Easy Absolute Values? Absolutely
ERIC Educational Resources Information Center
Taylor, Sharon E.; Mittag, Kathleen Cage
2015-01-01
The authors teach a problem-solving course for preservice middle-grades education majors that includes concepts dealing with absolute-value computations, equations, and inequalities. Many of these students like mathematics and plan to teach it, so they are adept at symbolic manipulations. Getting them to think differently about a concept that they…
NASA Astrophysics Data System (ADS)
Kazama, T.; Hideaki, H.; Miura, S.; Kaufman, M.; Sato, T.; Larsen, C. F.; Freymueller, J. T.
2013-12-01
It is well known that gravity values have been decreasing in Southeast Alaska, mainly due to glacier mass changes from the end of the Little Ice Age to the present. For example, absolute gravity measurements made by the ISEA1 project (2006-2008) showed a maximum gravity change rate of -5.6 micro-gal/year (Sun et al., 2010; Sato et al., 2012a), which was consistent with large uplift rates obtained from GPS data (Larsen et al., 2005). However, the newly-obtained absolute gravity values in 2012 were about 10 micro-gal greater than expected based on the gravity trends of Sun et al. (2010), possibly because of above-average snowfall in the winter of 2011-2012 (Sato et al., 2012b). In order to monitor spatiotemporal gravity changes associated with glacier mass changes, seasonal hydrological gravity changes should be quantified via continuous gravity observations and/or hydrological modeling. We thus installed a superconducting gravimeter iGrav (serial number: 003) at Egan Library, University of Alaska Southeast in June 2012, as part of the ISEA2 project (2011-2015). The mass position (unit: volts) and air pressure have been recorded every second since June 2012, and the gravity value was then calculated from the mass position, using the scale factor of -89.561 micro-gal/V (Sato et al., 2012b). After the removal of tidal gravity changes using the BAYTAP software (Tamura et al., 1991), a gravity change of 4 micro-gal in peak to peak was extracted from the long-term superconducting gravity data from June 2012 to July 2013. Note that this non-tidal gravity change includes the instrumental drift, although the drift rate was very small (less than 1 micro-gal/year) according to the linear regression to the gravity change. We will discuss possible physical mechanisms of the non-tidal gravity change associated with water redistribution, using a hydrological model (e.g., Kazama et al., 2012) and/or long-term weather data. In addition, we also measured absolute gravity values at 6
Teaching Absolute Value Meaningfully
ERIC Educational Resources Information Center
Wade, Angela
2012-01-01
What is the meaning of absolute value? And why do teachers teach students how to solve absolute value equations? Absolute value is a concept introduced in first-year algebra and then reinforced in later courses. Various authors have suggested instructional methods for teaching absolute value to high school students (Wei 2005; Stallings-Roberts…
The AFGL absolute gravity program
NASA Technical Reports Server (NTRS)
Hammond, J. A.; Iliff, R. L.
1978-01-01
A brief discussion of the AFGL's (Air Force Geophysics Laboratory) program in absolute gravity is presented. Support of outside work and in-house studies relating to gravity instrumentation are discussed. A description of the current transportable system is included and the latest results are presented. These results show good agreement with measurements at the AFGL site by an Italian system. The accuracy obtained by the transportable apparatus is better than 0.1 microns sq sec 10 microgal and agreement with previous measurements is within the combined uncertainties of the measurements.
The National Geodetic Survey absolute gravity program
NASA Astrophysics Data System (ADS)
Peter, George; Moose, Robert E.; Wessells, Claude W.
1989-03-01
The National Geodetic Survey absolute gravity program will utilize the high precision afforded by the JILAG-4 instrument to support geodetic and geophysical research, which involves studies of vertical motions, identification and modeling of other temporal variations, and establishment of reference values. The scientific rationale of these objectives is given, the procedures used to collect gravity and environmental data in the field are defined, and the steps necessary to correct and remove unwanted environmental effects are stated. In addition, site selection criteria, methods of concomitant environmental data collection and relative gravity observations, and schedule and logistics are discussed.
Global absolut gravity reference system as replacement of IGSN 71
NASA Astrophysics Data System (ADS)
Wilmes, Herbert; Wziontek, Hartmut; Falk, Reinhard
2015-04-01
The determination of precise gravity field parameters is of great importance in a period in which earth sciences are achieving the necessary accuracy to monitor and document global change processes. This is the reason why experts from geodesy and metrology joined in a successful cooperation to make absolute gravity observations traceable to SI quantities, to improve the metrological kilogram definition and to monitor mass movements and smallest height changes for geodetic and geophysical applications. The international gravity datum is still defined by the International Gravity Standardization Net adopted in 1971 (IGSN 71). The network is based upon pendulum and spring gravimeter observations taken in the 1950s and 60s supported by the early free fall absolute gravimeters. Its gravity values agreed in every case to better than 0.1 mGal. Today, more than 100 absolute gravimeters are in use worldwide. The series of repeated international comparisons confirms the traceability of absolute gravity measurements to SI quantities and confirm the degree of equivalence of the gravimeters in the order of a few µGal. For applications in geosciences where e.g. gravity changes over time need to be analyzed, the temporal stability of an absolute gravimeter is most important. Therefore, the proposition is made to replace the IGSN 71 by an up-to-date gravity reference system which is based upon repeated absolute gravimeter comparisons and a global network of well controlled gravity reference stations.
Be Resolute about Absolute Value
ERIC Educational Resources Information Center
Kidd, Margaret L.
2007-01-01
This article explores how conceptualization of absolute value can start long before it is introduced. The manner in which absolute value is introduced to students in middle school has far-reaching consequences for their future mathematical understanding. It begins to lay the foundation for students' understanding of algebra, which can change…
Absolute Gravity Datum in the Age of Cold Atom Gravimeters
NASA Astrophysics Data System (ADS)
Childers, V. A.; Eckl, M. C.
2014-12-01
The international gravity datum is defined today by the International Gravity Standardization Net of 1971 (IGSN-71). The data supporting this network was measured in the 1950s and 60s using pendulum and spring-based gravimeter ties (plus some new ballistic absolute meters) to replace the prior protocol of referencing all gravity values to the earlier Potsdam value. Since this time, gravimeter technology has advanced significantly with the development and refinement of the FG-5 (the current standard of the industry) and again with the soon-to-be-available cold atom interferometric absolute gravimeters. This latest development is anticipated to provide improvement in the range of two orders of magnitude as compared to the measurement accuracy of technology utilized to develop ISGN-71. In this presentation, we will explore how the IGSN-71 might best be "modernized" given today's requirements and available instruments and resources. The National Geodetic Survey (NGS), along with other relevant US Government agencies, is concerned about establishing gravity control to establish and maintain high order geodetic networks as part of the nation's essential infrastructure. The need to modernize the nation's geodetic infrastructure was highlighted in "Precise Geodetic Infrastructure, National Requirements for a Shared Resource" National Academy of Science, 2010. The NGS mission, as dictated by Congress, is to establish and maintain the National Spatial Reference System, which includes gravity measurements. Absolute gravimeters measure the total gravity field directly and do not involve ties to other measurements. Periodic "intercomparisons" of multiple absolute gravimeters at reference gravity sites are used to constrain the behavior of the instruments to ensure that each would yield reasonably similar measurements of the same location (i.e. yield a sufficiently consistent datum when measured in disparate locales). New atomic interferometric gravimeters promise a significant
Observing absolute gravity change in the Fennoscandian postglacial rebound area
NASA Astrophysics Data System (ADS)
Mäkinen, J.; Engfeldt, A.; Gitlein, O.; Kaminskis, J.; Klopping, F.; Oja, T.; Paršeliunas, E.; Pettersen, B. R.; Strykowski, G.; Wilmes, H.
2009-04-01
Absolute gravity measurements in the Fennoscandian postglacial rebound area started already in 1976 when a team from Istituto di Metrología "G. Colonnetti" (Torino) measured six stations with the rise-and-fall gravimeter IMGC (Cannizzo et al., 1978). In 1980 two stations were measured by the team of the AN SSSR from Novosibirsk, using the gravimeter GABL (Arnautov et al., 1982). From the beginning the goal was to establish reference values for future remeasurement in order to detect gravity change due to the postglacial rebound. The maximum uplift rates are 1 cm/yr, which implies a surface gravity change of about -2 microgal/yr. In 1988, regular repeat measurements were began by the Finnish Geodetic Institute (FGI) with the JILAg-5. An important advance was the introduction of FG5 gravimeters into the work by BKG (Frankfurt a/M) and NOAA (Boulder, CO) in 1993. In 2003 annual large-scale campaigns with FG5 gravimeters started, coordinated by the Working Group for Geodynamics of the Nordic Geodetic Commission (NKG). This was prompted by the launch of the GRACE satellite gravity mission, which made it important to collect a comprehensive set of ground-truth values of gravity change during the lifetime of the satellite pair. The initial participation by gravimeter teams of Leibniz Universität Hannover, FGI and BKG has since expanded to include the University of Life Sciences (Ås, Norway) and Lantmäteriet (Gävle, Sweden). At present some 50 sites have repeated absolute measurements and most of them are co-located with continuous GPS. We give an overview of the sites, instrumentation and campaigns, and show examples of results achieved so far.
Inequalities, Absolute Value, and Logical Connectives.
ERIC Educational Resources Information Center
Parish, Charles R.
1992-01-01
Presents an approach to the concept of absolute value that alleviates students' problems with the traditional definition and the use of logical connectives in solving related problems. Uses a model that maps numbers from a horizontal number line to a vertical ray originating from the origin. Provides examples solving absolute value equations and…
Investigating Absolute Value: A Real World Application
ERIC Educational Resources Information Center
Kidd, Margaret; Pagni, David
2009-01-01
Making connections between various representations is important in mathematics. In this article, the authors discuss the numeric, algebraic, and graphical representations of sums of absolute values of linear functions. The initial explanations are accessible to all students who have experience graphing and who understand that absolute value simply…
Combined absolute and relative gravity measurement for microgravity monitoring in Aso volcanic field
NASA Astrophysics Data System (ADS)
Sofyan, Yayan; Nishijima, Jun; Yoshikawa, Shin; Fujimitsu, Yasuhiro; Kagiyama, Tsuneomi; Fukuda, Yoichi
2014-05-01
Absolute measurement with a portable A10-017 absolute gravimeter at some benchmarks in the Aso volcanic field are valuable for reducing uncertainties of regional gravity variations and will be useful for delineating the long term trends of gravity changes. A10 absolute gravimeter is a new generation of portable absolute instrument and has accuracy 10 microGal. To further the development of a high precision gravity data, we also conducted measurement using two relative gravimeter (Scintrex CG-5 [549] and LaCoste type G-1016) to be combined with an A10 absolute gravimeter. The using absolute gravimeter along with relative gravimeter can reduce drift correction factor and improve the result of gravity change data in microgravity monitoring. Microgravity monitoring is a valued tool for mapping the redistribution of subsurface mass and for assessing changes in the fluid as a dynamic process in volcanic field. Gravity changes enable the characterization of subsurface processes: i.e., the mass of the intrusion or hydrothermal flow. A key assumption behind gravity monitoring is that changes in earth's gravity reflect mass-transport processes at depth [1]. The absolute gravity network was installed at seven benchmarks using on May 2010, which re-occupied in October 2010, and June 2011. The relative gravity measurements were performed at 28 benchmarks in one month before the eruption on May 2011 and then followed by series of gravity monitoring after the eruption in every three to five months. Gravity measurements covered the area more than 60 km2 in the west side of Aso caldera. Some gravity benchmarks were measured using both absolute and relative gravimeter and is used as the reference benchmarks. In longer time period, the combined gravity method will improve the result of gravity change data for monitoring in the Aso volcanic field. As a result, the gravity changes detected the hydrothermal flow in the subsurface which has a correlation to water level fluctuation in the
Four Years of Absolute Gravity in the Taiwan Orogen (AGTO)
NASA Astrophysics Data System (ADS)
Mouyen, M.; Masson, F.; Hwang, C.; Cheng, C.; Le Moigne, N.; Lee, C.; Kao, R.; Hsieh, N.
2009-12-01
AGTO is a scientific project between Taiwanese and French institutes which aim is to improve tectonic knowledge of Taiwan primarily using absolute gravity measurements and permanent GPS stations. Both tools are indeed useful to study vertical movements and mass transfers involved in mountain building, a major process in Taiwan located at the convergent margin between Philippine Sea plate and Eurasian plate. This convergence results in two subductions north and south of Taiwan (Ryukyu and Manilla trenches, respectively), while the center is experiencing collision. These processes make Taiwan very active tectonically, as illustrated by numerous large earthquakes and rapid uplift of the Central Range. High slopes of Taiwan mountains and heavy rains brought by typhoons together lead to high landslides and mudflows risks. Practically, absolute gravity measurements have been yearly repeated since 2006 along a transect across south Taiwan, from Penghu to Lutao island, using FG5 absolute gravimeters. This transect contains ten sites for absolute measurements and has been densified in 2008 by incorporating 45 sites for relative gravity measurements with CG5 gravimeters. At the end of 2009, the relative gravity network will be densified again in its eastern part, i.e. in the Longitudinal Valley and the Central Range. A fourth set of absolute gravity measurements will also be performed at the same period. Most of the absolute sites have been measured with a good accuracy, about 1 or 2 μGal. Only the site located in Tainan University has higher standard deviation, due to the city noise. The stronger change in gravity reaches -7 μGal a -1 west of the Longitudinal Valley and might be explained by tectonic movement along a fault. A large decrease of -5 μGal a-1 is also measured in Tainan city and could be correlated with uplift of this region, also denoted by InSAR, leveling and GPS. Changes occurring in the Central Range are more difficult to interpret due to the small
Using absolute gravimeter data to determine vertical gravity gradients
Robertson, D.S.
2001-01-01
The position versus time data from a free-fall absolute gravimeter can be used to estimate the vertical gravity gradient in addition to the gravity value itself. Hipkin has reported success in estimating the vertical gradient value using a data set of unusually good quality. This paper explores techniques that may be applicable to a broader class of data that may be contaminated with "system response" errors of larger magnitude than were evident in the data used by Hipkin. This system response function is usually modelled as a sum of exponentially decaying sinusoidal components. The technique employed here involves combining the x0, v0 and g parameters from all the drops made during a site occupation into a single least-squares solution, and including the value of the vertical gradient and the coefficients of system response function in the same solution. The resulting non-linear equations must be solved iteratively and convergence presents some difficulties. Sparse matrix techniques are used to make the least-squares problem computationally tractable.
Solving Absolute Value Equations Algebraically and Geometrically
ERIC Educational Resources Information Center
Shiyuan, Wei
2005-01-01
The way in which students can improve their comprehension by understanding the geometrical meaning of algebraic equations or solving algebraic equation geometrically is described. Students can experiment with the conditions of the absolute value equation presented, for an interesting way to form an overall understanding of the concept.
Teaching Absolute Value Inequalities to Mature Students
ERIC Educational Resources Information Center
Sierpinska, Anna; Bobos, Georgeana; Pruncut, Andreea
2011-01-01
This paper gives an account of a teaching experiment on absolute value inequalities, whose aim was to identify characteristics of an approach that would realize the potential of the topic to develop theoretical thinking in students enrolled in prerequisite mathematics courses at a large, urban North American university. The potential is…
Four Years of Absolute Gravity in the Taiwan Orogen (AGTO)
NASA Astrophysics Data System (ADS)
Mouyen, Maxime; Masson, Frédéric; Hwang, Cheinway; Cheng, Ching-Chung; Le Moigne, Nicolas; Lee, Chiung-Wu; Kao, Ricky; Hsieh, Nicky
2010-05-01
AGTO is a scientific project between Taiwanese and French institutes, which aim is to improve tectonic knowledge of Taiwan primarily using absolute gravity measurements and permanent GPS stations. Both tools are indeed useful to study vertical movements and mass transfers involved in mountain building, a major process in Taiwan located at the convergent margin between Philippine Sea plate and Eurasian plate. This convergence results in two subductions north and south of Taiwan (Ryukyu and Manilla trenches, respectively), while the center is experiencing collision. These processes make Taiwan very active tectonically, as illustrated by numerous large earthquakes and rapid uplift of the Central Range. High slopes of Taiwan mountains and heavy rains brought by typhoons together lead to high landslides and mudflows risks. Practically, absolute gravity measurements have been yearly repeated since 2006 along a transect across south Taiwan, from Penghu to Lutao islands, using FG5 absolute gravimeters. This transect contains ten sites for absolute measurements and has been densified in 2008 by incorporating 45 sites for relative gravity measurements with CG5 gravimeters. The last relative and absolute measurements have been performed in November 2009. Most of the absolute sites have been measured with a good accuracy, about 1 or 2 ?Gal. Only the site located in Tainan University has higher standard deviation, due to the city noise. We note that absolute gravity changes seem to follow a trend in every site. However, straightforward tectonic interpretation of these trends is not valuable as many non-tectonic effects are supposed to change g with time, like groundwater or erosion. Estimating and removing these effects leads to a tectonic gravity signal, which has theoretically two origins : deep mass transfers around the site and vertical movements of the station. The latter can be well constrained by permanent GPS stations located close to the measurement pillar. Deep mass
a Portable Apparatus for Absolute Measurements of the Earth's Gravity.
NASA Astrophysics Data System (ADS)
Zumberge, Mark Andrew
We have developed a new, portable apparatus for making absolute measurements of the acceleration due to the earth's gravity. We use the method of interferometrically determining the acceleration of a freely falling corner -cube prism. The falling object is surrounded by a chamber which is driven vertically inside a fixed vacuum chamber. This falling chamber is servoed to track the falling corner -cube to shield it from drag due to background gas. In addition, the drag-free falling chamber removes the need for a magnetic release, shields the falling object from electrostatic forces, and provides a means of both gently arresting the falling object and quickly returning it to its start position, to allow rapid acquisition of data. A synthesized long period isolation device reduces the noise due to seismic oscillations. A new type of Zeeman laser is used as the light source in the interferometer, and is compared with the wavelength of an iodine stabilized laser. The times of occurrence of 45 interference fringes are measured to within 0.2 nsec over a 20 cm drop and are fit to a quadratic by an on-line minicomputer. 150 drops can be made in ten minutes resulting in a value of g having a precision of 3 to 6 parts in 10('9). Systematic errors have been determined to be less than 5 parts in 10('9) through extensive tests. Three months of gravity data have been obtained with a reproducibility ranging from 5 to 10 parts in 10('9). The apparatus has been designed to be easily portable. Field measurements are planned for the immediate future. An accuracy of 6 parts in 10('9) corresponds to a height sensitivity of 2 cm. Vertical motions in the earth's crust and tectonic density changes that may precede earthquakes are to be investigated using this apparatus.
Measured and modelled absolute gravity changes in Greenland
NASA Astrophysics Data System (ADS)
Nielsen, J. Emil; Forsberg, Rene; Strykowski, Gabriel
2014-01-01
In glaciated areas, the Earth is responding to the ongoing changes of the ice sheets, a response known as glacial isostatic adjustment (GIA). GIA can be investigated through observations of gravity change. For the ongoing assessment of the ice sheets mass balance, where satellite data are used, the study of GIA is important since it acts as an error source. GIA consists of three signals as seen by a gravimeter on the surface of the Earth. These signals are investigated in this study. The ICE-5G ice history and recently developed ice models of present day changes are used to model the gravity change in Greenland. The result is compared with the initial measurements of absolute gravity (AG) change at selected Greenland Network (GNET) sites.
A Conceptual Approach to Absolute Value Equations and Inequalities
ERIC Educational Resources Information Center
Ellis, Mark W.; Bryson, Janet L.
2011-01-01
The absolute value learning objective in high school mathematics requires students to solve far more complex absolute value equations and inequalities. When absolute value problems become more complex, students often do not have sufficient conceptual understanding to make any sense of what is happening mathematically. The authors suggest that the…
Using, Seeing, Feeling, and Doing Absolute Value for Deeper Understanding
ERIC Educational Resources Information Center
Ponce, Gregorio A.
2008-01-01
Using sticky notes and number lines, a hands-on activity is shared that anchors initial student thinking about absolute value. The initial point of reference should help students successfully evaluate numeric problems involving absolute value. They should also be able to solve absolute value equations and inequalities that are typically found in…
The Austrian absolute gravity base net: 27 years of spatial and temporal acquisition of gravity data
NASA Astrophysics Data System (ADS)
Ullrich, Christian; Ruess, Diethard
2014-05-01
Since 1987 the BEV (Federal Office of Metrology and Surveying) has been operating the absolute gravimeters JILAg-6 and FG5 which are used for basic measurements to determine or review fundamental gravity stations in Austria and abroad. Overall more than 70 absolute gravity stations were installed in Austria and neighbouring countries and some of them have been regularly monitored. A few stations are part of international projects like ECGN (European Combined Geodetic network) and UNIGRACE (Unification of Gravity System in Central and Eastern Europe). As a national metrology institute (NMI) the Metrology Service of the BEV maintains the national standards for the realisation of the legal units of measurement and ensures their international equivalence and recognition. Thus the BEV maintains the national standard for gravimetry in Austria, which is validated and confirmed by international comparisons. Since 1989 the Austrian absolute gravimeters participated seven times in the ICAG's (International Comparison of Absolute Gravimeters) at the BIPM in Paris and Luxemburg and as well participated three times at the ECAG (European Comparison of Absolute Gravimeters) in Luxemburg. The results of these ICAG's and especially the performance of the Austrian absolute gravimeter are reported in this presentation. We also present some examples and interpretation of long time monitoring stations of absolute gravity in several Austrian locations. Some stations are located in large cities like Vienna and Graz and some others are situated in mountainous regions. Mountain stations are at the Conrad Observatory where a SG (Superconducting Gravimeter) is permanently monitoring and in Obergurgl (Tyrolia) at an elevation of approx. 2000 m which is very strong influenced from the glacier retreat.
NASA Astrophysics Data System (ADS)
Dykowski, Przemyslaw; Krynski, Jan
2015-04-01
The establishment of modern gravity control with the use of exclusively absolute method of gravity determination has significant advantages as compared to the one established mostly with relative gravity measurements (e.g. accuracy, time efficiency). The newly modernized gravity control in Poland consists of 28 fundamental stations (laboratory) and 168 base stations (PBOG14 - located in the field). Gravity at the fundamental stations was surveyed with the FG5-230 gravimeter of the Warsaw University of Technology, and at the base stations - with the A10-020 gravimeter of the Institute of Geodesy and Cartography, Warsaw. This work concerns absolute gravity determinations at the base stations. Although free of common relative measurement errors (e.g. instrumental drift) and effects of network adjustment, absolute gravity determinations for the establishment of gravity control require advanced corrections due to time dependent factors, i.e. tidal and ocean loading corrections, atmospheric corrections and hydrological corrections that were not taken into account when establishing the previous gravity control in Poland. Currently available services and software allow to determine high accuracy and high temporal resolution corrections for atmospheric (based on digital weather models, e.g. ECMWF) and hydrological (based on hydrological models, e.g. GLDAS/Noah) gravitational and loading effects. These corrections are mostly used for processing observations with Superconducting Gravimeters in the Global Geodynamics Project. For the area of Poland the atmospheric correction based on weather models can differ from standard atmospheric correction by even ±2 µGal. The hydrological model shows the annual variability of ±8 µGal. In addition the standard tidal correction may differ from the one obtained from the local tidal model (based on tidal observations). Such difference at Borowa Gora Observatory reaches the level of ±1.5 µGal. Overall the sum of atmospheric and
NASA Astrophysics Data System (ADS)
James, T. S.; Mazzotti, S.; Mazzotti, S.; Lambert, A.
2001-12-01
The deformation gravity gradient (DGG) is the ratio of the time rate of change of surface gravity to vertical crustal velocity. Different processes generate different theoretical predictions of the DGG. Consequently, observational constraints on the DGG are necessary to link crustal uplift observations to satellite-derived observations of the time rate of change of the Earth's gravitational field, which will be generated by upcoming satellite missions such as GRACE. Larson and van Dam (2000) have compared secular gravity trends from 4 sites in interior North America to crustal uplift rates obtained from global point-positioning analyses of GPS observations, and found they agree, assuming a nominal DGG value appropriate to postglacial rebound of -0.15 μ Gal/mm (Wahr et al., 1995). Here we revisit and extend their analysis in order to determine the observational constraints on the DGG in mid-continent North America. We use recently published gravity rates derived from significantly more absolute gravity observations and a different GPS analysis scheme. Lambert et al. (2001) have published secular gravity rates for 7 sites in mid-continent North America, using all available absolute gravity observations and allowing for instrumental offsets. The sites, chosen to sample postglacial rebound, lie on a transect from Churchill, Manitoba, located on Hudson Bay, to North Liberty, Iowa. Four of these sites (Churchill, Flin Flon, Lac du Bonnet, and North Liberty) also feature a nearby GPS station. The GPS observations were analyzed using double differencing with Bernese 4.2, yielding 5 year time series for vertical position. The daily repeatabilities of 5 to 9 mm compare well to the weekly repeatabilities of 7-8 mm reported by Larson and van Dam (2000). A comparison of the vertical rates derived from these time series to the secular solid-surface gravity trends finds a DGG of -0.14 +/- 0.06 μ Gal/mm. This value is in good agreement with model predictions for postglacial
Absolutely relative or relatively absolute: violations of value invariance in human decision making.
Teodorescu, Andrei R; Moran, Rani; Usher, Marius
2016-02-01
Making decisions based on relative rather than absolute information processing is tied to choice optimality via the accumulation of evidence differences and to canonical neural processing via accumulation of evidence ratios. These theoretical frameworks predict invariance of decision latencies to absolute intensities that maintain differences and ratios, respectively. While information about the absolute values of the choice alternatives is not necessary for choosing the best alternative, it may nevertheless hold valuable information about the context of the decision. To test the sensitivity of human decision making to absolute values, we manipulated the intensities of brightness stimuli pairs while preserving either their differences or their ratios. Although asked to choose the brighter alternative relative to the other, participants responded faster to higher absolute values. Thus, our results provide empirical evidence for human sensitivity to task irrelevant absolute values indicating a hard-wired mechanism that precedes executive control. Computational investigations of several modelling architectures reveal two alternative accounts for this phenomenon, which combine absolute and relative processing. One account involves accumulation of differences with activation dependent processing noise and the other emerges from accumulation of absolute values subject to the temporal dynamics of lateral inhibition. The potential adaptive role of such choice mechanisms is discussed. PMID:26022836
Supplementary and Enrichment Series: Absolute Value. Teachers' Commentary. SP-25.
ERIC Educational Resources Information Center
Bridgess, M. Philbrick, Ed.
This is one in a series of manuals for teachers using SMSG high school supplementary materials. The pamphlet includes commentaries on the sections of the student's booklet, answers to the exercises, and sample test questions. Topics covered include addition and multiplication in terms of absolute value, graphs of absolute value in the Cartesian…
Supplementary and Enrichment Series: Absolute Value. SP-24.
ERIC Educational Resources Information Center
Bridgess, M. Philbrick, Ed.
This is one in a series of SMSG supplementary and enrichment pamphlets for high school students. This series is designed to make material for the study of topics of special interest to students readily accessible in classroom quantity. Topics covered include absolute value, addition and multiplication in terms of absolute value, graphs of absolute…
Synchronous absolute EIT in three thoracic planes at different gravity levels
NASA Astrophysics Data System (ADS)
Hahn, G.; Just, A.; Dittmar, J.; Fromm, K. H.; Quintel, M.
2013-04-01
The validity of absolute Electrical Impedance Tomography (a-EIT) for assessment of local lung volume has been investigated far less than the well evaluated ventilation monitoring by functional EIT (f-EIT). To achieve progress in a-EIT we investigated 10 healthy volunteers in an upright sitting position by using a-EIT at normal gravity (1 g), weightlessness (0 g) and approx. double gravity (1.8 g) during parabolic flight manoeuvres. Lung resistivity in three thoracic planes was determined by a-EIT using a multiple-plane synchronised Goe-MF II EIT system. Tomograms of resistivity at end-expiration in normal spontaneous breathing were reconstructed by a modified SIRT algorithm. Local lung resistivity was determined separately for both lungs. The respective resistivity values at 1 g and 1.8 g before and after weightlessness show an almost reversible behaviour along the sequence of gravity changes with a tendency to be lower after occurrence of weightlessness. The results reveal not only the expected varying resistivity of lung tissue in cranio-caudal direction but also a clear difference in these cranio-caudal stratifications of local lung volume between the left and right lung. The resolution and stability of absolute EIT seem to be valid and expressive for future investigations of unilateral lung volume under different physiological and pathological conditions.
Absolute Value Boundedness, Operator Decomposition, and Stochastic Media and Equations
NASA Technical Reports Server (NTRS)
Adomian, G.; Miao, C. C.
1973-01-01
The research accomplished during this period is reported. Published abstracts and technical reports are listed. Articles presented include: boundedness of absolute values of generalized Fourier coefficients, propagation in stochastic media, and stationary conditions for stochastic differential equations.
An improved generalized Newton method for absolute value equations.
Feng, Jingmei; Liu, Sanyang
2016-01-01
In this paper, we suggest and analyze an improved generalized Newton method for solving the NP-hard absolute value equations [Formula: see text] when the singular values of A exceed 1. We show that the global and local quadratic convergence of the proposed method. Numerical experiments show the efficiency of the method and the high accuracy of calculation. PMID:27462490
The Path to an Up-to-date Absolute Gravity Reference System
NASA Astrophysics Data System (ADS)
Wilmes, H.; Falk, R.; Wziontek, H.
2014-12-01
The determination of precise gravity field parameters is of great importance in a period in which earth sciences are achieving the necessary accuracy to monitor and document global change processes. This is the reason why experts from geodesy and metrology joined in a successful cooperation to make absolute gravity observations traceable to SI quantities, to improve the metrological kilogram definition and to monitor mass movements and smallest height changes for geodetic and geophysical applications. How can we determine such a gravity reference system and secure it over multiple decades? Precise knowledge of the gravity acceleration and definition of standards, models and corrections are an important prerequisite to the definition of the gravity system. Over more than three decades, the absolute gravity community cooperated successfully to obtain the gravity reference in comparisons at intervals of 4 years and to certify metrological equivalence between National Metrology Institutes. With increasing resolution of the absolute gravimeter sensors and new measurement principles it becomes obvious that such comparisons are not sufficient for all applications. Mainly for geodetic purposes it is necessary to sub-divide comparison intervals and maintain a connected network of gravity reference sites where compared absolute gravimeters operate together with superconducting gravimeters to derive a continuous gravity reference function. By means of this distributed monitoring of the gravity reference it will also be possible to relate observations of earlier absolute gravimeters to the present-day and to future instruments. It will be possible to include new sensors like atom interferometers and in future to relate the results of precise optical clocks. With co-located space geodetic sensors like GNSS, SLR and VLBI, these reference sites fulfill the conditions of a geodetic fundamental station as a component of IAG's Global Geodetic Observing System.
NASA Astrophysics Data System (ADS)
Sato, T.; Kazama, T.; Miura, S.; Ohta, Y.; Okubo, S.; Fujimoto, H.; Kaufman, M.; Herreid, S. J.; Larsen, C. F.; Freymueller, J. T.
2012-12-01
It is known that Southeast Alaska (SE-AK) shows a large uplift rates exceeding 32 mm/year at the maximum mainly due to the three ice changes in ages, i.e. in the Large Glacier Maximum, the Little Ice Age and the present day. Comparisons between rates of change obtained from GPS and absolute gravimeter (AG) observations and the rates predicted by model computations based on independently estimated ice mass changes indicate the existence of a very thin lithosphere (on the order of 60 km) and a low viscousity upper mantle (on the order of 1.E18 Pa s) beneath SE-AK (Larsen et al., 2005; Sato et al, 2011; Sato et al., 2012). On the other hand, it is also known that there are very large oceanic tidal loading effects in SE-AK, i.e. exceeding 2.7 cm and 8 microGals for the M2 constituent of the vertical displacement and gravity, respectively (Sato et al., 2008; Inazu et al., 2009; Sun et al., 2010; Sato et al., 2012). These regional large loading and unloading effects provide good signals to study the viscoelastic structure beneath SE-AK. A joint observation project (ISEA2) between Japan and USA groups has restarted as a five years project beginning in 2012. In June 2012, we conducted the AG measurements at the 6 sites in SE-AK at where the AG measurements were conducted by the previous ISEA1 project (Sun et al., 2010). Continuous gravity observation started also on June 2012 with a portable super conducting gravimeter (iGrav) at the EGAN library of UAS. We will introduce the results for these observations and comparisons with the previous observations and model computations. It is noted that the precipitation during the period from the winter in 2011 to the spring in 2012 was very large compared with the usual amount. We evaluate this effect on our gravity observations with a hydrological model computation (Kazama and Okubo, 2009) using the observed precipitation data as an input data. The observation with the iGrav super conducting gravimeter shall give us a useful data
Absolute Value Inequalities: High School Students' Solutions and Misconceptions
ERIC Educational Resources Information Center
Almog, Nava; Ilany, Bat-Sheva
2012-01-01
Inequalities are one of the foundational subjects in high school math curricula, but there is a lack of academic research into how students learn certain types of inequalities. This article fills part of the research gap by presenting the findings of a study that examined high school students' methods of approaching absolute value inequalities,…
Invalid phase values removal method for absolute phase recovery.
Lu, Jin; Mo, Rong; Sun, Huibin; Chang, Zhiyong; Zhao, Xiaxia
2016-01-10
A novel approach is presented for more effectively removing invalid phase values in absolute phase recovery. The approach is based on a detailed study involving the types and cases of invalid phase values. Meanwhile, some commonalities of the existing removal algorithms also are thoroughly analyzed. It is well known that rough absolute phase and fringe order maps can very easily be obtained by temporal phase unwrapping techniques. After carefully analyzing the components and fringe order distribution of the rough fringe order map, the proposed method chiefly adopts an entirely new strategy to refine a pure fringe order map. The strategy consists of three parts: (1) the square of an image gradient, (2) subregion areas of the binary image, and (3) image decomposition and composition. In combination with the pure fringe order map and a removal criterion, the invalid phase values can be identified and filtered out from the rough absolute phase map. This new strategy not only gets rid of the limitations of traditional removal methods but also has a two-fold function. The paper also offers different metrics from the experiment to evaluate the quality of the final absolute phase. In contrast with other removal methods, experimental results have verified the feasibility, effectiveness, and superiority of the proposed method. PMID:26835776
Laser interferometry method for absolute measurement of the acceleration of gravity
NASA Technical Reports Server (NTRS)
Hudson, O. K.
1971-01-01
Gravimeter permits more accurate and precise absolute measurement of g without reference to Potsdam values as absolute standards. Device is basically Michelson laser beam interferometer in which one arm is mass fitted with corner cube reflector.
NASA Astrophysics Data System (ADS)
Favreau, G.; Boucher, M.; Luck, B.; Pfeffer, J.; Genthon, P.; Hinderer, J.
2009-04-01
Important and fast groundwater storage changes occur in tropical monsoon regions in response to seasonal rainfall and subsequent surface water redistribution. In West Africa, one main goal of the GHYRAF experiment (Gravity and Hydrology in Africa, 2008-2010) is to compare absolute gravimetric measurements with dense hydrological surveys to better estimate and model water storage changes at various time scales. Magnetic Resonance Sounding (MRS) is a non-invasive geophysical method having a signal directly related to groundwater quantity. In SW Niger, MRS surveys were performed concurrently with gravimetric (FG5) measurements for monitoring seasonal changes in groundwater storage. Water table levels were recorded on a 4-piezometers profile (~500 m) near a temporary pond (area ~2 ha) fed by sandy gullies. The volume of water drained from the pond to the phreatic aquifer was computed to be ~100,000 m3/yr. Large piezometric fluctuations (3-6 m) occurred in response to indirect recharge through the pond during the 2008 rainy season (July-Sept.), with stronger water table fluctuations recorded near the pond. Absolute gravimetric (FG5) measurements were performed at a distance of 150 m from the pond, in order to minimize the influence of 2D effects on gravimetric records. The increase in absolute gravity measured between two dates (July-Sept.) was 8.7 ± 2.6 µGal; for the same period, the measured water table rise was +3.0 m. Considering these values, a first estimate of the groundwater storage increase is 0.2 m, corresponding to a porosity filled up by the water table rise of ~7%. Repeated MRS surveys were performed at the same location for different dates (three soundings in Sept., one in Dec.). The MRS water content was 13%, with little variation in space (±3%) along the piezometric profile. In response to a 3 metres drop in the water table (Sept- Dec), there was no significant recorded change in the MRS water content and/or in the estimated MRS water table depth. MRS
Potential causes of absolute gravity changes in Taiwan over 2004-2014
NASA Astrophysics Data System (ADS)
Kao, R.; Hwang, C.; Kim, J. W.; Masson, F.; Mouyen, M.
2015-12-01
We use absolute gravimeter (AG) and GPS observations collected from 2004 to 2014 in Taiwan to identify mass changes in connection to Moho deepening, volcanism, subsidence, earthquake and plate collision. The gravity observations are measured at sites of different geological settings under the AGTO and NGDS projects. The resulting gravity changes cannot be fully explained by vertical motions derived from GPS. Unlike previous AG gravity studies in Taiwan, we apply hydrology-induced gravity changes to raw gravity measurements using a simple model that estimates the Bouguer gravity effect due to rainfalls. Typhoon Morakot, occurring on August 8, 2009, results in torrential rainfalls and large debris flows in southern Taiwan. Morakot causes a gravity increase of 51.22 μGal near an AG site along the southern cross-island highway. The M7.0 Hengchun earthquake on December 26, 2006 causes a gravity rise of 2.32 μGal at the KDNG AG site near its epicenter. A Moho thickening rate (-0.81 μGal/yr) in central Taiwan and a deep-fault slip rate (-0.94 μGal/yr) in eastern Taiwan are postulated from the gravity changes. Other distinct gravity changes are potentially associated with the subsidence in Yunlin County (-2.73 μGal/yr), the magma coolings in Tatun Volcano Group (0.12 μGal/yr), Green Island (-2.95 μGal/yr) and Orchid Island (-0.97μGal/yr).
NASA Astrophysics Data System (ADS)
Hector, Basile; Séguis, Luc; Hinderer, Jacques; Descloitres, Marc; Vouillamoz, Jean-Michel; Wubda, Maxime; Boy, Jean-Paul; Luck, Bernard; Le Moigne, Nicolas
2013-08-01
Advances in groundwater storage monitoring are crucial for water resource management and hydrological processes understanding. The evaluation of water storage changes (WSC) often involve point measurements (observation wells, moisture probes, etc.), which may be inappropriate in heterogeneous media. Over the past few years, there has been an increasing interest in the use of gravimetry for hydrological studies. In the framework of the GHYRAF (Gravity and Hydrology in Africa) project, 3 yr of repeated absolute gravity measurements using a FG5-type gravimeter have been undertaken at Nalohou, a Sudanian site in northern Benin. Hydrological data are collected within the long-term observing system AMMA-Catch. Once corrected for solid earth tides, ocean loading, air pressure effects, polar motion contribution and non-local hydrology, seasonal gravity variations reach up to 11 μGal, equivalent to a WSC of 260-mm thick infinite layer of water. Absolute temporal gravity data are compared to WSC deduced from neutron probe and water-table variations through a direct modelling approach. First, we use neutronic measurements available for the whole vertical profile where WSC occur (the vadose zone and a shallow unconfined aquifer). The RMSD between observed and modelled gravity variations is 1.61 μGal, which falls within the error bars of the absolute gravity data. Second, to acknowledge for the spatial variability of aquifer properties, we use a 2-D model for specific yield (Sy) derived from resistivity mapping and Magnetic Resonance Soundings (MRS). The latter provides a water content (θMRS) known to be higher than the specific yield. Hence, we scaled the 2-D model of θMRS with a single factor (α). WSC are calculated from water-table monitoring in the aquifer layer and neutronic measurements in the vadose layer. The value of α is obtained with a Monte-Carlo sampling approach, minimizing the RMSD between modelled and observed gravity variations. This leads to α = Sy
Improving absolute gravity estimates by the L p -norm approximation of the ballistic trajectory
NASA Astrophysics Data System (ADS)
Nagornyi, V. D.; Svitlov, S.; Araya, A.
2016-04-01
Iteratively re-weighted least squares (IRLS) were used to simulate the L p -norm approximation of the ballistic trajectory in absolute gravimeters. Two iterations of the IRLS delivered sufficient accuracy of the approximation without a significant bias. The simulations were performed on different samplings and perturbations of the trajectory. For the platykurtic distributions of the perturbations, the L p -approximation with 3 < p < 4 was found to yield several times more precise gravity estimates compared to the standard least-squares. The simulation results were confirmed by processing real gravity observations performed at the excessive noise conditions.
The preference of visualization in teaching and learning absolute value
NASA Astrophysics Data System (ADS)
Cihan Konyalioğlu, Alper; Aksu, Zeki; Özge Şenel, Esma
2012-07-01
Visualization is mostly despised although it complements and - sometimes - guides the analytical process. This study mainly investigates teachers' preferences concerning the use of the visualization method and determines the extent to which they encourage their students to make use of it within the problem-solving process. This study was conducted for the ninth-grade students and their mathematics teacher in a social science intensive public school in the city of Erzurum, Turkey. Utilizing case study as the preferred method, data were collected through observations, interviews and student evaluations. This study revealed that visualization has a positive effect at the preliminary phases of teaching the absolute value concept but generates a lack of stimulation during problem solving in further phases of the instruction. This could be explained as a result of current examination system which requires a habituation of the analytical process in solving mathematical questions.
Precision absolute value amplifier for a precision voltmeter
Hearn, W. E.; Rondeau, D. J.
1985-05-21
Bipolar inputs are afforded by the plus inputs of first and second differential input amplifiers. A first gain determining resister is connected between the minus inputs of the differential amplifiers. First and second diodes are connected between the respective minus inputs and the respective outputs of the differential amplifiers. First and second FETs have their gates connected to the outputs of the amplifiers, while their respective source and drain circuits are connected between the respective minus inputs and an output lead extending to a load resister. The output current through the load resister is proportional to the absolute value of the input voltage difference between the bipolar input terminals. A third differential amplifier has its plus input terminal connected to the load resister. A second gain determining resister is connected between the minus input of the third differential amplifier and a voltage source. A third FET has its gate connected to the output of the third amplifier. The source and drain circuit of the third transistor is connected between the minus input of the third amplifier and a voltage-frequency converter, constituting an output device. A polarity detector is also provided, comprising a pair of transistors having their inputs connected to the outputs of the first and second differential amplifiers. The outputs of the polarity detector are connected to gates which switch the output of the voltage-frequency converter between up and down counting outputs.
Precision absolute value amplifier for a precision voltmeter
Hearn, William E.; Rondeau, Donald J.
1985-01-01
Bipolar inputs are afforded by the plus inputs of first and second differential input amplifiers. A first gain determining resister is connected between the minus inputs of the differential amplifiers. First and second diodes are connected between the respective minus inputs and the respective outputs of the differential amplifiers. First and second FETs have their gates connected to the outputs of the amplifiers, while their respective source and drain circuits are connected between the respective minus inputs and an output lead extending to a load resister. The output current through the load resister is proportional to the absolute value of the input voltage difference between the bipolar input terminals. A third differential amplifier has its plus input terminal connected to the load resister. A second gain determining resister is connected between the minus input of the third differential amplifier and a voltage source. A third FET has its gate connected to the output of the third amplifier. The source and drain circuit of the third transistor is connected between the minus input of the third amplifier and a voltage-frequency converter, constituting an output device. A polarity detector is also provided, comprising a pair of transistors having their inputs connected to the outputs of the first and second differential amplifiers. The outputs of the polarity detector are connected to gates which switch the output of the voltage-frequency converter between up and down counting outputs.
Precision absolute-value amplifier for a precision voltmeter
Hearn, W.E.; Rondeau, D.J.
1982-10-19
Bipolar inputs are afforded by the plus inputs of first and second differential input amplifiers. A first gain determining resistor is connected between the minus inputs of the differential amplifiers. First and second diodes are connected between the respective minus inputs and the respective outputs of the differential amplifiers. First and second FETs have their gates connected to the outputs of the amplifiers, while their respective source and drain circuits are connected between the respective minus inputs and an output lead extending to a load resistor. The output current through the load resistor is proportional to the absolute value of the input voltage difference between the bipolar input terminals. A third differential amplifier has its plus input terminal connected to the load resistor. A second gain determining resistor is connected between the minus input of the third differential amplifier and a voltage source. A third FET has its gate connected to the output of the third amplifier. The source and drain circuit of the third transistor is connected between the minus input of the third amplifier and a voltage-frequency converter, constituting an output device. A polarity detector is also provided, comprising a pair of transistors having their inputs connected to the outputs of the first and second differential amplifiers. The outputs of the polarity detector are connected to gates which switch the output of the voltage-frequency converter between up and down counting outputs.
A Special Application of Absolute Value Techniques in Authentic Problem Solving
ERIC Educational Resources Information Center
Stupel, Moshe
2013-01-01
There are at least five different equivalent definitions of the absolute value concept. In instances where the task is an equation or inequality with only one or two absolute value expressions, it is a worthy educational experience for learners to solve the task using each one of the definitions. On the other hand, if more than two absolute value…
NASA Astrophysics Data System (ADS)
Van Camp, M.; Viron, O.; Avouac, J. P.
2016-05-01
We estimate the signature of the climate-induced mass transfers in repeated absolute gravity measurements based on satellite gravimetric measurements from the Gravity Recovery and Climate Experiment (GRACE) mission. We show results at the globe scale and compare them with repeated absolute gravity (AG) time behavior in three zones where AG surveys have been published: Northwestern Europe, Canada, and Tibet. For 10 yearly campaigns, the uncertainties affecting the determination of a linear gravity rate of change range 3-4 nm/s2/a in most cases, in the absence of instrumental artifacts. The results are consistent with what is observed for long-term repeated campaigns. We also discuss the possible artifact that can result from using short AG survey to determine the tectonic effects in a zone of high hydrological variability. We call into question the tectonic interpretation of several gravity changes reported from stations in Tibet, in particular the variation observed prior to the 2015 Gorkha earthquake.
Gravity change from repeated absolute measurements in Estonia, Latvia and Lithuania 1994-2008
NASA Astrophysics Data System (ADS)
Mäkinen, J.; Bilker-Koivula, M.; Falk, R.; Gitlein, O.; Kaminskis, J.; Lapushka, K.; Oja, T.; Paršeliunas, E.; Petroškevičius, P.; Timmen, L.
2009-04-01
Estonia, Latvia, and Lithuania belong to the margin of the Fennoscandian postglacial rebound (PGR) area. Vertical rates predicted by PGR models are in the range 0 to +3 mm/yr. Our first absolute gravity campaigns in the area were performed with the JILAg-5 gravimeter in 1994-1995 when three stations were measured in each country. All three stations in Lithuania were repeated with the JILAg-5 in 2002 and one of them (Vilnius) with the FG5#221 gravimeter in 2007. In Latvia one station (Riga) was remeasured with the FG5#101 and FG5#107 (D. Stizza, NIMA) in 1986 and with the FG5#221 in 2007. In Estonia two of the stations (Suurupi and Töravere) were remeasured with the FG5#220 in 2007 and with the FG5#221 in 2008, the third (Kuressaare) was only remeasured in 2008 with the FG5#221. This amounts to seven repeated stations with time spans of 8-13 years. In interpreting gravity change, special attention must be paid to subsurface water storage, as (due to inaccessibility of crystalline bedrock) many stations are on thick sediments, the repeat measurements were partly made in different seasons, and in some cases there is evidence of strong interannual variation in hydrology. We discuss the constraints to PGR implied by the observed gravity change and compare it with PGR models and with available observations of vertical motion.
NASA Astrophysics Data System (ADS)
Galapon, Eric A.
2016-03-01
The divergent integral ∫a b f ( x ) ( x - x 0 ) - n - 1 d x , for -∞ < a < x0 < b < ∞ and n = 0, 1, 2, …, is assigned, under certain conditions, the value equal to the simple average of the contour integrals ∫C±f(z)(z - x0)-n-1dz, where C+ (C-) is a path that starts from a and ends at b and which passes above (below) the pole at x0. It is shown that this value, which we refer to as the analytic principal value, is equal to the Cauchy principal value for n = 0 and to the Hadamard finite-part of the divergent integral for positive integer n. This implies that, where the conditions apply, the Cauchy principal value and the Hadamard finite-part integral are in fact values of absolutely convergent integrals. Moreover, it leads to the replacement of the boundary values in the Sokhotski-Plemelj-Fox theorem with integrals along some arbitrary paths. The utility of the analytic principal value in the numerical, analytical, and asymptotic evaluations of the principal value and the finite-part integral is discussed and demonstrated.
Absolute value equations - what can we learn from their graphical representation?
NASA Astrophysics Data System (ADS)
Stupel, Moshe; Ben-Chaim, David
2014-08-01
Understanding graphical representations of algebraic equations, particularly graphical representations of absolute value equations, significantly improves students' mathematical comprehension and ignites within them an appreciation of the beauty and aesthetics of mathematics. In this paper, we focus on absolute value equations of linear and quadratic expressions, by examining various cases, presenting different methods of solving them by graphical representation, exhibiting the advantage of using dynamic software such as GeoGebra in solving them, and illustrating some examples of interesting graphical solutions. We recommend that teachers take advantage of the rapid development in technology to help learners tangibly visualize the solutions of absolute value equations before proceeding to the analytical solutions.
Atom-chip based quantum gravimetry for the precise determination of absolute local gravity
NASA Astrophysics Data System (ADS)
Abend, S.
2015-12-01
We present a novel technique for the precise measurement of absolute local gravity based on cold atom interferometry. Atom interferometry utilizes the interference of matter waves interrogated by laser light to read out inertial forces. Today's generation of these devices typically operate with test mass samples, that consists of ensembles of laser cooled atoms. Their performance is limited by the velocity spread and finite-size of the test masses that impose systematic uncertainties at the level of a few μGal. Rather than laser cooled atoms we employ quantum degenerate ensembles, so called Bose-Einstein condensates, as ultra-sensitive probes for gravity. These sources offer unique properties in temperature as well as in ensemble size that will allow to overcome the current limitations with the next generation of sensors. Furthermore, atom-chip technologies offer the possibility to generate Bose-Einstein condensates in a fast and reliable way. We show a lab-based prototype that uses the atom-chip itself to retro-reflect the interrogation laser and thus serving as inertial reference inside the vacuum. With this setup it is possible to demonstrate all necessary steps to measure gravity, including the preparation of the source, spanning an interferometer as well as the detection of the output signal, within an area of 1 cm3 right below the atom-chip and to analyze relevant systematic effects. In the framework of the center of excellence geoQ a next generation device is under construction at the Institut für Quantenoptik, that will allow for in-field measurements. This device will feature a state-of-the-art atom-chip source with a high-flux of ultra-cold atoms at a repetition rate of 1-2 Hz. In cooperation with the Müller group at the Institut für Erdmessung the sensor will be characterized in the laboratory first, to be ultimately employed in campaigns to measure the Fennoscandian uplift at the level of 1 μGal. The presented work is part of the center of
NASA Astrophysics Data System (ADS)
Sun, W.; Miura, S.; Sato, T.; Kaufman, A. M.; Cross, R.; Freymueller, J. T.; Schiel, A.
2006-12-01
The southeast Alaska is undergoing a rapid ice-melting and land uplift due to the effect of global warming in the last three hundred years. The corresponding crustal deformation caused by the post-glacial rebound has been clearly detected by modern geodetic techniques, e.g., GPS and tidal gauge measurements (Larsen et al., 2004; Sato et al., 2005). The geodetic deformation provides us useful information in evaluating ice-melting rate, effect of global warming, and even the viscosity beneath the crust. For this purpose, however, integrated geodetic observation, especially including gravity measurement, is considered very important (Miura et al., a separate presentation at the same AGU conference; Wahr et al., 1995). Therefore, to detect the crutal deformation caused by the post-glacial rebound and to study the viscoelastic structure of the earth in the southeast Alaska, a joint team of Japanese and U.S. researchers has begun a three year project of GPS, earth tide, and absolute gravity measurements. In this presentation, results of the absolute gravity observation carried out between June 3 and June 18, 2006 are reported. During the 2006 observation campaign, a network of absolute gravity was for the first time established which is composed of five sites about 100 km around of Juneau: Bartlett Cove at Gustavus, Russell Island, Hains Fairground at Hains, UAS Egan Library at Juneau and Mendenhall Glacier Visitors Center at Juneau, Alaska. Absolute gravity data were acquired at the five sites using a Micro-LaCoste absolute gravimeter, serial number 111. A typical occupation recorded a set of 100 single measurements every half hour. At each site data were collected over a 48~62 hour period. Due to the bad ocean model in this area, ocean loading correction seems not efficient because large tidal residuals remain in the observed results. To carry out an accurate tidal correction, on site tidal observation was also performed. Detail discussions on tidal observation and
A special application of absolute value techniques in authentic problem solving
NASA Astrophysics Data System (ADS)
Stupel, Moshe
2013-06-01
There are at least five different equivalent definitions of the absolute value concept. In instances where the task is an equation or inequality with only one or two absolute value expressions, it is a worthy educational experience for learners to solve the task using each one of the definitions. On the other hand, if more than two absolute value expressions are involved, the definition that is most helpful is the one involving solving by intervals and evaluating critical points. In point of fact, application of this technique is one reason that the topic of absolute value is important in mathematics in general and in mathematics teaching in particular. We present here an authentic practical problem that is solved using absolute values and the 'intervals' method, after which the solution is generalized with surprising results. This authentic problem also lends itself to investigation using educational technological tools such as GeoGebra dynamic geometry software: mathematics teachers can allow their students to initially cope with the problem by working in an inductive environment in which they conduct virtual experiments until a solid conjecture has been reached, after which they should prove the conjecture deductively, using classic theoretical mathematical tools.
NASA Astrophysics Data System (ADS)
Ern, Manfred; Trinh, Quang Thai; Kaufmann, Martin; Krisch, Isabell; Preusse, Peter; Ungermann, Jörn; Zhu, Yajun; Gille, John C.; Mlynczak, Martin G.; Russell, James M., III; Schwartz, Michael J.; Riese, Martin
2016-08-01
Sudden stratospheric warmings (SSWs) are circulation anomalies in the polar region during winter. They mostly occur in the Northern Hemisphere and affect also surface weather and climate. Both planetary waves and gravity waves contribute to the onset and evolution of SSWs. While the role of planetary waves for SSW evolution has been recognized, the effect of gravity waves is still not fully understood, and has not been comprehensively analyzed based on global observations. In particular, information on the gravity wave driving of the background winds during SSWs is still missing.We investigate the boreal winters from 2001/2002 until 2013/2014. Absolute gravity wave momentum fluxes and gravity wave dissipation (potential drag) are estimated from temperature observations of the satellite instruments HIRDLS and SABER. In agreement with previous work, we find that sometimes gravity wave activity is enhanced before or around the central date of major SSWs, particularly during vortex-split events. Often, SSWs are associated with polar-night jet oscillation (PJO) events. For these events, we find that gravity wave activity is strongly suppressed when the wind has reversed from eastward to westward (usually after the central date of a major SSW). In addition, gravity wave potential drag at the bottom of the newly forming eastward-directed jet is remarkably weak, while considerable potential drag at the top of the jet likely contributes to the downward propagation of both the jet and the new elevated stratopause. During PJO events, we also find some indication for poleward propagation of gravity waves. Another striking finding is that obviously localized gravity wave sources, likely mountain waves and jet-generated gravity waves, play an important role during the evolution of SSWs and potentially contribute to the triggering of SSWs by preconditioning the shape of the polar vortex. The distribution of these hot spots is highly variable and strongly depends on the zonal and
Maple (Computer Algebra System) in Teaching Pre-Calculus: Example of Absolute Value Function
ERIC Educational Resources Information Center
Tuluk, Güler
2014-01-01
Modules in Computer Algebra Systems (CAS) make Mathematics interesting and easy to understand. The present study focused on the implementation of the algebraic, tabular (numerical), and graphical approaches used for the construction of the concept of absolute value function in teaching mathematical content knowledge along with Maple 9. The study…
A Multidimensional Approach to Explore the Understanding of the Notion of Absolute Value
ERIC Educational Resources Information Center
Gagatsis, Athanasios; Panaoura, Areti
2014-01-01
The study aimed to investigate students' conceptions on the notion of absolute value and their abilities in applying the specific notion in routine and non-routine situations. A questionnaire was constructed and administered to 17-year-old students. Data were analysed using the hierarchical clustering of variables and the implicative method,…
NASA Astrophysics Data System (ADS)
Tanaka, T.; Salden, W.; Martin, A. J.; Saegusa, H.; Asai, Y.; Fujita, Y.; Aoki, H.
2006-03-01
The Tono Research Institute of Earthquake Science has been measuring gravity using an FG5 absolute gravimeter located at the Mizunami Geoscience Academy (MGA) in central Japan since January 2004. Measured gravity decreased immediately following the 2004 earthquake off the Kii peninsula (MJMA 7.4) by about 6 μGal. Here, we investigate the empirical relationship between pore water pressure change in a borehole near the MGA and gravity change measured at the MGA. We reveal that (1) gravity change correlates inversely with pore water pressure change at 81 m below the surface at a particular borehole and (2) several different sets of conversion coefficients from pressure head to gravity can be used to explain 60-70% of gravity variations with less than 2 μGal uncertainty. These newly identified relationships may suggest that an absolute gravimeter alone could be used to observe the change of groundwater quantity.
Al Hosani, E; Soleimani, M
2016-06-28
Multiphase flow imaging is a very challenging and critical topic in industrial process tomography. In this article, simulation and experimental results of reconstructing the permittivity profile of multiphase material from data collected in electrical capacitance tomography (ECT) are presented. A multiphase narrowband level set algorithm is developed to reconstruct the interfaces between three- or four-phase permittivity values. The level set algorithm is capable of imaging multiphase permittivity by using one set of ECT measurement data, so-called absolute value ECT reconstruction, and this is tested with high-contrast and low-contrast multiphase data. Simulation and experimental results showed the superiority of this algorithm over classical pixel-based image reconstruction methods. The multiphase level set algorithm and absolute ECT reconstruction are presented for the first time, to the best of our knowledge, in this paper and critically evaluated. This article is part of the themed issue 'Supersensing through industrial process tomography'. PMID:27185966
Absolute value optimization to estimate phase properties of stochastic time series
NASA Technical Reports Server (NTRS)
Scargle, J. D.
1977-01-01
Most existing deconvolution techniques are incapable of determining phase properties of wavelets from time series data; to assure a unique solution, minimum phase is usually assumed. It is demonstrated, for moving average processes of order one, that deconvolution filtering using the absolute value norm provides an estimate of the wavelet shape that has the correct phase character when the random driving process is nonnormal. Numerical tests show that this result probably applies to more general processes.
The Impact of Different Absolute Solar Irradiance Values on Current Climate Model Simulations
NASA Technical Reports Server (NTRS)
Rind, David H.; Lean, Judith L.; Jonas, Jeffrey
2014-01-01
Simulations of the preindustrial and doubled CO2 climates are made with the GISS Global Climate Middle Atmosphere Model 3 using two different estimates of the absolute solar irradiance value: a higher value measured by solar radiometers in the 1990s and a lower value measured recently by the Solar Radiation and Climate Experiment. Each of the model simulations is adjusted to achieve global energy balance; without this adjustment the difference in irradiance produces a global temperature change of 0.48C, comparable to the cooling estimated for the Maunder Minimum. The results indicate that by altering cloud cover the model properly compensates for the different absolute solar irradiance values on a global level when simulating both preindustrial and doubled CO2 climates. On a regional level, the preindustrial climate simulations and the patterns of change with doubled CO2 concentrations are again remarkably similar, but there are some differences. Using a higher absolute solar irradiance value and the requisite cloud cover affects the model's depictions of high-latitude surface air temperature, sea level pressure, and stratospheric ozone, as well as tropical precipitation. In the climate change experiments it leads to an underestimation of North Atlantic warming, reduced precipitation in the tropical western Pacific, and smaller total ozone growth at high northern latitudes. Although significant, these differences are typically modest compared with the magnitude of the regional changes expected for doubled greenhouse gas concentrations. Nevertheless, the model simulations demonstrate that achieving the highest possible fidelity when simulating regional climate change requires that climate models use as input the most accurate (lower) solar irradiance value.
A redetermination of absolute values for 17RVPDB-CO2 and 17RVSMOW.
Assonov, Sergey S; Brenninkmeijer, Carl A M
2003-01-01
In a companion paper in this issue we presented a review of the current state of (17)O-corrections for CO(2) mass spectrometry and considered an approach (including algebraic formulae) of how to determine absolute values for (17)R(VPDB-CO2) and (17)R(VSMOW). Here we present the results of experiments conducted to determine these values. Two oxygen gases (one depleted in heavy isotopes and the other isotopically normal oxygen) were analysed to obtain the relative (17)O content. Samples of both gases were converted into CO(2), and the resulting CO(2) samples were analysed as well. Possible experimental and analytical errors are carefully considered and eliminated as far as feasible. Much attention was paid to understanding and dealing with cross-contamination effects occurring in the mass spectrometer. Based on the data obtained, the absolute values are calculated to be: (17)R(VPDB-CO2) = 0.00039511 +/- 0.00000094 and (17)R(VSMOW) = 0.00038672 +/- 0.00000087 (expanded uncertainties). Both values are on the original scale of Craig (Geochim. Cosmochim. Acta 1957; 12: 133-149) with (13)R(VPDB-CO2) = 0.0112372. A (17)O-correction algorithm incorporating the newly determined value for (17)R(VPDB-CO2) and lambda = 0.528 by Meijer and Li (Isot. Environ. Health Stud. 1998; 34: 349-369) is constructed. A computational test is performed to demonstrate the degree of delta(13)C bias relative to the previously known correction algorithms. delta(13)C values produced by the constructed algorithm are in the middle of the values produced by the other algorithms. We refrain, however, from giving any recommendation concerning which (17)O-correction algorithm to use in order to obtain delta(13)C data in the most accurate way. The present work illuminates the need to reconsider recommendations concerning the correction algorithm. PMID:12720281
Accuracy, Precision, Sensitivity, and Specificity of Noninvasive ICP Absolute Value Measurements.
Krakauskaite, Solventa; Petkus, Vytautas; Bartusis, Laimonas; Zakelis, Rolandas; Chomskis, Romanas; Preiksaitis, Aidanas; Ragauskas, Arminas; Matijosaitis, Vaidas; Petrikonis, Kestutis; Rastenyte, Daiva
2016-01-01
An innovative absolute intracranial pressure (ICP) value measurement method has been validated by multicenter comparative clinical studies. The method is based on two-depth transcranial Doppler (TCD) technology and uses intracranial and extracranial segments of the ophthalmic artery as pressure sensors. The ophthalmic artery is used as a natural pair of "scales" that compares ICP with controlled pressure Pe, which is externally applied to the orbit. To balance the scales, ICP = Pe a special two-depth TCD device was used as a pressure balance indicator. The proposed method is the only noninvasive ICP measurement method that does not need patient-specific calibration. PMID:27165929
Theoretical prediction of relative and absolute pKa values of aminopyridines.
Caballero, N A; Melendez, F J; Muñoz-Caro, C; Niño, A
2006-11-20
This work presents a study aimed at the theoretical prediction of pK(a) values of aminopyridines, as a factor responsible for the activity of these compounds as blockers of the voltage-dependent K(+) channels. To cover a large range of pK(a) values, a total of seven substituted pyridines is considered as a calibration set: pyridine, 2-aminopyridine, 3-aminopyridine, 4-aminopyridine, 2-chloropyridine, 3-chloropyridine, and 4-methylpirydine. Using ab initio G1, G2 and G3 extrapolation methods, and the CPCM variant of the Polarizable Continuum Model for solvation, we calculate gas phase and solvation free energies. pK(a) values are obtained from these data using a thermodynamic cycle for describing protonation in aqueous and gas phases. The results show that the relatively inexpensive G1 level of theory is the most accurate at predicting pK(a) values in aminopyridines. The highest standard deviation with respect to the experimental data is 0.69 pK(a) units for absolute values calculations. The difference increases slightly to 0.74 pK(a) units when the pK(a) is computed relative to the pyridine molecule. Considering only compounds at least as basic as pyridine (the values of interest for bioactive aminopyridines) the error falls to 0.10 and 0.12 pK(a) units for the absolute and relative computations, respectively. The technique can be used to predict the effect of electronegative substituents in the pK(a) of 4-AP, the most active aminopyridine considered in this work. Thus, 2-chloro and 3-chloro-4-aminopyridine are taken into account. The results show a decrease of the pK(a), suggesting that these compounds are less active than 4-AP at blocking the K(+) channel. PMID:16844281
ERIC Educational Resources Information Center
Manche, Emanuel P.
1979-01-01
Describes a compact and portable apparatus for the measurement, with a high degree of precision, the value of the gravitational acceleration g. The apparatus consists of a falling mercury drop and an electronic timing circuit. (GA)
NASA Astrophysics Data System (ADS)
Mäkinen, Jaakko; Sekowski, Marcin; Krynski, Jan; Ruotsalainen, Hannu
2010-05-01
Finland belongs to the Fennoscandian postglacial rebound (PGR) area, with vertical velocities of up to 1 cm/yr and corresponding surface gravity rates as large as -2 microgal/yr. Knowledge of the secular gravity change in Finland comes so far from three sources: (i) repeated absolute gravity measurements at a limited number of indoor laboratory-type sites, made by various teams and instruments (1976-), (ii) repeated relative measurements on the Fennoscandian Land Uplift Gravity Lines (1966-2003) which run in East-West direction along the approximate latitudes 61, 63 and 65 degrees N, (iii) satellite gravimetry with the GRACE (2002-). We are about to add a fourth source: In 2009 the Finnish Geodetic Institute (FGI) together with the Institute of Geodesy and Cartography (IGiK) started the re-measurement of the Finnish First Order Absolute Gravity Network (FOGN), using the A10 No. 020 outdoor absolute gravimeter of the IGiK. The FOGN consists of 50 outdoor stations, typically on the stairs of churches and other monumental buildings. The purpose of the FOGN (or its re-measurement) is not geodynamic research but the provision of easily-accessible reference sites for tasks of practical relative gravimetry, say gravity mapping for geodesy, geology and applied geophysics. However, as the FOGN was first measured in 1962-63 (with a Worden gravimeter) and re-surveyed in 1988 (with two LCR gravimeters), the time span of more than 45 years to 2009 provides the opportunity to extract a signal of gravity change from the comparison of the three campaigns. While the accuracy of the 1962-63 measurements is limited, at some FOGN stations additional data is provided by North-South traverses measured from 1966 onwards for calibration of LCR gravimeters. During the 2009 campaign with the A10-020 altogether 19 stations in the FOGN were occupied, and about 10 of them are sufficiently well-preserved from 1962-63 to make a gravity comparison meaningful. The experience with the A10 and the
NASA Astrophysics Data System (ADS)
Wziontek, Hartmut; Falk, Reinhard; Hase, Hayo; Armin, Böer; Andreas, Güntner; Rongjiang, Wang
2016-04-01
As part of the Transportable Integrated Geodetic Observatory (TIGO) of BKG, the superconducting gravimeter SG 038 was set up in December 2002 at station Concepcion / Chile to record temporal gravity variations with highest precision. Since May 2006 the time series was supported by weekly observations with the absolute gravimeter FG5-227, proving the large seasonal variations of up to 30 μGal and establishing a gravity reference station in South America. With the move of the whole observatory to the new location near to La Plata / Argentina the series was terminated. Results of almost continuously monitoring gravity variations for more than 12 years are presented. Seasonal variations are interpreted with respect of global and local water storage changes and the impact of the 8.8 Maule Earthquake in February 2010 is discussed.
NASA Astrophysics Data System (ADS)
Mäkinen, Jaakko; Sękowski, Marcin; Kryński, Jan; Kuokkanen, Jaakko; Näränen, Jyri; Raja-Halli, Arttu; Ruotsalainen, Hannu; Virtanen, Heikki
2013-04-01
Finland belongs to the Fennoscandian Postglacial Rebound (PGR) area, with vertical velocities of up to 1 cm/yr and corresponding surface gravity rates as large as -2 microgal/yr. Knowledge of the secular gravity change in Finland comes so far from three sources: (i) repeated absolute gravity measurements at a limited number of indoor laboratory-type sites, made by various teams and instruments (1976-), (ii) repeated relative measurements on the Fennoscandian Land Uplift Gravity Lines (1966-2003) which run in East-West direction along the approximate latitudes 61, 63 and 65 degrees N, (iii) satellite gravimetry with the GRACE (2002-). We are adding a new source: In 2009-2010 the Finnish Geodetic Institute (FGI) together with the Institute of Geodesy and Cartography (IGiK) re-measured the Finnish First Order Gravity Network (FOGN), using the A10 No. 020 outdoor absolute gravimeter of the IGiK. The FOGN consists of 50 outdoor stations, typically on the stairs of churches and other monumental buildings. The purpose of the FOGN (or its re-measurement) is not geodynamic research but the provision of easily-accessible reference sites for tasks of practical relative gravimetry, like gravity mapping for geodesy, geology and applied geophysics. However, as the FOGN was first measured in 1962 (with a Worden gravimeter) and re-surveyed in 1988 (with two LCR gravimeters), the time span 1962-2010 provides the opportunity to extract a signal of gravity change from the comparison of the three campaigns. While the accuracy of the 1962 measurements is limited, at some FOGN stations additional data is provided by North-South traverses measured from 1966 onwards for calibrating LCR gravimeters. During the 2009-2010 campaign with the A10-020 altogether 50 old and new stations in the FOGN were occupied. Some original stations had been destroyed or were not accessible with the A10, e.g. for lack of mounting space. In 2010-11 relative ties were established to connect original and new
ERIC Educational Resources Information Center
Tsamir, Pessia; Rasslan, Shaker; Dreyfus, Tommy
2006-01-01
This paper illustrates the role of a "Thinking-about-Derivatives" task in identifying learners' derivative conceptions and for promoting their critical thinking about derivatives of absolute value functions. The task included three parts: "Define" the derivative of a function f(x) at x = x[subscript 0], "Solve-if-Possible" the derivative of f(x) =…
Trásy, Domonkos; Tánczos, Krisztián; Németh, Márton; Hankovszky, Péter; Lovas, András; Mikor, András; Hajdú, Edit; Osztroluczki, Angelika; Fazakas, János; Molnár, Zsolt
2016-01-01
Purpose. To investigate whether absolute value of procalcitonin (PCT) or the change (delta-PCT) is better indicator of infection in intensive care patients. Materials and Methods. Post hoc analysis of a prospective observational study. Patients with suspected new-onset infection were included in whom PCT, C-reactive protein (CRP), temperature, and leukocyte (WBC) values were measured on inclusion (t 0) and data were also available from the previous day (t -1). Based on clinical and microbiological data, patients were grouped post hoc into infection- (I-) and noninfection- (NI-) groups. Results. Of the 114 patients, 85 (75%) had proven infection. PCT levels were similar at t -1: I-group (median [interquartile range]): 1.04 [0.40-3.57] versus NI-group: 0.53 [0.16-1.68], p = 0.444. By t 0 PCT levels were significantly higher in the I-group: 4.62 [1.91-12.62] versus 1.12 [0.30-1.66], p = 0.018. The area under the curve to predict infection for absolute values of PCT was 0.64 [95% CI = 0.52-0.76], p = 0.022; for percentage change: 0.77 [0.66-0.87], p < 0.001; and for delta-PCT: 0.85 [0.78-0.92], p < 0.001. The optimal cut-off value for delta-PCT to indicate infection was 0.76 ng/mL (sensitivity 80 [70-88]%, specificity 86 [68-96]%). Neither absolute values nor changes in CRP, temperature, or WBC could predict infection. Conclusions. Our results suggest that delta-PCT values are superior to absolute values in indicating infection in intensive care patients. This trial is registered with ClinicalTrials.gov identifier: NCT02311816. PMID:27597981
Hankovszky, Péter; Hajdú, Edit
2016-01-01
Purpose. To investigate whether absolute value of procalcitonin (PCT) or the change (delta-PCT) is better indicator of infection in intensive care patients. Materials and Methods. Post hoc analysis of a prospective observational study. Patients with suspected new-onset infection were included in whom PCT, C-reactive protein (CRP), temperature, and leukocyte (WBC) values were measured on inclusion (t0) and data were also available from the previous day (t−1). Based on clinical and microbiological data, patients were grouped post hoc into infection- (I-) and noninfection- (NI-) groups. Results. Of the 114 patients, 85 (75%) had proven infection. PCT levels were similar at t−1: I-group (median [interquartile range]): 1.04 [0.40–3.57] versus NI-group: 0.53 [0.16–1.68], p = 0.444. By t0 PCT levels were significantly higher in the I-group: 4.62 [1.91–12.62] versus 1.12 [0.30–1.66], p = 0.018. The area under the curve to predict infection for absolute values of PCT was 0.64 [95% CI = 0.52–0.76], p = 0.022; for percentage change: 0.77 [0.66–0.87], p < 0.001; and for delta-PCT: 0.85 [0.78–0.92], p < 0.001. The optimal cut-off value for delta-PCT to indicate infection was 0.76 ng/mL (sensitivity 80 [70–88]%, specificity 86 [68-96]%). Neither absolute values nor changes in CRP, temperature, or WBC could predict infection. Conclusions. Our results suggest that delta-PCT values are superior to absolute values in indicating infection in intensive care patients. This trial is registered with ClinicalTrials.gov identifier: NCT02311816. PMID:27597981
NASA Astrophysics Data System (ADS)
Sofyan, Yayan; Nishijima, Jun; Fujimitsu, Yasuhiro; Yoshikawa, Shin; Kagiyama, Tsuneomi; Ohkura, Takahiro
2016-01-01
At the end of 2010, the seismic activity in Aso volcano intensely increased and water level in the Nakadake crater decreased until early in 2011, then was followed by a small eruption in May 2011. After the eruption and heavy rain, the volcanic activity subsided to calm period, crater bottom was refilled with water, and water level increased in the Nakadake crater. The next tremor reappeared in 2014 and tracked to eruption in November 2014. This eruptive pattern and water level variation in the crater repeatedly appeared on the surface, and it should be related to the hydrothermal dynamics beneath Aso volcano. We initiated the gravity measurements in relation to hydrothermal dynamics in the subsurface of Aso volcano using Scintrex CG-5 (549) and LaCoste Romberg type G-1016 relative gravimeter at 28 benchmarks in April 2011, one month before the eruption. The repeated gravity measurements continue to monitor Aso volcano with a series of the measurement after the eruption in every three months to a half year. We analyze the gravity variation from 2011 to 2014 between the time of the phreatic and strombolian eruption. The measurements covered the area more than 60 km2 in the west side of Aso caldera. A new gravity network was also installed in May 2010 at seven benchmarks using A10-017 absolute gravimeter, which re-occupied in October 2010, June 2011 and two benchmarks in June 2014. As a result, the gravity changes distinguish hydrothermal dynamic in the subsurface, which has a direct correlation to water level fluctuation in the crater, after the first eruption and before the second discharge. The monitoring data notice large gravity changes between the surveys at benchmarks around Nakadake crater and Kusasenri area. The simple 3D inversion models of the 4-D gravity data deduce the density contrast distribution beneath Aso volcano. The inversion and mass change result generate the oscillation typical as a new understanding model. The variation of the mass shows a
NASA Astrophysics Data System (ADS)
Newell, D. B.
2012-12-01
As outlined in Resolution 1 of the 24th Meeting of the General Conference on Weights and Measures (CGPM) on the future revision of the International System of Units (SI) [1], the current four SI base units the kilogram, the ampere, the kelvin and the mole, will be redefined in terms of invariants of nature. The new definitions will be based on fixed numerical values of the Planck constant (h), the elementary charge (e), the Boltzmann constant (k), and the Avogadro constant (NA), respectively. While significant progress has been made towards providing the necessary experimental results for the redefinition, some disagreement among the relevant data remain. Among the set of discrepant data towards the redefinition of the SI are the determinations of the Planck constant from the National Institute of Standards and Technology (NIST) watt balance [2] and the recent result from the National Research Council Canada (NRC) watt balance [3], with the discrepancy of roughly 2.5 parts in 107 being significantly outside the reported uncertainties. Of major concern is that the watt balance experiment is seen as a key component of a mise en pratique for the new kilogram definition, once such a redefinition takes place. The basic operational principle of a watt balance relates the Planck constant to mass, length, and time through h = mgvC, where m is the mass of an artifact mass standard, g is the local acceleration of gravity, v is a velocity, and C is a combination of frequencies and scalar constants. With the total uncertainty goal for the watt balance on the order of a few parts in 108, g needs to be determined at the location of the mass standard to parts in 109 such that its uncertainty is negligible in the final watt balance result. NIST and NRC have formed a collaborative effort to reconcile the relevant discrepant data and provide further progress towards preparing and testing a mise en pratique for the new kilogram definition. As an initial step, direct comparisons of
Breakdown of the initial value formulation of scalar-tensor gravity and its physical meaning
Faraoni, Valerio; Lanahan-Tremblay, Nicolas
2008-09-15
We revisit singularities of two distinct kinds in the Cauchy problem of general scalar-tensor theories of gravity (previously discussed in the literature), and of metric and Palatini f(R) gravity, in both their Jordan and Einstein frame representations. Examples and toy models are used to shed light onto the problem and it is shown that, contrary to common lore, the two conformal frames are equivalent with respect to the initial value problem.
Chern-Simons expectation values and quantum horizons from loop quantum gravity and the Duflo map.
Sahlmann, Hanno; Thiemann, Thomas
2012-03-16
We report on a new approach to the calculation of Chern-Simons theory expectation values, using the mathematical underpinnings of loop quantum gravity, as well as the Duflo map, a quantization map for functions on Lie algebras. These new developments can be used in the quantum theory for certain types of black hole horizons, and they may offer new insights for loop quantum gravity, Chern-Simons theory and the theory of quantum groups. PMID:22540458
NASA Astrophysics Data System (ADS)
Tanida, Yoshiaki; Ito, Masakatsu; Fujitani, Hideaki
2007-08-01
The massively parallel computation of absolute binding free energy with a well-equilibrated system (MP-CAFEE) has been developed [H. Fujitani, Y. Tanida, M. Ito, G. Jayachandran, C.D. Snow, M.R. Shirts, E.J. Sorin, V.S. Pande, J. Chem. Phys. 123 (2005) 084108]. As an application, we perform the binding affinity calculations of six theophylline-related ligands with RNA aptamer. Basically, our method is applicable when using many compute nodes to accelerate simulations, thus a parallel computing system is also developed. To further reduce the computational cost, the adequate non-uniform intervals of coupling constant λ, connecting two equilibrium states, namely bound and unbound, are determined. The absolute binding energies Δ G thus obtained have effective linear relation between the computed and experimental values. If the results of two other different methods are compared, thermodynamic integration (TI) and molecular mechanics Poisson-Boltzmann surface area (MM-PBSA) by the paper of Gouda et al. [H. Gouda, I.D. Kuntz, D.A. Case, P.A. Kollman, Biopolymers 68 (2003) 16], the predictive accuracy of the relative values ΔΔ G is almost comparable to that of TI: the correlation coefficients ( R) obtained are 0.99 (this work), 0.97 (TI), and 0.78 (MM-PBSA). On absolute binding energies meanwhile, a constant energy shift of ˜-7 kcal/mol against the experimental values is evident. To solve this problem, several presumable reasons are investigated.
He, Yingbin; Chen, Youqi; Tang, Huajun; Yao, Yanmin; Yang, Peng; Chen, Zhongxin
2011-04-01
Spatially explicit ecosystem services valuation and change is a newly developing area of research in the field of ecology. Using the Beijing region as a study area, the authors have developed a spatially explicit ecosystem services value index and implemented this to quantify and spatially differentiate ecosystem services value at 1-km grid resolution. A gravity model was developed to trace spatial change in the total ecosystem services value of the Beijing study area from a holistic point of view. Study results show that the total value of ecosystem services for the study area decreased by 19.75% during the period 1996-2006 (3,226.2739 US$×10(6) in 1996, 2,589.0321 US$×10(6) in 2006). However, 27.63% of the total area of the Beijing study area increased in ecosystem services value. Spatial differences in ecosystem services values for both 1996 and 2006 are very clear. The center of gravity of total ecosystem services value for the study area moved 32.28 km northwestward over the 10 years due to intensive human intervention taking place in southeast Beijing. The authors suggest that policy-makers should pay greater attention to ecological protection under conditions of rapid socio-economic development and increase the area of green belt in the southeastern part of Beijing. PMID:20556644
NASA Astrophysics Data System (ADS)
Maden, Nafiz; Öztürk, Serkan
2015-07-01
In this paper, we analyze the relationships between the seismic b-values, Bouguer gravity and heat flow data in the Eastern Anatolia region of Turkey. For this purpose, spatial distributions of b-value, Bouguer gravity and heat flow have been presented for different depths and locations. In distinction to previous studies which have used only two parameters (gravity and seismic b-value or heat flow and seismic b-value), we have combined seismic b-values, Bouguer gravity and heat flow data to determine the new results on the active tectonics of the Eastern Anatolia region. Our analysis shows that there are significant and robust correlations amidst the heat flow data, Bouguer gravity anomaly and seismic b-values. The crustal structure is thick in areas where the large negative gravity anomalies and low b-values are observed. On the contrary, the regions with positive gravity anomalies and high b-values are likely to be associated with magma chambers or crustal low-velocity zones. We also provide some evidence suggesting that high b-values and high heat flow values can be related to the magmatic activities beneath the volcanic chain in the Eastern Pontide orogenic belt. Consequently, we have reached some conclusions for the Eastern Anatolia region: (1) The Moho to surface is rather thick and earthquakes are relatively smaller beneath the volcanic chain where the high heat flow values are observed, (2) a southward subduction model could have existed for the development of the Pontides during the late Mesozoic-Cenozoic era, (3) hot and unstable mantle lid zones or a lithosphere deprived of mantle under the study region is much more plausible, (4) a southward movement of the subduction plate and a northward extension of the Black Sea increase the state of stress along the trench axis and decrease the b-value, and (5) these movements may load the stress energy to the fault zones, thereby causing the catastrophic earthquakes in the Eastern Anatolia region.
Checkley, William; Foreman, Marilyn G; Bhatt, Surya P; Dransfield, Mark T; Han, MeiLan; Hanania, Nicola A; Hansel, Nadia N; Regan, Elizabeth A; Wise, Robert A
2016-02-01
The Global Initiative for Chronic Obstructive Lung Disease (GOLD) severity criterion for COPD is used widely in clinical and research settings; however, it requires the use of ethnic- or population-specific reference equations. We propose two alternative severity criteria based on absolute post-bronchodilator FEV1 values (FEV1 and FEV1/height2) that do not depend on reference equations. We compared the accuracy of these classification schemasto those based on % predicted values (GOLD criterion) and Z-scores of post-bronchodilator FEV1 to predict COPD-related functional outcomes or percent emphysema by computerized tomography of the lung. We tested the predictive accuracy of all severity criteria for the 6-minute walk distance (6MWD), St. George's Respiratory Questionnaire (SGRQ), 36-item Short-Form Health Survey physical health component score (SF-36) and the MMRC Dyspnea Score. We used 10-fold cross-validation to estimate average prediction errors and Bonferroni-adjusted t-tests to compare average prediction errors across classification criteria. We analyzed data of 3772 participants with COPD (average age 63 years, 54% male). Severity criteria based on absolute post-bronchodilator FEV1 or FEV1/height2 yielded similar prediction errors for 6MWD, SGRQ, SF-36 physical health component score, and the MMRC Dyspnea Score when compared to the GOLD criterion (all p > 0.34); and, had similar predictive accuracy when compared with the Z-scores criterion, with the exception for 6MWD where post-bronchodilator FEV1 appeared to perform slightly better than Z-scores (p = 0.01). Subgroup analyses did not identify differences across severity criteria by race, sex, or age between absolute values and the GOLD criterion or one based on Z-scores. Severity criteria for COPD based on absolute values of post-bronchodilator FEV1 performed equally as well as did criteria based on predicted values when benchmarked against COPD-related functional and structural outcomes, are simple to use
National Geodetic Survey Gravity Network
NASA Astrophysics Data System (ADS)
Moose, R. E.
1986-12-01
In 1966, the U.S. National Gravity Base Network was established through the cooperative efforts of several government agencies and academic institutions involved in nationwide gravity observations. The network was reobserved between 1975 and 1979 by the National Geodetic Survey (NGS) using field procedures designed to give high-quality gravity differences. The report discusses the adjustment and the areas where apparent gravity change was observed. NGS plans to densify and maintain this network and to improve the accuracy of the station values by additional high-quality relative ties and by making observations with a new, absolute gravity meter in each of the states.
NASA Astrophysics Data System (ADS)
Vocke, Robert; Rabb, Savelas
2015-04-01
All isotope amount ratios (hereafter referred to as isotope ratios) produced and measured on any mass spectrometer are biased. This unfortunate situation results mainly from the physical processes in the source area where ions are produced. Because the ionized atoms in poly-isotopic elements have different masses, such processes are typically mass dependent and lead to what is commonly referred to as mass fractionation (for thermal ionization and electron impact sources) and mass bias (for inductively coupled plasma sources.) This biasing process produces a measured isotope ratio that is either larger or smaller than the "true" ratio in the sample. This has led to the development of numerous fractionation "laws" that seek to correct for these effects, many of which are not based on the physical processes giving rise to the biases. The search for tighter and reproducible precisions has led to two isotope ratio measurement systems that exist side-by-side. One still seeks to measure "absolute" isotope ratios while the other utilizes an artifact based measurement system called a delta-scale. The common element between these two measurement systems is the utilization of isotope reference materials (iRMs). These iRMs are used to validate a fractionation "law" in the former case and function as a scale anchor in the latter. Many value assignments of iRMs are based on "best measurements" by the original groups producing the reference material, a not entirely satisfactory approach. Other iRMs, with absolute isotope ratio values, have been produced by calibrated measurements following the Atomic Weight approach (AW) pioneered by NBS nearly 50 years ago. Unfortunately, the AW is not capable of calibrating the new generation of iRMs to sufficient precision. So how do we get iRMs with isotope ratios of sufficient precision and without bias? Such a focus is not to denigrate the extremely precise delta-scale measurements presently being made on non-traditional and tradition
NASA Astrophysics Data System (ADS)
Hwang, Cheinway
2016-04-01
Taiwan and Tahiti are bordered by seas and are islands with mountain ranges up to 4000 m height. The gravity fields here are rough due to the geodynamic processes that create the islands. On and around the two islands, gravity data have been collected by land gravimeters in relative gravity networks (point-wise), by airborne and shipborne (along-track) methods and by transformations from sea surface heights (altimeter-derived). Typically, network-adjusted land gravity values have accuracies of few tens of micro gals and contain the full gravity spectrum. Airborne gravity values are obtained by filtering original one-HZ along-track gravity values collected at varying flight altitudes that are affected by aircraft dynamics, GPS positioning error and gravimeter error. At a 5000-m flight height, along-track airborne gravity has a typical spatial resolution of 4 km and an accuracy of few mgal. Shipborne gravity is similar to airborne gravity, but with higher spatial resolutions because of ship's lower speed. Altimeter-derived gravity has varying spatial resolutions and accuracies, depending on altimeter data, processing method and extent of waveform interference. Using the latest versions of Geosat/GM, ERS-1/GM, ENVISAT, Jason-1/GM, Cryosat-2 and SARAL altimeter data, one can achieve accuracies at few mgal. The synergy of the four kinds of gravity datasets is made by the band-limited least-squares collocation, which best integrates datasets of different accuracies and spatial resolutions. The method uses the best contributions from a DEM, a global gravity model, available gravity datasets to form an optimal gravity grid. We experiment with different optimal spherical harmonic degrees of EGM08 for use around the two islands. For Tahiti, the optimal degree is 1500. New high-resolution gravity and geoid grids are constructed for the two islands and can be used in future geophysical and geodetic studies.
NASA Astrophysics Data System (ADS)
Poisson, Eric; Will, Clifford M.
2014-05-01
Preface; 1. Foundations of Newtonian gravity; 2. Structure of self-gravitating bodies; 3. Newtonian orbital dynamics; 4. Minkowski spacetime; 5. Curved spacetime; 6. Post-Minkowskian theory: formulation; 7. Post-Minkowskian theory: implementation; 8. Post-Newtonian theory: fundamentals; 9. Post-Newtonian theory: system of isolated bodies; 10. Post-Newtonian celestial mechanics, astrometry and navigation; 11. Gravitational waves; 12. Radiative losses and radiation reaction; 13. Alternative theories of gravity; References; Index.
Feng, X; Schott, J R; Gallagher, T
1993-03-01
Currently, spectrophotometric standard reference materials are calibrated only by using the illumination and viewing geometries recommended by the Commission Internationale de l'Eclairage, and for some geometries the spectral range is limited to the visible wavelengths. A need exists for procedures that calibrate standards at many other geometries and for a broader spectral range. Two methods for calibrating the spectral bidirectional reflectance factor are described. The absolute bidirectional reflectance factor of a sintered polytetrafluoroethylene (PTFE) sample is determined for nearly all the possible illumination and viewing geometries from 400 nm to 2500 nm. The references are a 45/0 reflectance standard calibrated by the National Institute of Standards and Technology and a sintered PTFE sample with a directional, hemispherical reflectance factor traceable to the Institute. The results of the two methods agree to within 0.01 in reflectance factor values. With this PTFE sample as a transfer standard, the instrument described can also be used to measure the absolute bidirectional reflectance factor at nearly all the illumination and viewing geometries from 400 nm to 2500 nm. PMID:20820258
2015-01-01
Objectives To predict in an Australian Aboriginal community, the 10-year absolute risk of type 2 diabetes associated with waist circumference and age on baseline examination. Method A sample of 803 diabetes-free adults (82.3% of the age-eligible population) from baseline data of participants collected from 1992 to 1998 were followed-up for up to 20 years till 2012. The Cox-proportional hazard model was used to estimate the effects of waist circumference and other risk factors, including age, smoking and alcohol consumption status, of males and females on prediction of type 2 diabetes, identified through subsequent hospitalisation data during the follow-up period. The Weibull regression model was used to calculate the absolute risk estimates of type 2 diabetes with waist circumference and age as predictors. Results Of 803 participants, 110 were recorded as having developed type 2 diabetes, in subsequent hospitalizations over a follow-up of 12633.4 person-years. Waist circumference was strongly associated with subsequent diagnosis of type 2 diabetes with P<0.0001 for both genders and remained statistically significant after adjusting for confounding factors. Hazard ratios of type 2 diabetes associated with 1 standard deviation increase in waist circumference were 1.7 (95%CI 1.3 to 2.2) for males and 2.1 (95%CI 1.7 to 2.6) for females. At 45 years of age with baseline waist circumference of 100 cm, a male had an absolute diabetic risk of 10.9%, while a female had a 14.3% risk of the disease. Conclusions The constructed model predicts the 10-year absolute diabetes risk in an Aboriginal Australian community. It is simple and easily understood and will help identify individuals at risk of diabetes in relation to waist circumference values. Our findings on the relationship between waist circumference and diabetes on gender will be useful for clinical consultation, public health education and establishing WC cut-off points for Aboriginal Australians. PMID:25876058
NASA Technical Reports Server (NTRS)
Uotila, U. A.
1978-01-01
In order to use gravity anomalies in geodetic computations and geophysical interpretations, the observed gravity values from which anomalies are derived should be referred to one consistent world wide system. The International Gravity Standardization Net 1971 was adapted by the International Union of Geodesy and Geophysics at Moscow in 1971, the network was result of extensive cooperation by many organizations and individuals around the world. The network contains more than 1800 stations around the world. The data used in the adjustment included more than 25,000 gravimetry, pendulum and absolute measurements.
Gravity data from the San Pedro River Basin, Cochise County, Arizona
Kennedy, Jeffrey R.; Winester, Daniel
2011-01-01
The U.S. Geological Survey, Arizona Water Science Center in cooperation with the National Oceanic and Atmospheric Administration, National Geodetic Survey has collected relative and absolute gravity data at 321 stations in the San Pedro River Basin of southeastern Arizona since 2000. Data are of three types: observed gravity values and associated free-air, simple Bouguer, and complete Bouguer anomaly values, useful for subsurface-density modeling; high-precision relative-gravity surveys repeated over time, useful for aquifer-storage-change monitoring; and absolute-gravity values, useful as base stations for relative-gravity surveys and for monitoring gravity change over time. The data are compiled, without interpretation, in three spreadsheet files. Gravity values, GPS locations, and driving directions for absolute-gravity base stations are presented as National Geodetic Survey site descriptions.
Dirichlet boundary-value problem for Chern-Simons modified gravity
Grumiller, Daniel; Mann, Robert; McNees, Robert
2008-10-15
Chern-Simons modified gravity comprises the Einstein-Hilbert action and a higher-derivative interaction containing the Chern-Pontryagin density. We derive the analog of the Gibbons-Hawking-York boundary term required to render the Dirichlet boundary-value problem well defined. It turns out to be a boundary Chern-Simons action for the extrinsic curvature. We address applications to black hole thermodynamics.
Echenique-Robba, Pablo; Nelo-Bazán, María Alejandra; Carrodeguas, José A.
2013-01-01
When the value of a quantity for a number of systems (cells, molecules, people, chunks of metal, DNA vectors, so on) is measured and the aim is to replicate the whole set again for different trials or assays, despite the efforts for a near-equal design, scientists might often obtain quite different measurements. As a consequence, some systems’ averages present standard deviations that are too large to render statistically significant results. This work presents a novel correction method of a very low mathematical and numerical complexity that can reduce the standard deviation of such results and increase their statistical significance. Two conditions are to be met: the inter-system variations of matter while its absolute value does not, and a similar tendency in the values of must be present in the different assays (or in other words, the results corresponding to different assays must present a high linear correlation). We demonstrate the improvements this method offers with a cell biology experiment, but it can definitely be applied to any problem that conforms to the described structure and requirements and in any quantitative scientific field that deals with data subject to uncertainty. PMID:24205158
Validation of GOCE by absolute and relative gravimetry
NASA Astrophysics Data System (ADS)
Pettersen, B. R.; Sprlak, M.; Lysaker, D. I.; Omang, O. C. D.; Sekowski, M.; Dykowski, P.
2012-04-01
Absolute gravimetry has been performed in 2011 by FG5 and A10 instruments in selected sites of the Norwegian first order gravity network. These observations are used as reference values to transform a large number of relative gravity values collected in 1968-1972. The outcome is a database at current epoch in a reference frame defined by the absolute gravity values. This constitutes our test field for validation of GOCE results. In the test fields, validation of GOCE-derived gravity anomalies was performed. The spectral enhancement method was applied to avoid the spectral inconsistency between the terrestrial and the satellite data. For this purpose, contributions of the EGM2008 model and a gravitational effect of a residual terrain model were calculated.
Eosinophils; Absolute eosinophil count ... the white blood cell count to give the absolute eosinophil count. ... than 500 cells per microliter (cells/mcL). Normal value ranges may vary slightly among different laboratories. Talk ...
Coughlin, Jeffrey L.; Harrison, Thomas E.; Gelino, Dawn M.
2010-11-10
We present a novel technique to determine the absolute inclination of single stars using multi-wavelength submilliarcsecond astrometry. The technique exploits the effect of gravity darkening, which causes a wavelength-dependent astrometric displacement parallel to a star's projected rotation axis. We find that this effect is clearly detectable using SIM Lite for various giant stars and rapid rotators, and present detailed models for multiple systems using the REFLUX code. We also explore the multi-wavelength astrometric reflex motion induced by spots on single stars. We find that it should be possible to determine spot size, relative temperature, and some positional information for both giant and nearby main-sequence stars utilizing multi-wavelength SIM Lite data. These data will be extremely useful in stellar and exoplanet astrophysics, as well as supporting the primary SIM Lite mission through proper multi-wavelength calibration of the giant star astrometric reference frame, and reduction of noise introduced by starspots when searching for extrasolar planets.
NASA Astrophysics Data System (ADS)
Fu, L.; Zhong, W. Y.; Qiao, H. H.; Liu, G. X.; Qian, H. L.
2015-07-01
The methods of ideal reflector surface, two-parameter, five-parameter, and six-parameter best-fit paraboloid are presented in this paper. Based on these methods, the adjustment values of gravity deformations are calculated for the main reflector of large-scale Cassegrain antenna. Accordingly, the positions of subreflector are corrected, and the effects of offset-focus on electric performance are also analyzed. Taking Shanghai 65 m antenna as a research object, the adjustment values of actuator and hexapod, the accuracy of the main reflector surface, and the pointing error after offsetting the focus are contrasted. As a result, the method of six-parameter best-fit paraboloid is ideal to calculate active control value for antenna panels after the effects of feed defocus have been adjusted and modified. The results offer data for the active control of antenna.
Unbiased symmetric metrics provide a useful measure to quickly compare two datasets, with similar interpretations for both under and overestimations. Two examples include the normalized mean bias factor and normalized mean absolute error factor. However, the original formulations...
NASA Astrophysics Data System (ADS)
Olszak, Tomasz; Barlik, Marcin; Pachuta, Andrzej; Próchniewicz, Dominik
2014-05-01
Geodynamical use of epoch gravimetric relative and absolute observations requires the elimination of one from the most significant effect related to local and global changes of hydrological conditions. It is understood that hydrological effect is associated with changes in groundwater levels and soil moisture around the gravimetric station. In Poland, the quasi - permanent observations of gravity changes by absolute method carried out since 2005 on gravity station located in the Astronomical - Geodetic Observatory in Józefosław. In the poster will be shortly described measurement strategy of absolute observations and different approaches to the elimination of the local and global effects associated with changes in hydrology. This paper will discuss the results of the analysis of tidal observations relevant to the development of absolute observations - seasonal changes in barometric correction factor and differences in the locally designated tidal corrections model. Analysis of the possibility of elimination the impact of global hydrological influence is based on the model GLDAS a spatial resolution of 0.25 degree independently on a local scale and global. Józefosław Observatory is equipped with additional sensors linked to the monitoring of local hydrological conditions. It gives a possibility to verify the quality of modeling of hydrological changes using global models in local and global scale.
NASA Astrophysics Data System (ADS)
Wahyudi, Eko Januari
2013-09-01
As advancing application of soft computation technique in oil and gas industry, Genetic Algorithm (GA) also shows contribution in geophysical inverse problems in order to achieve better results and efficiency in computational process. In this paper, I would like to show the progress of my work in inverse modeling of time-lapse gravity data uses value encoding with alphabet formulation. The alphabet formulation designed to provide solution of characterization positive density change (+Δρ) and negative density change (-Δρ) respect to reference value (0 gr/cc). The inversion that utilize discrete model parameter, computed with GA as optimization algorithm. The challenge working with GA is take long time computational process, so the step in designing GA in this paper described through evaluation on GA operators performance test. The performances of several combinations of GA operators (selection, crossover, mutation, and replacement) tested with synthetic model in single-layer reservoir. Analysis on sufficient number of samples shows combination of SUS-MPCO-QSA/G-ND as the most promising results. Quantitative solution with more confidence level to characterize sharp boundary of density change zones was conducted with average calculation of sufficient model samples.
Gustafson, William I.; Yu, Shaocai
2012-10-23
Unbiased symmetric metrics provide a useful measure to quickly compare two datasets, with similar interpretations for both under and overestimations. Two examples include the normalized mean bias factor and normalized mean absolute error factor. However, the original formulations of these metrics are only valid for datasets with positive means. This paper presents a methodology to use and interpret the metrics with datasets that have negative means. The updated formulations give identical results compared to the original formulations for the case of positive means, so researchers are encouraged to use the updated formulations going forward without introducing ambiguity.
Adegbija, Odewumi; Hoy, Wendy E; Wang, Zhiqiang
2015-01-01
Objective There is a lack of waist circumference (WC) thresholds to identify Aboriginal individuals at high risk of type 2 diabetes. We generated gender-specific WC values with equivalent 10-year absolute risk of type 2 diabetes as body mass index (BMI) points in an Australian Aboriginal community to contribute to guidelines needed for establishing WC cut-off points for Aboriginals. Research design and methods A cohort of 803 adult participants free from type 2 diabetes in an Aboriginal community was followed up for up to 20 years. We derived WC values with absolute risks equivalent for the development of type 2 diabetes as BMI values (20–35 kg/m2) using the Weibull accelerated failure-time model. Results After a mean follow-up of 15.7 years, 110 participants developed type 2 diabetes. Absolute risk of type 2 diabetes increased as WC increased, ranging from 3.52% (WC=77.5 cm) to 14.14% (WC=119.9 cm) in males, and 5.04% (WC=79.5 cm) to 24.25% (WC=113.7 cm) in females. In males, WC values with same absolute risks of type 2 diabetes as BMI values were 77.5 cm for BMI=20 kg/m2, 91.5 cm for BMI=25 kg/m2 (overweight threshold), 105.7 cm for BMI=30 kg/m2 (obesity threshold) and 119.9 cm for BMI=35 kg/m2. In females, WC values were 79.5 cm for BMI=20 kg/m2, 90.9 cm for BMI=25 kg/m2, 102.3 cm for BMI=30 kg/m2 and 113.7 cm for BMI=35 kg/m2. Interaction between WC and gender was not statistically significant (p=0.53). Conclusions The absolute risk of type 2 diabetes increased with higher WC measured at baseline screening. Males were not significantly different from females in the association between WC and type 2 diabetes. Our findings are useful contributions for future establishment of WC cut-off points for identifying high-risk individuals in Aboriginal people. PMID:26405557
Gravity data from the Sierra Vista Subwatershed, Upper San Pedro Basin, Arizona
Kennedy, Jeffrey R.
2015-01-01
This report (1) summarizes changes to the Sierra Vista Subwatershed regional time-lapse gravity network with respect to station locations and (2) presents 2014 and 2015 gravity measurements and gravity values at each station. A prior gravity network, established between 2000 and 2005, was revised in 2014 to cover a larger number of stations over a smaller geographic area in order to decrease measurement and interpolation uncertainty. The network currently consists of 59 gravity stations, including 14 absolute-gravity stations. Following above-average rainfall during summer 2014, gravity increased at all but one of the absolute-gravity stations that were observed in both June 2014 and January 2015. This increase in gravity indicates increased groundwater storage in the aquifer and (or) unsaturated zone as a result of rainfall and infiltration.
NASA Astrophysics Data System (ADS)
Balasubramaniam, R.; Lacy, Claud E.; Woniak, Günter; Subramanian, R. Shankar
1996-04-01
Experiments were performed on the motion of isolated drops and bubbles in a Dow-Corning silicone oil under the action of an applied temperature gradient in a reduced gravity environment aboard the NASA Space Shuttle in orbit. Images of the interior of the test cell during these experiments were recorded on cine film and later analyzed to obtain data on the migration velocity as a function of size and the applied temperature gradient. The data are presented in scaled form. Predictions are available in the case of gas bubbles, and it is found that the scaled velocity decreases with increasing Marangoni number qualitatively as expected even though there are quantitative discrepancies. The scaled velocity also appears to approach a theoretical asymptote predicted in the limit of large values of the Marangoni number for Stokes motion. Finally, sample results from a preliminary experiment on a pair of drops are presented. They display the remarkable feature that a small drop which leads a large drop in a temperature gradient can significantly retard the motion of the large trailing drop while itself moving as though it is virtually unaffected by the presence of the large drop.
NASA Astrophysics Data System (ADS)
Bernknopf, R.; Kuwayama, Y.; Brookshire, D.; Macauley, M.; Zaitchik, B.; Pesko, S.; Vail, P.
2014-12-01
Determining how much to invest in earth observation technology depends in part on the value of information (VOI) that can be derived from the observations. We design a framework and then evaluate the value-in-use of the NASA Gravity Research and Climate Experiment (GRACE) for regional water use and reliability in the presence of drought. As a technology that allows measurement of water storage, the GRACE Data Assimilation System (DAS) provides information that is qualitatively different from that generated by other water data sources. It provides a global, reproducible grid of changes in surface and subsurface water resources on a frequent and regular basis. Major damages from recent events such as the 2012 Midwest drought and the ongoing drought in California motivate the need to understand the VOI from remotely sensed data such as that derived from GRACE DAS. Our conceptual framework models a dynamic risk management problem in agriculture. We base the framework on information from stakeholders and subject experts. The economic case for GRACE DAS involves providing better water availability information. In the model, individuals have a "willingness to pay" (wtp) for GRACE DAS - essentially, wtp is an expression of savings in reduced agricultural input costs and for costs that are influenced by regional policy decisions. Our hypothesis is that improvements in decision making can be achieved with GRACE DAS measurements of water storage relative to data collected from groundwater monitoring wells and soil moisture monitors that would be relied on in the absence of GRACE DAS. The VOI is estimated as a comparison of outcomes. The California wine grape industry has features that allow it to be a good case study and a basis for extrapolation to other economic sectors. We model water use in this sector as a sequential decision highlighting the attributes of GRACE DAS input as information for within-season production decisions as well as for longer-term water reliability.
NASA Astrophysics Data System (ADS)
Poppel, W. G. L.; Marronetti, P.; Benaglia, P.
1994-07-01
We made a systematic separation of both the neutral phases using the atlases of 21-cm profiles of Heiles & Habing (1974) and Colomb et al. (1980), complemented with other data. First, we fitted the emission of the warm neutral medium (WNM) by means of a broad Gaussian curve (velocity dispersion sigma approximately 10-14 km/s). We derived maps of the column densities NWH and the radial velocities VW of the WNM. Its overall distribution appears to be very inhomogeneous with a large hole in the range b greater than or equal to +50 deg. However, if the hole is excluded, the mean latitude-profiles admit a rough cosec absolute value of b-fit common to both hemispheres. A kinematical analysis of VW for the range 10 deg less than or equal to absolute value of b less than or equal to 40 deg indicates a mean differential rotation with a small nodal deviation. At absolute value of b greater than 50 deg VW is negative, with larger values and discontinuities in the north. On the mean, sigma increases for absolute value of b decreasing, as is expected from differential rotation. From a statistical study of the peaks of the residual profiles we derived some characteristics of the cold neutral medium (CNM). The latter is generally characterized by a single component of sigma approximately 2-6 km/s. Additionally we derived the sky-distribution of the column densities NCH and the radial velocities VC of the CNM within bins of 1.2 deg sec b x 1 deg in l, b. Furthermore, we focused on the characteristics of Linblad's feature A of cool gas by considering the narrow ridge of local H I, which appears in the b-V contour maps at fixed l (e.g. Schoeber 1976). The ridge appears to be the main component of the CNM. We suggest a scenario for the formulation and evolution of the Gould belt system of stars and gas on the basis of an explosive event within a shingle of cold dense gas tilted to the galactic plane. The scenario appears to be consistent with the results found for both the neutral
Anomalous values of gravity and magnetism in the western margin of Gondwana
NASA Astrophysics Data System (ADS)
Weidmann, Cecilia; Gimenez, Mario; Klinger, Federico Lince; Alvarez, Orlando
2016-01-01
This research is based on a joint geological and geophysical study performed in the South Central Andes region. We acquired and processed terrestrial and satellite gravity data, as well as terrestrial and aeromagnetic data. Balanced geological cross-sections were constrained by physical properties of rocks (densities and magnetic susceptibilities obtained from field samples and well log). This study was performed in order to interpret a complex region that is still under debate: the location of Famatinian magmatic arc and its boundary with the Cuyania terrain. By means of gravity anomaly we developed direct and inverse models constrained by field data. The existence of a major high-density geological structure was evidenced from these models, located below the Vinchina basin and to the east of Cerro Rajado respectively. The existence of such gravity high could be linked to the boundary between the Famatinian magmatic arc and the accreted Cuyania wedge.
NASA Astrophysics Data System (ADS)
Chen, Chen; Klämpfl, Florian; Stelzle, Florian; Schmidt, Michael
2014-11-01
An imging resolution of micron-scale has not yet been discovered by diffuse optical imaging (DOI), while a superficial response was eliminated. In this work, we report on a new approach of DOI with a local off-set alignment to subvert the common boundary conditions of the modified Beer-Lambert Law (MBLL). It can resolve a superficial target in micron scale under a turbid media. To validate both major breakthroughs, this system was used to recover a subsurface microvascular mimicking structure under an skin equivalent phantom. This microvascular was included with oxy-hemoglobin solution in variant concentrations to distiguish the absolute values of CtRHb and CtHbO2 . Experimental results confirmed the feasibility of recovering the target vascular of 50 µm in diameter, and graded the values of the concentrations of oxy-hemoglobin from 10 g/L to 50 g/L absolutely. Ultimately, this approach could evolve into a non-invasive imaging system to map the microvascular pattern and the associated oximetry under a human skin in-vivo.
Aubert, B; Barate, R; Bona, M; Boutigny, D; Couderc, F; Karyotakis, Y; Lees, J P; Poireau, V; Tisserand, V; Zghiche, A; Grauges, E; Palano, A; Chen, J C; Qi, N D; Rong, G; Wang, P; Zhu, Y S; Eigen, G; Ofte, I; Stugu, B; Abrams, G S; Battaglia, M; Brown, D N; Button-Shafer, J; Cahn, R N; Charles, E; Gill, M S; Groysman, Y; Jacobsen, R G; Kadyk, J A; Kerth, L T; Kolomensky, Yu G; Kukartsev, G; Lynch, G; Mir, L M; Orimoto, T J; Pripstein, M; Roe, N A; Ronan, M T; Wenzel, W A; del Amo Sanchez, P; Barrett, M; Ford, K E; Harrison, T J; Hart, A J; Hawkes, C M; Morgan, S E; Watson, A T; Held, T; Koch, H; Lewandowski, B; Pelizaeus, M; Peters, K; Schroeder, T; Steinke, M; Boyd, J T; Burke, J P; Cottingham, W N; Walker, D; Cuhadar-Donszelmann, T; Fulsom, B G; Hearty, C; Knecht, N S; Mattison, T S; McKenna, J A; Khan, A; Kyberd, P; Saleem, M; Sherwood, D J; Teodorescu, L; Blinov, V E; Bukin, A D; Druzhinin, V P; Golubev, V B; Onuchin, A P; Serednyakov, S I; Skovpen, Yu I; Solodov, E P; Todyshev, K Yu; Best, D S; Bondioli, M; Bruinsma, M; Chao, M; Curry, S; Eschrich, I; Kirkby, D; Lankford, A J; Lund, P; Mandelkern, M; Mommsen, R K; Roethel, W; Stoker, D P; Abachi, S; Buchanan, C; Foulkes, S D; Gary, J W; Long, O; Shen, B C; Wang, K; Zhang, L; Hadavand, H K; Hill, E J; Paar, H P; Rahatlou, S; Sharma, V; Berryhill, J W; Campagnari, C; Cunha, A; Dahmes, B; Hong, T M; Kovalskyi, D; Richman, J D; Beck, T W; Eisner, A M; Flacco, C J; Heusch, C A; Kroseberg, J; Lockman, W S; Nesom, G; Schalk, T; Schumm, B A; Seiden, A; Spradlin, P; Williams, D C; Wilson, M G; Albert, J; Chen, E; Dvoretskii, A; Fang, F; Hitlin, D G; Narsky, I; Piatenko, T; Porter, F C; Ryd, A; Samuel, A; Mancinelli, G; Meadows, B T; Mishra, K; Sokoloff, M D; Blanc, F; Bloom, P C; Chen, S; Ford, W T; Hirschauer, J F; Kreisel, A; Nagel, M; Nauenberg, U; Olivas, A; Ruddick, W O; Smith, J G; Ulmer, K A; Wagner, S R; Zhang, J; Chen, A; Eckhart, E A; Soffer, A; Toki, W H; Wilson, R J; Winklmeier, F; Zeng, Q; Altenburg, D D; Feltresi, E; Hauke, A; Jasper, H; Petzold, A; Spaan, B; Brandt, T; Klose, V; Lacker, H M; Mader, W F; Nogowski, R; Schubert, J; Schubert, K R; Schwierz, R; Sundermann, J E; Volk, A; Bernard, D; Bonneaud, G R; Grenier, P; Latour, E; Thiebaux, Ch; Verderi, M; Clark, P J; Gradl, W; Muheim, F; Playfer, S; Robertson, A I; Xie, Y; Andreotti, M; Bettoni, D; Bozzi, C; Calabrese, R; Cibinetto, G; Luppi, E; Negrini, M; Petrella, A; Piemontese, L; Prencipe, E; Anulli, F; Baldini-Ferroli, R; Calcaterra, A; de Sangro, R; Finocchiaro, G; Pacetti, S; Patteri, P; Peruzzi, I M; Piccolo, M; Rama, M; Zallo, A; Buzzo, A; Capra, R; Contri, R; Lo Vetere, M; Macri, M M; Monge, M R; Passaggio, S; Patrignani, C; Robutti, E; Santroni, A; Tosi, S; Brandenburg, G; Chaisanguanthum, K S; Morii, M; Wu, J; Dubitzky, R S; Marks, J; Schenk, S; Uwer, U; Bard, D J; Bhimji, W; Bowerman, D A; Dauncey, P D; Egede, U; Flack, R L; Nash, J A; Nikolich, M B; Panduro Vazquez, W; Behera, P K; Chai, X; Charles, M J; Mallik, U; Meyer, N T; Ziegler, V; Cochran, J; Crawley, H B; Dong, L; Eyges, V; Meyer, W T; Prell, S; Rosenberg, E I; Rubin, A E; Gritsan, A V; Denig, A G; Fritsch, M; Schott, G; Arnaud, N; Davier, M; Grosdidier, G; Höcker, A; Le Diberder, F; Lepeltier, V; Lutz, A M; Oyanguren, A; Pruvot, S; Rodier, S; Roudeau, P; Schune, M H; Stocchi, A; Wang, W F; Wormser, G; Cheng, C H; Lange, D J; Wright, D M; Chavez, C A; Forster, I J; Fry, J R; Gabathuler, E; Gamet, R; George, K A; Hutchcroft, D E; Payne, D J; Schofield, K C; Touramanis, C; Bevan, A J; Di Lodovico, F; Menges, W; Sacco, R; Cowan, G; Flaecher, H U; Hopkins, D A; Jackson, P S; McMahon, T R; Ricciardi, S; Salvatore, F; Wren, A C; Brown, D N; Davis, C L; Allison, J; Barlow, N R; Barlow, R J; Chia, Y M; Edgar, C L; Lafferty, G D; Naisbit, M T; Williams, J C; Yi, J I; Chen, C; Hulsbergen, W D; Jawahery, A; Lae, C K; Roberts, D A; Simi, G; Blaylock, G; Dallapiccola, C; Hertzbach, S S; Li, X; Moore, T B; Saremi, S; Staengle, H; Cowan, R; Sciolla, G; Sekula, S J; Spitznagel, M; Taylor, F; Yamamoto, R K; Kim, H; McLachlin, S E; Patel, P M; Robertson, S H; Lazzaro, A; Lombardo, V; Palombo, F; Bauer, J M; Cremaldi, L; Eschenburg, V; Godang, R; Kroeger, R; Sanders, D A; Summers, D J; Zhao, H W; Brunet, S; Côté, D; Simard, M; Taras, P; Viaud, F B; Nicholson, H; Cavallo, N; De Nardo, G; Fabozzi, F; Gatto, C; Lista, L; Monorchio, D; Paolucci, P; Piccolo, D; Sciacca, C; Baak, M; Raven, G; Snoek, H L; Jessop, C P; Losecco, J M; Allmendinger, T; Benelli, G; Gan, K K; Honscheid, K; Hufnagel, D; Jackson, P D; Kagan, H; Kass, R; Rahimi, A M; Ter-Antonyan, R; Wong, Q K; Blount, N L; Brau, J; Frey, R; Igonkina, O; Lu, M; Rahmat, R; Sinev, N B; Strom, D; Strube, J; Torrence, E; Gaz, A; Margoni, M; Morandin, M; Pompili, A; Posocco, M; Rotondo, M; Simonetto, F; Stroili, R; Voci, C; Benayoun, M; Chauveau, J; Briand, H; David, P; Del Buono, L; de la Vaissière, Ch; Hamon, O; Hartfiel, B L; John, M J J; Leruste, Ph; Malclès, J; Ocariz, J; Roos, L; Therin, G; Gladney, L; Panetta, J; Biasini, M; Covarelli, R; Angelini, C; Batignani, G; Bettarini, S; Bucci, F; Calderini, G; Carpinelli, M; Cenci, R; Forti, F; Giorgi, M A; Lusiani, A; Marchiori, G; Mazur, M A; Morganti, M; Neri, N; Paoloni, E; Rizzo, G; Walsh, J J; Haire, M; Judd, D; Wagoner, D E; Biesiada, J; Danielson, N; Elmer, P; Lau, Y P; Lu, C; Olsen, J; Smith, A J S; Telnov, A V; Bellini, F; Cavoto, G; D'Orazio, A; del Re, D; Di Marco, E; Faccini, R; Ferrarotto, F; Ferroni, F; Gaspero, M; Li Gioi, L; Mazzoni, M A; Morganti, S; Piredda, G; Polci, F; Safai Tehrani, F; Voena, C; Ebert, M; Schröder, H; Waldi, R; Adye, T; De Groot, N; Franek, B; Olaiya, E O; Wilson, F F; Aleksan, R; Emery, S; Gaidot, A; Ganzhur, S F; Hamel de Monchenault, G; Kozanecki, W; Legendre, M; Vasseur, G; Yèche, Ch; Zito, M; Chen, X R; Liu, H; Park, W; Purohit, M V; Wilson, J R; Allen, M T; Aston, D; Bartoldus, R; Bechtle, P; Berger, N; Claus, R; Coleman, J P; Convery, M R; Cristinziani, M; Dingfelder, J C; Dorfan, J; Dubois-Felsmann, G P; Dujmic, D; Dunwoodie, W; Field, R C; Glanzman, T; Gowdy, S J; Graham, M T; Halyo, V; Hast, C; Hryn'ova, T; Innes, W R; Kelsey, M H; Kim, P; Leith, D W G S; Li, S; Luitz, S; Luth, V; Lynch, H L; MacFarlane, D B; Marsiske, H; Messner, R; Muller, D R; O'Grady, C P; Ozcan, V E; Perazzo, A; Perl, M; Pulliam, T; Ratcliff, B N; Roodman, A; Salnikov, A A; Schindler, R H; Schwiening, J; Snyder, A; Stelzer, J; Su, D; Sullivan, M K; Suzuki, K; Swain, S K; Thompson, J M; Va'vra, J; van Bakel, N; Weaver, M; Weinstein, A J R; Wisniewski, W J; Wittgen, M; Wright, D H; Yarritu, A K; Yi, K; Young, C C; Burchat, P R; Edwards, A J; Majewski, S A; Petersen, B A; Roat, C; Wilden, L; Ahmed, S; Alam, M S; Bula, R; Ernst, J A; Jain, V; Pan, B; Saeed, M A; Wappler, F R; Zain, S B; Bugg, W; Krishnamurthy, M; Spanier, S M; Eckmann, R; Ritchie, J L; Satpathy, A; Schilling, C J; Schwitters, R F; Izen, J M; Lou, X C; Ye, S; Bianchi, F; Gallo, F; Gamba, D; Bomben, M; Bosisio, L; Cartaro, C; Cossutti, F; Della Ricca, G; Dittongo, S; Lanceri, L; Vitale, L; Azzolini, V; Martinez-Vidal, F; Banerjee, Sw; Bhuyan, B; Brown, C M; Fortin, D; Hamano, K; Kowalewski, R; Nugent, I M; Roney, J M; Sobie, R J; Back, J J; Harrison, P F; Latham, T E; Mohanty, G B; Pappagallo, M; Band, H R; Chen, X; Cheng, B; Dasu, S; Datta, M; Flood, K T; Hollar, J J; Kutter, P E; Mellado, B; Mihalyi, A; Pan, Y; Pierini, M; Prepost, R; Wu, S L; Yu, Z; Neal, H
2006-11-24
We report a measurement of the B-->pi l nu branching fraction based on 211 fb(-1) of data collected with the BABAR detector. We use samples of B0 and B+ mesons tagged by a second B meson reconstructed in a semileptonic or hadronic decay and combine the results assuming isospin symmetry to obtain B(B(0)-->pi- l+ nu) = (1.33+/-0.17stat+/-0.11syst) x 10(-4). We determine the magnitude of the Cabibbo-Kobayashi-Maskawa matrix element absolute value V(ub) by combining the partial branching fractions measured in ranges of the momentum transfer squared and theoretical calculations of the form factor. Using a recent lattice QCD calculation, we find absolute value V(ub) = (4.5+/-0.5stat+/-0.3syst(+0.7) -0.5FF x 10(-3), where the last error is due to the normalization of the form factor. PMID:17155736
McLeod, Stephen
2014-07-01
Absolute needs (as against instrumental needs) are independent of the ends, goals and purposes of personal agents. Against the view that the only needs are instrumental needs, David Wiggins and Garrett Thomson have defended absolute needs on the grounds that the verb 'need' has instrumental and absolute senses. While remaining neutral about it, this article does not adopt that approach. Instead, it suggests that there are absolute biological needs. The absolute nature of these needs is defended by appeal to: their objectivity (as against mind-dependence); the universality of the phenomenon of needing across the plant and animal kingdoms; the impossibility that biological needs depend wholly upon the exercise of the abilities characteristic of personal agency; the contention that the possession of biological needs is prior to the possession of the abilities characteristic of personal agency. Finally, three philosophical usages of 'normative' are distinguished. On two of these, to describe a phenomenon or claim as 'normative' is to describe it as value-dependent. A description of a phenomenon or claim as 'normative' in the third sense does not entail such value-dependency, though it leaves open the possibility that value depends upon the phenomenon or upon the truth of the claim. It is argued that while survival needs (or claims about them) may well be normative in this third sense, they are normative in neither of the first two. Thus, the idea of absolute need is not inherently normative in either of the first two senses. PMID:23586876
NASA Technical Reports Server (NTRS)
Ozel, M. E.; Ogelman, H.; Tumer, T.; Fichtel, C. E.; Hartman, R. C.; Kniffen, D. A.; Thompson, F. J.
1978-01-01
High-energy gamma-ray (energy above 35 MeV) data from the SAS 2 satellite have been used to compare the intensity distribution of gamma rays with that of neutral hydrogen (H I) density along the line of sight, at high galactic latitudes (absolute values greater than 30 deg). A model has been constructed for the case where the observed gamma-ray intensity has been assumed to be the sum of a galactic component proportional to the H I distribution plus an isotropic extragalactic emission. A chi-squared test of the model parameters indicates that about 30% of the total high-latitude emission may originate within the Galaxy.
Simon, Zsofia; Barna, S; Miltenyi, Z; Husi, K; Magyari, F; Jona, A; Garai, I; Nagy, Z; Ujj, G; Szerafin, L; Illes, A
2016-01-01
Decreased absolute lymphocyte/monocyte ratio (LMR) in peripheral blood has been reported as an unfavorable prognostic marker in Hodgkin lymphoma. We aimed to investigate whether combining LMR and interim PET/CT scan result (PET2) confers stronger prognostic value than PET2 alone. 121 HL patients were investigated. LMR was calculated from a blood sample taken at the time of diagnosis. PET2 was carried out after the second chemotherapy cycle. Survival was calculated using the Kaplan-Meier method and significance was determined by log-rank test. Effect of variants on survival results was examined using univariate and multivariate analyses. Best LMR cut-off value was determined by receiver operating characteristic (ROC) curve. Best LMR cut-off value was 2.11 in the case of our patients (LMR > 2.11: favorable, LMR ≤ 2.11: unfavorable). Overall and progression-free survivals (OS/PFS) were significantly worse both in lower LMR (≤ 2.11) (OS: P = 0.041, PFS: P = 0.044) and PET2 positive groups (OS: P < 0.001, PFS: P < 0.001). In PET2 positive patient group (n = 32) the low LMR result meant a significantly worse OS (0.030) and PFS (0.001). Both LMR and PET2 proved to be independent prognostic factors on multivariate analysis, and strengthened each other's effect. PMID:26462809
NASA Astrophysics Data System (ADS)
Donnelly, Russell J.; Sheibley, D.; Belloni, M.; Stamper-Kurn, D.; Vinen, W. F.
2006-12-01
Absolute Zero is a two hour PBS special attempting to bring to the general public some of the advances made in 400 years of thermodynamics. It is based on the book “Absolute Zero and the Conquest of Cold” by Tom Shachtman. Absolute Zero will call long-overdue attention to the remarkable strides that have been made in low-temperature physics, a field that has produced 27 Nobel Prizes. It will explore the ongoing interplay between science and technology through historical examples including refrigerators, ice machines, frozen foods, liquid oxygen and nitrogen as well as much colder fluids such as liquid hydrogen and liquid helium. A website has been established to promote the series: www.absolutezerocampaign.org. It contains information on the series, aimed primarily at students at the middle school level. There is a wealth of material here and we hope interested teachers will draw their student’s attention to this website and its substantial contents, which have been carefully vetted for accuracy.
Correction of NIM-3A absolute gravimeter for self-attraction effect
NASA Astrophysics Data System (ADS)
Li, Chunjian; Xu, Jin-yi; Feng, Jin-yang; SU, Duo-wu; Wu, Shu-qing
2015-02-01
The mass of free-fall absolute gravimeter can produce vertical gravitational attraction to the free-falling test body during the measurement of acceleration due to gravity. The vertical gravitational attraction can cause an artificial deviation to the measured value of gravitational acceleration. This paper describes the operating principle of a free-fall absolute gravimeter and the method used to determine the reference height of a gravimeter. It also describes the physical structure of NIM-3A absolute gravimeter lately developed by National Institute of Metrology (China), and studies the correction of gravimeter for Self-attraction effect.
NASA Astrophysics Data System (ADS)
Phillips, Alfred, Jr.
Summ means the entirety of the multiverse. It seems clear, from the inflation theories of A. Guth and others, that the creation of many universes is plausible. We argue that Absolute cosmological ideas, not unlike those of I. Newton, may be consistent with dynamic multiverse creations. As suggested in W. Heisenberg's uncertainty principle, and with the Anthropic Principle defended by S. Hawking, et al., human consciousness, buttressed by findings of neuroscience, may have to be considered in our models. Predictability, as A. Einstein realized with Invariants and General Relativity, may be required for new ideas to be part of physics. We present here a two postulate model geared to an Absolute Summ. The seedbed of this work is part of Akhnaton's philosophy (see S. Freud, Moses and Monotheism). Most important, however, is that the structure of human consciousness, manifest in Kenya's Rift Valley 200,000 years ago as Homo sapiens, who were the culmination of the six million year co-creation process of Hominins and Nature in Africa, allows us to do the physics that we do. .
Multifractal singular value decomposition (MSVD) for extraction of marine gravity anomaly
NASA Astrophysics Data System (ADS)
LYU, Wenchao; Zhu, Benduo; Qiu, Yan
2015-04-01
The concept of singularity is used for characterizing different types of nonlinear natural processes, including volcanic eruptions, faults, cloud formation, landslides, rainfall, hurricanes, flooding, earthquakes, wildfires, oil fields and mineralization. The singularity often results in anomalous amounts of energy release or material accumulation within a narrow spatial-temporal interval.The marine gravitation field has multi-fractal features, which show different scale invariant properties in region and local field. The SVD can be used in geophysical data processing for signal and noise separation, radar processing for enhancing weak signals in vertical seismic profiles (VSP). It has also been used in multi component seismic polarization filters and evaluating the amount of wavy reflections in ground-penetrating radar (GPR) images of base surge deposits. With the SVD, a matrix X can be decomposed to a series of eigenvalues. The eigenvalues conformed fractal or multi-fractal distribution described with the power-law function. The multi-fractal SVD can be used for feature extraction and anomaly identification for marine gravity investigation.This paper aims to analyze the marine gravitation data using the SVD and multifractal methods. This paper will also aim to more clearly define the spatial relationship between marine mineralization and the deep geological structures in the field by extracting the marine gravitation information at a particular frequency to provide valuable in depth evidence for predicting new deposits and deep tectonic.
Teplukhin, Alexander; Babikov, Dmitri
2016-07-28
Rigorous calculations of scattering resonances in ozone are carried out for a broad range of rotational excitations. The accurate potential energy surface of Dawes is adopted, and a new efficient method for calculations of ro-vibrational energies, wave functions and resonance lifetimes is employed (which uses hyper-spherical coordinates, the sequential diagonalization/truncation approach, grid optimization and complex absorbing potential). A detailed analysis is carried out to characterize distributions of resonance energies and lifetimes, their rotational/vibrational content and their positions with respect to the centrifugal barrier. Emphasis is on the contribution of these resonances to the recombination process that forms ozone. It is found that major contributions come from localized resonances at energies near the top of the barrier. Delocalized resonances at higher energies should also be taken into account, while very narrow resonances at low energies (trapped far behind the centrifugal barrier) should be treated as bound states. The absolute value of the recombination rate coefficient, its pressure and temperature dependencies are obtained using the energy-transfer model developed in the earlier work. Good agreement with experimental data is obtained if one follows the suggestion of Troe, who argued that the energy transfer mechanism of recombination is responsible only for 55% of the recombination rate (with the remaining 45% coming from the competing chaperon mechanism). PMID:27364351
NASA Astrophysics Data System (ADS)
Socquet-Juglard, H.; Dysthe, K. B.; Trulsen, K.; Liu, J.; Krogstad, H. E.
2003-04-01
Numerical simulations of a narrow band gaussian spectrum of random surface gravity waves have been carried out in two and three spatial dimensions [7]. Different types of non-linear Schr&{uml;o}dinger equations, [1] and [4], have been used in these simulations. Simulations have now been carried with a JONSWAP spectrum associated with a spreading function of the type cosine-squared [5]. The evolution of the spectrum, skewness, kurtosis, ... will be presented. In addition, some results about stochastic properties of the surface will be shown. Based on the approach found in [2], [3] and [6], the results are presented in terms of deviations from linear Gaussian theory and the standard second order small slope perturbation theory. begin{thebibliography}{9} bibitem{kk96} Trulsen, K. &Dysthe, K. B. (1996). A modified nonlinear Schr&{uml;o}dinger equation for broader bandwidth gravity waves on deep water. Wave Motion, 24, pp. 281-289. bibitem{BK2000} Krogstad, H.E. and S.F. Barstow (2000). A uniform approach to extreme value analysis of ocean waves, Proc. ISOPE'2000, Seattle, USA, 3, pp. 103-108. bibitem{PRK} Prevosto, M., H. E. Krogstad and A. Robin (2000). Probability distributions for maximum wave and crest heights, Coast. Eng., 40, 329-360. bibitem{ketal} Trulsen, K., Kliakhandler, I., Dysthe, K. B. &Velarde, M. G. (2000) On weakly nonlinear modulation of waves on deep water, Phys. Fluids, 12, pp. L25-L28. bibitem{onorato} Onorato, M., Osborne, A.R. and Serio, M. (2002) Extreme wave events in directional, random oceanic sea states, Phys. Fluids, 14, pp. 2432-2437. bibitem{BK2002} Krogstad, H.E. and S.F. Barstow (2002). Analysis and Applications of Second Order Models for the Maximum Crest height, % Proc. 21nd Int. Conf. Offshore Mechanics and Arctic Engineering, Oslo. Paper no. OMAE2002-28479. bibitem{JFMP} Dysthe, K. B., Trulsen, K., Krogstad, H. E. and Socquet-Juglard, H. (2002, in press) Evolution of a narrow band spectrum of random surface gravity waves, J. Fluid
Gravity Variations in the Austrian Central Alps
NASA Astrophysics Data System (ADS)
Ruess, D. R.
2003-04-01
Gravity measurements have been carried out in the Oetztaler Alpen in Tyrol, Austria twice a year since 1987 using the JILAg-6 free fall absolute gravimeter. An Increasing g-value has been detected in the order of about 25 μGals (250 nm/s^2). The observation station is situated in an area of postulated uplift of ˜1,5 mm/year which should have effected a decreasing gravity of ˜5 μGals over 15 years. There also a seasonal effect can be seen in the gravity graph. The increasing gravity will be explained by ablation of the surrounding glaciers and the seasonal variations may be traced back to the compounded precipitation (snow) during the winter time.
Monitoring Groundwater Variations Using a Portable Absolute Gravimeter
NASA Astrophysics Data System (ADS)
Fukuda, Yoichi; Nishijima, Jun; Hasegawa, Takashi; Sofyan, Yayan; Taniguchi, Makoto; Abidin, Hasanuddin Z.; Delinom, Robert M.
2010-05-01
In urbanized areas, one of the urgent problems is to monitor the groundwater variations especially connected with land subsidence. Although the groundwater variations are usually measured by water level meters, gravity measurements can provide us additional information about the water mass movements which should be beneficial for the analyses of groundwater flow and the managements of water resources as well. Therefore, in order to establish a new technique to monitor the groundwater variations by means of the gravity measurements, we investigated the applicability of a portable type absolute gravimeter (Micro-G LaCoste Inc. A10-017). We will report the results of some test measurements in Japan, and the outline of the surveys in Jakarta, Indonesia. As for the absolute gravity measurements, FG-5 of MGL would be more popular. FG-5 is a high precision absolute gravimeter with a 2ugal-accuracy for laboratory use, while the nominal accuracy of A-10 is 10ugal (measurement precision: ±5ugal). In spite of the disadvantage, A-10 is well suited for the field surveys because it is much smaller than FG-5 and can be operated with 12VDC power. The repeated measurements using A10-017 in Kyushu University show good correlations between the measured gravity values and the groundwater levels in nearby observation wells. In a geothermal plant of Takigami, we also observed the gravity changes associated with the cycle of the geothermal fluid. All these test measurements have proved that the gravimeter can achieve a 10ugal (10nm/s2) or better accuracy in the field surveys. In Jakarta, Indonesia, excess groundwater pumping is going on and it causes land subsidence. To reveal the associated gravity changes, we conducted the first gravity survey in August 2008 and the second survey in July 2009. Mainly due to the instrumental troubles during the 2008 surveys, we have not obtained enough reliable data yet. Nevertheless the result obtained so far suggested the gravity increases in the
NASA Astrophysics Data System (ADS)
Gambini, Rodolfo; Pullin, Jorge
2013-01-01
We discuss a gauge fixing of gravity coupled to a scalar field in spherical symmetry such that the Hamiltonian is an integral over space of a local density. In a previous paper, we had presented it using Ashtekar’s new variables. Here we study it in metric variables. We specify completely the initial-boundary value problem for ingoing Gaussian pulses.
Blainey, J.B.; Ferre, T. P. A.; Cordova, J.T.
2007-01-01
Pumping of an unconfined aquifer can cause local desaturation detectable with high-resolution gravimetry. A previous study showed that signal-to-noise ratios could be predicted for gravity measurements based on a hydrologic model. We show that although changes should be detectable with gravimeters, estimations of hydraulic conductivity and specific yield based on gravity data alone are likely to be unacceptably inaccurate and imprecise. In contrast, a transect of low-quality drawdown data alone resulted in accurate estimates of hydraulic conductivity and inaccurate and imprecise estimates of specific yield. Combined use of drawdown and gravity data, or use of high-quality drawdown data alone, resulted in unbiased and precise estimates of both parameters. This study is an example of the value of a staged assessment regarding the likely significance of a new measurement method or monitoring scenario before collecting field data. Copyright 2007 by the American Geophysical Union.
NASA Astrophysics Data System (ADS)
Holota, Petr; Nesvadba, Otakar
2014-05-01
In geodesy mathematical techniques for gravity field studies that rest on the concept of the so-called classical solution of boundary value problems, have a rather traditional position. Nevertheless, the range of the tools for treating problems in this field is much wider. For instance the concept of the weak solution met with a considerable attention. From this point of view the approach is associated with constructing the respective integral kernels or Green's function in case we consider the classical solution concept or with the choice and constructing basis functions in case we are lucking for the weak solution of the problem. Within the tools considered we discuss also the use of reproducing kernels. In both the cases (classical or weak) the construction of the apparatus above represents and important technical step. It is not elementary, but for a number of fundamental boundary value problems the solution is known, in particular in the case of a spherical solution domain. The sphere, however, is rather far from the real shape of the Earth, which is interpreted here in terms of a functional analytic norm. The distance has a negative effect on any attempt to reach the solution of the boundary value problems considered (and to bridge the departure of the Earth's surface from the sphere) by an iteration procedure based on a successive application of a solution technique developed for the spherical boundary. From this point of view the construction of the integral kernels and basis functions for an oblate ellipsoid of revolution means a step closer towards reality. In this contribution we on the one hand give an overview of the results already achieved and subsequently develop the topic. The summation of series of ellipsoidal harmonics is one of the key problems in this connection. Hypergeometric functions and series are applied too. We also show where the use of Legendre elliptic integrals adds to the solution of the problem. It is interesting that they do not
NASA Technical Reports Server (NTRS)
Lin, S. P.; Lian, Z. W.
1993-01-01
The absolute and convective instability of a viscous liquid jet emanating into a viscous gas in a vertical pipe is analyzed in a parameter space spanned by the Reynolds number, the Froude number, the Weber number, the viscosity ratio, the density ratio, and the diameter ratio. The numerical results of the analysis are used to demonstrate that reduction in gravity tends to enhance the Rayleigh mode of convective instability which leads to the breakup of a liquid jet into drops of diameters comparable with the jet diameter. On the contrary, the Taylor mode of convective instability that leads to atomization is retarded at reduced gravity. The Rayleigh mode becomes absolutely unstable when the Reynolds number exceeds a critical value for a given set of the rest of the relevant parameters. The domain of absolute instability is significantly enlarged when the effect of gas viscosity is not neglected.
NASA Astrophysics Data System (ADS)
Kojima, Kazunobu; Ohtomo, Tomomi; Ikemura, Ken-ichiro; Yamazaki, Yoshiki; Saito, Makoto; Ikeda, Hirotaka; Fujito, Kenji; Chichibu, Shigefusa F.
2016-07-01
Omnidirectional photoluminescence (ODPL) measurement using an integrating sphere was carried out to absolutely quantify the quantum efficiency of radiation ( η) in high quality GaN single crystals. The total numbers of photons belonging to photoluminescence (PL photons) and photons belonging to an excitation source (excitation photons) were simultaneously counted in the measurement, and η was defined as a ratio of the number of PL photons to the number of absorbed excitation photons. The ODPL spectra near the band edge commonly showed a two-peak structure, which originates from the sharp absorption edge of GaN. A methodology for quantifying internal quantum efficiency ( ηint ) from such experimentally obtained η is derived. A record high ηint of typically 15% is obtained for a freestanding GaN crystal grown by hydride vapor phase epitaxy on a GaN seed crystal synthesized by the ammonothermal method using an acidic mineralizer, when the excitation photon energy and power density were 3.81 eV and 60 W/cm2, respectively.
NASA Technical Reports Server (NTRS)
Shebalin, John V.
1997-01-01
The entropy associated with absolute equilibrium ensemble theories of ideal, homogeneous, fluid and magneto-fluid turbulence is discussed and the three-dimensional fluid case is examined in detail. A sigma-function is defined, whose minimum value with respect to global parameters is the entropy. A comparison is made between the use of global functions sigma and phase functions H (associated with the development of various H-theorems of ideal turbulence). It is shown that the two approaches are complimentary though conceptually different: H-theorems show that an isolated system tends to equilibrium while sigma-functions allow the demonstration that entropy never decreases when two previously isolated systems are combined. This provides a more complete picture of entropy in the statistical mechanics of ideal fluids.
TR-GRAV: National Center for Turkish Gravity Field
NASA Astrophysics Data System (ADS)
Simav, Mehmet; Akpınar, İlyas; Sezen, Erdinc; Cingöz, Ayhan; Yıldız, Hasan
2016-04-01
TR-GRAV, the National Center for Turkish Gravity Field (TR-GRAV) that has recently become operational,is a national center that collects, processes and distributes Absolute Gravimetry,Relative Gravimetry, Airborne Gravimetry,Shipborne Gravimetry,Satellite Gravimetry, GNSS/Levelling, Astrogeodetic Vertical Deflection data to model and improve regional gravity field for the Turkish territory and its surrounding regions and to provide accurate, consistent and value-added data & products to the scientific and engineering communities. In this presentation, we will introduce the center web portal and give some details about the database.
NASA Astrophysics Data System (ADS)
Szczapa, Tomasz; Karpiński, Łukasz; Moczko, Jerzy; Weindling, Michael; Kornacka, Alicja; Wróblewska, Katarzyna; Adamczak, Aleksandra; Jopek, Aleksandra; Chojnacka, Karolina; Gadzinowski, Janusz
2013-08-01
The aim of this study is to compare a two-wavelength light emitting diode-based tissue oximeter (INVOS), which is designed to show trends in tissue oxygenation, with a four-wavelength laser-based oximeter (FORE-SIGHT), designed to deliver absolute values of tissue oxygenation. Simultaneous values of cerebral tissue oxygenation (StO2) are measured using both devices in 15 term and 15 preterm clinically stable newborns on the first and third day of life. Values are recorded simultaneously in two periods between which oximeter sensor positions are switched to the contralateral side. Agreement between StO2 values before and after the change of sensor position is analyzed. We find that mean cerebral StO2 values are similar between devices for term and preterm babies, but INVOS shows StO2 values spread over a wider range, with wider standard deviations than shown by the FORE-SIGHT. There is relatively good agreement with a bias up to 3.5% and limits of agreement up to 11.8%. Measurements from each side of the forehead show better repeatability for the FORE-SIGHT monitor. We conclude that performance of the two devices is probably acceptable for clinical purposes. Both performed sufficiently well, but the use of FORE-SIGHT may be associated with tighter range and better repeatability of data.
NASA Technical Reports Server (NTRS)
Saha, A.; Sandage, Allan; Labhardt, Lukas; Schwengeler, Hans; Tammann, G. A.; Panagia, N.; Macchetto, F. D.
1995-01-01
Observations of the Hubble Space Telescope (HST) between 1993 May 31 and 1993 July 19 in 20 epochs in the F555W passband and five epochs in the F785LP passband have led to the discovery of 14 Cepheids in the Amorphous galaxy NGC 5253. The apparent V distance modulus is (m-M)(sub AV) = 28.08 +/- 0.10 determined from the 12 Cepheids with normal amplitudes. The distance modulus using the F785LP data is consistent with the V value to within the errors. Five methods used to determine the internal reddening are consistent with zero differential reddening, accurate to a level of E(B-V) less than 0.05 mag, over the region occupied by Cepheids and the two supernovae (SNe) produced by NGC 5253. The apparent magnitudes at maximum for the two SNe in NGC 5253 are adopted as B(sub max) = 8.33 +/- 0.2 mag for SN 1895B, and B(sub max) = 8.56 +/- 0.1 and V(sub max) = 8.60 +/- 0.1 for SN 1972E which is a prototype SN of Type Ia. The apparent magnitude system used by Walker (1923) for SN 1859B has been corrected to the modern B scale and zero point to determine its adopted B(sub max) value.
Final report on the Seventh International Comparison of Absolute Gravimeters (ICAG 2005)
Jiang, Z.; Francis, O.; Vitushkin, L.; Palinkas, V.; Germak, A.; Becker, M.; D'Agostino, G.; Amalvict, M.; Bayer, R.; Bilker-Koivula, M.; Desogus, S.; Faller, J.; Falk, R.; Hinderer, J.; Gagnon, C.; Jakob, T.; Kalish, E.; Kostelecky, J.; Lee, C.; Liard, J.; Lokshyn, Y.; Luck, B.; Makinen, J.; Mizushima, S.; Le, Moigne N.; Origlia, C.; Pujol, E.R.; Richard, P.; Robertsson, L.; Ruess, D.; Schmerge, D.; Stus, Y.; Svitlov, S.; Thies, S.; Ullrich, C.; Van Camp, M.; Vitushkin, A.; Ji, W.; Wilmes, H.
2011-01-01
The Bureau International des Poids et Mesures (BIPM), S??vres, France, hosted the 7th International Comparison of Absolute Gravimeters (ICAG) and the associated Relative Gravity Campaign (RGC) from August to September 2005. ICAG 2005 was prepared and performed as a metrological pilot study, which aimed: To determine the gravity comparison reference values; To determine the offsets of the absolute gravimeters; and As a pilot study to accumulate experience for the CIPM Key Comparisons. This document presents a complete and extensive review of the technical protocol and data processing procedures. The 1st ICAG-RGC comparison was held at the BIPM in 1980-1981 and since then meetings have been organized every 4 years. In this paper, we present an overview of how the meeting was organized, the conditions of BIPM gravimetric sites, technical specifications, data processing strategy and an analysis of the final results. This 7th ICAG final report supersedes all previously published reports. Readings were obtained from participating instruments, 19 absolute gravimeters and 15 relative gravimeters. Precise levelling measurements were carried out and all measurements were performed on the BIPM micro-gravity network which was specifically designed for the comparison. ?? 2011 BIPM & IOP Publishing Ltd.
The Potential for Quantum Technology Gravity Sensors
NASA Astrophysics Data System (ADS)
Boddice, Daniel; Metje, Nicole; Tuckwell, George
2016-04-01
Gravity measurements are widely used in geophysics for the detection of subsurface cavities such as sinkhole and past mine workings. The chief advantage of gravity compared to other geophysical techniques is that it is passive method which cannot be shielded by intervening features or ground giving it no theoretical limitations on penetration depth beyond the resolution of the instrument, and that it responds to an absence of mass as opposed to a proxy ground property like other techniques. However, current instruments are limited both by their resolution and by sources of environmental noise. This can be overcome with the imminent arrival of gravity sensors using quantum technology (QT) currently developed and constructed by the QT-Hub in Sensors and Metrology, which promise a far greater resolution. The QT sensor uses a technique called atom interferometry, where cold atoms are used as ideal test-masses to create a gravity sensor which can measure a gravity gradient rather than an absolute value. This suppresses several noise sources and creates a sensor useful in everyday applications. The paper will present computer simulations of buried targets and noise sources to explore the potential uses of these new sensors for a range of applications including pipes, tunnels and mine shafts. This will provide information on the required resolution and sensitivity of any new sensor if it is to deliver the promised step change in geophysical detection capability.
Absolute nuclear material assay
Prasad, Manoj K.; Snyderman, Neal J.; Rowland, Mark S.
2012-05-15
A method of absolute nuclear material assay of an unknown source comprising counting neutrons from the unknown source and providing an absolute nuclear material assay utilizing a model to optimally compare to the measured count distributions. In one embodiment, the step of providing an absolute nuclear material assay comprises utilizing a random sampling of analytically computed fission chain distributions to generate a continuous time-evolving sequence of event-counts by spreading the fission chain distribution in time.
Absolute nuclear material assay
Prasad, Manoj K.; Snyderman, Neal J.; Rowland, Mark S.
2010-07-13
A method of absolute nuclear material assay of an unknown source comprising counting neutrons from the unknown source and providing an absolute nuclear material assay utilizing a model to optimally compare to the measured count distributions. In one embodiment, the step of providing an absolute nuclear material assay comprises utilizing a random sampling of analytically computed fission chain distributions to generate a continuous time-evolving sequence of event-counts by spreading the fission chain distribution in time.
Absolute instability of the Gaussian wake profile
NASA Technical Reports Server (NTRS)
Hultgren, Lennart S.; Aggarwal, Arun K.
1987-01-01
Linear parallel-flow stability theory has been used to investigate the effect of viscosity on the local absolute instability of a family of wake profiles with a Gaussian velocity distribution. The type of local instability, i.e., convective or absolute, is determined by the location of a branch-point singularity with zero group velocity of the complex dispersion relation for the instability waves. The effects of viscosity were found to be weak for values of the wake Reynolds number, based on the center-line velocity defect and the wake half-width, larger than about 400. Absolute instability occurs only for sufficiently large values of the center-line wake defect. The critical value of this parameter increases with decreasing wake Reynolds number, thereby indicating a shrinking region of absolute instability with decreasing wake Reynolds number. If backflow is not allowed, absolute instability does not occur for wake Reynolds numbers smaller than about 38.
NASA Astrophysics Data System (ADS)
Masters, Roy
2007-03-01
Einstein's cosmological constant as gravity, will unify quantum mechanics to general relativity and link gravity to electromagnetism. Then, an electromagnetic vacuum engine driven by the force that spins, moves, and sustains mass at the subatomic level, will do free, what generators cannot. Flowing outward-bound sinusoidally from its source, this gravity force assumes a three-dimensional spherical universe. Lines of force intersect, spinning into gyroscopic particles and passes as time-present, with a compression gravity of space-time curvature continuum unifying all mass. The spaces between approaching masses suffer a decrease of right-angled vacuum energy, increasing external pressures, pushing them together. Ubiquitous gravity now interacts electromagnetically with mass. Gravity's ``heat energy'' operates below absolute zero and squeezes mass into thermonuclear ignition of stars. Creation needs a gravity field for the propagation of light that will make sense of its wave/particle behavior. Creation from a white hole recycles down through a black one, into new beginnings of galaxies. ``Vacuum energy'' will light cities and factories; faster than light spacecraft will raise silently from the ground utilizing the very gravity it defies, propelling us to the stars.
Absolute Income, Relative Income, and Happiness
ERIC Educational Resources Information Center
Ball, Richard; Chernova, Kateryna
2008-01-01
This paper uses data from the World Values Survey to investigate how an individual's self-reported happiness is related to (i) the level of her income in absolute terms, and (ii) the level of her income relative to other people in her country. The main findings are that (i) both absolute and relative income are positively and significantly…
Results of the first North American comparison of absolute gravimeters, NACAG-2010
Schmerge, David; Francis, Olvier; Henton, J.; Ingles, D.; Jones, D.; Kennedy, Jeffrey R.; Krauterbluth, K.; Liard, J.; Newell, D.; Sands, R.; Schiel, J.; Silliker, J.; van Westrum, D.
2012-01-01
The first North American Comparison of absolute gravimeters (NACAG-2010) was hosted by the National Oceanic and Atmospheric Administration at its newly renovated Table Mountain Geophysical Observatory (TMGO) north of Boulder, Colorado, in October 2010. NACAG-2010 and the renovation of TMGO are part of NGS’s GRAV-D project (Gravity for the Redefinition of the American Vertical Datum). Nine absolute gravimeters from three countries participated in the comparison. Before the comparison, the gravimeter operators agreed to a protocol describing the strategy to measure, calculate, and present the results. Nine sites were used to measure the free-fall acceleration of g. Each gravimeter measured the value of g at a subset of three of the sites, for a total set of 27 g-values for the comparison. The absolute gravimeters agree with one another with a standard deviation of 1.6 µGal (1 Gal = 1 cm s-2). The minimum and maximum offsets are -2.8 and 2.7 µGal. This is an excellent agreement and can be attributed to multiple factors, including gravimeters that were in good working order, good operators, a quiet observatory, and a short duration time for the experiment. These results can be used to standardize gravity surveys internationally.
NASA Astrophysics Data System (ADS)
Chen, Yongqing; Zhang, Lina; Zhao, Binbin
2015-12-01
The Gejiu tin polymetallic ore deposit, located at the westernmost end of the Cathaysia Block, is one of the largest tin polymetallic ore deposits in the world. It is associated with a magmatic-hydrothermal ore-forming system triggered by the deeply buried geological structures and concealed granites. A singular value decomposition (SVD) program on a MATLAB platform was effectively used to extract deeply buried geological information reflecting deep-seated geological structures and the concealed granites by decomposing gravity signals within the Gejiu tin polymetallic ore field. Firstly, the gravity signals were decomposed into a few components with different eigenvalues using a singular value decomposition (SVD) approach. Secondly, the thresholds between the eigenvalues of gravity components reflecting deeply and shallowly buried ore-controlling geological structures and/or geological bodies were established by a multifractal method. Finally, the images of gravity components reflecting deeply and shallowly buried ore-controlling geological structures and/or geological bodies were reconstituted. This yielded two layers of significant two dimensional singular value gravity component images that indicate deeply and shallowly buried ore-controlling geological structures and/or geological bodies, respectively. The deep layer of gravity component image reveals a negative gravity anomaly (I) which indicates that the granites exposed in the west ore field, bounded by the Gejiu Fault, may be extended to the east ore field at depth, forming concealed granites (Fig. 4). The shallow layer of gravity component image reveals a structural framework created by two groups of NW-trending and three groups of NE-trending positive gravity component images defining two negative gravity anomalies (I and II), which may reflect existence of the exposed granites in the western ore field (I) and the concealed granites in the eastern ore field (II) (Figs. 5 and 6). Almost all tin
NASA Astrophysics Data System (ADS)
Butler, P. G.; Scourse, J. D.; Richardson, C. A.; Wanamaker, A. D., Jr.
2009-04-01
Determinations of the local correction (ΔR) to the globally averaged marine radiocarbon reservoir age are often isolated in space and time, derived from heterogeneous sources and constrained by significant uncertainties. Although time series of ΔR at single sites can be obtained from sediment cores, these are subject to multiple uncertainties related to sedimentation rates, bioturbation and interspecific variations in the source of radiocarbon in the analysed samples. Coral records provide better resolution, but these are available only for tropical locations. It is shown here that it is possible to use the shell of the long-lived bivalve mollusc Arctica islandica as a source of high resolution time series of absolutely-dated marine radiocarbon determinations for the shelf seas surrounding the North Atlantic ocean. Annual growth increments in the shell can be crossdated and chronologies can be constructed in a precise analogue with the use of tree-rings. Because the calendar dates of the samples are known, ΔR can be determined with high precision and accuracy and because all the samples are from the same species, the time series of ΔR values possesses a high degree of internal consistency. Presented here is a multi-centennial (AD 1593 - AD 1933) time series of 31 ΔR values for a site in the Irish Sea close to the Isle of Man. The mean value of ΔR (-62 14C yrs) does not change significantly during this period but increased variability is apparent before AD 1750.
Two-valued breakup length of a water jet issuing from a finite-length nozzle under normal gravity.
Umemura, Akira; Kawanabe, Sho; Suzuki, Sousuke; Osaka, Jun
2011-09-01
Laboratory experiments are conducted in which water is issued vertically downward from a finite-length nozzle at a constant speed using a piston. The results of these experiments indicate that the breakup length of the liquid jet is two-valued at Weber numbers greater than unity but less than a certain value, which depends on the nozzle length-to-radius ratio and the Bond number. In addition to a long breakup length, which is consistent with the conventional observation, another shorter breakup length is realized at the same jet issue speed. Each experimental run for a specific jet issue speed begins from the start of liquid issue so that each run is independent of the other runs. Transition between the two breakup lengths seldom occurs in each run. Which of the two breakup lengths occurs is determined at the start of liquid issue, when the capillary wave produced by the liquid jet tip contraction easily reaches the nozzle exit. Unlike the conventional belief, which is based on the Plateau-Rayleigh instability theory, this experimental evidence demonstrates that liquid jet disintegration occurs in a deterministic manner. The previously proposed self-destabilizing mechanism of a liquid jet in microgravity, in which the origin of the unstable wave responsible for the breakups is attributed to the formation of an upstream propagating capillary wave at every breakup, is extended to explore the physics underlying the observed liquid jet disintegration behaviors. PMID:22060494
NASA Technical Reports Server (NTRS)
Maximenko, Nikolai A.
2003-01-01
Mean absolute sea level reflects the deviation of the Ocean surface from geoid due to the ocean currents and is an important characteristic of the dynamical state of the ocean. Values of its spatial variations (order of 1 m) are generally much smaller than deviations of the geoid shape from ellipsoid (order of 100 m) that makes the derivation of the absolute mean sea level a difficult task for gravity and satellite altimetry observations. Technique used by Niiler et al. for computation of the absolute mean sea level in the Kuroshio Extension was then developed into more general method and applied by Niiler et al. (2003b) to the global Ocean. The method is based on the consideration of balance of horizontal momentum.
The visual surface brightness relation and the absolute magnitudes of RR Lyrae stars. I - Theory
NASA Technical Reports Server (NTRS)
Manduca, A.; Bell, R. A.
1981-01-01
A theoretical relation analogous to the Barnes-Evans relation between stellar surface brightness and V-R color is derived which is applicable to the temperatures and gravities appropriate to RR Lyrae stars. Values of the visual surface brightness and V-R colors are calculated for model stellar atmospheres with effective temperatures between 6000 and 8000 K, log surface gravities from 2.2 to 3.5, and A/H anbundance ratios from -0.5 to -3.0. The resulting relation is found to be in reasonable agreement with the empirical relation of Barnes, Evans and Moffet (1978), with, however, small sensitivities to gravity and metal abundance. The relation may be used to derive stellar angular diameters from (V,R) photometry and to derive radii, distances, and absolute magnitudes for variable stars when combined with a radial velocity curve. The accuracies of the radii and distances (within 10%) and absolute magnitudes (within 0.25 magnitudes) compare favorably with those of the Baade-Wesselink method currently in use.
Modelling temporal gravity changes through the south of the Taiwan Orogen
NASA Astrophysics Data System (ADS)
Mouyen, Maxime; Masson, Frédéric; Mouthereau, Frédéric; Hwang, Cheinway; Cheng, Ching-Chung
2010-05-01
The Taiwan mountain belt results from the collision between Philippine Sea and Eurasian plates. Taiwan island experiences high tectonic deformation due to fast convergence between the two plates. It has been and is still widely studied and is often considered as a natural laboratory for orogeny studies. Since 2006, the French-Taiwanese scientific project AGTO (Absolute Gravity in the Taiwanese Orogen) measures the gravity change along a transect through the south of the island. It includes 10 absolute and 45 relative gravity measurements sites. The aim of this project is to validate the use of temporal gravity data for tectonic purposes. In particular, this method should be interesting to monitor deep mass transfers involved in the Taiwanese orogeny. Deep tectonic processes occuring in Taiwan are indeed still discussed, as shown by the existence of several tectonic hypotheses, and gravity can bring useful contribution to this discussion. The value of g in a particular place physically depends on the density distribution around this place. Change of this density distribution will result in a change of g, to which we try to give a tectonic meaning. However it is worth noting that other factors, like hydrology, might also be responsible for temporal g variations. Gravity modelling should therefore provide significant help in interpreting measurements. First, it can be used to estimate non-tectonic factors like hydrology, erosion or landslides, which both are supposed to modify g value through time. Albeit interesting, these effects must be properly removed from our measures before attempting any tectonic interpretation. Second, modelling is a valuable step in this study as it can help to propose deep mass transfers hypothesis constrained by gravity data and in accordance with Taiwan tectonic context. In this work, we present results of both types, computed for the south of the Taiwan orogen. Water effects on gravity have been estimated using rainfall data and global
NASA Technical Reports Server (NTRS)
Bizzell, G. D.; Crane, G. E.
1976-01-01
A boundary value problem was solved numerically for a liquid that is assumed to be inviscid and incompressible, having a motion that is irrotational and axisymmetric, and having a constant (5 degrees) solid-liquid contact angle. The avoidance of excessive mesh distortion, encountered with strictly Lagrangian or Eulerian kinematics, was achieved by introducing an auxiliary kinematic velocity field along the free surface in order to vary the trajectories used in integrating the ordinary differential equations simulating the moving boundary. The computation of the velocity potential was based upon a nonuniform triangular mesh which was automatically revised to varying depths to accommodate the motion of the free surface. These methods permitted calculation of draining induced axisymmetric slosh through the many (or fractional) finite amplitude oscillations that can occur depending upon the balance of draining, gravitational, and surface tension forces. Velocity fields, evolution of the free surface with time, and liquid residual volumes were computed for three and one half decades of Weber number and for two Bond numbers, tank fill levels, and drain radii. Comparisons with experimental data are very satisfactory.
The new Absolute Quantum Gravimeter (AQG): first results and perspectives
NASA Astrophysics Data System (ADS)
Bonvalot, Sylvain; Le Moigne, Nicolas; Merlet, Sebastien; Desruelle, Bruno; Lautier-Gaud, Jean; Menoret, Vincent; Vermeulen, Pierre
2016-04-01
Cold atom gravimetry represents one of the most innovative evolution in gravity instrumentation since the last 20 years. The concept of measuring the gravitational acceleration by dropping atoms and the development of the first instrumental devices during this last decade quickly revealed the promising perspectives of this new generation of gravity meters enabling accurate and absolute measurements of the Earth's gravity field for a wide range of applications (geophysics, geodesy, metrology, etc.). The Absolute Quantum Gravimeter (AQG) gravity meter, developed by MUQUANS (Talence, France - http://www.muquans.com/) with the support of RESIF, the French Seismologic and Geodetic Network (http://www.resif.fr/) belongs to this new generation of instruments. It also represents the first commercial device based on the utilization of advanced matter-wave interferometry techniques, which allow to characterize precisely the vertical acceleration experienced by a cloud of cold atoms. Recently, the first operational unit (AQG01) has been achieved as a compact transportable gravimeter with the aim of satisfying absolute gravity measurements in laboratory conditions under the following specifications: measurements the μGal level at a few Hz cycling frequency, sensitivity of 50μGal/√Hz, immunity to ground vibrations, easy and quickness of operation, automated continuous data acquisition for several months, etc. In order to evaluate the current performances of the AQG01, several experiments are carried out in collaboration between RESIF user's teams and the MUQUANS manufacturer on different reference gravity sites and laboratories in France. These measurements performed in indoor conditions including simultaneous observations with classical reference gravity instruments (corner-cube absolute gravity meters, relative superconducting meters) as well with the Cold Atom Gravity meter (CAG) developed by LNE-SYRTE, lead to a first objective characterization of the performances of
Energy Science and Technology Software Center (ESTSC)
2012-05-11
The ap command traveres all symlinks in a given file, directory, or executable name to identify the final absolute path. It can print just the final path, each intermediate link along with the symlink chan, and the permissions and ownership of each directory component in the final path. It has functionality similar to "which", except that it shows the final path instead of the first path. It is also similar to "pwd", but it canmore » provide the absolute path to a relative directory from the current working directory.« less
Moody, A.
2012-05-11
The ap command traveres all symlinks in a given file, directory, or executable name to identify the final absolute path. It can print just the final path, each intermediate link along with the symlink chan, and the permissions and ownership of each directory component in the final path. It has functionality similar to "which", except that it shows the final path instead of the first path. It is also similar to "pwd", but it can provide the absolute path to a relative directory from the current working directory.
Surveying with the A10-20 Absolute Gravimeter for Geodesy and Geodynamics - first results
NASA Astrophysics Data System (ADS)
Krynski, Jan; Sekowski, Marcin
2010-05-01
The A10 is the first outdoor absolute gravimeter that allows for the determination of gravity with high precision. Absolute gravity survey with the A10 becomes highly competitive in terms of both efficiency and precision with traditional relative gravity survey. The portable A10-20 absolute gravimeter has been installed at the Borowa Gora Geodetic-Geophysical Observatory in September 2008. Since then a number of test measurements was conducted. Under laboratory conditions the series of gravity determination was obtained at two independent pillars at Borowa Gora as well as in Metsahovi and the BIPM gravimetric laboratories. Also a number outdoor gravity measurements with the use of mobile gravimetric laboratory was performed at the stations of gravity control in Poland and in Finland. The results obtained indicate high quality of gravity determination with the A10 under laboratory conditions and unprecedented quality under field conditions. They confirm the applicability of the A10 absolute gravimeter to the modernization of gravity control and high precision gravity survey required in modern gravity networks, but also its usefulness in microgravimetry as well as geodynamics. Some practical problems concerning the use of the A10 and its operational procedure including laser and frequency standard are discussed.
From Hubble's NGSL to Absolute Fluxes
NASA Technical Reports Server (NTRS)
Heap, Sara R.; Lindler, Don
2012-01-01
Hubble's Next Generation Spectral Library (NGSL) consists of R-l000 spectra of 374 stars of assorted temperature, gravity, and metallicity. Each spectrum covers the wavelength range, 0.18-1.00 microns. The library can be viewed and/or downloaded from the website, http://archive.stsci.edu/prepds/stisngsll. Stars in the NGSL are now being used as absolute flux standards at ground-based observatories. However, the uncertainty in the absolute flux is about 2%, which does not meet the requirements of dark-energy surveys. We are therefore developing an observing procedure that should yield fluxes with uncertainties less than 1 % and will take part in an HST proposal to observe up to 15 stars using this new procedure.
NASA Astrophysics Data System (ADS)
Coomber, S. J.; Webb, S. J.
2006-12-01
The Bushveld Complex (2 060 2 054 Ma) is the largest known layered mafic intrusion in the world, at 7-9 km thick and covering approximately 65 000 km2, and is mined for its high grades of PGEs and chromium. Styldrift lies in a structurally complex region (due to the intrusion of the Pilanesburg, approximately 1 300 Ma) where dykes, faults, potholes and Iron-Rich Ultramafic Pegmatoids (IRUPs) present a problem to mining activities. Interpretation of 3-D seismic data, constrained by drill-holes, has produced a 3-D geological model in gOcad, which will assist in mine design and planning. A 1 km2 grid over the 3-D geological model has had high resolution ground gravity and ground magnetic data collected over it. Values of the vertical gravitational component were used to calculate the Full Tensor Gradient (FTG) gravity components, by first constructing the equivalent layer. Airborne FTG gravity data have been flown over the area, which may be compared to the calculated ground data, to test the accuracy of the FTG calculation. Aeromagnetic data over the region may also be compared to the ground data. The calculated FTG gravity data and magnetic data were used to run inversions (steepest descent and UBC algorithms) on the 3-D geological model. Highly reliable inversions of the FTG gravity data adjusted the lithological contacts of the 3-D geological model, constrained by seismic and borehole data, as well as densities of norites and anorthosites in the model, constrained by down-hole density measurements. A second 1 km2 grid, in close proximity to the first grid but with no corresponding seismic data, also had gravity and magnetic data (both ground and airborne) collected over it. A simple 3-D geological model was constructed, with lithological contacts and densities constrained by borehole data. Inversions of the calculated FTG gravity and magnetic data, and extending geological trends of the first geological model, lead to improvements in this geological model.
Atmospheric Science Data Center
2013-04-19
article title: Gravity Waves Ripple over Marine Stratocumulus Clouds ... Imaging SpectroRadiometer (MISR), a fingerprint-like gravity wave feature occurs over a deck of marine stratocumulus clouds. Similar ... that occur when a pebble is thrown into a still pond, such "gravity waves" sometimes appear when the relatively stable and stratified air ...
Kim, Jinsoo; Lee, Youngcheol; Cha, Sungyeoul; Choi, Chuluong; Lee, Seongkyu
2013-01-01
This paper proposes a smartphone-based network real-time kinematic (RTK) positioning and gravity-surveying application (app) that allows semi-real-time measurements using the built-in Bluetooth features of the smartphone and a third-generation or long-term evolution wireless device. The app was implemented on a single smartphone by integrating a global navigation satellite system (GNSS) controller, a laptop, and a field-note writing tool. The observation devices (i.e., a GNSS receiver and relative gravimeter) functioned independently of this system. The app included a gravity module, which converted the measured relative gravity reading into an absolute gravity value according to tides; meter height; instrument drift correction; and network adjustments. The semi-real-time features of this app allowed data to be shared easily with other researchers. Moreover, the proposed smartphone-based gravity-survey app was easily adaptable to various locations and rough terrain due to its compact size. PMID:23857258
Kim, Jinsoo; Lee, Youngcheol; Cha, Sungyeoul; Choi, Chuluong; Lee, Seongkyu
2013-01-01
This paper proposes a smartphone-based network real-time kinematic (RTK) positioning and gravity-surveying application (app) that allows semi-real-time measurements using the built-in Bluetooth features of the smartphone and a third-generation or long-term evolution wireless device. The app was implemented on a single smartphone by integrating a global navigation satellite system (GNSS) controller, a laptop, and a field-note writing tool. The observation devices (i.e., a GNSS receiver and relative gravimeter) functioned independently of this system. The app included a gravity module, which converted the measured relative gravity reading into an absolute gravity value according to tides; meter height; instrument drift correction; and network adjustments. The semi-real-time features of this app allowed data to be shared easily with other researchers. Moreover, the proposed smartphone-based gravity-survey app was easily adaptable to various locations and rough terrain due to its compact size. PMID:23857258
Electronic Absolute Cartesian Autocollimator
NASA Technical Reports Server (NTRS)
Leviton, Douglas B.
2006-01-01
An electronic absolute Cartesian autocollimator performs the same basic optical function as does a conventional all-optical or a conventional electronic autocollimator but differs in the nature of its optical target and the manner in which the position of the image of the target is measured. The term absolute in the name of this apparatus reflects the nature of the position measurement, which, unlike in a conventional electronic autocollimator, is based absolutely on the position of the image rather than on an assumed proportionality between the position and the levels of processed analog electronic signals. The term Cartesian in the name of this apparatus reflects the nature of its optical target. Figure 1 depicts the electronic functional blocks of an electronic absolute Cartesian autocollimator along with its basic optical layout, which is the same as that of a conventional autocollimator. Referring first to the optical layout and functions only, this or any autocollimator is used to measure the compound angular deviation of a flat datum mirror with respect to the optical axis of the autocollimator itself. The optical components include an illuminated target, a beam splitter, an objective or collimating lens, and a viewer or detector (described in more detail below) at a viewing plane. The target and the viewing planes are focal planes of the lens. Target light reflected by the datum mirror is imaged on the viewing plane at unit magnification by the collimating lens. If the normal to the datum mirror is parallel to the optical axis of the autocollimator, then the target image is centered on the viewing plane. Any angular deviation of the normal from the optical axis manifests itself as a lateral displacement of the target image from the center. The magnitude of the displacement is proportional to the focal length and to the magnitude (assumed to be small) of the angular deviation. The direction of the displacement is perpendicular to the axis about which the
OKADA; BRAVAR, A.; BUNCE, G.; GILL, R.; HUANG, H.; MAKDISI, Y.; NASS, A.; WOOD, J.; ZELENSKI, Z.; ET AL.
2007-09-10
Precise and absolute beam polarization measurements are critical for the RHIC spin physics program. Because all experimental spin-dependent results are normalized by beam polarization, the normalization uncertainty contributes directly to final physics uncertainties. We aimed to perform the beam polarization measurement to an accuracy Of {Delta}P{sub beam}/P{sub beam} < 5%. The absolute polarimeter consists of Polarized Atomic Hydrogen Gas Jet Target and left-right pairs of silicon strip detectors and was installed in the RHIC-ring in 2004. This system features proton-proton elastic scattering in the Coulomb nuclear interference (CNI) region. Precise measurements of the analyzing power A{sub N} of this process has allowed us to achieve {Delta}P{sub beam}/P{sub beam} = 4.2% in 2005 for the first long spin-physics run. In this report, we describe the entire set up and performance of the system. The procedure of beam polarization measurement and analysis results from 2004-2005 are described. Physics topics of AN in the CNI region (four-momentum transfer squared 0.001 < -t < 0.032 (GeV/c){sup 2}) are also discussed. We point out the current issues and expected optimum accuracy in 2006 and the future.
NASA Technical Reports Server (NTRS)
Reasenberg, Robert D.
1993-01-01
The anomalous gravity field of Venus shows high correlation with surface features revealed by radar. We extract gravity models from the Doppler tracking data from the Pioneer Venus Orbiter (PVO) by means of a two-step process. In the first step, we solve the nonlinear spacecraft state estimation problem using a Kalman filter-smoother. The Kalman filter was evaluated through simulations. This evaluation and some unusual features of the filter are discussed. In the second step, we perform a geophysical inversion using a linear Bayesian estimator. To allow an unbiased comparison between gravity and topography, we use a simulation technique to smooth and distort the radar topographic data so as to yield maps having the same characteristics as our gravity maps. The maps presented cover 2/3 of the surface of Venus and display the strong topography-gravity correlation previously reported. The topography-gravity scatter plots show two distinct trends.
Implants as absolute anchorage.
Rungcharassaeng, Kitichai; Kan, Joseph Y K; Caruso, Joseph M
2005-11-01
Anchorage control is essential for successful orthodontic treatment. Each tooth has its own anchorage potential as well as propensity to move when force is applied. When teeth are used as anchorage, the untoward movements of the anchoring units may result in the prolonged treatment time, and unpredictable or less-than-ideal outcome. To maximize tooth-related anchorage, techniques such as differential torque, placing roots into the cortex of the bone, the use of various intraoral devices and/or extraoral appliances have been implemented. Implants, as they are in direct contact with bone, do not possess a periodontal ligament. As a result, they do not move when orthodontic/orthopedic force is applied, and therefore can be used as "absolute anchorage." This article describes different types of implants that have been used as orthodontic anchorage. Their clinical applications and limitations are also discussed. PMID:16463910
Healey, D.L.
1983-12-31
A large density contrast exists between the Paleozoic rocks (including the rocks of Climax stock) and less dense, Tertiary volcanic rocks and alluvium. This density contrast ranges widely, and herein for interpretive purposes, is assumed to average 0.85 Mg/m{sup 3} (megagrams per cubic meter). The large density contrast makes the gravity method a useful tool with which to study the interface between these rock types. However, little or no density contrast is discernible between the sedimentary Paleozoic rocks that surround the Climax stock and the intrusive rocks of the stock itself. Therefore the gravity method can not be used to define the configuration of the stock. Gravity highs coincide with outcrops of the dense Paleozoic rocks, and gravity lows overlie less-dense Tertiary volcanic rocks and Quaternary alluvium. The positions of three major faults (Boundary, Yucca, and Butte faults) are defined by steep gravity gradients. West of the Climax stock, the Tippinip fault has juxtaposed Paleozoic rocks of similar density, and consequently, has no expression in the gravity data in that area. The gravity station spacing, across Oak Spring Butte, is not sufficient to adequately define any gravity expression of the Tippinip fault. 18 refs., 5 figs.
Absolute isotopic abundances of TI in meteorites
NASA Astrophysics Data System (ADS)
Niederer, F. R.; Papanastassiou, D. A.; Wasserburg, G. J.
1985-03-01
The absolute isotope abundance of Ti has been determined in Ca-Al-rich inclusions from the Allende and Leoville meteorites and in samples of whole meteorites. The absolute Ti isotope abundances differ by a significant mass dependent isotope fractionation transformation from the previously reported abundances, which were normalized for fractionation using 46Ti/48Ti. Therefore, the absolute compositions define distinct nucleosynthetic components from those previously identified or reflect the existence of significant mass dependent isotope fractionation in nature. The authors provide a general formalism for determining the possible isotope compositions of the exotic Ti from the measured composition, for different values of isotope fractionation in nature and for different mixing ratios of the exotic and normal components.
A general relativistic model for free-fall absolute gravimeters
NASA Astrophysics Data System (ADS)
Tan, Yu-Jie; Shao, Cheng-Gang; Li, Jia; Hu, Zhong-Kun
2016-04-01
Although the relativistic manifestations of gravitational fields in gravimetry were first studied 40 years ago, the relativistic effects combined with free-fall absolute gravimeters have rarely been considered. In light of this, we present a general relativistic model for free-fall absolute gravimeters in a local-Fermi coordinates system, where we focus on effects related to the measuring devices: relativistic transverse Doppler effects, gravitational redshift effects and Earth’s rotation effects. Based on this model, a general relativistic expression of the measured gravity acceleration is obtained.
Absolute neutrino mass measurements
NASA Astrophysics Data System (ADS)
Wolf, Joachim
2011-10-01
The neutrino mass plays an important role in particle physics, astrophysics and cosmology. In recent years the detection of neutrino flavour oscillations proved that neutrinos carry mass. However, oscillation experiments are only sensitive to the mass-squared difference of the mass eigenvalues. In contrast to cosmological observations and neutrino-less double beta decay (0v2β) searches, single β-decay experiments provide a direct, model-independent way to determine the absolute neutrino mass by measuring the energy spectrum of decay electrons at the endpoint region with high accuracy. Currently the best kinematic upper limits on the neutrino mass of 2.2eV have been set by two experiments in Mainz and Troitsk, using tritium as beta emitter. The next generation tritium β-experiment KATRIN is currently under construction in Karlsruhe/Germany by an international collaboration. KATRIN intends to improve the sensitivity by one order of magnitude to 0.2eV. The investigation of a second isotope (137Rh) is being pursued by the international MARE collaboration using micro-calorimeters to measure the beta spectrum. The technology needed to reach 0.2eV sensitivity is still in the R&D phase. This paper reviews the present status of neutrino-mass measurements with cosmological data, 0v2β decay and single β-decay.
Absolute neutrino mass measurements
Wolf, Joachim
2011-10-06
The neutrino mass plays an important role in particle physics, astrophysics and cosmology. In recent years the detection of neutrino flavour oscillations proved that neutrinos carry mass. However, oscillation experiments are only sensitive to the mass-squared difference of the mass eigenvalues. In contrast to cosmological observations and neutrino-less double beta decay (0v2{beta}) searches, single {beta}-decay experiments provide a direct, model-independent way to determine the absolute neutrino mass by measuring the energy spectrum of decay electrons at the endpoint region with high accuracy.Currently the best kinematic upper limits on the neutrino mass of 2.2eV have been set by two experiments in Mainz and Troitsk, using tritium as beta emitter. The next generation tritium {beta}-experiment KATRIN is currently under construction in Karlsruhe/Germany by an international collaboration. KATRIN intends to improve the sensitivity by one order of magnitude to 0.2eV. The investigation of a second isotope ({sup 137}Rh) is being pursued by the international MARE collaboration using micro-calorimeters to measure the beta spectrum. The technology needed to reach 0.2eV sensitivity is still in the R and D phase. This paper reviews the present status of neutrino-mass measurements with cosmological data, 0v2{beta} decay and single {beta}-decay.
NASA Astrophysics Data System (ADS)
Mäkinen, Jaakko; Engfeldt, Andreas; Gitlein, Olga; Kaminskis, Janis; Klopping, Fred; Oja, Tõnis; Paršeliunas, Eimuntas; Ragnvald Pettersen, Bjørn; Strykowski, Gabriel; Wilmes, Herbert
2010-05-01
Relative high-precision measurements to detect the change in gravity differences due to the Fennoscandian Postglacial Rebound (PGR) were started in 1966 on an east-west line at the latitude 63°N in Finland (Kiviniemi, 1974). In 1967 the line was extended to Sweden and Norway by Rikets Allmänna Kartverk (now Lantmäteriet, Sweden) and Norges Geografiske Oppmåling (now the Norwegian Mapping Authority). Today the Fennoscandian Land Uplift Gravity Lines consist of four east-west profiles across the PGR area, along the approximate latitudes 65°, 63°, 61°, and 56°N. Repeated relative gravity measurements have been performed on them 1975-2000 (65°N), 1966-2003 (63°N), 1976-1983 (61°N), and 1977-2003 (56°N). The work has been coordinated by the Working Group for Geodynamics (WGG) of the Nordic Geodetic Commission (NKG). The line 63°N has most observations. From the measurements along it up to 1993, Ekman and Mäkinen (1996) deduced the ratio -0.20 µgal/mm between surface gravity change and uplift relative to the Earth's center of mass. From 2003 on, the measurements on the line 63°N are continued using absolute gravity techniques. Absolute gravity measurements in the Fennoscandian postglacial rebound area started in 1976 when a team from Istituto di Metrología "G. Colonnetti" (Torino) measured six stations with the rise-and-fall gravimeter IMGC (Cannizzo et al., 1978). In 1980 two stations were measured by the team of the AN SSSR from Novosibirsk, using the gravimeter GABL (Arnautov et al., 1982). From the beginning the goal was to establish reference values for future remeasurement in order to detect gravity change due to the postglacial rebound. In 1988, regular repeat measurements were started by the Finnish Geodetic Institute (FGI) with the JILAg-5. An important advance was the introduction of FG5 gravimeters into the work by BKG (Frankfurt a/M) and NOAA (Boulder, CO) in 1993. In 2003 annual large-scale campaigns with FG5 gravimeters started, coordinated
Kennedy, Jeffrey R.; Ferre, Ty P.A.
2015-01-01
The relative gravimeter is the primary terrestrial instrument for measuring spatially and temporally varying gravitational fields. The background noise of the instrument—that is, non-linear drift and random tares—typically requires some form of least-squares network adjustment to integrate data collected during a campaign that may take several days to weeks. Here, we present an approach to remove the change in the observed relative-gravity differences caused by hydrologic or other transient processes during a single campaign, so that the adjusted gravity values can be referenced to a single epoch. The conceptual approach is an example of coupled hydrogeophysical inversion, by which a hydrologic model is used to inform and constrain the geophysical forward model. The hydrologic model simulates the spatial variation of the rate of change of gravity as either a linear function of distance from an infiltration source, or using a 3-D numerical groundwater model. The linear function can be included in and solved for as part of the network adjustment. Alternatively, the groundwater model is used to predict the change of gravity at each station through time, from which the accumulated gravity change is calculated and removed from the data prior to the network adjustment. Data from a field experiment conducted at an artificial-recharge facility are used to verify our approach. Maximum gravity change due to hydrology (observed using a superconducting gravimeter) during the relative-gravity field campaigns was up to 2.6 μGal d−1, each campaign was between 4 and 6 d and one month elapsed between campaigns. The maximum absolute difference in the estimated gravity change between two campaigns, two months apart, using the standard network adjustment method and the new approach, was 5.5 μGal. The maximum gravity change between the same two campaigns was 148 μGal, and spatial variation in gravity change revealed zones of preferential infiltration and areas of relatively
NASA Astrophysics Data System (ADS)
Kennedy, Jeffrey R.; Ferré, Ty P. A.
2016-02-01
The relative gravimeter is the primary terrestrial instrument for measuring spatially and temporally varying gravitational fields. The background noise of the instrument-that is, non-linear drift and random tares-typically requires some form of least-squares network adjustment to integrate data collected during a campaign that may take several days to weeks. Here, we present an approach to remove the change in the observed relative-gravity differences caused by hydrologic or other transient processes during a single campaign, so that the adjusted gravity values can be referenced to a single epoch. The conceptual approach is an example of coupled hydrogeophysical inversion, by which a hydrologic model is used to inform and constrain the geophysical forward model. The hydrologic model simulates the spatial variation of the rate of change of gravity as either a linear function of distance from an infiltration source, or using a 3-D numerical groundwater model. The linear function can be included in and solved for as part of the network adjustment. Alternatively, the groundwater model is used to predict the change of gravity at each station through time, from which the accumulated gravity change is calculated and removed from the data prior to the network adjustment. Data from a field experiment conducted at an artificial-recharge facility are used to verify our approach. Maximum gravity change due to hydrology (observed using a superconducting gravimeter) during the relative-gravity field campaigns was up to 2.6 μGal d-1, each campaign was between 4 and 6 d and one month elapsed between campaigns. The maximum absolute difference in the estimated gravity change between two campaigns, two months apart, using the standard network adjustment method and the new approach, was 5.5 μGal. The maximum gravity change between the same two campaigns was 148 μGal, and spatial variation in gravity change revealed zones of preferential infiltration and areas of relatively high
On the effect of distortion and dispersion in fringe signal of the FG5 absolute gravimeters
NASA Astrophysics Data System (ADS)
Křen, Petr; Pálinkáš, Vojtech; Mašika, Pavel
2016-02-01
The knowledge of absolute gravity acceleration at the level of 1 × 10-9 is needed in geosciences (e.g. for monitoring crustal deformations and mass transports) and in metrology for watt balance experiments related to the new SI definition of the unit of kilogram. The gravity reference, which results from the international comparisons held with the participation of numerous absolute gravimeters, is significantly affected by qualities of instruments prevailing in the comparisons (i.e. at present, FG5 gravimeters). Therefore, it is necessary to thoroughly investigate all instrumental (particularly systematic) errors. This paper deals with systematic errors of the FG5#215 coming from the distorted fringe signal and from the electronic dispersion at several electronic components including cables. In order to investigate these effects, we developed a new experimental system for acquiring and analysing the data parallel to the FG5 built-in system. The new system based on the analogue-to-digital converter with digital waveform processing using the FFT swept band pass filter is developed and tested on the FG5#215 gravimeter equipped with a new fast analogue output. The system is characterized by a low timing jitter, digital handling of the distorted swept signal with determination of zero-crossings for the fundamental frequency sweep and also for its harmonics and can be used for any gravimeter based on the laser interferometry. Comparison of the original FG5 system and the experimental systems is provided on g-values, residuals and additional measurements/models. Moreover, advanced approach for the solution of the free-fall motion is presented, which allows to take into account a non-linear gravity change with height.
NASA Astrophysics Data System (ADS)
Simpson, John E.
1997-03-01
This book comprehensively describes all aspects of gravity flow, a physical process in the environment that is covered by many disciplines including meteorology, oceanography, the earth sciences and industrial processes. The first edition was very well received, and the author has brought the new edition completely up to date, with much new material. Simpson describes gravity currents with a variety of laboratory experiments, many from his own work. Gravity Currents is a valuable supplementary textbook for undergraduates and a reference work for research workers. The general reader will also find much of interest, since the author clearly describes the physics of flows involved without advanced mathematics, and with numerous photographs and illustrations.
NASA Astrophysics Data System (ADS)
Simpson, John E.
1999-11-01
This book comprehensively describes all aspects of gravity flow, a physical process in the environment that is covered by many disciplines including meteorology, oceanography, the earth sciences and industrial processes. The first edition was very well received, and the author has brought the new edition completely up to date, with much new material. Simpson describes gravity currents with a variety of laboratory experiments, many from his own work. Gravity Currents is a valuable supplementary textbook for undergraduates and a reference work for research workers. The general reader will also find much of interest, since the author clearly describes the physics of flows involved without advanced mathematics, and with numerous photographs and illustrations.
Lujan, Richard E.
2001-01-01
A mechanical gravity brake that prevents hoisted loads within a shaft from free-falling when a loss of hoisting force occurs. A loss of hoist lifting force may occur in a number of situations, for example if a hoist cable were to break, the brakes were to fail on a winch, or the hoist mechanism itself were to fail. Under normal hoisting conditions, the gravity brake of the invention is subject to an upward lifting force from the hoist and a downward pulling force from a suspended load. If the lifting force should suddenly cease, the loss of differential forces on the gravity brake in free-fall is translated to extend a set of brakes against the walls of the shaft to stop the free fall descent of the gravity brake and attached load.
Absolute Identification by Relative Judgment
ERIC Educational Resources Information Center
Stewart, Neil; Brown, Gordon D. A.; Chater, Nick
2005-01-01
In unidimensional absolute identification tasks, participants identify stimuli that vary along a single dimension. Performance is surprisingly poor compared with discrimination of the same stimuli. Existing models assume that identification is achieved using long-term representations of absolute magnitudes. The authors propose an alternative…
ERIC Educational Resources Information Center
Newburgh, Ronald
2010-01-01
It's both surprising and rewarding when an old, standard problem reveals a subtlety that expands its pedagogic value. I realized recently that the role of gravity in the range equation for a projectile is not so simple as first appears. This realization may be completely obvious to others but was quite new to me.
Karst Water System Investigated by Absolute Gravimetry
NASA Astrophysics Data System (ADS)
Quinif, Y.; Meus, P.; van Camp, M.; Kaufmann, O.; van Ruymbeke, M.; Vandiepenbeeck, M.; Camelbeeck, T.
2006-12-01
The highly anisotropic and heterogeneous hydrogeological characteristics of karst aquifers are difficult to characterize and present challenges for modeling of storage capacities. Little is known about the surface and groundwater interconnection, about the connection between the porous formations and the draining cave and conduits, and about the variability of groundwater volume within the system. Usually, an aquifer is considered as a black box, where water fluxes are monitored as input and output. However, water inflow and outflow are highly variable and cannot be measured directly. A recent project, begun in 2006 sought to constrain the water budget in a Belgian karst aquifer and to assess the porosity and water dynamics, combining absolute gravity (AG) measurements and piezometric levels around the Rochefort cave. The advantage of gravity measurements is that they integrate all the subsystems in the karst system. This is not the case with traditional geophysical tools like boring or monitoring wells, which are soundings affected by their near environment and its heterogeneity. The investigated cave results from the meander cutoff system of the Lomme River. The main inputs are swallow holes of the river crossing the limestone massif. The river is canalized and the karst system is partly disconnected from the hydraulic system. In February and March 2006, when the river spilled over its dyke and sank into the most important swallow hole, this resulted in dramatic and nearly instantaneous increases in the piezometric levels in the cave, reaching up to 13 meters. Meanwhile, gravity increased by 50 and 90 nms-2 in February and March, respectively. A first conclusion is that during these sudden floods, the pores and fine fissures were poorly connected with the enlarged fractures, cave, and conduits. With a rise of 13 meters in the water level and a 5% porosity, a gravity change of 250 nms-2 should have been expected. This moderate gravity variation suggests either a
Specific gravities of lunar materials using helium pycnometry
NASA Technical Reports Server (NTRS)
Cadenhead, D. A.; Stetter, J. R.
1975-01-01
An existing technique, helium pycnometry, has been adapted for the measurement of specific gravities of lunar samples, where surface areas are low (less than 1 sq m/g) and crushing the sample to a fine powder is highly undesirable. The technique is superior to typical liquid immersion methods, in that it is noncontaminating and, where vuggy or porous samples are concerned, should provide a more accurate (higher) absolute density value. The experimental helium pycnometry measurements have been compared in three instances for two rocks with values calculated from a normative mineral composition. The comparison appears good, however, where differences occur, the direct experimental technique appears to provide the better value and to be capable of indicating density variations within a single rock sample.
Probing absolute spin polarization at the nanoscale.
Eltschka, Matthias; Jäck, Berthold; Assig, Maximilian; Kondrashov, Oleg V; Skvortsov, Mikhail A; Etzkorn, Markus; Ast, Christian R; Kern, Klaus
2014-12-10
Probing absolute values of spin polarization at the nanoscale offers insight into the fundamental mechanisms of spin-dependent transport. Employing the Zeeman splitting in superconducting tips (Meservey-Tedrow-Fulde effect), we introduce a novel spin-polarized scanning tunneling microscopy that combines the probing capability of the absolute values of spin polarization with precise control at the atomic scale. We utilize our novel approach to measure the locally resolved spin polarization of magnetic Co nanoislands on Cu(111). We find that the spin polarization is enhanced by 65% when increasing the width of the tunnel barrier by only 2.3 Å due to the different decay of the electron orbitals into vacuum. PMID:25423049
Asteroid absolute magnitudes and slope parameters
NASA Technical Reports Server (NTRS)
Tedesco, Edward F.
1991-01-01
A new listing of absolute magnitudes (H) and slope parameters (G) has been created and published in the Minor Planet Circulars; this same listing will appear in the 1992 Ephemerides of Minor Planets. Unlike previous listings, the values of the current list were derived from fits of data at the V band. All observations were reduced in the same fashion using, where appropriate, a single basis default value of 0.15 for the slope parameter. Distances and phase angles were computed for each observation. The data for 113 asteroids was of sufficiently high quality to permit derivation of their H and G. These improved absolute magnitudes and slope parameters will be used to deduce the most reliable bias-corrected asteroid size-frequency distribution yet made.
NASA Technical Reports Server (NTRS)
Mather, R. S.
1973-01-01
Procedures for obtaining position from surface gravity observations are reviewed and their relevance assessed in the context of the application of modern geodetic techniques to programs of Earth and ocean physics. Solutions based on the use of surface layer techniques, the discrete value approach, and the development from Green's theorem are stated in summary, the latter being extended to order e cubed in the height anomaly. The representation of the surface gravity field which is required in order that this accuracy may be achieved is discussed. Interim techniques which could be used in the absence of such a representation are also outlined.
Cook, K.L.; Hoskinson, A.J.; Shelton, G.R.
1971-01-01
Observed gravity values, station locations, elevations, theoretical gravity, and free-air anomaly values are provided in tabular form for 554 gravity locations in northeastern Oklahoma-southeastern Kansas.
Absolute photoionization cross sections of atomic oxygen
NASA Technical Reports Server (NTRS)
Samson, J. A. R.; Pareek, P. N.
1985-01-01
The absolute values of photoionization cross sections of atomic oxygen were measured from the ionization threshold to 120 A. An auto-ionizing resonance belonging to the 2S2P4(4P)3P(3Do, 3So) transition was observed at 479.43 A and another line at 389.97 A. The experimental data is in excellent agreement with rigorous close-coupling calculations that include electron correlations in both the initial and final states.
Absolute photoionization cross sections of atomic oxygen
NASA Technical Reports Server (NTRS)
Samson, J. A. R.; Pareek, P. N.
1982-01-01
The absolute values of photoionization cross sections of atomic oxygen were measured from the ionization threshold to 120 A. An auto-ionizing resonance belonging to the 2S2P4(4P)3P(3Do, 3So) transition was observed at 479.43 A and another line at 389.97 A. The experimental data is in excellent agreement with rigorous close-coupling calculations that include electron correlations in both the initial and final states.
Inflation without quantum gravity
NASA Astrophysics Data System (ADS)
Markkanen, Tommi; Räsänen, Syksy; Wahlman, Pyry
2015-04-01
It is sometimes argued that observation of tensor modes from inflation would provide the first evidence for quantum gravity. However, in the usual inflationary formalism, also the scalar modes involve quantized metric perturbations. We consider the issue in a semiclassical setup in which only matter is quantized, and spacetime is classical. We assume that the state collapses on a spacelike hypersurface and find that the spectrum of scalar perturbations depends on the hypersurface. For reasonable choices, we can recover the usual inflationary predictions for scalar perturbations in minimally coupled single-field models. In models where nonminimal coupling to gravity is important and the field value is sub-Planckian, we do not get a nearly scale-invariant spectrum of scalar perturbations. As gravitational waves are only produced at second order, the tensor-to-scalar ratio is negligible. We conclude that detection of inflationary gravitational waves would indeed be needed to have observational evidence of quantization of gravity.
Artificial gravity - A countermeasure for zero gravity
NASA Technical Reports Server (NTRS)
Nicogossian, A. E.; Mccormack, P. D.
1987-01-01
Current knowledge on artificial gravity is presented with emphasis placed on the unique characteristics of such an environment and their effects on crew performance and vehicle habitability. A parametric optimization of the vehicle size and operation is performed. The following set of 'optimum' parameter values is obtained: a cost of 15.8 billion dollars, a radius of 80 feet, a rotation rate of 4.8 rpm, and a g-value of 0.62. Consideration is also given to the problems of adaptation, retention of adaptation, and simultaneous adaptation to both nonrotating and rotating environments.
NASA Astrophysics Data System (ADS)
Hinderer, J.; Hector, B.; Séguis, L.; Descloitres, M.; Cohard, J.; Boy, J.; Calvo, M.; Rosat, S.; Riccardi, U.; Galle, S.
2013-12-01
Water storage changes (WSC) are investigated by the mean of gravity monitoring in Djougou, northern Benin, in the frame of the GHYRAF (Gravity and Hydrology in Africa) project. In this area, WSC are 1) part of the control system for evapotranspiration (ET) processes, a key variable of the West-African monsoon cycle and 2) the state variable for resource management, a critical issue in storage-poor hard rock basement contexts such as in northern Benin. We show the advantages of gravity monitoring for analyzing different processes in the water cycle involved at various time and space scales, using the main gravity sensors available today (FG5 absolute gravimeter, superconducting gravimeter -SG- and CG5 micro-gravimeter). The study area is also part of the long-term observing system AMMA-Catch, and thus under intense hydro-meteorological monitoring (rain, soil moisture, water table level, ET ...). Gravity-derived WSC are compared at all frequencies to hydrological data and to hydrological models calibrated on these data. Discrepancies are analyzed to discuss the pros and cons of each approach. Fast gravity changes (a few hours) are significant when rain events occur, and involve different contributions: rainfall itself, runoff, fast subsurface water redistribution, screening effect of the gravimeter building and local topography. We investigate these effects and present the statistical results of a set of rain events recorded with the SG installed in Djougou since July 2010. The intermediate time scale of gravity changes (a few days) is caused by ET and both vertical and horizontal water redistribution. The integrative nature of gravity measurements does not allow to separate these different contributions, and the screening from the shelter reduces our ability to retrieve ET values. Also, atmospheric corrections are critical at such frequencies, and deserve some specific attention. However, a quick analysis of gravity changes following rain events shows that the
Gravity and geoid model for South America
NASA Astrophysics Data System (ADS)
Blitzkow, Denizar; Oliveira Cancoro de Matos, Ana Cristina; do Nascimento Guimarães, Gabriel; Pacino, María Cristina; Andrés Lauría, Eduardo; Nunes, Marcelo; Castro Junior, Carlos Alberto Correia e.; Flores, Fredy; Orihuela Guevara, Nuris; Alvarez, Ruber; Napoleon Hernandez, José
2016-04-01
In the last 20 years, South America Gravity Studies (SAGS) project has undertaken an ongoing effort in establishing the fundamental gravity network (FGN); terrestrial, river and airborne relative gravity densifications; absolute gravity surveys and geoid (quasi-geoid) model computation for South America. The old FGN is being replaced progressively by new absolute measurements in different countries. In recent years, Argentina, Bolivia, Brazil, Ecuador, Paraguay and Venezuela organizations participated with relative gravity surveys. Taking advantage of the large amount of data available, GEOID2015 model was developed for 15°N and 57°S latitude and 30 ° W and 95°W longitude based on EIGEN-6C4 until degree and order 200 as a reference field. The ocean area was completed with mean free air gravity anomalies derived from DTU10 model. The short wavelength component was estimated using FFT. The global gravity field models EIGEN-6C4, DIR_R5 were used for comparison with the new model. The new geoid model has been evaluated against 1,319 GPS/BM, in which 592 are located in Brazil and the reminder in other countries. The preliminary RMS difference between GPS/BM and GEOID2015 throughout South America and in Brazil is 46 cm and 17 cm, respectively. New activities are carrying out with the support of the IGC (Geographic and Cartographic Institute) under the coordination of EPUSP/LTG and CENEGEO (Centro de Estudos de Geodesia). The new project aims to establish new gravity points with the A-10 absolute gravimeter in South America. Recent such surveys occurred in São Paulo state, Argentina and Venezuela.
Absolute radiometry and the solar constant
NASA Technical Reports Server (NTRS)
Willson, R. C.
1974-01-01
A series of active cavity radiometers (ACRs) are described which have been developed as standard detectors for the accurate measurement of irradiance in absolute units. It is noted that the ACR is an electrical substitution calorimeter, is designed for automatic remote operation in any environment, and can make irradiance measurements in the range from low-level IR fluxes up to 30 solar constants with small absolute uncertainty. The instrument operates in a differential mode by chopping the radiant flux to be measured at a slow rate, and irradiance is determined from two electrical power measurements together with the instrumental constant. Results are reported for measurements of the solar constant with two types of ACRs. The more accurate measurement yielded a value of 136.6 plus or minus 0.7 mW/sq cm (1.958 plus or minus 0.010 cal/sq cm per min).
Davis, Hyman R.; Long, R. H.; Simone, A. A.
1979-01-01
Solids are separated from a liquid in a gravity settler provided with inclined solid intercepting surfaces to intercept the solid settling path to coalesce the solids and increase the settling rate. The intercepting surfaces are inverted V-shaped plates, each formed from first and second downwardly inclined upwardly curved intersecting conical sections having their apices at the vessel wall.
ERIC Educational Resources Information Center
Pipinos, Savas
2010-01-01
This article describes one classroom activity in which the author simulates the Newtonian gravity, and employs the Euclidean Geometry with the use of new technologies (NT). The prerequisites for this activity were some knowledge of the formulae for a particle free fall in Physics and most certainly, a good understanding of the notion of similarity…
A highly accurate absolute gravimetric network for Albania, Kosovo and Montenegro
NASA Astrophysics Data System (ADS)
Ullrich, Christian; Ruess, Diethard; Butta, Hubert; Qirko, Kristaq; Pavicevic, Bozidar; Murat, Meha
2016-04-01
The objective of this project is to establish a basic gravity network in Albania, Kosovo and Montenegro to enable further investigations in geodetic and geophysical issues. Therefore the first time in history absolute gravity measurements were performed in these countries. The Norwegian mapping authority Kartverket is assisting the national mapping authorities in Kosovo (KCA) (Kosovo Cadastral Agency - Agjencia Kadastrale e Kosovës), Albania (ASIG) (Autoriteti Shtetëror i Informacionit Gjeohapësinor) and in Montenegro (REA) (Real Estate Administration of Montenegro - Uprava za nekretnine Crne Gore) in improving the geodetic frameworks. The gravity measurements are funded by Kartverket. The absolute gravimetric measurements were performed from BEV (Federal Office of Metrology and Surveying) with the absolute gravimeter FG5-242. As a national metrology institute (NMI) the Metrology Service of the BEV maintains the national standards for the realisation of the legal units of measurement and ensures their international equivalence and recognition. Laser and clock of the absolute gravimeter were calibrated before and after the measurements. The absolute gravimetric survey was carried out from September to October 2015. Finally all 8 scheduled stations were successfully measured: there are three stations located in Montenegro, two stations in Kosovo and three stations in Albania. The stations are distributed over the countries to establish a gravity network for each country. The vertical gradients were measured at all 8 stations with the relative gravimeter Scintrex CG5. The high class quality of some absolute gravity stations can be used for gravity monitoring activities in future. The measurement uncertainties of the absolute gravity measurements range around 2.5 micro Gal at all stations (1 microgal = 10-8 m/s2). In Montenegro the large gravity difference of 200 MilliGal between station Zabljak and Podgorica can be even used for calibration of relative gravimeters
Model selection for modified gravity.
Kitching, T D; Simpson, F; Heavens, A F; Taylor, A N
2011-12-28
In this article, we review model selection predictions for modified gravity scenarios as an explanation for the observed acceleration of the expansion history of the Universe. We present analytical procedures for calculating expected Bayesian evidence values in two cases: (i) that modified gravity is a simple parametrized extension of general relativity (GR; two nested models), such that a Bayes' factor can be calculated, and (ii) that we have a class of non-nested models where a rank-ordering of evidence values is required. We show that, in the case of a minimal modified gravity parametrization, we can expect large area photometric and spectroscopic surveys, using three-dimensional cosmic shear and baryonic acoustic oscillations, to 'decisively' distinguish modified gravity models over GR (or vice versa), with odds of ≫1:100. It is apparent that the potential discovery space for modified gravity models is large, even in a simple extension to gravity models, where Newton's constant G is allowed to vary as a function of time and length scale. On the time and length scales where dark energy dominates, it is only through large-scale cosmological experiments that we can hope to understand the nature of gravity. PMID:22084296
NASA Astrophysics Data System (ADS)
Chen, Shi; Jiang, Changsheng; Zhuang, Jiancang
2016-01-01
This paper aimed at assessing gravity variations as precursors for earthquake prediction in the Tibet (Xizang)-Qinghai-Xinjiang-Sichuan Region, western China. We here take a statistical approach to evaluate efficiency and possibility of earthquake prediction. We used the most recent spatiotemporal gravity field variation datasets of 2002-2008 for the region that were provided by the Crustal Movement Observation Network of China (CMONC). The datasets were space sparse and time discrete. In 2007-2010, 13 earthquakes (> M s 6.0) occurred in the region. The observed gravity variations have a statistical correlation with the occurrence of these earthquakes through the Molchan error diagram tests that lead to alarms over a good fraction of space-time. The results show that the prediction efficiency of amplitude of analytic signal of gravity variations is better than seismicity rate model and THD and absolute value of gravity variation, implying that gravity variations before earthquake may include precursory information of future large earthquakes.
NASA Astrophysics Data System (ADS)
Cattin, Rodolphe; Mazzotti, Stephane; Baratin, Laura-May
2015-08-01
We present GravProcess, a set of MATLAB routines to process gravity data from complex campaign surveys and calculate the associated gravity field. Data reduction, analysis, and representation are done using the MATLAB Graphical User Interface Tool, which can be installed on most systems and platforms. Data processing is divided into several steps: (1) Integration of gravity data, station location, and gravity line connection input files; (2) Gravity data reduction applying solid-Earth tide and instrumental drift corrections and, depending on the required processing level, air pressure and oceanic tidal corrections; (3) Automatic network adjustment and alignment to absolute base stations; (4) Free air and terrain corrections to calculate gravity values and anomalies, and to estimate the associated errors. The final step is dedicated to post-processing and includes graphical representations of data and an output text file, which can be used by Geographic Information System software. An example of this processing chain applied to a recent survey in northern Morocco is given and compared with previous available results.
NASA Astrophysics Data System (ADS)
Lane, R. J. L.
2015-12-01
At Geoscience Australia, we are upgrading our gravity and magnetic modeling tools to provide new insights into the composition, properties, and structure of the subsurface. The scale of the investigations varies from the size of tectonic plates to the size of a mineral prospect. To accurately model potential field data at all of these scales, we require modeling software that can operate in both spherical and Cartesian coordinate frameworks. The models are in the form of a mesh, with spherical prismatic (tesseroid) elements for spherical coordinate models of large volumes, and rectangular prisms for smaller volumes evaluated in a Cartesian coordinate framework. The software can compute the forward response of supplied rock property models and can perform inversions using constraints that vary from weak generic smoothness through to very specific reference models compiled from various types of "hard facts" (i.e., surface mapping, drilling information, crustal seismic interpretations). To operate efficiently, the software is being specifically developed to make use of the resources of the National Computational Infrastructure (NCI) at the Australian National University (ANU). The development of these tools is been carried out in collaboration with researchers from the Colorado School of Mines (CSM) and the China University of Geosciences (CUG) and is at the stage of advanced testing. The creation of individual 3D geological models will provide immediate insights. Users will also be able to combine models, either by stitching them together or by nesting smaller and more detailed models within a larger model. Comparison of the potential field response of a composite model with the observed fields will give users a sense of how comprehensively these models account for the observations. Users will also be able to model the residual fields (i.e., the observed minus calculated response) to discover features that are not represented in the input composite model.
Kink-antikink, trapping bags and five-dimensional Gauss-Bonnet gravity
Giovannini, Massimo
2006-10-15
Five-dimensional Gauss-Bonnet gravity, with one warped extra-dimension, allows classes of solutions where two scalar fields combine either in a kink-antikink system or in a trapping-bag configuration. While the kink-antikink system can be interpreted as a pair of gravitating domain walls with opposite topological charges, the trapping-bag solution consists of a domain wall supplemented by a nontopological defect. In both classes of solutions, for large absolute values of the bulk coordinate (i.e. far from the core of the defects), the geometry is given by five-dimensional anti-de Sitter space.
The Implications for Higher-Accuracy Absolute Measurements for NGS and its GRAV-D Project
NASA Astrophysics Data System (ADS)
Childers, V. A.; Winester, D.; Roman, D. R.; Eckl, M. C.; Smith, D. A.
2013-12-01
Absolute and relative gravity measurements play an important role in the work of NOAA's National Geodetic Survey (NGS). When NGS decided to replace the US national vertical datum, the Gravity for the Redefinition of the American Vertical Datum (GRAV-D) project added a new dimension to the NGS gravity program. Airborne gravity collection would complement existing satellite and surface gravity data to allow the creation of a gravimetric geoid sufficiently accurate to form the basis of the new reference surface. To provide absolute gravity ties for the airborne surveys, initially new FG5 absolute measurements were made at existing absolute stations and relative measurements were used to transfer those measurements to excenters near the absolute mark and to the aircraft sensor height at the parking space. In 2011, NGS obtained a field-capable A10 absolute gravimeter from Micro-g LaCoste which became the basis of the support of the airborne surveys. Now A10 measurements are made at the aircraft location and transferred to sensor height. Absolute and relative gravity play other roles in GRAV-D. Comparison of surface data with new airborne collection will highlight surface surveys with bias or tilt errors and can provide enough information to repair or discard the data. We expect that areas of problem surface data may be re-measured. The GRAV-D project also plans to monitor the geoid in regions of rapid change and update the vertical datum when appropriate. Geoid change can result from glacial isostatic adjustment (GIA), tectonic change, and the massive drawdown of large scale aquifers. The NGS plan for monitoring these changes over time is still in its preliminary stages and is expected to rely primarily on the GRACE and GRACE Follow On satellite data in conjunction with models of GIA and tectonic change. We expect to make absolute measurements in areas of rapid change in order to verify model predictions. With the opportunities presented by rapid, highly accurate
Evaluation of the new gravity control in Poland
NASA Astrophysics Data System (ADS)
Sękowski, M.; Dykowski, P.; Krynski, J. S.
2015-12-01
The new gravity control in Poland is based on absolute gravity measurements. It consists of 28 fundamental stations and 168 base stations. Fundamental stations are located in laboratories; they are to be surveyed in 2014 with the FG5-230 of the Warsaw University of Technology. Base stations are monumented field stations; they were surveyed in 2012 and 2013 with the A10-020 gravimeter. They are the subject of the paper. Besides absolute gravity measurements the vertical gravity gradient was precisely determined at all 168 base stations. Inconsistency of the determined vertical gravity gradients with respect to the normal ones has been presented. 77 base stations are also the stations of the previous gravity (POGK98) established in 90. of 20 century. Differences between newly determined gravity at those stations with those of POGK98 were evaluated. Alongside the establishment of the base stations of the gravity control multiple additional activities were performed to assure and provide the proper gravity reference level. They concerned regular gravity measurements on monthly basis with the A10-020 at three sites in Borowa Gora Geodetic-Geophysical Observatory, calibrations of metrological parameters of the A10-020 gravimeter and scale factor calibrations of LCR gravimeters, participation with the A10-020 in the international (ECAG2011, ICAG2013) and regional comparison campaigns of absolute gravimeters, and local comparisons of the A10-020 with the FG5-230. The summary of the work performed during the establishment of the gravity control is best described by total uncertainty budget for the A10-020 gravimeter determined on each of the 168 gravity stations.
NASA Astrophysics Data System (ADS)
Aisenberg, Sol
2005-04-01
Newton's gravitational constant Gn and Laws of Gravity are based upon observations in our solar system. Mysteries appear when they are used far outside our solar system Apparently, Newton's gravitational constant can not be applied at large distances. Dark matter was needed to explain the observed flat rotational velocity curves of spiral galaxies (Rubin), and of groups of remote galaxies (Zwicky). Our expansion of Newton's gravitational constant Gn as a power series in distance r, is sufficient to explain these observations without using dark matter. This is different from the MOND theory of Milgrom involving acceleration. Also, our Expanded Gravitational Constant (EGC) can show the correct use of the red shift. In addition to the Doppler contribution, there are three other contributions and these depend only upon gravity. Thus, velocity observations only based on the red shift can not be used to support the concept of the expanding universe, the accelerating expansion, or dark energy. Our expanded gravity constant can predict and explain Olbers' paradox (dark sky), and the temperature of the CMB (cosmic microwave background). Thus, CMB may not support the big bang and inflation.
Is nonrelativistic gravity possible?
Kocharyan, A. A.
2009-07-15
We study nonrelativistic gravity using the Hamiltonian formalism. For the dynamics of general relativity (relativistic gravity) the formalism is well known and called the Arnowitt-Deser-Misner (ADM) formalism. We show that if the lapse function is constrained correctly, then nonrelativistic gravity is described by a consistent Hamiltonian system. Surprisingly, nonrelativistic gravity can have solutions identical to relativistic gravity ones. In particular, (anti-)de Sitter black holes of Einstein gravity and IR limit of Horava gravity are locally identical.
Absolute method of measuring magnetic susceptibility
Thorpe, A.; Senftle, F.E.
1959-01-01
An absolute method of standardization and measurement of the magnetic susceptibility of small samples is presented which can be applied to most techniques based on the Faraday method. The fact that the susceptibility is a function of the area under the curve of sample displacement versus distance of the magnet from the sample, offers a simple method of measuring the susceptibility without recourse to a standard sample. Typical results on a few substances are compared with reported values, and an error of less than 2% can be achieved. ?? 1959 The American Institute of Physics.
Absolute transition probabilities of phosphorus.
NASA Technical Reports Server (NTRS)
Miller, M. H.; Roig, R. A.; Bengtson, R. D.
1971-01-01
Use of a gas-driven shock tube to measure the absolute strengths of 21 P I lines and 126 P II lines (from 3300 to 6900 A). Accuracy for prominent, isolated neutral and ionic lines is estimated to be 28 to 40% and 18 to 30%, respectively. The data and the corresponding theoretical predictions are examined for conformity with the sum rules.-
Gravity monitoring of CO2 movement during sequestration: Model studies
Gasperikova, E.; Hoversten, G.M.
2008-07-15
We examine the relative merits of gravity measurements as a monitoring tool for geological CO{sub 2} sequestration in three different modeling scenarios. The first is a combined CO{sub 2} enhanced oil recovery (EOR) and sequestration in a producing oil field, the second is sequestration in a brine formation, and the third is for a coalbed methane formation. EOR/sequestration petroleum reservoirs have relatively thin injection intervals with multiple fluid components (oil, hydrocarbon gas, brine, and CO{sub 2}), whereas brine formations usually have much thicker injection intervals and only two components (brine and CO{sub 2}). Coal formations undergoing methane extraction tend to be thin (3-10 m), but shallow compared to either EOR or brine formations. The injection of CO{sub 2} into the oil reservoir produced a bulk density decrease in the reservoir. The spatial pattern of the change in the vertical component of gravity (G{sub z}) is directly correlated with the net change in reservoir density. Furthermore, time-lapse changes in the borehole G{sub z} clearly identified the vertical section of the reservoir where fluid saturations are changing. The CO{sub 2}-brine front, on the order of 1 km within a 20 m thick brine formation at 1900 m depth, with 30% CO{sub 2} and 70% brine saturations, respectively, produced a -10 Gal surface gravity anomaly. Such anomaly would be detectable in the field. The amount of CO{sub 2} in a coalbed methane test scenario did not produce a large enough surface gravity response; however, we would expect that for an industrial size injection, the surface gravity response would be measurable. Gravity inversions in all three scenarios illustrated that the general position of density changes caused by CO{sub 2} can be recovered, but not the absolute value of the change. Analysis of the spatial resolution and detectability limits shows that gravity measurements could, under certain circumstances, be used as a lower-cost alternative to seismic
In-flight absolute radiometric calibration of the thematic mapper
NASA Technical Reports Server (NTRS)
Castle, K. R.; Holm, R. G.; Kastner, C. J.; Palmer, J. M.; Slater, P. N.; Dinguirard, M.; Ezra, C. E.; Jackson, R. D.; Savage, R. K.
1983-01-01
The TM multispectral scanner system was calibrated in an absolute manner before launch. To determine the temporal changes of the absolute radiometric calibration of the entire system, spectroradiometric measurements of the ground and the atmosphere were made simultaneously with TM collections over White Sands, New Mexico. By entering the measured values in an atmospheric radiative transfer program, the radiance levels of the in four of the spectral bands of the TM were determined. Tables show values for the reflectance of snow at White Sands measured by a modular 8 channel radiometer, and values for exoatmospheric irradiance within the TM passbands, calculated for the Earth-Sun distance using a solar radiometer.
From Hubble's Next Generation Spectral Library (NGSL) to Absolute Fluxes
NASA Astrophysics Data System (ADS)
Heap, S. R.; Lindler, D.
2016-05-01
Hubble's Next Generation Spectral Library (NGSL) consists of R˜1000 spectra of 374 stars of assorted temperature, gravity, and metallicity. Each spectrum covers the wavelength range, 0.18–1.03 μ. The library can be viewed and/or downloaded from the website, http://archive.stsci.edu/prepds/stisngsl/. Stars in the NGSL are now being used as absolute flux standards at ground-based observatories. However, the uncertainty in the absolute flux is about 2%, which does not meet the requirements of dark-energy surveys. We have therefore developed an observing procedure, data-reduction procedure, and correction algorithms that should yield fluxes with uncertainties less than 1%.
Absolute Gravimetry in Fennoscandia - A Contribution to Understanding Postglacial Uplift
NASA Astrophysics Data System (ADS)
Pettersen, B. R.; Timmen, L.; Gitlein, O.; Muller, J.; Denker, H.; Makinen, J.; Bilker, M.; Lysaker, D. I.; Omang, O. C.; Svendsen, J. G.; Wilmes, H.; Falk, R.; Reinhold, A.; Hoppe, W.; Scherneck, H.; Lidberg, M.; Engen, B.; Kristiansen, O.; Engfeldt, A.; Strykowski, G.; Forsberg, R.; Klopping, F.; Sasagawa, G.
2005-12-01
The Fennoscandian postglacial uplift has been mapped geometrically using precise levelling, tide gauges, and networks of permanent GPS stations. The results identify major uplift rates at sites located around the northern part of the Gulf of Bothnia. The vertical motions decay in all directions away from this central location. An oval shaped zero uplift isoline tracks the general western and northern coastline of Norway and the Kola peninsula. It returns southwest through Russian Karelia and touches the southern tip of Sweden and northern Denmark. The uplift area (as measured by present day motions) has its major axis in the direction of southwest to northeast and covers a distance of about 2000 km. Absolute gravimetry was made in Finland and Norway in 1976 with a rise-and fall instrument. A decade later the number of gravity stations was expanded by JILAg-5, in Finland from 1988, in Norway from 1991, and in Sweden from 1992. FG5 was introduced in these three countries in 1993 (7 stations) and continued with an extended campaign in 1995 (12 stations). In 2003 a project was initiated by IfE, Hannover to collect observations simultaneously with GRACE on an annual cycle. New instruments were acquired by IfE (FG5-220), FGI (FG5-221), and UMB (FG5-226). New absolute gravity stations were established by the national mapping agencies in Denmark, Norway, and Sweden. The total number of prepared sites in Fennoscandia is now about 30. Most of them are co-located with permanent GPS, for many of which time series of several years are now available. Along the coast there are nearby tide gauge stations, many of which have time series of several decades. We describe the observing network, procedures, auxiliary observations, and discuss results obtained for selected sites. We compare the gravity results from different instruments and discuss the challenges of combining and validating such data products. Examples are shown where temporal gravity change may be compared to
First year's results and field experience with the latest JILA absolute gravimeter
NASA Technical Reports Server (NTRS)
Peter, G.; Moose, R. E.; Wessells, C. W.
1989-01-01
One of the six absolute gravity instruments developed and built by the Joint Institute for Laboratory Astrophysics (JILA) between 1982 and 1985 was tested under a variety of environmental conditions between May 1987 and 1988. Of the 30 sites visited during this period, 10 were occupied more than once. These reobservations indicate repeatability between 1 and 4 microgals.
Absolute Antenna Calibration at the US National Geodetic Survey
NASA Astrophysics Data System (ADS)
Mader, G. L.; Bilich, A. L.
2012-12-01
Geodetic GNSS applications routinely demand millimeter precision and extremely high levels of accuracy. To achieve these accuracies, measurement and instrument biases at the centimeter to millimeter level must be understood. One of these biases is the antenna phase center, the apparent point of signal reception for a GNSS antenna. It has been well established that phase center patterns differ between antenna models and manufacturers; additional research suggests that the addition of a radome or the choice of antenna mount can significantly alter those a priori phase center patterns. For the more demanding GNSS positioning applications and especially in cases of mixed-antenna networks, it is all the more important to know antenna phase center variations as a function of both elevation and azimuth in the antenna reference frame and incorporate these models into analysis software. Determination of antenna phase center behavior is known as "antenna calibration". Since 1994, NGS has computed relative antenna calibrations for more than 350 antennas. In recent years, the geodetic community has moved to absolute calibrations - the IGS adopted absolute antenna phase center calibrations in 2006 for use in their orbit and clock products, and NGS's CORS group began using absolute antenna calibration upon the release of the new CORS coordinates in IGS08 epoch 2005.00 and NAD 83(2011,MA11,PA11) epoch 2010.00. Although NGS relative calibrations can be and have been converted to absolute, it is considered best practice to independently measure phase center characteristics in an absolute sense. Consequently, NGS has developed and operates an absolute calibration system. These absolute antenna calibrations accommodate the demand for greater accuracy and for 2-dimensional (elevation and azimuth) parameterization. NGS will continue to provide calibration values via the NGS web site www.ngs.noaa.gov/ANTCAL, and will publish calibrations in the ANTEX format as well as the legacy ANTINFO
Gravity wave initiated convection
NASA Technical Reports Server (NTRS)
Hung, R. J.
1990-01-01
The vertical velocity of convection initiated by gravity waves was investigated. In one particular case, the convective motion-initiated and supported by the gravity wave-induced activity (excluding contributions made by other mechanisms) reached its maximum value about one hour before the production of the funnel clouds. In another case, both rawinsonde and geosynchronous satellite imagery were used to study the life cycles of severe convective storms. Cloud modelling with input sounding data and rapid-scan imagery from GOES were used to investigate storm cloud formation, development and dissipation in terms of growth and collapse of cloud tops, as well as, the life cycles of the penetration of overshooting turrets above the tropopause. The results based on these two approaches are presented and discussed.
Revisiting absolute and relative judgments in the WITNESS model.
Fife, Dustin; Perry, Colton; Gronlund, Scott D
2014-04-01
The WITNESS model (Clark in Applied Cognitive Psychology 17:629-654, 2003) provides a theoretical framework with which to investigate the factors that contribute to eyewitness identification decisions. One key factor involves the contributions of absolute versus relative judgments. An absolute contribution is determined by the degree of match between an individual lineup member and memory for the perpetrator; a relative contribution involves the degree to which the best-matching lineup member is a better match to memory than the remaining lineup members. In WITNESS, the proportional contributions of relative versus absolute judgments are governed by the values of the decision weight parameters. We conducted an exploration of the WITNESS model's parameter space to determine the identifiability of these relative/absolute decision weight parameters, and compared the results to a restricted version of the model that does not vary the decision weight parameters. This exploration revealed that the decision weights in WITNESS are difficult to identify: Data often can be fit equally well by setting the decision weights to nearly any value and compensating with a criterion adjustment. Clark, Erickson, and Breneman (Law and Human Behavior 35:364-380, 2011) claimed to demonstrate a theoretical basis for the superiority of lineup decisions that are based on absolute contributions, but the relationship between the decision weights and the criterion weakens this claim. These findings necessitate reconsidering the role of the relative/absolute judgment distinction in eyewitness decision making. PMID:23943556
Optomechanics for absolute rotation detection
NASA Astrophysics Data System (ADS)
Davuluri, Sankar
2016-07-01
In this article, we present an application of optomechanical cavity for the absolute rotation detection. The optomechanical cavity is arranged in a Michelson interferometer in such a way that the classical centrifugal force due to rotation changes the length of the optomechanical cavity. The change in the cavity length induces a shift in the frequency of the cavity mode. The phase shift corresponding to the frequency shift in the cavity mode is measured at the interferometer output to estimate the angular velocity of absolute rotation. We derived an analytic expression to estimate the minimum detectable rotation rate in our scheme for a given optomechanical cavity. Temperature dependence of the rotation detection sensitivity is studied.
The Absolute Spectrum Polarimeter (ASP)
NASA Technical Reports Server (NTRS)
Kogut, A. J.
2010-01-01
The Absolute Spectrum Polarimeter (ASP) is an Explorer-class mission to map the absolute intensity and linear polarization of the cosmic microwave background and diffuse astrophysical foregrounds over the full sky from 30 GHz to 5 THz. The principal science goal is the detection and characterization of linear polarization from an inflationary epoch in the early universe, with tensor-to-scalar ratio r much greater than 1O(raised to the power of { -3}) and Compton distortion y < 10 (raised to the power of{-6}). We describe the ASP instrument and mission architecture needed to detect the signature of an inflationary epoch in the early universe using only 4 semiconductor bolometers.
Absolute calibration of optical flats
Sommargren, Gary E.
2005-04-05
The invention uses the phase shifting diffraction interferometer (PSDI) to provide a true point-by-point measurement of absolute flatness over the surface of optical flats. Beams exiting the fiber optics in a PSDI have perfect spherical wavefronts. The measurement beam is reflected from the optical flat and passed through an auxiliary optic to then be combined with the reference beam on a CCD. The combined beams include phase errors due to both the optic under test and the auxiliary optic. Standard phase extraction algorithms are used to calculate this combined phase error. The optical flat is then removed from the system and the measurement fiber is moved to recombine the two beams. The newly combined beams include only the phase errors due to the auxiliary optic. When the second phase measurement is subtracted from the first phase measurement, the absolute phase error of the optical flat is obtained.
Up-to-date Terrain Correction Evaluation within the Gravity Database of the Slovak Republic
NASA Astrophysics Data System (ADS)
Pasteka, R.; Zahorec, P.; Marusiak, I.; Mikuška, J.; Papčo, J.; Bielik, M.
2014-12-01
In our contribution we present a new method for the evaluation of terrain corrections (TC) and/or topographical effects (TE) for the Gravity Database of the Slovak Republic - using a new software solution (program Toposk) and up to date high-quality digital terrain models. The program was successfully tested on several synthetic models. In our algorithm we have used the well established approach, developed by the gravimetrical school in former Czechoslovakia i.e. dividing the surrounding area into so called inner zone T1 (0 - 250 m), intermediate zone T2 (250 - 5240 m) and outer zone (5.24 - 166.7 km). When calculating the T1 zone contribution we have used interpolated station elevations instead the measured ones, which yield in our opinion better solution to the problem of small-scale inaccuracies of the detailed terrain model. Newly recalculated TC values for the Gravity Database of the Slovak Republic (total number of gravity stations equals 212478, with an average of 3-6 points/km2) are in the range from 0.20 to 79.84 mGal (for the correction density 2.67 gcm-3). Thanks to the new TC values, the final version of the obtained Bouguer anomaly field is more independent from non-geological influences and determines in a better way the information content on the lithospheric density distributions.In the frame of the presented recalculation of regional gravity database we have worked with the concept of terrain corrections, but for other types of gravity method applications, the evaluation of topographical effects is much more straightforward - e.g. elimination of the effect of topography in the vertical gravity (tower) gradients approximation or during processing of absolute gravity measurements (with FG-5 and/or A-10 gravity meters). Another very important property of our proposed approach is that we can evaluate TC and TE in calculating points below the Earth's surface (applicable also in borehole gravity method, BHGM). This work was supported by the Slovak
Non-Invasive Method of Determining Absolute Intracranial Pressure
NASA Technical Reports Server (NTRS)
Yost, William T. (Inventor); Cantrell, John H., Jr. (Inventor); Hargens, Alan E. (Inventor)
2004-01-01
A method is presented for determining absolute intracranial pressure (ICP) in a patient. Skull expansion is monitored while changes in ICP are induced. The patient's blood pressure is measured when skull expansion is approximately zero. The measured blood pressure is indicative of a reference ICP value. Subsequently, the method causes a known change in ICP and measured the change in skull expansion associated therewith. The absolute ICP is a function of the reference ICP value, the known change in ICP and its associated change in skull expansion; and a measured change in skull expansion.
Study of the Earth's short-scale gravity field using the ERTM2160 gravity model
NASA Astrophysics Data System (ADS)
Hirt, Christian; Kuhn, Michael; Claessens, Sten; Pail, Roland; Seitz, Kurt; Gruber, Thomas
2014-12-01
This paper describes the computation and analysis of the Earth's short-scale gravity field through high-resolution gravity forward modelling using the Shuttle Radar Topography Mission (SRTM) global topography model. We use the established residual terrain modelling technique along with advanced computational resources and massive parallelisation to convert the high-pass filtered SRTM topography - complemented with bathymetric information in coastal zones - to implied short-scale gravity effects. The result is the ERTM2160 model (Earth Residual Terrain Modelled-gravity field with the spatial scales equivalent to spherical-harmonic coefficients up to degree 2160 removed). ERTM2160, used successfully for the construction of the GGMplus gravity maps, approximates the short-scale (i.e., ~10 km down to ~250 m) gravity field in terms of gravity disturbances, quasi/geoid heights and vertical deflections at ~3 billion gridded points within ±60° latitude. ERTM2160 reaches maximum values for the quasi/geoid height of ~30 cm, gravity disturbance in excess of 100 mGal, and vertical deflections of ~30″ over the Himalaya mountains. Analysis of the ERTM2160 field as a function of terrain roughness shows in good approximation a linear relationship between terrain roughness and gravity effects, with values of ~1.7 cm (quasi/geoid heights), ~11 mGal (gravity disturbances) and 1.5″ (vertical deflections) signal strength per 100 m standard deviation of the terrain. These statistics can be used to assess the magnitude of omitted gravity signals over various types of terrain when using degree-2160 gravity models such as EGM2008. Applications for ERTM2160 are outlined including its use in gravity smoothing procedures, augmentation of EGM2008, fill-in for future ultra-high resolution gravity models in spherical harmonics, or calculation of localised or global power spectra of Earth's short-scale gravity field. ERTM2160 is freely available via
The Preference of Visualization in Teaching and Learning Absolute Value
ERIC Educational Resources Information Center
Konyalioglu, Alper Cihan; Aksu, Zeki; Senel, Esma Ozge
2012-01-01
Visualization is mostly despised although it complements and--sometimes--guides the analytical process. This study mainly investigates teachers' preferences concerning the use of the visualization method and determines the extent to which they encourage their students to make use of it within the problem-solving process. This study was conducted…
NASA Astrophysics Data System (ADS)
Ashour, Amani; Faizal, Mir; Ali, Ahmed Farag; Hammad, Fayçal
2016-05-01
In this work, we investigate the thermodynamics of black p-branes (BB) in the context of Gravity's Rainbow. We investigate this using rainbow functions that have been motivated from loop quantum gravity and κ -Minkowski non-commutative spacetime. Then for the sake of comparison, we examine a couple of other rainbow functions that have also appeared in the literature. We show that, for consistency, Gravity's Rainbow imposes a constraint on the minimum mass of the BB, a constraint that we interpret here as implying the existence of a black p-brane remnant. This interpretation is supported by the computation of the black p-brane's heat capacity that shows that the latter vanishes when the Schwarzschild radius takes on a value that is bigger than its extremal limit. We found that the same conclusion is reached for the third version of rainbow functions treated here but not with the second one for which only standard black p-brane thermodynamics is recovered.
Conserved charges in 3D gravity
Blagojevic, M.; Cvetkovic, B.
2010-06-15
The covariant canonical expression for the conserved charges, proposed by Nester, is tested on several solutions in three-dimensional gravity with or without torsion and topologically massive gravity. In each of these cases, the calculated values of energy momentum and angular momentum are found to satisfy the first law of black hole thermodynamics.
Gravity monitoring of CO{sub 2} movement during sequestration: Model studies
Gasperikova, E.; Hoversten, G.M.
2008-11-15
Sequestration/enhanced oil recovery (EOR) petroleum reservoirs have relatively thin injection intervals with multiple fluid components (oil, hydrocarbon gas, brine, and carbon dioxide, or CO{sub 2}), whereas brine formations usually have much thicker injection intervals and only two components (brine and CO{sub 2}). Coal formations undergoing methane extraction tend to be thin (3-10 m) but shallow compared to either EOR or brine formations. Injecting CO{sub 2} into an oil reservoir decreases the bulk density in the reservoir. The spatial pattern of the change in the vertical component of gravity (G{sub z}) is correlated directly with the net change in reservoir density. Furthermore, time-lapse changes in the borehole G{sub z} clearly identify the vertical section of the reservoir where fluid saturations are changing. The CO{sub 2}-brine front, on the order of 1 km within a 20-m-thick brine formation at 1900-m depth with 30% CO{sub 2} and 70% brine saturations, respectively, produced a -10-{mu} Gal surface gravity anomaly. Such an anomaly would be detectable in the field. The amount of CO{sub 2} in a coal-bed methane scenario did not produce a large enough surface gravity response; however, we would expect that for an industrial-size injection, the surface gravity response would be measurable. Gravity inversions in all three scenarios illustrate that the general position of density changes caused by CO{sub 2} can be recovered but not the absolute value of the change. Analysis of the spatial resolution and detectability limits shows that gravity measurements could, under certain circumstances, be used as a lower-cost alternative to seismic measurements.
Standardization of the cumulative absolute velocity
O'Hara, T.F.; Jacobson, J.P. )
1991-12-01
EPRI NP-5930, A Criterion for Determining Exceedance of the Operating Basis Earthquake,'' was published in July 1988. As defined in that report, the Operating Basis Earthquake (OBE) is exceeded when both a response spectrum parameter and a second damage parameter, referred to as the Cumulative Absolute Velocity (CAV), are exceeded. In the review process of the above report, it was noted that the calculation of CAV could be confounded by time history records of long duration containing low (nondamaging) acceleration. Therefore, it is necessary to standardize the method of calculating CAV to account for record length. This standardized methodology allows consistent comparisons between future CAV calculations and the adjusted CAV threshold value based upon applying the standardized methodology to the data set presented in EPRI NP-5930. The recommended method to standardize the CAV calculation is to window its calculation on a second-by-second basis for a given time history. If the absolute acceleration exceeds 0.025g at any time during each one second interval, the earthquake records used in EPRI NP-5930 have been reanalyzed and the adjusted threshold of damage for CAV was found to be 0.16g-set.
Absolute rates of hole transfer in DNA.
Senthilkumar, Kittusamy; Grozema, Ferdinand C; Guerra, Célia Fonseca; Bickelhaupt, F Matthias; Lewis, Frederick D; Berlin, Yuri A; Ratner, Mark A; Siebbeles, Laurens D A
2005-10-26
Absolute rates of hole transfer between guanine nucleobases separated by one or two A:T base pairs in stilbenedicarboxamide-linked DNA hairpins were obtained by improved kinetic analysis of experimental data. The charge-transfer rates in four different DNA sequences were calculated using a density-functional-based tight-binding model and a semiclassical superexchange model. Site energies and charge-transfer integrals were calculated directly as the diagonal and off-diagonal matrix elements of the Kohn-Sham Hamiltonian, respectively, for all possible combinations of nucleobases. Taking into account the Coulomb interaction between the negative charge on the stilbenedicarboxamide linker and the hole on the DNA strand as well as effects of base pair twisting, the relative order of the experimental rates for hole transfer in different hairpins could be reproduced by tight-binding calculations. To reproduce quantitatively the absolute values of the measured rate constants, the effect of the reorganization energy was taken into account within the semiclassical superexchange model for charge transfer. The experimental rates could be reproduced with reorganization energies near 1 eV. The quantum chemical data obtained were used to discuss charge carrier mobility and hole-transport equilibria in DNA. PMID:16231945
Turning on gravity with the Higgs mechanism
NASA Astrophysics Data System (ADS)
Alexander, Stephon; Barrow, John D.; Magueijo, João
2016-07-01
We investigate how a Higgs mechanism could be responsible for the emergence of gravity in extensions of Einstein theory, with a suitable low energy limit. In this scenario, at high energies, symmetry restoration could ‘turn off’ gravity, with dramatic implications for cosmology and quantum gravity. The sense in which gravity is muted depends on the details of the implementation. In the most extreme case gravity’s dynamical degrees of freedom would only be unleashed after the Higgs field acquires a non-trivial vacuum expectation value, with gravity reduced to a topological field theory in the symmetric phase. We might also identify the Higgs and the Brans–Dicke fields in such a way that in the unbroken phase Newton’s constant vanishes, decoupling matter and gravity. We discuss the broad implications of these scenarios.
Absolute/convective instability of planar viscoelastic jets
NASA Astrophysics Data System (ADS)
Ray, Prasun K.; Zaki, Tamer A.
2015-01-01
Spatiotemporal linear stability analysis is used to investigate the onset of local absolute instability in planar viscoelastic jets. The influence of viscoelasticity in dilute polymer solutions is modeled with the FENE-P constitutive equation which requires the specification of a non-dimensional polymer relaxation time (the Weissenberg number, We), the maximum polymer extensibility, L, and the ratio of solvent and solution viscosities, β. A two-parameter family of velocity profiles is used as the base state with the parameter, S, controlling the amount of co- or counter-flow while N-1 sets the thickness of the jet shear layer. We examine how the variation of these fluid and flow parameters affects the minimum value of S at which the flow becomes locally absolutely unstable. Initially setting the Reynolds number to Re = 500, we find that the first varicose jet-column mode dictates the presence of absolute instability, and increasing the Weissenberg number produces important changes in the nature of the instability. The region of absolute instability shifts towards thin shear layers, and the amount of back-flow needed for absolute instability decreases (i.e., the influence of viscoelasticity is destabilizing). Additionally, when We is sufficiently large and N-1 is sufficiently small, single-stream jets become absolutely unstable. Numerical experiments with approximate equations show that both the polymer and solvent contributions to the stress become destabilizing when the scaled shear rate, η = /W e dU¯1/dx 2L ( /d U ¯ 1 d x 2 is the base-state velocity gradient), is sufficiently large. These qualitative trends are largely unchanged when the Reynolds number is reduced; however, the relative importance of the destabilizing stresses increases tangibly. Consequently, absolute instability is substantially enhanced, and single-stream jets become absolutely unstable over a sizable portion of the parameter space.
NASA Astrophysics Data System (ADS)
Oriti, Daniele
2009-03-01
Preface; Part I. Fundamental Ideas and General Formalisms: 1. Unfinished revolution C. Rovelli; 2. The fundamental nature of space and time G. 't Hooft; 3. Does locality fail at intermediate length scales R. Sorkin; 4. Prolegomena to any future quantum gravity J. Stachel; 5. Spacetime symmetries in histories canonical gravity N. Savvidou; 6. Categorical geometry and the mathematical foundations of quantum gravity L. Crane; 7. Emergent relativity O. Dreyer; 8. Asymptotic safety R. Percacci; 9. New directions in background independent quantum gravity F. Markopoulou; Questions and answers; Part II: 10. Gauge/gravity duality G. Horowitz and J. Polchinski; 11. String theory, holography and quantum gravity T. Banks; 12. String field theory W. Taylor; Questions and answers; Part III: 13. Loop Quantum Gravity T. Thiemann; 14. Covariant loop quantum gravity? E. LIvine; 15. The spin foam representation of loop quantum gravity A. Perez; 16. 3-dimensional spin foam quantum gravity L. Freidel; 17. The group field theory approach to quantum gravity D. Oriti; Questions and answers; Part IV. Discrete Quantum Gravity: 18. Quantum gravity: the art of building spacetime J. Ambjørn, J. Jurkiewicz and R. Loll; 19. Quantum Regge calculations R. Williams; 20. Consistent discretizations as a road to quantum gravity R. Gambini and J. Pullin; 21. The causal set approach to quantum gravity J. Henson; Questions and answers; Part V. Effective Models and Quantum Gravity Phenomenology: 22. Quantum gravity phenomenology G. Amelino-Camelia; 23. Quantum gravity and precision tests C. Burgess; 24. Algebraic approach to quantum gravity II: non-commutative spacetime F. Girelli; 25. Doubly special relativity J. Kowalski-Glikman; 26. From quantum reference frames to deformed special relativity F. Girelli; 27. Lorentz invariance violation and its role in quantum gravity phenomenology J. Collins, A. Perez and D. Sudarsky; 28. Generic predictions of quantum theories of gravity L. Smolin; Questions and
Absolute instability of a viscous hollow jet
NASA Astrophysics Data System (ADS)
Gañán-Calvo, Alfonso M.
2007-02-01
An investigation of the spatiotemporal stability of hollow jets in unbounded coflowing liquids, using a general dispersion relation previously derived, shows them to be absolutely unstable for all physical values of the Reynolds and Weber numbers. The roots of the symmetry breakdown with respect to the liquid jet case, and the validity of asymptotic models are here studied in detail. Asymptotic analyses for low and high Reynolds numbers are provided, showing that old and well-established limiting dispersion relations [J. W. S. Rayleigh, The Theory of Sound (Dover, New York, 1945); S. Chandrasekhar, Hydrodynamic and Hydromagnetic Stability (Dover, New York, 1961)] should be used with caution. In the creeping flow limit, the analysis shows that, if the hollow jet is filled with any finite density and viscosity fluid, a steady jet could be made arbitrarily small (compatible with the continuum hypothesis) if the coflowing liquid moves faster than a critical velocity.
Stitching interferometry: recent results and absolute calibration
NASA Astrophysics Data System (ADS)
Bray, Michael
2004-02-01
Stitching Interferometry is a method of analysing large optical components using a standard "small" interferometer. This result is obtained by taking multiple overlapping images of the large component, and numerically "stitching" these sub-apertures together. We have already reported the industrial use our Stitching Interferometry systems (Previous SPIE symposia), but experimental results had been lacking because this technique is still new, and users needed to get accustomed to it before producing reliable measurements. We now have more results. We will report user comments and show new, unpublished results. We will discuss sources of error, and show how some of these can be reduced to arbitrarily small values. These will be discussed in some detail. We conclude with a few graphical examples of absolute measurements performed by us.
NASA Technical Reports Server (NTRS)
Vanzandt, T. E.
1985-01-01
Atmospheric parameters fluctuate on all scales. In the mesoscale these fluctuations are occasionally sinusoidal so that they can be interpreted as gravity waves. Usually, however, the fluctuations are noise like, so that their cause is not immediately evident. Results of mesoscale observations in the 20 to 120 m altitude range that are suitable for incorporation into a model atmosphere are very limited. In the stratosphere and lower mesosphere observations are sparse and very little data has been summarized into appropriate form. There is much more data in the upper mesosphere and lower thermosphere, but again very little of it has been summarized. The available mesoscale spectra of horizontal wind u versus vertical wave number m in the 20 to 120 km altitude range are shown together with a spectrum from the lower atmosphere for comparison. Further information about these spectra is given. In spite of the large range of altitudes and latitudes, the spectra from the lower atmosphere (NASA, 1971 and DEWAN, 1984) are remarkably similar in both shape and amplitude. The mean slopes of -2.38 for the NASA spectrum and -2.7 for the Dewan spectra are supported by the mean slope of -2.75 found by ROSENBERG et al. (1974). The mesospheric spectrum is too short to establish a shape. Its amplitude is about an order of magnitude larger than the NASA spectrum in the same wave number range. The NASA and Dewan spectra suggest that the mesoscale spectra in the lower atmosphere are insensitive to meteorological conditions.
Gravity wave transmission diagram
NASA Astrophysics Data System (ADS)
Tomikawa, Yoshihiro
2016-07-01
A possibility of gravity wave propagation from a source region to the airglow layer around the mesopause has been discussed based on the gravity wave blocking diagram taking into account the critical level filtering alone. This paper proposes a new gravity wave transmission diagram in which both the critical level filtering and turning level reflection of gravity waves are considered. It shows a significantly different distribution of gravity wave transmissivity from the blocking diagram.
Lyman alpha SMM/UVSP absolute calibration and geocoronal correction
NASA Technical Reports Server (NTRS)
Fontenla, Juan M.; Reichmann, Edwin J.
1987-01-01
Lyman alpha observations from the Ultraviolet Spectrometer Polarimeter (UVSP) instrument of the Solar Maximum Mission (SMM) spacecraft were analyzed and provide instrumental calibration details. Specific values of the instrument quantum efficiency, Lyman alpha absolute intensity, and correction for geocoronal absorption are presented.
Cosmology with negative absolute temperatures
NASA Astrophysics Data System (ADS)
Vieira, J. P. P.; Byrnes, Christian T.; Lewis, Antony
2016-08-01
Negative absolute temperatures (NAT) are an exotic thermodynamical consequence of quantum physics which has been known since the 1950's (having been achieved in the lab on a number of occasions). Recently, the work of Braun et al. [1] has rekindled interest in negative temperatures and hinted at a possibility of using NAT systems in the lab as dark energy analogues. This paper goes one step further, looking into the cosmological consequences of the existence of a NAT component in the Universe. NAT-dominated expanding Universes experience a borderline phantom expansion (w < ‑1) with no Big Rip, and their contracting counterparts are forced to bounce after the energy density becomes sufficiently large. Both scenarios might be used to solve horizon and flatness problems analogously to standard inflation and bouncing cosmologies. We discuss the difficulties in obtaining and ending a NAT-dominated epoch, and possible ways of obtaining density perturbations with an acceptable spectrum.
Gravity research at Cottrell observatory
NASA Technical Reports Server (NTRS)
Tuman, V. S.; Anderson, J. D.; Lau, E. L.
1977-01-01
The Cottrell gravity research observatory and work in progress are described. Equipment in place and equipment to be installed, the cryogenic gravity meter (CGM), concrete pads to support the vertical seismometer, CGM, and guest experiments, techniques of data analysis, and improvements needed in the CGM are discussed. Harmonic earth eigenvibrations with multipole moments are examined and their compatibility with a fictitious black hole binary system (of which the primary central mass is assigned a value one million solar masses) located 400 light-years away is shown by calculations.
Starobinsky model in rainbow gravity
NASA Astrophysics Data System (ADS)
Chatrabhuti, Auttakit; Yingcharoenrat, Vicharit; Channuie, Phongpichit
2016-02-01
In this paper, we study the Starobinsky model of inflation in the context of gravity's rainbow theory. We propose that gravity rainbow functions can be written in the power-law form of the Hubble parameter. We present a detailed derivation of the spectral index of curvature perturbation and the tensor-to-scalar ratio and compare the predictions of our models with Planck 2015 data. We discover that in order to be consistent with Planck data up to 2 σ C.L., the viable values of Nk e -folds would satisfy 42 ≲Nk≲87 and the rainbow parameter λ is nicely constrained to be λ ≲6.0 .
NASA Astrophysics Data System (ADS)
Goodwillie, Andrew M.
1995-12-01
Short-wavelength gravity lineations aligned parallel to the direction of absolute motion of the Pacific plate, and a newly discovered series of linear, elongate volcanic ridges in the south-central pacific Ocean are just two of the many geophysical and geochemical anomalies that have been observed in this area. These Puka Puka volcanic ridges can be traced for 2600 km along the trough of a major gravity lineation and stretch from close to the East Pacific Rise, in the east, to the Tuamotu Islands in the west. The ridges were the focus of a recent cruise to this area that collected high quality gravity and multi-beam swath bathymetry data, in addition to dredge samples that are suitable for radiometric age dating. A complete 2-D lithospheric flexure analysis of these new data reveals that each of the volcanic ridges is associated with an unusually low effective elastic plate thickness. Previous workers showed this region to be characterised by lower than expected elastic thickness values, which were interpreted in terms of both regional and more localised thermal anomalies in the oceanic lithosphere. The new flexure results obtained for the volcanic ridges in this study confirm these low values. Lithospheric stretching and small-scale convection models that have been put forward to explain the origin of the lineations and volcanic ridges have been re-examined in light of these new results but neither is found to satisfactorily explain all of the observations.
Absolute photon-flux measurements in the vacuum ultraviolet
NASA Technical Reports Server (NTRS)
Samson, J. A. R.; Haddad, G. N.
1974-01-01
Absolute photon-flux measurements in the vacuum ultraviolet have extended to short wavelengths by use of rare-gas ionization chambers. The technique involves the measurement of the ion current as a function of the gas pressure in the ion chamber. The true value of the ion current, and hence the absolute photon flux, is obtained by extrapolating the ion current to zero gas pressure. Examples are given at 162 and 266 A. The short-wavelength limit is determined only by the sensitivity of the current-measuring apparatus and by present knowledge of the photoionization processes that occur in the rate gases.
Cyclic universe from Loop Quantum Gravity
NASA Astrophysics Data System (ADS)
Cianfrani, Francesco; Kowalski-Glikman, Jerzy; Rosati, Giacomo
2016-02-01
We discuss how a cyclic model for the flat universe can be constructively derived from Loop Quantum Gravity. This model has a lower bounce, at small values of the scale factor, which shares many similarities with that of Loop Quantum Cosmology. We find that Quantum Gravity corrections can be also relevant at energy densities much smaller than the Planckian one and that they can induce an upper bounce at large values of the scale factor.
Cosmological hints of modified gravity?
NASA Astrophysics Data System (ADS)
Di Valentino, Eleonora; Melchiorri, Alessandro; Silk, Joseph
2016-01-01
The recent measurements of cosmic microwave background (CMB) temperature and polarization anisotropies made by the Planck satellite have provided impressive confirmation of the Λ CDM cosmological model. However interesting hints of slight deviations from Λ CDM have been found, including a 95% C.L. preference for a "modified gravity" (MG) structure formation scenario. In this paper we confirm the preference for a modified gravity scenario from Planck 2015 data, find that modified gravity solves the so-called Alens anomaly in the CMB angular spectrum, and constrains the amplitude of matter density fluctuations to σ8=0.81 5-0.048+0.032 , in better agreement with weak lensing constraints. Moreover, we find a lower value for the reionization optical depth of τ =0.059 ±0.020 (to be compared with the value of τ =0.079 ±0.017 obtained in the standard scenario), more consistent with recent optical and UV data. We check the stability of this result by considering possible degeneracies with other parameters, including the neutrino effective number, the running of the spectral index and the amount of primordial helium. The indication for modified gravity is still present at about 95% C.L., and could become more significant if lower values of τ were to be further confirmed by future cosmological and astrophysical data. When the CMB lensing likelihood is included in the analysis the statistical significance for MG simply vanishes, indicating also the possibility of a systematic effect for this MG signal.
Supersymmetrizing massive gravity
NASA Astrophysics Data System (ADS)
Malaeb, O.
2013-07-01
When four scalar fields with global Lorentz symmetry are coupled to gravity and take a vacuum expectation value, breaking diffeomorphism invariance spontaneously, the graviton becomes massive. This model is supersymmetrized by considering four N=1 chiral superfields with global Lorentz symmetry. The global supersymmetry is promoted to a local one using the rules of tensor calculus of coupling the N=1 supergravity Lagrangian to the four chiral multiplets. When the scalar components of the chiral multiplets zA acquire a vacuum expectation value, both diffeomorphism invariance and local supersymmetry are broken spontaneously. The global Lorentz index A becomes identified with the space-time Lorentz index, making the scalar fields zA vectors and the chiral spinors ψA spin-3/2 Rarita-Schwinger fields. We show that the spectrum of the model in the broken phase consists of a massive spin-2 field, two massive spin-3/2 fields with different mass and a massive vector.
Chiral gravity, log gravity, and extremal CFT
Maloney, Alexander; Song Wei; Strominger, Andrew
2010-03-15
We show that the linearization of all exact solutions of classical chiral gravity around the AdS{sub 3} vacuum have positive energy. Nonchiral and negative-energy solutions of the linearized equations are infrared divergent at second order, and so are removed from the spectrum. In other words, chirality is confined and the equations of motion have linearization instabilities. We prove that the only stationary, axially symmetric solutions of chiral gravity are BTZ black holes, which have positive energy. It is further shown that classical log gravity--the theory with logarithmically relaxed boundary conditions--has finite asymptotic symmetry generators but is not chiral and hence may be dual at the quantum level to a logarithmic conformal field theories (CFT). Moreover we show that log gravity contains chiral gravity within it as a decoupled charge superselection sector. We formally evaluate the Euclidean sum over geometries of chiral gravity and show that it gives precisely the holomorphic extremal CFT partition function. The modular invariance and integrality of the expansion coefficients of this partition function are consistent with the existence of an exact quantum theory of chiral gravity. We argue that the problem of quantizing chiral gravity is the holographic dual of the problem of constructing an extremal CFT, while quantizing log gravity is dual to the problem of constructing a logarithmic extremal CFT.
Feeling Gravity's Pull: Gravity Modeling. The Gravity Field of Mars
NASA Technical Reports Server (NTRS)
Lemoine, Frank; Smith, David; Rowlands, David; Zuber, Maria; Neumann, G.; Chinn, Douglas; Pavlis, D.
2000-01-01
Most people take the constant presence of gravitys pull for granted. However, the Earth's gravitational strength actually varies from location to location. This variation occurs because mass, which influences an object's gravitational pull, is not evenly distributed within the planet. Changes in topography, such as glacial movement, an earthquake, or a rise in the ocean level, can subtly affect the gravity field. An accurate measurement of the Earth's gravity field helps us understand the distribution of mass beneath the surface. This insight can assist us in locating petroleum, mineral deposits, ground water, and other valuable substances. Gravity mapping can also help notice or verify changes in sea surface height and other ocean characteristics. Such changes may indicate climate change from polar ice melting and other phenomena. In addition, gravity mapping can indicate how land moves under the surface after earthquakes and other plate tectonic processes. Finally, changes in the Earth's gravity field might indicate a shift in water distribution that could affect agriculture, water supplies for population centers, and long-term weather prediction. Scientists can map out the Earth's gravity field by watching satellite orbits. When a satellite shifts in vertical position, it might be passing over an area where gravity changes in strength. Gravity is only one factor that may shape a satellite's orbital path. To derive a gravity measurement from satellite movement, scientists must remove other factors that might affect a satellite's position: 1. Drag from atmospheric friction. 2. Pressure from solar radiation as it heads toward Earth and. as it is reflected off the surface of the Earth 3. Gravitational pull from the Sun, the Moon, and other planets in the Solar System. 4. The effect of tides. 5. Relativistic effects. Scientists must also correct for the satellite tracking process. For example, the tracking signal must be corrected for refraction through the
Finite field-dependent symmetries in perturbative quantum gravity
NASA Astrophysics Data System (ADS)
Upadhyay, Sudhaker
2014-01-01
In this paper we discuss the absolutely anticommuting nilpotent symmetries for perturbative quantum gravity in general curved spacetime in linear and non-linear gauges. Further, we analyze the finite field-dependent BRST (FFBRST) transformation for perturbative quantum gravity in general curved spacetime. The FFBRST transformation changes the gauge-fixing and ghost parts of the perturbative quantum gravity within functional integration. However, the operation of such symmetry transformation on the generating functional of perturbative quantum gravity does not affect the theory on physical ground. The FFBRST transformation with appropriate choices of finite BRST parameter connects non-linear Curci-Ferrari and Landau gauges of perturbative quantum gravity. The validity of the results is also established at quantum level using Batalin-Vilkovisky (BV) formulation.
Improving HST Pointing & Absolute Astrometry
NASA Astrophysics Data System (ADS)
Lallo, Matthew; Nelan, E.; Kimmer, E.; Cox, C.; Casertano, S.
2007-05-01
Accurate absolute astrometry is becoming increasingly important in an era of multi-mission archives and virtual observatories. Hubble Space Telescope's (HST's) Guidestar Catalog II (GSC2) has reduced coordinate error to around 0.25 arcsecond, a factor 2 or more compared with GSC1. With this reduced catalog error, special attention must be given to calibrate and maintain the Fine Guidance Sensors (FGSs) and Science Instruments (SIs) alignments in HST to a level well below this in order to ensure that the accuracy of science product's astrometry keywords and target positioning are limited only by the catalog errors. After HST Servicing Mission 4, such calibrations' improvement in "blind" pointing accuracy will allow for more efficient COS acquisitions. Multiple SIs and FGSs each have their own footprints in the spatially shared HST focal plane. It is the small changes over time in primarily the whole-body positions & orientations of these instruments & guiders relative to one another that is addressed by this work. We describe the HST Cycle 15 program CAL/OTA 11021 which, along with future variants of it, determines and maintains positions and orientations of the SIs and FGSs to better than 50 milli- arcseconds and 0.04 to 0.004 degrees of roll, putting errors associated with the alignment sufficiently below GSC2 errors. We present recent alignment results and assess their errors, illustrate trends, and describe where and how the observer sees benefit from these calibrations when using HST.
Absolute oral bioavailability of ciprofloxacin.
Drusano, G L; Standiford, H C; Plaisance, K; Forrest, A; Leslie, J; Caldwell, J
1986-09-01
We evaluated the absolute bioavailability of ciprofloxacin, a new quinoline carboxylic acid, in 12 healthy male volunteers. Doses of 200 mg were given to each of the volunteers in a randomized, crossover manner 1 week apart orally and as a 10-min intravenous infusion. Half-lives (mean +/- standard deviation) for the intravenous and oral administration arms were 4.2 +/- 0.77 and 4.11 +/- 0.74 h, respectively. The serum clearance rate averaged 28.5 +/- 4.7 liters/h per 1.73 m2 for the intravenous administration arm. The renal clearance rate accounted for approximately 60% of the corresponding serum clearance rate and was 16.9 +/- 3.0 liters/h per 1.73 m2 for the intravenous arm and 17.0 +/- 2.86 liters/h per 1.73 m2 for the oral administration arm. Absorption was rapid, with peak concentrations in serum occurring at 0.71 +/- 0.15 h. Bioavailability, defined as the ratio of the area under the curve from 0 h to infinity for the oral to the intravenous dose, was 69 +/- 7%. We conclude that ciprofloxacin is rapidly absorbed and reliably bioavailable in these healthy volunteers. Further studies with ciprofloxacin should be undertaken in target patient populations under actual clinical circumstances. PMID:3777908
Absolute Instability in Coupled-Cavity TWTs
NASA Astrophysics Data System (ADS)
Hung, D. M. H.; Rittersdorf, I. M.; Zhang, Peng; Lau, Y. Y.; Simon, D. H.; Gilgenbach, R. M.; Chernin, D.; Antonsen, T. M., Jr.
2014-10-01
This paper will present results of our analysis of absolute instability in a coupled-cavity traveling wave tube (TWT). The structure mode at the lower and upper band edges are respectively approximated by a hyperbola in the (omega, k) plane. When the Briggs-Bers criterion is applied, a threshold current for onset of absolute instability is observed at the upper band edge, but not the lower band edge. The nonexistence of absolute instability at the lower band edge is mathematically similar to the nonexistence of absolute instability that we recently demonstrated for a dielectric TWT. The existence of absolute instability at the upper band edge is mathematically similar to the existence of absolute instability in a gyroton traveling wave amplifier. These interesting observations will be discussed, and the practical implications will be explored. This work was supported by AFOSR, ONR, and L-3 Communications Electron Devices.
Hasegawa, Katsuya; de Campos, Priscila S.; Zeredo, Jorge L.; Kumei, Yasuhiro
2014-01-01
The ability to maintain the body relative to the external environment is important for adaptation to altered gravity. However, the physiological limits for adaptation or the disruption of body orientation are not known. In this study, we analyzed postural changes in mice upon exposure to various low gravities. Male C57BL6/J mice (n = 6) were exposed to various gravity-deceleration conditions by customized parabolic flight-maneuvers targeting the partial-gravity levels of 0.60, 0.30, 0.15 and μ g (<0.001 g). Video recordings of postural responses were analyzed frame-by-frame by high-definition cineradiography and with exact instantaneous values of gravity and jerk. As a result, the coordinated extension of the neck, spine and hindlimbs was observed during the initial phase of gravity deceleration. Joint angles widened to 120%–200% of the reference g level, and the magnitude of the thoracic-curvature stretching was correlated with gravity and jerk, i.e., the gravity deceleration rate. A certain range of jerk facilitated mouse skeletal stretching efficiently, and a jerk of −0.3~−0.4 j (g/s) induced the maximum extension of the thoracic-curvature. The postural response of animals to low gravity may undergo differential regulation by gravity and jerk. PMID:25370191
Hasegawa, Katsuya; de Campos, Priscila S; Zeredo, Jorge L; Kumei, Yasuhiro
2014-01-01
The ability to maintain the body relative to the external environment is important for adaptation to altered gravity. However, the physiological limits for adaptation or the disruption of body orientation are not known. In this study, we analyzed postural changes in mice upon exposure to various low gravities. Male C57BL6/J mice (n = 6) were exposed to various gravity-deceleration conditions by customized parabolic flight-maneuvers targeting the partial-gravity levels of 0.60, 0.30, 0.15 and μ g (<0.001 g). Video recordings of postural responses were analyzed frame-by-frame by high-definition cineradiography and with exact instantaneous values of gravity and jerk. As a result, the coordinated extension of the neck, spine and hindlimbs was observed during the initial phase of gravity deceleration. Joint angles widened to 120%-200% of the reference g level, and the magnitude of the thoracic-curvature stretching was correlated with gravity and jerk, i.e., the gravity deceleration rate. A certain range of jerk facilitated mouse skeletal stretching efficiently, and a jerk of -0.3~-0.4 j (g/s) induced the maximum extension of the thoracic-curvature. The postural response of animals to low gravity may undergo differential regulation by gravity and jerk. PMID:25370191
Absolute negative mobility of interacting Brownian particles
NASA Astrophysics Data System (ADS)
Ou, Ya-li; Hu, Cai-tian; Wu, Jian-chun; Ai, Bao-quan
2015-12-01
Transport of interacting Brownian particles in a periodic potential is investigated in the presence of an ac force and a dc force. From Brownian dynamic simulations, we find that both the interaction between particles and the thermal fluctuations play key roles in the absolute negative mobility (the particle noisily moves backwards against a small constant bias). When no the interaction acts, there is only one region where the absolute negative mobility occurs. In the presence of the interaction, the absolute negative mobility may appear in multiple regions. The weak interaction can be helpful for the absolute negative mobility, while the strong interaction has a destructive impact on it.
Urine specific gravity is a laboratory test that shows the concentration of all chemical particles in the urine. ... changes to will tell the provider the specific gravity of your urine. The dipstick test gives only ...
Tethered gravity laboratories study
NASA Technical Reports Server (NTRS)
Lucchetti, F.
1989-01-01
Tethered gravity laboratories study is presented. The following subject areas are covered: variable gravity laboratory; attitude tether stabilizer; configuration analysis (AIT); dynamic analysis (SAO); and work planned for the next reporting period.
... page: //medlineplus.gov/ency/article/003587.htm Urine specific gravity test To use the sharing features on this page, please enable JavaScript. Urine specific gravity is a laboratory test that shows the concentration ...
NASA Astrophysics Data System (ADS)
Barkin, Yu. V.; Ferrandiz, J. M.
2009-04-01
regions (for example, in subduction zones, a hilly terrain, a zone of volcanism etc.) at times is more brightly shown. Therefore the steadfast attention should be paid to local factors of changes of a gravity. In result the phenomenon of inversion changes of a gravity in northern and southern hemispheres has been predicted: mean value of a gravity in northern hemisphere accrues with velocity 1.36 micro gals in year (mGal), and in southern decreases with the same velocity. Secular variations of a gravity depend from latitude and on equator (within the framework of considered model) change a sign: dg=2.72tsinф micro gals in year (mGal), where ф is a latitude of a place of observations, t is the time in years (Barkin, 2005). The data of gravimetric measurements at the European stations: Metsahovi, Potsdam, Moha, Vienna, Wettzell, Strastburg, Medicina etc., in Asia and Australia: Eshashi, Canberra etc., in Northern and South America: Bolder (Colorado), Patagonia (Argentina) etc., and also in Antarctic Region (station Syowa), will well be coordinated to the theoretical values of secular variations of a gravity predicted earlier at the specified stations. Gravity trends are studied and evaluated after removal effects of tides, local pressure and polar motion. The secular gravity variation at Potsdam is evaluated in 2.1 mGal/yr. During 1976-1986 the similar tendency - gravity trend with velocity 2.6 mGal/yr (absolute measurements) here have been observed. The similar tendency has been determined on measurements on superconducting gravimeters during 1993-1997: 2.3-2.5 mGal/yr (Neumeyer and Dittfeled, 1997). For more extensive period of observation (Neumayer, 2002) the similar result for gravity trend has been obtained. Observable annual variations of a gravity are characterized by amplitude about 3 mGal (on our model it is 3.5 mGal). Observations at Syowa station have been confirmed the developed model. Here it was expected negative gravity trend - decreasing of gravity with
Dark Energy:. the Absolute Electric Potential of the Universe
NASA Astrophysics Data System (ADS)
Jiménez, Jose Beltrán; Maroto, Antonio L.
Is there an absolute cosmic electric potential? The recent discovery of the accelerated expansion of the universe could be indicating that this is certainly the case. In this essay we show that the consistency of the covariant and gauge-invariant theory of electromagnetism is truly questionable when considered on cosmological scales. Out of the four components of the electromagnetic field, Maxwell's theory contains only two physical degrees of freedom. However, in the presence of gravity, one of the "unphysical" states cannot be consistently eliminated, thus becoming real. This third polarization state is completely decoupled from charged matter, but can be excited gravitationally, thus breaking gauge invariance. On large scales the new state can be seen as a homogeneous cosmic electric potential, whose energy density behaves as a cosmological constant.
NASA Technical Reports Server (NTRS)
Bukley, Angie; Paloski, William; Clement, Gilles
2006-01-01
This chapter discusses potential technologies for achieving artificial gravity in a space vehicle. We begin with a series of definitions and a general description of the rotational dynamics behind the forces ultimately exerted on the human body during centrifugation, such as gravity level, gravity gradient, and Coriolis force. Human factors considerations and comfort limits associated with a rotating environment are then discussed. Finally, engineering options for designing space vehicles with artificial gravity are presented.
Terrestrial Gravity Fluctuations
NASA Astrophysics Data System (ADS)
Harms, Jan
2015-12-01
Different forms of fluctuations of the terrestrial gravity field are observed by gravity experiments. For example, atmospheric pressure fluctuations generate a gravity-noise foreground in measurements with super-conducting gravimeters. Gravity changes caused by high-magnitude earthquakes have been detected with the satellite gravity experiment GRACE, and we expect high-frequency terrestrial gravity fluctuations produced by ambient seismic fields to limit the sensitivity of ground-based gravitational-wave (GW) detectors. Accordingly, terrestrial gravity fluctuations are considered noise and signal depending on the experiment. Here, we will focus on ground-based gravimetry. This field is rapidly progressing through the development of GW detectors. The technology is pushed to its current limits in the advanced generation of the LIGO and Virgo detectors, targeting gravity strain sensitivities better than 10^-23 Hz^-1/2 above a few tens of a Hz. Alternative designs for GW detectors evolving from traditional gravity gradiometers such as torsion bars, atom interferometers, and superconducting gradiometers are currently being developed to extend the detection band to frequencies below 1 Hz. The goal of this article is to provide the analytical framework to describe terrestrial gravity perturbations in these experiments. Models of terrestrial gravity perturbations related to seismic fields, atmospheric disturbances, and vibrating, rotating or moving objects, are derived and analyzed. The models are then used to evaluate passive and active gravity noise mitigation strategies in GW detectors, or alternatively, to describe their potential use in geophysics. The article reviews the current state of the field, and also presents new analyses especially with respect to the impact of seismic scattering on gravity perturbations, active gravity noise cancellation, and time-domain models of gravity perturbations from atmospheric and seismic point sources. Our understanding of
Mathematical Model for Absolute Magnetic Measuring Systems in Industrial Applications
NASA Astrophysics Data System (ADS)
Fügenschuh, Armin; Fügenschuh, Marzena; Ludszuweit, Marina; Mojsic, Aleksandar; Sokół, Joanna
2015-09-01
Scales for measuring systems are either based on incremental or absolute measuring methods. Incremental scales need to initialize a measurement cycle at a reference point. From there, the position is computed by counting increments of a periodic graduation. Absolute methods do not need reference points, since the position can be read directly from the scale. The positions on the complete scales are encoded using two incremental tracks with different graduation. We present a new method for absolute measuring using only one track for position encoding up to micrometre range. Instead of the common perpendicular magnetic areas, we use a pattern of trapezoidal magnetic areas, to store more complex information. For positioning, we use the magnetic field where every position is characterized by a set of values measured by a hall sensor array. We implement a method for reconstruction of absolute positions from the set of unique measured values. We compare two patterns with respect to uniqueness, accuracy, stability and robustness of positioning. We discuss how stability and robustness are influenced by different errors during the measurement in real applications and how those errors can be compensated.
ERIC Educational Resources Information Center
MacKeown, P. K.
1984-01-01
Clarifies two concepts of gravity--those of a fictitious force and those of how space and time may have geometry. Reviews the position of Newton's theory of gravity in the context of special relativity and considers why gravity (as distinct from electromagnetics) lends itself to Einstein's revolutionary interpretation. (JN)
NASA Astrophysics Data System (ADS)
Roveto, Jonathan
2011-11-01
A recent proposal by Erik Verlinde claims that gravity should be viewed not as a fundamental force, but an emergent thermodynamic phenomenon due to some yet undetermined microscopic theory. We present a challenge to this reformulation of gravity. Our claim is that a detailed derivation using Verlinde's proposed theory fails to correctly give Newton's laws or Einstein gravity.
NASA Astrophysics Data System (ADS)
Mochizuki, N.; Yamamoto, Y.; Hatakeyama, T.; Shibuya, H.
2013-12-01
Absolute geomagnetic paleointensities (APIs) have been estimated from igneous rocks, while relative paleomagnetic intensities (RPIs) have been reported from sediment cores. These two datasets have been treated separately, as correlations between APIs and RPIs are difficult on account of age uncertainties. High-resolution RPI stacks have been constructed from globally distributed sediment cores with high sedimentation rates. Previous studies often assumed that the RPI stacks have a linear relationship with geomagnetic axial dipole moments, and calibrated the RPI values to API values. However, the assumption of a linear relationship between APIs and RPIs has not been evaluated. Also, a quantitative calibration method for the RPI is lacking. We present a procedure for directly comparing API and RPI stacks, thus allowing reliable calibrations of RPIs. Direct comparisons between APIs and RPIs were conducted with virtually no associated age errors using both tephrochronologic correlations and RPI minima. Using the stratigraphic positions of tephra layers in oxygen isotope stratigraphic records, we directly compared the RPIs and APIs reported from welded tuffs contemporaneously extruded with the tephra layers. In addition, RPI minima during geomagnetic reversals and excursions were compared with APIs corresponding to the reversals and excursions. The comparison of APIs and RPIs at these exact points allowed a reliable calibration of the RPI values. We applied this direct comparison procedure to the global RPI stack PISO-1500. For six independent calibration points, virtual axial dipole moments (VADMs) from the corresponding APIs and RPIs of the PISO-1500 stack showed a near-linear relationship. On the basis of the linear relationship, RPIs of the stack were successfully calibrated to the VADMs. The direct comparison procedure provides an absolute calibration method that will contribute to the recovery of temporal variations and distributions of geomagnetic axial dipole
Measurement of the gravity-field curvature by atom interferometry.
Rosi, G; Cacciapuoti, L; Sorrentino, F; Menchetti, M; Prevedelli, M; Tino, G M
2015-01-01
We present the first direct measurement of the gravity-field curvature based on three conjugated atom interferometers. Three atomic clouds launched in the vertical direction are simultaneously interrogated by the same atom interferometry sequence and used to probe the gravity field at three equally spaced positions. The vertical component of the gravity-field curvature generated by nearby source masses is measured from the difference between adjacent gravity gradient values. Curvature measurements are of interest in geodesy studies and for the validation of gravitational models of the surrounding environment. The possibility of using such a scheme for a new determination of the Newtonian constant of gravity is also discussed. PMID:25615464
Absolute optical metrology : nanometers to kilometers
NASA Technical Reports Server (NTRS)
Dubovitsky, Serge; Lay, O. P.; Peters, R. D.; Liebe, C. C.
2005-01-01
We provide and overview of the developments in the field of high-accuracy absolute optical metrology with emphasis on space-based applications. Specific work on the Modulation Sideband Technology for Absolute Ranging (MSTAR) sensor is described along with novel applications of the sensor.
Monolithically integrated absolute frequency comb laser system
Wanke, Michael C.
2016-07-12
Rather than down-convert optical frequencies, a QCL laser system directly generates a THz frequency comb in a compact monolithically integrated chip that can be locked to an absolute frequency without the need of a frequency-comb synthesizer. The monolithic, absolute frequency comb can provide a THz frequency reference and tool for high-resolution broad band spectroscopy.