Sample records for absolute energy calibration

  1. Absolute x-ray energy calibration and monitoring using a diffraction-based method

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hong, Xinguo, E-mail: xhong@bnl.gov; Weidner, Donald J.; Duffy, Thomas S.

    2016-07-27

    In this paper, we report some recent developments of the diffraction-based absolute X-ray energy calibration method. In this calibration method, high spatial resolution of the measured detector offset is essential. To this end, a remotely controlled long-translation motorized stage was employed instead of the less convenient gauge blocks. It is found that the precision of absolute X-ray energy calibration (ΔE/E) is readily achieved down to the level of 10{sup −4} for high-energy monochromatic X-rays (e.g. 80 keV). Examples of applications to pair distribution function (PDF) measurements and energy monitoring for high-energy X-rays are presented.

  2. Absolute calorimetric calibration of low energy brachytherapy sources

    NASA Astrophysics Data System (ADS)

    Stump, Kurt E.

    In the past decade there has been a dramatic increase in the use of permanent radioactive source implants in the treatment of prostate cancer. A small radioactive source encapsulated in a titanium shell is used in this type of treatment. The radioisotopes used are generally 125I or 103Pd. Both of these isotopes have relatively short half-lives, 59.4 days and 16.99 days, respectively, and have low-energy emissions and a low dose rate. These factors make these sources well suited for this application, but the calibration of these sources poses significant metrological challenges. The current standard calibration technique involves the measurement of ionization in air to determine the source air-kerma strength. While this has proved to be an improvement over previous techniques, the method has been shown to be metrologically impure and may not be the ideal means of calbrating these sources. Calorimetric methods have long been viewed to be the most fundamental means of determining source strength for a radiation source. This is because calorimetry provides a direct measurement of source energy. However, due to the low energy and low power of the sources described above, current calorimetric methods are inadequate. This thesis presents work oriented toward developing novel methods to provide direct and absolute measurements of source power for low-energy low dose rate brachytherapy sources. The method is the first use of an actively temperature-controlled radiation absorber using the electrical substitution method to determine total contained source power of these sources. The instrument described operates at cryogenic temperatures. The method employed provides a direct measurement of source power. The work presented here is focused upon building a metrological foundation upon which to establish power-based calibrations of clinical-strength sources. To that end instrument performance has been assessed for these source strengths. The intent is to establish the limits of

  3. Absolute Calibration of Image Plate for electrons at energy between 100 keV and 4 MeV

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chen, H; Back, N L; Eder, D C

    2007-12-10

    The authors measured the absolute response of image plate (Fuji BAS SR2040) for electrons at energies between 100 keV to 4 MeV using an electron spectrometer. The electron source was produced from a short pulse laser irradiated on the solid density targets. This paper presents the calibration results of image plate Photon Stimulated Luminescence PSL per electrons at this energy range. The Monte Carlo radiation transport code MCNPX results are also presented for three representative incident angles onto the image plates and corresponding electron energies depositions at these angles. These provide a complete set of tools that allows extraction ofmore » the absolute calibration to other spectrometer setting at this electron energy range.« less

  4. Advancing Absolute Calibration for JWST and Other Applications

    NASA Astrophysics Data System (ADS)

    Rieke, George; Bohlin, Ralph; Boyajian, Tabetha; Carey, Sean; Casagrande, Luca; Deustua, Susana; Gordon, Karl; Kraemer, Kathleen; Marengo, Massimo; Schlawin, Everett; Su, Kate; Sloan, Greg; Volk, Kevin

    2017-10-01

    We propose to exploit the unique optical stability of the Spitzer telescope, along with that of IRAC, to (1) transfer the accurate absolute calibration obtained with MSX on very bright stars directly to two reference stars within the dynamic range of the JWST imagers (and of other modern instrumentation); (2) establish a second accurate absolute calibration based on the absolutely calibrated spectrum of the sun, transferred onto the astronomical system via alpha Cen A; and (3) provide accurate infrared measurements for the 11 (of 15) highest priority stars with no such data but with accurate interferometrically measured diameters, allowing us to optimize determinations of effective temperatures using the infrared flux method and thus to extend the accurate absolute calibration spectrally. This program is integral to plans for an accurate absolute calibration of JWST and will also provide a valuable Spitzer legacy.

  5. Absolute radiometric calibration of advanced remote sensing systems

    NASA Technical Reports Server (NTRS)

    Slater, P. N.

    1982-01-01

    The distinction between the uses of relative and absolute spectroradiometric calibration of remote sensing systems is discussed. The advantages of detector-based absolute calibration are described, and the categories of relative and absolute system calibrations are listed. The limitations and problems associated with three common methods used for the absolute calibration of remote sensing systems are addressed. Two methods are proposed for the in-flight absolute calibration of advanced multispectral linear array systems. One makes use of a sun-illuminated panel in front of the sensor, the radiance of which is monitored by a spectrally flat pyroelectric radiometer. The other uses a large, uniform, high-radiance reference ground surface. The ground and atmospheric measurements required as input to a radiative transfer program to predict the radiance level at the entrance pupil of the orbital sensor are discussed, and the ground instrumentation is described.

  6. NIST Stars: Absolute Spectrophotometric Calibration of Vega and Sirius

    NASA Astrophysics Data System (ADS)

    Deustua, Susana; Woodward, John T.; Rice, Joseph P.; Brown, Steven W.; Maxwell, Stephen E.; Alberding, Brian G.; Lykke, Keith R.

    2018-01-01

    Absolute flux calibration of standard stars, traceable to SI (International System of Units) standards, is essential for 21st century astrophysics. Dark energy investigations that rely on observations of Type Ia supernovae and precise photometric redshifts of weakly lensed galaxies require a minimum accuracy of 0.5 % in the absolute color calibration. Studies that aim to address fundamental stellar astrophysics also benefit. In the era of large telescopes and all sky surveys well-calibrated standard stars that do not saturate and that are available over the whole sky are needed. Significant effort has been expended to obtain absolute measurements of the fundamental standards Vega and Sirius (and other stars) in the visible and near infrared, achieving total uncertainties between1% and 3%, depending on wavelength, that do not meet the needed accuracy. The NIST Stars program aims to determine the top-of-the-atmosphere absolute spectral irradiance of bright stars to an uncertainty less than 1% from a ground-based observatory. NIST Stars has developed a novel, fully SI-traceable laboratory calibration strategy that will enable achieving the desired accuracy. This strategy has two key components. The first is the SI-traceable calibration of the entire instrument system, and the second is the repeated spectroscopic measurement of the target star throughout the night. We will describe our experimental strategy, present preliminary results for Vega and Sirius and an end-to-end uncertainty budget

  7. Absolute Calibration of the AXAF Telescope Effective Area

    NASA Technical Reports Server (NTRS)

    Kellogg, E.; Cohen, L.; Edgar, R.; Evans, I.; Freeman, M.; Gaetz, T.; Jerius, D.; McDermott, W. C.; McKinnon, P.; Murray, S.; hide

    1997-01-01

    The prelaunch calibration of AXAF encompasses many aspects of the telescope. In principle, all that is needed is the complete point response function. This is, however, a function of energy, off-axis angle of the source, and operating mode of the facility. No single measurement would yield the entire result. Also, any calibration made prior to launch will be affected by changes in conditions after launch, such as the change from one g to zero g. The reflectivity of the mirror and perhaps even the detectors can change as well, for example by addition or removal of small amounts of material deposited on their surfaces. In this paper, we give a broad view of the issues in performing such a calibration, and discuss how they are being addressed in prelaunch preparation of AXAF. As our title indicates, we concentrate here on the total throughput of the observatory. This can be thought of as the integral of the point response function, i.e. the encircled energy, out ot the largest practical solid angle for an observation. Since there is no standard x-ray source in the sky whose flux is known to the -1% accuracy we are trying to achieve, we must do this calibration on the ground. we also must provide a means for monitoring any possible changes in this calibration from pre-launch until on-orbit operation can transfer the calibration to a celestial x-ray source whose emission is stable. In this paper, we analyze the elements of the absolute throughput calibration, which we call Effective Area. We review the requirements for calibrations of components or subsystems of the AXAF facility, including mirror, detectors, and gratings. We show how it is necessary to calibrate this ground-based detection system at standard man-made x-ray sources, such as electron storage rings. We present the status of all these calibrations, with indications of the measurements remaining to be done, even though the measurements on the AXAF flight optics and detectors will have been completed by the

  8. Absolute radiometric calibration of Landsat using a pseudo invariant calibration site

    USGS Publications Warehouse

    Helder, D.; Thome, K.J.; Mishra, N.; Chander, G.; Xiong, Xiaoxiong; Angal, A.; Choi, Tae-young

    2013-01-01

    Pseudo invariant calibration sites (PICS) have been used for on-orbit radiometric trending of optical satellite systems for more than 15 years. This approach to vicarious calibration has demonstrated a high degree of reliability and repeatability at the level of 1-3% depending on the site, spectral channel, and imaging geometries. A variety of sensors have used this approach for trending because it is broadly applicable and easy to implement. Models to describe the surface reflectance properties, as well as the intervening atmosphere have also been developed to improve the precision of the method. However, one limiting factor of using PICS is that an absolute calibration capability has not yet been fully developed. Because of this, PICS are primarily limited to providing only long term trending information for individual sensors or cross-calibration opportunities between two sensors. This paper builds an argument that PICS can be used more extensively for absolute calibration. To illustrate this, a simple empirical model is developed for the well-known Libya 4 PICS based on observations by Terra MODIS and EO-1 Hyperion. The model is validated by comparing model predicted top-of-atmosphere reflectance values to actual measurements made by the Landsat ETM+ sensor reflective bands. Following this, an outline is presented to develop a more comprehensive and accurate PICS absolute calibration model that can be Système international d'unités (SI) traceable. These initial concepts suggest that absolute calibration using PICS is possible on a broad scale and can lead to improved on-orbit calibration capabilities for optical satellite sensors.

  9. Absolute calibration of sniffer probes on Wendelstein 7-X

    NASA Astrophysics Data System (ADS)

    Moseev, D.; Laqua, H. P.; Marsen, S.; Stange, T.; Braune, H.; Erckmann, V.; Gellert, F.; Oosterbeek, J. W.

    2016-08-01

    Here we report the first measurements of the power levels of stray radiation in the vacuum vessel of Wendelstein 7-X using absolutely calibrated sniffer probes. The absolute calibration is achieved by using calibrated sources of stray radiation and the implicit measurement of the quality factor of the Wendelstein 7-X empty vacuum vessel. Normalized absolute calibration coefficients agree with the cross-calibration coefficients that are obtained by the direct measurements, indicating that the measured absolute calibration coefficients and stray radiation levels in the vessel are valid. Close to the launcher, the stray radiation in the empty vessel reaches power levels up to 340 kW/m2 per MW injected beam power. Furthest away from the launcher, i.e., half a toroidal turn, still 90 kW/m2 per MW injected beam power is measured.

  10. Absolute calibration of sniffer probes on Wendelstein 7-X.

    PubMed

    Moseev, D; Laqua, H P; Marsen, S; Stange, T; Braune, H; Erckmann, V; Gellert, F; Oosterbeek, J W

    2016-08-01

    Here we report the first measurements of the power levels of stray radiation in the vacuum vessel of Wendelstein 7-X using absolutely calibrated sniffer probes. The absolute calibration is achieved by using calibrated sources of stray radiation and the implicit measurement of the quality factor of the Wendelstein 7-X empty vacuum vessel. Normalized absolute calibration coefficients agree with the cross-calibration coefficients that are obtained by the direct measurements, indicating that the measured absolute calibration coefficients and stray radiation levels in the vessel are valid. Close to the launcher, the stray radiation in the empty vessel reaches power levels up to 340 kW/m(2) per MW injected beam power. Furthest away from the launcher, i.e., half a toroidal turn, still 90 kW/m(2) per MW injected beam power is measured.

  11. Absolute Radiometric Calibration of EUNIS-06

    NASA Technical Reports Server (NTRS)

    Thomas, R. J.; Rabin, D. M.; Kent, B. J.; Paustian, W.

    2007-01-01

    The Extreme-Ultraviolet Normal-Incidence Spectrometer (EUNIS) is a soundingrocket payload that obtains imaged high-resolution spectra of individual solar features, providing information about the Sun's corona and upper transition region. Shortly after its successful initial flight last year, a complete end-to-end calibration was carried out to determine the instrument's absolute radiometric response over its Longwave bandpass of 300 - 370A. The measurements were done at the Rutherford-Appleton Laboratory (RAL) in England, using the same vacuum facility and EUV radiation source used in the pre-flight calibrations of both SOHO/CDS and Hinode/EIS, as well as in three post-flight calibrations of our SERTS sounding rocket payload, the precursor to EUNIS. The unique radiation source provided by the Physikalisch-Technische Bundesanstalt (PTB) had been calibrated to an absolute accuracy of 7% (l-sigma) at 12 wavelengths covering our bandpass directly against the Berlin electron storage ring BESSY, which is itself a primary radiometric source standard. Scans of the EUNIS aperture were made to determine the instrument's absolute spectral sensitivity to +- 25%, considering all sources of error, and demonstrate that EUNIS-06 was the most sensitive solar E W spectrometer yet flown. The results will be matched against prior calibrations which relied on combining measurements of individual optical components, and on comparisons with theoretically predicted 'insensitive' line ratios. Coordinated observations were made during the EUNIS-06 flight by SOHO/CDS and EIT that will allow re-calibrations of those instruments as well. In addition, future EUNIS flights will provide similar calibration updates for TRACE, Hinode/EIS, and STEREO/SECCHI/EUVI.

  12. Improvement of Gaofen-3 Absolute Positioning Accuracy Based on Cross-Calibration

    PubMed Central

    Deng, Mingjun; Li, Jiansong

    2017-01-01

    The Chinese Gaofen-3 (GF-3) mission was launched in August 2016, equipped with a full polarimetric synthetic aperture radar (SAR) sensor in the C-band, with a resolution of up to 1 m. The absolute positioning accuracy of GF-3 is of great importance, and in-orbit geometric calibration is a key technology for improving absolute positioning accuracy. Conventional geometric calibration is used to accurately calibrate the geometric calibration parameters of the image (internal delay and azimuth shifts) using high-precision ground control data, which are highly dependent on the control data of the calibration field, but it remains costly and labor-intensive to monitor changes in GF-3’s geometric calibration parameters. Based on the positioning consistency constraint of the conjugate points, this study presents a geometric cross-calibration method for the rapid and accurate calibration of GF-3. The proposed method can accurately calibrate geometric calibration parameters without using corner reflectors and high-precision digital elevation models, thus improving absolute positioning accuracy of the GF-3 image. GF-3 images from multiple regions were collected to verify the absolute positioning accuracy after cross-calibration. The results show that this method can achieve a calibration accuracy as high as that achieved by the conventional field calibration method. PMID:29240675

  13. System and method for calibrating a rotary absolute position sensor

    NASA Technical Reports Server (NTRS)

    Davis, Donald R. (Inventor); Permenter, Frank Noble (Inventor); Radford, Nicolaus A (Inventor)

    2012-01-01

    A system includes a rotary device, a rotary absolute position (RAP) sensor generating encoded pairs of voltage signals describing positional data of the rotary device, a host machine, and an algorithm. The algorithm calculates calibration parameters usable to determine an absolute position of the rotary device using the encoded pairs, and is adapted for linearly-mapping an ellipse defined by the encoded pairs to thereby calculate the calibration parameters. A method of calibrating the RAP sensor includes measuring the rotary position as encoded pairs of voltage signals, linearly-mapping an ellipse defined by the encoded pairs to thereby calculate the calibration parameters, and calculating an absolute position of the rotary device using the calibration parameters. The calibration parameters include a positive definite matrix (A) and a center point (q) of the ellipse. The voltage signals may include an encoded sine and cosine of a rotary angle of the rotary device.

  14. Absolute calibration of the Agfa Structurix series films at energies between 2.7 and 6.2 keV.

    PubMed

    Lanier, N E; Cowan, J S

    2014-11-01

    Although photo-emulsion technology is many decades old, x-ray film still remains a key asset for diagnosing hydrodynamic features in High-Energy Density (HED) experiments. For decades, the preferred option had been Kodak's direct exposure film. After its discontinuance in 2004, the push to find alternatives began. In many situations, the Agfa Structurix series offers the most favorable substitute, but being new to the HED community, its characterization was lacking. To remedy this, recent experiments, conducted at Brookhaven's National Synchrotron Light Source, provide absolute, monochromatic calibration data for the Agfa Structurix series films at K-shell backlighter energies between 2.7 and 6.2 keV. Absolute response curves are presented for Agfa D8, D7, D4, D4sc, D3, and D2. Moreover, the transmission of each film type is also measured.

  15. Absolute calibration of the Agfa Structurix series films at energies between 2.7 and 6.2 keVa)

    NASA Astrophysics Data System (ADS)

    Lanier, N. E.; Cowan, J. S.

    2014-11-01

    Although photo-emulsion technology is many decades old, x-ray film still remains a key asset for diagnosing hydrodynamic features in High-Energy Density (HED) experiments. For decades, the preferred option had been Kodak's direct exposure film. After its discontinuance in 2004, the push to find alternatives began. In many situations, the Agfa Structurix series offers the most favorable substitute, but being new to the HED community, its characterization was lacking. To remedy this, recent experiments, conducted at Brookhaven's National Synchrotron Light Source, provide absolute, monochromatic calibration data for the Agfa Structurix series films at K-shell backlighter energies between 2.7 and 6.2 keV. Absolute response curves are presented for Agfa D8, D7, D4, D4sc, D3, and D2. Moreover, the transmission of each film type is also measured.

  16. Absolute flux density calibrations of radio sources: 2.3 GHz

    NASA Technical Reports Server (NTRS)

    Freiley, A. J.; Batelaan, P. D.; Bathker, D. A.

    1977-01-01

    A detailed description of a NASA/JPL Deep Space Network program to improve S-band gain calibrations of large aperture antennas is reported. The program is considered unique in at least three ways; first, absolute gain calibrations of high quality suppressed-sidelobe dual mode horns first provide a high accuracy foundation to the foundation to the program. Second, a very careful transfer calibration technique using an artificial far-field coherent-wave source was used to accurately obtain the gain of one large (26 m) aperture. Third, using the calibrated large aperture directly, the absolute flux density of five selected galactic and extragalactic natural radio sources was determined with an absolute accuracy better than 2 percent, now quoted at the familiar 1 sigma confidence level. The follow-on considerations to apply these results to an operational network of ground antennas are discussed. It is concluded that absolute gain accuracies within + or - 0.30 to 0.40 db are possible, depending primarily on the repeatability (scatter) in the field data from Deep Space Network user stations.

  17. Landsat-7 ETM+ radiometric stability and absolute calibration

    USGS Publications Warehouse

    Markham, B.L.; Barker, J.L.; Barsi, J.A.; Kaita, E.; Thome, K.J.; Helder, D.L.; Palluconi, Frank Don; Schott, J.R.; Scaramuzza, Pat; ,

    2002-01-01

    Launched in April 1999, the Landsat-7 ETM+ instrument is in its fourth year of operation. The quality of the acquired calibrated imagery continues to be high, especially with respect to its three most important radiometric performance parameters: reflective band instrument stability to better than ??1%, reflective band absolute calibration to better than ??5%, and thermal band absolute calibration to better than ??0.6 K. The ETM+ instrument has been the most stable of any of the Landsat instruments, in both the reflective and thermal channels. To date, the best on-board calibration source for the reflective bands has been the Full Aperture Solar Calibrator, which has indicated changes of at most -1.8% to -2.0% (95% C.I.) change per year in the ETM+ gain (band 4). However, this change is believed to be caused by changes in the solar diffuser panel, as opposed to a change in the instrument's gain. This belief is based partially on ground observations, which bound the changes in gain in band 4 at -0.7% to +1.5%. Also, ETM+ stability is indicated by the monitoring of desert targets. These image-based results for four Saharan and Arabian sites, for a collection of 35 scenes over the three years since launch, bound the gain change at -0.7% to +0.5% in band 4. Thermal calibration from ground observations revealed an offset error of +0.31 W/m 2 sr um soon after launch. This offset was corrected within the U. S. ground processing system at EROS Data Center on 21-Dec-00, and since then, the band 6 on-board calibration has indicated changes of at most +0.02% to +0.04% (95% C.I.) per year. The latest ground observations have detected no remaining offset error with an RMS error of ??0.6 K. The stability and absolute calibration of the Landsat-7 ETM+ sensor make it an ideal candidate to be used as a reference source for radiometric cross-calibrating to other land remote sensing satellite systems.

  18. The importance and attainment of accurate absolute radiometric calibration

    NASA Technical Reports Server (NTRS)

    Slater, P. N.

    1984-01-01

    The importance of accurate absolute radiometric calibration is discussed by reference to the needs of those wishing to validate or use models describing the interaction of electromagnetic radiation with the atmosphere and earth surface features. The in-flight calibration methods used for the Landsat Thematic Mapper (TM) and the Systeme Probatoire d'Observation de la Terre, Haute Resolution visible (SPOT/HRV) systems are described and their limitations discussed. The questionable stability of in-flight absolute calibration methods suggests the use of a radiative transfer program to predict the apparent radiance, at the entrance pupil of the sensor, of a ground site of measured reflectance imaged through a well characterized atmosphere. The uncertainties of such a method are discussed.

  19. Absolute irradiance of the Moon for on-orbit calibration

    USGS Publications Warehouse

    Stone, T.C.; Kieffer, H.H.; ,

    2002-01-01

    The recognized need for on-orbit calibration of remote sensing imaging instruments drives the ROLO project effort to characterize the Moon for use as an absolute radiance source. For over 5 years the ground-based ROLO telescopes have acquired spatially-resolved lunar images in 23 VNIR (Moon diameter ???500 pixels) and 9 SWIR (???250 pixels) passbands at phase angles within ??90 degrees. A numerical model for lunar irradiance has been developed which fits hundreds of ROLO images in each band, corrected for atmospheric extinction and calibrated to absolute radiance, then integrated to irradiance. The band-coupled extinction algorithm uses absorption spectra of several gases and aerosols derived from MODTRAN to fit time-dependent component abundances to nightly observations of standard stars. The absolute radiance scale is based upon independent telescopic measurements of the star Vega. The fitting process yields uncertainties in lunar relative irradiance over small ranges of phase angle and the full range of lunar libration well under 0.5%. A larger source of uncertainty enters in the absolute solar spectral irradiance, especially in the SWIR, where solar models disagree by up to 6%. Results of ROLO model direct comparisons to spacecraft observations demonstrate the ability of the technique to track sensor responsivity drifts to sub-percent precision. Intercomparisons among instruments provide key insights into both calibration issues and the absolute scale for lunar irradiance.

  20. Rapid, absolute calibration of x-ray filters employed by laser-produced plasma diagnostics

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Brown, G. V.; Beiersdorfer, P.; Emig, J.

    2008-10-15

    The Electron Beam Ion Trap (EBIT) facility at the Lawrence Livermore National Laboratory is being used to absolutely calibrate the transmission efficiency of x-ray filters employed by diodes and spectrometers used to diagnose laser-produced plasmas. EBIT emits strong, discrete monoenergetic lines at appropriately chosen x-ray energies. X rays are detected using the high resolution EBIT Calorimeter Spectrometer (ECS), developed for LLNL at the NASA/Goddard Space Flight Center. X-ray filter transmission efficiency is determined by dividing the x-ray counts detected when the filter is in the line of sight by those detected when out of the line of sight. Verification ofmore » filter thickness can be completed in only a few hours, and absolute efficiencies can be calibrated in a single day over a broad range from about 0.1 to 15 keV. The EBIT calibration lab has been used to field diagnostics (e.g., the OZSPEC instrument) with fully calibrated x-ray filters at the OMEGA laser. Extensions to use the capability for calibrating filter transmission for the DANTE instrument on the National Ignition Facility are discussed.« less

  1. Improvements in absolute seismometer sensitivity calibration using local earth gravity measurements

    USGS Publications Warehouse

    Anthony, Robert E.; Ringler, Adam; Wilson, David

    2018-01-01

    The ability to determine both absolute and relative seismic amplitudes is fundamentally limited by the accuracy and precision with which scientists are able to calibrate seismometer sensitivities and characterize their response. Currently, across the Global Seismic Network (GSN), errors in midband sensitivity exceed 3% at the 95% confidence interval and are the least‐constrained response parameter in seismic recording systems. We explore a new methodology utilizing precise absolute Earth gravity measurements to determine the midband sensitivity of seismic instruments. We first determine the absolute sensitivity of Kinemetrics EpiSensor accelerometers to 0.06% at the 99% confidence interval by inverting them in a known gravity field at the Albuquerque Seismological Laboratory (ASL). After the accelerometer is calibrated, we install it in its normal configuration next to broadband seismometers and subject the sensors to identical ground motions to perform relative calibrations of the broadband sensors. Using this technique, we are able to determine the absolute midband sensitivity of the vertical components of Nanometrics Trillium Compact seismometers to within 0.11% and Streckeisen STS‐2 seismometers to within 0.14% at the 99% confidence interval. The technique enables absolute calibrations from first principles that are traceable to National Institute of Standards and Technology (NIST) measurements while providing nearly an order of magnitude more precision than step‐table calibrations.

  2. Confidence-accuracy calibration in absolute and relative face recognition judgments.

    PubMed

    Weber, Nathan; Brewer, Neil

    2004-09-01

    Confidence-accuracy (CA) calibration was examined for absolute and relative face recognition judgments as well as for recognition judgments from groups of stimuli presented simultaneously or sequentially (i.e., simultaneous or sequential mini-lineups). When the effect of difficulty was controlled, absolute and relative judgments produced negligibly different CA calibration, whereas no significant difference was observed for simultaneous and sequential mini-lineups. Further, the effect of difficulty on CA calibration was equivalent across judgment and mini-lineup types. It is interesting to note that positive (i.e., old) recognition judgments demonstrated strong CA calibration whereas negative (i.e., new) judgments evidenced little or no CA association. Implications for eyewitness identification are discussed. (c) 2004 APA, all rights reserved.

  3. Absolute Calibration of Optical Satellite Sensors Using Libya 4 Pseudo Invariant Calibration Site

    NASA Technical Reports Server (NTRS)

    Mishra, Nischal; Helder, Dennis; Angal, Amit; Choi, Jason; Xiong, Xiaoxiong

    2014-01-01

    The objective of this paper is to report the improvements in an empirical absolute calibration model developed at South Dakota State University using Libya 4 (+28.55 deg, +23.39 deg) pseudo invariant calibration site (PICS). The approach was based on use of the Terra MODIS as the radiometer to develop an absolute calibration model for the spectral channels covered by this instrument from visible to shortwave infrared. Earth Observing One (EO-1) Hyperion, with a spectral resolution of 10 nm, was used to extend the model to cover visible and near-infrared regions. A simple Bidirectional Reflectance Distribution function (BRDF) model was generated using Terra Moderate Resolution Imaging Spectroradiometer (MODIS) observations over Libya 4 and the resulting model was validated with nadir data acquired from satellite sensors such as Aqua MODIS and Landsat 7 (L7) Enhanced Thematic Mapper (ETM+). The improvements in the absolute calibration model to account for the BRDF due to off-nadir measurements and annual variations in the atmosphere are summarized. BRDF models due to off-nadir viewing angles have been derived using the measurements from EO-1 Hyperion. In addition to L7 ETM+, measurements from other sensors such as Aqua MODIS, UK-2 Disaster Monitoring Constellation (DMC), ENVISAT Medium Resolution Imaging Spectrometer (MERIS) and Operational Land Imager (OLI) onboard Landsat 8 (L8), which was launched in February 2013, were employed to validate the model. These satellite sensors differ in terms of the width of their spectral bandpasses, overpass time, off-nadir-viewing capabilities, spatial resolution and temporal revisit time, etc. The results demonstrate that the proposed empirical calibration model has accuracy of the order of 3% with an uncertainty of about 2% for the sensors used in the study.

  4. The absolute radiometric calibration of the advanced very high resolution radiometer

    NASA Technical Reports Server (NTRS)

    Slater, P. N.; Teillet, P. M.; Ding, Y.

    1988-01-01

    The need for independent, redundant absolute radiometric calibration methods is discussed with reference to the Thematic Mapper. Uncertainty requirements for absolute calibration of between 0.5 and 4 percent are defined based on the accuracy of reflectance retrievals at an agricultural site. It is shown that even very approximate atmospheric corrections can reduce the error in reflectance retrieval to 0.02 over the reflectance range 0 to 0.4.

  5. Ultraviolet photometry from the Orbiting Astronomical Observatory. XXI - Absolute energy distribution of stars in the ultraviolet

    NASA Technical Reports Server (NTRS)

    Bless, R. C.; Code, A. D.; Fairchild, E. T.

    1976-01-01

    The absolute energy distribution in the ultraviolet is given for the stars alpha Vir, eta UMa, and alpha Leo. The calibration is based on absolute heterochromatic photometry between 2920 and 1370 A carried out with an Aerobee sounding rocket. The fundamental radiation standard is the synchrotron radiation from 240-MeV electrons in a certain synchrotron storage ring. On the basis of the sounding-rocket calibration, the preliminary OAO-2 spectrometer calibration has been revised; the fluxes for the three program stars are tabulated in energy per second per square centimeter per unit wavelength interval.

  6. Electro-optical equivalent calibration technology for high-energy laser energy meters

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wei, Ji Feng, E-mail: wjfcom2000@163.com; Institute of Applied Electronics, China Academy of Engineering Physics, Mianyang 621900; Graduate School of China Academy of Engineering Physics, Beijing 100088

    Electro-optical equivalent calibration with high calibration power and high equivalence is particularly well-suited to the calibration of high-energy laser energy meters. A large amount of energy is reserved during this process, however, which continues to radiate after power-off. This study measured the radiation efficiency of a halogen tungsten lamp during power-on and after power-off in order to calculate the total energy irradiated by a lamp until the high-energy laser energy meter reaches thermal equilibrium. A calibration system was designed based on the measurement results, and the calibration equivalence of the system was analyzed in detail. Results show that measurement precisionmore » is significantly affected by the absorption factor of the absorption chamber and by heat loss in the energy meter. Calibration precision is successfully improved by enhancing the equivalent power and reducing power-on time. The electro-optical equivalent calibration system, measurement uncertainty of which was evaluated as 2.4% (k = 2), was used to calibrate a graphite-cone-absorption-cavity absolute energy meter, yielding a calibration coefficient of 1.009 and measurement uncertainty of 3.5% (k = 2). A water-absorption-type high-energy laser energy meter with measurement uncertainty of 4.8% (k = 2) was considered the reference standard, and compared to the energy meter calibrated in this study, yielded a correction factor of 0.995 (standard deviation of 1.4%).« less

  7. Confidence-Accuracy Calibration in Absolute and Relative Face Recognition Judgments

    ERIC Educational Resources Information Center

    Weber, Nathan; Brewer, Neil

    2004-01-01

    Confidence-accuracy (CA) calibration was examined for absolute and relative face recognition judgments as well as for recognition judgments from groups of stimuli presented simultaneously or sequentially (i.e., simultaneous or sequential mini-lineups). When the effect of difficulty was controlled, absolute and relative judgments produced…

  8. Absolute charge calibration of scintillating screens for relativistic electron detection

    NASA Astrophysics Data System (ADS)

    Buck, A.; Zeil, K.; Popp, A.; Schmid, K.; Jochmann, A.; Kraft, S. D.; Hidding, B.; Kudyakov, T.; Sears, C. M. S.; Veisz, L.; Karsch, S.; Pawelke, J.; Sauerbrey, R.; Cowan, T.; Krausz, F.; Schramm, U.

    2010-03-01

    We report on new charge calibrations and linearity tests with high-dynamic range for eight different scintillating screens typically used for the detection of relativistic electrons from laser-plasma based acceleration schemes. The absolute charge calibration was done with picosecond electron bunches at the ELBE linear accelerator in Dresden. The lower detection limit in our setup for the most sensitive scintillating screen (KODAK Biomax MS) was 10 fC/mm2. The screens showed a linear photon-to-charge dependency over several orders of magnitude. An onset of saturation effects starting around 10-100 pC/mm2 was found for some of the screens. Additionally, a constant light source was employed as a luminosity reference to simplify the transfer of a one-time absolute calibration to different experimental setups.

  9. Absolute detector calibration using twin beams.

    PubMed

    Peřina, Jan; Haderka, Ondřej; Michálek, Václav; Hamar, Martin

    2012-07-01

    A method for the determination of absolute quantum detection efficiency is suggested based on the measurement of photocount statistics of twin beams. The measured histograms of joint signal-idler photocount statistics allow us to eliminate an additional noise superimposed on an ideal calibration field composed of only photon pairs. This makes the method superior above other approaches presently used. Twin beams are described using a paired variant of quantum superposition of signal and noise.

  10. Landsat-5 TM reflective-band absolute radiometric calibration

    USGS Publications Warehouse

    Chander, G.; Helder, D.L.; Markham, B.L.; Dewald, J.D.; Kaita, E.; Thome, K.J.; Micijevic, E.; Ruggles, T.A.

    2004-01-01

    The Landsat-5 Thematic Mapper (TM) sensor provides the longest running continuous dataset of moderate spatial resolution remote sensing imagery, dating back to its launch in March 1984. Historically, the radiometric calibration procedure for this imagery used the instrument's response to the Internal Calibrator (IC) on a scene-by-scene basis to determine the gain and offset of each detector. Due to observed degradations in the IC, a new procedure was implemented for U.S.-processed data in May 2003. This new calibration procedure is based on a lifetime radiometric calibration model for the instrument's reflective bands (1-5 and 7) and is derived, in part, from the IC response without the related degradation effects and is tied to the cross calibration with the Landsat-7 Enhanced Thematic Mapper Plus. Reflective-band absolute radiometric accuracy of the instrument tends to be on the order of 7% to 10%, based on a variety of calibration methods.

  11. Absolute laser-intensity measurement and online monitor calibration using a calorimeter at a soft X-ray free-electron laser beamline in SACLA

    NASA Astrophysics Data System (ADS)

    Tanaka, Takahiro; Kato, Masahiro; Saito, Norio; Owada, Shigeki; Tono, Kensuke; Yabashi, Makina; Ishikawa, Tetsuya

    2018-06-01

    This paper reports measurement of the absolute intensity of free-electron laser (FEL) and calibration of online intensity monitors for a brand-new FEL beamline BL1 at SPring-8 Angstrom Compact free-electron LAser (SACLA) in Japan. To measure the absolute intensity of FEL, we used a room-temperature calorimeter originally developed for FELs in the hard X-ray range. By using the calorimeter, we calibrated online intensity monitors of BL1, gas monitors (GMs), based on the photoionization of argon gas, in the photon energy range from 25 eV to 150 eV. A good correlation between signals obtained from the calorimeter and GMs was observed in the pulse energy range from 1 μJ to 100 μJ, where the upper limit is nearly equal to the maximum pulse energy at BL1. Moreover, the calibration result of the GMs, measured in terms of the spectral responsivity, demonstrates a characteristic photon-energy dependence owing to the occurrence of the Cooper minimum in the total ionization cross-section of argon gas. These results validate the feasibility of employing the room-temperature calorimeter in the measurement of absolute intensity of FELs over the specified photon energy range.

  12. Calibration Against the Moon. I: A Disk-Resolved Lunar Model for Absolute Reflectance Calibration

    DTIC Science & Technology

    2010-01-01

    average 1 hour per response, including the time for reviewing instructions, searching existing data sources, gathering and maintaining the data needed, and...3. DATES COVERED (From - To) 4. TITLE AND SUBTITLE Calibration against the Moon I: A disk- resolved lunar model for absolute reflectance...of the disk- resolved Moon at visible to near infrared wavelengths. It has been developed in order to use the Moon as a calibration reference

  13. Absolute calibration of Doppler coherence imaging velocity images

    NASA Astrophysics Data System (ADS)

    Samuell, C. M.; Allen, S. L.; Meyer, W. H.; Howard, J.

    2017-08-01

    A new technique has been developed for absolutely calibrating a Doppler Coherence Imaging Spectroscopy interferometer for measuring plasma ion and neutral velocities. An optical model of the interferometer is used to generate zero-velocity reference images for the plasma spectral line of interest from a calibration source some spectral distance away. Validation of this technique using a tunable diode laser demonstrated an accuracy better than 0.2 km/s over an extrapolation range of 3.5 nm; a two order of magnitude improvement over linear approaches. While a well-characterized and very stable interferometer is required, this technique opens up the possibility of calibrated velocity measurements in difficult viewing geometries and for complex spectral line-shapes.

  14. Absolute calibration of a multichannel plate detector for low energy O, O-, and O+

    NASA Astrophysics Data System (ADS)

    Stephen, T. M.; Peko, B. L.

    2000-03-01

    Absolute detection efficiencies of a commercial multichannel plate detector have been measured for O, O+, and O-, impacting at normal incidence for energies ranging from 30-1000 eV. In addition, the detection efficiencies for O relative to its ions are presented, as they may have a more universal application. The absolute detection efficiencies are strongly energy dependent and significant differences are observed for the various charge states at lower energies. The detection efficiencies for the different charge states appear to converge at higher energies. The strongest energy dependence is for O+; the detection efficiency varies by three orders of magnitude across the energy range studied. The weakest dependence is for O-, which varies less than one order of magnitude.

  15. Corsica: A Multi-Mission Absolute Calibration Site

    NASA Astrophysics Data System (ADS)

    Bonnefond, P.; Exertier, P.; Laurain, O.; Guinle, T.; Femenias, P.

    2013-09-01

    In collaboration with the CNES and NASA oceanographic projects (TOPEX/Poseidon and Jason), the OCA (Observatoire de la Côte d'Azur) developed a verification site in Corsica since 1996, operational since 1998. CALibration/VALidation embraces a wide variety of activities, ranging from the interpretation of information from internal-calibration modes of the sensors to validation of the fully corrected estimates of the reflector heights using in situ data. Now, Corsica is, like the Harvest platform (NASA side) [14], an operating calibration site able to support a continuous monitoring with a high level of accuracy: a 'point calibration' which yields instantaneous bias estimates with a 10-day repeatability of 30 mm (standard deviation) and mean errors of 4 mm (standard error). For a 35-day repeatability (ERS, Envisat), due to a smaller time series, the standard error is about the double ( 7 mm).In this paper, we will present updated results of the absolute Sea Surface Height (SSH) biases for TOPEX/Poseidon (T/P), Jason-1, Jason-2, ERS-2 and Envisat.

  16. Absolute Magnitude Calibration for Dwarfs Based on the Colour-Magnitude Diagrams of Galactic Clusters

    NASA Astrophysics Data System (ADS)

    Karaali, S.; Gökçe, E. Yaz; Bilir, S.; Güçtekin, S. Tunçel

    2014-07-01

    We present two absolute magnitude calibrations for dwarfs based on colour-magnitude diagrams of Galactic clusters. The combination of the Mg absolute magnitudes of the dwarf fiducial sequences of the clusters M92, M13, M5, NGC 2420, M67, and NGC 6791 with the corresponding metallicities provides absolute magnitude calibration for a given (g - r)0 colour. The calibration is defined in the colour interval 0.25 ≤ (g - r)0 ≤ 1.25 mag and it covers the metallicity interval - 2.15 ≤ [Fe/H] ≤ +0.37 dex. The absolute magnitude residuals obtained by the application of the procedure to another set of Galactic clusters lie in the interval - 0.15 ≤ ΔMg ≤ +0.12 mag. The mean and standard deviation of the residuals are < ΔMg > = - 0.002 and σ = 0.065 mag, respectively. The calibration of the MJ absolute magnitude in terms of metallicity is carried out by using the fiducial sequences of the clusters M92, M13, 47 Tuc, NGC 2158, and NGC 6791. It is defined in the colour interval 0.90 ≤ (V - J)0 ≤ 1.75 mag and it covers the same metallicity interval of the Mg calibration. The absolute magnitude residuals obtained by the application of the procedure to the cluster M5 ([Fe/H] = -1.40 dex) and 46 solar metallicity, - 0.45 ≤ [Fe/H] ≤ +0.35 dex, field stars lie in the interval - 0.29 and + 0.35 mag. However, the range of 87% of them is rather shorter, - 0.20 ≤ ΔMJ ≤ +0.20 mag. The mean and standard deviation of all residuals are < ΔMJ > =0.05 and σ = 0.13 mag, respectively. The derived relations are applicable to stars older than 4 Gyr for the Mg calibration, and older than 2 Gyr for the MJ calibration. The cited limits are the ages of the youngest calibration clusters in the two systems.

  17. Absolute calibration of Kodak Biomax-MS film response to x rays in the 1.5- to 8-keV energy range

    NASA Astrophysics Data System (ADS)

    Marshall, F. J.; Knauer, J. P.; Anderson, D.; Schmitt, B. L.

    2006-10-01

    The absolute response of Kodak Biomax-MS film to x rays in the range from 1.5- to 8-keV has been measured using a laboratory electron-beam generated x-ray source. The measurements were taken at specific line energies by using Bragg diffraction to produce monochromatic beams of x rays. Multiple exposures were taken on Biomax MS film up to levels exceeding optical densities of 2 as measured by a microdensitometer. The absolute beam intensity for each exposure was measured with a Si (Li) detector. Additional response measurements were taken with Kodak direct exposure film (DEF) so as to compare the results of this technique to previously published calibrations. The Biomax-MS results have been fitted to a semiempirical mathematical model (Knauer et al., these proceedings). Users of the model can infer absolute fluences from observed exposure levels at either interpolated or extrapolated energies. To summarize the results: Biomax MS has comparable sensitivity to DEF film below 3keV but has reduced sensitivity above 3keV (˜50%). The lower exposure results from thinner emulsion layers, designed for use with phosphor screens. The ease with which Biomax-MS can be used in place of DEF (same format film, same developing process, and comparable sensitivity) makes it a good replacement.

  18. Absolute sensitivity calibration of an extreme ultraviolet spectrometer for tokamak measurements

    NASA Astrophysics Data System (ADS)

    Guirlet, R.; Schwob, J. L.; Meyer, O.; Vartanian, S.

    2017-01-01

    An extreme ultraviolet spectrometer installed on the Tore Supra tokamak has been calibrated in absolute units of brightness in the range 10-340 Å. This has been performed by means of a combination of techniques. The range 10-113 Å was absolutely calibrated by using an ultrasoft-X ray source emitting six spectral lines in this range. The calibration transfer to the range 113-182 Å was performed using the spectral line intensity branching ratio method. The range 182-340 Å was calibrated thanks to radiative-collisional modelling of spectral line intensity ratios. The maximum sensitivity of the spectrometer was found to lie around 100 Å. Around this wavelength, the sensitivity is fairly flat in a 80 Å wide interval. The spatial variations of sensitivity along the detector assembly were also measured. The observed trend is related to the quantum efficiency decrease as the angle of the incoming photon trajectories becomes more grazing.

  19. Absolute calibration of a hydrogen discharge lamp in the vacuum ultraviolet

    NASA Technical Reports Server (NTRS)

    Nealy, J. E.

    1975-01-01

    A low-pressure hydrogen discharge lamp was calibrated for radiant intensity in the vacuum ultraviolet spectral region on an absolute basis and was employed as a laboratory standard source in spectrograph calibrations. This calibration was accomplished through the use of a standard photodiode detector obtained from the National Bureau of Standards together with onsite measurements of spectral properties of optical components used. The stability of the light source for use in the calibration of vacuum ultraviolet spectrographs and optical systems was investigated and found to be amenable to laboratory applications. The lamp was studied for a range of operating parameters; the results indicate that with appropriate peripheral instrumentation, the light source can be used as a secondary laboratory standard source when operated under preset controlled conditions. Absolute intensity measurements were recorded for the wavelengths 127.7, 158.0, 177.5, and 195.0 nm for a time period of over 1 month, and the measurements were found to be repeatable to within 11 percent.

  20. Absolute calibration of optical streak cameras on picosecond time scales using supercontinuum generation

    DOE PAGES

    Patankar, S.; Gumbrell, E. T.; Robinson, T. S.; ...

    2017-08-17

    Here we report a new method using high stability, laser-driven supercontinuum generation in a liquid cell to calibrate the absolute photon response of fast optical streak cameras as a function of wavelength when operating at fastest sweep speeds. A stable, pulsed white light source based around the use of self-phase modulation in a salt solution was developed to provide the required brightness on picosecond timescales, enabling streak camera calibration in fully dynamic operation. The measured spectral brightness allowed for absolute photon response calibration over a broad spectral range (425-650nm). Calibrations performed with two Axis Photonique streak cameras using the Photonismore » P820PSU streak tube demonstrated responses which qualitatively follow the photocathode response. Peak sensitivities were 1 photon/count above background. The absolute dynamic sensitivity is less than the static by up to an order of magnitude. We attribute this to the dynamic response of the phosphor being lower.« less

  1. Lyman alpha SMM/UVSP absolute calibration and geocoronal correction

    NASA Technical Reports Server (NTRS)

    Fontenla, Juan M.; Reichmann, Edwin J.

    1987-01-01

    Lyman alpha observations from the Ultraviolet Spectrometer Polarimeter (UVSP) instrument of the Solar Maximum Mission (SMM) spacecraft were analyzed and provide instrumental calibration details. Specific values of the instrument quantum efficiency, Lyman alpha absolute intensity, and correction for geocoronal absorption are presented.

  2. Absolute calibration of neutron detectors on the C-2U advanced beam-driven FRC.

    PubMed

    Magee, R M; Clary, R; Korepanov, S; Jauregui, F; Allfrey, I; Garate, E; Valentine, T; Smirnov, A

    2016-11-01

    In the C-2U fusion energy experiment, high power neutral beam injection creates a large fast ion population that sustains a field-reversed configuration (FRC) plasma. The diagnosis of the fast ion pressure in these high-performance plasmas is therefore critical, and the measurement of the flux of neutrons from the deuterium-deuterium (D-D) fusion reaction is well suited to the task. Here we describe the absolute, in situ calibration of scintillation neutron detectors via two independent methods: firing deuterium beams into a high density gas target and calibration with a 2 × 10 7 n/s AmBe source. The practical issues of each method are discussed and the resulting calibration factors are shown to be in good agreement. Finally, the calibration factor is applied to C-2U experimental data where the measured neutron rate is found to exceed the classical expectation.

  3. Absolute calibration of Kodak Biomax-MS film response to x rays in the 1.5- to 8-keV energy range

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Marshall, F. J.; Knauer, J. P.; Anderson, D.

    2006-10-15

    The absolute response of Kodak Biomax-MS film to x rays in the range from 1.5- to 8-keV has been measured using a laboratory electron-beam generated x-ray source. The measurements were taken at specific line energies by using Bragg diffraction to produce monochromatic beams of x rays. Multiple exposures were taken on Biomax MS film up to levels exceeding optical densities of 2 as measured by a microdensitometer. The absolute beam intensity for each exposure was measured with a Si(Li) detector. Additional response measurements were taken with Kodak direct exposure film (DEF) so as to compare the results of this techniquemore » to previously published calibrations. The Biomax-MS results have been fitted to a semiempirical mathematical model (Knauer et al., these proceedings). Users of the model can infer absolute fluences from observed exposure levels at either interpolated or extrapolated energies. To summarize the results: Biomax MS has comparable sensitivity to DEF film below 3 keV but has reduced sensitivity above 3 keV ({approx}50%). The lower exposure results from thinner emulsion layers, designed for use with phosphor screens. The ease with which Biomax-MS can be used in place of DEF (same format film, same developing process, and comparable sensitivity) makes it a good replacement.« less

  4. ACCESS, Absolute Color Calibration Experiment for Standard Stars: Integration, Test, and Ground Performance

    NASA Astrophysics Data System (ADS)

    Kaiser, Mary Elizabeth; Morris, Matthew; Aldoroty, Lauren; Kurucz, Robert; McCandliss, Stephan; Rauscher, Bernard; Kimble, Randy; Kruk, Jeffrey; Wright, Edward L.; Feldman, Paul; Riess, Adam; Gardner, Jonathon; Bohlin, Ralph; Deustua, Susana; Dixon, Van; Sahnow, David J.; Perlmutter, Saul

    2018-01-01

    Establishing improved spectrophotometric standards is important for a broad range of missions and is relevant to many astrophysical problems. Systematic errors associated with astrophysical data used to probe fundamental astrophysical questions, such as SNeIa observations used to constrain dark energy theories, now exceed the statistical errors associated with merged databases of these measurements. ACCESS, “Absolute Color Calibration Experiment for Standard Stars”, is a series of rocket-borne sub-orbital missions and ground-based experiments designed to enable improvements in the precision of the astrophysical flux scale through the transfer of absolute laboratory detector standards from the National Institute of Standards and Technology (NIST) to a network of stellar standards with a calibration accuracy of 1% and a spectral resolving power of 500 across the 0.35‑1.7μm bandpass. To achieve this goal ACCESS (1) observes HST/ Calspec stars (2) above the atmosphere to eliminate telluric spectral contaminants (e.g. OH) (3) using a single optical path and (HgCdTe) detector (4) that is calibrated to NIST laboratory standards and (5) monitored on the ground and in-flight using a on-board calibration monitor. The observations are (6) cross-checked and extended through the generation of stellar atmosphere models for the targets. The ACCESS telescope and spectrograph have been designed, fabricated, and integrated. Subsystems have been tested. Performance results for subsystems, operations testing, and the integrated spectrograph will be presented. NASA sounding rocket grant NNX17AC83G supports this work.

  5. The stars: an absolute radiometric reference for the on-orbit calibration of PLEIADES-HR satellites

    NASA Astrophysics Data System (ADS)

    Meygret, Aimé; Blanchet, Gwendoline; Mounier, Flore; Buil, Christian

    2017-09-01

    The accurate on-orbit radiometric calibration of optical sensors has become a challenge for space agencies who gather their effort through international working groups such as CEOS/WGCV or GSICS with the objective to insure the consistency of space measurements and to reach an absolute accuracy compatible with more and more demanding scientific needs. Different targets are traditionally used for calibration depending on the sensor or spacecraft specificities: from on-board calibration systems to ground targets, they all take advantage of our capacity to characterize and model them. But achieving the in-flight stability of a diffuser panel is always a challenge while the calibration over ground targets is often limited by their BDRF characterization and the atmosphere variability. Thanks to their agility, some satellites have the capability to view extra-terrestrial targets such as the moon or stars. The moon is widely used for calibration and its albedo is known through ROLO (RObotic Lunar Observatory) USGS model but with a poor absolute accuracy limiting its use to sensor drift monitoring or cross-calibration. Although the spectral irradiance of some stars is known with a very high accuracy, it was not really shown that they could provide an absolute reference for remote sensors calibration. This paper shows that high resolution optical sensors can be calibrated with a high absolute accuracy using stars. The agile-body PLEIADES 1A satellite is used for this demonstration. The star based calibration principle is described and the results are provided for different stars, each one being acquired several times. These results are compared to the official calibration provided by ground targets and the main error contributors are discussed.

  6. Absolute calibration of neutron detectors on the C-2U advanced beam-driven FRC

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Magee, R. M., E-mail: rmagee@trialphaenergy.com; Clary, R.; Korepanov, S.

    2016-11-15

    In the C-2U fusion energy experiment, high power neutral beam injection creates a large fast ion population that sustains a field-reversed configuration (FRC) plasma. The diagnosis of the fast ion pressure in these high-performance plasmas is therefore critical, and the measurement of the flux of neutrons from the deuterium-deuterium (D-D) fusion reaction is well suited to the task. Here we describe the absolute, in situ calibration of scintillation neutron detectors via two independent methods: firing deuterium beams into a high density gas target and calibration with a 2 × 10{sup 7} n/s AmBe source. The practical issues of each methodmore » are discussed and the resulting calibration factors are shown to be in good agreement. Finally, the calibration factor is applied to C-2U experimental data where the measured neutron rate is found to exceed the classical expectation.« less

  7. NIST Standard Reference Material 3600: Absolute Intensity Calibration Standard for Small-Angle X-ray Scattering

    DOE PAGES

    Allen, Andrew J.; Zhang, Fan; Kline, R. Joseph; ...

    2017-03-07

    The certification of a new standard reference material for small-angle scattering [NIST Standard Reference Material (SRM) 3600: Absolute Intensity Calibration Standard for Small-Angle X-ray Scattering (SAXS)], based on glassy carbon, is presented. Creation of this SRM relies on the intrinsic primary calibration capabilities of the ultra-small-angle X-ray scattering technique. This article describes how the intensity calibration has been achieved and validated in the certified Q range, Q = 0.008–0.25 Å –1, together with the purpose, use and availability of the SRM. The intensity calibration afforded by this robust and stable SRM should be applicable universally to all SAXS instruments thatmore » employ a transmission measurement geometry, working with a wide range of X-ray energies or wavelengths. As a result, the validation of the SRM SAXS intensity calibration using small-angle neutron scattering (SANS) is discussed, together with the prospects for including SANS in a future renewal certification.« less

  8. NIST Standard Reference Material 3600: Absolute Intensity Calibration Standard for Small-Angle X-ray Scattering

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Allen, Andrew J.; Zhang, Fan; Kline, R. Joseph

    The certification of a new standard reference material for small-angle scattering [NIST Standard Reference Material (SRM) 3600: Absolute Intensity Calibration Standard for Small-Angle X-ray Scattering (SAXS)], based on glassy carbon, is presented. Creation of this SRM relies on the intrinsic primary calibration capabilities of the ultra-small-angle X-ray scattering technique. This article describes how the intensity calibration has been achieved and validated in the certified Q range, Q = 0.008–0.25 Å –1, together with the purpose, use and availability of the SRM. The intensity calibration afforded by this robust and stable SRM should be applicable universally to all SAXS instruments thatmore » employ a transmission measurement geometry, working with a wide range of X-ray energies or wavelengths. As a result, the validation of the SRM SAXS intensity calibration using small-angle neutron scattering (SANS) is discussed, together with the prospects for including SANS in a future renewal certification.« less

  9. NIST Standard Reference Material 3600: Absolute Intensity Calibration Standard for Small-Angle X-ray Scattering.

    PubMed

    Allen, Andrew J; Zhang, Fan; Kline, R Joseph; Guthrie, William F; Ilavsky, Jan

    2017-04-01

    The certification of a new standard reference material for small-angle scattering [NIST Standard Reference Material (SRM) 3600: Absolute Intensity Calibration Standard for Small-Angle X-ray Scattering (SAXS)], based on glassy carbon, is presented. Creation of this SRM relies on the intrinsic primary calibration capabilities of the ultra-small-angle X-ray scattering technique. This article describes how the intensity calibration has been achieved and validated in the certified Q range, Q = 0.008-0.25 Å -1 , together with the purpose, use and availability of the SRM. The intensity calibration afforded by this robust and stable SRM should be applicable universally to all SAXS instruments that employ a transmission measurement geometry, working with a wide range of X-ray energies or wavelengths. The validation of the SRM SAXS intensity calibration using small-angle neutron scattering (SANS) is discussed, together with the prospects for including SANS in a future renewal certification.

  10. Energy calibration of the fly's eye detector

    NASA Technical Reports Server (NTRS)

    Baltrusaitis, R. M.; Cassiday, G. L.; Cooper, R.; Elbert, J. W.; Gerhardy, P. R.; Ko, S.; Loh, E. C.; Mizumoto, Y.; Sokolsky, P.; Steck, D.

    1985-01-01

    The methods used to calibrate the Fly's eye detector to evaluate the energy of EAS are discussed. The energy of extensive air showers (EAS) as seen by the Fly's Eye detector are obtained from track length integrals of observed shower development curves. The energy of the parent cosmic ray primary is estimated by applying corrections to account for undetected energy in the muon, neutrino and hadronic channels. Absolute values for E depend upon the measurement of shower sizes N sub e(x). The following items are necessary to convert apparent optical brightness into intrinsical optical brightness: (1) an assessment of those factors responsible for light production by the relativistic electrons in an EAS and the transmission of light thru the atmosphere, (2) calibration of the optical detection system, and (3) a knowledge of the trajectory of the shower.

  11. Improved Absolute Radiometric Calibration of a UHF Airborne Radar

    NASA Technical Reports Server (NTRS)

    Chapin, Elaine; Hawkins, Brian P.; Harcke, Leif; Hensley, Scott; Lou, Yunling; Michel, Thierry R.; Moreira, Laila; Muellerschoen, Ronald J.; Shimada, Joanne G.; Tham, Kean W.; hide

    2015-01-01

    The AirMOSS airborne SAR operates at UHF and produces fully polarimetric imagery. The AirMOSS radar data are used to produce Root Zone Soil Moisture (RZSM) depth profiles. The absolute radiometric accuracy of the imagery, ideally of better than 0.5 dB, is key to retrieving RZSM, especially in wet soils where the backscatter as a function of soil moisture function tends to flatten out. In this paper we assess the absolute radiometric uncertainty in previously delivered data, describe a method to utilize Built In Test (BIT) data to improve the radiometric calibration, and evaluate the improvement from applying the method.

  12. First Absolutely Calibrated Localized Measurements of Ion Velocity in the MST in Locked and Rotating Plasmas

    NASA Astrophysics Data System (ADS)

    Baltzer, M.; Craig, D.; den Hartog, D. J.; Nornberg, M. D.; Munaretto, S.

    2015-11-01

    An Ion Doppler Spectrometer (IDS) is used on MST for high time-resolution passive and active measurements of impurity ion emission. Absolutely calibrated measurements of flow are difficult because the spectrometer records data within 0.3 nm of the C+5 line of interest, and commercial calibration lamps do not produce lines in this narrow range . A novel optical system was designed to absolutely calibrate the IDS. The device uses an UV LED to produce a broad emission curve in the desired region. A Fabry-Perot etalon filters this light, cutting transmittance peaks into the pattern of the LED emission. An optical train of fused silica lenses focuses the light into the IDS with f/4. A holographic diffuser blurs the light cone to increase homogeneity. Using this light source, the absolute Doppler shift of ion emissions can be measured in MST plasmas. In combination with charge exchange recombination spectroscopy, localized ion velocities can now be measured. Previously, a time-averaged measurement along the chord bisecting the poloidal plane was used to calibrate the IDS; the quality of these central chord calibrations can be characterized with our absolute calibration. Calibration errors may also be quantified and minimized by optimizing the curve-fitting process. Preliminary measurements of toroidal velocity in locked and rotating plasmas will be shown. This work has been supported by the US DOE.

  13. A new method to calibrate the absolute sensitivity of a soft X-ray streak camera

    NASA Astrophysics Data System (ADS)

    Yu, Jian; Liu, Shenye; Li, Jin; Yang, Zhiwen; Chen, Ming; Guo, Luting; Yao, Li; Xiao, Shali

    2016-12-01

    In this paper, we introduce a new method to calibrate the absolute sensitivity of a soft X-ray streak camera (SXRSC). The calibrations are done in the static mode by using a small laser-produced X-ray source. A calibrated X-ray CCD is used as a secondary standard detector to monitor the X-ray source intensity. In addition, two sets of holographic flat-field grating spectrometers are chosen as the spectral discrimination systems of the SXRSC and the X-ray CCD. The absolute sensitivity of the SXRSC is obtained by comparing the signal counts of the SXRSC to the output counts of the X-ray CCD. Results show that the calibrated spectrum covers the range from 200 eV to 1040 eV. The change of the absolute sensitivity in the vicinity of the K-edge of the carbon can also be clearly seen. The experimental values agree with the calculated values to within 29% error. Compared with previous calibration methods, the proposed method has several advantages: a wide spectral range, high accuracy, and simple data processing. Our calibration results can be used to make quantitative X-ray flux measurements in laser fusion research.

  14. Absolute calibration of ultraviolet filter photometry

    NASA Technical Reports Server (NTRS)

    Bless, R. C.; Fairchild, T.; Code, A. D.

    1972-01-01

    The essential features of the calibration procedure can be divided into three parts. First, the shape of the bandpass of each photometer was determined by measuring the transmissions of the individual optical components and also by measuring the response of the photometer as a whole. Secondly, each photometer was placed in the essentially-collimated synchrotron radiation bundle maintained at a constant intensity level, and the output signal was determined from about 100 points on the objective. Finally, two or three points on the objective were illuminated by synchrotron radiation at several different intensity levels covering the dynamic range of the photometers. The output signals were placed on an absolute basis by the electron counting technique described earlier.

  15. The Absolute Reflectance and New Calibration Site of the Moon

    NASA Astrophysics Data System (ADS)

    Wu, Yunzhao; Wang, Zhenchao; Cai, Wei; Lu, Yu

    2018-05-01

    How bright the Moon is forms a simple but fundamental and important question. Although numerous efforts have been made to answer this question such as use of sophisticated electro-optical measurements and suggestions for calibration sites, the answer is still debated. An in situ measurement with a calibration panel on the surface of the Moon is crucial for obtaining the accurate absolute reflectance and resolving the debate. China’s Chang’E-3 (CE-3) “Yutu” rover accomplished this type of measurement using the Visible-Near Infrared Spectrometer (VNIS). The measurements of the VNIS, which were at large emission and phase angles, complement existing measurements for the range of photometric geometry. The in situ reflectance shows that the CE-3 landing site is very dark with an average reflectance of 3.86% in the visible bands. The results are compared with recent mission instruments: the Lunar Reconnaissance Orbiter Camera (LROC) Wide Angle Camera (WAC), the Spectral Profiler (SP) on board the SELENE, the Moon Mineralogy Mapper (M3) on board the Chandrayaan-1, and the Chang’E-1 Interference Imaging Spectrometer (IIM). The differences in the measurements of these instruments are very large and indicate inherent differences in their absolute calibration. The M3 and IIM measurements are smaller than LROC WAC and SP, and the VNIS measurement falls between these two pairs. When using the Moon as a radiance source for the on-orbit calibration of spacecraft instruments, one should be cautious about the data. We propose that the CE-3 landing site, a young and homogeneous surface, should serve as the new calibration site.

  16. Absolute magnitude calibration using trigonometric parallax - Incomplete, spectroscopic samples

    NASA Technical Reports Server (NTRS)

    Ratnatunga, Kavan U.; Casertano, Stefano

    1991-01-01

    A new numerical algorithm is used to calibrate the absolute magnitude of spectroscopically selected stars from their observed trigonometric parallax. This procedure, based on maximum-likelihood estimation, can retrieve unbiased estimates of the intrinsic absolute magnitude and its dispersion even from incomplete samples suffering from selection biases in apparent magnitude and color. It can also make full use of low accuracy and negative parallaxes and incorporate censorship on reported parallax values. Accurate error estimates are derived for each of the fitted parameters. The algorithm allows an a posteriori check of whether the fitted model gives a good representation of the observations. The procedure is described in general and applied to both real and simulated data.

  17. K-edge energy-based calibration method for photon counting detectors

    NASA Astrophysics Data System (ADS)

    Ge, Yongshuai; Ji, Xu; Zhang, Ran; Li, Ke; Chen, Guang-Hong

    2018-01-01

    In recent years, potential applications of energy-resolved photon counting detectors (PCDs) in the x-ray medical imaging field have been actively investigated. Unlike conventional x-ray energy integration detectors, PCDs count the number of incident x-ray photons within certain energy windows. For PCDs, the interactions between x-ray photons and photoconductor generate electronic voltage pulse signals. The pulse height of each signal is proportional to the energy of the incident photons. By comparing the pulse height with the preset energy threshold values, x-ray photons with specific energies are recorded and sorted into different energy bins. To quantitatively understand the meaning of the energy threshold values, and thus to assign an absolute energy value to each energy bin, energy calibration is needed to establish the quantitative relationship between the threshold values and the corresponding effective photon energies. In practice, the energy calibration is not always easy, due to the lack of well-calibrated energy references for the working energy range of the PCDs. In this paper, a new method was developed to use the precise knowledge of the characteristic K-edge energy of materials to perform energy calibration. The proposed method was demonstrated using experimental data acquired from three K-edge materials (viz., iodine, gadolinium, and gold) on two different PCDs (Hydra and Flite, XCounter, Sweden). Finally, the proposed energy calibration method was further validated using a radioactive isotope (Am-241) with a known decay energy spectrum.

  18. Absolute Wavelength Calibration of the IDSII Spectrometer for Impurity Ion Velocity Measurements in the MST

    NASA Astrophysics Data System (ADS)

    Baltzer, M.; Craig, D.; den Hartog, D. J.; Nornberg, M. D.; MST Team

    2014-10-01

    The MST operates two Ion Doppler Spectrometers (IDS) for high time-resolution passive and active measurements of impurity ion emission. Absolutely calibrated measurements of flow are difficult because the spectrometers record data within 0.3 nm of the line of interest, and commercial calibration lamps do not produce lines in this narrow range . Four calibration methods were investigated. First, emission along the chord bisecting the poloidal plane was measured as it should have no time-averaged Doppler shift. Second, a calibrated CCD spectrometer and the IDSII were used to observe the same plasma from opposing sides so as to measure opposite Doppler shifts. The unshifted line is located halfway between the two opposing measurements. Third, the two fibers of the IDSI were positioned to take absolute flow measurements using opposing views. Substituting the IDSII for one of the IDSI fibers, absolute measurements of flow from the IDSI were used to calibrate the IDSII. Finally, an optical system was designed to filter an ultraviolet LED, providing a known wavelength source within the spectral range covered by the IDSII. The optical train is composed of an air-gapped etalon and fused silica lenses. The quality of calibration for each of these methods is analyzed and their results compared. Preliminary impurity ion velocity measurements are shown. This work has been supported by the US DOE and the NSF.

  19. DAQ Software Contributions, Absolute Scale Energy Calibration and Background Evaluation for the NOvA Experiment at Fermilab

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Flumerfelt, Eric Lewis

    2015-08-01

    The NOvA (NuMI Off-axis v e [nu_e] Appearance) Experiment is a long-baseline accelerator neutrino experiment currently in its second year of operations. NOvA uses the Neutrinos from the Main Injector (NuMI) beam at Fermilab, and there are two main off-axis detectors: a Near Detector at Fermilab and a Far Detector 810 km away at Ash River, MN. The work reported herein is in support of the NOvA Experiment, through contributions to the development of data acquisition software, providing an accurate, absolute-scale energy calibration for electromagnetic showers in NOvA detector elements, crucial to the primary electron neutrino search, and through anmore » initial evaluation of the cosmic background rate in the NOvA Far Detector, which is situated on the surface without significant overburden. Additional support work for the NOvA Experiment is also detailed, including DAQ Server Administration duties and a study of NOvA’s sensitivity to neutrino oscillations into a “sterile” state.« less

  20. Calibration of the Reflected Solar Instrument for the Climate Absolute Radiance and Refractivity Observatory

    NASA Technical Reports Server (NTRS)

    Thome, Kurtis; Barnes, Robert; Baize, Rosemary; O'Connell, Joseph; Hair, Jason

    2010-01-01

    The Climate Absolute Radiance and Refractivity Observatory (CLARREO) plans to observe climate change trends over decadal time scales to determine the accuracy of climate projections. The project relies on spaceborne earth observations of SI-traceable variables sensitive to key decadal change parameters. The mission includes a reflected solar instrument retrieving at-sensor reflectance over the 320 to 2300 nm spectral range with 500-m spatial resolution and 100-km swath. Reflectance is obtained from the ratio of measurements of the earth s surface to those while viewing the sun relying on a calibration approach that retrieves reflectance with uncertainties less than 0.3%. The calibration is predicated on heritage hardware, reduction of sensor complexity, adherence to detector-based calibration standards, and an ability to simulate in the laboratory on-orbit sources in both size and brightness to provide the basis of a transfer to orbit of the laboratory calibration including a link to absolute solar irradiance measurements.

  1. Full-Field Calibration of Color Camera Chromatic Aberration using Absolute Phase Maps.

    PubMed

    Liu, Xiaohong; Huang, Shujun; Zhang, Zonghua; Gao, Feng; Jiang, Xiangqian

    2017-05-06

    The refractive index of a lens varies for different wavelengths of light, and thus the same incident light with different wavelengths has different outgoing light. This characteristic of lenses causes images captured by a color camera to display chromatic aberration (CA), which seriously reduces image quality. Based on an analysis of the distribution of CA, a full-field calibration method based on absolute phase maps is proposed in this paper. Red, green, and blue closed sinusoidal fringe patterns are generated, consecutively displayed on an LCD (liquid crystal display), and captured by a color camera from the front viewpoint. The phase information of each color fringe is obtained using a four-step phase-shifting algorithm and optimum fringe number selection method. CA causes the unwrapped phase of the three channels to differ. These pixel deviations can be computed by comparing the unwrapped phase data of the red, blue, and green channels in polar coordinates. CA calibration is accomplished in Cartesian coordinates. The systematic errors introduced by the LCD are analyzed and corrected. Simulated results show the validity of the proposed method and experimental results demonstrate that the proposed full-field calibration method based on absolute phase maps will be useful for practical software-based CA calibration.

  2. Absolute calibration of the OMEGA streaked optical pyrometer for temperature measurements of compressed materials

    DOE PAGES

    Gregor, M. C.; Boni, R.; Sorce, A.; ...

    2016-11-29

    Experiments in high-energy-density physics often use optical pyrometry to determine temperatures of dynamically compressed materials. In combination with simultaneous shock-velocity and optical-reflectivity measurements using velocity interferometry, these experiments provide accurate equation-of-state data at extreme pressures (P > 1 Mbar) and temperatures (T > 0.5 eV). This paper reports on the absolute calibration of the streaked optical pyrometer (SOP) at the Omega Laser Facility. The wavelength-dependent system response was determined by measuring the optical emission from a National Institute of Standards and Technology–traceable tungsten-filament lamp through various narrowband (40 nm-wide) filters. The integrated signal over the SOP’s ~250-nm operating range ismore » then related to that of a blackbody radiator using the calibrated response. We present a simple closed-form equation for the brightness temperature as a function of streak-camera signal derived from this calibration. As a result, error estimates indicate that brightness temperature can be inferred to a precision of <5%.« less

  3. Absolute calibration of the OMEGA streaked optical pyrometer for temperature measurements of compressed materials

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gregor, M. C.; Boni, R.; Sorce, A.

    Experiments in high-energy-density physics often use optical pyrometry to determine temperatures of dynamically compressed materials. In combination with simultaneous shock-velocity and optical-reflectivity measurements using velocity interferometry, these experiments provide accurate equation-of-state data at extreme pressures (P > 1 Mbar) and temperatures (T > 0.5 eV). This paper reports on the absolute calibration of the streaked optical pyrometer (SOP) at the Omega Laser Facility. The wavelength-dependent system response was determined by measuring the optical emission from a National Institute of Standards and Technology–traceable tungsten-filament lamp through various narrowband (40 nm-wide) filters. The integrated signal over the SOP’s ~250-nm operating range ismore » then related to that of a blackbody radiator using the calibrated response. We present a simple closed-form equation for the brightness temperature as a function of streak-camera signal derived from this calibration. As a result, error estimates indicate that brightness temperature can be inferred to a precision of <5%.« less

  4. A stoichiometric calibration method for dual energy computed tomography

    NASA Astrophysics Data System (ADS)

    Bourque, Alexandra E.; Carrier, Jean-François; Bouchard, Hugo

    2014-04-01

    The accuracy of radiotherapy dose calculation relies crucially on patient composition data. The computed tomography (CT) calibration methods based on the stoichiometric calibration of Schneider et al (1996 Phys. Med. Biol. 41 111-24) are the most reliable to determine electron density (ED) with commercial single energy CT scanners. Along with the recent developments in dual energy CT (DECT) commercial scanners, several methods were published to determine ED and the effective atomic number (EAN) for polyenergetic beams without the need for CT calibration curves. This paper intends to show that with a rigorous definition of the EAN, the stoichiometric calibration method can be successfully adapted to DECT with significant accuracy improvements with respect to the literature without the need for spectrum measurements or empirical beam hardening corrections. Using a theoretical framework of ICRP human tissue compositions and the XCOM photon cross sections database, the revised stoichiometric calibration method yields Hounsfield unit (HU) predictions within less than ±1.3 HU of the theoretical HU calculated from XCOM data averaged over the spectra used (e.g., 80 kVp, 100 kVp, 140 kVp and 140/Sn kVp). A fit of mean excitation energy (I-value) data as a function of EAN is provided in order to determine the ion stopping power of human tissues from ED-EAN measurements. Analysis of the calibration phantom measurements with the Siemens SOMATOM Definition Flash dual source CT scanner shows that the present formalism yields mean absolute errors of (0.3 ± 0.4)% and (1.6 ± 2.0)% on ED and EAN, respectively. For ion therapy, the mean absolute errors for calibrated I-values and proton stopping powers (216 MeV) are (4.1 ± 2.7)% and (0.5 ± 0.4)%, respectively. In all clinical situations studied, the uncertainties in ion ranges in water for therapeutic energies are found to be less than 1.3 mm, 0.7 mm and 0.5 mm for protons, helium and carbon ions respectively, using a generic

  5. Four Years of Absolutely Calibrated Hyperspectral Data from the Atmospheric Infrared Sounder (AIRS) on the Eos Aqua

    NASA Technical Reports Server (NTRS)

    Aumann, Hartmut H.; Broberg, Steve; Elliott, Denis; Gregorich, Dave

    2006-01-01

    This viewgraph presentation reviews four years of absolute calibration of hyperspectral data from the AIRS instrument located on the EOS AQUA spacecraft. The following topics are discussed: 1) A quick overview of AIRS; 2) What absolute calibration accuracy and stability are required for climate applications?; 3) Validating of radiance accuracy and stability: Results from four years of AIRS data; and 4) Conclusions.

  6. ScaRaB: first results of absolute and cross calibration

    NASA Astrophysics Data System (ADS)

    Trémas, Thierry L.; Aznay, Ouahid; Chomette, Olivier

    2015-10-01

    ScaRaB (SCAnner for RAdiation Budget) is the name of three radiometers whose two first flight models have been launched in 1994 and 1997. The instruments were mounted on-board Russian satellites, METEOR and RESURS. On October 12th 2011, a last model has been launched from the Indian site of Sriharikota. ScaRaB is a passenger of MEGHA-TROPIQUES, an Indo-French joint Satellite Mission for studying the water cycle and energy exchanges in the tropics. ScaRaB is composed of four parallel and independent channels. Channel-2 and channel-3 are considered as the main ones. Channel-1 is dedicated to measure solar radiance (0.5 to 0.7 μm) while channel-4 (10 to 13 μm) is an infrared window. The absolute calibration of ScaRab is assured by internal calibration sources (black bodies and a lamp for channel-1). However, during the commissioning phase, the lamp used for the absolute calibration of channel-1 revealed to be inaccurate. We propose here an alternative calibration method based on terrestrial targets. Due to the spectral range of channel-1, only calibration over desert sites (temporal monitoring) and clouds (cross band) is suitable. Desert sites have been widely used for sensor calibration since they have a stable spectral response over time. Because of their high reflectances, the atmospheric effect on the upward radiance is relatively minimal. In addition, they are spatially uniform. Their temporal instability without atmospheric correction has been determined to be less than 1-2% over a year. Very-high-altitude (10 km) bright clouds are good validation targets in the visible and near-infrared spectra because of their high spectrally consistent reflectance. If the clouds are very high, there is no need to correct aerosol scattering and water vapor absorption as both aerosol and water vapor are distributed near the surface. Only Rayleigh scattering and ozone absorption need to be considered. This method has been found to give a 4% uncertainty. Radiometric cross

  7. Goddard Laser for Absolute Measurement of Radiance for Instrument Calibration in the Ultraviolet to Short Wave Infrared

    NASA Technical Reports Server (NTRS)

    McAndrew, Brendan; McCorkel, Joel; Shuman, Timothy; Zukowski, Barbara; Traore, Aboubakar; Rodriguez, Michael; Brown, Steven; Woodward, John

    2018-01-01

    A description of the Goddard Laser for Absolute Calibration of Radiance, a tunable, narrow linewidth spectroradiometric calibration tool, and results from calibration of an earth science satellite instrument from ultraviolet to short wave infrared wavelengths.

  8. Absolute Radiometric Calibration of KOMPSAT-3A

    NASA Astrophysics Data System (ADS)

    Ahn, H. Y.; Shin, D. Y.; Kim, J. S.; Seo, D. C.; Choi, C. U.

    2016-06-01

    This paper presents a vicarious radiometric calibration of the Korea Multi-Purpose Satellite-3A (KOMPSAT-3A) performed by the Korea Aerospace Research Institute (KARI) and the Pukyong National University Remote Sensing Group (PKNU RSG) in 2015.The primary stages of this study are summarized as follows: (1) A field campaign to determine radiometric calibrated target fields was undertaken in Mongolia and South Korea. Surface reflectance data obtained in the campaign were input to a radiative transfer code that predicted at-sensor radiance. Through this process, equations and parameters were derived for the KOMPSAT-3A sensor to enable the conversion of calibrated DN to physical units, such as at-sensor radiance or TOA reflectance. (2) To validate the absolute calibration coefficients for the KOMPSAT-3A sensor, we performed a radiometric validation with a comparison of KOMPSAT-3A and Landsat-8 TOA reflectance using one of the six PICS (Libya 4). Correlations between top-of-atmosphere (TOA) radiances and the spectral band responses of the KOMPSAT-3A sensors at the Zuunmod, Mongolia and Goheung, South Korea sites were significant for multispectral bands. The average difference in TOA reflectance between KOMPSAT-3A and Landsat-8 image over the Libya 4, Libya site in the red-green-blue (RGB) region was under 3%, whereas in the NIR band, the TOA reflectance of KOMPSAT-3A was lower than the that of Landsat-8 due to the difference in the band passes of two sensors. The KOMPSAT-3Aensor includes a band pass near 940 nm that can be strongly absorbed by water vapor and therefore displayed low reflectance. Toovercome this, we need to undertake a detailed analysis using rescale methods, such as the spectral bandwidth adjustment factor.

  9. A comparison of absolute calibrations of a radiation thermometer based on a monochromator and a tunable source

    NASA Astrophysics Data System (ADS)

    Keawprasert, T.; Anhalt, K.; Taubert, D. R.; Sperling, A.; Schuster, M.; Nevas, S.

    2013-09-01

    An LP3 radiation thermometer was absolutely calibrated at a newly developed monochromator-based set-up and the TUneable Lasers in Photometry (TULIP) facility of PTB in the wavelength range from 400 nm to 1100 nm. At both facilities, the spectral radiation of the respective sources irradiates an integrating sphere, thus generating uniform radiance across its precision aperture. The spectral irradiance of the integrating sphere is determined via an effective area of a precision aperture and a Si trap detector, traceable to the primary cryogenic radiometer of PTB. Due to the limited output power from the monochromator, the absolute calibration was performed with the measurement uncertainty of 0.17 % (k = 1), while the respective uncertainty at the TULIP facility is 0.14 %. Calibration results obtained by the two facilities were compared in terms of spectral radiance responsivity, effective wavelength and integral responsivity. It was found that the measurement results in integral responsivity at the both facilities are in agreement within the expanded uncertainty (k = 2). To verify the calibration accuracy, the absolutely calibrated radiation thermometer was used to measure the thermodynamic freezing temperatures of the PTB gold fixed-point blackbody.

  10. Absolute Calibration of Si iRMs used for Si Paleo-nutrient proxies

    NASA Astrophysics Data System (ADS)

    Vocke, Robert; Rabb, Savelas

    2016-04-01

    The Avogadro Project is an ongoing international effort, coordinated by the International Bureau of Weights and Measures (BIPM) and the International Avogadro Coordination (IAC) to redefine the SI unit mole in terms of the Avogadro constant and the SI unit kg in terms of the Planck constant. One of the outgrowths of this effort has been the development of a novel, precise and highly accurate method to measure calibrated (absolute) isotopic ratios that are traceable to the SI (Vocke et al., 2014 Metrologia 51, 361, Azuma et al., 2015 Metrologia 52 360). This approach has also been able to produce absolute Si isotope ratio data with lower levels of uncertainty when compared to the traditional "Atomic Weights" method of absolute isotope ratio measurement. Silicon isotope variations (reported as delta(Si30)and delta(Si29)) in silicic acid dissolved in ocean waters, in biogenic silica and in diatoms are extremely informative paleo-nutrient proxies. The utility and comparability of such measurements however depends on calibration with artifact isotopic Reference Materials (iRMs). We will be reporting new measurements on the iRMs NBS-28 (RM 8546 - Silica Sand), Diatomite, Big Batch and SRM 990 using the Avogadro measurement approach, comparing them with prior assessments of these iRMs.

  11. In-Flight Measurement of the Absolute Energy Scale of the Fermi Large Area Telescope

    NASA Technical Reports Server (NTRS)

    Ackermann, M.; Ajello, M.; Allafort, A.; Atwood, W. B.; Axelsson, M.; Baldini, L.; Barbielini, G; Bastieri, D.; Bechtol, K.; Bellazzini, R.; hide

    2012-01-01

    The Large Area Telescope (LAT) on-board the Fermi Gamma-ray Space Telescope is a pair-conversion telescope designed to survey the gamma-ray sky from 20 MeV to several hundreds of GeV. In this energy band there are no astronomical sources with sufficiently well known and sharp spectral features to allow an absolute calibration of the LAT energy scale. However, the geomagnetic cutoff in the cosmic ray electron- plus-positron (CRE) spectrum in low Earth orbit does provide such a spectral feature. The energy and spectral shape of this cutoff can be calculated with the aid of a numerical code tracing charged particles in the Earth's magnetic field. By comparing the cutoff value with that measured by the LAT in different geomagnetic positions, we have obtained several calibration points between approx. 6 and approx. 13 GeV with an estimated uncertainty of approx. 2%. An energy calibration with such high accuracy reduces the systematic uncertainty in LAT measurements of, for example, the spectral cutoff in the emission from gamma ray pulsars.

  12. In-Flight Measurement of the Absolute Energy Scale of the Fermi Large Area Telescope

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ackermann, M.; /Stanford U., HEPL /SLAC /KIPAC, Menlo Park; Ajello, M.

    The Large Area Telescope (LAT) on-board the Fermi Gamma-ray Space Telescope is a pair-conversion telescope designed to survey the gamma-ray sky from 20 MeV to several hundreds of GeV. In this energy band there are no astronomical sources with sufficiently well known and sharp spectral features to allow an absolute calibration of the LAT energy scale. However, the geomagnetic cutoff in the cosmic ray electron-plus-positron (CRE) spectrum in low Earth orbit does provide such a spectral feature. The energy and spectral shape of this cutoff can be calculated with the aid of a numerical code tracing charged particles in themore » Earth's magnetic field. By comparing the cutoff value with that measured by the LAT in different geomagnetic positions, we have obtained several calibration points between {approx}6 and {approx}13 GeV with an estimated uncertainty of {approx}2%. An energy calibration with such high accuracy reduces the systematic uncertainty in LAT measurements of, for example, the spectral cutoff in the emission from gamma ray pulsars.« less

  13. Performance of Different Light Sources for the Absolute Calibration of Radiation Thermometers

    NASA Astrophysics Data System (ADS)

    Martín, M. J.; Mantilla, J. M.; del Campo, D.; Hernanz, M. L.; Pons, A.; Campos, J.

    2017-09-01

    The evolving mise en pratique for the definition of the kelvin (MeP-K) [1, 2] will, in its forthcoming edition, encourage the realization and dissemination of the thermodynamic temperature either directly (primary thermometry) or indirectly (relative primary thermometry) via fixed points with assigned reference thermodynamic temperatures. In the last years, the Centro Español de Metrología (CEM), in collaboration with the Instituto de Óptica of Consejo Superior de Investigaciones Científicas (IO-CSIC), has developed several setups for absolute calibration of standard radiation thermometers using the radiance method to allow CEM the direct dissemination of the thermodynamic temperature and the assignment of the thermodynamic temperatures to several fixed points. Different calibration facilities based on a monochromator and/or a laser and an integrating sphere have been developed to calibrate CEM's standard radiation thermometers (KE-LP2 and KE-LP4) and filter radiometer (FIRA2). This system is based on the one described in [3] placed in IO-CSIC. Different light sources have been tried and tested for measuring absolute spectral radiance responsivity: a Xe-Hg 500 W lamp, a supercontinuum laser NKT SuperK-EXR20 and a diode laser emitting at 6473 nm with a typical maximum power of 120 mW. Their advantages and disadvantages have been studied such as sensitivity to interferences generated by the laser inside the filter, flux stability generated by the radiant sources and so forth. This paper describes the setups used, the uncertainty budgets and the results obtained for the absolute temperatures of Cu, Co-C, Pt-C and Re-C fixed points, measured with the three thermometers with central wavelengths around 650 nm.

  14. Ensuring long-term stability of infrared camera absolute calibration.

    PubMed

    Kattnig, Alain; Thetas, Sophie; Primot, Jérôme

    2015-07-13

    Absolute calibration of cryogenic 3-5 µm and 8-10 µm infrared cameras is notoriously instable and thus has to be repeated before actual measurements. Moreover, the signal to noise ratio of the imagery is lowered, decreasing its quality. These performances degradations strongly lessen the suitability of Infrared Imaging. These defaults are often blamed on detectors reaching a different "response state" after each return to cryogenic conditions, while accounting for the detrimental effects of imperfect stray light management. We show here that detectors are not to be blamed and that the culprit can also dwell in proximity electronics. We identify an unexpected source of instability in the initial voltage of the integrating capacity of detectors. Then we show that this parameter can be easily measured and taken into account. This way we demonstrate that a one month old calibration of a 3-5 µm camera has retained its validity.

  15. Empirical photometric calibration of the Gaia red clump: Colours, effective temperature, and absolute magnitude

    NASA Astrophysics Data System (ADS)

    Ruiz-Dern, L.; Babusiaux, C.; Arenou, F.; Turon, C.; Lallement, R.

    2018-01-01

    Context. Gaia Data Release 1 allows the recalibration of standard candles such as the red clump stars. To use those stars, they first need to be accurately characterised. In particular, colours are needed to derive interstellar extinction. As no filter is available for the first Gaia data release and to avoid the atmosphere model mismatch, an empirical calibration is unavoidable. Aims: The purpose of this work is to provide the first complete and robust photometric empirical calibration of the Gaia red clump stars of the solar neighbourhood through colour-colour, effective temperature-colour, and absolute magnitude-colour relations from the Gaia, Johnson, 2MASS, HIPPARCOS, Tycho-2, APASS-SLOAN, and WISE photometric systems, and the APOGEE DR13 spectroscopic temperatures. Methods: We used a 3D extinction map to select low reddening red giants. To calibrate the colour-colour and the effective temperature-colour relations, we developed a MCMC method that accounts for all variable uncertainties and selects the best model for each photometric relation. We estimated the red clump absolute magnitude through the mode of a kernel-based distribution function. Results: We provide 20 colour versus G-Ks relations and the first Teff versus G-Ks calibration. We obtained the red clump absolute magnitudes for 15 photometric bands with, in particular, MKs = (-1.606 ± 0.009) and MG = (0.495 ± 0.009) + (1.121 ± 0.128)(G-Ks-2.1). We present a dereddened Gaia-TGAS HR diagram and use the calibrations to compare its red clump and its red giant branch bump with Padova isochrones. Full Table A.1 is only available at the CDS via anonymous ftp to http://cdsarc.u-strasbg.fr (http://130.79.128.5) or via http://cdsarc.u-strasbg.fr/viz-bin/qcat?J/A+A/609/A116

  16. Absolute Flux Calibration of the IRAC Instrument on the Spitzer Space Telescope Using Hubble Space Telescope Flux Standards

    NASA Astrophysics Data System (ADS)

    Bohlin, R. C.; Gordon, K. D.; Rieke, G. H.; Ardila, D.; Carey, S.; Deustua, S.; Engelbracht, C.; Ferguson, H. C.; Flanagan, K.; Kalirai, J.; Meixner, M.; Noriega-Crespo, A.; Su, K. Y. L.; Tremblay, P.-E.

    2011-05-01

    The absolute flux calibration of the James Webb Space Telescope (JWST) will be based on a set of stars observed by the Hubble and Spitzer Space Telescopes. In order to cross-calibrate the two facilities, several A, G, and white dwarf stars are observed with both Spitzer and Hubble and are the prototypes for a set of JWST calibration standards. The flux calibration constants for the four Spitzer IRAC bands 1-4 are derived from these stars and are 2.3%, 1.9%, 2.0%, and 0.5% lower than the official cold-mission IRAC calibration of Reach et al., i.e., in agreement within their estimated errors of ~2%. The causes of these differences lie primarily in the IRAC data reduction and secondarily in the spectral energy distributions of our standard stars. The independent IRAC 8 μm band-4 fluxes of Rieke et al. are about 1.5% ± 2% higher than those of Reach et al. and are also in agreement with our 8 μm result.

  17. Calibration-free absolute frequency response measurement of directly modulated lasers based on additional modulation.

    PubMed

    Zhang, Shangjian; Zou, Xinhai; Wang, Heng; Zhang, Yali; Lu, Rongguo; Liu, Yong

    2015-10-15

    A calibration-free electrical method is proposed for measuring the absolute frequency response of directly modulated semiconductor lasers based on additional modulation. The method achieves the electrical domain measurement of the modulation index of directly modulated lasers without the need for correcting the responsivity fluctuation in the photodetection. Moreover, it doubles measuring frequency range by setting a specific frequency relationship between the direct and additional modulation. Both the absolute and relative frequency response of semiconductor lasers are experimentally measured from the electrical spectrum of the twice-modulated optical signal, and the measured results are compared to those obtained with conventional methods to check the consistency. The proposed method provides calibration-free and accurate measurement for high-speed semiconductor lasers with high-resolution electrical spectrum analysis.

  18. Absolute calibration for complex-geometry biomedical diffuse optical spectroscopy

    NASA Astrophysics Data System (ADS)

    Mastanduno, Michael A.; Jiang, Shudong; El-Ghussein, Fadi; diFlorio-Alexander, Roberta; Pogue, Brian W.; Paulsen, Keith D.

    2013-03-01

    We have presented methodology to calibrate data in NIRS/MRI imaging versus an absolute reference phantom and results in both phantoms and healthy volunteers. This method directly calibrates data to a diffusion-based model, takes advantage of patient specific geometry from MRI prior information, and generates an initial guess without the need for a large data set. This method of calibration allows for more accurate quantification of total hemoglobin, oxygen saturation, water content, scattering, and lipid concentration as compared with other, slope-based methods. We found the main source of error in the method to be derived from incorrect assignment of reference phantom optical properties rather than initial guess in reconstruction. We also present examples of phantom and breast images from a combined frequency domain and continuous wave MRI-coupled NIRS system. We were able to recover phantom data within 10% of expected contrast and within 10% of the actual value using this method and compare these results with slope-based calibration methods. Finally, we were able to use this technique to calibrate and reconstruct images from healthy volunteers. Representative images are shown and discussion is provided for comparison with existing literature. These methods work towards fully combining the synergistic attributes of MRI and NIRS for in-vivo imaging of breast cancer. Complete software and hardware integration in dual modality instruments is especially important due to the complexity of the technology and success will contribute to complex anatomical and molecular prognostic information that can be readily obtained in clinical use.

  19. Absolute photometric calibration of IRAC: lessons learned using nine years of flight data

    NASA Astrophysics Data System (ADS)

    Carey, S.; Ingalls, J.; Hora, J.; Surace, J.; Glaccum, W.; Lowrance, P.; Krick, J.; Cole, D.; Laine, S.; Engelke, C.; Price, S.; Bohlin, R.; Gordon, K.

    2012-09-01

    Significant improvements in our understanding of various photometric effects have occurred in the more than nine years of flight operations of the Infrared Array Camera aboard the Spitzer Space Telescope. With the accumulation of calibration data, photometric variations that are intrinsic to the instrument can now be mapped with high fidelity. Using all existing data on calibration stars, the array location-dependent photometric correction (the variation of flux with position on the array) and the correction for intra-pixel sensitivity variation (pixel-phase) have been modeled simultaneously. Examination of the warm mission data enabled the characterization of the underlying form of the pixelphase variation in cryogenic data. In addition to the accumulation of calibration data, significant improvements in the calibration of the truth spectra of the calibrators has taken place. Using the work of Engelke et al. (2006), the KIII calibrators have no offset as compared to the AV calibrators, providing a second pillar of the calibration scheme. The current cryogenic calibration is better than 3% in an absolute sense, with most of the uncertainty still in the knowledge of the true flux densities of the primary calibrators. We present the final state of the cryogenic IRAC calibration and a comparison of the IRAC calibration to an independent calibration methodology using the HST primary calibrators.

  20. SU-E-T-491: Importance of Energy Dependent Protons Per MU Calibration Factors in IMPT Dose Calculations Using Monte Carlo Technique

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Randeniya, S; Mirkovic, D; Titt, U

    2014-06-01

    Purpose: In intensity modulated proton therapy (IMPT), energy dependent, protons per monitor unit (MU) calibration factors are important parameters that determine absolute dose values from energy deposition data obtained from Monte Carlo (MC) simulations. Purpose of this study was to assess the sensitivity of MC-computed absolute dose distributions to the protons/MU calibration factors in IMPT. Methods: A “verification plan” (i.e., treatment beams applied individually to water phantom) of a head and neck patient plan was calculated using MC technique. The patient plan had three beams; one posterior-anterior (PA); two anterior oblique. Dose prescription was 66 Gy in 30 fractions. Ofmore » the total MUs, 58% was delivered in PA beam, 25% and 17% in other two. Energy deposition data obtained from the MC simulation were converted to Gy using energy dependent protons/MU calibrations factors obtained from two methods. First method is based on experimental measurements and MC simulations. Second is based on hand calculations, based on how many ion pairs were produced per proton in the dose monitor and how many ion pairs is equal to 1 MU (vendor recommended method). Dose distributions obtained from method one was compared with those from method two. Results: Average difference of 8% in protons/MU calibration factors between method one and two converted into 27 % difference in absolute dose values for PA beam; although dose distributions preserved the shape of 3D dose distribution qualitatively, they were different quantitatively. For two oblique beams, significant difference in absolute dose was not observed. Conclusion: Results demonstrate that protons/MU calibration factors can have a significant impact on absolute dose values in IMPT depending on the fraction of MUs delivered. When number of MUs increases the effect due to the calibration factors amplify. In determining protons/MU calibration factors, experimental method should be preferred in MC dose calculations

  1. Temporal dynamics of sand dune bidirectional reflectance characteristics for absolute radiometric calibration of optical remote sensing data

    NASA Astrophysics Data System (ADS)

    Coburn, Craig A.; Logie, Gordon S. J.

    2018-01-01

    Attempts to use pseudoinvariant calibration sites (PICS) for establishing absolute radiometric calibration of Earth observation (EO) satellites requires high-quality information about the nature of the bidirectional reflectance distribution function (BRDF) of the surfaces used for these calibrations. Past studies have shown that the PICS method is useful for evaluating the trend of sensors over time or for the intercalibration of sensors. The PICS method was not considered until recently for deriving absolute radiometric calibration. This paper presents BRDF data collected by a high-performance portable goniometer system to develop a temporal BRDF model for the Algodones Dunes in California. By sampling the BRDF of the sand surface at similar solar zenith angles to those normally encountered by EO satellites, additional information on the changing nature of the surface can improve models used to provide absolute radiometric correction. The results demonstrated that the BRDF of a reasonably simple sand surface was complex with changes in anisotropy taking place in response to changing solar zenith angles. For the majority of observation and illumination angles, the spectral reflectance anisotropy observed varied between 1% and 5% in patterns that repeat around solar noon.

  2. Artifact correction and absolute radiometric calibration techniques employed in the Landsat 7 image assessment system

    USGS Publications Warehouse

    Boncyk, Wayne C.; Markham, Brian L.; Barker, John L.; Helder, Dennis

    1996-01-01

    The Landsat-7 Image Assessment System (IAS), part of the Landsat-7 Ground System, will calibrate and evaluate the radiometric and geometric performance of the Enhanced Thematic Mapper Plus (ETM +) instrument. The IAS incorporates new instrument radiometric artifact correction and absolute radiometric calibration techniques which overcome some limitations to calibration accuracy inherent in historical calibration methods. Knowledge of ETM + instrument characteristics gleaned from analysis of archival Thematic Mapper in-flight data and from ETM + prelaunch tests allow the determination and quantification of the sources of instrument artifacts. This a priori knowledge will be utilized in IAS algorithms designed to minimize the effects of the noise sources before calibration, in both ETM + image and calibration data.

  3. Vicarious absolute radiometric calibration of GF-2 PMS2 sensor using permanent artificial targets in China

    NASA Astrophysics Data System (ADS)

    Liu, Yaokai; Li, Chuanrong; Ma, Lingling; Wang, Ning; Qian, Yonggang; Tang, Lingli

    2016-10-01

    GF-2, launched on August 19 2014, is one of the high-resolution land resource observing satellite of the China GF series satellites plan. The radiometric performance evaluation of the onboard optical pan and multispectral (PMS2) sensor of GF-2 satellite is very important for the further application of the data. And, the vicarious absolute radiometric calibration approach is one of the most useful way to monitor the radiometric performance of the onboard optical sensors. In this study, the traditional reflectance-based method is used to vicarious radiometrically calibrate the onboard PMS2 sensor of GF-2 satellite using three black, gray and white reflected permanent artificial targets located in the AOE Baotou site in China. Vicarious field calibration campaign were carried out in the AOE-Baotou calibration site on 22 April 2016. And, the absolute radiometric calibration coefficients were determined with in situ measured atmospheric parameters and surface reflectance of the permanent artificial calibration targets. The predicted TOA radiance of a selected desert area with our determined calibrated coefficients were compared with the official distributed calibration coefficients. Comparison results show a good consistent and the mean relative difference of the multispectral channels is less than 5%. Uncertainty analysis was also carried out and a total uncertainty with 3.87% is determined of the TOA radiance.

  4. Calibration of BAS-TR image plate response to high energy (3-300 MeV) carbon ions

    NASA Astrophysics Data System (ADS)

    Doria, D.; Kar, S.; Ahmed, H.; Alejo, A.; Fernandez, J.; Cerchez, M.; Gray, R. J.; Hanton, F.; MacLellan, D. A.; McKenna, P.; Najmudin, Z.; Neely, D.; Romagnani, L.; Ruiz, J. A.; Sarri, G.; Scullion, C.; Streeter, M.; Swantusch, M.; Willi, O.; Zepf, M.; Borghesi, M.

    2015-12-01

    The paper presents the calibration of Fuji BAS-TR image plate (IP) response to high energy carbon ions of different charge states by employing an intense laser-driven ion source, which allowed access to carbon energies up to 270 MeV. The calibration method consists of employing a Thomson parabola spectrometer to separate and spectrally resolve different ion species, and a slotted CR-39 solid state detector overlayed onto an image plate for an absolute calibration of the IP signal. An empirical response function was obtained which can be reasonably extrapolated to higher ion energies. The experimental data also show that the IP response is independent of ion charge states.

  5. Calibration of BAS-TR image plate response to high energy (3-300 MeV) carbon ions.

    PubMed

    Doria, D; Kar, S; Ahmed, H; Alejo, A; Fernandez, J; Cerchez, M; Gray, R J; Hanton, F; MacLellan, D A; McKenna, P; Najmudin, Z; Neely, D; Romagnani, L; Ruiz, J A; Sarri, G; Scullion, C; Streeter, M; Swantusch, M; Willi, O; Zepf, M; Borghesi, M

    2015-12-01

    The paper presents the calibration of Fuji BAS-TR image plate (IP) response to high energy carbon ions of different charge states by employing an intense laser-driven ion source, which allowed access to carbon energies up to 270 MeV. The calibration method consists of employing a Thomson parabola spectrometer to separate and spectrally resolve different ion species, and a slotted CR-39 solid state detector overlayed onto an image plate for an absolute calibration of the IP signal. An empirical response function was obtained which can be reasonably extrapolated to higher ion energies. The experimental data also show that the IP response is independent of ion charge states.

  6. Test Plan for a Calibration Demonstration System for the Reflected Solar Instrument for the Climate Absolute Radiance and Refractivity Observatory

    NASA Technical Reports Server (NTRS)

    Thome, Kurtis; McCorkel, Joel; Hair, Jason; McAndrew, Brendan; Daw, Adrian; Jennings, Donald; Rabin, Douglas

    2012-01-01

    The Climate Absolute Radiance and Refractivity Observatory (CLARREO) mission addresses the need to observe high-accuracy, long-term climate change trends and to use decadal change observations as the most critical method to determine the accuracy of climate change. One of the major objectives of CLARREO is to advance the accuracy of SI traceable absolute calibration at infrared and reflected solar wavelengths. This advance is required to reach the on-orbit absolute accuracy required to allow climate change observations to survive data gaps while remaining sufficiently accurate to observe climate change to within the uncertainty of the limit of natural variability. While these capabilities exist at NIST in the laboratory, there is a need to demonstrate that it can move successfully from NIST to NASA and/or instrument vendor capabilities for future spaceborne instruments. The current work describes the test plan for the Solar, Lunar for Absolute Reflectance Imaging Spectroradiometer (SOLARIS) which is the calibration demonstration system (CDS) for the reflected solar portion of CLARREO. The goal of the CDS is to allow the testing and evaluation of calibration approaches , alternate design and/or implementation approaches and components for the CLARREO mission. SOLARIS also provides a test-bed for detector technologies, non-linearity determination and uncertainties, and application of future technology developments and suggested spacecraft instrument design modifications. The end result of efforts with the SOLARIS CDS will be an SI-traceable error budget for reflectance retrieval using solar irradiance as a reference and methods for laboratory-based, absolute calibration suitable for climate-quality data collections. The CLARREO mission addresses the need to observe high-accuracy, long-term climate change trends and advance the accuracy of SI traceable absolute calibration. The current work describes the test plan for the SOLARIS which is the calibration demonstration

  7. Tissue Cancellation in Dual Energy Mammography Using a Calibration Phantom Customized for Direct Mapping.

    PubMed

    Han, Seokmin; Kang, Dong-Goo

    2014-01-01

    An easily implementable tissue cancellation method for dual energy mammography is proposed to reduce anatomical noise and enhance lesion visibility. For dual energy calibration, the images of an imaging object are directly mapped onto the images of a customized calibration phantom. Each pixel pair of the low and high energy images of the imaging object was compared to pixel pairs of the low and high energy images of the calibration phantom. The correspondence was measured by absolute difference between the pixel values of imaged object and those of the calibration phantom. Then the closest pixel pair of the calibration phantom images is marked and selected. After the calibration using direct mapping, the regions with lesion yielded different thickness from the background tissues. Taking advantage of the different thickness, the visibility of cancerous lesions was enhanced with increased contrast-to-noise ratio, depending on the size of lesion and breast thickness. However, some tissues near the edge of imaged object still remained after tissue cancellation. These remaining residuals seem to occur due to the heel effect, scattering, nonparallel X-ray beam geometry and Poisson distribution of photons. To improve its performance further, scattering and the heel effect should be compensated.

  8. Calibration and energy measurement of optically levitated nanoparticle sensors

    NASA Astrophysics Data System (ADS)

    Hebestreit, Erik; Frimmer, Martin; Reimann, René; Dellago, Christoph; Ricci, Francesco; Novotny, Lukas

    2018-03-01

    Optically levitated nanoparticles offer enormous potential for precision sensing. However, as for any other metrology device, the absolute measurement performance of a levitated-particle sensor is limited by the accuracy of the calibration relating the measured signal to an absolute displacement of the particle. Here, we suggest and demonstrate calibration protocols for levitated-nanoparticle sensors. Our calibration procedures include the treatment of anharmonicities in the trapping potential, as well as a protocol using a harmonic driving force, which is applicable if the sensor is coupled to a heat bath of unknown temperature. Finally, using the calibration, we determine the center-of-mass temperature of an optically levitated particle in thermal equilibrium from its motion and discuss the optimal measurement time required to determine the said temperature.

  9. Alignment and absolute wavelength calibration of imaging Bragg spectrometers.

    PubMed

    Bertschinger, G; Marchuk, O; Barnsley, R

    2016-11-01

    In the present and the next generation of fusion devices, imaging Bragg spectrometers are key diagnostics to measure plasma parameters in the hot core, especially ion temperature and plasma rotation. The latter quantities are routinely obtained using the Doppler-width and -shift of the emitted spectral lines, respectively. Line shift measurements require absolute accuracies Δλ/λ of about 10 ppm, where λ-is the observed wavelength. For ITER and the present fusion devices, spectral lines of He-and H-like argon, iron, and krypton as well as Ne-like tungsten are foreseen for the measurements. For these lines, Kα lines can be found, some in higher order, which fit into the narrow energy window of the spectrometers. For arbitrary wavelength settings, Kα lines are also used to measure the miscut of the spherical crystals; afterwards the spectrometers can be set according to the geometrical imaging properties using coordinate measurement machines. For the spectrometers measuring Lyα lines of H-like ions, fluorescence targets can provide in situ localized calibration lines on the spectra. The fluorescence targets are used best in transmission and are excited by the thermal x-ray radiation of the plasma. An analytic theory of fluorescence is worked out.

  10. Metallicity and absolute magnitude calibrations for UBV photometry

    NASA Astrophysics Data System (ADS)

    Karataş, Y.; Schuster, W. J.

    2006-10-01

    Calibrations are presented here for metallicity ([Fe/H]) in terms of the ultraviolet excess, [δ(U - B) at B - V = 0.6, hereafter δ0.6], and also for the absolute visual magnitude (MV) and its difference with respect to the Hyades (ΔMHV) in terms of δ0.6 and (B - V), making use of high-resolution spectroscopic abundances from the literature and Hipparcos parallaxes. The relation [Fe/H]-δ0.6 has been derived for dwarf plus turn-off stars, and also for dwarf, turn-off, plus subgiant stars classified using the MV-(B - V)0 plane of Fig. 11, which is calibrated with isochrones from Bergbusch & VandenBerg (and also VandenBerg & Clem). The [Fe/H]-δ0.6 relations in our equations (5) and (6) agree well with those of Carney, as can be seen from Fig. 5(a). Within the uncertainties, the zero-points, +0.13(+/-0.05) of equation (5) and +0.13(+/-0.04) of equation (6), are in good agreement with the photometric ones of Cameron and of Carney, and close to the spectroscopic ones of Cayrel et al. and of Boesgaard & Friel for the Hyades open cluster. Good quantitative agreement between our estimated [Fe/H] abundances with those from uvby-β photometry and spectroscopic [Fe/H]spec values demonstrates that our equation (6) can be used in deriving quality photometric metal abundances for field stars and clusters using UBV data from various photometric surveys. For dwarf and turn-off stars, a new hybrid MV calibration is presented, based on Hipparcos parallaxes with σπ/π <= 0.1 and with a dispersion of +/-0.24 in MV. This hybrid MV calibration contains δ0.6 and (B - V) terms, plus higher order cross-terms of these, and is valid for the ranges of +0.37 <= (B - V)0 <= +0.88,- 0.10 <= δ0.6 <= +0.29 and 3.44 <= MV <= 7.23. For dwarf and turn-off stars, the relation for ΔMHV is revised and updated in terms of (B - V) and δ0.6, for the ranges of -0.10 <= δ0.6 <= +0.29, and +0.49 <= (B - V)0 <= +0.89, again making use of Hipparcos parallaxes with σπ/π <= 0.1. These parallaxes for

  11. Error Budget for a Calibration Demonstration System for the Reflected Solar Instrument for the Climate Absolute Radiance and Refractivity Observatory

    NASA Technical Reports Server (NTRS)

    Thome, Kurtis; McCorkel, Joel; McAndrew, Brendan

    2013-01-01

    A goal of the Climate Absolute Radiance and Refractivity Observatory (CLARREO) mission is to observe highaccuracy, long-term climate change trends over decadal time scales. The key to such a goal is to improving the accuracy of SI traceable absolute calibration across infrared and reflected solar wavelengths allowing climate change to be separated from the limit of natural variability. The advances required to reach on-orbit absolute accuracy to allow climate change observations to survive data gaps exist at NIST in the laboratory, but still need demonstration that the advances can move successfully from to NASA and/or instrument vendor capabilities for spaceborne instruments. The current work describes the radiometric calibration error budget for the Solar, Lunar for Absolute Reflectance Imaging Spectroradiometer (SOLARIS) which is the calibration demonstration system (CDS) for the reflected solar portion of CLARREO. The goal of the CDS is to allow the testing and evaluation of calibration approaches, alternate design and/or implementation approaches and components for the CLARREO mission. SOLARIS also provides a test-bed for detector technologies, non-linearity determination and uncertainties, and application of future technology developments and suggested spacecraft instrument design modifications. The resulting SI-traceable error budget for reflectance retrieval using solar irradiance as a reference and methods for laboratory-based, absolute calibration suitable for climatequality data collections is given. Key components in the error budget are geometry differences between the solar and earth views, knowledge of attenuator behavior when viewing the sun, and sensor behavior such as detector linearity and noise behavior. Methods for demonstrating this error budget are also presented.

  12. Absolute Calibration of Si iRMs used for Measurements of Si Paleo-nutrient proxies

    NASA Astrophysics Data System (ADS)

    Vocke, R. D., Jr.; Rabb, S. A.

    2016-12-01

    Silicon isotope variations (reported as δ30Si and δ29Si, relative to NBS28) in silicic acid dissolved in ocean waters, in biogenic silica and in diatoms are extremely informative paleo-nutrient proxies. The resolution and comparability of such measurements depend on the quality of the isotopic Reference Materials (iRMs) defining the delta scale. We report new absolute Si isotopic measurements on the iRMs NBS28 (RM 8546 - Silica Sand), Diatomite, and Big Batch using the Avogadro measurement approach and comparing them with prior assessments of these iRMs. The Avogadro Si measurement technique was developed by the German Physikalish-Technische Bundesanstalt (PTB) to provide a precise and highly accurate method to measure absolute isotopic ratios in highly enriched 28Si (99.996%) material. These measurements are part of an international effort to redefine the kg and mole based on the Planck constant h and the Avogadro constant NA, respectively (Vocke et al., 2014 Metrologia 51, 361, Azuma et al., 2015 Metrologia 52 360). This approach produces absolute Si isotope ratio data with lower levels of uncertainty when compared to the traditional "Atomic Weights" method of absolute isotope ratio measurement calibration. This is illustrated in Fig. 1 where absolute Si isotopic measurements on SRM 990, separated by 40+ years of advances in instrumentation, are compared. The availability of this new technique does not say that absolute Si isotopic ratios are or ever will be better for normal Si isotopic measurements when seeking isotopic variations in nature, because they are not. However, by determining the absolute isotopic ratios of all the Si iRM scale artifacts, such iRMs become traceable to the metric system (SI); thereby automatically conferring on all the artifact-based δ30Si and δ29Si measurements traceability to the base SI unit, the mole. Such traceability should help reduce the potential of bias between different iRMs and facilitate the replacement of delta

  13. Absolute calibration of a charge-coupled device camera with twin beams

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Meda, A.; Ruo-Berchera, I., E-mail: i.ruoberchera@inrim.it; Degiovanni, I. P.

    2014-09-08

    We report on the absolute calibration of a Charge-Coupled Device (CCD) camera by exploiting quantum correlation. This method exploits a certain number of spatial pairwise quantum correlated modes produced by spontaneous parametric-down-conversion. We develop a measurement model accounting for all the uncertainty contributions, and we reach the relative uncertainty of 0.3% in low photon flux regime. This represents a significant step forward for the characterization of (scientific) CCDs used in mesoscopic light regime.

  14. Computational Methodology for Absolute Calibration Curves for Microfluidic Optical Analyses

    PubMed Central

    Chang, Chia-Pin; Nagel, David J.; Zaghloul, Mona E.

    2010-01-01

    Optical fluorescence and absorption are two of the primary techniques used for analytical microfluidics. We provide a thorough yet tractable method for computing the performance of diverse optical micro-analytical systems. Sample sizes range from nano- to many micro-liters and concentrations from nano- to milli-molar. Equations are provided to trace quantitatively the flow of the fundamental entities, namely photons and electrons, and the conversion of energy from the source, through optical components, samples and spectral-selective components, to the detectors and beyond. The equations permit facile computations of calibration curves that relate the concentrations or numbers of molecules measured to the absolute signals from the system. This methodology provides the basis for both detailed understanding and improved design of microfluidic optical analytical systems. It saves prototype turn-around time, and is much simpler and faster to use than ray tracing programs. Over two thousand spreadsheet computations were performed during this study. We found that some design variations produce higher signal levels and, for constant noise levels, lower minimum detection limits. Improvements of more than a factor of 1,000 were realized. PMID:22163573

  15. Absolute Radiometric Calibration of Narrow-Swath Imaging Sensors with Reference to Non-Coincident Wide-Swath Sensors

    NASA Technical Reports Server (NTRS)

    McCorkel, Joel; Thome, Kurtis; Lockwood, Ronald

    2012-01-01

    An inter-calibration method is developed to provide absolute radiometric calibration of narrow-swath imaging sensors with reference to non-coincident wide-swath sensors. The method predicts at-sensor radiance using non-coincident imagery from the reference sensor and knowledge of spectral reflectance of the test site. The imagery of the reference sensor is restricted to acquisitions that provide similar view and solar illumination geometry to reduce uncertainties due to directional reflectance effects. Spectral reflectance of the test site is found with a simple iterative radiative transfer method using radiance values of a well-understood wide-swath sensor and spectral shape information based on historical ground-based measurements. At-sensor radiance is calculated for the narrow-swath sensor using this spectral reflectance and atmospheric parameters that are also based on historical in situ measurements. Results of the inter-calibration method show agreement on the 2 5 percent level in most spectral regions with the vicarious calibration technique relying on coincident ground-based measurements referred to as the reflectance-based approach. While the variability of the inter-calibration method based on non-coincident image pairs is significantly larger, results are consistent with techniques relying on in situ measurements. The method is also insensitive to spectral differences between the sensors by transferring to surface spectral reflectance prior to prediction of at-sensor radiance. The utility of this inter-calibration method is made clear by its flexibility to utilize image pairings with acquisition dates differing in excess of 30 days allowing frequent absolute calibration comparisons between wide- and narrow-swath sensors.

  16. Absolute wavelength calibration of a Doppler spectrometer with a custom Fabry-Perot optical system

    NASA Astrophysics Data System (ADS)

    Baltzer, M. M.; Craig, D.; Den Hartog, D. J.; Nishizawa, T.; Nornberg, M. D.

    2016-11-01

    An Ion Doppler Spectrometer (IDS) is used for fast measurements of C VI line emission (343.4 nm) in the Madison Symmetric Torus. Absolutely calibrated flow measurements are difficult because the IDS records data within 0.25 nm of the line. Commercial calibration lamps do not produce lines in this narrow range. A light source using an ultraviolet LED and etalon was designed to provide a fiducial marker 0.08 nm wide. The light is coupled into the IDS at f/4, and a holographic diffuser increases homogeneity of the final image. Random and systematic errors in data analysis were assessed. The calibration is accurate to 0.003 nm, allowing for flow measurements accurate to 3 km/s. This calibration is superior to the previous method which used a time-averaged measurement along a chord believed to have zero net Doppler shift.

  17. Absolute wavelength calibration of a Doppler spectrometer with a custom Fabry-Perot optical system.

    PubMed

    Baltzer, M M; Craig, D; Den Hartog, D J; Nishizawa, T; Nornberg, M D

    2016-11-01

    An Ion Doppler Spectrometer (IDS) is used for fast measurements of C VI line emission (343.4 nm) in the Madison Symmetric Torus. Absolutely calibrated flow measurements are difficult because the IDS records data within 0.25 nm of the line. Commercial calibration lamps do not produce lines in this narrow range. A light source using an ultraviolet LED and etalon was designed to provide a fiducial marker 0.08 nm wide. The light is coupled into the IDS at f/4, and a holographic diffuser increases homogeneity of the final image. Random and systematic errors in data analysis were assessed. The calibration is accurate to 0.003 nm, allowing for flow measurements accurate to 3 km/s. This calibration is superior to the previous method which used a time-averaged measurement along a chord believed to have zero net Doppler shift.

  18. Proposed low-energy absolute calibration of nuclear recoils in a dual-phase noble element TPC using D-D neutron scattering kinematics

    NASA Astrophysics Data System (ADS)

    Verbus, J. R.; Rhyne, C. A.; Malling, D. C.; Genecov, M.; Ghosh, S.; Moskowitz, A. G.; Chan, S.; Chapman, J. J.; de Viveiros, L.; Faham, C. H.; Fiorucci, S.; Huang, D. Q.; Pangilinan, M.; Taylor, W. C.; Gaitskell, R. J.

    2017-04-01

    We propose a new technique for the calibration of nuclear recoils in large noble element dual-phase time projection chambers used to search for WIMP dark matter in the local galactic halo. This technique provides an in situ measurement of the low-energy nuclear recoil response of the target media using the measured scattering angle between multiple neutron interactions within the detector volume. The low-energy reach and reduced systematics of this calibration have particular significance for the low-mass WIMP sensitivity of several leading dark matter experiments. Multiple strategies for improving this calibration technique are discussed, including the creation of a new type of quasi-monoenergetic neutron source with a minimum possible peak energy of 272 keV. We report results from a time-of-flight-based measurement of the neutron energy spectrum produced by an Adelphi Technology, Inc. DD108 neutron generator, confirming its suitability for the proposed nuclear recoil calibration.

  19. Determining the importance of model calibration for forecasting absolute/relative changes in streamflow from LULC and climate changes

    USGS Publications Warehouse

    Niraula, Rewati; Meixner, Thomas; Norman, Laura M.

    2015-01-01

    Land use/land cover (LULC) and climate changes are important drivers of change in streamflow. Assessing the impact of LULC and climate changes on streamflow is typically done with a calibrated and validated watershed model. However, there is a debate on the degree of calibration required. The objective of this study was to quantify the variation in estimated relative and absolute changes in streamflow associated with LULC and climate changes with different calibration approaches. The Soil and Water Assessment Tool (SWAT) was applied in an uncalibrated (UC), single outlet calibrated (OC), and spatially-calibrated (SC) mode to compare the relative and absolute changes in streamflow at 14 gaging stations within the Santa Cruz River Watershed in southern Arizona, USA. For this purpose, the effect of 3 LULC, 3 precipitation (P), and 3 temperature (T) scenarios were tested individually. For the validation period, Percent Bias (PBIAS) values were >100% with the UC model for all gages, the values were between 0% and 100% with the OC model and within 20% with the SC model. Changes in streamflow predicted with the UC and OC models were compared with those of the SC model. This approach implicitly assumes that the SC model is “ideal”. Results indicated that the magnitude of both absolute and relative changes in streamflow due to LULC predicted with the UC and OC results were different than those of the SC model. The magnitude of absolute changes predicted with the UC and SC models due to climate change (both P and T) were also significantly different, but were not different for OC and SC models. Results clearly indicated that relative changes due to climate change predicted with the UC and OC were not significantly different than that predicted with the SC models. This result suggests that it is important to calibrate the model spatially to analyze the effect of LULC change but not as important for analyzing the relative change in streamflow due to climate change. This

  20. SU-F-T-492: The Impact of Water Temperature On Absolute Dose Calibration

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Islam, N; Podgorsak, M; Roswell Park Cancer Institute, Buffalo, NY

    Purpose: The Task Group 51 (TG 51) protocol prescribes that dose calibration of photon beams be done by irradiating an ionization chamber in a water tank at pre-defined depths. Methodologies are provided to account for variations in measurement conditions by applying correction factors. However, the protocol does not completely account for the impact of water temperature. It is well established that water temperature will influence the density of air in the ion chamber collecting volume. Water temperature, however, will also influence the size of the collecting volume via thermal expansion of the cavity wall and the density of the watermore » in the tank. In this work the overall effect of water temperature on absolute dosimetry has been investigated. Methods: Dose measurements were made using a Farmer-type ion chamber for 6 and 23 MV photon beams with water temperatures ranging from 10 to 40°C. A reference ion chamber was used to account for fluctuations in beam output between successive measurements. Results: For the same beam output, the dose determined using TG 51 was dependent on the temperature of the water in the tank. A linear regression of the data suggests that the dependence is statistically significant with p-values of the slope equal to 0.003 and 0.01 for 6 and 23 MV beams, respectively. For a 10 degree increase in water phantom temperature, the absolute dose determined with TG 51 increased by 0.27% and 0.31% for 6 and 23 MV beams, respectively. Conclusion: There is a measurable effect of water temperature on absolute dose calibration. To account for this effect, a reference temperature can be defined and a correction factor applied to account for deviations from this reference temperature during beam calibration. Such a factor is expected to be of similar magnitude to most of the existing TG 51 correction factors.« less

  1. The Dependence of Cloud Property Trend Detection on Absolute Calibration Accuracy of Passive Satellite Sensors

    NASA Astrophysics Data System (ADS)

    Shea, Y.; Wielicki, B. A.; Sun-Mack, S.; Minnis, P.; Zelinka, M. D.

    2016-12-01

    Detecting trends in climate variables on global, decadal scales requires highly accurate, stable measurements and retrieval algorithms. Trend uncertainty depends on its magnitude, natural variability, and instrument and retrieval algorithm accuracy and stability. We applied a climate accuracy framework to quantify the impact of absolute calibration on cloud property trend uncertainty. The cloud properties studied were cloud fraction, effective temperature, optical thickness, and effective radius retrieved using the Clouds and the Earth's Radiant Energy System (CERES) Cloud Property Retrieval System, which uses Moderate-resolution Imaging Spectroradiometer measurements (MODIS). Modeling experiments from the fifth phase of the Climate Model Intercomparison Project (CMIP5) agree that net cloud feedback is likely positive but disagree regarding its magnitude, mainly due to uncertainty in shortwave cloud feedback. With the climate accuracy framework we determined the time to detect trends for instruments with various calibration accuracies. We estimated a relationship between cloud property trend uncertainty, cloud feedback, and Equilibrium Climate Sensitivity and also between effective radius trend uncertainty and aerosol indirect effect trends. The direct relationship between instrument accuracy requirements and climate model output provides the level of instrument absolute accuracy needed to reduce climate model projection uncertainty. Different cloud types have varied radiative impacts on the climate system depending on several attributes, such as their thermodynamic phase, altitude, and optical thickness. Therefore, we also conducted these studies by cloud types for a clearer understanding of instrument accuracy requirements needed to detect changes in their cloud properties. Combining this information with the radiative impact of different cloud types helps to prioritize among requirements for future satellite sensors and understanding the climate detection

  2. Absolute Radiometric Calibration of the GÖKTÜRK-2 Satellite Sensor Using Tuz GÖLÜ (landnet Site) from Ndvi Perspective

    NASA Astrophysics Data System (ADS)

    Sakarya, Ufuk; Hakkı Demirhan, İsmail; Seda Deveci, Hüsne; Teke, Mustafa; Demirkesen, Can; Küpçü, Ramazan; Feray Öztoprak, A.; Efendioğlu, Mehmet; Fehmi Şimşek, F.; Berke, Erdinç; Zübeyde Gürbüz, Sevgi

    2016-06-01

    TÜBİTAK UZAY has conducted a research study on the use of space-based satellite resources for several aspects of agriculture. Especially, there are two precision agriculture related projects: HASSAS (Widespread application of sustainable precision agriculture practices in Southeastern Anatolia Project Region (GAP) Project) and AKTAR (Smart Agriculture Feasibility Project). The HASSAS project aims to study development of precision agriculture practice in GAP region. Multi-spectral satellite imagery and aerial hyperspectral data along with ground measurements was collected to analyze data in an information system. AKTAR aims to develop models for irrigation, fertilization and spectral signatures of crops in Inner Anatolia. By the end of the project precision agriculture practices to control irrigation, fertilization, pesticide and estimation of crop yield will be developed. Analyzing the phenology of crops using NDVI is critical for the projects. For this reason, absolute radiometric calibration of the Red and NIR bands in space-based satellite sensors is an important issue. The Göktürk-2 satellite is an earth observation satellite which was designed and built in Turkey and was launched in 2012. The Göktürk-2 satellite sensor has a resolution 2.5 meters in panchromatic and 5 meters in R/G/B/NIR bands. The absolute radiometric calibration of the Göktürk-2 satellite sensor was performed via the ground-based measurements - spectra-radiometer, sun photometer, and meteorological station- in Tuz Gölü cal/val site in 2015. In this paper, the first ground-based absolute radiometric calibration results of the Göktürk-2 satellite sensor using Tuz Gölü is demonstrated. The absolute radiometric calibration results of this paper are compared with the published cross-calibration results of the Göktürk-2 satellite sensor utilizing Landsat 8 imagery. According to the experimental comparison results, the Göktürk-2 satellite sensor coefficients for red and NIR bands

  3. Comparison of absolute gain photometric calibration between Planck/HFI and Herschel/SPIRE at 545 and 857 GHz

    NASA Astrophysics Data System (ADS)

    Bertincourt, B.; Lagache, G.; Martin, P. G.; Schulz, B.; Conversi, L.; Dassas, K.; Maurin, L.; Abergel, A.; Beelen, A.; Bernard, J.-P.; Crill, B. P.; Dole, H.; Eales, S.; Gudmundsson, J. E.; Lellouch, E.; Moreno, R.; Perdereau, O.

    2016-04-01

    We compare the absolute gain photometric calibration of the Planck/HFI and Herschel/SPIRE instruments on diffuse emission. The absolute calibration of HFI and SPIRE each relies on planet flux measurements and comparison with theoretical far-infrared emission models of planetary atmospheres. We measure the photometric cross calibration between the instruments at two overlapping bands, 545 GHz/500 μm and 857 GHz/350 μm. The SPIRE maps used have been processed in the Herschel Interactive Processing Environment (Version 12) and the HFI data are from the 2015 Public Data Release 2. For our study we used 15 large fields observed with SPIRE, which cover a total of about 120 deg2. We have selected these fields carefully to provide high signal-to-noise ratio, avoid residual systematics in the SPIRE maps, and span a wide range of surface brightness. The HFI maps are bandpass-corrected to match the emission observed by the SPIRE bandpasses. The SPIRE maps are convolved to match the HFI beam and put on a common pixel grid. We measure the cross-calibration relative gain between the instruments using two methods in each field, pixel-to-pixel correlation and angular power spectrum measurements. The SPIRE/HFI relative gains are 1.047 (±0.0069) and 1.003 (±0.0080) at 545 and 857 GHz, respectively, indicating very good agreement between the instruments. These relative gains deviate from unity by much less than the uncertainty of the absolute extended emission calibration, which is about 6.4% and 9.5% for HFI and SPIRE, respectively, but the deviations are comparable to the values 1.4% and 5.5% for HFI and SPIRE if the uncertainty from models of the common calibrator can be discounted. Of the 5.5% uncertainty for SPIRE, 4% arises from the uncertainty of the effective beam solid angle, which impacts the adopted SPIRE point source to extended source unit conversion factor, highlighting that as a focus for refinement.

  4. Approaches on calibration of bolometer and establishment of bolometer calibration device

    NASA Astrophysics Data System (ADS)

    Xia, Ming; Gao, Jianqiang; Ye, Jun'an; Xia, Junwen; Yin, Dejin; Li, Tiecheng; Zhang, Dong

    2015-10-01

    Bolometer is mainly used for measuring thermal radiation in the field of public places, labor hygiene, heating and ventilation and building energy conservation. The working principle of bolometer is under the exposure of thermal radiation, temperature of black absorbing layer of detector rise after absorption of thermal radiation, which makes the electromotive force produced by thermoelectric. The white light reflective layer of detector does not absorb thermal radiation, so the electromotive force produced by thermoelectric is almost zero. A comparison of electromotive force produced by thermoelectric of black absorbing layer and white reflective layer can eliminate the influence of electric potential produced by the basal background temperature change. After the electromotive force which produced by thermal radiation is processed by the signal processing unit, the indication displays through the indication display unit. The measurement unit of thermal radiation intensity is usually W/m2 or kW/m2. Its accurate and reliable value has important significance for high temperature operation, labor safety and hygiene grading management. Bolometer calibration device is mainly composed of absolute radiometer, the reference light source, electric measuring instrument. Absolute radiometer is a self-calibration type radiometer. Its working principle is using the electric power which can be accurately measured replaces radiation power to absolutely measure the radiation power. Absolute radiometer is the standard apparatus of laser low power standard device, the measurement traceability is guaranteed. Using the calibration method of comparison, the absolute radiometer and bolometer measure the reference light source in the same position alternately which can get correction factor of irradiance indication. This paper is mainly about the design and calibration method of the bolometer calibration device. The uncertainty of the calibration result is also evaluated.

  5. Landsat-7 ETM+ on-orbit reflective-band radiometric stability and absolute calibration

    USGS Publications Warehouse

    Markham, B.L.; Thome, K.J.; Barsi, J.A.; Kaita, E.; Helder, Dennis L.; Barker, J. L.; Scaramuzza, Pat

    2004-01-01

    Launched in April 1999, the Landsat-7 Enhanced Thematic Mapper Plus (ETM+) instrument is in its sixth year of operation. The ETM+ instrument has been the most stable of any of the Landsat instruments. To date, the best onboard calibration source for the reflective bands has been the Full Aperture Solar Calibrator, a solar-diffuser-based system, which has indicated changes of between 1% to 2% per year in the ETM+ gain for bands 1-4 and 8 and less than 0.5%/year for bands 5 and 7. However, most of this change is believed to be caused by changes in the solar diffuser panel, as opposed to a change in the instrument's gain. This belief is based partially on vicarious calibrations and observations of "invariant sites", hyperarid sites of the Sahara and Arabia. Weighted average slopes determined from these datasets suggest changes of 0.0% to 0.4% per year for bands 1-4 and 8 and 0.4% to 0.5% per year for bands 5 and 7. Absolute calibration of the reflective bands of the ETM+ is consistent with vicarious observations and other sensors generally at the 5% level, though there appear to be some systematic differences.

  6. A BAYESIAN METHOD FOR CALCULATING REAL-TIME QUANTITATIVE PCR CALIBRATION CURVES USING ABSOLUTE PLASMID DNA STANDARDS

    EPA Science Inventory

    In real-time quantitative PCR studies using absolute plasmid DNA standards, a calibration curve is developed to estimate an unknown DNA concentration. However, potential differences in the amplification performance of plasmid DNA compared to genomic DNA standards are often ignore...

  7. Calibration strategies for the determination of stable carbon absolute isotope ratios in a glycine candidate reference material by elemental analyser-isotope ratio mass spectrometry.

    PubMed

    Dunn, Philip J H; Malinovsky, Dmitry; Goenaga-Infante, Heidi

    2015-04-01

    We report a methodology for the determination of the stable carbon absolute isotope ratio of a glycine candidate reference material with natural carbon isotopic composition using EA-IRMS. For the first time, stable carbon absolute isotope ratios have been reported using continuous flow rather than dual inlet isotope ratio mass spectrometry. Also for the first time, a calibration strategy based on the use of synthetic mixtures gravimetrically prepared from well characterised, highly (13)C-enriched and (13)C-depleted glycines was developed for EA-IRMS calibration and generation of absolute carbon isotope ratio values traceable to the SI through calibration standards of known purity. A second calibration strategy based on converting the more typically determined delta values on the Vienna PeeDee Belemnite (VPDB) scale using literature values for the absolute carbon isotope ratio of VPDB itself was used for comparison. Both calibration approaches provided results consistent with those previously reported for the same natural glycine using MC-ICP-MS; absolute carbon ratios of 10,649 × 10(-6) with an expanded uncertainty (k = 2) of 24 × 10(-6) and 10,646 × 10(-6) with an expanded uncertainty (k = 2) of 88 × 10(-6) were obtained, respectively. The absolute carbon isotope ratio of the VPDB standard was found to be 11,115 × 10(-6) with an expanded uncertainty (k = 2) of 27 × 10(-6), which is in excellent agreement with previously published values.

  8. Absolute mass scale calibration in the inverse problem of the physical theory of fireballs.

    NASA Astrophysics Data System (ADS)

    Kalenichenko, V. V.

    A method of the absolute mass scale calibration is suggested for solving the inverse problem of the physical theory of fireballs. The method is based on the data on the masses of the fallen meteorites whose fireballs have been photographed in their flight. The method may be applied to those fireballs whose bodies have not experienced considerable fragmentation during their destruction in the atmosphere and have kept their form well enough. Statistical analysis of the inverse problem solution for a sufficiently representative sample makes it possible to separate a subsample of such fireballs. The data on the Lost City and Innisfree meteorites are used to obtain calibration coefficients.

  9. Campaign-Style Measurements of Vertical Seafloor Deformation in the Cascadia Subduction Zone Using an Absolute Self-Calibrating Pressure Recorder

    NASA Astrophysics Data System (ADS)

    Cook, M. J.; Sasagawa, G. S.; Roland, E. C.; Schmidt, D. A.; Wilcock, W. S. D.; Zumberge, M. A.

    2017-12-01

    Seawater pressure can be used to measure vertical seafloor deformation since small seafloor height changes produce measurable pressure changes. However, resolving secular vertical deformation near subduction zones can be difficult due to pressure gauge drift. A typical gauge drift rate of about 10 cm/year exceeds the expected secular rate of 1 cm/year or less in Cascadia. The absolute self-calibrating pressure recorder (ASCPR) was developed to solve the issue of gauge drift by using a deadweight calibrator to make campaign-style measurements of the absolute seawater pressure. Pressure gauges alternate between observing the ambient seawater pressure and the deadweight calibrator pressure, which is an accurately known reference value, every 10-20 minutes for several hours. The difference between the known reference pressure and the observed seafloor pressure allows offsets and transients to be corrected to determine the true, absolute seafloor pressure. Absolute seafloor pressure measurements provide a great utility for geodetic deformation studies. The measurements provide instrument-independent, benchmark values that can be used far into the future as epoch points in long-term time series or as important calibration points for other continuous pressure records. The ASCPR was first deployed in Cascadia in 2014 and 2015, when seven concrete seafloor benchmarks were placed along a trench-perpendicular profile extending from 20 km to 105 km off the central Oregon coast. Two benchmarks have ASCPR measurements that span three years, one benchmark spans two years, and four benchmarks span one year. Measurement repeatability is currently 3 to 4 cm, but we anticipate accuracy on the order of 1 cm with improvements to the instrument metrology and processing tidal and non-tidal oceanographic signals.

  10. Improved absolute calibration of LOPES measurements and its impact on the comparison with REAS 3.11 and CoREAS simulations

    NASA Astrophysics Data System (ADS)

    Apel, W. D.; Arteaga-Velázquez, J. C.; Bähren, L.; Bekk, K.; Bertaina, M.; Biermann, P. L.; Blümer, J.; Bozdog, H.; Brancus, I. M.; Cantoni, E.; Chiavassa, A.; Daumiller, K.; de Souza, V.; Di Pierro, F.; Doll, P.; Engel, R.; Falcke, H.; Fuchs, B.; Gemmeke, H.; Grupen, C.; Haungs, A.; Heck, D.; Hiller, R.; Hörandel, J. R.; Horneffer, A.; Huber, D.; Huege, T.; Isar, P. G.; Kampert, K.-H.; Kang, D.; Krömer, O.; Kuijpers, J.; Link, K.; Łuczak, P.; Ludwig, M.; Mathes, H. J.; Melissas, M.; Morello, C.; Nehls, S.; Oehlschläger, J.; Palmieri, N.; Pierog, T.; Rautenberg, J.; Rebel, H.; Roth, M.; Rühle, C.; Saftoiu, A.; Schieler, H.; Schmidt, A.; Schoo, S.; Schröder, F. G.; Sima, O.; Toma, G.; Trinchero, G. C.; Weindl, A.; Wochele, J.; Zabierowski, J.; Zensus, J. A.

    2016-02-01

    LOPES was a digital antenna array detecting the radio emission of cosmic-ray air showers. The calibration of the absolute amplitude scale of the measurements was done using an external, commercial reference source, which emits a frequency comb with defined amplitudes. Recently, we obtained improved reference values by the manufacturer of the reference source, which significantly changed the absolute calibration of LOPES. We reanalyzed previously published LOPES measurements, studying the impact of the changed calibration. The main effect is an overall decrease of the LOPES amplitude scale by a factor of 2.6 ± 0.2, affecting all previously published values for measurements of the electric-field strength. This results in a major change in the conclusion of the paper 'Comparing LOPES measurements of air-shower radio emission with REAS 3.11 and CoREAS simulations' published by Apel et al. (2013) : With the revised calibration, LOPES measurements now are compatible with CoREAS simulations, but in tension with REAS 3.11 simulations. Since CoREAS is the latest version of the simulation code incorporating the current state of knowledge on the radio emission of air showers, this new result indicates that the absolute amplitude prediction of current simulations now is in agreement with experimental data.

  11. Absolute dose determination in high-energy electron beams: Comparison of IAEA dosimetry protocols

    PubMed Central

    Sathiyan, S.; Ravikumar, M.

    2008-01-01

    In this study, absorbed doses were measured and compared for high-energy electrons (6, 9, 12, 16, and 20 MeV) using International Atomic Energy Agency (IAEA), Technical Reports Series No. 277 (TRS), TRS 381, and TRS 398 dosimetry protocols. Absolute dose measurements were carried out using FC65-G Farmer chamber and Nordic Association of Clinical Physicists (NACP) parallel plate chamber with DOSE1 electrometer in WP1-D water phantom for reference field size of 15 × 15 cm2 at 100 cm source-to-surface distance. The results show that the difference between TRS 398 and TRS 381 was about 0.24% to 1.3% depending upon the energy, and the maximum difference between TRS 398 and TRS 277 was 1.5%. The use of cylindrical chamber in electron beam gives the maximum dose difference between the TRS 398 and TRS 277 in the order of 1.4% for energies above 10 MeV (R50 > 4 g/cm2). It was observed that the accuracy of dose estimation was better with the protocols based on the water calibration procedures, as no conversion quantities are involved for conversion of dose from air to water. The cross-calibration procedure of parallel plate chamber with high-energy electron beams is recommended as it avoids pwall correction factor entering into the determination of kQ,Qo. PMID:19893700

  12. Minerva Detector Calibration

    NASA Astrophysics Data System (ADS)

    Rakotondravohitra, Laza

    2013-04-01

    Current and future neutrino oscillation experiments depend on precise knowledge of neutrino-nucleus cross-sections. Minerva is a neutrino scattering experiment at Fermilab. Minerva was designed to make precision measurements of low energy neutrino and antineutrino cross sections on a variety of different materials (plastic scintillator, C, Fe, Pb, He and H2O). In Order to make these measurements, it is crucial that the detector is carefully calibrated.This talk will describe how MINERvA uses muons from upstream neutrino interactions as a calibration source to convert electronics output to absolute energy deposition.

  13. Absolute calibration of the mass scale in the inverse problem of the physical theory of fireballs

    NASA Astrophysics Data System (ADS)

    Kalenichenko, V. V.

    1992-08-01

    A method of the absolute calibration of the mass scale is proposed for solving the inverse problem of the physical theory of fireballs. The method is based on data on the masses of fallen meteorites whose fireballs have been photographed in flight. The method can be applied to fireballs whose bodies have not experienced significant fragmentation during their flight in the atmosphere and have kept their shape relatively well. Data on the Lost City and Innisfree meteorites are used to calculate the calibration coefficients.

  14. Description and performance of the OGSE for VNIR absolute spectroradiometric calibration of MTG-I satellites

    NASA Astrophysics Data System (ADS)

    Glastre, W.; Marque, J.; Compain, E.; Deep, A.; Durand, Y.; Aminou, D. M. A.

    2017-09-01

    The Meteosat Third Generation (MTG) Programme is being realised through the well-established and successful Cooperation between EUMETSAT and ESA. It will ensure the future continuity of MSG with the capabilities to enhance nowcasting, global and regional numerical weather prediction, climate and atmospheric chemistry monitoring data from Geostationary Orbit. This will be achieved through a series of 6 satellites named MTG-I and MTG-S to bring to the meteorological community continuous high spatial, spectral and temporal resolution observations and geophysical parameters of the Earth based on sensors from the geo-stationary orbit. In particular, the imagery mission MTG-I will bring an improved continuation of the MSG satellites series with the Flexible Combined Imager (FCI) a broad spectral range (from UV to LWIR) with better spatial and spectral resolutions. The FCI will be able to take high spatial resolution pictures of the Earth within 8 VNIR and 8 IR channels. As one of the mission of this instrument is to provide a quantitative analysis of atmosphere compounds, the absolute observed radiance needs to be known with a specified accuracy for VNIR as low as to 5% at k=3 over its full dynamic. While the FCI is regularly recalibrated every 6 month at equinoxes, it is however requiring initial ground calibration for the beginning of its mission. The Multi Optical Test Assembly (MOTA) is one of the Optical Ground Support Equipment (OGSE) dedicated to various missions necessary for the integration of the FCI . This equipment, provided by Bertin Technologies, will be delivered to TAS-F by the end of 2016. One of its mission, is the on-ground absolute calibration of VNIR channels. In order to handle this, the MOTA will be placed in front of the FCI under representative vacuum conditions and will be able to project a perfectly known, calibrated radiance level within the full dynamic of FCI instrument. The main difficulty is the very demanding calibration level with

  15. An absolute calibration system for millimeter-accuracy APOLLO measurements

    NASA Astrophysics Data System (ADS)

    Adelberger, E. G.; Battat, J. B. R.; Birkmeier, K. J.; Colmenares, N. R.; Davis, R.; Hoyle, C. D.; Huang, L. R.; McMillan, R. J.; Murphy, T. W., Jr.; Schlerman, E.; Skrobol, C.; Stubbs, C. W.; Zach, A.

    2017-12-01

    Lunar laser ranging provides a number of leading experimental tests of gravitation—important in our quest to unify general relativity and the standard model of physics. The apache point observatory lunar laser-ranging operation (APOLLO) has for years achieved median range precision at the  ∼2 mm level. Yet residuals in model-measurement comparisons are an order-of-magnitude larger, raising the question of whether the ranging data are not nearly as accurate as they are precise, or if the models are incomplete or ill-conditioned. This paper describes a new absolute calibration system (ACS) intended both as a tool for exposing and eliminating sources of systematic error, and also as a means to directly calibrate ranging data in situ. The system consists of a high-repetition-rate (80 MHz) laser emitting short (< 10 ps) pulses that are locked to a cesium clock. In essence, the ACS delivers photons to the APOLLO detector at exquisitely well-defined time intervals as a ‘truth’ input against which APOLLO’s timing performance may be judged and corrected. Preliminary analysis indicates no inaccuracies in APOLLO data beyond the  ∼3 mm level, suggesting that historical APOLLO data are of high quality and motivating continued work on model capabilities. The ACS provides the means to deliver APOLLO data both accurate and precise below the 2 mm level.

  16. First Results of Field Absolute Calibration of the GPS Receiver Antenna at Wuhan University

    PubMed Central

    Hu, Zhigang; Zhao, Qile; Chen, Guo; Wang, Guangxing; Dai, Zhiqiang; Li, Tao

    2015-01-01

    GNSS receiver antenna phase center variations (PCVs), which arise from the non-spherical phase response of GNSS signals have to be well corrected for high-precision GNSS applications. Without using a precise antenna phase center correction (PCC) model, the estimated position of a station monument will lead to a bias of up to several centimeters. The Chinese large-scale research project “Crustal Movement Observation Network of China” (CMONOC), which requires high-precision positions in a comprehensive GPS observational network motived establishment of a set of absolute field calibrations of the GPS receiver antenna located at Wuhan University. In this paper the calibration facilities are firstly introduced and then the multipath elimination and PCV estimation strategies currently used are elaborated. The validation of estimated PCV values of test antenna are finally conducted, compared with the International GNSS Service (IGS) type values. Examples of TRM57971.00 NONE antenna calibrations from our calibration facility demonstrate that the derived PCVs and IGS type mean values agree at the 1 mm level. PMID:26580616

  17. First Results of Field Absolute Calibration of the GPS Receiver Antenna at Wuhan University.

    PubMed

    Hu, Zhigang; Zhao, Qile; Chen, Guo; Wang, Guangxing; Dai, Zhiqiang; Li, Tao

    2015-11-13

    GNSS receiver antenna phase center variations (PCVs), which arise from the non-spherical phase response of GNSS signals have to be well corrected for high-precision GNSS applications. Without using a precise antenna phase center correction (PCC) model, the estimated position of a station monument will lead to a bias of up to several centimeters. The Chinese large-scale research project "Crustal Movement Observation Network of China" (CMONOC), which requires high-precision positions in a comprehensive GPS observational network motived establishment of a set of absolute field calibrations of the GPS receiver antenna located at Wuhan University. In this paper the calibration facilities are firstly introduced and then the multipath elimination and PCV estimation strategies currently used are elaborated. The validation of estimated PCV values of test antenna are finally conducted, compared with the International GNSS Service (IGS) type values. Examples of TRM57971.00 NONE antenna calibrations from our calibration facility demonstrate that the derived PCVs and IGS type mean values agree at the 1 mm level.

  18. Calibration of a proton beam energy monitor.

    PubMed

    Moyers, M F; Coutrakon, G B; Ghebremedhin, A; Shahnazi, K; Koss, P; Sanders, E

    2007-06-01

    Delivery of therapeutic proton beams requires an absolute energy accuracy of +/-0.64 to 0.27 MeV for patch fields and a relative energy accuracy of +/-0.10 to 0.25 MeV for tailoring the depth dose distribution using the energy stacking technique. Achromatic switchyard tunes, which lead to better stability of the beam incident onto the patient, unfortunately limit the ability of switchyard magnet tesla meters to verify the correct beam energy within the tolerances listed above. A new monitor to measure the proton energy before each pulse is transported through the switchyard has been installed into a proton synchrotron. The purpose of this monitor is to correct and/or inhibit beam delivery when the measured beam energy is outside of the tolerances for treatment. The monitor calculates the beam energy using data from two frequency and eight beam position monitors that measure the revolution frequency of the proton bunches and the effective offset of the orbit from the nominal radius of the synchrotron. The new energy monitor has been calibrated by measuring the range of the beam through water and comparing with published range-energy tables for various energies. A relationship between depth dose curves and range-energy tables was first determined using Monte Carlo simulations of particle transport and energy deposition. To reduce the uncertainties associated with typical scanning water phantoms, a new technique was devised in which the beam energy was scanned while fixed thickness water tanks were sandwiched between two fixed parallel plate ionization chambers. Using a multitude of tank sizes, several energies were tested to determine the nominal accelerator orbit radius. After calibration, the energy reported by the control system matched the energy derived by range measurements to better than 0.72 MeV for all nine energies tested between 40 and 255 MeV with an average difference of -0.33 MeV. A study of different combinations of revolution frequency and radial

  19. Absolute radiant power measurement for the Au M lines of laser-plasma using a calibrated broadband soft X-ray spectrometer with flat-spectral response.

    PubMed

    Troussel, Ph; Villette, B; Emprin, B; Oudot, G; Tassin, V; Bridou, F; Delmotte, F; Krumrey, M

    2014-01-01

    CEA implemented an absolutely calibrated broadband soft X-ray spectrometer called DMX on the Omega laser facility at the Laboratory for Laser Energetics (LLE) in 1999 to measure radiant power and spectral distribution of the radiation of the Au plasma. The DMX spectrometer is composed of 20 channels covering the spectral range from 50 eV to 20 keV. The channels for energies below 1.5 keV combine a mirror and a filter with a coaxial photo-emissive detector. For the channels above 5 keV the photoemissive detector is replaced by a conductive detector. The intermediate energy channels (1.5 keV < photon energy < 5 keV) use only a filter and a coaxial detector. A further improvement of DMX consists in flat-response X-ray channels for a precise absolute measurement of the photon flux in the photon energy range from 0.1 keV to 6 keV. Such channels are equipped with a filter, a Multilayer Mirror (MLM), and a coaxial detector. We present as an example the development of channel for the gold M emission lines in the photon energy range from 2 keV to 4 keV which has been successfully used on the OMEGA laser facility. The results of the radiant power measurements with the new MLM channel and with the usual channel composed of a thin titanium filter and a coaxial detector (without mirror) are compared. All elements of the channel have been calibrated in the laboratory of the Physikalisch-Technische Bundesanstalt, Germany's National Metrology Institute, at the synchrotron radiation facility BESSY II in Berlin using dedicated well established and validated methods.

  20. Calibration strategies for the Cherenkov Telescope Array

    NASA Astrophysics Data System (ADS)

    Gaug, Markus; Berge, David; Daniel, Michael; Doro, Michele; Förster, Andreas; Hofmann, Werner; Maccarone, Maria C.; Parsons, Dan; de los Reyes Lopez, Raquel; van Eldik, Christopher

    2014-08-01

    The Central Calibration Facilities workpackage of the Cherenkov Telescope Array (CTA) observatory for very high energy gamma ray astronomy defines the overall calibration strategy of the array, develops dedicated hardware and software for the overall array calibration and coordinates the calibration efforts of the different telescopes. The latter include LED-based light pulsers, and various methods and instruments to achieve a calibration of the overall optical throughput. On the array level, methods for the inter-telescope calibration and the absolute calibration of the entire observatory are being developed. Additionally, the atmosphere above the telescopes, used as a calorimeter, will be monitored constantly with state-of-the-art instruments to obtain a full molecular and aerosol profile up to the stratosphere. The aim is to provide a maximal uncertainty of 10% on the reconstructed energy-scale, obtained through various independent methods. Different types of LIDAR in combination with all-sky-cameras will provide the observatory with an online, intelligent scheduling system, which, if the sky is partially covered by clouds, gives preference to sources observable under good atmospheric conditions. Wide-field optical telescopes and Raman Lidars will provide online information about the height-resolved atmospheric extinction, throughout the field-of-view of the cameras, allowing for the correction of the reconstructed energy of each gamma-ray event. The aim is to maximize the duty cycle of the observatory, in terms of usable data, while reducing the dead time introduced by calibration activities to an absolute minimum.

  1. A method for in situ absolute DD yield calibration of neutron time-of-flight detectors on OMEGA using CR-39-based proton detectors.

    PubMed

    Waugh, C J; Rosenberg, M J; Zylstra, A B; Frenje, J A; Séguin, F H; Petrasso, R D; Glebov, V Yu; Sangster, T C; Stoeckl, C

    2015-05-01

    Neutron time of flight (nTOF) detectors are used routinely to measure the absolute DD neutron yield at OMEGA. To check the DD yield calibration of these detectors, originally calibrated using indium activation systems, which in turn were cross-calibrated to NOVA nTOF detectors in the early 1990s, a direct in situ calibration method using CR-39 range filter proton detectors has been successfully developed. By measuring DD neutron and proton yields from a series of exploding pusher implosions at OMEGA, a yield calibration coefficient of 1.09 ± 0.02 (relative to the previous coefficient) was determined for the 3m nTOF detector. In addition, comparison of these and other shots indicates that significant reduction in charged particle flux anisotropies is achieved when bang time occurs significantly (on the order of 500 ps) after the trailing edge of the laser pulse. This is an important observation as the main source of the yield calibration error is due to particle anisotropies caused by field effects. The results indicate that the CR-39-nTOF in situ calibration method can serve as a valuable technique for calibrating and reducing the uncertainty in the DD absolute yield calibration of nTOF detector systems on OMEGA, the National Ignition Facility, and laser megajoule.

  2. Definition of energy-calibrated spectra for national reachback

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kunz, Christopher L.; Hertz, Kristin L.

    2014-01-01

    Accurate energy calibration is critical for the timeliness and accuracy of analysis results of spectra submitted to National Reachback, particularly for the detection of threat items. Many spectra submitted for analysis include either a calibration spectrum using 137Cs or no calibration spectrum at all. The single line provided by 137Cs is insufficient to adequately calibrate nonlinear spectra. A calibration source that provides several lines that are well-spaced, from the low energy cutoff to the full energy range of the detector, is needed for a satisfactory energy calibration. This paper defines the requirements of an energy calibration for the purposes ofmore » National Reachback, outlines a method to validate whether a given spectrum meets that definition, discusses general source considerations, and provides a specific operating procedure for calibrating the GR-135.« less

  3. The Absolute Magnitude of the Sun in Several Filters

    NASA Astrophysics Data System (ADS)

    Willmer, Christopher N. A.

    2018-06-01

    This paper presents a table with estimates of the absolute magnitude of the Sun and the conversions from vegamag to the AB and ST systems for several wide-band filters used in ground-based and space-based observatories. These estimates use the dustless spectral energy distribution (SED) of Vega, calibrated absolutely using the SED of Sirius, to set the vegamag zero-points and a composite spectrum of the Sun that coadds space-based observations from the ultraviolet to the near-infrared with models of the Solar atmosphere. The uncertainty of the absolute magnitudes is estimated by comparing the synthetic colors with photometric measurements of solar analogs and is found to be ∼0.02 mag. Combined with the uncertainty of ∼2% in the calibration of the Vega SED, the errors of these absolute magnitudes are ∼3%–4%. Using these SEDs, for three of the most utilized filters in extragalactic work the estimated absolute magnitudes of the Sun are M B = 5.44, M V = 4.81, and M K = 3.27 mag in the vegamag system and M B = 5.31, M V = 4.80, and M K = 5.08 mag in AB.

  4. Evaluation of “Autotune” calibration against manual calibration of building energy models

    DOE PAGES

    Chaudhary, Gaurav; New, Joshua; Sanyal, Jibonananda; ...

    2016-08-26

    Our paper demonstrates the application of Autotune, a methodology aimed at automatically producing calibrated building energy models using measured data, in two case studies. In the first case, a building model is de-tuned by deliberately injecting faults into more than 60 parameters. This model was then calibrated using Autotune and its accuracy with respect to the original model was evaluated in terms of the industry-standard normalized mean bias error and coefficient of variation of root mean squared error metrics set forth in ASHRAE Guideline 14. In addition to whole-building energy consumption, outputs including lighting, plug load profiles, HVAC energy consumption,more » zone temperatures, and other variables were analyzed. In the second case, Autotune calibration is compared directly to experts’ manual calibration of an emulated-occupancy, full-size residential building with comparable calibration results in much less time. Lastly, our paper concludes with a discussion of the key strengths and weaknesses of auto-calibration approaches.« less

  5. A method for in situ absolute DD yield calibration of neutron time-of-flight detectors on OMEGA using CR-39-based proton detectors

    DOE PAGES

    Waugh, C. J.; Rosenberg, M. J.; Zylstra, A. B.; ...

    2015-05-27

    Neutron time of flight (nTOF) detectors are used routinely to measure the absolute DD neutron yield at OMEGA. To check the DD yield calibration of these detectors, originally calibrated using indium activation systems, which in turn were cross-calibrated to NOVA nTOF detectors in the early 1990s, a direct in situ calibration method using CR-39 range filter proton detectors has been successfully developed. By measuring DD neutron and proton yields from a series of exploding pusher implosions at OMEGA, a yield calibration coefficient of 1.09 ± 0.02 (relative to the previous coefficient) was determined for the 3m nTOF detector. In addition,more » comparison of these and other shots indicates that significant reduction in charged particle flux anisotropies is achieved when bang time occurs significantly (on the order of 500 ps) after the trailing edge of the laser pulse. This is an important observation as the main source of the yield calibration error is due to particle anisotropies caused by field effects. The results indicate that the CR-39-nTOF in situ calibration method can serve as a valuable technique for calibrating and reducing the uncertainty in the DD absolute yield calibration of nTOF detector systems on OMEGA, the National Ignition Facility, and laser megajoule.« less

  6. A method for in situ absolute DD yield calibration of neutron time-of-flight detectors on OMEGA using CR-39-based proton detectors

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Waugh, C. J.; Rosenberg, M. J.; Zylstra, A. B.

    Neutron time of flight (nTOF) detectors are used routinely to measure the absolute DD neutron yield at OMEGA. To check the DD yield calibration of these detectors, originally calibrated using indium activation systems, which in turn were cross-calibrated to NOVA nTOF detectors in the early 1990s, a direct in situ calibration method using CR-39 range filter proton detectors has been successfully developed. By measuring DD neutron and proton yields from a series of exploding pusher implosions at OMEGA, a yield calibration coefficient of 1.09 ± 0.02 (relative to the previous coefficient) was determined for the 3m nTOF detector. In addition,more » comparison of these and other shots indicates that significant reduction in charged particle flux anisotropies is achieved when bang time occurs significantly (on the order of 500 ps) after the trailing edge of the laser pulse. This is an important observation as the main source of the yield calibration error is due to particle anisotropies caused by field effects. The results indicate that the CR-39-nTOF in situ calibration method can serve as a valuable technique for calibrating and reducing the uncertainty in the DD absolute yield calibration of nTOF detector systems on OMEGA, the National Ignition Facility, and laser megajoule.« less

  7. A method for in situ absolute DD yield calibration of neutron time-of-flight detectors on OMEGA using CR-39-based proton detectors

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Waugh, C. J., E-mail: cjwaugh@mit.edu; Zylstra, A. B.; Frenje, J. A.

    2015-05-15

    Neutron time of flight (nTOF) detectors are used routinely to measure the absolute DD neutron yield at OMEGA. To check the DD yield calibration of these detectors, originally calibrated using indium activation systems, which in turn were cross-calibrated to NOVA nTOF detectors in the early 1990s, a direct in situ calibration method using CR-39 range filter proton detectors has been successfully developed. By measuring DD neutron and proton yields from a series of exploding pusher implosions at OMEGA, a yield calibration coefficient of 1.09 ± 0.02 (relative to the previous coefficient) was determined for the 3m nTOF detector. In addition,more » comparison of these and other shots indicates that significant reduction in charged particle flux anisotropies is achieved when bang time occurs significantly (on the order of 500 ps) after the trailing edge of the laser pulse. This is an important observation as the main source of the yield calibration error is due to particle anisotropies caused by field effects. The results indicate that the CR-39-nTOF in situ calibration method can serve as a valuable technique for calibrating and reducing the uncertainty in the DD absolute yield calibration of nTOF detector systems on OMEGA, the National Ignition Facility, and laser megajoule.« less

  8. Absolute calibration of optical flats

    DOEpatents

    Sommargren, Gary E.

    2005-04-05

    The invention uses the phase shifting diffraction interferometer (PSDI) to provide a true point-by-point measurement of absolute flatness over the surface of optical flats. Beams exiting the fiber optics in a PSDI have perfect spherical wavefronts. The measurement beam is reflected from the optical flat and passed through an auxiliary optic to then be combined with the reference beam on a CCD. The combined beams include phase errors due to both the optic under test and the auxiliary optic. Standard phase extraction algorithms are used to calculate this combined phase error. The optical flat is then removed from the system and the measurement fiber is moved to recombine the two beams. The newly combined beams include only the phase errors due to the auxiliary optic. When the second phase measurement is subtracted from the first phase measurement, the absolute phase error of the optical flat is obtained.

  9. The Near-infrared Tip of the Red Giant Branch. II. An Absolute Calibration in the Large Magellanic Cloud

    NASA Astrophysics Data System (ADS)

    Hoyt, Taylor J.; Freedman, Wendy L.; Madore, Barry F.; Seibert, Mark; Beaton, Rachael L.; Hatt, Dylan; Jang, In Sung; Lee, Myung Gyoon; Monson, Andrew J.; Rich, Jeffrey A.

    2018-05-01

    We present a new empirical JHK absolute calibration of the tip of the red giant branch (TRGB) in the Large Magellanic Cloud (LMC). We use published data from the extensive Near-Infrared Synoptic Survey containing 3.5 million stars, 65,000 of which are red giants that fall within one magnitude of the TRGB. Adopting the TRGB slopes from a companion study of the isolated dwarf galaxy IC 1613, as well as an LMC distance modulus of μ 0 = 18.49 mag from (geometric) detached eclipsing binaries, we derive absolute JHK zero points for the near-infrared TRGB. For a comparison with measurements in the bar alone, we apply the calibrated JHK TRGB to a 500 deg2 area of the 2MASS survey. The TRGB reveals the 3D structure of the LMC with a tilt in the direction perpendicular to the major axis of the bar, which is in agreement with previous studies.

  10. A reassessment of absolute energies of the x-ray L lines of lanthanide metals

    NASA Astrophysics Data System (ADS)

    Fowler, J. W.; Alpert, B. K.; Bennett, D. A.; Doriese, W. B.; Gard, J. D.; Hilton, G. C.; Hudson, L. T.; Joe, Y.-I.; Morgan, K. M.; O'Neil, G. C.; Reintsema, C. D.; Schmidt, D. R.; Swetz, D. S.; Szabo, C. I.; Ullom, J. N.

    2017-08-01

    We introduce a new technique for determining x-ray fluorescence line energies and widths, and we present measurements made with this technique of 22 x-ray L lines from lanthanide-series elements. The technique uses arrays of transition-edge sensors, microcalorimeters with high energy-resolving power that simultaneously observe both calibrated x-ray standards and the x-ray emission lines under study. The uncertainty in absolute line energies is generally less than 0.4 eV in the energy range of 4.5 keV to 7.5 keV. Of the seventeen line energies of neodymium, samarium, and holmium, thirteen are found to be consistent with the available x-ray reference data measured after 1990; only two of the four lines for which reference data predate 1980, however, are consistent with our results. Five lines of terbium are measured with uncertainties that improve on those of existing data by factors of two or more. These results eliminate a significant discrepancy between measured and calculated x-ray line energies for the terbium L l line (5.551 keV). The line widths are also measured, with uncertainties of 0.6 eV or less on the full-width at half-maximum in most cases. These measurements were made with an array of approximately one hundred superconducting x-ray microcalorimeters, each sensitive to an energy band from 1 keV to 8 keV. No energy-dispersive spectrometer has previously been used for absolute-energy estimation at this level of accuracy. Future spectrometers, with superior linearity and energy resolution, will allow us to improve on these results and expand the measurements to more elements and a wider range of line energies.

  11. Electron and photon energy calibration with the ATLAS detector using LHC Run 1 data

    DOE PAGES

    Aad, G.; Abbott, B.; Abdallah, J.; ...

    2014-10-01

    This paper presents the electron and photon energy calibration achieved with the ATLAS detector using about 25 fb -1 of LHC proton–proton collision data taken at centre-of-mass energies of √s=7 and 8 TeV. The reconstruction of electron and photon energies is optimised using multivariate algorithms. The response of the calorimeter layers is equalised in data and simulation, and the longitudinal profile of the electromagnetic showers is exploited to estimate the passive material in front of the calorimeter and reoptimise the detector simulation. After all corrections, the Z resonance is used to set the absolute energy scale. For electrons from Zmore » decays, the achieved calibration is typically accurate to 0.05 % in most of the detector acceptance, rising to 0.2 % in regions with large amounts of passive material. The remaining inaccuracy is less than 0.2–1 % for electrons with a transverse energy of 10 GeV, and is on average 0.3 % for photons. The detector resolution is determined with a relative inaccuracy of less than 10 % for electrons and photons up to 60 GeV transverse energy, rising to 40 % for transverse energies above 500 GeV.« less

  12. Calibration-free quantification of absolute oxygen saturation based on the dynamics of photoacoustic signals

    PubMed Central

    Xia, Jun; Danielli, Amos; Liu, Yan; Wang, Lidai; Maslov, Konstantin; Wang, Lihong V.

    2014-01-01

    Photoacoustic tomography (PAT) is a hybrid imaging technique that has broad preclinical and clinical applications. Based on the photoacoustic effect, PAT directly measures specific optical absorption, which is the product of the tissue-intrinsic optical absorption coefficient and the local optical fluence. Therefore, quantitative PAT, such as absolute oxygen saturation (sO2) quantification, requires knowledge of the local optical fluence, which can be estimated only through invasive measurements or sophisticated modeling of light transportation. In this work, we circumvent this requirement by taking advantage of the dynamics in sO2. The new method works when the sO2 transition can be simultaneously monitored with multiple wavelengths. For each wavelength, the ratio of photoacoustic amplitudes measured at different sO2 states is utilized. Using the ratio cancels the contribution from optical fluence and allows calibration-free quantification of absolute sO2. The new method was validated through both phantom and in vivo experiments. PMID:23903146

  13. Techniques for precise energy calibration of particle pixel detectors

    NASA Astrophysics Data System (ADS)

    Kroupa, M.; Campbell-Ricketts, T.; Bahadori, A.; Empl, A.

    2017-03-01

    We demonstrate techniques to improve the accuracy of the energy calibration of Timepix pixel detectors, used for the measurement of energetic particles. The typical signal from such particles spreads among many pixels due to charge sharing effects. As a consequence, the deposited energy in each pixel cannot be reconstructed unless the detector is calibrated, limiting the usability of such signals for calibration. To avoid this shortcoming, we calibrate using low energy X-rays. However, charge sharing effects still occur, resulting in part of the energy being deposited in adjacent pixels and possibly lost. This systematic error in the calibration process results in an error of about 5% in the energy measurements of calibrated devices. We use FLUKA simulations to assess the magnitude of charge sharing effects, allowing a corrected energy calibration to be performed on several Timepix pixel detectors and resulting in substantial improvement in energy deposition measurements. Next, we address shortcomings in calibration associated with the huge range (from kiloelectron-volts to megaelectron-volts) of energy deposited per pixel which result in a nonlinear energy response over the full range. We introduce a new method to characterize the non-linear response of the Timepix detectors at high input energies. We demonstrate improvement using a broad range of particle types and energies, showing that the new method reduces the energy measurement errors, in some cases by more than 90%.

  14. Techniques for precise energy calibration of particle pixel detectors.

    PubMed

    Kroupa, M; Campbell-Ricketts, T; Bahadori, A; Empl, A

    2017-03-01

    We demonstrate techniques to improve the accuracy of the energy calibration of Timepix pixel detectors, used for the measurement of energetic particles. The typical signal from such particles spreads among many pixels due to charge sharing effects. As a consequence, the deposited energy in each pixel cannot be reconstructed unless the detector is calibrated, limiting the usability of such signals for calibration. To avoid this shortcoming, we calibrate using low energy X-rays. However, charge sharing effects still occur, resulting in part of the energy being deposited in adjacent pixels and possibly lost. This systematic error in the calibration process results in an error of about 5% in the energy measurements of calibrated devices. We use FLUKA simulations to assess the magnitude of charge sharing effects, allowing a corrected energy calibration to be performed on several Timepix pixel detectors and resulting in substantial improvement in energy deposition measurements. Next, we address shortcomings in calibration associated with the huge range (from kiloelectron-volts to megaelectron-volts) of energy deposited per pixel which result in a nonlinear energy response over the full range. We introduce a new method to characterize the non-linear response of the Timepix detectors at high input energies. We demonstrate improvement using a broad range of particle types and energies, showing that the new method reduces the energy measurement errors, in some cases by more than 90%.

  15. Optical calibration of the Auger fluorescence telescopes

    NASA Astrophysics Data System (ADS)

    Matthews, John A. J.

    2003-02-01

    The Pierre Auger Observatory is optimized to study the cosmic ray spectrum in the region of the Greisen-Zatsepin-Kuz'min (GZK) cutoff, i.e.cosmic rays with energies of ~1020eV. Cosmic rays are detected as extensive air showers. To measure these showers each Auger site combines a 3000sq-km ground array with air fluorescence telescopes into a hybrid detector. Our design choice is motivated by the heightened importance of the energy scale, and related systematic uncertainties in shower energies, for experiments investigating the GZK cutoff. This paper focuses on the optical calibration of the Auger fluorescence telescopes. The optical calibration is done three independent ways: an absolute end-to-end calibration using a uniform, calibrated intensity, light-source at the telescope entrance aperture, a component by component calibration using both laboratory and in-situ measurements, and Rayleigh scattered light from external laser beams. The calibration concepts and related instrumentation are summarized. Results from the 5-month engineering array test are presented.

  16. Frequency comb calibrated frequency-sweeping interferometry for absolute group refractive index measurement of air.

    PubMed

    Yang, Lijun; Wu, Xuejian; Wei, Haoyun; Li, Yan

    2017-04-10

    The absolute group refractive index of air at 194061.02 GHz is measured in real time using frequency-sweeping interferometry calibrated by an optical frequency comb. The group refractive index of air is calculated from the calibration peaks of the laser frequency variation and the interference signal of the two beams passing through the inner and outer regions of a vacuum cell when the frequency of a tunable external cavity diode laser is scanned. We continuously measure the refractive index of air for 2 h, which shows that the difference between measured results and Ciddor's equation is less than 9.6×10-8, and the standard deviation of that difference is 5.9×10-8. The relative uncertainty of the measured refractive index of air is estimated to be 8.6×10-8. The data update rate is 0.2 Hz, making it applicable under conditions in which air refractive index fluctuates fast.

  17. Jet energy calibration at the LHC

    DOE PAGES

    Schwartzman, Ariel

    2015-11-10

    In this study, jets are one of the most prominent physics signatures of high energy proton–proton (p–p) collisions at the Large Hadron Collider (LHC). They are key physics objects for precision measurements and searches for new phenomena. This review provides an overview of the reconstruction and calibration of jets at the LHC during its first Run. ATLAS and CMS developed different approaches for the reconstruction of jets, but use similar methods for the energy calibration. ATLAS reconstructs jets utilizing input signals from their calorimeters and use charged particle tracks to refine their energy measurement and suppress the effects of multiplemore » p–p interactions ( pileup). CMS, instead, combines calorimeter and tracking information to build jets from particle flow objects. Jets are calibrated using Monte Carlo (MC) simulations and a residual in situ calibration derived from collision data is applied to correct for the differences in jet response between data and Monte Carlo.« less

  18. Calibration of a High Resolution X-ray Spectrometer for High-Energy-Density Plasmas on NIF

    NASA Astrophysics Data System (ADS)

    Kraus, B.; Gao, L.; Hill, K. W.; Bitter, M.; Efthimion, P.; Schneider, M. B.; Chen, H.; Ayers, J.; Beiersdorfer, P.; Liedahl, D.; Macphee, A. G.; Thorn, D. B.; Bettencourt, R.; Kauffman, R.; Le, H.; Nelson, D.

    2017-10-01

    A high-resolution, DIM-based (Diagnostic Instrument Manipulator) x-ray crystal spectrometer has been calibrated for and deployed at the National Ignition Facility (NIF) to diagnose plasma conditions and mix in ignition capsules near stagnation times. Two conical crystals in the Hall geometry focus rays from the Kr He- α, Ly- α, and He- β complexes onto a streak camera for time-resolved spectra, in order to measure electron density and temperature by observing Stark broadening and relative intensities of dielectronic satellites. Signals from these two crystals are correlated with a third crystal that time-integrates the intervening energy range. The spectrometer has been absolutely calibrated using a microfocus x-ray source, an array of CCD and single-photon-counting detectors, and K- and L-absorption edge filters. Measurements of the integrated reflectivity, energy range, and energy resolution for each crystal will be presented. The implications of the calibration on signal levels from NIF implosions and x-ray filter choices will be discussed. This work was performed under the auspices of the U.S. DoE by Princeton Plasma Physics Laboratory under contract DE-AC02-09CH11466 and by Lawrence Livermore National Laboratory under contract DE-AC52-07NA27344.

  19. Research on the calibration of ultraviolet energy meters

    NASA Astrophysics Data System (ADS)

    Lin, Fangsheng; Yin, Dejin; Li, Tiecheng; Lai, Lei; Xia, Ming

    2016-10-01

    Ultraviolet (UV) radiation is a kind of non-lighting radiation with the wavelength range from 100nm to 400nm. Ultraviolet irradiance meters are now widely used in many areas. However, as the development of science and technology, especially in the field of light-curing industry, there are more and more UV energy meters or UV-integrators need to be measured. Because the structure, wavelength band and measured power intensity of UV energy meters are different from traditional UV irradiance meters, it is important for us to take research on the calibration. With reference to JJG879-2002, we SIMT have independently developed the UV energy calibration device and the standard of operation and experimental methods for UV energy calibration in detail. In the calibration process of UV energy meter, many influencing factors will affect the final results, including different UVA-band UV light sources, different spectral response for different brands of UV energy meters, instability and no uniformity of UV light source and temperature. Therefore we need to take all of these factors into consideration to improve accuracy in UV energy calibration.

  20. Energy calibration issues in nuclear resonant vibrational spectroscopy: observing small spectral shifts and making fast calibrations.

    PubMed

    Wang, Hongxin; Yoda, Yoshitaka; Dong, Weibing; Huang, Songping D

    2013-09-01

    The conventional energy calibration for nuclear resonant vibrational spectroscopy (NRVS) is usually long. Meanwhile, taking NRVS samples out of the cryostat increases the chance of sample damage, which makes it impossible to carry out an energy calibration during one NRVS measurement. In this study, by manipulating the 14.4 keV beam through the main measurement chamber without moving out the NRVS sample, two alternative calibration procedures have been proposed and established: (i) an in situ calibration procedure, which measures the main NRVS sample at stage A and the calibration sample at stage B simultaneously, and calibrates the energies for observing extremely small spectral shifts; for example, the 0.3 meV energy shift between the 100%-(57)Fe-enriched [Fe4S4Cl4](=) and 10%-(57)Fe and 90%-(54)Fe labeled [Fe4S4Cl4](=) has been well resolved; (ii) a quick-switching energy calibration procedure, which reduces each calibration time from 3-4 h to about 30 min. Although the quick-switching calibration is not in situ, it is suitable for normal NRVS measurements.

  1. SU-E-J-85: Leave-One-Out Perturbation (LOOP) Fitting Algorithm for Absolute Dose Film Calibration

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chu, A; Ahmad, M; Chen, Z

    2014-06-01

    Purpose: To introduce an outliers-recognition fitting routine for film dosimetry. It cannot only be flexible with any linear and non-linear regression but also can provide information for the minimal number of sampling points, critical sampling distributions and evaluating analytical functions for absolute film-dose calibration. Methods: The technique, leave-one-out (LOO) cross validation, is often used for statistical analyses on model performance. We used LOO analyses with perturbed bootstrap fitting called leave-one-out perturbation (LOOP) for film-dose calibration . Given a threshold, the LOO process detects unfit points (“outliers”) compared to other cohorts, and a bootstrap fitting process follows to seek any possibilitiesmore » of using perturbations for further improvement. After that outliers were reconfirmed by a traditional t-test statistics and eliminated, then another LOOP feedback resulted in the final. An over-sampled film-dose- calibration dataset was collected as a reference (dose range: 0-800cGy), and various simulated conditions for outliers and sampling distributions were derived from the reference. Comparisons over the various conditions were made, and the performance of fitting functions, polynomial and rational functions, were evaluated. Results: (1) LOOP can prove its sensitive outlier-recognition by its statistical correlation to an exceptional better goodness-of-fit as outliers being left-out. (2) With sufficient statistical information, the LOOP can correct outliers under some low-sampling conditions that other “robust fits”, e.g. Least Absolute Residuals, cannot. (3) Complete cross-validated analyses of LOOP indicate that the function of rational type demonstrates a much superior performance compared to the polynomial. Even with 5 data points including one outlier, using LOOP with rational function can restore more than a 95% value back to its reference values, while the polynomial fitting completely failed under the same

  2. Absolute Density Calibration Cell for Laser Induced Fluorescence Erosion Rate Measurements

    NASA Technical Reports Server (NTRS)

    Domonkos, Matthew T.; Stevens, Richard E.

    2001-01-01

    Flight qualification of ion thrusters typically requires testing on the order of 10,000 hours. Extensive knowledge of wear mechanisms and rates is necessary to establish design confidence prior to long duration tests. Consequently, real-time erosion rate measurements offer the potential both to reduce development costs and to enhance knowledge of the dependency of component wear on operating conditions. Several previous studies have used laser-induced fluorescence (LIF) to measure real-time, in situ erosion rates of ion thruster accelerator grids. Those studies provided only relative measurements of the erosion rate. In the present investigation, a molybdenum tube was resistively heated such that the evaporation rate yielded densities within the tube on the order of those expected from accelerator grid erosion. This work examines the suitability of the density cell as an absolute calibration source for LIF measurements, and the intrinsic error was evaluated.

  3. On the absolute calibration of SO2 cameras

    USGS Publications Warehouse

    Lübcke, Peter; Bobrowski, Nicole; Illing, Sebastian; Kern, Christoph; Alvarez Nieves, Jose Manuel; Vogel, Leif; Zielcke, Johannes; Delgados Granados, Hugo; Platt, Ulrich

    2013-01-01

    This work investigates the uncertainty of results gained through the two commonly used, but quite different, calibration methods (DOAS and calibration cells). Measurements with three different instruments, an SO2 camera, a NFOVDOAS system and an Imaging DOAS (I-DOAS), are presented. We compare the calibration-cell approach with the calibration from the NFOV-DOAS system. The respective results are compared with measurements from an I-DOAS to verify the calibration curve over the spatial extent of the image. The results show that calibration cells, while working fine in some cases, can lead to an overestimation of the SO2 CD by up to 60% compared with CDs from the DOAS measurements. Besides these errors of calibration, radiative transfer effects (e.g. light dilution, multiple scattering) can significantly influence the results of both instrument types. The measurements presented in this work were taken at Popocatepetl, Mexico, between 1 March 2011 and 4 March 2011. Average SO2 emission rates between 4.00 and 14.34 kg s−1 were observed.

  4. Absolute calibration of Phase Contrast Imaging on HL-2A tokamak

    NASA Astrophysics Data System (ADS)

    Yu, Yi; Gong, Shaobo; Xu, Min; Wu, Yifan; Yuan, Boda; Ye, Minyou; Duan, Xuru; HL-2A Team Team

    2017-10-01

    Phase contrast imaging (PCI) has recently been developed on HL-2A tokamak. In this article we present the calibration of this diagnostic. This system is to diagnose chord integral density fluctuations by measuring the phase shift of a CO2 laser beam with a wavelength of 10.6 μm when the laser beam passes through plasma. Sound waves are used to calibrate PCI diagnostic. The signal series in different PCI channels show a pronounced modulation of incident laser beam by the sound wave. Frequency-wavenumber spectrum is achieved. Calibrations by sound waves with different frequencies exhibit a maximal wavenumber response of 12 cm-1. The conversion relationship between the chord integral plasma density fluctuation and the signal intensity is 2.3-1013 m-2/mV, indicating a high sensitivity. Supported by the National Magnetic Confinement Fusion Energy Research Project (Grant No.2015GB120002, 2013GB107001).

  5. Consistency of L4 TM absolute calibration with respect to the L5 TM sensor based on near-simultaneous image acquisition

    NASA Astrophysics Data System (ADS)

    Chander, Gyanesh; Helder, Dennis L.; Malla, Rimy; Micijevic, Esad; Mettler, Cory J.

    2007-09-01

    The Landsat archive provides more than 35 years of uninterrupted multispectral remotely sensed data of Earth observations. Since 1972, Landsat missions have carried different types of sensors, from the Return Beam Vidicon (RBV) camera to the Enhanced Thematic Mapper Plus (ETM+). However, the Thematic Mapper (TM) sensors on Landsat 4 (L4) and Landsat 5 (L5), launched in 1982 and 1984 respectively, are the backbone of an extensive archive. Effective April 2, 2007, the radiometric calibration of L5 TM data processed and distributed by the U.S. Geological Survey (USGS) Center for Earth Resources Observation and Science (EROS) was updated to use an improved lifetime gain model, based on the instrument's detector response to pseudo-invariant desert site data and cross-calibration with the L7 ETM+. However, no modifications were ever made to the radiometric calibration procedure of the Landsat 4 (L4) TM data. The L4 TM radiometric calibration procedure has continued to use the Internal Calibrator (IC) based calibration algorithms and the post calibration dynamic ranges, as previously defined. To evaluate the "current" absolute accuracy of these two sensors, image pairs from the L5 TM and L4 TM sensors were compared. The number of coincident image pairs in the USGS EROS archive is limited, so the scene selection for the cross-calibration studies proved to be a challenge. Additionally, because of the lack of near-simultaneous images available over well-characterized and traditionally used calibration sites, alternate sites that have high reflectance, large dynamic range, high spatial uniformity, high sun elevation, and minimal cloud cover were investigated. The alternate sites were identified in Yuma, Iraq, Egypt, Libya, and Algeria. The cross-calibration approach involved comparing image statistics derived from large common areas observed eight days apart by the two sensors. This paper summarizes the average percent differences in reflectance estimates obtained between the

  6. Consistency of L4 TM absolute calibration with respect to the L5 TM sensor based on near-simultaneous image acquisition

    USGS Publications Warehouse

    Chander, G.; Helder, D.L.; Malla, R.; Micijevic, E.; Mettler, C.J.

    2007-01-01

    The Landsat archive provides more than 35 years of uninterrupted multispectral remotely sensed data of Earth observations. Since 1972, Landsat missions have carried different types of sensors, from the Return Beam Vidicon (RBV) camera to the Enhanced Thematic Mapper Plus (ETM+). However, the Thematic Mapper (TM) sensors on Landsat 4 (L4) and Landsat 5 (L5), launched in 1982 and 1984 respectively, are the backbone of an extensive archive. Effective April 2, 2007, the radiometric calibration of L5 TM data processed and distributed by the U.S. Geological Survey (USGS) Center for Earth Resources Observation and Science (EROS) was updated to use an improved lifetime gain model, based on the instrument's detector response to pseudo-invariant desert site data and cross-calibration with the L7 ETM+. However, no modifications were ever made to the radiometric calibration procedure of the Landsat 4 (L4) TM data. The L4 TM radiometric calibration procedure has continued to use the Internal Calibrator (IC) based calibration algorithms and the post calibration dynamic ranges, as previously defined. To evaluate the "current" absolute accuracy of these two sensors, image pairs from the L5 TM and L4 TM sensors were compared. The number of coincident image pairs in the USGS EROS archive is limited, so the scene selection for the cross-calibration studies proved to be a challenge. Additionally, because of the lack of near-simultaneous images available over well-characterized and traditionally used calibration sites, alternate sites that have high reflectance, large dynamic range, high spatial uniformity, high sun elevation, and minimal cloud cover were investigated. The alternate sites were identified in Yuma, Iraq, Egypt, Libya, and Algeria. The cross-calibration approach involved comparing image statistics derived from large common areas observed eight days apart by the two sensors. This paper summarizes the average percent differences in reflectance estimates obtained between the

  7. Absolute calibration accuracy of L4 TM and L5 TM sensor image pairs

    USGS Publications Warehouse

    Chander, G.; Micijevic, E.

    2006-01-01

    The Landsat suite of satellites has collected the longest continuous archive of multispectral data of any land-observing space program. From the Landsat program's inception in 1972 to the present, the Earth science user community has benefited from a historical record of remotely sensed data. However, little attention has been paid to ensuring that the data are calibrated and comparable from mission to mission, Launched in 1982 and 1984 respectively, the Landsat 4 (L4) and Landsat 5 (L5) Thematic Mappers (TM) are the backbone of an extensive archive of moderate resolution Earth imagery. To evaluate the "current" absolute accuracy of these two sensors, image pairs from the L5 TM and L4 TM sensors were compared. The approach involves comparing image statistics derived from large common areas observed eight days apart by the two sensors. The average percent differences in reflectance estimates obtained from the L4 TM agree with those from the L5 TM to within 15 percent. Additional work to characterize the absolute differences between the two sensors over the entire mission is in progress.

  8. Radio frequency cavity analysis, measurement, and calibration of absolute Dee voltage for K-500 superconducting cyclotron at VECC, Kolkata

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Som, Sumit; Seth, Sudeshna; Mandal, Aditya

    2013-02-15

    Variable Energy Cyclotron Centre has commissioned a K-500 superconducting cyclotron for various types of nuclear physics experiments. The 3-phase radio-frequency system of superconducting cyclotron has been developed in the frequency range 9-27 MHz with amplitude and phase stability of 100 ppm and {+-}0.2{sup 0}, respectively. The analysis of the RF cavity has been carried out using 3D Computer Simulation Technology (CST) Microwave Studio code and various RF parameters and accelerating voltages ('Dee' voltage) are calculated from simulation. During the RF system commissioning, measurement of different RF parameters has been done and absolute Dee voltage has been calibrated using a CdTemore » X-ray detector along with its accessories and known X-ray source. The present paper discusses about the measured data and the simulation result.« less

  9. Ultralow energy calibration of LUX detector using Xe 127 electron capture

    DOE PAGES

    Akerib, D. S.; Alsum, S.; Araújo, H. M.; ...

    2017-12-01

    We report an absolute calibration of the ionization yields(more » $$\\textit{Q$$_y$})$ and fluctuations for electronic recoil events in liquid xenon at discrete energies between 186 eV and 33.2 keV. The average electric field applied across the liquid xenon target is 180 V/cm. The data are obtained using low energy $$^{127}$$Xe electron capture decay events from the 95.0-day first run from LUX (WS2013) in search of Weakly Interacting Massive Particles (WIMPs). The sequence of gamma-ray and X-ray cascades associated with $$^{127}$$I de-excitations produces clearly identified 2-vertex events in the LUX detector. We observe the K- (binding energy, 33.2 keV), L- (5.2 keV), M- (1.1 keV), and N- (186 eV) shell cascade events and verify that the relative ratio of observed events for each shell agrees with calculations. The N-shell cascade analysis includes single extracted electron (SE) events and represents the lowest-energy electronic recoil $$\\textit{in situ}$$ measurements that have been explored in liquid xenon.« less

  10. Ultralow energy calibration of LUX detector using Xe 127 electron capture

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Akerib, D. S.; Alsum, S.; Araújo, H. M.

    We report an absolute calibration of the ionization yields (Q y) and fluctuations for electronic recoil events in liquid xenon at discrete energies between 186 eV and 33.2 keV. The average electric field applied across the liquid xenon target is 180 V/cm. The data are obtained using low energy 127Xe electron capture decay events from the 95.0-day first run from LUX (WS2013) in search of weakly interacting massive particles. The sequence of gamma-ray and x-ray cascades associated with 127I deexcitations produces clearly identified two-vertex events in the LUX detector. We observe the K-(binding energy, 33.2 keV), L-(5.2 keV), M-(1.1 keV),more » and N-(186 eV) shell cascade events and verify that the relative ratio of observed events for each shell agrees with calculations. In conclusion, the N-shell cascade analysis includes single extracted electron (SE) events and represents the lowest-energy electronic recoil in situ measurements that have been explored in liquid xenon.« less

  11. Ultralow energy calibration of LUX detector using Xe 127 electron capture

    DOE PAGES

    Akerib, D. S.; Alsum, S.; Araújo, H. M.; ...

    2017-12-28

    We report an absolute calibration of the ionization yields (Q y) and fluctuations for electronic recoil events in liquid xenon at discrete energies between 186 eV and 33.2 keV. The average electric field applied across the liquid xenon target is 180 V/cm. The data are obtained using low energy 127Xe electron capture decay events from the 95.0-day first run from LUX (WS2013) in search of weakly interacting massive particles. The sequence of gamma-ray and x-ray cascades associated with 127I deexcitations produces clearly identified two-vertex events in the LUX detector. We observe the K-(binding energy, 33.2 keV), L-(5.2 keV), M-(1.1 keV),more » and N-(186 eV) shell cascade events and verify that the relative ratio of observed events for each shell agrees with calculations. In conclusion, the N-shell cascade analysis includes single extracted electron (SE) events and represents the lowest-energy electronic recoil in situ measurements that have been explored in liquid xenon.« less

  12. Lunar Cratering Chronology: Calibrating Degree of Freshness of Craters to Absolute Ages

    NASA Astrophysics Data System (ADS)

    Trang, D.; Gillis-Davis, J.; Boyce, J. M.

    2013-12-01

    The use of impact craters to age-date surfaces of and/or geomorphological features on planetary bodies is a decades old practice. Various dating techniques use different aspects of impact craters in order to determine ages. One approach is based on the degree of freshness of primary-impact craters. This method examines the degradation state of craters through visual inspection of seven criteria: polygonality, crater ray, continuous ejecta, rim crest sharpness, satellite craters, radial channels, and terraces. These criteria are used to rank craters in order of age from 0.0 (oldest) to 7.0 (youngest). However, the relative decimal scale used in this technique has not been tied to a classification of absolute ages. In this work, we calibrate the degree of freshness to absolute ages through crater counting. We link the degree of freshness to absolute ages through crater counting of fifteen craters with diameters ranging from 5-22 km and degree of freshness from 6.3 to 2.5. We use the Terrain Camera data set on Kaguya to count craters on the continuous ejecta of each crater in our sample suite. Specifically, we divide the crater's ejecta blanket into quarters and count craters between the rim of the main crater out to one crater radii from the rim for two of the four sections. From these crater counts, we are able to estimate the absolute model age of each main crater using the Craterstats2 tool in ArcGIS. Next, we compare the degree of freshness for the crater count-derived age of our main craters to obtain a linear inverse relation that links these two metrics. So far, for craters with degree of freshness from 6.3 to 5.0, the linear regression has an R2 value of 0.7, which corresponds to a relative uncertainty of ×230 million years. At this point, this tool that links degree of freshness to absolute ages cannot be used with craters <8km because this class of crater degrades quicker than larger craters. A graphical solution exists for correcting the degree of

  13. An absolute photometric system at 10 and 20 microns

    NASA Technical Reports Server (NTRS)

    Rieke, G. H.; Lebofsky, M. J.; Low, F. J.

    1985-01-01

    Two new direct calibrations at 10 and 20 microns are presented in which terrestrial flux standards are referred to infrared standard stars. These measurements give both good agreement and higher accuracy when compared with previous direct calibrations. As a result, the absolute calibrations at 10 and 20 microns have now been determined with accuracies of 3 and 8 percent, respectively. A variety of absolute calibrations based on extrapolation of stellar spectra from the visible to 10 microns are reviewed. Current atmospheric models of A-type stars underestimate their fluxes by about 10 percent at 10 microns, whereas models of solar-type stars agree well with the direct calibrations. The calibration at 20 microns can probably be determined to about 5 percent by extrapolation from the more accurate result at 10 microns. The photometric system at 10 and 20 microns is updated to reflect the new absolute calibration, to base its zero point directly on the colors of A0 stars, and to improve the accuracy in the comparison of the standard stars.

  14. The absolute amplitude calibration of the SEASAT synthetic aperture radar - An intercomparison with other L-band radar systems

    NASA Technical Reports Server (NTRS)

    Held, D.; Werner, C.; Wall, S.

    1983-01-01

    The absolute amplitude calibration of the spaceborne Seasat SAR data set is presented based on previous relative calibration studies. A scale factor making it possible to express the perceived radar brightness of a scene in units of sigma-zero is established. The system components are analyzed for error contribution, and the calibration techniques are introduced for each stage. These include: A/D converter saturation tests; prevention of clipping in the processing step; and converting the digital image into the units of received power. Experimental verification was performed by screening and processing the data of the lava flow surrounding the Pisgah Crater in Southern California, for which previous C-130 airborne scatterometer data were available. The average backscatter difference between the two data sets is estimated to be 2 dB in the brighter, and 4 dB in the dimmer regions. For the SAR a calculated uncertainty of 3 dB is expected.

  15. Absolute reactivity calibration of accelerator-driven systems after RACE-T experiments

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Jammes, C. C.; Imel, G. R.; Geslot, B.

    2006-07-01

    The RACE-T experiments that were held in november 2005 in the ENEA-Casaccia research center near Rome allowed us to improve our knowledge of the experimental techniques for absolute reactivity calibration at either startup or shutdown phases of accelerator-driven systems. Various experimental techniques for assessing a subcritical level were inter-compared through three different subcritical configurations SC0, SC2 and SC3, about -0.5, -3 and -6 dollars, respectively. The area-ratio method based of the use of a pulsed neutron source appears as the most performing. When the reactivity estimate is expressed in dollar unit, the uncertainties obtained with the area-ratio method were lessmore » than 1% for any subcritical configuration. The sensitivity to measurement location was about slightly more than 1% and always less than 4%. Finally, it is noteworthy that the source jerk technique using a transient caused by the pulsed neutron source shutdown provides results in good agreement with those obtained from the area-ratio technique. (authors)« less

  16. Anomalous gain in an isotopically mixed CO2 laser and application to absolute wavelength calibration

    NASA Technical Reports Server (NTRS)

    Hewagama, Tilak; Oppenheim, Uri P.; Mumma, Michael J.

    1991-01-01

    Measurements are reported on a grating-tuned CO2 laser, containing an isotropic mixture of O-16C-12O-16, O-16C-12O-18, and O-18C-12O-18. The P6 and R14 lines of O-16C-12O-16 were found to have anomalously high intensities. These anomalies are produced by the near coincidence of the transition frequencies in two distinct isotopes, permitting them to act as a single indistinguishable population. These two lines can be used to identify the rotational quantum numbers in the P and R branch spectra, thereby permitting absolute wavelength calibration to be achieved.

  17. Results from Source-Based and Detector-Based Calibrations of a CLARREO Calibration Demonstration System

    NASA Technical Reports Server (NTRS)

    Angal, Amit; Mccorkel, Joel; Thome, Kurt

    2016-01-01

    The Climate Absolute Radiance and Refractivity Observatory (CLARREO) mission is formulated to determine long-term climate trends using SI-traceable measurements. The CLARREO mission will include instruments operating in the reflected solar (RS) wavelength region from 320 nm to 2300 nm. The Solar, Lunar for Absolute Reflectance Imaging Spectroradiometer (SOLARIS) is the calibration demonstration system (CDS) for the reflected solar portion of CLARREO and facilitates testing and evaluation of calibration approaches. The basis of CLARREO and SOLARIS calibration is the Goddard Laser for Absolute Measurement of Response (GLAMR) that provides a radiance-based calibration at reflective solar wavelengths using continuously tunable lasers. SI-traceability is achieved via detector-based standards that, in GLAMRs case, are a set of NIST-calibrated transfer radiometers. A portable version of the SOLARIS, Suitcase SOLARIS is used to evaluate GLAMRs calibration accuracies. The calibration of Suitcase SOLARIS using GLAMR agrees with that obtained from source-based results of the Remote Sensing Group (RSG) at the University of Arizona to better than 5 (k2) in the 720-860 nm spectral range. The differences are within the uncertainties of the NIST-calibrated FEL lamp-based approach of RSG and give confidence that GLAMR is operating at 5 (k2) absolute uncertainties. Limitations of the Suitcase SOLARIS instrument also discussed and the next edition of the SOLARIS instrument (Suitcase SOLARIS- 2) is expected to provide an improved mechanism to further assess GLAMR and CLARREO calibration approaches. (2016) COPYRIGHT Society of Photo-Optical Instrumentation Engineers (SPIE).

  18. Absolute Effective Area of the Chandra High-Resolution Mirror Assembly

    NASA Technical Reports Server (NTRS)

    Schwartz, D. A.; David, L. P.; Donnelly, R. H.; Edgar, R. J.; Gaetz, T. J.; Jerius, D.; Juda, M.; Kellogg, E. M.; McNamara, B. R.; Dewey, D.

    2000-01-01

    The Chandra X-ray Observatory was launched in July 1999, and is returning exquisite sub-arcsecond x-ray images of star groups, supernova remnants, galaxies, quasars, and clusters of galaxies. In addition to being the premier X-ray observatory in terms of angular and spectral resolution, Chandra is the best calibrated X-ray facility ever flown. We discuss here the calibration of the effective area of the High Resolution Mirror Assembly. Because we do not know the absolute X-ray flux density of any celestial source, this must be based primarily on ground measurements and on modeling. In particular, we must remove the calibrated modeled responses of the detectors and gratings to obtain the mirror area. For celestial sources which may be assumed to have smoothly varying spectra, such as the Crab Nebula, we may verify the continuity of the area calibration as a function of energy. This is of significance in energy regions such as the Ir M-edges, or near the critical grazing angle cutoff of the various mirror shells.

  19. Absolute Soft X-ray Emission Measurements at the Nike Laser

    NASA Astrophysics Data System (ADS)

    Weaver, J.; Atkin, R.; Boyer, C.; Colombant, D.; Feldman, U.; Fielding, D.; Gardner, J.; Holland, G.; Klapisch, M.; Mostovych, A. N.; Obenscain, S.; Seely, J. F.

    2002-11-01

    Recent experiments at the Nike laser facility have demonstrated that, when a low intensity prepulse ( 2main laser intensity) is used to heat a thin Au or Pd coating on a planar CH target, the growth of non-uniformities due to laser imprint can be reduced from the growth observed for an uncoated CH target. The absolute radiation intensity in the soft x-ray region (0.1-1 keV) has a important role in the energy balance for layered targets. There is an ongoing effort to characterize the soft x-ray emission using an absolutely calibrated transmission grating spectrometer and filtered diode modules. Measurements of the angular distribution of the emission from unlayered solid targets (Au, Pd, CH) have recently been made using an array of moveable filtered diode modules. The data from the angular distribution studies will be presented. A new absolutely calibrated, time-resolving transmission grating spectrometer has been installed at the Nike. The new version has improved spectral resolution, selectable transmission filters, and the potential for simultaneous temporal, spatial, and spectral resolution. Preliminary data from the new spectrometer will be presented and future experiments will be briefly discussed. *Work was supported by DoE

  20. Exploring a Black Body Source as an Absolute Radiometric Calibration Standard and Comparison with a NIST Traced Lamp Standard

    NASA Technical Reports Server (NTRS)

    Green, Robert O.; Chrien, Thomas; Sarture, Chuck

    2001-01-01

    Radiometric calibration of the Airborne Visible/Infrared Imaging Spectrometer (AVIRIS) is required for the scientific research and application objectives pursued with the spectroscopic measurements. Specifically calibration is required for: inter-comparison of AVIRIS data measured at different locations and at different times; analysis of AVIRIS data with data measured by other instruments; and analysis of AVIRIS data in conjunction with computer models. The primary effect of radiometric calibration is conversion of AVIRIS instrument response values (digitized numbers, or DN) to units of absolute radiance. For example, a figure shows the instrument response spectrum measured by AVIRIS over a portion of Rogers Dry Lake, California, and another figure shows the same spectrum calibrated to radiance. Only the calibrated spectrum may be quantitatively analyzed for science research and application objectives. Since the initial development of the AVIRIS instrument-radiometric calibration has been based upon a 1000-W irradiance lamp with a calibration traced to the National Institute of Standards and Technology (NIST). There are several advantages to this irradiance-lamp calibration approach. First, the considerable effort of NIST backs up the calibration. Second, by changing the distance to the lamp, the output can closely span the radiance levels measured by AVIRIS. Third, this type of standard is widely used. Fourth, these calibrated lamps are comparatively inexpensive. Conversely, there are several disadvantages to this approach as well. First, the lamp is not a primary standard. Second, the lamp output characteristics may change in an unknown manner through time. Third, it is difficult to assess, constrain, or improve the calibration uncertainty delivered with the lamp. In an attempt to explore the effect and potentially address some of these disadvantages a set of analyses and measurements comparing an irradiance lamp with a black-body source have been completed

  1. Fission foil detector calibrations with high energy protons

    NASA Technical Reports Server (NTRS)

    Benton, E. V.; Frank, A. L.

    1995-01-01

    Fission foil detectors (FFD's) are passive devices composed of heavy metal foils in contact with muscovite mica films. The heavy metal nuclei have significant cross sections for fission when irradiated with neutrons and protons. Each isotope is characterized by threshold energies for the fission reactions and particular energy-dependent cross sections. In the FFD's, fission fragments produced by the reactions are emitted from the foils and create latent particle tracks in the adjacent mica films. When the films are processed surface tracks are formed which can be optically counted. The track densities are indications of the fluences and spectra of neutrons and/or protons. In the past, detection efficiencies have been calculated using the low energy neutron calibrated dosimeters and published fission cross sections for neutrons and protons. The problem is that the addition of a large kinetic energy to the (n,nucleus) or (p,nucleus) reaction could increase the energies and ranges of emitted fission fragments and increase the detector sensitivity as compared with lower energy neutron calibrations. High energy calibrations are the only method of resolving the uncertainties in detector efficiencies. At high energies, either proton or neutron calibrations are sufficient since the cross section data show that the proton and neutron fission cross sections are approximately equal. High energy proton beams have been utilized (1.8 and 4.9 GeV, 80 and 140 MeV) for measuring the tracks of fission fragments emitted backward and forward.

  2. Contributed Review: Absolute spectral radiance calibration of fiber-optic shock-temperature pyrometers using a coiled-coil irradiance standard lamp

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Fat’yanov, O. V., E-mail: fatyan1@gps.caltech.edu; Asimow, P. D., E-mail: asimow@gps.caltech.edu

    2015-10-15

    We describe an accurate and precise calibration procedure for multichannel optical pyrometers such as the 6-channel, 3-ns temporal resolution instrument used in the Caltech experimental geophysics laboratory. We begin with a review of calibration sources for shock temperatures in the 3000-30 000 K range. High-power, coiled tungsten halogen standards of spectral irradiance appear to be the only practical alternative to NIST-traceable tungsten ribbon lamps, which are no longer available with large enough calibrated area. However, non-uniform radiance complicates the use of such coiled lamps for reliable and reproducible calibration of pyrometers that employ imaging or relay optics. Careful analysis of documentedmore » methods of shock pyrometer calibration to coiled irradiance standard lamps shows that only one technique, not directly applicable in our case, is free of major radiometric errors. We provide a detailed description of the modified Caltech pyrometer instrument and a procedure for its absolute spectral radiance calibration, accurate to ±5%. We employ a designated central area of a 0.7× demagnified image of a coiled-coil tungsten halogen lamp filament, cross-calibrated against a NIST-traceable tungsten ribbon lamp. We give the results of the cross-calibration along with descriptions of the optical arrangement, data acquisition, and processing. We describe a procedure to characterize the difference between the static and dynamic response of amplified photodetectors, allowing time-dependent photodiode correction factors for spectral radiance histories from shock experiments. We validate correct operation of the modified Caltech pyrometer with actual shock temperature experiments on single-crystal NaCl and MgO and obtain very good agreement with the literature data for these substances. We conclude with a summary of the most essential requirements for error-free calibration of a fiber-optic shock-temperature pyrometer using a high-power coiled tungsten

  3. The NIF x-ray spectrometer calibration campaign at Omega.

    PubMed

    Pérez, F; Kemp, G E; Regan, S P; Barrios, M A; Pino, J; Scott, H; Ayers, S; Chen, H; Emig, J; Colvin, J D; Bedzyk, M; Shoup, M J; Agliata, A; Yaakobi, B; Marshall, F J; Hamilton, R A; Jaquez, J; Farrell, M; Nikroo, A; Fournier, K B

    2014-11-01

    The calibration campaign of the National Ignition Facility X-ray Spectrometer (NXS) was carried out at the Omega laser facility. Spherically symmetric, laser-driven, millimeter-scale x-ray sources of K-shell and L-shell emission from various mid-Z elements were designed for the 2-18 keV energy range of the NXS. The absolute spectral brightness was measured by two calibrated spectrometers. We compare the measured performance of the target design to radiation hydrodynamics simulations.

  4. Cosmic shear bias and calibration in dark energy studies

    NASA Astrophysics Data System (ADS)

    Taylor, A. N.; Kitching, T. D.

    2018-07-01

    With the advent of large-scale weak lensing surveys there is a need to understand how realistic, scale-dependent systematics bias cosmic shear and dark energy measurements, and how they can be removed. Here, we show how spatially varying image distortions are convolved with the shear field, mixing convergence E and B modes, and bias the observed shear power spectrum. In practise, many of these biases can be removed by calibration to data or simulations. The uncertainty in this calibration is marginalized over, and we calculate how this propagates into parameter estimation and degrades the dark energy Figure-of-Merit. We find that noise-like biases affect dark energy measurements the most, while spikes in the bias power have the least impact. We argue that, in order to remove systematic biases in cosmic shear surveys and maintain statistical power, effort should be put into improving the accuracy of the bias calibration rather than minimizing the size of the bias. In general, this appears to be a weaker condition for bias removal. We also investigate how to minimize the size of the calibration set for a fixed reduction in the Figure-of-Merit. Our results can be used to correctly model the effect of biases and calibration on a cosmic shear survey, assess their impact on the measurement of modified gravity and dark energy models, and to optimize survey and calibration requirements.

  5. Muon Energy Calibration of the MINOS Detectors

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Miyagawa, Paul S.

    MINOS is a long-baseline neutrino oscillation experiment designed to search for conclusive evidence of neutrino oscillations and to measure the oscillation parameters precisely. MINOS comprises two iron tracking calorimeters located at Fermilab and Soudan. The Calibration Detector at CERN is a third MINOS detector used as part of the detector response calibration programme. A correct energy calibration between these detectors is crucial for the accurate measurement of oscillation parameters. This thesis presents a calibration developed to produce a uniform response within a detector using cosmic muons. Reconstruction of tracks in cosmic ray data is discussed. This data is utilized tomore » calculate calibration constants for each readout channel of the Calibration Detector. These constants have an average statistical error of 1.8%. The consistency of the constants is demonstrated both within a single run and between runs separated by a few days. Results are presented from applying the calibration to test beam particles measured by the Calibration Detector. The responses are calibrated to within 1.8% systematic error. The potential impact of the calibration on the measurement of oscillation parameters by MINOS is also investigated. Applying the calibration reduces the errors in the measured parameters by ~ 10%, which is equivalent to increasing the amount of data by 20%.« less

  6. Absolute Spectrophotometric Calibration to 1% from the FUV through the near-IR

    NASA Astrophysics Data System (ADS)

    Finley, David

    2005-07-01

    We propose a significant improvement to the existing HST calibration. The current calibration is based on three primary DA white dwarf standards, GD 71, GD 153, and G 191-B2B. The standard fluxes are calculated using NLTE models, with effective temperatures and gravities that were derived from Balmer line fits using LTE models. We propose to improve the accuracy and internal consistency of the calibration by deriving corrected effective temperatures and gravities based on fitting the observed line profiles with updated NLTE models, and including the fit results from multiple STIS spectra, rather than the {usually} 1 or 2 ground-based spectra used previously. We will also determine the fluxes for 5 new, fainter primary or secondary standards, extending the standard V magnitude lower limit from 13.4 to 16.5, and extending the wavelength coverage from 0.1 to 2.5 micron. The goal is to achieve an overall flux accuracy of 1%, which will be needed, for example, for the upcoming supernova survey missions to measure the equation of state of the dark energy that is accelerating the expansion of the universe.

  7. Calibration of a time-resolved hard-x-ray detector using radioactive sources

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Stoeckl, C., E-mail: csto@lle.rochester.edu; Theobald, W.; Regan, S. P.

    A four-channel, time-resolved, hard x-ray detector (HXRD) has been operating at the Laboratory for Laser Energetics for more than a decade. The slope temperature of the hot-electron population in direct-drive inertial confinement fusion experiments is inferred by recording the hard x-ray radiation generated in the interaction of the electrons with the target. Measuring the energy deposited by hot electrons requires an absolute calibration of the hard x-ray detector. A novel method to obtain an absolute calibration of the HXRD using single photons from radioactive sources was developed, which uses a thermoelectrically cooled, low-noise, charge-sensitive amplifier.

  8. Calibration of time of flight detectors using laser-driven neutron source

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mirfayzi, S. R.; Kar, S., E-mail: s.kar@qub.ac.uk; Ahmed, H.

    2015-07-15

    Calibration of three scintillators (EJ232Q, BC422Q, and EJ410) in a time-of-flight arrangement using a laser drive-neutron source is presented. The three plastic scintillator detectors were calibrated with gamma insensitive bubble detector spectrometers, which were absolutely calibrated over a wide range of neutron energies ranging from sub-MeV to 20 MeV. A typical set of data obtained simultaneously by the detectors is shown, measuring the neutron spectrum emitted from a petawatt laser irradiated thin foil.

  9. Calibration of time of flight detectors using laser-driven neutron source.

    PubMed

    Mirfayzi, S R; Kar, S; Ahmed, H; Krygier, A G; Green, A; Alejo, A; Clarke, R; Freeman, R R; Fuchs, J; Jung, D; Kleinschmidt, A; Morrison, J T; Najmudin, Z; Nakamura, H; Norreys, P; Oliver, M; Roth, M; Vassura, L; Zepf, M; Borghesi, M

    2015-07-01

    Calibration of three scintillators (EJ232Q, BC422Q, and EJ410) in a time-of-flight arrangement using a laser drive-neutron source is presented. The three plastic scintillator detectors were calibrated with gamma insensitive bubble detector spectrometers, which were absolutely calibrated over a wide range of neutron energies ranging from sub-MeV to 20 MeV. A typical set of data obtained simultaneously by the detectors is shown, measuring the neutron spectrum emitted from a petawatt laser irradiated thin foil.

  10. Calibration of time of flight detectors using laser-driven neutron source

    NASA Astrophysics Data System (ADS)

    Mirfayzi, S. R.; Kar, S.; Ahmed, H.; Krygier, A. G.; Green, A.; Alejo, A.; Clarke, R.; Freeman, R. R.; Fuchs, J.; Jung, D.; Kleinschmidt, A.; Morrison, J. T.; Najmudin, Z.; Nakamura, H.; Norreys, P.; Oliver, M.; Roth, M.; Vassura, L.; Zepf, M.; Borghesi, M.

    2015-07-01

    Calibration of three scintillators (EJ232Q, BC422Q, and EJ410) in a time-of-flight arrangement using a laser drive-neutron source is presented. The three plastic scintillator detectors were calibrated with gamma insensitive bubble detector spectrometers, which were absolutely calibrated over a wide range of neutron energies ranging from sub-MeV to 20 MeV. A typical set of data obtained simultaneously by the detectors is shown, measuring the neutron spectrum emitted from a petawatt laser irradiated thin foil.

  11. Ground Calibrations of the Clouds and the Earth's Radiant Energy System (CERES) Tropical Rainfall Measuring Mission Spacecraft Thermistor Bolometers

    NASA Technical Reports Server (NTRS)

    Lee, Robert B., III; Smith, G. Lou; Barkstrom, Bruce R.; Priestley, Kory J.; Thomas, Susan; Paden, Jack; Pandey, Direndra K.; Thornhill, K. Lee; Bolden, William C.; Wilson, Robert S.

    1997-01-01

    The Clouds and the Earth's Radiant Energy System (CERES) spacecraft scanning thermistor bolometers will measure earth-reflected solar and earth-emmitted,longwave radiances, at the top-of-the-atmosphere. The measurements are performed in the broadband shortwave (0.3-5.0 micron) and longwave (5.0 - >100 micron) spectral regions as well as in the 8 -12 micron water vapor window over geographical footprints as small as 10 kilometers at the nadir. The CERES measurements are designed to improve our knowledge of the earth's natural climate processes, in particular those related to clouds, and man's impact upon climate as indicated by atmospheric temperature. November 1997, the first set of CERES bolometers is scheduled for launch on the Tropical Rainfall Measuring Mission (TRMM) Spacecraft. The CERES bolometers were calibrated radiometrically in a vacuum ground facility using absolute reference sources, tied to the International Temperature Scale of 1990. Accurate bolometer calibrations are dependent upon the derivations of the radiances from the spectral properties [reflectance, transmittance, emittance, etc.] of both the sources and bolometers. In this paper, the overall calibration approaches are discussed for the longwave and shortwave calibrations. The spectral responses for the TRMM bolometer units are presented and applied to the bolometer ground calibrations in order to determine pre-launch calibration gains.

  12. Energy calibration of CALET onboard the International Space Station

    NASA Astrophysics Data System (ADS)

    Asaoka, Y.; Akaike, Y.; Komiya, Y.; Miyata, R.; Torii, S.; Adriani, O.; Asano, K.; Bagliesi, M. G.; Bigongiari, G.; Binns, W. R.; Bonechi, S.; Bongi, M.; Brogi, P.; Buckley, J. H.; Cannady, N.; Castellini, G.; Checchia, C.; Cherry, M. L.; Collazuol, G.; Di Felice, V.; Ebisawa, K.; Fuke, H.; Guzik, T. G.; Hams, T.; Hareyama, M.; Hasebe, N.; Hibino, K.; Ichimura, M.; Ioka, K.; Ishizaki, W.; Israel, M. H.; Javaid, A.; Kasahara, K.; Kataoka, J.; Kataoka, R.; Katayose, Y.; Kato, C.; Kawanaka, N.; Kawakubo, Y.; Kitamura, H.; Krawczynski, H. S.; Krizmanic, J. F.; Kuramata, S.; Lomtadze, T.; Maestro, P.; Marrocchesi, P. S.; Messineo, A. M.; Mitchell, J. W.; Miyake, S.; Mizutani, K.; Moiseev, A. A.; Mori, K.; Mori, M.; Mori, N.; Motz, H. M.; Munakata, K.; Murakami, H.; Nakagawa, Y. E.; Nakahira, S.; Nishimura, J.; Okuno, S.; Ormes, J. F.; Ozawa, S.; Pacini, L.; Palma, F.; Papini, P.; Penacchioni, A. V.; Rauch, B. F.; Ricciarini, S.; Sakai, K.; Sakamoto, T.; Sasaki, M.; Shimizu, Y.; Shiomi, A.; Sparvoli, R.; Spillantini, P.; Stolzi, F.; Takahashi, I.; Takayanagi, M.; Takita, M.; Tamura, T.; Tateyama, N.; Terasawa, T.; Tomida, H.; Tsunesada, Y.; Uchihori, Y.; Ueno, S.; Vannuccini, E.; Wefel, J. P.; Yamaoka, K.; Yanagita, S.; Yoshida, A.; Yoshida, K.; Yuda, T.

    2017-05-01

    In August 2015, the CALorimetric Electron Telescope (CALET), designed for long exposure observations of high energy cosmic rays, docked with the International Space Station (ISS) and shortly thereafter began to collect data. CALET will measure the cosmic ray electron spectrum over the energy range of 1 GeV to 20 TeV with a very high resolution of 2% above 100 GeV, based on a dedicated instrument incorporating an exceptionally thick 30 radiation-length calorimeter with both total absorption and imaging (TASC and IMC) units. Each TASC readout channel must be carefully calibrated over the extremely wide dynamic range of CALET that spans six orders of magnitude in order to obtain a degree of calibration accuracy matching the resolution of energy measurements. These calibrations consist of calculating the conversion factors between ADC units and energy deposits, ensuring linearity over each gain range, and providing a seamless transition between neighboring gain ranges. This paper describes these calibration methods in detail, along with the resulting data and associated accuracies. The results presented in this paper show that a sufficient accuracy was achieved for the calibrations of each channel in order to obtain a suitable resolution over the entire dynamic range of the electron spectrum measurement.

  13. Improved dewpoint-probe calibration

    NASA Technical Reports Server (NTRS)

    Stephenson, J. G.; Theodore, E. A.

    1978-01-01

    Relatively-simple pressure-control apparatus calibrates dewpoint probes considerably faster than conventional methods, with no loss of accuracy. Technique requires only pressure measurement at each calibration point and single absolute-humidity measurement at beginning of run. Several probes can be calibrated simultaneously and points can be checked above room temperature.

  14. Direct Reflectance Measurements from Drones: Sensor Absolute Radiometric Calibration and System Tests for Forest Reflectance Characterization.

    PubMed

    Hakala, Teemu; Markelin, Lauri; Honkavaara, Eija; Scott, Barry; Theocharous, Theo; Nevalainen, Olli; Näsi, Roope; Suomalainen, Juha; Viljanen, Niko; Greenwell, Claire; Fox, Nigel

    2018-05-03

    Drone-based remote sensing has evolved rapidly in recent years. Miniaturized hyperspectral imaging sensors are becoming more common as they provide more abundant information of the object compared to traditional cameras. Reflectance is a physically defined object property and therefore often preferred output of the remote sensing data capture to be used in the further processes. Absolute calibration of the sensor provides a possibility for physical modelling of the imaging process and enables efficient procedures for reflectance correction. Our objective is to develop a method for direct reflectance measurements for drone-based remote sensing. It is based on an imaging spectrometer and irradiance spectrometer. This approach is highly attractive for many practical applications as it does not require in situ reflectance panels for converting the sensor radiance to ground reflectance factors. We performed SI-traceable spectral and radiance calibration of a tuneable Fabry-Pérot Interferometer -based (FPI) hyperspectral camera at the National Physical Laboratory NPL (Teddington, UK). The camera represents novel technology by collecting 2D format hyperspectral image cubes using time sequential spectral scanning principle. The radiance accuracy of different channels varied between ±4% when evaluated using independent test data, and linearity of the camera response was on average 0.9994. The spectral response calibration showed side peaks on several channels that were due to the multiple orders of interference of the FPI. The drone-based direct reflectance measurement system showed promising results with imagery collected over Wytham Forest (Oxford, UK).

  15. Direct Reflectance Measurements from Drones: Sensor Absolute Radiometric Calibration and System Tests for Forest Reflectance Characterization

    PubMed Central

    Hakala, Teemu; Scott, Barry; Theocharous, Theo; Näsi, Roope; Suomalainen, Juha; Greenwell, Claire; Fox, Nigel

    2018-01-01

    Drone-based remote sensing has evolved rapidly in recent years. Miniaturized hyperspectral imaging sensors are becoming more common as they provide more abundant information of the object compared to traditional cameras. Reflectance is a physically defined object property and therefore often preferred output of the remote sensing data capture to be used in the further processes. Absolute calibration of the sensor provides a possibility for physical modelling of the imaging process and enables efficient procedures for reflectance correction. Our objective is to develop a method for direct reflectance measurements for drone-based remote sensing. It is based on an imaging spectrometer and irradiance spectrometer. This approach is highly attractive for many practical applications as it does not require in situ reflectance panels for converting the sensor radiance to ground reflectance factors. We performed SI-traceable spectral and radiance calibration of a tuneable Fabry-Pérot Interferometer -based (FPI) hyperspectral camera at the National Physical Laboratory NPL (Teddington, UK). The camera represents novel technology by collecting 2D format hyperspectral image cubes using time sequential spectral scanning principle. The radiance accuracy of different channels varied between ±4% when evaluated using independent test data, and linearity of the camera response was on average 0.9994. The spectral response calibration showed side peaks on several channels that were due to the multiple orders of interference of the FPI. The drone-based direct reflectance measurement system showed promising results with imagery collected over Wytham Forest (Oxford, UK). PMID:29751560

  16. Calibration of X-Ray Observatories

    NASA Technical Reports Server (NTRS)

    Weisskopf, Martin C.; L'Dell, Stephen L.

    2011-01-01

    Accurate calibration of x-ray observatories has proved an elusive goal. Inaccuracies and inconsistencies amongst on-ground measurements, differences between on-ground and in-space performance, in-space performance changes, and the absence of cosmic calibration standards whose physics we truly understand have precluded absolute calibration better than several percent and relative spectral calibration better than a few percent. The philosophy "the model is the calibration" relies upon a complete high-fidelity model of performance and an accurate verification and calibration of this model. As high-resolution x-ray spectroscopy begins to play a more important role in astrophysics, additional issues in accurately calibrating at high spectral resolution become more evident. Here we review the challenges of accurately calibrating the absolute and relative response of x-ray observatories. On-ground x-ray testing by itself is unlikely to achieve a high-accuracy calibration of in-space performance, especially when the performance changes with time. Nonetheless, it remains an essential tool in verifying functionality and in characterizing and verifying the performance model. In the absence of verified cosmic calibration sources, we also discuss the notion of an artificial, in-space x-ray calibration standard. 6th

  17. Fabrication, characterization, and modeling of comixed films for NXS calibration targets [Fabrication and metrology of the NXS calibration targets

    DOE PAGES

    Jaquez, Javier; Farrell, Mike; Huang, Haibo; ...

    2016-08-01

    In 2014/2015 at the Omega laser facility, several experiments took place to calibrate the National Ignition Facility (NIF) X-ray spectrometer (NXS), which is used for high-resolution time-resolved spectroscopic experiments at NIF. The spectrometer allows experimentalists to measure the X-ray energy emitted from high-energy targets, which is used to understand key data such as mixing of materials in highly compressed fuel. The purpose of the experiments at Omega was to obtain information on the instrument performance and to deliver an absolute photometric calibration of the NXS before it was deployed at NIF. The X-ray emission sources fabricated for instrument calibration weremore » 1-mm fused silica spheres with precisely known alloy composition coatings of Si/Ag/Mo, Ti/Cr/Ag, Cr/Ni/Zn, and Zn/Zr, which have emission in the 2- to 18-keV range. Critical to the spectrometer calibration is a known atomic composition of elements with low uncertainty for each calibration sphere. This study discusses the setup, fabrication, and precision metrology of these spheres as well as some interesting findings on the ternary magnetron-sputtered alloy structure.« less

  18. Fabrication, characterization, and modeling of comixed films for NXS calibration targets [Fabrication and metrology of the NXS calibration targets

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Jaquez, Javier; Farrell, Mike; Huang, Haibo

    In 2014/2015 at the Omega laser facility, several experiments took place to calibrate the National Ignition Facility (NIF) X-ray spectrometer (NXS), which is used for high-resolution time-resolved spectroscopic experiments at NIF. The spectrometer allows experimentalists to measure the X-ray energy emitted from high-energy targets, which is used to understand key data such as mixing of materials in highly compressed fuel. The purpose of the experiments at Omega was to obtain information on the instrument performance and to deliver an absolute photometric calibration of the NXS before it was deployed at NIF. The X-ray emission sources fabricated for instrument calibration weremore » 1-mm fused silica spheres with precisely known alloy composition coatings of Si/Ag/Mo, Ti/Cr/Ag, Cr/Ni/Zn, and Zn/Zr, which have emission in the 2- to 18-keV range. Critical to the spectrometer calibration is a known atomic composition of elements with low uncertainty for each calibration sphere. This study discusses the setup, fabrication, and precision metrology of these spheres as well as some interesting findings on the ternary magnetron-sputtered alloy structure.« less

  19. Spectral irradiance calibration in the infrared. I - Ground-based and IRAS broadband calibrations

    NASA Technical Reports Server (NTRS)

    Cohen, Martin; Walker, Russell G.; Barlow, Michael J.; Deacon, John R.

    1992-01-01

    Absolutely calibrated versions of realistic model atmosphere calculations for Sirius and Vega by Kurucz (1991) are presented and used as a basis to offer a new absolute calibration of infrared broad and narrow filters. In-band fluxes for Vega are obtained and defined to be zero magnitude at all wavelengths shortward of 20 microns. Existing infrared photometry is used differentially to establish an absolute scale of the new Sirius model, yielding an angular diameter within 1 sigma of the mean determined interferometrically by Hanbury Brown et al. (1974). The use of Sirius as a primary infrared stellar standard beyond the 20 micron region is suggested. Isophotal wavelengths and monochromatic flux densities for both Vega and Sirius are tabulated.

  20. Tinker-OpenMM: Absolute and relative alchemical free energies using AMOEBA on GPUs.

    PubMed

    Harger, Matthew; Li, Daniel; Wang, Zhi; Dalby, Kevin; Lagardère, Louis; Piquemal, Jean-Philip; Ponder, Jay; Ren, Pengyu

    2017-09-05

    The capabilities of the polarizable force fields for alchemical free energy calculations have been limited by the high computational cost and complexity of the underlying potential energy functions. In this work, we present a GPU-based general alchemical free energy simulation platform for polarizable potential AMOEBA. Tinker-OpenMM, the OpenMM implementation of the AMOEBA simulation engine has been modified to enable both absolute and relative alchemical simulations on GPUs, which leads to a ∼200-fold improvement in simulation speed over a single CPU core. We show that free energy values calculated using this platform agree with the results of Tinker simulations for the hydration of organic compounds and binding of host-guest systems within the statistical errors. In addition to absolute binding, we designed a relative alchemical approach for computing relative binding affinities of ligands to the same host, where a special path was applied to avoid numerical instability due to polarization between the different ligands that bind to the same site. This scheme is general and does not require ligands to have similar scaffolds. We show that relative hydration and binding free energy calculated using this approach match those computed from the absolute free energy approach. © 2017 Wiley Periodicals, Inc. © 2017 Wiley Periodicals, Inc.

  1. Ultralow energy calibration of LUX detector using Xe 127 electron capture

    NASA Astrophysics Data System (ADS)

    Akerib, D. S.; Alsum, S.; Araújo, H. M.; Bai, X.; Bailey, A. J.; Balajthy, J.; Beltrame, P.; Bernard, E. P.; Bernstein, A.; Biesiadzinski, T. P.; Boulton, E. M.; Brás, P.; Byram, D.; Cahn, S. B.; Carmona-Benitez, M. C.; Chan, C.; Currie, A.; Cutter, J. E.; Davison, T. J. R.; Dobi, A.; Druszkiewicz, E.; Edwards, B. N.; Fallon, S. R.; Fan, A.; Fiorucci, S.; Gaitskell, R. J.; Genovesi, J.; Ghag, C.; Gilchriese, M. G. D.; Hall, C. R.; Hanhardt, M.; Haselschwardt, S. J.; Hertel, S. A.; Hogan, D. P.; Horn, M.; Huang, D. Q.; Ignarra, C. M.; Jacobsen, R. G.; Ji, W.; Kamdin, K.; Kazkaz, K.; Khaitan, D.; Knoche, R.; Larsen, N. A.; Lenardo, B. G.; Lesko, K. T.; Lindote, A.; Lopes, M. I.; Manalaysay, A.; Mannino, R. L.; Marzioni, M. F.; McKinsey, D. N.; Mei, D.-M.; Mock, J.; Moongweluwan, M.; Morad, J. A.; Murphy, A. St. J.; Nehrkorn, C.; Nelson, H. N.; Neves, F.; O'Sullivan, K.; Oliver-Mallory, K. C.; Palladino, K. J.; Pease, E. K.; Rhyne, C.; Shaw, S.; Shutt, T. A.; Silva, C.; Solmaz, M.; Solovov, V. N.; Sorensen, P.; Sumner, T. J.; Szydagis, M.; Taylor, D. J.; Taylor, W. C.; Tennyson, B. P.; Terman, P. A.; Tiedt, D. R.; To, W. H.; Tripathi, M.; Tvrznikova, L.; Uvarov, S.; Velan, V.; Verbus, J. R.; Webb, R. C.; White, J. T.; Whitis, T. J.; Witherell, M. S.; Wolfs, F. L. H.; Xu, J.; Yazdani, K.; Young, S. K.; Zhang, C.

    2017-12-01

    We report an absolute calibration of the ionization yields (Qy ) and fluctuations for electronic recoil events in liquid xenon at discrete energies between 186 eV and 33.2 keV. The average electric field applied across the liquid xenon target is 180 V /cm . The data are obtained using low energy Xe 127 electron capture decay events from the 95.0-day first run from LUX (WS2013) in search of weakly interacting massive particles. The sequence of gamma-ray and x-ray cascades associated with I 127 deexcitations produces clearly identified two-vertex events in the LUX detector. We observe the K-(binding energy, 33.2 keV), L-(5.2 keV), M-(1.1 keV), and N-(186 eV) shell cascade events and verify that the relative ratio of observed events for each shell agrees with calculations. The N-shell cascade analysis includes single extracted electron (SE) events and represents the lowest-energy electronic recoil in situ measurements that have been explored in liquid xenon.

  2. Absolute calibration technique for broadband ultrasonic transducers

    NASA Technical Reports Server (NTRS)

    Yost, William T. (Inventor); Cantrell, John H. (Inventor)

    1994-01-01

    Calibrating an ultrasonic transducer can be performed with a reduced number of calculations and testing. A wide-band pulser is connected to an ultrasonic transducer under test to generate ultrasonic waves in a liquid. A single frequency is transmitted to the electrostatic acoustic transducer (ESAT) and the voltage change produced is monitored. Then a broadband ultrasonic pulse is generated by the ultrasonic transducer and received by the ESAT. The output of the ESAT is amplified and input to a digitized oscilloscope for fast Fourier transform. The resulting plot is normalized with the monitored signal from the single frequency pulse. The plot is then corrected for characteristics of the membrane and diffraction effects. The transfer function of the final plot is determined. The transfer function gives the final sensitivity of the ultrasonic transducer as a function of frequency. The advantage of the system is the speed of calibrating the transducer by a reduced number of measurements and removal of the membrane and diffraction effects.

  3. Calibrating Wide Field Surveys

    NASA Astrophysics Data System (ADS)

    González Fernández, Carlos; Irwin, M.; Lewis, J.; González Solares, E.

    2017-09-01

    "In this talk I will review the strategies in CASU to calibrate wide field surveys, in particular applied to data taken with the VISTA telescope. These include traditional night-by-night calibrations along with the search for a global, coherent calibration of all the data once observations are finished. The difficulties of obtaining photometric accuracy of a few percent and a good absolute calibration will also be discussed."

  4. Recent Infrasound Calibration Activity at Los Alamos

    NASA Astrophysics Data System (ADS)

    Whitaker, R. W.; Marcillo, O. E.

    2014-12-01

    Absolute infrasound sensor calibration is necessary for estimating source sizes from measured waveforms. This can be an important function in treaty monitoring. The Los Alamos infrasound calibration chamber is capable of absolute calibration. Early in 2014 the Los Alamos infrasound calibration chamber resumed operations in its new location after an unplanned move two years earlier. The chamber has two sources of calibration signals. The first is the original mechanical piston, and the second is a CLD Dynamics Model 316 electro-mechanical unit that can be digitally controlled and provide a richer set of calibration options. During 2008-2010 a number of upgrades were incorporated for improved operation and recording. In this poster we give an overview of recent chamber work on sensor calibrations, calibration with the CLD unit, some measurements with different porous hoses and work with impulse sources.

  5. Absolute calibration of the Jenoptik CHM15k-x ceilometer and its applicability for quantitative aerosol monitoring

    NASA Astrophysics Data System (ADS)

    Geiß, Alexander; Wiegner, Matthias

    2014-05-01

    The knowledge of the spatiotemporal distribution of atmospheric aerosols and its optical characterization is essential for the understanding of the radiation budget, air quality, and climate. For this purpose, lidar is an excellent system as it is an active remote sensing technique. As multi-wavelength research lidars with depolarization channels are quite complex and cost-expensive, increasing attention is paid to so-called ceilometers. They are simple one-wavelength backscatter lidars with low pulse energy for eye-safe operation. As maintenance costs are low and continuous and unattended measurements can be performed, they are suitable for long-term aerosol monitoring in a network. However, the signal-to-noise ratio is low, and the signals are not calibrated. The only optical property that can be derived from a ceilometer is the particle backscatter coefficient, but even this quantity requires a calibration of the signals. With four years of measurements from a Jenoptik ceilometer CHM15k-x, we developed two methods for an absolute calibration on this system. This advantage of our approach is that only a few days with favorable meteorological conditions are required where Rayleigh-calibration and comparison with our research lidar is possible to estimate the lidar constant. This method enables us to derive the particle backscatter coefficient at 1064 nm, and we retrieved for the first time profiles in near real-time within an accuracy of 10 %. If an appropriate lidar ratio is assumed the aerosol optical depth of e.g. the mixing layer can be determined with an accuracy depending on the accuracy of the lidar ratio estimate. Even for 'simple' applications, e.g. assessment of the mixing layer height, cloud detection, detection of elevated aerosol layers, the particle backscatter coefficient has significant advantages over the measured (uncalibrated) attenuated backscatter. The possibility of continuous operation under nearly any meteorological condition with temporal

  6. Calibration of the Auger Fluorescence Telescopes

    NASA Astrophysics Data System (ADS)

    Klages, H.; Pierre Auger Observatory Collaboration

    Thirty fluorescence telescopes in four stations will overlook the detector array of the southern hemisphere experiment of the Pierre Auger project. The main aim of these telescopes is tracking of EHE air showers, measurement of the longitudinal shower development (Xmax) and determination of the absolute energy of EHE events. A telescope camera contains 440 PMTs each covering a 1.5 x 1.5 degree pixel of the sky. The response of every pixel is converted into the number of charged particles at the observed part of the shower. This reconstruction includes the shower/observer geometry and the details of the atmospheric photon production and transport. The remaining experimental task is to convert the ADC counts of the camera pixel electronics into the light flux entering the Schmidt aperture. Three types of calibration and control are necessary : a) Monitoring of time dependent variations has to be performed for all parts of the optics and for all pixels frequently. Common illumination for all pixels of a camera allows the detection of individual deviations. Properties of windows, filters and mirrors have to be measured separately. b) Differences in pixel-to-pixel efficiency are mainly due to PMT gain and to differences in effective area (camera shadow, mirror size limits). Homogeneous and isotropic illumination will enable cross calibration. c) An absolute calibration has to be performed once in a while using trusted light monitors. The calibration methods used for the Pierre Auger FD telescopes in Argentina are discussed.

  7. D-D Neutron Generator Calibrations and Hardware in the LUX-ZEPLIN Dark Matter Search Experiment

    NASA Astrophysics Data System (ADS)

    Taylor, Will; Lux-Zeplin Collaboration

    2016-03-01

    The LUX-ZEPLIN (LZ) dark matter search experiment will be a two-phase liquid/gas xenon time projection chamber with 7 tonnes of active liquid xenon (LXe) located at the 4850 ft level of the Sanford Underground Research Facility in Lead, SD. LZ will utilize an in-situ, absolute calibration of nuclear recoils (NR) in LXe using mono-energetic 2.45 MeV neutrons produced by a D-D neutron generator. This technique was used in the LUX detector to measured the NR charge yield in LXe (Qy) to 0.7 keV recoil energy and the NR light yield in LXe (Ly) to recoil energies of 1.1 keV - both of which were the lowest energy measurements achieved in the field. These absolute, ultra-low energy calibrations of the NR signal yields in LXe provide clear measurements of the detector response used for the WIMP search analysis. The improvements made for LZ will include shorter neutron pulse times, multiple neutron conduit configurations, and lower energy neutrons. The upgrades allow for even lower energy measurements of the nuclear recoil response in LXe and an independent measurement of Ly, as well as providing less uncertainty in energy reconstruction. In addition to discussing the physics of the neutron calibrations, I will describe the hardware systems used to implement them.

  8. Monitoring Energy Calibration Drift Using the Scintillator Background Radiation

    NASA Astrophysics Data System (ADS)

    Conti, Maurizio; Eriksson, Lars; Hayden, Charles

    2011-06-01

    Scintillating materials commonly used in nuclear medicine can contain traces of isotopes that naturally emit gamma or beta radiation. Examples of these are 138La contained in LaBr3 and other Lanthanum based scintillators, and 176Lu contained in LSO, LYSO, LuYAP and other Lutetium based scintillators. In particular,176Lu decays into 176Hf and emits a beta particle with maximum energy 589 keV, and a cascade of gamma rays of energies 307 keV, 202 keV and 88 keV. We propose to use the background radiation for monitoring of detector calibration drift and for self-calibration of detectors in complex detector systems. A calibration drift due to random or systematic changes in photomultiplier tube (PMT) gain was studied in a Siemens PET scanner, based on LSO blocks. Both a conventional radioactive source (68Ge, 511 keV photons from electron-positron annihilation) and the LSO background radiation were used for calibration. The difference in the calibration peak shift at 511 keV estimated with the two methods was less than 10%.

  9. Energy calibration of organic scintillation detectors for. gamma. rays

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gu Jiahui; Xiao Genlai; Liu Jingyi

    1988-10-01

    An experimental method of calibrating organic detectors is described. A NaI(T1) detector has some advantages of high detection efficiency, good energy resolution, and definite position of the back-scattering peak. The precise position of the Compton edge can be determined by coincidence measurement between the pulse of an organic scintillation detector and the pulse of the back-scattering peak from NaI(T1) detector. It can be used to calibrate various sizes and shapes of organic scintillation detectors simply and reliably. The home-made plastic and organic liquid scintillation detectors are calibrated and positions of the Compton edge as a function of ..gamma..-ray energies aremore » obtained.« less

  10. Comparing alchemical and physical pathway methods for computing the absolute binding free energy of charged ligands.

    PubMed

    Deng, Nanjie; Cui, Di; Zhang, Bin W; Xia, Junchao; Cruz, Jeffrey; Levy, Ronald

    2018-06-13

    Accurately predicting absolute binding free energies of protein-ligand complexes is important as a fundamental problem in both computational biophysics and pharmaceutical discovery. Calculating binding free energies for charged ligands is generally considered to be challenging because of the strong electrostatic interactions between the ligand and its environment in aqueous solution. In this work, we compare the performance of the potential of mean force (PMF) method and the double decoupling method (DDM) for computing absolute binding free energies for charged ligands. We first clarify an unresolved issue concerning the explicit use of the binding site volume to define the complexed state in DDM together with the use of harmonic restraints. We also provide an alternative derivation for the formula for absolute binding free energy using the PMF approach. We use these formulas to compute the binding free energy of charged ligands at an allosteric site of HIV-1 integrase, which has emerged in recent years as a promising target for developing antiviral therapy. As compared with the experimental results, the absolute binding free energies obtained by using the PMF approach show unsigned errors of 1.5-3.4 kcal mol-1, which are somewhat better than the results from DDM (unsigned errors of 1.6-4.3 kcal mol-1) using the same amount of CPU time. According to the DDM decomposition of the binding free energy, the ligand binding appears to be dominated by nonpolar interactions despite the presence of very large and favorable intermolecular ligand-receptor electrostatic interactions, which are almost completely cancelled out by the equally large free energy cost of desolvation of the charged moiety of the ligands in solution. We discuss the relative strengths of computing absolute binding free energies using the alchemical and physical pathway methods.

  11. 14 MeV calibration of JET neutron detectors—phase 1: calibration and characterization of the neutron source

    NASA Astrophysics Data System (ADS)

    Batistoni, P.; Popovichev, S.; Cufar, A.; Ghani, Z.; Giacomelli, L.; Jednorog, S.; Klix, A.; Lilley, S.; Laszynska, E.; Loreti, S.; Packer, L.; Peacock, A.; Pillon, M.; Price, R.; Rebai, M.; Rigamonti, D.; Roberts, N.; Tardocchi, M.; Thomas, D.; Contributors, JET

    2018-02-01

    In view of the planned DT operations at JET, a calibration of the JET neutron monitors at 14 MeV neutron energy is needed using a 14 MeV neutron generator deployed inside the vacuum vessel by the JET remote handling system. The target accuracy of this calibration is  ±10% as also required by ITER, where a precise neutron yield measurement is important, e.g. for tritium accountancy. To achieve this accuracy, the 14 MeV neutron generator selected as the calibration source has been fully characterised and calibrated prior to the in-vessel calibration of the JET monitors. This paper describes the measurements performed using different types of neutron detectors, spectrometers, calibrated long counters and activation foils which allowed us to obtain the neutron emission rate and the anisotropy of the neutron generator, i.e. the neutron flux and energy spectrum dependence on emission angle, and to derive the absolute emission rate in 4π sr. The use of high resolution diamond spectrometers made it possible to resolve the complex features of the neutron energy spectra resulting from the mixed D/T beam ions reacting with the D/T nuclei present in the neutron generator target. As the neutron generator is not a stable neutron source, several monitoring detectors were attached to it by means of an ad hoc mechanical structure to continuously monitor the neutron emission rate during the in-vessel calibration. These monitoring detectors, two diamond diodes and activation foils, have been calibrated in terms of neutrons/counts within  ±5% total uncertainty. A neutron source routine has been developed, able to produce the neutron spectra resulting from all possible reactions occurring with the D/T ions in the beam impinging on the Ti D/T target. The neutron energy spectra calculated by combining the source routine with a MCNP model of the neutron generator have been validated by the measurements. These numerical tools will be key in analysing the results from the in

  12. Directly relating gas-phase cluster measurements to solution-phase hydrolysis, the absolute standard hydrogen electrode potential, and the absolute proton solvation energy.

    PubMed

    Donald, William A; Leib, Ryan D; O'Brien, Jeremy T; Williams, Evan R

    2009-06-08

    Solution-phase, half-cell potentials are measured relative to other half-cell potentials, resulting in a thermochemical ladder that is anchored to the standard hydrogen electrode (SHE), which is assigned an arbitrary value of 0 V. A new method for measuring the absolute SHE potential is demonstrated in which gaseous nanodrops containing divalent alkaline-earth or transition-metal ions are reduced by thermally generated electrons. Energies for the reactions 1) M(H(2)O)(24)(2+)(g) + e(-)(g)-->M(H(2)O)(24)(+)(g) and 2) M(H(2)O)(24)(2+)(g) + e(-)(g)-->MOH(H(2)O)(23)(+)(g) + H(g) and the hydrogen atom affinities of MOH(H(2)O)(23)(+)(g) are obtained from the number of water molecules lost through each pathway. From these measurements on clusters containing nine different metal ions and known thermochemical values that include solution hydrolysis energies, an average absolute SHE potential of +4.29 V vs. e(-)(g) (standard deviation of 0.02 V) and a real proton solvation free energy of -265 kcal mol(-1) are obtained. With this method, the absolute SHE potential can be obtained from a one-electron reduction of nanodrops containing divalent ions that are not observed to undergo one-electron reduction in aqueous solution.

  13. Directly Relating Gas-Phase Cluster Measurements to Solution-Phase Hydrolysis, the Absolute Standard Hydrogen Electrode Potential, and the Absolute Proton Solvation Energy

    PubMed Central

    Donald, William A.; Leib, Ryan D.; O’Brien, Jeremy T.; Williams, Evan R.

    2009-01-01

    Solution-phase, half-cell potentials are measured relative to other half-cell potentials, resulting in a thermochemical ladder that is anchored to the standard hydrogen electrode (SHE), which is assigned an arbitrary value of 0 V. A new method for measuring the absolute SHE potential is demonstrated in which gaseous nanodrops containing divalent alkaline-earth or transition-metal ions are reduced by thermally generated electrons. Energies for the reactions 1) M-(H2O)242+(g)+e−(g)→M(H2O)24+(g) and 2) M(H2O)242+(g)+e−(g)→MOH(H2O)23+(g)+H(g) and the hydrogen atom affinities of MOH(H2O)23+(g) are obtained from the number of water molecules lost through each pathway. From these measurements on clusters containing nine different metal ions and known thermochemical values that include solution hydrolysis energies, an average absolute SHE potential of +4.29 V vs. e−(g) (standard deviation of 0.02 V) and a real proton solvation free energy of −265 kcal mol−1 are obtained. With this method, the absolute SHE potential can be obtained from a one-electron reduction of nanodrops containing divalent ions that are not observed to undergo one-electron reduction in aqueous solution. PMID:19440999

  14. Evaluation of factors affecting CGMS calibration.

    PubMed

    Buckingham, Bruce A; Kollman, Craig; Beck, Roy; Kalajian, Andrea; Fiallo-Scharer, Rosanna; Tansey, Michael J; Fox, Larry A; Wilson, Darrell M; Weinzimer, Stuart A; Ruedy, Katrina J; Tamborlane, William V

    2006-06-01

    The optimal number/timing of calibrations entered into the CGMS (Medtronic MiniMed, Northridge, CA) continuous glucose monitoring system have not been previously described. Fifty subjects with Type 1 diabetes mellitus (10-18 years old) were hospitalized in a clinical research center for approximately 24 h on two separate days. CGMS and OneTouch Ultra meter (LifeScan, Milpitas, CA) data were obtained. The CGMS was retrospectively recalibrated using the Ultra data varying the number and timing of calibrations. Resulting CGMS values were compared against laboratory reference values. There was a modest improvement in accuracy with increasing number of calibrations. The median relative absolute deviation (RAD) was 14%, 15%, 13%, and 13% when using three, four, five, and seven calibration values, respectively (P < 0.001). Corresponding percentages of CGMS-reference pairs meeting the International Organisation for Standardisation criteria were 66%, 67%, 71%, and 72% (P < 0.001). Nighttime accuracy improved when daytime calibrations (pre-lunch and pre-dinner) were removed leaving only two calibrations at 9 p.m. and 6 a.m. (median difference, -2 vs. -9 mg/dL, P < 0.001; median RAD, 12% vs. 15%, P = 0.001). Accuracy was better on visits where the average absolute rate of glucose change at the times of calibration was lower. On visits with average absolute rates <0.5, 0.5 to <1.0, 1.0 to <1.5, and >or=1.5 mg/dL/min, median RAD values were 13% versus 14% versus 17% versus 19%, respectively (P = 0.05). Although accuracy is slightly improved with more calibrations, the timing of the calibrations appears more important. Modifying the algorithm to put less weight on daytime calibrations for nighttime values and calibrating during times of relative glucose stability may have greater impact on accuracy.

  15. Evaluation of Factors Affecting CGMS Calibration

    PubMed Central

    2006-01-01

    Background The optimal number/timing of calibrations entered into the Continuous Glucose Monitoring System (“CGMS”; Medtronic MiniMed, Northridge, CA) have not been previously described. Methods Fifty subjects with T1DM (10–18y) were hospitalized in a clinical research center for ~24h on two separate days. CGMS and OneTouch® Ultra® Meter (“Ultra”; LifeScan, Milpitas, CA) data were obtained. The CGMS was retrospectively recalibrated using the Ultra data varying the number and timing of calibrations. Resulting CGMS values were compared against laboratory reference values. Results There was a modest improvement in accuracy with increasing number of calibrations. The median relative absolute deviation (RAD) was 14%, 15%, 13% and 13% when using 3, 4, 5 and 7 calibration values, respectively (p<0.001). Corresponding percentages of CGMS-reference pairs meeting the ISO criteria were 66%, 67%, 71% and 72% (p<0.001). Nighttime accuracy improved when daytime calibrations (pre-lunch and pre-dinner) were removed leaving only two calibrations at 9p.m. and 6a.m. (median difference: −2 vs. −9mg/dL, p<0.001; median RAD: 12% vs. 15%, p=0.001). Accuracy was better on visits where the average absolute rate of glucose change at the times of calibration was lower. On visits with average absolute rates <0.5, 0.5-<1.0, 1.0-<1.5 and ≥1.5mg/dL/min, median RAD values were 13% vs. 14% vs. 17% vs. 19%, respectively (p=0.05). Conclusions Although accuracy is slightly improved with more calibrations, the timing of the calibrations appears more important. Modifying the algorithm to put less weight on daytime calibrations for nighttime values and calibrating during times of relative glucose stability may have greater impact on accuracy. PMID:16800753

  16. Absolute Spectrophotometric Calibration to 1% from the FUV through the near-IR

    NASA Astrophysics Data System (ADS)

    Finley, David

    2006-07-01

    We are requesting additional support to complete the work now being carried out under the Cycle 14 archive program, HST-AR-10654. The most critical component of that effort is an accurate determination of the STIS spectrometer LSF, so that we may correctly model the infill of the Balmer line cores by light redistributed from the wings and adjacent continuum. That is the essential input for obtaining accurate and unbiased effective temperatures and gravities, and hence calibrated fluxes, via line profile fitting of the WD calibration standards. To evaluate the published STIS LSF, we investigated the spectral images of the calibration targets, yielding several significant results: a} the STIS LSF varies significantly; b} existing observation-based spectroscopic LSFs or imaging PSFs are inadequate for deriving suitable spectroscopic LSFs; c} accounting for the PSF/LSF variability will improve spectrophotometric accuracy; d} the LSFs used for model fits must be consistent with the extraction process details; and, e} TinyTim-generated PSFs, with some modifications, provide the most suitable basis for producing the required LSFs that are tailored to each individual spectral observation. Based on our current {greatly improved} state of knowlege of the instrumental effects, we are now requesting additional support to complete the work needed to generate correct LSFs, and then carry out the analyses that were the subject of the original proposal.Our goal is the same: to produce a significant improvement to the existing HST calibration. The current calibration is based on three primary DA white dwarf standards, GD 71, GD 153,and G 191-B2B. The standard fluxes are calculated using NLTE models, with effective temperatures and gravities that were derived from Balmer line fits using LTE models. We propose to improve the accuracy and internal consistency of the calibration by deriving corrected effective temperatures and gravities based on fitting the observed line profiles with

  17. Absolute detection efficiency of a microchannel plate detector to X rays in the 1-100 KeV energy range

    NASA Astrophysics Data System (ADS)

    Burginyon, Gary A.; Jacoby, Barry A.; Wobser, James K.; Ernst, Richard; Ancheta, Dione S.; Tirsell, Kenneth G.

    1993-02-01

    There is little information in the literature on the performance of working micro-channel plate (MCP) detectors at high x-ray energies. We have measured the absolute efficiency of a microchannel-plate-intensified, subnanosecond, one dimensional imaging x-ray detector developed at LLNL in the 1 to 100 keV range and at 1.25 MeV. The detector consists of a gold photocathode deposited on the front surface of the MCP (optimized for Ni K(subscript (alpha) ) x rays) to convert x rays to electrons, an MCP to amplify the electrons, and a fast In:CdS phosphor that converts the electron's kinetic energy to light. The phosphor is coated on a fiber-optic faceplate to transmit the light out of the vacuum system. Electrostatic focusing electrodes compress the electron current out of the MCP in one dimension while preserving spatial resolution in the other. The calibration geometry, dictated by a recent experiment, required grazing incidence x rays (15.6 degree(s)) onto the MCP detector in order to maximize deliverable current. The experiment also used a second detector made up of 0.071 in. thick BC422 plastic scintillator material from the Bicron Corporation. We compare the absolute efficiencies of these two detectors in units of optical W/cm(superscript 2) into 4 (pi) per x ray W/cm(superscript 2) incident. At 7.47 keV and 900 volts MCP bias, the MCP detector delivers approximately 1400 times more light than the scintillator detector.

  18. Calibration of High Heat Flux Sensors at NIST

    PubMed Central

    Murthy, A. V.; Tsai, B. K.; Gibson, C. E.

    1997-01-01

    An ongoing program at the National Institute of Standards and Technology (NIST) is aimed at improving and standardizing heat-flux sensor calibration methods. The current calibration needs of U.S. science and industry exceed the current NIST capability of 40 kW/m2 irradiance. In achieving this goal, as well as meeting lower-level non-radiative heat flux calibration needs of science and industry, three different types of calibration facilities currently are under development at NIST: convection, conduction, and radiation. This paper describes the research activities associated with the NIST Radiation Calibration Facility. Two different techniques, transfer and absolute, are presented. The transfer calibration technique employs a transfer standard calibrated with reference to a radiometric standard for calibrating the sensors using a graphite tube blackbody. Plans for an absolute calibration facility include the use of a spherical blackbody and a cooled aperture and sensor-housing assembly to calibrate the sensors in a low convective environment. PMID:27805156

  19. Fundamental principles of absolute radiometry and the philosophy of this NBS program (1968 to 1971)

    NASA Technical Reports Server (NTRS)

    Geist, J.

    1972-01-01

    A description is given work performed on a program to develop an electrically calibrated detector (also called absolute radiometer, absolute detector, and electrically calibrated radiometer) that could be used to realize, maintain, and transfer a scale of total irradiance. The program includes a comprehensive investigation of the theoretical basis of absolute detector radiometry, as well as the design and construction of a number of detectors. A theoretical analysis of the sources of error is also included.

  20. Technique for calibrating angular measurement devices when calibration standards are unavailable

    NASA Technical Reports Server (NTRS)

    Finley, Tom D.

    1991-01-01

    A calibration technique is proposed that will allow the calibration of certain angular measurement devices without requiring the use of absolute standard. The technique assumes that the device to be calibrated has deterministic bias errors. A comparison device must be available that meets the same requirements. The two devices are compared; one device is then rotated with respect to the other, and a second comparison is performed. If the data are reduced using the described technique, the individual errors of the two devices can be determined.

  1. Strategy for the absolute neutron emission measurement on ITER.

    PubMed

    Sasao, M; Bertalot, L; Ishikawa, M; Popovichev, S

    2010-10-01

    Accuracy of 10% is demanded to the absolute fusion measurement on ITER. To achieve this accuracy, a functional combination of several types of neutron measurement subsystem, cross calibration among them, and in situ calibration are needed. Neutron transport calculation shows the suitable calibration source is a DT/DD neutron generator of source strength higher than 10(10) n/s (neutron/second) for DT and 10(8) n/s for DD. It will take eight weeks at the minimum with this source to calibrate flux monitors, profile monitors, and the activation system.

  2. The detector calibration system for the CUORE cryogenic bolometer array

    DOE PAGES

    Cushman, Jeremy S.; Dally, Adam; Davis, Christopher J.; ...

    2016-11-14

    The Cryogenic Underground Observatory for Rare Events (CUORE) is a ton-scale cryogenic experiment designed to search for neutrinoless double-beta decay of 130Te and other rare events. The CUORE detector consists of 988 TeO 2 bolometers operated underground at 10 mK in a dilution refrigerator at the Laboratori Nazionali del Gran Sasso. Candidate events are identified through a precise measurement of their energy. The absolute energy response of the detectors is established by the regular calibration of each individual bolometer using gamma sources. The close-packed configuration of the CUORE bolometer array combined with the extensive shielding surrounding the detectors requires themore » placement of calibration sources within the array itself. The CUORE Detector Calibration System is designed to insert radioactive sources into and remove them from the cryostat while respecting the stringent heat load, radiopurity, and operational requirements of the experiment. In conclusion, this paper describes the design, commissioning, and performance of this novel source calibration deployment system for ultra-low-temperature environments.« less

  3. SU-E-I-38: Improved Metal Artifact Correction Using Adaptive Dual Energy Calibration

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Dong, X; Elder, E; Roper, J

    2015-06-15

    Purpose: The empirical dual energy calibration (EDEC) method corrects for beam-hardening artifacts, but shows limited performance on metal artifact correction. In this work, we propose an adaptive dual energy calibration (ADEC) method to correct for metal artifacts. Methods: The empirical dual energy calibration (EDEC) method corrects for beam-hardening artifacts, but shows limited performance on metal artifact correction. In this work, we propose an adaptive dual energy calibration (ADEC) method to correct for metal artifacts. Results: Highly attenuating copper rods cause severe streaking artifacts on standard CT images. EDEC improves the image quality, but cannot eliminate the streaking artifacts. Compared tomore » EDEC, the proposed ADEC method further reduces the streaking resulting from metallic inserts and beam-hardening effects and obtains material decomposition images with significantly improved accuracy. Conclusion: We propose an adaptive dual energy calibration method to correct for metal artifacts. ADEC is evaluated with the Shepp-Logan phantom, and shows superior metal artifact correction performance. In the future, we will further evaluate the performance of the proposed method with phantom and patient data.« less

  4. Impacts of the spatial extent of pollen-climate calibration-set on the absolute values, range and trends of reconstructed Holocene precipitation

    NASA Astrophysics Data System (ADS)

    Cao, X.; Tian, F.; Telford, R.; Ni, J.; Xu, Q.; Chen, F.; Liu, X.; Stebich, M.; Zhao, Y.; Herzschuh, U.

    2017-12-01

    Pollen-based quantitative reconstructions of past climate variables is a standard palaeoclimatic approach. Despite knowing that the spatial extent of the calibration-set affects the reconstruction result, guidance is lacking as to how to determine a suitable spatial extent of the pollen-climate calibration-set. In this study, past mean annual precipitation (Pann) during the Holocene (since 11.5 cal ka BP) is reconstructed repeatedly for pollen records from Qinghai Lake (36.7°N, 100.5°E; north-east Tibetan Plateau), Gonghai Lake (38.9°N, 112.2°E; north China) and Sihailongwan Lake (42.3°N, 126.6°E; north-east China) using calibration-sets of varying spatial extents extracted from the modern pollen dataset of China and Mongolia (2559 sampling sites and 168 pollen taxa in total). Results indicate that the spatial extent of the calibration-set has a strong impact on model performance, analogue quality and reconstruction diagnostics (absolute value, range, trend, optimum). Generally, these effects are stronger with the modern analogue technique (MAT) than with weighted averaging partial least squares (WA-PLS). With respect to fossil spectra from northern China, the spatial extent of calibration-sets should be restricted to ca. 1000 km in radius because small-scale calibration-sets (<800 km radius) will likely fail to include enough spatial variation in the modern pollen assemblages to reflect the temporal range shifts during the Holocene, while too broad a scale calibration-set (>1500 km radius) will include taxa with very different pollen-climate relationships. Based on our results we conclude that the optimal calibration-set should 1) cover a reasonably large spatial extent with an even distribution of modern pollen samples; 2) possess good model performance as indicated by cross-validation, high analogue quality, and excellent fit with the target fossil pollen spectra; 3) possess high taxonomic resolution, and 4) obey the modern and past distribution ranges of

  5. HST/WFC3 flux calibration ladder: Vega

    NASA Astrophysics Data System (ADS)

    Deustua, Susana E.; Bohlin, Ralph; Pirzkal, Nor; MacKenty, John

    2014-08-01

    Vega is one of only a few stars calibrated against an SI-traceable blackbody, and is the historical flux standard. Photometric zeropoints of the Hubble Space Telescope's instruments rely on Vega, through the transfer of its calibration via stellar atmosphere models to the suite of standard stars. HST's recently implemented scan mode has enabled us to develop a path to an absolute SI traceable calibration for HST IR observations. To fill in the crucial gap between 0.9 and 1.7 micron in the absolute calibration, we acquired -1st order spectra of Vega with the two WFC3 infrared grisms. At the same time, we have improved the calibration of the -1st orders of both WFC3 IR grisms, as well as extended the dynamic range of WFC3 science observations by a factor of 10000. We describe our progress to date on the WFC3 `flux calibration ladder' project to provide currently needed accurate zeropoint measurements in the IR

  6. Spectral Irradiance Calibration in the Infrared. 7. 5-14 microns Spectroscopy of the Asteroids Ceres, Vesta, and Pallas

    NASA Technical Reports Server (NTRS)

    Cohen, Martin; Witteborn, Fred C.; Roush, Ted; Bregman, Jesse; Wooden, Diane

    1996-01-01

    We describe our efforts to seek "closure" in our infrared absolute calibration scheme by comparing spectra of asteroids, absolutely calibrated through reference stars, with "Standard Thermal Models" and "Thermophysical Models" for these bodies. Our use of continuous 5-14 microns airborne spectra provides complete sampling of the rise to, and peak, of the infrared spectral energy distribution and constrains these models. Such models currently support the absolute calibration of ISO-PHOT at far-infrared wave- lengths (as far as 300 microns), and contribute to that of the Mid-Infrared Spectrometer on the "Infrared Telescope in Space" in the 6-12 microns region. The best match to our observed spectra of Ceres and Vesta is a, standard thermal model using a beaming factor of unity. We also report the presence of three emissivity features in Ceres which may complicate the traditional model extrapolation to the far-infrared from contemporaneous ground-based N-band photometry that is used to support calibration of, for example, ISO-PHOT. While identification of specific materials that cause these features is not made, we discuss families of minerals that may be responsible.

  7. An atlas of selected calibrated stellar spectra

    NASA Technical Reports Server (NTRS)

    Walker, Russell G.; Cohen, Martin

    1992-01-01

    Five hundred and fifty six stars in the IRAS PSC-2 that are suitable for stellar radiometric standards and are brighter than 1 Jy at 25 microns were identified. In addition, 123 stars that meet all of our criteria for calibration standards, but which lack a luminosity class were identified. An approach to absolute stellar calibration of broadband infrared filters based upon new models of Vega and Sirius due to Kurucz (1992) is presented. A general technique used to assemble continuous wide-band calibrated infrared spectra is described and an absolutely calibrated 1-35 micron spectrum of alpha(Tau) is constructed and the method using new and carefully designed observations is independently validated. The absolute calibration of the IRAS Low Resolution Spectrometer (LRS) database is investigated by comparing the observed spectrum of alpha(Tau) with that assumed in the original LRS calibration scheme. Neglect of the SiO fundamental band in alpha(Tau) has led to the presence of a specious 'emission' feature in all LRS spectra near 8.5 microns, and to an incorrect spectral slope between 8 and 12 microns. Finally, some of the properties of asteroids that effect their utility as calibration objects for the middle and far infrared region are examined. A technique to determine, from IRAS multiwaveband observations, the basic physical parameters needed by various asteroid thermal models that minimize the number of assumptions required is developed.

  8. Empirical dual energy calibration (EDEC) for cone-beam computed tomography.

    PubMed

    Stenner, Philip; Berkus, Timo; Kachelriess, Marc

    2007-09-01

    Material-selective imaging using dual energy CT (DECT) relies heavily on well-calibrated material decomposition functions. These require the precise knowledge of the detected x-ray spectra, and even if they are exactly known the reliability of DECT will suffer from scattered radiation. We propose an empirical method to determine the proper decomposition function. In contrast to other decomposition algorithms our empirical dual energy calibration (EDEC) technique requires neither knowledge of the spectra nor of the attenuation coefficients. The desired material-selective raw data p1 and p2 are obtained as functions of the measured attenuation data q1 and q2 (one DECT scan = two raw data sets) by passing them through a polynomial function. The polynomial's coefficients are determined using a general least squares fit based on thresholded images of a calibration phantom. The calibration phantom's dimension should be of the same order of magnitude as the test object, but other than that no assumptions on its exact size or positioning are made. Once the decomposition coefficients are determined DECT raw data can be decomposed by simply passing them through the polynomial. To demonstrate EDEC simulations of an oval CTDI phantom, a lung phantom, a thorax phantom and a mouse phantom were carried out. The method was further verified by measuring a physical mouse phantom, a half-and-half-cylinder phantom and a Yin-Yang phantom with a dedicated in vivo dual source micro-CT scanner. The raw data were decomposed into their components, reconstructed, and the pixel values obtained were compared to the theoretical values. The determination of the calibration coefficients with EDEC is very robust and depends only slightly on the type of calibration phantom used. The images of the test phantoms (simulations and measurements) show a nearly perfect agreement with the theoretical micro values and density values. Since EDEC is an empirical technique it inherently compensates for scatter

  9. Automatic energy calibration algorithm for an RBS setup

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Silva, Tiago F.; Moro, Marcos V.; Added, Nemitala

    2013-05-06

    This work describes a computer algorithm for automatic extraction of the energy calibration parameters from a Rutherford Back-Scattering Spectroscopy (RBS) spectrum. Parameters like the electronic gain, electronic offset and detection resolution (FWHM) of a RBS setup are usually determined using a standard sample. In our case, the standard sample comprises of a multi-elemental thin film made of a mixture of Ti-Al-Ta that is analyzed at the beginning of each run at defined beam energy. A computer program has been developed to extract automatically the calibration parameters from the spectrum of the standard sample. The code evaluates the first derivative ofmore » the energy spectrum, locates the trailing edges of the Al, Ti and Ta peaks and fits a first order polynomial for the energy-channel relation. The detection resolution is determined fitting the convolution of a pre-calculated theoretical spectrum. To test the code, data of two years have been analyzed and the results compared with the manual calculations done previously, obtaining good agreement.« less

  10. Absolute cross-sections for DNA strand breaks and crosslinks induced by low energy electrons

    PubMed Central

    Chen, Wenzhuang; Chen, Shiliang; Dong, Yanfang; Cloutier, Pierre; Sanche, Léon

    2016-01-01

    Absolute cross sections (CSs) for the interaction of low energy electrons with condensed macromolecules are essential parameters to accurately model ionizing radiation induced reactions. To determine CSs for various conformational DNA damage induced by 2–20 eV electrons, we investigated the influence of the attenuation length (AL) and penetration factor (f) using a mathematical model. Solid films of super-coiled plasmid DNA with thicknesses of 10, 15 and 20 nm were irradiated with 4.6, 5.6, 9.6 and 14.6 eV electrons. DNA conformational changes were quantified by gel electrophoresis, and the respective yields were extrapolated from exposure–response curves. The absolute CS, AL and f values were generated by applying the model developed by Rezaee et al. The values of AL were found to lie between 11 and 16 nm with the maximum at 14.6 eV. The absolute CSs for the loss of the supercoiled (LS) configuration and production of crosslinks (CL), single strand breaks (SSB) and double strand breaks (DSB) induced by 4.6, 5.6, 9.6 and 14.6 eV electrons are obtained. The CSs for SSB are smaller, but similar to those for LS, indicating that SSB are the main conformational damage. The CSs for DSB and CL are about one order of magnitude smaller than those of LS and SSB. The value of f is found to be independent of electron energy, which allows extending the absolute CSs for these types of damage within the range 2–20 eV, from previous measurements of effective CSs. When comparison is possible, the absolute CSs are found to be in good agreement with those obtained from previous similar studies with double-stranded DNA. The high values of the absolute CSs of 4.6 and 9.6 eV provide quantitative evidence for the high efficiency of low energy electrons to induce DNA damage via the formation of transient anions. PMID:27878170

  11. Absolute cross-sections for DNA strand breaks and crosslinks induced by low energy electrons.

    PubMed

    Chen, Wenzhuang; Chen, Shiliang; Dong, Yanfang; Cloutier, Pierre; Zheng, Yi; Sanche, Léon

    2016-12-07

    Absolute cross sections (CSs) for the interaction of low energy electrons with condensed macromolecules are essential parameters to accurately model ionizing radiation induced reactions. To determine CSs for various conformational DNA damage induced by 2-20 eV electrons, we investigated the influence of the attenuation length (AL) and penetration factor (f) using a mathematical model. Solid films of supercoiled plasmid DNA with thicknesses of 10, 15 and 20 nm were irradiated with 4.6, 5.6, 9.6 and 14.6 eV electrons. DNA conformational changes were quantified by gel electrophoresis, and the respective yields were extrapolated from exposure-response curves. The absolute CS, AL and f values were generated by applying the model developed by Rezaee et al. The values of AL were found to lie between 11 and 16 nm with the maximum at 14.6 eV. The absolute CSs for the loss of the supercoiled (LS) configuration and production of crosslinks (CL), single strand breaks (SSB) and double strand breaks (DSB) induced by 4.6, 5.6, 9.6 and 14.6 eV electrons are obtained. The CSs for SSB are smaller, but similar to those for LS, indicating that SSB are the main conformational damage. The CSs for DSB and CL are about one order of magnitude smaller than those of LS and SSB. The value of f is found to be independent of electron energy, which allows extending the absolute CSs for these types of damage within the range 2-20 eV, from previous measurements of effective CSs. When comparison is possible, the absolute CSs are found to be in good agreement with those obtained from previous similar studies with double-stranded DNA. The high values of the absolute CSs of 4.6 and 9.6 eV provide quantitative evidence for the high efficiency of low energy electrons to induce DNA damage via the formation of transient anions.

  12. Calibration aspects of the JEM-EUSO mission

    NASA Astrophysics Data System (ADS)

    Adams, J. H.; Ahmad, S.; Albert, J.-N.; Allard, D.; Anchordoqui, L.; Andreev, V.; Anzalone, A.; Arai, Y.; Asano, K.; Ave Pernas, M.; Baragatti, P.; Barrillon, P.; Batsch, T.; Bayer, J.; Bechini, R.; Belenguer, T.; Bellotti, R.; Belov, K.; Berlind, A. A.; Bertaina, M.; Biermann, P. L.; Biktemerova, S.; Blaksley, C.; Blanc, N.; Błȩcki, J.; Blin-Bondil, S.; Blümer, J.; Bobik, P.; Bogomilov, M.; Bonamente, M.; Briggs, M. S.; Briz, S.; Bruno, A.; Cafagna, F.; Campana, D.; Capdevielle, J.-N.; Caruso, R.; Casolino, M.; Cassardo, C.; Castellinic, G.; Catalano, C.; Catalano, G.; Cellino, A.; Chikawa, M.; Christl, M. J.; Cline, D.; Connaughton, V.; Conti, L.; Cordero, G.; Crawford, H. J.; Cremonini, R.; Csorna, S.; Dagoret-Campagne, S.; de Castro, A. J.; De Donato, C.; de la Taille, C.; De Santis, C.; del Peral, L.; Dell'Oro, A.; De Simone, N.; Di Martino, M.; Distratis, G.; Dulucq, F.; Dupieux, M.; Ebersoldt, A.; Ebisuzaki, T.; Engel, R.; Falk, S.; Fang, K.; Fenu, F.; Fernández-Gómez, I.; Ferrarese, S.; Finco, D.; Flamini, M.; Fornaro, C.; Franceschi, A.; Fujimoto, J.; Fukushima, M.; Galeotti, P.; Garipov, G.; Geary, J.; Gelmini, G.; Giraudo, G.; Gonchar, M.; González Alvarado, C.; Gorodetzky, P.; Guarino, F.; Guzmán, A.; Hachisu, Y.; Harlov, B.; Haungs, A.; Hernández Carretero, J.; Higashide, K.; Ikeda, D.; Ikeda, H.; Inoue, N.; Inoue, S.; Insolia, A.; Isgrò, F.; Itow, Y.; Joven, E.; Judd, E. G.; Jung, A.; Kajino, F.; Kajino, T.; Kaneko, I.; Karadzhov, Y.; Karczmarczyk, J.; Karus, M.; Katahira, K.; Kawai, K.; Kawasaki, Y.; Keilhauer, B.; Khrenov, B. A.; Kim, J.-S.; Kim, S.-W.; Kim, S.-W.; Kleifges, M.; Klimov, P. A.; Kolev, D.; Kreykenbohm, I.; Kudela, K.; Kurihara, Y.; Kusenko, A.; Kuznetsov, E.; Lacombe, M.; Lachaud, C.; Lee, J.; Licandro, J.; Lim, H.; López, F.; Maccarone, M. C.; Mannheim, K.; Maravilla, D.; Marcelli, L.; Marini, A.; Martinez, O.; Masciantonio, G.; Mase, K.; Matev, R.; Medina-Tanco, G.; Mernik, T.; Miyamoto, H.; Miyazaki, Y.; Mizumoto, Y.; Modestino, G.; Monaco, A.; Monnier-Ragaigne, D.; Morales de los Ríos, J. A.; Moretto, C.; Morozenko, V. S.; Mot, B.; Murakami, T.; Murakami, M. Nagano; Nagata, M.; Nagataki, S.; Nakamura, T.; Napolitano, T.; Naumov, D.; Nava, R.; Neronov, A.; Nomoto, K.; Nonaka, T.; Ogawa, T.; Ogio, S.; Ohmori, H.; Olinto, A. V.; Orleański, P.; Osteria, G.; Panasyuk, M. I.; Parizot, E.; Park, I. H.; Park, H. W.; Pastircak, B.; Patzak, T.; Paul, T.; Pennypacker, C.; Perez Cano, S.; Peter, T.; Picozza, P.; Pierog, T.; Piotrowski, L. W.; Piraino, S.; Plebaniak, Z.; Pollini, A.; Prat, P.; Prévôt, G.; Prieto, H.; Putis, M.; Reardon, P.; Reyes, M.; Ricci, M.; Rodríguez, I.; Rodríguez Frías, M. D.; Ronga, F.; Roth, M.; Rothkaehl, H.; Roudil, G.; Rusinov, I.; Rybczyński, M.; Sabau, M. D.; Sáez-Cano, G.; Sagawa, H.; Saito, A.; Sakaki, N.; Sakata, M.; Salazar, H.; Sánchez, S.; Santangelo, A.; Santiago Crúz, L.; Sanz Palomino, M.; Saprykin, O.; Sarazin, F.; Sato, H.; Sato, M.; Schanz, T.; Schieler, H.; Scotti, V.; Segreto, A.; Selmane, S.; Semikoz, D.; Serra, M.; Sharakin, S.; Shibata, T.; Shimizu, H. M.; Shinozaki, K.; Shirahama, T.; Siemieniec-Oziȩbło, G.; Silva López, H. H.; Sledd, J.; Słomińska, K.; Sobey, A.; Sugiyama, T.; Supanitsky, D.; Suzuki, M.; Szabelska, B.; Szabelski, J.; Tajima, F.; Tajima, N.; Tajima, T.; Takahashi, Y.; Takami, H.; Takeda, M.; Takizawa, Y.; Tenzer, C.; Tibolla, O.; Tkachev, L.; Tokuno, H.; Tomida, T.; Tone, N.; Toscano, S.; Trillaud, F.; Tsenov, R.; Tsunesada, Y.; Tsuno, K.; Tymieniecka, T.; Uchihori, Y.; Unger, M.; Vaduvescu, O.; Valdés-Galicia, J. F.; Vallania, P.; Valore, L.; Vankova, G.; Vigorito, C.; Villaseñor, L.; von Ballmoos, P.; Wada, S.; Watanabe, J.; Watanabe, S.; Watts, J.; Weber, M.; Weiler, T. J.; Wibig, T.; Wiencke, L.; Wille, M.; Wilms, J.; Włodarczyk, Z.; Yamamoto, T.; Yamamoto, Y.; Yang, J.; Yano, H.; Yashin, I. V.; Yonetoku, D.; Yoshida, K.; Yoshida, S.; Young, R.; Zotov, M. Yu.; Zuccaro Marchi, A.

    2015-11-01

    The JEM-EUSO telescope will be, after calibration, a very accurate instrument which yields the number of received photons from the number of measured photo-electrons. The project is in phase A (demonstration of the concept) including already operating prototype instruments, i.e. many parts of the instrument have been constructed and tested. Calibration is a crucial part of the instrument and its use. The focal surface (FS) of the JEM-EUSO telescope will consist of about 5000 photo-multiplier tubes (PMTs), which have to be well calibrated to reach the required accuracy in reconstructing the air-shower parameters. The optics system consists of 3 plastic Fresnel (double-sided) lenses of 2.5 m diameter. The aim of the calibration system is to measure the efficiencies (transmittances) of the optics and absolute efficiencies of the entire focal surface detector. The system consists of 3 main components: (i) Pre-flight calibration devices on ground, where the efficiency and gain of the PMTs will be measured absolutely and also the transmittance of the optics will be. (ii) On-board relative calibration system applying two methods: a) operating during the day when the JEM-EUSO lid will be closed with small light sources on board. b) operating during the night, together with data taking: the monitoring of the background rate over identical sites. (iii) Absolute in-flight calibration, again, applying two methods: a) measurement of the moon light, reflected on high altitude, high albedo clouds. b) measurements of calibrated flashes and tracks produced by the Global Light System (GLS). Some details of each calibration method will be described in this paper.

  13. Calibration of X-ray spectrometers for opacity experiments at the Orion laser facility (invited).

    PubMed

    Bentley, C; Allan, P; Brent, K; Bruce, N; Hoarty, D; Meadowcroft, A; Percival, J; Opie, C

    2016-11-01

    Accurately calibrated and characterised x-ray diagnostics are a key requirement in the fielding of experiments on the Orion laser where absolute measurements of x-ray emission are used to underpin the validity of models of emissivity and opacity. Diffraction crystals are used in spectrometers on Orion to record the dispersed spectral features emitted by the laser produced plasma to obtain a measurement of the plasma conditions. The ability to undertake diffraction crystal calibrations supports the successful outcome of these Orion experiments. This paper details the design and commissioning of a system to undertake these calibrations in the energy range 2.0 keV to approximately 8.5 keV. Improvements to the design are detailed which will extend the commissioned range of energies to below 1 keV.

  14. Measurement of absolute laser energy absorption by nano-structured targets

    NASA Astrophysics Data System (ADS)

    Park, Jaebum; Tommasini, R.; London, R.; Bargsten, C.; Hollinger, R.; Capeluto, M. G.; Shlyaptsev, V. N.; Rocca, J. J.

    2017-10-01

    Nano-structured targets have been reported to allow the realization of extreme plasma conditions using table top lasers, and have gained much interest as a platform to investigate the ultra-high energy density plasmas (>100 MJ/cm3) . One reason for these targets to achieve extreme conditions is increased laser energy absorption (LEA). The absolute LEA by nano-structured targets has been measured for the first time and compared to that by foil targets. The experimental results, including the effects of target parameters on the LEA, will be presented. This work was performed under the auspices of the U.S. Department of Energy by Lawrence Livermore National Laboratory under Contract DE-AC52097NA27344, and funded by LDRD (#15-ERD-054).

  15. Calibration, event reconstruction, data analysis, and limit calculation for the LUX dark matter experiment

    NASA Astrophysics Data System (ADS)

    Akerib, D. S.; Alsum, S.; Araújo, H. M.; Bai, X.; Bailey, A. J.; Balajthy, J.; Beltrame, P.; Bernard, E. P.; Bernstein, A.; Biesiadzinski, T. P.; Boulton, E. M.; Brás, P.; Byram, D.; Cahn, S. B.; Carmona-Benitez, M. C.; Chan, C.; Currie, A.; Cutter, J. E.; Davison, T. J. R.; Dobi, A.; Dobson, J. E. Y.; Druszkiewicz, E.; Edwards, B. N.; Faham, C. H.; Fallon, S. R.; Fan, A.; Fiorucci, S.; Gaitskell, R. J.; Gehman, V. M.; Genovesi, J.; Ghag, C.; Gilchriese, M. G. D.; Hall, C. R.; Hanhardt, M.; Haselschwardt, S. J.; Hertel, S. A.; Hogan, D. P.; Horn, M.; Huang, D. Q.; Ignarra, C. M.; Jacobsen, R. G.; Ji, W.; Kamdin, K.; Kazkaz, K.; Khaitan, D.; Knoche, R.; Larsen, N. A.; Lee, C.; Lenardo, B. G.; Lesko, K. T.; Lindote, A.; Lopes, M. I.; Manalaysay, A.; Mannino, R. L.; Marzioni, M. F.; McKinsey, D. N.; Mei, D.-M.; Mock, J.; Moongweluwan, M.; Morad, J. A.; Murphy, A. St. J.; Nehrkorn, C.; Nelson, H. N.; Neves, F.; O'Sullivan, K.; Oliver-Mallory, K. C.; Palladino, K. J.; Pease, E. K.; Reichhart, L.; Rhyne, C.; Shaw, S.; Shutt, T. A.; Silva, C.; Solmaz, M.; Solovov, V. N.; Sorensen, P.; Sumner, T. J.; Szydagis, M.; Taylor, D. J.; Taylor, W. C.; Tennyson, B. P.; Terman, P. A.; Tiedt, D. R.; To, W. H.; Tripathi, M.; Tvrznikova, L.; Uvarov, S.; Velan, V.; Verbus, J. R.; Webb, R. C.; White, J. T.; Whitis, T. J.; Witherell, M. S.; Wolfs, F. L. H.; Xu, J.; Yazdani, K.; Young, S. K.; Zhang, C.; LUX Collaboration

    2018-05-01

    The LUX experiment has performed searches for dark-matter particles scattering elastically on xenon nuclei, leading to stringent upper limits on the nuclear scattering cross sections for dark matter. Here, for results derived from 1.4 ×104 kg days of target exposure in 2013, details of the calibration, event-reconstruction, modeling, and statistical tests that underlie the results are presented. Detector performance is characterized, including measured efficiencies, stability of response, position resolution, and discrimination between electron- and nuclear-recoil populations. Models are developed for the drift field, optical properties, background populations, the electron- and nuclear-recoil responses, and the absolute rate of low-energy background events. Innovations in the analysis include in situ measurement of the photomultipliers' response to xenon scintillation photons, verification of fiducial mass with a low-energy internal calibration source, and new empirical models for low-energy signal yield based on large-sample, in situ calibrations.

  16. Metrological activity determination of 133Ba by sum-peak absolute method

    NASA Astrophysics Data System (ADS)

    da Silva, R. L.; de Almeida, M. C. M.; Delgado, J. U.; Poledna, R.; Santos, A.; de Veras, E. V.; Rangel, J.; Trindade, O. L.

    2016-07-01

    The National Laboratory for Metrology of Ionizing Radiation provides gamma sources of radionuclide and standardized in activity with reduced uncertainties. Relative methods require standards to determine the sample activity while the absolute methods, as sum-peak, not. The activity is obtained directly with good accuracy and low uncertainties. 133Ba is used in research laboratories and on calibration of detectors for analysis in different work areas. Classical absolute methods don't calibrate 133Ba due to its complex decay scheme. The sum-peak method using gamma spectrometry with germanium detector standardizes 133Ba samples. Uncertainties lower than 1% to activity results were obtained.

  17. Landsat-7 ETM+ On-Orbit Reflective-Band Radiometric Stability and Absolute Calibration

    NASA Technical Reports Server (NTRS)

    Markham, Brian L.; Thome, Kurtis J.; Barsi, Julia A.; Kaita, Ed; Helder, Dennis L.; Barker, John L.

    2003-01-01

    The Landsat-7 spacecraft carries the Enhanced Thematic Mapper Plus (ETM+) instrument. This instrument images the Earth land surface in eight parts of the electromagnetic spectrum, termed spectral bands. These spectral images are used to monitor changes in the land surface, so a consistent relationship, i.e., calibration, between the image data and the Earth surface brightness, is required. The ETM+ has several on- board calibration devices that are used to monitor this calibration. The best on-board calibration source employs a flat white painted reference panel and has indicated changes of between 0.5% to 2% per year in the ETM+ response, depending on the spectral band. However, most of these changes are believed to be caused by changes in the reference panel, as opposed to changes in the instrument's sensitivity. This belief is based partially on on-orbit calibrations using instrumented ground sites and observations of "invariant sites", hyper-arid sites of the Sahara and Arabia. Changes determined from these data sets indicate are 0.1% - 0.6% per year. Tests and comparisons to other sensors also indicate that the uncertainty of the calibration is at the 5% level.

  18. Calibrated FMRI.

    PubMed

    Hoge, Richard D

    2012-08-15

    Functional magnetic resonance imaging with blood oxygenation level-dependent (BOLD) contrast has had a tremendous influence on human neuroscience in the last twenty years, providing a non-invasive means of mapping human brain function with often exquisite sensitivity and detail. However the BOLD method remains a largely qualitative approach. While the same can be said of anatomic MRI techniques, whose clinical and research impact has not been diminished in the slightest by the lack of a quantitative interpretation of their image intensity, the quantitative expression of BOLD responses as a percent of the baseline T2*- weighted signal has been viewed as necessary since the earliest days of fMRI. Calibrated MRI attempts to dissociate changes in oxygen metabolism from changes in blood flow and volume, the latter three quantities contributing jointly to determine the physiologically ambiguous percent BOLD change. This dissociation is typically performed using a "calibration" procedure in which subjects inhale a gas mixture containing small amounts of carbon dioxide or enriched oxygen to produce changes in blood flow and BOLD signal which can be measured under well-defined hemodynamic conditions. The outcome is a calibration parameter M which can then be substituted into an expression providing the fractional change in oxygen metabolism given changes in blood flow and BOLD signal during a task. The latest generation of calibrated MRI methods goes beyond fractional changes to provide absolute quantification of resting-state oxygen consumption in micromolar units, in addition to absolute measures of evoked metabolic response. This review discusses the history, challenges, and advances in calibrated MRI, from the personal perspective of the author. Copyright © 2012 Elsevier Inc. All rights reserved.

  19. Radiometric calibration updates to the Landsat collection

    USGS Publications Warehouse

    Micijevic, Esad; Haque, Md. Obaidul; Mishra, Nischal

    2016-01-01

    The Landsat Project is planning to implement a new collection management strategy for Landsat products generated at the U.S. Geological Survey (USGS) Earth Resources Observation and Science (EROS) Center. The goal of the initiative is to identify a collection of consistently geolocated and radiometrically calibrated images across the entire Landsat archive that is readily suitable for time-series analyses. In order to perform an accurate land change analysis, the data from all Landsat sensors must be on the same radiometric scale. Landsat 7 Enhanced Thematic Mapper Plus (ETM+) is calibrated to a radiance standard and all previous sensors are cross-calibrated to its radiometric scale. Landsat 8 Operational Land Imager (OLI) is calibrated to both radiance and reflectance standards independently. The Landsat 8 OLI reflectance calibration is considered to be most accurate. To improve radiometric calibration accuracy of historical data, Landsat 1-7 sensors also need to be cross-calibrated to the OLI reflectance scale. Results of that effort, as well as other calibration updates including the absolute and relative radiometric calibration and saturated pixel replacement for Landsat 8 OLI and absolute calibration for Landsat 4 and 5 Thematic Mappers (TM), will be implemented into Landsat products during the archive reprocessing campaign planned within the new collection management strategy. This paper reports on the planned radiometric calibration updates to the solar reflective bands of the new Landsat collection.

  20. The absolute radiometric calibration of the advanced very high resolution radiometer

    NASA Technical Reports Server (NTRS)

    Slater, P. N.; Teillet, P. M.; Ding, Y.

    1989-01-01

    The measurement conditions are described for an intensive field campaign at White Sands Missile Range for the calibration of the AVHRRs on NOAA-9, NOAA-10 and NOAA-11, LANDSAT-4 TM and SPOT. Three different methods for calibration of AVHRRs by reference to a ground surface site are reported, and results from these methods are compared. Significant degradations in NOAA-9 and NOAA-10 AVHRR responsivities occurred since prelaunch calibrations were completed. As of February 1988, degradations in NOAA-9 AVHRR responsivities were on the order of 37 percent in channel and 41 percent in channel 2, and for the NOAA-10 AVHRR these degradations were 42 and 59 percent in channels 1 and 2, respectively.

  1. Calibrating Building Energy Models Using Supercomputer Trained Machine Learning Agents

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sanyal, Jibonananda; New, Joshua Ryan; Edwards, Richard

    2014-01-01

    Building Energy Modeling (BEM) is an approach to model the energy usage in buildings for design and retrofit purposes. EnergyPlus is the flagship Department of Energy software that performs BEM for different types of buildings. The input to EnergyPlus can often extend in the order of a few thousand parameters which have to be calibrated manually by an expert for realistic energy modeling. This makes it challenging and expensive thereby making building energy modeling unfeasible for smaller projects. In this paper, we describe the Autotune research which employs machine learning algorithms to generate agents for the different kinds of standardmore » reference buildings in the U.S. building stock. The parametric space and the variety of building locations and types make this a challenging computational problem necessitating the use of supercomputers. Millions of EnergyPlus simulations are run on supercomputers which are subsequently used to train machine learning algorithms to generate agents. These agents, once created, can then run in a fraction of the time thereby allowing cost-effective calibration of building models.« less

  2. Spitzer/JWST Cross Calibration: IRAC Observations of Potential Calibrators for JWST

    NASA Astrophysics Data System (ADS)

    Carey, Sean J.; Gordon, Karl D.; Lowrance, Patrick; Ingalls, James G.; Glaccum, William J.; Grillmair, Carl J.; E Krick, Jessica; Laine, Seppo J.; Fazio, Giovanni G.; Hora, Joseph L.; Bohlin, Ralph

    2017-06-01

    We present observations at 3.6 and 4.5 microns using IRAC on the Spitzer Space Telescope of a set of main sequence A stars and white dwarfs that are potential calibrators across the JWST instrument suite. The stars range from brightnesses of 4.4 to 15 mag in K band. The calibration observations use a similar redundancy to the observing strategy for the IRAC primary calibrators (Reach et al. 2005) and the photometry is obtained using identical methods and instrumental photometric corrections as those applied to the IRAC primary calibrators (Carey et al. 2009). The resulting photometry is then compared to the predictions based on spectra from the CALSPEC Calibration Database (http://www.stsci.edu/hst/observatory/crds/calspec.html) and the IRAC bandpasses. These observations are part of an ongoing collaboration between IPAC and STScI investigating absolute calibration in the infrared.

  3. Software For Calibration Of Polarimetric SAR Data

    NASA Technical Reports Server (NTRS)

    Van Zyl, Jakob; Zebker, Howard; Freeman, Anthony; Holt, John; Dubois, Pascale; Chapman, Bruce

    1994-01-01

    POLCAL (Polarimetric Radar Calibration) software tool intended to assist in calibration of synthetic-aperture radar (SAR) systems. In particular, calibrates Stokes-matrix-format data produced as standard product by NASA/Jet Propulsion Laboratory (JPL) airborne imaging synthetic aperture radar (AIRSAR). Version 4.0 of POLCAL is upgrade of version 2.0. New options include automatic absolute calibration of 89/90 data, distributed-target analysis, calibration of nearby scenes with corner reflectors, altitude or roll-angle corrections, and calibration of errors introduced by known topography. Reduces crosstalk and corrects phase calibration without use of ground calibration equipment. Written in FORTRAN 77.

  4. (abstract) Absolute Flux Calibrations of Venus and Jupiter at 32 GHz

    NASA Technical Reports Server (NTRS)

    Gatti, Mark S.; Klein, Michael J.

    1994-01-01

    The microwave flux densities of Venus and Jupiter at 32 GHz have been measured using a calibration standard radio telescope system at the Owens Valley Radio Observatory (OVRO) during April and May of 1993. These measurements are part of a joint JPL/Caltech program to accurately calibrate a catalog of other radio sources using the two bright planets as flux standards.

  5. Improved Strategies and Optimization of Calibration Models for Real-time PCR Absolute Quantification

    EPA Science Inventory

    Real-time PCR absolute quantification applications rely on the use of standard curves to make estimates of DNA target concentrations in unknown samples. Traditional absolute quantification approaches dictate that a standard curve must accompany each experimental run. However, t...

  6. Calibration, event reconstruction, data analysis and limits calculation for the LUX dark matter experiment

    DOE PAGES

    Akerib, DS; Alsum, S; Araújo, HM; ...

    2018-01-05

    The LUX experiment has performed searches for dark matter particles scattering elastically on xenon nuclei, leading to stringent upper limits on the nuclear scattering cross sections for dark matter. Here, for results derived frommore » $${1.4}\\times 10^{4}\\;\\mathrm{kg\\,days}$$ of target exposure in 2013, details of the calibration, event-reconstruction, modeling, and statistical tests that underlie the results are presented. Detector performance is characterized, including measured efficiencies, stability of response, position resolution, and discrimination between electron- and nuclear-recoil populations. Models are developed for the drift field, optical properties, background populations, the electron- and nuclear-recoil responses, and the absolute rate of low-energy background events. Innovations in the analysis include in situ measurement of the photomultipliers' response to xenon scintillation photons, verification of fiducial mass with a low-energy internal calibration source, and new empirical models for low-energy signal yield based on large-sample, in situ calibrations.« less

  7. Calibration, event reconstruction, data analysis, and limit calculation for the LUX dark matter experiment

    DOE PAGES

    Akerib, D. S.; Alsum, S.; Araújo, H. M.; ...

    2018-05-31

    Here, the LUX experiment has performed searches for dark matter particles scattering elastically on xenon nuclei, leading to stringent upper limits on the nuclear scattering cross sections for dark matter. Here, for results derived frommore » $${1.4}\\times 10^{4}\\;\\mathrm{kg\\,days}$$ of target exposure in 2013, details of the calibration, event-reconstruction, modeling, and statistical tests that underlie the results are presented. Detector performance is characterized, including measured efficiencies, stability of response, position resolution, and discrimination between electron- and nuclear-recoil populations. Models are developed for the drift field, optical properties, background populations, the electron- and nuclear-recoil responses, and the absolute rate of low-energy background events. Innovations in the analysis include in situ measurement of the photomultipliers' response to xenon scintillation photons, verification of fiducial mass with a low-energy internal calibration source, and new empirical models for low-energy signal yield based on large-sample, in situ calibrations.« less

  8. Calibration, event reconstruction, data analysis, and limit calculation for the LUX dark matter experiment

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Akerib, D. S.; Alsum, S.; Araújo, H. M.

    Here, the LUX experiment has performed searches for dark matter particles scattering elastically on xenon nuclei, leading to stringent upper limits on the nuclear scattering cross sections for dark matter. Here, for results derived frommore » $${1.4}\\times 10^{4}\\;\\mathrm{kg\\,days}$$ of target exposure in 2013, details of the calibration, event-reconstruction, modeling, and statistical tests that underlie the results are presented. Detector performance is characterized, including measured efficiencies, stability of response, position resolution, and discrimination between electron- and nuclear-recoil populations. Models are developed for the drift field, optical properties, background populations, the electron- and nuclear-recoil responses, and the absolute rate of low-energy background events. Innovations in the analysis include in situ measurement of the photomultipliers' response to xenon scintillation photons, verification of fiducial mass with a low-energy internal calibration source, and new empirical models for low-energy signal yield based on large-sample, in situ calibrations.« less

  9. Energy response calibration of photon-counting detectors using x-ray fluorescence: a feasibility study.

    PubMed

    Cho, H-M; Ding, H; Ziemer, B P; Molloi, S

    2014-12-07

    Accurate energy calibration is critical for the application of energy-resolved photon-counting detectors in spectral imaging. The aim of this study is to investigate the feasibility of energy response calibration and characterization of a photon-counting detector using x-ray fluorescence. A comprehensive Monte Carlo simulation study was performed using Geant4 Application for Tomographic Emission (GATE) to investigate the optimal technique for x-ray fluorescence calibration. Simulations were conducted using a 100 kVp tungsten-anode spectra with 2.7 mm Al filter for a single pixel cadmium telluride (CdTe) detector with 3 × 3 mm(2) in detection area. The angular dependence of x-ray fluorescence and scatter background was investigated by varying the detection angle from 20° to 170° with respect to the beam direction. The effects of the detector material, shape, and size on the recorded x-ray fluorescence were investigated. The fluorescent material size effect was considered with and without the container for the fluorescent material. In order to provide validation for the simulation result, the angular dependence of x-ray fluorescence from five fluorescent materials was experimentally measured using a spectrometer. Finally, eleven of the fluorescent materials were used for energy calibration of a CZT-based photon-counting detector. The optimal detection angle was determined to be approximately at 120° with respect to the beam direction, which showed the highest fluorescence to scatter ratio (FSR) with a weak dependence on the fluorescent material size. The feasibility of x-ray fluorescence for energy calibration of photon-counting detectors in the diagnostic x-ray energy range was verified by successfully calibrating the energy response of a CZT-based photon-counting detector. The results of this study can be used as a guideline to implement the x-ray fluorescence calibration method for photon-counting detectors in a typical imaging laboratory.

  10. Energy response calibration of photon-counting detectors using X-ray fluorescence: a feasibility study

    PubMed Central

    Cho, H-M; Ding, H; Ziemer, BP; Molloi, S

    2014-01-01

    Accurate energy calibration is critical for the application of energy-resolved photon-counting detectors in spectral imaging. The aim of this study is to investigate the feasibility of energy response calibration and characterization of a photon-counting detector using X-ray fluorescence. A comprehensive Monte Carlo simulation study was performed using Geant4 Application for Tomographic Emission (GATE) to investigate the optimal technique for X-ray fluorescence calibration. Simulations were conducted using a 100 kVp tungsten-anode spectra with 2.7 mm Al filter for a single pixel cadmium telluride (CdTe) detector with 3 × 3 mm2 in detection area. The angular dependence of X-ray fluorescence and scatter background was investigated by varying the detection angle from 20° to 170° with respect to the beam direction. The effects of the detector material, shape, and size on the recorded X-ray fluorescence were investigated. The fluorescent material size effect was considered with and without the container for the fluorescent material. In order to provide validation for the simulation result, the angular dependence of X-ray fluorescence from five fluorescent materials was experimentally measured using a spectrometer. Finally, eleven of the fluorescent materials were used for energy calibration of a CZT-based photon-counting detector. The optimal detection angle was determined to be approximately at 120° with respect to the beam direction, which showed the highest fluorescence to scatter ratio (FSR) with a weak dependence on the fluorescent material size. The feasibility of X-ray fluorescence for energy calibration of photon-counting detectors in the diagnostic X-ray energy range was verified by successfully calibrating the energy response of a CZT-based photon-counting detector. The results of this study can be used as a guideline to implement the X-ray fluorescence calibration method for photon-counting detectors in a typical imaging laboratory. PMID:25369288

  11. Radiation calibration for LWIR Hyperspectral Imager Spectrometer

    NASA Astrophysics Data System (ADS)

    Yang, Zhixiong; Yu, Chunchao; Zheng, Wei-jian; Lei, Zhenggang; Yan, Min; Yuan, Xiaochun; Zhang, Peizhong

    2014-11-01

    The radiometric calibration of LWIR Hyperspectral imager Spectrometer is presented. The lab has been developed to LWIR Interferometric Hyperspectral imager Spectrometer Prototype(CHIPED-I) to study Lab Radiation Calibration, Two-point linear calibration is carried out for the spectrometer by using blackbody respectively. Firstly, calibration measured relative intensity is converted to the absolute radiation lightness of the object. Then, radiation lightness of the object is is converted the brightness temperature spectrum by the method of brightness temperature. The result indicated †that this method of Radiation Calibration calibration was very good.

  12. Energy dependent calibration of XR-QA2 radiochromic film with monochromatic and polychromatic x-ray beams

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Di Lillo, F.; Mettivier, G., E-mail: mettivier@na.infn.it; Sarno, A.

    2016-01-15

    Purpose: This work investigates the energy response and dose-response curve determinations for XR-QA2 radiochromic film dosimetry system used for synchrotron radiation work and for quality assurance in diagnostic radiology, in the range of effective energies 18–46.5 keV. Methods: Pieces of XR-QA2 films were irradiated, in a plane transverse to the beam axis, with a monochromatic beam of energy in the range 18–40 keV at the ELETTRA synchrotron radiation facility (Trieste, Italy) and with a polychromatic beam from a laboratory x-ray tube operated at 80, 100, and 120 kV. The film calibration curve was expressed as air kerma (measured free-in-air withmore » an ionization chamber) versus the net optical reflectance change (netΔR) derived from the red channel of the RGB scanned film image. Four functional relationships (rational, linear exponential, power, and logarithm) were tested to evaluate the best curve for fitting the calibration data. The adequacy of the various fitting functions was tested by using the uncertainty analysis and by assessing the average of the absolute air kerma error calculated as the difference between calculated and delivered air kerma. The sensitivity of the film was evaluated as the ratio of the change in net reflectance to the corresponding air kerma. Results: The sensitivity of XR-QA2 films increased in the energy range 18–39 keV, with a maximum variation of about 170%, and decreased in the energy range 38–46.5 keV. The present results confirmed and extended previous findings by this and other groups, as regards the dose response of the radiochromic film XR-QA2 to monochromatic and polychromatic x-ray beams, respectively. Conclusions: The XR-QA2 radiochromic film response showed a strong dependence on beam energy for both monochromatic and polychromatic beams in the range of half value layer values from 0.55 to 6.1 mm Al and corresponding effective energies from 18 to 46.5 keV. In this range, the film response varied by 170

  13. Determination of the absolute binding free energies of HIV-1 protease inhibitors using non-equilibrium molecular dynamics simulations

    NASA Astrophysics Data System (ADS)

    Ngo, Son Tung; Nguyen, Minh Tung; Nguyen, Minh Tho

    2017-05-01

    The absolute binding free energy of an inhibitor to HIV-1 Protease (PR) was determined throughout evaluation of the non-bonded interaction energy difference between the two bound and unbound states of the inhibitor and surrounding molecules by the fast pulling of ligand (FPL) process using non-equilibrium molecular dynamics (NEMD) simulations. The calculated free energy difference terms help clarifying the nature of the binding. Theoretical binding affinities are in good correlation with experimental data, with R = 0.89. The paradigm used is able to rank two inhibitors having the maximum difference of ∼1.5 kcal/mol in absolute binding free energies.

  14. Exploring the calibration of a wind forecast ensemble for energy applications

    NASA Astrophysics Data System (ADS)

    Heppelmann, Tobias; Ben Bouallegue, Zied; Theis, Susanne

    2015-04-01

    In the German research project EWeLiNE, Deutscher Wetterdienst (DWD) and Fraunhofer Institute for Wind Energy and Energy System Technology (IWES) are collaborating with three German Transmission System Operators (TSO) in order to provide the TSOs with improved probabilistic power forecasts. Probabilistic power forecasts are derived from probabilistic weather forecasts, themselves derived from ensemble prediction systems (EPS). Since the considered raw ensemble wind forecasts suffer from underdispersiveness and bias, calibration methods are developed for the correction of the model bias and the ensemble spread bias. The overall aim is to improve the ensemble forecasts such that the uncertainty of the possible weather deployment is depicted by the ensemble spread from the first forecast hours. Additionally, the ensemble members after calibration should remain physically consistent scenarios. We focus on probabilistic hourly wind forecasts with horizon of 21 h delivered by the convection permitting high-resolution ensemble system COSMO-DE-EPS which has become operational in 2012 at DWD. The ensemble consists of 20 ensemble members driven by four different global models. The model area includes whole Germany and parts of Central Europe with a horizontal resolution of 2.8 km and a vertical resolution of 50 model levels. For verification we use wind mast measurements around 100 m height that corresponds to the hub height of wind energy plants that belong to wind farms within the model area. Calibration of the ensemble forecasts can be performed by different statistical methods applied to the raw ensemble output. Here, we explore local bivariate Ensemble Model Output Statistics at individual sites and quantile regression with different predictors. Applying different methods, we already show an improvement of ensemble wind forecasts from COSMO-DE-EPS for energy applications. In addition, an ensemble copula coupling approach transfers the time-dependencies of the raw

  15. PROCAL: A Set of 40 Peptide Standards for Retention Time Indexing, Column Performance Monitoring, and Collision Energy Calibration.

    PubMed

    Zolg, Daniel Paul; Wilhelm, Mathias; Yu, Peng; Knaute, Tobias; Zerweck, Johannes; Wenschuh, Holger; Reimer, Ulf; Schnatbaum, Karsten; Kuster, Bernhard

    2017-11-01

    Beyond specific applications, such as the relative or absolute quantification of peptides in targeted proteomic experiments, synthetic spike-in peptides are not yet systematically used as internal standards in bottom-up proteomics. A number of retention time standards have been reported that enable chromatographic aligning of multiple LC-MS/MS experiments. However, only few peptides are typically included in such sets limiting the analytical parameters that can be monitored. Here, we describe PROCAL (ProteomeTools Calibration Standard), a set of 40 synthetic peptides that span the entire hydrophobicity range of tryptic digests, enabling not only accurate determination of retention time indices but also monitoring of chromatographic separation performance over time. The fragmentation characteristics of the peptides can also be used to calibrate and compare collision energies between mass spectrometers. The sequences of all selected peptides do not occur in any natural protein, thus eliminating the need for stable isotope labeling. We anticipate that this set of peptides will be useful for multiple purposes in individual laboratories but also aiding the transfer of data acquisition and analysis methods between laboratories, notably the use of spectral libraries. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  16. Estimating energy expenditure from heart rate in older adults: a case for calibration.

    PubMed

    Schrack, Jennifer A; Zipunnikov, Vadim; Goldsmith, Jeff; Bandeen-Roche, Karen; Crainiceanu, Ciprian M; Ferrucci, Luigi

    2014-01-01

    Accurate measurement of free-living energy expenditure is vital to understanding changes in energy metabolism with aging. The efficacy of heart rate as a surrogate for energy expenditure is rooted in the assumption of a linear function between heart rate and energy expenditure, but its validity and reliability in older adults remains unclear. To assess the validity and reliability of the linear function between heart rate and energy expenditure in older adults using different levels of calibration. Heart rate and energy expenditure were assessed across five levels of exertion in 290 adults participating in the Baltimore Longitudinal Study of Aging. Correlation and random effects regression analyses assessed the linearity of the relationship between heart rate and energy expenditure and cross-validation models assessed predictive performance. Heart rate and energy expenditure were highly correlated (r=0.98) and linear regardless of age or sex. Intra-person variability was low but inter-person variability was high, with substantial heterogeneity of the random intercept (s.d. =0.372) despite similar slopes. Cross-validation models indicated individual calibration data substantially improves accuracy predictions of energy expenditure from heart rate, reducing the potential for considerable measurement bias. Although using five calibration measures provided the greatest reduction in the standard deviation of prediction errors (1.08 kcals/min), substantial improvement was also noted with two (0.75 kcals/min). These findings indicate standard regression equations may be used to make population-level inferences when estimating energy expenditure from heart rate in older adults but caution should be exercised when making inferences at the individual level without proper calibration.

  17. Anatomical calibration for wearable motion capture systems: Video calibrated anatomical system technique.

    PubMed

    Bisi, Maria Cristina; Stagni, Rita; Caroselli, Alessio; Cappello, Angelo

    2015-08-01

    Inertial sensors are becoming widely used for the assessment of human movement in both clinical and research applications, thanks to their usability out of the laboratory. This work aims to propose a method for calibrating anatomical landmark position in the wearable sensor reference frame with an ease to use, portable and low cost device. An off-the-shelf camera, a stick and a pattern, attached to the inertial sensor, compose the device. The proposed technique is referred to as video Calibrated Anatomical System Technique (vCAST). The absolute orientation of a synthetic femur was tracked both using the vCAST together with an inertial sensor and using stereo-photogrammetry as reference. Anatomical landmark calibration showed mean absolute error of 0.6±0.5 mm: these errors are smaller than those affecting the in-vivo identification of anatomical landmarks. The roll, pitch and yaw anatomical frame orientations showed root mean square errors close to the accuracy limit of the wearable sensor used (1°), highlighting the reliability of the proposed technique. In conclusion, the present paper proposes and preliminarily verifies the performance of a method (vCAST) for calibrating anatomical landmark position in the wearable sensor reference frame: the technique is low time consuming, highly portable, easy to implement and usable outside laboratory. Copyright © 2015 IPEM. Published by Elsevier Ltd. All rights reserved.

  18. OARE flight maneuvers and calibration measurements on STS-58

    NASA Technical Reports Server (NTRS)

    Blanchard, Robert C.; Nicholson, John Y.; Ritter, James R.; Larman, Kevin T.

    1994-01-01

    The Orbital Acceleration Research Experiment (OARE), which has flown on STS-40, STS-50, and STS-58, contains a three axis accelerometer with a single, nonpendulous, electrostatically suspended proofmass which can resolve accelerations to the nano-g level. The experiment also contains a full calibration station to permit in situ bias and scale factor calibration. This on-orbit calibration capability eliminates the large uncertainty of ground-based calibrations encountered with accelerometers flown in the past on the orbiter, thus providing absolute acceleration measurement accuracy heretofore unachievable. This is the first time accelerometer scale factor measurements have been performed on orbit. A detailed analysis of the calibration process is given along with results of the calibration factors from the on-orbit OARE flight measurements on STS-58. In addition, the analysis of OARE flight maneuver data used to validate the scale factor measurements in the sensor's most sensitive range is also presented. Estimates on calibration uncertainties are discussed. This provides bounds on the STS-58 absolute acceleration measurements for future applications.

  19. Results of Absolute Cavity Pyrgeometer and Infrared Integrating Sphere Comparisons

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Reda, Ibrahim M; Sengupta, Manajit; Dooraghi, Michael R

    Accurate and traceable atmospheric longwave irradiance measurements are required for understanding radiative impacts on the Earth's energy budget. The standard to which pyrgeometers are traceable is the interim World Infrared Standard Group (WISG), maintained in the Physikalisch-Meteorologisches Observatorium Davos (PMOD). The WISG consists of four pyrgeometers that were calibrated using Rolf Philipona's Absolute Sky-scanning Radiometer [1]. The Atmospheric Radiation Measurement (ARM) facility has recently adopted the WISG to maintain the traceability of the calibrations of all Eppley precision infrared radiometer (PIR) pyrgeometers. Subsequently, Julian Grobner [2] developed the infrared interferometer spectrometer and radiometer (IRIS) radiometer, and Ibrahim Reda [3] developedmore » the absolute cavity pyrgeometer (ACP). The ACP and IRIS were developed to establish a world reference for calibrating pyrgeometers with traceability to the International System of Units (SI). The two radiometers are unwindowed with negligible spectral dependence, and they are traceable to SI units through the temperature scale (ITS-90). The two instruments were compared directly to the WISG three times at PMOD and twice at the Southern Great Plains (SGP) facility to WISG-traceable pyrgeometers. The ACP and IRIS agreed within +/- 1 W/m2 to +/- 3 W/m2 in all comparisons, whereas the WISG references exhibit a 2-5 Wm2 low bias compared to the ACP/IRIS average, depending on the water vapor column, as noted in Grobner et al. [4]. Consequently, a case for changing the current WISG has been made by Grobner and Reda. However, during the five comparisons the column water vapor exceeded 8 mm. Therefore, it is recommended that more ACP and IRIS comparisons should be held under different environmental conditions and water vapor column content to better establish the traceability of these instruments to SI with established uncertainty.« less

  20. Absolute detector-based spectrally tunable radiant source using digital micromirror device and supercontinuum fiber laser.

    PubMed

    Li, Zhigang; Wang, Xiaoxu; Zheng, Yuquan; Li, Futian

    2017-06-10

    High-accuracy absolute detector-based spectroradiometric calibration techniques traceable to cryogenic absolute radiometers have made progress rapidly in recent decades under the impetus of atmospheric quantitative spectral remote sensing. A high brightness spectrally tunable radiant source using a supercontinuum fiber laser and a digital micromirror device (DMD) has been developed to meet demands of spectroradiometric calibrations for ground-based, aeronautics-based, and aerospace-based remote sensing instruments and spectral simulations of natural scenes such as the sun and atmosphere. Using a supercontinuum fiber laser as a radiant source, the spectral radiance of the spectrally tunable radiant source is 20 times higher than the spectrally tunable radiant source using conventional radiant sources such as tungsten halogen lamps, xenon lamps, or LED lamps, and the stability is better than ±0.3%/h. Using a DMD, the spectrally tunable radiant source possesses two working modes. In narrow-band modes, it is calibrated by an absolute detector, and in broad-band modes, it can calibrate for remote sensing instrument. The uncertainty of the spectral radiance of the spectrally tunable radiant source is estimated at less than 1.87% at 350 nm to 0.85% at 750 nm, and compared to only standard lamp-based calibration, a greater improvement is gained.

  1. Energy response calibration of photon-counting detectors using x-ray fluorescence: a feasibility study

    NASA Astrophysics Data System (ADS)

    Cho, H.-M.; Ding, H.; Ziemer, BP; Molloi, S.

    2014-12-01

    Accurate energy calibration is critical for the application of energy-resolved photon-counting detectors in spectral imaging. The aim of this study is to investigate the feasibility of energy response calibration and characterization of a photon-counting detector using x-ray fluorescence. A comprehensive Monte Carlo simulation study was performed using Geant4 Application for Tomographic Emission (GATE) to investigate the optimal technique for x-ray fluorescence calibration. Simulations were conducted using a 100 kVp tungsten-anode spectra with 2.7 mm Al filter for a single pixel cadmium telluride (CdTe) detector with 3  ×  3 mm2 in detection area. The angular dependence of x-ray fluorescence and scatter background was investigated by varying the detection angle from 20° to 170° with respect to the beam direction. The effects of the detector material, shape, and size on the recorded x-ray fluorescence were investigated. The fluorescent material size effect was considered with and without the container for the fluorescent material. In order to provide validation for the simulation result, the angular dependence of x-ray fluorescence from five fluorescent materials was experimentally measured using a spectrometer. Finally, eleven of the fluorescent materials were used for energy calibration of a CZT-based photon-counting detector. The optimal detection angle was determined to be approximately at 120° with respect to the beam direction, which showed the highest fluorescence to scatter ratio (FSR) with a weak dependence on the fluorescent material size. The feasibility of x-ray fluorescence for energy calibration of photon-counting detectors in the diagnostic x-ray energy range was verified by successfully calibrating the energy response of a CZT-based photon-counting detector. The results of this study can be used as a guideline to implement the x-ray fluorescence calibration method for photon-counting detectors in a typical imaging laboratory.

  2. Demonstrating the Error Budget for the Climate Absolute Radiance and Refractivity Observatory Through Solar Irradiance Measurements

    NASA Technical Reports Server (NTRS)

    Thome, Kurtis; McCorkel, Joel; McAndrew, Brendan

    2016-01-01

    The Climate Absolute Radiance and Refractivity Observatory (CLARREO) mission addresses the need to observe highaccuracy, long-term climate change trends and to use decadal change observations as a method to determine the accuracy of climate change. A CLARREO objective is to improve the accuracy of SI-traceable, absolute calibration at infrared and reflected solar wavelengths to reach on-orbit accuracies required to allow climate change observations to survive data gaps and observe climate change at the limit of natural variability. Such an effort will also demonstrate National Institute of Standards and Technology (NIST) approaches for use in future spaceborne instruments. The current work describes the results of laboratory and field measurements with the Solar, Lunar for Absolute Reflectance Imaging Spectroradiometer (SOLARIS) which is the calibration demonstration system (CDS) for the reflected solar portion of CLARREO. SOLARIS allows testing and evaluation of calibration approaches, alternate design and/or implementation approaches and components for the CLARREO mission. SOLARIS also provides a test-bed for detector technologies, non-linearity determination and uncertainties, and application of future technology developments and suggested spacecraft instrument design modifications. Results of laboratory calibration measurements are provided to demonstrate key assumptions about instrument behavior that are needed to achieve CLARREO's climate measurement requirements. Absolute radiometric response is determined using laser-based calibration sources and applied to direct solar views for comparison with accepted solar irradiance models to demonstrate accuracy values giving confidence in the error budget for the CLARREO reflectance retrieval.

  3. Characterizing absolute piezoelectric microelectromechanical system displacement using an atomic force microscope

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Evans, J., E-mail: radiant@ferrodevices.com; Chapman, S., E-mail: radiant@ferrodevices.com

    Piezoresponse Force Microscopy (PFM) is a popular tool for the study of ferroelectric and piezoelectric materials at the nanometer level. Progress in the development of piezoelectric MEMS fabrication is highlighting the need to characterize absolute displacement at the nanometer and Ångstrom scales, something Atomic Force Microscopy (AFM) might do but PFM cannot. Absolute displacement is measured by executing a polarization measurement of the ferroelectric or piezoelectric capacitor in question while monitoring the absolute vertical position of the sample surface with a stationary AFM cantilever. Two issues dominate the execution and precision of such a measurement: (1) the small amplitude ofmore » the electrical signal from the AFM at the Ångstrom level and (2) calibration of the AFM. The authors have developed a calibration routine and test technique for mitigating the two issues, making it possible to use an atomic force microscope to measure both the movement of a capacitor surface as well as the motion of a micro-machine structure actuated by that capacitor. The theory, procedures, pitfalls, and results of using an AFM for absolute piezoelectric measurement are provided.« less

  4. Absolute near-infrared refractometry with a calibrated tilted fiber Bragg grating.

    PubMed

    Zhou, Wenjun; Mandia, David J; Barry, Seán T; Albert, Jacques

    2015-04-15

    The absolute refractive indices (RIs) of water and other liquids are determined with an uncertainty of ±0.001 at near-infrared wavelengths by using the tilted fiber Bragg grating (TFBG) cladding mode resonances of a standard single-mode fiber to measure the critical angle for total internal reflection at the interface between the fiber and its surroundings. The necessary condition to obtain absolute RIs (instead of measuring RI changes) is a thorough characterization of the dispersion of the core mode effective index of the TFBG across the full range of its cladding mode resonance spectrum. This technique is shown to be competitive with the best available measurements of the RIs of water and NaCl solutions at wavelengths in the vicinity of 1550 nm.

  5. Inertial Sensor Error Reduction through Calibration and Sensor Fusion.

    PubMed

    Lambrecht, Stefan; Nogueira, Samuel L; Bortole, Magdo; Siqueira, Adriano A G; Terra, Marco H; Rocon, Eduardo; Pons, José L

    2016-02-17

    This paper presents the comparison between cooperative and local Kalman Filters (KF) for estimating the absolute segment angle, under two calibration conditions. A simplified calibration, that can be replicated in most laboratories; and a complex calibration, similar to that applied by commercial vendors. The cooperative filters use information from either all inertial sensors attached to the body, Matricial KF; or use information from the inertial sensors and the potentiometers of an exoskeleton, Markovian KF. A one minute walking trial of a subject walking with a 6-DoF exoskeleton was used to assess the absolute segment angle of the trunk, thigh, shank, and foot. The results indicate that regardless of the segment and filter applied, the more complex calibration always results in a significantly better performance compared to the simplified calibration. The interaction between filter and calibration suggests that when the quality of the calibration is unknown the Markovian KF is recommended. Applying the complex calibration, the Matricial and Markovian KF perform similarly, with average RMSE below 1.22 degrees. Cooperative KFs perform better or at least equally good as Local KF, we therefore recommend to use cooperative KFs instead of local KFs for control or analysis of walking.

  6. Absolute Helmholtz free energy of highly anharmonic crystals: theory vs Monte Carlo.

    PubMed

    Yakub, Lydia; Yakub, Eugene

    2012-04-14

    We discuss the problem of the quantitative theoretical prediction of the absolute free energy for classical highly anharmonic solids. Helmholtz free energy of the Lennard-Jones (LJ) crystal is calculated accurately while accounting for both the anharmonicity of atomic vibrations and the pair and triple correlations in displacements of the atoms from their lattice sites. The comparison with most precise computer simulation data on sublimation and melting lines revealed that theoretical predictions are in excellent agreement with Monte Carlo simulation data in the whole range of temperatures and densities studied.

  7. Status of use of lunar irradiance for on-orbit calibration

    USGS Publications Warehouse

    Stone, T.C.; Kieffer, H.H.; Anderson, J.M.; ,

    2002-01-01

    Routine observations of the Moon have been acquired by the Robotic Lunar Observatory (ROLO) for over four years. The ROLO instruments measure lunar radiance in 23 VNIR (Moon diameter ???500 pixels) and 9 SWIR (???250 pixels) passbands every month when the Moon is at phase angle less than 90 degrees. These are converted to exoatmospheric values at standard distances using an atmospheric extinction model based on observations of standard stars and a NIST-traceable absolute calibration source. Reduction of the stellar images also provides an independent pathway for absolute calibration. Comparison of stellar-based and lamp-based absolute calibrations of the lunar images currently shows unacceptably large differences. An analytic model of lunar irradiance as a function of phase angle and viewing geometry is derived from the calibrated lunar images. Residuals from models which fit hundreds of observations at each wavelength average less than 2%. Comparison with SeaWiFS observations over three years reveals a small quasi-periodic change in SeaWiFS responsivity that correlates with distance from the Sun for the first two years, then departs from this correlation.

  8. Radiometric calibration of the Landsat MSS sensor series

    USGS Publications Warehouse

    Helder, Dennis L.; Karki, Sadhana; Bhatt, Rajendra; Micijevik, Esad; Aaron, David; Jasinski, Benjamin

    2012-01-01

    Multispectral remote sensing of the Earth using Landsat sensors was ushered on July 23, 1972, with the launch of Landsat-1. Following that success, four more Landsat satellites were launched, and each of these carried the Multispectral Scanner System (MSS). These five sensors provided the only consistent multispectral space-based imagery of the Earth's surface from 1972 to 1982. This work focuses on developing both a consistent and absolute radiometric calibration of this sensor system. Cross-calibration of the MSS was performed through the use of pseudoinvariant calibration sites (PICSs). Since these sites have been shown to be stable for long periods of time, changes in MSS observations of these sites were attributed to changes in the sensors themselves. In addition, simultaneous data collections were available for some MSS sensor pairs, and these were also used for cross-calibration. Results indicated substantial differences existed between instruments, up to 16%, and these were reduced to 5% or less across all MSS sensors and bands. Lastly, this paper takes the calibration through the final step and places the MSS sensors on an absolute radiometric scale. The methodology used to achieve this was based on simultaneous data collections by the Landsat-5 MSS and Thematic Mapper (TM) instruments. Through analysis of image data from a PICS location and through compensating for the spectral differences between the two instruments, the Landsat-5 MSS sensor was placed on an absolute radiometric scale based on the Landsat-5 TM sensor. Uncertainties associated with this calibration are considered to be less than 5%.

  9. Calibration of an analyzing magnet using the 12C(d, p0)13C nuclear reaction with a thick carbon target

    NASA Astrophysics Data System (ADS)

    Andrade, E.; Canto, C. E.; Rocha, M. F.

    2017-09-01

    The absolute energy of an ion beam produced by an accelerator is usually determined by an electrostatic or magnetic analyzer, which in turn must be calibrated. Various methods for accelerator energy calibration are extensively reported in the literature, like nuclear reaction resonances, neutron threshold, and time of flight, among others. This work reports on a simple method to calibrate the magnet associated to a vertical 5.5 MV Van de Graaff accelerator. The method is based on bombarding with deuteron beams a thick carbon target and measuring with a surface barrier detector the particle energy spectra produced. The analyzer magnetic field is measured for each spectrum and the beam energy is deduced by the best fit of the simulation of the spectrum with the SIMNRA code that includes 12C(d,p0)13C nuclear cross sections.

  10. Calibrating Historical IR Sensors Using GEO, and AVHRR Infrared Tropical Mean Calibration Models

    NASA Technical Reports Server (NTRS)

    Scarino, Benjamin; Doelling, David R.; Minnis, Patrick; Gopalan, Arun; Haney, Conor; Bhatt, Rajendra

    2014-01-01

    Long-term, remote-sensing-based climate data records (CDRs) are highly dependent on having consistent, wellcalibrated satellite instrument measurements of the Earth's radiant energy. Therefore, by making historical satellite calibrations consistent with those of today's imagers, the Earth-observing community can benefit from a CDR that spans a minimum of 30 years. Most operational meteorological satellites rely on an onboard blackbody and space looks to provide on-orbit IR calibration, but neither target is traceable to absolute standards. The IR channels can also be affected by ice on the detector window, angle dependency of the scan mirror emissivity, stray-light, and detector-to-detector striping. Being able to quantify and correct such degradations would mean IR data from any satellite imager could contribute to a CDR. Recent efforts have focused on utilizing well-calibrated modern hyper-spectral sensors to intercalibrate concurrent operational IR imagers to a single reference. In order to consistently calibrate both historical and current IR imagers to the same reference, however, another strategy is needed. Large, well-characterized tropical-domain Earth targets have the potential of providing an Earth-view reference accuracy of within 0.5 K. To that effort, NASA Langley is developing an IR tropical mean calibration model in order to calibrate historical Advanced Very High Resolution Radiometer (AVHRR) instruments. Using Meteosat-9 (Met-9) as a reference, empirical models are built based on spatially/temporally binned Met-9 and AVHRR tropical IR brightness temperatures. By demonstrating the stability of the Met-9 tropical models, NOAA-18 AVHRR can be calibrated to Met-9 by matching the AVHRR monthly histogram averages with the Met-9 model. This method is validated with ray-matched AVHRR and Met-9 biasdifference time series. Establishing the validity of this empirical model will allow for the calibration of historical AVHRR sensors to within 0.5 K, and thereby

  11. Energy decomposition analysis for exciplexes using absolutely localized molecular orbitals

    NASA Astrophysics Data System (ADS)

    Ge, Qinghui; Mao, Yuezhi; Head-Gordon, Martin

    2018-02-01

    An energy decomposition analysis (EDA) scheme is developed for understanding the intermolecular interaction involving molecules in their excited states. The EDA utilizes absolutely localized molecular orbitals to define intermediate states and is compatible with excited state methods based on linear response theory such as configuration interaction singles and time-dependent density functional theory. The shift in excitation energy when an excited molecule interacts with the environment is decomposed into frozen, polarization, and charge transfer contributions, and the frozen term can be further separated into Pauli repulsion and electrostatics. These terms can be added to their counterparts obtained from the ground state EDA to form a decomposition of the total interaction energy. The EDA scheme is applied to study a variety of systems, including some model systems to demonstrate the correct behavior of all the proposed energy components as well as more realistic systems such as hydrogen-bonding complexes (e.g., formamide-water, pyridine/pyrimidine-water) and halide (F-, Cl-)-water clusters that involve charge-transfer-to-solvent excitations.

  12. Feasibility of the Precise Energy Calibration for Fast Neutron Spectrometers

    NASA Astrophysics Data System (ADS)

    Gaganov, V. V.; Usenko, P. L.; Kryzhanovskaja, M. A.

    2017-12-01

    Computational studies aimed at improving the accuracy of measurements performed using neutron generators with a tritium target were performed. A measurement design yielding an extremely narrow peak in the energy spectrum of DT neutrons was found. The presence of such a peak establishes the conditions for precise energy calibration of fast-neutron spectrometers.

  13. Importance of Calibration/Validation Traceability for Multi-Sensor Imaging Spectrometry Applications

    NASA Technical Reports Server (NTRS)

    Thome, K.

    2017-01-01

    Knowledge of calibration traceability is essential for ensuring the quality of data products relying on multiple sensors and especially true for imaging spectrometers. The current work discusses the expected impact that imaging spectrometers have in ensuring radiometric traceability for both multispectral and hyperspectral products. The Climate Absolute Radiance and Refractivity Observatory Pathfinder mission is used to show the role that high-accuracy imaging spectrometers can play in understanding test sites used for vicarious calibration of sensors. The associated Solar, Lunar for Absolute Reflectance Imaging Spectroradiometer calibration demonstration system is used to illustrate recent advances in laboratory radiometric calibration approaches that will allow both the use of imaging spectrometers as calibration standards as well as to ensure the consistency of the multiple imaging spectrometers expected to be on orbit in the next decade.

  14. Radiance calibration of the High Altitude Observatory white-light coronagraph on Skylab

    NASA Technical Reports Server (NTRS)

    Poland, A. I.; Macqueen, R. M.; Munro, R. H.; Gosling, J. T.

    1977-01-01

    The processing of over 35,000 photographs of the solar corona obtained by the white-light coronograph on Skylab is described. Calibration of the vast amount of data was complicated by temporal effects of radiation fog and latent image loss. These effects were compensated by imaging a calibration step wedge on each data frame. Absolute calibration of the wedge was accomplished through comparison with a set of previously calibrated glass opal filters. Analysis employed average characteristic curves derived from measurements of step wedges from many frames within a given camera half-load. The net absolute accuracy of a given radiance measurement is estimated to be 20%.

  15. Progress in obtaining an absolute calibration of a total deuterium-tritium neutron yield diagnostic based on copper activationa)

    NASA Astrophysics Data System (ADS)

    Ruiz, C. L.; Chandler, G. A.; Cooper, G. W.; Fehl, D. L.; Hahn, K. D.; Leeper, R. J.; McWatters, B. R.; Nelson, A. J.; Smelser, R. M.; Snow, C. S.; Torres, J. A.

    2012-10-01

    The 350-keV Cockroft-Walton accelerator at Sandia National laboratory's Ion Beam facility is being used to calibrate absolutely a total DT neutron yield diagnostic based on the 63Cu(n,2n)62Cu(β+) reaction. These investigations have led to first-order uncertainties approaching 5% or better. The experiments employ the associated-particle technique. Deuterons at 175 keV impinge a 2.6 μm thick erbium tritide target producing 14.1 MeV neutrons from the T(d,n)4He reaction. The alpha particles emitted are measured at two angles relative to the beam direction and used to infer the neutron flux on a copper sample. The induced 62Cu activity is then measured and related to the neutron flux. This method is known as the F-factor technique. Description of the associated-particle method, copper sample geometries employed, and the present estimates of the uncertainties to the F-factor obtained are given.

  16. Progress in obtaining an absolute calibration of a total deuterium-tritium neutron yield diagnostic based on copper activation.

    PubMed

    Ruiz, C L; Chandler, G A; Cooper, G W; Fehl, D L; Hahn, K D; Leeper, R J; McWatters, B R; Nelson, A J; Smelser, R M; Snow, C S; Torres, J A

    2012-10-01

    The 350-keV Cockroft-Walton accelerator at Sandia National laboratory's Ion Beam facility is being used to calibrate absolutely a total DT neutron yield diagnostic based on the (63)Cu(n,2n)(62)Cu(β+) reaction. These investigations have led to first-order uncertainties approaching 5% or better. The experiments employ the associated-particle technique. Deuterons at 175 keV impinge a 2.6 μm thick erbium tritide target producing 14.1 MeV neutrons from the T(d,n)(4)He reaction. The alpha particles emitted are measured at two angles relative to the beam direction and used to infer the neutron flux on a copper sample. The induced (62)Cu activity is then measured and related to the neutron flux. This method is known as the F-factor technique. Description of the associated-particle method, copper sample geometries employed, and the present estimates of the uncertainties to the F-factor obtained are given.

  17. Earth Radiation Budget Experiment scanner radiometric calibration results

    NASA Technical Reports Server (NTRS)

    Lee, Robert B., III; Gibson, M. A.; Thomas, Susan; Meekins, Jeffrey L.; Mahan, J. R.

    1990-01-01

    The Earth Radiation Budget Experiment (ERBE) scanning radiometers are producing measurements of the incoming solar, earth/atmosphere-reflected solar, and earth/atmosphere-emitted radiation fields with measurement precisions and absolute accuracies, approaching 1 percent. ERBE uses thermistor bolometers as the detection elements in the narrow-field-of-view scanning radiometers. The scanning radiometers can sense radiation in the shortwave, longwave, and total broadband spectral regions of 0.2 to 5.0, 5.0 to 50.0, and 0.2 to 50.0 micrometers, respectively. Detailed models of the radiometers' response functions were developed in order to design the most suitable calibration techniques. These models guided the design of in-flight calibration procedures as well as the development and characterization of a vacuum-calibration chamber and the blackbody source which provided the absolute basis upon which the total and longwave radiometers were characterized. The flight calibration instrumentation for the narror-field-of-view scanning radiometers is presented and evaluated.

  18. Forward Global Photometric Calibration of the Dark Energy Survey

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Burke, D. L.; Rykoff, E. S.; Allam, S.

    Many scientific goals for the Dark Energy Survey (DES) require calibration of optical/NIR broadbandmore » $b = grizY$ photometry that is stable in time and uniform over the celestial sky to one percent or better. It is also necessary to limit to similar accuracy systematic uncertainty in the calibrated broadband magnitudes due to uncertainty in the spectrum of the source. Here we present a "Forward Global Calibration Method (FGCM)" for photometric calibration of the DES, and we present results of its application to the first three years of the survey (Y3A1). The FGCM combines data taken with auxiliary instrumentation at the observatory with data from the broad-band survey imaging itself and models of the instrument and atmosphere to estimate the spatial- and time-dependence of the passbands of individual DES survey exposures. "Standard" passbands are chosen that are typical of the passbands encountered during the survey. The passband of any individual observation is combined with an estimate of the source spectral shape to yield a magnitude $$m_b^{\\mathrm{std}}$$ in the standard system. This "chromatic correction" to the standard system is necessary to achieve sub-percent calibrations. The FGCM achieves reproducible and stable photometric calibration of standard magnitudes $$m_b^{\\mathrm{std}}$$ of stellar sources over the multi-year Y3A1 data sample with residual random calibration errors of $$\\sigma=5-6\\,\\mathrm{mmag}$$ per exposure. In conclusion, the accuracy of the calibration is uniform across the $$5000\\,\\mathrm{deg}^2$$ DES footprint to within $$\\sigma=7\\,\\mathrm{mmag}$$. The systematic uncertainties of magnitudes in the standard system due to the spectra of sources are less than $$5\\,\\mathrm{mmag}$$ for main sequence stars with $0.5« less

  19. Forward Global Photometric Calibration of the Dark Energy Survey

    NASA Astrophysics Data System (ADS)

    Burke, D. L.; Rykoff, E. S.; Allam, S.; Annis, J.; Bechtol, K.; Bernstein, G. M.; Drlica-Wagner, A.; Finley, D. A.; Gruendl, R. A.; James, D. J.; Kent, S.; Kessler, R.; Kuhlmann, S.; Lasker, J.; Li, T. S.; Scolnic, D.; Smith, J.; Tucker, D. L.; Wester, W.; Yanny, B.; Abbott, T. M. C.; Abdalla, F. B.; Benoit-Lévy, A.; Bertin, E.; Carnero Rosell, A.; Carrasco Kind, M.; Carretero, J.; Cunha, C. E.; D’Andrea, C. B.; da Costa, L. N.; Desai, S.; Diehl, H. T.; Doel, P.; Estrada, J.; García-Bellido, J.; Gruen, D.; Gutierrez, G.; Honscheid, K.; Kuehn, K.; Kuropatkin, N.; Maia, M. A. G.; March, M.; Marshall, J. L.; Melchior, P.; Menanteau, F.; Miquel, R.; Plazas, A. A.; Sako, M.; Sanchez, E.; Scarpine, V.; Schindler, R.; Sevilla-Noarbe, I.; Smith, M.; Smith, R. C.; Soares-Santos, M.; Sobreira, F.; Suchyta, E.; Tarle, G.; Walker, A. R.; DES Collaboration

    2018-01-01

    Many scientific goals for the Dark Energy Survey (DES) require the calibration of optical/NIR broadband b = grizY photometry that is stable in time and uniform over the celestial sky to one percent or better. It is also necessary to limit to similar accuracy systematic uncertainty in the calibrated broadband magnitudes due to uncertainty in the spectrum of the source. Here we present a “Forward Global Calibration Method (FGCM)” for photometric calibration of the DES, and we present results of its application to the first three years of the survey (Y3A1). The FGCM combines data taken with auxiliary instrumentation at the observatory with data from the broadband survey imaging itself and models of the instrument and atmosphere to estimate the spatial and time dependences of the passbands of individual DES survey exposures. “Standard” passbands that are typical of the passbands encountered during the survey are chosen. The passband of any individual observation is combined with an estimate of the source spectral shape to yield a magnitude {m}b{std} in the standard system. This “chromatic correction” to the standard system is necessary to achieve subpercent calibrations and in particular, to resolve ambiguity between the broadband brightness of a source and the shape of its SED. The FGCM achieves a reproducible and stable photometric calibration of standard magnitudes {m}b{std} of stellar sources over the multiyear Y3A1 data sample with residual random calibration errors of σ =6{--}7 {mmag} per exposure. The accuracy of the calibration is uniform across the 5000 {\\deg }2 DES footprint to within σ =7 {mmag}. The systematic uncertainties of magnitudes in the standard system due to the spectra of sources are less than 5 {mmag} for main-sequence stars with 0.5< g-i< 3.0.

  20. Forward Global Photometric Calibration of the Dark Energy Survey

    DOE PAGES

    Burke, D. L.; Rykoff, E. S.; Allam, S.; ...

    2017-12-28

    Many scientific goals for the Dark Energy Survey (DES) require calibration of optical/NIR broadbandmore » $b = grizY$ photometry that is stable in time and uniform over the celestial sky to one percent or better. It is also necessary to limit to similar accuracy systematic uncertainty in the calibrated broadband magnitudes due to uncertainty in the spectrum of the source. Here we present a "Forward Global Calibration Method (FGCM)" for photometric calibration of the DES, and we present results of its application to the first three years of the survey (Y3A1). The FGCM combines data taken with auxiliary instrumentation at the observatory with data from the broad-band survey imaging itself and models of the instrument and atmosphere to estimate the spatial- and time-dependence of the passbands of individual DES survey exposures. "Standard" passbands are chosen that are typical of the passbands encountered during the survey. The passband of any individual observation is combined with an estimate of the source spectral shape to yield a magnitude $$m_b^{\\mathrm{std}}$$ in the standard system. This "chromatic correction" to the standard system is necessary to achieve sub-percent calibrations. The FGCM achieves reproducible and stable photometric calibration of standard magnitudes $$m_b^{\\mathrm{std}}$$ of stellar sources over the multi-year Y3A1 data sample with residual random calibration errors of $$\\sigma=5-6\\,\\mathrm{mmag}$$ per exposure. In conclusion, the accuracy of the calibration is uniform across the $$5000\\,\\mathrm{deg}^2$$ DES footprint to within $$\\sigma=7\\,\\mathrm{mmag}$$. The systematic uncertainties of magnitudes in the standard system due to the spectra of sources are less than $$5\\,\\mathrm{mmag}$$ for main sequence stars with $0.5« less

  1. Forward Global Photometric Calibration of the Dark Energy Survey

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Burke, D. L.; Rykoff, E. S.; Allam, S.

    2017-12-28

    Many scientific goals for the Dark Energy Survey (DES) require calibration of optical/NIR broadbandmore » $b = grizY$ photometry that is stable in time and uniform over the celestial sky to one percent or better. It is also necessary to limit to similar accuracy systematic uncertainty in the calibrated broadband magnitudes due to uncertainty in the spectrum of the source. Here we present a "Forward Global Calibration Method (FGCM)" for photometric calibration of the DES, and we present results of its application to the first three years of the survey (Y3A1). The FGCM combines data taken with auxiliary instrumentation at the observatory with data from the broad-band survey imaging itself and models of the instrument and atmosphere to estimate the spatial- and time-dependence of the passbands of individual DES survey exposures. "Standard" passbands are chosen that are typical of the passbands encountered during the survey. The passband of any individual observation is combined with an estimate of the source spectral shape to yield a magnitude $$m_b^{\\mathrm{std}}$$ in the standard system. This "chromatic correction" to the standard system is necessary to achieve sub-percent calibrations. The FGCM achieves reproducible and stable photometric calibration of standard magnitudes $$m_b^{\\mathrm{std}}$$ of stellar sources over the multi-year Y3A1 data sample with residual random calibration errors of $$\\sigma=5-6\\,\\mathrm{mmag}$$ per exposure. The accuracy of the calibration is uniform across the $$5000\\,\\mathrm{deg}^2$$ DES footprint to within $$\\sigma=7\\,\\mathrm{mmag}$$. The systematic uncertainties of magnitudes in the standard system due to the spectra of sources are less than $$5\\,\\mathrm{mmag}$$ for main sequence stars with $0.5« less

  2. Energy Performance Assessment of Radiant Cooling System through Modeling and Calibration at Component Level

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Khan, Yasin; Mathur, Jyotirmay; Bhandari, Mahabir S

    2016-01-01

    The paper describes a case study of an information technology office building with a radiant cooling system and a conventional variable air volume (VAV) system installed side by side so that performancecan be compared. First, a 3D model of the building involving architecture, occupancy, and HVAC operation was developed in EnergyPlus, a simulation tool. Second, a different calibration methodology was applied to develop the base case for assessing the energy saving potential. This paper details the calibration of the whole building energy model to the component level, including lighting, equipment, and HVAC components such as chillers, pumps, cooling towers, fans,more » etc. Also a new methodology for the systematic selection of influence parameter has been developed for the calibration of a simulated model which requires large time for the execution. The error at the whole building level [measured in mean bias error (MBE)] is 0.2%, and the coefficient of variation of root mean square error (CvRMSE) is 3.2%. The total errors in HVAC at the hourly are MBE = 8.7% and CvRMSE = 23.9%, which meet the criteria of ASHRAE 14 (2002) for hourly calibration. Different suggestions have been pointed out to generalize the energy saving of radiant cooling system through the existing building system. So a base case model was developed by using the calibrated model for quantifying the energy saving potential of the radiant cooling system. It was found that a base case radiant cooling system integrated with DOAS can save 28% energy compared with the conventional VAV system.« less

  3. Landsat-8 Thermal Infrared Sensor (TIRS) Vicarious Radiometric Calibration

    NASA Technical Reports Server (NTRS)

    Barsi, Julia A.; Shott, John R.; Raqueno, Nina G.; Markham, Brian L.; Radocinski, Robert G.

    2014-01-01

    Launched in February 2013, the Landsat-8 carries on-board the Thermal Infrared Sensor (TIRS), a two-band thermal pushbroom imager, to maintain the thermal imaging capability of the Landsat program. The TIRS bands are centered at roughly 10.9 and 12 micrometers (Bands 10 and 11 respectively). They have 100 m spatial resolution and image coincidently with the Operational Land Imager (OLI), also on-board Landsat-8. The TIRS instrument has an internal calibration system consisting of a variable temperature blackbody and a special viewport with which it can see deep space; a two point calibration can be performed twice an orbit. Immediately after launch, a rigorous vicarious calibration program was started to validate the absolute calibration of the system. The two vicarious calibration teams, NASA/Jet Propulsion Laboratory (JPL) and the Rochester Institute of Technology (RIT), both make use of buoys deployed on large water bodies as the primary monitoring technique. RIT took advantage of cross-calibration opportunity soon after launch when Landsat-8 and Landsat-7 were imaging the same targets within a few minutes of each other to perform a validation of the absolute calibration. Terra MODIS is also being used for regular monitoring of the TIRS absolute calibration. The buoy initial results showed a large error in both bands, 0.29 and 0.51 W/sq m·sr·micrometers or -2.1 K and -4.4 K at 300 K in Band 10 and 11 respectively, where TIRS data was too hot. A calibration update was recommended for both bands to correct for a bias error and was implemented on 3 February 2014 in the USGS/EROS processing system, but the residual variability is still larger than desired for both bands (0.12 and 0.2 W/sq m·sr·micrometers or 0.87 and 1.67 K at 300 K). Additional work has uncovered the source of the calibration error: out-of-field stray light. While analysis continues to characterize the stray light contribution, the vicarious calibration work proceeds. The additional data have

  4. Analysis of calibration materials to improve dual-energy CT scanning for petrophysical applications

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ayyalasomavaiula, K.; McIntyre, D.; Jain, J.

    2011-01-01

    Dual energy CT-scanning is a rapidly emerging imaging technique employed in non-destructive evaluation of various materials. Although CT (Computerized Tomography) has been used for characterizing rocks and visualizing and quantifying multiphase flow through rocks for over 25 years, most of the scanning is done at a voltage setting above 100 kV for taking advantage of the Compton scattering (CS) effect, which responds to density changes. Below 100 kV the photoelectric effect (PE) is dominant which responds to the effective atomic numbers (Zeff), which is directly related to the photo electric factor. Using the combination of the two effects helps inmore » better characterization of reservoir rocks. The most common technique for dual energy CT-scanning relies on homogeneous calibration standards to produce the most accurate decoupled data. However, the use of calibration standards with impurities increases the probability of error in the reconstructed data and results in poor rock characterization. This work combines ICP-OES (inductively coupled plasma optical emission spectroscopy) and LIBS (laser induced breakdown spectroscopy) analytical techniques to quantify the type and level of impurities in a set of commercially purchased calibration standards used in dual-energy scanning. The Zeff data on the calibration standards with and without impurity data were calculated using the weighted linear combination of the various elements present and used in calculating Zeff using the dual energy technique. Results show 2 to 5% difference in predicted Zeff values which may affect the corresponding log calibrations. The effect that these techniques have on improving material identification data is discussed and analyzed. The workflow developed in this paper will translate to a more accurate material identification estimates for unknown samples and improve calibration of well logging tools.« less

  5. Absolute marine gravimetry with matter-wave interferometry.

    PubMed

    Bidel, Y; Zahzam, N; Blanchard, C; Bonnin, A; Cadoret, M; Bresson, A; Rouxel, D; Lequentrec-Lalancette, M F

    2018-02-12

    Measuring gravity from an aircraft or a ship is essential in geodesy, geophysics, mineral and hydrocarbon exploration, and navigation. Today, only relative sensors are available for onboard gravimetry. This is a major drawback because of the calibration and drift estimation procedures which lead to important operational constraints. Atom interferometry is a promising technology to obtain onboard absolute gravimeter. But, despite high performances obtained in static condition, no precise measurements were reported in dynamic. Here, we present absolute gravity measurements from a ship with a sensor based on atom interferometry. Despite rough sea conditions, we obtained precision below 10 -5  m s -2 . The atom gravimeter was also compared with a commercial spring gravimeter and showed better performances. This demonstration opens the way to the next generation of inertial sensors (accelerometer, gyroscope) based on atom interferometry which should provide high-precision absolute measurements from a moving platform.

  6. Absolute metrology for space interferometers

    NASA Astrophysics Data System (ADS)

    Salvadé, Yves; Courteville, Alain; Dändliker, René

    2017-11-01

    The crucial issue of space-based interferometers is the laser interferometric metrology systems to monitor with very high accuracy optical path differences. Although classical high-resolution laser interferometers using a single wavelength are well developed, this type of incremental interferometer has a severe drawback: any interruption of the interferometer signal results in the loss of the zero reference, which requires a new calibration, starting at zero optical path difference. We propose in this paper an absolute metrology system based on multiplewavelength interferometry.

  7. Evaluation of Automated Model Calibration Techniques for Residential Building Energy Simulation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Robertson, J.; Polly, B.; Collis, J.

    2013-09-01

    This simulation study adapts and applies the general framework described in BESTEST-EX (Judkoff et al 2010) for self-testing residential building energy model calibration methods. BEopt/DOE-2.2 is used to evaluate four mathematical calibration methods in the context of monthly, daily, and hourly synthetic utility data for a 1960's-era existing home in a cooling-dominated climate. The home's model inputs are assigned probability distributions representing uncertainty ranges, random selections are made from the uncertainty ranges to define 'explicit' input values, and synthetic utility billing data are generated using the explicit input values. The four calibration methods evaluated in this study are: an ASHRAEmore » 1051-RP-based approach (Reddy and Maor 2006), a simplified simulated annealing optimization approach, a regression metamodeling optimization approach, and a simple output ratio calibration approach. The calibration methods are evaluated for monthly, daily, and hourly cases; various retrofit measures are applied to the calibrated models and the methods are evaluated based on the accuracy of predicted savings, computational cost, repeatability, automation, and ease of implementation.« less

  8. Evaluation of Automated Model Calibration Techniques for Residential Building Energy Simulation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    and Ben Polly, Joseph Robertson; Polly, Ben; Collis, Jon

    2013-09-01

    This simulation study adapts and applies the general framework described in BESTEST-EX (Judkoff et al 2010) for self-testing residential building energy model calibration methods. BEopt/DOE-2.2 is used to evaluate four mathematical calibration methods in the context of monthly, daily, and hourly synthetic utility data for a 1960's-era existing home in a cooling-dominated climate. The home's model inputs are assigned probability distributions representing uncertainty ranges, random selections are made from the uncertainty ranges to define "explicit" input values, and synthetic utility billing data are generated using the explicit input values. The four calibration methods evaluated in this study are: an ASHRAEmore » 1051-RP-based approach (Reddy and Maor 2006), a simplified simulated annealing optimization approach, a regression metamodeling optimization approach, and a simple output ratio calibration approach. The calibration methods are evaluated for monthly, daily, and hourly cases; various retrofit measures are applied to the calibrated models and the methods are evaluated based on the accuracy of predicted savings, computational cost, repeatability, automation, and ease of implementation.« less

  9. ITER-relevant calibration technique for soft x-ray spectrometer.

    PubMed

    Rzadkiewicz, J; Książek, I; Zastrow, K-D; Coffey, I H; Jakubowska, K; Lawson, K D

    2010-10-01

    The ITER-oriented JET research program brings new requirements for the low-Z impurity monitoring, in particular for the Be—the future main wall component of JET and ITER. Monitoring based on Bragg spectroscopy requires an absolute sensitivity calibration, which is challenging for large tokamaks. This paper describes both “component-by-component” and “continua” calibration methods used for the Be IV channel (75.9 Å) of the Bragg rotor spectrometer deployed on JET. The calibration techniques presented here rely on multiorder reflectivity calculations and measurements of continuum radiation emitted from helium plasmas. These offer excellent conditions for the absolute photon flux calibration due to their low level of impurities. It was found that the component-by-component method gives results that are four times higher than those obtained by means of the continua method. A better understanding of this discrepancy requires further investigations.

  10. Sci-Sat AM: Radiation Dosimetry and Practical Therapy Solutions - 03: Energy dependence of a clinical probe-format calorimeter and its pertinence to absolute photon and electron beam dosimetry

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Renaud, James; Seuntjens, Jan; Sarfehnia, Arman

    Purpose: To evaluate the intrinsic and absorbed-dose energy dependence of a small-scale graphite calorimeter probe (GPC) developed for use as a routine clinical dosimeter. The influence of charge deposition on the response of the GPC was also assessed by performing absolute dosimetry in clinical linac-based electron beams. Methods: Intrinsic energy dependence was determined by performing constant-temperature calorimetry dose measurements in a water-equivalent solid phantom, under otherwise reference conditions, in five high-energy photon (63.5 < %dd(10){sub X} < 76.3), and five electron (2.3 cm < R{sub 50} < 8.3 cm) beams. Reference dosimetry was performed for all beams in question usingmore » an Exradin A19 ion chamber with a calibration traceable to national standards. The absorbed-dose component of the overall energy dependence was calculated using the EGSnrc egs-chamber user code. Results: A total of 72 measurements were performed with the GPC, resulting in a standard error on the mean absorbed dose of better than 0.3 % for all ten beams. For both the photon and electron beams, no statistically-significant energy dependence was observed experimentally. Peak-to-peak, variations in the relative response of the GPC across all beam qualities of a given radiation type were on the order of 1 %. No effects, either transient or permanent, were attributable to the charge deposited by the electron beams. Conclusions: The GPC’s apparent energy-independence, combined with its well-established linearity and dose rate independence, make it a potentially useful dosimetry system capable measuring photon and electron doses in absolute terms at the clinical level.« less

  11. Comparison of Two Methodologies for Calibrating Satellite Instruments in the Visible and Near-Infrared

    NASA Technical Reports Server (NTRS)

    Barnes, Robert A.; Brown, Steven W.; Lykke, Keith R.; Guenther, Bruce; Butler, James J.; Schwarting, Thomas; Turpie, Kevin; Moyer, David; DeLuccia, Frank; Moeller, Christopher

    2015-01-01

    Traditionally, satellite instruments that measure Earth-reflected solar radiation in the visible and near infrared wavelength regions have been calibrated for radiance responsivity in a two-step method. In the first step, the relative spectral response (RSR) of the instrument is determined using a nearly monochromatic light source such as a lamp-illuminated monochromator. These sources do not typically fill the field-of-view of the instrument nor act as calibrated sources of light. Consequently, they only provide a relative (not absolute) spectral response for the instrument. In the second step, the instrument views a calibrated source of broadband light, such as a lamp-illuminated integrating sphere. The RSR and the sphere absolute spectral radiance are combined to determine the absolute spectral radiance responsivity (ASR) of the instrument. More recently, a full-aperture absolute calibration approach using widely tunable monochromatic lasers has been developed. Using these sources, the ASR of an instrument can be determined in a single step on a wavelength-by-wavelength basis. From these monochromatic ASRs, the responses of the instrument bands to broadband radiance sources can be calculated directly, eliminating the need for calibrated broadband light sources such as lamp-illuminated integrating spheres. In this work, the traditional broadband source-based calibration of the Suomi National Preparatory Project (SNPP) Visible Infrared Imaging Radiometer Suite (VIIRS) sensor is compared with the laser-based calibration of the sensor. Finally, the impact of the new full-aperture laser-based calibration approach on the on-orbit performance of the sensor is considered.

  12. Comparison of two methodologies for calibrating satellite instruments in the visible and near infrared

    PubMed Central

    Barnes, Robert A.; Brown, Steven W.; Lykke, Keith R.; Guenther, Bruce; Butler, James J.; Schwarting, Thomas; Moyer, David; Turpie, Kevin; DeLuccia, Frank; Moeller, Christopher

    2016-01-01

    Traditionally, satellite instruments that measure Earth-reflected solar radiation in the visible and near infrared wavelength regions have been calibrated for radiance responsivity in a two-step method. In the first step, the relative spectral response (RSR) of the instrument is determined using a nearly monochromatic light source such as a lamp-illuminated monochromator. These sources do not typically fill the field-of-view of the instrument nor act as calibrated sources of light. Consequently, they only provide a relative (not absolute) spectral response for the instrument. In the second step, the instrument views a calibrated source of broadband light, such as a lamp-illuminated integrating sphere. The RSR and the sphere absolute spectral radiance are combined to determine the absolute spectral radiance responsivity (ASR) of the instrument. More recently, a full-aperture absolute calibration approach using widely tunable monochromatic lasers has been developed. Using these sources, the ASR of an instrument can be determined in a single step on a wavelength-by-wavelength basis. From these monochromatic ASRs, the responses of the instrument bands to broadband radiance sources can be calculated directly, eliminating the need for calibrated broadband light sources such as integrating spheres. In this work, the traditional broadband source-based calibration of the Suomi National Preparatory Project (SNPP) Visible Infrared Imaging Radiometer Suite (VIIRS) sensor is compared with the laser-based calibration of the sensor. Finally, the impact of the new full-aperture laser-based calibration approach on the on-orbit performance of the sensor is considered. PMID:26836861

  13. A suggestion for computing objective function in model calibration

    USGS Publications Warehouse

    Wu, Yiping; Liu, Shuguang

    2014-01-01

    A parameter-optimization process (model calibration) is usually required for numerical model applications, which involves the use of an objective function to determine the model cost (model-data errors). The sum of square errors (SSR) has been widely adopted as the objective function in various optimization procedures. However, ‘square error’ calculation was found to be more sensitive to extreme or high values. Thus, we proposed that the sum of absolute errors (SAR) may be a better option than SSR for model calibration. To test this hypothesis, we used two case studies—a hydrological model calibration and a biogeochemical model calibration—to investigate the behavior of a group of potential objective functions: SSR, SAR, sum of squared relative deviation (SSRD), and sum of absolute relative deviation (SARD). Mathematical evaluation of model performance demonstrates that ‘absolute error’ (SAR and SARD) are superior to ‘square error’ (SSR and SSRD) in calculating objective function for model calibration, and SAR behaved the best (with the least error and highest efficiency). This study suggests that SSR might be overly used in real applications, and SAR may be a reasonable choice in common optimization implementations without emphasizing either high or low values (e.g., modeling for supporting resources management).

  14. Setting Whole-Building Absolute Energy Use Targets for the K-12 School, Retail, and Healthcare Sectors: Preprint

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Leach, M.; Bonnema, E.; Pless, S.

    2012-08-01

    This paper helps owners' efficiency representatives to inform executive management, contract development, and project management staff as to how specifying and applying whole-building absolute energy use targets for new construction or renovation projects can improve the operational energy performance of commercial buildings.

  15. Space environment simulation and sensor calibration facility

    NASA Astrophysics Data System (ADS)

    Engelhart, Daniel P.; Patton, James; Plis, Elena; Cooper, Russell; Hoffmann, Ryan; Ferguson, Dale; Hilmer, Robert V.; McGarity, John; Holeman, Ernest

    2018-02-01

    The Mumbo space environment simulation chamber discussed here comprises a set of tools to calibrate a variety of low flux, low energy electron and ion detectors used in satellite-mounted particle sensors. The chamber features electron and ion beam sources, a Lyman-alpha ultraviolet lamp, a gimbal table sensor mounting system, cryogenic sample mount and chamber shroud, and beam characterization hardware and software. The design of the electron and ion sources presented here offers a number of unique capabilities for space weather sensor calibration. Both sources create particle beams with narrow, well-characterized energetic and angular distributions with beam diameters that are larger than most space sensor apertures. The electron and ion sources can produce consistently low fluxes that are representative of quiescent space conditions. The particle beams are characterized by 2D beam mapping with several co-located pinhole aperture electron multipliers to capture relative variation in beam intensity and a large aperture Faraday cup to measure absolute current density.

  16. Space environment simulation and sensor calibration facility.

    PubMed

    Engelhart, Daniel P; Patton, James; Plis, Elena; Cooper, Russell; Hoffmann, Ryan; Ferguson, Dale; Hilmer, Robert V; McGarity, John; Holeman, Ernest

    2018-02-01

    The Mumbo space environment simulation chamber discussed here comprises a set of tools to calibrate a variety of low flux, low energy electron and ion detectors used in satellite-mounted particle sensors. The chamber features electron and ion beam sources, a Lyman-alpha ultraviolet lamp, a gimbal table sensor mounting system, cryogenic sample mount and chamber shroud, and beam characterization hardware and software. The design of the electron and ion sources presented here offers a number of unique capabilities for space weather sensor calibration. Both sources create particle beams with narrow, well-characterized energetic and angular distributions with beam diameters that are larger than most space sensor apertures. The electron and ion sources can produce consistently low fluxes that are representative of quiescent space conditions. The particle beams are characterized by 2D beam mapping with several co-located pinhole aperture electron multipliers to capture relative variation in beam intensity and a large aperture Faraday cup to measure absolute current density.

  17. Absolute Sea Level Monitoring and Altimeter Calibration At Gavdos, Crete, Greece

    NASA Astrophysics Data System (ADS)

    Pavlis, E. C.; Gavdos Team

    We present the mean sea level (MSL) monitoring aspect of the altimeter calibration fa- cility under deployment on western Crete and the isle of Gavdos. The Eastern Mediter- ranean area is one of great interest for its intense tectonic activity as well as for its regional oceanography. Recent observations have convincingly demonstrated the im- portance of that area for the regional meteorological and climatological changes. Tide- gauge monitoring with GPS has gained importance lately since tectonics contaminate the inferred sea level variations, and a global network of tide-gauges with long his- torical records can be used as satellite altimeter calibration sites for current and fu- ture missions (e.g. TOPEX/POSEIDON, GFO, JASON-1, ENVISAT, etc.). This is at present a common IOC-GLOSS-IGS effort, already underway (TIGA). Crete hosts two of the oldest tide-gauges in the regional network and our project will further ex- pand it to the south of the island with a new site on the isle of Gavdos, the southernmost European parcel of land. One component of our "GAVDOS" project is the repeated occupation of two already in existence tide-gauge sites at Souda Bay and Heraklion, and their tie to the new facility. We show here initial results from positioning of these sites and some of the available tidal records. Gavdos is situated under a ground-track crossing point of the present T/P and JASON-1 orbits. It is an ideal calibration site if the tectonic motions are monitored precisely and continuously. Our plans include the deployment of additional instrumentation at this site: GPS and DORIS beacons for positioning, transponders for direct calibration, water vapor radiometers, GPS-loaded buoys, airborne surveys with gravimeters and laser profiling lidars, etc., to ensure the best possible and most reliable results.

  18. Calibrations of the LHD Thomson scattering system

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yamada, I., E-mail: yamadai@nifs.ac.jp; Funaba, H.; Yasuhara, R.

    2016-11-15

    The Thomson scattering diagnostic systems are widely used for the measurements of absolute local electron temperatures and densities of fusion plasmas. In order to obtain accurate and reliable temperature and density data, careful calibrations of the system are required. We have tried several calibration methods since the second LHD experiment campaign in 1998. We summarize the current status of the calibration methods for the electron temperature and density measurements by the LHD Thomson scattering diagnostic system. Future plans are briefly discussed.

  19. Calibrations of the LHD Thomson scattering system.

    PubMed

    Yamada, I; Funaba, H; Yasuhara, R; Hayashi, H; Kenmochi, N; Minami, T; Yoshikawa, M; Ohta, K; Lee, J H; Lee, S H

    2016-11-01

    The Thomson scattering diagnostic systems are widely used for the measurements of absolute local electron temperatures and densities of fusion plasmas. In order to obtain accurate and reliable temperature and density data, careful calibrations of the system are required. We have tried several calibration methods since the second LHD experiment campaign in 1998. We summarize the current status of the calibration methods for the electron temperature and density measurements by the LHD Thomson scattering diagnostic system. Future plans are briefly discussed.

  20. Scanning micro-resonator direct-comb absolute spectroscopy

    PubMed Central

    Gambetta, Alessio; Cassinerio, Marco; Gatti, Davide; Laporta, Paolo; Galzerano, Gianluca

    2016-01-01

    Direct optical Frequency Comb Spectroscopy (DFCS) is proving to be a fundamental tool in many areas of science and technology thanks to its unique performance in terms of ultra-broadband, high-speed detection and frequency accuracy, allowing for high-fidelity mapping of atomic and molecular energy structure. Here we present a novel DFCS approach based on a scanning Fabry-Pérot micro-cavity resonator (SMART) providing a simple, compact and accurate method to resolve the mode structure of an optical frequency comb. The SMART approach, while drastically reducing system complexity, allows for a straightforward absolute calibration of the optical-frequency axis with an ultimate resolution limited by the micro-resonator resonance linewidth and can be used in any spectral region from UV to THz. We present an application to high-precision spectroscopy of acetylene at 1.54 μm, demonstrating performances comparable or even better than current state-of-the-art DFCS systems in terms of sensitivity, optical bandwidth and frequency-resolution. PMID:27752132

  1. Setup and Calibration of SLAC's Peripheral Monitoring Stations

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Cooper, C.

    2004-09-03

    measured). Detector response for both detectors is dependent upon the energy of the incident radiation; this trend had to be accounted for in the calibration of the BF{sub 3} detector. Energy dependence did not have to be taken into consideration when calibrating the GM detectors since GM detector response is only dependent on radiation energy below 100 keV; SLAC only produces a spectrum of gamma radiation above 100 keV. For the GM detector, calibration consisted of bringing a {sup 137}Cs source and a NIST-calibrated RADCAL Radiation Monitor Controller (model 9010) out to the field; the absolute dose rate was determined by the RADCAL device while simultaneously irradiating the GM detector to obtain a scaler reading corresponding to counts per minute. Detector response was then calculated. Calibration of the BF{sub 3} detector was done using NIST certified neutron sources of known emission rates and energies. Five neutron sources ({sup 238}PuBe, {sup 238}PuB, {sup 238}PuF4, {sup 238}PuLi and {sup 252}Cf) with different energies were used to account for the energy dependence of the response. The actual neutron dose rate was calculated by date-correcting NIST source data and considering the direct dose rate and scattered dose rate. Once the total dose rate (sum of the direct and scattered dose rates) was known, the response vs. energy curve was plotted. The first station calibrated (PMS6) was calibrated with these five neutron sources; all subsequent stations were calibrated with one neutron source and the energy dependence was assumed to be the same.« less

  2. Stochastic Modeling of Overtime Occupancy and Its Application in Building Energy Simulation and Calibration

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sun, Kaiyu; Yan, Da; Hong, Tianzhen

    2014-02-28

    Overtime is a common phenomenon around the world. Overtime drives both internal heat gains from occupants, lighting and plug-loads, and HVAC operation during overtime periods. Overtime leads to longer occupancy hours and extended operation of building services systems beyond normal working hours, thus overtime impacts total building energy use. Current literature lacks methods to model overtime occupancy because overtime is stochastic in nature and varies by individual occupants and by time. To address this gap in the literature, this study aims to develop a new stochastic model based on the statistical analysis of measured overtime occupancy data from an officemore » building. A binomial distribution is used to represent the total number of occupants working overtime, while an exponential distribution is used to represent the duration of overtime periods. The overtime model is used to generate overtime occupancy schedules as an input to the energy model of a second office building. The measured and simulated cooling energy use during the overtime period is compared in order to validate the overtime model. A hybrid approach to energy model calibration is proposed and tested, which combines ASHRAE Guideline 14 for the calibration of the energy model during normal working hours, and a proposed KS test for the calibration of the energy model during overtime. The developed stochastic overtime model and the hybrid calibration approach can be used in building energy simulations to improve the accuracy of results, and better understand the characteristics of overtime in office buildings.« less

  3. Lineal energy calibration of mini tissue-equivalent gas-proportional counters (TEPC)

    NASA Astrophysics Data System (ADS)

    Conte, V.; Moro, D.; Grosswendt, B.; Colautti, P.

    2013-07-01

    Mini TEPCs are cylindrical gas proportional counters of 1 mm or less of sensitive volume diameter. The lineal energy calibration of these tiny counters can be performed with an external gamma-ray source. However, to do that, first a method to get a simple and precise spectral mark has to be found and then the keV/μm value of this mark. A precise method (less than 1% of uncertainty) to identify this markis described here, and the lineal energy value of this mark has been measured for different simulated site sizes by using a 137Cs gamma source and a cylindrical TEPC equipped with a precision internal 244Cm alpha-particle source, and filled with propane-based tissue-equivalent gas mixture. Mini TEPCs can be calibrated in terms of lineal energy, by exposing them to 137Cesium sources, with an overall uncertainty of about 5%.

  4. Preliminary Evaluation of the Radiometric Calibration of LANDSAT-4 Thematic Mapper Data by the Canada Centre for Remote Sensing

    NASA Technical Reports Server (NTRS)

    Murphy, J.; Park, W.; Fitzgerald, A.

    1985-01-01

    The radiometric characteristics of the LANDSAT-4 TM sensor are being studied with a view to developing absolute and relative radiometric calibration procedures. Preliminary results from several different approaches to the relative correction of all detectors within each band are reported. Topics covered include: the radiometric correction method; absolute calibration; the relative radiometric calibration algorithm; relative gain and offset calibration; relative gain and offset observations; and residual radiometric stripping.

  5. Concentration Independent Calibration of β-γ Coincidence Detector Using 131mXe and 133Xe

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    McIntyre, Justin I.; Cooper, Matthew W.; Carman, April J.

    Absolute efficiency calibration of radiometric detectors is frequently difficult and requires careful detector modeling and accurate knowledge of the radioactive source used. In the past we have calibrated the b-g coincidence detector of the Automated Radioxenon Sampler/Analyzer (ARSA) using a variety of sources and techniques which have proven to be less than desirable.[1] A superior technique has been developed that uses the conversion-electron (CE) and x-ray coincidence of 131mXe to provide a more accurate absolute gamma efficiency of the detector. The 131mXe is injected directly into the beta cell of the coincident counting system and no knowledge of absolute sourcemore » strength is required. In addition, 133Xe is used to provide a second independent means to obtain the absolute efficiency calibration. These two data points provide the necessary information for calculating the detector efficiency and can be used in conjunction with other noble gas isotopes to completely characterize and calibrate the ARSA nuclear detector. In this paper we discuss the techniques and results that we have obtained.« less

  6. Technology for radiation efficiency measurement of high-power halogen tungsten lamp used in calibration of high-energy laser energy meter.

    PubMed

    Wei, Ji Feng; Hu, Xiao Yang; Sun, Li Qun; Zhang, Kai; Chang, Yan

    2015-03-20

    The calibration method using a high-power halogen tungsten lamp as a calibration source has many advantages such as strong equivalence and high power, so it is very fit for the calibration of high-energy laser energy meters. However, high-power halogen tungsten lamps after power-off still reserve much residual energy and continually radiate energy, which is difficult to be measured. Two measuring systems were found to solve the problems. One system is composed of an integrating sphere and two optical spectrometers, which can accurately characterize the radiative spectra and power-time variation of the halogen tungsten lamp. This measuring system was then calibrated using a normal halogen tungsten lamp made of the same material as the high-power halogen tungsten lamp. In this way, the radiation efficiency of the halogen tungsten lamp after power-off can be quantitatively measured. In the other measuring system, a wide-spectrum power meter was installed far away from the halogen tungsten lamp; thus, the lamp can be regarded as a point light source. The radiation efficiency of residual energy from the halogen tungsten lamp was computed on the basis of geometrical relations. The results show that the halogen tungsten lamp's radiation efficiency was improved with power-on time but did not change under constant power-on time/energy. All the tested halogen tungsten lamps reached 89.3% of radiation efficiency at 50 s after power-on. After power-off, the residual energy in the halogen tungsten lamp gradually dropped to less than 10% of the initial radiation power, and the radiation efficiency changed with time. The final total radiation energy was decided by the halogen tungsten lamp's radiation efficiency, the radiation efficiency of residual energy, and the total power consumption. The measuring uncertainty of total radiation energy was 2.4% (here, the confidence factor is two).

  7. Spectral Irradiance Calibration in the Infrared. 4; 1.2-35um Spectra of Six Standard Stars

    NASA Technical Reports Server (NTRS)

    Cohen, Martin; Witteborn, Fred C.; Walker, Russell G.; Bregman, Jesse D.; Wooden, Diane H.

    1995-01-01

    We present five new absolutely calibrated continuous stellar spectra from 1.2 to 35 microns, constructed as far as possible from actual observed spectral fragments taken from the ground, the Kuiper Airborne Observatory (KAO), and the IRAS Low Resolution Spectrometer (LRS). These stars, Beta Peg, Delta Boo, Beta And, Beta Gem, and Delta Hya, augment our already created complete absolutely calibrated spectrum for a Tau. All these spectra have a common calibration pedigree. The wavelength coverage is ideal for calibration of many existing and proposed ground-based, airborne, and satellite sensors.

  8. POLCAL - POLARIMETRIC RADAR CALIBRATION

    NASA Technical Reports Server (NTRS)

    Vanzyl, J.

    1994-01-01

    Calibration of polarimetric radar systems is a field of research in which great progress has been made over the last few years. POLCAL (Polarimetric Radar Calibration) is a software tool intended to assist in the calibration of Synthetic Aperture Radar (SAR) systems. In particular, POLCAL calibrates Stokes matrix format data produced as the standard product by the NASA/Jet Propulsion Laboratory (JPL) airborne imaging synthetic aperture radar (AIRSAR). POLCAL was designed to be used in conjunction with data collected by the NASA/JPL AIRSAR system. AIRSAR is a multifrequency (6 cm, 24 cm, and 68 cm wavelength), fully polarimetric SAR system which produces 12 x 12 km imagery at 10 m resolution. AIRSTAR was designed as a testbed for NASA's Spaceborne Imaging Radar program. While the images produced after 1991 are thought to be calibrated (phase calibrated, cross-talk removed, channel imbalance removed, and absolutely calibrated), POLCAL can and should still be used to check the accuracy of the calibration and to correct it if necessary. Version 4.0 of POLCAL is an upgrade of POLCAL version 2.0 released to AIRSAR investigators in June, 1990. New options in version 4.0 include automatic absolute calibration of 89/90 data, distributed target analysis, calibration of nearby scenes with calibration parameters from a scene with corner reflectors, altitude or roll angle corrections, and calibration of errors introduced by known topography. Many sources of error can lead to false conclusions about the nature of scatterers on the surface. Errors in the phase relationship between polarization channels result in incorrect synthesis of polarization states. Cross-talk, caused by imperfections in the radar antenna itself, can also lead to error. POLCAL reduces cross-talk and corrects phase calibration without the use of ground calibration equipment. Removing the antenna patterns during SAR processing also forms a very important part of the calibration of SAR data. Errors in the

  9. Accuracy of Monte Carlo photon transport simulation in characterizing brachytherapy dosimeter energy-response artefacts.

    PubMed

    Das, R K; Li, Z; Perera, H; Williamson, J F

    1996-06-01

    Practical dosimeters in brachytherapy, such as thermoluminescent dosimeters (TLD) and diodes, are usually calibrated against low-energy megavoltage beams. To measure absolute dose rate near a brachytherapy source, it is necessary to establish the energy response of the detector relative to that of the calibration energy. The purpose of this paper is to assess the accuracy of Monte Carlo photon transport (MCPT) simulation in modelling the absolute detector response as a function of detector geometry and photon energy. We have exposed two different sizes of TLD-100 (LiF chips) and p-type silicon diode detectors to calibrated 60Co, HDR source (192Ir) and superficial x-ray beams. For the Scanditronix electron-field diode, the relative detector response, defined as the measured detector readings per measured unit of air kerma, varied from 38.46 V cGy-1 (40 kVp beam) to 6.22 V cGy-1 (60Co beam). Similarly for the large and small chips the same quantity varied from 2.08-3.02 nC cGy-1 and 0.171-0.244 nC cGy-1, respectively. Monte Carlo simulation was used to calculate the absorbed dose to the active volume of the detector per unit air kerma. If the Monte Carlo simulation is accurate, then the absolute detector response, which is defined as the measured detector reading per unit dose absorbed by the active detector volume, and is calculated by Monte Carlo simulation, should be a constant. For the diode, the absolute response is 5.86 +/- 0.15 (V cGy-1). For TLDs of size 3 x 3 x 1 mm3 the absolute response is 2.47 +/- 0.07 (nC cGy-1) and for TLDs of 1 x 1 x 1 mm3 it is 0.201 +/- 0.008 (nC cGy-1). From the above results we can conclude that the absolute response function of detectors (TLDs and diodes) is directly proportional to absorbed dose by the active volume of the detector and is independent of beam quality.

  10. Calibration of fluorescence resonance energy transfer in microscopy

    DOEpatents

    Youvan, Dougalas C.; Silva, Christopher M.; Bylina, Edward J.; Coleman, William J.; Dilworth, Michael R.; Yang, Mary M.

    2003-12-09

    Imaging hardware, software, calibrants, and methods are provided to visualize and quantitate the amount of Fluorescence Resonance Energy Transfer (FRET) occurring between donor and acceptor molecules in epifluorescence microscopy. The MicroFRET system compensates for overlap among donor, acceptor, and FRET spectra using well characterized fluorescent beads as standards in conjunction with radiometrically calibrated image processing techniques. The MicroFRET system also provides precisely machined epifluorescence cubes to maintain proper image registration as the sample is illuminated at the donor and acceptor excitation wavelengths. Algorithms are described that pseudocolor the image to display pixels exhibiting radiometrically-corrected fluorescence emission from the donor (blue), the acceptor (green) and FRET (red). The method is demonstrated on samples exhibiting FRET between genetically engineered derivatives of the Green Fluorescent Protein (GFP) bound to the surface of Ni chelating beads by histidine-tags.

  11. Calibration of fluorescence resonance energy transfer in microscopy

    DOEpatents

    Youvan, Douglas C.; Silva, Christopher M.; Bylina, Edward J.; Coleman, William J.; Dilworth, Michael R.; Yang, Mary M.

    2002-09-24

    Imaging hardware, software, calibrants, and methods are provided to visualize and quantitate the amount of Fluorescence Resonance Energy Transfer (FRET) occurring between donor and acceptor molecules in epifluorescence microscopy. The MicroFRET system compensates for overlap among donor, acceptor, and FRET spectra using well characterized fluorescent beads as standards in conjunction with radiometrically calibrated image processing techniques. The MicroFRET system also provides precisely machined epifluorescence cubes to maintain proper image registration as the sample is illuminated at the donor and acceptor excitation wavelengths. Algorithms are described that pseudocolor the image to display pixels exhibiting radiometrically-corrected fluorescence emission from the donor (blue), the acceptor (green) and FRET (red). The method is demonstrated on samples exhibiting FRET between genetically engineered derivatives of the Green Fluorescent Protein (GFP) bound to the surface of Ni chelating beads by histidine-tags.

  12. The PMA Catalogue: 420 million positions and absolute proper motions

    NASA Astrophysics Data System (ADS)

    Akhmetov, V. S.; Fedorov, P. N.; Velichko, A. B.; Shulga, V. M.

    2017-07-01

    We present a catalogue that contains about 420 million absolute proper motions of stars. It was derived from the combination of positions from Gaia DR1 and 2MASS, with a mean difference of epochs of about 15 yr. Most of the systematic zonal errors inherent in the 2MASS Catalogue were eliminated before deriving the absolute proper motions. The absolute calibration procedure (zero-pointing of the proper motions) was carried out using about 1.6 million positions of extragalactic sources. The mean formal error of the absolute calibration is less than 0.35 mas yr-1. The derived proper motions cover the whole celestial sphere without gaps for a range of stellar magnitudes from 8 to 21 mag. In the sky areas where the extragalactic sources are invisible (the avoidance zone), a dedicated procedure was used that transforms the relative proper motions into absolute ones. The rms error of proper motions depends on stellar magnitude and ranges from 2-5 mas yr-1 for stars with 10 mag < G < 17 mag to 5-10 mas yr-1 for faint ones. The present catalogue contains the Gaia DR1 positions of stars for the J2015 epoch. The system of the PMA proper motions does not depend on the systematic errors of the 2MASS positions, and in the range from 14 to 21 mag represents an independent realization of a quasi-inertial reference frame in the optical and near-infrared wavelength range. The Catalogue also contains stellar magnitudes taken from the Gaia DR1 and 2MASS catalogues. A comparison of the PMA proper motions of stars with similar data from certain recent catalogues has been undertaken.

  13. A non-invasive diffuse reflectance calibration-free method for absolute determination of exogenous biochemicals concentration in biological tissues

    NASA Astrophysics Data System (ADS)

    Lappa, Alexander V.; Kulikovskiy, Artem N.; Busarov, Oleg G.

    2014-03-01

    The paper presents a new method for distant non-destructive determination of concentration of light absorbing admixtures in turbid media. In particular, it is intended for non-invasive in vivo control of accumulation in patient tissues of various biochemicals introduced to the patients for chemotherapy, photodynamic therapy or diagnostics. It is require that the admixture absorption spectrum should have a clearly marked peak in the wavelength region where the pure medium one varies regularly. Fluorescence of admixtures is not required. The method uses the local diffuse reflectance spectroscopy with optical fiber probe including one emitting and two reading There are several features in the method: the value to be determined is absolute concentration of admixtures; the method needs no calibration measurements on phantoms; it needs no reference measurements on sample with zero admixture concentration; it uses a two parametric kinetic light propagation model and original algorithms to resolve direct and inverse tasks of radiation transport theory. Experimental testing passed with tissue equivalent phantoms and different admixtures, including a chlorine photosensitizer, showed accuracy under 10% in all cases.

  14. A highly accurate absolute gravimetric network for Albania, Kosovo and Montenegro

    NASA Astrophysics Data System (ADS)

    Ullrich, Christian; Ruess, Diethard; Butta, Hubert; Qirko, Kristaq; Pavicevic, Bozidar; Murat, Meha

    2016-04-01

    The objective of this project is to establish a basic gravity network in Albania, Kosovo and Montenegro to enable further investigations in geodetic and geophysical issues. Therefore the first time in history absolute gravity measurements were performed in these countries. The Norwegian mapping authority Kartverket is assisting the national mapping authorities in Kosovo (KCA) (Kosovo Cadastral Agency - Agjencia Kadastrale e Kosovës), Albania (ASIG) (Autoriteti Shtetëror i Informacionit Gjeohapësinor) and in Montenegro (REA) (Real Estate Administration of Montenegro - Uprava za nekretnine Crne Gore) in improving the geodetic frameworks. The gravity measurements are funded by Kartverket. The absolute gravimetric measurements were performed from BEV (Federal Office of Metrology and Surveying) with the absolute gravimeter FG5-242. As a national metrology institute (NMI) the Metrology Service of the BEV maintains the national standards for the realisation of the legal units of measurement and ensures their international equivalence and recognition. Laser and clock of the absolute gravimeter were calibrated before and after the measurements. The absolute gravimetric survey was carried out from September to October 2015. Finally all 8 scheduled stations were successfully measured: there are three stations located in Montenegro, two stations in Kosovo and three stations in Albania. The stations are distributed over the countries to establish a gravity network for each country. The vertical gradients were measured at all 8 stations with the relative gravimeter Scintrex CG5. The high class quality of some absolute gravity stations can be used for gravity monitoring activities in future. The measurement uncertainties of the absolute gravity measurements range around 2.5 micro Gal at all stations (1 microgal = 10-8 m/s2). In Montenegro the large gravity difference of 200 MilliGal between station Zabljak and Podgorica can be even used for calibration of relative gravimeters

  15. Comparison of Two Methodologies for Calibrating Satellite Instruments in the Visible and Near Infrared

    NASA Technical Reports Server (NTRS)

    Barnes, Robert A.; Brown, Steven W.; Lykke, Keith R.; Guenther, Bruce; Xiong, Xiaoxiong (Jack); Butler, James J.

    2010-01-01

    Traditionally, satellite instruments that measure Earth-reflected solar radiation in the visible and near infrared wavelength regions have been calibrated for radiance response in a two-step method. In the first step, the spectral response of the instrument is determined using a nearly monochromatic light source, such a lamp-illuminated monochromator. Such sources only provide a relative spectral response (RSR) for the instrument, since they do not act as calibrated sources of light nor do they typically fill the field-of-view of the instrument. In the second step, the instrument views a calibrated source of broadband light, such as lamp-illuminated integrating sphere. In the traditional method, the RSR and the sphere spectral radiance are combined and, with the instrument's response, determine the absolute spectral radiance responsivity of the instrument. More recently, an absolute calibration system using widely tunable monochromatic laser systems has been developed, Using these sources, the absolute spectral responsivity (ASR) of an instrument can be determined on a wavelength-hy-wavelength basis. From these monochromatic ASRs. the responses of the instrument bands to broadband radiance sources can be calculated directly, eliminating the need for calibrated broadband light sources such as integrating spheres. Here we describe the laser-based calibration and the traditional broad-band source-based calibration of the NPP VIIRS sensor, and compare the derived calibration coefficients for the instrument. Finally, we evaluate the impact of the new calibration approach on the on-orbit performance of the sensor.

  16. On the Photometric Calibration of FORS2 and the Sloan Digital Sky Survey

    NASA Astrophysics Data System (ADS)

    Bramich, D.; Moehler, S.; Coccato, L.; Freudling, W.; Garcia-Dabó, C. E.; Müller, P.; Saviane, I.

    2012-09-01

    An accurate absolute calibration of photometric data to place them on a standard magnitude scale is very important for many science goals. Absolute calibration requires the observation of photometric standard stars and analysis of the observations with an appropriate photometric model including all relevant effects. In the FORS Absolute Photometry (FAP) project, we have developed a standard star observing strategy and modelling procedure that enables calibration of science target photometry to better than 3% accuracy on photometrically stable nights given sufficient signal-to-noise. In the application of this photometric modelling to large photometric databases, we have investigated the Sloan Digital Sky Survey (SDSS) and found systematic trends in the published photometric data. The amplitudes of these trends are similar to the reported typical precision (˜1% and ˜2%) of the SDSS photometry in the griz- and u-bands, respectively.

  17. Development of high power UV irradiance meter calibration device

    NASA Astrophysics Data System (ADS)

    Xia, Ming; Gao, Jianqiang; Yin, Dejin; Li, Tiecheng

    2016-09-01

    With the rapid development of China's economy, many industries have more requirements for UV light applications, such as machinery manufacturing, aircraft manufacturing using high power UV light for detection, IT industry using high power UV light for curing component assembly, building materials, ink, paint and other industries using high power UV light for material aging test etc. In these industries, there are many measuring instruments for high power UV irradiance which are need to traceability. But these instruments are mostly imported instruments, these imported UV radiation meter are large range, wide wavelength range and high accuracy. They have exceeded our existing calibration capability. Expand the measuring range and improve the measurement accuracy of UV irradiance calibration device is a pressing matter of the moment. The newly developed high power UV irradiance calibration device is mainly composed of high power UV light, UV filter, condenser, UV light guide, optical alignment system, standard cavity absolute radiometer. The calibration device is using optical alignment system to form uniform light radiation field. The standard is standard cavity absolute radiometer, which can through the electrical substitution method, by means of adjusting and measuring the applied DC electric power at the receiver on a heating wire, which is equivalent to the thermo-electromotive force generated by the light radiation power, to achieve absolute optical radiation measurement. This method is the commonly used effective method for accurate measurement of light irradiation. The measuring range of calibration device is (0.2 200) mW/cm2, and the uncertainty of measurement results can reached 2.5% (k=2).

  18. A Calibration Method for Nanowire Biosensors to Suppress Device-to-device Variation

    PubMed Central

    Ishikawa, Fumiaki N.; Curreli, Marco; Chang, Hsiao-Kang; Chen, Po-Chiang; Zhang, Rui; Cote, Richard J.; Thompson, Mark E.; Zhou, Chongwu

    2009-01-01

    Nanowire/nanotube biosensors have stimulated significant interest; however the inevitable device-to-device variation in the biosensor performance remains a great challenge. We have developed an analytical method to calibrate nanowire biosensor responses that can suppress the device-to-device variation in sensing response significantly. The method is based on our discovery of a strong correlation between the biosensor gate dependence (dIds/dVg) and the absolute response (absolute change in current, ΔI). In2O3 nanowire based biosensors for streptavidin detection were used as the model system. Studying the liquid gate effect and ionic concentration dependence of strepavidin sensing indicates that electrostatic interaction is the dominant mechanism for sensing response. Based on this sensing mechanism and transistor physics, a linear correlation between the absolute sensor response (ΔI) and the gate dependence (dIds/dVg) is predicted and confirmed experimentally. Using this correlation, a calibration method was developed where the absolute response is divided by dIds/dVg for each device, and the calibrated responses from different devices behaved almost identically. Compared to the common normalization method (normalization of the conductance/resistance/current by the initial value), this calibration method was proved advantageous using a conventional transistor model. The method presented here substantially suppresses device-to-device variation, allowing the use of nanosensors in large arrays. PMID:19921812

  19. Spectral Irradiance Calibration in the Infrared. Part 4; 1.2 - 35 microns Spectra of Six Standard Stars

    NASA Technical Reports Server (NTRS)

    Cohen, Martin; Witteborn, Fred C.; Walker, Russell G.; Bregman, Jesse D.; Wooden, Diane H.

    1995-01-01

    We present five new absolutely calibrated continuous stellar spectra from 1.2 to 35 microns, constructed as far as possible from actual observed spectral fragments taken from the ground, the Kuiper Airborne Observatory (KAO), and the IRAS Low Resolution Spectrometer (LRS). These stars- beta Peg, alpha Boo, beta And, beta Gem, and alpha Hya-augment our already created complete absolutely calibrated spectrum for alpha Tau. All these spectra have a common calibration pedigree. The wavelength coverage is ideal for calibration of many existing and proposed ground-based, airborne, and satellite sensors.

  20. Spectral Irradiance Calibration in the Infrared. Part 4; 1.2-35 micrometer Spectra of Six Standard Stars

    NASA Technical Reports Server (NTRS)

    Cohen, Martin; Witteborn, Fred C.; Walker, Russell, G.; Bregman, Jesse D.; Wooden, Diane H.

    1995-01-01

    Five new absolutely calibrated continuous stellar spectra from 1.2 to 35 microns are presented. The spectra were constructed as far as possible from actual observed spectral fragments taken from the ground, the Kuiper Airborne Observatory (KAO), and the IRAS Low Resolution Spectrometer (LRS). These stars (beta Peg, alpha Boo, beta And, beta Gem, and alpha Hya) augment the author's already created complete absolutely calibrated spectrum for alpha Tau. All these spectra have a common calibration pedigree. The wavelength coverage is ideal for calibration of many existing and proposed ground-based, airborne, and satellite sensors.

  1. Development and validation of a cerebral oximeter capable of absolute accuracy.

    PubMed

    MacLeod, David B; Ikeda, Keita; Vacchiano, Charles; Lobbestael, Aaron; Wahr, Joyce A; Shaw, Andrew D

    2012-12-01

    Cerebral oximetry may be a valuable monitor, but few validation data are available, and most report the change from baseline rather than absolute accuracy, which may be affected by individuals whose oximetric values are outside the expected range. The authors sought to develop and validate a cerebral oximeter capable of absolute accuracy. An in vivo research study. A university human physiology laboratory. Healthy human volunteers were enrolled in calibration and validation studies of 2 cerebral oximetric sensors, the Nonin 8000CA and 8004CA. The 8000CA validation study identified 5 individuals with atypical cerebral oxygenation values; their data were used to design the 8004CA sensor, which subsequently underwent calibration and validation. Volunteers were taken through a stepwise hypoxia protocol to a minimum saturation of peripheral oxygen. Arteriovenous saturation (70% jugular bulb venous saturation and 30% arterial saturation) at 6 hypoxic plateaus was used as the reference value for the cerebral oximeter. Absolute accuracy was defined using a combination of the bias and precision of the paired saturations (A(RMS)). In the validation study for the 8000CA sensor (n = 9, 106 plateaus), relative accuracy was an A(RMS) of 2.7, with an absolute accuracy of 8.1, meeting the criteria for a relative (trend) monitor, but not an absolute monitor. In the validation study for the 8004CA sensor (n = 11, 119 plateaus), the A(RMS) of the 8004CA was 4.1, meeting the prespecified success criterion of <5.0. The Nonin cerebral oximeter using the 8004CA sensor can provide absolute data on regional cerebral saturation compared with arteriovenous saturation, even in subjects previously shown to have values outside the normal population distribution curves. Copyright © 2012 Elsevier Inc. All rights reserved.

  2. SU-G-BRB-15: Verifications of Absolute and Relative Dosimetry of a Novel Stereotactic Breast Device: GammaPodTM

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Becker, S; Mossahebi, S; Yi, B

    Purpose: A dedicated stereotactic breast radiotherapy device, GammaPod, was developed to treat early stage breast cancer. The first clinical unit was installed and commissioned at University of Maryland. We report our methodology of absolute dosimetry in multiple calibration conditions and dosimetric verifications of treatment plans produced by the system. Methods: GammaPod unit is comprised of a rotating hemi-spherical source carrier containing 36 Co-60 sources and a concentric tungsten collimator providing beams of 15 and 25 mm. Absolute dose calibration formalism was developed with modifications to AAPM protocols for unique geometry and different calibration medium (acrylic, polyethylene or liquid water). Breastmore » cup-size specific and collimator output factors were measured and verified with respect to Monte-Carlo simulations for single isocenter plans. Multiple isocenter plans were generated for various target size, location and cup-sizes in phantoms and 20 breast cancer patients images. Stereotactic mini-farmer chamber, OSL and TLD detectors as well as radio-chromic films were used for dosimetric measurements. Results: At the time of calibration (1/14/2016), absolute dose rate of the GammaPod was established to be 2.10 Gy/min in acrylic for 25 mm for sources installed in March 2011. Output factor for 15 mm collimator was measured to be 0.950. Absolute dose calibration was independently verified by IROC-Houston with a TLD/Institution ratio of 0.99. Cup size specific output measurements in liquid water for single isocenter were found to be within 3.0% of MC simulations. Point-dose measurements of multiple isocenter treatment plans were found to be within −1.0 ± 1.2 % of treatment planning system while 2-dimensional gamma analysis yielded a pass rate of 97.9 ± 2.2 % using gamma criteria of 3% and 2mm. Conclusion: The first GammaPod treatment unit for breast stereotactic radiotherapy was successfully installed, calibrated and commissioned for patient

  3. Spectral Irradiance Calibration in the Infrared. Part 6; 3-35 microns Spectra of Three Southern Standard Stars

    NASA Technical Reports Server (NTRS)

    Cohen, Martin; Witteborn, Fred C.; Bregman, Jesse D.; Wooden, Diane H.; Salama, Alberto; Metcalfe, Leo

    1996-01-01

    We present three new absolutely calibrated continuous stellar spectra from 3 to 35 microns, constructed as far as possible from actual observed spectral fragments taken from the Kuiper Airborne Observatory (KAO), and the IRAS Low Resolution Spectrometer (LRS). These stars- alpha(sup 1) Cen, alpha TrA, and epsilon Car-augment our previous archive of complete absolutely calibrated spectra for northern K and M giants. All these spectra have a common calibration pedigree. The wavelength coverage is ideal for calibration of many existing and proposed ground-based, airborne, and satellite sensors. KAO and IRAS data in the 15-30 micron range suggest that the spectra of cool giants are close to Rayleigh-Jeans slopes. Our observations of alpha(sup 1) Cen, absolutely calibrated via our adopted Sirius model, indicate an angular diameter in very good agreement with values in the literature, demonstrating 'closure' of the set of spectra within our absolute framework. We compare our observed alpha(sup 1) Cen spectrum with a published grid of theoretical models from Kurucz, and adopt a plausible theoretical shape, that fits our spectrum, as a secondary reference spectrum in the southern sky.

  4. Calibration and deployment of a new NIST transfer radiometer for broadband and spectral calibration of space chambers (MDXR)

    NASA Astrophysics Data System (ADS)

    Jung, Timothy M.; Carter, Adriaan C.; Woods, Solomon I.; Kaplan, Simon G.

    2011-06-01

    The Low-Background Infrared (LBIR) facility at NIST has performed on-site calibration and initial off-site deployments of a new infrared transfer radiometer with an integrated cryogenic Fourier transform spectrometer (Cryo- FTS). This mobile radiometer can be deployed to customer sites for broadband and spectral calibrations of space chambers and low-background hardware-in-the-loop testbeds. The Missile Defense Transfer Radiometer (MDXR) has many of the capabilities of a complete IR calibration facility and replaces our existing filter-based transfer radiometer (BXR) as the NIST standard detector deployed to customer facilities. The MDXR features numerous improvements over the BXR, including: a cryogenic Fourier transform spectrometer, an on-board absolute cryogenic radiometer (ACR) and an internal blackbody reference source with an integrated collimator. The Cryo-FTS can be used to measure high resolution spectra from 3 to 28 micrometers, using a Si:As blocked-impurity-band (BIB) detector. The on-board ACR can be used for self-calibration of the MDXR BIB as well as for absolute measurements of external infrared sources. A set of filter wheels and a rotating polarizer within the MDXR allow for filter-based and polarization-sensitive measurements. The optical design of the MDXR makes both radiance and irradiance measurements possible and enables calibration of both divergent and collimated sources. Results of on-site calibration of the MDXR using its internal blackbody source and an external reference source will be discussed, as well as the performance of the new radiometer in its initial deployments to customer sites.

  5. Free Energy Perturbation Hamiltonian Replica-Exchange Molecular Dynamics (FEP/H-REMD) for Absolute Ligand Binding Free Energy Calculations.

    PubMed

    Jiang, Wei; Roux, Benoît

    2010-07-01

    Free Energy Perturbation with Replica Exchange Molecular Dynamics (FEP/REMD) offers a powerful strategy to improve the convergence of free energy computations. In particular, it has been shown previously that a FEP/REMD scheme allowing random moves within an extended replica ensemble of thermodynamic coupling parameters "lambda" can improve the statistical convergence in calculations of absolute binding free energy of ligands to proteins [J. Chem. Theory Comput. 2009, 5, 2583]. In the present study, FEP/REMD is extended and combined with an accelerated MD simulations method based on Hamiltonian replica-exchange MD (H-REMD) to overcome the additional problems arising from the existence of kinetically trapped conformations within the protein receptor. In the combined strategy, each system with a given thermodynamic coupling factor lambda in the extended ensemble is further coupled with a set of replicas evolving on a biased energy surface with boosting potentials used to accelerate the inter-conversion among different rotameric states of the side chains in the neighborhood of the binding site. Exchanges are allowed to occur alternatively along the axes corresponding to the thermodynamic coupling parameter lambda and the boosting potential, in an extended dual array of coupled lambda- and H-REMD simulations. The method is implemented on the basis of new extensions to the REPDSTR module of the biomolecular simulation program CHARMM. As an illustrative example, the absolute binding free energy of p-xylene to the nonpolar cavity of the L99A mutant of T4 lysozyme was calculated. The tests demonstrate that the dual lambda-REMD and H-REMD simulation scheme greatly accelerates the configurational sampling of the rotameric states of the side chains around the binding pocket, thereby improving the convergence of the FEP computations.

  6. The use of cosmic-ray muons in the energy calibration of the Beta-decay Paul Trap silicon-detector array

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hirsh, T. Y.; Perez Galvan, A.; Burkey, M.

    This article presents an approach to calibrate the energy response of double-sided silicon strip detectors (DSSDs) for low-energy nuclear-science experiments by utilizing cosmic-ray muons. For the 1-mm-thick detectors used with the Beta-decay Paul Trap, the minimum-ionizing peak from these muons provides a stable and time-independent in situ calibration point at around 300 keV, which supplements the calibration data obtained above 3 MeV from sources. The muon-data calibration is achieved by comparing experimental spectra with detailed Monte Carlo simulations performed using GEANT4 and CRY codes. This additional information constrains the calibration at lower energies, resulting in improvements in quality and accuracy.

  7. The use of cosmic-ray muons in the energy calibration of the Beta-decay Paul Trap silicon-detector array

    NASA Astrophysics Data System (ADS)

    Hirsh, T. Y.; Pérez Gálvan, A.; Burkey, M. T.; Aprahamian, A.; Buchinger, F.; Caldwell, S.; Clark, J. A.; Gallant, A. T.; Heckmaier, E.; Levand, A. F.; Marley, S. T.; Morgan, G. E.; Nystrom, A.; Orford, R.; Savard, G.; Scielzo, N. D.; Segel, R.; Sharma, K. S.; Siegl, K.; Wang, B. S.

    2018-04-01

    This article presents an approach to calibrate the energy response of double-sided silicon strip detectors (DSSDs) for low-energy nuclear-science experiments by utilizing cosmic-ray muons. For the 1-mm-thick detectors used with the Beta-decay Paul Trap, the minimum-ionizing peak from these muons provides a stable and time-independent in situ calibration point at around 300 keV, which supplements the calibration data obtained above 3 MeV from α sources. The muon-data calibration is achieved by comparing experimental spectra with detailed Monte Carlo simulations performed using GEANT4 and CRY codes. This additional information constrains the calibration at lower energies, resulting in improvements in quality and accuracy.

  8. Absolute surface energy calculations of Wurtzite (0001)/(000-1): a study of ZnO and GaN

    NASA Astrophysics Data System (ADS)

    Zhang, Jingzhao; Zhang, Yiou; Tse, Kinfai; Deng, Bei; Xu, Hu; Zhu, Junyi

    The accurate absolute surface energies of (0001)/(000-1) surfaces of wurtzite structures are crucial in determining the thin film growth mode of important energy materials. However, the surface energies still remain to be solved due to the intrinsic difficulty of calculating dangling bond energy of asymmetrically bonded surface atoms. We used a pseudo-hydrogen passivation method to estimate the dangling bond energy and calculate the polar surfaces of ZnO and GaN. The calculations were based on the pseudo chemical potentials obtained from a set of tetrahedral clusters or simple pseudo-molecules, using density functional theory approaches, for both GGA and HSE. And the surface energies of (0001)/(000-1) surfaces of wurtzite ZnO and GaN we obtained showed relatively high self-consistencies. A wedge structure calculation with a new bottom surface passivation scheme of group I and group VII elements was also proposed and performed to show converged absolute surface energy of wurtzite ZnO polar surfaces. Part of the computing resources was provided by the High Performance Cluster Computing Centre, Hong Kong Baptist University. This work was supported by the start-up funding and direct Grant with the Project code of 4053134 at CUHK.

  9. Calibrating CHIME: a new radio interferometer to probe dark energy

    NASA Astrophysics Data System (ADS)

    Newburgh, Laura B.; Addison, Graeme E.; Amiri, Mandana; Bandura, Kevin; Bond, J. Richard; Connor, Liam; Cliche, Jean-François; Davis, Greg; Deng, Meiling; Denman, Nolan; Dobbs, Matt; Fandino, Mateus; Fong, Heather; Gibbs, Kenneth; Gilbert, Adam; Griffin, Elizabeth; Halpern, Mark; Hanna, David; Hincks, Adam D.; Hinshaw, Gary; Höfer, Carolin; Klages, Peter; Landecker, Tom; Masui, Kiyoshi; Parra, Juan Mena; Pen, Ue-Li; Peterson, Jeff; Recnik, Andre; Shaw, J. Richard; Sigurdson, Kris; Sitwell, Micheal; Smecher, Graeme; Smegal, Rick; Vanderlinde, Keith; Wiebe, Don

    2014-07-01

    The Canadian Hydrogen Intensity Mapping Experiment (CHIME) is a transit interferometer currently being built at the Dominion Radio Astrophysical Observatory (DRAO) in Penticton, BC, Canada. We will use CHIME to map neutral hydrogen in the frequency range 400 { 800MHz over half of the sky, producing a measurement of baryon acoustic oscillations (BAO) at redshifts between 0.8 { 2.5 to probe dark energy. We have deployed a pathfinder version of CHIME that will yield constraints on the BAO power spectrum and provide a test-bed for our calibration scheme. I will discuss the CHIME calibration requirements and describe instrumentation we are developing to meet these requirements.

  10. Inter-satellite calibration of FengYun 3 medium energy electron fluxes with POES electron measurements

    NASA Astrophysics Data System (ADS)

    Zhang, Yang; Ni, Binbin; Xiang, Zheng; Zhang, Xianguo; Zhang, Xiaoxin; Gu, Xudong; Fu, Song; Cao, Xing; Zou, Zhengyang

    2018-05-01

    We perform an L-shell dependent inter-satellite calibration of FengYun 3 medium energy electron measurements with POES measurements based on rough orbital conjunctions within 5 min × 0.1 L × 0.5 MLT. By comparing electron flux data between the U.S. Polar Orbiting Environmental Satellites (POES) and Chinese sun-synchronous satellites including FY-3B and FY-3C for a whole year of 2014, we attempt to remove less reliable data and evaluate systematic uncertainties associated with the FY-3B and FY-3C datasets, expecting to quantify the inter-satellite calibration factors for the 150-350 keV energy channel at L = 2-7. Compared to the POES data, the FY-3B and FY-3C data generally exhibit a similar trend of electron flux variations but more or less underestimate them within a factor of 5 for the medium electron energy 150-350 keV channel. Good consistency in the flux conjunctions after the inter-calibration procedures gives us certain confidence to generalize our method to calibrate electron flux measurements from various satellite instruments.

  11. Cross-calibration between airborne SAR sensors

    NASA Technical Reports Server (NTRS)

    Zink, Manfred; Olivier, Philippe; Freeman, Anthony

    1993-01-01

    As Synthetic Aperture Radar (SAR) system performance and experience in SAR signature evaluation increase, quantitative analysis becomes more and more important. Such analyses require an absolute radiometric calibration of the complete SAR system. To keep the expenditure on calibration of future multichannel and multisensor remote sensing systems (e.g., X-SAR/SIR-C) within a tolerable level, data from different tracks and different sensors (channels) must be cross calibrated. The 1989 joint E-SAR/DC-8 SAR calibration campaign gave a first opportunity for such an experiment, including cross sensor and cross track calibration. A basic requirement for successful cross calibration is the stability of the SAR systems. The calibration parameters derived from different tracks and the polarimetric properties of the uncalibrated data are used to describe this stability. Quality criteria for a successful cross calibration are the agreement of alpha degree values and the consistency of radar cross sections of equally sized corner reflectors. Channel imbalance and cross talk provide additional quality in case of the polarimetric DC-8 SAR.

  12. Absolute brightness temperature measurements at 3.5-mm wavelength. [of sun, Venus, Jupiter and Saturn

    NASA Technical Reports Server (NTRS)

    Ulich, B. L.; Rhodes, P. J.; Davis, J. H.; Hollis, J. M.

    1980-01-01

    Careful observations have been made at 86.1 GHz to derive the absolute brightness temperatures of the sun (7914 + or - 192 K), Venus (357.5 + or - 13.1 K), Jupiter (179.4 + or - 4.7 K), and Saturn (153.4 + or - 4.8 K) with a standard error of about three percent. This is a significant improvement in accuracy over previous results at millimeter wavelengths. A stable transmitter and novel superheterodyne receiver were constructed and used to determine the effective collecting area of the Millimeter Wave Observatory (MWO) 4.9-m antenna relative to a previously calibrated standard gain horn. The thermal scale was set by calibrating the radiometer with carefully constructed and tested hot and cold loads. The brightness temperatures may be used to establish an absolute calibration scale and to determine the antenna aperture and beam efficiencies of other radio telescopes at 3.5-mm wavelength.

  13. A rare gas optics-free absolute photon flux and energy analyzer to provide absolute photoionization rates of inflowing interstellar neutrals

    NASA Technical Reports Server (NTRS)

    Judge, Darrell L.

    1994-01-01

    A prototype spectrometer has been developed for space applications requiring long term absolute EUV photon flux measurements. The energy spectrum of the incoming photons is transformed directly into an electron energy spectrum by taking advantage of the photoelectric effect in one of several rare gases at low pressures. Using an electron energy spectrometer, followed by an electron multiplier detector, pulses due to individual electrons are counted. The overall efficiency of this process can be made essentially independent of gain drifts in the signal path, and the secular degradation of optical components which is often a problem in other techniques is avoided. A very important feature of this approach is its freedom from the problem of overlapping spectral orders that plagues grating EUV spectrometers. An instrument with these features has not been flown before, but is essential to further advances in our understanding of solar EUV flux dynamics, and the coupled dynamics of terrestrial and planetary atmospheres. The detailed characteristics of this optics-free spectrometer are presented in the publications section.

  14. Scalable methodology for large scale building energy improvement: Relevance of calibration in model-based retrofit analysis

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Heo, Yeonsook; Augenbroe, Godfried; Graziano, Diane

    2015-05-01

    The increasing interest in retrofitting of existing buildings is motivated by the need to make a major contribution to enhancing building energy efficiency and reducing energy consumption and CO2 emission by the built environment. This paper examines the relevance of calibration in model-based analysis to support decision-making for energy and carbon efficiency retrofits of individual buildings and portfolios of buildings. The authors formulate a set of real retrofit decision-making situations and evaluate the role of calibration by using a case study that compares predictions and decisions from an uncalibrated model with those of a calibrated model. The case study illustratesmore » both the mechanics and outcomes of a practical alternative to the expert- and time-intense application of dynamic energy simulation models for large-scale retrofit decision-making under uncertainty.« less

  15. Summary of KOMPSAT-5 Calibration and Validation

    NASA Astrophysics Data System (ADS)

    Yang, D.; Jeong, H.; Lee, S.; Kim, B.

    2013-12-01

    including pointing, relative and absolute calibration as well as geolocation accuracy determination. The absolute calibration will be accomplished by determining absolute radiometric accuracy using already deployed trihedral corner reflectors on calibration and validation sites located southeast from Ulaanbaatar, Mongolia. To establish a measure for the assess the final image products, geolocation accuracies of image products with different imaging modes will be determined by using deployed point targets and available Digital Terrain Model (DTM), and on different image processing levels. In summary, this paper will present calibration and validation activities performed during the LEOP and IOT of KOMPSAT-5. The methodology and procedure of calibration and validation will be explained as well as its results. Based on the results, the applications of SAR image products on geophysical processes will be also discussed.

  16. Chasing the TIRS ghosts: calibrating the Landsat 8 thermal bands

    NASA Astrophysics Data System (ADS)

    Schott, John R.; Gerace, Aaron; Raqueno, Nina; Ientilucci, Emmett; Raqueno, Rolando; Lunsford, Allen W.

    2014-10-01

    The Thermal Infrared Sensor (TIRS) on board Landsat 8 has exhibited a number of anomalous characteristics that have made it difficult to calibrate. These anomalies include differences in the radiometric appearance across the blackbody pre- and post-launch, variations in the cross calibration ratios between detectors that overlap on adjacent arrays (resulting in banding) and bias errors in the absolute calibration that can change spatially/temporally. Several updates to the TIRS calibration procedures were made in the months after launch to attempt to mitigate the impact of these anomalies on flat fielding (cosmetic removal of banding and striping) and mean level bias correction. As a result, banding and striping variations have been reduced but not eliminated and residual bias errors in band 10 should be less than 2 degrees for most targets but can be significantly more in some cases and are often larger in band 11. These corrections have all been essentially ad hoc without understanding or properly accounting for the source of the anomalies, which were, at the time unknown. This paper addresses the procedures that have been undertaken to; better characterize the nature of these anomalies, attempt to identify the source(s) of the anomalies, quantify the phenomenon responsible for them, and develop correction procedures to more effectively remove the impacts on the radiometric products. Our current understanding points to all of the anomalies being the result of internal reflections of energy from outside the target detector's field-of-view, and often outside the telescope field-of-view, onto the target detector. This paper discusses how various members of the Landsat calibration team discovered the clues that led to how; these "ghosts" were identified, they are now being characterized, and their impact can hopefully eventually be corrected. This includes use of lunar scans to generate initial maps of influence regions, use of long path overlap ratios to explore

  17. An evaluation of the accuracy of geomagnetic data obtained from an unattended, automated, quasi-absolute station

    USGS Publications Warehouse

    Herzog, D.C.

    1990-01-01

    A comparison is made of geomagnetic calibration data obtained from a high-sensitivity proton magnetometer enclosed within an orthogonal bias coil system, with data obtained from standard procedures at a mid-latitude U.S. Geological Survey magnetic observatory using a quartz horizontal magnetometer, a Ruska magnetometer, and a total field magnetometer. The orthogonal coil arrangement is used with the proton magnetometer to provide Deflected-Inclination-Deflected-Declination (DIDD) data from which quasi-absolute values of declination, horizontal intensity, and vertical intensity can be derived. Vector magnetometers provide the ordinate values to yield baseline calibrations for both the DIDD and standard observatory processes. Results obtained from a prototype system over a period of several months indicate that the DIDD unit can furnish adequate absolute field values for maintaining observatory calibration data, thus providing baseline control for unattended, remote stations. ?? 1990.

  18. Solar-diffuser panel and ratioing radiometer approach to satellite sensor on-board calibration

    NASA Technical Reports Server (NTRS)

    Slater, Philip N.; Palmer, James M.

    1991-01-01

    The use of a solar-diffuser panel is a desirable approach to the on-board absolute radiometric calibration of satellite multispectral sensors used for earth observation in the solar reflective spectral range. It provides a full aperture, full field, end-to-end calibration near the top of the sensor's dynamic range and across its entire spectral response range. A serious drawback is that the panel's reflectance, and the response of any simple detector used to monitor its reflectance may change with time. This paper briefly reviews some preflight and on-board methods for absolute calibration and introduces the ratioing-radiometer concept in which the radiance of the panel is ratioed with respect to the solar irradiance at the time the multispectral sensor is viewing the panel in its calibration mode.

  19. Use of the Moon for spacecraft calibration over 350-2500 nm

    USGS Publications Warehouse

    Kieffer, H.H.; Anderson, J.M.

    1998-01-01

    The Moon is the only natural object outside the Earth's atmosphere that is within the dynamic range of most imaging instruments on Earth-orbiting spacecraft. The excellent photometric stability of the Lunar surface will allow its use as a long-term instrument calibration source once the dependence of Lunar spectral radiance on phase and libration angles are well characterized. A program to provide this characterization is underway. Observations are being made in 23 bands within 350-950 nm, 7 of which correspond closely with spacecraft instrument bands. Observations in nine bands within 950-2500 nm began recently. Although at this time the absolute Lunar radiance model is preliminary and uncertainties are larger than most instrument calibration goals, changes in spacecraft instrument sensitivity can be precisely monitored and absolute calibration can be applied retroactively as the accuracy of the Lunar spectral radiance model improves. Several space-based imaging systems have already begun using the Moon for calibration and the EOS AM-1 platform will make periodic attitude maneuvers for Lunar and space calibration.

  20. Absolute Infrared Calibration of Standard Stars by the Midcourse Space Experiment

    DTIC Science & Technology

    2004-04-01

    analytic expressions have been adopted for limb darkening (see the discussion and references in Neckel, 1996 , for examples) the fact is that the ratio...expression is of little consequence. Spickler, Benner and Russell ( 1996 ) noted that their measurements showed more infrared limb darkening than the...that calculated by Neckel and Labs (1981) from absolute radiances at the center of the Sun. However, Colina, Bohlin and Castelli ( 1996 ) questioned the

  1. Absolute Sea-level Monitoring and Altimeter Calibration Facility at Gavdos, Crete, Greece

    NASA Astrophysics Data System (ADS)

    Pavlis, E. C.

    2002-12-01

    We introduce the recently instrumented mean sea level (MSL) monitoring facility on western Crete and the isle of Gavdos. We will focus on the altimeter calibration aspect of the facility, in particular, its application to the JASON mission. The Eastern Mediterranean area is one of great interest for its intense tectonic activity as well as for its regional oceanography. Recent observations have convincingly demonstrated the importance of that area for the regional meteorological and climatologic changes. Tide-gauge monitoring with continuous GPS has gained importance lately since tectonics contaminate the inferred sea level variations, and a global network of tide-gauges with long historical records can be used as satellite altimeter calibration sites (e.g. TOPEX/POSEIDON, GFO, JASON-1, ENVISAT, etc.). This is at present a common IOC-GLOSS-IGS effort, already underway (TIGA), and our facility is part of it. Crete hosts two of the oldest tide-gauges in the regional network and our project will further expand it to the south with a new site on the isle of Gavdos, the southernmost European parcel of land. One component of our "GAVDOS" project is the repeated occupation of two already in existence tide-gauge sites at Souda Bay and Heraklion, and their tie to the new facility. We show here initial results from positioning of these sites and some of the available tidal records. Gavdos is situated under a ground-track crossing point of the original T/P and present JASON-1 orbits. It is an ideal calibration site if the tectonic motions are monitored precisely and continuously. The facility hosts in addition to the tide gauges: GPS and DORIS beacons for positioning, transponders for direct calibration, water vapor radiometers and solar spectrometers, GPS-loaded buoys, airborne surveys with gravimeters and laser profiling lidars, transportable laser ranging systems, etc., to ensure the best possible and most reliable results.

  2. Comparison Between One-Point Calibration and Two-Point Calibration Approaches in a Continuous Glucose Monitoring Algorithm

    PubMed Central

    Mahmoudi, Zeinab; Johansen, Mette Dencker; Christiansen, Jens Sandahl

    2014-01-01

    Background: The purpose of this study was to investigate the effect of using a 1-point calibration approach instead of a 2-point calibration approach on the accuracy of a continuous glucose monitoring (CGM) algorithm. Method: A previously published real-time CGM algorithm was compared with its updated version, which used a 1-point calibration instead of a 2-point calibration. In addition, the contribution of the corrective intercept (CI) to the calibration performance was assessed. Finally, the sensor background current was estimated real-time and retrospectively. The study was performed on 132 type 1 diabetes patients. Results: Replacing the 2-point calibration with the 1-point calibration improved the CGM accuracy, with the greatest improvement achieved in hypoglycemia (18.4% median absolute relative differences [MARD] in hypoglycemia for the 2-point calibration, and 12.1% MARD in hypoglycemia for the 1-point calibration). Using 1-point calibration increased the percentage of sensor readings in zone A+B of the Clarke error grid analysis (EGA) in the full glycemic range, and also enhanced hypoglycemia sensitivity. Exclusion of CI from calibration reduced hypoglycemia accuracy, while slightly increased euglycemia accuracy. Both real-time and retrospective estimation of the sensor background current suggest that the background current can be considered zero in the calibration of the SCGM1 sensor. Conclusions: The sensor readings calibrated with the 1-point calibration approach indicated to have higher accuracy than those calibrated with the 2-point calibration approach. PMID:24876420

  3. First TSI observations of the new Compact Lightweight Absolute Radiometer (CLARA)

    NASA Astrophysics Data System (ADS)

    Walter, B.; Finsterle, W.; Koller, S.; Levesque, P. L.; Pfiffner, D.; Schmutz, W. K.

    2017-12-01

    Continuous and precise Total Solar Irradiance (TSI) measurements are indispensable to evaluate the influence of short- and long-term solar radiative emission variations on the Earth's energy budget. The existence of a potentially long-term trend in the suns activity and whether or not such a trend could be climate effective is still a matter of debate. The Compact Lightweight Absolute Radiometer (CLARA) is one of PMOD/WRC's future contributions to the almost seamless series of space borne TSI measurements since 1978. CLARA is one of three payloads of the Norwegian micro satellite NORSAT-1, along with Langmuir probes for space plasma research and an Automatic Identification System (AIS) receiver to monitor maritime traffic in Norwegian waters. NORSAT-1 was launched July 14th 2017 and the nominal operation of CLARA will start after the instrument commissioning beginning August 21st2017. We present the design, calibration and first TSI observations of CLARA, a new generation of active cavity Electrical Substitution Radiometers (ESR) comprising the latest radiometer developments of PMOD/WRC: i) A three-cavity design for degradation tracking and redundancy, ii) a digital control loop with feed forward system allowing for measurement cadences of 30s, iii) an aperture arrangement to reduce internal scattered light and iv) a new cavity and heatsink design to minimize non-equivalence, size and weight of the instrument. CLARA was end-to-end calibrated against the SI traceable cryogenic radiometer of the TSI Radiometer Facility (TRF) in Boulder (Colorado). The absolute measurement uncertainties for the three SI-traceable TSI detectors of CLARA are 567, 576 and 912 ppm (k = 1).

  4. Absolute detection efficiencies of low energy H, H -, H +, H 2+ and H 3+ incident on a multichannel plate detector

    NASA Astrophysics Data System (ADS)

    Peko, B. L.; Stephen, T. M.

    2000-12-01

    Measured absolute detection efficiencies are presented for H, H - and H n+ ( n=1,2,3) impacting a commercially available, dual multichannel plate (MCP) electron multiplier at kinetic energies ranging from 30 to 1000 eV. Measurements involving isotopic substitutions (D, D -, D n+) and Ar + are also presented. In addition, atomic hydrogen detection efficiencies relative to those of H + and H - are given, as they may have a more universal application. For the three charge states, H, H + and H -, the absolute detection efficiencies are markedly different at low energies and converge to a nearly uniform value of ˜70% with increasing projectile energy. The energy dependence is strongest for H +, varying nearly three orders of magnitude over the energy range studied, and weakest for H -, varying by less than one order of magnitude. In general, for the low energy positive ions at a given energy, the lighter the incident particle mass, the greater the probability of its detection.

  5. Calorimetry of electron beams and the calibration of dosimeters at high doses

    NASA Astrophysics Data System (ADS)

    Humphreys, J. C.; McLaughlin, W. L.

    Graphite or metal calorimeters are used to make absolute dosimetric measurements of high-energy electron beams. These calibrated beams are then used to calibrate several types of dosimeters for high-dose applications such as medical-product sterilization, polymer modification, food processing, or electronic-device hardness testing. The electron beams are produced either as continuous high-power beams at approximately 4.5 MeV by d.c. type accelerators or in the energy range of approximately 8 to 50 MeV using pulsed microwave linear accelerators (linacs). The continuous beams are generally magnetically scanned to produce a broad, uniform radiation environment for the processing of materials of extended lateral dimensions. The higher-energy pulsed beams may also be scanned for processing applications or may be used in an unscanned, tightly-focused mode to produce maximum absorbed dose rates such as may be required for electronic-device radiation hardness testing. The calorimeters are used over an absorbed dose range of 10 2 to 10 4 Gy. Intercomparison studies are reported between National Institute of Standards and Technology (NIST) and UK National Physical Laboratory (NPL) graphite disk calorimeters at high doses, using the NPL 10-MeV linac, and agreement was found within 1.5%. It was also shown that the electron-beam responses of radiochromic film dosimeters and alanine pellet dosimeters can be accurately calibrated by comparison with calorimeter readings.

  6. Waveguide Calibrator for Multi-Element Probe Calibration

    NASA Technical Reports Server (NTRS)

    Sommerfeldt, Scott D.; Blotter, Jonathan D.

    2007-01-01

    A calibrator, referred to as the spider design, can be used to calibrate probes incorporating multiple acoustic sensing elements. The application is an acoustic energy density probe, although the calibrator can be used for other types of acoustic probes. The calibrator relies on the use of acoustic waveguide technology to produce the same acoustic field at each of the sensing elements. As a result, the sensing elements can be separated from each other, but still calibrated through use of the acoustic waveguides. Standard calibration techniques involve placement of an individual microphone into a small cavity with a known, uniform pressure to perform the calibration. If a cavity is manufactured with sufficient size to insert the energy density probe, it has been found that a uniform pressure field can only be created at very low frequencies, due to the size of the probe. The size of the energy density probe prevents one from having the same pressure at each microphone in a cavity, due to the wave effects. The "spider" design probe is effective in calibrating multiple microphones separated from each other. The spider design ensures that the same wave effects exist for each microphone, each with an indivdual sound path. The calibrator s speaker is mounted at one end of a 14-cm-long and 4.1-cm diameter small plane-wave tube. This length was chosen so that the first evanescent cross mode of the plane-wave tube would be attenuated by about 90 dB, thus leaving just the plane wave at the termination plane of the tube. The tube terminates with a small, acrylic plate with five holes placed symmetrically about the axis of the speaker. Four ports are included for the four microphones on the probe. The fifth port is included for the pre-calibrated reference microphone. The ports in the acrylic plate are in turn connected to the probe sensing elements via flexible PVC tubes. These five tubes are the same length, so the acoustic wave effects are the same in each tube. The

  7. Calibration and characterization of the IceCube photomultiplier tube

    NASA Astrophysics Data System (ADS)

    Abbasi, R.; Abdou, Y.; Abu-Zayyad, T.; Adams, J.; Aguilar, J. A.; Ahlers, M.; Andeen, K.; Auffenberg, J.; Bai, X.; Baker, M.; Barwick, S. W.; Bay, R.; Bazo Alba, J. L.; Beattie, K.; Beatty, J. J.; Bechet, S.; Becker, J. K.; Becker, K.-H.; Benabderrahmane, M. L.; Berdermann, J.; Berghaus, P.; Berley, D.; Bernardini, E.; Bertrand, D.; Besson, D. Z.; Bissok, M.; Blaufuss, E.; Boersma, D. J.; Bohm, C.; Botner, O.; Bradley, L.; Braun, J.; Buitink, S.; Carson, M.; Chirkin, D.; Christy, B.; Clem, J.; Cohen, S.; Colnard, C.; Cowen, D. F.; D'Agostino, M. V.; Danninger, M.; de Clercq, C.; Demirörs, L.; Depaepe, O.; Descamps, F.; Desiati, P.; de Vries-Uiterweerd, G.; Deyoung, T.; Díaz-Vélez, J. C.; Dreyer, J.; Dumm, J. P.; Duvoort, M. R.; Ehrlich, R.; Eisch, J.; Ellsworth, R. W.; Engdegård, O.; Euler, S.; Evenson, P. A.; Fadiran, O.; Fazely, A. R.; Feusels, T.; Filimonov, K.; Finley, C.; Foerster, M. M.; Fox, B. D.; Franckowiak, A.; Franke, R.; Gaisser, T. K.; Gallagher, J.; Ganugapati, R.; Geisler, M.; Gerhardt, L.; Gladstone, L.; Goldschmidt, A.; Goodman, J. A.; Grant, D.; Griesel, T.; Groß, A.; Grullon, S.; Gunasingha, R. M.; Gurtner, M.; Ha, C.; Hallgren, A.; Halzen, F.; Han, K.; Hanson, K.; Hasegawa, Y.; Haugen, J.; Helbing, K.; Herquet, P.; Hickford, S.; Hill, G. C.; Hoffman, K. D.; Homeier, A.; Hoshina, K.; Hubert, D.; Huelsnitz, W.; Hülß, J.-P.; Hulth, P. O.; Hultqvist, K.; Hussain, S.; Imlay, R. L.; Inaba, M.; Ishihara, A.; Jacobsen, J.; Japaridze, G. S.; Johansson, H.; Joseph, J. M.; Kampert, K.-H.; Kappes, A.; Karg, T.; Karle, A.; Kelley, J. L.; Kemming, N.; Kenny, P.; Kiryluk, J.; Kislat, F.; Kitamura, N.; Klein, S. R.; Knops, S.; Kohnen, G.; Kolanoski, H.; Köpke, L.; Koskinen, D. J.; Kowalski, M.; Kowarik, T.; Krasberg, M.; Krings, T.; Kroll, G.; Kuehn, K.; Kuwabara, T.; Labare, M.; Lafebre, S.; Laihem, K.; Landsman, H.; Lauer, R.; Laundrie, A.; Lehmann, R.; Lennarz, D.; Lünemann, J.; Madsen, J.; Majumdar, P.; Maruyama, R.; Mase, K.; Matis, H. S.; Matusik, M.; Meagher, K.; Merck, M.; Mészáros, P.; Meures, T.; Middell, E.; Milke, N.; Miyamoto, H.; Montaruli, T.; Morse, R.; Movit, S. M.; Nahnhauer, R.; Nam, J. W.; Naumann, U.; Nießen, P.; Nygren, D. R.; Odrowski, S.; Olivas, A.; Olivo, M.; Ono, M.; Panknin, S.; Paul, L.; Pérez de Los Heros, C.; Petrovic, J.; Piegsa, A.; Pieloth, D.; Pohl, A. C.; Porrata, R.; Posselt, J.; Price, P. B.; Prikockis, M.; Przybylski, G. T.; Rawlins, K.; Redl, P.; Resconi, E.; Rhode, W.; Ribordy, M.; Rizzo, A.; Robl, P.; Rodrigues, J. P.; Roth, P.; Rothmaier, F.; Rott, C.; Roucelle, C.; Rutledge, D.; Ruzybayev, B.; Ryckbosch, D.; Sander, H.-G.; Sandstrom, P.; Sarkar, S.; Schatto, K.; Schlenstedt, S.; Schmidt, T.; Schneider, D.; Schukraft, A.; Schultes, A.; Schulz, O.; Schunck, M.; Seckel, D.; Semburg, B.; Seo, S. H.; Sestayo, Y.; Seunarine, S.; Silvestri, A.; Slipak, A.; Spiczak, G. M.; Spiering, C.; Stamatikos, M.; Stanev, T.; Stephens, G.; Stezelberger, T.; Stokstad, R. G.; Stoyanov, S.; Strahler, E. A.; Straszheim, T.; Sullivan, G. W.; Swillens, Q.; Taboada, I.; Tamburro, A.; Tarasova, O.; Tepe, A.; Ter-Antonyan, S.; Terranova, C.; Tilav, S.; Toale, P. A.; Tosi, D.; Turčan, D.; van Eijndhoven, N.; Vandenbroucke, J.; van Overloop, A.; van Santen, J.; Voigt, B.; Wahl, D.; Walck, C.; Waldenmaier, T.; Wallraff, M.; Walter, M.; Wendt, C.; Westerhoff, S.; Whitehorn, N.; Wiebe, K.; Wiebusch, C. H.; Wikström, G.; Williams, D. R.; Wischnewski, R.; Wissing, H.; Woschnagg, K.; Xu, C.; Xu, X. W.; Yodh, G.; Yoshida, S.; Zarzhitsky, P.; IceCube Collaboration

    2010-06-01

    Over 5000 PMTs are being deployed at the South Pole to compose the IceCube neutrino observatory. Many are placed deep in the ice to detect Cherenkov light emitted by the products of high-energy neutrino interactions, and others are frozen into tanks on the surface to detect particles from atmospheric cosmic ray showers. IceCube is using the 10-in. diameter R7081-02 made by Hamamatsu Photonics. This paper describes the laboratory characterization and calibration of these PMTs before deployment. PMTs were illuminated with pulses ranging from single photons to saturation level. Parameterizations are given for the single photoelectron charge spectrum and the saturation behavior. Time resolution, late pulses and afterpulses are characterized. Because the PMTs are relatively large, the cathode sensitivity uniformity was measured. The absolute photon detection efficiency was calibrated using Rayleigh-scattered photons from a nitrogen laser. Measured characteristics are discussed in the context of their relevance to IceCube event reconstruction and simulation efforts.

  8. Detection of Unexpected High Correlations between Balance Calibration Loads and Load Residuals

    NASA Technical Reports Server (NTRS)

    Ulbrich, N.; Volden, T.

    2014-01-01

    An algorithm was developed for the assessment of strain-gage balance calibration data that makes it possible to systematically investigate potential sources of unexpected high correlations between calibration load residuals and applied calibration loads. The algorithm investigates correlations on a load series by load series basis. The linear correlation coefficient is used to quantify the correlations. It is computed for all possible pairs of calibration load residuals and applied calibration loads that can be constructed for the given balance calibration data set. An unexpected high correlation between a load residual and a load is detected if three conditions are met: (i) the absolute value of the correlation coefficient of a residual/load pair exceeds 0.95; (ii) the maximum of the absolute values of the residuals of a load series exceeds 0.25 % of the load capacity; (iii) the load component of the load series is intentionally applied. Data from a baseline calibration of a six-component force balance is used to illustrate the application of the detection algorithm to a real-world data set. This analysis also showed that the detection algorithm can identify load alignment errors as long as repeat load series are contained in the balance calibration data set that do not suffer from load alignment problems.

  9. Self-Calibration and Laser Energy Monitor Validations for a Double-Pulsed 2-Micron CO2 Integrated Path Differential Absorption Lidar Application

    NASA Technical Reports Server (NTRS)

    Refaat, Tamer F.; Singh, Upendra N.; Petros, Mulugeta; Remus, Ruben; Yu, Jirong

    2015-01-01

    Double-pulsed 2-micron integrated path differential absorption (IPDA) lidar is well suited for atmospheric CO2 remote sensing. The IPDA lidar technique relies on wavelength differentiation between strong and weak absorbing features of the gas normalized to the transmitted energy. In the double-pulse case, each shot of the transmitter produces two successive laser pulses separated by a short interval. Calibration of the transmitted pulse energies is required for accurate CO2 measurement. Design and calibration of a 2-micron double-pulse laser energy monitor is presented. The design is based on an InGaAs pin quantum detector. A high-speed photo-electromagnetic quantum detector was used for laser-pulse profile verification. Both quantum detectors were calibrated using a reference pyroelectric thermal detector. Calibration included comparing the three detection technologies in the single-pulsed mode, then comparing the quantum detectors in the double-pulsed mode. In addition, a self-calibration feature of the 2-micron IPDA lidar is presented. This feature allows one to monitor the transmitted laser energy, through residual scattering, with a single detection channel. This reduces the CO2 measurement uncertainty. IPDA lidar ground validation for CO2 measurement is presented for both calibrated energy monitor and self-calibration options. The calibrated energy monitor resulted in a lower CO2 measurement bias, while self-calibration resulted in a better CO2 temporal profiling when compared to the in situ sensor.

  10. Absolute far-ultraviolet spectrophotometry of hot subluminous stars from Voyager

    NASA Technical Reports Server (NTRS)

    Holberg, J. B.; Ali, B.; Carone, T. E.; Polidan, R. S.

    1991-01-01

    Observations, obtained with the Voyager ultraviolet spectrometers, are presented of absolute fluxes for two well-known hot subluminous stars: BD + 28 deg 4211, an sdO, and G191 - B2B, a hot DA white dwarf. Complete absolute energy distributions for these two stars, from the Lyman limit at 912 A to 1 micron, are given. For BD + 28 deg 4211, a single power law closely represents the entire observed energy distribution. For G191 - B2B, a pure hydrogen model atmosphere provides an excellent match to the entire absolute energy distribution. Voyager absolute fluxes are discussed in relation to those reported from various sounding rocket experiments, including a recent rocket observation of BD + 28 deg 4211.

  11. On-orbit solar calibrations using the Aqua Clouds and Earth's Radiant Energy System (CERES) in-flight calibration system

    NASA Astrophysics Data System (ADS)

    Wilson, Robert S.; Priestley, Kory J.; Thomas, Susan; Hess, Phillip

    2009-08-01

    The Clouds and the Earth's Radiant Energy System (CERES) spacecraft scanning thermistor bolometers were used to measure earth-reflected solar and earth-emitted longwave radiances, at satellite altitude. The bolometers measured the earth radiances in the broadband shortwave solar (0.3 - 5.0 micrometers) and total (0.3->100 micrometers) spectral bands as well as in the (8 - 12 micrometers) water vapor window spectral band over geographical footprints as small as 10 kilometers at nadir. In May 2002, the fourth and fifth sets of CERES bolometers were launched aboard the Aqua spacecraft. Ground vacuum calibrations defined the initial count conversion coefficients that were used to convert the bolometer output voltages into filtered earth radiances. The mirror attenuator mosaic (MAM), a solar diffuser plate, was built into the CERES instrument package calibration system in order to define in-orbit shifts or drifts in the sensor responses. The shortwave and total sensors are calibrated using the solar radiances reflected from the MAM's. Each MAM consists of baffle-solar diffuser plate systems, which guide incoming solar radiances into the instrument fields-of-view of the shortwave and total wave sensor units. The MAM diffuser reflecting type surface consists of an array of spherical aluminum mirror segments, which are separated by a Merck Black A absorbing surface, overcoated with silicon dioxide. Temperature sensors are located in each MAM plate and baffle. The CERES MAM wass designed to yield calibration precisions approaching .5 percent for the total and shortwave detectors. In this paper, the MAM solar calibration procedures are presented along with on-orbit results. Comparisons are also made between the Aqua,Terra and the Tropical Rainfall Measurement Mission (TRMM) CERES MAM solar calibrations.

  12. Energy Calibration of the Scintillating Optical Fiber Calorimeter Chamber (SOFCAL)

    NASA Technical Reports Server (NTRS)

    Christl, M. C.; Fountain, W. F.; Parnell, T.; Roberts, F. E.; Gregory, J. C.; Johnson, J.; Takahashi, Y.

    1997-01-01

    The Scintillating Optical Fiber Calorimeter (SOFCAL) detector is designed to make direct measures of the primary cosmic ray spectrum from -200 GeV/amu - 20 TeV/amu. The primary particles are resolved into groups according to their charge (p, He, CNO, Medium Z, Heavy Z) using both active and passive components integrated into the detector. The principal part of SOFCAL is a thin ionization calorimeter that measures the electromagnetic cascades that result from these energetic particles interacting in the detector. The calorimeter is divided into two sections: a thin passive emulsion/x-ray film calorimeter, and a fiber calorimeter that uses crossing layers of small scintillating optical fibers to sample the energy deposition of the cascades. The energy determination is made by fitting the fiber data to transition curves generated by Monte Carlo simulations. The fiber data must first be calibrated using the electron counts from the emulsion plates in the calorimeter for a small number of events. The technique and results of this calibration will be presented together with samples of the data from a balloon flight.

  13. The Darkside-50 Experiment: Electron Recoil Calibrations and a Global Energy Variable

    NASA Astrophysics Data System (ADS)

    Hackett, Brianne R.

    Over the course of decades, there has been mounting astronomical evidence for non-baryonic dark matter, yet its precise nature remains elusive. A favored candidate for dark matter is the Weakly Interacting Massive Particle (WIMP) which arises naturally out of extensions to the Standard Model. WIMPs are expected to occasionally interact with particles of normal matter through nuclear recoils. DarkSide-50 aims to detect this type of particle through the use of a two-phase liquid argon time projection chamber. To make a claim of discovery, an accurate understanding of the background and WIMP search region is imperative. Knowledge of the backgrounds is done through extensive studies of DarkSide-50's response to electron and nuclear recoils. The CALibration Insertion System (CALIS) was designed and built for the purpose of introducing radioactive sources into or near the detector in a joint effort between Fermi National Laboratory (FNAL) and the University of Hawai'i at Manoa. This work describes the testing, installation, and commissioning of CALIS at the Laboratori Nazionali del Gran Sasso. CALIS has been used in multiple calibration campaigns with both neutron and gamma sources. In this work, DarkSide-50's response to electron recoils, which are important for background estimations, was studied through the use of gamma calibration sources by constructing a global energy variable which takes into account the anti-correlation between scintillation and ionization signals produced by interactions in the liquid argon. Accurately reconstructing the event energy correlates directly with quantitatively understanding the WIMP sensitivity in DarkSide-50. This work also validates the theoretically predicted beta decay spectrum of 39Ar against 39Ar beta decay data collected in the early days of DarkSide-50 while it was filled with atmospheric argon; a validation of this type is not readily found in the literature. Finally, we show how well the constructed energy variable can

  14. Planck 2013 results. VIII. HFI photometric calibration and mapmaking

    NASA Astrophysics Data System (ADS)

    Planck Collaboration; Ade, P. A. R.; Aghanim, N.; Armitage-Caplan, C.; Arnaud, M.; Ashdown, M.; Atrio-Barandela, F.; Aumont, J.; Baccigalupi, C.; Banday, A. J.; Barreiro, R. B.; Battaner, E.; Benabed, K.; Benoît, A.; Benoit-Lévy, A.; Bernard, J.-P.; Bersanelli, M.; Bertincourt, B.; Bielewicz, P.; Bobin, J.; Bock, J. J.; Bond, J. R.; Borrill, J.; Bouchet, F. R.; Boulanger, F.; Bridges, M.; Bucher, M.; Burigana, C.; Cardoso, J.-F.; Catalano, A.; Challinor, A.; Chamballu, A.; Chary, R.-R.; Chen, X.; Chiang, H. C.; Chiang, L.-Y.; Christensen, P. R.; Church, S.; Clements, D. L.; Colombi, S.; Colombo, L. P. L.; Combet, C.; Couchot, F.; Coulais, A.; Crill, B. P.; Curto, A.; Cuttaia, F.; Danese, L.; Davies, R. D.; de Bernardis, P.; de Rosa, A.; de Zotti, G.; Delabrouille, J.; Delouis, J.-M.; Désert, F.-X.; Dickinson, C.; Diego, J. M.; Dole, H.; Donzelli, S.; Doré, O.; Douspis, M.; Dupac, X.; Efstathiou, G.; Enßlin, T. A.; Eriksen, H. K.; Filliard, C.; Finelli, F.; Forni, O.; Frailis, M.; Franceschi, E.; Galeotta, S.; Ganga, K.; Giard, M.; Giardino, G.; Giraud-Héraud, Y.; González-Nuevo, J.; Górski, K. M.; Gratton, S.; Gregorio, A.; Gruppuso, A.; Hansen, F. K.; Hanson, D.; Harrison, D.; Helou, G.; Henrot-Versillé, S.; Hernández-Monteagudo, C.; Herranz, D.; Hildebrandt, S. R.; Hivon, E.; Hobson, M.; Holmes, W. A.; Hornstrup, A.; Hovest, W.; Huffenberger, K. M.; Jaffe, A. H.; Jaffe, T. R.; Jones, W. C.; Juvela, M.; Keihänen, E.; Keskitalo, R.; Kisner, T. S.; Kneissl, R.; Knoche, J.; Knox, L.; Kunz, M.; Kurki-Suonio, H.; Lagache, G.; Lamarre, J.-M.; Lasenby, A.; Laureijs, R. J.; Lawrence, C. R.; Le Jeune, M.; Lellouch, E.; Leonardi, R.; Leroy, C.; Lesgourgues, J.; Liguori, M.; Lilje, P. B.; Linden-Vørnle, M.; López-Caniego, M.; Lubin, P. M.; Macías-Pérez, J. F.; Maffei, B.; Mandolesi, N.; Maris, M.; Marshall, D. J.; Martin, P. G.; Martínez-González, E.; Masi, S.; Massardi, M.; Matarrese, S.; Matthai, F.; Maurin, L.; Mazzotta, P.; McGehee, P.; Meinhold, P. R.; Melchiorri, A.; Mendes, L.; Mennella, A.; Migliaccio, M.; Mitra, S.; Miville-Deschênes, M.-A.; Moneti, A.; Montier, L.; Moreno, R.; Morgante, G.; Mortlock, D.; Munshi, D.; Murphy, J. A.; Naselsky, P.; Nati, F.; Natoli, P.; Netterfield, C. B.; Nørgaard-Nielsen, H. U.; Noviello, F.; Novikov, D.; Novikov, I.; Osborne, S.; Oxborrow, C. A.; Paci, F.; Pagano, L.; Pajot, F.; Paladini, R.; Paoletti, D.; Partridge, B.; Pasian, F.; Patanchon, G.; Pearson, T. J.; Perdereau, O.; Perotto, L.; Perrotta, F.; Piacentini, F.; Piat, M.; Pierpaoli, E.; Pietrobon, D.; Plaszczynski, S.; Pointecouteau, E.; Polenta, G.; Ponthieu, N.; Popa, L.; Poutanen, T.; Pratt, G. W.; Prézeau, G.; Prunet, S.; Puget, J.-L.; Rachen, J. P.; Reinecke, M.; Remazeilles, M.; Renault, C.; Ricciardi, S.; Riller, T.; Ristorcelli, I.; Rocha, G.; Rosset, C.; Roudier, G.; Rusholme, B.; Santos, D.; Savini, G.; Scott, D.; Shellard, E. P. S.; Spencer, L. D.; Starck, J.-L.; Stolyarov, V.; Stompor, R.; Sudiwala, R.; Sunyaev, R.; Sureau, F.; Sutton, D.; Suur-Uski, A.-S.; Sygnet, J.-F.; Tauber, J. A.; Tavagnacco, D.; Techene, S.; Terenzi, L.; Tomasi, M.; Tristram, M.; Tucci, M.; Umana, G.; Valenziano, L.; Valiviita, J.; Van Tent, B.; Vielva, P.; Villa, F.; Vittorio, N.; Wade, L. A.; Wandelt, B. D.; Yvon, D.; Zacchei, A.; Zonca, A.

    2014-11-01

    This paper describes the methods used to produce photometrically calibrated maps from the Planck High Frequency Instrument (HFI) cleaned, time-ordered information. HFI observes the sky over a broad range of frequencies, from 100 to 857 GHz. To obtain the best calibration accuracy over such a large range, two different photometric calibration schemes have to be used. The 545 and 857 GHz data are calibrated by comparing flux-density measurements of Uranus and Neptune with models of their atmospheric emission. The lower frequencies (below 353 GHz) are calibrated using the solar dipole. A component of this anisotropy is time-variable, owing to the orbital motion of the satellite in the solar system. Photometric calibration is thus tightly linked to mapmaking, which also addresses low-frequency noise removal. By comparing observations taken more than one year apart in the same configuration, we have identified apparent gain variations with time. These variations are induced by non-linearities in the read-out electronics chain. We have developed an effective correction to limit their effect on calibration. We present several methods to estimate the precision of the photometric calibration. We distinguish relative uncertainties (between detectors, or between frequencies) and absolute uncertainties. Absolute uncertainties lie in the range from 0.54% to 10% from 100 to 857 GHz. We describe the pipeline used to produce the maps from the HFI timelines, based on the photometric calibration parameters, and the scheme used to set the zero level of the maps a posteriori. We also discuss the cross-calibration between HFI and the SPIRE instrument on board Herschel. Finally we summarize the basic characteristics of the set of HFI maps included in the 2013 Planck data release.

  15. Continuous glucose monitoring system: dawn period calibration does not change accuracy of the method.

    PubMed

    Augusto, Gustavo A; Sousa, André G P; Perazo, Marcela N A; Correa-Giannella, Maria L C; Nery, Marcia; Melo, Karla F S de

    2009-06-01

    Continuous glucose monitoring system is a valuable instrument to measure glycemic control, which uses a retrospective calibration based upon 3 to 4 capillary glucose meter values inserted by the patient each day. We evaluated the interference of calibration during the dawn period in the system accuracy. The monitoring data were retrospectively divided into two groups: with (Group A) or without (Group B) the dawn period calibration (between 1:00 and 5:00 AM). Accuracy of the method was expressed by relative absolute difference. Thirty-four continuous glucose monitoring data were evaluated comprising a total of 112 nights. A total of 289 paired readings were analyzed - 195 in Group A and 94 in Group B. We did not find a difference in relative absolute difference (RAD%) in any analyzed period of day by adding dawn calibration. These data suggest that dawn calibration does not alter accuracy of method.

  16. Probing Carbohydrate Product Expulsion from a Processive Cellulase with Multiple Absolute Binding Free Energy Methods*

    PubMed Central

    Bu, Lintao; Beckham, Gregg T.; Shirts, Michael R.; Nimlos, Mark R.; Adney, William S.; Himmel, Michael E.; Crowley, Michael F.

    2011-01-01

    Understanding the enzymatic mechanism that cellulases employ to degrade cellulose is critical to efforts to efficiently utilize plant biomass as a sustainable energy resource. A key component of cellulase action on cellulose is product inhibition from monosaccharide and disaccharides in the product site of cellulase tunnel. The absolute binding free energy of cellobiose and glucose to the product site of the catalytic tunnel of the Family 7 cellobiohydrolase (Cel7A) of Trichoderma reesei (Hypocrea jecorina) was calculated using two different approaches: steered molecular dynamics (SMD) simulations and alchemical free energy perturbation molecular dynamics (FEP/MD) simulations. For the SMD approach, three methods based on Jarzynski's equality were used to construct the potential of mean force from multiple pulling trajectories. The calculated binding free energies, −14.4 kcal/mol using SMD and −11.2 kcal/mol using FEP/MD, are in good qualitative agreement. Analysis of the SMD pulling trajectories suggests that several protein residues (Arg-251, Asp-259, Asp-262, Trp-376, and Tyr-381) play key roles in cellobiose and glucose binding to the catalytic tunnel. Five mutations (R251A, D259A, D262A, W376A, and Y381A) were made computationally to measure the changes in free energy during the product expulsion process. The absolute binding free energies of cellobiose to the catalytic tunnel of these five mutants are −13.1, −6.0, −11.5, −7.5, and −8.8 kcal/mol, respectively. The results demonstrated that all of the mutants tested can lower the binding free energy of cellobiose, which provides potential applications in engineering the enzyme to accelerate the product expulsion process and improve the efficiency of biomass conversion. PMID:21454590

  17. Sentinel-2: State of the Image Quality Calibration at the End of the Commissioning

    NASA Astrophysics Data System (ADS)

    Tremas, Thierry; Lonjou, Vincent; Lacherade, Sophie; Gaudel-Vacaresse, Angelique; Languille, Florie

    2016-08-01

    This article summarizes the activity of CNES during the In Orbit Calibration Phase of Sentinel 2A as well as the transfer of production of GIPP (Ground Image Processing Parameters) from CNES to ESRIN. The state of the main calibration parameters and performances, few months before PDGS is declared fully operational, are listed and explained.In radiometry a special attention is paid to the absolute calibration using the on-board diffuser, and the vicarious calibration methods using instrumented or statistically well characterized sites and inter- comparisons with other sensors. Regarding geometry, the presentation focuses on the performances of absolute location with and without reference points. The requirements of multi-band and multi-temporal registration are exposed. Finally, the construction and the rule of the GRI (Ground Reference Images) in the future are explained.

  18. Radiometric Calibration of the NASA Advanced X-Ray Astrophysics Facility

    NASA Technical Reports Server (NTRS)

    Kellogg, Edwin M.

    1999-01-01

    We present the results of absolute calibration of the quantum efficiency of soft x-ray detectors performed at the PTB/BESSY beam lines. The accuracy goal is 1%. We discuss the implementation of that goal. These detectors were used as transfer standards to provide the radiometric calibration of the AXAF X-ray observatory, to be launched in April 1999.

  19. Relative radiometric calibration for multispectral remote sensing imagery

    NASA Astrophysics Data System (ADS)

    Ren, Hsuan

    2006-10-01

    Our environment has been changed continuously by nature causes or human activities. In order to identify what has been changed during certain time period, we need to spend enormous resources to collect all kinds of data and analyze them. With remote sensing images, change detection has become one efficient and inexpensive technique. It has wide applications including disaster management, agriculture analysis, environmental monitoring and military reconnaissance. To detect the changes between two remote sensing images collected at different time, radiometric calibration is one of the most important processes. Under the different weather and atmosphere conditions, even the same material might be resulting distinct radiance spectrum in two images. In this case, they will be misclassified as changes and false alarm rate will also increase. To achieve absolute calibration, i.e., to convert the radiance to reflectance spectrum, the information about the atmosphere condition or ground reference materials with known reflectance spectrum is needed but rarely available. In this paper, we present relative radiometric calibration methods which transform image pair into similar atmospheric effect instead of remove it in absolutely calibration, so that the information of atmosphere condition is not required. A SPOT image pair will be used for experiment to demonstrate the performance.

  20. Mars Exploration Rover Navigation Camera in-flight calibration

    USGS Publications Warehouse

    Soderblom, J.M.; Bell, J.F.; Johnson, J. R.; Joseph, J.; Wolff, M.J.

    2008-01-01

    The Navigation Camera (Navcam) instruments on the Mars Exploration Rover (MER) spacecraft provide support for both tactical operations as well as scientific observations where color information is not necessary: large-scale morphology, atmospheric monitoring including cloud observations and dust devil movies, and context imaging for both the thermal emission spectrometer and the in situ instruments on the Instrument Deployment Device. The Navcams are a panchromatic stereoscopic imaging system built using identical charge-coupled device (CCD) detectors and nearly identical electronics boards as the other cameras on the MER spacecraft. Previous calibration efforts were primarily focused on providing a detailed geometric calibration in line with the principal function of the Navcams, to provide data for the MER navigation team. This paper provides a detailed description of a new Navcam calibration pipeline developed to provide an absolute radiometric calibration that we estimate to have an absolute accuracy of 10% and a relative precision of 2.5%. Our calibration pipeline includes steps to model and remove the bias offset, the dark current charge that accumulates in both the active and readout regions of the CCD, and the shutter smear. It also corrects pixel-to-pixel responsivity variations using flat-field images, and converts from raw instrument-corrected digital number values per second to units of radiance (W m-2 nm-1 sr-1), or to radiance factor (I/F). We also describe here the initial results of two applications where radiance-calibrated Navcam data provide unique information for surface photometric and atmospheric aerosol studies. Copyright 2008 by the American Geophysical Union.

  1. Mars Exploration Rover Navigation Camera in-flight calibration

    NASA Astrophysics Data System (ADS)

    Soderblom, Jason M.; Bell, James F.; Johnson, Jeffrey R.; Joseph, Jonathan; Wolff, Michael J.

    2008-06-01

    The Navigation Camera (Navcam) instruments on the Mars Exploration Rover (MER) spacecraft provide support for both tactical operations as well as scientific observations where color information is not necessary: large-scale morphology, atmospheric monitoring including cloud observations and dust devil movies, and context imaging for both the thermal emission spectrometer and the in situ instruments on the Instrument Deployment Device. The Navcams are a panchromatic stereoscopic imaging system built using identical charge-coupled device (CCD) detectors and nearly identical electronics boards as the other cameras on the MER spacecraft. Previous calibration efforts were primarily focused on providing a detailed geometric calibration in line with the principal function of the Navcams, to provide data for the MER navigation team. This paper provides a detailed description of a new Navcam calibration pipeline developed to provide an absolute radiometric calibration that we estimate to have an absolute accuracy of 10% and a relative precision of 2.5%. Our calibration pipeline includes steps to model and remove the bias offset, the dark current charge that accumulates in both the active and readout regions of the CCD, and the shutter smear. It also corrects pixel-to-pixel responsivity variations using flat-field images, and converts from raw instrument-corrected digital number values per second to units of radiance (W m-2 nm-1 sr-1), or to radiance factor (I/F). We also describe here the initial results of two applications where radiance-calibrated Navcam data provide unique information for surface photometric and atmospheric aerosol studies.

  2. Calibration of quadpolarization SAR data using backscatter statistics

    NASA Technical Reports Server (NTRS)

    Klein, Jeffrey D.

    1989-01-01

    A new technique is described for calibration of complex multipolarization SAR imagery. Scatterer reciprocity and lack of correlation between like- and cross-polarized radar echoes for natural targets are used to remove cross-polarized contamination in the radar data channels without the use of known ground targets. If known targets are available, all data channels can be calibrated relative to one another and absolutely as well. The method is verified with airborne SAR data.

  3. Calibration and characterisation of the Gaia Red Clump

    NASA Astrophysics Data System (ADS)

    Ruiz-Dern, L.; Babusiaux, C.; Arenou, F.; Danielski, C.; Turon, C.; Sartoretti, P.

    2018-04-01

    We present new empirical Colour-Colour and Effective Temperature-Colour Gaia Red Clump calibrations. The selected sample takes into account high photometric quality, good spectrometric metallicity, homogeneous effective temperatures and low interstellar extinctions. From those calibrations we developed a method to derive the absolute magnitude, temperature and extinction of the Gaia RC. We tested our colour and extinction estimates on stars with measured spectroscopic effective temperatures and Diffuse Interstellar Band (DIB) constraints. Within the Gaia Validation team these calibrations are also being used, together with asteroseismic constraints, to check the parallax zero-point with Red Clump stars.

  4. Stable Calibration of Raman Lidar Water-Vapor Measurements

    NASA Technical Reports Server (NTRS)

    Leblanc, Thierry; McDermid, Iain S.

    2008-01-01

    A method has been devised to ensure stable, long-term calibration of Raman lidar measurements that are used to determine the altitude-dependent mixing ratio of water vapor in the upper troposphere and lower stratosphere. Because the lidar measurements yield a quantity proportional to the mixing ratio, rather than the mixing ratio itself, calibration is necessary to obtain the factor of proportionality. The present method involves the use of calibration data from two sources: (1) absolute calibration data from in situ radiosonde measurements made during occasional campaigns and (2) partial calibration data obtained by use, on a regular schedule, of a lamp that emits in a known spectrum determined in laboratory calibration measurements. In this method, data from the first radiosonde campaign are used to calculate a campaign-averaged absolute lidar calibration factor (t(sub 1)) and the corresponding campaign-averaged ration (L(sub 1)) between lamp irradiances at the water-vapor and nitrogen wavelengths. Depending on the scenario considered, this ratio can be assumed to be either constant over a long time (L=L(sub 1)) or drifting slowly with time. The absolutely calibrated water-vapor mixing ratio (q) obtained from the ith routine off-campaign lidar measurement is given by q(sub 1)=P(sub 1)/t(sub 1)=LP(sub 1)/P(sup prime)(sub 1) where P(sub 1) is water-vapor/nitrogen measurement signal ration, t(sub 1) is the unknown and unneeded overall efficiency ratio of the lidar receiver during the ith routine off-campaign measurement run, and P(sup prime)(sub 1) is the water-vapor/nitrogen signal ratio obtained during the lamp run associated with the ith routine off-campaign measurement run. If L is assumed constant, then the lidar calibration is routinely obtained without the need for new radiosonde data. In this case, one uses L=L(sub 1) = P(sup prime)(sub 1)/t(sub 1), where P(sub 1)(sup prime) is the water-vapor/nitrogen signal ratio obtained during the lamp run associated

  5. Aquarius L-Band Radiometers Calibration Using Cold Sky Observations

    NASA Technical Reports Server (NTRS)

    Dinnat, Emmanuel P.; Le Vine, David M.; Piepmeier, Jeffrey R.; Brown, Shannon T.; Hong, Liang

    2015-01-01

    An important element in the calibration plan for the Aquarius radiometers is to look at the cold sky. This involves rotating the satellite 180 degrees from its nominal Earth viewing configuration to point the main beams at the celestial sky. At L-band, the cold sky provides a stable, well-characterized scene to be used as a calibration reference. This paper describes the cold sky calibration for Aquarius and how it is used as part of the absolute calibration. Cold sky observations helped establish the radiometer bias, by correcting for an error in the spillover lobe of the antenna pattern, and monitor the long-term radiometer drift.

  6. Calibration of the COBE FIRAS instrument

    NASA Technical Reports Server (NTRS)

    Fixsen, D. J.; Cheng, E. S.; Cottingham, D. A.; Eplee, R. E., Jr.; Hewagama, T.; Isaacman, R. B.; Jensen, K. A.; Mather, J. C.; Massa, D. L.; Meyer, S. S.

    1994-01-01

    The Far-Infrared Absolute Spectrophotometer (FIRAS) instrument on the Cosmic Background Explorer (COBE) satellite was designed to accurately measure the spectrum of the cosmic microwave background radiation (CMBR) in the frequency range 1-95/cm with an angular resolution of 7 deg. We describe the calibration of this instrument, including the method of obtaining calibration data, reduction of data, the instrument model, fitting the model to the calibration data, and application of the resulting model solution to sky observations. The instrument model fits well for calibration data that resemble sky condition. The method of propagating detector noise through the calibration process to yield a covariance matrix of the calibrated sky data is described. The final uncertainties are variable both in frequency and position, but for a typical calibrated sky 2.6 deg square pixel and 0.7/cm spectral element the random detector noise limit is of order of a few times 10(exp -7) ergs/sq cm/s/sr cm for 2-20/cm, and the difference between the sky and the best-fit cosmic blackbody can be measured with a gain uncertainty of less than 3%.

  7. BFEE: A User-Friendly Graphical Interface Facilitating Absolute Binding Free-Energy Calculations.

    PubMed

    Fu, Haohao; Gumbart, James C; Chen, Haochuan; Shao, Xueguang; Cai, Wensheng; Chipot, Christophe

    2018-03-26

    Quantifying protein-ligand binding has attracted the attention of both theorists and experimentalists for decades. Many methods for estimating binding free energies in silico have been reported in recent years. Proper use of the proposed strategies requires, however, adequate knowledge of the protein-ligand complex, the mathematical background for deriving the underlying theory, and time for setting up the simulations, bookkeeping, and postprocessing. Here, to minimize human intervention, we propose a toolkit aimed at facilitating the accurate estimation of standard binding free energies using a geometrical route, coined the binding free-energy estimator (BFEE), and introduced it as a plug-in of the popular visualization program VMD. Benefitting from recent developments in new collective variables, BFEE can be used to generate the simulation input files, based solely on the structure of the complex. Once the simulations are completed, BFEE can also be utilized to perform the post-treatment of the free-energy calculations, allowing the absolute binding free energy to be estimated directly from the one-dimensional potentials of mean force in simulation outputs. The minimal amount of human intervention required during the whole process combined with the ergonomic graphical interface makes BFEE a very effective and practical tool for the end-user.

  8. Evaluation of factors to convert absorbed dose calibrations from graphite to water for the NPL high-energy photon calibration service.

    PubMed

    Nutbrown, R F; Duane, S; Shipley, D R; Thomas, R A S

    2002-02-07

    The National Physical Laboratory (NPL) provides a high-energy photon calibration service using 4-19 MV x-rays and 60Co gamma-radiation for secondary standard dosemeters in terms of absorbed dose to water. The primary standard used for this service is a graphite calorimeter and so absorbed dose calibrations must be converted from graphite to water. The conversion factors currently in use were determined prior to the launch of this service in 1988. Since then, it has been found that the differences in inherent filtration between the NPL LINAC and typical clinical machines are large enough to affect absorbed dose calibrations and, since 1992, calibrations have been performed in heavily filtered qualities. The conversion factors for heavily filtered qualities were determined by interpolation and extrapolation of lightly filtered results as a function of tissue phantom ratio 20,10 (TPR20,10). This paper aims to evaluate these factors for all mega-voltage photon energies provided by the NPL LINAC for both lightly and heavily filtered qualities and for 60Co y-radiation in two ways. The first method involves the use of the photon fluence-scaling theorem. This states that if two blocks of different material are irradiated by the same photon beam, and if all dimensions are scaled in the inverse ratio of the electron densities of the two media, then, assuming that all photon interactions occur by Compton scatter the photon attenuation and scatter factors at corresponding scaled points of measurement in the phantom will be identical. The second method involves making in-phantom measurements of chamber response at a constant target-chamber distance. Monte Carlo techniques are then used to determine the corresponding dose to the medium in order to determine the chamber calibration factor directly. Values of the ratio of absorbed dose calibration factors in water and in graphite determined in these two ways agree with each other to within 0.2% (1sigma uncertainty). The best fit

  9. Laser-induced incandescence calibration via gravimetric sampling

    NASA Technical Reports Server (NTRS)

    Choi, M. Y.; Vander Wal, R. L.; Zhou, Z.

    1996-01-01

    Absolute calibration of laser-induced incandescence (LII) is demonstrated via comparison of LII signal intensities with gravimetrically determined soot volume fractions. This calibration technique does not rely upon calculated or measured optical characteristics of soot. The variation of the LII signal with gravimetrically measured soot volume fractions ranging from 0.078 to 1.1 ppm established the linearly of the calibration. With the high spatial and temporal resolution capabilities of laser-induced incandescence (LII), the spatial and temporal fluctuations of the soot field within a gravimetric chimney were characterized. Radial uniformity of the soot volume fraction, f(sub v) was demonstrated with sufficient averaging of the single laser-shot LII images of the soot field thus confirming the validity of the calibration method for imaging applications. As illustration, instantaneous soot volume fractions within a Re = 5000 ethylene/air diffusion flame measured via planar LII were established quantitatively with this calibration.

  10. High energy electron acceleration with PW-class laser system

    NASA Astrophysics Data System (ADS)

    Nakanii, N.; Kondo, K.; Mori, Y.; Miura, E.; Yabuuchi, T.; Tsuji, K.; Suzuki, S.; Asaka, T.; Yanagida, K.; Hanaki, H.; Kobayashi, T.; Makino, K.; Yamane, T.; Miyamoto, S.; Horikawa, K.; Kimura, K.; Takeda, K.; Fukumochi, S.; Kashihara, M.; Tanimoto, T.; Nakamura, H.; Ishikura, T.; Tampo, M.; Kodama, R.; Kitagawa, Y.; Mima, K.; Tanaka, K. A.

    2008-06-01

    We performed electron acceleration experiment with PW-class laser and a plasma tube, which was created by imploding a hollow polystyrene cylinder. In this experiment, electron energies in excess of 600 MeV have been observed. Moreover, the spectra of a comparatively high-density plasma ˜1019 cm-3 had a bump around 10 MeV. Additionally, we performed the absolute sensitivity calibration of imaging plate for 1 GeV electrons from the injector Linac of Spring-8 in order to evaluate absolute number of GeV-class electrons in the laser acceleration experiment.

  11. Radiometric Calibration Assessment of Commercial High Spatial Resolution Multispectral Image Products

    NASA Technical Reports Server (NTRS)

    Holekamp, Kara; Aaron, David; Thome, Kurtis

    2006-01-01

    Radiometric calibration of commercial imaging satellite products is required to ensure that science and application communities can better understand their properties. Inaccurate radiometric calibrations can lead to erroneous decisions and invalid conclusions and can limit intercomparisons with other systems. To address this calibration need, satellite at-sensor radiance values were compared to those estimated by each independent team member to determine the sensor's radiometric accuracy. The combined results of this evaluation provide the user community with an independent assessment of these commercially available high spatial resolution sensors' absolute calibration values.

  12. The Importance of Post-Launch, On-Orbit Absolute Radiometric Calibration for Remote Sensing Applications

    NASA Astrophysics Data System (ADS)

    Kuester, M. A.

    2015-12-01

    Remote sensing is a powerful tool for monitoring changes on the surface of the Earth at a local or global scale. The use of data sets from different sensors across many platforms, or even a single sensor over time, can bring a wealth of information when exploring anthropogenic changes to the environment. For example, variations in crop yield and health for a specific region can be detected by observing changes in the spectral signature of the particular species under study. However, changes in the atmosphere, sun illumination and viewing geometries during image capture can result in inconsistent image data, hindering automated information extraction. Additionally, an incorrect spectral radiometric calibration will lead to false or misleading results. It is therefore critical that the data being used are normalized and calibrated on a regular basis to ensure that physically derived variables are as close to truth as is possible. Although most earth observing sensors are well-calibrated in a laboratory prior to launch, a change in the radiometric response of the system is inevitable due to thermal, mechanical or electrical effects caused during the rigors of launch or by the space environment itself. Outgassing and exposure to ultra-violet radiation will also have an effect on the sensor's filter responses. Pre-launch lamps and other laboratory calibration systems can also fall short in representing the actual output of the Sun. A presentation of the differences in the results of some example cases (e.g. geology, agriculture) derived for science variables using pre- and post-launch calibration will be presented using DigitalGlobe's WorldView-3 super spectral sensor, with bands in the visible and near infrared, as well as in the shortwave infrared. Important defects caused by an incomplete (i.e. pre-launch only) calibration will be discussed using validation data where available. In addition, the benefits of using a well-validated surface reflectance product will be

  13. Integrated development facility for the calibration of low-energy charged particle flight instrumentation

    NASA Technical Reports Server (NTRS)

    Biddle, A. P.; Reynolds, J. M.

    1986-01-01

    The design of a low-energy ion facility for development and calibration of thermal ion instrumentation is examined. A directly heated cathode provides the electrons used to produce ions by impact ionization and an applied magnetic field increases the path length followed by the electrons. The electrostatic and variable geometry magnetic mirror configuration in the ion source is studied. The procedures for the charge neutralization of the beam and the configuration and function of the 1.4-m drift tube are analyzed. A microcomputer is utilized to control and monitor the beam energy and composition, and the mass- and angle-dependent response of the instrument under testing. The facility produces a high-quality ion beam with an adjustable range of energies up to 150 eV; the angular divergence and uniformity of the beam is obtained from two independent retarding potential analyzers. The procedures for calibrating the instrument being developed are described.

  14. Astrometric Calibration and Performance of the Dark Energy Camera

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bernstein, G. M.; Armstrong, R.; Plazas, A. A.

    2017-05-30

    We characterize the variation in photometric response of the Dark Energy Camera (DECam) across its 520~Mpix science array during 4 years of operation. These variations are measured using high signal-to-noise aperture photometry ofmore » $>10^7$ stellar images in thousands of exposures of a few selected fields, with the telescope dithered to move the sources around the array. A calibration procedure based on these results brings the RMS variation in aperture magnitudes of bright stars on cloudless nights down to 2--3 mmag, with <1 mmag of correlated photometric errors for stars separated by $$\\ge20$$". On cloudless nights, any departures of the exposure zeropoints from a secant airmass law exceeding >1 mmag are plausibly attributable to spatial/temporal variations in aperture corrections. These variations can be inferred and corrected by measuring the fraction of stellar light in an annulus between 6" and 8" diameter. Key elements of this calibration include: correction of amplifier nonlinearities; distinguishing pixel-area variations and stray light from quantum-efficiency variations in the flat fields; field-dependent color corrections; and the use of an aperture-correction proxy. The DECam response pattern across the 2-degree field drifts over months by up to $$\\pm7$$ mmag, in a nearly-wavelength-independent low-order pattern. We find no fundamental barriers to pushing global photometric calibrations toward mmag accuracy.« less

  15. Calibration of the JET neutron activation system for DT operation

    NASA Astrophysics Data System (ADS)

    Bertalot, L.; Roquemore, A. L.; Loughlin, M.; Esposito, B.

    1999-01-01

    The neutron activation system at JET is a pneumatic transfer system capable of positioning activation samples close to the plasma. Its primary purpose is to provide a calibration for the time-dependent neutron yield monitors (fission chambers and solid state detectors). Various activation reactions with different high energy thresholds were used including 56Fe(n,p) 56Mn, 27Al(n,α) 24Na, 93Nb(n,2n) 92mNb, and 28Si(n,p) 28Al reactions. The silicon reaction, with its short half life (2.25 min), provides a prompt determination of the 14 MeV DT yield. The neutron induced γ-ray activity of the Si samples was measured using three sodium iodide scintillators, while two high purity germanium detectors were used for other foils. It was necessary to use a range of sample masses and different counting geometries in order to cover the wide range of neutron yields (1015-1019 neutrons) while avoiding excessive count rates in the detectors. The absolute full energy peak efficiency calibration of the detectors was measured taking into account the source-detector geometry, the self-attenuation of the samples and cross-talk effects. An error analysis of the neutron yield measurement was performed including uncertainties in efficiency calibration, neutron transport calculations, cross sections, and counting statistics. Cross calibrations between the different irradiation ends were carried out in DD and DT (with 1% and 10% tritium content) discharges. The effect of the plasma vertical displacement was also experimentally studied. An agreement within 10% was found between the 14 MeV neutron yields measured from Si, Fe, Al, Nb samples in DT discharges.

  16. The DarkSide-50 Experiment: Electron Recoil Calibrations and A Global Energy Variable

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hackett, Brianne Rae

    2017-01-01

    Over the course of decades, there has been mounting astronomical evidence for non-baryonic dark matter, yet its precise nature remains elusive. A favored candidate for dark matter is the Weakly Interacting Massive Particle (WIMP) which arises naturally out of extensions to the Standard Model. WIMPs are expected to occasionally interact with particles of normal matter through nuclear recoils. DarkSide-50 aims to detect this type of particle through the use of a two-phase liquid argon time projection chamber. To make a claim of discovery, an accurate understanding of the background and WIMP search region is imperative. Knowledge of the backgrounds ismore » done through extensive studies of DarkSide-50's response to electron and nuclear recoils. The CALibration Insertion System (CALIS) was designed and built for the purpose of introduc- ing radioactive sources into or near the detector in a joint eort between Fermi National Laboratory (FNAL) and the University of Hawai'i at Manoa. This work describes the testing, installation, and commissioning of CALIS at the Laboratori Nazionali del Gran Sasso. CALIS has been used in mul- tiple calibration campaigns with both neutron and sources. In this work, DarkSide-50's response to electron recoils, which are important for background estimations, was studied through the use of calibration sources by constructing a global energy variable which takes into account the anti- correlation between scintillation and ionization signals produced by interactions in the liquid argon. Accurately reconstructing the event energy correlates directly with quantitatively understanding the WIMP sensitivity in DarkSide-50. This work also validates the theoretically predicted decay spectrum of 39Ar against 39Ar decay data collected in the early days of DarkSide-50 while it was lled with atmospheric argon; a validation of this type is not readily found in the literature. Finally, we show how well the constructed energy variable can predict energy

  17. 237Np absolute delayed neutron yield measurements

    NASA Astrophysics Data System (ADS)

    Doré, D.; Ledoux, X.; Nolte, R.; Gagnon-Moisan, F.; Thulliez, L.; Litaize, O.; Roettger, S.; Serot, O.

    2017-09-01

    237Np absolute delayed neutron yields have been measured at different incident neutron energies from 1.5 to 16 MeV. The experiment was performed at the Physikalisch-Technische Bundesanstalt (PTB) facility where the Van de Graaff accelerator and the cyclotron CV28 delivered 9 different neutron energy beams using p+T, d+D and d+T reactions. The detection system is made up of twelve 3He tubes inserted into a polyethylene cylinder. In this paper, the experimental setup and the data analysis method are described. The evolution of the absolute DN yields as a function of the neutron incident beam energies are presented and compared to experimental data found in the literature and data from the libraries.

  18. Vicarious Calibration of EO-1 Hyperion

    NASA Technical Reports Server (NTRS)

    McCorkel, Joel; Thome, Kurt; Lawrence, Ong

    2012-01-01

    The Hyperion imaging spectrometer on the Earth Observing-1 satellite is the first high-spatial resolution imaging spectrometer to routinely acquire science-grade data from orbit. Data gathered with this instrument needs to be quantitative and accurate in order to derive meaningful information about ecosystem properties and processes. Also, comprehensive and long-term ecological studies require these data to be comparable over time, between coexisting sensors and between generations of follow-on sensors. One method to assess the radiometric calibration is the reflectance-based approach, a common technique used for several other earth science sensors covering similar spectral regions. This work presents results of radiometric calibration of Hyperion based on the reflectance-based approach of vicarious calibration implemented by University of Arizona during 2001 2005. These results show repeatability to the 2% level and accuracy on the 3 5% level for spectral regions not affected by strong atmospheric absorption. Knowledge of the stability of the Hyperion calibration from moon observations allows for an average absolute calibration based on the reflectance-based results to be determined and applicable for the lifetime of Hyperion.

  19. Wave Energy Prize MASK wave calibration data for the 1:20 scale testing at MASK

    DOE Data Explorer

    Driscoll, Rick

    2017-05-08

    Time series data, sensor layout, and wave calibration summaries for the wave height measurements for the 10 calibration sea states for the 1:20 scale testing of the Wave Energy Prize (WEP) at the US Navy's Maneuvering and Seakeeping (MASK) Basin at the Naval Surface Warfare Center in Carderock, Maryland. Measurements were made in the test area and upstream of the test area.

  20. Energy dispersive X-ray analysis on an absolute scale in scanning transmission electron microscopy.

    PubMed

    Chen, Z; D'Alfonso, A J; Weyland, M; Taplin, D J; Allen, L J; Findlay, S D

    2015-10-01

    We demonstrate absolute scale agreement between the number of X-ray counts in energy dispersive X-ray spectroscopy using an atomic-scale coherent electron probe and first-principles simulations. Scan-averaged spectra were collected across a range of thicknesses with precisely determined and controlled microscope parameters. Ionization cross-sections were calculated using the quantum excitation of phonons model, incorporating dynamical (multiple) electron scattering, which is seen to be important even for very thin specimens. Copyright © 2015 Elsevier B.V. All rights reserved.

  1. A comparison of the cosmic-ray energy scales of Tunka-133 and KASCADE-Grande via their radio extensions Tunka-Rex and LOPES

    NASA Astrophysics Data System (ADS)

    Apel, W. D.; Arteaga-Velázquez, J. C.; Bähren, L.; Bezyazeekov, P. A.; Bekk, K.; Bertaina, M.; Biermann, P. L.; Blümer, J.; Bozdog, H.; Brancus, I. M.; Budnev, N. M.; Cantoni, E.; Chiavassa, A.; Daumiller, K.; de Souza, V.; di Pierro, F.; Doll, P.; Engel, R.; Falcke, H.; Fedorov, O.; Fuchs, B.; Gemmeke, H.; Gress, O. A.; Grupen, C.; Haungs, A.; Heck, D.; Hiller, R.; Hörandel, J. R.; Horneffer, A.; Huber, D.; Huege, T.; Isar, P. G.; Kampert, K.-H.; Kang, D.; Kazarina, Y.; Kleifges, M.; Korosteleva, E. E.; Kostunin, D.; Krömer, O.; Kuijpers, J.; Kuzmichev, L. A.; Link, K.; Lubsandorzhiev, N.; Łuczak, P.; Ludwig, M.; Mathes, H. J.; Melissas, M.; Mirgazov, R. R.; Monkhoev, R.; Morello, C.; Oehlschläger, J.; Osipova, E. A.; Pakhorukov, A.; Palmieri, N.; Pankov, L.; Pierog, T.; Prosin, V. V.; Rautenberg, J.; Rebel, H.; Roth, M.; Rubtsov, G. I.; Rühle, C.; Saftoiu, A.; Schieler, H.; Schmidt, A.; Schoo, S.; Schröder, F. G.; Sima, O.; Toma, G.; Trinchero, G. C.; Weindl, A.; Wischnewski, R.; Wochele, J.; Zabierowski, J.; Zagorodnikov, A.; Zensus, J. A.; Tunka-Rex; Lopes Collaborations

    2016-12-01

    The radio technique is a promising method for detection of cosmic-ray air showers of energies around 100PeV and higher with an array of radio antennas. Since the amplitude of the radio signal can be measured absolutely and increases with the shower energy, radio measurements can be used to determine the air-shower energy on an absolute scale. We show that calibrated measurements of radio detectors operated in coincidence with host experiments measuring air showers based on other techniques can be used for comparing the energy scales of these host experiments. Using two approaches, first via direct amplitude measurements, and second via comparison of measurements with air shower simulations, we compare the energy scales of the air-shower experiments Tunka-133 and KASCADE-Grande, using their radio extensions, Tunka-Rex and LOPES, respectively. Due to the consistent amplitude calibration for Tunka-Rex and LOPES achieved by using the same reference source, this comparison reaches an accuracy of approximately 10% - limited by some shortcomings of LOPES, which was a prototype experiment for the digital radio technique for air showers. In particular we show that the energy scales of cosmic-ray measurements by the independently calibrated experiments KASCADE-Grande and Tunka-133 are consistent with each other on this level.

  2. Lunar eclipse photometry: absolute luminance measurements and modeling.

    PubMed

    Hernitschek, Nina; Schmidt, Elmar; Vollmer, Michael

    2008-12-01

    The Moon's time-dependent luminance was determined during the 9 February 1990 and 3 March 2007 total lunar eclipses by using calibrated, industry standard photometers. After the results were corrected to unit air mass and to standard distances for both Moon and Sun, an absolute calibration was accomplished by using the Sun's known luminance and a pre-eclipse lunar albedo of approximately 13.5%. The measured minimum level of brightness in the total phase of both eclipses was relatively high, namely -3.32 m(vis) and -1.7 m(vis), which hints at the absence of pronounced stratospheric aerosol. The light curves were modeled in such a way as to let the Moon move through an artificial Earth shadow composed of a multitude of disk and ring zones, containing a relative luminance data set from an atmospheric radiative transfer calculation.

  3. Absolute stellar photometry on moderate-resolution FPA images

    USGS Publications Warehouse

    Stone, T.C.

    2009-01-01

    An extensive database of star (and Moon) images has been collected by the ground-based RObotic Lunar Observatory (ROLO) as part of the US Geological Survey program for lunar calibration. The stellar data are used to derive nightly atmospheric corrections for the observations from extinction measurements, and absolute calibration of the ROLO sensors is based on observations of Vega and published reference flux and spectrum data. The ROLO telescopes were designed for imaging the Moon at moderate resolution, thus imposing some limitations for the stellar photometry. Attaining accurate stellar photometry with the ROLO image data has required development of specialized processing techniques. A key consideration is consistency in discriminating the star core signal from the off-axis point spread function. The analysis and processing methods applied to the ROLO stellar image database are described. ?? 2009 BIPM and IOP Publishing Ltd.

  4. Comparison of Calibration of Sensors Used for the Quantification of Nuclear Energy Rate Deposition

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Brun, J.; Reynard-Carette, C.; Tarchalski, M.

    This present work deals with a collaborative program called GAMMA-MAJOR 'Development and qualification of a deterministic scheme for the evaluation of GAMMA heating in MTR reactors with exploitation as example MARIA reactor and Jules Horowitz Reactor' between the National Centre for Nuclear Research of Poland, the French Atomic Energy and Alternative Energies Commission and Aix Marseille University. One of main objectives of this program is to optimize the nuclear heating quantification thanks to calculation validated from experimental measurements of radiation energy deposition carried out in irradiation reactors. The quantification of the nuclear heating is a key data especially for themore » thermal, mechanical design and sizing of irradiation experimental devices in specific irradiated conditions and locations. The determination of this data is usually performed by differential calorimeters and gamma thermometers such as used in the experimental multi-sensors device called CARMEN 'Calorimetric en Reacteur et Mesures des Emissions Nucleaires'. In the framework of the GAMMA-MAJOR program a new calorimeter was designed for the nuclear energy deposition quantification. It corresponds to a single-cell calorimeter and it is called KAROLINA. This calorimeter was recently tested during an irradiation campaign inside MARIA reactor in Poland. This new single-cell calorimeter differs from previous CALMOS or CARMEN type differential calorimeters according to three main points: its geometry, its preliminary out-of-pile calibration, and its in-pile measurement method. The differential calorimeter, which is made of two identical cells containing heaters, has a calibration method based on the use of steady thermal states reached by simulating the nuclear energy deposition into the calorimeter sample by Joule effect; whereas the single-cell calorimeter, which has no heater, is calibrated by using the transient thermal response of the sensor (heating and cooling steps). The

  5. ASTER preflight and inflight calibration and the validation of level 2 products

    USGS Publications Warehouse

    Thome, K.; Aral, K.; Hook, S.; Kieffer, H.; Lang, H.; Matsunaga, T.; Ono, A.; Palluconi, F. D.; Sakuma, H.; Slater, P.; Takashima, T.; Tonooka, H.; Tsuchida, S.; Welch, R.M.; Zalewski, E.

    1998-01-01

    This paper describes the preflight and inflight calibration approaches used for the Advanced Spaceborne Thermal Emission and Reflection Radiometer (ASTER). The system is a multispectral, high-spatial resolution sensor on the Earth Observing System's (EOS)-AMl platform. Preflight calibration of ASTER uses well-characterized sources to provide calibration and preflight round-robin exercises to understand biases between the calibration sources of ASTER and other EOS sensors. These round-robins rely on well-characterized, ultra-stable radiometers. An experiment held in Yokohama, Japan, showed that the output from the source used for the visible and near-infrared (VNIR) subsystem of ASTER may be underestimated by 1.5%, but this is still within the 4% specification for the absolute, radiometric calibration of these bands. Inflight calibration will rely on vicarious techniques and onboard blackbodies and lamps. Vicarious techniques include ground-reference methods using desert and water sites. A recent joint field campaign gives confidence that these methods currently provide absolute calibration to better than 5%, and indications are that uncertainties less than the required 4% should be achievable at launch. The EOS-AMI platform will also provide a spacecraft maneuver that will allow ASTER to see the moon, allowing further characterization of the sensor. A method for combining the results of these independent calibration results is presented. The paper also describes the plans for validating the Level 2 data products from ASTER. These plans rely heavily upon field campaigns using methods similar to those used for the ground-reference, vicarious calibration methods. ?? 1998 IEEE.

  6. Radiometric calibration of optical microscopy and microspectroscopy apparata over a broad spectral range using a special thin-film luminescence standard

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Valenta, J., E-mail: jan.valenta@mff.cuni.cz; Greben, M.

    2015-04-15

    Application capabilities of optical microscopes and microspectroscopes can be considerably enhanced by a proper calibration of their spectral sensitivity. We propose and demonstrate a method of relative and absolute calibration of a microspectroscope over an extraordinary broad spectral range covered by two (parallel) detection branches in visible and near-infrared spectral regions. The key point of the absolute calibration of a relative spectral sensitivity is application of the standard sample formed by a thin layer of Si nanocrystals with stable and efficient photoluminescence. The spectral PL quantum yield and the PL spatial distribution of the standard sample must be characterized bymore » separate experiments. The absolutely calibrated microspectroscope enables to characterize spectral photon emittance of a studied object or even its luminescence quantum yield (QY) if additional knowledge about spatial distribution of emission and about excitance is available. Capabilities of the calibrated microspectroscope are demonstrated by measuring external QY of electroluminescence from a standard poly-Si solar-cell and of photoluminescence of Er-doped Si nanocrystals.« less

  7. Calibration techniques for a fast duo-spectrometer

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chapman, J.T.; Den Hartog, D.J.

    1996-06-01

    The authors have completed the upgrade and calibration of the Ion Dynamics Spectrometer (IDS), a high-speed Doppler duo-spectrometer which measures ion flow and temperature in the MST Reversed-field Pinch. This paper describes an in situ calibration of the diagnostic`s phase and frequency response. A single clock was employed to generate both a digital test signal and a digitizer trigger thus avoiding frequency drift and providing a highly resolved measurement over the system bandwidth. Additionally, they review the measurement of the spectrometer instrument function and absolute intensity response. This calibration and subsequent performance demonstrate the IDS to be one of themore » fastest, highest throughput diagnostics of its kind. Typical measurements are presented.« less

  8. Solid energy calibration standards for P K-edge XANES: electronic structure analysis of PPh4Br.

    PubMed

    Blake, Anastasia V; Wei, Haochuan; Donahue, Courtney M; Lee, Kyounghoon; Keith, Jason M; Daly, Scott R

    2018-03-01

    P K-edge X-ray absorption near-edge structure (XANES) spectroscopy is a powerful method for analyzing the electronic structure of organic and inorganic phosphorus compounds. Like all XANES experiments, P K-edge XANES requires well defined and readily accessible calibration standards for energy referencing so that spectra collected at different beamlines or under different conditions can be compared. This is especially true for ligand K-edge X-ray absorption spectroscopy, which has well established energy calibration standards for Cl (Cs 2 CuCl 4 ) and S (Na 2 S 2 O 3 ·5H 2 O), but not neighboring P. This paper presents a review of common P K-edge XANES energy calibration standards and analysis of PPh 4 Br as a potential alternative. The P K-edge XANES region of commercially available PPh 4 Br revealed a single, highly resolved pre-edge feature with a maximum at 2146.96 eV. PPh 4 Br also showed no evidence of photodecomposition when repeatedly scanned over the course of several days. In contrast, we found that PPh 3 rapidly decomposes under identical conditions. Density functional theory calculations performed on PPh 3 and PPh 4 + revealed large differences in the molecular orbital energies that were ascribed to differences in the phosphorus oxidation state (III versus V) and molecular charge (neutral versus +1). Time-dependent density functional theory calculations corroborated the experimental data and allowed the spectral features to be assigned. The first pre-edge feature in the P K-edge XANES spectrum of PPh 4 Br was assigned to P 1s → P-C π* transitions, whereas those at higher energy were P 1s → P-C σ*. Overall, the analysis suggests that PPh 4 Br is an excellent alternative to other solid energy calibration standards commonly used in P K-edge XANES experiments.

  9. Technical note: An empirical method for absolute calibration of coccolith thickness

    NASA Astrophysics Data System (ADS)

    González-Lemos, Saúl; Guitián, José; Fuertes, Miguel-Ángel; Flores, José-Abel; Stoll, Heather M.

    2018-02-01

    As major calcifiers in the open ocean, coccolithophores play a key role in the marine carbon cycle. Because they may be sensitive to changing CO2 and ocean acidification, there is significant interest in quantifying past and present variations in their cellular calcification by quantifying the thickness of the coccoliths or calcite plates that cover their cells. Polarized light microscopy has emerged as a key tool for quantifying the thickness of these calcite plates, but the reproducibility and accuracy of such determinations has been limited by the absence of suitable calibration materials in the thickness range of coccoliths (0-4 µm). Here, we describe the fabrication of a calcite wedge with a constant slope over this thickness range, and the independent determination of calcite thickness along the wedge profile. We show how the calcite wedge provides more robust calibrations in the 0 to 1.55 µm range than previous approaches using rhabdoliths. We show the particular advantages of the calcite wedge approach for developing equations to relate thickness to the interference colors that arise in calcite in the thickness range between 1.55 and 4 µm. The calcite wedge approach can be applied to develop equations relevant to the particular light spectra and intensity of any polarized light microscope system and could significantly improve inter-laboratory data comparability.

  10. Atmospheric Longwave Irradiance Uncertainty: Pyrgeometers Compared to an Absolute Sky-Scanning Radiometer, Atmospheric Emitted Radiance Interferometer, and Radiative Transfer Model Calculations

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Philipona, J. R.; Dutton, Ellsworth G.; Stoffel, T.

    2001-06-04

    Because atmospheric longwave radiation is one of the most fundamental elements of an expected climate change, there has been a strong interest in improving measurements and model calculations in recent years. Important questions are how reliable and consistent are atmospheric longwave radiation measurements and calculations and what are the uncertainties? The First International Pyrgeometer and Absolute Sky-scanning Radiometer Comparison, which was held at the Atmospheric Radiation Measurement program's Souther Great Plains site in Oklahoma, answers these questions at least for midlatitude summer conditions and reflects the state of the art for atmospheric longwave radiation measurements and calculations. The 15 participatingmore » pyrgeometers were all calibration-traced standard instruments chosen from a broad international community. Two new chopped pyrgeometers also took part in the comparison. And absolute sky-scanning radiometer (ASR), which includes a pyroelectric detector and a reference blackbody source, was used for the first time as a reference standard instrument to field calibrate pyrgeometers during clear-sky nighttime measurements. Owner-provided and uniformly determined blackbody calibration factors were compared. Remarkable improvements and higher pyrgeometer precision were achieved with field calibration factors. Results of nighttime and daytime pyrgeometer precision and absolute uncertainty are presented for eight consecutive days of measurements, during which period downward longwave irradiance varied between 260 and 420 W m-2. Comparisons between pyrgeometers and the absolute ASR, the atmospheric emitted radiance interferometer, and radiative transfer models LBLRTM and MODTRAN show a surprisingly good agreement of <2 W m-2 for nighttime atmospheric longwave irradiance measurements and calculations.« less

  11. Absolute Two-Photon Absorption Coefficients in UltraViolet Window Materials

    DTIC Science & Technology

    1977-12-01

    fvtt* tld » II ntctHB,-y md Idtnlll’ by block number; The absolute two-photon absorption coefficiehts of u. v. transmitting materials have been...measured using well-calibrated single picosecond pulses, at the third and fourth harmonic of a mode locked Nd:YAG laser systems. Twc photon...30, 1977. Work in the area of laser induced breakdown and multiphoton absorption in ultraviolet and infrared laser window materials was carried

  12. Normalization and calibration of geostationary satellite radiances for the International Satellite Cloud Climatology Project

    NASA Technical Reports Server (NTRS)

    Desormeaux, Yves; Rossow, William B.; Brest, Christopher L.; Campbell, G. G.

    1993-01-01

    Procedures are described for normalizing the radiometric calibration of image radiances obtained from geostationary weather satellites that contributed data to the International Satellite Cloud Climatology Project. The key step is comparison of coincident and collocated measurements made by each satellite and the concurrent AVHRR on the 'afternoon' NOAA polar-orbiting weather satellite at the same viewing geometry. The results of this comparison allow transfer of the AVHRR absolute calibration, which has been established over the whole series, to the radiometers on the geostationary satellites. Results are given for Meteosat-2, 3, and 4, for GOES-5, 6, and 7, for GMS-2, 3, and 4 and for Insat-1B. The relative stability of the calibrations of these radiance data is estimated to be within +/- 3 percent; the uncertainty of the absolute calibrations is estimated to be less than 10 percent. The remaining uncertainties are at least two times smaller than for the original radiance data.

  13. The fossilized birth–death process for coherent calibration of divergence-time estimates

    PubMed Central

    Heath, Tracy A.; Huelsenbeck, John P.; Stadler, Tanja

    2014-01-01

    Time-calibrated species phylogenies are critical for addressing a wide range of questions in evolutionary biology, such as those that elucidate historical biogeography or uncover patterns of coevolution and diversification. Because molecular sequence data are not informative on absolute time, external data—most commonly, fossil age estimates—are required to calibrate estimates of species divergence dates. For Bayesian divergence time methods, the common practice for calibration using fossil information involves placing arbitrarily chosen parametric distributions on internal nodes, often disregarding most of the information in the fossil record. We introduce the “fossilized birth–death” (FBD) process—a model for calibrating divergence time estimates in a Bayesian framework, explicitly acknowledging that extant species and fossils are part of the same macroevolutionary process. Under this model, absolute node age estimates are calibrated by a single diversification model and arbitrary calibration densities are not necessary. Moreover, the FBD model allows for inclusion of all available fossils. We performed analyses of simulated data and show that node age estimation under the FBD model results in robust and accurate estimates of species divergence times with realistic measures of statistical uncertainty, overcoming major limitations of standard divergence time estimation methods. We used this model to estimate the speciation times for a dataset composed of all living bears, indicating that the genus Ursus diversified in the Late Miocene to Middle Pliocene. PMID:25009181

  14. Design of a Two-Step Calibration Method of Kinematic Parameters for Serial Robots

    NASA Astrophysics Data System (ADS)

    WANG, Wei; WANG, Lei; YUN, Chao

    2017-03-01

    Serial robots are used to handle workpieces with large dimensions, and calibrating kinematic parameters is one of the most efficient ways to upgrade their accuracy. Many models are set up to investigate how many kinematic parameters can be identified to meet the minimal principle, but the base frame and the kinematic parameter are indistinctly calibrated in a one-step way. A two-step method of calibrating kinematic parameters is proposed to improve the accuracy of the robot's base frame and kinematic parameters. The forward kinematics described with respect to the measuring coordinate frame are established based on the product-of-exponential (POE) formula. In the first step the robot's base coordinate frame is calibrated by the unit quaternion form. The errors of both the robot's reference configuration and the base coordinate frame's pose are equivalently transformed to the zero-position errors of the robot's joints. The simplified model of the robot's positioning error is established in second-power explicit expressions. Then the identification model is finished by the least square method, requiring measuring position coordinates only. The complete subtasks of calibrating the robot's 39 kinematic parameters are finished in the second step. It's proved by a group of calibration experiments that by the proposed two-step calibration method the average absolute accuracy of industrial robots is updated to 0.23 mm. This paper presents that the robot's base frame should be calibrated before its kinematic parameters in order to upgrade its absolute positioning accuracy.

  15. New tests of the common calibration context for ISO, IRTS, and MSX

    NASA Technical Reports Server (NTRS)

    Cohen, Martin

    1997-01-01

    The work carried out in order to test, verify and validate the accuracy of the calibration spectra provided to the Infrared Space Observatory (ISO), to the Infrared Telescope in Space (IRTS) and to the Midcourse Space Experiment (MSX) for external calibration support of instruments, is reviewed. The techniques, used to vindicate the accuracy of the absolute spectra, are discussed. The work planned for comparing far infrared spectra of Mars and some of the bright stellar calibrators with long wavelength spectrometer data are summarized.

  16. Model Robust Calibration: Method and Application to Electronically-Scanned Pressure Transducers

    NASA Technical Reports Server (NTRS)

    Walker, Eric L.; Starnes, B. Alden; Birch, Jeffery B.; Mays, James E.

    2010-01-01

    This article presents the application of a recently developed statistical regression method to the controlled instrument calibration problem. The statistical method of Model Robust Regression (MRR), developed by Mays, Birch, and Starnes, is shown to improve instrument calibration by reducing the reliance of the calibration on a predetermined parametric (e.g. polynomial, exponential, logarithmic) model. This is accomplished by allowing fits from the predetermined parametric model to be augmented by a certain portion of a fit to the residuals from the initial regression using a nonparametric (locally parametric) regression technique. The method is demonstrated for the absolute scale calibration of silicon-based pressure transducers.

  17. Calibrated work function mapping by Kelvin probe force microscopy

    NASA Astrophysics Data System (ADS)

    Fernández Garrillo, Pablo A.; Grévin, Benjamin; Chevalier, Nicolas; Borowik, Łukasz

    2018-04-01

    We propose and demonstrate the implementation of an alternative work function tip calibration procedure for Kelvin probe force microscopy under ultrahigh vacuum, using monocrystalline metallic materials with known crystallographic orientation as reference samples, instead of the often used highly oriented pyrolytic graphite calibration sample. The implementation of this protocol allows the acquisition of absolute and reproducible work function values, with an improved uncertainty with respect to unprepared highly oriented pyrolytic graphite-based protocols. The developed protocol allows the local investigation of absolute work function values over nanostructured samples and can be implemented in electronic structures and devices characterization as demonstrated over a nanostructured semiconductor sample presenting Al0.7Ga0.3As and GaAs layers with variable thickness. Additionally, using our protocol we find that the work function of annealed highly oriented pyrolytic graphite is equal to 4.6 ± 0.03 eV.

  18. Online absolute pose compensation and steering control of industrial robot based on six degrees of freedom laser measurement

    NASA Astrophysics Data System (ADS)

    Yang, Juqing; Wang, Dayong; Fan, Baixing; Dong, Dengfeng; Zhou, Weihu

    2017-03-01

    In-situ intelligent manufacturing for large-volume equipment requires industrial robots with absolute high-accuracy positioning and orientation steering control. Conventional robots mainly employ an offline calibration technology to identify and compensate key robotic parameters. However, the dynamic and static parameters of a robot change nonlinearly. It is not possible to acquire a robot's actual parameters and control the absolute pose of the robot with a high accuracy within a large workspace by offline calibration in real-time. This study proposes a real-time online absolute pose steering control method for an industrial robot based on six degrees of freedom laser tracking measurement, which adopts comprehensive compensation and correction of differential movement variables. First, the pose steering control system and robot kinematics error model are constructed, and then the pose error compensation mechanism and algorithm are introduced in detail. By accurately achieving the position and orientation of the robot end-tool, mapping the computed Jacobian matrix of the joint variable and correcting the joint variable, the real-time online absolute pose compensation for an industrial robot is accurately implemented in simulations and experimental tests. The average positioning error is 0.048 mm and orientation accuracy is better than 0.01 deg. The results demonstrate that the proposed method is feasible, and the online absolute accuracy of a robot is sufficiently enhanced.

  19. SkyProbe: Real-Time Precision Monitoring in the Optical of the Absolute Atmospheric Absorption on the Telescope Science and Calibration Fields

    NASA Astrophysics Data System (ADS)

    Cuillandre, J.-C.; Magnier, E.; Sabin, D.; Mahoney, B.

    2016-05-01

    Mauna Kea is known for its pristine seeing conditions but sky transparency can be an issue for science operations since at least 25% of the observable (i.e. open dome) nights are not photometric, an effect mostly due to high-altitude cirrus. Since 2001, the original single channel SkyProbe mounted in parallel on the Canada-France-Hawaii Telescope (CFHT) has gathered one V-band exposure every minute during each observing night using a small CCD camera offering a very wide field of view (35 sq. deg.) encompassing the region pointed by the telescope for science operations, and exposures long enough (40 seconds) to capture at least 100 stars of Hipparcos' Tycho catalog at high galactic latitudes (and up to 600 stars at low galactic latitudes). The measurement of the true atmospheric absorption is achieved within 2%, a key advantage over all-sky direct thermal infrared imaging detection of clouds. The absolute measurement of the true atmospheric absorption by clouds and particulates affecting the data being gathered by the telescope's main science instrument has proven crucial for decision making in the CFHT queued service observing (QSO) representing today all of the telescope time. Also, science exposures taken in non-photometric conditions are automatically registered for a new observation at a later date at 1/10th of the original exposure time in photometric conditions to ensure a proper final absolute photometric calibration. Photometric standards are observed only when conditions are reported as being perfectly stable by SkyProbe. The more recent dual color system (simultaneous B & V bands) will offer a better characterization of the sky properties above Mauna Kea and should enable a better detection of the thinnest cirrus (absorption down to 0.01 mag., or 1%).

  20. Spatial resolution study and power calibration of the high-k scattering system on NSTX.

    PubMed

    Lee, W; Park, H K; Cho, M H; Namkung, W; Smith, D R; Domier, C W; Luhmann, N C

    2008-10-01

    NSTX high-k scattering system has been extensively utilized in studying the microturbulence and coherent waves. An absolute calibration of the scattering system was performed employing a new millimeter-wave source and calibrated attenuators. One of the key parameters essential for the calibration of the multichannel scattering system is the interaction length. This interaction length is significantly different from the conventional one due to the curvature and magnetic shear effect.

  1. Ideal Gas with a Varying (Negative Absolute) Temperature: an Alternative to Dark Energy?

    NASA Astrophysics Data System (ADS)

    Saha, Subhajit; Mondal, Anindita; Corda, Christian

    2018-02-01

    The present work is an attempt to investigate whether the evolutionary history of the Universe from the offset of inflation can be described by assuming the cosmic fluid to be an ideal gas with a specific gas constant but a varying negative absolute temperature (NAT). The motivation of this work is to search for an alternative to the "exotic" and "supernatural" dark energy (DE). In fact, the NAT works as an "effective quintessence" and there is need to deal neither with exotic matter like DE nor with modified gravity theories. For the sake of completeness, we release some clarifications on NATs in Section 3 of the paper.

  2. Ex vivo validation of a stoichiometric dual energy CT proton stopping power ratio calibration

    NASA Astrophysics Data System (ADS)

    Xie, Yunhe; Ainsley, Christopher; Yin, Lingshu; Zou, Wei; McDonough, James; Solberg, Timothy D.; Lin, Alexander; Teo, Boon-Keng Kevin

    2018-03-01

    A major source of uncertainty in proton therapy is the conversion of Hounsfield unit (HU) to proton stopping power ratio relative to water (SPR). In this study, we measured and quantified the accuracy of a stoichiometric dual energy CT (DECT) SPR calibration. We applied a stoichiometric DECT calibration method to derive the SPR using CT images acquired sequentially at 80 kVp and 140 kVp . The dual energy index was derived based on the HUs of the paired spectral images and used to calculate the effective atomic number (Z eff), relative electron density ({{ρ }e} ), and SPRs of phantom and biological materials. Two methods were used to verify the derived SPRs. The first method measured the sample’s water equivalent thicknesses to deduce the SPRs using a multi-layer ion chamber (MLIC) device. The second method utilized Gafchromic EBT3 film to directly compare relative ranges between sample and water after proton pencil beam irradiation. Ex vivo validation was performed using five different types of frozen animal tissues with the MLIC and three types of fresh animal tissues using film. In addition, the residual ranges recorded on the film were used to compare with those from the treatment planning system using both DECT and SECT derived SPRs. Bland-Altman analysis indicates that the differences between DECT and SPR measurement of tissue surrogates, frozen and fresh animal tissues has a mean of 0.07% and standard deviation of 0.58% compared to 0.55% and 1.94% respectively for single energy CT (SECT) and SPR measurement. Our ex vivo study indicates that the stoichiometric DECT SPR calibration method has the potential to be more accurate than SECT calibration under ideal conditions although beam hardening effects and other image artifacts may increase this uncertainty.

  3. Surveying implicit solvent models for estimating small molecule absolute hydration free energies

    PubMed Central

    Knight, Jennifer L.

    2011-01-01

    Implicit solvent models are powerful tools in accounting for the aqueous environment at a fraction of the computational expense of explicit solvent representations. Here, we compare the ability of common implicit solvent models (TC, OBC, OBC2, GBMV, GBMV2, GBSW, GBSW/MS, GBSW/MS2 and FACTS) to reproduce experimental absolute hydration free energies for a series of 499 small neutral molecules that are modeled using AMBER/GAFF parameters and AM1-BCC charges. Given optimized surface tension coefficients for scaling the surface area term in the nonpolar contribution, most implicit solvent models demonstrate reasonable agreement with extensive explicit solvent simulations (average difference 1.0-1.7 kcal/mol and R2=0.81-0.91) and with experimental hydration free energies (average unsigned errors=1.1-1.4 kcal/mol and R2=0.66-0.81). Chemical classes of compounds are identified that need further optimization of their ligand force field parameters and others that require improvement in the physical parameters of the implicit solvent models themselves. More sophisticated nonpolar models are also likely necessary to more effectively represent the underlying physics of solvation and take the quality of hydration free energies estimated from implicit solvent models to the next level. PMID:21735452

  4. Aircraft electric field measurements: Calibration and ambient field retrieval

    NASA Technical Reports Server (NTRS)

    Koshak, William J.; Bailey, Jeff; Christian, Hugh J.; Mach, Douglas M.

    1994-01-01

    An aircraft locally distorts the ambient thundercloud electric field. In order to determine the field in the absence of the aircraft, an aircraft calibration is required. In this work a matrix inversion method is introduced for calibrating an aircraft equipped with four or more electric field sensors and a high-voltage corona point that is capable of charging the aircraft. An analytic, closed form solution for the estimate of a (3 x 3) aircraft calibration matrix is derived, and an absolute calibration experiment is used to improve the relative magnitudes of the elements of this matrix. To demonstrate the calibration procedure, we analyze actual calibration date derived from a Lear jet 28/29 that was equipped with five shutter-type field mill sensors (each with sensitivities of better than 1 V/m) located on the top, bottom, port, starboard, and aft positions. As a test of the calibration method, we analyze computer-simulated calibration data (derived from known aircraft and ambient fields) and explicitly determine the errors involved in deriving the variety of calibration matrices. We extend our formalism to arrive at an analytic solution for the ambient field, and again carry all errors explicitly.

  5. Absolute gravimetry as an operational tool for geodynamics research

    NASA Astrophysics Data System (ADS)

    Torge, W.

    Relative gravimetric techniques have been used for nearly 30 years for measuring non-tidal gravity variations with time, and thus have contributed to geodynamics research by monitoring vertical crustal movements and internal mass shifts. With today's accuracy of about ± 0.05µms-2 (or 5µGal), significant results have been obtained in numerous control nets of local extension, especially in connection with seismic and volcanic events. Nevertheless, the main drawbacks of relative gravimetry, which are deficiencies in absolute datum and calibration, set a limit for its application, especially with respect to large-scale networks and long-term investigations. These problems can now be successfully attacked by absolute gravimetry, with transportable gravimeters available since about 20 years. While the absolute technique during the first two centuries of gravimetry's history was based on the pendulum method, the free-fall method can now be employed taking advantage of laser-interferometry, electronic timing, vacuum and shock absorbing techniques, and on-line computer-control. The accuracy inherent in advanced instruments is about ± 0.05 µms-2. In field work, generally an accuracy of ±0.1 µms-2 may be expected, strongly depending on local environmental conditions.

  6. Spectroradiometric calibration of the thematic mapper and multispectral scanner system

    NASA Technical Reports Server (NTRS)

    Slater, P. N. (Principal Investigator); Palmer, J. M.

    1983-01-01

    The results obtained for the absolute calibration of TM bands 2, 3, and 4 are presented. The results are based on TM image data collected simultaneously with ground and atmospheric data at White Sands, New Mexico. Also discussed are the results of a moments analysis to determine the equivalent bandpasses, effective central wavelengths and normalized responses of the TM and MSS spectral bands; the calibration of the BaSO, plate used at White Sands; and future plans.

  7. Instrumentation and First Results of the Reflected Solar Demonstration System for the Climate Absolute Radiance and Refractivity Observatory

    NASA Technical Reports Server (NTRS)

    McCorkel, Joel; Thome, Kurtis; Hair, Jason; McAndrew, Brendan; Jennings, Don; Rabin, Douglas; Daw, Adrian; Lundsford, Allen

    2012-01-01

    The Climate Absolute Radiance and Refractivity Observatory (CLARREO) mission key goals include enabling observation of high accuracy long-term climate change trends, use of these observations to test and improve climate forecasts, and calibration of operational and research sensors. The spaceborne instrument suites include a reflected solar spectroradiometer, emitted infrared spectroradiometer, and radio occultation receivers. The requirement for the RS instrument is that derived reflectance must be traceable to Sl standards with an absolute uncertainty of <0.3% and the error budget that achieves this requirement is described in previo1L5 work. This work describes the Solar/Lunar Absolute Reflectance Imaging Spectroradiometer (SOLARIS), a calibration demonstration system for RS instrument, and presents initial calibration and characterization methods and results. SOLARIS is an Offner spectrometer with two separate focal planes each with its own entrance aperture and grating covering spectral ranges of 320-640, 600-2300 nm over a full field-of-view of 10 degrees with 0.27 milliradian sampling. Results from laboratory measurements including use of integrating spheres, transfer radiometers and spectral standards combined with field-based solar and lunar acquisitions are presented. These results will be used to assess the accuracy and repeatability of the radiometric and spectral characteristics of SOLARIS, which will be presented against the sensor-level requirements addressed in the CLARREO RS instrument error budget.

  8. Automatic and robust extrinsic camera calibration for high-accuracy mobile mapping

    NASA Astrophysics Data System (ADS)

    Goeman, Werner; Douterloigne, Koen; Bogaert, Peter; Pires, Rui; Gautama, Sidharta

    2012-10-01

    A mobile mapping system (MMS) is the answer of the geoinformation community to the exponentially growing demand for various geospatial data with increasingly higher accuracies and captured by multiple sensors. As the mobile mapping technology is pushed to explore its use for various applications on water, rail, or road, the need emerges to have an external sensor calibration procedure which is portable, fast and easy to perform. This way, sensors can be mounted and demounted depending on the application requirements without the need for time consuming calibration procedures. A new methodology is presented to provide a high quality external calibration of cameras which is automatic, robust and fool proof.The MMS uses an Applanix POSLV420, which is a tightly coupled GPS/INS positioning system. The cameras used are Point Grey color video cameras synchronized with the GPS/INS system. The method uses a portable, standard ranging pole which needs to be positioned on a known ground control point. For calibration a well studied absolute orientation problem needs to be solved. Here, a mutual information based image registration technique is studied for automatic alignment of the ranging pole. Finally, a few benchmarking tests are done under various lighting conditions which proves the methodology's robustness, by showing high absolute stereo measurement accuracies of a few centimeters.

  9. SU-F-T-76: Total Skin Electron Therapy: An-End-To-End Examination of the Absolute Dosimetry with a Rando Phantom

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Cui, G; Ha, J; Zhou, S

    Purpose: To examine and validate the absolute dose for total skin electron therapy (TSET) through an end-to-end test with a Rando phantom using optically stimulated luminescent dosimeters (OSLDs) and EBT3 radiochromic films. Methods: A Varian Trilogy linear accelerator equipped with the special procedure 6 MeV HDTSe- was used to perform TSET irradiations using a modified Stanford 6-dual-field technique. The absolute dose was calibrated using a Markus ion chamber at a reference depth of 1.3cm at 100 cm SSD with a field size of 36 × 36 cm at the isocenter in solid water slabs. The absolute dose was cross validatedmore » by a farmer ion chamber. Then the dose rate in the unit of cGy/Mu was calibrated using the Markus chamber at the treatment position. OSLDs were used to independently verify the dose using the calibrated dose rate. Finally, a patient treatment plan (200 cGy/cycle) was delivered in the QA mode to a Rando phantom, which had 16 pairs of OSLDs and EBT3 films taped onto its surface at different anatomical positions. The doses recorded were read out to validate the absolute dosimetry for TSET. Results: The OSLD measurements were within 7% agreement with the planned dose except the shoulder areas, where the doses recorded were 23% lower on average than those of the planned. The EBT3 film measurements were within 10% agreement with the planned dose except the shoulder and the scalp vertex areas, where the respective doses recorded were 18% and 14% lower on average than those of the planned. The OSLDs gave more consistent dose measurements than those of the EBT3 films. Conclusion: The absolute dosimetry for TSET was validated by an end-to-end test with a Rando phantom using the OSLDs and EBT3 films. The beam calibration and monitor unit calculations were confirmed.« less

  10. Spark ignition of flowing gases I : energies to ignite propane-air mixtures in pressure range of 2 to 4 inches mercury absolute

    NASA Technical Reports Server (NTRS)

    Swett, Clyde C , Jr

    1949-01-01

    Ignition studies of flowing gases were made to obtain information applicable to ignition problems in gas-turbine and ram-jet aircraft propulsion systems operating at altitude conditions.Spark energies required for ignition of a flowing propane-air mixture were determined for pressure of 2 to 4 inches mercury absolute, gas velocities of 5.0 to 54.2 feet per second, fuel-air ratios of 0.0607 to 0.1245, and spark durations of 1.5 to 24,400 microseconds. The results showed that at a pressure of 3 inches mercury absolute the minimum energy required for ignition occurred at fuel-air ratios of 0.08 to 0.095. The energy required for ignition increased almost linearly with increasing gas velocity. Shortening the spark duration from approximately 25,000 to 125 microseconds decreased the amount of energy required for ignition. A spark produced by the discharge of a condenser directly into the spark gap and having a duration of 1.5 microseconds required ignition energies larger than most of the long-duration sparks.

  11. On the prospects of cross-calibrating the Cherenkov Telescope Array with an airborne calibration platform

    NASA Astrophysics Data System (ADS)

    Brown, Anthony M.

    2018-01-01

    Recent advances in unmanned aerial vehicle (UAV) technology have made UAVs an attractive possibility as an airborne calibration platform for astronomical facilities. This is especially true for arrays of telescopes spread over a large area such as the Cherenkov Telescope Array (CTA). In this paper, the feasibility of using UAVs to calibrate CTA is investigated. Assuming a UAV at 1km altitude above CTA, operating on astronomically clear nights with stratified, low atmospheric dust content, appropriate thermal protection for the calibration light source and an onboard photodiode to monitor its absolute light intensity, inter-calibration of CTA's telescopes of the same size class is found to be achievable with a 6 - 8 % uncertainty. For cross-calibration of different telescope size classes, a systematic uncertainty of 8 - 10 % is found to be achievable. Importantly, equipping the UAV with a multi-wavelength calibration light source affords us the ability to monitor the wavelength-dependent degradation of CTA telescopes' optical system, allowing us to not only maintain this 6 - 10 % uncertainty after the first few years of telescope deployment, but also to accurately account for the effect of multi-wavelength degradation on the cross-calibration of CTA by other techniques, namely with images of air showers and local muons. A UAV-based system thus provides CTA with several independent and complementary methods of cross-calibrating the optical throughput of individual telescopes. Furthermore, housing environmental sensors on the UAV system allows us to not only minimise the systematic uncertainty associated with the atmospheric transmission of the calibration signal, it also allows us to map the dust content above CTA as well as monitor the temperature, humidity and pressure profiles of the first kilometre of atmosphere above CTA with each UAV flight.

  12. Interlaboratory calibration of atmospheric nitrous oxide measurements

    NASA Technical Reports Server (NTRS)

    Rasmussen, R. A.; Pierotti, D.

    1978-01-01

    Samples representative of Northern Hemispheric conditions in mid-1976 were analyzed by 11 laboratories to resolve the question of the absolute tropospheric concentration of nitrous oxide. The laboratories all employed electron capture-gas chromatography for the analysis. After exclusion of one anomalously low determination, the calibration results showed a mean concentration of 323.5 + or - 8.7 ppb v/v nitrous oxide.

  13. 40 CFR 86.1319-90 - CVS calibration.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... with such a device.) The CVS calibration procedures are designed for use of a “metering venturi” type... series with the pump. (ii) The calculated flow rate, ft 3/min, (at pump inlet absolute pressure and... during test period N Revs ±1 Rev. Elapsed time for test period t sec. ±0.5 sec. (5) After the system has...

  14. 40 CFR 86.1319-90 - CVS calibration.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... with such a device.) The CVS calibration procedures are designed for use of a “metering venturi” type... series with the pump. (ii) The calculated flow rate, ft 3/min, (at pump inlet absolute pressure and... test period N Revs ±1 Rev. Elapsed time for test period t sec. ±0.5 sec. (5) After the system has been...

  15. 40 CFR 86.1319-90 - CVS calibration.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... with such a device.) The CVS calibration procedures are designed for use of a “metering venturi” type... series with the pump. (ii) The calculated flow rate, ft 3/min, (at pump inlet absolute pressure and... during test period N Revs ±1 Rev. Elapsed time for test period t sec. ±0.5 sec. (5) After the system has...

  16. 40 CFR 86.1319-90 - CVS calibration.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... with such a device.) The CVS calibration procedures are designed for use of a “metering venturi” type... series with the pump. (ii) The calculated flow rate, ft 3/min, (at pump inlet absolute pressure and... test period N Revs ±1 Rev. Elapsed time for test period t sec. ±0.5 sec. (5) After the system has been...

  17. Design and realization of an active SAR calibrator for TerraSAR-X

    NASA Astrophysics Data System (ADS)

    Dummer, Georg; Lenz, Rainer; Lutz, Benjamin; Kühl, Markus; Müller-Glaser, Klaus D.; Wiesbeck, Werner

    2005-10-01

    TerraSAR-X is a new earth observing satellite which will be launched in spring 2006. It carries a high resolution X-band SAR sensor. For high image data quality, accurate ground calibration targets are necessary. This paper describes a novel system concept for an active and highly integrated, digitally controlled SAR system calibrator. A total of 16 active transponder and receiver systems and 17 receiver only systems will be fabricated for a calibration campaign. The calibration units serve for absolute radiometric calibration of the SAR image data. Additionally, they are equipped with an extra receiver path for two dimensional satellite antenna pattern recognition. The calibrator is controlled by a dedicated digital Electronic Control Unit (ECU). The different voltages needed by the calibrator and the ECU are provided by the third main unit called Power Management Unit (PMU).

  18. Core-core and core-valence correlation energy atomic and molecular benchmarks for Li through Ar

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ranasinghe, Duminda S.; Frisch, Michael J.; Petersson, George A., E-mail: gpetersson@wesleyan.edu

    2015-12-07

    We have established benchmark core-core, core-valence, and valence-valence absolute coupled-cluster single double (triple) correlation energies (±0.1%) for 210 species covering the first- and second-rows of the periodic table. These species provide 194 energy differences (±0.03 mE{sub h}) including ionization potentials, electron affinities, and total atomization energies. These results can be used for calibration of less expensive methodologies for practical routine determination of core-core and core-valence correlation energies.

  19. Comparison and uncertainty evaluation of different calibration protocols and ionization chambers for low-energy surface brachytherapy dosimetry

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Candela-Juan, C., E-mail: ccanjuan@gmail.com; Vijande, J.; García-Martínez, T.

    2015-08-15

    Purpose: A surface electronic brachytherapy (EBT) device is in fact an x-ray source collimated with specific applicators. Low-energy (<100 kVp) x-ray beam dosimetry faces several challenges that need to be addressed. A number of calibration protocols have been published for x-ray beam dosimetry. The media in which measurements are performed are the fundamental difference between them. The aim of this study was to evaluate the surface dose rate of a low-energy x-ray source with small field applicators using different calibration standards and different small-volume ionization chambers, comparing the values and uncertainties of each methodology. Methods: The surface dose rate ofmore » the EBT unit Esteya (Elekta Brachytherapy, The Netherlands), a 69.5 kVp x-ray source with applicators of 10, 15, 20, 25, and 30 mm diameter, was evaluated using the AAPM TG-61 (based on air kerma) and International Atomic Energy Agency (IAEA) TRS-398 (based on absorbed dose to water) dosimetry protocols for low-energy photon beams. A plane parallel T34013 ionization chamber (PTW Freiburg, Germany) calibrated in terms of both absorbed dose to water and air kerma was used to compare the two dosimetry protocols. Another PTW chamber of the same model was used to evaluate the reproducibility between these chambers. Measurements were also performed with two different Exradin A20 (Standard Imaging, Inc., Middleton, WI) chambers calibrated in terms of air kerma. Results: Differences between surface dose rates measured in air and in water using the T34013 chamber range from 1.6% to 3.3%. No field size dependence has been observed. Differences are below 3.7% when measurements with the A20 and the T34013 chambers calibrated in air are compared. Estimated uncertainty (with coverage factor k = 1) for the T34013 chamber calibrated in water is 2.2%–2.4%, whereas it increases to 2.5% and 2.7% for the A20 and T34013 chambers calibrated in air, respectively. The output factors, measured with the PTW

  20. ARCSTONE: Accurate Calibration of Lunar Spectral Reflectance from space

    NASA Astrophysics Data System (ADS)

    Young, C. L.; Lukashin, C.; Jackson, T.; Cooney, M.; Ryan, N.; Beverly, J.; Davis, W.; Nguyen, T.; Rutherford, G.; Swanson, R.; Kehoe, M.; Kopp, G.; Smith, P.; Woodward, J.; Carvo, J.; Stone, T.

    2017-12-01

    Calibration accuracy and consistency are key on-orbit performance metrics for Earth observing sensors. The accuracy and consistency of measurements across multiple instruments in low Earth and geostationary orbits are directly connected to the scientific understanding of complex systems, such as Earth's weather and climate. Recent studies have demonstrated the quantitative impacts of observational accuracy on the science data products [1] and the ability to detect climate change trends for essential climate variables (e.g., Earth's radiation budget, cloud feedback, and long-term trends in cloud parameters) [2, 3]. It is common for sensors to carry references for calibration at various wavelengths onboard, but these can be subject to degradation and increase mass and risk. The Moon can be considered a natural solar diffuser in space. Establishing the Moon as an on-orbit high-accuracy calibration reference enables broad intercalibration opportunities, as the lunar reflectance is time-invariant and can be directly measured by most Earth-observing instruments. Existing approaches to calibrate sensors against the Moon can achieve stabilities of a tenth of a percent over a decade, as demonstrated by the SeaWIFS. However, the current lunar calibration quality, with 5 - 10% bias, depends on the photometric model of the Moon [4]. Significant improvements in the lunar reference are possible and are necessary for climate-level absolute calibrations using the Moon. The ARCSTONE instrument will provide a reliable reference for high-accuracy on-orbit calibration for reflected solar instruments. An orbiting spectrometer flying on a CubeSat in low Earth orbit will provide lunar spectral reflectance with accuracy < 0.5% (k = 1), sufficient to establish an SI-traceable absolute lunar calibration standard for past, current, and future Earth weather and climate sensors. The ARCSTONE team will present the instrument design status and path forward for development, building, calibration

  1. A Spectralon BRF Data Base for MISR Calibration Application

    NASA Technical Reports Server (NTRS)

    Bruegge, C.; Chrien, N.; Haner, D.

    1999-01-01

    The Multi-angle Imaging SpectroRadiometer (MISR) is an Earth observing sensor which will provide global retrievals of aerosols, clouds, and land surface parameters. Instrument specifications require high accuracy absolute calibration, as well as accurate camera-to-camera, band-to-band and pixel-to-pixel relative response determinations.

  2. Branching Ratios for The Radiometric Calibration of EUNIS-2012

    NASA Technical Reports Server (NTRS)

    Daw, Adrian N.; Bhatia, A. K.; Rabin, Douglas M.

    2012-01-01

    The Extreme Ultraviolet Normal Incidence Spectrograph (EUNIS) sounding rocket instrument is a two-channel imaging spectrograph that observes the solar corona and transition region with high spectral resolution and a rapid cadence made possible by unprecedented sensitivity. The upcoming flight will incorporate a new wavelength channel covering the range 524-630 Angstroms, the previously-flown 300-370 Angstroms channel, and the first flight demonstration of cooled active pixel sensor (APS) arrays. The new 524-630 Angstrom channel incorporates a Toroidal Varied Line Space (TVLS) grating coated with B4C/Ir, providing broad spectral coverage and a wide temperature range of 0.025 to 10 MK. Absolute radiometric calibration of the two channels is being performed using a hollow cathode discharge lamp and NIST-calibrated AXUV-100G photodiode. Laboratory observations of He I 584 Angstroms and He II 304 Angstroms provide absolute radiometric calibrations of the two channels at those two respective wavelengths by using the AXUV photodiode as a transfer standard. The spectral responsivity is being determined by observing line pairs with a common upper state in the spectra of Ne I-III and Ar II-III. Calculations of A-values for the observed branching ratios are in progress.

  3. Absolute dose calibration of an X-ray system and dead time investigations of photon-counting techniques

    NASA Astrophysics Data System (ADS)

    Carpentieri, C.; Schwarz, C.; Ludwig, J.; Ashfaq, A.; Fiederle, M.

    2002-07-01

    High precision concerning the dose calibration of X-ray sources is required when counting and integrating methods are compared. The dose calibration for a dental X-ray tube was executed with special dose calibration equipment (dosimeter) as function of exposure time and rate. Results were compared with a benchmark spectrum and agree within ±1.5%. Dead time investigations with the Medipix1 photon-counting chip (PCC) have been performed by rate variations. Two different types of dead time, paralysable and non-paralysable will be discussed. The dead time depends on settings of the front-end electronics and is a function of signal height, which might lead to systematic defects of systems. Dead time losses in excess of 30% have been found for the PCC at 200 kHz absorbed photons per pixel.

  4. High heat flux measurements and experimental calibrations/characterizations

    NASA Technical Reports Server (NTRS)

    Kidd, Carl T.

    1992-01-01

    Recent progress in techniques employed in the measurement of very high heat-transfer rates in reentry-type facilities at the Arnold Engineering Development Center (AEDC) is described. These advances include thermal analyses applied to transducer concepts used to make these measurements; improved heat-flux sensor fabrication methods, equipment, and procedures for determining the experimental time response of individual sensors; performance of absolute heat-flux calibrations at levels above 2,000 Btu/cu ft-sec (2.27 kW/cu cm); and innovative methods of performing in-situ run-to-run characterizations of heat-flux probes installed in the test facility. Graphical illustrations of the results of extensive thermal analyses of the null-point calorimeter and coaxial surface thermocouple concepts with application to measurements in aerothermal test environments are presented. Results of time response experiments and absolute calibrations of null-point calorimeters and coaxial thermocouples performed in the laboratory at intermediate to high heat-flux levels are shown. Typical AEDC high-enthalpy arc heater heat-flux data recently obtained with a Calspan-fabricated null-point probe model are included.

  5. Real-time self-calibration of a tracked augmented reality display

    NASA Astrophysics Data System (ADS)

    Baum, Zachary; Lasso, Andras; Ungi, Tamas; Fichtinger, Gabor

    2016-03-01

    PURPOSE: Augmented reality systems have been proposed for image-guided needle interventions but they have not become widely used in clinical practice due to restrictions such as limited portability, low display refresh rates, and tedious calibration procedures. We propose a handheld tablet-based self-calibrating image overlay system. METHODS: A modular handheld augmented reality viewbox was constructed from a tablet computer and a semi-transparent mirror. A consistent and precise self-calibration method, without the use of any temporary markers, was designed to achieve an accurate calibration of the system. Markers attached to the viewbox and patient are simultaneously tracked using an optical pose tracker to report the position of the patient with respect to a displayed image plane that is visualized in real-time. The software was built using the open-source 3D Slicer application platform's SlicerIGT extension and the PLUS toolkit. RESULTS: The accuracy of the image overlay with image-guided needle interventions yielded a mean absolute position error of 0.99 mm (95th percentile 1.93 mm) in-plane of the overlay and a mean absolute position error of 0.61 mm (95th percentile 1.19 mm) out-of-plane. This accuracy is clinically acceptable for tool guidance during various procedures, such as musculoskeletal injections. CONCLUSION: A self-calibration method was developed and evaluated for a tracked augmented reality display. The results show potential for the use of handheld image overlays in clinical studies with image-guided needle interventions.

  6. Energy Calibration of a Silicon-Strip Detector for Photon-Counting Spectral CT by Direct Usage of the X-ray Tube Spectrum

    NASA Astrophysics Data System (ADS)

    Liu, Xuejin; Chen, Han; Bornefalk, Hans; Danielsson, Mats; Karlsson, Staffan; Persson, Mats; Xu, Cheng; Huber, Ben

    2015-02-01

    The variation among energy thresholds in a multibin detector for photon-counting spectral CT can lead to ring artefacts in the reconstructed images. Calibration of the energy thresholds can be used to achieve homogeneous threshold settings or to develop compensation methods to reduce the artefacts. We have developed an energy-calibration method for the different comparator thresholds employed in a photon-counting silicon-strip detector. In our case, this corresponds to specifying the linear relation between the threshold positions in units of mV and the actual deposited photon energies in units of keV. This relation is determined by gain and offset values that differ for different detector channels due to variations in the manufacturing process. Typically, the calibration is accomplished by correlating the peak positions of obtained pulse-height spectra to known photon energies, e.g. with the aid of mono-energetic x rays from synchrotron radiation, radioactive isotopes or fluorescence materials. Instead of mono-energetic x rays, the calibration method presented in this paper makes use of a broad x-ray spectrum provided by commercial x-ray tubes. Gain and offset as the calibration parameters are obtained by a regression analysis that adjusts a simulated spectrum of deposited energies to a measured pulse-height spectrum. Besides the basic photon interactions such as Rayleigh scattering, Compton scattering and photo-electric absorption, the simulation takes into account the effect of pulse pileup, charge sharing and the electronic noise of the detector channels. We verify the method for different detector channels with the aid of a table-top setup, where we find the uncertainty of the keV-value of a calibrated threshold to be between 0.1 and 0.2 keV.

  7. Precision Spectrophotometric Calibration System for Dark Energy Instruments

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Schubnell, Michael S.

    2015-06-30

    For this research we build a precision calibration system and carried out measurements to demonstrate the precision that can be achieved with a high precision spectrometric calibration system. It was shown that the system is capable of providing a complete spectrophotometric calibration at the sub-pixel level. The calibration system uses a fast, high precision monochromator that can quickly and efficiently scan over an instrument’s entire spectral range with a spectral line width of less than 0.01 nm corresponding to a fraction of a pixel on the CCD. The system was extensively evaluated in the laboratory. Our research showed that amore » complete spectrophotometric calibration standard for spectroscopic survey instruments such as DESI is possible. The monochromator precision and repeatability to a small fraction of the DESI spectrograph LSF was demonstrated with re-initialization on every scan and thermal drift compensation by locking to multiple external line sources. A projector system that mimics telescope aperture for point source at infinity was demonstrated.« less

  8. SU-F-I-41: Calibration-Free Material Decomposition for Dual-Energy CT

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zhao, W; Xing, L; Zhang, Q

    2016-06-15

    Purpose: To eliminate tedious phantom calibration or manually region of interest (ROI) selection as required in dual-energy CT material decomposition, we establish a new projection-domain material decomposition framework with incorporation of energy spectrum. Methods: Similar to the case of dual-energy CT, the integral of the basis material image in our model is expressed as a linear combination of basis functions, which are the polynomials of high- and low-energy raw projection data. To yield the unknown coefficients of the linear combination, the proposed algorithm minimizes the quadratic error between the high- and low-energy raw projection data and the projection calculated usingmore » material images. We evaluate the algorithm with an iodine concentration numerical phantom at different dose and iodine concentration levels. The x-ray energy spectra of the high and low energy are estimated using an indirect transmission method. The derived monochromatic images are compared with the high- and low-energy CT images to demonstrate beam hardening artifacts reduction. Quantitative results were measured and compared to the true values. Results: The differences between the true density value used for simulation and that were obtained from the monochromatic images, are 1.8%, 1.3%, 2.3%, and 2.9% for the dose levels from standard dose to 1/8 dose, and are 0.4%, 0.7%, 1.5%, and 1.8% for the four iodine concentration levels from 6 mg/mL to 24 mg/mL. For all of the cases, beam hardening artifacts, especially streaks shown between dense inserts, are almost completely removed in the monochromatic images. Conclusion: The proposed algorithm provides an effective way to yield material images and artifacts-free monochromatic images at different dose levels without the need for phantom calibration or ROI selection. Furthermore, the approach also yields accurate results when the concentration of the iodine concentrate insert is very low, suggesting the algorithm is robust with

  9. Calibration of diffuse correlation spectroscopy blood flow index with venous-occlusion diffuse optical spectroscopy in skeletal muscle

    PubMed Central

    Li, Zhe; Baker, Wesley B.; Parthasarathy, Ashwin B.; Ko, Tiffany S.; Wang, Detian; Schenkel, Steven; Durduran, Turgut; Li, Gang; Yodh, Arjun G.

    2015-01-01

    Abstract. We investigate and assess the utility of a simple scheme for continuous absolute blood flow monitoring based on diffuse correlation spectroscopy (DCS). The scheme calibrates DCS using venous-occlusion diffuse optical spectroscopy (VO-DOS) measurements of arm muscle tissue at a single time-point. A calibration coefficient (γ) for the arm is determined, permitting conversion of DCS blood flow indices to absolute blood flow units, and a study of healthy adults (N=10) is carried out to ascertain the variability of γ. The average DCS calibration coefficient for the right (i.e., dominant) arm was γ=(1.24±0.15)×108 (mL·100  mL−1·min−1)/(cm2/s). However, variability can be significant and is apparent in our site-to-site and day-to-day repeated measurements. The peak hyperemic blood flow overshoot relative to baseline resting flow was also studied following arm-cuff ischemia; excellent agreement between VO-DOS and DCS was found (R2=0.95, slope=0.94±0.07, mean difference=−0.10±0.45). Finally, we show that incorporation of subject-specific absolute optical properties significantly improves blood flow calibration accuracy. PMID:26720870

  10. On-orbit performance of the Landsat-7 ETM+ radiometric calibrators

    USGS Publications Warehouse

    Markham, Brian L; Barker, J. L.; Kaita, E.; Seiferth, J.; Morfitt, Ron

    2003-01-01

    The Landsat-7 Enhanced Thematic Mapper Plus (ETM+) incorporates two new devices to improve its absolute radiometric calibration: a Full Aperture Solar Calibrator (FASC) and a Partial Aperture Solar Calibrator (PASC). The FASC is a diffuser panel, typically deployed once per month. Initial FASC absolute calibration results were within 5% of the pre-launch calibrations. Over time, the responses of the ETM+ to the FASC have varied with the location viewed on the panel, suggesting a localized degradation or contamination of the panel. On the best part of the panel, the trends in response range from m 1.4% y m 1 (band 4) to +0.6% y m 1 (band 7), with band 5 showing the least change at m 0.4% y m 1 . Changes in the panel reflectance due to UV exposure are believed to be the origin of these trends. The PASC is a set of auxiliary optics that allows the ETM+ to image the Sun through reduced apertures. PASC data have normally been acquired on a daily basis. Unlike the FASC, the PASC has exhibited significant anomalies. During the first six months of operation, responses to the PASC increased up to 60%, sending bands 2, 3 and 8 into saturation (band 1 was saturated at launch). The short-wave infrared (SWIR) band individual detectors have shown variations up to - 20% in response to the PASC. The variation is different for each detector. After the first six months, the responses to the PASC have become more stable, with much of the variation related to the within-scan position of the solar image. Overall results to date for all calibrators and comparisons with vicarious calibrations indicate that most of the response variations have been due to the calibrators themselves and suggest that the instrument has been stable with changes in response of less than 0.5% y m 1 .

  11. Evolution of Altimetry Calibration and Future Challenges

    NASA Technical Reports Server (NTRS)

    Fu, Lee-Lueng; Haines, Bruce J.

    2012-01-01

    Over the past 20 years, altimetry calibration has evolved from an engineering-oriented exercise to a multidisciplinary endeavor driving the state of the art. This evolution has been spurred by the developing promise of altimetry to capture the large-scale, but small-amplitude, changes of the ocean surface containing the expression of climate change. The scope of altimeter calibration/validation programs has expanded commensurately. Early efforts focused on determining a constant range bias and verifying basic compliance of the data products with mission requirements. Contemporary investigations capture, with increasing accuracies, the spatial and temporal characteristics of errors in all elements of the measurement system. Dedicated calibration sites still provide the fundamental service of estimating absolute bias, but also enable long-term monitoring of the sea-surface height and constituent measurements. The use of a network of island and coastal tide gauges has provided the best perspective on the measurement stability, and revealed temporal variations of altimeter measurement system drift. The cross-calibration between successive missions provided fundamentally new information on the performance of altimetry systems. Spatially and temporally correlated errors pose challenges for future missions, underscoring the importance of cross-calibration of new measurements against the established record.

  12. TanDEM-X calibrated Raw DEM generation

    NASA Astrophysics Data System (ADS)

    Rossi, Cristian; Rodriguez Gonzalez, Fernando; Fritz, Thomas; Yague-Martinez, Nestor; Eineder, Michael

    2012-09-01

    The TanDEM-X mission successfully started on June 21st 2010 with the launch of the German radar satellite TDX, placed in orbit in close formation with the TerraSAR-X (TSX) satellite, and establishing the first spaceborne bistatic interferometer. The processing of SAR raw data to the Raw DEM is performed by one single processor, the Integrated TanDEM-X Processor (ITP). The quality of the Raw DEM is a fundamental parameter for the mission planning. In this paper, a novel quality indicator is derived. It is based on the comparison of the interferometric measure, the unwrapped phase, and the stereo-radargrammetric measure, the geometrical shifts computed in the coregistration stage. By stating the accuracy of the unwrapped phase, it constitutes a useful parameter for the determination of problematic scenes, which will be resubmitted to the dual baseline phase unwrapping processing chain for the mitigation of phase unwrapping errors. The stereo-radargrammetric measure is also operationally used for the Raw DEM absolute calibration through an accurate estimation of the absolute phase offset. This paper examines the interferometric algorithms implemented for the operational TanDEM-X Raw DEM generation, focusing particularly on its quality assessment and its calibration.

  13. Experimental evaluation of the response of micro-channel plate detector to ions with 10s of MeV energies.

    PubMed

    Jeong, Tae Won; Singh, P K; Scullion, C; Ahmed, H; Kakolee, K F; Hadjisolomou, P; Alejo, A; Kar, S; Borghesi, M; Ter-Avetisyan, S

    2016-08-01

    The absolute calibration of a microchannel plate (MCP) assembly using a Thomson spectrometer for laser-driven ion beams is described. In order to obtain the response of the whole detection system to the particles' impact, a slotted solid state nuclear track detector (CR-39) was installed in front of the MCP to record the ions simultaneously on both detectors. The response of the MCP (counts/particles) was measured for 5-58 MeV carbon ions and for protons in the energy range 2-17.3 MeV. The response of the MCP detector is non-trivial when the stopping range of particles becomes larger than the thickness of the detector. Protons with energies E ≳ 10 MeV are energetic enough that they can pass through the MCP detector. Quantitative analysis of the pits formed in CR-39 and the signal generated in the MCP allowed to determine the MCP response to particles in this energy range. Moreover, a theoretical model allows to predict the response of MCP at even higher proton energies. This suggests that in this regime the MCP response is a slowly decreasing function of energy, consistently with the decrease of the deposited energy. These calibration data will enable particle spectra to be obtained in absolute terms over a broad energy range.

  14. Experimental evaluation of the response of micro-channel plate detector to ions with 10s of MeV energies

    NASA Astrophysics Data System (ADS)

    Jeong, Tae Won; Singh, P. K.; Scullion, C.; Ahmed, H.; Kakolee, K. F.; Hadjisolomou, P.; Alejo, A.; Kar, S.; Borghesi, M.; Ter-Avetisyan, S.

    2016-08-01

    The absolute calibration of a microchannel plate (MCP) assembly using a Thomson spectrometer for laser-driven ion beams is described. In order to obtain the response of the whole detection system to the particles' impact, a slotted solid state nuclear track detector (CR-39) was installed in front of the MCP to record the ions simultaneously on both detectors. The response of the MCP (counts/particles) was measured for 5-58 MeV carbon ions and for protons in the energy range 2-17.3 MeV. The response of the MCP detector is non-trivial when the stopping range of particles becomes larger than the thickness of the detector. Protons with energies E ≳ 10 MeV are energetic enough that they can pass through the MCP detector. Quantitative analysis of the pits formed in CR-39 and the signal generated in the MCP allowed to determine the MCP response to particles in this energy range. Moreover, a theoretical model allows to predict the response of MCP at even higher proton energies. This suggests that in this regime the MCP response is a slowly decreasing function of energy, consistently with the decrease of the deposited energy. These calibration data will enable particle spectra to be obtained in absolute terms over a broad energy range.

  15. Facilities and Techniques for X-Ray Diagnostic Calibration in the 100-eV to 100-keV Energy Range

    NASA Astrophysics Data System (ADS)

    Gaines, J. L.; Wittmayer, F. J.

    1986-08-01

    The Lawrence Livermore National Laboratory (LLNL) has been a pioneer in the field of x-ray diagnostic calibration for more than 20 years. We have built steady state x-ray sources capable of supplying fluorescent lines of high spectral purity in the 100-eV to 100-keV energy range, and these sources have been used in the calibration of x-ray detectors, mirrors, crystals, filters, and film. This paper discusses our calibration philosophy and techniques, and describes some of our x-ray sources. Examples of actual calibration data are presented as well.

  16. A Method to Test Model Calibration Techniques

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Judkoff, Ron; Polly, Ben; Neymark, Joel

    This paper describes a method for testing model calibration techniques. Calibration is commonly used in conjunction with energy retrofit audit models. An audit is conducted to gather information about the building needed to assemble an input file for a building energy modeling tool. A calibration technique is used to reconcile model predictions with utility data, and then the 'calibrated model' is used to predict energy savings from a variety of retrofit measures and combinations thereof. Current standards and guidelines such as BPI-2400 and ASHRAE-14 set criteria for 'goodness of fit' and assume that if the criteria are met, then themore » calibration technique is acceptable. While it is logical to use the actual performance data of the building to tune the model, it is not certain that a good fit will result in a model that better predicts post-retrofit energy savings. Therefore, the basic idea here is that the simulation program (intended for use with the calibration technique) is used to generate surrogate utility bill data and retrofit energy savings data against which the calibration technique can be tested. This provides three figures of merit for testing a calibration technique, 1) accuracy of the post-retrofit energy savings prediction, 2) closure on the 'true' input parameter values, and 3) goodness of fit to the utility bill data. The paper will also discuss the pros and cons of using this synthetic surrogate data approach versus trying to use real data sets of actual buildings.« less

  17. Absolute, SI-traceable lunar irradiance tie-points for the USGS Lunar Model

    NASA Astrophysics Data System (ADS)

    Brown, Steven W.; Eplee, Robert E.; Xiong, Xiaoxiong J.

    2017-10-01

    The United States Geological Survey (USGS) has developed an empirical model, known as the Robotic Lunar Observatory (ROLO) Model, that predicts the reflectance of the Moon for any Sun-sensor-Moon configuration over the spectral range from 350 nm to 2500 nm. The lunar irradiance can be predicted from the modeled lunar reflectance using a spectrum of the incident solar irradiance. While extremely successful as a relative exo-atmospheric calibration target, the ROLO Model is not SI-traceable and has estimated uncertainties too large for the Moon to be used as an absolute celestial calibration target. In this work, two recent absolute, low uncertainty, SI-traceable top-of-the-atmosphere (TOA) lunar irradiances, measured over the spectral range from 380 nm to 1040 nm, at lunar phase angles of 6.6° and 16.9° , are used as tie-points to the output of the ROLO Model. Combined with empirically derived phase and libration corrections to the output of the ROLO Model and uncertainty estimates in those corrections, the measurements enable development of a corrected TOA lunar irradiance model and its uncertainty budget for phase angles between +/-80° and libration angles from 7° to 51° . The uncertainties in the empirically corrected output from the ROLO model are approximately 1 % from 440 nm to 865 nm and increase to almost 3 % at 412 nm. The dominant components in the uncertainty budget are the uncertainty in the absolute TOA lunar irradiance and the uncertainty in the fit to the phase correction from the output of the ROLO model.

  18. The Geosynchronous Imaging Fourier Transform Spectrometer (GIFTS) on-board blackbody calibration system

    NASA Astrophysics Data System (ADS)

    Best, Fred A.; Revercomb, Henry E.; Knuteson, Robert O.; Tobin, David C.; Ellington, Scott D.; Werner, Mark W.; Adler, Douglas P.; Garcia, Raymond K.; Taylor, Joseph K.; Ciganovich, Nick N.; Smith, William L., Sr.; Bingham, Gail E.; Elwell, John D.; Scott, Deron K.

    2005-01-01

    The NASA New Millennium Program's Geosynchronous Imaging Fourier Transform Spectrometer (GIFTS) instrument provides enormous advances in water vapor, wind, temperature, and trace gas profiling from geostationary orbit. The top-level instrument calibration requirement is to measure brightness temperature to better than 1 K (3 sigma) over a broad range of atmospheric brightness temperatures, with a reproducibility of +/-0.2 K. For in-flight radiometric calibration, GIFTS uses views of two on-board blackbody sources (290 K and 255 K) along with cold space, sequenced at regular programmable intervals. The blackbody references are cavities that follow the UW Atmospheric Emitted Radiance Interferometer (AERI) design, scaled to the GIFTS beam size. The cavity spectral emissivity is better than 0.998 with an absolute uncertainty of less than 0.001. Absolute blackbody temperature uncertainties are estimated at 0.07 K. This paper describes the detailed design of the GIFTS on-board calibration system that recently underwent its Critical Design Review. The blackbody cavities use ultra-stable thermistors to measure temperature, and are coated with high emissivity black paint. Monte Carlo modeling has been performed to calculate the cavity emissivity. Both absolute temperature and emissivity measurements are traceable to NIST, and detailed uncertainty budgets have been developed and used to show the overall system meets accuracy requirements. The blackbody controller is housed on a single electronics board and provides precise selectable set point temperature control, thermistor resistance measurement, and the digital interface to the GIFTS instrument. Plans for the NIST traceable ground calibration of the on-board blackbody system have also been developed and are presented in this paper.

  19. Spectroradiometric calibration of the thematic mapper and multispectral scanner system

    NASA Technical Reports Server (NTRS)

    Slater, Philip N.; Palmer, James M.

    1986-01-01

    A list of personnel who have contributed to the program is provided. Sixteen publications and presentations are also listed. A preprint summarizing five in-flight absolute radiometric calibrations of the solar reflective bands of the LANDSAT-5 Thematic Mapper is presented. The 23 band calibrations made on the five dates show a 2.5% RMS variation from the mean as a percentage of the mean. A preprint is also presented that discusses the reflectance-based results of the above preprint. It proceeds to analyze and present results of a second, independent calibration method based on radiance measurements from a helicopter. Radiative transfer through the atmosphere, model atmospheres, the calibration methodology used at White Sands and the results of a sensitivity analysis of the reflectance-based approach is also discussed.

  20. Effective and absolute cross sections for low-energy (1-30 eV) electron interactions with condensed biomolecules

    NASA Astrophysics Data System (ADS)

    Zheng, Yi; Sanche, Léon

    2018-06-01

    Ionizing radiation is intensively used for therapeutic [e.g., radiotherapy, brachytherapy, and targeted radionuclide therapy (TRT)], as well as for diagnostic medical imaging purposes. In these applications, the radiation dose given to the patient should be known and controlled. In conventional cancer treatments, absorbed dose calculations rely essentially on scattering cross sections (CSs) of the primary high-energy radiation. In more sophisticated treatments, such as combined radio- and chemo-therapy, a description of the details of energy deposits at the micro- and nano-scopic level is preferred to relate dose to radiobiological effectiveness or to evaluate doses at the biomolecular level, when radiopharmaceuticals emitting short-range radiation are delivered to critical molecular components of cancer cells (e.g., TRT). These highly radiotoxic compounds emit large densities of low-energy electrons (LEEs). More generally, LEE (0-30 eV) are emitted in large numbers by any type of high-energy radiation; i.e., about 30 000 per MeV of deposited primary energy. Thus, to optimize the effectiveness of several types of radiation treatments, the energy deposited by LEEs must be known at the level of the cell, nucleus, chromosome, or DNA. Such local doses can be evaluated by Monte Carlo (MC) calculations, which account event-by-event, for the slowing down of all generations of particles. In particular, these codes require as input parameters absolute LEE CSs for elastic scattering, energy losses, and direct damage to vital cellular molecules, particularly DNA, the main target of radiation therapy. In the last decade, such CSs have emerged in the literature. Furthermore, a method was developed to transform relative yields of damages into absolute CSs by measuring specific parameters in the experiments. In this review article, we first present a general description of dose calculations in biological media via MC simulation and give an overview of the CSs available from

  1. ELENA MCP detector: absolute detection efficiency for low-energy neutral atoms

    NASA Astrophysics Data System (ADS)

    Rispoli, R.; De Angelis, E.; Colasanti, L.; Vertolli, N.; Orsini, S.; Scheer, J. A.; Mura, A.; Milillo, A.; Wurz, P.; Selci, S.; Di Lellis, A. M.; Leoni, R.; D'Alessandro, M.; Mattioli, F.; Cibella, S.

    2012-09-01

    Microchannel Plates (MCP) detectors are frequently used in space instrumentation for detecting a wide range of radiation and particles. In particular, the capability to detect non-thermal low energy neutral species is crucial for the sensor ELENA (Emitted Low-Energy Neutral Atoms), part of the package SERENA (Search for Exospheric Refilling and Emitted Natural Abundances) on board the BepiColombo mission of ESA to Mercury to be launched in 2015. ELENA is a Time of Flight (TOF) sensor, based on a novel concept using an ultra-sonic oscillating shutter (Start section), which is operated at frequencies up to 50 kHz; a MCP detector is used as a Stop detector. The scientific objective of ELENA is to detect energetic neutral atoms in the range 10 eV - 5 keV, within 76° FOV, perpendicular to the S/C orbital plane. ELENA will monitor the emission of neutral atoms from the whole surface of Mercury thanks to the spacecraft motion. The major scientific objectives are the interaction between the plasma environment and the planet’s surface, the global particle loss-rate and the remote sensing of the surface properties. In particular, surface release processes are investigated by identifying particles released from the surface, via solar wind-induced ion sputtering (< 1eV - < 100 eV) as well as Hydrogen back-scattered at hundreds eV. MCP absolute detection efficiency for very low energy neutral atoms (E < 30 eV) is a crucial point for this investigation. At the MEFISTO facility of the Physical Institute of the University of Bern (CH), measurements on three different types of MCP (with and without coating) have been performed providing the detection efficiencies in the energy range 10eV - 1keV. Outcomes from such measurements are discussed here.

  2. Absolute surface reconstruction by slope metrology and photogrammetry

    NASA Astrophysics Data System (ADS)

    Dong, Yue

    Developing the manufacture of aspheric and freeform optical elements requires an advanced metrology method which is capable of inspecting these elements with arbitrary freeform surfaces. In this dissertation, a new surface measurement scheme is investigated for such a purpose, which is to measure the absolute surface shape of an object under test through its surface slope information obtained by photogrammetric measurement. A laser beam propagating toward the object reflects on its surface while the vectors of the incident and reflected beams are evaluated from the four spots they leave on the two parallel transparent windows in front of the object. The spots' spatial coordinates are determined by photogrammetry. With the knowledge of the incident and reflected beam vectors, the local slope information of the object surface is obtained through vector calculus and finally yields the absolute object surface profile by a reconstruction algorithm. An experimental setup is designed and the proposed measuring principle is experimentally demonstrated by measuring the absolute surface shape of a spherical mirror. The measurement uncertainty is analyzed, and efforts for improvement are made accordingly. In particular, structured windows are designed and fabricated to generate uniform scattering spots left by the transmitted laser beams. Calibration of the fringe reflection instrument, another typical surface slope measurement method, is also reported in the dissertation. Finally, a method for uncertainty analysis of a photogrammetry measurement system by optical simulation is investigated.

  3. Piston manometer as an absolute standard for vacuum-gage calibration in the range 2 to 500 millitorr

    NASA Technical Reports Server (NTRS)

    Warshawsky, I.

    1972-01-01

    A thin disk is suspended, with very small annular clearance, in a cylindrical opening in the base plate of a calibration chamber. A continuous flow of calibration gas passes through the chamber and annular opening to a downstream high vacuum pump. The ratio of pressures on the two faces of the disk is very large, so that the upstream pressure is substantially equal to net force on the disk divided by disk area. This force is measured with a dynamometer that is calibrated in place with dead weights. A probable error of + or - (0.2 millitorr plus 0.2 percent) is attainable when downstream pressure is known to 10 percent.

  4. A distance-independent calibration of the luminosity of type Ia supernovae and the Hubble constant

    NASA Technical Reports Server (NTRS)

    Leibundgut, Bruno; Pinto, Philip A.

    1992-01-01

    The absolute magnitude of SNe Ia at maximum is calibrated here using radioactive decay models for the light curve and a minimum of assumptions. The absolute magnitude parameter space is studied using explosion models and a range of rise times, and absolute B magnitudes at maximum are used to derive a range of the H0 and the distance to the Virgo Cluster from SNe Ia. Rigorous limits for H0 of 45 and 105 km/s/Mpc are derived.

  5. On the evaluation of the absolute photon energy of Cu Kα, β lines using 4-crystal X -ray spectrometer

    NASA Astrophysics Data System (ADS)

    Ito, Yoshiaki; Tochio, Tatsunori; Fukushima, Sei

    A 4-crystal X-ray spectrometer was designed based on a 2-crystal X-ray spectrometer to be able to perform the absolute measurement of Bragg angle. This basic thought based on 2 crystals dates back to the times to A.Compton etc.. Because a distortion to give the crystal by the adhesive when a crystal was glued, greatly affected the X-rays profile, we changed it to the channel cut crystal without a free distortion as for having made each crystal of 2-crystal a channel cut. The influence of the foot in the spectral profile is more suppressed because four times of reflections reflect it. It is a high resolution so as not to need to consider instrumental function by the reflection degree that a specific atomic analysis can be executed with the chemical state which it is possible for making the placement of the 4-crystal (+, +) setting. This type of spectrum device is first time in the world. Because the absolute measurement of 2 θ angles is enabled by (+,-) and (+, +) setting from the center of gravity position of the rocking curve and the center of gravity position of the X-rays spectrum, we may measure the absolute value of the X-ray photon energy. Because we evaluated the energy of the Cu Kα , β lines, we report it. We acknowledge financial support for the measurements of a part of the data by the REXDAB collaboration that was initiated within the International Fundamental Parameter Initiative.

  6. Comparison of spectral radiance responsivity calibration techniques used for backscatter ultraviolet satellite instruments

    NASA Astrophysics Data System (ADS)

    Kowalewski, M. G.; Janz, S. J.

    2015-02-01

    Methods of absolute radiometric calibration of backscatter ultraviolet (BUV) satellite instruments are compared as part of an effort to minimize pre-launch calibration uncertainties. An internally illuminated integrating sphere source has been used for the Shuttle Solar BUV, Total Ozone Mapping Spectrometer, Ozone Mapping Instrument, and Global Ozone Monitoring Experiment 2 using standardized procedures traceable to national standards. These sphere-based spectral responsivities agree to within the derived combined standard uncertainty of 1.87% relative to calibrations performed using an external diffuser illuminated by standard irradiance sources, the customary spectral radiance responsivity calibration method for BUV instruments. The combined standard uncertainty for these calibration techniques as implemented at the NASA Goddard Space Flight Center’s Radiometric Calibration and Development Laboratory is shown to less than 2% at 250 nm when using a single traceable calibration standard.

  7. Design, test, and calibration of an electrostatic beam position monitor

    NASA Astrophysics Data System (ADS)

    Cohen-Solal, Maurice

    2010-03-01

    The low beta of proton or ion beams favors an electrostatic pickup to measure the transverse beam centroid position. Often papers on beam position monitors (BPM) are focused on a particular aspect of the problem; however, it is important to consider all various issues of a position measurement system. Based on our experience at the IPHI (high intensity injector proton) facility at CEA-Saclay, this paper will address all aspects to design, test, and calibrate a BPM for proton linear accelerators, while emphasizing the determination of the absolute beam position. We present details of the readout electronics, and describe the calibration of the BPM using a test station. For calculation and simulation of the electrical signals we developed a Mathematica script. The error analysis presented, on the basis of six BPMs installed in the high energy section of IPHI, demonstrates the expected accuracy of the position measurement. These studies also identify the parameters that could improve the performance of the beam position control. The experience from these developments is currently being used for the BPM design and test stand dedicated to the Spiral2 accelerator at Ganil-Caen which will deliver heavy ion beams.

  8. System for characterizing semiconductor materials and photovoltaic devices through calibration

    DOEpatents

    Sopori, Bhushan L.; Allen, Larry C.; Marshall, Craig; Murphy, Robert C.; Marshall, Todd

    1998-01-01

    A method and apparatus for measuring characteristics of a piece of material, typically semiconductor materials including photovoltaic devices. The characteristics may include dislocation defect density, grain boundaries, reflectance, external LBIC, internal LBIC, and minority carrier diffusion length. The apparatus includes a light source, an integrating sphere, and a detector communicating with a computer. The measurement or calculation of the characteristics is calibrated to provide accurate, absolute values. The calibration is performed by substituting a standard sample for the piece of material, the sample having a known quantity of one or more of the relevant characteristics. The quantity measured by the system of the relevant characteristic is compared to the known quantity and a calibration constant is created thereby.

  9. Absolute measurements of fast neutrons using yttrium.

    PubMed

    Roshan, M V; Springham, S V; Rawat, R S; Lee, P; Krishnan, M

    2010-08-01

    Yttrium is presented as an absolute neutron detector for pulsed neutron sources. It has high sensitivity for detecting fast neutrons. Yttrium has the property of generating a monoenergetic secondary radiation in the form of a 909 keV gamma-ray caused by inelastic neutron interaction. It was calibrated numerically using MCNPX and does not need periodic recalibration. The total yttrium efficiency for detecting 2.45 MeV neutrons was determined to be f(n) approximately 4.1x10(-4) with an uncertainty of about 0.27%. The yttrium detector was employed in the NX2 plasma focus experiments and showed the neutron yield of the order of 10(8) neutrons per discharge.

  10. Calibration of solid state nuclear track detectors at high energy ion beams for cosmic radiation measurements: HAMLET results

    NASA Astrophysics Data System (ADS)

    Szabó, J.; Pálfalvi, J. K.

    2012-12-01

    The MATROSHKA experiments and the related HAMLET project funded by the European Commission aimed to study the dose burden of the crew working on the International Space Station (ISS). During these experiments a human phantom equipped with several thousands of radiation detectors was exposed to cosmic rays inside and outside the ISS. Besides the measurements realized in Earth orbit, the HAMLET project included also a ground-based program of calibration and intercomparison of the different detectors applied by the participating groups using high-energy ion beams. The Space Dosimetry Group of the Centre for Energy Research (formerly Atomic Energy Research Institute) participated in these experiments with passive solid state nuclear track detectors (SSNTDs). The paper presents the results of the calibration experiments performed in the years 2008-2011 at the Heavy Ion Medical Accelerator (HIMAC) of the National Institute of Radiological Sciences (NIRS), Chiba, Japan. The data obtained serve as update and improvement for the previous calibration curves which are necessary for the evaluation of the SSNTDs exposed in unknown space radiation fields.

  11. A standard stellar library for evolutionary synthesis. III. Metallicity calibration

    NASA Astrophysics Data System (ADS)

    Westera, P.; Lejeune, T.; Buser, R.; Cuisinier, F.; Bruzual, G.

    2002-01-01

    We extend the colour calibration of the widely used BaSeL standard stellar library (Lejeune et al. 1997, 1998) to non-solar metallicities, down to [Fe/H] ~ -2.0 dex. Surprisingly, we find that at the present epoch it is virtually impossible to establish a unique calibration of UBVRIJHKL colours in terms of stellar metallicity [Fe/H] which is consistent simultaneously with both colour-temperature relations and colour-absolute magnitude diagrams (CMDs) based on observed globular cluster photometry data and on published, currently popular standard stellar evolutionary tracks and isochrones. The problem appears to be related to the long-standing incompleteness in our understanding of convection in late-type stellar evolution, but is also due to a serious lack of relevant observational calibration data that would help resolve, or at least further significant progress towards resolving this issue. In view of the most important applications of the BaSeL library, we here propose two different metallicity calibration versions: (1) the ``WLBC 99'' library, which consistently matches empirical colour-temperature relations and which, therefore, should make an ideal tool for the study of individual stars; and (2), the ``PADOVA 2000'' library, which provides isochrones from the Padova 2000 grid (Girardi et al. \\cite{padova}) that successfully reproduce Galactic globular-cluster colour-absolute magnitude diagrams and which thus should prove particularly useful for studies of collective phenomena in stellar populations in clusters and galaxies.

  12. Piston manometer as an absolute standard for vacuum gage calibration in the range 10 to 700 microtorr

    NASA Technical Reports Server (NTRS)

    Warshawsky, I.

    1972-01-01

    Total pressure in a calibration chamber is determined by measuring the force on a disk suspended in an orifice in the baseplate of the chamber. The disk forms a narrow annular gap with the orifice. A continuous flow of calibration gas passes through the chamber and annulus to a downstream pumping system. The ratio of pressures on the two faces of the disk exceeds 100:1, so that chamber pressure is substantially equal to the product of disk area and net force on the disk. This force is measured with an electrodynamometer that can be calibrated in situ with dead weights. Probable error in pressure measurement is plus or minus (0.5 microtorr + 0.6 percent).

  13. CALIBRATED ULTRA FAST IMAGE SIMULATIONS FOR THE DARK ENERGY SURVEY

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bruderer, Claudio; Chang, Chihway; Refregier, Alexandre

    2016-01-20

    Image simulations are becoming increasingly important in understanding the measurement process of the shapes of galaxies for weak lensing and the associated systematic effects. For this purpose we present the first implementation of the Monte Carlo Control Loops (MCCL), a coherent framework for studying systematic effects in weak lensing. It allows us to model and calibrate the shear measurement process using image simulations from the Ultra Fast Image Generator (UFig) and the image analysis software SExtractor. We apply this framework to a subset of the data taken during the Science Verification period (SV) of the Dark Energy Survey (DES). Wemore » calibrate the UFig simulations to be statistically consistent with one of the SV images, which covers ∼0.5 square degrees. We then perform tolerance analyses by perturbing six simulation parameters and study their impact on the shear measurement at the one-point level. This allows us to determine the relative importance of different parameters. For spatially constant systematic errors and point-spread function, the calibration of the simulation reaches the weak lensing precision needed for the DES SV survey area. Furthermore, we find a sensitivity of the shear measurement to the intrinsic ellipticity distribution, and an interplay between the magnitude-size and the pixel value diagnostics in constraining the noise model. This work is the first application of the MCCL framework to data and shows how it can be used to methodically study the impact of systematics on the cosmic shear measurement.« less

  14. Calibration of the High Energy Replicated Optics to Explore the Sun (HEROES) Hard X-ray Telescope

    NASA Astrophysics Data System (ADS)

    Wilson-Hodge, Colleen A.; Gaskin, Jessica; Christe, Steven; Shih, Albert; Tennant, Allyn; Swartz, Doug; Kilaru, Kiranmayee; Elsner, Ron; Kolodziejczak, Jeff; Ramsey, Brian

    On 2013 September 21-22, the High Energy Replicated Optics to Explore the Sun (HEROES) hard X-ray telescope flew as a balloon payload from Ft. Sumner, NM. HEROES observed the Sun, the black hole binary GRS 1915+105, and the Crab Nebula during its 27 h flight. In this paper, we describe laboratory calibration measurements of the HEROES detectors using line and continuum sources and applications of these measurements to define channel to energy (gain) corrections for observed events and to define detector response matrices. We characterize the HEROES X-ray grazing incidence optics using measurements taken in the Stray Light Facility (SLF) in Huntsville, AL, and using ray traces. We describe the application of our calibration measurements to in-flight observations of the Crab Nebula.

  15. Synthetic isotope mixtures for the calibration of isotope amount ratio measurements of carbon

    NASA Astrophysics Data System (ADS)

    Russe, K.; Valkiers, S.; Taylor, P. D. P.

    2004-07-01

    Synthetic isotope mixtures for the calibration of carbon isotope amount ratio measurements have been prepared by mixing carbon tetrafluoride highly enriched in 13C with carbon tetrafluoride depleted in 13C. Mixing procedures based on volumetry and gravimetry are described. The mixtures served as primary measurement standards for the calibration of isotope amount ratio measurements of the Isotopic Reference Materials PEF1, NBS22 and USGS24. Thus SI-traceable measurements of absolute carbon isotope amount ratios have been performed for the first time without any hypothesis needed for a correction of oxygen isotope abundances, such as is the case for measurements on carbon dioxide. As a result, "absolute" carbon isotope amount ratios determined via carbon tetrafluoride have smaller uncertainties than those published for carbon dioxide. From the measurements of the Reference Materials concerned, the absolute carbon isotope amount ratio of Vienna Pee Dee Belemnite (VPDB)--the hypothetical material upon which the scale for relative carbon isotope ratio measurements is based--was calculated to be R13(VPDB) = (11 101 +/- 16) × 10-6.

  16. Absolute efficiency calibration of 6LiF-based solid state thermal neutron detectors

    NASA Astrophysics Data System (ADS)

    Finocchiaro, Paolo; Cosentino, Luigi; Lo Meo, Sergio; Nolte, Ralf; Radeck, Desiree

    2018-03-01

    The demand for new thermal neutron detectors as an alternative to 3He tubes in research, industrial, safety and homeland security applications, is growing. These needs have triggered research and development activities about new generations of thermal neutron detectors, characterized by reasonable efficiency and gamma rejection comparable to 3He tubes. In this paper we show the state of the art of a promising low-cost technique, based on commercial solid state silicon detectors coupled with thin neutron converter layers of 6LiF deposited onto carbon fiber substrates. A few configurations were studied with the GEANT4 simulation code, and the intrinsic efficiency of the corresponding detectors was calibrated at the PTB Thermal Neutron Calibration Facility. The results show that the measured intrinsic detection efficiency is well reproduced by the simulations, therefore validating the simulation tool in view of new designs. These neutron detectors have also been tested at neutron beam facilities like ISIS (Rutherford Appleton Laboratory, UK) and n_TOF (CERN) where a few samples are already in operation for beam flux and 2D profile measurements. Forthcoming applications are foreseen for the online monitoring of spent nuclear fuel casks in interim storage sites.

  17. Calibration of high voltages at the ppm level by the difference of ^{83{m}}Kr conversion electron lines at the KATRIN experiment

    NASA Astrophysics Data System (ADS)

    Arenz, M.; Baek, W.-J.; Beck, M.; Beglarian, A.; Behrens, J.; Bergmann, T.; Berlev, A.; Besserer, U.; Blaum, K.; Bode, T.; Bornschein, B.; Bornschein, L.; Brunst, T.; Buzinsky, N.; Chilingaryan, S.; Choi, W. Q.; Deffert, M.; Doe, P. J.; Dragoun, O.; Drexlin, G.; Dyba, S.; Edzards, F.; Eitel, K.; Ellinger, E.; Engel, R.; Enomoto, S.; Erhard, M.; Eversheim, D.; Fedkevych, M.; Fischer, S.; Formaggio, J. A.; Fränkle, F. M.; Franklin, G. B.; Friedel, F.; Fulst, A.; Gil, W.; Glück, F.; Ureña, A. Gonzalez; Grohmann, S.; Grössle, R.; Gumbsheimer, R.; Hackenjos, M.; Hannen, V.; Harms, F.; Haußmann, N.; Heizmann, F.; Helbing, K.; Herz, W.; Hickford, S.; Hilk, D.; Hillesheimer, D.; Howe, M. A.; Huber, A.; Jansen, A.; Kellerer, J.; Kernert, N.; Kippenbrock, L.; Kleesiek, M.; Klein, M.; Kopmann, A.; Korzeczek, M.; Kovalík, A.; Krasch, B.; Kraus, M.; Kuckert, L.; Lasserre, T.; Lebeda, O.; Letnev, J.; Lokhov, A.; Machatschek, M.; Marsteller, A.; Martin, E. L.; Mertens, S.; Mirz, S.; Monreal, B.; Neumann, H.; Niemes, S.; Off, A.; Osipowicz, A.; Otten, E.; Parno, D. S.; Pollithy, A.; Poon, A. W. P.; Priester, F.; Ranitzsch, P. C.-O.; Rest, O.; Robertson, R. G. H.; Roccati, F.; Rodenbeck, C.; Röllig, M.; Röttele, C.; Ryšavý, M.; Sack, R.; Saenz, A.; Schimpf, L.; Schlösser, K.; Schlösser, M.; Schönung, K.; Schrank, M.; Seitz-Moskaliuk, H.; Sentkerestiová, J.; Sibille, V.; Slezák, M.; Steidl, M.; Steinbrink, N.; Sturm, M.; Suchopar, M.; Suesser, M.; Telle, H. H.; Thorne, L. A.; Thümmler, T.; Titov, N.; Tkachev, I.; Trost, N.; Valerius, K.; Vénos, D.; Vianden, R.; Hernández, A. P. Vizcaya; Weber, M.; Weinheimer, C.; Weiss, C.; Welte, S.; Wendel, J.; Wilkerson, J. F.; Wolf, J.; Wüstling, S.; Zadoroghny, S.

    2018-05-01

    The neutrino mass experiment KATRIN requires a stability of 3 ppm for the retarding potential at - 18.6 kV of the main spectrometer. To monitor the stability, two custom-made ultra-precise high-voltage dividers were developed and built in cooperation with the German national metrology institute Physikalisch-Technische Bundesanstalt (PTB). Until now, regular absolute calibration of the voltage dividers required bringing the equipment to the specialised metrology laboratory. Here we present a new method based on measuring the energy difference of two ^{83{m}}Kr conversion electron lines with the KATRIN setup, which was demonstrated during KATRIN's commissioning measurements in July 2017. The measured scale factor M=1972.449(10) of the high-voltage divider K35 is in agreement with the last PTB calibration 4 years ago. This result demonstrates the utility of the calibration method, as well as the long-term stability of the voltage divider.

  18. Improving Photometric Calibration of Meteor Video Camera Systems

    NASA Technical Reports Server (NTRS)

    Ehlert, Steven; Kingery, Aaron; Cooke, William

    2016-01-01

    Current optical observations of meteors are commonly limited by systematic uncertainties in photometric calibration at the level of approximately 0.5 mag or higher. Future improvements to meteor ablation models, luminous efficiency models, or emission spectra will hinge on new camera systems and techniques that significantly reduce calibration uncertainties and can reliably perform absolute photometric measurements of meteors. In this talk we discuss the algorithms and tests that NASA's Meteoroid Environment Office (MEO) has developed to better calibrate photometric measurements for the existing All-Sky and Wide-Field video camera networks as well as for a newly deployed four-camera system for measuring meteor colors in Johnson-Cousins BV RI filters. In particular we will emphasize how the MEO has been able to address two long-standing concerns with the traditional procedure, discussed in more detail below.

  19. Intra-annual NDVI validation of the Landsat 5 TM radiometric calibration

    USGS Publications Warehouse

    Chander, G.; Groeneveld, D.P.

    2009-01-01

    Multispectral data from the Landsat 5 (L5) Thematic Mapper (TM) sensor provide the backbone of the extensive archive of moderate‐resolution Earth imagery. Even after more than 24 years of service, the L5 TM is still operational. Given the longevity of the satellite, the detectors have aged and the sensor's radiometric characteristics have changed since launch. The calibration procedures and parameters in the National Land Archive Production System (NLAPS) have also changed with time. Revised radiometric calibrations in 2003 and 2007 have improved the radiometric accuracy of recently processed data. This letter uses the Normalized Difference Vegetation Index (NDVI) as a metric to evaluate the radiometric calibration. The calibration change has improved absolute calibration accuracy, consistency over time, and consistency with Landsat 7 (L7) Enhanced Thematic radiometry and will provide the basis for continued long‐term studies of the Earth's land surfaces.

  20. Calibrating an Ionosonde for Ionospheric Attenuation Measurements.

    PubMed

    Gilli, Lorenzo; Sciacca, Umberto; Zuccheretti, Enrico

    2018-05-15

    Vertical ionospheric soundings have been performed at almost all ionospheric observatories with little attention to measuring the attenuation of the signal between transmission and reception. When the absorption has been determined, this has been achieved by comparing the received power after the first and second reflections, but this method has some limitations due to the unknown reflection coefficient of the ground and the non-continuous presence of the second reflection. This paper deals with a different method based on precise calibration of the sounding system, allowing determination of absolute signal attenuation after a single reflection. This approach is affected by a systematic error due to imperfect calibration of the antennas, but when the focus of interest is to measure a trend over a specified period, it is very accurate. The article describes how calibration was implemented, the measurement output formats, and finally it presents some results from a meaningful set of measurements in order to demonstrate what this method can accomplish.

  1. 40 CFR 92.120 - NDIR analyzer calibration and checks.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ....120 NDIR analyzer calibration and checks. (a) NDIR water rejection ratio check. (1) Zero and span the analyzer on the lowest range that will be used. (2) Introduce a saturated mixture of water and zero gas at...) in absolute units in Pascal. Gauges G3 and G4 may be used if the values are converted to the correct...

  2. 40 CFR 92.120 - NDIR analyzer calibration and checks.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ....120 NDIR analyzer calibration and checks. (a) NDIR water rejection ratio check. (1) Zero and span the analyzer on the lowest range that will be used. (2) Introduce a saturated mixture of water and zero gas at...) in absolute units in Pascal. Gauges G3 and G4 may be used if the values are converted to the correct...

  3. 40 CFR 92.120 - NDIR analyzer calibration and checks.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ....120 NDIR analyzer calibration and checks. (a) NDIR water rejection ratio check. (1) Zero and span the analyzer on the lowest range that will be used. (2) Introduce a saturated mixture of water and zero gas at...) in absolute units in Pascal. Gauges G3 and G4 may be used if the values are converted to the correct...

  4. 40 CFR 92.120 - NDIR analyzer calibration and checks.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ....120 NDIR analyzer calibration and checks. (a) NDIR water rejection ratio check. (1) Zero and span the analyzer on the lowest range that will be used. (2) Introduce a saturated mixture of water and zero gas at...) in absolute units in Pascal. Gauges G3 and G4 may be used if the values are converted to the correct...

  5. 40 CFR 92.120 - NDIR analyzer calibration and checks.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ....120 NDIR analyzer calibration and checks. (a) NDIR water rejection ratio check. (1) Zero and span the analyzer on the lowest range that will be used. (2) Introduce a saturated mixture of water and zero gas at...) in absolute units in Pascal. Gauges G3 and G4 may be used if the values are converted to the correct...

  6. Asteroids as Calibration Standards in the Thermal Infrared -- Applications and Results from ISO

    NASA Astrophysics Data System (ADS)

    Müller, T. G.; Lagerros, J. S. V.

    Asteroids have been used extensively as calibration sources for ISO. We summarise the asteroid observational parameters in the thermal infrared and explain the important modelling aspects. Ten selected asteroids were extensively used for the absolute photometric calibration of ISOPHOT in the far-IR. Additionally, the point-like and bright asteroids turned out to be of great interest for many technical tests and calibration aspects. They have been used for testing the calibration for SWS and LWS, the validation of relative spectral response functions of different bands, for colour correction and filter leak tests. Currently, there is a strong emphasis on ISO cross-calibration, where the asteroids contribute in many fields. Well known asteroids have also been seen serendipitously in the CAM Parallel Mode and the PHT Serendipity Mode, allowing for validation and improvement of the photometric calibration of these special observing modes.

  7. Absolute Quantification of Middle- to High-Abundant Plasma Proteins via Targeted Proteomics.

    PubMed

    Dittrich, Julia; Ceglarek, Uta

    2017-01-01

    The increasing number of peptide and protein biomarker candidates requires expeditious and reliable quantification strategies. The utilization of liquid chromatography coupled to quadrupole tandem mass spectrometry (LC-MS/MS) for the absolute quantitation of plasma proteins and peptides facilitates the multiplexed verification of tens to hundreds of biomarkers from smallest sample quantities. Targeted proteomics assays derived from bottom-up proteomics principles rely on the identification and analysis of proteotypic peptides formed in an enzymatic digestion of the target protein. This protocol proposes a procedure for the establishment of a targeted absolute quantitation method for middle- to high-abundant plasma proteins waiving depletion or enrichment steps. Essential topics as proteotypic peptide identification and LC-MS/MS method development as well as sample preparation and calibration strategies are described in detail.

  8. A Method to Test Model Calibration Techniques: Preprint

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Judkoff, Ron; Polly, Ben; Neymark, Joel

    This paper describes a method for testing model calibration techniques. Calibration is commonly used in conjunction with energy retrofit audit models. An audit is conducted to gather information about the building needed to assemble an input file for a building energy modeling tool. A calibration technique is used to reconcile model predictions with utility data, and then the 'calibrated model' is used to predict energy savings from a variety of retrofit measures and combinations thereof. Current standards and guidelines such as BPI-2400 and ASHRAE-14 set criteria for 'goodness of fit' and assume that if the criteria are met, then themore » calibration technique is acceptable. While it is logical to use the actual performance data of the building to tune the model, it is not certain that a good fit will result in a model that better predicts post-retrofit energy savings. Therefore, the basic idea here is that the simulation program (intended for use with the calibration technique) is used to generate surrogate utility bill data and retrofit energy savings data against which the calibration technique can be tested. This provides three figures of merit for testing a calibration technique, 1) accuracy of the post-retrofit energy savings prediction, 2) closure on the 'true' input parameter values, and 3) goodness of fit to the utility bill data. The paper will also discuss the pros and cons of using this synthetic surrogate data approach versus trying to use real data sets of actual buildings.« less

  9. Accuracy of Monte Carlo photon transport simulation in characterizing brachytherapy dosimeter energy-response artefacts

    NASA Astrophysics Data System (ADS)

    Das, R. K.; Li, Z.; Perera, H.; Williamson, J. F.

    1996-06-01

    Practical dosimeters in brachytherapy, such as thermoluminescent dosimeters (TLD) and diodes, are usually calibrated against low-energy megavoltage beams. To measure absolute dose rate near a brachytherapy source, it is necessary to establish the energy response of the detector relative to that of the calibration energy. The purpose of this paper is to assess the accuracy of Monte Carlo photon transport (MCPT) simulation in modelling the absolute detector response as a function of detector geometry and photon energy. We have exposed two different sizes of TLD-100 (LiF chips) and p-type silicon diode detectors to calibrated , HDR source and superficial x-ray beams. For the Scanditronix electron-field diode, the relative detector response, defined as the measured detector readings per measured unit of air kerma, varied from (40 kVp beam) to ( beam). Similarly for the large and small chips the same quantity varied from and , respectively. Monte Carlo simulation was used to calculate the absorbed dose to the active volume of the detector per unit air kerma. If the Monte Carlo simulation is accurate, then the absolute detector response, which is defined as the measured detector reading per unit dose absorbed by the active detector volume, and is calculated by Monte Carlo simulation, should be a constant. For the diode, the absolute response is . For TLDs of size

  10. PACS photometer calibration block analysis

    NASA Astrophysics Data System (ADS)

    Moór, A.; Müller, T. G.; Kiss, C.; Balog, Z.; Billot, N.; Marton, G.

    2014-07-01

    The absolute stability of the PACS bolometer response over the entire mission lifetime without applying any corrections is about 0.5 % (standard deviation) or about 8 % peak-to-peak. This fantastic stability allows us to calibrate all scientific measurements by a fixed and time-independent response file, without using any information from the PACS internal calibration sources. However, the analysis of calibration block observations revealed clear correlations of the internal source signals with the evaporator temperature and a signal drift during the first half hour after the cooler recycling. These effects are small, but can be seen in repeated measurements of standard stars. From our analysis we established corrections for both effects which push the stability of the PACS bolometer response to about 0.2 % (stdev) or 2 % in the blue, 3 % in the green and 5 % in the red channel (peak-to-peak). After both corrections we still see a correlation of the signals with PACS FPU temperatures, possibly caused by parasitic heat influences via the Kevlar wires which connect the bolometers with the PACS Focal Plane Unit. No aging effect or degradation of the photometric system during the mission lifetime has been found.

  11. System for characterizing semiconductor materials and photovoltaic devices through calibration

    DOEpatents

    Sopori, B.L.; Allen, L.C.; Marshall, C.; Murphy, R.C.; Marshall, T.

    1998-05-26

    A method and apparatus are disclosed for measuring characteristics of a piece of material, typically semiconductor materials including photovoltaic devices. The characteristics may include dislocation defect density, grain boundaries, reflectance, external LBIC, internal LBIC, and minority carrier diffusion length. The apparatus includes a light source, an integrating sphere, and a detector communicating with a computer. The measurement or calculation of the characteristics is calibrated to provide accurate, absolute values. The calibration is performed by substituting a standard sample for the piece of material, the sample having a known quantity of one or more of the relevant characteristics. The quantity measured by the system of the relevant characteristic is compared to the known quantity and a calibration constant is created thereby. 44 figs.

  12. Cryogenic radiometers and intensity-stabilized lasers for Eos radiometric calibrations

    NASA Technical Reports Server (NTRS)

    Foukal, P.; Hoyt, C.; Jauniskis, L.

    1991-01-01

    Liquid helium-cooled electrical substitution radiometers (ESRs) provide irradiance standards with demonstrated absolute accuracy at the 0.01 percent level, spectrally flat response between the UV and IR, and sensitivity down to 0.1 nW/sq cm. We describe an automated system developed for NASA - Goddard Space Flight Center, consisting of a cryogenic ESR illuminated by servocontrolled laser beams. This system is designed to provide calibration of single-element and array detectors over the spectral range between 257nm in the UV to 10.6 microns in the IR. We also describe a cryogenic ESR optimized for black body calibrations that has been installed at NIST, and another that is under construction for calibrations of the CERES scanners planned for Eos.

  13. Correction to Method of Establishing the Absolute Radiometric Accuracy of Remote Sensing Systems While On-orbit Using Characterized Stellar Sources

    NASA Technical Reports Server (NTRS)

    Bowen, Howard S.; Cunningham, Douglas M.

    2007-01-01

    The contents include: 1) Brief history of related events; 2) Overview of original method used to establish absolute radiometric accuracy of remote sensing instruments using stellar sources; and 3) Considerations to improve the stellar calibration approach.

  14. Radiometric calibration and performance trends of the Clouds and Earth's Radiant Energy System (CERES) instrument sensors onboard the Terra and Aqua spacecraft

    NASA Astrophysics Data System (ADS)

    Shankar, Mohan; Priestley, Kory; Smith, Nathaniel; Smith, Nitchie; Thomas, Susan; Walikainen, Dale

    2015-10-01

    The Clouds and Earth's Radiant Energy System (CERES) instruments help to study the impact of clouds on the earth's radiation budget. There are currently five instruments- two each on board Aqua and Terra spacecraft and one on the Suomi NPP spacecraft to measure the earth's reflected shortwave and emitted longwave energy, which represent two components of the earth's radiation energy budget. Flight Models (FM) 1 and 2 are on Terra, FM 3 and 4 are on Aqua, and FM5 is on Suomi NPP. The measurements are made by three sensors on each instrument: a shortwave sensor that measures the 0.3-5 microns wavelength band, a window sensor that measures the water vapor window between 8-12 microns, and a total sensor that measures all incident energy (0.3- >100 microns). The required accuracy of CERES measurements of 0.5% in the longwave and 1% in the shortwave is achieved through an extensive pre-launch ground calibration campaign as well as on-orbit calibration and validation activities. Onorbit calibration is carried out using the Internal Calibration Module (ICM) that consists of a tungsten lamp, blackbodies, and a solar diffuser known as the Mirror Attenuator Mosaic (MAM). The ICM calibration provides information about the stability of the sensors' broadband radiometric gains on-orbit. Several validation studies are conducted in order to monitor the behavior of the instruments in various spectral bands. The CERES Edition-4 data products for the FM1-FM4 instruments incorporate the latest calibration methodologies to improve on the Edition-3 data products. In this paper, we discuss the updated calibration methodology and present some validation studies to demonstrate the improvement in the trends using the CERES Edition-4 data products for all four instruments.

  15. Sentinel-2 diffuser on-ground calibration

    NASA Astrophysics Data System (ADS)

    Mazy, E.; Camus, F.; Chorvalli, V.; Domken, I.; Laborie, A.; Marcotte, S.; Stockman, Y.

    2013-10-01

    The Sentinel-2 multi-spectral instrument (MSI) will provide Earth imagery in the frame of the Global Monitoring for Environment and Security (GMES) initiative which is a joint undertaking of the European Commission and the Agency. MSI instrument, under Astrium SAS responsibility, is a push-broom spectro imager in 13 spectral channels in VNIR and SWIR. The instrument radiometric calibration is based on in-flight calibration with sunlight through a quasi Lambertian diffuser. The diffuser covers the full pupil and the full field of view of the instrument. The on-ground calibration of the diffuser BRDF is mandatory to fulfil the in-flight performances. The diffuser is a 779 x 278 mm2 rectangular flat area in Zenith-A material. It is mounted on a motorised door in front of the instrument optical system entrance. The diffuser manufacturing and calibration is under the Centre Spatial of Liege (CSL) responsibility. The CSL has designed and built a completely remote controlled BRDF test bench able to handle large diffusers in their mount. As the diffuser is calibrated directly in its mount with respect to a reference cube, the error budget is significantly improved. The BRDF calibration is performed directly in MSI instrument spectral bands by using dedicated band-pass filters (VNIR and SWIR up to 2200 nm). Absolute accuracy is better than 0.5% in VNIR spectral bands and 1% in SWIR spectral bands. Performances were cross checked with other laboratories. The first MSI diffuser for flight model was calibrated mid 2013 on CSL BRDF measurement bench. The calibration of the diffuser consists mainly in thermal vacuum cycles, BRDF uniformity characterisation and BRDF angular characterisation. The total amount of measurement for the first flight model diffuser corresponds to more than 17500 BRDF acquisitions. Performance results are discussed in comparison with requirements.

  16. Landsat Data Continuity Mission Calibration and Validation

    NASA Technical Reports Server (NTRS)

    Markham, Brian L.; Dabney, Philip W.; Storey, James C.; Morfitt, Ron; Knight, Ed; Kvaran, Geir; Lee, Kenton

    2008-01-01

    The primary payload for the Landsat Data Continuity Mission (LDCM) is the Operational Land Imager (OLI), being built by Ball Aerospace and Technologies, under contract to NASA. The OLI has spectral bands similar to the Landsat-7 ETM+, minus the thermal band and with two new bands, a 443 nm band and 1375 nm cirrus detection band. On-board calibration systems include two solar diffusers (routine and pristine), a shutter and three sets of internal lamps (routine, backup and pristine). Being a pushbroom opposed to a whiskbroom design of ETM+, the system poses new challenges for characterization and calibration, chief among them being the large focal plane with 75000+ detectors. A comprehensive characterization and calibration plan is in place for the instrument and the data throughout the mission including Ball, NASA and the United States Geological Survey, which will take over operations of LDCM after on-orbit commissioning. Driving radiometric calibration requirements for OLI data include radiance calibration to 5% uncertainty (1 q); reflectance calibration to 3% uncertainty (1 q) and relative (detector-to-detector) calibration to 0.5% (J (r). Driving geometric calibration requirements for OLI include bandto- band registration of 4.5 meters (90% confidence), absolute geodetic accuracy of 65 meters (90% CE) and relative geodetic accuracy of 25 meters (90% CE). Key spectral, spatial and radiometric characterization of the OLI will occur in thermal vacuum at Ball Aerospace. During commissioning the OLI will be characterized and calibrated using celestial (sun, moon, stars) sources and terrestrial sources. The USGS EROS ground processing system will incorporate an image assessment system similar to Landsat-7 for characterization and calibration. This system will have the added benefit that characterization data will be extracted as part of the normal image data processing, so that the characterization data available will be significantly larger than for Landsat-7 ETM+.

  17. Assessment of uncertainty in ROLO lunar irradiance for on-orbit calibration

    USGS Publications Warehouse

    Stone, T.C.; Kieffer, H.H.; Barnes, W.L.; Butler, J.J.

    2004-01-01

    A system to provide radiometric calibration of remote sensing imaging instruments on-orbit using the Moon has been developed by the US Geological Survey RObotic Lunar Observatory (ROLO) project. ROLO has developed a model for lunar irradiance which treats the primary geometric variables of phase and libration explicitly. The model fits hundreds of data points in each of 23 VNIR and 9 SWIR bands; input data are derived from lunar radiance images acquired by the project's on-site telescopes, calibrated to exoatmospheric radiance and converted to disk-equivalent reflectance. Experimental uncertainties are tracked through all stages of the data processing and modeling. Model fit residuals are ???1% in each band over the full range of observed phase and libration angles. Application of ROLO lunar calibration to SeaWiFS has demonstrated the capability for long-term instrument response trending with precision approaching 0.1% per year. Current work involves assessing the error in absolute responsivity and relative spectral response of the ROLO imaging systems, and propagation of error through the data reduction and modeling software systems with the goal of reducing the uncertainty in the absolute scale, now estimated at 5-10%. This level is similar to the scatter seen in ROLO lunar irradiance comparisons of multiple spacecraft instruments that have viewed the Moon. A field calibration campaign involving NASA and NIST has been initiated that ties the ROLO lunar measurements to the NIST (SI) radiometric scale.

  18. Absolute single-ion solvation free energy scale in methanol determined by the lithium cluster-continuum approach.

    PubMed

    Pliego, Josefredo R; Miguel, Elizabeth L M

    2013-05-02

    Absolute solvation free energy of the lithium cation in methanol was calculated by the cluster-continuum quasichemical theory of solvation. Clusters with up to five methanol molecules were investigated using X3LYP, MP2, and MP4 methods with DZVP, 6-311+G(2df,2p), TZVPP+diff, and QZVPP+diff basis sets and including the cluster solvation through the PCM and SMD continuum models. Our calculations have determined a value of -118.1 kcal mol(-1) for the solvation free energy of the lithium, in close agreement with a value of -116.6 kcal mol(-1) consistent with the TATB assumption. Using data of solvation and transfer free energy of a pair of ions, electrode potentials and pKa, we have obtained the solvation free energy of 25 ions in methanol. Our analysis leads to a value of -253.6 kcal mol(-1) for the solvation free energy of the proton, which can be compared with the value of -263.5 kcal mol(-1) obtained by Kelly et al. using the cluster pair approximation. Considering that this difference is due to the methanol surface potential, we have estimated that it corresponds to -0.429 V.

  19. From Hubble's NGSL to Absolute Fluxes

    NASA Technical Reports Server (NTRS)

    Heap, Sara R.; Lindler, Don

    2012-01-01

    Hubble's Next Generation Spectral Library (NGSL) consists of R-l000 spectra of 374 stars of assorted temperature, gravity, and metallicity. Each spectrum covers the wavelength range, 0.18-1.00 microns. The library can be viewed and/or downloaded from the website, http://archive.stsci.edu/prepds/stisngsll. Stars in the NGSL are now being used as absolute flux standards at ground-based observatories. However, the uncertainty in the absolute flux is about 2%, which does not meet the requirements of dark-energy surveys. We are therefore developing an observing procedure that should yield fluxes with uncertainties less than 1 % and will take part in an HST proposal to observe up to 15 stars using this new procedure.

  20. The on-orbit calibration of the Fermi Large Area Telescope

    DOE PAGES

    Abdo, A. A.; Ackermann, M.; Ajello, M.; ...

    2009-09-06

    The Large Area Telescope (LAT) on-board the Fermi Gamma-ray Space Telescope began its on-orbit operations on June 23, 2008. Calibrations, defined in a generic sense, correspond to synchronization of trigger signals, optimization of delays for latching data, determination of detector thresholds, gains and responses, evaluation of the perimeter of the South Atlantic Anomaly (SAA), measurements of live time, of absolute time, and internal and spacecraft boresight alignments. Here in this work, we describe on-orbit calibration results obtained using known astrophysical sources, galactic cosmic rays, and charge injection into the front-end electronics of each detector. Instrument response functions will be describedmore » in a separate publication. This paper demonstrates the stability of calibrations and describes minor changes observed since launch. Lastly, these results have been used to calibrate the LAT datasets to be publicly released in August 2009.« less

  1. ELENA MCP detector: absolute efficiency measurement for low energy neutral atoms

    NASA Astrophysics Data System (ADS)

    Rispoli, R.; De Angelis, E.; Colasanti, L.; Vertolli, N.; Orsini, S.; Scheer, J.; Mura, A.; Milillo, A.; Wurz, P.; Selci, S.; Di Lellis, A. M.; Leoni, R.; D'Alessandro, M.; Mattioli, F.; Cibella, S.

    2012-04-01

    MicroChannel plates (MCP) detectors are frequently used in space instrumentation for detecting a wide range of radiation and particles. In particular, the capability to detect non-thermal low energy neutral species is crucial for the sensor ELENA (Emitted Low-Energy Neutral Atoms), part of the package SERENA (Search for Exospheric Refilling and Emitted Natural Abundances) on board the BepiColombo mission to Mercury to be launched in 2014. ELENA is a TOF sensor, based on a novel concept ultra-sonic oscillating shutter (Start section)which is operated at frequencies up to 50 kHz; a MCP detector is used as a Stop section. It is aimed to detect neutral atoms in the range 10 eV - 5 keV, within 70° FOV, perpendicular to the S/C orbital plane. ELENA will monitor the emission of neutral atoms from the whole surface of Mercury thanks to the spacecraft motion. The major scientific objectives are the interaction between the environment and the planet, the global particle loss-rate and the remote sensing of the surface properties. In particular, surface release processes are investigated by identifying particles release from the surface, via solar wind-induced ion sputtering (<1eV and >100 eV) as well as Hydrogen back-scattered at hundreds eV. MCP absolute detection efficiency for very low energy neutral atoms (E< 30eV) is a crucial point not yet investigated. At the MEFISTO facility of the Physical Institute of University of Bern (CH), measurements on three different type of MCPs coating have been performed providing the behaviors of MCP detection efficiency in the range 10eV-1keV. Outcomes from such measurements are here discussed.

  2. The Absolute Vector Magnetometers on Board Swarm, Lessons Learned From Two Years in Space.

    NASA Astrophysics Data System (ADS)

    Hulot, G.; Leger, J. M.; Vigneron, P.; Brocco, L.; Olsen, N.; Jager, T.; Bertrand, F.; Fratter, I.; Sirol, O.; Lalanne, X.

    2015-12-01

    ESA's Swarm satellites carry 4He absolute magnetometers (ASM), designed by CEA-Léti and developed in partnership with CNES. These instruments are the first-ever space-born magnetometers to use a common sensor to simultaneously deliver 1Hz independent absolute scalar and vector readings of the magnetic field. They have provided the very high accuracy scalar field data nominally required by the mission (for both science and calibration purposes, since each satellite also carries a low noise high frequency fluxgate magnetometer designed by DTU), but also very useful experimental absolute vector data. In this presentation, we will report on the status of the instruments, as well as on the various tests and investigations carried out using these experimental data since launch in November 2013. In particular, we will illustrate the advantages of flying ASM instruments on space-born magnetic missions for nominal data quality checks, geomagnetic field modeling and science objectives.

  3. A new network of faint calibration stars from the near infrared spectrometer (NIRS) on the IRTS

    NASA Technical Reports Server (NTRS)

    Freund, Minoru M.; Matsuura, Mikako; Murakami, Hiroshi; Cohen, Martin; Noda, Manabu; Matsuura, Shuji; Matsumoto, Toshio

    1997-01-01

    The point source extraction and calibration of the near infrared spectrometer (NIRS) onboard the Infrared Telescope in Space (IRTS) is described. About 7 percent of the sky was observed during a one month mission in the range of 1.4 micrometers to 4 micrometers. The accuracy of the spectral shape and absolute values of calibration stars provided by the NIRS/IRTS were validated.

  4. Experimental Verification of the Individual Energy Dependencies of the Partial L-Shell Photoionization Cross Sections of Pd and Mo

    NASA Astrophysics Data System (ADS)

    Hönicke, Philipp; Kolbe, Michael; Müller, Matthias; Mantler, Michael; Krämer, Markus; Beckhoff, Burkhard

    2014-10-01

    An experimental method for the verification of the individually different energy dependencies of L1-, L2-, and L3- subshell photoionization cross sections is described. The results obtained for Pd and Mo are well in line with theory regarding both energy dependency and absolute values, and confirm the theoretically calculated cross sections by Scofield from the early 1970 s and, partially, more recent data by Trzhaskovskaya, Nefedov, and Yarzhemsky. The data also demonstrate the questionability of quantitative x-ray spectroscopical results based on the widely used fixed jump ratio approximated cross sections with energy independent ratios. The experiments are carried out by employing the radiometrically calibrated instrumentation of the Physikalisch-Technische Bundesanstalt at the electron storage ring BESSY II in Berlin; the obtained fluorescent intensities are thereby calibrated at an absolute level in reference to the International System of Units. Experimentally determined fixed fluorescence line ratios for each subshell are used for a reliable deconvolution of overlapping fluorescence lines. The relevant fundamental parameters of Mo and Pd are also determined experimentally in order to calculate the subshell photoionization cross sections independently of any database.

  5. Preliminary Error Budget for the Reflected Solar Instrument for the Climate Absolute Radiance and Refractivity Observatory

    NASA Technical Reports Server (NTRS)

    Thome, Kurtis; Gubbels, Timothy; Barnes, Robert

    2011-01-01

    The Climate Absolute Radiance and Refractivity Observatory (CLARREO) plans to observe climate change trends over decadal time scales to determine the accuracy of climate projections. The project relies on spaceborne earth observations of SI-traceable variables sensitive to key decadal change parameters. The mission includes a reflected solar instrument retrieving at-sensor reflectance over the 320 to 2300 nm spectral range with 500-m spatial resolution and 100-km swath. Reflectance is obtained from the ratio of measurements of the earth s surface to those while viewing the sun relying on a calibration approach that retrieves reflectance with uncertainties less than 0.3%. The calibration is predicated on heritage hardware, reduction of sensor complexity, adherence to detector-based calibration standards, and an ability to simulate in the laboratory on-orbit sources in both size and brightness to provide the basis of a transfer to orbit of the laboratory calibration including a link to absolute solar irradiance measurements. The Climate Absolute Radiance and Refractivity Observatory (CLARREO) mission addresses the need to observe high-accuracy, long-term climate change trends and to use decadal change observations as the most critical method to determine the accuracy of climate change projections such as those in the IPCC Report. A rigorously known accuracy of both decadal change observations as well as climate projections is critical in order to enable sound policy decisions. The CLARREO Project will implement a spaceborne earth observation mission designed to provide rigorous SI traceable observations (i.e., radiance, reflectance, and refractivity) that are sensitive to a wide range of key decadal change variables, including: 1) Surface temperature and atmospheric temperature profile 2) Atmospheric water vapor profile 3) Far infrared water vapor greenhouse 4) Aerosol properties and anthropogenic aerosol direct radiative forcing 5) Total and spectral solar

  6. Real-Time and Meter-Scale Absolute Distance Measurement by Frequency-Comb-Referenced Multi-Wavelength Interferometry.

    PubMed

    Wang, Guochao; Tan, Lilong; Yan, Shuhua

    2018-02-07

    We report on a frequency-comb-referenced absolute interferometer which instantly measures long distance by integrating multi-wavelength interferometry with direct synthetic wavelength interferometry. The reported interferometer utilizes four different wavelengths, simultaneously calibrated to the frequency comb of a femtosecond laser, to implement subwavelength distance measurement, while direct synthetic wavelength interferometry is elaborately introduced by launching a fifth wavelength to extend a non-ambiguous range for meter-scale measurement. A linearity test performed comparatively with a He-Ne laser interferometer shows a residual error of less than 70.8 nm in peak-to-valley over a 3 m distance, and a 10 h distance comparison is demonstrated to gain fractional deviations of ~3 × 10 -8 versus 3 m distance. Test results reveal that the presented absolute interferometer enables precise, stable, and long-term distance measurements and facilitates absolute positioning applications such as large-scale manufacturing and space missions.

  7. Achieving Climate Change Absolute Accuracy in Orbit

    NASA Technical Reports Server (NTRS)

    Wielicki, Bruce A.; Young, D. F.; Mlynczak, M. G.; Thome, K. J; Leroy, S.; Corliss, J.; Anderson, J. G.; Ao, C. O.; Bantges, R.; Best, F.; hide

    2013-01-01

    The Climate Absolute Radiance and Refractivity Observatory (CLARREO) mission will provide a calibration laboratory in orbit for the purpose of accurately measuring and attributing climate change. CLARREO measurements establish new climate change benchmarks with high absolute radiometric accuracy and high statistical confidence across a wide range of essential climate variables. CLARREO's inherently high absolute accuracy will be verified and traceable on orbit to Système Internationale (SI) units. The benchmarks established by CLARREO will be critical for assessing changes in the Earth system and climate model predictive capabilities for decades into the future as society works to meet the challenge of optimizing strategies for mitigating and adapting to climate change. The CLARREO benchmarks are derived from measurements of the Earth's thermal infrared spectrum (5-50 micron), the spectrum of solar radiation reflected by the Earth and its atmosphere (320-2300 nm), and radio occultation refractivity from which accurate temperature profiles are derived. The mission has the ability to provide new spectral fingerprints of climate change, as well as to provide the first orbiting radiometer with accuracy sufficient to serve as the reference transfer standard for other space sensors, in essence serving as a "NIST [National Institute of Standards and Technology] in orbit." CLARREO will greatly improve the accuracy and relevance of a wide range of space-borne instruments for decadal climate change. Finally, CLARREO has developed new metrics and methods for determining the accuracy requirements of climate observations for a wide range of climate variables and uncertainty sources. These methods should be useful for improving our understanding of observing requirements for most climate change observations.

  8. Calibration and temperature correction of heat dissipation matric potential sensors

    USGS Publications Warehouse

    Flint, A.L.; Campbell, G.S.; Ellett, K.M.; Calissendorff, C.

    2002-01-01

    This paper describes how heat dissipation sensors, used to measure soil water matric potential, were analyzed to develop a normalized calibration equation and a temperature correction method. Inference of soil matric potential depends on a correlation between the variable thermal conductance of the sensor's porous ceramic and matric poten-tial. Although this correlation varies among sensors, we demonstrate a normalizing procedure that produces a single calibration relationship. Using sensors from three sources and different calibration methods, the normalized calibration resulted in a mean absolute error of 23% over a matric potential range of -0.01 to -35 MPa. Because the thermal conductivity of variably saturated porous media is temperature dependent, a temperature correction is required for application of heat dissipation sensors in field soils. A temperature correction procedure is outlined that reduces temperature dependent errors by 10 times, which reduces the matric potential measurement errors by more than 30%. The temperature dependence is well described by a thermal conductivity model that allows for the correction of measurements at any temperature to measurements at the calibration temperature.

  9. Field Calibration of the Saltation-Abrasion Model Using Measurements of the Energy Delivered to the Channel Bed

    NASA Astrophysics Data System (ADS)

    Turowski, J. M.; Wyss, C. R.; Beer, A. R.

    2014-12-01

    The saltation-abrasion model (SAM) is one of the highest-developed process models for fluvial bedrock erosion, describing bedrock erosion due to the impact of saltating bedload particles. The fundamental assumption in the model is a proportionality of the erosion rate and the energy delivered to the channel bed by these impacts. So far, the SAM has been calibrated on laboratory data, but field tests are rare. Here, we exploit the availability of high-quality field data at the Erlenbach bedload observatory to test and calibrate the SAM. The Erlenbach is a small, steep stream in the Swiss Prealps that hosts a well-instrumented observatory for bedload transport and erosion. Bedload samples can be taken during floods with automatic basket samplers and bedload transport rates are measured continuously with Swiss plate geophones, a surrogate method for bedload monitoring. The geophone plates can also be used to measure the energy transferred to the bed by passingbedload. Thus, we can calibrate the SAM by exploiting independent data on particle impacts, the energy they transfer to the bed, and bedload samples including grain size distributions. We find that the dimensionless pre-factor to the model is dependent on grain size. Predictions of bedrock erosion can be compared to spatial erosion data obtained from successive scans of bedrock slabs installed in the channel bed immediately upstream of the plate geophones.

  10. Absolute cross sections of the 86Sr(α,n)89Zr reaction at energies of astrophysical interest

    NASA Astrophysics Data System (ADS)

    Oprea, Andreea; Glodariu, Tudor; Filipescu, Dan; Gheorghe, Ioana; Mitu, Andreea; Boromiza, Marian; Bucurescu, Dorel; Costache, Cristian; Cata-Danil, Irina; Florea, Nicoleta; Ghita, Dan Gabriel; Ionescu, Alina; Marginean, Nicolae; Marginean, Raluca; Mihai, Constantin; Mihai, Radu; Negret, Alexandru; Nita, Cristina; Olacel, Adina; Pascu, Sorin; Sotty, Cristophe; Suvaila, Rares; Stan, Lucian; Stroe, Lucian; Serban, Andreea; Stiru, Irina; Toma, Sebastian; Turturica, Andrei; Ujeniuc, Sorin

    2017-09-01

    Absolute cross sections for the 86Sr(α,n)89Zr reaction at energies close to the Gamow window are reported. Three thin SrF2 targets were irradiated using the 9 MV Tandem facility in IFIN-HH Bucharest that delivered α beams for the activation process. Two high-purity Germanium detectors were used to measure the induced activity of 89Zr in a low background environment. The experimental results are in very good agreement with Hauser-Feshbach statistical model calculations performed with the TALYS code.

  11. Beta decay of the fission product 125Sb and a new complete evaluation of absolute gamma ray transition intensities

    NASA Astrophysics Data System (ADS)

    Rajput, M. U.; Ali, N.; Hussain, S.; Mujahid, S. A.; MacMahon, D.

    2012-04-01

    The radionuclide 125Sb is a long-lived fission product, which decays to 125Te by negative beta emission with a half-life of 1008 day. The beta decay is followed by the emission of several gamma radiations, ranging from low to medium energy, that can suitably be used for high-resolution detector calibrations, decay heat calculations and in many other applications. In this work, the beta decay of 125Sb has been studied in detail. The complete published experimental data of relative gamma ray intensities in the beta decay of the radionuclide 125Sb has been compiled. The consistency analysis was performed and discrepancies found at several gamma ray energies. Evaluation of the discrepant data was carried out using Normalized Residual and RAJEVAL methods. The decay scheme balance was carried out using beta branching ratios, internal conversion coefficients, populating and depopulating gamma transitions to 125Te levels. The work has resulted in the consistent conversion factor equal to 29.59(13) %, and determined a new evaluated set of the absolute gamma ray emission probabilities. The work has also shown 22.99% of the delayed intensity fraction as outgoing from the 58 d isomeric 144 keV energy level and 77.01% of the prompt intensity fraction reaching to the ground state from the other excited states. The results are discussed and compared with previous evaluations. The present work includes additional experimental data sets which were not included in the previous evaluations. A new set of recommended relative and absolute gamma ray emission probabilities is presented.

  12. 40 CFR 60.5220 - What are the performance testing, monitoring, and calibration requirements for compliance with...

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... per million dry volume absolute value of the mean difference between the method and the continuous... activities (including, as applicable, calibration checks and required zero and span adjustments). Any such...

  13. Determination of the efficiency of commercially available dose calibrators for beta-emitters.

    PubMed

    Valley, Jean-François; Bulling, Shelley; Leresche, Michel; Wastiel, Claude

    2003-03-01

    The goals of this investigation are to determine whether commercially available dose calibrators can be used to measure the activity of beta-emitting radionuclides used in pain palliation and to establish whether manufacturer-supplied calibration factors are appropriate for this purpose. Six types of commercially available dose calibrators were studied. Dose calibrator response was controlled for 5 gamma-emitters used for calibration or typically encountered in routine use. For the 4 most commonly used beta-emitters ((32)P, (90)Sr, (90)Y, and (169)Er) dose calibrator efficiency was determined in the syringe geometry used for clinical applications. Efficiency of the calibrators was also measured for (153)Sm and (186)Re, 2 beta-emitters with significant gamma-contributions. Source activities were traceable to national standards. All calibrators measured gamma-emitters with a precision of +/-10%, in compliance with Swiss regulatory requirements. For beta-emitters, dose calibrator intrinsic efficiency depends strongly on the maximal energy of the beta-spectrum and is notably low for (169)Er. Manufacturer-supplied calibration factors give accurate results for beta-emitters with maximal beta-energy in the middle-energy range (1 MeV) but are not appropriate for use with low-energy ((169)Er) or high-energy ((90)Y) beta-emitters. beta-emitters with significant gamma-contributions behave like gamma-emitters. Commercially available dose calibrators have an intrinsic efficiency that is sufficient for the measurement of beta-emitters, including beta-emitters with a low maximum beta-energy. Manufacturer-supplied calibration factors are reliable for gamma-emitters and beta-emitters in the middle-energy range. For low- and high-energy beta-emitters, the use of manufacturer-supplied calibration factors introduces significant measurement inaccuracy.

  14. Experimental feasibility of the airborne measurement of absolute oil fluorescence spectral conversion efficiency

    NASA Technical Reports Server (NTRS)

    Hoge, F. E.; Swift, R. N.

    1983-01-01

    Airborne lidar oil spill experiments carried out to determine the practicability of the AOFSCE (absolute oil fluorescence spectral conversion efficiency) computational model are described. The results reveal that the model is suitable over a considerable range of oil film thicknesses provided the fluorescence efficiency of the oil does not approach the minimum detection sensitivity limitations of the lidar system. Separate airborne lidar experiments to demonstrate measurement of the water column Raman conversion efficiency are also conducted to ascertain the ultimate feasibility of converting such relative oil fluorescence to absolute values. Whereas the AOFSCE model is seen as highly promising, further airborne water column Raman conversion efficiency experiments with improved temporal or depth-resolved waveform calibration and software deconvolution techniques are thought necessary for a final determination of suitability.

  15. Testing Hadronic Interactions at Ultrahigh Energies with Air Showers Measured by the Pierre Auger Observatory

    NASA Astrophysics Data System (ADS)

    Aab, A.; Abreu, P.; Aglietta, M.; Ahn, E. J.; Al Samarai, I.; Albuquerque, I. F. M.; Allekotte, I.; Allen, J. D.; Allison, P.; Almela, A.; Alvarez Castillo, J.; Alvarez-Muñiz, J.; Ambrosio, M.; Anastasi, G. A.; Anchordoqui, L.; Andrada, B.; Andringa, S.; Aramo, C.; Arqueros, F.; Arsene, N.; Asorey, H.; Assis, P.; Aublin, J.; Avila, G.; Badescu, A. M.; Baus, C.; Beatty, J. J.; Becker, K. H.; Bellido, J. A.; Berat, C.; Bertaina, M. E.; Bertou, X.; Biermann, P. L.; Billoir, P.; Biteau, J.; Blaess, S. G.; Blanco, A.; Blazek, J.; Bleve, C.; Blümer, H.; Boháčová, M.; Boncioli, D.; Bonifazi, C.; Borodai, N.; Botti, A. M.; Brack, J.; Brancus, I.; Bretz, T.; Bridgeman, A.; Briechle, F. L.; Buchholz, P.; Bueno, A.; Buitink, S.; Buscemi, M.; Caballero-Mora, K. S.; Caccianiga, B.; Caccianiga, L.; Cancio, A.; Canfora, F.; Caramete, L.; Caruso, R.; Castellina, A.; Cataldi, G.; Cazon, L.; Cester, R.; Chavez, A. G.; Chiavassa, A.; Chinellato, J. A.; Chirinos Diaz, J. C.; Chudoba, J.; Clay, R. W.; Colalillo, R.; Coleman, A.; Collica, L.; Coluccia, M. R.; Conceição, R.; Contreras, F.; Cooper, M. J.; Coutu, S.; Covault, C. E.; Cronin, J.; Dallier, R.; D'Amico, S.; Daniel, B.; Dasso, S.; Daumiller, K.; Dawson, B. R.; de Almeida, R. M.; de Jong, S. J.; De Mauro, G.; de Mello Neto, J. R. T.; De Mitri, I.; de Oliveira, J.; de Souza, V.; Debatin, J.; del Peral, L.; Deligny, O.; Dhital, N.; Di Giulio, C.; Di Matteo, A.; Díaz Castro, M. L.; Diogo, F.; Dobrigkeit, C.; D'Olivo, J. C.; Dorofeev, A.; dos Anjos, R. C.; Dova, M. T.; Dundovic, A.; Ebr, J.; Engel, R.; Erdmann, M.; Erfani, M.; Escobar, C. O.; Espadanal, J.; Etchegoyen, A.; Falcke, H.; Fang, K.; Farrar, G. R.; Fauth, A. C.; Fazzini, N.; Ferguson, A. P.; Fick, B.; Figueira, J. M.; Filevich, A.; Filipčič, A.; Fratu, O.; Freire, M. M.; Fujii, T.; Fuster, A.; Gallo, F.; García, B.; Garcia-Pinto, D.; Gate, F.; Gemmeke, H.; Gherghel-Lascu, A.; Ghia, P. L.; Giaccari, U.; Giammarchi, M.; Giller, M.; Głas, D.; Glaser, C.; Glass, H.; Golup, G.; Gómez Berisso, M.; Gómez Vitale, P. F.; González, N.; Gookin, B.; Gordon, J.; Gorgi, A.; Gorham, P.; Gouffon, P.; Griffith, N.; Grillo, A. F.; Grubb, T. D.; Guarino, F.; Guedes, G. P.; Hampel, M. R.; Hansen, P.; Harari, D.; Harrison, T. A.; Harton, J. L.; Hasankiadeh, Q.; Haungs, A.; Hebbeker, T.; Heck, D.; Heimann, P.; Herve, A. E.; Hill, G. C.; Hojvat, C.; Hollon, N.; Holt, E.; Homola, P.; Hörandel, J. R.; Horvath, P.; Hrabovský, M.; Huege, T.; Hulsman, J.; Insolia, A.; Isar, P. G.; Jandt, I.; Jansen, S.; Jarne, C.; Johnsen, J. A.; Josebachuili, M.; Kääpä, A.; Kambeitz, O.; Kampert, K. H.; Kasper, P.; Katkov, I.; Keilhauer, B.; Kemp, E.; Kieckhafer, R. M.; Klages, H. O.; Kleifges, M.; Kleinfeller, J.; Krause, R.; Krohm, N.; Kuempel, D.; Kukec Mezek, G.; Kunka, N.; Kuotb Awad, A.; LaHurd, D.; Latronico, L.; Lauscher, M.; Lautridou, P.; Lebrun, P.; Legumina, R.; Leigui de Oliveira, M. A.; Letessier-Selvon, A.; Lhenry-Yvon, I.; Link, K.; Lopes, L.; López, R.; López Casado, A.; Lucero, A.; Malacari, M.; Mallamaci, M.; Mandat, D.; Mantsch, P.; Mariazzi, A. G.; Marin, V.; Mariş, I. C.; Marsella, G.; Martello, D.; Martinez, H.; Martínez Bravo, O.; Masías Meza, J. J.; Mathes, H. J.; Mathys, S.; Matthews, J.; Matthews, J. A. J.; Matthiae, G.; Maurizio, D.; Mayotte, E.; Mazur, P. O.; Medina, C.; Medina-Tanco, G.; Mello, V. B. B.; Melo, D.; Menshikov, A.; Messina, S.; Micheletti, M. I.; Middendorf, L.; Minaya, I. A.; Miramonti, L.; Mitrica, B.; Molina-Bueno, L.; Mollerach, S.; Montanet, F.; Morello, C.; Mostafá, M.; Moura, C. A.; Müller, G.; Muller, M. A.; Müller, S.; Naranjo, I.; Navas, S.; Necesal, P.; Nellen, L.; Nelles, A.; Neuser, J.; Nguyen, P. H.; Niculescu-Oglinzanu, M.; Niechciol, M.; Niemietz, L.; Niggemann, T.; Nitz, D.; Nosek, D.; Novotny, V.; Nožka, H.; Núñez, L. A.; Ochilo, L.; Oikonomou, F.; Olinto, A.; Pakk Selmi-Dei, D.; Palatka, M.; Pallotta, J.; Papenbreer, P.; Parente, G.; Parra, A.; Paul, T.; Pech, M.; Pedreira, F.; Pekala, J.; Pelayo, R.; Peña-Rodriguez, J.; Pepe, I. M.; Pereira, L. A. S.; Perrone, L.; Petermann, E.; Peters, C.; Petrera, S.; Phuntsok, J.; Piegaia, R.; Pierog, T.; Pieroni, P.; Pimenta, M.; Pirronello, V.; Platino, M.; Plum, M.; Porowski, C.; Prado, R. R.; Privitera, P.; Prouza, M.; Quel, E. J.; Querchfeld, S.; Quinn, S.; Rautenberg, J.; Ravel, O.; Ravignani, D.; Revenu, B.; Ridky, J.; Risse, M.; Ristori, P.; Rizi, V.; Rodrigues de Carvalho, W.; Rodriguez Rojo, J.; Rodríguez-Frías, M. D.; Rogozin, D.; Rosado, J.; Roth, M.; Roulet, E.; Rovero, A. C.; Saffi, S. J.; Saftoiu, A.; Salazar, H.; Saleh, A.; Salesa Greus, F.; Salina, G.; Sanabria Gomez, J. D.; Sánchez, F.; Sanchez-Lucas, P.; Santos, E. M.; Santos, E.; Sarazin, F.; Sarkar, B.; Sarmento, R.; Sarmiento-Cano, C.; Sato, R.; Scarso, C.; Schauer, M.; Scherini, V.; Schieler, H.; Schmidt, D.; Scholten, O.; Schoorlemmer, H.; Schovánek, P.; Schröder, F. G.; Schulz, A.; Schulz, J.; Schumacher, J.; Sciutto, S. J.; Segreto, A.; Settimo, M.; Shadkam, A.; Shellard, R. C.; Sigl, G.; Sima, O.; Śmiałkowski, A.; Šmída, R.; Snow, G. R.; Sommers, P.; Sonntag, S.; Sorokin, J.; Squartini, R.; Stanca, D.; Stanič, S.; Stapleton, J.; Stasielak, J.; Strafella, F.; Stutz, A.; Suarez, F.; Suarez Durán, M.; Sudholz, T.; Suomijärvi, T.; Supanitsky, A. D.; Sutherland, M. S.; Swain, J.; Szadkowski, Z.; Taborda, O. A.; Tapia, A.; Tepe, A.; Theodoro, V. M.; Timmermans, C.; Todero Peixoto, C. J.; Tomankova, L.; Tomé, B.; Tonachini, A.; Torralba Elipe, G.; Torres Machado, D.; Travnicek, P.; Trini, M.; Ulrich, R.; Unger, M.; Urban, M.; Valbuena-Delgado, A.; Valdés Galicia, J. F.; Valiño, I.; Valore, L.; van Aar, G.; van Bodegom, P.; van den Berg, A. M.; van Vliet, A.; Varela, E.; Vargas Cárdenas, B.; Varner, G.; Vázquez, J. R.; Vázquez, R. A.; Veberič, D.; Verzi, V.; Vicha, J.; Videla, M.; Villaseñor, L.; Vorobiov, S.; Wahlberg, H.; Wainberg, O.; Walz, D.; Watson, A. A.; Weber, M.; Weindl, A.; Wiencke, L.; Wilczyński, H.; Winchen, T.; Wittkowski, D.; Wundheiler, B.; Wykes, S.; Yang, L.; Yapici, T.; Yelos, D.; Zas, E.; Zavrtanik, D.; Zavrtanik, M.; Zepeda, A.; Zimmermann, B.; Ziolkowski, M.; Zong, Z.; Zuccarello, F.; Pierre Auger Collaboration

    2016-11-01

    Ultrahigh energy cosmic ray air showers probe particle physics at energies beyond the reach of accelerators. Here we introduce a new method to test hadronic interaction models without relying on the absolute energy calibration, and apply it to events with primary energy 6-16 EeV (ECM=110 - 170 TeV ), whose longitudinal development and lateral distribution were simultaneously measured by the Pierre Auger Observatory. The average hadronic shower is 1.33 ±0.16 (1.61 ±0.21 ) times larger than predicted using the leading LHC-tuned models EPOS-LHC (QGSJetII-04), with a corresponding excess of muons.

  16. APEX calibration facility: status and first commissioning results

    NASA Astrophysics Data System (ADS)

    Suhr, Birgit; Fries, Jochen; Gege, Peter; Schwarzer, Horst

    2006-09-01

    The paper presents the current status of the operational calibration facility that can be used for radiometric, spectral and geometric on-ground characterisation and calibration of imaging spectrometers. The European Space Agency (ESA) co-funded this establishment at DLR Oberpfaffenhofen within the framework of the hyper-spectral imaging spectrometer Airborne Prism Experiment (APEX). It was designed to fulfil the requirements for calibration of APEX, but can also be used for other imaging spectrometers. A description of the hardware set-up of the optical bench will be given. Signals from two sides can alternatively be sent to the hyper-spectral sensor under investigation. Frome one side the spatial calibration will be done by using an off-axis collimator and six slits of different width and orientation to measure the line spread function (LSF) in flight direction as well as across flight direction. From the other side the spectral calibration will be performed. A monochromator provides radiation in a range from 380 nm to 13 μm with a bandwidth between 0.1 nm in the visible and 5 nm in the thermal infrared. For the relative radiometric calibration a large integrating sphere of 1.65 m diameter and exit port size of 55 cm × 40 cm is used. The absolute radiometric calibration will be done using a small integrating sphere with 50 cm diameter that is regularly calibrated according to national standards. This paper describes the hardware components and their accuracy, and it presents the software interface for automation of the measurements.

  17. Calculation of the absolute free energy of a smectic-A phase

    NASA Astrophysics Data System (ADS)

    Huang, Chien-Cheng; Ramachandran, Sanoop; Ryckaert, Jean-Paul

    2014-12-01

    In this paper, we provide a scheme to compute the absolute free energy of a smectic-A phase via the "indirect method." The state of interest is connected through a three-step reversible path to a reference state. This state consists of a low-density layer of rods coupled to two external fields maintaining these rods close to the layer's plane and oriented preferably normal to the layer. The low-density free energy of the reference state can be computed on the basis of the relevant second virial coefficients between two rods coupled to the two external fields. We apply this technique to the Gay-Berne potential for calamitics with a parameter set leading to stable isotropic (I), nematic (N), smectic-A (SmA), and crystal (Cr) phases. We locate the I-SmA phase transition at low pressure and the sequence of phase transitions I-N-SmA along higher-pressure isobars and we establish the location of the I-N-SmA triple point. Close to this triple point, we show that the N-SmA transition is clearly first order. Our results are compared to the coexistence lines of the approximate phase diagram elucidated by de Miguel et al. [J. Chem. Phys. 121, 11183 (2004), 10.1063/1.1810472] established through the direct observation of the sequence of phase transitions occurring along isobars under heating or cooling sequences of runs. Finally, we discuss the potential of our technique in studying similar transitions observed on layered phases under confinement.

  18. Calibration of water-velocity meters

    USGS Publications Warehouse

    Kaehrle, William R.; Bowie, James E.

    1988-01-01

    The U.S. Geological Survey, Department of the Interior, as part of its responsibility to appraise the quantity of water resources in the United States, maintains facilities for the calibration of water-velocity meters at the Gulf Coast Hydroscience Center's Hydraulic Laboratory Facility, NSTL, Mississippi. These meters are used in hydrologic studies by the Geological Survey, U.S. Army Corps of Engineers, U.S. Department of Energy, state agencies, universities, and others in the public and private sector. This paper describes calibration facilities, types of water-velocity meters calibrated, and calibration standards, methods and results.

  19. Results from E ∥B Neutral Particle Analyzer and Calibration Ion Beam System on C-2U

    NASA Astrophysics Data System (ADS)

    Clary, Ryan; Roquemore, A.; Kolmogorov, A.; Ivanov, A.; Korepanov, S.; Magee, R.; Medley, S.; Smirnov, A.; Tiunov, M.; TAE Team

    2015-11-01

    C-2U is a a high-confinement, advanced beam driven FRC which aims to sustain the configuration for > 5 ms, in excess of typical MHD and fast particle instability times, as well as fast particle slowing down times. Fast particle dynamics are critical to C-2U performance and several diagnostics have been deployed to characterize the fast particle population, including neutron and proton detectors, an electrostatic neutral particle analyzer, and neutral particle bolometers. To increase our understanding of fast particle behavior and supplement existing diagnostics an E ∥B NPA was acquired from PPPL which simultaneously measures H0 and D0 flux between 2 and 22 keV with high energy resolution. In addition, a small, high purity, ion beam system has been constructed and tested to calibrate absolutely fast particle detectors. Here we report results of measurements from the E ∥B analyzer on C-2U and inferred fast particle behavior, as well as the status of the calibration ion beam system.

  20. Towards a global network of gamma-ray detector calibration facilities

    NASA Astrophysics Data System (ADS)

    Tijs, Marco; Koomans, Ronald; Limburg, Han

    2016-09-01

    Gamma-ray logging tools are applied worldwide. At various locations, calibration facilities are used to calibrate these gamma-ray logging systems. Several attempts have been made to cross-correlate well known calibration pits, but this cross-correlation does not include calibration facilities in Europe or private company calibration facilities. Our aim is to set-up a framework that gives the possibility to interlink all calibration facilities worldwide by using `tools of opportunity' - tools that have been calibrated in different calibration facilities, whether this usage was on a coordinated basis or by coincidence. To compare the measurement of different tools, it is important to understand the behaviour of the tools in the different calibration pits. Borehole properties, such as diameter, fluid, casing and probe diameter strongly influence the outcome of gamma-ray borehole logging. Logs need to be properly calibrated and compensated for these borehole properties in order to obtain in-situ grades or to do cross-hole correlation. Some tool providers provide tool-specific correction curves for this purpose. Others rely on reference measurements against sources of known radionuclide concentration and geometry. In this article, we present an attempt to set-up a framework for transferring `local' calibrations to be applied `globally'. This framework includes corrections for any geometry and detector size to give absolute concentrations of radionuclides from borehole measurements. This model is used to compare measurements in the calibration pits of Grand Junction, located in the USA; Adelaide (previously known as AMDEL), located in Adelaide Australia; and Stonehenge, located at Medusa Explorations BV in the Netherlands.

  1. Energy resolution of the CdTe-XPAD detector: calibration and potential for Laue diffraction measurements on protein crystals.

    PubMed

    Medjoubi, Kadda; Thompson, Andrew; Bérar, Jean-François; Clemens, Jean-Claude; Delpierre, Pierre; Da Silva, Paulo; Dinkespiler, Bernard; Fourme, Roger; Gourhant, Patrick; Guimaraes, Beatriz; Hustache, Stéphanie; Idir, Mourad; Itié, Jean-Paul; Legrand, Pierre; Menneglier, Claude; Mercere, Pascal; Picca, Frederic; Samama, Jean-Pierre

    2012-05-01

    The XPAD3S-CdTe, a CdTe photon-counting pixel array detector, has been used to measure the energy and the intensity of the white-beam diffraction from a lysozyme crystal. A method was developed to calibrate the detector in terms of energy, allowing incident photon energy measurement to high resolution (approximately 140 eV), opening up new possibilities in energy-resolved X-ray diffraction. In order to demonstrate this, Laue diffraction experiments were performed on the bending-magnet beamline METROLOGIE at Synchrotron SOLEIL. The X-ray energy spectra of diffracted spots were deduced from the indexed Laue patterns collected with an imaging-plate detector and then measured with both the XPAD3S-CdTe and the XPAD3S-Si, a silicon photon-counting pixel array detector. The predicted and measured energy of selected diffraction spots are in good agreement, demonstrating the reliability of the calibration method. These results open up the way to direct unit-cell parameter determination and the measurement of high-quality Laue data even at low resolution. Based on the success of these measurements, potential applications in X-ray diffraction opened up by this type of technology are discussed.

  2. Preflight and in-flight calibration plan for ASTER

    USGS Publications Warehouse

    Ono, A.; Sakuma, F.; Arai, K.; Yamaguchi, Y.; Fujisada, H.; Slater, P.N.; Thome, K.J.; Palluconi, Frank Don; Kieffer, H.H.

    1996-01-01

    Preflight and in-flight radiometric calibration plans are described for the Advanced Spaceborne Thermal Emission and Reflection Radiometer (ASTER) that is a multispectral optical imager of high spatial resolution. It is designed for the remote sensing from orbit of land surfaces and clouds, and is expected to be launched in 1998 on NASA's EOS AM-1 spacecraft. ASTER acquires images in three separate spectral regions, the visible and near-infrared (VNIR), the shortwave infrared (SWIR), and the thermal infrared (TIR) with three imaging radiometer subsystems. The absolute radiometric accuracy is required to be better than 4% for VNIR and SWIR radiance measurements and 1 to 3 K, depending on the temperature regions from 200 to 370 K, for TIR temperature measurements. A reference beam is introduced at the entrance pupil of each imaging radiometer to provide the in-flight calibration Thus, the ASTER instrument includes internal onboard calibration units that comprise incandescent lamps for the VNIR and SWIR and a blackbody radiator for the TIR as reference sources. The calibration reliability of the VNIR and SWIR is enhanced by a dual system of onboard calibration units as well as by high-stability halogen lamps. A ground calibration system of spectral radiances traceable to fixed-point blackbodies is used for the preflight VNIR and SWIR calibration. Because of the possibility of nonuniform contamination effects on the partial-aperture onboard calibration, it is desirable to check their results with respect to other methods. Reflectance- and radiance-based vicarious methods have been developed for this purpose. These, and methods involving in-flight cross-calibration with other sensors are also described.

  3. Improvement in absolute calibration accuracy of Landsat-5 TM with Landsat-7 ETM+ data

    USGS Publications Warehouse

    Chander, G.; Markham, B.L.; Micijevic, E.; Teillet, P.M.; Helder, D.L.; ,

    2005-01-01

    The ability to detect and quantify changes in the Earth's environment depends on satellites sensors that can provide calibrated, consistent measurements of Earth's surface features through time. A critical step in this process is to put image data from subsequent generations of sensors onto a common radiometric scale. To evaluate Landsat-5 (L5) Thematic Mapper's (TM) utility in this role, image pairs from the L5 TM and Landsat-7 (L7) Enhanced Thematic Mapper Plus (ETM+) sensors were compared. This approach involves comparison of surface observations based on image statistics from large common areas observed eight days apart by the two sensors. The results indicate a significant improvement in the consistency of L5 TM data with respect to L7 ETM+ data, achieved using a revised Look-Up-Table (LUT) procedure as opposed to the historical Internal Calibrator (IC) procedure previously used in the L5 TM product generation system. The average percent difference in reflectance estimates obtained from the L5 TM agree with those from the L7 ETM+ in the Visible and Near Infrared (VNIR) bands to within four percent and in the Short Wave Infrared (SWIR) bands to within six percent.

  4. An integrated development facility for the calibration of low-energy charged particle flight instrumentation

    NASA Technical Reports Server (NTRS)

    Biddle, A. P.; Reynolds, J. M.

    1985-01-01

    A system was developed for the calibration and development of thermal ion instrumentation. The system provides an extended beam with usable current rates, approx. 1 pA/sq cm, at beam energies as low as 1 eV, with much higher values available with increasing energy. A tandem electrostatic and variable geometry magnetic mirror configuration within the ion source optimizes the use of the ionizing electrons. The system is integrated under microcomputer control to allow automatic control and monitoring of the beam energy and composition and the mass and angle-dependent response of the instrument under test. The system is pumped by a combination of carbon vane and cryogenic sorption roughing pumps and ion and liquid helium operating pumps.

  5. SU-E-T-749: Thorough Calibration of MOSFET Dosimeters

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Plenkovich, D; Thomas, J

    Purpose: To improve the accuracy of the MOSFET calibration procedure by performing the measurement several times and calculating the average value of the calibration factor for various photon and electron energies. Methods: The output of three photon and six electron beams of Varian Trilogy linear accelerator SN 5878 was calibrated. Five reinforced standard sensitivity MOSFET dosimeters were placed in the calibration jig and connected to the Reader Module. As the backscatter material was used 7 cm of Virtual Water. The MOSFET dosimeters were covered with 1.5 cm thick bolus for the regular and SRS 6 MV beams, 3 cm bolusmore » for 15 MV beam, 1.5 cm bolus for 6 MeV electron beam, and 2 cm bolus for the electron energies of 9, 12, 15, 18, and 22 MeV. The dosimeters were exposed to 100 MU, and the calibration factor was determined using the mobileMOSFET software. To improve the accuracy of calibration, this procedure was repeated ten times and the calibration factors were averaged. Results: As the number of calibrations was increasing the variability of calibration factors of different dosimeters was decreasing. After ten calibrations, the calibration factors for all five dosimeters were within 1% of one another for all energies, except 6 MV SRS photons and 6 MeV electrons, for which the variability was 2%. Conclusions: The described process results in calibration factors which are almost independent of modality or energy. Once calibrated, the dosimeters may be used for in-vivo dosimetry or for daily verification of the beam output. Measurement of the radiation dose under bolus and scatter to the eye are examples of frequent use of calibrated MOSFET dosimeters. The calibration factor determined for full build-up is used under these circumstances. To the best of our knowledge, such thorough procedure for calibrating MOSFET dosimeters has not been reported previously. Best Medical Canada provided MOSFET dosimeters for this project.« less

  6. Energy deposition evaluation for ultra-low energy electron beam irradiation systems using calibrated thin radiochromic film and Monte Carlo simulations.

    PubMed

    Matsui, S; Mori, Y; Nonaka, T; Hattori, T; Kasamatsu, Y; Haraguchi, D; Watanabe, Y; Uchiyama, K; Ishikawa, M

    2016-05-01

    For evaluation of on-site dosimetry and process design in industrial use of ultra-low energy electron beam (ULEB) processes, we evaluate the energy deposition using a thin radiochromic film and a Monte Carlo simulation. The response of film dosimeter was calibrated using a high energy electron beam with an acceleration voltage of 2 MV and alanine dosimeters with uncertainty of 11% at coverage factor 2. Using this response function, the results of absorbed dose measurements for ULEB were evaluated from 10 kGy to 100 kGy as a relative dose. The deviation between the responses of deposit energy on the films and Monte Carlo simulations was within 15%. As far as this limitation, relative dose estimation using thin film dosimeters with response function obtained by high energy electron irradiation and simulation results is effective for ULEB irradiation processes management.

  7. A procedure for accurate calibration of the orientation of the three sensors in a vector magnetometer. [at the Goddard Space Flight Center

    NASA Technical Reports Server (NTRS)

    Mcpherron, R. L.

    1977-01-01

    Procedures are described for the calibration of a vector magnetometer of high absolute accuracy. It is assumed that the calibration will be performed in the magnetic test facility of Goddard Space Flight Center (GSFC). The first main section of the report describes the test equipment and facility calibrations required. The second presents procedures for calibrating individual sensors. The third discusses the calibration of the sensor assembly. In a final section recommendations are made to GSFC for modification of the test facility required to carry out the calibration procedures.

  8. Research on camera on orbit radial calibration based on black body and infrared calibration stars

    NASA Astrophysics Data System (ADS)

    Wang, YuDu; Su, XiaoFeng; Zhang, WanYing; Chen, FanSheng

    2018-05-01

    Affected by launching process and space environment, the response capability of a space camera must be attenuated. So it is necessary for a space camera to have a spaceborne radiant calibration. In this paper, we propose a method of calibration based on accurate Infrared standard stars was proposed for increasing infrared radiation measurement precision. As stars can be considered as a point target, we use them as the radiometric calibration source and establish the Taylor expansion method and the energy extrapolation model based on WISE catalog and 2MASS catalog. Then we update the calibration results from black body. Finally, calibration mechanism is designed and the technology of design is verified by on orbit test. The experimental calibration result shows the irradiance extrapolation error is about 3% and the accuracy of calibration methods is about 10%, the results show that the methods could satisfy requirements of on orbit calibration.

  9. Teaching Absolute Value Meaningfully

    ERIC Educational Resources Information Center

    Wade, Angela

    2012-01-01

    What is the meaning of absolute value? And why do teachers teach students how to solve absolute value equations? Absolute value is a concept introduced in first-year algebra and then reinforced in later courses. Various authors have suggested instructional methods for teaching absolute value to high school students (Wei 2005; Stallings-Roberts…

  10. Special electronic distance meter calibration for precise engineering surveying industrial applications

    NASA Astrophysics Data System (ADS)

    Braun, Jaroslav; Štroner, Martin; Urban, Rudolf

    2015-05-01

    All surveying instruments and their measurements suffer from some errors. To refine the measurement results, it is necessary to use procedures restricting influence of the instrument errors on the measured values or to implement numerical corrections. In precise engineering surveying industrial applications the accuracy of the distances usually realized on relatively short distance is a key parameter limiting the resulting accuracy of the determined values (coordinates, etc.). To determine the size of systematic and random errors of the measured distances were made test with the idea of the suppression of the random error by the averaging of the repeating measurement, and reducing systematic errors influence of by identifying their absolute size on the absolute baseline realized in geodetic laboratory at the Faculty of Civil Engineering CTU in Prague. The 16 concrete pillars with forced centerings were set up and the absolute distances between the points were determined with a standard deviation of 0.02 millimetre using a Leica Absolute Tracker AT401. For any distance measured by the calibrated instruments (up to the length of the testing baseline, i.e. 38.6 m) can now be determined the size of error correction of the distance meter in two ways: Firstly by the interpolation on the raw data, or secondly using correction function derived by previous FFT transformation usage. The quality of this calibration and correction procedure was tested on three instruments (Trimble S6 HP, Topcon GPT-7501, Trimble M3) experimentally using Leica Absolute Tracker AT401. By the correction procedure was the standard deviation of the measured distances reduced significantly to less than 0.6 mm. In case of Topcon GPT-7501 is the nominal standard deviation 2 mm, achieved (without corrections) 2.8 mm and after corrections 0.55 mm; in case of Trimble M3 is nominal standard deviation 3 mm, achieved (without corrections) 1.1 mm and after corrections 0.58 mm; and finally in case of Trimble

  11. A rare gas optics-free absolute photon flux and energy analyzer for solar and planetary observations

    NASA Technical Reports Server (NTRS)

    Judge, Darrell L.

    1994-01-01

    We have developed a prototype spectrometer for space applications requiring long term absolute EUV photon flux measurements. In this recently developed spectrometer, the energy spectrum of the incoming photons is transformed directly into an electron energy spectrum by taking advantage of the photoelectric effect in one of several rare gases at low pressures. Using an electron energy spectrometer, followed by an electron multiplier detector, pulses due to individual electrons are counted. The overall efficiency of this process can be made essentially independent of gain drifts in the signal path, and the secular degradation of optical components which is often a problem in other techniques is avoided. A very important feature of this approach is its freedom from the problem of overlapping spectral orders that plagues grating EUV spectrometers. An instrument with these features has not been flown before, but is essential to further advances in our understanding of solar EUV flux dynamics, and the coupled dynamics of terrestrial and planetary atmospheres. The detailed characteristics of this optics-free spectrometer are presented in the publications section.

  12. Absolute cascade-free cross-sections for the 2S to 2P transition in Zn(+) using electron-energy-loss and merged-beams methods

    NASA Technical Reports Server (NTRS)

    Smith, Steven J.; Man, K.-F.; Chutjian, A.; Mawhorter, R. J.; Williams, I. D.

    1991-01-01

    Absolute cascade-free excitation cross-sections in an ion have been measured for the resonance 2S to 2P transition in Zn(+) using electron-energy-loss and merged electron-ion beams methods. Measurements were carried out at electron energies of below threshold to 6 times threshold. Comparisons are made with 2-, 5-, and 15-state close-coupling and distorted-wave theories. There is good agreement between experiment and the 15-state close-coupling cross-sections over the energy range of the calculations.

  13. Real-Time and Meter-Scale Absolute Distance Measurement by Frequency-Comb-Referenced Multi-Wavelength Interferometry

    PubMed Central

    Tan, Lilong; Yan, Shuhua

    2018-01-01

    We report on a frequency-comb-referenced absolute interferometer which instantly measures long distance by integrating multi-wavelength interferometry with direct synthetic wavelength interferometry. The reported interferometer utilizes four different wavelengths, simultaneously calibrated to the frequency comb of a femtosecond laser, to implement subwavelength distance measurement, while direct synthetic wavelength interferometry is elaborately introduced by launching a fifth wavelength to extend a non-ambiguous range for meter-scale measurement. A linearity test performed comparatively with a He–Ne laser interferometer shows a residual error of less than 70.8 nm in peak-to-valley over a 3 m distance, and a 10 h distance comparison is demonstrated to gain fractional deviations of ~3 × 10−8 versus 3 m distance. Test results reveal that the presented absolute interferometer enables precise, stable, and long-term distance measurements and facilitates absolute positioning applications such as large-scale manufacturing and space missions. PMID:29414897

  14. Seafloor multibeam backscatter calibration experiment: comparing 45°-tilted 38-kHz split-beam echosounder and 30-kHz multibeam data

    NASA Astrophysics Data System (ADS)

    Ladroit, Yoann; Lamarche, Geoffroy; Pallentin, Arne

    2018-06-01

    Obtaining absolute seafloor backscatter measurements from hydrographic multibeam echosounders is yet to be achieved. We propose a low-cost experiment to calibrate the various acquisition modes of a 30-kHz Kongsberg EM 302 multibeam echosounder in a range of water depths. We use a 38-kHz Simrad EK60 calibrated fisheries split-beam echosounder mounted at 45° angle on the vessel's hull as a reference for the calibration. The processing to extract seafloor backscatter from the EK60 requires bottom detection, ray tracing and motion compensation to obtain acceptable geo-referenced backscatter measurements from this non-hydrographic system. Our experiment was run in Cook Strait, New Zealand, on well-known seafloor patches in shallow, mid, and deep-water depths. Despite acquisition issues due to weather, our results demonstrate the strong potential of such an approach to obtain system's absolute calibration which is required for quantitative use of backscatter strength data.

  15. Calibration of Thomson scattering system on VEST

    NASA Astrophysics Data System (ADS)

    Kim, Y.-G.; Lee, J.-H.; Kim, D.; Yoo, M.-G.; Lee, H.; Hwang, Y. S.; Na, Y.-S.

    2017-12-01

    The Thomson scattering system has been recently installed on Versatile Experiment Spherical Torus (VEST) to measure the electron temperature and the density of the core plasmas. Since the calibration of the system is required for the accurate measurement of these parameters, a polychromator and the system efficiency are calibrated. The bias voltage of the detector is optimized and the relative responsivity of the polychromator is measured to analyse the spectral broadening. The tendency of decreasing responsivity because of the ambient temperature change is addressed together. The efficiencies of the alignments using HeNe laser and Nd:YAG laser are compared. After the alignment using Rayleigh scattering, it is improved ~ 7 times while the peak signal of the stray light is decreased. To evaluate the efficiencies of the alignment using HeNe laser, it is compared with the efficiency of the fine alignment by Rayleigh scattering. After absolute calibration is done, the Thomson scattering signal is estimated theoretically. The Bayesian analysis is tried using the synthetic data, and the results show that the input temperature and the density are inside the contour of the 90% confident level. The calibrated Thomson scattering system will provide the meaningful information of the core plasma of the VEST.

  16. Uncertainty Evaluations of the CRCS In-orbit Field Radiometric Calibration Methods for Thermal Infrared Channels of FENGYUN Meteorological Satellites

    NASA Astrophysics Data System (ADS)

    Zhang, Y.; Rong, Z.; Min, M.; Hao, X.; Yang, H.

    2017-12-01

    Meteorological satellites have become an irreplaceable weather and ocean-observing tool in China. These satellites are used to monitor natural disasters and improve the efficiency of many sectors of Chinese national economy. It is impossible to ignore the space-derived data in the fields of meteorology, hydrology, and agriculture, as well as disaster monitoring in China, a large agricultural country. For this reason, China is making a sustained effort to build and enhance its meteorological observing system and application system. The first Chinese polar-orbiting weather satellite was launched in 1988. Since then China has launched 14 meteorological satellites, 7 of which are sun synchronous and 7 of which are geostationary satellites; China will continue its two types of meteorological satellite programs. In order to achieve the in-orbit absolute radiometric calibration of the operational meteorological satellites' thermal infrared channels, China radiometric calibration sites (CRCS) established a set of in-orbit field absolute radiometric calibration methods (FCM) for thermal infrared channels (TIR) and the uncertainty of this method was evaluated and analyzed based on TERRA/AQUA MODIS observations. Comparisons between the MODIS at pupil brightness temperatures (BTs) and the simulated BTs at the top of atmosphere using radiative transfer model (RTM) based on field measurements showed that the accuracy of the current in-orbit field absolute radiometric calibration methods was better than 1.00K (@300K, K=1) in thermal infrared channels. Therefore, the current CRCS field calibration method for TIR channels applied to Chinese metrological satellites was with favorable calibration accuracy: for 10.5-11.5µm channel was better than 0.75K (@300K, K=1) and for 11.5-12.5µm channel was better than 0.85K (@300K, K=1).

  17. Transverse Pupil Shifts for Adaptive Optics Non-Common Path Calibration

    NASA Technical Reports Server (NTRS)

    Bloemhof, Eric E.

    2011-01-01

    A simple new way of obtaining absolute wavefront measurements with a laboratory Fizeau interferometer was recently devised. In that case, the observed wavefront map is the difference of two cavity surfaces, those of the mirror under test and of an unknown reference surface on the Fizeau s transmission flat. The absolute surface of each can be determined by applying standard wavefront reconstruction techniques to two grids of absolute surface height differences of the mirror under test, obtained from pairs of measurements made with slight transverse shifts in X and Y. Adaptive optics systems typically provide an actuated periscope between wavefront sensor (WFS) and commonmode optics, used for lateral registration of deformable mirror (DM) to WFS. This periscope permits independent adjustment of either pupil or focal spot incident on the WFS. It would be used to give the required lateral pupil motion between common and non-common segments, analogous to the lateral shifts of the two phase contributions in the lab Fizeau. The technique is based on a completely new approach to calibration of phase. It offers unusual flexibility with regard to the transverse spatial frequency scales probed, and will give results quite quickly, making use of no auxiliary equipment other than that built into the adaptive optics system. The new technique may be applied to provide novel calibration information about other optical systems in which the beam may be shifted transversely in a controlled way.

  18. FIELD CALIBRATION OF A TLD ALBEDO DOSEMETER IN THE HIGH-ENERGY NEUTRON FIELD OF CERF.

    PubMed

    Haninger, T; Kleinau, P; Haninger, S

    2017-04-28

    The new albedo dosemeter-type AWST-TL-GD 04 has been calibrated in the CERF neutron field (Cern-EU high-energy Reference Field). This type of albedo dosemeter is based on thermoluminescent detectors (TLDs) and used by the individual monitoring service of the Helmholtz Zentrum München (AWST) since 2015 for monitoring persons, who are exposed occupationally against photon and neutron radiation. The motivation for this experiment was to gain a field specific neutron correction factor Nn for workplaces at high-energy particle accelerators. Nn is a dimensionless factor relative to a basic detector calibration with 137Cs and is used to calculate the personal neutron dose in terms of Hp(10) from the neutron albedo signal. The results show that the sensitivity of the albedo dosemeter for this specific neutron field is not significantly lower as for fast neutrons of a radionuclide source like 252Cf. The neutron correction factor varies between 0.73 and 1.16 with a midrange value of 0.94. The albedo dosemeter is therefore appropriate to monitor persons, which are exposed at high-energy particle accelerators. © The Author 2016. Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

  19. Projecting Individualized Absolute Invasive Breast Cancer Risk in US Hispanic Women.

    PubMed

    Banegas, Matthew P; John, Esther M; Slattery, Martha L; Gomez, Scarlett Lin; Yu, Mandi; LaCroix, Andrea Z; Pee, David; Chlebowski, Rowan T; Hines, Lisa M; Thompson, Cynthia A; Gail, Mitchell H

    2017-02-01

    There is no model to estimate absolute invasive breast cancer risk for Hispanic women. The San Francisco Bay Area Breast Cancer Study (SFBCS) provided data on Hispanic breast cancer case patients (533 US-born, 553 foreign-born) and control participants (464 US-born, 947 foreign-born). These data yielded estimates of relative risk (RR) and attributable risk (AR) separately for US-born and foreign-born women. Nativity-specific absolute risks were estimated by combining RR and AR information with nativity-specific invasive breast cancer incidence and competing mortality rates from the California Cancer Registry and Surveillance, Epidemiology, and End Results program to develop the Hispanic risk model (HRM). In independent data, we assessed model calibration through observed/expected (O/E) ratios, and we estimated discriminatory accuracy with the area under the receiver operating characteristic curve (AUC) statistic. The US-born HRM included age at first full-term pregnancy, biopsy for benign breast disease, and family history of breast cancer; the foreign-born HRM also included age at menarche. The HRM estimated lower risks than the National Cancer Institute's Breast Cancer Risk Assessment Tool (BCRAT) for US-born Hispanic women, but higher risks in foreign-born women. In independent data from the Women's Health Initiative, the HRM was well calibrated for US-born women (observed/expected [O/E] ratio = 1.07, 95% confidence interval [CI] = 0.81 to 1.40), but seemed to overestimate risk in foreign-born women (O/E ratio = 0.66, 95% CI = 0.41 to 1.07). The AUC was 0.564 (95% CI = 0.485 to 0.644) for US-born and 0.625 (95% CI = 0.487 to 0.764) for foreign-born women. The HRM is the first absolute risk model that is based entirely on data specific to Hispanic women by nativity. Further studies in Hispanic women are warranted to evaluate its validity. Published by Oxford University Press 2016. This work is written by US Government employees and is in the

  20. Projecting Individualized Absolute Invasive Breast Cancer Risk in US Hispanic Women

    PubMed Central

    John, Esther M.; Slattery, Martha L.; Gomez, Scarlett Lin; Yu, Mandi; LaCroix, Andrea Z.; Pee, David; Chlebowski, Rowan T.; Hines, Lisa M.; Thompson, Cynthia A.; Gail, Mitchell H.

    2017-01-01

    Background: There is no model to estimate absolute invasive breast cancer risk for Hispanic women. Methods: The San Francisco Bay Area Breast Cancer Study (SFBCS) provided data on Hispanic breast cancer case patients (533 US-born, 553 foreign-born) and control participants (464 US-born, 947 foreign-born). These data yielded estimates of relative risk (RR) and attributable risk (AR) separately for US-born and foreign-born women. Nativity-specific absolute risks were estimated by combining RR and AR information with nativity-specific invasive breast cancer incidence and competing mortality rates from the California Cancer Registry and Surveillance, Epidemiology, and End Results program to develop the Hispanic risk model (HRM). In independent data, we assessed model calibration through observed/expected (O/E) ratios, and we estimated discriminatory accuracy with the area under the receiver operating characteristic curve (AUC) statistic. Results: The US-born HRM included age at first full-term pregnancy, biopsy for benign breast disease, and family history of breast cancer; the foreign-born HRM also included age at menarche. The HRM estimated lower risks than the National Cancer Institute’s Breast Cancer Risk Assessment Tool (BCRAT) for US-born Hispanic women, but higher risks in foreign-born women. In independent data from the Women’s Health Initiative, the HRM was well calibrated for US-born women (observed/expected [O/E] ratio = 1.07, 95% confidence interval [CI] = 0.81 to 1.40), but seemed to overestimate risk in foreign-born women (O/E ratio = 0.66, 95% CI = 0.41 to 1.07). The AUC was 0.564 (95% CI = 0.485 to 0.644) for US-born and 0.625 (95% CI = 0.487 to 0.764) for foreign-born women. Conclusions: The HRM is the first absolute risk model that is based entirely on data specific to Hispanic women by nativity. Further studies in Hispanic women are warranted to evaluate its validity. PMID:28003316