Sample records for absolute dose values

1. Easy Absolute Values? Absolutely

ERIC Educational Resources Information Center

Taylor, Sharon E.; Mittag, Kathleen Cage

2015-01-01

The authors teach a problem-solving course for preservice middle-grades education majors that includes concepts dealing with absolute-value computations, equations, and inequalities. Many of these students like mathematics and plan to teach it, so they are adept at symbolic manipulations. Getting them to think differently about a concept that they…

2. Teaching Absolute Value Meaningfully

ERIC Educational Resources Information Center

2012-01-01

What is the meaning of absolute value? And why do teachers teach students how to solve absolute value equations? Absolute value is a concept introduced in first-year algebra and then reinforced in later courses. Various authors have suggested instructional methods for teaching absolute value to high school students (Wei 2005; Stallings-Roberts…

3. Be Resolute about Absolute Value

ERIC Educational Resources Information Center

Kidd, Margaret L.

2007-01-01

This article explores how conceptualization of absolute value can start long before it is introduced. The manner in which absolute value is introduced to students in middle school has far-reaching consequences for their future mathematical understanding. It begins to lay the foundation for students' understanding of algebra, which can change…

4. Inequalities, Absolute Value, and Logical Connectives.

ERIC Educational Resources Information Center

Parish, Charles R.

1992-01-01

Presents an approach to the concept of absolute value that alleviates students' problems with the traditional definition and the use of logical connectives in solving related problems. Uses a model that maps numbers from a horizontal number line to a vertical ray originating from the origin. Provides examples solving absolute value equations and…

5. Investigating Absolute Value: A Real World Application

ERIC Educational Resources Information Center

Kidd, Margaret; Pagni, David

2009-01-01

Making connections between various representations is important in mathematics. In this article, the authors discuss the numeric, algebraic, and graphical representations of sums of absolute values of linear functions. The initial explanations are accessible to all students who have experience graphing and who understand that absolute value simply…

6. Solving Absolute Value Equations Algebraically and Geometrically

ERIC Educational Resources Information Center

Shiyuan, Wei

2005-01-01

The way in which students can improve their comprehension by understanding the geometrical meaning of algebraic equations or solving algebraic equation geometrically is described. Students can experiment with the conditions of the absolute value equation presented, for an interesting way to form an overall understanding of the concept.

7. Teaching Absolute Value Inequalities to Mature Students

ERIC Educational Resources Information Center

Sierpinska, Anna; Bobos, Georgeana; Pruncut, Andreea

2011-01-01

This paper gives an account of a teaching experiment on absolute value inequalities, whose aim was to identify characteristics of an approach that would realize the potential of the topic to develop theoretical thinking in students enrolled in prerequisite mathematics courses at a large, urban North American university. The potential is…

8. A Conceptual Approach to Absolute Value Equations and Inequalities

ERIC Educational Resources Information Center

Ellis, Mark W.; Bryson, Janet L.

2011-01-01

The absolute value learning objective in high school mathematics requires students to solve far more complex absolute value equations and inequalities. When absolute value problems become more complex, students often do not have sufficient conceptual understanding to make any sense of what is happening mathematically. The authors suggest that the…

9. Using, Seeing, Feeling, and Doing Absolute Value for Deeper Understanding

ERIC Educational Resources Information Center

Ponce, Gregorio A.

2008-01-01

Using sticky notes and number lines, a hands-on activity is shared that anchors initial student thinking about absolute value. The initial point of reference should help students successfully evaluate numeric problems involving absolute value. They should also be able to solve absolute value equations and inequalities that are typically found in…

10. Absolutely relative or relatively absolute: violations of value invariance in human decision making.

PubMed

Teodorescu, Andrei R; Moran, Rani; Usher, Marius

2016-02-01

Making decisions based on relative rather than absolute information processing is tied to choice optimality via the accumulation of evidence differences and to canonical neural processing via accumulation of evidence ratios. These theoretical frameworks predict invariance of decision latencies to absolute intensities that maintain differences and ratios, respectively. While information about the absolute values of the choice alternatives is not necessary for choosing the best alternative, it may nevertheless hold valuable information about the context of the decision. To test the sensitivity of human decision making to absolute values, we manipulated the intensities of brightness stimuli pairs while preserving either their differences or their ratios. Although asked to choose the brighter alternative relative to the other, participants responded faster to higher absolute values. Thus, our results provide empirical evidence for human sensitivity to task irrelevant absolute values indicating a hard-wired mechanism that precedes executive control. Computational investigations of several modelling architectures reveal two alternative accounts for this phenomenon, which combine absolute and relative processing. One account involves accumulation of differences with activation dependent processing noise and the other emerges from accumulation of absolute values subject to the temporal dynamics of lateral inhibition. The potential adaptive role of such choice mechanisms is discussed. PMID:26022836

11. Supplementary and Enrichment Series: Absolute Value. Teachers' Commentary. SP-25.

ERIC Educational Resources Information Center

Bridgess, M. Philbrick, Ed.

This is one in a series of manuals for teachers using SMSG high school supplementary materials. The pamphlet includes commentaries on the sections of the student's booklet, answers to the exercises, and sample test questions. Topics covered include addition and multiplication in terms of absolute value, graphs of absolute value in the Cartesian…

12. Supplementary and Enrichment Series: Absolute Value. SP-24.

ERIC Educational Resources Information Center

Bridgess, M. Philbrick, Ed.

This is one in a series of SMSG supplementary and enrichment pamphlets for high school students. This series is designed to make material for the study of topics of special interest to students readily accessible in classroom quantity. Topics covered include absolute value, addition and multiplication in terms of absolute value, graphs of absolute…

13. Absolute Value Boundedness, Operator Decomposition, and Stochastic Media and Equations

NASA Technical Reports Server (NTRS)

1973-01-01

The research accomplished during this period is reported. Published abstracts and technical reports are listed. Articles presented include: boundedness of absolute values of generalized Fourier coefficients, propagation in stochastic media, and stationary conditions for stochastic differential equations.

14. An improved generalized Newton method for absolute value equations.

PubMed

Feng, Jingmei; Liu, Sanyang

2016-01-01

In this paper, we suggest and analyze an improved generalized Newton method for solving the NP-hard absolute value equations [Formula: see text] when the singular values of A exceed 1. We show that the global and local quadratic convergence of the proposed method. Numerical experiments show the efficiency of the method and the high accuracy of calculation. PMID:27462490

15. Absolute Value Inequalities: High School Students' Solutions and Misconceptions

ERIC Educational Resources Information Center

Almog, Nava; Ilany, Bat-Sheva

2012-01-01

Inequalities are one of the foundational subjects in high school math curricula, but there is a lack of academic research into how students learn certain types of inequalities. This article fills part of the research gap by presenting the findings of a study that examined high school students' methods of approaching absolute value inequalities,…

16. Invalid phase values removal method for absolute phase recovery.

PubMed

Lu, Jin; Mo, Rong; Sun, Huibin; Chang, Zhiyong; Zhao, Xiaxia

2016-01-10

A novel approach is presented for more effectively removing invalid phase values in absolute phase recovery. The approach is based on a detailed study involving the types and cases of invalid phase values. Meanwhile, some commonalities of the existing removal algorithms also are thoroughly analyzed. It is well known that rough absolute phase and fringe order maps can very easily be obtained by temporal phase unwrapping techniques. After carefully analyzing the components and fringe order distribution of the rough fringe order map, the proposed method chiefly adopts an entirely new strategy to refine a pure fringe order map. The strategy consists of three parts: (1) the square of an image gradient, (2) subregion areas of the binary image, and (3) image decomposition and composition. In combination with the pure fringe order map and a removal criterion, the invalid phase values can be identified and filtered out from the rough absolute phase map. This new strategy not only gets rid of the limitations of traditional removal methods but also has a two-fold function. The paper also offers different metrics from the experiment to evaluate the quality of the final absolute phase. In contrast with other removal methods, experimental results have verified the feasibility, effectiveness, and superiority of the proposed method. PMID:26835776

17. Absolute dose calculations for Monte Carlo simulations of radiotherapy beams.

PubMed

Popescu, I A; Shaw, C P; Zavgorodni, S F; Beckham, W A

2005-07-21

Monte Carlo (MC) simulations have traditionally been used for single field relative comparisons with experimental data or commercial treatment planning systems (TPS). However, clinical treatment plans commonly involve more than one field. Since the contribution of each field must be accurately quantified, multiple field MC simulations are only possible by employing absolute dosimetry. Therefore, we have developed a rigorous calibration method that allows the incorporation of monitor units (MU) in MC simulations. This absolute dosimetry formalism can be easily implemented by any BEAMnrc/DOSXYZnrc user, and applies to any configuration of open and blocked fields, including intensity-modulated radiation therapy (IMRT) plans. Our approach involves the relationship between the dose scored in the monitor ionization chamber of a radiotherapy linear accelerator (linac), the number of initial particles incident on the target, and the field size. We found that for a 10 x 10 cm2 field of a 6 MV photon beam, 1 MU corresponds, in our model, to 8.129 x 10(13) +/- 1.0% electrons incident on the target and a total dose of 20.87 cGy +/- 1.0% in the monitor chambers of the virtual linac. We present an extensive experimental verification of our MC results for open and intensity-modulated fields, including a dynamic 7-field IMRT plan simulated on the CT data sets of a cylindrical phantom and of a Rando anthropomorphic phantom, which were validated by measurements using ionization chambers and thermoluminescent dosimeters (TLD). Our simulation results are in excellent agreement with experiment, with percentage differences of less than 2%, in general, demonstrating the accuracy of our Monte Carlo absolute dose calculations. PMID:16177516

18. Absolute dose calculations for Monte Carlo simulations of radiotherapy beams

Popescu, I. A.; Shaw, C. P.; Zavgorodni, S. F.; Beckham, W. A.

2005-07-01

Monte Carlo (MC) simulations have traditionally been used for single field relative comparisons with experimental data or commercial treatment planning systems (TPS). However, clinical treatment plans commonly involve more than one field. Since the contribution of each field must be accurately quantified, multiple field MC simulations are only possible by employing absolute dosimetry. Therefore, we have developed a rigorous calibration method that allows the incorporation of monitor units (MU) in MC simulations. This absolute dosimetry formalism can be easily implemented by any BEAMnrc/DOSXYZnrc user, and applies to any configuration of open and blocked fields, including intensity-modulated radiation therapy (IMRT) plans. Our approach involves the relationship between the dose scored in the monitor ionization chamber of a radiotherapy linear accelerator (linac), the number of initial particles incident on the target, and the field size. We found that for a 10 × 10 cm2 field of a 6 MV photon beam, 1 MU corresponds, in our model, to 8.129 × 1013 ± 1.0% electrons incident on the target and a total dose of 20.87 cGy ± 1.0% in the monitor chambers of the virtual linac. We present an extensive experimental verification of our MC results for open and intensity-modulated fields, including a dynamic 7-field IMRT plan simulated on the CT data sets of a cylindrical phantom and of a Rando anthropomorphic phantom, which were validated by measurements using ionization chambers and thermoluminescent dosimeters (TLD). Our simulation results are in excellent agreement with experiment, with percentage differences of less than 2%, in general, demonstrating the accuracy of our Monte Carlo absolute dose calculations.

19. The preference of visualization in teaching and learning absolute value

Cihan Konyalioğlu, Alper; Aksu, Zeki; Özge Şenel, Esma

2012-07-01

Visualization is mostly despised although it complements and - sometimes - guides the analytical process. This study mainly investigates teachers' preferences concerning the use of the visualization method and determines the extent to which they encourage their students to make use of it within the problem-solving process. This study was conducted for the ninth-grade students and their mathematics teacher in a social science intensive public school in the city of Erzurum, Turkey. Utilizing case study as the preferred method, data were collected through observations, interviews and student evaluations. This study revealed that visualization has a positive effect at the preliminary phases of teaching the absolute value concept but generates a lack of stimulation during problem solving in further phases of the instruction. This could be explained as a result of current examination system which requires a habituation of the analytical process in solving mathematical questions.

20. Precision absolute value amplifier for a precision voltmeter

SciTech Connect

Hearn, W. E.; Rondeau, D. J.

1985-05-21

Bipolar inputs are afforded by the plus inputs of first and second differential input amplifiers. A first gain determining resister is connected between the minus inputs of the differential amplifiers. First and second diodes are connected between the respective minus inputs and the respective outputs of the differential amplifiers. First and second FETs have their gates connected to the outputs of the amplifiers, while their respective source and drain circuits are connected between the respective minus inputs and an output lead extending to a load resister. The output current through the load resister is proportional to the absolute value of the input voltage difference between the bipolar input terminals. A third differential amplifier has its plus input terminal connected to the load resister. A second gain determining resister is connected between the minus input of the third differential amplifier and a voltage source. A third FET has its gate connected to the output of the third amplifier. The source and drain circuit of the third transistor is connected between the minus input of the third amplifier and a voltage-frequency converter, constituting an output device. A polarity detector is also provided, comprising a pair of transistors having their inputs connected to the outputs of the first and second differential amplifiers. The outputs of the polarity detector are connected to gates which switch the output of the voltage-frequency converter between up and down counting outputs.

1. Precision absolute value amplifier for a precision voltmeter

DOEpatents

Hearn, William E.; Rondeau, Donald J.

1985-01-01

Bipolar inputs are afforded by the plus inputs of first and second differential input amplifiers. A first gain determining resister is connected between the minus inputs of the differential amplifiers. First and second diodes are connected between the respective minus inputs and the respective outputs of the differential amplifiers. First and second FETs have their gates connected to the outputs of the amplifiers, while their respective source and drain circuits are connected between the respective minus inputs and an output lead extending to a load resister. The output current through the load resister is proportional to the absolute value of the input voltage difference between the bipolar input terminals. A third differential amplifier has its plus input terminal connected to the load resister. A second gain determining resister is connected between the minus input of the third differential amplifier and a voltage source. A third FET has its gate connected to the output of the third amplifier. The source and drain circuit of the third transistor is connected between the minus input of the third amplifier and a voltage-frequency converter, constituting an output device. A polarity detector is also provided, comprising a pair of transistors having their inputs connected to the outputs of the first and second differential amplifiers. The outputs of the polarity detector are connected to gates which switch the output of the voltage-frequency converter between up and down counting outputs.

2. Precision absolute-value amplifier for a precision voltmeter

DOEpatents

Hearn, W.E.; Rondeau, D.J.

1982-10-19

Bipolar inputs are afforded by the plus inputs of first and second differential input amplifiers. A first gain determining resistor is connected between the minus inputs of the differential amplifiers. First and second diodes are connected between the respective minus inputs and the respective outputs of the differential amplifiers. First and second FETs have their gates connected to the outputs of the amplifiers, while their respective source and drain circuits are connected between the respective minus inputs and an output lead extending to a load resistor. The output current through the load resistor is proportional to the absolute value of the input voltage difference between the bipolar input terminals. A third differential amplifier has its plus input terminal connected to the load resistor. A second gain determining resistor is connected between the minus input of the third differential amplifier and a voltage source. A third FET has its gate connected to the output of the third amplifier. The source and drain circuit of the third transistor is connected between the minus input of the third amplifier and a voltage-frequency converter, constituting an output device. A polarity detector is also provided, comprising a pair of transistors having their inputs connected to the outputs of the first and second differential amplifiers. The outputs of the polarity detector are connected to gates which switch the output of the voltage-frequency converter between up and down counting outputs.

3. A Special Application of Absolute Value Techniques in Authentic Problem Solving

ERIC Educational Resources Information Center

Stupel, Moshe

2013-01-01

There are at least five different equivalent definitions of the absolute value concept. In instances where the task is an equation or inequality with only one or two absolute value expressions, it is a worthy educational experience for learners to solve the task using each one of the definitions. On the other hand, if more than two absolute value…

4. The Cauchy principal value and the Hadamard finite part integral as values of absolutely convergent integrals

Galapon, Eric A.

2016-03-01

The divergent integral ∫a b f ( x ) ( x - x 0 ) - n - 1 d x , for -∞ < a < x0 < b < ∞ and n = 0, 1, 2, …, is assigned, under certain conditions, the value equal to the simple average of the contour integrals ∫C±f(z)(z - x0)-n-1dz, where C+ (C-) is a path that starts from a and ends at b and which passes above (below) the pole at x0. It is shown that this value, which we refer to as the analytic principal value, is equal to the Cauchy principal value for n = 0 and to the Hadamard finite-part of the divergent integral for positive integer n. This implies that, where the conditions apply, the Cauchy principal value and the Hadamard finite-part integral are in fact values of absolutely convergent integrals. Moreover, it leads to the replacement of the boundary values in the Sokhotski-Plemelj-Fox theorem with integrals along some arbitrary paths. The utility of the analytic principal value in the numerical, analytical, and asymptotic evaluations of the principal value and the finite-part integral is discussed and demonstrated.

5. The impact of water temperature on the measurement of absolute dose

Islam, Naveed Mehdi

To standardize reference dosimetry in radiation therapy, Task Group 51 (TG 51) of American Association of Physicist's in Medicine (AAPM) recommends that dose calibration measurements be made in a water tank at a depth of 10 cm and at a reference geometry. Methodologies are provided for calculating various correction factors to be applied in calculating the absolute dose. However the protocol does not specify the water temperature to be used. In practice, the temperature of water during dosimetry may vary considerably between independent sessions and different centers. In this work the effect of water temperature on absolute dosimetry has been investigated. Density of water varies with temperature, which in turn may impact the beam attenuation and scatter properties. Furthermore, due to thermal expansion or contraction air volume inside the chamber may change. All of these effects can result in a change in the measurement. Dosimetric measurements were made using a Farmer type ion chamber on a Varian Linear Accelerator for 6 MV and 23 MV photon energies for temperatures ranging from 10 to 40 °C. A thermal insulation was designed for the water tank in order to maintain relatively stable temperature over the duration of the experiment. Dose measured at higher temperatures were found to be consistently higher by a very small magnitude. Although the differences in dose were less than the uncertainty in each measurement, a linear regression of the data suggests that the trend is statistically significant with p-values of 0.002 and 0.013 for 6 and 23 MV beams respectively. For a 10 degree difference in water phantom temperatures, which is a realistic deviation across clinics, the final calculated reference dose can differ by 0.24% or more. To address this effect, first a reference temperature (e.g.22 °C) can be set as the standard; subsequently a correction factor can be implemented for deviations from this reference. Such a correction factor is expected to be of similar

6. Absolute value equations - what can we learn from their graphical representation?

Stupel, Moshe; Ben-Chaim, David

2014-08-01

Understanding graphical representations of algebraic equations, particularly graphical representations of absolute value equations, significantly improves students' mathematical comprehension and ignites within them an appreciation of the beauty and aesthetics of mathematics. In this paper, we focus on absolute value equations of linear and quadratic expressions, by examining various cases, presenting different methods of solving them by graphical representation, exhibiting the advantage of using dynamic software such as GeoGebra in solving them, and illustrating some examples of interesting graphical solutions. We recommend that teachers take advantage of the rapid development in technology to help learners tangibly visualize the solutions of absolute value equations before proceeding to the analytical solutions.

7. Characterization of Fricke-gel layers for absolute dose measurements in radiotherapy

SciTech Connect

Gambarini, G.; Carrara, M.; Rrushi, B.; Guilizzoni, R.; Borroni, M.; Tomatis, S.; Pirola, L.; Battistoni, G.

2011-07-01

Fricke-gel layer dosimeters (FGLDs) have shown promising features for attaining absolute measurements of the spatial distribution of the absorbed dose in radiotherapy. Good precision of results (within 3%) is achieved by means of calibration of each single dosimeter before measurement. The calibration is performed irradiating the dosimeter at a uniform and precisely known dose, in order to get a calibration matrix that must be used, with pixel-to-pixel manipulation, to obtain the dose image. A study of the trend in time of dosimeter response after one or more exposures was carried out and calibration protocols were suitably established and verified. (authors)

8. A special application of absolute value techniques in authentic problem solving

Stupel, Moshe

2013-06-01

There are at least five different equivalent definitions of the absolute value concept. In instances where the task is an equation or inequality with only one or two absolute value expressions, it is a worthy educational experience for learners to solve the task using each one of the definitions. On the other hand, if more than two absolute value expressions are involved, the definition that is most helpful is the one involving solving by intervals and evaluating critical points. In point of fact, application of this technique is one reason that the topic of absolute value is important in mathematics in general and in mathematics teaching in particular. We present here an authentic practical problem that is solved using absolute values and the 'intervals' method, after which the solution is generalized with surprising results. This authentic problem also lends itself to investigation using educational technological tools such as GeoGebra dynamic geometry software: mathematics teachers can allow their students to initially cope with the problem by working in an inductive environment in which they conduct virtual experiments until a solid conjecture has been reached, after which they should prove the conjecture deductively, using classic theoretical mathematical tools.

9. Absolute dose measurements by means of a small cylindrical ionization chamber for very high dose per pulse high energy electron beams

SciTech Connect

Karaj, E.; Righi, S.; Di Martino, F.

2007-03-15

Very high dose per pulse (3-13 cGy/pulse) high energy electron beams are currently produced by special linear accelerators (linac) dedicated to Intra Operative Radiation Therapy (IORT). The electron beams produced by such linacs are collimated by special Perspex applicators of various size and cylindrically shaped. The biggest problems from the dosimetric point of view are caused by the high dose-per-pulse values and the use of inclined applicators. In this work measurements of absolute dose for the inclined applicators were done by using a small cylindrical ionization chamber, type CC01 (Wellhofer), a parallel plane ionization chamber type Markus (PTW 23343) and radiochromic films type EBT. We show a method which allows calculating the quality correction factors for CC01 chamber with an uncertainty of 1% and the absolute dose value for the inclined applicators using CC01 with an uncertainty of 3.1% for electron beams of energy of 6 and 7 MeV produced by the linac dedicated to IORT Novac7.

10. Radiation pneumonitis following large single dose irradiation: a re-evaluation based on absolute dose to lung

SciTech Connect

Van Dyk, J.; Keane, T.J.; Kan, S.; Rider, W.D.; Fryer, C.J.H.

1981-04-01

11. Evaluation of clinical IMRT treatment planning using the GATE Monte Carlo simulation platform for absolute and relative dose calculations

SciTech Connect

Benhalouche, S.; Le Maitre, A.; Visvikis, D.; Pradier, O.; Boussion, N.

2013-02-15

Purpose: The objective of this study was to evaluate and validate the use of the Geant4 application for emission tomography (GATE) Monte Carlo simulation platform for clinical intensity modulated radiotherapy (IMRT) dosimetry studies. Methods: The first step consisted of modeling a 6 MV photon beam linear accelerator (LINAC), with its corresponding validation carried out using percent depth dose evaluation, transverse profiles, tissue phantom ratio, and output factor on water phantom. The IMRT evaluation was performed by comparing simulation and measurements in terms of absolute and relative doses using IMRT dedicated quality assurance phantoms considering seven different patient datasets. Results: Concerning the LINAC simulated model validation tissue phantom ratios at 20 and 10 cm in water TPR{sub 10}{sup 20} obtained from GATE and measurements were 0.672 {+-} 0.063 and 0.675, respectively. In terms of percent depth dose and transverse profiles, error ranges were, respectively: 1.472%{+-} 0.285% and 4.827%{+-} 1.323% for field size of 4 Multiplication-Sign 4, 5 Multiplication-Sign 5, 10 Multiplication-Sign 10, 15 Multiplication-Sign 15, 20 Multiplication-Sign 20, 25 Multiplication-Sign 25, 30 Multiplication-Sign 30, and 40 Multiplication-Sign 40 cm{sup 2}. Most errors were observed at the edge of radiation fields because of higher dose gradient in these areas. Output factors showed good agreement between simulation and measurements with a maximum error of 1.22%. Finally, for IMRT simulations considering seven patient datasets, GATE provided good results with a relative error of 0.43%{+-} 0.25% on absolute dose between simulated and measured beams (measurements at the isocenter, volume 0.125 cm{sup 3}). Planar dose comparisons were also performed using gamma-index analysis. For the whole set of beams considered the mean gamma-index value was 0.497 {+-} 0.152 and 90.8%{+-} 3.6% of the evaluated dose points satisfied the 5%/ 4 mm criterion. Conclusions: These

12. Using a dose-area product for absolute measurements in small fields: a feasibility study.

PubMed

Dufreneix, S; Ostrowsky, A; Le Roy, M; Sommier, L; Gouriou, J; Delaunay, F; Rapp, B; Daures, J; Bordy, J-M

2016-01-21

To extend the dosimetric reference system to field sizes smaller than 2 cm × 2 cm, the LNE-LNHB laboratory is studying an approach based on a new dosimetric quantity named the dose-area product instead of the commonly used absorbed dose at a point. A graphite calorimeter and a plane parallel ion chamber with a sensitive surface of 3 cm diameter were designed and built for measurements in fields of 2, 1 and 0.75 cm diameter. The detector surface being larger than the beam section, most of the issues linked with absolute dose measurements at a point could be avoided. Calibration factors of the plane parallel ionization chamber were established in terms of dose-area product in water for small fields with an uncertainty smaller than 0.9%. PMID:26690271

13. Maple (Computer Algebra System) in Teaching Pre-Calculus: Example of Absolute Value Function

ERIC Educational Resources Information Center

Tuluk, Güler

2014-01-01

Modules in Computer Algebra Systems (CAS) make Mathematics interesting and easy to understand. The present study focused on the implementation of the algebraic, tabular (numerical), and graphical approaches used for the construction of the concept of absolute value function in teaching mathematical content knowledge along with Maple 9. The study…

14. A Multidimensional Approach to Explore the Understanding of the Notion of Absolute Value

ERIC Educational Resources Information Center

Gagatsis, Athanasios; Panaoura, Areti

2014-01-01

The study aimed to investigate students' conceptions on the notion of absolute value and their abilities in applying the specific notion in routine and non-routine situations. A questionnaire was constructed and administered to 17-year-old students. Data were analysed using the hierarchical clustering of variables and the implicative method,…

15. Multiphase permittivity imaging using absolute value electrical capacitance tomography data and a level set algorithm.

PubMed

Al Hosani, E; Soleimani, M

2016-06-28

Multiphase flow imaging is a very challenging and critical topic in industrial process tomography. In this article, simulation and experimental results of reconstructing the permittivity profile of multiphase material from data collected in electrical capacitance tomography (ECT) are presented. A multiphase narrowband level set algorithm is developed to reconstruct the interfaces between three- or four-phase permittivity values. The level set algorithm is capable of imaging multiphase permittivity by using one set of ECT measurement data, so-called absolute value ECT reconstruction, and this is tested with high-contrast and low-contrast multiphase data. Simulation and experimental results showed the superiority of this algorithm over classical pixel-based image reconstruction methods. The multiphase level set algorithm and absolute ECT reconstruction are presented for the first time, to the best of our knowledge, in this paper and critically evaluated. This article is part of the themed issue 'Supersensing through industrial process tomography'. PMID:27185966

16. Absolute value optimization to estimate phase properties of stochastic time series

NASA Technical Reports Server (NTRS)

Scargle, J. D.

1977-01-01

Most existing deconvolution techniques are incapable of determining phase properties of wavelets from time series data; to assure a unique solution, minimum phase is usually assumed. It is demonstrated, for moving average processes of order one, that deconvolution filtering using the absolute value norm provides an estimate of the wavelet shape that has the correct phase character when the random driving process is nonnormal. Numerical tests show that this result probably applies to more general processes.

17. Pretreatment verification of IMRT absolute dose distributions using a commercial a-Si EPID

SciTech Connect

Talamonti, C.; Casati, M.; Bucciolini, M.

2006-11-15

A commercial amorphous silicon electronic portal imaging device (EPID) has been studied to investigate its potential in the field of pretreatment verifications of step and shoot, intensity modulated radiation therapy (IMRT), 6 MV photon beams. The EPID was calibrated to measure absolute exit dose in a water-equivalent phantom at patient level, following an experimental approach, which does not require sophisticated calculation algorithms. The procedure presented was specifically intended to replace the time-consuming in-phantom film dosimetry. The dosimetric response was characterized on the central axis in terms of stability, linearity, and pulse repetition frequency dependence. The a-Si EPID demonstrated a good linearity with dose (within 2% from 1 monitor unit), which represent a prerequisite for the application in IMRT. A series of measurements, in which phantom thickness, air gap between the phantom and the EPID, field size and position of measurement of dose in the phantom (entrance or exit) varied, was performed to find the optimal calibration conditions, for which the field size dependence is minimized. In these conditions (20 cm phantom thickness, 56 cm air gap, exit dose measured at the isocenter), the introduction of a filter for the low-energy scattered radiation allowed us to define a universal calibration factor, independent of field size. The off-axis extension of the dose calibration was performed by applying a radial correction for the beam profile, distorted due to the standard flood field calibration of the device. For the acquisition of IMRT fields, it was necessary to employ home-made software and a specific procedure. This method was applied for the measurement of the dose distributions for 15 clinical IMRT fields. The agreement between the dose distributions, quantified by the gamma index, was found, on average, in 97.6% and 98.3% of the analyzed points for EPID versus TPS and for EPID versus FILM, respectively, thus suggesting a great

18. The Impact of Different Absolute Solar Irradiance Values on Current Climate Model Simulations

NASA Technical Reports Server (NTRS)

Rind, David H.; Lean, Judith L.; Jonas, Jeffrey

2014-01-01

19. TU-A-12A-09: Absolute Blood Flow Measurement in a Cardiac Phantom Using Low Dose CT

SciTech Connect

Ziemer, B; Hubbard, L; Lipinski, J; Molloi, S

2014-06-15

Purpose: To investigate a first pass analysis technique to measure absolute flow from low dose CT images in a cardiac phantom. This technique can be combined with a myocardial mass assignment to yield absolute perfusion using only two volume scans and reduce the radiation dose to the patient. Methods: A four-chamber cardiac phantom and perfusion chamber were constructed from poly-acrylic and connected with tubing to approximate anatomical features. The system was connected to a pulsatile pump, input/output reservoirs and power contrast injector. Flow was varied in the range of 1-2.67 mL/s with the pump operating at 60 beats/min. The system was imaged once a second for 14 seconds with a 320-row scanner (Toshiba Medical Systems) using a contrast-enhanced, prospective-gated cardiac perfusion protocol. Flow was calculated by the following steps: subsequent images of the perfusion volume were subtracted to find the contrast entering the volume; this was normalized by an upstream, known volume region to convert Hounsfield (HU) values to concentration; this was divided by the subtracted images time difference. The technique requires a relatively stable input contrast concentration and no contrast can leave the perfusion volume before the flow measurement is completed. Results: The flow calculated from the images showed an excellent correlation with the known rates. The data was fit to a linear function with slope 1.03, intercept 0.02 and an R{sup 2} value of 0.99. The average root mean square (RMS) error was 0.15 mL/s and the average standard deviation was 0.14 mL/s. The flow rate was stable within 7.7% across the full scan and served to validate model assumptions. Conclusion: Accurate, absolute flow rates were measured from CT images using a conservation of mass model. Measurements can be made using two volume scans which can substantially reduce the radiation dose compared with current dynamic perfusion techniques.

20. SU-E-J-85: Leave-One-Out Perturbation (LOOP) Fitting Algorithm for Absolute Dose Film Calibration

SciTech Connect

Chu, A; Ahmad, M; Chen, Z; Nath, R

2014-06-01

Purpose: To introduce an outliers-recognition fitting routine for film dosimetry. It cannot only be flexible with any linear and non-linear regression but also can provide information for the minimal number of sampling points, critical sampling distributions and evaluating analytical functions for absolute film-dose calibration. Methods: The technique, leave-one-out (LOO) cross validation, is often used for statistical analyses on model performance. We used LOO analyses with perturbed bootstrap fitting called leave-one-out perturbation (LOOP) for film-dose calibration . Given a threshold, the LOO process detects unfit points (“outliers”) compared to other cohorts, and a bootstrap fitting process follows to seek any possibilities of using perturbations for further improvement. After that outliers were reconfirmed by a traditional t-test statistics and eliminated, then another LOOP feedback resulted in the final. An over-sampled film-dose- calibration dataset was collected as a reference (dose range: 0-800cGy), and various simulated conditions for outliers and sampling distributions were derived from the reference. Comparisons over the various conditions were made, and the performance of fitting functions, polynomial and rational functions, were evaluated. Results: (1) LOOP can prove its sensitive outlier-recognition by its statistical correlation to an exceptional better goodness-of-fit as outliers being left-out. (2) With sufficient statistical information, the LOOP can correct outliers under some low-sampling conditions that other “robust fits”, e.g. Least Absolute Residuals, cannot. (3) Complete cross-validated analyses of LOOP indicate that the function of rational type demonstrates a much superior performance compared to the polynomial. Even with 5 data points including one outlier, using LOOP with rational function can restore more than a 95% value back to its reference values, while the polynomial fitting completely failed under the same conditions

1. A redetermination of absolute values for 17RVPDB-CO2 and 17RVSMOW.

PubMed

Assonov, Sergey S; Brenninkmeijer, Carl A M

2003-01-01

In a companion paper in this issue we presented a review of the current state of (17)O-corrections for CO(2) mass spectrometry and considered an approach (including algebraic formulae) of how to determine absolute values for (17)R(VPDB-CO2) and (17)R(VSMOW). Here we present the results of experiments conducted to determine these values. Two oxygen gases (one depleted in heavy isotopes and the other isotopically normal oxygen) were analysed to obtain the relative (17)O content. Samples of both gases were converted into CO(2), and the resulting CO(2) samples were analysed as well. Possible experimental and analytical errors are carefully considered and eliminated as far as feasible. Much attention was paid to understanding and dealing with cross-contamination effects occurring in the mass spectrometer. Based on the data obtained, the absolute values are calculated to be: (17)R(VPDB-CO2) = 0.00039511 +/- 0.00000094 and (17)R(VSMOW) = 0.00038672 +/- 0.00000087 (expanded uncertainties). Both values are on the original scale of Craig (Geochim. Cosmochim. Acta 1957; 12: 133-149) with (13)R(VPDB-CO2) = 0.0112372. A (17)O-correction algorithm incorporating the newly determined value for (17)R(VPDB-CO2) and lambda = 0.528 by Meijer and Li (Isot. Environ. Health Stud. 1998; 34: 349-369) is constructed. A computational test is performed to demonstrate the degree of delta(13)C bias relative to the previously known correction algorithms. delta(13)C values produced by the constructed algorithm are in the middle of the values produced by the other algorithms. We refrain, however, from giving any recommendation concerning which (17)O-correction algorithm to use in order to obtain delta(13)C data in the most accurate way. The present work illuminates the need to reconsider recommendations concerning the correction algorithm. PMID:12720281

2. Accuracy, Precision, Sensitivity, and Specificity of Noninvasive ICP Absolute Value Measurements.

PubMed

Krakauskaite, Solventa; Petkus, Vytautas; Bartusis, Laimonas; Zakelis, Rolandas; Chomskis, Romanas; Preiksaitis, Aidanas; Ragauskas, Arminas; Matijosaitis, Vaidas; Petrikonis, Kestutis; Rastenyte, Daiva

2016-01-01

An innovative absolute intracranial pressure (ICP) value measurement method has been validated by multicenter comparative clinical studies. The method is based on two-depth transcranial Doppler (TCD) technology and uses intracranial and extracranial segments of the ophthalmic artery as pressure sensors. The ophthalmic artery is used as a natural pair of "scales" that compares ICP with controlled pressure Pe, which is externally applied to the orbit. To balance the scales, ICP = Pe a special two-depth TCD device was used as a pressure balance indicator. The proposed method is the only noninvasive ICP measurement method that does not need patient-specific calibration. PMID:27165929

3. Theoretical prediction of relative and absolute pKa values of aminopyridines.

PubMed

Caballero, N A; Melendez, F J; Muñoz-Caro, C; Niño, A

2006-11-20

This work presents a study aimed at the theoretical prediction of pK(a) values of aminopyridines, as a factor responsible for the activity of these compounds as blockers of the voltage-dependent K(+) channels. To cover a large range of pK(a) values, a total of seven substituted pyridines is considered as a calibration set: pyridine, 2-aminopyridine, 3-aminopyridine, 4-aminopyridine, 2-chloropyridine, 3-chloropyridine, and 4-methylpirydine. Using ab initio G1, G2 and G3 extrapolation methods, and the CPCM variant of the Polarizable Continuum Model for solvation, we calculate gas phase and solvation free energies. pK(a) values are obtained from these data using a thermodynamic cycle for describing protonation in aqueous and gas phases. The results show that the relatively inexpensive G1 level of theory is the most accurate at predicting pK(a) values in aminopyridines. The highest standard deviation with respect to the experimental data is 0.69 pK(a) units for absolute values calculations. The difference increases slightly to 0.74 pK(a) units when the pK(a) is computed relative to the pyridine molecule. Considering only compounds at least as basic as pyridine (the values of interest for bioactive aminopyridines) the error falls to 0.10 and 0.12 pK(a) units for the absolute and relative computations, respectively. The technique can be used to predict the effect of electronegative substituents in the pK(a) of 4-AP, the most active aminopyridine considered in this work. Thus, 2-chloro and 3-chloro-4-aminopyridine are taken into account. The results show a decrease of the pK(a), suggesting that these compounds are less active than 4-AP at blocking the K(+) channel. PMID:16844281

4. Spatial Variation of Dosimetric Leaf Gap and Its Impact on Absolute Dose Delivery in Radiation Therapy

Kumaraswamy, Lalith

During dose calculation, the Eclipse Treatment Planning system (TPS) retracts the MLC leaf positions by half of the dosimetric leaf gap (DLG) value (measured at central axis) for all leaf positions in a dynamic MLC plan to accurately model the rounded leaf ends. The aim of this study is to map the variation of DLG along the travel path of each MLC leaf pair and quantify how this variation impacts delivered dose. 6 MV DLG values were measured for all MLC leaf pairs in increments of 1.0 cm (from the line intersecting the CAX and perpendicular to MLC motion) to 13.0 cm off axis distance at depth of dose maximum. The measurements were performed on two Varian LINACs, both employing the Millennium 120-leaf MLC. The measurements were performed at several locations in the beam with both a Sun Nuclear MapCHECK device and a PTW pinpoint ion chamber. The measured DLGs for the middle 40 MLC leaf pairs (each 0.5 cm width) at positions along a line through the CAX and perpendicular to MLC leaf travel direction were very similar, varying maximally by only 0.2 mm. The outer 20 MLC leaf pairs (each 1.0 cm width) have much lower DLG values, about 0.3 to 0.5 mm lower than the central MLC leaf pair, at their respective central line position. Overall, the mean and the maximum variation between the 0.5 cm width leaves and the 1.0 cm width leaf pairs is 0.32 mm and 0.65 mm, respectively. The spatial variation in DLG is caused by the variation of intraleaf transmission through MLC leaves. Fluences centered on the CAX would not be affected since DLG does not vary; but any fluences residing significantly off-axis with narrow sweeping leaves may exhibit significant dose differences. This is due to the fact that there are differences in DLG between the true DLG exhibited by the 1.0 cm width outer leaves and the constant DLG value utilized by the TPS for dose calculation. Since there are large differences in DLG between the 0.5 cm width leaf pairs and 1.0 cm width leaf pairs, there is a need

5. Prospective Teachers' Reactions to "Right-or-Wrong" Tasks: The Case of Derivatives of Absolute Value Functions

ERIC Educational Resources Information Center

Tsamir, Pessia; Rasslan, Shaker; Dreyfus, Tommy

2006-01-01

This paper illustrates the role of a "Thinking-about-Derivatives" task in identifying learners' derivative conceptions and for promoting their critical thinking about derivatives of absolute value functions. The task included three parts: "Define" the derivative of a function f(x) at x = x[subscript 0], "Solve-if-Possible" the derivative of f(x) =…

6. [Dose output at an image intensifier with peak value- or mean value-control].

PubMed

Bronder, T

1985-01-01

X-ray fluoroscopy equipment with automatic brightness control works either on the principle of peak value control or mean value control. The different modes of operation of both control types have the consequence that different dose rate values are regulated if a homogeneous phantom is used. The controlled value using peak value control lies a factor of 1.4 higher than by mean value control. A theoretical consideration about the effect of different dose rate contrast distributions at the image intensifier with regard to the peak and mean values of both types of brightness control results in conditions, which an inhomogeneous phantom must satisfy to yield the same mean dose rate in both cases. By means of an inhomogeneous phantom construction in accordance with these conditions it is possible to compare the dose rate and also image quality parameters of different X-ray units with different types of brightness control. PMID:3969693

7. Delta Procalcitonin Is a Better Indicator of Infection Than Absolute Procalcitonin Values in Critically Ill Patients: A Prospective Observational Study.

PubMed

Trásy, Domonkos; Tánczos, Krisztián; Németh, Márton; Hankovszky, Péter; Lovas, András; Mikor, András; Hajdú, Edit; Osztroluczki, Angelika; Fazakas, János; Molnár, Zsolt

2016-01-01

Purpose. To investigate whether absolute value of procalcitonin (PCT) or the change (delta-PCT) is better indicator of infection in intensive care patients. Materials and Methods. Post hoc analysis of a prospective observational study. Patients with suspected new-onset infection were included in whom PCT, C-reactive protein (CRP), temperature, and leukocyte (WBC) values were measured on inclusion (t 0) and data were also available from the previous day (t -1). Based on clinical and microbiological data, patients were grouped post hoc into infection- (I-) and noninfection- (NI-) groups. Results. Of the 114 patients, 85 (75%) had proven infection. PCT levels were similar at t -1: I-group (median [interquartile range]): 1.04 [0.40-3.57] versus NI-group: 0.53 [0.16-1.68], p = 0.444. By t 0 PCT levels were significantly higher in the I-group: 4.62 [1.91-12.62] versus 1.12 [0.30-1.66], p = 0.018. The area under the curve to predict infection for absolute values of PCT was 0.64 [95% CI = 0.52-0.76], p = 0.022; for percentage change: 0.77 [0.66-0.87], p < 0.001; and for delta-PCT: 0.85 [0.78-0.92], p < 0.001. The optimal cut-off value for delta-PCT to indicate infection was 0.76 ng/mL (sensitivity 80 [70-88]%, specificity 86 [68-96]%). Neither absolute values nor changes in CRP, temperature, or WBC could predict infection. Conclusions. Our results suggest that delta-PCT values are superior to absolute values in indicating infection in intensive care patients. This trial is registered with ClinicalTrials.gov identifier: NCT02311816. PMID:27597981

8. Delta Procalcitonin Is a Better Indicator of Infection Than Absolute Procalcitonin Values in Critically Ill Patients: A Prospective Observational Study

PubMed Central

Hankovszky, Péter; Hajdú, Edit

2016-01-01

Purpose. To investigate whether absolute value of procalcitonin (PCT) or the change (delta-PCT) is better indicator of infection in intensive care patients. Materials and Methods. Post hoc analysis of a prospective observational study. Patients with suspected new-onset infection were included in whom PCT, C-reactive protein (CRP), temperature, and leukocyte (WBC) values were measured on inclusion (t0) and data were also available from the previous day (t−1). Based on clinical and microbiological data, patients were grouped post hoc into infection- (I-) and noninfection- (NI-) groups. Results. Of the 114 patients, 85 (75%) had proven infection. PCT levels were similar at t−1: I-group (median [interquartile range]): 1.04 [0.40–3.57] versus NI-group: 0.53 [0.16–1.68], p = 0.444. By t0 PCT levels were significantly higher in the I-group: 4.62 [1.91–12.62] versus 1.12 [0.30–1.66], p = 0.018. The area under the curve to predict infection for absolute values of PCT was 0.64 [95% CI = 0.52–0.76], p = 0.022; for percentage change: 0.77 [0.66–0.87], p < 0.001; and for delta-PCT: 0.85 [0.78–0.92], p < 0.001. The optimal cut-off value for delta-PCT to indicate infection was 0.76 ng/mL (sensitivity 80 [70–88]%, specificity 86 [68-96]%). Neither absolute values nor changes in CRP, temperature, or WBC could predict infection. Conclusions. Our results suggest that delta-PCT values are superior to absolute values in indicating infection in intensive care patients. This trial is registered with ClinicalTrials.gov identifier: NCT02311816. PMID:27597981

9. Absolute calibration of the Gamma Knife{sup ®} Perfexion™ and delivered dose verification using EPR/alanine dosimetry

SciTech Connect

Hornbeck, Amaury E-mail: tristan.garcia@cea.fr; Garcia, Tristan E-mail: tristan.garcia@cea.fr; Cuttat, Marguerite; Jenny, Catherine

2014-06-15

Purpose: Elekta Leksell Gamma Knife{sup ®} (LGK) is a radiotherapy beam machine whose features are not compliant with the international calibration protocols for radiotherapy. In this scope, the Laboratoire National Henri Becquerel and the Pitié-Salpêtrière Hospital decided to conceive a new LKG dose calibration method and to compare it with the currently used one. Furthermore, the accuracy of the dose delivered by the LGK machine was checked using an “end-to-end” test. This study also aims to compare doses delivered by the two latest software versions of the Gammaplan treatment planning system (TPS). Methods: The dosimetric method chosen is the electron paramagnetic resonance (EPR) of alanine. Dose rate (calibration) verification was done without TPS using a spherical phantom. Absolute calibration was done with factors calculated by Monte Carlo simulation (MCNP-X). For “end-to-end” test, irradiations in an anthropomorphic head phantom, close to real treatment conditions, are done using the TPS in order to verify the delivered dose. Results: The comparison of the currently used calibration method with the new one revealed a deviation of +0.8% between the dose rates measured by ion chamber and EPR/alanine. For simple fields configuration (less than 16 mm diameter), the “end-to-end” tests showed out average deviations of −1.7% and −0.9% between the measured dose and the calculated dose by Gammaplan v9 and v10, respectively. Conclusions: This paper shows there is a good agreement between the new calibration method and the currently used one. There is also a good agreement between the calculated and delivered doses especially for Gammaplan v10.

10. Absolute depth-dose-rate measurements for an {sup 192}Ir HDR brachytherapy source in water using MOSFET detectors

SciTech Connect

Zilio, Valery Olivier; Joneja, Om Parkash; Popowski, Youri; Rosenfeld, Anatoly; Chawla, Rakesh

2006-06-15

Reported MOSFET measurements concern mostly external radiotherapy and in vivo dosimetry. In this paper, we apply the technique for absolute dosimetry in the context of HDR brachytherapy using an {sup 192}Ir source. Measured radial dose rate distributions in water for different planes perpendicular to the source axis are presented and special attention is paid to the calibration of the R and K type detectors, and to the determination of appropriate correction factors for the sensitivity variation with the increase of the threshold voltage and the energy dependence. The experimental results are compared with Monte Carlo simulated dose rate distributions. The experimental results show a good agreement with the Monte Carlo simulations: the discrepancy between experimental and Monte Carlo results being within 5% for 82% of the points and within 10% for 95% of the points. Moreover, all points except two are found to lie within the experimental uncertainties, confirming thereby the quality of the results obtained.

11. Calculation of absolute free energy of binding for theophylline and its analogs to RNA aptamer using nonequilibrium work values

Tanida, Yoshiaki; Ito, Masakatsu; Fujitani, Hideaki

2007-08-01

The massively parallel computation of absolute binding free energy with a well-equilibrated system (MP-CAFEE) has been developed [H. Fujitani, Y. Tanida, M. Ito, G. Jayachandran, C.D. Snow, M.R. Shirts, E.J. Sorin, V.S. Pande, J. Chem. Phys. 123 (2005) 084108]. As an application, we perform the binding affinity calculations of six theophylline-related ligands with RNA aptamer. Basically, our method is applicable when using many compute nodes to accelerate simulations, thus a parallel computing system is also developed. To further reduce the computational cost, the adequate non-uniform intervals of coupling constant λ, connecting two equilibrium states, namely bound and unbound, are determined. The absolute binding energies Δ G thus obtained have effective linear relation between the computed and experimental values. If the results of two other different methods are compared, thermodynamic integration (TI) and molecular mechanics Poisson-Boltzmann surface area (MM-PBSA) by the paper of Gouda et al. [H. Gouda, I.D. Kuntz, D.A. Case, P.A. Kollman, Biopolymers 68 (2003) 16], the predictive accuracy of the relative values ΔΔ G is almost comparable to that of TI: the correlation coefficients ( R) obtained are 0.99 (this work), 0.97 (TI), and 0.78 (MM-PBSA). On absolute binding energies meanwhile, a constant energy shift of ˜-7 kcal/mol against the experimental values is evident. To solve this problem, several presumable reasons are investigated.

12. Effect of various methods for rectum delineation on relative and absolute dose-volume histograms for prostate IMRT treatment planning.

PubMed

Kusumoto, Chiaki; Ohira, Shingo; Miyazaki, Masayoshi; Ueda, Yoshihiro; Isono, Masaru; Teshima, Teruki

2016-01-01

Several reports have dealt with correlations of late rectal toxicity with rectal dose-volume histograms (DVHs) for high dose levels. There are 2 techniques to assess rectal volume for reception of a specific dose: relative-DVH (R-DVH, %) that indicates relative volume for a vertical axis, and absolute-DVH (A-DVH, cc) with its vertical axis showing absolute volume of the rectum. The parameters of DVH vary depending on the rectum delineation method, but the literature does not present any standardization of such methods. The aim of the present study was to evaluate the effects of different delineation methods on rectal DVHs. The enrollment for this study comprised 28 patients with high-risk localized prostate cancer, who had undergone intensity-modulated radiation therapy (IMRT) with the prescription dose of 78Gy. The rectum was contoured with 4 different methods using 2 lengths, short (Sh) and long (Lg), and 2 cross sections, rectum (Rec) and rectal wall (Rw). Sh means the length from 1cm above the seminal vesicles to 1cm below the prostate and Lg the length from the rectosigmoid junction to the anus. Rec represents the entire rectal volume including the rectal contents and Rw the rectal volume of the area with a wall thickness of 4mm. We compared dose-volume parameters by using 4 rectal contour methods for the same plan with the R-DVHs as well as the A-DVHs. For the high dose levels, the R-DVH parameters varied widely. The mean of V70 for Sh-Rw was the highest (19.4%) and nearly twice as high as that for Lg-Rec (10.4%). On the contrary, only small variations were observed in the A-DVH parameters (4.3, 4.3, 5.5, and 5.5cc for Sh-Rw, Lg-Rw, Sh-Rec, and Lg-Rec, respectively). As for R-DVHs, the parameters of V70 varied depending on the rectal lengths (Sh-Rec vs Lg-Rec: R = 0.76; Sh-Rw vs Lg-Rw: R = 0.85) and cross sections (Sh-Rec vs Sh-Rw: R = 0.49; Lg-Rec vs Lg-Rw: R = 0.65). For A-DVHs, however, the parameters of Sh rectal A-DVHs hardly changed regardless of

13. Differences between absolute and predicted values of forced expiratory volumes to classify ventilatory impairment in chronic obstructive pulmonary disease.

PubMed

Checkley, William; Foreman, Marilyn G; Bhatt, Surya P; Dransfield, Mark T; Han, MeiLan; Hanania, Nicola A; Hansel, Nadia N; Regan, Elizabeth A; Wise, Robert A

2016-02-01

The Global Initiative for Chronic Obstructive Lung Disease (GOLD) severity criterion for COPD is used widely in clinical and research settings; however, it requires the use of ethnic- or population-specific reference equations. We propose two alternative severity criteria based on absolute post-bronchodilator FEV1 values (FEV1 and FEV1/height2) that do not depend on reference equations. We compared the accuracy of these classification schemasto those based on % predicted values (GOLD criterion) and Z-scores of post-bronchodilator FEV1 to predict COPD-related functional outcomes or percent emphysema by computerized tomography of the lung. We tested the predictive accuracy of all severity criteria for the 6-minute walk distance (6MWD), St. George's Respiratory Questionnaire (SGRQ), 36-item Short-Form Health Survey physical health component score (SF-36) and the MMRC Dyspnea Score. We used 10-fold cross-validation to estimate average prediction errors and Bonferroni-adjusted t-tests to compare average prediction errors across classification criteria. We analyzed data of 3772 participants with COPD (average age 63 years, 54% male). Severity criteria based on absolute post-bronchodilator FEV1 or FEV1/height2 yielded similar prediction errors for 6MWD, SGRQ, SF-36 physical health component score, and the MMRC Dyspnea Score when compared to the GOLD criterion (all p > 0.34); and, had similar predictive accuracy when compared with the Z-scores criterion, with the exception for 6MWD where post-bronchodilator FEV1 appeared to perform slightly better than Z-scores (p = 0.01). Subgroup analyses did not identify differences across severity criteria by race, sex, or age between absolute values and the GOLD criterion or one based on Z-scores. Severity criteria for COPD based on absolute values of post-bronchodilator FEV1 performed equally as well as did criteria based on predicted values when benchmarked against COPD-related functional and structural outcomes, are simple to use

14. Advances in the Metrology of Absolute Value Assignments to Isotopic Reference Materials: Consequences from the Avogadro Project

Vocke, Robert; Rabb, Savelas

2015-04-01

All isotope amount ratios (hereafter referred to as isotope ratios) produced and measured on any mass spectrometer are biased. This unfortunate situation results mainly from the physical processes in the source area where ions are produced. Because the ionized atoms in poly-isotopic elements have different masses, such processes are typically mass dependent and lead to what is commonly referred to as mass fractionation (for thermal ionization and electron impact sources) and mass bias (for inductively coupled plasma sources.) This biasing process produces a measured isotope ratio that is either larger or smaller than the "true" ratio in the sample. This has led to the development of numerous fractionation "laws" that seek to correct for these effects, many of which are not based on the physical processes giving rise to the biases. The search for tighter and reproducible precisions has led to two isotope ratio measurement systems that exist side-by-side. One still seeks to measure "absolute" isotope ratios while the other utilizes an artifact based measurement system called a delta-scale. The common element between these two measurement systems is the utilization of isotope reference materials (iRMs). These iRMs are used to validate a fractionation "law" in the former case and function as a scale anchor in the latter. Many value assignments of iRMs are based on "best measurements" by the original groups producing the reference material, a not entirely satisfactory approach. Other iRMs, with absolute isotope ratio values, have been produced by calibrated measurements following the Atomic Weight approach (AW) pioneered by NBS nearly 50 years ago. Unfortunately, the AW is not capable of calibrating the new generation of iRMs to sufficient precision. So how do we get iRMs with isotope ratios of sufficient precision and without bias? Such a focus is not to denigrate the extremely precise delta-scale measurements presently being made on non-traditional and tradition

15. SU-E-T-189: First Experimental Verification of the Accuracy of Absolute Dose Reconstruction From PET-CT Imaging of Yttrium 90 Microspheres

SciTech Connect

Veltchev, I; Fourkal, E; Doss, M; Ma, C; Meyer, J; Yu, M; Horwitz, E

2014-06-01

Purpose: In the past few years there have been numerous proposals for 3D dose reconstruction from the PET-CT imaging of patients undergoing radioembolization treatment of the liver with yttrium-90 microspheres. One of the most promising techniques uses convolution of the measured PET activity distribution with a pre-calculated Monte Carlo dose deposition kernel. The goal of the present study is to experimentally verify the accuracy of this method and to analyze the significance of various error sources. Methods: Optically stimulated luminescence detectors (OSLD) were used (NanoDot, Landauer) in this experiment. Two detectors were mounted on the central axis of a cylinder filled with water solution of yttrium-90 chloride. The total initial activity was 90mCi. The cylinder was inserted in a larger water phantom and scanned on a Siemens Biograph 16 Truepoint PET-CT scanner. Scans were performed daily over a period of 20 days to build a calibration curve for the measured absolute activity spanning 7 yttrium-90 half-lives. The OSLDs were mounted in the phantom for a predetermined period of time in order to record 2Gy dose. The measured dose was then compared to the dose reconstructed from the activity density at the location of each dosimeter. Results: Thorough error analysis of the dose reconstruction algorithm takes into account the uncertainties in the absolute PET activity, branching ratios, and nonlinearity of the calibration curve. The measured dose for 105-minute exposure on day 10 of the experiment was 219(11)cGy, while the reconstructed dose at the location of the detector was 215(47)cGy. Conclusion: We present the first experimental verification of the accuracy of the convolution algorithm for absolute dose reconstruction of yttrium-90 microspheres. The excellent agreement between the measured and calculated point doses will encourage the broad clinical adoption of the convolution-based dose reconstruction algorithm, making future quantitative dose

16. Comparison of methods for generation of absolute reflectance-factor values for bidirectional reflectance-distribution function studies.

PubMed

Feng, X; Schott, J R; Gallagher, T

1993-03-01

Currently, spectrophotometric standard reference materials are calibrated only by using the illumination and viewing geometries recommended by the Commission Internationale de l'Eclairage, and for some geometries the spectral range is limited to the visible wavelengths. A need exists for procedures that calibrate standards at many other geometries and for a broader spectral range. Two methods for calibrating the spectral bidirectional reflectance factor are described. The absolute bidirectional reflectance factor of a sintered polytetrafluoroethylene (PTFE) sample is determined for nearly all the possible illumination and viewing geometries from 400 nm to 2500 nm. The references are a 45/0 reflectance standard calibrated by the National Institute of Standards and Technology and a sintered PTFE sample with a directional, hemispherical reflectance factor traceable to the Institute. The results of the two methods agree to within 0.01 in reflectance factor values. With this PTFE sample as a transfer standard, the instrument described can also be used to measure the absolute bidirectional reflectance factor at nearly all the illumination and viewing geometries from 400 nm to 2500 nm. PMID:20820258

17. Predicting Absolute Risk of Type 2 Diabetes Using Age and Waist Circumference Values in an Aboriginal Australian Community

PubMed Central

2015-01-01

Objectives To predict in an Australian Aboriginal community, the 10-year absolute risk of type 2 diabetes associated with waist circumference and age on baseline examination. Method A sample of 803 diabetes-free adults (82.3% of the age-eligible population) from baseline data of participants collected from 1992 to 1998 were followed-up for up to 20 years till 2012. The Cox-proportional hazard model was used to estimate the effects of waist circumference and other risk factors, including age, smoking and alcohol consumption status, of males and females on prediction of type 2 diabetes, identified through subsequent hospitalisation data during the follow-up period. The Weibull regression model was used to calculate the absolute risk estimates of type 2 diabetes with waist circumference and age as predictors. Results Of 803 participants, 110 were recorded as having developed type 2 diabetes, in subsequent hospitalizations over a follow-up of 12633.4 person-years. Waist circumference was strongly associated with subsequent diagnosis of type 2 diabetes with P<0.0001 for both genders and remained statistically significant after adjusting for confounding factors. Hazard ratios of type 2 diabetes associated with 1 standard deviation increase in waist circumference were 1.7 (95%CI 1.3 to 2.2) for males and 2.1 (95%CI 1.7 to 2.6) for females. At 45 years of age with baseline waist circumference of 100 cm, a male had an absolute diabetic risk of 10.9%, while a female had a 14.3% risk of the disease. Conclusions The constructed model predicts the 10-year absolute diabetes risk in an Aboriginal Australian community. It is simple and easily understood and will help identify individuals at risk of diabetes in relation to waist circumference values. Our findings on the relationship between waist circumference and diabetes on gender will be useful for clinical consultation, public health education and establishing WC cut-off points for Aboriginal Australians. PMID:25876058

18. Long-term variations of absolute and superconducting gravity values in Southeast Alaska, observed by the ISEA2 project

Kazama, T.; Hideaki, H.; Miura, S.; Kaufman, M.; Sato, T.; Larsen, C. F.; Freymueller, J. T.

2013-12-01

It is well known that gravity values have been decreasing in Southeast Alaska, mainly due to glacier mass changes from the end of the Little Ice Age to the present. For example, absolute gravity measurements made by the ISEA1 project (2006-2008) showed a maximum gravity change rate of -5.6 micro-gal/year (Sun et al., 2010; Sato et al., 2012a), which was consistent with large uplift rates obtained from GPS data (Larsen et al., 2005). However, the newly-obtained absolute gravity values in 2012 were about 10 micro-gal greater than expected based on the gravity trends of Sun et al. (2010), possibly because of above-average snowfall in the winter of 2011-2012 (Sato et al., 2012b). In order to monitor spatiotemporal gravity changes associated with glacier mass changes, seasonal hydrological gravity changes should be quantified via continuous gravity observations and/or hydrological modeling. We thus installed a superconducting gravimeter iGrav (serial number: 003) at Egan Library, University of Alaska Southeast in June 2012, as part of the ISEA2 project (2011-2015). The mass position (unit: volts) and air pressure have been recorded every second since June 2012, and the gravity value was then calculated from the mass position, using the scale factor of -89.561 micro-gal/V (Sato et al., 2012b). After the removal of tidal gravity changes using the BAYTAP software (Tamura et al., 1991), a gravity change of 4 micro-gal in peak to peak was extracted from the long-term superconducting gravity data from June 2012 to July 2013. Note that this non-tidal gravity change includes the instrumental drift, although the drift rate was very small (less than 1 micro-gal/year) according to the linear regression to the gravity change. We will discuss possible physical mechanisms of the non-tidal gravity change associated with water redistribution, using a hydrological model (e.g., Kazama et al., 2012) and/or long-term weather data. In addition, we also measured absolute gravity values at 6

19. Reducing the Standard Deviation in Multiple-Assay Experiments Where the Variation Matters but the Absolute Value Does Not

PubMed Central

Echenique-Robba, Pablo; Nelo-Bazán, María Alejandra; Carrodeguas, José A.

2013-01-01

When the value of a quantity for a number of systems (cells, molecules, people, chunks of metal, DNA vectors, so on) is measured and the aim is to replicate the whole set again for different trials or assays, despite the efforts for a near-equal design, scientists might often obtain quite different measurements. As a consequence, some systems’ averages present standard deviations that are too large to render statistically significant results. This work presents a novel correction method of a very low mathematical and numerical complexity that can reduce the standard deviation of such results and increase their statistical significance. Two conditions are to be met: the inter-system variations of matter while its absolute value does not, and a similar tendency in the values of must be present in the different assays (or in other words, the results corresponding to different assays must present a high linear correlation). We demonstrate the improvements this method offers with a cell biology experiment, but it can definitely be applied to any problem that conforms to the described structure and requirements and in any quantitative scientific field that deals with data subject to uncertainty. PMID:24205158

20. Eosinophil count - absolute

MedlinePlus

Eosinophils; Absolute eosinophil count ... the white blood cell count to give the absolute eosinophil count. ... than 500 cells per microliter (cells/mcL). Normal value ranges may vary slightly among different laboratories. Talk ...

1. TH-E-BRE-09: TrueBeam Monte Carlo Absolute Dose Calculations Using Monitor Chamber Backscatter Simulations and Linac-Logged Target Current

SciTech Connect

A, Popescu I; Lobo, J; Sawkey, D; Svatos, M

2014-06-15

Purpose: To simulate and measure radiation backscattered into the monitor chamber of a TrueBeam linac; establish a rigorous framework for absolute dose calculations for TrueBeam Monte Carlo (MC) simulations through a novel approach, taking into account the backscattered radiation and the actual machine output during beam delivery; improve agreement between measured and simulated relative output factors. Methods: The ‘monitor backscatter factor’ is an essential ingredient of a well-established MC absolute dose formalism (the MC equivalent of the TG-51 protocol). This quantity was determined for the 6 MV, 6X FFF, and 10X FFF beams by two independent Methods: (1) MC simulations in the monitor chamber of the TrueBeam linac; (2) linac-generated beam record data for target current, logged for each beam delivery. Upper head MC simulations used a freelyavailable manufacturer-provided interface to a cloud-based platform, allowing use of the same head model as that used to generate the publicly-available TrueBeam phase spaces, without revealing the upper head design. The MC absolute dose formalism was expanded to allow direct use of target current data. Results: The relation between backscatter, number of electrons incident on the target for one monitor unit, and MC absolute dose was analyzed for open fields, as well as a jaw-tracking VMAT plan. The agreement between the two methods was better than 0.15%. It was demonstrated that the agreement between measured and simulated relative output factors improves across all field sizes when backscatter is taken into account. Conclusion: For the first time, simulated monitor chamber dose and measured target current for an actual TrueBeam linac were incorporated in the MC absolute dose formalism. In conjunction with the use of MC inputs generated from post-delivery trajectory-log files, the present method allows accurate MC dose calculations, without resorting to any of the simplifying assumptions previously made in the True

2. Generalized approach for using unbiased symmetric metrics with negative values: normalized mean bias factor and normalized mean absolute error factor

EPA Science Inventory

Unbiased symmetric metrics provide a useful measure to quickly compare two datasets, with similar interpretations for both under and overestimations. Two examples include the normalized mean bias factor and normalized mean absolute error factor. However, the original formulations...

3. A mathematical approach to optimal selection of dose values in the additive dose method of ERP dosimetry

SciTech Connect

Hayes, R.B.; Haskell, E.H.; Kenner, G.H.

1996-01-01

Additive dose methods commonly used in electron paramagnetic resonance (EPR) dosimetry are time consuming and labor intensive. We have developed a mathematical approach for determining optimal spacing of applied doses and the number of spectra which should be taken at each dose level. Expected uncertainitites in the data points are assumed to be normally distributed with a fixed standard deviation and linearity of dose response is also assumed. The optimum spacing and number of points necessary for the minimal error can be estimated, as can the likely error in the resulting estimate. When low doses are being estimated for tooth enamel samples the optimal spacing is shown to be a concentration of points near the zero dose value with fewer spectra taken at a single high dose value within the range of known linearity. Optimization of the analytical process results in increased accuracy and sample throughput.

4. Commissioning and Implementation of an EPID Based IMRT QA System "Dosimetry Check" for 3D Absolute Dose Measurements and Quantitative Comparisons to MapCheck

Patel, Jalpa A.

The software package "Dosimetry Check" by MathResolutions, LLC, provides an absolute 3D volumetric dose measurement for IMRT QA using the existing Electronic Portal Imaging Device (EPID) mounted on most linear accelerators. This package provides a feedback loop using the patient's treatment planning CT data as the phantom for dose reconstruction. The aim of this work is to study the difference between point, planar and volumetric doses with MapCheck and Dosimetry Check via the use of the EPID and the diode array respectively. Evaluating tools such as point doses at isocenter, 1-D profiles, gamma volume histograms, and dose volume histograms are used for IMRT dose comparison in three types of cases: head and neck, prostate, and lung. Dosimetry Check can be a valuable tool for IMRT QA as it uses patient specific attenuation corrections and the superiority of the EPID as compared to the MapCheck diode array. This helps reduce the uncertainty in dose for less variability in delivery and a more realistic measured vs computed dose verification system as compared to MapCheck.

5. Stereotactic, Single-Dose Irradiation of Lung Tumors: A Comparison of Absolute Dose and Dose Distribution Between Pencil Beam and Monte Carlo Algorithms Based on Actual Patient CT Scans

SciTech Connect

Chen Huixiao; Lohr, Frank; Fritz, Peter; Wenz, Frederik; Dobler, Barbara; Lorenz, Friedlieb; Muehlnickel, Werner

2010-11-01

Purpose: Dose calculation based on pencil beam (PB) algorithms has its shortcomings predicting dose in tissue heterogeneities. The aim of this study was to compare dose distributions of clinically applied non-intensity-modulated radiotherapy 15-MV plans for stereotactic body radiotherapy between voxel Monte Carlo (XVMC) calculation and PB calculation for lung lesions. Methods and Materials: To validate XVMC, one treatment plan was verified in an inhomogeneous thorax phantom with EDR2 film (Eastman Kodak, Rochester, NY). Both measured and calculated (PB and XVMC) dose distributions were compared regarding profiles and isodoses. Then, 35 lung plans originally created for clinical treatment by PB calculation with the Eclipse planning system (Varian Medical Systems, Palo Alto, CA) were recalculated by XVMC (investigational implementation in PrecisePLAN [Elekta AB, Stockholm, Sweden]). Clinically relevant dose-volume parameters for target and lung tissue were compared and analyzed statistically. Results: The XVMC calculation agreed well with film measurements (<1% difference in lateral profile), whereas the deviation between PB calculation and film measurements was up to +15%. On analysis of 35 clinical cases, the mean dose, minimal dose and coverage dose value for 95% volume of gross tumor volume were 1.14 {+-} 1.72 Gy, 1.68 {+-} 1.47 Gy, and 1.24 {+-} 1.04 Gy lower by XVMC compared with PB, respectively (prescription dose, 30 Gy). The volume covered by the 9 Gy isodose of lung was 2.73% {+-} 3.12% higher when calculated by XVMC compared with PB. The largest differences were observed for small lesions circumferentially encompassed by lung tissue. Conclusions: Pencil beam dose calculation overestimates dose to the tumor and underestimates lung volumes exposed to a given dose consistently for 15-MV photons. The degree of difference between XVMC and PB is tumor size and location dependent. Therefore XVMC calculation is helpful to further optimize treatment planning.

6. Sci—Fri PM: Dosimetry — 03: Delta4 diode absolute dose response for large and small target volume IMRT QA

SciTech Connect

Simard, D; Thakur, V

2014-08-15

The goal of this project was to quantify the over-response/under-response of the Delta4 diodes for Helical Tomotherapy plans on extreme target volume sizes. A custom Delta4 phantom quarter with a hole to insert an ionisation chamber (IC) close to the center of the phantom have been used to acquire simultaneous IC and diodes absolute dose measurements. Eight plans for different target volumes were created from 20cm to 1cm diameter. Diodes dose measurements in the target were compared with IC measurement, to quantify absolute dose accuracy. IC measurements show a good agreement with planned dose (±2%). Diode measurements demonstrate a good agreement with IC for regular target size of 5 and 10cm (0 to 1%). For larger targets, an over-response is observed for FW 25mm and 10mm (2 to 3%). for small target of 1cm diameter, a major under-response is observed for FW 25mm and 10mm (−8 and −36%). The over-response could to be due to the extra amount of scattered radiation and the opposite for under-response. Although this scatter hypothesis still has to be proven, early testing demonstrates an over-response of 40%/20% of the central diodes compare to IC when an open helical rotational beam is delivered 75mm/25mm away from the center of the phantom. These results are in agreement with the real patient Delta4 DQA results at our center.

7. Generalized approach for using unbiased symmetric metrics with negative values: normalized mean bias factor and normalized mean absolute error factor

SciTech Connect

Gustafson, William I.; Yu, Shaocai

2012-10-23

Unbiased symmetric metrics provide a useful measure to quickly compare two datasets, with similar interpretations for both under and overestimations. Two examples include the normalized mean bias factor and normalized mean absolute error factor. However, the original formulations of these metrics are only valid for datasets with positive means. This paper presents a methodology to use and interpret the metrics with datasets that have negative means. The updated formulations give identical results compared to the original formulations for the case of positive means, so researchers are encouraged to use the updated formulations going forward without introducing ambiguity.

8. Corresponding waist circumference and body mass index values based on 10-year absolute type 2 diabetes risk in an Australian Aboriginal community

PubMed Central

Adegbija, Odewumi; Hoy, Wendy E; Wang, Zhiqiang

2015-01-01

Objective There is a lack of waist circumference (WC) thresholds to identify Aboriginal individuals at high risk of type 2 diabetes. We generated gender-specific WC values with equivalent 10-year absolute risk of type 2 diabetes as body mass index (BMI) points in an Australian Aboriginal community to contribute to guidelines needed for establishing WC cut-off points for Aboriginals. Research design and methods A cohort of 803 adult participants free from type 2 diabetes in an Aboriginal community was followed up for up to 20 years. We derived WC values with absolute risks equivalent for the development of type 2 diabetes as BMI values (20–35 kg/m2) using the Weibull accelerated failure-time model. Results After a mean follow-up of 15.7 years, 110 participants developed type 2 diabetes. Absolute risk of type 2 diabetes increased as WC increased, ranging from 3.52% (WC=77.5 cm) to 14.14% (WC=119.9 cm) in males, and 5.04% (WC=79.5 cm) to 24.25% (WC=113.7 cm) in females. In males, WC values with same absolute risks of type 2 diabetes as BMI values were 77.5 cm for BMI=20 kg/m2, 91.5 cm for BMI=25 kg/m2 (overweight threshold), 105.7 cm for BMI=30 kg/m2 (obesity threshold) and 119.9 cm for BMI=35 kg/m2. In females, WC values were 79.5 cm for BMI=20 kg/m2, 90.9 cm for BMI=25 kg/m2, 102.3 cm for BMI=30 kg/m2 and 113.7 cm for BMI=35 kg/m2. Interaction between WC and gender was not statistically significant (p=0.53). Conclusions The absolute risk of type 2 diabetes increased with higher WC measured at baseline screening. Males were not significantly different from females in the association between WC and type 2 diabetes. Our findings are useful contributions for future establishment of WC cut-off points for identifying high-risk individuals in Aboriginal people. PMID:26405557

9. Monte Carlo-based revised values of dose rate constants at discrete photon energies

PubMed Central

Selvam, T. Palani; Shrivastava, Vandana; Chourasiya, Ghanashyam; Babu, D. Appala Raju

2014-01-01

Absorbed dose rate to water at 0.2 cm and 1 cm due to a point isotropic photon source as a function of photon energy is calculated using the EDKnrc user-code of the EGSnrc Monte Carlo system. This code system utilized widely used XCOM photon cross-section dataset for the calculation of absorbed dose to water. Using the above dose rates, dose rate constants are calculated. Air-kerma strength Sk needed for deriving dose rate constant is based on the mass-energy absorption coefficient compilations of Hubbell and Seltzer published in the year 1995. A comparison of absorbed dose rates in water at the above distances to the published values reflects the differences in photon cross-section dataset in the low-energy region (difference is up to 2% in dose rate values at 1 cm in the energy range 30–50 keV and up to 4% at 0.2 cm at 30 keV). A maximum difference of about 8% is observed in the dose rate value at 0.2 cm at 1.75 MeV when compared to the published value. Sk calculations based on the compilation of Hubbell and Seltzer show a difference of up to 2.5% in the low-energy region (20–50 keV) when compared to the published values. The deviations observed in the values of dose rate and Sk affect the values of dose rate constants up to 3%. PMID:24600166

10. The warm and cold neutral phase in the local interstellar medium at absolute value of B greater than or equal to 10 deg

Poppel, W. G. L.; Marronetti, P.; Benaglia, P.

1994-07-01

We made a systematic separation of both the neutral phases using the atlases of 21-cm profiles of Heiles & Habing (1974) and Colomb et al. (1980), complemented with other data. First, we fitted the emission of the warm neutral medium (WNM) by means of a broad Gaussian curve (velocity dispersion sigma approximately 10-14 km/s). We derived maps of the column densities NWH and the radial velocities VW of the WNM. Its overall distribution appears to be very inhomogeneous with a large hole in the range b greater than or equal to +50 deg. However, if the hole is excluded, the mean latitude-profiles admit a rough cosec absolute value of b-fit common to both hemispheres. A kinematical analysis of VW for the range 10 deg less than or equal to absolute value of b less than or equal to 40 deg indicates a mean differential rotation with a small nodal deviation. At absolute value of b greater than 50 deg VW is negative, with larger values and discontinuities in the north. On the mean, sigma increases for absolute value of b decreasing, as is expected from differential rotation. From a statistical study of the peaks of the residual profiles we derived some characteristics of the cold neutral medium (CNM). The latter is generally characterized by a single component of sigma approximately 2-6 km/s. Additionally we derived the sky-distribution of the column densities NCH and the radial velocities VC of the CNM within bins of 1.2 deg sec b x 1 deg in l, b. Furthermore, we focused on the characteristics of Linblad's feature A of cool gas by considering the narrow ridge of local H I, which appears in the b-V contour maps at fixed l (e.g. Schoeber 1976). The ridge appears to be the main component of the CNM. We suggest a scenario for the formulation and evolution of the Gould belt system of stars and gas on the basis of an explosive event within a shingle of cold dense gas tilted to the galactic plane. The scenario appears to be consistent with the results found for both the neutral

11. A patient-specific quality assurance study on absolute dose verification using ionization chambers of different volumes in RapidArc treatments

SciTech Connect

Syam Kumar, S.A.; Sukumar, Prabakar; Sriram, Padmanaban; Rajasekaran, Dhanabalan; Aketi, Srinu; Vivekanandan, Nagarajan

2012-01-01

The recalculation of 1 fraction from a patient treatment plan on a phantom and subsequent measurements have become the norms for measurement-based verification, which combines the quality assurance recommendations that deal with the treatment planning system and the beam delivery system. This type of evaluation has prompted attention to measurement equipment and techniques. Ionization chambers are considered the gold standard because of their precision, availability, and relative ease of use. This study evaluates and compares 5 different ionization chambers: phantom combinations for verification in routine patient-specific quality assurance of RapidArc treatments. Fifteen different RapidArc plans conforming to the clinical standards were selected for the study. Verification plans were then created for each treatment plan with different chamber-phantom combinations scanned by computed tomography. This includes Medtec intensity modulated radiation therapy (IMRT) phantom with micro-ionization chamber (0.007 cm{sup 3}) and pinpoint chamber (0.015 cm{sup 3}), PTW-Octavius phantom with semiflex chamber (0.125 cm{sup 3}) and 2D array (0.125 cm{sup 3}), and indigenously made Circular wax phantom with 0.6 cm{sup 3} chamber. The measured isocenter absolute dose was compared with the treatment planning system (TPS) plan. The micro-ionization chamber shows more deviations when compared with semiflex and 0.6 cm{sup 3} with a maximum variation of -4.76%, -1.49%, and 2.23% for micro-ionization, semiflex, and farmer chambers, respectively. The positive variations indicate that the chamber with larger volume overestimates. Farmer chamber shows higher deviation when compared with 0.125 cm{sup 3}. In general the deviation was found to be <1% with the semiflex and farmer chambers. A maximum variation of 2% was observed for the 0.007 cm{sup 3} ionization chamber, except in a few cases. Pinpoint chamber underestimates the calculated isocenter dose by a maximum of 4.8%. Absolute dose

12. Mapping the microvascular and the associated absolute values of oxy-hemoglobin concentration through turbid media via local off-set diffuse optical imaging

Chen, Chen; Klämpfl, Florian; Stelzle, Florian; Schmidt, Michael

2014-11-01

An imging resolution of micron-scale has not yet been discovered by diffuse optical imaging (DOI), while a superficial response was eliminated. In this work, we report on a new approach of DOI with a local off-set alignment to subvert the common boundary conditions of the modified Beer-Lambert Law (MBLL). It can resolve a superficial target in micron scale under a turbid media. To validate both major breakthroughs, this system was used to recover a subsurface microvascular mimicking structure under an skin equivalent phantom. This microvascular was included with oxy-hemoglobin solution in variant concentrations to distiguish the absolute values of CtRHb and CtHbO2 . Experimental results confirmed the feasibility of recovering the target vascular of 50 µm in diameter, and graded the values of the concentrations of oxy-hemoglobin from 10 g/L to 50 g/L absolutely. Ultimately, this approach could evolve into a non-invasive imaging system to map the microvascular pattern and the associated oximetry under a human skin in-vivo.

13. Measurement of the B-->pi l nu branching fraction and determination of absolute value of V(ub) with tagged B mesons.

PubMed

2006-11-24

We report a measurement of the B-->pi l nu branching fraction based on 211 fb(-1) of data collected with the BABAR detector. We use samples of B0 and B+ mesons tagged by a second B meson reconstructed in a semileptonic or hadronic decay and combine the results assuming isospin symmetry to obtain B(B(0)-->pi- l+ nu) = (1.33+/-0.17stat+/-0.11syst) x 10(-4). We determine the magnitude of the Cabibbo-Kobayashi-Maskawa matrix element absolute value V(ub) by combining the partial branching fractions measured in ranges of the momentum transfer squared and theoretical calculations of the form factor. Using a recent lattice QCD calculation, we find absolute value V(ub) = (4.5+/-0.5stat+/-0.3syst(+0.7) -0.5FF x 10(-3), where the last error is due to the normalization of the form factor. PMID:17155736

14. Value of public health and safety actions and radiation dose avoided

SciTech Connect

Baum, J.W.

1994-05-01

The values judged best to reflect the willingness of society to pay for the avoidance or reduction of risk were deduced from studies of costs of health care, transportation safety, consumer product safety, government agency actions, wage-risk compensation, consumer behavior (market) studies, and willingness-to-pay surveys. The results ranged from \$1,400,000 to \$2,700,000 per life saved. Applying the mean of these values (\$2,100,000) and the latest risk per unit dose coefficients used by the ICRP (1991), which take into account risks to the general public, including genetic effects and nonfatal cancers, yields a value of dose avoided of \$750 to \$1,500 per person-cSv for public exposures. The lower value applies if adjustments are made for years of life lost per fatality. A nominal value of \$1,000 per person-cSv seems appropriate in light of the many uncertainties involved in deducing these values. These values are consistent with values recommended by several European countries for individual doses in the region of 1 mSv/y (100 mrem/y). Below this dose rate, most countries have values a factor of 7 to 10 lower, based on the assumption that society is less concerned with fatality risks below about 10{sup {minus}4}/y.

15. Staff lens doses in interventional urology. A comparison with interventional radiology, cardiology and vascular surgery values.

PubMed

Vano, E; Fernandez, J M; Resel, L E; Moreno, J; Sanchez, R M

2016-03-01

The purpose of this work is to evaluate radiation doses to the lens of urologists during interventional procedures and to compare them with values measured during interventional radiology, cardiology and vascular surgery. The measurements were carried out in a surgical theatre using a mobile C-arm system and electronic occupational dosimeters (worn over the lead apron). Patient and staff dose measurements were collected in a sample of 34 urology interventions (nephrolithotomies). The same dosimetry system was used in other medical specialties for comparison purposes. Median and 3rd quartile values for urology procedures were: patient doses 30 and 40 Gy cm(2); personal dose equivalent Hp(10) over the apron (μSv/procedure): 393 and 848 (for urologists); 21 and 39 (for nurses). Median values of over apron dose per procedure for urologists resulted 18.7 times higher than those measured for radiologists and cardiologists working with proper protection (using ceiling suspended screens) in catheterisation laboratories, and 4.2 times higher than the values measured for vascular surgeons at the same hospital. Comparison with passive dosimeters worn near the eyes suggests that dosimeters worn over the apron could be a reasonable conservative estimate for ocular doses for interventional urology. Authors recommend that at least the main surgeon uses protective eyewear during interventional urology procedures. PMID:26583458

16. Association between absolute volumes of lung spared from low-dose irradiation and radiation-induced lung injury after intensity-modulated radiotherapy in lung cancer: a retrospective analysis.

PubMed

Chen, Jinmei; Hong, Jinsheng; Zou, Xi; Lv, Wenlong; Guo, Feibao; Hong, Hualan; Zhang, Weijian

2015-11-01

17. Absolute biological needs.

PubMed

McLeod, Stephen

2014-07-01

Absolute needs (as against instrumental needs) are independent of the ends, goals and purposes of personal agents. Against the view that the only needs are instrumental needs, David Wiggins and Garrett Thomson have defended absolute needs on the grounds that the verb 'need' has instrumental and absolute senses. While remaining neutral about it, this article does not adopt that approach. Instead, it suggests that there are absolute biological needs. The absolute nature of these needs is defended by appeal to: their objectivity (as against mind-dependence); the universality of the phenomenon of needing across the plant and animal kingdoms; the impossibility that biological needs depend wholly upon the exercise of the abilities characteristic of personal agency; the contention that the possession of biological needs is prior to the possession of the abilities characteristic of personal agency. Finally, three philosophical usages of 'normative' are distinguished. On two of these, to describe a phenomenon or claim as 'normative' is to describe it as value-dependent. A description of a phenomenon or claim as 'normative' in the third sense does not entail such value-dependency, though it leaves open the possibility that value depends upon the phenomenon or upon the truth of the claim. It is argued that while survival needs (or claims about them) may well be normative in this third sense, they are normative in neither of the first two. Thus, the idea of absolute need is not inherently normative in either of the first two senses. PMID:23586876

18. Comparison of high energy gamma rays from absolute value of b greater than 30 deg with the galactic neutral hydrogen distribution

NASA Technical Reports Server (NTRS)

Ozel, M. E.; Ogelman, H.; Tumer, T.; Fichtel, C. E.; Hartman, R. C.; Kniffen, D. A.; Thompson, F. J.

1978-01-01

High-energy gamma-ray (energy above 35 MeV) data from the SAS 2 satellite have been used to compare the intensity distribution of gamma rays with that of neutral hydrogen (H I) density along the line of sight, at high galactic latitudes (absolute values greater than 30 deg). A model has been constructed for the case where the observed gamma-ray intensity has been assumed to be the sum of a galactic component proportional to the H I distribution plus an isotropic extragalactic emission. A chi-squared test of the model parameters indicates that about 30% of the total high-latitude emission may originate within the Galaxy.

19. A procedure to determine the planar integral spot dose values of proton pencil beam spots

SciTech Connect

Anand, Aman; Sahoo, Narayan; Zhu, X. Ronald; Sawakuchi, Gabriel O.; Poenisch, Falk; Amos, Richard A.; Ciangaru, George; Titt, Uwe; Suzuki, Kazumichi; Mohan, Radhe; Gillin, Michael T.

2012-02-15

Purpose: Planar integral spot dose (PISD) of proton pencil beam spots (PPBSs) is a required input parameter for beam modeling in some treatment planning systems used in proton therapy clinics. The measurement of PISD by using commercially available large area ionization chambers, like the PTW Bragg peak chamber (BPC), can have large uncertainties due to the size limitation of these chambers. This paper reports the results of our study of a novel method to determine PISD values from the measured lateral dose profiles and peak dose of the PPBS. Methods: The PISDs of 72.5, 89.6, 146.9, 181.1, and 221.8 MeV energy PPBSs were determined by area integration of their planar dose distributions at different depths in water. The lateral relative dose profiles of the PPBSs at selected depths were measured by using small volume ion chambers and were investigated for their angular anisotropies using Kodak XV films. The peak spot dose along the beam's central axis (D{sub 0}) was determined by placing a small volume ion chamber at the center of a broad field created by the superposition of spots at different locations. This method allows eliminating positioning uncertainties and the detector size effect that could occur when measuring it in single PPBS. The PISD was then calculated by integrating the measured lateral relative dose profiles for two different upper limits of integration and then multiplying it with corresponding D{sub 0}. The first limit of integration was set to radius of the BPC, namely 4.08 cm, giving PISD{sub RBPC}. The second limit was set to a value of the radial distance where the profile dose falls below 0.1% of the peak giving the PISD{sub full}. The calculated values of PISD{sub RBPC} obtained from area integration method were compared with the BPC measured values. Long tail dose correction factors (LTDCFs) were determined from the ratio of PISD{sub full}/PISD{sub RBPC} at different depths for PPBSs of different energies. Results: The spot profiles were

20. Combined prognostic value of absolute lymphocyte/monocyte ratio in peripheral blood and interim PET/CT results in Hodgkin lymphoma.

PubMed

Simon, Zsofia; Barna, S; Miltenyi, Z; Husi, K; Magyari, F; Jona, A; Garai, I; Nagy, Z; Ujj, G; Szerafin, L; Illes, A

2016-01-01

Decreased absolute lymphocyte/monocyte ratio (LMR) in peripheral blood has been reported as an unfavorable prognostic marker in Hodgkin lymphoma. We aimed to investigate whether combining LMR and interim PET/CT scan result (PET2) confers stronger prognostic value than PET2 alone. 121 HL patients were investigated. LMR was calculated from a blood sample taken at the time of diagnosis. PET2 was carried out after the second chemotherapy cycle. Survival was calculated using the Kaplan-Meier method and significance was determined by log-rank test. Effect of variants on survival results was examined using univariate and multivariate analyses. Best LMR cut-off value was determined by receiver operating characteristic (ROC) curve. Best LMR cut-off value was 2.11 in the case of our patients (LMR > 2.11: favorable, LMR ≤ 2.11: unfavorable). Overall and progression-free survivals (OS/PFS) were significantly worse both in lower LMR (≤ 2.11) (OS: P = 0.041, PFS: P = 0.044) and PET2 positive groups (OS: P < 0.001, PFS: P < 0.001). In PET2 positive patient group (n = 32) the low LMR result meant a significantly worse OS (0.030) and PFS (0.001). Both LMR and PET2 proved to be independent prognostic factors on multivariate analysis, and strengthened each other's effect. PMID:26462809

1. Absolute Zero

Donnelly, Russell J.; Sheibley, D.; Belloni, M.; Stamper-Kurn, D.; Vinen, W. F.

2006-12-01

Absolute Zero is a two hour PBS special attempting to bring to the general public some of the advances made in 400 years of thermodynamics. It is based on the book “Absolute Zero and the Conquest of Cold” by Tom Shachtman. Absolute Zero will call long-overdue attention to the remarkable strides that have been made in low-temperature physics, a field that has produced 27 Nobel Prizes. It will explore the ongoing interplay between science and technology through historical examples including refrigerators, ice machines, frozen foods, liquid oxygen and nitrogen as well as much colder fluids such as liquid hydrogen and liquid helium. A website has been established to promote the series: www.absolutezerocampaign.org. It contains information on the series, aimed primarily at students at the middle school level. There is a wealth of material here and we hope interested teachers will draw their student’s attention to this website and its substantial contents, which have been carefully vetted for accuracy.

2. Absolute Summ

Phillips, Alfred, Jr.

Summ means the entirety of the multiverse. It seems clear, from the inflation theories of A. Guth and others, that the creation of many universes is plausible. We argue that Absolute cosmological ideas, not unlike those of I. Newton, may be consistent with dynamic multiverse creations. As suggested in W. Heisenberg's uncertainty principle, and with the Anthropic Principle defended by S. Hawking, et al., human consciousness, buttressed by findings of neuroscience, may have to be considered in our models. Predictability, as A. Einstein realized with Invariants and General Relativity, may be required for new ideas to be part of physics. We present here a two postulate model geared to an Absolute Summ. The seedbed of this work is part of Akhnaton's philosophy (see S. Freud, Moses and Monotheism). Most important, however, is that the structure of human consciousness, manifest in Kenya's Rift Valley 200,000 years ago as Homo sapiens, who were the culmination of the six million year co-creation process of Hominins and Nature in Africa, allows us to do the physics that we do. .

3. Direction distributions of neutrons and reference values of the personal dose equivalent in workplace fields.

PubMed

Luszik-Bhadra, M; Bolognese-Milsztajn, T; Boschung, M; Coeck, M; Curzio, G; d'Errico, F; Fiechtner, A; Lacoste, V; Lindborg, L; Reginatto, M; Schuhmacher, H; Tanner, R; Vanhavere, F

2007-01-01

Within the EC project EVIDOS, double-differential (energy and direction) fluence spectra were determined by means of novel direction spectrometers. By folding the spectra with fluence-to-dose equivalent conversion coefficients, contributions to H*(10) for 14 directions, and values of the personal dose equivalent Hp(10) and the effective dose E for 6 directions of a person's orientation in the field were determined. The results of the measurements and calculations obtained within the EVIDOS project in workplace fields in nuclear installations in Europe, i.e., at Krümmel (boiling water reactor and transport cask), at Mol (Venus research reactor and fuel facility Belgonucléaire) and at Ringhals (pressurised reactor and transport cask) are presented. PMID:17369265

4. A full-dimensional model of ozone forming reaction: the absolute value of the recombination rate coefficient, its pressure and temperature dependencies.

PubMed

Teplukhin, Alexander; Babikov, Dmitri

2016-07-28

Rigorous calculations of scattering resonances in ozone are carried out for a broad range of rotational excitations. The accurate potential energy surface of Dawes is adopted, and a new efficient method for calculations of ro-vibrational energies, wave functions and resonance lifetimes is employed (which uses hyper-spherical coordinates, the sequential diagonalization/truncation approach, grid optimization and complex absorbing potential). A detailed analysis is carried out to characterize distributions of resonance energies and lifetimes, their rotational/vibrational content and their positions with respect to the centrifugal barrier. Emphasis is on the contribution of these resonances to the recombination process that forms ozone. It is found that major contributions come from localized resonances at energies near the top of the barrier. Delocalized resonances at higher energies should also be taken into account, while very narrow resonances at low energies (trapped far behind the centrifugal barrier) should be treated as bound states. The absolute value of the recombination rate coefficient, its pressure and temperature dependencies are obtained using the energy-transfer model developed in the earlier work. Good agreement with experimental data is obtained if one follows the suggestion of Troe, who argued that the energy transfer mechanism of recombination is responsible only for 55% of the recombination rate (with the remaining 45% coming from the competing chaperon mechanism). PMID:27364351

5. Biologically effective dose values for prostate brachytherapy: Effects on PSA failure and posttreatment biopsy results

SciTech Connect

Stock, Richard G. . E-mail: richard.stock@msnyuhealth.org; Stone, Nelson N.; Cesaretti, Jamie A.; Rosenstein, Barry S.

2006-02-01

Purpose: To analyze the effect of biologically effective dose (BED) values on prostate-specific antigen (PSA) failure and posttreatment biopsy. Methods and Materials: From 1990 to 2003, 1,377 patients had prostate brachytherapy alone (I-125 or Pd-103) (571), hormonal and brachytherapy (371), and trimodality therapy (hormonal, implant, and external beam) (435). Dose was defined as the D90 (dose delivered to 90% of the gland from the dose-volume histogram). Results: Freedom from PSA failure (FFPF) at 10 years was 87%. The 10-year FFPF for BED <100, >100-120, >120-140, >140-160, <160-180, >180-200, and >200 were 46%, 68%, 81%, 85.5%, 90%, 90%, and 92%, respectively (p < 0.0001). BED and Gleason score had the greatest effect, with p values of p < 0.0001 in multivariate analysis. Posttreatment positive biopsy rate was 7% (31/446). The positive biopsy rates for BED {<=}100, >100-120, >120-140, >140-160, >160-180, >180-200, and >200 were 24% (8/33), 15% (3/20), 6% (2/33), 6% (3/52), 7% (6/82), 1% (1/72), and 3% (4/131), respectively (p < 0.0001). BED was the most significant predictor of biopsy outcome in multivariate analysis (p = 0.006). Conclusions: Biologically effective dose equations provide a method of comparing different isotopes and combined therapies in the brachytherapy management of prostate cancer. The effects of BED on FFPF and posttreatment biopsy demonstrate a strong dose-response relationship.

6. Evaluation of Activity Concentration Values and Doses due to the Transport of Low Level Radioactive Material

SciTech Connect

Rawl, Richard R; Scofield, Patricia A; Leggett, Richard Wayne; Eckerman, Keith F

2010-04-01

The International Atomic Energy Agency (IAEA) initiated an international Coordinated Research Project (CRP) to evaluate the safety of transport of naturally occurring radioactive material (NORM). This report presents the United States contribution to that IAEA research program. The focus of this report is on the analysis of the potential doses resulting from the transport of low level radioactive material. Specific areas of research included: (1) an examination of the technical approach used in the derivation of exempt activity concentration values and a comparison of the doses associated with the transport of materials included or not included in the provisions of Paragraph 107(e) of the IAEA Safety Standards, Regulations for the Safe Transport of Radioactive Material, Safety Requirements No. TS-R-1; (2) determination of the doses resulting from different treatment of progeny for exempt values versus the A{sub 1}/A{sub 2} values; and (3) evaluation of the dose justifications for the provisions applicable to exempt materials and low specific activity materials (LSA-I). It was found that the 'previous or intended use' (PIU) provision in Paragraph 107(e) is not risk informed since doses to the most highly exposed persons (e.g., truck drivers) are comparable regardless of intended use of the transported material. The PIU clause can also have important economic implications for co-mined ores and products that are not intended for the fuel cycle but that have uranium extracted as part of their industrial processing. In examination of the footnotes in Table 2 of TS-R-1, which identifies the progeny included in the exempt or A1/A2 values, there is no explanation of how the progeny were selected. It is recommended that the progeny for both the exemption and A{sub 1}/A{sub 2} values should be similar regardless of application, and that the same physical information should be used in deriving the limits. Based on the evaluation of doses due to the transport of low-level NORM

7. Comparison of internal dose estimates obtained using organ-level, voxel S value, and Monte Carlo techniques

SciTech Connect

Grimes, Joshua; Celler, Anna

2014-09-15

Purpose: The authors’ objective was to compare internal dose estimates obtained using the Organ Level Dose Assessment with Exponential Modeling (OLINDA/EXM) software, the voxel S value technique, and Monte Carlo simulation. Monte Carlo dose estimates were used as the reference standard to assess the impact of patient-specific anatomy on the final dose estimate. Methods: Six patients injected with{sup 99m}Tc-hydrazinonicotinamide-Tyr{sup 3}-octreotide were included in this study. A hybrid planar/SPECT imaging protocol was used to estimate {sup 99m}Tc time-integrated activity coefficients (TIACs) for kidneys, liver, spleen, and tumors. Additionally, TIACs were predicted for {sup 131}I, {sup 177}Lu, and {sup 90}Y assuming the same biological half-lives as the {sup 99m}Tc labeled tracer. The TIACs were used as input for OLINDA/EXM for organ-level dose calculation and voxel level dosimetry was performed using the voxel S value method and Monte Carlo simulation. Dose estimates for {sup 99m}Tc, {sup 131}I, {sup 177}Lu, and {sup 90}Y distributions were evaluated by comparing (i) organ-level S values corresponding to each method, (ii) total tumor and organ doses, (iii) differences in right and left kidney doses, and (iv) voxelized dose distributions calculated by Monte Carlo and the voxel S value technique. Results: The S values for all investigated radionuclides used by OLINDA/EXM and the corresponding patient-specific S values calculated by Monte Carlo agreed within 2.3% on average for self-irradiation, and differed by as much as 105% for cross-organ irradiation. Total organ doses calculated by OLINDA/EXM and the voxel S value technique agreed with Monte Carlo results within approximately ±7%. Differences between right and left kidney doses determined by Monte Carlo were as high as 73%. Comparison of the Monte Carlo and voxel S value dose distributions showed that each method produced similar dose volume histograms with a minimum dose covering 90% of the volume (D90

8. Area dose rate values derived from NaI or LaBr3 spectra.

PubMed

Dombrowski, H

2014-08-01

More and more spectrometric systems are being installed in environmental radiation monitoring stations instead of or in addition to dosimetric detectors, because novel spectrometric systems have been developed which do not need any cooling and because the necessary electronics, especially digital multichannel analysers, have become more manageable and more affordable. The advantage of obtaining information about nuclide vectors can justify the operation of a more complex spectroscopic measuring system, but if spectrometers are also used for dose rate measurements in the natural environment, ambient dose equivalent rate values have to be calculated from measured spectra. Different approaches to achieve this goal will be presented in this article. Some practical recommendations will also be presented to avoid known errors. PMID:24478307

9. Fine-Resolution Voxel S Values for Constructing Absorbed Dose Distributions at Variable Voxel Size

PubMed Central

Dieudonné, Arnaud; Hobbs, Robert F.; Bolch, Wesley E.; Sgouros, George; Gardin, Isabelle

2010-01-01

This article presents a revised voxel S values (VSVs) approach for dosimetry in targeted radiotherapy, allowing dose calculation for any voxel size and shape of a given SPECT or PET dataset. This approach represents an update to the methodology presented in MIRD pamphlet no. 17. Methods VSVs were generated in soft tissue with a fine spatial sampling using the Monte Carlo (MC) code MCNPX for particle emissions of 9 radionuclides: 18F, 90Y, 99mTc, 111In, 123I, 131I, 177Lu, 186Re, and 201Tl. A specific resampling algorithm was developed to compute VSVs for desired voxel dimensions. The dose calculation was performed by convolution via a fast Hartley transform. The fine VSVs were calculated for cubic voxels of 0.5 mm for electrons and 1.0 mm for photons. Validation studies were done for 90Y and 131I VSV sets by comparing the revised VSV approach to direct MC simulations. The first comparison included 20 spheres with different voxel sizes (3.8–7.7 mm) and radii (4–64 voxels) and the second comparison a hepatic tumor with cubic voxels of 3.8 mm. MC simulations were done with MCNPX for both. The third comparison was performed on 2 clinical patients with the 3D-RD (3-Dimensional Radiobiologic Dosimetry) software using the EGSnrc (Electron Gamma Shower National Research Council Canada)-based MC implementation, assuming a homogeneous tissue-density distribution. Results For the sphere model study, the mean relative difference in the average absorbed dose was 0.20% ± 0.41% for 90Y and −0.36% ± 0.51% for 131I (n = 20). For the hepatic tumor, the difference in the average absorbed dose to tumor was 0.33% for 90Y and −0.61% for 131I and the difference in average absorbed dose to the liver was 0.25% for 90Y and −1.35% for 131I. The comparison with the 3D-RD software showed an average voxel-to-voxel dose ratio between 0.991 and 0.996. The calculation time was below 10 s with the VSV approach and 50 and 15 h with 3D-RD for the 2 clinical patients. Conclusion This new

10. Comparison of doses to the rectum derived from treatment planning system with in-vivo dose values in vaginal vault brachytherapy using cylinder applicators

PubMed Central

2015-01-01

Purpose In-vivo measurements to determine doses to organs-at-risk can be an essential part of brachytherapy quality assurance (QA). This study compares calculated doses to the rectum with measured dose values as a means of QA in vaginal vault brachytherapy using cylinder applicators. Material and methods At the Department of Radiotherapy, University College Hospital (UCH), Ibadan, Nigeria, intracavitary brachytherapy (ICBT) was delivered by a GyneSource high-dose-rate (HDR) unit with 60Co. Standard 2D treatment plans were created with HDR basic 2.6 software for prescription doses 5-7 Gy at points 5 mm away from the posterior surface of vaginal cylinder applicators (20, 25, and 30 mm diameters). The LiF:Mg, Ti thermoluminescent dosimeter rods (1 x 6 mm) were irradiated to a dose of 7 Gy on Theratron 60Co machine for calibration purpose prior to clinical use. Measurements in each of 34 insertions involving fourteen patients were performed with 5 TLD-100 rods placed along a re-usable rectal marker positioned in the rectum. The dosimeters were read in Harshaw 3500 TLD reader and compared with doses derived from the treatment planning system (TPS) at 1 cm away from the dose prescription points. Results The mean calculated and measured doses ranged from 2.1-3.8 Gy and 1.2-5.6 Gy with averages of 3.0 ± 0.5 Gy and 3.1 ± 1.1 Gy, respectively, for treatment lengths 2-8 cm along the cylinder-applicators. The mean values correspond to 48.9% and 50.8% of the prescribed doses, respectively. The deviations of the mean in-vivo doses from the TPS values ranged from –1.9 to 2.1 Gy with a p-value of 0.427. Conclusions This study was part of efforts to verify rectal dose obtained from the TPS during vaginal vault brachytherapy. There was no significant difference in the dose to the rectum from the two methods of measurements. PMID:26816506

11. Occupational ingestion of P-32: the value of monitoring techniques to determine dose. A case report.

PubMed

McCunney, R J; Masse, F; Galanek, M

1999-10-01

12. Analysis of RapidArc optimization strategies using objective function values and dose-volume histograms.

PubMed

Oliver, Michael; Gagne, Isabelle; Popescu, Carmen; Ansbacher, Will; Beckham, Wayne A

2010-01-01

RapidArc is a novel treatment planning and delivery system that has recently been made available for clinical use. Included within the Eclipse treatment planning system are a number of different optimization strategies that can be employed to improve the quality of the final treatment plan. The purpose of this study is to systematically assess three categories of strategies for four phantoms, and then apply proven strategies to clinical head and neck cases. Four phantoms were created within Eclipse with varying shapes and locations for the planning target volumes and organs at risk. A baseline optimization consisting of a single 359.8 degrees arc with collimator at 45 degrees was applied to all phantoms. Three categories of strategies were assessed and compared to the baseline strategy. They include changing the initialization parameters, increasing the total number of control points, and increasing the total optimization time. Optimization log files were extracted from the treatment planning system along with final dose-volume histograms for plan assessment. Treatment plans were also generated for four head and neck patients to determine whether the results for phantom plans can be extended to clinical plans. The strategies that resulted in a significant difference from baseline were: changing the maximum leaf speed prior to optimization ( p < 0.05), increasing the total number of segments by adding an arc ( p < 0.05), and increasing the total optimization time by either continuing the optimization ( p < 0.01) or adding time to the optimization by pausing the optimization ( p < 0.01). The reductions in objective function values correlated with improvements in the dose-volume histogram (DVH). The addition of arcs and pausing strategies were applied to head and neck cancer cases, which demonstrated similar benefits with respect to the final objective function value and DVH. Analysis of the optimization log files is a useful way to intercompare treatment plans that

13. A graphite calorimeter for absolute measurements of absorbed dose to water: application in medium-energy x-ray filtered beams

Pinto, M.; Pimpinella, M.; Quini, M.; D'Arienzo, M.; Astefanoaei, I.; Loreti, S.; Guerra, A. S.

2016-02-01

The Italian National Institute of Ionizing Radiation Metrology (ENEA-INMRI) has designed and built a graphite calorimeter that, in a water phantom, has allowed the determination of the absorbed dose to water in medium-energy x-rays with generating voltages from 180 to 250 kV. The new standard is a miniaturized three-bodies calorimeter, with a disc-shaped core of 21 mm diameter and 2 mm thickness weighing 1.134 g, sealed in a PMMA waterproof envelope with air-evacuated gaps. The measured absorbed dose to graphite is converted into absorbed dose to water by means of an energy-dependent conversion factor obtained from Monte Carlo simulations. Heat-transfer correction factors were determined by FEM calculations. At a source-to-detector distance of 100 cm, a depth in water of 2 g cm-2, and at a dose rate of about 0.15 Gy min-1, results of calorimetric measurements of absorbed dose to water, D w, were compared to experimental determinations, D wK, obtained via an ionization chamber calibrated in terms of air kerma, according to established dosimetry protocols. The combined standard uncertainty of D w and D wK were estimated as 1.9% and 1.7%, respectively. The two absorbed dose to water determinations were in agreement within 1%, well below the stated measurement uncertainties. Advancements are in progress to extend the measurement capability of the new in-water-phantom graphite calorimeter to other filtered medium-energy x-ray qualities and to reduce the D w uncertainty to around 1%. The new calorimeter represents the first implementation of in-water-phantom graphite calorimetry in the kilovoltage range and, allowing independent determinations of D w, it will contribute to establish a robust system of absorbed dose to water primary standards for medium-energy x-ray beams.

14. A graphite calorimeter for absolute measurements of absorbed dose to water: application in medium-energy x-ray filtered beams.

PubMed

Pinto, M; Pimpinella, M; Quini, M; D'Arienzo, M; Astefanoaei, I; Loreti, S; Guerra, A S

2016-02-21

The Italian National Institute of Ionizing Radiation Metrology (ENEA-INMRI) has designed and built a graphite calorimeter that, in a water phantom, has allowed the determination of the absorbed dose to water in medium-energy x-rays with generating voltages from 180 to 250 kV. The new standard is a miniaturized three-bodies calorimeter, with a disc-shaped core of 21 mm diameter and 2 mm thickness weighing 1.134 g, sealed in a PMMA waterproof envelope with air-evacuated gaps. The measured absorbed dose to graphite is converted into absorbed dose to water by means of an energy-dependent conversion factor obtained from Monte Carlo simulations. Heat-transfer correction factors were determined by FEM calculations. At a source-to-detector distance of 100 cm, a depth in water of 2 g cm(-2), and at a dose rate of about 0.15 Gy min(-1), results of calorimetric measurements of absorbed dose to water, D(w), were compared to experimental determinations, D wK, obtained via an ionization chamber calibrated in terms of air kerma, according to established dosimetry protocols. The combined standard uncertainty of D(w) and D(wK) were estimated as 1.9% and 1.7%, respectively. The two absorbed dose to water determinations were in agreement within 1%, well below the stated measurement uncertainties. Advancements are in progress to extend the measurement capability of the new in-water-phantom graphite calorimeter to other filtered medium-energy x-ray qualities and to reduce the D(w) uncertainty to around 1%. The new calorimeter represents the first implementation of in-water-phantom graphite calorimetry in the kilovoltage range and, allowing independent determinations of D(w), it will contribute to establish a robust system of absorbed dose to water primary standards for medium-energy x-ray beams. PMID:26841127

15. Determination of absolute value of quantum efficiency of radiation in high quality GaN single crystals using an integrating sphere

Kojima, Kazunobu; Ohtomo, Tomomi; Ikemura, Ken-ichiro; Yamazaki, Yoshiki; Saito, Makoto; Ikeda, Hirotaka; Fujito, Kenji; Chichibu, Shigefusa F.

2016-07-01

Omnidirectional photoluminescence (ODPL) measurement using an integrating sphere was carried out to absolutely quantify the quantum efficiency of radiation ( η) in high quality GaN single crystals. The total numbers of photons belonging to photoluminescence (PL photons) and photons belonging to an excitation source (excitation photons) were simultaneously counted in the measurement, and η was defined as a ratio of the number of PL photons to the number of absorbed excitation photons. The ODPL spectra near the band edge commonly showed a two-peak structure, which originates from the sharp absorption edge of GaN. A methodology for quantifying internal quantum efficiency ( ηint ) from such experimentally obtained η is derived. A record high ηint of typically 15% is obtained for a freestanding GaN crystal grown by hydride vapor phase epitaxy on a GaN seed crystal synthesized by the ammonothermal method using an acidic mineralizer, when the excitation photon energy and power density were 3.81 eV and 60 W/cm2, respectively.

16. Absolute Equilibrium Entropy

NASA Technical Reports Server (NTRS)

Shebalin, John V.

1997-01-01

The entropy associated with absolute equilibrium ensemble theories of ideal, homogeneous, fluid and magneto-fluid turbulence is discussed and the three-dimensional fluid case is examined in detail. A sigma-function is defined, whose minimum value with respect to global parameters is the entropy. A comparison is made between the use of global functions sigma and phase functions H (associated with the development of various H-theorems of ideal turbulence). It is shown that the two approaches are complimentary though conceptually different: H-theorems show that an isolated system tends to equilibrium while sigma-functions allow the demonstration that entropy never decreases when two previously isolated systems are combined. This provides a more complete picture of entropy in the statistical mechanics of ideal fluids.

17. Local patient dose diagnostic reference levels in pediatric interventional cardiology in Chile using age bands and patient weight values

SciTech Connect

Ubeda, Carlos; Miranda, Patricia; Vano, Eliseo

2015-02-15

Purpose: To present the results of a patient dose evaluation program in pediatric cardiology and propose local diagnostic reference levels (DRLs) for different types of procedure and age range, in addition to suggesting approaches to correlate patient dose values with patient weight. This study was the first conducted in Latin America for pediatric interventional cardiology under the auspices of the International Atomic Energy Agency. Methods: Over three years, the following data regarding demographic and patient dose values were collected: age, gender, weight, height, number of cine series, total number of cine frames, fluoroscopy time (FT), and two dosimetric quantities, dose-area product (DAP) and cumulative dose (CD), at the patient entrance reference point. The third quartile values for FT, DAP, CD, number of cine series, and the DAP/body weight ratio were proposed as the set of quantities to use as local DRLs. Results: Five hundred and seventeen patients were divided into four age groups. Sample sizes by age group were 120 for <1 yr; 213 for 1 to <5 yr; 82 for 5 to <10 yr; and 102 for 10 to <16 yr. The third quartile values obtained for DAP by diagnostic and therapeutic procedures and age range were 1.17 and 1.11 Gy cm{sup 2} for <1 yr; 1.74 and 1.90 Gy cm{sup 2} for 1 to <5 yr; 2.83 and 3.22 Gy cm{sup 2} for 5 to <10 yr; and 7.34 and 8.68 Gy cm{sup 2} for 10 to <16 yr, respectively. The third quartile value obtained for the DAP/body weight ratio for the full sample of procedures was 0.17 (Gy cm{sup 2}/kg) for diagnostic and therapeutic procedures. Conclusions: The data presented in this paper are an initial attempt at establishing local DRLs in pediatric interventional cardiology, from a large sample of procedures for the standard age bands used in Europe, complemented with the values of the ratio between DAP and patient weight. This permits a rough estimate of DRLs for different patient weights and the refining of these values for the age bands when there

18. A large-scale multicentre study in Belgium of dose area product values and effective doses in interventional cardiology using contemporary X-ray equipment.

PubMed

Bogaert, E; Bacher, K; Thierens, H

2008-01-01

In this paper, a large-scale multicentre patient dose study performed in eight Belgian interventional cardiology departments is presented. Effective dose (E) was calculated based on a detailed dose-area product (DAP)-registration during each procedure and by using conversion coefficients generated by the Monte Carlo-based computer program PCXMC. Conversion coefficients were found to be 0.177 mSv Gycm(-2) for systems that do not use any additional copper filtration in cineradiography and 0.207 mSv Gycm(-2) for systems that use additional copper filtration in cineradiography. Mean E values of 9.6 and 15.3 mSv for diagnostic and therapeutic procedures, respectively, were obtained. DAP distributions were investigated in order to derive dose reference levels: 71 and 106 Gycm2 for diagnostic and therapeutic procedures, respectively, are proposed. Significant differences were observed in DAP distributions taking into account whether additional copper filtration was used in the cineradiography mode. Apart from the skin, the organs most at risk are lungs and heart. The probability of fatal cancer for the studied population amounted to 1.1x10(-4) and 2.1x10(-4) for diagnostic and therapeutic procedures, respectively, for the age distribution of the patients considered in this multicentre study. PMID:17681964

19. Comparison of cerebral tissue oxygenation values in full term and preterm newborns by the simultaneous use of two near-infrared spectroscopy devices: an absolute and a relative trending oximeter

Szczapa, Tomasz; Karpiński, Łukasz; Moczko, Jerzy; Weindling, Michael; Kornacka, Alicja; Wróblewska, Katarzyna; Adamczak, Aleksandra; Jopek, Aleksandra; Chojnacka, Karolina; Gadzinowski, Janusz

2013-08-01

The aim of this study is to compare a two-wavelength light emitting diode-based tissue oximeter (INVOS), which is designed to show trends in tissue oxygenation, with a four-wavelength laser-based oximeter (FORE-SIGHT), designed to deliver absolute values of tissue oxygenation. Simultaneous values of cerebral tissue oxygenation (StO2) are measured using both devices in 15 term and 15 preterm clinically stable newborns on the first and third day of life. Values are recorded simultaneously in two periods between which oximeter sensor positions are switched to the contralateral side. Agreement between StO2 values before and after the change of sensor position is analyzed. We find that mean cerebral StO2 values are similar between devices for term and preterm babies, but INVOS shows StO2 values spread over a wider range, with wider standard deviations than shown by the FORE-SIGHT. There is relatively good agreement with a bias up to 3.5% and limits of agreement up to 11.8%. Measurements from each side of the forehead show better repeatability for the FORE-SIGHT monitor. We conclude that performance of the two devices is probably acceptable for clinical purposes. Both performed sufficiently well, but the use of FORE-SIGHT may be associated with tighter range and better repeatability of data.

20. Discovery of Cepheids in NGC 5253: Absolute peak brightness of SN Ia 1895B and SN Ia 1972E and the value of H(sub 0)

NASA Technical Reports Server (NTRS)

Saha, A.; Sandage, Allan; Labhardt, Lukas; Schwengeler, Hans; Tammann, G. A.; Panagia, N.; Macchetto, F. D.

1995-01-01

Observations of the Hubble Space Telescope (HST) between 1993 May 31 and 1993 July 19 in 20 epochs in the F555W passband and five epochs in the F785LP passband have led to the discovery of 14 Cepheids in the Amorphous galaxy NGC 5253. The apparent V distance modulus is (m-M)(sub AV) = 28.08 +/- 0.10 determined from the 12 Cepheids with normal amplitudes. The distance modulus using the F785LP data is consistent with the V value to within the errors. Five methods used to determine the internal reddening are consistent with zero differential reddening, accurate to a level of E(B-V) less than 0.05 mag, over the region occupied by Cepheids and the two supernovae (SNe) produced by NGC 5253. The apparent magnitudes at maximum for the two SNe in NGC 5253 are adopted as B(sub max) = 8.33 +/- 0.2 mag for SN 1895B, and B(sub max) = 8.56 +/- 0.1 and V(sub max) = 8.60 +/- 0.1 for SN 1972E which is a prototype SN of Type Ia. The apparent magnitude system used by Walker (1923) for SN 1859B has been corrected to the modern B scale and zero point to determine its adopted B(sub max) value.

1. Value of increasing film processing time to reduce radiation dose during mammography

SciTech Connect

Skubic, S.E.; Yagan, R.; Oravec, D.; Shah, Z. )

1990-12-01

We systematically tested the effects on radiation dose and image quality of increasing the mammographic film processing time from the standard 90 sec to 3 min. Hurter and Driffield curves were obtained for a Kodak Min-R-OM1-SO177 screen-film combination processed with Kodak chemistry. Image contrast and radiation dose were measured for two tissue-equivalent breast phantoms. We also compared sequential pairs of mammograms, one processed at 90 sec and one at 3 min, from 44 patients on the basis of nine categories of image quality. Increased processing time reduced breast radiation dose by 30%, increased contrast by 11%, and produced slight overall gains in image quality. Simple modifications can convert a 90-sec processor to a 3-min unit. We recommend that implementation of extended processing be considered, especially by those centers that obtain a large number of screening mammograms. Three-minute film processing can reduce breast radiation dose by 30% and increase contrast by 11% without compromising image quality.

2. Direct Dose Consequences Due to DOE-STD-1027 Threshold Values

SciTech Connect

Hochhalter, E Eugene; Durante, Richard Paul; Walker, Jonathon Bill

2001-06-01

The purpose of this paper is to discuss the potential direct dose consequences to facility workers and/or co-located workers from a Hazard Category 2 or 3 nuclear facility or a less than Hazard Category 3 radiological inventory. At the Idaho National Engineering and Environmental Laboratory (INEEL), the safety analysis for several Hazard Category 3 nuclear facilities had to be revisited and the direct dose consequences associated with the facility radiological inventory had to be analyzed and incorporated into the safety analysis. This additional safety analysis was required because it was assumed that for a nuclear facility operating with radiological inventories between the Hazard Category 3 threshold quantities as a lower bounds and less the Hazard Category 2 threshold quantities as an upper bounds, the risk to the facility worker and/or co-located worker was within the INEEL Evaluation Guidelines for radiological exposures.

3. Absolute nuclear material assay

DOEpatents

Prasad, Manoj K.; Snyderman, Neal J.; Rowland, Mark S.

2012-05-15

A method of absolute nuclear material assay of an unknown source comprising counting neutrons from the unknown source and providing an absolute nuclear material assay utilizing a model to optimally compare to the measured count distributions. In one embodiment, the step of providing an absolute nuclear material assay comprises utilizing a random sampling of analytically computed fission chain distributions to generate a continuous time-evolving sequence of event-counts by spreading the fission chain distribution in time.

4. Absolute nuclear material assay

DOEpatents

Prasad, Manoj K.; Snyderman, Neal J.; Rowland, Mark S.

2010-07-13

A method of absolute nuclear material assay of an unknown source comprising counting neutrons from the unknown source and providing an absolute nuclear material assay utilizing a model to optimally compare to the measured count distributions. In one embodiment, the step of providing an absolute nuclear material assay comprises utilizing a random sampling of analytically computed fission chain distributions to generate a continuous time-evolving sequence of event-counts by spreading the fission chain distribution in time.

5. Absolute instability of the Gaussian wake profile

NASA Technical Reports Server (NTRS)

Hultgren, Lennart S.; Aggarwal, Arun K.

1987-01-01

Linear parallel-flow stability theory has been used to investigate the effect of viscosity on the local absolute instability of a family of wake profiles with a Gaussian velocity distribution. The type of local instability, i.e., convective or absolute, is determined by the location of a branch-point singularity with zero group velocity of the complex dispersion relation for the instability waves. The effects of viscosity were found to be weak for values of the wake Reynolds number, based on the center-line velocity defect and the wake half-width, larger than about 400. Absolute instability occurs only for sufficiently large values of the center-line wake defect. The critical value of this parameter increases with decreasing wake Reynolds number, thereby indicating a shrinking region of absolute instability with decreasing wake Reynolds number. If backflow is not allowed, absolute instability does not occur for wake Reynolds numbers smaller than about 38.

6. Absolute Income, Relative Income, and Happiness

ERIC Educational Resources Information Center

Ball, Richard; Chernova, Kateryna

2008-01-01

This paper uses data from the World Values Survey to investigate how an individual's self-reported happiness is related to (i) the level of her income in absolute terms, and (ii) the level of her income relative to other people in her country. The main findings are that (i) both absolute and relative income are positively and significantly…

7. The X/Q values unit doses for spent nuclear fuel projects

SciTech Connect

Huang, C.H.

1997-05-14

The purpose of this document is to provide a single referenceable document that provides the X/Qs for all the facilities in the spent nuclear fuel projects, and includes the bases for the X/Q calculations. The X/Q values for the nuclear fuel projects were calculated over the past several years. The values currently used in the nuclear fuel project were documented in letter reports and as attached to various PSEs and Safety Analysis documents. Therefore, there is a need to consolidate these documents or reports into a single referenceable document. The final document includes the X/Qs for KE and KW Basins, the cold vacuum drying facility, and the canister storage building.

8. Dose point kernel for boron-11 decay and the cellular S values in boron neutron capture therapy

SciTech Connect

Ma Yunzhi; Geng Jinpeng; Gao Song; Bao Shanglian

2006-12-15

The study of the radiobiology of boron neutron capture therapy is based on the cellular level dosimetry of boron-10's thermal neutron capture reaction {sup 10}B(n,{alpha}){sup 7}Li, in which one 1.47 MeV helium-4 ion and one 0.84 MeV lithium-7 ion are spawned. Because of the chemical preference of boron-10 carrier molecules, the dose is heterogeneously distributed in cells. In the present work, the (scaled) dose point kernel of boron-11 decay, called {sup 11}B-DPK, was calculated by GEANT4 Monte Carlo simulation code. The DPK curve drops suddenly at the radius of 4.26 {mu}m, the continuous slowing down approximation (CSDA) range of a lithium-7 ion. Then, after a slight ascending, the curve decreases to near zero when the radius goes beyond 8.20 {mu}m, which is the CSDA range of a 1.47 MeV helium-4 ion. With the DPK data, S values for nuclei and cells with the boron-10 on the cell surface are calculated for different combinations of cell and nucleus sizes. The S value for a cell radius of 10 {mu}m and a nucleus radius of 5 {mu}m is slightly larger than the value published by Tung et al. [Appl. Radiat. Isot. 61, 739-743 (2004)]. This result is potentially more accurate than the published value since it includes the contribution of a lithium-7 ion as well as the alpha particle.

9. A multi-centennial time series of well-constrained ΔR values for the Irish Sea derived using absolutely-dated shell samples from the mollusc Arctica islandica

Butler, P. G.; Scourse, J. D.; Richardson, C. A.; Wanamaker, A. D., Jr.

2009-04-01

Determinations of the local correction (ΔR) to the globally averaged marine radiocarbon reservoir age are often isolated in space and time, derived from heterogeneous sources and constrained by significant uncertainties. Although time series of ΔR at single sites can be obtained from sediment cores, these are subject to multiple uncertainties related to sedimentation rates, bioturbation and interspecific variations in the source of radiocarbon in the analysed samples. Coral records provide better resolution, but these are available only for tropical locations. It is shown here that it is possible to use the shell of the long-lived bivalve mollusc Arctica islandica as a source of high resolution time series of absolutely-dated marine radiocarbon determinations for the shelf seas surrounding the North Atlantic ocean. Annual growth increments in the shell can be crossdated and chronologies can be constructed in a precise analogue with the use of tree-rings. Because the calendar dates of the samples are known, ΔR can be determined with high precision and accuracy and because all the samples are from the same species, the time series of ΔR values possesses a high degree of internal consistency. Presented here is a multi-centennial (AD 1593 - AD 1933) time series of 31 ΔR values for a site in the Irish Sea close to the Isle of Man. The mean value of ΔR (-62 14C yrs) does not change significantly during this period but increased variability is apparent before AD 1750.

10. Relationship of glucose values to sliding scale insulin (correctional insulin) dose delivery and meal time in acute care patients with diabetes mellitus.

PubMed

Trotter, Barbara; Conaway, Mark R; Burns, Suzanne M

2013-01-01

Findings of this study suggest the traditional sliding scale insulin (SSI) method does not improve target glucose values among adult medical inpatients. Timing of blood glucose (BC) measurement does affect the required SSI dose. BC measurement and insulin dose administration should be accomplished immediately prior to mealtime. PMID:23802496

11. The absolute path command

Energy Science and Technology Software Center (ESTSC)

2012-05-11

The ap command traveres all symlinks in a given file, directory, or executable name to identify the final absolute path. It can print just the final path, each intermediate link along with the symlink chan, and the permissions and ownership of each directory component in the final path. It has functionality similar to "which", except that it shows the final path instead of the first path. It is also similar to "pwd", but it canmore » provide the absolute path to a relative directory from the current working directory.« less

12. The absolute path command

SciTech Connect

Moody, A.

2012-05-11

The ap command traveres all symlinks in a given file, directory, or executable name to identify the final absolute path. It can print just the final path, each intermediate link along with the symlink chan, and the permissions and ownership of each directory component in the final path. It has functionality similar to "which", except that it shows the final path instead of the first path. It is also similar to "pwd", but it can provide the absolute path to a relative directory from the current working directory.

13. Absolute Measurements of Radiation Damage in Nanometer Thick Films

PubMed Central

2013-01-01

We address the problem of absolute measurements of radiation damage in films of nanometer thicknesses. Thin films of DNA (~ 2–160nm) are deposited onto glass substrates and irradiated with varying doses of 1.5 keV X-rays under dry N2 at atmospheric pressure and room temperature. For each different thickness, the damage is assessed by measuring the loss of the supercoiled configuration as a function of incident photon fluence. From the exposure curves, the G-values are deduced, assuming that X-ray photons interacting with DNA, deposit all of their energy in the film. The results show that the G-value (i.e., damage per unit of deposited energy) increases with film thickness and reaches a plateau at 30±5 nm. This thickness dependence provides a correction factor to estimate the actual G-value for films with thicknesses below 30nm thickness. Thus, the absolute values of damage can be compared with that of films of any thickness under different experimental conditions. PMID:22562941

14. The F value for chromosome aberrations in atomic bomb survivors does not provide evidence for a primary contribution of neutrons to the dose in Hiroshima.

PubMed

Kodama, Y; Ohtaki, K; Awa, A A; Nakano, M; Itoh, M; Nakamura, N

1999-11-01

Brenner and Sachs (Radiat. Res. 140, 134-142, 1994) proposed that the ratio of interchromosomal to intrachromosomal exchanges, termed the F value, can be a cytogenetic fingerprint of exposure to radiations of different linear energy transfer (LET). Using published data, they suggested that F values are over 10 for low-LET radiations and approximately 6 for high-LET radiations. Subsequently, as F values for atomic bomb survivors were reported to be around 6, Brenner suggested that the biological effects of atomic bomb radiation in Hiroshima are due primarily to neutrons. However, the F values used for the survivors were means from individuals exposed to various doses. As the F-value hypothesis predicts a radiation fingerprint at low doses, we analyzed our own data for the survivors in relation to dose. G-banding data for the survivors showed F values varying from 5 to 8 at DS86 doses of 0.2 to 5 Gy in Hiroshima and around 6 in Nagasaki with no evidence of a difference between the two cities. The results are consistent with our in vitro data that the F values are invariably around 6 for X and gamma rays at doses of 0.5 to 2 Gy as well as two types of fission-spectrum neutrons at doses of about 0.2 to 1 Gy. Thus, apart from a possible effect at even lower doses, current data do not provide evidence to support the proposition that the biological effects of atomic bomb radiation in Hiroshima are caused mainly by neutrons. PMID:10521934

15. Absolute oral bioavailability of ciprofloxacin.

PubMed

Drusano, G L; Standiford, H C; Plaisance, K; Forrest, A; Leslie, J; Caldwell, J

1986-09-01

We evaluated the absolute bioavailability of ciprofloxacin, a new quinoline carboxylic acid, in 12 healthy male volunteers. Doses of 200 mg were given to each of the volunteers in a randomized, crossover manner 1 week apart orally and as a 10-min intravenous infusion. Half-lives (mean +/- standard deviation) for the intravenous and oral administration arms were 4.2 +/- 0.77 and 4.11 +/- 0.74 h, respectively. The serum clearance rate averaged 28.5 +/- 4.7 liters/h per 1.73 m2 for the intravenous administration arm. The renal clearance rate accounted for approximately 60% of the corresponding serum clearance rate and was 16.9 +/- 3.0 liters/h per 1.73 m2 for the intravenous arm and 17.0 +/- 2.86 liters/h per 1.73 m2 for the oral administration arm. Absorption was rapid, with peak concentrations in serum occurring at 0.71 +/- 0.15 h. Bioavailability, defined as the ratio of the area under the curve from 0 h to infinity for the oral to the intravenous dose, was 69 +/- 7%. We conclude that ciprofloxacin is rapidly absorbed and reliably bioavailable in these healthy volunteers. Further studies with ciprofloxacin should be undertaken in target patient populations under actual clinical circumstances. PMID:3777908

16. Electronic Absolute Cartesian Autocollimator

NASA Technical Reports Server (NTRS)

Leviton, Douglas B.

2006-01-01

An electronic absolute Cartesian autocollimator performs the same basic optical function as does a conventional all-optical or a conventional electronic autocollimator but differs in the nature of its optical target and the manner in which the position of the image of the target is measured. The term absolute in the name of this apparatus reflects the nature of the position measurement, which, unlike in a conventional electronic autocollimator, is based absolutely on the position of the image rather than on an assumed proportionality between the position and the levels of processed analog electronic signals. The term Cartesian in the name of this apparatus reflects the nature of its optical target. Figure 1 depicts the electronic functional blocks of an electronic absolute Cartesian autocollimator along with its basic optical layout, which is the same as that of a conventional autocollimator. Referring first to the optical layout and functions only, this or any autocollimator is used to measure the compound angular deviation of a flat datum mirror with respect to the optical axis of the autocollimator itself. The optical components include an illuminated target, a beam splitter, an objective or collimating lens, and a viewer or detector (described in more detail below) at a viewing plane. The target and the viewing planes are focal planes of the lens. Target light reflected by the datum mirror is imaged on the viewing plane at unit magnification by the collimating lens. If the normal to the datum mirror is parallel to the optical axis of the autocollimator, then the target image is centered on the viewing plane. Any angular deviation of the normal from the optical axis manifests itself as a lateral displacement of the target image from the center. The magnitude of the displacement is proportional to the focal length and to the magnitude (assumed to be small) of the angular deviation. The direction of the displacement is perpendicular to the axis about which the

17. Absolute and relative dosimetry for ELIMED

SciTech Connect

Cirrone, G. A. P.; Schillaci, F.; Scuderi, V.; Cuttone, G.; Candiano, G.; Musumarra, A.; Pisciotta, P.; Romano, F.; Carpinelli, M.; Presti, D. Lo; Raffaele, L.; Tramontana, A.; Cirio, R.; Sacchi, R.; Monaco, V.; Marchetto, F.; Giordanengo, S.

2013-07-26

The definition of detectors, methods and procedures for the absolute and relative dosimetry of laser-driven proton beams is a crucial step toward the clinical use of this new kind of beams. Hence, one of the ELIMED task, will be the definition of procedures aiming to obtain an absolute dose measure at the end of the transport beamline with an accuracy as close as possible to the one required for clinical applications (i.e. of the order of 5% or less). Relative dosimetry procedures must be established, as well: they are necessary in order to determine and verify the beam dose distributions and to monitor the beam fluence and the energetic spectra during irradiations. Radiochromic films, CR39, Faraday Cup, Secondary Emission Monitor (SEM) and transmission ionization chamber will be considered, designed and studied in order to perform a fully dosimetric characterization of the ELIMED proton beam.

18. ABSOLUTE POLARIMETRY AT RHIC.

SciTech Connect

OKADA; BRAVAR, A.; BUNCE, G.; GILL, R.; HUANG, H.; MAKDISI, Y.; NASS, A.; WOOD, J.; ZELENSKI, Z.; ET AL.

2007-09-10

Precise and absolute beam polarization measurements are critical for the RHIC spin physics program. Because all experimental spin-dependent results are normalized by beam polarization, the normalization uncertainty contributes directly to final physics uncertainties. We aimed to perform the beam polarization measurement to an accuracy Of {Delta}P{sub beam}/P{sub beam} < 5%. The absolute polarimeter consists of Polarized Atomic Hydrogen Gas Jet Target and left-right pairs of silicon strip detectors and was installed in the RHIC-ring in 2004. This system features proton-proton elastic scattering in the Coulomb nuclear interference (CNI) region. Precise measurements of the analyzing power A{sub N} of this process has allowed us to achieve {Delta}P{sub beam}/P{sub beam} = 4.2% in 2005 for the first long spin-physics run. In this report, we describe the entire set up and performance of the system. The procedure of beam polarization measurement and analysis results from 2004-2005 are described. Physics topics of AN in the CNI region (four-momentum transfer squared 0.001 < -t < 0.032 (GeV/c){sup 2}) are also discussed. We point out the current issues and expected optimum accuracy in 2006 and the future.

19. Patient radiation doses in interventional cardiology in the U.S.: Advisory data sets and possible initial values for U.S. reference levels

SciTech Connect

Miller, Donald L.; Hilohi, C. Michael; Spelic, David C.

2012-10-15

Purpose: To determine patient radiation doses from interventional cardiology procedures in the U.S and to suggest possible initial values for U.S. benchmarks for patient radiation dose from selected interventional cardiology procedures [fluoroscopically guided diagnostic cardiac catheterization and percutaneous coronary intervention (PCI)]. Methods: Patient radiation dose metrics were derived from analysis of data from the 2008 to 2009 Nationwide Evaluation of X-ray Trends (NEXT) survey of cardiac catheterization. This analysis used deidentified data and did not require review by an IRB. Data from 171 facilities in 30 states were analyzed. The distributions (percentiles) of radiation dose metrics were determined for diagnostic cardiac catheterizations, PCI, and combined diagnostic and PCI procedures. Confidence intervals for these dose distributions were determined using bootstrap resampling. Results: Percentile distributions (advisory data sets) and possible preliminary U.S. reference levels (based on the 75th percentile of the dose distributions) are provided for cumulative air kerma at the reference point (K{sub a,r}), cumulative air kerma-area product (P{sub KA}), fluoroscopy time, and number of cine runs. Dose distributions are sufficiently detailed to permit dose audits as described in National Council on Radiation Protection and Measurements Report No. 168. Fluoroscopy times are consistent with those observed in European studies, but P{sub KA} is higher in the U.S. Conclusions: Sufficient data exist to suggest possible initial benchmarks for patient radiation dose for certain interventional cardiology procedures in the U.S. Our data suggest that patient radiation dose in these procedures is not optimized in U.S. practice.

20. Implants as absolute anchorage.

PubMed

Rungcharassaeng, Kitichai; Kan, Joseph Y K; Caruso, Joseph M

2005-11-01

Anchorage control is essential for successful orthodontic treatment. Each tooth has its own anchorage potential as well as propensity to move when force is applied. When teeth are used as anchorage, the untoward movements of the anchoring units may result in the prolonged treatment time, and unpredictable or less-than-ideal outcome. To maximize tooth-related anchorage, techniques such as differential torque, placing roots into the cortex of the bone, the use of various intraoral devices and/or extraoral appliances have been implemented. Implants, as they are in direct contact with bone, do not possess a periodontal ligament. As a result, they do not move when orthodontic/orthopedic force is applied, and therefore can be used as "absolute anchorage." This article describes different types of implants that have been used as orthodontic anchorage. Their clinical applications and limitations are also discussed. PMID:16463910

1. Absolute isotopic abundances of TI in meteorites

Niederer, F. R.; Papanastassiou, D. A.; Wasserburg, G. J.

1985-03-01

The absolute isotope abundance of Ti has been determined in Ca-Al-rich inclusions from the Allende and Leoville meteorites and in samples of whole meteorites. The absolute Ti isotope abundances differ by a significant mass dependent isotope fractionation transformation from the previously reported abundances, which were normalized for fractionation using 46Ti/48Ti. Therefore, the absolute compositions define distinct nucleosynthetic components from those previously identified or reflect the existence of significant mass dependent isotope fractionation in nature. The authors provide a general formalism for determining the possible isotope compositions of the exotic Ti from the measured composition, for different values of isotope fractionation in nature and for different mixing ratios of the exotic and normal components.

2. Differences among Monte Carlo codes in the calculations of voxel S values for radionuclide targeted therapy and analysis of their impact on absorbed dose evaluations

SciTech Connect

Pacilio, M.; Lanconelli, N.; Lo Meo, S.; Betti, M.; Montani, L.; Torres Aroche, L. A.; Coca Perez, M. A.

2009-05-15

3. Optimal individualized dosing strategies: A pharmacologic approach to developing dynamic treatment regimens for continuous-valued treatments.

PubMed

Rich, Benjamin; Moodie, Erica E M; Stephens, David A

2016-05-01

There have been considerable advances in the methodology for estimating dynamic treatment regimens, and for the design of sequential trials that can be used to collect unconfounded data to inform such regimens. However, relatively little attention has been paid to how such methodology could be used to advance understanding of optimal treatment strategies in a continuous dose setting, even though it is often the case that considerable patient heterogeneity in drug response along with a narrow therapeutic window may necessitate the tailoring of dosing over time. Such is the case with warfarin, a common oral anticoagulant. We propose novel, realistic simulation models based on pharmacokinetic-pharmacodynamic properties of the drug that can be used to evaluate potentially optimal dosing strategies. Our results suggest that this methodology can lead to a dosing strategy that performs well both within and across populations with different pharmacokinetic characteristics, and may assist in the design of randomized trials by narrowing the list of potential dosing strategies to those which are most promising. PMID:26537297

4. Absolute neutrino mass measurements

Wolf, Joachim

2011-10-01

The neutrino mass plays an important role in particle physics, astrophysics and cosmology. In recent years the detection of neutrino flavour oscillations proved that neutrinos carry mass. However, oscillation experiments are only sensitive to the mass-squared difference of the mass eigenvalues. In contrast to cosmological observations and neutrino-less double beta decay (0v2β) searches, single β-decay experiments provide a direct, model-independent way to determine the absolute neutrino mass by measuring the energy spectrum of decay electrons at the endpoint region with high accuracy. Currently the best kinematic upper limits on the neutrino mass of 2.2eV have been set by two experiments in Mainz and Troitsk, using tritium as beta emitter. The next generation tritium β-experiment KATRIN is currently under construction in Karlsruhe/Germany by an international collaboration. KATRIN intends to improve the sensitivity by one order of magnitude to 0.2eV. The investigation of a second isotope (137Rh) is being pursued by the international MARE collaboration using micro-calorimeters to measure the beta spectrum. The technology needed to reach 0.2eV sensitivity is still in the R&D phase. This paper reviews the present status of neutrino-mass measurements with cosmological data, 0v2β decay and single β-decay.

5. Absolute neutrino mass measurements

SciTech Connect

Wolf, Joachim

2011-10-06

The neutrino mass plays an important role in particle physics, astrophysics and cosmology. In recent years the detection of neutrino flavour oscillations proved that neutrinos carry mass. However, oscillation experiments are only sensitive to the mass-squared difference of the mass eigenvalues. In contrast to cosmological observations and neutrino-less double beta decay (0v2{beta}) searches, single {beta}-decay experiments provide a direct, model-independent way to determine the absolute neutrino mass by measuring the energy spectrum of decay electrons at the endpoint region with high accuracy.Currently the best kinematic upper limits on the neutrino mass of 2.2eV have been set by two experiments in Mainz and Troitsk, using tritium as beta emitter. The next generation tritium {beta}-experiment KATRIN is currently under construction in Karlsruhe/Germany by an international collaboration. KATRIN intends to improve the sensitivity by one order of magnitude to 0.2eV. The investigation of a second isotope ({sup 137}Rh) is being pursued by the international MARE collaboration using micro-calorimeters to measure the beta spectrum. The technology needed to reach 0.2eV sensitivity is still in the R and D phase. This paper reviews the present status of neutrino-mass measurements with cosmological data, 0v2{beta} decay and single {beta}-decay.

6. A gradient of radioactive contamination in Dolon village near the SNTS and comparison of computed dose values with instrumental estimates for the 29 August, 1949 nuclear test.

PubMed

Stepanenko, Valeriy F; Hoshi, Masaharu; Dubasov, Yuriy V; Sakaguchi, Aya; Yamamoto, Masayoshi; Orlov, Mark Y; Bailiff, Ian K; Ivannikov, Alexander I; Skvortsov, Valeriy G; Iaskova, Elena K; Kryukova, Irina G; Zhumadilov, Kassym S; Endo, Satoru; Tanaka, Kenichi; Apsalikov, Kazbek N; Gusev, Boris I

2006-02-01

Spatial distributions of soil contamination by 137Cs (89 sampling points) and 239+240Pu (76 points) near and within Dolon village were analyzed. An essential exponential decrease of contamination was found in Dolon village: the distance of a half reduction in contamination is about 0.87-1.25 km (in a northwest-southeast direction from the supposed centerline of the radioactive trace). This fact is in agreement with the available exposure rate measurements near Dolon (September 1949 archive data): on the basis of a few measurements the pattern of the trace was estimated to comprise a narrow 2 km corridor of maximum exposure rate. To compare computed external doses in air with local dose estimates by retrospective luminescence dosimetry (RLD) the gradient of radioactive soil contamination within the village was accounted for. The computed dose associated with the central axis of the trace was found to be equal to 2260 mGy (calculations based on archive exposure rate data). Local doses near the RLD sampling points (southeast of the village) were calculated to be in the range 466-780 mGy (averaged value: 645+/-70 mGy), which is comparable with RLD data (averaged value 460+/-92 mGy with range 380-618 mGy). A comparison of the computed mean dose in the settlement with dose estimates by ESR tooth enamel dosimetry makes it possible to estimate the "upper level" of the "shielding and behavior" factor in dose reduction for inhabitants of Dolon village which was found to be 0.28+/-0.068. PMID:16571930

7. Absolute dosimetry for extreme-ultraviolet lithography

Berger, Kurt W.; Campiotti, Richard H.

2000-06-01

The accurate measurement of an exposure dose reaching the wafer on an extreme ultraviolet (EUV) lithographic system has been a technical challenge directly applicable to the evaluation of candidate EUV resist materials and calculating lithography system throughputs. We have developed a dose monitoring sensor system that can directly measure EUV intensities at the wafer plane of a prototype EUV lithographic system. This sensor system, located on the wafer stage adjacent to the electrostatic chuck used to grip wafers, operates by translating the sensor into the aerial image, typically illuminating an 'open' (unpatterned) area on the reticle. The absolute signal strength can be related to energy density at the wafer, and thus used to determine resist sensitivity, and the signal as a function of position can be used to determine illumination uniformity at the wafer plane. Spectral filtering to enhance the detection of 13.4 nm radiation was incorporated into the sensor. Other critical design parameters include the packaging and amplification technologies required to place this device into the space and vacuum constraints of a EUV lithography environment. We describe two approaches used to determine the absolute calibration of this sensor. The first conventional approach requires separate characterization of each element of the sensor. A second novel approach uses x-ray emission from a mildly radioactive iron source to calibrate the absolute response of the entire sensor system (detector and electronics) in a single measurement.

8. Human intravenous pharmacokinetics and absolute oral bioavailability of cefatrizine.

PubMed Central

Pfeffer, M; Gaver, R C; Ximenez, J

1983-01-01

Cefatrizine was administered intravenously and orally at dose levels of 250, 500, and 1,000 mg to normal male volunteers in a crossover study. Intravenous pharmacokinetics were dose linear over this range; mean peak plasma concentrations at the end of 30-min infusions were, respectively, 18, 37, and 75 micrograms/ml, total body clearance was 218 ml/min per 1.73 m2, renal clearance was 176 ml/min per 1.73 m2, and mean retention time in the body was 1.11 h. Cumulative urinary excretion of intact cefatrizine was 80% of the dose, and half-lives ranged from 1 to 1.4 h. Steady-state volume of distribution was 0.22 liters/kg. On oral administration, the absolute bioavailabilities of cefatrizine were 75% at 250 and 500 mg and 50% at 1,000 mg. The mean peak plasma concentrations and peak times were, respectively, 4.9, 8.6, and 10.2 micrograms/ml at 1.4, 1.6, and 2.0 h, mean residence times were 2.4, 2.6, and 3.1 h, and mean absorption times were 1.3, 1.6, and 1.9 h. Oral renal clearance and half-life values corresponded well to the intravenous values. Cumulative urinary excretion of intact cefatrizine (as percentage of dose) was 60 at 250 mg, 56 at 500 mg, and 42 at 1,000 mg. It is hypothesized that the lack of oral dose linearity between the 500- and 1,000-mg doses is due to a component of cefatrizine absorption by a saturable transport process. Relative absorption at the high dose would be sufficiently slow that an absorption "window" would be passed before maximum bioavailability could be attained. It is not expected that the observed bioavailability decrease at doses exceeding 500 mg will have any therapeutic significance, since clinical studies are establishing efficacy for a recommended unit dosage regimen of 500 mg. PMID:6660858

9. Human intravenous pharmacokinetics and absolute oral bioavailability of cefatrizine.

PubMed

Pfeffer, M; Gaver, R C; Ximenez, J

1983-12-01

Cefatrizine was administered intravenously and orally at dose levels of 250, 500, and 1,000 mg to normal male volunteers in a crossover study. Intravenous pharmacokinetics were dose linear over this range; mean peak plasma concentrations at the end of 30-min infusions were, respectively, 18, 37, and 75 micrograms/ml, total body clearance was 218 ml/min per 1.73 m2, renal clearance was 176 ml/min per 1.73 m2, and mean retention time in the body was 1.11 h. Cumulative urinary excretion of intact cefatrizine was 80% of the dose, and half-lives ranged from 1 to 1.4 h. Steady-state volume of distribution was 0.22 liters/kg. On oral administration, the absolute bioavailabilities of cefatrizine were 75% at 250 and 500 mg and 50% at 1,000 mg. The mean peak plasma concentrations and peak times were, respectively, 4.9, 8.6, and 10.2 micrograms/ml at 1.4, 1.6, and 2.0 h, mean residence times were 2.4, 2.6, and 3.1 h, and mean absorption times were 1.3, 1.6, and 1.9 h. Oral renal clearance and half-life values corresponded well to the intravenous values. Cumulative urinary excretion of intact cefatrizine (as percentage of dose) was 60 at 250 mg, 56 at 500 mg, and 42 at 1,000 mg. It is hypothesized that the lack of oral dose linearity between the 500- and 1,000-mg doses is due to a component of cefatrizine absorption by a saturable transport process. Relative absorption at the high dose would be sufficiently slow that an absorption "window" would be passed before maximum bioavailability could be attained. It is not expected that the observed bioavailability decrease at doses exceeding 500 mg will have any therapeutic significance, since clinical studies are establishing efficacy for a recommended unit dosage regimen of 500 mg. PMID:6660858

10. The synthesis of [(14) C]AZD5122. Incorporation of an IV (14) C-microtracer dose into a first in human study to determine the absolute oral bioavailability of AZD5122.

PubMed

Hickey, Michael J; Allen, Paul H; Kingston, Lee P; Wilkinson, David J

2016-05-30

AZD5122, N-(2-(2,3-difluorobenzylthio)-6-((2R,3R)-3,4-dihydroxybutan-2-ylamino)pyrimidin-4-yl)azetidine-1-sulfonamide was under investigation as a potential chemokine receptor CXCR2 antagonist for the treatment for inflammatory diseases. To gain a better understanding of the human pharmacokinetic profile, an exploratory phase I IV microtracer study was conducted using carbon-14 radiolabelled AZD5122. [(14) C]AZD5122 was carbon-14 labelled in the pyrimidine ring in five steps in an overall radiochemical yield of 19% from [(14) C]thiourea. The absolute oral bioavailability of AZD5122 was assessed in healthy subjects by an oral administration of AZD5122, followed by a concomitant intravenous [(14) C]AZD5122 microdose. PMID:27169760

11. THE UNIQUE VALUE OF BREATH BIOMARKERS FOR ESTIMATING PHAMACOKINETIC RATE CONSTANTS AND BODY BURDEN FROM RANDOM/INTERMITTENT DOSE

EPA Science Inventory

Biomarker measurements are used in three ways: 1) evaluating the time course and distribution of a chemical in the body, 2) estimating previous exposure or dose, and 3) assessing disease state. Blood and urine measurements are the primary methods employed. Of late, it has been ...

12. Retention of Quality and Nutritional Value of Thirteen Fresh-cut Vegetables Treated with Low Dose Radiation

Technology Transfer Automated Retrieval System (TEKTRAN)

The recent outbreaks associated with consumption of spinach, lettuce and tomato have resulted in much concern over the safety of fresh-cut vegetables. The industry is in need of a “kill” step to ensure the safety of fresh-cut vegetables. Many studies have demonstrated that a dose of 1 kGy radiatio...

13. Consideration of the ICRP 2006 revised tissue weighting factors on age-dependent values of the effective dose for external photons.

PubMed

Lee, Choonsik; Lee, Choonik; Han, Eun Young; Bolch, Wesley E

2007-01-01

The effective dose recommended by the International Commission on Radiological Protection (ICRP) is the sum of organ equivalent doses weighted by corresponding tissue weighting factors, w(T). ICRP is in the process of revising its 1990 recommendations on the effective dose where new values of organs and tissue weighting factors have been proposed and published in draft form for consultation by the radiological protection community. In its 5 June 2006 draft recommendations, new organs and tissues have been introduced in the effective dose which do not exist within the 1987 Oak Ridge National Laboratory (ORNL) phantom series (e.g., salivary glands). Recently, the investigators at University of Florida have updated the series of ORNL phantoms by implementing new organ models and adopting organ-specific elemental composition and densities. In this study, the effective dose changes caused by the transition from the current recommendation of ICRP Publication 60 to the 2006 draft recommendations were investigated for external photon irradiation across the range of ICRP reference ages (newborn, 1-year, 5-year, 10-year, 15-year and adult) and for six idealized irradiation geometries: anterior-posterior (AP), posterior-anterior (PA), left-lateral (LLAT), right-lateral (RLAT), rotational (ROT) and isotropic (ISO). Organ-absorbed doses were calculated by implementing the revised ORNL phantoms in the Monte Carlo radiation transport code, MCNPX2.5, after which effective doses were calculated under the 1990 and draft 2006 evaluation schemes of the ICRP. Effective doses calculated under the 2006 draft scheme were slightly higher than estimated under ICRP Publication 60 methods for all irradiation geometries exclusive of the AP geometry where an opposite trend was observed. The effective doses of the adult phantom were more greatly affected by the change in tissue weighting factors than that seen within the paediatric members of the phantom series. Additionally, dose conversion

14. Absolute Identification by Relative Judgment

ERIC Educational Resources Information Center

Stewart, Neil; Brown, Gordon D. A.; Chater, Nick

2005-01-01

In unidimensional absolute identification tasks, participants identify stimuli that vary along a single dimension. Performance is surprisingly poor compared with discrimination of the same stimuli. Existing models assume that identification is achieved using long-term representations of absolute magnitudes. The authors propose an alternative…

15. Calculation of size specific dose estimates (SSDE) value at cylindrical phantom from CBCT Varian OBI v1.4 X-ray tube EGSnrc Monte Carlo simulation based

Nasir, M.; Pratama, D.; Anam, C.; Haryanto, F.

2016-03-01

The aim of this research was to calculate Size Specific Dose Estimates (SSDE) generated by the varian OBI CBCT v1.4 X-ray tube working at 100 kV using EGSnrc Monte Carlo simulations. The EGSnrc Monte Carlo code used in this simulation was divided into two parts. Phase space file data resulted by the first part simulation became an input to the second part. This research was performed with varying phantom diameters of 5 to 35 cm and varying phantom lengths of 10 to 25 cm. Dose distribution data were used to calculate SSDE values using trapezoidal rule (trapz) function in a Matlab program. SSDE obtained from this calculation was compared to that in AAPM report and experimental data. It was obtained that the normalization of SSDE value for each phantom diameter was between 1.00 and 3.19. The normalization of SSDE value for each phantom length was between 0.96 and 1.07. The statistical error in this simulation was 4.98% for varying phantom diameters and 5.20% for varying phantom lengths. This study demonstrated the accuracy of the Monte Carlo technique in simulating the dose calculation. In the future, the influence of cylindrical phantom material to SSDE would be studied.

16. Probing absolute spin polarization at the nanoscale.

PubMed

Eltschka, Matthias; Jäck, Berthold; Assig, Maximilian; Kondrashov, Oleg V; Skvortsov, Mikhail A; Etzkorn, Markus; Ast, Christian R; Kern, Klaus

2014-12-10

Probing absolute values of spin polarization at the nanoscale offers insight into the fundamental mechanisms of spin-dependent transport. Employing the Zeeman splitting in superconducting tips (Meservey-Tedrow-Fulde effect), we introduce a novel spin-polarized scanning tunneling microscopy that combines the probing capability of the absolute values of spin polarization with precise control at the atomic scale. We utilize our novel approach to measure the locally resolved spin polarization of magnetic Co nanoislands on Cu(111). We find that the spin polarization is enhanced by 65% when increasing the width of the tunnel barrier by only 2.3 Å due to the different decay of the electron orbitals into vacuum. PMID:25423049

17. Asteroid absolute magnitudes and slope parameters

NASA Technical Reports Server (NTRS)

Tedesco, Edward F.

1991-01-01

A new listing of absolute magnitudes (H) and slope parameters (G) has been created and published in the Minor Planet Circulars; this same listing will appear in the 1992 Ephemerides of Minor Planets. Unlike previous listings, the values of the current list were derived from fits of data at the V band. All observations were reduced in the same fashion using, where appropriate, a single basis default value of 0.15 for the slope parameter. Distances and phase angles were computed for each observation. The data for 113 asteroids was of sufficiently high quality to permit derivation of their H and G. These improved absolute magnitudes and slope parameters will be used to deduce the most reliable bias-corrected asteroid size-frequency distribution yet made.

18. Absolute photoionization cross sections of atomic oxygen

NASA Technical Reports Server (NTRS)

Samson, J. A. R.; Pareek, P. N.

1985-01-01

The absolute values of photoionization cross sections of atomic oxygen were measured from the ionization threshold to 120 A. An auto-ionizing resonance belonging to the 2S2P4(4P)3P(3Do, 3So) transition was observed at 479.43 A and another line at 389.97 A. The experimental data is in excellent agreement with rigorous close-coupling calculations that include electron correlations in both the initial and final states.

19. Absolute photoionization cross sections of atomic oxygen

NASA Technical Reports Server (NTRS)

Samson, J. A. R.; Pareek, P. N.

1982-01-01

The absolute values of photoionization cross sections of atomic oxygen were measured from the ionization threshold to 120 A. An auto-ionizing resonance belonging to the 2S2P4(4P)3P(3Do, 3So) transition was observed at 479.43 A and another line at 389.97 A. The experimental data is in excellent agreement with rigorous close-coupling calculations that include electron correlations in both the initial and final states.

20. Organ S values and effective doses for family members exposed to adult patients following I-131 treatment: A Monte Carlo simulation study

SciTech Connect

Han, Eun Young; Lee, Choonsik; Mcguire, Lynn; Brown, Tracy L. Y.; Bolch, Wesley E.

2013-08-15

1. Recommended values for the distribution coefficient (Kd) to be used in dose assessments for decommissioning the Zion Nuclear Power Plant

SciTech Connect

Sullivan T.

2014-06-09

ZionSolutions is in the process of decommissioning the Zion Nuclear Power Plant. The site contains two reactor Containment Buildings, a Fuel Building, an Auxiliary Building, and a Turbine Building that may be contaminated. The current decommissioning plan involves removing all above grade structures to a depth of 3 feet below grade. The remaining underground structures will be backfilled. The remaining underground structures will contain low amounts of residual licensed radioactive material. An important component of the decommissioning process is the demonstration that any remaining activity will not cause a hypothetical individual to receive a dose in excess of 25 mrem/y as specified in 10CFR20 SubpartE.

2. Recommended values for the distribution coefficient (Kd) to be used in dose assessments for decommissioning the Zion Nuclear Power Plant

SciTech Connect

Sullivan, T.

2014-09-24

ZionSolutions is in the process of decommissioning the Zion Nuclear Power Plant. The site contains two reactor Containment Buildings, a Fuel Building, an Auxiliary Building, and a Turbine Building that may be contaminated. The current decommissioning plan involves removing all above grade structures to a depth of 3 feet below grade. The remaining underground structures will be backfilled. The remaining underground structures will contain low amounts of residual licensed radioactive material. An important component of the decommissioning process is the demonstration that any remaining activity will not cause a hypothetical individual to receive a dose in excess of 25 mrem/y as specified in 10CFR20 SubpartE.

3. Laser interferometry method for absolute measurement of the acceleration of gravity

NASA Technical Reports Server (NTRS)

Hudson, O. K.

1971-01-01

Gravimeter permits more accurate and precise absolute measurement of g without reference to Potsdam values as absolute standards. Device is basically Michelson laser beam interferometer in which one arm is mass fitted with corner cube reflector.

4. Monte Carlo calculations for absolute dosimetry to determine machine outputs for proton therapy fields

PubMed Central

Paganetti, Harald

2008-01-01

The prescribed dose in radiation therapy has to be converted into machine monitor units for patient treatment. This is done routinely for each spread-out Bragg peak (SOBP) field either by calibration measurements, by using analytical algorithms or by relying on empirical data. At the Northeast Proton Therapy Center, a monitor unit corresponds to a fixed amount of charge collected in a segmented transmission ionization chamber inside the treatment head. The goal of this work was to use a detailed Monte Carlo model of the treatment head to calculate the dose delivered to the patient as a function of ionization chamber reading, i.e. to yield absolute dose in patients in terms of machine monitor units. The results show excellent agreement with measurements. For 50 SOBP fields considered in this study, the mean absolute difference between the experimental and the calculated value is 1.5%, where ~50% of the fields agree within 1%. This is within the uncertainties of the data. The Monte Carlo method has advantages over analytical algorithms because it takes into account scattered and secondary radiation, does not rely on empirical parameters, and provides a tool to study the influence of parts of the treatment head on the ionization chamber reading. Compared to experimental methods the Monte Carlo method has the advantage of being able to verify the dose in the patient geometry. PMID:16723767

5. Self-reported smoking effects and comparative value between cigarettes and high dose e-cigarettes in nicotine-dependent cigarette smokers.

PubMed

McPherson, Sterling; Howell, Donelle; Lewis, Jennifer; Barbosa-Leiker, Celestina; Bertotti Metoyer, Patrick; Roll, John

2016-04-01

The objective of this experiment was to evaluate the comparative value of cigarettes versus high dose e-cigarettes among nicotine-dependent cigarette smokers when compared with money or use of their usual cigarette brand. The experiment used a within-subject design with four sessions. After baseline assessment, participants attended two 15-min unrestricted smoking sessions: one cigarette smoking session and one e-cigarette smoking session. Participants then attended two multiple-choice procedure (MCP) sessions: a session comparing cigarettes and money and a session comparing e-cigarettes and money. Participants (n=27) had used cigarettes regularly, had never used e-cigarettes, and were not currently attempting to quit smoking. The sample consisted primarily of males (72%), with a mean age of 34 years. When given the opportunity to choose between smoking a cigarette or an e-cigarette, participants chose the cigarette 73.9% of the time. Findings from the MCP demonstrated that after the first e-cigarette exposure sessions, the crossover value for cigarettes (\$3.45) was significantly higher compared with the crossover value for e-cigarettes (\$2.73). The higher participant preference, self-reported smoking effects, and higher MCP crossover points indicate that cigarettes have a higher comparative value than high dose e-cigarettes among e-cigarette naive smokers. PMID:26886210

6. Assessment of Local Dose Reference Values for Recanalization of Chronic Total Occlusions and Other Occlusions in a High-Volume Catheterization Center.

PubMed

Maccia, Carlo; Malchair, Françoise; Gobert, Isabelle; Louvard, Yves; Lefevre, Thierry

2015-10-15

The increasing number and complexity of these procedures have led to a higher number of patients at risk for tissue reactions like skin injuries. Monitoring of their dose indicators is essential in recognizing these patients. The aim of this work was to determine local diagnostic reference levels (DRLs) for recanalization of chronic total occlusion (CTO) and other occlusions procedures. All data from patients who underwent cardiac procedures were reviewed and classified according to their complexity. Dose indicators such as fluoroscopy time (FT), dose area product (DAP), and air kerma at patient entrance reference point (AKr) were recorded. Correlations with patient's body mass index, operators, procedure strategy, and complexity were studied. For CTO, the mean DAP, AKr, and FT were 252 ± 234 Gycm(2), 3,985 ± 3,579 mGy, and 47 ± 36 minutes, respectively. To better reflect the non-Gaussian distribution of data, the median and the 75th percentile values were also reported: median DAP, 172 Gycm(2); 75th percentile DAP, 350 Gycm(2); median AKr, 2,714 mGy; and 75th percentile AKr, 5,921 mGy. A tentative new set of values were suggested to take into account the complexity difference in recanalization of total occlusions according to their antegrade or retrograde approach. These approach-specific DRLs for total occlusions were mean DAP (120 ± 114 Gycm(2)), mean AKr (1,789 ± 1,933 mGy), and mean FT (22 ± 18 minutes) for antegrade approach and mean DAP (459 ± 304 Gycm(2)), mean AKr (6,881 ± 4,243 mGy), and mean FT (82 ± 40 minutes) for retrograde approach. The other significant values were median DAP (84 Gycm(2)), 75th percentile DAP (147 Gycm(2)), median AKr (1,160 mGy), and 75th percentile AKr (2,176 mGy) for antegrade approach and median DAP (422 Gycm(2)), 75th percentile DAP (552 Gycm(2)), median AKr (6,295 mGy), and 75th percentile AKr (8,064 mGy) for retrograde approach. In conclusion, a set of local DRL values from a large center were assessed

7. Limiting values of radionuclide intake and air concentration and dose conversion factors for inhalation, submersion, and ingestion: Federal guidance report No. 11

SciTech Connect

Eckerman, K.F.; Wolbarst, A.B.; Richardson, A.C.B.

1988-09-01

Radiation protection programs for workers are based, in the United States, on a hierarchy of limitations stemming from Federal guidance approved by the President. This guidance, which consists of principles, policies, and numerical primary guides, is used by Federal agencies as the basis for developing and implementing their own regulatory standards. The primary guides are usually expressed in terms of limiting doses to workers. The protection of workers against taking radioactive materials into the body, however, is accomplished largely through the use of regulations based on derived guides expressed in terms of quantities or concentrations of radionuclides. The values of these derived guides are chosen so as to assure that workers in work environments that conform to them are unlikely to receive radiation doses that exceed the primary guides. The purpose of the present report is to set forth derived guides that are consistent with current Federal radiation protection guidance. They are intended to serve as the basis for regulations setting upper bounds on the inhalation and ingestion of, and submersion in, radioactive materials in the workplace. The report also includes tables of exposure-to-dose conversion factors, for general use in assessing average individual committed doses in any population that is adequately characterized by Reference Man. 38 refs.

8. Absolute and relative bioavailability of oral acetaminophen preparations.

PubMed

Ameer, B; Divoll, M; Abernethy, D R; Greenblatt, D J; Shargel, L

1983-08-01

Eighteen healthy volunteers received single 650-mg doses of acetaminophen by 5-min intravenous infusion, in tablet form by mouth in the fasting state, and in elixir form orally in the fasting state in a three-way crossover study. An additional eight subjects received two 325-mg tablets from two commercial vendors in a randomized crossover fashion. Concentrations of acetaminophen in multiple plasma samples collected during the 12-hr period after each dose were determined by high-performance liquid chromatography. Following a lag time averaging 3-4 min, absorption of oral acetaminophen was first order, with apparent absorption half-life values averaging 8.4 (elixir) and 11.4 (tablet) min. The mean time-to-peak concentration was significantly longer after tablet (0.75 hr) than after elixir (0.48 hr) administration. Peak plasma concentrations and elimination half-lives were similar following both preparations. Absolute systemic availability of the elixir (87%) was significantly greater than for the tablets (79%). Two commercially available tablet formulations did not differ significantly in peak plasma concentrations, time-to-peak, or total area under the plasma concentration curve and therefore were judged to be bioequivalent. PMID:6688635

9. A Monte Carlo based three-dimensional dose reconstruction method derived from portal dose images

SciTech Connect

Elmpt, Wouter J. C. van; Nijsten, Sebastiaan M. J. J. G.; Schiffeleers, Robert F. H.; Dekker, Andre L. A. J.; Mijnheer, Ben J.; Lambin, Philippe; Minken, Andre W. H.

2006-07-15

The verification of intensity-modulated radiation therapy (IMRT) is necessary for adequate quality control of the treatment. Pretreatment verification may trace the possible differences between the planned dose and the actual dose delivered to the patient. To estimate the impact of differences between planned and delivered photon beams, a three-dimensional (3-D) dose verification method has been developed that reconstructs the dose inside a phantom. The pretreatment procedure is based on portal dose images measured with an electronic portal imaging device (EPID) of the separate beams, without the phantom in the beam and a 3-D dose calculation engine based on the Monte Carlo calculation. Measured gray scale portal images are converted into portal dose images. From these images the lateral scattered dose in the EPID is subtracted and the image is converted into energy fluence. Subsequently, a phase-space distribution is sampled from the energy fluence and a 3-D dose calculation in a phantom is started based on a Monte Carlo dose engine. The reconstruction model is compared to film and ionization chamber measurements for various field sizes. The reconstruction algorithm is also tested for an IMRT plan using 10 MV photons delivered to a phantom and measured using films at several depths in the phantom. Depth dose curves for both 6 and 10 MV photons are reconstructed with a maximum error generally smaller than 1% at depths larger than the buildup region, and smaller than 2% for the off-axis profiles, excluding the penumbra region. The absolute dose values are reconstructed to within 1.5% for square field sizes ranging from 5 to 20 cm width. For the IMRT plan, the dose was reconstructed and compared to the dose distribution with film using the gamma evaluation, with a 3% and 3 mm criterion. 99% of the pixels inside the irradiated field had a gamma value smaller than one. The absolute dose at the isocenter agreed to within 1% with the dose measured with an ionization

10. Retention of quality and nutritional value of 13 fresh-cut vegetables treated with low-dose radiation.

PubMed

Fan, X; Sokorai, K J B

2008-09-01

11. Absolute radiometry and the solar constant

NASA Technical Reports Server (NTRS)

Willson, R. C.

1974-01-01

A series of active cavity radiometers (ACRs) are described which have been developed as standard detectors for the accurate measurement of irradiance in absolute units. It is noted that the ACR is an electrical substitution calorimeter, is designed for automatic remote operation in any environment, and can make irradiance measurements in the range from low-level IR fluxes up to 30 solar constants with small absolute uncertainty. The instrument operates in a differential mode by chopping the radiant flux to be measured at a slow rate, and irradiance is determined from two electrical power measurements together with the instrumental constant. Results are reported for measurements of the solar constant with two types of ACRs. The more accurate measurement yielded a value of 136.6 plus or minus 0.7 mW/sq cm (1.958 plus or minus 0.010 cal/sq cm per min).

12. [Dose loads on and radiation risk values for cosmonauts on a mission to Mars estimated from actual Martian vehicle engineering development].

PubMed

Shafirkin, A V; Kolomenskiĭ, A V; Mitrikas, V G; Petrov, V M

2010-01-01

The current design philosophy of a Mars orbiting vehicle, takeoff and landing systems and the transport return vehicle was taken into consideration for calculating the equivalent doses imparted to cosmonaut's organs and tissues by galactic cosmic rays, solar rays and the Earth's radiation belts, values of the total radiation risk over the lifespan following the mission and over the whole career period, and possible shortening of life expectancy. There are a number of uncertainties that should be evaluated, and radiation limits specified before setting off to Mars. PMID:20803991

13. Study of absolute fast neutron dosimetry using CR-39 track detectors

El-Sersy, A. R.

2010-06-01

In this work, CR-39 track detectors have extensively been used in the determination of fast neutron fluence-to-dose factor. The registration efficiency, ɛ, of CR-39 detectors for fast neutrons was calculated using different theoretical approaches according to each mode of neutron interaction with the constituent atoms (H, C and O) of the detector material. The induced proton-recoiled showed the most common interaction among the others. The dependence of ɛ on both neutron energy and etching time was also studied. In addition, the neutron dose was calculated as a function of neutron energy in the range from 0.5 to 14 MeV using the values of (d E/d X) for each recoil particle in CR-39 detector. Results showed that the values of ɛ were obviously affected by both neutron energy and etching time where the contribution in ɛ from proton recoil was the most. The contribution from carbon and oxygen recoils in dose calculation was pronounced due to their higher corresponding values of d E/d X in comparison to those from proton recoils. The present calculated fluence-to-dose factor was in agreement with that either from ICRP no. 74 or from TRS no. 285 of IAEA, which reflected the importance of using CR-39 in absolute fast neutron dosimetry.

14. Differences in 3D dose distributions due to calculation method of voxel S-values and the influence of image blurring in SPECT

Pacilio, Massimiliano; Amato, Ernesto; Lanconelli, Nico; Basile, Chiara; Torres, Leonel Alberto; Botta, Francesca; Ferrari, Mahila; Cornejo Diaz, Nestor; Coca Perez, Marco; Fernández, María; Lassmann, Michael; Vergara Gil, Alex; Cremonesi, Marta

2015-03-01

This study compares 3D dose distributions obtained with voxel S values (VSVs) for soft tissue, calculated by several methods at their current state-of-the-art, varying the degree of image blurring. The methods were: 1) convolution of Dose Point Kernel (DPK) for water, using a scaling factor method; 2) an analytical model (AM), fitting the deposited energy as a function of the source-target distance; 3) a rescaling method (RSM) based on a set of high-resolution VSVs for each isotope; 4) local energy deposition (LED). VSVs calculated by direct Monte Carlo simulations were assumed as reference. Dose distributions were calculated considering spheroidal clusters with various sizes (251, 1237 and 4139 voxels of 3 mm size), uniformly filled with 131I, 177Lu, 188Re or 90Y. The activity distributions were blurred with Gaussian filters of various widths (6, 8 and 12 mm). Moreover, 3D-dosimetry was performed for 10 treatments with 90Y derivatives. Cumulative Dose Volume Histograms (cDVHs) were compared, studying the differences in D95%, D50% or Dmax (ΔD95%, ΔD50% and ΔDmax) and dose profiles. For unblurred spheroidal clusters, ΔD95%, ΔD50% and ΔDmax were mostly within some percents, slightly higher for 177Lu with DPK (8%) and RSM (12%) and considerably higher for LED (ΔD95% up to 59%). Increasing the blurring, differences decreased and also LED yielded very similar results, but D95% and D50% underestimations between 30-60% and 15-50%, respectively (with respect to 3D-dosimetry with unblurred distributions), were evidenced. Also for clinical images (affected by blurring as well), cDVHs differences for most methods were within few percents, except for slightly higher differences with LED, and almost systematic for dose profiles with DPK (-1.2%), AM (-3.0%) and RSM (4.5%), whereas showed an oscillating trend with LED. The major concern for 3D-dosimetry on clinical SPECT images is more strongly represented by image blurring than by differences among the VSVs

15. Predictive value of pyramidal lobe, percentage thyroid uptake and age for ablation outcome after 15 mCi fixed dose of radioiodine-131 in Graves’ disease

PubMed Central

Zaman, Maseeh uz; Fatima, Nosheen; Zaman, Unaiza; Sajjad, Zafar; Zaman, Areeba; Tahseen, Rabia

2015-01-01

Purpose: The purpose was to find out the efficacy of fixed 15 mCi radioactive iodine-131 (RAI) dose and predictive values of various factors for inducing hypothyroidism in Graves’ disease (GD). Materials and Methods: Retrospective study conducted from January 2012 till August 2014. Patients with GD who had a technetium-99m thyroid scan, thyroid antibodies, received fixed 15 mCi RAI and did follow endocrine clinics for at least 6 months were selected. RAI was considered successful if within 6 months of RAI therapy patients developed hypothyroidism. Results: Of the 370 patients with GD who had RAI during study period, 210 (57%) qualified study criteria. Mean age of patients was 48 ± 15 years with female: male ratio of 69:31, positive thyroid antibodies in 61%, means thyroid uptake of 15.09 ± 11.23%, and presence of pyramidal lobe in 40% of total population. Hypothyroidism was achieved in 161 (77%) patients while 49 (23%) patients failed to achieve it (remained either hyperthyroid or euthyroid on antithyroid medication). Patients who became hypothyroid were significantly younger with higher proportion of presence of thyroid antibodies and pyramidal lobe and lower percentage thyroid uptake than those who failed. Multiple logistic regression analysis revealed that age (odds ratio; OR = 2.074), pyramidal lobe (OR = 3.317), thyroid antibodies (OR = 8.198), and percentage thyroid uptake (OR = 3.043) were found to be significant prognostic risk factors for post-RAI hypothyroidism. Gender was found to have nonsignificant association with the development of hypothyroidism. Receiver operating characteristic analysis revealed age <42 years and thyroid uptake <15% as threshold values for the development of post-RAI hypothyroidism. Conclusion: We conclude that fixed (15 mCi) RAI dose is highly effective in rendering hypothyroidism in patients with GD. Age (≤42 years), thyroid uptake (≤15%) and presence of pyramidal lobe are strong predictors of hypothyroidism and must be

16. The National Geodetic Survey absolute gravity program

Peter, George; Moose, Robert E.; Wessells, Claude W.

1989-03-01

The National Geodetic Survey absolute gravity program will utilize the high precision afforded by the JILAG-4 instrument to support geodetic and geophysical research, which involves studies of vertical motions, identification and modeling of other temporal variations, and establishment of reference values. The scientific rationale of these objectives is given, the procedures used to collect gravity and environmental data in the field are defined, and the steps necessary to correct and remove unwanted environmental effects are stated. In addition, site selection criteria, methods of concomitant environmental data collection and relative gravity observations, and schedule and logistics are discussed.

17. Absolute method of measuring magnetic susceptibility

USGS Publications Warehouse

Thorpe, A.; Senftle, F.E.

1959-01-01

An absolute method of standardization and measurement of the magnetic susceptibility of small samples is presented which can be applied to most techniques based on the Faraday method. The fact that the susceptibility is a function of the area under the curve of sample displacement versus distance of the magnet from the sample, offers a simple method of measuring the susceptibility without recourse to a standard sample. Typical results on a few substances are compared with reported values, and an error of less than 2% can be achieved. ?? 1959 The American Institute of Physics.

18. Absolute transition probabilities of phosphorus.

NASA Technical Reports Server (NTRS)

Miller, M. H.; Roig, R. A.; Bengtson, R. D.

1971-01-01

Use of a gas-driven shock tube to measure the absolute strengths of 21 P I lines and 126 P II lines (from 3300 to 6900 A). Accuracy for prominent, isolated neutral and ionic lines is estimated to be 28 to 40% and 18 to 30%, respectively. The data and the corresponding theoretical predictions are examined for conformity with the sum rules.-

19. In-flight absolute radiometric calibration of the thematic mapper

NASA Technical Reports Server (NTRS)

Castle, K. R.; Holm, R. G.; Kastner, C. J.; Palmer, J. M.; Slater, P. N.; Dinguirard, M.; Ezra, C. E.; Jackson, R. D.; Savage, R. K.

1983-01-01

The TM multispectral scanner system was calibrated in an absolute manner before launch. To determine the temporal changes of the absolute radiometric calibration of the entire system, spectroradiometric measurements of the ground and the atmosphere were made simultaneously with TM collections over White Sands, New Mexico. By entering the measured values in an atmospheric radiative transfer program, the radiance levels of the in four of the spectral bands of the TM were determined. Tables show values for the reflectance of snow at White Sands measured by a modular 8 channel radiometer, and values for exoatmospheric irradiance within the TM passbands, calculated for the Earth-Sun distance using a solar radiometer.

20. Estimating peak skin and eye lens dose from neuroperfusion examinations: Use of Monte Carlo based simulations and comparisons to CTDIvol, AAPM Report No. 111, and ImPACT dosimetry tool values

PubMed Central

Zhang, Di; Cagnon, Chris H.; Villablanca, J. Pablo; McCollough, Cynthia H.; Cody, Dianna D.; Zankl, Maria; Demarco, John J.; McNitt-Gray, Michael F.

2013-01-01

Purpose: CT neuroperfusion examinations are capable of delivering high radiation dose to the skin or lens of the eyes of a patient and can possibly cause deterministic radiation injury. The purpose of this study is to: (a) estimate peak skin dose and eye lens dose from CT neuroperfusion examinations based on several voxelized adult patient models of different head size and (b) investigate how well those doses can be approximated by some commonly used CT dose metrics or tools, such as CTDIvol, American Association of Physicists in Medicine (AAPM) Report No. 111 style peak dose measurements, and the ImPACT organ dose calculator spreadsheet. Methods: Monte Carlo simulation methods were used to estimate peak skin and eye lens dose on voxelized patient models, including GSF's Irene, Frank, Donna, and Golem, on four scanners from the major manufacturers at the widest collimation under all available tube potentials. Doses were reported on a per 100 mAs basis. CTDIvol measurements for a 16 cm CTDI phantom, AAPM Report No. 111 style peak dose measurements, and ImPACT calculations were performed for available scanners at all tube potentials. These were then compared with results from Monte Carlo simulations. Results: The dose variations across the different voxelized patient models were small. Dependent on the tube potential and scanner and patient model, CTDIvol values overestimated peak skin dose by 26%–65%, and overestimated eye lens dose by 33%–106%, when compared to Monte Carlo simulations. AAPM Report No. 111 style measurements were much closer to peak skin estimates ranging from a 14% underestimate to a 33% overestimate, and with eye lens dose estimates ranging from a 9% underestimate to a 66% overestimate. The ImPACT spreadsheet overestimated eye lens dose by 2%–82% relative to voxelized model simulations. Conclusions: CTDIvol consistently overestimates dose to eye lens and skin. The ImPACT tool also overestimated dose to eye lenses. As such they are still

1. Value of Combined PET/CT for Radiation Planning in CT-Guided Percutaneous Interstitial High-Dose-Rate Single-Fraction Brachytherapy for Colorectal Liver Metastases

SciTech Connect

Steffen, Ingo G.; Wust, Peter; Ruehl, Ricarda

2010-07-15

Purpose: To determine the additional value of fluorodeoxyglucose-positron emission tomography (PET) for clinical target volume definition in the planning of computed tomography (CT)-guided interstitial brachytherapy for liver metastases. Patients and Methods: A total of 19 patients with liver metastases from colorectal cancer treated in 25 sessions were included in the present study. All patients had undergone fluorodeoxyglucose-PET for patient evaluation before interstitial CT-guided brachytherapy. A contrast-enhanced CT scan of the upper abdomen was obtained for radiation planning. The clinical target volume (CTV) was defined by a radiation oncologist and radiologist. After registration of the CT scan with the PET data set, the target volume was defined again using the fusion images. Results: PET revealed one additional liver lesion that was not visible on CT. The median CT-CTV (defined using CT and magnetic resonance imaging) was 68 cm{sup 3} (range 4-260). The PET/CT-CTV (median, 78 cm{sup 3}; range, 4-273) was significantly larger, with a median gain of 24.5% (interquartile range, 2.1-71.5%; p = .022). An increased CTV was observed in 15 cases and a decrease in 6; in 4 cases, the CT-CTV and PET/CT-CTV were equal. Incomplete dose coverage of PET/CT-CTVs was indicative of early local progression (p = .004); however, CT-based radiation plans did not show significant differences in the local control rates when stratified by dose coverage. Conclusion: Retrospective implementation of fluorodeoxyglucose-PET for CTV specification for CT-guided brachytherapy for colorectal liver metastases revealed a significant change in the CTVs. Additional PET-positive tumor regions with incomplete dose coverage could explain unexpected early local progression.

2. Absolute Antenna Calibration at the US National Geodetic Survey

Mader, G. L.; Bilich, A. L.

2012-12-01

Geodetic GNSS applications routinely demand millimeter precision and extremely high levels of accuracy. To achieve these accuracies, measurement and instrument biases at the centimeter to millimeter level must be understood. One of these biases is the antenna phase center, the apparent point of signal reception for a GNSS antenna. It has been well established that phase center patterns differ between antenna models and manufacturers; additional research suggests that the addition of a radome or the choice of antenna mount can significantly alter those a priori phase center patterns. For the more demanding GNSS positioning applications and especially in cases of mixed-antenna networks, it is all the more important to know antenna phase center variations as a function of both elevation and azimuth in the antenna reference frame and incorporate these models into analysis software. Determination of antenna phase center behavior is known as "antenna calibration". Since 1994, NGS has computed relative antenna calibrations for more than 350 antennas. In recent years, the geodetic community has moved to absolute calibrations - the IGS adopted absolute antenna phase center calibrations in 2006 for use in their orbit and clock products, and NGS's CORS group began using absolute antenna calibration upon the release of the new CORS coordinates in IGS08 epoch 2005.00 and NAD 83(2011,MA11,PA11) epoch 2010.00. Although NGS relative calibrations can be and have been converted to absolute, it is considered best practice to independently measure phase center characteristics in an absolute sense. Consequently, NGS has developed and operates an absolute calibration system. These absolute antenna calibrations accommodate the demand for greater accuracy and for 2-dimensional (elevation and azimuth) parameterization. NGS will continue to provide calibration values via the NGS web site www.ngs.noaa.gov/ANTCAL, and will publish calibrations in the ANTEX format as well as the legacy ANTINFO

3. Revisiting absolute and relative judgments in the WITNESS model.

PubMed

Fife, Dustin; Perry, Colton; Gronlund, Scott D

2014-04-01

The WITNESS model (Clark in Applied Cognitive Psychology 17:629-654, 2003) provides a theoretical framework with which to investigate the factors that contribute to eyewitness identification decisions. One key factor involves the contributions of absolute versus relative judgments. An absolute contribution is determined by the degree of match between an individual lineup member and memory for the perpetrator; a relative contribution involves the degree to which the best-matching lineup member is a better match to memory than the remaining lineup members. In WITNESS, the proportional contributions of relative versus absolute judgments are governed by the values of the decision weight parameters. We conducted an exploration of the WITNESS model's parameter space to determine the identifiability of these relative/absolute decision weight parameters, and compared the results to a restricted version of the model that does not vary the decision weight parameters. This exploration revealed that the decision weights in WITNESS are difficult to identify: Data often can be fit equally well by setting the decision weights to nearly any value and compensating with a criterion adjustment. Clark, Erickson, and Breneman (Law and Human Behavior 35:364-380, 2011) claimed to demonstrate a theoretical basis for the superiority of lineup decisions that are based on absolute contributions, but the relationship between the decision weights and the criterion weakens this claim. These findings necessitate reconsidering the role of the relative/absolute judgment distinction in eyewitness decision making. PMID:23943556

4. Optomechanics for absolute rotation detection

Davuluri, Sankar

2016-07-01

In this article, we present an application of optomechanical cavity for the absolute rotation detection. The optomechanical cavity is arranged in a Michelson interferometer in such a way that the classical centrifugal force due to rotation changes the length of the optomechanical cavity. The change in the cavity length induces a shift in the frequency of the cavity mode. The phase shift corresponding to the frequency shift in the cavity mode is measured at the interferometer output to estimate the angular velocity of absolute rotation. We derived an analytic expression to estimate the minimum detectable rotation rate in our scheme for a given optomechanical cavity. Temperature dependence of the rotation detection sensitivity is studied.

5. The Absolute Spectrum Polarimeter (ASP)

NASA Technical Reports Server (NTRS)

Kogut, A. J.

2010-01-01

The Absolute Spectrum Polarimeter (ASP) is an Explorer-class mission to map the absolute intensity and linear polarization of the cosmic microwave background and diffuse astrophysical foregrounds over the full sky from 30 GHz to 5 THz. The principal science goal is the detection and characterization of linear polarization from an inflationary epoch in the early universe, with tensor-to-scalar ratio r much greater than 1O(raised to the power of { -3}) and Compton distortion y < 10 (raised to the power of{-6}). We describe the ASP instrument and mission architecture needed to detect the signature of an inflationary epoch in the early universe using only 4 semiconductor bolometers.

6. Absolute calibration of optical flats

DOEpatents

Sommargren, Gary E.

2005-04-05

The invention uses the phase shifting diffraction interferometer (PSDI) to provide a true point-by-point measurement of absolute flatness over the surface of optical flats. Beams exiting the fiber optics in a PSDI have perfect spherical wavefronts. The measurement beam is reflected from the optical flat and passed through an auxiliary optic to then be combined with the reference beam on a CCD. The combined beams include phase errors due to both the optic under test and the auxiliary optic. Standard phase extraction algorithms are used to calculate this combined phase error. The optical flat is then removed from the system and the measurement fiber is moved to recombine the two beams. The newly combined beams include only the phase errors due to the auxiliary optic. When the second phase measurement is subtracted from the first phase measurement, the absolute phase error of the optical flat is obtained.

7. SU-E-T-491: Importance of Energy Dependent Protons Per MU Calibration Factors in IMPT Dose Calculations Using Monte Carlo Technique

SciTech Connect

Randeniya, S; Mirkovic, D; Titt, U; Guan, F; Mohan, R

2014-06-01

Purpose: In intensity modulated proton therapy (IMPT), energy dependent, protons per monitor unit (MU) calibration factors are important parameters that determine absolute dose values from energy deposition data obtained from Monte Carlo (MC) simulations. Purpose of this study was to assess the sensitivity of MC-computed absolute dose distributions to the protons/MU calibration factors in IMPT. Methods: A “verification plan” (i.e., treatment beams applied individually to water phantom) of a head and neck patient plan was calculated using MC technique. The patient plan had three beams; one posterior-anterior (PA); two anterior oblique. Dose prescription was 66 Gy in 30 fractions. Of the total MUs, 58% was delivered in PA beam, 25% and 17% in other two. Energy deposition data obtained from the MC simulation were converted to Gy using energy dependent protons/MU calibrations factors obtained from two methods. First method is based on experimental measurements and MC simulations. Second is based on hand calculations, based on how many ion pairs were produced per proton in the dose monitor and how many ion pairs is equal to 1 MU (vendor recommended method). Dose distributions obtained from method one was compared with those from method two. Results: Average difference of 8% in protons/MU calibration factors between method one and two converted into 27 % difference in absolute dose values for PA beam; although dose distributions preserved the shape of 3D dose distribution qualitatively, they were different quantitatively. For two oblique beams, significant difference in absolute dose was not observed. Conclusion: Results demonstrate that protons/MU calibration factors can have a significant impact on absolute dose values in IMPT depending on the fraction of MUs delivered. When number of MUs increases the effect due to the calibration factors amplify. In determining protons/MU calibration factors, experimental method should be preferred in MC dose calculations

8. Benchmark Dose Modeling

EPA Science Inventory

Finite doses are employed in experimental toxicology studies. Under the traditional methodology, the point of departure (POD) value for low dose extrapolation is identified as one of these doses. Dose spacing necessarily precludes a more accurate description of the POD value. ...

9. Non-Invasive Method of Determining Absolute Intracranial Pressure

NASA Technical Reports Server (NTRS)

Yost, William T. (Inventor); Cantrell, John H., Jr. (Inventor); Hargens, Alan E. (Inventor)

2004-01-01

A method is presented for determining absolute intracranial pressure (ICP) in a patient. Skull expansion is monitored while changes in ICP are induced. The patient's blood pressure is measured when skull expansion is approximately zero. The measured blood pressure is indicative of a reference ICP value. Subsequently, the method causes a known change in ICP and measured the change in skull expansion associated therewith. The absolute ICP is a function of the reference ICP value, the known change in ICP and its associated change in skull expansion; and a measured change in skull expansion.

10. Absolute bioavailability and disposition of lanthanum in healthy human subjects administered lanthanum carbonate.

PubMed

Pennick, Michael; Dennis, Kerry; Damment, Stephen J P

2006-07-01

Lanthanum carbonate [La2(CO3)3] is a noncalcium, non-aluminum phosphate binder indicated for hyperphosphatemia treatment in end-stage renal disease. A randomized, open-label, parallel-group, phase I study was conducted to determine absolute bioavailability and investigate excretory routes for systemic lanthanum in healthy subjects. Twenty-four male subjects were randomized to a single lanthanum chloride (LaCl3) intravenous infusion (120 microg elemental lanthanum over a 4-hour period), a single 1-g oral dose [chewable La2(CO3)3 tablets; 4 x 250 mg elemental lanthanum], or no treatment (control). Serial blood, urine, and fecal samples were collected for 7 days postdosing. The absolute bioavailability of lanthanum [administered as La2(CO3)3] was extremely low (0.00127% +/- 0.00080%), with individual values in the range of 0.00015% to 0.00224%. Renal clearance was negligible following oral administration (1.36 +/- 1.43 mL/min). Intravenous administration confirmed low renal clearance (0.95 +/- 0.60 mL/min), just 1.7% of total plasma clearance. Fecal lanthanum excretion was not quantifiable after intravenous administration owing to high and variable background fecal lanthanum and constraints on the size of the intravenous dose. These findings demonstrate that lanthanum absorption from the intestinal tract into the systemic circulation is extremely low and that absorbed drug is cleared predominantly by nonrenal mechanisms. PMID:16809799

11. The Preference of Visualization in Teaching and Learning Absolute Value

ERIC Educational Resources Information Center

Konyalioglu, Alper Cihan; Aksu, Zeki; Senel, Esma Ozge

2012-01-01

Visualization is mostly despised although it complements and--sometimes--guides the analytical process. This study mainly investigates teachers' preferences concerning the use of the visualization method and determines the extent to which they encourage their students to make use of it within the problem-solving process. This study was conducted…

12. The added value of the 90-day repeated dose oral toxicity test for industrial chemicals with a low (sub)acute toxicity profile in a high quality dataset.

PubMed

Taylor, Katy; Andrew, David J; Rego, Laura

2014-08-01

A survey conducted on the EU Notification of New Substances (NONS) database suggested that for industrial chemicals with a profile of low toxicity in (sub)acute toxicity tests there is little added value to the conduct of the 90-day repeated dose study. Avoiding unnecessary animal testing is a central aim of the EU REACH chemicals legislation; therefore we sought to verify the profile using additional data. The OECD's eChemPortal was searched for substances that had both a 28-day and a 90-day study and their robust study summaries were then examined from the ECHA CHEM database. Out of 182 substances with high quality 28-day and 90-day study results, only 18 reported no toxicity of any kind in the (sub)acute tests. However, for 16 of these there were also no reported signs of toxicity at or close to the limit dose (1000mg/kgbw/d) in the 90-day study. Restricting the 'low (sub)acute toxicity in a high quality dataset' profile to general industrial chemicals of no known biological activity, whilst allowing irritant substances, increases the data set and improves the prediction to 95% (20 substances out of 21 substances). The low toxicity profile appears to be of low prevalence within industrial chemicals (10-15%), nevertheless, avoidance of the conduct of a redundant 90-day study for this proportion of the remaining REACH phase-in substances would avoid the use of nearly 50,000 animals and save industry 50million Euros, with no impact on the assessment of human health. PMID:24768988

13. The AFGL absolute gravity program

NASA Technical Reports Server (NTRS)

Hammond, J. A.; Iliff, R. L.

1978-01-01

A brief discussion of the AFGL's (Air Force Geophysics Laboratory) program in absolute gravity is presented. Support of outside work and in-house studies relating to gravity instrumentation are discussed. A description of the current transportable system is included and the latest results are presented. These results show good agreement with measurements at the AFGL site by an Italian system. The accuracy obtained by the transportable apparatus is better than 0.1 microns sq sec 10 microgal and agreement with previous measurements is within the combined uncertainties of the measurements.

14. Global absolut gravity reference system as replacement of IGSN 71

Wilmes, Herbert; Wziontek, Hartmut; Falk, Reinhard

2015-04-01

The determination of precise gravity field parameters is of great importance in a period in which earth sciences are achieving the necessary accuracy to monitor and document global change processes. This is the reason why experts from geodesy and metrology joined in a successful cooperation to make absolute gravity observations traceable to SI quantities, to improve the metrological kilogram definition and to monitor mass movements and smallest height changes for geodetic and geophysical applications. The international gravity datum is still defined by the International Gravity Standardization Net adopted in 1971 (IGSN 71). The network is based upon pendulum and spring gravimeter observations taken in the 1950s and 60s supported by the early free fall absolute gravimeters. Its gravity values agreed in every case to better than 0.1 mGal. Today, more than 100 absolute gravimeters are in use worldwide. The series of repeated international comparisons confirms the traceability of absolute gravity measurements to SI quantities and confirm the degree of equivalence of the gravimeters in the order of a few µGal. For applications in geosciences where e.g. gravity changes over time need to be analyzed, the temporal stability of an absolute gravimeter is most important. Therefore, the proposition is made to replace the IGSN 71 by an up-to-date gravity reference system which is based upon repeated absolute gravimeter comparisons and a global network of well controlled gravity reference stations.

15. Standardization of the cumulative absolute velocity

SciTech Connect

O'Hara, T.F.; Jacobson, J.P. )

1991-12-01

EPRI NP-5930, A Criterion for Determining Exceedance of the Operating Basis Earthquake,'' was published in July 1988. As defined in that report, the Operating Basis Earthquake (OBE) is exceeded when both a response spectrum parameter and a second damage parameter, referred to as the Cumulative Absolute Velocity (CAV), are exceeded. In the review process of the above report, it was noted that the calculation of CAV could be confounded by time history records of long duration containing low (nondamaging) acceleration. Therefore, it is necessary to standardize the method of calculating CAV to account for record length. This standardized methodology allows consistent comparisons between future CAV calculations and the adjusted CAV threshold value based upon applying the standardized methodology to the data set presented in EPRI NP-5930. The recommended method to standardize the CAV calculation is to window its calculation on a second-by-second basis for a given time history. If the absolute acceleration exceeds 0.025g at any time during each one second interval, the earthquake records used in EPRI NP-5930 have been reanalyzed and the adjusted threshold of damage for CAV was found to be 0.16g-set.

16. Absolute rates of hole transfer in DNA.

PubMed

Senthilkumar, Kittusamy; Grozema, Ferdinand C; Guerra, Célia Fonseca; Bickelhaupt, F Matthias; Lewis, Frederick D; Berlin, Yuri A; Ratner, Mark A; Siebbeles, Laurens D A

2005-10-26

Absolute rates of hole transfer between guanine nucleobases separated by one or two A:T base pairs in stilbenedicarboxamide-linked DNA hairpins were obtained by improved kinetic analysis of experimental data. The charge-transfer rates in four different DNA sequences were calculated using a density-functional-based tight-binding model and a semiclassical superexchange model. Site energies and charge-transfer integrals were calculated directly as the diagonal and off-diagonal matrix elements of the Kohn-Sham Hamiltonian, respectively, for all possible combinations of nucleobases. Taking into account the Coulomb interaction between the negative charge on the stilbenedicarboxamide linker and the hole on the DNA strand as well as effects of base pair twisting, the relative order of the experimental rates for hole transfer in different hairpins could be reproduced by tight-binding calculations. To reproduce quantitatively the absolute values of the measured rate constants, the effect of the reorganization energy was taken into account within the semiclassical superexchange model for charge transfer. The experimental rates could be reproduced with reorganization energies near 1 eV. The quantum chemical data obtained were used to discuss charge carrier mobility and hole-transport equilibria in DNA. PMID:16231945

17. Absolute/convective instability of planar viscoelastic jets

Ray, Prasun K.; Zaki, Tamer A.

2015-01-01

Spatiotemporal linear stability analysis is used to investigate the onset of local absolute instability in planar viscoelastic jets. The influence of viscoelasticity in dilute polymer solutions is modeled with the FENE-P constitutive equation which requires the specification of a non-dimensional polymer relaxation time (the Weissenberg number, We), the maximum polymer extensibility, L, and the ratio of solvent and solution viscosities, β. A two-parameter family of velocity profiles is used as the base state with the parameter, S, controlling the amount of co- or counter-flow while N-1 sets the thickness of the jet shear layer. We examine how the variation of these fluid and flow parameters affects the minimum value of S at which the flow becomes locally absolutely unstable. Initially setting the Reynolds number to Re = 500, we find that the first varicose jet-column mode dictates the presence of absolute instability, and increasing the Weissenberg number produces important changes in the nature of the instability. The region of absolute instability shifts towards thin shear layers, and the amount of back-flow needed for absolute instability decreases (i.e., the influence of viscoelasticity is destabilizing). Additionally, when We is sufficiently large and N-1 is sufficiently small, single-stream jets become absolutely unstable. Numerical experiments with approximate equations show that both the polymer and solvent contributions to the stress become destabilizing when the scaled shear rate, η = /W e dU¯1/dx 2L ( /d U ¯ 1 d x 2 is the base-state velocity gradient), is sufficiently large. These qualitative trends are largely unchanged when the Reynolds number is reduced; however, the relative importance of the destabilizing stresses increases tangibly. Consequently, absolute instability is substantially enhanced, and single-stream jets become absolutely unstable over a sizable portion of the parameter space.

18. Monte Carlo calculations and measurements of absorbed dose per monitor unit for the treatment of uveal melanoma with proton therapy

PubMed Central

Koch, Nicholas; Newhauser, Wayne D; Titt, Uwe; Gombos, Dan; Coombes, Kevin; Starkschall, George

2014-01-01

The treatment of uveal melanoma with proton radiotherapy has provided excellent clinical outcomes. However, contemporary treatment planning systems use simplistic dose algorithms that limit the accuracy of relative dose distributions. Further, absolute predictions of absorbed dose per monitor unit are not yet available in these systems. The purpose of this study was to determine if Monte Carlo methods could predict dose per monitor unit (D/MU) value at the center of a proton spread-out Bragg peak (SOBP) to within 1% on measured values for a variety of treatment fields relevant to ocular proton therapy. The MCNPX Monte Carlo transport code, in combination with realistic models for the ocular beam delivery apparatus and a water phantom, was used to calculate dose distributions and D/MU values, which were verified by the measurements. Measured proton beam data included central-axis depth dose profiles, relative cross-field profiles and absolute D/MU measurements under several combinations of beam penetration ranges and range-modulation widths. The Monte Carlo method predicted D/MU values that agreed with measurement to within 1% and dose profiles that agreed with measurement to within 3% of peak dose or within 0.5 mm distance-to-agreement. Lastly, a demonstration of the clinical utility of this technique included calculations of dose distributions and D/MU values in a realistic model of the human eye. It is possible to predict D/MU values accurately for clinical relevant range-modulated proton beams for ocular therapy using the Monte Carlo method. It is thus feasible to use the Monte Carlo method as a routine absolute dose algorithm for ocular proton therapy. PMID:18367789

19. Value of Single-Dose Contrast-Enhanced Magnetic Resonance Angiography Versus Intraarterial Digital Subtraction Angiography in Therapy Indications in Abdominal and Iliac Arteries

SciTech Connect

Schaefer, Philipp J. Schaefer, Fritz K. W.; Mueller-Huelsbeck, Stefan; Both, Markus; Heller, Martin; Jahnke, Thomas

2007-06-15

The objective of the study was to prove the value of single-dose contrast-enhanced magnetic resonance angiography [three-dimensional (3D) ceMRA] in abdominal and iliac arteries versus the reference standard intra-arterial digital subtraction angiography (i.a.DSA) when indicating a therapy. Patients suspected of having abdominal or iliac artery stenosis were included in this study. A positive vote of the local Ethics Committee was given. After written informed consent was obtained, 37 patients were enrolled, of which 34 were available for image evaluation. Both 3D ceMRA and i.a. DSA were performed for each patient. The dosage for 3D ceMRA was 0.1 mmol/kg body weight in a 1.5-T scanner with a phased-array coil. The parameters of the 3D-FLASH sequence were as follows: TR/TE 4.6/1.8 ms, effective thickness 3.5 mm, matrix 512 x 200, flip angle 30{sup o}, field of view 420 mm, TA 23 s, coronal scan orientation. Totally, 476 vessel segments were evaluated for stenosis degree by two radiologists in a consensus fashion in a blinded read. For each patient, a therapy was proposed, if clinically indicated. Sensitivity, specificity, positive and negative predictive values, and accuracy for stenoses {>=}50% were 68%, 92%, 44%, 97%, and 90%, respectively. In 13/34 patients, a discrepancy was found concerning therapy decisions based on MRA findings versus therapy decisions based on the reference standard DSA. The results showed that the used MRA imaging technique of abdominal and iliac arteries is not competitive to i.a. DSA, with a high rate of misinterpretation of the MRAs resulting in incorrect therapies.

20. Absolute instability of a viscous hollow jet

Gañán-Calvo, Alfonso M.

2007-02-01

An investigation of the spatiotemporal stability of hollow jets in unbounded coflowing liquids, using a general dispersion relation previously derived, shows them to be absolutely unstable for all physical values of the Reynolds and Weber numbers. The roots of the symmetry breakdown with respect to the liquid jet case, and the validity of asymptotic models are here studied in detail. Asymptotic analyses for low and high Reynolds numbers are provided, showing that old and well-established limiting dispersion relations [J. W. S. Rayleigh, The Theory of Sound (Dover, New York, 1945); S. Chandrasekhar, Hydrodynamic and Hydromagnetic Stability (Dover, New York, 1961)] should be used with caution. In the creeping flow limit, the analysis shows that, if the hollow jet is filled with any finite density and viscosity fluid, a steady jet could be made arbitrarily small (compatible with the continuum hypothesis) if the coflowing liquid moves faster than a critical velocity.

1. Stitching interferometry: recent results and absolute calibration

Bray, Michael

2004-02-01

Stitching Interferometry is a method of analysing large optical components using a standard "small" interferometer. This result is obtained by taking multiple overlapping images of the large component, and numerically "stitching" these sub-apertures together. We have already reported the industrial use our Stitching Interferometry systems (Previous SPIE symposia), but experimental results had been lacking because this technique is still new, and users needed to get accustomed to it before producing reliable measurements. We now have more results. We will report user comments and show new, unpublished results. We will discuss sources of error, and show how some of these can be reduced to arbitrarily small values. These will be discussed in some detail. We conclude with a few graphical examples of absolute measurements performed by us.

2. Lyman alpha SMM/UVSP absolute calibration and geocoronal correction

NASA Technical Reports Server (NTRS)

Fontenla, Juan M.; Reichmann, Edwin J.

1987-01-01

Lyman alpha observations from the Ultraviolet Spectrometer Polarimeter (UVSP) instrument of the Solar Maximum Mission (SMM) spacecraft were analyzed and provide instrumental calibration details. Specific values of the instrument quantum efficiency, Lyman alpha absolute intensity, and correction for geocoronal absorption are presented.

3. Cosmology with negative absolute temperatures

Vieira, J. P. P.; Byrnes, Christian T.; Lewis, Antony

2016-08-01

Negative absolute temperatures (NAT) are an exotic thermodynamical consequence of quantum physics which has been known since the 1950's (having been achieved in the lab on a number of occasions). Recently, the work of Braun et al. [1] has rekindled interest in negative temperatures and hinted at a possibility of using NAT systems in the lab as dark energy analogues. This paper goes one step further, looking into the cosmological consequences of the existence of a NAT component in the Universe. NAT-dominated expanding Universes experience a borderline phantom expansion (w < ‑1) with no Big Rip, and their contracting counterparts are forced to bounce after the energy density becomes sufficiently large. Both scenarios might be used to solve horizon and flatness problems analogously to standard inflation and bouncing cosmologies. We discuss the difficulties in obtaining and ending a NAT-dominated epoch, and possible ways of obtaining density perturbations with an acceptable spectrum.

4. Absolute photon-flux measurements in the vacuum ultraviolet

NASA Technical Reports Server (NTRS)

1974-01-01

Absolute photon-flux measurements in the vacuum ultraviolet have extended to short wavelengths by use of rare-gas ionization chambers. The technique involves the measurement of the ion current as a function of the gas pressure in the ion chamber. The true value of the ion current, and hence the absolute photon flux, is obtained by extrapolating the ion current to zero gas pressure. Examples are given at 162 and 266 A. The short-wavelength limit is determined only by the sensitivity of the current-measuring apparatus and by present knowledge of the photoionization processes that occur in the rate gases.

5. Absolute bioavailability, pharmacokinetics, and urinary excretion of the novel antimigraine agent almotriptan in healthy male volunteers.

PubMed

Jansat, Josep M; Costa, Joan; Salvà, Pau; Fernandez, Francisco J; Martinez-Tobed, Antonio

2002-12-01

Absolute bioavailability, pharmacokinetics, and urinary excretion of almotriptan, a novel 5-HT(1B/1D) receptor agonist, were studied in 18 healthy males following single intravenous (i.v.) (3 mg), subcutaneous (s.c.) (6 mg), and oral (25 mg) doses. Volunteers received each dose in a randomized sequence separated by a 7-day washout. Blood and urine samples for pharmacokinetic evaluations were taken for up to 24 hours after dosing. The disposition kinetics of almotriptan after i.v. and s.c. administration showed biphasic decline described by a two-compartment model. The fastest disposition phase was well observed, although estimates of the rate constant showed high variability. After s.c. administration of almotriptan, the bioavailability was 100% with a time to maximum plasma concentration (tmax) of 5 to 15 minutes, whereas after oral administration, the bioavailability was about 70% with a tmax of 1.5 to 3.0 hours. No significant differences were observed between administration routes in the elimination half-life (t(1/2), obtaining mean values ranging from 3.4 to 3.6 hours. The volume of distribution, total clearance, and t(1/2) indicated that almotriptan was extensively distributed and rapidly cleared from the body irrespective of dose or route of administration. The primary route of elimination was renal clearance (approximately 50%-60% of total body clearance). About 65% of the i.v. and s.c. dose and 45% of the oral dose were excreted unchanged in urine in 24 hours, with nearly 90% of this in the first 12 hours. Renal clearance was approximately 2- to 3-fold that of the glomerular filtration rate in man, suggesting that almotriptan is eliminated in part by renal tubular secretion. PMID:12463724

6. Evaluation of S-values and dose distributions for {sup 90}Y, {sup 131}I, {sup 166}Ho, and {sup 188}Re in seven lobes of the rat liver

SciTech Connect

Xie Tianwu; Liu Qian; Zaidi, Habib

2012-03-15

Purpose: Rats have been widely used in radionuclide therapy research for the treatment of hepatocellular carcinoma (HCC). This has created the need to assess rat liver absorbed radiation dose. In most dose estimation studies, the rat liver is considered as a homogeneous integrated target organ with a tissue composition assumed to be similar to that of human liver tissue. However, the rat liver is composed of several lobes having different anatomical and chemical characteristics. To assess the overall impact on rat liver dose calculation, the authors use a new voxel-based rat model with identified suborgan regions of the liver. Methods: The liver in the original cryosectional color images was manually segmented into seven individual lobes and subsequently integrated into a voxel-based computational rat model. Photon and electron particle transport was simulated using the MCNPX Monte Carlo code to calculate absorbed fractions and S-values for {sup 90}Y, {sup 131}I, {sup 166}Ho, and {sup 188}Re for the seven liver lobes. The effect of chemical composition on organ-specific absorbed dose was investigated by changing the chemical composition of the voxel filling liver material. Radionuclide-specific absorbed doses at the voxel level were further assessed for a small spherical hepatic tumor. Results: The self-absorbed dose for different liver lobes varied depending on their respective masses. A maximum difference of 3.5% was observed for the liver self-absorbed fraction between rat and human tissues for photon energies below 100 keV. {sup 166}Ho and {sup 188}Re produce a uniformly distributed high dose in the tumor and relatively low absorbed dose for surrounding tissues. Conclusions: The authors evaluated rat liver radiation doses from various radionuclides used in HCC treatments using a realistic computational rat model. This work contributes to a better understanding of all aspects influencing radiation transport in organ-specific radiation dose evaluation for

7. Improving HST Pointing & Absolute Astrometry

Lallo, Matthew; Nelan, E.; Kimmer, E.; Cox, C.; Casertano, S.

2007-05-01

Accurate absolute astrometry is becoming increasingly important in an era of multi-mission archives and virtual observatories. Hubble Space Telescope's (HST's) Guidestar Catalog II (GSC2) has reduced coordinate error to around 0.25 arcsecond, a factor 2 or more compared with GSC1. With this reduced catalog error, special attention must be given to calibrate and maintain the Fine Guidance Sensors (FGSs) and Science Instruments (SIs) alignments in HST to a level well below this in order to ensure that the accuracy of science product's astrometry keywords and target positioning are limited only by the catalog errors. After HST Servicing Mission 4, such calibrations' improvement in "blind" pointing accuracy will allow for more efficient COS acquisitions. Multiple SIs and FGSs each have their own footprints in the spatially shared HST focal plane. It is the small changes over time in primarily the whole-body positions & orientations of these instruments & guiders relative to one another that is addressed by this work. We describe the HST Cycle 15 program CAL/OTA 11021 which, along with future variants of it, determines and maintains positions and orientations of the SIs and FGSs to better than 50 milli- arcseconds and 0.04 to 0.004 degrees of roll, putting errors associated with the alignment sufficiently below GSC2 errors. We present recent alignment results and assess their errors, illustrate trends, and describe where and how the observer sees benefit from these calibrations when using HST.

8. Absolute Instability in Coupled-Cavity TWTs

Hung, D. M. H.; Rittersdorf, I. M.; Zhang, Peng; Lau, Y. Y.; Simon, D. H.; Gilgenbach, R. M.; Chernin, D.; Antonsen, T. M., Jr.

2014-10-01

This paper will present results of our analysis of absolute instability in a coupled-cavity traveling wave tube (TWT). The structure mode at the lower and upper band edges are respectively approximated by a hyperbola in the (omega, k) plane. When the Briggs-Bers criterion is applied, a threshold current for onset of absolute instability is observed at the upper band edge, but not the lower band edge. The nonexistence of absolute instability at the lower band edge is mathematically similar to the nonexistence of absolute instability that we recently demonstrated for a dielectric TWT. The existence of absolute instability at the upper band edge is mathematically similar to the existence of absolute instability in a gyroton traveling wave amplifier. These interesting observations will be discussed, and the practical implications will be explored. This work was supported by AFOSR, ONR, and L-3 Communications Electron Devices.

9. Validation of GOCE by absolute and relative gravimetry

Pettersen, B. R.; Sprlak, M.; Lysaker, D. I.; Omang, O. C. D.; Sekowski, M.; Dykowski, P.

2012-04-01

Absolute gravimetry has been performed in 2011 by FG5 and A10 instruments in selected sites of the Norwegian first order gravity network. These observations are used as reference values to transform a large number of relative gravity values collected in 1968-1972. The outcome is a database at current epoch in a reference frame defined by the absolute gravity values. This constitutes our test field for validation of GOCE results. In the test fields, validation of GOCE-derived gravity anomalies was performed. The spectral enhancement method was applied to avoid the spectral inconsistency between the terrestrial and the satellite data. For this purpose, contributions of the EGM2008 model and a gravitational effect of a residual terrain model were calculated.

10. Absolute negative mobility of interacting Brownian particles

Ou, Ya-li; Hu, Cai-tian; Wu, Jian-chun; Ai, Bao-quan

2015-12-01

Transport of interacting Brownian particles in a periodic potential is investigated in the presence of an ac force and a dc force. From Brownian dynamic simulations, we find that both the interaction between particles and the thermal fluctuations play key roles in the absolute negative mobility (the particle noisily moves backwards against a small constant bias). When no the interaction acts, there is only one region where the absolute negative mobility occurs. In the presence of the interaction, the absolute negative mobility may appear in multiple regions. The weak interaction can be helpful for the absolute negative mobility, while the strong interaction has a destructive impact on it.

11. Development and verification of an analytical algorithm to predict absorbed dose distributions in ocular proton therapy using Monte Carlo simulations

Koch, Nicholas C.; Newhauser, Wayne D.

2010-02-01

Proton beam radiotherapy is an effective and non-invasive treatment for uveal melanoma. Recent research efforts have focused on improving the dosimetric accuracy of treatment planning and overcoming the present limitation of relative analytical dose calculations. Monte Carlo algorithms have been shown to accurately predict dose per monitor unit (D/MU) values, but this has yet to be shown for analytical algorithms dedicated to ocular proton therapy, which are typically less computationally expensive than Monte Carlo algorithms. The objective of this study was to determine if an analytical method could predict absolute dose distributions and D/MU values for a variety of treatment fields like those used in ocular proton therapy. To accomplish this objective, we used a previously validated Monte Carlo model of an ocular nozzle to develop an analytical algorithm to predict three-dimensional distributions of D/MU values from pristine Bragg peaks and therapeutically useful spread-out Bragg peaks (SOBPs). Results demonstrated generally good agreement between the analytical and Monte Carlo absolute dose calculations. While agreement in the proximal region decreased for beams with less penetrating Bragg peaks compared with the open-beam condition, the difference was shown to be largely attributable to edge-scattered protons. A method for including this effect in any future analytical algorithm was proposed. Comparisons of D/MU values showed typical agreement to within 0.5%. We conclude that analytical algorithms can be employed to accurately predict absolute proton dose distributions delivered by an ocular nozzle.

12. Predictive value of phase I trials for safety in later trials and final approved dose: analysis of 61 approved cancer drugs.

PubMed

Jardim, Denis L; Hess, Kenneth R; Lorusso, Patricia; Kurzrock, Razelle; Hong, David S

2014-01-15

Phase I trials use a small number of patients to define a maximum tolerated dose (MTD) and the safety of new agents. We compared data from phase I and registration trials to determine whether early trials predicted later safety and final dose. We searched the U.S. Food and Drug Administration (FDA) website for drugs approved in nonpediatric cancers (January 1990-October 2012). The recommended phase II dose (R2PD) and toxicities from phase I were compared with doses and safety in later trials. In 62 of 85 (73%) matched trials, the dose from the later trial was within 20% of the RP2D. In a multivariable analysis, phase I trials of targeted agents were less predictive of the final approved dose (OR, 0.2 for adopting ± 20% of the RP2D for targeted vs. other classes; P = 0.025). Of the 530 clinically relevant toxicities in later trials, 70% (n = 374) were described in phase I. A significant relationship (P = 0.0032) between increasing the number of patients in phase I (up to 60) and the ability to describe future clinically relevant toxicities was observed. Among 28,505 patients in later trials, the death rate that was related to drug was 1.41%. In conclusion, dosing based on phase I trials was associated with a low toxicity-related death rate in later trials. The ability to predict relevant toxicities correlates with the number of patients on the initial phase I trial. The final dose approved was within 20% of the RP2D in 73% of assessed trials. PMID:24190980

13. Optimizing Collimator Margins for Isotoxically Dose-Escalated Conformal Radiation Therapy of Non-Small Cell Lung Cancer

SciTech Connect

Warren, Samantha; Panettieri, Vanessa; Panakis, Niki; Bates, Nicholas; Lester, Jason F.; Jain, Pooja; Landau, David B.; Nahum, Alan E.; Mayles, W. Philip M.; Fenwick, John D.

2014-04-01

Purpose: Isotoxic dose escalation schedules such as IDEAL-CRT [isotoxic dose escalation and acceleration in lung cancer chemoradiation therapy] (ISRCTN12155469) individualize doses prescribed to lung tumors, generating a fixed modeled risk of radiation pneumonitis. Because the beam penumbra is broadened in lung, the choice of collimator margin is an important element of the optimization of isotoxic conformal radiation therapy for lung cancer. Methods and Materials: Twelve patients with stage I-III non-small cell lung cancer (NSCLC) were replanned retrospectively using a range of collimator margins. For each plan, the prescribed dose was calculated according to the IDEAL-CRT isotoxic prescription method, and the absolute dose (D{sub 99}) delivered to 99% of the planning target volume (PTV) was determined. Results: Reducing the multileaf collimator margin from the widely used 7 mm to a value of 2 mm produced gains of 2.1 to 15.6 Gy in absolute PTV D{sub 99}, with a mean gain ± 1 standard error of the mean of 6.2 ± 1.1 Gy (2-sided P<.001). Conclusions: For NSCLC patients treated with conformal radiation therapy and an isotoxic dose prescription, absolute doses in the PTV may be increased by using smaller collimator margins, reductions in relative coverage being offset by increases in prescribed dose.

14. Tolerance doses for treatment planning

SciTech Connect

Lyman, J.T.

1985-10-01

Data for the tolerance of normal tissues or organs to (low-LET) radiation has been compiled from a number of sources which are referenced at the end of this document. This tolerance dose data are ostensibly for uniform irradiation of all or part of an organ, and are for either 5% (TD/sub 5/) or 50% (TD/sub 50/) complication probability. The ''size'' of the irradiated organ is variously stated in terms of the absolute volume or the fraction of the organ volume irradiated, or the area or the length of the treatment field. The accuracy of these data is questionable. Much of the data represents doses that one or several experienced therapists have estimated could be safely given rather than quantitative analyses of clinical observations. Because these data have been obtained from multiple sources with possible different criteria for the definition of a complication, there are sometimes different values for what is apparently the same endpoint. The data from some sources shows a tendancy to be quantized in 5 Gy increments. This reflects the size of possible round off errors. It is believed that all these data have been accumulated without the benefit of 3-D dose distributions and therefore the estimates of the size of the volume and/or the uniformity of the irradiation may be less accurate than is now possible. 19 refs., 4 figs.

15. Mathematical Model for Absolute Magnetic Measuring Systems in Industrial Applications

Fügenschuh, Armin; Fügenschuh, Marzena; Ludszuweit, Marina; Mojsic, Aleksandar; Sokół, Joanna

2015-09-01

Scales for measuring systems are either based on incremental or absolute measuring methods. Incremental scales need to initialize a measurement cycle at a reference point. From there, the position is computed by counting increments of a periodic graduation. Absolute methods do not need reference points, since the position can be read directly from the scale. The positions on the complete scales are encoded using two incremental tracks with different graduation. We present a new method for absolute measuring using only one track for position encoding up to micrometre range. Instead of the common perpendicular magnetic areas, we use a pattern of trapezoidal magnetic areas, to store more complex information. For positioning, we use the magnetic field where every position is characterized by a set of values measured by a hall sensor array. We implement a method for reconstruction of absolute positions from the set of unique measured values. We compare two patterns with respect to uniqueness, accuracy, stability and robustness of positioning. We discuss how stability and robustness are influenced by different errors during the measurement in real applications and how those errors can be compensated.

16. Direct comparisons between absolute and relative geomagnetic paleointensities: Absolute calibration of a relative paleointensity stack

Mochizuki, N.; Yamamoto, Y.; Hatakeyama, T.; Shibuya, H.

2013-12-01

Absolute geomagnetic paleointensities (APIs) have been estimated from igneous rocks, while relative paleomagnetic intensities (RPIs) have been reported from sediment cores. These two datasets have been treated separately, as correlations between APIs and RPIs are difficult on account of age uncertainties. High-resolution RPI stacks have been constructed from globally distributed sediment cores with high sedimentation rates. Previous studies often assumed that the RPI stacks have a linear relationship with geomagnetic axial dipole moments, and calibrated the RPI values to API values. However, the assumption of a linear relationship between APIs and RPIs has not been evaluated. Also, a quantitative calibration method for the RPI is lacking. We present a procedure for directly comparing API and RPI stacks, thus allowing reliable calibrations of RPIs. Direct comparisons between APIs and RPIs were conducted with virtually no associated age errors using both tephrochronologic correlations and RPI minima. Using the stratigraphic positions of tephra layers in oxygen isotope stratigraphic records, we directly compared the RPIs and APIs reported from welded tuffs contemporaneously extruded with the tephra layers. In addition, RPI minima during geomagnetic reversals and excursions were compared with APIs corresponding to the reversals and excursions. The comparison of APIs and RPIs at these exact points allowed a reliable calibration of the RPI values. We applied this direct comparison procedure to the global RPI stack PISO-1500. For six independent calibration points, virtual axial dipole moments (VADMs) from the corresponding APIs and RPIs of the PISO-1500 stack showed a near-linear relationship. On the basis of the linear relationship, RPIs of the stack were successfully calibrated to the VADMs. The direct comparison procedure provides an absolute calibration method that will contribute to the recovery of temporal variations and distributions of geomagnetic axial dipole

17. Absolute optical metrology : nanometers to kilometers

NASA Technical Reports Server (NTRS)

Dubovitsky, Serge; Lay, O. P.; Peters, R. D.; Liebe, C. C.

2005-01-01

We provide and overview of the developments in the field of high-accuracy absolute optical metrology with emphasis on space-based applications. Specific work on the Modulation Sideband Technology for Absolute Ranging (MSTAR) sensor is described along with novel applications of the sensor.

18. Monolithically integrated absolute frequency comb laser system

DOEpatents

Wanke, Michael C.

2016-07-12

Rather than down-convert optical frequencies, a QCL laser system directly generates a THz frequency comb in a compact monolithically integrated chip that can be locked to an absolute frequency without the need of a frequency-comb synthesizer. The monolithic, absolute frequency comb can provide a THz frequency reference and tool for high-resolution broad band spectroscopy.

19. Introducing the Mean Absolute Deviation "Effect" Size

ERIC Educational Resources Information Center

Gorard, Stephen

2015-01-01

This paper revisits the use of effect sizes in the analysis of experimental and similar results, and reminds readers of the relative advantages of the mean absolute deviation as a measure of variation, as opposed to the more complex standard deviation. The mean absolute deviation is easier to use and understand, and more tolerant of extreme…

20. Absolute Gravity Datum in the Age of Cold Atom Gravimeters

Childers, V. A.; Eckl, M. C.

2014-12-01

The international gravity datum is defined today by the International Gravity Standardization Net of 1971 (IGSN-71). The data supporting this network was measured in the 1950s and 60s using pendulum and spring-based gravimeter ties (plus some new ballistic absolute meters) to replace the prior protocol of referencing all gravity values to the earlier Potsdam value. Since this time, gravimeter technology has advanced significantly with the development and refinement of the FG-5 (the current standard of the industry) and again with the soon-to-be-available cold atom interferometric absolute gravimeters. This latest development is anticipated to provide improvement in the range of two orders of magnitude as compared to the measurement accuracy of technology utilized to develop ISGN-71. In this presentation, we will explore how the IGSN-71 might best be "modernized" given today's requirements and available instruments and resources. The National Geodetic Survey (NGS), along with other relevant US Government agencies, is concerned about establishing gravity control to establish and maintain high order geodetic networks as part of the nation's essential infrastructure. The need to modernize the nation's geodetic infrastructure was highlighted in "Precise Geodetic Infrastructure, National Requirements for a Shared Resource" National Academy of Science, 2010. The NGS mission, as dictated by Congress, is to establish and maintain the National Spatial Reference System, which includes gravity measurements. Absolute gravimeters measure the total gravity field directly and do not involve ties to other measurements. Periodic "intercomparisons" of multiple absolute gravimeters at reference gravity sites are used to constrain the behavior of the instruments to ensure that each would yield reasonably similar measurements of the same location (i.e. yield a sufficiently consistent datum when measured in disparate locales). New atomic interferometric gravimeters promise a significant

1. Absolute magnitudes and phase coefficients of trans-Neptunian objects

Alvarez-Candal, A.; Pinilla-Alonso, N.; Ortiz, J. L.; Duffard, R.; Morales, N.; Santos-Sanz, P.; Thirouin, A.; Silva, J. S.

2016-02-01

Context. Accurate measurements of diameters of trans-Neptunian objects (TNOs) are extremely difficult to obtain. Thermal modeling can provide good results, but accurate absolute magnitudes are needed to constrain the thermal models and derive diameters and geometric albedos. The absolute magnitude, HV, is defined as the magnitude of the object reduced to unit helio- and geocentric distances and a zero solar phase angle and is determined using phase curves. Phase coefficients can also be obtained from phase curves. These are related to surface properties, but only few are known. Aims: Our objective is to measure accurate V-band absolute magnitudes and phase coefficients for a sample of TNOs, many of which have been observed and modeled within the program "TNOs are cool", which is one of the Herschel Space Observatory key projects. Methods: We observed 56 objects using the V and R filters. These data, along with those available in the literature, were used to obtain phase curves and measure V-band absolute magnitudes and phase coefficients by assuming a linear trend of the phase curves and considering a magnitude variability that is due to the rotational light-curve. Results: We obtained 237 new magnitudes for the 56 objects, six of which were without previously reported measurements. Including the data from the literature, we report a total of 110 absolute magnitudes with their respective phase coefficients. The average value of HV is 6.39, bracketed by a minimum of 14.60 and a maximum of -1.12. For the phase coefficients we report a median value of 0.10 mag per degree and a very large dispersion, ranging from -0.88 up to 1.35 mag per degree.

2. Engine performance and the determination of absolute ceiling

NASA Technical Reports Server (NTRS)

Diehl, Walter S

1924-01-01

This report contains a brief study of the variation of engine power with temperature and pressure. The variation of propeller efficiency in standard atmosphere is obtained from the general efficiency curve which is developed in NACA report no. 168. The variation of both power available and power required are then determined and curves plotted, so that the absolute ceiling may be read directly from any known sea-level value of the ratio of power available to power required.

3. On the Absolute Continuity of the Blackwell Measure

Bárány, Balázs; Kolossváry, István

2015-04-01

In 1957, Blackwell expressed the entropy of hidden Markov chains using a measure which can be characterised as an invariant measure for an iterated function system with place-dependent weights. This measure, called the Blackwell measure, plays a central role in understanding the entropy rate and other important characteristics of fundamental models in information theory. We show that for a suitable set of parameter values the Blackwell measure is absolutely continuous for almost every parameter in the case of binary symmetric channels.

4. Assignment of absolute stereochemistry by computation of optical rotation angles

Kondru, Rama Krishna

We have developed simple wire and molecular orbital models to qualitatively and quantitatively understand optical rotation angles of molecules. We reported the first ab initio theoretical approach to determine the absolute stereochemistry of a complex natural product by calculating molar rotation angles, [M]D. We applied this method for an unambiguous assignment of the absolute stereochemistry of the hennoxazole A. A protocol analogous to population analysis was devised to analyze atomic contributions to the rotation angles for oxiranes, orthoesters, and other organic compounds. The molar rotations for an indoline, an indonone, menthol and menthone were calculated using ab inito methods and compared with experimental values. We reported the first prediction of the absolute configuration of a natural product, i.e. an a priori assignment of the relative and absolute stereochemistry of pitiamide A. Furthermore, we described a strategy that may help to establish structure-function relations for rotation angles by visualizing the electric and magnetic-field perturbations to a molecule's molecular orbitals.

5. Determination of absolute structure using Bayesian statistics on Bijvoet differences

PubMed Central

Hooft, Rob W. W.; Straver, Leo H.; Spek, Anthony L.

2008-01-01

A new probabilistic approach is introduced for the determination of the absolute structure of a compound which is known to be enantiopure based on Bijvoet-pair intensity differences. The new method provides relative probabilities for different models of the chiral composition of the structure. The outcome of this type of analysis can also be cast in the form of a new value, along with associated standard uncertainty, that resembles the value of the well known Flack x parameter. The standard uncertainty we obtain is often about half of the standard uncertainty in the value of the Flack x parameter. The proposed formalism is suited in particular to absolute configuration determination from diffraction data of biologically active (pharmaceutical) compounds where the strongest resonant scattering signal often comes from oxygen. It is shown that a reliable absolute configuration assignment in such cases can be made on the basis of Cu Kα data, and in some cases even with carefully measured Mo Kα data. PMID:19461838

6. Dose sculpting with generalized equivalent uniform dose

SciTech Connect

Wu Qiuwen; Djajaputra, David; Liu, Helen H.; Dong Lei; Mohan, Radhe; Wu, Yan

2005-05-01

With intensity-modulated radiotherapy (IMRT), a variety of user-defined dose distribution can be produced using inverse planning. The generalized equivalent uniform dose (gEUD) has been used in IMRT optimization as an alternative objective function to the conventional dose-volume-based criteria. The purpose of this study was to investigate the effectiveness of gEUD optimization to fine tune the dose distributions of IMRT plans. We analyzed the effect of gEUD-based optimization parameters on plan quality. The objective was to determine whether dose distribution to selected structures could be improved using gEUD optimization without adversely altering the doses delivered to other structures, as in sculpting. We hypothesized that by carefully defining gEUD parameters (EUD{sub 0} and n) based on the current dose distributions, the optimization system could be instructed to search for alternative solutions in the neighborhood, and we could maintain the dose distributions for structures already satisfactory and improve dose for structures that need enhancement. We started with an already acceptable IMRT plan optimized with any objective function. The dose distribution was analyzed first. For structures that dose should not be changed, a higher value of n was used and EUD{sub 0} was set slightly higher/lower than the EUD value at the current dose distribution for critical structures/targets. For structures that needed improvement in dose, a higher to medium value of n was used, and EUD{sub 0} was set to the EUD value or slightly lower/higher for the critical structure/target at the current dose distribution. We evaluated this method in one clinical case each of head and neck, lung and prostate cancer. Dose volume histograms, isodose distributions, and relevant tolerance doses for critical structures were used for the assessment. We found that by adjusting gEUD optimization parameters, the dose distribution could be improved with only a few iterations. A larger value of n

7. SU-E-T-179: Exploring Appropriate Offset Values for Pencil Beam and Monte Carlo Dose Optimization in Lung Stereotactic Body Radiotherapy Encompassing the Effects of Respiration and Tumor Location

SciTech Connect

Evans, G; Shang, C; Leventouri, T

2014-06-01

Purpose: Exploring appropriate offset values in dose optimization with pencil beam (PB) algorithm to minimize dosimetric differences with plans calculated with Monte Carlo (MC) for lung cancer treatment with Stereotactic Body Radiotherapy (SBRT). Methods: 20 cases of Non-Small Cell Lung Cancer, treated with gated full motion range SBRT were selected. According to the proximity of the Gross Tumor Volume (GTV) to the chest wall, two groups are defined: peripherally located when GTV merges with the chest wall for at least 50% of the lesion diameter, and centrally located when the GTV is surrounded by lung tissue. Treatment plans were created on 4D average intensity projection (AIP) CT set with Brainlab iPlanDose 4.1.2 planning system. The D97 of PTV was normalized to 50Gy using the fast PB and compared with MC. The optimized plan was then recomputed over each 4D respiratory phase, and compared with MC using the same plan MU's. Results: The mean difference in the PB and MC D97 of the ITV was 10.5% (±0.8%) of the prescription dose (50Gy). PB algorithm showed 2.3–2.4% less overestimation to the D97 of the ITV, when comparing to MC, in the maximum exhalation phase than in the maximal inhalation phase. Significantly smaller dose difference between PB and MC is also shown in plans for peripheral lesions (7.7 ± 0.7%) versus for central lesions (12.7±0.8%) (p< 0.01). Conclusion: The dosimetric differences between PB and MC can be reasonably predicted depending on the location of lesion in the lung, and may be used as offset value in dose optimization with PB. Since the maximal exhalation phase demonstrates less dose discrepancy between the two algorithms than that in maximal inhalation phase, caution is suggested when the latter is included as a major phase portion in the respiration gated lung SBRT.

8. Absolute optical instruments without spherical symmetry

Tyc, Tomáš; Dao, H. L.; Danner, Aaron J.

2015-11-01

Until now, the known set of absolute optical instruments has been limited to those containing high levels of symmetry. Here, we demonstrate a method of mathematically constructing refractive index profiles that result in asymmetric absolute optical instruments. The method is based on the analogy between geometrical optics and classical mechanics and employs Lagrangians that separate in Cartesian coordinates. In addition, our method can be used to construct the index profiles of most previously known absolute optical instruments, as well as infinitely many different ones.

9. Feasibility Study of Using Gemstone Spectral Imaging (GSI) and Adaptive Statistical Iterative Reconstruction (ASIR) for Reducing Radiation and Iodine Contrast Dose in Abdominal CT Patients with High BMI Values

PubMed Central

Zhu, Zheng; Zhao, Xin-ming; Zhao, Yan-feng; Wang, Xiao-yi; Zhou, Chun-wu

2015-01-01

Purpose To prospectively investigate the effect of using Gemstone Spectral Imaging (GSI) and adaptive statistical iterative reconstruction (ASIR) for reducing radiation and iodine contrast dose in abdominal CT patients with high BMI values. Materials and Methods 26 patients (weight > 65kg and BMI ≥ 22) underwent abdominal CT using GSI mode with 300mgI/kg contrast material as study group (group A). Another 21 patients (weight ≤ 65kg and BMI ≥ 22) were scanned with a conventional 120 kVp tube voltage for noise index (NI) of 11 with 450mgI/kg contrast material as control group (group B). GSI images were reconstructed at 60keV with 50%ASIR and the conventional 120kVp images were reconstructed with FBP reconstruction. The CT values, standard deviation (SD), signal-noise-ratio (SNR), contrast-noise-ratio (CNR) of 26 landmarks were quantitatively measured and image quality qualitatively assessed using statistical analysis. Results As for the quantitative analysis, the difference of CNR between groups A and B was all significant except for the mesenteric vein. The SNR in group A was higher than B except the mesenteric artery and splenic artery. As for the qualitative analysis, all images had diagnostic quality and the agreement for image quality assessment between the reviewers was substantial (kappa = 0.684). CT dose index (CTDI) values for non-enhanced, arterial phase and portal phase in group A were decreased by 49.04%, 40.51% and 40.54% compared with group B (P = 0.000), respectively. The total dose and the injection rate for the contrast material were reduced by 14.40% and 14.95% in A compared with B. Conclusion The use of GSI and ASIR provides similar enhancement in vessels and image quality with reduced radiation dose and contrast dose, compared with the use of conventional scan protocol. PMID:26079259

10. An experimental measurement of galactic cosmic radiation dose in conventional aircraft between San Francisco and London compared to theoretical values for conventional and supersonic aircraft

NASA Technical Reports Server (NTRS)

Wallace, R.; Boyer, M. F.

1972-01-01

These direct measurements are in fair agreement with computations made using a program which considers both basic cosmic ray atmospheric physics and the focusing effect of the earth's magnetic field. These measurements also agree with those made at supersonic jet aircraft altitudes in Rb-57 aircraft. It is concluded that experiments and theory show that the doses received at conventional jet aircraft altitudes are slightly higher than those encountered in supersonic flights at much higher altitudes.

11. Absolute magnitudes of trans-neptunian objects

Duffard, R.; Alvarez-candal, A.; Pinilla-Alonso, N.; Ortiz, J. L.; Morales, N.; Santos-Sanz, P.; Thirouin, A.

2015-10-01

Accurate measurements of diameters of trans- Neptunian objects are extremely complicated to obtain. Radiomatric techniques applied to thermal measurements can provide good results, but precise absolute magnitudes are needed to constrain diameters and albedos. Our objective is to measure accurate absolute magnitudes for a sample of trans- Neptunian objects, many of which have been observed, and modelled, by the "TNOs are cool" team, one of Herschel Space Observatory key projects grantes with ~ 400 hours of observing time. We observed 56 objects in filters V and R, if possible. These data, along with data available in the literature, was used to obtain phase curves and to measure absolute magnitudes by assuming a linear trend of the phase curves and considering magnitude variability due to rotational light-curve. In total we obtained 234 new magnitudes for the 56 objects, 6 of them with no reported previous measurements. Including the data from the literature we report a total of 109 absolute magnitudes.

12. A New Gimmick for Assigning Absolute Configuration.

ERIC Educational Resources Information Center

Ayorinde, F. O.

1983-01-01

A five-step procedure is provided to help students in making the assignment absolute configuration less bothersome. Examples for both single (2-butanol) and multi-chiral carbon (3-chloro-2-butanol) molecules are included. (JN)

13. GNSS Absolute Antenna Calibration at the National Geodetic Survey

Mader, G. L.; Bilich, A. L.; Geoghegan, C.

2011-12-01

Geodetic GNSS applications routinely demand millimeter precision and extremely high levels of accuracy. To achieve these accuracies, measurement and instrument biases at the centimeter to millimeter level must be understood. One of these biases is the antenna phase center, the apparent point of signal reception for a GNSS antenna. It has been well established that phase center patterns differ between antenna models and manufacturers; additional research suggests that the addition of a radome or the choice of antenna mount can significantly alter those a priori phase center patterns. For the more demanding GNSS positioning applications and especially in cases of mixed-antenna networks, it is all the more important to know antenna phase center variations as a function of both elevation and azimuth in the antenna reference frame and incorporate these models into analysis software. To help meet the needs of the high-precision GNSS community, the National Geodetic Survey (NGS) now operates an absolute antenna calibration facility. Located in Corbin, Virginia, this facility uses field measurements and actual GNSS satellite signals to quantitatively determine the carrier phase advance/delay introduced by the antenna element. The NGS facility was built to serve traditional NGS constituents such as the surveying and geodesy communities, however calibration services are open and available to all GNSS users as the calibration schedule permits. All phase center patterns computed by this facility will be publicly available and disseminated in both the ANTEX and NGS formats. We describe the NGS calibration facility, and discuss the observation models and strategy currently used to generate NGS absolute calibrations. We demonstrate that NGS absolute phase center variation (PCV) patterns are consistent with published values determined by other absolute antenna calibration facilities, and compare absolute calibrations to the traditional NGS relative calibrations.

14. Absolute photoionization cross-section of the propargyl radical

SciTech Connect

Savee, John D.; Welz, Oliver; Taatjes, Craig A.; Osborn, David L.; Soorkia, Satchin; Selby, Talitha M.

2012-04-07

Using synchrotron-generated vacuum-ultraviolet radiation and multiplexed time-resolved photoionization mass spectrometry we have measured the absolute photoionization cross-section for the propargyl (C{sub 3}H{sub 3}) radical, {sigma}{sub propargyl}{sup ion}(E), relative to the known absolute cross-section of the methyl (CH{sub 3}) radical. We generated a stoichiometric 1:1 ratio of C{sub 3}H{sub 3} : CH{sub 3} from 193 nm photolysis of two different C{sub 4}H{sub 6} isomers (1-butyne and 1,3-butadiene). Photolysis of 1-butyne yielded values of {sigma}{sub propargyl}{sup ion}(10.213 eV)=(26.1{+-}4.2) Mb and {sigma}{sub propargyl}{sup ion}(10.413 eV)=(23.4{+-}3.2) Mb, whereas photolysis of 1,3-butadiene yielded values of {sigma}{sub propargyl}{sup ion}(10.213 eV)=(23.6{+-}3.6) Mb and {sigma}{sub propargyl}{sup ion}(10.413 eV)=(25.1{+-}3.5) Mb. These measurements place our relative photoionization cross-section spectrum for propargyl on an absolute scale between 8.6 and 10.5 eV. The cross-section derived from our results is approximately a factor of three larger than previous determinations.

15. Absolute magnitude calibration using trigonometric parallax - Incomplete, spectroscopic samples

NASA Technical Reports Server (NTRS)

Ratnatunga, Kavan U.; Casertano, Stefano

1991-01-01

A new numerical algorithm is used to calibrate the absolute magnitude of spectroscopically selected stars from their observed trigonometric parallax. This procedure, based on maximum-likelihood estimation, can retrieve unbiased estimates of the intrinsic absolute magnitude and its dispersion even from incomplete samples suffering from selection biases in apparent magnitude and color. It can also make full use of low accuracy and negative parallaxes and incorporate censorship on reported parallax values. Accurate error estimates are derived for each of the fitted parameters. The algorithm allows an a posteriori check of whether the fitted model gives a good representation of the observations. The procedure is described in general and applied to both real and simulated data.

16. In-flight Absolute Radiometric Calibration of the Thematic Mapper

NASA Technical Reports Server (NTRS)

Castle, K. R.; Holm, R. G.; Kastner, C. J.; Palmer, J. M.; Slater, P. N.; Dinguirard, M.; Ezra, C. E.; Jackson, D.; Savage, R. K.

1984-01-01

The Thematic Mapper (TM) multispectral scanner system was placed into Earth orbit on July 16, 1982, as part of NASA's LANDSAT 4 payload. To determine temporal changes of the absolute radiometric calibration of the entire system in flight, spectroradiometric measurements of the ground and the atmosphere are made simultaneously with TM image acquisitions over the White Sands, New Mexico area. By entering the measured values into an atmospheric radiative transfer program, the radiance levels at the entrance pupil of the TM in four of the TM spectral bands are determined. These levels are compared to the output digital counts from the detectors that sampled the radiometrically measured ground area, thus providing an absolute radiometric calibration of the entire TM system utilizing those detectors. By reference to an adjacent, larger uniform area, the calibration is extended to all 16 detectors in each of the three bands.

17. Absolute measurement of the extreme UV solar flux

NASA Technical Reports Server (NTRS)

Carlson, R. W.; Ogawa, H. S.; Judge, D. L.; Phillips, E.

1984-01-01

A windowless rare-gas ionization chamber has been developed to measure the absolute value of the solar extreme UV flux in the 50-575-A region. Successful results were obtained on a solar-pointing sounding rocket. The ionization chamber, operated in total absorption, is an inherently stable absolute detector of ionizing UV radiation and was designed to be independent of effects from secondary ionization and gas effusion. The net error of the measurement is + or - 7.3 percent, which is primarily due to residual outgassing in the instrument, other errors such as multiple ionization, photoelectron collection, and extrapolation to the zero atmospheric optical depth being small in comparison. For the day of the flight, Aug. 10, 1982, the solar irradiance (50-575 A), normalized to unit solar distance, was found to be 5.71 + or - 0.42 x 10 to the 10th photons per sq cm sec.

18. In-flight absolute radiometric calibration of the thematic mapper

NASA Technical Reports Server (NTRS)

Castle, K. R.; Holm, R. G.; Kastner, C. J.; Palmer, J. M.; Slater, P. N.; Dinguirard, M.; Ezra, C. E.; Jackson, R. D.; Savage, R. K.

1984-01-01

In order to determine temporal changes of the absolute radiometric calibration of the entire TM system in flight spectroradiometric measurements of the ground and the atmosphere were made simultaneously with TM image collections over the White Sands, New Mexico area. By entering the measured values in an atmospheric radiative transfer program, the radiance levels in four of the spectral bands of the TM were determined, band 1:0.45 to 0.52 micrometers, band 2:0.53 to 0.61 micrometers band 3:0.62 to 0.70 micrometers and 4:0.78 to 0.91 micrometers. These levels were compared to the output digital counts from the detectors that sampled the radiometrically measured ground area, thus providing an absolute radiometric calibration of the entire TM system utilizing those detectors.

19. In-flight absolute radiometric calibration of the Thematic Mapper

NASA Technical Reports Server (NTRS)

Castle, K. R.; Holm, R. G.; Kastner, C. J.; Palmer, J. M.; Slater, P. N.; Dinguirard, M.; Ezra, C. E.; Jackson, R. D.; Savage, R. K.

1984-01-01

In order to determine temporal changes of the absolute radiometric calibration of the entire TM system in flight spectroradiometric measurements of the ground and the atmosphere were made simultaneously with TM image collections over the White Sands, NM area. By entering the measured values in an atmospheric radiative transfer program, the radiance levels in four of the spectral bands of the TM were determined, band 1: 0.45 to 0.52 micrometers, band 2: 0.53 to 0.61 micrometers, band 3: 0.62 to 0.70 micrometers, and 4: 0.78 to 0.91 micrometers. These levels were compared to the output digital counts from the detectors that sampled the radiometrically measured ground area, thus providing an absolute radiometric calibration of the entire TM system utilizing those detectors. Previously announced in STAR as N84-15633

20. Jasminum flexile flower absolute from India--a detailed comparison with three other jasmine absolutes.

PubMed

Braun, Norbert A; Kohlenberg, Birgit; Sim, Sherina; Meier, Manfred; Hammerschmidt, Franz-Josef

2009-09-01

Jasminum flexile flower absolute from the south of India and the corresponding vacuum headspace (VHS) sample of the absolute were analyzed using GC and GC-MS. Three other commercially available Indian jasmine absolutes from the species: J. sambac, J. officinale subsp. grandiflorum, and J. auriculatum and the respective VHS samples were used for comparison purposes. One hundred and twenty-one compounds were characterized in J. flexile flower absolute, with methyl linolate, benzyl salicylate, benzyl benzoate, (2E,6E)-farnesol, and benzyl acetate as the main constituents. A detailed olfactory evaluation was also performed. PMID:19831037

1. Using Microsoft Excel to compute the 5% overall site X/Q value and the 95th percentile of the distribution of doses to the nearest maximally exposed offsite individual (MEOI).

PubMed

Vickers, Linda D

2010-05-01

This paper describes the method using Microsoft Excel (Microsoft Corporation One Microsoft Way Redmond, WA 98052-6399) to compute the 5% overall site X/Q value and the 95th percentile of the distribution of doses to the nearest maximally exposed offsite individual (MEOI) in accordance with guidance from DOE-STD-3009-1994 and U.S. NRC Regulatory Guide 1.145-1982. The accurate determination of the 5% overall site X/Q value is the most important factor in the computation of the 95th percentile of the distribution of doses to the nearest MEOI. This method should be used to validate software codes that compute the X/Q. The 95th percentile of the distribution of doses to the nearest MEOI must be compared to the U.S. DOE Evaluation Guide of 25 rem to determine the relative severity of hazard to the public from a postulated, unmitigated design basis accident that involves an offsite release of radioactive material. PMID:20386192

2. Universal Cosmic Absolute and Modern Science

Kostro, Ludwik

The official Sciences, especially all natural sciences, respect in their researches the principle of methodic naturalism i.e. they consider all phenomena as entirely natural and therefore in their scientific explanations they do never adduce or cite supernatural entities and forces. The purpose of this paper is to show that Modern Science has its own self-existent, self-acting, and self-sufficient Natural All-in Being or Omni-Being i.e. the entire Nature as a Whole that justifies the scientific methodic naturalism. Since this Natural All-in Being is one and only It should be considered as the own scientifically justified Natural Absolute of Science and should be called, in my opinion, the Universal Cosmic Absolute of Modern Science. It will be also shown that the Universal Cosmic Absolute is ontologically enormously stratified and is in its ultimate i.e. in its most fundamental stratum trans-reistic and trans-personal. It means that in its basic stratum. It is neither a Thing or a Person although It contains in Itself all things and persons with all other sentient and conscious individuals as well, On the turn of the 20th century the Science has begun to look for a theory of everything, for a final theory, for a master theory. In my opinion the natural Universal Cosmic Absolute will constitute in such a theory the radical all penetrating Ultimate Basic Reality and will substitute step by step the traditional supernatural personal Absolute.

3. Development of a graphite probe calorimeter for absolute clinical dosimetry

SciTech Connect

Renaud, James; Seuntjens, Jan; Sarfehnia, Arman; Marchington, David

2013-02-15

The aim of this work is to present the numerical design optimization, construction, and experimental proof of concept of a graphite probe calorimeter (GPC) conceived for dose measurement in the clinical environment (U.S. provisional patent 61/652,540). A finite element method (FEM) based numerical heat transfer study was conducted using a commercial software package to explore the feasibility of the GPC and to optimize the shape, dimensions, and materials used in its design. A functioning prototype was constructed inhouse and used to perform dose to water measurements under a 6 MV photon beam at 400 and 1000 MU/min, in a thermally insulated water phantom. Heat loss correction factors were determined using FEM analysis while the radiation field perturbation and the graphite to water absorbed dose conversion factors were calculated using Monte Carlo simulations. The difference in the average measured dose to water for the 400 and 1000 MU/min runs using the TG-51 protocol and the GPC was 0.2% and 1.2%, respectively. Heat loss correction factors ranged from 1.001 to 1.002, while the product of the perturbation and dose conversion factors was calculated to be 1.130. The combined relative uncertainty was estimated to be 1.4%, with the largest contributors being the specific heat capacity of the graphite (type B, 0.8%) and the reproducibility, defined as the standard deviation of the mean measured dose (type A, 0.6%). By establishing the feasibility of using the GPC as a practical clinical absolute photon dosimeter, this work lays the foundation for further device enhancements, including the development of an isothermal mode of operation and an overall miniaturization, making it potentially suitable for use in small and composite radiation fields. It is anticipated that, through the incorporation of isothermal stabilization provided by temperature controllers, a subpercent overall uncertainty will be achieved.

4. Molecular iodine absolute frequencies. Final report

SciTech Connect

Sansonetti, C.J.

1990-06-25

Fifty specified lines of {sup 127}I{sub 2} were studied by Doppler-free frequency modulation spectroscopy. For each line the classification of the molecular transition was determined, hyperfine components were identified, and one well-resolved component was selected for precise determination of its absolute frequency. In 3 cases, a nearby alternate line was selected for measurement because no well-resolved component was found for the specified line. Absolute frequency determinations were made with an estimated uncertainty of 1.1 MHz by locking a dye laser to the selected hyperfine component and measuring its wave number with a high-precision Fabry-Perot wavemeter. For each line results of the absolute measurement, the line classification, and a Doppler-free spectrum are given.

5. Stimulus probability effects in absolute identification.

PubMed

Kent, Christopher; Lamberts, Koen

2016-05-01

This study investigated the effect of stimulus presentation probability on accuracy and response times in an absolute identification task. Three schedules of presentation were used to investigate the interaction between presentation probability and stimulus position within the set. Data from individual participants indicated strong effects of presentation probability on both proportion correct and response times. The effects were moderated by the ubiquitous stimulus position effect. The accuracy and response time data were predicted by an exemplar-based model of perceptual cognition (Kent & Lamberts, 2005). The bow in discriminability was also attenuated when presentation probability for middle items was relatively high, an effect that will constrain future model development. The study provides evidence for item-specific learning in absolute identification. Implications for other theories of absolute identification are discussed. (PsycINFO Database Record PMID:26478959

6. Absolute calibration in vivo measurement systems

SciTech Connect

Kruchten, D.A.; Hickman, D.P.

1991-02-01

Lawrence Livermore National Laboratory (LLNL) is currently investigating a new method for obtaining absolute calibration factors for radiation measurement systems used to measure internally deposited radionuclides in vivo. Absolute calibration of in vivo measurement systems will eliminate the need to generate a series of human surrogate structures (i.e., phantoms) for calibrating in vivo measurement systems. The absolute calibration of in vivo measurement systems utilizes magnetic resonance imaging (MRI) to define physiological structure, size, and composition. The MRI image provides a digitized representation of the physiological structure, which allows for any mathematical distribution of radionuclides within the body. Using Monte Carlo transport codes, the emission spectrum from the body is predicted. The in vivo measurement equipment is calibrated using the Monte Carlo code and adjusting for the intrinsic properties of the detection system. The calibration factors are verified using measurements of existing phantoms and previously obtained measurements of human volunteers. 8 refs.

7. Correction of NIM-3A absolute gravimeter for self-attraction effect

Li, Chunjian; Xu, Jin-yi; Feng, Jin-yang; SU, Duo-wu; Wu, Shu-qing

2015-02-01

The mass of free-fall absolute gravimeter can produce vertical gravitational attraction to the free-falling test body during the measurement of acceleration due to gravity. The vertical gravitational attraction can cause an artificial deviation to the measured value of gravitational acceleration. This paper describes the operating principle of a free-fall absolute gravimeter and the method used to determine the reference height of a gravimeter. It also describes the physical structure of NIM-3A absolute gravimeter lately developed by National Institute of Metrology (China), and studies the correction of gravimeter for Self-attraction effect.

8. Precise Measurement of the Absolute Fluorescence Yield

Ave, M.; Bohacova, M.; Daumiller, K.; Di Carlo, P.; di Giulio, C.; San Luis, P. Facal; Gonzales, D.; Hojvat, C.; Hörandel, J. R.; Hrabovsky, M.; Iarlori, M.; Keilhauer, B.; Klages, H.; Kleifges, M.; Kuehn, F.; Monasor, M.; Nozka, L.; Palatka, M.; Petrera, S.; Privitera, P.; Ridky, J.; Rizi, V.; D'Orfeuil, B. Rouille; Salamida, F.; Schovanek, P.; Smida, R.; Spinka, H.; Ulrich, A.; Verzi, V.; Williams, C.

2011-09-01

We present preliminary results of the absolute yield of fluorescence emission in atmospheric gases. Measurements were performed at the Fermilab Test Beam Facility with a variety of beam particles and gases. Absolute calibration of the fluorescence yield to 5% level was achieved by comparison with two known light sources--the Cherenkov light emitted by the beam particles, and a calibrated nitrogen laser. The uncertainty of the energy scale of current Ultra-High Energy Cosmic Rays experiments will be significantly improved by the AIRFLY measurement.

9. Neutron activation analysis of certified samples by the absolute method

2015-07-01

The nuclear reactions analysis technique is mainly based on the relative method or the use of activation cross sections. In order to validate nuclear data for the calculated cross section evaluated from systematic studies, we used the neutron activation analysis technique (NAA) to determine the various constituent concentrations of certified samples for animal blood, milk and hay. In this analysis, the absolute method is used. The neutron activation technique involves irradiating the sample and subsequently performing a measurement of the activity of the sample. The fundamental equation of the activation connects several physical parameters including the cross section that is essential for the quantitative determination of the different elements composing the sample without resorting to the use of standard sample. Called the absolute method, it allows a measurement as accurate as the relative method. The results obtained by the absolute method showed that the values are as precise as the relative method requiring the use of standard sample for each element to be quantified.

10. DURATION OF IMMUNITY TO REINFECTION IN GUINEA-PIGS TREATED WITH ANTIRABIES SERUM AND VACCINE, AND THE VALUE OF BOOSTER DOSES OF VACCINE IN RE-TREATMENT.

PubMed

VEERARAGHAVAN, N; SUBRAHMANYAN, T P

1963-01-01

Studies undertaken to determine the resistance of guinea-pigs which have survived a moderate challenge as a result of treatment with serum and vaccine to subsequent severe challenges with homologous and heterologous strains of rabies street virus have shown that, even with large groups of animals, treatment with serum and vaccine saved nearly 70% of the animals against challenges of about 100 LD(50). The animals which survived such treatment and challenge continued to have a considerable degree of immunity to rechallenge even 15 months after the first treatment. There was no advantage in giving two booster doses of vaccine during this period. The immune status of rechallenged guinea-pigs seemed to depend primarily on the original treatment rather than on the strain of virus used for the first challenge. Guinea-pigs which survived an earlier challenge as a result of treatment fared better against the later challenge than fresh groups of treated but not challenged animals given the same challenge. PMID:14099676

11. Absolute GNSS Antenna Calibration at the National Geodetic Survey

Mader, G.; Bilich, A.; Geoghegan, C.

2012-04-01

Geodetic GNSS applications routinely demand millimeter precision and extremely high levels of accuracy. To achieve these accuracies, measurement and instrument biases at the centimeter to millimeter level must be understood. One of these biases is the antenna phase center, the apparent point of signal reception for a GNSS antenna. It has been well established that phase center patterns differ between antenna models and manufacturers; additional research suggests that the addition of a radome or the choice of antenna mount can significantly alter those a priori phase center patterns. For the more demanding GNSS positioning applications and especially in cases of mixed-antenna networks, it is all the more important to know antenna phase center variations as a function of both elevation and azimuth in the antenna reference frame and incorporate these models into analysis software. To help meet the needs of the high-precision GNSS community, the National Geodetic Survey (NGS) now operates an absolute antenna calibration facility. Located in Corbin, Virginia, this facility uses field measurements and actual GNSS satellite signals to quantitatively determine the carrier phase advance/delay introduced by the antenna element. The NGS facility was built to serve traditional NGS constituents such as the surveying and geodesy communities, however calibration services are open and available to all GNSS users as the calibration schedule permits. All phase center patterns computed by this facility will be publicly available and disseminated in both the ANTEX and NGS formats. We describe the NGS calibration facility, and discuss the observation models and strategy currently used to generate NGS absolute calibrations. We demonstrate that NGS absolute phase center variation (PCV) patterns are consistent with published values determined by other absolute antenna calibration facilities, and outline future planned refinements to the system.

12. On the convective-absolute nature of river bedform instabilities

Vesipa, Riccardo; Camporeale, Carlo; Ridolfi, Luca; Chomaz, Jean Marc

2014-12-01

River dunes and antidunes are induced by the morphological instability of stream-sediment boundary. Such bedforms raise a number of subtle theoretical questions and are crucial for many engineering and environmental problems. Despite their importance, the absolute/convective nature of the instability has never been addressed. The present work fills this gap as we demonstrate, by the cusp map method, that dune instability is convective for all values of the physical control parameters, while the antidune instability exhibits both behaviors. These theoretical predictions explain some previous experimental and numerical observations and are important to correctly plan flume experiments, numerical simulations, paleo-hydraulic reconstructions, and river works.

13. Prelaunch absolute radiometric calibration of LANDSAT-4 protoflight Thematic Mapper

NASA Technical Reports Server (NTRS)

Barker, J. L.; Ball, D. L.; Leung, K. C.; Walker, J. A.

1984-01-01

Results are summarized and analyzed from several prelaunch tests with a 122 cm integrating sphere used as part of the absolute radiometric calibration experiments for the protoflight TM sensor carried on the LANDSAT-4 satellite. The calibration procedure is presented and the radiometric sensitivity of the TM is assessed. The internal calibrator and dynamic range after calibration are considered. Tables show dynamic range after ground processing, spectral radiance to digital number and digital number to spectral radiance values for TM bands 1, 2, 3, 4, 5, 7 and for channel 4 of band 6.

14. Testing and evaluation of thermal cameras for absolute temperature measurement

Chrzanowski, Krzysztof; Fischer, Joachim; Matyszkiel, Robert

2000-09-01

The accuracy of temperature measurement is the most important criterion for the evaluation of thermal cameras used in applications requiring absolute temperature measurement. All the main international metrological organizations currently propose a parameter called uncertainty as a measure of measurement accuracy. We propose a set of parameters for the characterization of thermal measurement cameras. It is shown that if these parameters are known, then it is possible to determine the uncertainty of temperature measurement due to only the internal errors of these cameras. Values of this uncertainty can be used as an objective criterion for comparisons of different thermal measurement cameras.

15. Absolute partial photoionization cross sections of ozone.

SciTech Connect

Berkowitz, J.; Chemistry

2008-04-01

Despite the current concerns about ozone, absolute partial photoionization cross sections for this molecule in the vacuum ultraviolet (valence) region have been unavailable. By eclectic re-evaluation of old/new data and plausible assumptions, such cross sections have been assembled to fill this void.

16. Increasing Capacity: Practice Effects in Absolute Identification

ERIC Educational Resources Information Center

Dodds, Pennie; Donkin, Christopher; Brown, Scott D.; Heathcote, Andrew

2011-01-01

In most of the long history of the study of absolute identification--since Miller's (1956) seminal article--a severe limit on performance has been observed, and this limit has resisted improvement even by extensive practice. In a startling result, Rouder, Morey, Cowan, and Pfaltz (2004) found substantially improved performance with practice in the…

17. On Relative and Absolute Conviction in Mathematics

ERIC Educational Resources Information Center

Weber, Keith; Mejia-Ramos, Juan Pablo

2015-01-01

Conviction is a central construct in mathematics education research on justification and proof. In this paper, we claim that it is important to distinguish between absolute conviction and relative conviction. We argue that researchers in mathematics education frequently have not done so and this has lead to researchers making unwarranted claims…

18. Absolute Points for Multiple Assignment Problems

ERIC Educational Resources Information Center

2006-01-01

An algorithm is presented to solve multiple assignment problems in which a cost is incurred only when an assignment is made at a given cell. The proposed method recursively searches for single/group absolute points to identify cells that must be loaded in any optimal solution. Unlike other methods, the first solution is the optimal solution. The…

19. Nonequilibrium equalities in absolutely irreversible processes

Murashita, Yuto; Funo, Ken; Ueda, Masahito

2015-03-01

Nonequilibrium equalities have attracted considerable attention in the context of statistical mechanics and information thermodynamics. Integral nonequilibrium equalities reveal an ensemble property of the entropy production σ as = 1 . Although nonequilibrium equalities apply to rather general nonequilibrium situations, they break down in absolutely irreversible processes, where the forward-path probability vanishes and the entropy production diverges. We identify the mathematical origins of this inapplicability as the singularity of probability measure. As a result, we generalize conventional integral nonequilibrium equalities to absolutely irreversible processes as = 1 -λS , where λS is the probability of the singular part defined based on Lebesgue's decomposition theorem. The acquired equality contains two physical quantities related to irreversibility: σ characterizing ordinary irreversibility and λS describing absolute irreversibility. An inequality derived from the obtained equality demonstrates the absolute irreversibility leads to the fundamental lower bound on the entropy production. We demonstrate the validity of the obtained equality for a simple model.

20. Stimulus Probability Effects in Absolute Identification

ERIC Educational Resources Information Center

Kent, Christopher; Lamberts, Koen

2016-01-01

This study investigated the effect of stimulus presentation probability on accuracy and response times in an absolute identification task. Three schedules of presentation were used to investigate the interaction between presentation probability and stimulus position within the set. Data from individual participants indicated strong effects of…

1. Precision absolute positional measurement of laser beams.

PubMed

Fitzsimons, Ewan D; Bogenstahl, Johanna; Hough, James; Killow, Christian J; Perreur-Lloyd, Michael; Robertson, David I; Ward, Henry

2013-04-20

We describe an instrument which, coupled with a suitable coordinate measuring machine, facilitates the absolute measurement within the machine frame of the propagation direction of a millimeter-scale laser beam to an accuracy of around ±4 μm in position and ±20 μrad in angle. PMID:23669658

2. Absolute cross section for recoil detection of deuterium

Besenbacher, F.; Stensgaard, I.; Vase, P.

1986-04-01

The D( 4He, D) 4He cross section used for recoil detection of deuterium (D) has been calibrated on an absolute scale against the cross section of the D( 3He, α)p nuclear reaction which is often used for D profiling. For 4He energies ranging from 0.8 to ~1.8 MeV. the D( 4He, D) 4He cross section varies only slightly with incident energy and recoil angle θ (for 0° ⩽ 8 ⩽ 35°) and has a value of ~ 500 mb/sr which is significantly higher than the ~ 65 mb/sr c.m.s. cross section of the D( 3He, α)p nuclear reaction. For 4He energies ranging from ~ 1.9 to ~ 2.3 MeV, the D( 4He,D) 4He cross section exhibits a fairly narrow resonance peak (fwhm ~ 70 keV), with a maximum value (for θ = 0°) of ~ 8.5 b/sr, corresponding to a 4He energy of ~ 2130 keV. The large values of the cross section in connection with the described energy dependence makes the use of forward-recoil detection of D attractive for many purposes, e.g., D Jepth profiling (with an extreme gain in sensitivity), absolute concentration or coverage measurements, and lattice-location experiments by transmission channeling.

3. Absolute uniqueness of phase retrieval with random illumination

Fannjiang, Albert

2012-07-01

Random illumination is proposed to enforce absolute uniqueness and resolve all types of ambiguity, trivial or nontrivial, in phase retrieval. Almost sure irreducibility is proved for any complex-valued object whose support set has rank ⩾ 2. While the new irreducibility result can be viewed as a probabilistic version of the classical result by Bruck, Sodin and Hayes, it provides a novel perspective and an effective method for phase retrieval. In particular, almost sure uniqueness, up to a global phase, is proved for complex-valued objects under general two-point conditions. Under a tight sector constraint absolute uniqueness is proved to hold with probability exponentially close to unity as the object sparsity increases. Under a magnitude constraint with random amplitude illumination, uniqueness modulo global phase is proved to hold with probability exponentially close to unity as object sparsity increases. For general complex-valued objects without any constraint, almost sure uniqueness up to global phase is established with two sets of Fourier magnitude data under two independent illuminations. Numerical experiments suggest that random illumination essentially alleviates most, if not all, numerical problems commonly associated with the standard phasing algorithms.

4. Experimental verification of a commercial Monte Carlo-based dose calculation module for high-energy photon beams

Künzler, Thomas; Fotina, Irina; Stock, Markus; Georg, Dietmar

2009-12-01

The dosimetric performance of a Monte Carlo algorithm as implemented in a commercial treatment planning system (iPlan, BrainLAB) was investigated. After commissioning and basic beam data tests in homogenous phantoms, a variety of single regular beams and clinical field arrangements were tested in heterogeneous conditions (conformal therapy, arc therapy and intensity-modulated radiotherapy including simultaneous integrated boosts). More specifically, a cork phantom containing a concave-shaped target was designed to challenge the Monte Carlo algorithm in more complex treatment cases. All test irradiations were performed on an Elekta linac providing 6, 10 and 18 MV photon beams. Absolute and relative dose measurements were performed with ion chambers and near tissue equivalent radiochromic films which were placed within a transverse plane of the cork phantom. For simple fields, a 1D gamma (γ) procedure with a 2% dose difference and a 2 mm distance to agreement (DTA) was applied to depth dose curves, as well as to inplane and crossplane profiles. The average gamma value was 0.21 for all energies of simple test cases. For depth dose curves in asymmetric beams similar gamma results as for symmetric beams were obtained. Simple regular fields showed excellent absolute dosimetric agreement to measurement values with a dose difference of 0.1% ± 0.9% (1 standard deviation) at the dose prescription point. A more detailed analysis at tissue interfaces revealed dose discrepancies of 2.9% for an 18 MV energy 10 × 10 cm2 field at the first density interface from tissue to lung equivalent material. Small fields (2 × 2 cm2) have their largest discrepancy in the re-build-up at the second interface (from lung to tissue equivalent material), with a local dose difference of about 9% and a DTA of 1.1 mm for 18 MV. Conformal field arrangements, arc therapy, as well as IMRT beams and simultaneous integrated boosts were in good agreement with absolute dose measurements in the

5. Evaluation of six TPS algorithms in computing entrance and exit doses.

PubMed

Tan, Yun I; Metwaly, Mohamed; Glegg, Martin; Baggarley, Shaun; Elliott, Alex

2014-01-01

Entrance and exit doses are commonly measured in in vivo dosimetry for comparison with expected values, usually generated by the treatment planning system (TPS), to verify accuracy of treatment delivery. This report aims to evaluate the accuracy of six TPS algorithms in computing entrance and exit doses for a 6 MV beam. The algorithms tested were: pencil beam convolution (Eclipse PBC), analytical anisotropic algorithm (Eclipse AAA), AcurosXB (Eclipse AXB), FFT convolution (XiO Convolution), multigrid superposition (XiO Superposition), and Monte Carlo photon (Monaco MC). Measurements with ionization chamber (IC) and diode detector in water phantoms were used as a reference. Comparisons were done in terms of central axis point dose, 1D relative profiles, and 2D absolute gamma analysis. Entrance doses computed by all TPS algorithms agreed to within 2% of the measured values. Exit doses computed by XiO Convolution, XiO Superposition, Eclipse AXB, and Monaco MC agreed with the IC measured doses to within 2%-3%. Meanwhile, Eclipse PBC and Eclipse AAA computed exit doses were higher than the IC measured doses by up to 5.3% and 4.8%, respectively. Both algorithms assume that full backscatter exists even at the exit level, leading to an overestimation of exit doses. Despite good agreements at the central axis for Eclipse AXB and Monaco MC, 1D relative comparisons showed profiles mismatched at depths beyond 11.5 cm. Overall, the 2D absolute gamma (3%/3 mm) pass rates were better for Monaco MC, while Eclipse AXB failed mostly at the outer 20% of the field area. The findings of this study serve as a useful baseline for the implementation of entrance and exit in vivo dosimetry in clinical departments utilizing any of these six common TPS algorithms for reference comparison. PMID:24892349

6. Combined Use of Absolute and Differential Seismic Arrival Time Data to Improve Absolute Event Location

Myers, S.; Johannesson, G.

2012-12-01

Arrival time measurements based on waveform cross correlation are becoming more common as advanced signal processing methods are applied to seismic data archives and real-time data streams. Waveform correlation can precisely measure the time difference between the arrival of two phases, and differential time data can be used to constrain relative location of events. Absolute locations are needed for many applications, which generally requires the use of absolute time data. Current methods for measuring absolute time data are approximately two orders of magnitude less precise than differential time measurements. To exploit the strengths of both absolute and differential time data, we extend our multiple-event location method Bayesloc, which previously used absolute time data only, to include the use of differential time measurements that are based on waveform cross correlation. Fundamentally, Bayesloc is a formulation of the joint probability over all parameters comprising the multiple event location system. The Markov-Chain Monte Carlo method is used to sample from the joint probability distribution given arrival data sets. The differential time component of Bayesloc includes scaling a stochastic estimate of differential time measurement precision based the waveform correlation coefficient for each datum. For a regional-distance synthetic data set with absolute and differential time measurement error of 0.25 seconds and 0.01 second, respectively, epicenter location accuracy is improved from and average of 1.05 km when solely absolute time data are used to 0.28 km when absolute and differential time data are used jointly (73% improvement). The improvement in absolute location accuracy is the result of conditionally limiting absolute location probability regions based on the precise relative position with respect to neighboring events. Bayesloc estimates of data precision are found to be accurate for the synthetic test, with absolute and differential time measurement

7. Absolute Transition Probabilities of Lines in the Spectra of Astrophysical Atoms, Molecules, and Ions

NASA Technical Reports Server (NTRS)

Parkinson, W. H.; Smith, P. L.; Yoshino, K.

1984-01-01

Progress in the investigation of absolute transition probabilities (A-values or F values) for ultraviolet lines is reported. A radio frequency ion trap was used for measurement of transition probabilities for intersystem lines seen in astronomical spectra. The intersystem line at 2670 A in Al II, which is seen in pre-main sequence stars and symbiotic stars, was studied.

8. Absolute x-ray dosimetry on a synchrotron medical beam line with a graphite calorimeter

SciTech Connect

Harty, P. D. Ramanathan, G.; Butler, D. J.; Johnston, P. N.; Lye, J. E.; Hall, C. J.; Stevenson, A. W.

2014-05-15

Purpose: The absolute dose rate of the Imaging and Medical Beamline (IMBL) on the Australian Synchrotron was measured with a graphite calorimeter. The calorimetry results were compared to measurements from the existing free-air chamber, to provide a robust determination of the absolute dose in the synchrotron beam and provide confidence in the first implementation of a graphite calorimeter on a synchrotron medical beam line. Methods: The graphite calorimeter has a core which rises in temperature when irradiated by the beam. A collimated x-ray beam from the synchrotron with well-defined edges was used to partially irradiate the core. Two filtration sets were used, one corresponding to an average beam energy of about 80 keV, with dose rate about 50 Gy/s, and the second filtration set corresponding to average beam energy of 90 keV, with dose rate about 20 Gy/s. The temperature rise from this beam was measured by a calibrated thermistor embedded in the core which was then converted to absorbed dose to graphite by multiplying the rise in temperature by the specific heat capacity for graphite and the ratio of cross-sectional areas of the core and beam. Conversion of the measured absorbed dose to graphite to absorbed dose to water was achieved using Monte Carlo calculations with the EGSnrc code. The air kerma measurements from the free-air chamber were converted to absorbed dose to water using the AAPM TG-61 protocol. Results: Absolute measurements of the IMBL dose rate were made using the graphite calorimeter and compared to measurements with the free-air chamber. The measurements were at three different depths in graphite and two different filtrations. The calorimetry measurements at depths in graphite show agreement within 1% with free-air chamber measurements, when converted to absorbed dose to water. The calorimetry at the surface and free-air chamber results show agreement of order 3% when converted to absorbed dose to water. The combined standard uncertainty is 3

9. Use of intensity quotients and differences in absolute structure refinement

PubMed Central

Parsons, Simon; Flack, Howard D.; Wagner, Trixie

2013-01-01

Several methods for absolute structure refinement were tested using single-crystal X-ray diffraction data collected using Cu Kα radiation for 23 crystals with no element heavier than oxygen: conventional refinement using an inversion twin model, estimation using intensity quotients in SHELXL2012, estimation using Bayesian methods in PLATON, estimation using restraints consisting of numerical intensity differences in CRYSTALS and estimation using differences and quotients in TOPAS-Academic where both quantities were coded in terms of other structural parameters and implemented as restraints. The conventional refinement approach yielded accurate values of the Flack parameter, but with standard uncertainties ranging from 0.15 to 0.77. The other methods also yielded accurate values of the Flack parameter, but with much higher precision. Absolute structure was established in all cases, even for a hydrocarbon. The procedures in which restraints are coded explicitly in terms of other structural parameters enable the Flack parameter to correlate with these other parameters, so that it is determined along with those parameters during refinement. PMID:23719469

10. Use of intensity quotients and differences in absolute structure refinement.

PubMed

Parsons, Simon; Flack, Howard D; Wagner, Trixie

2013-06-01

Several methods for absolute structure refinement were tested using single-crystal X-ray diffraction data collected using Cu Kα radiation for 23 crystals with no element heavier than oxygen: conventional refinement using an inversion twin model, estimation using intensity quotients in SHELXL2012, estimation using Bayesian methods in PLATON, estimation using restraints consisting of numerical intensity differences in CRYSTALS and estimation using differences and quotients in TOPAS-Academic where both quantities were coded in terms of other structural parameters and implemented as restraints. The conventional refinement approach yielded accurate values of the Flack parameter, but with standard uncertainties ranging from 0.15 to 0.77. The other methods also yielded accurate values of the Flack parameter, but with much higher precision. Absolute structure was established in all cases, even for a hydrocarbon. The procedures in which restraints are coded explicitly in terms of other structural parameters enable the Flack parameter to correlate with these other parameters, so that it is determined along with those parameters during refinement. PMID:23719469