflammation and oxidative stress in the airways. Carriers of null polymorphisms of glutathione S-transferases (GSTs), which detoxify reactive oxygen species, may be particularly susceptible to the effects of PM. To investigate whether deletions of GSTM1 and GSTT1 modify the potential effects of exposure to indoor sources of PM on symptoms and objective markers of respiratory disease. We conducted a population-based, cross-sectional study of 3471 persons aged 18-69 years. Information about exposure to indoor sources of PM and respiratory symptoms was obtained by a self-administered questionnaire. In addition, measurements of lung function (spirometry) and fractional exhaled nitric oxide were performed. Copy number variation of GSTM1 and GSTT1 was determined by polymerase chain reaction-based assays. We found that none of the symptoms and objective markers of respiratory disease were significantly associated with the GST null polymorphisms. An increasing number of positive alleles of the GSTM1 polymorphism tended to be associated lower prevalence of wheeze, cough, and high forced expiratory volume in 1 s (FEV(1) ), but these trends were not statistically significant. Furthermore, we did not observe any statistically significant interactions between GST copy number variation and exposure to indoor sources of PM in relation to respiratory symptoms and markers. In this adult population, GST copy number variations were not significantly associated with respiratory outcomes and did not modify the effects of self-reported exposure to indoor sources of PM on respiratory outcomes. © 2011 Blackwell Publishing Ltd.

  13. Analysis of Major Genome Loci Underlying Artemisinin Resistance and pfmdr1 Copy Number in pre- and post-ACTs in Western Kenya

    PubMed Central

    Ngalah, Bidii S.; Ingasia, Luiser A.; Cheruiyot, Agnes C.; Chebon, Lorna J.; Juma, Dennis W.; Muiruri, Peninah; Onyango, Irene; Ogony, Jack; Yeda, Redemptah A.; Cheruiyot, Jelagat; Mbuba, Emmanuel; Mwangoka, Grace; Achieng, Angela O.; Ng'ang'a, Zipporah; Andagalu, Ben; Akala, Hoseah M.; Kamau, Edwin

    2015-01-01

    Genetic analysis of molecular markers is critical in tracking the emergence and/or spread of artemisinin resistant parasites. Clinical isolates collected in western Kenya pre- and post- introduction of artemisinin combination therapies (ACTs) were genotyped at SNP positions in regions of strong selection signatures on chromosome 13 and 14, as described in Southeast Asia (SEA). Twenty five SNPs were genotyped using Sequenom MassArray and pfmdr1 gene copy number by real-time PCR. Parasite clearance half-life and in vitro drug sensitivity testing were performed using standard methods. One hundred twenty nine isolates were successfully analyzed. Fifteen SNPs were present in pre-ACTs isolates and six in post-ACTs. None of the SNPs showed association with parasite clearance half-life. Post-ACTs parasites had significantly higher pfmdr1 copy number compared to pre-ACTs. Seven of eight parasites with multiple pfmdr1 were post-ACTs. When in vitro IC50s were compared for parasites with single vs. multiple gene copies, only amodiaquine and piperaquine reached statistical significance. Data showed SNPs on chromosome 13 and 14 had different frequency and trend in western Kenya parasites compared SEA. Increase in pfmdr1 gene copy is consistent with recent studies in African parasites. Data suggests genetic signature of artemisinin resistance in Africa might be different from SEA. PMID:25655315

  14. Pathogenic copy number variants in patients with congenital hypopituitarism associated with complex phenotypes.

    PubMed

    Correa, Fernanda A; Jorge, Alexander Al; Nakaguma, Marilena; Canton, Ana Pm; Costa, Silvia S; Funari, Mariana F; Lerario, Antonio M; Franca, Marcela M; Carvalho, Luciani R; Krepischi, Ana Cv; Arnhold, Ivo Jp; Rosenberg, Carla; Mendonca, Berenice B

    2018-03-01

    The aetiology of congenital hypopituitarism (CH) is unknown in most patients. Rare copy number variants (CNVs) have been implicated as the cause of genetic syndromes with previously unknown aetiology. Our aim was to study the presence of CNVs and their pathogenicity in patients with idiopathic CH associated with complex phenotypes. We selected 39 patients with syndromic CH for array-based comparative genomic hybridization (aCGH). Patients with pathogenic CNVs were also evaluated by whole exome sequencing. Twenty rare CNVs were detected in 19 patients. Among the identified rare CNVs, six were classified as benign, eleven as variants of uncertain clinical significance (VUS) and four as pathogenic. The three patients with pathogenic CNVs had combined pituitary hormone deficiencies, and the associated complex phenotypes were intellectual disabilities: trichorhinophalangeal type I syndrome (TRPS1) and developmental delay/intellectual disability with cardiac malformation, respectively. Patient one has a de novo 1.6-Mb deletion located at chromosome 3q13.31q13.32, which overlaps with the region of the 3q13.31 deletion syndrome. Patient two has a 10.5-Mb de novo deletion at 8q23.1q24.11, encompassing the TRPS1 gene; his phenotype is compatible with TRPS1. Patient three carries a chromosome translocation t(2p24.3;4q35.1) resulting in two terminal alterations: a 2p25.3p24.3 duplication of 14.7 Mb and a 4-Mb deletion at 4q35.1q35.2. Copy number variants explained the phenotype in 8% of patients with hypopituitarism and additional complex phenotypes. This suggests that chromosomal alterations are an important contributor to syndromic hypopituitarism. © 2017 John Wiley & Sons Ltd.

  15. Detection of clinically relevant copy number alterations in oral cancer progression using multiplexed droplet digital PCR.

    PubMed

    Hughesman, Curtis B; Lu, X J David; Liu, Kelly Y P; Zhu, Yuqi; Towle, Rebecca M; Haynes, Charles; Poh, Catherine F

    2017-09-19

    Copy number alterations (CNAs), a common genomic event during carcinogenesis, are known to affect a large fraction of the genome. Common recurrent gains or losses of specific chromosomal regions occur at frequencies that they may be considered distinctive features of tumoral cells. Here we introduce a novel multiplexed droplet digital PCR (ddPCR) assay capable of detecting recurrent CNAs that drive tumorigenesis of oral squamous cell carcinoma. Applied to DNA extracted from oral cell lines and clinical samples of various disease stages, we found good agreement between CNAs detected by our ddPCR assay with those previously reported using comparative genomic hybridization or single nucleotide polymorphism arrays. Furthermore, we demonstrate that the ability to target specific locations of the genome permits detection of clinically relevant oncogenic events such as small, submicroscopic homozygous deletions. Additional capabilities of the multiplexed ddPCR assay include the ability to infer ploidy level, quantify the change in copy number of target loci with high-level gains, and simultaneously assess the status and viral load for high-risk human papillomavirus types 16 and 18. This novel multiplexed ddPCR assay therefore may have clinical value in differentiating between benign oral lesions from those that are at risk of progressing to oral cancer.

  16. Application of Droplet Digital PCR for Estimating Vector Copy Number States in Stem Cell Gene Therapy.

    PubMed

    Lin, Huan-Ting; Okumura, Takashi; Yatsuda, Yukinori; Ito, Satoru; Nakauchi, Hiromitsu; Otsu, Makoto

    2016-10-01

    Stable gene transfer into target cell populations via integrating viral vectors is widely used in stem cell gene therapy (SCGT). Accurate vector copy number (VCN) estimation has become increasingly important. However, existing methods of estimation such as real-time quantitative PCR are more restricted in practicality, especially during clinical trials, given the limited availability of sample materials from patients. This study demonstrates the application of an emerging technology called droplet digital PCR (ddPCR) in estimating VCN states in the context of SCGT. Induced pluripotent stem cells (iPSCs) derived from a patient with X-linked chronic granulomatous disease were used as clonable target cells for transduction with alpharetroviral vectors harboring codon-optimized CYBB cDNA. Precise primer-probe design followed by multiplex analysis conferred assay specificity. Accurate estimation of per-cell VCN values was possible without reliance on a reference standard curve. Sensitivity was high and the dynamic range of detection was wide. Assay reliability was validated by observation of consistent, reproducible, and distinct VCN clustering patterns for clones of transduced iPSCs with varying numbers of transgene copies. Taken together, use of ddPCR appears to offer a practical and robust approach to VCN estimation with a wide range of clinical and research applications.

  17. Application of Droplet Digital PCR for Estimating Vector Copy Number States in Stem Cell Gene Therapy

    PubMed Central

    Lin, Huan-Ting; Okumura, Takashi; Yatsuda, Yukinori; Ito, Satoru; Nakauchi, Hiromitsu; Otsu, Makoto

    2016-01-01

    Stable gene transfer into target cell populations via integrating viral vectors is widely used in stem cell gene therapy (SCGT). Accurate vector copy number (VCN) estimation has become increasingly important. However, existing methods of estimation such as real-time quantitative PCR are more restricted in practicality, especially during clinical trials, given the limited availability of sample materials from patients. This study demonstrates the application of an emerging technology called droplet digital PCR (ddPCR) in estimating VCN states in the context of SCGT. Induced pluripotent stem cells (iPSCs) derived from a patient with X-linked chronic granulomatous disease were used as clonable target cells for transduction with alpharetroviral vectors harboring codon-optimized CYBB cDNA. Precise primer–probe design followed by multiplex analysis conferred assay specificity. Accurate estimation of per-cell VCN values was possible without reliance on a reference standard curve. Sensitivity was high and the dynamic range of detection was wide. Assay reliability was validated by observation of consistent, reproducible, and distinct VCN clustering patterns for clones of transduced iPSCs with varying numbers of transgene copies. Taken together, use of ddPCR appears to offer a practical and robust approach to VCN estimation with a wide range of clinical and research applications. PMID:27763786

  18. A retrospective analysis of RET translocation, gene copy number gain and expression in NSCLC patients treated with vandetanib in four randomized Phase III studies.

    PubMed

    Platt, Adam; Morten, John; Ji, Qunsheng; Elvin, Paul; Womack, Chris; Su, Xinying; Donald, Emma; Gray, Neil; Read, Jessica; Bigley, Graham; Blockley, Laura; Cresswell, Carl; Dale, Angela; Davies, Amanda; Zhang, Tianwei; Fan, Shuqiong; Fu, Haihua; Gladwin, Amanda; Harrod, Grace; Stevens, James; Williams, Victoria; Ye, Qingqing; Zheng, Li; de Boer, Richard; Herbst, Roy S; Lee, Jin-Soo; Vasselli, James

    2015-03-23

    To determine the prevalence of RET rearrangement genes, RET copy number gains and expression in tumor samples from four Phase III non-small-cell lung cancer (NSCLC) trials of vandetanib, a selective inhibitor of VEGFR, RET and EGFR signaling, and to determine any association with outcome to vandetanib treatment. Archival tumor samples from the ZODIAC ( NCT00312377 , vandetanib ± docetaxel), ZEAL ( NCT00418886 , vandetanib ± pemetrexed), ZEPHYR ( NCT00404924 , vandetanib vs placebo) and ZEST ( NCT00364351 , vandetanib vs erlotinib) studies were evaluated by fluorescence in situ hybridization (FISH) and immunohistochemistry (IHC) in 944 and 1102 patients. The prevalence of RET rearrangements by FISH was 0.7% (95% CI 0.3-1.5%) among patients with a known result. Seven tumor samples were positive for RET rearrangements (vandetanib, n = 3; comparator, n = 4). 2.8% (n = 26) of samples had RET amplification (innumerable RET clusters, or ≥7 copies in > 10% of tumor cells), 8.1% (n = 76) had low RET gene copy number gain (4-6 copies in ≥40% of tumor cells) and 8.3% (n = 92) were RET expression positive (signal intensity ++ or +++ in >10% of tumor cells). Of RET-rearrangement-positive patients, none had an objective response in the vandetanib arm and one patient responded in the comparator arm. Radiologic evidence of tumor shrinkage was observed in two patients treated with vandetanib and one treated with comparator drug. The objective response rate was similar in the vandetanib and comparator arms for patients positive for RET copy number gains or RET protein expression. We have identified prevalence for three RET biomarkers in a population predominated by non-Asians and smokers. RET rearrangement prevalence was lower than previously reported. We found no evidence of a differential benefit for efficacy by IHC and RET gene copy number gains. The low prevalence of RET rearrangements (0.7%) prevents firm conclusions regarding association of vandetanib treatment with

  19. Copy number variation in ALOX5 and PTGER1 is associated with NSAIDs-induced urticaria and/or angioedema.

    PubMed

    Plaza-Serón, María Del Carmen; Ayuso, Pedro; Pérez-Sánchez, Natalia; Doña, Inmaculada; Blanca-Lopez, Natalia; Flores, Carlos; Galindo, Luisa; Molina, Ana; Perkins, James R; Cornejo-García, Jose A; Agúndez, Jose A; García-Martín, Elena; Campo, Paloma; Canto, Gabriela; Blanca, Miguel

    2016-06-01

    Cross-intolerance to NSAIDs is a class of drug hypersensitivity reaction, of which NSAIDs-induced urticaria and/or angioedema (NIUA) are the most frequent clinical entities. They are considered to involve dysregulation of the arachidonic acid pathway; however, this mechanism has not been confirmed for NIUA. In this work, we assessed copy number variations (CNVs) in eight of the main genes involved in the arachidonic acid pathway and their possible genetic association with NIUA. CNVs in ALOX5, LTC4S, PTGS1, PTGS2, PTGER1, PTGER2, PTGER3, and PTGER4 were analyzed using TaqMan copy number assays. Genotyping was carried out by real-time quantitative PCR. Individual genotypes were assigned using the CopyCaller Software. Statistical analysis was carried out using GraphPad prism 5, PLINK, EPIDAT, and R version 3.1.2. A total of 151 cases and 139 controls were analyzed during the discovery phase and 148 cases and 140 controls were used for replication. CNVs in open reading frames were found for ALOX5, PTGER1, PTGER3, and PTGER4. Statistically significant differences in the CNV frequency between NIUA and controls were found for ALOX5 (Pc=0.017) and PTGER1 (Pc=1.22E-04). This study represents the first analysis showing an association between CNVs in exonic regions of ALOX5 and PTGER1 and NIUA. This suggests a role of CNVs in this pathology that should be explored further.

  20. Increased levels of mitochondrial DNA copy number in patients with vitiligo.

    PubMed

    Vaseghi, H; Houshmand, M; Jadali, Z

    2017-10-01

    Oxidative stress is known to be involved in the pathogenesis of autoimmune diseases such as vitiligo. Evidence suggests that the human mitochondrial DNA copy number (mtDNAcn) is vulnerable to damage mediated by oxidative stress. The purpose of this study was to examine and compare peripheral blood mtDNAcn and oxidative DNA damage byproducts (8-hydroxy-2-deoxyguanosine; 8-OHdG) in patients with vitiligo and healthy controls (HCs). The relative mtDNAcn and the oxidative damage (formation of 8-OHdG in mtDNA) of each sample were determined by real-time quantitative PCR. Blood samples were obtained from 56 patients with vitiligo and 46 HCs. The mean mtDNAcn and the degree of mtDNA damage were higher in patients with vitiligo than in HCs. These data suggest that increase in mtDNAcn and oxidative DNA damage may be involved in the pathogenesis of vitiligo. © 2017 British Association of Dermatologists.

  1. Maternal age and ovarian stimulation independently affect oocyte mtDNA copy number and cumulus cell gene expression in bovine clones.

    PubMed

    Cree, Lynsey M; Hammond, Elizabeth R; Shelling, Andrew N; Berg, Martin C; Peek, John C; Green, Mark P

    2015-06-01

    Does maternal ageing and ovarian stimulation alter mitochondrial DNA (mtDNA) copy number and gene expression of oocytes and cumulus cells from a novel bovine model for human IVF? Oocytes collected from females with identical nuclear genetics show decreased mtDNA copy number and increased expression of an endoplasmic reticulum (ER) stress gene with repect to ovarian stimulation, whilst differences in the expression of genes involved in mitochondrial function, antioxidant protection and apoptosis were evident in relation to maternal ageing and the degree of ovarian stimulation in cumulus cells. Oocyte quality declines with advancing maternal age; however, the underlying mechanism, as well as the effects of ovarian stimulation are poorly understood. Human studies investigating these effects are often limited by differences in age and ovarian stimulation regimens within a patient cohort, as well as genetic and environmental variability. A novel bovine cross-sectional maternal age model for human IVF was undertaken. Follicles were aspirated from young (3 years of age; n = 7 females) and old (10 years of age; n = 5 females) Holstein Freisian clones following multiple unstimulated, mild and standard ovarian stimulation cycles. These bovine cloned females were generated by the process of somatic cell nuclear transfer (SCNT) from the same founder and represent a homogeneous population with reduced genetic and environmental variability. Maternal age and ovarian stimulation effects were investigated in relation to mtDNA copy number, and the expression of 19 genes involved in mitochondrial function, antioxidant protection, oocyte-cumulus cell signalling and follicle development in both oocytes and cumulus cells. Young (3 years of age; n = 7 females) and old (10 years of age; n = 5 females) Holstein Freisian bovine clones were maintained as one herd. Stimulation cycles were based on the long GnRH agonist down-regulation regimen used in human fertility clinics. Follicle growth

  2. Massively parallel sequencing and genome-wide copy number analysis revealed a clonal relationship in benign metastasizing leiomyoma

    PubMed Central

    Lee, Li-Yu; Lin, Gigin; Chen, Shu-Jen; Lu, Yen-Jung; Huang, Huei-Jean; Yen, Chi-Feng; Han, Chien Min; Lee, Yun-Shien; Wang, Tzu-Hao; Chao, Angel

    2017-01-01

    Benign metastasizing leiomyoma (BML) is a rare disease entity typically presenting as multiple extrauterine leiomyomas associated with a uterine leiomyoma. It has been hypothesized that the extrauterine leiomyomata represent distant metastasis of the uterine leiomyoma. To date, the only molecular evidence supporting this hypothesis was derived from clonality analyses based on X-chromosome inactivation assays. Here, we sought to address this issue by examining paired specimens of synchronous pulmonary and uterine leiomyomata from three patients using targeted massively parallel sequencing and molecular inversion probe array analysis for detecting somatic mutations and copy number aberrations. We detected identical non-hot-spot somatic mutations and similar patterns of copy number aberrations (CNAs) in paired pulmonary and uterine leiomyomata from two patients, indicating the clonal relationship between pulmonary and uterine leiomyomata. In addition to loss of chromosome 22q found in the literature, we identified additional recurrent CNAs including losses of chromosome 3q and 11q. In conclusion, our findings of the clonal relationship between synchronous pulmonary and uterine leiomyomas support the hypothesis that BML represents a condition wherein a uterine leiomyoma disseminates to distant extrauterine locations. PMID:28533481

  3. Probe-specific mixed-model approach to detect copy number differences using multiplex ligation-dependent probe amplification (MLPA)

    PubMed Central

    González, Juan R; Carrasco, Josep L; Armengol, Lluís; Villatoro, Sergi; Jover, Lluís; Yasui, Yutaka; Estivill, Xavier

    2008-01-01

    Background MLPA method is a potentially useful semi-quantitative method to detect copy number alterations in targeted regions. In this paper, we propose a method for the normalization procedure based on a non-linear mixed-model, as well as a new approach for determining the statistical significance of altered probes based on linear mixed-model. This method establishes a threshold by using different tolerance intervals that accommodates the specific random error variability observed in each test sample. Results Through simulation studies we have shown that our proposed method outperforms two existing methods that are based on simple threshold rules or iterative regression. We have illustrated the method using a controlled MLPA assay in which targeted regions are variable in copy number in individuals suffering from different disorders such as Prader-Willi, DiGeorge or Autism showing the best performace. Conclusion Using the proposed mixed-model, we are able to determine thresholds to decide whether a region is altered. These threholds are specific for each individual, incorporating experimental variability, resulting in improved sensitivity and specificity as the examples with real data have revealed. PMID:18522760

  4. Massively parallel sequencing and genome-wide copy number analysis revealed a clonal relationship in benign metastasizing leiomyoma.

    PubMed

    Wu, Ren-Chin; Chao, An-Shine; Lee, Li-Yu; Lin, Gigin; Chen, Shu-Jen; Lu, Yen-Jung; Huang, Huei-Jean; Yen, Chi-Feng; Han, Chien Min; Lee, Yun-Shien; Wang, Tzu-Hao; Chao, Angel

    2017-07-18

    Benign metastasizing leiomyoma (BML) is a rare disease entity typically presenting as multiple extrauterine leiomyomas associated with a uterine leiomyoma. It has been hypothesized that the extrauterine leiomyomata represent distant metastasis of the uterine leiomyoma. To date, the only molecular evidence supporting this hypothesis was derived from clonality analyses based on X-chromosome inactivation assays. Here, we sought to address this issue by examining paired specimens of synchronous pulmonary and uterine leiomyomata from three patients using targeted massively parallel sequencing and molecular inversion probe array analysis for detecting somatic mutations and copy number aberrations. We detected identical non-hot-spot somatic mutations and similar patterns of copy number aberrations (CNAs) in paired pulmonary and uterine leiomyomata from two patients, indicating the clonal relationship between pulmonary and uterine leiomyomata. In addition to loss of chromosome 22q found in the literature, we identified additional recurrent CNAs including losses of chromosome 3q and 11q. In conclusion, our findings of the clonal relationship between synchronous pulmonary and uterine leiomyomas support the hypothesis that BML represents a condition wherein a uterine leiomyoma disseminates to distant extrauterine locations.

  5. Single-Cell-Based Platform for Copy Number Variation Profiling through Digital Counting of Amplified Genomic DNA Fragments.

    PubMed

    Li, Chunmei; Yu, Zhilong; Fu, Yusi; Pang, Yuhong; Huang, Yanyi

    2017-04-26

    We develop a novel single-cell-based platform through digital counting of amplified genomic DNA fragments, named multifraction amplification (mfA), to detect the copy number variations (CNVs) in a single cell. Amplification is required to acquire genomic information from a single cell, while introducing unavoidable bias. Unlike prevalent methods that directly infer CNV profiles from the pattern of sequencing depth, our mfA platform denatures and separates the DNA molecules from a single cell into multiple fractions of a reaction mix before amplification. By examining the sequencing result of each fraction for a specific fragment and applying a segment-merge maximum likelihood algorithm to the calculation of copy number, we digitize the sequencing-depth-based CNV identification and thus provide a method that is less sensitive to the amplification bias. In this paper, we demonstrate a mfA platform through multiple displacement amplification (MDA) chemistry. When performing the mfA platform, the noise of MDA is reduced; therefore, the resolution of single-cell CNV identification can be improved to 100 kb. We can also determine the genomic region free of allelic drop-out with mfA platform, which is impossible for conventional single-cell amplification methods.

  6. Rapid evolution and copy number variation of primate RHOXF2, an X-linked homeobox gene involved in male reproduction and possibly brain function.

    PubMed

    Niu, Ao-lei; Wang, Yin-qiu; Zhang, Hui; Liao, Cheng-hong; Wang, Jin-kai; Zhang, Rui; Che, Jun; Su, Bing

    2011-10-12

    Homeobox genes are the key regulators during development, and they are in general highly conserved with only a few reported cases of rapid evolution. RHOXF2 is an X-linked homeobox gene in primates. It is highly expressed in the testicle and may play an important role in spermatogenesis. As male reproductive system is often the target of natural and/or sexual selection during evolution, in this study, we aim to dissect the pattern of molecular evolution of RHOXF2 in primates and its potential functional consequence. We studied sequences and copy number variation of RHOXF2 in humans and 16 nonhuman primate species as well as the expression patterns in human, chimpanzee, white-browed gibbon and rhesus macaque. The gene copy number analysis showed that there had been parallel gene duplications/losses in multiple primate lineages. Our evidence suggests that 11 nonhuman primate species have one RHOXF2 copy, and two copies are present in humans and four Old World monkey species, and at least 6 copies in chimpanzees. Further analysis indicated that the gene duplications in primates had likely been mediated by endogenous retrovirus (ERV) sequences flanking the gene regions. In striking contrast to non-human primates, humans appear to have homogenized their two RHOXF2 copies by the ERV-mediated non-allelic recombination mechanism. Coding sequence and phylogenetic analysis suggested multi-lineage strong positive selection on RHOXF2 during primate evolution, especially during the origins of humans and chimpanzees. All the 8 coding region polymorphic sites in human populations are non-synonymous, implying on-going selection. Gene expression analysis demonstrated that besides the preferential expression in the reproductive system, RHOXF2 is also expressed in the brain. The quantitative data suggests expression pattern divergence among primate species. RHOXF2 is a fast-evolving homeobox gene in primates. The rapid evolution and copy number changes of RHOXF2 had been driven by

  7. Sex chromosome aneuploidies and copy-number variants: a further explanation for neurodevelopmental prognosis variability?

    PubMed

    Le Gall, Jessica; Nizon, Mathilde; Pichon, Olivier; Andrieux, Joris; Audebert-Bellanger, Séverine; Baron, Sabine; Beneteau, Claire; Bilan, Frédéric; Boute, Odile; Busa, Tiffany; Cormier-Daire, Valérie; Ferec, Claude; Fradin, Mélanie; Gilbert-Dussardier, Brigitte; Jaillard, Sylvie; Jønch, Aia; Martin-Coignard, Dominique; Mercier, Sandra; Moutton, Sébastien; Rooryck, Caroline; Schaefer, Elise; Vincent, Marie; Sanlaville, Damien; Le Caignec, Cédric; Jacquemont, Sébastien; David, Albert; Isidor, Bertrand

    2017-08-01

    Sex chromosome aneuploidies (SCA) is a group of conditions in which individuals have an abnormal number of sex chromosomes. SCA, such as Klinefelter's syndrome, XYY syndrome, and Triple X syndrome are associated with a large range of neurological outcome. Another genetic event such as another cytogenetic abnormality may explain a part of this variable expressivity. In this study, we have recruited fourteen patients with intellectual disability or developmental delay carrying SCA associated with a copy-number variant (CNV). In our cohort (four patients 47,XXY, four patients 47,XXX, and six patients 47,XYY), seven patients were carrying a pathogenic CNV, two a likely pathogenic CNV and five a variant of uncertain significance. Our analysis suggests that CNV might be considered as an additional independent genetic factor for intellectual disability and developmental delay for patients with SCA and neurodevelopmental disorder.

  8. Absolute instability of the Gaussian wake profile

    NASA Technical Reports Server (NTRS)

    Hultgren, Lennart S.; Aggarwal, Arun K.

    1987-01-01

    Linear parallel-flow stability theory has been used to investigate the effect of viscosity on the local absolute instability of a family of wake profiles with a Gaussian velocity distribution. The type of local instability, i.e., convective or absolute, is determined by the location of a branch-point singularity with zero group velocity of the complex dispersion relation for the instability waves. The effects of viscosity were found to be weak for values of the wake Reynolds number, based on the center-line velocity defect and the wake half-width, larger than about 400. Absolute instability occurs only for sufficiently large values of the center-line wake defect. The critical value of this parameter increases with decreasing wake Reynolds number, thereby indicating a shrinking region of absolute instability with decreasing wake Reynolds number. If backflow is not allowed, absolute instability does not occur for wake Reynolds numbers smaller than about 38.

  9. Subtelomeric Copy Number Variations: The Importance of 4p/4q Deletions in Patients with Congenital Anomalies and Developmental Disability.

    PubMed

    Novo-Filho, Gil M; Montenegro, Marília M; Zanardo, Évelin A; Dutra, Roberta L; Dias, Alexandre T; Piazzon, Flavia B; Costa, Taís V M M; Nascimento, Amom M; Honjo, Rachel S; Kim, Chong A; Kulikowski, Leslie D

    2016-01-01

    The most prevalent structural variations in the human genome are copy number variations (CNVs), which appear predominantly in the subtelomeric regions. Variable sizes of 4p/4q CNVs have been associated with several different psychiatric findings and developmental disability (DD). We analyzed 105 patients with congenital anomalies (CA) and developmental and/or intellectual disabilities (DD/ID) using MLPA subtelomeric specific kits (P036 /P070) and 4 of them using microarrays. We found abnormal subtelomeric CNVs in 15 patients (14.3%), including 8 patients with subtelomeric deletions at 4p/4q (53.3%). Additional genomic changes were observed at 1p36, 2q37.3, 5p15.3, 5q35.3, 8p23.3, 13q11, 14q32.3, 15q11.2, and Xq28/Yq12. This indicates the prevalence of independent deletions at 4p/4q, involving PIGG, TRIML2, and FRG1. Furthermore, we identified 15 genes with changes in copy number that contribute to neurological development and/or function, among them CRMP1, SORCS2, SLC25A4, and HELT. Our results highlight the association of genes with changes in copy number at 4p and 4q subtelomeric regions and the DD phenotype. Cytogenomic characterization of additional cases with distal deletions should help clarifying the role of subtelomeric CNVs in neurological diseases. © 2016 S. Karger AG, Basel.

  10. Industrial fuel ethanol yeasts contain adaptive copy number changes in genes involved in vitamin B1 and B6 biosynthesis.

    PubMed

    Stambuk, Boris U; Dunn, Barbara; Alves, Sergio L; Duval, Eduarda H; Sherlock, Gavin

    2009-12-01

    Fuel ethanol is now a global energy commodity that is competitive with gasoline. Using microarray-based comparative genome hybridization (aCGH), we have determined gene copy number variations (CNVs) common to five industrially important fuel ethanol Saccharomyces cerevisiae strains responsible for the production of billions of gallons of fuel ethanol per year from sugarcane. These strains have significant amplifications of the telomeric SNO and SNZ genes, which are involved in the biosynthesis of vitamins B6 (pyridoxine) and B1 (thiamin). We show that increased copy number of these genes confers the ability to grow more efficiently under the repressing effects of thiamin, especially in medium lacking pyridoxine and with high sugar concentrations. These genetic changes have likely been adaptive and selected for in the industrial environment, and may be required for the efficient utilization of biomass-derived sugars from other renewable feedstocks.

  11. Genome-wide high-resolution screening in Dupuytren's disease reveals common regions of DNA copy number alterations.

    PubMed

    Shih, Barbara B; Tassabehji, May; Watson, James S; McGrouther, Angus D; Bayat, Ardeshir

    2010-07-01

    Dupuytren's disease (DD) is a familial disorder with a high genetic susceptibility in white people; however, its etiopathogenesis remains unknown. Previous comparative genomic hybridization studies using lower-resolution, 44-k oligonucleotide-based arrays revealed no copy number variation (CNV) changes in DD. In this study, we used a higher-resolution genome-wide screening (next-generation microarrays) comprising 963,331 human sequences (3 kb spacing between probes) for whole genome DNA variation analysis. The objective was to detect cryptic chromosomal imbalances in DD. Agilent SurePrint G3 microarrays, one million format (Agilent Technologies, Santa Clara, CA), were used to detect CNV regions (CNVRs) in DNA extracted from nodules of 4 white men with DD (age, 69 +/- 4 y). Reference samples were from the DNA of 10 men who served as control patients. Copy number variations that were common to greater than 3 assessed DD individuals (p < .05) were selected as candidate loci for DD etiology. In addition, quantitative polymerase chain reactions (qPCR) assays were designed for selected CNVRs on DNA from 13 DD patients and 11 control patients. Independent t-tests and Fisher's exact tests were carried out for statistical analysis. Three novel CNVs previously unreported in the phenotypically normal population were detected in 3 DD cases, located at 10q22, 16p12.1, and 17p12. Nine polymorphic CNVRs potentially associated with DD were determined using our strategic selection criteria, locating to chromosomes 1q31, 6p21, 7p14, 8p11, 12p13, 14q11, 17q21 and 20p13. More than 3 of the DD cases tested had a CNVR located to a small region on 6p21 and 4 CNVRs within 6p21-22 of the human leukocyte antigen (HLA) genes. Three novel copy number alterations were observed in 3 unrelated patients with sporadic (no known family history) DD. Nine polymorphic CNVRs were found to be common among the DD cases. These variants might contain genes involved in DD formation, indicating that

  12. Genomic copy number analysis of a spectrum of blue nevi identifies recurrent aberrations of entire chromosomal arms in melanoma ex blue nevus.

    PubMed

    Chan, May P; Andea, Aleodor A; Harms, Paul W; Durham, Alison B; Patel, Rajiv M; Wang, Min; Robichaud, Patrick; Fisher, Gary J; Johnson, Timothy M; Fullen, Douglas R

    2016-03-01

    Blue nevi may display significant atypia or undergo malignant transformation. Morphologic diagnosis of this spectrum of lesions is notoriously difficult, and molecular tools are increasingly used to improve diagnostic accuracy. We studied copy number aberrations in a cohort of cellular blue nevi, atypical cellular blue nevi, and melanomas ex blue nevi using Affymetrix's OncoScan platform. Cases with sufficient DNA were analyzed for GNAQ, GNA11, and HRAS mutations. Copy number aberrations were detected in 0 of 5 (0%) cellular blue nevi, 3 of 12 (25%) atypical cellular blue nevi, and 6 of 9 (67%) melanomas ex blue nevi. None of the atypical cellular blue nevi displayed more than one aberration, whereas complex aberrations involving four or more regions were seen exclusively in melanomas ex blue nevi. Gains and losses of entire chromosomal arms were identified in four of five melanomas ex blue nevi with copy number aberrations. In particular, gains of 1q, 4p, 6p, and 8q, and losses of 1p and 4q were each found in at least two melanomas. Whole chromosome aberrations were also common, and represented the sole finding in one atypical cellular blue nevus. When seen in melanomas, however, whole chromosome aberrations were invariably accompanied by partial aberrations of other chromosomes. Three melanomas ex blue nevi harbored aberrations, which were absent or negligible in their precursor components, suggesting progression in tumor biology. Gene mutations involving GNAQ and GNA11 were each detected in two of eight melanomas ex blue nevi. In conclusion, copy number aberrations are more common and often complex in melanomas ex blue nevi compared with cellular and atypical cellular blue nevi. Identification of recurrent gains and losses of entire chromosomal arms in melanomas ex blue nevi suggests that development of new probes targeting these regions may improve detection and risk stratification of these lesions.

  13. The Role of Copy Number Variation in Susceptibility to Amyotrophic Lateral Sclerosis: Genome-Wide Association Study and Comparison with Published Loci

    PubMed Central

    Wain, Louise V.; Pedroso, Inti; Landers, John E.; Breen, Gerome; Shaw, Christopher E.; Leigh, P. Nigel; Brown, Robert H.

    2009-01-01

    Background The genetic contribution to sporadic amyotrophic lateral sclerosis (ALS) has not been fully elucidated. There are increasing efforts to characterise the role of copy number variants (CNVs) in human diseases; two previous studies concluded that CNVs may influence risk of sporadic ALS, with multiple rare CNVs more important than common CNVs. A little-explored issue surrounding genome-wide CNV association studies is that of post-calling filtering and merging of raw CNV calls. We undertook simulations to define filter thresholds and considered optimal ways of merging overlapping CNV calls for association testing, taking into consideration possibly overlapping or nested, but distinct, CNVs and boundary estimation uncertainty. Methodology and Principal Findings In this study we screened Illumina 300K SNP genotyping data from 730 ALS cases and 789 controls for copy number variation. Following quality control filters using thresholds defined by simulation, a total of 11321 CNV calls were made across 575 cases and 621 controls. Using region-based and gene-based association analyses, we identified several loci showing nominally significant association. However, the choice of criteria for combining calls for association testing has an impact on the ranking of the results by their significance. Several loci which were previously reported as being associated with ALS were identified here. However, of another 15 genes previously reported as exhibiting ALS-specific copy number variation, only four exhibited copy number variation in this study. Potentially interesting novel loci, including EEF1D, a translation elongation factor involved in the delivery of aminoacyl tRNAs to the ribosome (a process which has previously been implicated in genetic studies of spinal muscular atrophy) were identified but must be treated with caution due to concerns surrounding genomic location and platform suitability. Conclusions and Significance Interpretation of CNV association findings

  14. Analysis of copy number variations at 15 schizophrenia-associated loci.

    PubMed

    Rees, Elliott; Walters, James T R; Georgieva, Lyudmila; Isles, Anthony R; Chambert, Kimberly D; Richards, Alexander L; Mahoney-Davies, Gerwyn; Legge, Sophie E; Moran, Jennifer L; McCarroll, Steven A; O'Donovan, Michael C; Owen, Michael J; Kirov, George

    2014-02-01

    A number of copy number variants (CNVs) have been suggested as susceptibility factors for schizophrenia. For some of these the data remain equivocal, and the frequency in individuals with schizophrenia is uncertain. To determine the contribution of CNVs at 15 schizophrenia-associated loci (a) using a large new data-set of patients with schizophrenia (n = 6882) and controls (n = 6316), and (b) combining our results with those from previous studies. We used Illumina microarrays to analyse our data. Analyses were restricted to 520 766 probes common to all arrays used in the different data-sets. We found higher rates in participants with schizophrenia than in controls for 13 of the 15 previously implicated CNVs. Six were nominally significantly associated (P<0.05) in this new data-set: deletions at 1q21.1, NRXN1, 15q11.2 and 22q11.2 and duplications at 16p11.2 and the Angelman/Prader-Willi Syndrome (AS/PWS) region. All eight AS/PWS duplications in patients were of maternal origin. When combined with published data, 11 of the 15 loci showed highly significant evidence for association with schizophrenia (P<4.1×10(-4)). We strengthen the support for the majority of the previously implicated CNVs in schizophrenia. About 2.5% of patients with schizophrenia and 0.9% of controls carry a large, detectable CNV at one of these loci. Routine CNV screening may be clinically appropriate given the high rate of known deleterious mutations in the disorder and the comorbidity associated with these heritable mutations.

  15. Novel origins of copy number variation in the dog genome

    PubMed Central

    2012-01-01

    Background Copy number variants (CNVs) account for substantial variation between genomes and are a major source of normal and pathogenic phenotypic differences. The dog is an ideal model to investigate mutational mechanisms that generate CNVs as its genome lacks a functional ortholog of the PRDM9 gene implicated in recombination and CNV formation in humans. Here we comprehensively assay CNVs using high-density array comparative genomic hybridization in 50 dogs from 17 dog breeds and 3 gray wolves. Results We use a stringent new method to identify a total of 430 high-confidence CNV loci, which range in size from 9 kb to 1.6 Mb and span 26.4 Mb, or 1.08%, of the assayed dog genome, overlapping 413 annotated genes. Of CNVs observed in each breed, 98% are also observed in multiple breeds. CNVs predicted to disrupt gene function are significantly less common than expected by chance. We identify a significant overrepresentation of peaks of GC content, previously shown to be enriched in dog recombination hotspots, in the vicinity of CNV breakpoints. Conclusions A number of the CNVs identified by this study are candidates for generating breed-specific phenotypes. Purifying selection seems to be a major factor shaping structural variation in the dog genome, suggesting that many CNVs are deleterious. Localized peaks of GC content appear to be novel sites of CNV formation in the dog genome by non-allelic homologous recombination, potentially activated by the loss of PRDM9. These sequence features may have driven genome instability and chromosomal rearrangements throughout canid evolution. PMID:22916802

  16. High Quality Genomic Copy Number Data from Archival Formalin-Fixed Paraffin-Embedded Leiomyosarcoma: Optimisation of Universal Linkage System Labelling

    PubMed Central

    Salawu, Abdulazeez; Ul-Hassan, Aliya; Hammond, David; Fernando, Malee; Reed, Malcolm; Sisley, Karen

    2012-01-01

    Most soft tissue sarcomas are characterized by genetic instability and frequent genomic copy number aberrations that are not subtype-specific. Oligonucleotide microarray-based Comparative Genomic Hybridisation (array CGH) is an important technique used to map genome-wide copy number aberrations, but the traditional requirement for high-quality DNA typically obtained from fresh tissue has limited its use in sarcomas. Although large archives of Formalin-fixed Paraffin-embedded (FFPE) tumour samples are available for research, the degradative effects of formalin on DNA from these tissues has made labelling and analysis by array CGH technically challenging. The Universal Linkage System (ULS) may be used for a one-step chemical labelling of such degraded DNA. We have optimised the ULS labelling protocol to perform aCGH on archived FFPE leiomyosarcoma tissues using the 180k Agilent platform. Preservation age of samples ranged from a few months to seventeen years and the DNA showed a wide range of degradation (when visualised on agarose gels). Consistently high DNA labelling efficiency and low microarray probe-to-probe variation (as measured by the derivative log ratio spread) was seen. Comparison of paired fresh and FFPE samples from identical tumours showed good correlation of CNAs detected. Furthermore, the ability to macro-dissect FFPE samples permitted the detection of CNAs that were masked in fresh tissue. Aberrations were visually confirmed using Fluorescence in situ Hybridisation. These results suggest that archival FFPE tissue, with its relative abundance and attendant clinical data may be used for effective mapping for genomic copy number aberrations in such rare tumours as leiomyosarcoma and potentially unravel clues to tumour origins, progression and ultimately, targeted treatment. PMID:23209738

  17. Integrated genomics for pinpointing survival loci within arm-level somatic copy number alterations

    PubMed Central

    Roy, David M.; Walsh, Logan A.; Desrichard, Alexis; Huse, Jason T.; Wu, Wei; Gao, JianJiong; Bose, Promita; Lee, William; Chan, Timothy A.

    2016-01-01

    SUMMARY The identification of driver loci underlying arm-level somatic copy number alterations (SCNAs) in cancer has remained challenging and incomplete. Here we assess the relative impact and present a detailed landscape of arm-level SCNAs in 10985 patient samples across 33 cancer types from The Cancer Genome Atlas (TCGA). Further, using chromosome 9p loss in lower grade glioma (LGG) as a model, we employ a unique multi-tiered genomic dissection strategy using 540 patients from 3 independent LGG datasets to identify genetic loci that govern tumor aggressiveness and poor survival. This comprehensive approach uncovered several 9p loss-specific prognostic markers, validated existing ones, and re-defined the impact of CDKN2A loss in LGG. PMID:27165745

  18. Atypical fibroxanthoma and pleomorphic dermal sarcoma harbor frequent NOTCH1/2 and FAT1 mutations and similar DNA copy number alteration profiles.

    PubMed

    Griewank, Klaus G; Wiesner, Thomas; Murali, Rajmohan; Pischler, Carina; Müller, Hansgeorg; Koelsche, Christian; Möller, Inga; Franklin, Cindy; Cosgarea, Ioana; Sucker, Antje; Schadendorf, Dirk; Schaller, Jörg; Horn, Susanne; Brenn, Thomas; Mentzel, Thomas

    2018-03-01

    Atypical fibroxanthomas and pleomorphic dermal sarcomas are tumors arising in sun-damaged skin of elderly patients. They have differing prognoses and are currently distinguished using histological criteria, such as invasion of deeper tissue structures, necrosis and lymphovascular or perineural invasion. To investigate the as-yet poorly understood genetics of these tumors, 41 atypical fibroxanthomas and 40 pleomorphic dermal sarcomas were subjected to targeted next-generation sequencing approaches as well as DNA copy number analysis by comparative genomic hybridization. In an analysis of the entire coding region of 341 oncogenes and tumor suppressor genes in 13 atypical fibroxanthomas using an established hybridization-based next-generation sequencing approach, we found that these tumors harbor a large number of mutations. Gene alterations were identified in more than half of the analyzed samples in FAT1, NOTCH1/2, CDKN2A, TP53, and the TERT promoter. The presence of these alterations was verified in 26 atypical fibroxanthoma and 35 pleomorphic dermal sarcoma samples by targeted amplicon-based next-generation sequencing. Similar mutation profiles in FAT1, NOTCH1/2, CDKN2A, TP53, and the TERT promoter were identified in both atypical fibroxanthoma and pleomorphic dermal sarcoma. Activating RAS mutations (G12 and G13) identified in 3 pleomorphic dermal sarcoma were not found in atypical fibroxanthoma. Comprehensive DNA copy number analysis demonstrated a wide array of different copy number gains and losses, with similar profiles in atypical fibroxanthoma and pleomorphic dermal sarcoma. In summary, atypical fibroxanthoma and pleomorphic dermal sarcoma are highly mutated tumors with recurrent mutations in FAT1, NOTCH1/2, CDKN2A, TP53, and the TERT promoter, and a range of DNA copy number alterations. These findings suggest that atypical fibroxanthomas and pleomorphic dermal sarcomas are genetically related, potentially representing two ends of a common tumor spectrum

  19. CONAN: copy number variation analysis software for genome-wide association studies

    PubMed Central

    2010-01-01

    Background Genome-wide association studies (GWAS) based on single nucleotide polymorphisms (SNPs) revolutionized our perception of the genetic regulation of complex traits and diseases. Copy number variations (CNVs) promise to shed additional light on the genetic basis of monogenic as well as complex diseases and phenotypes. Indeed, the number of detected associations between CNVs and certain phenotypes are constantly increasing. However, while several software packages support the determination of CNVs from SNP chip data, the downstream statistical inference of CNV-phenotype associations is still subject to complicated and inefficient in-house solutions, thus strongly limiting the performance of GWAS based on CNVs. Results CONAN is a freely available client-server software solution which provides an intuitive graphical user interface for categorizing, analyzing and associating CNVs with phenotypes. Moreover, CONAN assists the evaluation process by visualizing detected associations via Manhattan plots in order to enable a rapid identification of genome-wide significant CNV regions. Various file formats including the information on CNVs in population samples are supported as input data. Conclusions CONAN facilitates the performance of GWAS based on CNVs and the visual analysis of calculated results. CONAN provides a rapid, valid and straightforward software solution to identify genetic variation underlying the 'missing' heritability for complex traits that remains unexplained by recent GWAS. The freely available software can be downloaded at http://genepi-conan.i-med.ac.at. PMID:20546565

  20. Mutant Kras copy number defines metabolic reprogramming and therapeutic susceptibilities

    PubMed Central

    Kerr, Emma; Gaude, Edoardo; Turrell, Frances; Frezza, Christian; Martins, Carla P

    2016-01-01

    Summary The RAS/MAPK-signalling pathway is frequently deregulated in non-small cell lung cancer (NSCLC), often through KRAS activating mutations1-3. A single endogenous mutant Kras allele is sufficient to promote lung tumour formation in mice but malignant progression requires additional genetic alterations4-7. We recently showed that advanced lung tumours from KrasG12D/+;p53-null mice frequently exhibit KrasG12D allelic enrichment (KrasG12D/Kraswild-type>1)7, implying that mutant Kras copy gains are positively selected during progression. Through a comprehensive analysis of mutant Kras homozygous and heterozygous MEFs and lung cancer cells we now show that these genotypes are phenotypically distinct. In particular, KrasG12D/G12D cells exhibit a glycolytic switch coupled to increased channelling of glucose-derived metabolites into the TCA cycle and glutathione biosynthesis, resulting in enhanced glutathione-mediated detoxification. This metabolic rewiring is recapitulated in mutant KRAS homozygous NSCLC cells and in vivo, in spontaneous advanced murine lung tumours (which display a high frequency of KrasG12D copy gain), but not in the corresponding early tumours (KrasG12D heterozygous). Finally, we demonstrate that mutant Kras copy gain creates unique metabolic dependences that can be exploited to selectively target these aggressive mutant Kras tumours. Our data demonstrate that mutant Kras lung tumours are not a single disease but rather a heterogeneous group comprised of two classes of tumours with distinct metabolic profiles, prognosis and therapeutic susceptibility, which can be discriminated based on their relative mutant allelic content. We also provide the first in vivo evidence of metabolic rewiring during lung cancer malignant progression. PMID:26909577