Sample records for absolute melting point

  1. Estimating the physicochemical properties of polyhalogenated aromatic and aliphatic compounds using UPPER: part 1. Boiling point and melting point.

    PubMed

    Admire, Brittany; Lian, Bo; Yalkowsky, Samuel H

    2015-01-01

    The UPPER (Unified Physicochemical Property Estimation Relationships) model uses enthalpic and entropic parameters to estimate 20 biologically relevant properties of organic compounds. The model has been validated by Lian and Yalkowsky on a data set of 700 hydrocarbons. The aim of this work is to expand the UPPER model to estimate the boiling and melting points of polyhalogenated compounds. In this work, 19 new group descriptors are defined and used to predict the transition temperatures of an additional 1288 compounds. The boiling points of 808 and the melting points of 742 polyhalogenated compounds are predicted with average absolute errors of 13.56 K and 25.85 K, respectively. Copyright © 2014 Elsevier Ltd. All rights reserved.

  2. Free-energy calculations using classical molecular simulation: application to the determination of the melting point and chemical potential of a flexible RDX model.

    PubMed

    Sellers, Michael S; Lísal, Martin; Brennan, John K

    2016-03-21

    We present an extension of various free-energy methodologies to determine the chemical potential of the solid and liquid phases of a fully-flexible molecule using classical simulation. The methods are applied to the Smith-Bharadwaj atomistic potential representation of cyclotrimethylene trinitramine (RDX), a well-studied energetic material, to accurately determine the solid and liquid phase Gibbs free energies, and the melting point (Tm). We outline an efficient technique to find the absolute chemical potential and melting point of a fully-flexible molecule using one set of simulations to compute the solid absolute chemical potential and one set of simulations to compute the solid-liquid free energy difference. With this combination, only a handful of simulations are needed, whereby the absolute quantities of the chemical potentials are obtained, for use in other property calculations, such as the characterization of crystal polymorphs or the determination of the entropy. Using the LAMMPS molecular simulator, the Frenkel and Ladd and pseudo-supercritical path techniques are adapted to generate 3rd order fits of the solid and liquid chemical potentials. Results yield the thermodynamic melting point Tm = 488.75 K at 1.0 atm. We also validate these calculations and compare this melting point to one obtained from a typical superheated simulation technique.

  3. Estimation of Melting Points of Organics.

    PubMed

    Yalkowsky, Samuel H; Alantary, Doaa

    2018-05-01

    Unified physicochemical property estimation relationships is a system of empirical and theoretical relationships that relate 20 physicochemical properties of organic molecules to each other and to chemical structure. Melting point is a key parameter in the unified physicochemical property estimation relationships scheme because it is a determinant of several other properties including vapor pressure, and solubility. This review describes the first-principals calculation of the melting points of organic compounds from structure. The calculation is based on the fact that the melting point, T m , is equal to the ratio of the heat of melting, ΔH m , to the entropy of melting, ΔS m . The heat of melting is shown to be an additive constitutive property. However, the entropy of melting is not entirely group additive. It is primarily dependent on molecular geometry, including parameters which reflect the degree of restriction of molecular motion in the crystal to that of the liquid. Symmetry, eccentricity, chirality, flexibility, and hydrogen bonding, each affect molecular freedom in different ways and thus make different contributions to the total entropy of fusion. The relationships of these entropy determining parameters to chemical structure are used to develop a reasonably accurate means of predicting the melting points over 2000 compounds. Copyright © 2018 American Pharmacists Association®. Published by Elsevier Inc. All rights reserved.

  4. A density functional theory based approach for predicting melting points of ionic liquids

    DOE PAGES

    Chen, Lihua; Bryantsev, Vyacheslav S.

    2017-01-17

    Accurate prediction of melting points of ILs is important both from the fundamental point of view and from the practical perspective for screening ILs with low melting points and broadening their utilization in a wider temperature range. In this work, we present an ab initio approach to calculating melting points of ILs with known crystal structures and illustrate its application for a series of 11 ILs containing imidazolium/pyrrolidinium cations and halide/polyatomic fluoro-containing anions. The melting point is determined as a temperature at which the Gibbs free energy of fusion is zero. The Gibbs free energy of fusion can be expressedmore » through the use of the Born-Fajans-Haber cycle via the lattice free energy of forming a solid IL from gaseous phase ions and the sum of the solvation free energies of ions comprising IL. Dispersion-corrected density functional theory (DFT) involving (semi)local (PBE-D3) and hybrid exchange-correlation (HSE06-D3) functionals is applied to estimate the lattice enthalpy, entropy, and free energy. The ions solvation free energies are calculated with the SMD-generic-IL solvation model at the M06-2X/6-31+G(d) level of theory under standard conditions. The melting points of ILs computed with the HSE06-D3 functional are in good agreement with the experimental data, with a mean absolute error of 30.5 K and a mean relative error of 8.5%. The model is capable of accurately reproducing the trends in melting points upon variation of alkyl substituents in organic cations and replacement one anion by another. The results verify that the lattice energies of ILs containing polyatomic fluoro-containing anions can be approximated reasonably well using the volume-based thermodynamic approach. However, there is no correlation of the computed lattice energies with molecular volume for ILs containing halide anions. Moreover, entropies of solid ILs follow two different linear relationships with molecular volume for halides and polyatomic fluoro

  5. A density functional theory based approach for predicting melting points of ionic liquids

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chen, Lihua; Bryantsev, Vyacheslav S.

    Accurate prediction of melting points of ILs is important both from the fundamental point of view and from the practical perspective for screening ILs with low melting points and broadening their utilization in a wider temperature range. In this work, we present an ab initio approach to calculating melting points of ILs with known crystal structures and illustrate its application for a series of 11 ILs containing imidazolium/pyrrolidinium cations and halide/polyatomic fluoro-containing anions. The melting point is determined as a temperature at which the Gibbs free energy of fusion is zero. The Gibbs free energy of fusion can be expressedmore » through the use of the Born-Fajans-Haber cycle via the lattice free energy of forming a solid IL from gaseous phase ions and the sum of the solvation free energies of ions comprising IL. Dispersion-corrected density functional theory (DFT) involving (semi)local (PBE-D3) and hybrid exchange-correlation (HSE06-D3) functionals is applied to estimate the lattice enthalpy, entropy, and free energy. The ions solvation free energies are calculated with the SMD-generic-IL solvation model at the M06-2X/6-31+G(d) level of theory under standard conditions. The melting points of ILs computed with the HSE06-D3 functional are in good agreement with the experimental data, with a mean absolute error of 30.5 K and a mean relative error of 8.5%. The model is capable of accurately reproducing the trends in melting points upon variation of alkyl substituents in organic cations and replacement one anion by another. The results verify that the lattice energies of ILs containing polyatomic fluoro-containing anions can be approximated reasonably well using the volume-based thermodynamic approach. However, there is no correlation of the computed lattice energies with molecular volume for ILs containing halide anions. Moreover, entropies of solid ILs follow two different linear relationships with molecular volume for halides and polyatomic fluoro

  6. WHO Melting-Point Reference Substances

    PubMed Central

    Bervenmark, H.; Diding, N. Å.; Öhrner, B.

    1963-01-01

    Batches of 13 highly purified chemicals, intended for use as reference substances in the calibration of apparatus for melting-point determinations, have been subjected to a collaborative assay by 15 laboratories in 13 countries. All the laboratories performed melting-point determinations by the capillary methods described in the proposed text for the second edition of the Pharmacopoea Internationalis and some, in addition, carried out determinations by the microscope hot stage (Kofler) method, using both the “going-through” and the “equilibrium” technique. Statistical analysis of the data obtained by the capillary method showed that the within-laboratory variation was small and that the between-laboratory variation, though constituting the greatest part of the whole variance, was not such as to warrant the exclusion of any laboratory from the evaluation of the results. The average values of the melting-points obtained by the laboratories can therefore be used as constants for the substances in question, which have accordingly been established as WHO Melting-Point Reference Substances and included in the WHO collection of authentic chemical substances. As to the microscope hot stage method, analysis of the results indicated that the values obtained by the “going-through” technique did not differ significantly from those obtained by the capillary method, but the values obtained by the “equilibrium” technique were mostly significantly lower. PMID:20604137

  7. Nanotexturing of surfaces to reduce melting point.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Garcia, Ernest J.; Zubia, David; Mireles, Jose

    2011-11-01

    This investigation examined the use of nano-patterned structures on Silicon-on-Insulator (SOI) material to reduce the bulk material melting point (1414 C). It has been found that sharp-tipped and other similar structures have a propensity to move to the lower energy states of spherical structures and as a result exhibit lower melting points than the bulk material. Such a reduction of the melting point would offer a number of interesting opportunities for bonding in microsystems packaging applications. Nano patterning process capabilities were developed to create the required structures for the investigation. One of the technical challenges of the project was understandingmore » and creating the specialized conditions required to observe the melting and reshaping phenomena. Through systematic experimentation and review of the literature these conditions were determined and used to conduct phase change experiments. Melting temperatures as low as 1030 C were observed.« less

  8. Automated realization of the gallium melting and triple points

    NASA Astrophysics Data System (ADS)

    Yan, X.; Duan, Y.; Zhang, J. T.; Wang, W.

    2013-09-01

    In order to improve the automation and convenience of the process involved in realizing the gallium fixed points, an automated apparatus, based on thermoelectric and heat pipe technologies, was designed and developed. This paper describes the apparatus design and procedures for freezing gallium mantles and realizing gallium melting and triple points. Also, investigations on the melting behavior of a gallium melting point cell and of gallium triple point cells were carried out while controlling the temperature outside the gallium point cells at 30 °C, 30.5 °C, 31 °C, and 31.5 °C. The obtained melting plateau curves show dentate temperature oscillations on the melting plateaus for the gallium point cells when thermal couplings occurred between the outer and inner liquid-solid interfaces. The maximum amplitude of the temperature fluctuations was about 1.5 mK. Therefore, the temperature oscillations can be used to indicate the ending of the equilibrium phase transitions. The duration and amplitude of such temperature oscillations depend on the temperature difference between the setting temperature and the gallium point temperature; the smaller the temperature difference, the longer the duration of both the melting plateaus and the temperature fluctuations.

  9. The Melting Point of Palladium Using Miniature Fixed Points of Different Ceramic Materials: Part II—Analysis of Melting Curves and Long-Term Investigation

    NASA Astrophysics Data System (ADS)

    Edler, F.; Huang, K.

    2016-12-01

    Fifteen miniature fixed-point cells made of three different ceramic crucible materials (Al2O3, ZrO2, and Al2O3(86 %)+ZrO2(14 %)) were filled with pure palladium and used to calibrate type B thermocouples (Pt30 %Rh/Pt6 %Rh). A critical point by using miniature fixed points with small amounts of fixed-point material is the analysis of the melting curves, which are characterized by significant slopes during the melting process compared to flat melting plateaus obtainable using conventional fixed-point cells. The method of the extrapolated starting point temperature using straight line approximation of the melting plateau was applied to analyze the melting curves. This method allowed an unambiguous determination of an electromotive force (emf) assignable as melting temperature. The strict consideration of two constraints resulted in a unique, repeatable and objective method to determine the emf at the melting temperature within an uncertainty of about 0.1 μ V. The lifetime and long-term stability of the miniature fixed points was investigated by performing more than 100 melt/freeze cycles for each crucible of the different ceramic materials. No failure of the crucibles occurred indicating an excellent mechanical stability of the investigated miniature cells. The consequent limitation of heating rates to values below {± }3.5 K min^{-1} above 1100° C and the carefully and completely filled crucibles (the liquid palladium occupies the whole volume of the crucible) are the reasons for successfully preventing the crucibles from breaking. The thermal stability of the melting temperature of palladium was excellent when using the crucibles made of Al2O3(86 %)+ZrO2(14 %) and ZrO2. Emf drifts over the total duration of the long-term investigation were below a temperature equivalent of about 0.1 K-0.2 K.

  10. Quantitative structure-property relationships for prediction of boiling point, vapor pressure, and melting point.

    PubMed

    Dearden, John C

    2003-08-01

    Boiling point, vapor pressure, and melting point are important physicochemical properties in the modeling of the distribution and fate of chemicals in the environment. However, such data often are not available, and therefore must be estimated. Over the years, many attempts have been made to calculate boiling points, vapor pressures, and melting points by using quantitative structure-property relationships, and this review examines and discusses the work published in this area, and concentrates particularly on recent studies. A number of software programs are commercially available for the calculation of boiling point, vapor pressure, and melting point, and these have been tested for their predictive ability with a test set of 100 organic chemicals.

  11. Stagnation-Point Shielding by Melting and Vaporization

    NASA Technical Reports Server (NTRS)

    Roberts, Leonard

    1959-01-01

    An approximate theoretical analysis was made of the shielding mechanism whereby the rate of heat transfer to the forward stagnation point of blunt bodies is reduced by melting and evaporation. General qualitative results are given and a numerical example, the melting and evaporation of ice, is presented and discussed in detail.

  12. Toward Fully in Silico Melting Point Prediction Using Molecular Simulations

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zhang, Y; Maginn, EJ

    2013-03-01

    Melting point is one of the most fundamental and practically important properties of a compound. Molecular computation of melting points. However, all of these methods simulation methods have been developed for the accurate need an experimental crystal structure as input, which means that such calculations are not really predictive since the melting point can be measured easily in experiments once a crystal structure is known. On the other hand, crystal structure prediction (CSP) has become an active field and significant progress has been made, although challenges still exist. One of the main challenges is the existence of many crystal structuresmore » (polymorphs) that are very close in energy. Thermal effects and kinetic factors make the situation even more complicated, such that it is still not trivial to predict experimental crystal structures. In this work, we exploit the fact that free energy differences are often small between crystal structures. We show that accurate melting point predictions can be made by using a reasonable crystal structure from CSP as a starting point for a free energy-based melting point calculation. The key is that most crystal structures predicted by CSP have free energies that are close to that of the experimental structure. The proposed method was tested on two rigid molecules and the results suggest that a fully in silico melting point prediction method is possible.« less

  13. Evaluation of melting point of UO 2 by molecular dynamics simulation

    NASA Astrophysics Data System (ADS)

    Arima, Tatsumi; Idemitsu, Kazuya; Inagaki, Yaohiro; Tsujita, Yuichi; Kinoshita, Motoyasu; Yakub, Eugene

    2009-06-01

    The melting point of UO 2 has been evaluated by molecular dynamics simulation (MD) in terms of interatomic potential, pressure and Schottky defect concentration. The Born-Mayer-Huggins potentials with or without a Morse potential were explored in the present study. Two-phase simulation whose supercell at the initial state consisted of solid and liquid phases gave the melting point comparable to the experimental data using the potential proposed by Yakub. The heat of fusion was determined by the difference in enthalpy at the melting point. In addition, MD calculations showed that the melting point increased with pressure applied to the system. Thus, the Clausius-Clapeyron equation was verified. Furthermore, MD calculations clarified that an addition of Schottky defects, which generated the local disorder in the UO 2 crystal, lowered the melting point.

  14. Absolute Points for Multiple Assignment Problems

    ERIC Educational Resources Information Center

    Adlakha, V.; Kowalski, K.

    2006-01-01

    An algorithm is presented to solve multiple assignment problems in which a cost is incurred only when an assignment is made at a given cell. The proposed method recursively searches for single/group absolute points to identify cells that must be loaded in any optimal solution. Unlike other methods, the first solution is the optimal solution. The…

  15. On the correlation between hydrogen bonding and melting points in the inositols

    PubMed Central

    Bekö, Sándor L.; Alig, Edith; Schmidt, Martin U.; van de Streek, Jacco

    2014-01-01

    Inositol, 1,2,3,4,5,6-hexahydroxycyclohexane, exists in nine stereoisomers with different crystal structures and melting points. In a previous paper on the relationship between the melting points of the inositols and the hydrogen-bonding patterns in their crystal structures [Simperler et al. (2006 ▶). CrystEngComm 8, 589], it was noted that although all inositol crystal structures known at that time contained 12 hydrogen bonds per molecule, their melting points span a large range of about 170 °C. Our preliminary investigations suggested that the highest melting point must be corrected for the effect of molecular symmetry, and that the three lowest melting points may need to be revised. This prompted a full investigation, with additional experiments on six of the nine inositols. Thirteen new phases were discovered; for all of these their crystal structures were examined. The crystal structures of eight ordered phases could be determined, of which seven were obtained from laboratory X-ray powder diffraction data. Five additional phases turned out to be rotator phases and only their unit cells could be determined. Two previously unknown melting points were measured, as well as most enthalpies of melting. Several previously reported melting points were shown to be solid-to-solid phase transitions or decomposition points. Our experiments have revealed a complex picture of phases, rotator phases and phase transitions, in which a simple correlation between melting points and hydrogen-bonding patterns is not feasible. PMID:25075320

  16. Effects of hydrogen bond on the melting point of azole explosives

    NASA Astrophysics Data System (ADS)

    Wang, Jian-Hua; Shen, Chen; Liu, Yu-Cun; Luo, Jin; Duan, Yingjie

    2018-07-01

    Melting point is an important index to determine whether an explosive can be a melt cast carrier. In this study, the relationship among the molecular structure, crystal structure, and melting point of explosives was investigated by using nitroazole compounds. Hydrogen bonds influence crystal packing modes in chemically understandable ways. Hydrogen bonds also affect the changes in entropy and enthalpy in balancing melting process. Hence, different types of hydrogen bonds in explosive crystal structures were compared when the relationship between the molecular structure and the melting point of nitroazole explosives were analyzed. The effects of methyl and amino groups on intermolecular hydrogen bonds were also compared. Results revealed that the methyl and amino groups connected on the N(1) of the heterocyclic compound can reduce the melting point of azole explosive. This finding is possible because methyl and amino groups destroy the intermolecular hydrogen bond of the heterocyclic compound.

  17. Identification of mothball powder composition by float tests and melting point tests.

    PubMed

    Tang, Ka Yuen

    2018-07-01

    The aim of the study was to identify the composition, as either camphor, naphthalene, or paradichlorobenzene, of mothballs in the form of powder or tiny fragments by float tests and melting point tests. Naphthalene, paradichlorobenzene and camphor mothballs were blended into powder and tiny fragments (with sizes <1/10 of the size of an intact mothball). In the float tests, the mothball powder and tiny fragments were placed in water, saturated salt solution and 50% dextrose solution (D50), and the extent to which they floated or sank in the liquids was observed. In the melting point tests, the mothball powder and tiny fragments were placed in hot water with a temperature between 53 and 80 °C, and the extent to which they melted was observed. Both the float and melting point tests were then repeated using intact mothballs. Three emergency physicians blinded to the identities of samples and solutions visually evaluated each sample. In the float tests, paradichlorobenzene powder partially floated and partially sank in all three liquids, while naphthalene powder partially floated and partially sank in water. Naphthalene powder did not sink in D50 or saturated salt solution. Camphor powder floated in all three liquids. Float tests identified the compositions of intact mothball accurately. In the melting point tests, paradichlorobenzene powder melted completely in hot water within 1 min while naphthalene powder and camphor powder did not melt. The melted portions of paradichlorobenzene mothballs were sometimes too small to be observed in 1 min but the mothballs either partially or completely melted in 5 min. Both camphor and naphthalene intact mothballs did not melt in hot water. For mothball powder, the melting point tests were more accurate than the float tests in differentiating between paradichlorobenzene and non-paradichlorobenzene (naphthalene or camphor). For intact mothballs, float tests performed better than melting point tests. Float tests can

  18. A melting-point-of gallium apparatus for thermometer calibration.

    PubMed

    Sostman, H E; Manley, K A

    1978-08-01

    We have investigated the equilibrium melting point of gallium as a temperature fixed-point at which to calibrate small thermistor thermometers, such as those used to measure temperature in enzyme reaction analysis and other temperature-dependent biological assays. We have determined that the melting temperature of "6N" (99.999% pure) gallium is 29.770 +/- 0.002 degrees C, and that the constant-temperature plateau can be prolonged for several hours. We have designed a simple automated apparatus that exploits this phenomenon and that permits routine calibration verification of thermistor temperature probes throughout the laboratory day. We describe the physics of the gallium melt, and the design and use of the apparatus.

  19. Applicability of low-melting-point microcrystalline wax to develop temperature-sensitive formulations.

    PubMed

    Matsumoto, Kohei; Kimura, Shin-Ichiro; Iwao, Yasunori; Itai, Shigeru

    2017-10-30

    Low-melting-point substances are widely used to develop temperature-sensitive formulations. In this study, we focused on microcrystalline wax (MCW) as a low-melting-point substance. We evaluated the drug release behavior of wax matrix (WM) particles using various MCW under various temperature conditions. WM particles containing acetaminophen were prepared using a spray congealing technique. In the dissolution test at 37°C, WM particles containing low-melting-point MCWs whose melting was starting at approx. 40°C (Hi-Mic-1045 or 1070) released the drug initially followed by the release of only a small amount. On the other hand, in the dissolution test at 20 and 25°C for WM particles containing Hi-Mic-1045 and at 20, 25, and 30°C for that containing Hi-Mic-1070, both WM particles showed faster drug release than at 37°C. The characteristic drug release suppression of WM particles containing low-melting-point MCWs at 37°C was thought attributable to MCW melting, as evidenced by differential scanning calorimetry analysis and powder X-ray diffraction analysis. Taken together, low-melting-point MCWs may be applicable to develop implantable temperature-sensitive formulations that drug release is accelerated by cooling at administered site. Copyright © 2017 Elsevier B.V. All rights reserved.

  20. Effect of grain size on the melting point of confined thin aluminum films

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wejrzanowski, Tomasz; Lewandowska, Malgorzata; Sikorski, Krzysztof

    2014-10-28

    The melting of aluminum thin film was studied by a molecular dynamics (MD) simulation technique. The effect of the grain size and type of confinement was investigated for aluminum film with a constant thickness of 4 nm. The results show that coherent intercrystalline interface suppress the transition of solid aluminum into liquid, while free-surface gives melting point depression. The mechanism of melting of polycrystalline aluminum thin film was investigated. It was found that melting starts at grain boundaries and propagates to grain interiors. The melting point was calculated from the Lindemann index criterion, taking into account only atoms near to grainmore » boundaries. This made it possible to extend melting point calculations to bigger grains, which require a long time (in the MD scale) to be fully molten. The results show that 4 nm thick film of aluminum melts at a temperature lower than the melting point of bulk aluminum (933 K) only when the grain size is reduced to 6 nm.« less

  1. Estimating the melting point, entropy of fusion, and enthalpy of ...

    EPA Pesticide Factsheets

    The entropies of fusion, enthalies of fusion, and melting points of organic compounds can be estimated through three models developed using the SPARC (SPARC Performs Automated Reasoning in Chemistry) platform. The entropy of fusion is modeled through a combination of interaction terms and physical descriptors. The enthalpy of fusion is modeled as a function of the entropy of fusion, boiling point, and fexibility of the molecule. The melting point model is the enthlapy of fusion divided by the entropy of fusion. These models were developed in part to improve SPARC's vapor pressure and solubility models. These models have been tested on 904 unique compounds. The entropy model has a RMS of 12.5 J mol-1K-1. The enthalpy model has a RMS of 4.87 kJ mol-1. The melting point model has a RMS of 54.4°C. Published in the journal, SAR and QSAR in Environmental Research

  2. The gallium melting-point standard: its role in our temperature measurement system.

    PubMed

    Mangum, B W

    1977-01-01

    The latest internationally-adopted temperature scale, the International Practical Temperature Scale of 1968 (amended edition of 1975), is discussed in some detail and a brief description is given of its evolution. The melting point of high-purity gallium (stated to be at least 99.99999% pure) as a secondary temperature reference point is evaluated. I believe that this melting-point temperature of gallium should be adopted by the various medical professional societies and voluntary standards groups as the reaction temperature for enzyme reference methods in clinical enzymology. Gallium melting-point cells are available at the National Bureau of Standards as Standard Reference Material No. 1968.

  3. Low-melting point heat transfer fluid

    DOEpatents

    Cordaro, Joseph Gabriel; Bradshaw, Robert W.

    2010-11-09

    A low-melting point, heat transfer fluid made of a mixture of five inorganic salts including about 29.1-33.5 mol % LiNO.sub.3, 0-3.9 mol % NaNO.sub.3, 2.4-8.2 mol % KNO.sub.3, 18.6-19.9 mol % NaNO.sub.2, and 40-45.6 mol % KNO.sub.2. These compositions can have liquidus temperatures below 80.degree. C. for some compositions.

  4. Application of Low Melting Point Thermoplastics to Hybrid Rocket Fuel

    NASA Astrophysics Data System (ADS)

    Wada, Yutaka; Jikei, Mitsutoshi; Kato, Ryuichi; Kato, Nobuji; Hori, Keiichi

    This paper introduces the application of low melting point thermoplastics (LT) to hybrid rocket fuel. LT made by Katazen Corporation has an excellent mechanical property comparing with other thermoplastics and prospect of high surface regression rate because it has a similar physical property with low melting point of paraffin fuel which has high regression rate probably due to the entrainment mass transfer mechanism that droplets continuously depart out of the surface melt layer. Several different types of LT developed by Katazen Corporation for this use have been evaluated in the measurements of regression rate, mechanical properties These results show the LTs have the higher regression rate and better mechanical properties comparing with conventional hybrid rocket fuels. Observation was also made using a small 2D combustor, and the entrainment mass transfer mechanism is confirmed with the LT fuels.

  5. Thermal diffusivity of UO2 up to the melting point

    NASA Astrophysics Data System (ADS)

    Vlahovic, L.; Staicu, D.; Küst, A.; Konings, R. J. M.

    2018-02-01

    The thermal diffusivity of uranium dioxide was measured from 500 to 3060 K with two different set-ups, both based on the laser-flash technique. Above 1600 K the measurements were performed with an advanced laser-flash technique, which was slightly improved in comparison with a former work. In the temperature range 500-2000 K the thermal diffusivity is decreasing, then relatively constant up to 2700 K, and tends to increase by approaching the melting point. The measurements of the thermal diffusivity in the vicinity of the melting point are possible under certain conditions, and are discussed in this paper.

  6. The gallium melting-point standard: its application and evaluation for temperature measurements in the clinical laboratory.

    PubMed

    Bowers, G N; Inman, S R

    1977-01-01

    We are impressed with the ease and certainty of calibration electronic thermometers with thermistor probes to +/- 0.01 degree C at the gallium melting point, 29.771(4) degrees C. The IFCC reference method for measuring aspartate aminotransferase activity in serum was run at the reaction temperature of 29.771(4) degrees C. By constantly referencing to gallium as an integral part of the assay procedure, we determined the absolute reaction temperature to IPTS-68 (International Practical Temperature Scale of 1968) to +/- 0.02 degrees C. This unique temperature calibration standard near the center of the range of temperatures commonly used in the clinical laboratory is a valuable addition and can be expected to improve the accuracy of measurements, especially in clinical enzymology.

  7. Theoretical Understanding the Relations of Melting-point Determination Methods from Gibbs Thermodynamic Surface and Applications on Melting Curves of Lower Mantle Minerals

    NASA Astrophysics Data System (ADS)

    Yin, K.; Belonoshko, A. B.; Zhou, H.; Lu, X.

    2016-12-01

    The melting temperatures of materials in the interior of the Earth has significant implications in many areas of geophysics. The direct calculations of the melting point by atomic simulations would face substantial hysteresis problem. To overcome the hysteresis encountered in the atomic simulations there are a few different melting-point determination methods available nowadays, which are founded independently, such as the free energy method, the two-phase or coexistence method, and the Z method, etc. In this study, we provide a theoretical understanding the relations of these methods from a geometrical perspective based on a quantitative construction of the volume-entropy-energy thermodynamic surface, a model first proposed by J. Willard Gibbs in 1873. Then combining with an experimental data and/or a previous melting-point determination method, we apply this model to derive the high-pressure melting curves for several lower mantle minerals with less computational efforts relative to using previous methods only. Through this way, some polyatomic minerals at extreme pressures which are almost unsolvable before are calculated fully from first principles now.

  8. The melting point of lithium: an orbital-free first-principles molecular dynamics study

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chen, Mohan; Hung, Linda; Huang, Chen

    2013-08-25

    The melting point of liquid lithium near zero pressure is studied with large-scale orbital-free first-principles molecular dynamics (OF-FPMD) in the isobaric-isothermal ensemble. Here, we adopt the Wang-Govind-Carter (WGC) functional as our kinetic energy density functional (KEDF) and construct a bulk-derived local pseudopotential (BLPS) for Li. Our simulations employ both the ‘heat-until-melts’ method and the coexistence method. We predict 465 K as an upper bound of the melting point of Li from the ‘heat-until-melts’ method, while we predict 434 K as the melting point of Li from the coexistence method. These values compare well with an experimental melting point of 453more » K at zero pressure. Furthermore, we calculate a few important properties of liquid Li including the diffusion coefficients, pair distribution functions, static structure factors, and compressibilities of Li at 470 K and 725 K in the canonical ensemble. This theoretically-obtained results show good agreement with known experimental results, suggesting that OF-FPMD using a non-local KEDF and a BLPS is capable of accurately describing liquid metals.« less

  9. A new lunar absolute control point: established by images from the landing camera on Chang'e-3

    NASA Astrophysics Data System (ADS)

    Wang, Fen-Fei; Liu, Jian-Jun; Li, Chun-Lai; Ren, Xin; Mu, Ling-Li; Yan, Wei; Wang, Wen-Rui; Xiao, Jing-Tao; Tan, Xu; Zhang, Xiao-Xia; Zou, Xiao-Duan; Gao, Xing-Ye

    2014-12-01

    The establishment of a lunar control network is one of the core tasks in selenodesy, in which defining an absolute control point on the Moon is the most important step. However, up to now, the number of absolute control points has been very sparse. These absolute control points have mainly been lunar laser ranging retroreflectors, whose geographical location can be observed by observations on Earth and also identified in high resolution lunar satellite images. The Chang'e-3 (CE-3) probe successfully landed on the Moon, and its geographical location has been monitored by an observing station on Earth. Since its positional accuracy is expected to reach the meter level, the CE-3 landing site can become a new high precision absolute control point. We use a sequence of images taken from the landing camera, as well as satellite images taken by CE-1 and CE-2, to identify the location of the CE-3 lander. With its geographical location known, the CE-3 landing site can be established as a new absolute control point, which will effectively expand the current area of the lunar absolute control network by 22%, and can greatly facilitate future research in the field of lunar surveying and mapping, as well as selenodesy.

  10. Hydrogenation and interesterification effects on the oxidative stability and melting point of soybean oil.

    PubMed

    Daniels, Roger L; Kim, Hyun Jung; Min, David B

    2006-08-09

    Soybean oil with an iodine value of 136 was hydrogenated to have iodine values of 126 and 117. The soybean oils with iodine values of 136, 126, and 117 were randomly interesterified using sodium methoxide. The oxidative stabilities of the hydrogenated and/or interesterified soybean oils were evaluated by measuring the headspace oxygen content by gas chromatography, and the induction time was measured using Rancimat. The melting points of the oils were evaluated by differential scanning calorimetry. Duncan's multiple range test of the headspace oxygen and induction time showed that hydrogenation increased the headspace oxygen content and induction time at alpha = 0.05. Interesterification decreased the headspace oxygen and the induction time for the soybean oils with iodine values of 136, 126, and 117 at alpha = 0.05. Hydrogenation increased the melting points as the iodine value decreased from 136 and 126 to 117 at alpha = 0.05. The random interesterification increased the melting points of soybean oils with iodine values of 136, 126, and 117 at alpha = 0.05. The combined effects of hydrogenation and interesterification increased the oxidative stability of soybean oil at alpha = 0.05 and the melting point at alpha = 0.01. The optimum combination of hydrogenation and random interesterification can improve the oxidative stability and increase the melting point to expand the application of soybean oil in foods.

  11. Effect of Melting Point on the Physical Properties of Anhydrous Milk Fat

    NASA Astrophysics Data System (ADS)

    Wang, Yunna; Li, Yang; Han, Jie; Li, Yan; Zhang, Liebing

    2017-12-01

    The effect of melting point on the physical properties of anhydrous milk fat were investigated. The results showed that high melting fractions (HMF) (S30,S35) were enriched in long-chain fatty acids, whereas low melting fractions (LMF)(S5,S10,S15) were enriched in short-chain and unsaturated fatty acids. From S5 to S35, enthalpy value was gradually increased on both crystallization and melting condition, so as SFC on different temperature. The mixture and chemical interesterification allowed obtaining fats with various degrees of plasticity, increasing the possibilities for the commercial use of different fraction of AMF.

  12. Origin of melting point depression for rare gas solids confined in carbon pores

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Morishige, Kunimitsu, E-mail: morishi@chem.ous.ac.jp; Kataoka, Takaaki

    To obtain insights into the mechanism of the melting-point depression of rare gas solids confined in crystalline carbon pores, we examined the freezing and melting behavior of Xe and Ar confined to the crystalline pores of ordered mesoporous carbons as well as compressed exfoliated graphite compared to the amorphous pores of ordered mesoporous silicas, by means of X-ray diffraction. For the Xe and Ar confined to the crystalline carbon pores, there was no appreciable thermal hysteresis between freezing and melting. Furthermore, the position of the main diffraction peak did not change appreciably on freezing and melting. This strongly suggests thatmore » the liquids confined in the carbon pores form a multilayered structure parallel to the smooth walls. For the Xe and Ar confined to the amorphous silica pores, on the other hand, the position of the main diffraction peak shifted into higher scattering angle on freezing suggested that the density of the confined solid is distinctly larger than for the confined liquid. Using compressed exfoliated graphite with carbon walls of higher crystallinity, we observed that three-dimensional (3D) microcrystals of Xe confined in the slit-shaped pores melted to leave the unmelted bilayers on the pore walls below the bulk triple point. The lattice spacing of the 3D microcrystals confined is larger by ∼0.7% than that of the bilayer next to the pore walls in the vicinity of the melting point.« less

  13. Palm-Based Standard Reference Materials for Iodine Value and Slip Melting Point

    PubMed Central

    Tarmizi, Azmil Haizam Ahmad; Lin, Siew Wai; Kuntom, Ainie

    2008-01-01

    This work described study protocols on the production of Palm-Based Standard Reference Materials for iodine value and slip melting point. Thirty-three laboratories collaborated in the inter-laboratory proficiency tests for characterization of iodine value, while thirty-two laboratories for characterization of slip melting point. The iodine value and slip melting point of palm oil, palm olein and palm stearin were determined in accordance to MPOB Test Methods p3.2:2004 and p4.2:2004, respectively. The consensus values and their uncertainties were based on the acceptability of statistical agreement of results obtained from collaborating laboratories. The consensus values and uncertainties for iodine values were 52.63 ± 0.14 Wijs in palm oil, 56.77 ± 0.12 Wijs in palm olein and 33.76 ± 0.18 Wijs in palm stearin. For the slip melting points, the consensus values and uncertainties were 35.6 ± 0.3 °C in palm oil, 22.7 ± 0.4 °C in palm olein and 53.4 ± 0.2 °C in palm stearin. Repeatability and reproducibility relative standard deviations were found to be good and acceptable, with values much lower than that of 10%. Stability of Palm-Based Standard Reference Materials remained stable at temperatures of −20 °C, 0 °C, 6 °C and 24 °C upon storage for one year. PMID:19609396

  14. An absolute interval scale of order for point patterns

    PubMed Central

    Protonotarios, Emmanouil D.; Baum, Buzz; Johnston, Alan; Hunter, Ginger L.; Griffin, Lewis D.

    2014-01-01

    Human observers readily make judgements about the degree of order in planar arrangements of points (point patterns). Here, based on pairwise ranking of 20 point patterns by degree of order, we have been able to show that judgements of order are highly consistent across individuals and the dimension of order has an interval scale structure spanning roughly 10 just-notable-differences (jnd) between disorder and order. We describe a geometric algorithm that estimates order to an accuracy of half a jnd by quantifying the variability of the size and shape of spaces between points. The algorithm is 70% more accurate than the best available measures. By anchoring the output of the algorithm so that Poisson point processes score on average 0, perfect lattices score 10 and unit steps correspond closely to jnds, we construct an absolute interval scale of order. We demonstrate its utility in biology by using this scale to quantify order during the development of the pattern of bristles on the dorsal thorax of the fruit fly. PMID:25079866

  15. Low-melting point heat transfer fluid

    DOEpatents

    Cordaro, Joseph G [Oakland, CA; Bradshaw, Robert W [Livermore, CA

    2011-04-12

    A low-melting point, heat transfer fluid comprising a mixture of LiNO.sub.3, NaNO.sub.3, KNO.sub.3, NaNO.sub.2 and KNO.sub.2 salts where the Li, Na and K cations are present in amounts of about 20-33.5 mol % Li, about 18.6-40 mol % Na, and about 40-50.3 mol % K and where the nitrate and nitrite anions are present in amounts of about 36-50 mol % NO.sub.3, and about 50-62.5 mol % NO.sub.2. These compositions can have liquidus temperatures between 70.degree. C. and 80.degree. C. for some compositions.

  16. 46 CFR 153.908 - Cargo viscosity and melting point information; measuring cargo temperature during discharge...

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... 46 Shipping 5 2014-10-01 2014-10-01 false Cargo viscosity and melting point information; measuring... Cargo viscosity and melting point information; measuring cargo temperature during discharge: Categories... lading, a written statement of the following: (1) For Category A or B NLS, the cargo's viscosity at 20 °C...

  17. 46 CFR 153.908 - Cargo viscosity and melting point information; measuring cargo temperature during discharge...

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 46 Shipping 5 2013-10-01 2013-10-01 false Cargo viscosity and melting point information; measuring... Cargo viscosity and melting point information; measuring cargo temperature during discharge: Categories... lading, a written statement of the following: (1) For Category A or B NLS, the cargo's viscosity at 20 °C...

  18. 46 CFR 153.908 - Cargo viscosity and melting point information; measuring cargo temperature during discharge...

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... 46 Shipping 5 2012-10-01 2012-10-01 false Cargo viscosity and melting point information; measuring... Cargo viscosity and melting point information; measuring cargo temperature during discharge: Categories... lading, a written statement of the following: (1) For Category A or B NLS, the cargo's viscosity at 20 °C...

  19. Melting point of high-purity germanium stable isotopes

    NASA Astrophysics Data System (ADS)

    Gavva, V. A.; Bulanov, A. D.; Kut'in, A. M.; Plekhovich, A. D.; Churbanov, M. F.

    2018-05-01

    The melting point (Tm) of germanium stable isotopes 72Ge, 73Ge, 74Ge, 76Ge was determined by differential scanning calorimetry. With the increase in atomic mass of isotope the decrease in Tm is observed. The decrease was equal to 0.15 °C per the unit of atomic mass which qualitatively agrees with the value calculated by Lindemann formula accounting for the effect of "isotopic compression" of elementary cell.

  20. SHORT COMMUNICATION: Correlation between the Resistance Ratios of Platinum Resistance Thermometers at the Melting Point of Gallium and the Triple Point of Mercury

    NASA Astrophysics Data System (ADS)

    Singh, Y. P.; Maas, H.; Edler, F.; Zaidi, Z. H.

    1994-01-01

    A set of resistance ratios (W) for platinum resistance thermometers was obtained at the triple point of Hg and the melting point of Ga in order to study their relationship. It was found that using measured values for one of the fixed points, a linear equation will predict the value of the other. These measurements also indicate that the fixed points of Hg and of Ga are inconsistent by about 1,5 mK in the sense that either the melting point of Ga or the triple point of Hg was assigned too high a value on the ITS-90.

  1. Evaluation of methods for characterizing the melting curves of a high temperature cobalt-carbon fixed point to define and determine its melting temperature

    NASA Astrophysics Data System (ADS)

    Lowe, David; Machin, Graham

    2012-06-01

    The future mise en pratique for the realization of the kelvin will be founded on the melting temperatures of particular metal-carbon eutectic alloys as thermodynamic temperature references. However, at the moment there is no consensus on what should be taken as the melting temperature. An ideal melting or freezing curve should be a completely flat plateau at a specific temperature. Any departure from the ideal is due to shortcomings in the realization and should be accommodated within the uncertainty budget. However, for the proposed alloy-based fixed points, melting takes place over typically some hundreds of millikelvins. Including the entire melting range within the uncertainties would lead to an unnecessarily pessimistic view of the utility of these as reference standards. Therefore, detailed analysis of the shape of the melting curve is needed to give a value associated with some identifiable aspect of the phase transition. A range of approaches are or could be used; some purely practical, determining the point of inflection (POI) of the melting curve, some attempting to extrapolate to the liquidus temperature just at the end of melting, and a method that claims to give the liquidus temperature and an impurity correction based on the analytical Scheil model of solidification that has not previously been applied to eutectic melting. The different methods have been applied to cobalt-carbon melting curves that were obtained under conditions for which the Scheil model might be valid. In the light of the findings of this study it is recommended that the POI continue to be used as a pragmatic measure of temperature but where required a specified limits approach should be used to define and determine the melting temperature.

  2. Models for mean bonding length, melting point and lattice thermal expansion of nanoparticle materials

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Omar, M.S., E-mail: dr_m_s_omar@yahoo.com

    2012-11-15

    Graphical abstract: Three models are derived to explain the nanoparticles size dependence of mean bonding length, melting temperature and lattice thermal expansion applied on Sn, Si and Au. The following figures are shown as an example for Sn nanoparticles indicates hilly applicable models for nanoparticles radius larger than 3 nm. Highlights: ► A model for a size dependent mean bonding length is derived. ► The size dependent melting point of nanoparticles is modified. ► The bulk model for lattice thermal expansion is successfully used on nanoparticles. -- Abstract: A model, based on the ratio number of surface atoms to thatmore » of its internal, is derived to calculate the size dependence of lattice volume of nanoscaled materials. The model is applied to Si, Sn and Au nanoparticles. For Si, that the lattice volume is increases from 20 Å{sup 3} for bulk to 57 Å{sup 3} for a 2 nm size nanocrystals. A model, for calculating melting point of nanoscaled materials, is modified by considering the effect of lattice volume. A good approach of calculating size-dependent melting point begins from the bulk state down to about 2 nm diameter nanoparticle. Both values of lattice volume and melting point obtained for nanosized materials are used to calculate lattice thermal expansion by using a formula applicable for tetrahedral semiconductors. Results for Si, change from 3.7 × 10{sup −6} K{sup −1} for a bulk crystal down to a minimum value of 0.1 × 10{sup −6} K{sup −1} for a 6 nm diameter nanoparticle.« less

  3. Improvement of gel strength and melting point of fish gelatin by addition of coenhancers using response surface methodology.

    PubMed

    Koli, Jayappa M; Basu, Subrata; Nayak, Binay B; Kannuchamy, Nagalakshmi; Gudipati, Venkateshwarlu

    2011-08-01

    Fish gelatin is a potential alternative to mammalian gelatin. However, poor gel strength and low melting point limit its applications. The study was aimed at improving these properties by adding coenhancers in the range obtained from response surface methodology (RSM) by using Box-Behnken design. Three different coenhancers, MgSO₄, sucrose, and transglutaminase were used as the independent variables for improving the gel strength and melting point of gelatin extracted from Tiger-toothed croaker (Otolithes ruber). Addition of coenhancers at different combinations resulted gel strength and melting point in the range of 150.5 to 240.5 g and 19.5 to 22.5 °C, respectively. The optimal concentrations of coenhancers for predicted maximum gel strength (242.8 g) obtained by RSM were 0.23 M MgSO₄, 12.60% sucrose (w/v), and 5.92 mg/g transglutaminase and for predicted maximum melting point (22.57 °C), the values were 0.24 M MgSO₄, 10.44% sucrose (w/v), and 5.72 mg/g transglutaminase. By addition of coenhancers at these optimal concentrations in verification experiments, the gel strength and melting point were improved from 170 to 240.89 g and 20.3 to 22.7 °C, respectively. These experimental values agreed well with the predicted values demonstrating the fitness of the models. Results from the present study clearly revealed that the addition of coenhancers at a particular combination can improve the gel strength and melting point of fish gelatin to enhance its range of applications. There is a growing interest in the use of fish gelatin as an alternative to mammalian gelatin. However, poor gel strength and low melting point of fish gelatin have limited its commercial applications. The gel strength and melting point of fish gelatin can be increased by incorporation of coenhancers such as magnesium sulphate, sucrose, and transglutaminase. Results of this work help to produce the fish gelatin suitable for wide range of applications in the food industry. © 2011 Institute

  4. Estimating the melting point, entropy of fusion, and enthalpy of fusion of organic compounds via SPARC.

    PubMed

    Whiteside, T S; Hilal, S H; Brenner, A; Carreira, L A

    2016-08-01

    The entropy of fusion, enthalpy of fusion, and melting point of organic compounds can be estimated through three models developed using the SPARC (SPARC Performs Automated Reasoning in Chemistry) platform. The entropy of fusion is modelled through a combination of interaction terms and physical descriptors. The enthalpy of fusion is modelled as a function of the entropy of fusion, boiling point, and flexibility of the molecule. The melting point model is the enthalpy of fusion divided by the entropy of fusion. These models were developed in part to improve SPARC's vapour pressure and solubility models. These models have been tested on 904 unique compounds. The entropy model has a RMS of 12.5 J mol(-1) K(-1). The enthalpy model has a RMS of 4.87 kJ mol(-1). The melting point model has a RMS of 54.4°C.

  5. [Fine stereo structure for natural organic molecules, a preliminary study. II. Melting point influenced by structure factors].

    PubMed

    Lu, Y; Zheng, Q; Lu, D; Ma, P; Chen, Y

    1995-06-01

    Crystal structures of two compounds from Tripterygium wilfordii Hook f. have been determined by X-ray diffraction method. Structure factors influencing melting point of solid state have been analysed. Crystal class (or space group), recrystallization solvent, force between molecules and fine changes of molecular structures will all cause melting point changes of crystal substance.

  6. Effect of deposition rate on melting point of copper film catalyst substrate at atomic scale

    NASA Astrophysics Data System (ADS)

    Marimpul, Rinaldo; Syuhada, Ibnu; Rosikhin, Ahmad; Winata, Toto

    2018-03-01

    Annealing process of copper film catalyst substrate was studied by molcular dynamics simulation. This copper film catalyst substrate was produced using thermal evaporation method. The annealing process was limited in nanosecond order to observe the mechanism at atomic scale. We found that deposition rate parameter affected the melting point of catalyst substrate. The change of crystalline structure of copper atoms was observed before it had been already at melting point. The optimum annealing temperature was obtained to get the highest percentage of fcc structure on copper film catalyst substrate.

  7. Improvements in the realization of the ITS-90 over the temperature range from the melting point of gallium to the freezing point of silver at NIM

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sun, J.; Zhang, J. T.; Ping, Q.

    2013-09-11

    The temperature primary standard over the range from the melting point of gallium to the freezing point of silver in National institute of Metrology (NIM), China, was established in the early 1990s. The performance of all of fixed-point furnaces degraded and needs to be updated due to many years of use. Nowadays, the satisfactory fixed point materials can be available with the development of the modern purification techniques. NIM plans to use a group of three cells for each defining fixed point temperature. In this way the eventual drift of individual cells can be evidenced by periodic intercomparison and thismore » will increase the reliability in disseminating the ITS-90 in China. This article describes the recent improvements in realization of ITS-90 over temperature range from the melting point of gallium to the freezing point of silver at NIM. Taking advantages of the technological advances in the design and manufacture of furnaces, the new three-zone furnaces and the open-type fixed points were developed from the freezing point of indium to the freezing point of silver, and a furnace with the three-zone semiconductor cooling was designed to automatically realize the melting point of gallium. The reproducibility of the new melting point of gallium and the new open-type freezing points of In, Sn, Zn. Al and Ag is improved, especially the freezing points of Al and Ag with the reproducibility of 0.2mK and 0.5mK respectively. The expanded uncertainty in the realization of these defining fixed point temperatures is 0.34mK, 0.44mK, 0.54mK, 0.60mK, 1.30mK and 1.88mK respectively.« less

  8. The gallium melting-point standard: a determination of the liquid-solid equilibrium temperature of pure gallium on the International Practical Temperature Scale of 1968.

    PubMed

    Thornton, D D

    1977-01-01

    The sharpness and reproducibility of the gallium melting point were studied and the melting temperature of gallium in terms of IPTS-68 was determined. Small melting-point cells designed for use with thermistors are described. Nine gallium cells including three levels of purity were used in 68 separate determinations fo the melting point. The melting point of 99.99999% pure gallium in terms of IPTS-68 is found to be 29.771(4) +/- 0.001(4) degree C; the melting range is less than 0.0005 degree C and is reproducible to +/- 0.0004 degree C.

  9. Low-melting point inorganic nitrate salt heat transfer fluid

    DOEpatents

    Bradshaw, Robert W [Livermore, CA; Brosseau, Douglas A [Albuquerque, NM

    2009-09-15

    A low-melting point, heat transfer fluid made of a mixture of four inorganic nitrate salts: 9-18 wt % NaNO.sub.3, 40-52 wt % KNO.sub.3, 13-21 wt % LiNO.sub.3, and 20-27 wt % Ca(NO.sub.3).sub.2. These compositions can have liquidus temperatures less than 100 C; thermal stability limits greater than 500 C; and viscosity in the range of 5-6 cP at 300 C; and 2-3 cP at 400 C.

  10. New Approach in Filling of Fixed-Point Cells: Case Study of the Melting Point of Gallium

    NASA Astrophysics Data System (ADS)

    Bojkovski, J.; Hiti, M.; Batagelj, V.; Drnovšek, J.

    2008-02-01

    The typical way of constructing fixed-point cells is very well described in the literature. The crucible is loaded with shot, or any other shape of pure metal, inside an argon-filled glove box. Then, the crucible is carefully slid into a fused-silica tube that is closed at the top with an appropriate cap. After that, the cell is removed from the argon glove box and melted inside a furnace while under vacuum or filled with an inert gas like argon. Since the metal comes as shot, or in some other shape such as rods of various sizes, and takes more volume than the melted material, it is necessary to repeat the procedure until a sufficient amount of material is introduced into the crucible. With such a procedure, there is the possibility of introducing additional impurities into the pure metal with each cycle of melting the material and putting it back into the glove box to fill the cell. Our new approach includes the use of a special, so-called dry-box system, which is well known in chemistry. The atmosphere inside the dry box contains less than 20 ppm of water and less than 3 ppm of oxygen. Also, the size of the dry box allows it to contain a furnace for melting materials, not only for gallium but for higher-temperature materials as well. With such an approach, the cell and all its parts (pure metal, graphite, fused-silica tube, and cap) are constantly inside the controlled atmosphere, even while melting the material and filling the crucible. With such a method, the possibility of contaminating the cell during the filling process is minimized.

  11. Dissolution Mechanism for High Melting Point Transition Elements in Aluminum Melt

    NASA Astrophysics Data System (ADS)

    Lee, Young E.; Houser, Stephen L.

    When added cold in aluminum melt, the alloying process for compacts of transition metal elements such as Mn, Fe, Cr, Ni, Ti, Cu, and Zn takes a sequence of incubation, exothermic reactions to form intermetallic compounds, and dispersion of the alloying elements into aluminum melt. The experiments with Cr compacts show that the incubation period is affected by the content of ingredient Al and size of compacts and by size of Cr particles. Incubation period becomes longer as the content of ingredient aluminum in compact decreases, and this prolonged incubation period negatively impacts the dissolution of the alloying elements in aluminum. Once liquid aluminum forms at reaction sites, the exothermic reaction takes place quickly and significantly raises the temperature of the compacts. As the result of it, the compacts swell in volume with a sponge like structure. Such porous structure encourages the penetration of liquid aluminum from the melt. The compacts become weak mechanically, and the alloying elements are dispersed and entrained in aluminum melt as discrete and small sized units. When Cr compacts are deficient in aluminum, the unreacted Cr particles are encased by the intermetallic compounds in the dispersed particles. They are carried in the melt flow and continue the dissolution reaction in aluminum. The entire dissolution process of Cr compacts completes within 10 to 15 minutes with a full recovery when the aluminum content is 10 to 20% in compacts.

  12. Experimental study and numerical simulation of the salinity effect on water-freezing point and ice-melting rate

    NASA Astrophysics Data System (ADS)

    Qin, N.; Wu, Y.; Wang, H. W.; Wang, Y. Y.

    2017-12-01

    In this paper, based on the background of snowmelt de-icing tools, we studied the effect of salt on freezing point and melting rate of ice through laboratory test and FLUENT numerical simulation analysis. It was confirmed that the freezing point is inversely proportional to the salt solid content, and with the salt solid content increasing, the freezing process of salt water gradually accepts the curing rule of non-crystal solids. At the same temperature, an increase in the salt solid content, the ice melting rate increase by the empirical formula linking the melting time with temperature and salt content. The theoretical aspects of solid/fluid transformation are discussed in detail.

  13. Genome-Wide Association Study in Arabidopsis thaliana of Natural Variation in Seed Oil Melting Point: A Widespread Adaptive Trait in Plants.

    PubMed

    Branham, Sandra E; Wright, Sara J; Reba, Aaron; Morrison, Ginnie D; Linder, C Randal

    2016-05-01

    Seed oil melting point is an adaptive, quantitative trait determined by the relative proportions of the fatty acids that compose the oil. Micro- and macro-evolutionary evidence suggests selection has changed the melting point of seed oils to covary with germination temperatures because of a trade-off between total energy stores and the rate of energy acquisition during germination under competition. The seed oil compositions of 391 natural accessions of Arabidopsis thaliana, grown under common-garden conditions, were used to assess whether seed oil melting point within a species varied with germination temperature. In support of the adaptive explanation, long-term monthly spring and fall field temperatures of the accession collection sites significantly predicted their seed oil melting points. In addition, a genome-wide association study (GWAS) was performed to determine which genes were most likely responsible for the natural variation in seed oil melting point. The GWAS found a single highly significant association within the coding region of FAD2, which encodes a fatty acid desaturase central to the oil biosynthesis pathway. In a separate analysis of 15 a priori oil synthesis candidate genes, 2 (FAD2 and FATB) were located near significant SNPs associated with seed oil melting point. These results comport with others' molecular work showing that lines with alterations in these genes affect seed oil melting point as expected. Our results suggest natural selection has acted on a small number of loci to alter a quantitative trait in response to local environmental conditions. © The American Genetic Association. 2016. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.

  14. A noise thermometry investigation of the melting point of gallium at the NIM

    NASA Astrophysics Data System (ADS)

    Zhang, J. T.; Xue, S.

    2006-06-01

    This paper describes a study of the melting point of gallium with the new NIM Johnson noise thermometer (JNT). The new thermometer adopts the structure of switching correlator and commutator with the reference resistor maintained at the triple point of water. The electronic system of the new thermometer is basically the same as the current JNT, but the preamplifiers have been improved slightly. This study demonstrates that examining the characteristics of the noise signals in the frequency domain is of critical importance in constructing an improved new thermometer, where a power spectral analysis is found to be critical in establishing appropriate grounding for the new thermometer. The new JNT is tested on measurements of the thermodynamic temperature of the melting point of gallium, which give the thermodynamic temperature of 302.9160 K, with an overall integration time of 190 h and a combined standard uncertainty of 9.4 mK. The uncertainty analysis indicates that a standard combined uncertainty of 3 mK could be achieved with the new thermometer over an integration period of 1750 h.

  15. Experimental determination of the thermal conductivity of liquid UO2 near the melting point

    NASA Astrophysics Data System (ADS)

    Sheindlin, M.; Staicu, D.; Ronchi, C.; Game-Arnaud, L.; Remy, B.; Degiovanni, A.

    2007-05-01

    The article gives an account of measurements of the thermal conductivity of liquid UO2. The sample was heated up to above the melting point by a laser pulse of a controlled shape, and the produced thermogram of temperature history was measured by a fast and accurate pyrometer with a time resolution of 10 μs. The experiment shows that the rate of temperature increase during the ascending part of the pulse changes moderately across the melting point. Due to the high power input, this effect cannot be explained in terms of the sole intake of latent heat of fusion. By solving the related heat transfer equation with a 2D-axisymmetric numerical model, it is demonstrated that this feature depends principally on heat conduction in the sample, and proves that the thermal conductivities of solid and liquid are not very different. A theoretical sensitivity study assessing the influence of the liquid thermal conductivity on the pulse temperature evolution showed that the conductivity of the liquid can be deduced from the fitting of the thermograms with a numerical precision of the order of 1%. The analysis reveals that the thermal conductivity is weakly correlated with the effective heat losses during the pulse and to the melting enthalpy, so that the uncertainty in its evaluation by fitting the experimental thermograms with model predictions is satisfactory. The value of the thermal conductivity of liquid UO2 near the melting point resulted to be 2.6±0.35 W m-1 K-1, where the magnitude of the uncertainty is much lower than the scatter of the previously published, discordant measurements.

  16. Fatigue behavior of porous biomaterials manufactured using selective laser melting.

    PubMed

    Yavari, S Amin; Wauthle, R; van der Stok, J; Riemslag, A C; Janssen, M; Mulier, M; Kruth, J P; Schrooten, J; Weinans, H; Zadpoor, A A

    2013-12-01

    Porous titanium alloys are considered promising bone-mimicking biomaterials. Additive manufacturing techniques such as selective laser melting allow for manufacturing of porous titanium structures with a precise design of micro-architecture. The mechanical properties of selective laser melted porous titanium alloys with different designs of micro-architecture have been already studied and are shown to be in the range of mechanical properties of bone. However, the fatigue behavior of this biomaterial is not yet well understood. We studied the fatigue behavior of porous structures made of Ti6Al4V ELI powder using selective laser melting. Four different porous structures were manufactured with porosities between 68 and 84% and the fatigue S-N curves of these four porous structures were determined. The three-stage mechanism of fatigue failure of these porous structures is described and studied in detail. It was found that the absolute S-N curves of these four porous structures are very different. In general, given the same absolute stress level, the fatigue life is much shorter for more porous structures. However, the normalized fatigue S-N curves of these four structures were found to be very similar. A power law was fitted to all data points of the normalized S-N curves. It is shown that the measured data points conform to the fitted power law very well, R(2)=0.94. This power law may therefore help in estimating the fatigue life of porous structures for which no fatigue test data is available. It is also observed that the normalized endurance limit of all tested porous structures (<0.2) is lower than that of corresponding solid material (c.a. 0.4). © 2013.

  17. Comparison between the liquidus temperature and triple-point temperature of tin realized by heat pulse-based melting

    NASA Astrophysics Data System (ADS)

    Joung, Wukchul; Pearce, Jonathan V.; Park, Jihye

    2018-06-01

    In this work, the consistency of the heat pulse-based melting technique, which was used to determine the liquidus temperature of tin, was examined by comparing the liquidus temperatures of tin at 101 325 Pa and at the vapour pressure of tin (i.e. the triple-point temperature), both of which were realized by heat pulse-based melting. Periodic square wave-type temperature steps with an amplitude of 0.7 °C were generated in the isothermal region of the pressure-controlled loop heat pipe, and the tin sample, having a segregated impurity distribution established by the prior outward slow freezing, was melted by application of the temperature step-based heat pulses. The triple-point temperature was found to be lower than the liquidus temperature of tin at 101 325 Pa by 3.23 mK with an expanded measurement uncertainty of 0.24 mK (i.e. a coverage factor of k  =  2), while the ideal temperature difference calculated from the ITS-90 given pressure coefficient (i.e. 3.3  ×  10‑8 K Pa‑1) is about 3.34 mK. The difference between the measured temperature difference and ideal temperature difference was attributed to the incomplete removal of the gases in the tin triple-point cell. Overall, these results further corroborated the notion that the heat pulse-based melting technique was shown to yield results consistent with the prescription of the ITS-90, and to be a reliable method in terms of the realization of the fixed-point temperatures.

  18. Melting Point Depression and Fast Diffusion in Nanostructured Brazing Fillers Confined Between Barrier Nanolayers

    NASA Astrophysics Data System (ADS)

    Kaptay, G.; Janczak-Rusch, J.; Jeurgens, L. P. H.

    2016-08-01

    Successful brazing using Cu-based nanostructured brazing fillers at temperatures much below the bulk melting temperature of Cu was recently demonstrated (Lehmert et al. in, Mater Trans 56:1015-1018, 2015). The Cu-based nano-fillers are composed of alternating nanolayers of Cu and a permeable, non-wetted AlN barrier. In this study, a thermodynamic model is derived to estimate the melting point depression (MPD) in such Cu/AlN nano-multilayers (NMLs) as function of the Cu nanolayer thickness. Depending on the melting route, the model predicts a MPD range of 238-609 K for Cu10nm/AlN10nm NMLs, which suggests a heterogeneous pre-melting temperature range of 750-1147 K (476-874 °C), which is consistent with experimental observations. As suggested by basic kinetic considerations, the observed Cu outflow to the NML surface at the temperatures of 723-1023 K (450-750 °C) can also be partially rationalized by fast solid-state diffusion of Cu along internal interfaces, especially for the higher temperatures.

  19. Explaining Melting and Evaporation below Boiling Point. Can Software Help with Particle Ideas?

    ERIC Educational Resources Information Center

    Papageorgiou, George; Johnson, Philip; Fotiades, Fotis

    2008-01-01

    This paper reports the findings of a study exploring the use of a software package to help pupils understand particulate explanations for melting and evaporation below boiling point. Two matched classes in a primary school in Greece (ages 11-12, n = 16 and 19) were involved in a short intervention of six one hour lessons. Covering the same…

  20. Steady distribution structure of point defects near crystal-melt interface under pulling stop of CZ Si crystal

    NASA Astrophysics Data System (ADS)

    Abe, T.; Takahashi, T.; Shirai, K.

    2017-02-01

    In order to reveal a steady distribution structure of point defects of no growing Si on the solid-liquid interface, the crystals were grown at a high pulling rate, which Vs becomes predominant, and the pulling was suddenly stopped. After restoring the variations of the crystal by the pulling-stop, the crystals were then left in prolonged contact with the melt. Finally, the crystals were detached and rapidly cooled to freeze point defects and then a distribution of the point defects of the as-grown crystals was observed. As a result, a dislocation loop (DL) region, which is formed by the aggregation of interstitials (Is), was formed over the solid-liquid interface and was surrounded with a Vs-and-Is-free recombination region (Rc-region), although the entire crystals had been Vs rich in the beginning. It was also revealed that the crystal on the solid-liquid interface after the prolonged contact with the melt can partially have a Rc-region to be directly in contact with the melt, unlike a defect distribution of a solid-liquid interface that has been growing. This experimental result contradicts a hypothesis of Voronkov's diffusion model, which always assumes the equilibrium concentrations of Vs and Is as the boundary condition for distribution of point defects on the growth interface. The results were disscussed from a qualitative point of view of temperature distribution and thermal stress by the pulling-stop.

  1. Absolute, SI-traceable lunar irradiance tie-points for the USGS Lunar Model

    NASA Astrophysics Data System (ADS)

    Brown, Steven W.; Eplee, Robert E.; Xiong, Xiaoxiong J.

    2017-10-01

    The United States Geological Survey (USGS) has developed an empirical model, known as the Robotic Lunar Observatory (ROLO) Model, that predicts the reflectance of the Moon for any Sun-sensor-Moon configuration over the spectral range from 350 nm to 2500 nm. The lunar irradiance can be predicted from the modeled lunar reflectance using a spectrum of the incident solar irradiance. While extremely successful as a relative exo-atmospheric calibration target, the ROLO Model is not SI-traceable and has estimated uncertainties too large for the Moon to be used as an absolute celestial calibration target. In this work, two recent absolute, low uncertainty, SI-traceable top-of-the-atmosphere (TOA) lunar irradiances, measured over the spectral range from 380 nm to 1040 nm, at lunar phase angles of 6.6° and 16.9° , are used as tie-points to the output of the ROLO Model. Combined with empirically derived phase and libration corrections to the output of the ROLO Model and uncertainty estimates in those corrections, the measurements enable development of a corrected TOA lunar irradiance model and its uncertainty budget for phase angles between +/-80° and libration angles from 7° to 51° . The uncertainties in the empirically corrected output from the ROLO model are approximately 1 % from 440 nm to 865 nm and increase to almost 3 % at 412 nm. The dominant components in the uncertainty budget are the uncertainty in the absolute TOA lunar irradiance and the uncertainty in the fit to the phase correction from the output of the ROLO model.

  2. A novel method of measuring the melting point of animal fats.

    PubMed

    Lloyd, S S; Dawkins, S T; Dawkins, R L

    2014-10-01

    The melting point (TM) of fat is relevant to health, but available methods of determining TM are cumbersome. One of the standard methods of measuring TM for animal and vegetable fats is the slip point, also known as the open capillary method. This method is imprecise and not amenable to automation or mass testing. We have developed a technique for measuring TM of animal fat using the Rotor-Gene Q (Qiagen, Hilden, Germany). The assay has an intra-assay SD of 0.08°C. A single operator can extract and assay up to 250 samples of animal fat in 24 h, including the time to extract the fat from the adipose tissue. This technique will improve the quality of research into genetic and environmental contributions to fat composition of meat.

  3. Control of Low Melting Point Mno-Sio2-Al2o3 Inclusions in Low Carbon Thin-Strip Continuous Casting Steel

    NASA Astrophysics Data System (ADS)

    Chen, Jing; Zhu, Qing; Huang, Di; Zheng, Shaobo; Zhang, Jieyu; Li, Huigai

    2017-09-01

    There is a significant difference in the demand for molten steel quality between thin-strip continuous casting and traditional continuous casting. In order to make sure the better surface quality of the thin strips, to generate an oxidation film on the surface of cooling roller is required. This will require that the higher oxygen potential in molten steel and inclusions with low melting point. In this article, the possibility of producing low-melting inclusions which is mainly consisted of SiO2 and MnO is studied by controlling the initial oxygen potential and addition order of deoxidizing alloys. The interaction activity between each component in the ternary system of Al2O3-SiO2-MnO is obtained by Action Concentration model. The equal [Mn], [Si], [O], [Al] curve under the temperature of 1823K and equilibrium condition in ternary system of Al2O3-SiO2-MnO is obtained by relative thermodynamic calculation as well. The control method for getting the low-melting point inclusion is as below. While the weight percentage of Si is 0.35% and the one of Mn is 0.90%, in order to maintain the melting point of inclusion around 1200°C, the free oxygen potential in melted steel F[O] should be maintained between 0.002% ∼ 0.004%. On the contrary, the requirement for acid dissolved [Al] content in melted steel is as low as 0.0001% ∼ 0.0005%.

  4. The Relationship between Lattice Enthalpy and Melting Point in Magnesium and Aluminium Oxides. Science Notes

    ERIC Educational Resources Information Center

    Talbot, Christopher; Yap, Lydia

    2013-01-01

    This "Science Note" presents a study by Christopher Talbot and Lydia Yap, who teach IB Chemistry at Anglo-Chinese School (Independent), Republic of Singapore, to pre-university students. Pre-university students may postulate the correlation between the magnitude of the lattice enthalpy compound and its melting point, since both…

  5. Estimating the melting point, entropy of fusion, and enthalpy of fusion of organic compounds via SPARC

    EPA Science Inventory

    The entropies of fusion, enthalies of fusion, and melting points of organic compounds can be estimated through three models developed using the SPARC (SPARC Performs Automated Reasoning in Chemistry) platform. The entropy of fusion is modeled through a combination of interaction ...

  6. Rate Change Graph Technology: Absolute Value Point Methodology

    NASA Astrophysics Data System (ADS)

    Strickland, Ken; Duvernois, Michael

    2011-10-01

    Absolute Value Point Methodology (AVPM) is a new theoretical tool for science research centered on Rate Change Graph Technology (RCGT). The modeling techniques of AVPM surpass conventional methods by extending the geometrical rules of mathematics. Exact geometrical structures of matter and energy become clearer revealing new ways to compile advanced data. RCGT mechanics is realized from geometrical intersections that are the result of plotting changing value vs. changing geometry. RCGT methods ignore size and value to perform an objective analysis in geometry. Value and size are then re-introduced back into the analytical system for a clear and concise solution. Available AVPM applications reveal that a massive amount of data from the Big Bang to vast super-clusters is untouched by human thought. Once scientists learn to design tools from RCGT Mechanics, new and formidable approaches to experimentation and theory may lead to new discoveries. In the creation of AVPM, it has become apparent there is a particle-world that exists between strings and our familiar universe. These unrealized particles in their own nature exhibit inflation like properties and may be the progenitor of the implements of our universe. Thus space, time, energy, motion, space-time and gravity are born from its existence and decay. This announcement will be the beginning of many new ideas from the study of RCGT mechanics.

  7. Removal of oxides from alkali metal melts by reductive titration to electrical resistance-change end points

    DOEpatents

    Tsang, Floris Y.

    1980-01-01

    Alkali metal oxides dissolved in alkali metal melts are reduced with soluble metals which are converted to insoluble oxides. The end points of the reduction is detected as an increase in electrical resistance across an alkali metal ion-conductive membrane interposed between the oxide-containing melt and a material capable of accepting the alkali metal ions from the membrane when a difference in electrical potential, of the appropriate polarity, is established across it. The resistance increase results from blocking of the membrane face by ions of the excess reductant metal, to which the membrane is essentially non-conductive.

  8. Potential utilization of the absolute point cumulative semivariogram technique for the evaluation of distribution coefficient.

    PubMed

    Külahci, Fatih; Sen, Zekâi

    2009-09-15

    The classical solid/liquid distribution coefficient, K(d), for radionuclides in water-sediment systems is dependent on many parameters such as flow, geology, pH, acidity, alkalinity, total hardness, radioactivity concentration, etc. in a region. Considerations of all these effects require a regional analysis with an effective methodology, which has been based on the concept of the cumulative semivariogram concept in this paper. Although classical K(d) calculations are punctual and cannot represent regional pattern, in this paper a regional calculation methodology is suggested through the use of Absolute Point Cumulative SemiVariogram (APCSV) technique. The application of the methodology is presented for (137)Cs and (90)Sr measurements at a set of points in Keban Dam reservoir, Turkey.

  9. A review of the deformation behavior of tungsten at temperatures less than 0.2 of the melting point /K/

    NASA Technical Reports Server (NTRS)

    Stephens, J. R.

    1974-01-01

    The deformation behavior of tungsten at temperatures below 0.2 times the absolute melting temperature is reviewed with primary emphasis on the temperature dependence of the yield stress and the ductile-brittle transition. It is concluded that a model based on the high Peierls stress of tungsten best accounts for the observed mechanical behavior at low temperatures. Recent research suggests an important role of electron concentration and bonding on the mechanical behavior of tungsten. Future research on tungsten should include studies to define more clearly the correlation between electron concentration and mechanical behavior of alloys of tungsten and other transition metal alloys.

  10. Microneedle pretreatment enhances the percutaneous permeation of hydrophilic compounds with high melting points

    PubMed Central

    2012-01-01

    Background Two commercially available microneedle rollers with a needle length of 200 μm and 300 μm were selected to examine the influence of microneedle pretreatment on the percutaneous permeation of four non-steroidal anti-inflammatory drugs (diclofenac, ibuprofen, ketoprofen, paracetamol) with different physicochemical drug characteristics in Franz-type diffusion cells. Samples of the receptor fluids were taken at predefined times over 6 hours and were analysed by UV–VIS high-performance liquid-chromatography. Histological examinations after methylene blue application were additionally performed to gather information about barrier disruption. Results Despite no visible pores in the stratum corneum, the microneedle pretreatment resulted in a twofold (200 μm) and threefold higher (300 μm) flux through the pretreated skin samples compared to untreated skin samples for ibuprofen and ketoprofen (LogKow > 3, melting point < 100°C). The flux of the hydrophilic compounds diclofenac and paracetamol (logKow < 1, melting point > 100°C) increased their amount by four (200 μm) to eight (300 μm), respectively. Conclusion Commercially available microneedle rollers with 200–300 μm long needles enhance the drug delivery of topically applied non-steroidal anti-inflammatory drugs and represent a valuable tool for percutaneous permeation enhancement particularly for substances with poor permeability due to a hydrophilic nature and high melting points. PMID:22947102

  11. 46 CFR 153.488 - Design and equipment for tanks carrying high melting point NLSs: Category B.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... HAZARDOUS MATERIALS Design and Equipment Design and Equipment for Pollution Control § 153.488 Design and... 46 Shipping 5 2010-10-01 2010-10-01 false Design and equipment for tanks carrying high melting point NLSs: Category B. 153.488 Section 153.488 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY...

  12. 46 CFR 153.488 - Design and equipment for tanks carrying high melting point NLSs: Category B.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... HAZARDOUS MATERIALS Design and Equipment Design and Equipment for Pollution Control § 153.488 Design and... 46 Shipping 5 2014-10-01 2014-10-01 false Design and equipment for tanks carrying high melting point NLSs: Category B. 153.488 Section 153.488 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY...

  13. 46 CFR 153.488 - Design and equipment for tanks carrying high melting point NLSs: Category B.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... HAZARDOUS MATERIALS Design and Equipment Design and Equipment for Pollution Control § 153.488 Design and... 46 Shipping 5 2013-10-01 2013-10-01 false Design and equipment for tanks carrying high melting point NLSs: Category B. 153.488 Section 153.488 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY...

  14. 46 CFR 153.488 - Design and equipment for tanks carrying high melting point NLSs: Category B.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... HAZARDOUS MATERIALS Design and Equipment Design and Equipment for Pollution Control § 153.488 Design and... 46 Shipping 5 2012-10-01 2012-10-01 false Design and equipment for tanks carrying high melting point NLSs: Category B. 153.488 Section 153.488 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY...

  15. 46 CFR 153.488 - Design and equipment for tanks carrying high melting point NLSs: Category B.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... HAZARDOUS MATERIALS Design and Equipment Design and Equipment for Pollution Control § 153.488 Design and... 46 Shipping 5 2011-10-01 2011-10-01 false Design and equipment for tanks carrying high melting point NLSs: Category B. 153.488 Section 153.488 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY...

  16. (abstract) The Design of a Benign Fail-safe Mechanism Using a Low-melting-point Metal Alloy Coupler

    NASA Technical Reports Server (NTRS)

    Blomquist, Richard S.

    1995-01-01

    Because the alpha proton X ray spectrometer (APXS) sensor head on the Mars Pathfinder rover, Sojourner, is placed on Martian soil by the deployment mechanism (ADM), the rover would be crippled if the actuator fails when the mechanism is in its deployed position, as rover ground clearance is then reduced to zero. This paper describes the unique fail-safe mounted on the ADM, especially the use of a low-temperature-melting alloy as a coupler device. The final form of the design is a low-melting-point metal pellet coupler, made from Cerrobend, in parallel with a Negator spring pack. In its solid state, the metal rigidly connects the driver (the actuator) and the driven part (the mechanism). When commanded, a strip heater wrapped around the coupler melts the metal pellet (at 60(deg)C), allowing the driven part to turn independent of the driver. The Negator spring retracts the mechanism to its fully stowed position. This concept meets all the design criteria, and provides an added benefit. When the metal hardens the coupler once again rigidly connects the actuator and the mechanism. The concept presented here can easily be applied to other applications. Anywhere release devices are needed, low-melting-point couplers can be considered. The issues to be concerned with are thermal isolation, proper setting of the parts before actuation, and possible outgassing concerns. However, when these issues are overcome, the resulting release mechanism can promise to be the most light, simple, power conserving alternative available.

  17. Melting point suppression in new lanthanoid(III) ionic liquids by trapping of kinetic polymorphs: an in situ synchrotron powder diffraction study.

    PubMed

    Chesman, Anthony S R; Yang, Mei; Mallick, Bert; Ross, Tamsyn M; Gass, Ian A; Deacon, Glen B; Batten, Stuart R; Mudring, Anja-Verena

    2012-01-04

    The complexes (N(4444))(3)[Ln(dcnm)(6)] (Ln = La-Nd, Sm; N(4444) = tetrabutylammonium) display a decrease in the melting point upon fast cooling from a melt, which is shown by in situ synchrotron based X-ray powder diffraction to be due to the formation of a second, less thermodynamically stable, polymorph. This journal is © The Royal Society of Chemistry 2012

  18. The thermal expansion of gold: point defect concentrations and pre-melting in a face-centred cubic metal.

    PubMed

    Pamato, Martha G; Wood, Ian G; Dobson, David P; Hunt, Simon A; Vočadlo, Lidunka

    2018-04-01

    On the basis of ab initio computer simulations, pre-melting phenomena have been suggested to occur in the elastic properties of hexagonal close-packed iron under the conditions of the Earth's inner core just before melting. The extent to which these pre-melting effects might also occur in the physical properties of face-centred cubic metals has been investigated here under more experimentally accessible conditions for gold, allowing for comparison with future computer simulations of this material. The thermal expansion of gold has been determined by X-ray powder diffraction from 40 K up to the melting point (1337 K). For the entire temperature range investigated, the unit-cell volume can be represented in the following way: a second-order Grüneisen approximation to the zero-pressure volumetric equation of state, with the internal energy calculated via a Debye model, is used to represent the thermal expansion of the 'perfect crystal'. Gold shows a nonlinear increase in thermal expansion that departs from this Grüneisen-Debye model prior to melting, which is probably a result of the generation of point defects over a large range of temperatures, beginning at T / T m > 0.75 (a similar homologous T to where softening has been observed in the elastic moduli of Au). Therefore, the thermodynamic theory of point defects was used to include the additional volume of the vacancies at high temperatures ('real crystal'), resulting in the following fitted parameters: Q = ( V 0 K 0 )/γ = 4.04 (1) × 10 -18  J, V 0 = 67.1671 (3) Å 3 , b = ( K 0 ' - 1)/2 = 3.84 (9), θ D = 182 (2) K, ( v f /Ω)exp( s f / k B ) = 1.8 (23) and h f = 0.9 (2) eV, where V 0 is the unit-cell volume at 0 K, K 0 and K 0 ' are the isothermal incompressibility and its first derivative with respect to pressure (evaluated at zero pressure), γ is a Grüneisen parameter, θ D is the Debye temperature, v f , h f and s f are the vacancy formation volume, enthalpy and entropy

  19. High precision determination of the melting points of water TIP4P/2005 and water TIP4P/Ice models by the direct coexistence technique

    NASA Astrophysics Data System (ADS)

    Conde, M. M.; Rovere, M.; Gallo, P.

    2017-12-01

    An exhaustive study by molecular dynamics has been performed to analyze the factors that enhance the precision of the technique of direct coexistence for a system of ice and liquid water. The factors analyzed are the stochastic nature of the method, the finite size effects, and the influence of the initial ice configuration used. The results obtained show that the precision of estimates obtained through the technique of direct coexistence is markedly affected by the effects of finite size, requiring systems with a large number of molecules to reduce the error bar of the melting point. This increase in size causes an increase in the simulation time, but the estimate of the melting point with a great accuracy is important, for example, in studies on the ice surface. We also verified that the choice of the initial ice Ih configuration with different proton arrangements does not significantly affect the estimate of the melting point. Importantly this study leads us to estimate the melting point at ambient pressure of two of the most popular models of water, TIP4P/2005 and TIP4P/Ice, with the greatest precision to date.

  20. The effect of coconut oil and palm oil as substituted oils to cocoa butter on chocolate bar texture and melting point

    NASA Astrophysics Data System (ADS)

    Limbardo, Rebecca Putri; Santoso, Herry; Witono, Judy Retti

    2017-05-01

    Cocoa butter has responsibility for dispersion medium to create a stable chocolate bar. Due to the economic reason, cocoa butter is partially or wholly substituted by edible oils e.g palm oil and coconut oil. The objective of the research was to observe the effect of oil substitution in the chocolate bar towards its melting point and texture. The research were divided in three steps which were preliminary research started with fat content analysis in cocoa powder, melting point analysis of substituted oils anc cocoa butter, and iodine number analysis in vegetable fats (cocoa butter, coconut oil, and palm oil), chocolate bar production with substitution 0%, 20%, 40%, 60%, 80%, and 100%wt of cocoa butter with each of substituted oils, and analysis process to determine the chocolate bar melting point with DSC and chocolate bar hardness with texture analyser. The increasement of substituted oils during substitution in chocolate bar would reduce the melting point of chocolate bar from 33.5°C to 31.6°C in palm oil substitution with cocoa butter and 33.5°C to 30.75°C in coconut oil substitution. The hardness of chocolate with palm oil were around 88.5 to 139 g on the 1st cycle and 22.75 to 132 g on the 2nd cycle. The hardness of chocolate with coconut oil were around 74.75 to 152.5 g on the 1st cycle and 53.25 to 132 g on the 2nd cycle. Maximum amount of fats substitution to produce a stable texture chocolate bar is 60% wt.

  1. Shifting of the melting point for semi-crystalline polymer nanofibers

    NASA Astrophysics Data System (ADS)

    Arinstein, A.; Liu, Y.; Rafailovich, M.; Zussman, E.

    2011-02-01

    The depression of melting temperature as a function of the diameter of electrospun semi-crystalline polymer nanofibers is discussed. Due to fast solvent evaporation during nanofiber electrospinning, there occurs the fixation of topological structure of the polymer matrix corresponding to chain entanglement of the initial concentration of the semi-dilute solution. The resulting level of chain entanglement is lower than that in polymer bulk at equilibrium. This difference results in an addition to the entropy jump corresponding to the polymer's melting, and accounts for the observed shift in melting temperature in as-spun fibers. The proposed concept is found to be in good agreement with experimental results obtained for as-spun poly(ethylene-co-vinyl acetate) (PEVA) and low-density polyethylene (LDPE) fibers.

  2. Thermodynamic temperature assignment to the point of inflection of the melting curve of high-temperature fixed points.

    PubMed

    Woolliams, E R; Anhalt, K; Ballico, M; Bloembergen, P; Bourson, F; Briaudeau, S; Campos, J; Cox, M G; del Campo, D; Dong, W; Dury, M R; Gavrilov, V; Grigoryeva, I; Hernanz, M L; Jahan, F; Khlevnoy, B; Khromchenko, V; Lowe, D H; Lu, X; Machin, G; Mantilla, J M; Martin, M J; McEvoy, H C; Rougié, B; Sadli, M; Salim, S G R; Sasajima, N; Taubert, D R; Todd, A D W; Van den Bossche, R; van der Ham, E; Wang, T; Whittam, A; Wilthan, B; Woods, D J; Woodward, J T; Yamada, Y; Yamaguchi, Y; Yoon, H W; Yuan, Z

    2016-03-28

    The thermodynamic temperature of the point of inflection of the melting transition of Re-C, Pt-C and Co-C eutectics has been determined to be 2747.84 ± 0.35 K, 2011.43 ± 0.18 K and 1597.39 ± 0.13 K, respectively, and the thermodynamic temperature of the freezing transition of Cu has been determined to be 1357.80 ± 0.08 K, where the ± symbol represents 95% coverage. These results are the best consensus estimates obtained from measurements made using various spectroradiometric primary thermometry techniques by nine different national metrology institutes. The good agreement between the institutes suggests that spectroradiometric thermometry techniques are sufficiently mature (at least in those institutes) to allow the direct realization of thermodynamic temperature above 1234 K (rather than the use of a temperature scale) and that metal-carbon eutectics can be used as high-temperature fixed points for thermodynamic temperature dissemination. The results directly support the developing mise en pratique for the definition of the kelvin to include direct measurement of thermodynamic temperature. © 2016 The Author(s).

  3. The initiation of segmented buoyancy-driven melting during continental breakup

    PubMed Central

    Gallacher, Ryan J.; Keir, Derek; Harmon, Nicholas; Stuart, Graham; Leroy, Sylvie; Hammond, James O. S.; Kendall, J-Michael; Ayele, Atalay; Goitom, Berhe; Ogubazghi, Ghebrebrhan; Ahmed, Abdulhakim

    2016-01-01

    Melting of the mantle during continental breakup leads to magmatic intrusion and volcanism, yet our understanding of the location and dominant mechanisms of melt generation in rifting environments is impeded by a paucity of direct observations of mantle melting. It is unclear when during the rifting process the segmented nature of magma supply typical of seafloor spreading initiates. Here, we use Rayleigh-wave tomography to construct a high-resolution absolute three-dimensional shear-wave velocity model of the upper 250 km beneath the Afar triple junction, imaging the mantle response during progressive continental breakup. Our model suggests melt production is highest and melting depths deepest early during continental breakup. Elevated melt production during continental rifting is likely due to localized thinning and melt focusing when the rift is narrow. In addition, we interpret segmented zones of melt supply beneath the rift, suggesting that buoyancy-driven active upwelling of the mantle initiates early during continental rifting. PMID:27752044

  4. Microstructural Evolution of the Interface Between Pure Titanium and Low Melting Point Zr-Ti-Ni(Cu) Filler Metals

    NASA Astrophysics Data System (ADS)

    Lee, Dongmyoung; Sun, Juhyun; Kang, Donghan; Shin, Seungyoung; Hong, Juhwa

    2014-12-01

    Low melting point Zr-based filler metals with melting point depressants (MPDs) such as Cu and Ni elements are used for titanium brazing. However, the phase transition of the filler metals in the titanium joint needs to be explained, since the main element of Zr in the filler metals differs from that of the parent titanium alloys. In addition, since the MPDs easily form brittle intermetallics, that deteriorate joint properties, the phase evolution they cause needs to be studied. Zr-based filler metals having Cu content from 0 to 12 at. pct and Ni content from 12 to 24 at. pct with a melting temperature range of 1062 K to 1082 K (789 °C to 809 °C) were wetting-tested on a titanium plate to investigate the phase transformation and evolution at the interface between the titanium plate and the filler metals. In the interface, the alloys system with Zr, Zr2Ni, and (Ti,Zr)2Ni phases was easily changed to a Ti-based alloy system with Ti, Ti2Ni, and (Ti,Zr)2Ni phases, by the local melting of parent titanium. The dissolution depths of the parent metal were increased with increasing Ni content in the filler metals because Ni has a faster diffusion rate than Cu. Instead, slow diffusion of Cu into titanium substrate leads to the accumulation of Cu at the molten zone of the interface, which could form undesirable Ti x Cu y intermetallics. This study confirmed that Zr-based filler metals are compatible with the parent titanium metal with the minimum content of MPDs.

  5. Stabilizing Crystal Oscillators With Melting Metals

    NASA Technical Reports Server (NTRS)

    Stephens, J. B.; Miller, C. G.

    1984-01-01

    Heat of fusion provides extended period of constant temperature and frequency. Crystal surrounded by metal in spherical container. As outside temperature rises to melting point of metal, metal starts to liquefy; but temperature stays at melting point until no solid metal remains. Potential terrestrial applications include low-power environmental telemetering transmitters and instrumentation transmitters for industrial processes.

  6. Induction heating pure vapor source of high temperature melting point materials on electron cyclotron resonance ion source.

    PubMed

    Kutsumi, Osamu; Kato, Yushi; Matsui, Yuuki; Kitagawa, Atsushi; Muramatsu, Masayuki; Uchida, Takashi; Yoshida, Yoshikazu; Sato, Fuminobu; Iida, Toshiyuki

    2010-02-01

    Multicharged ions that are needed are produced from solid pure material with high melting point in an electron cyclotron resonance ion source. We develop an evaporator by using induction heating (IH) with multilayer induction coil, which is made from bare molybdenum or tungsten wire without water cooling and surrounding the pure vaporized material. We optimize the shapes of induction coil and vaporized materials and operation of rf power supply. We conduct experiment to investigate the reproducibility and stability in the operation and heating efficiency. IH evaporator produces pure material vapor because materials directly heated by eddy currents have no contact with insulated materials, which are usually impurity gas sources. The power and the frequency of the induction currents range from 100 to 900 W and from 48 to 23 kHz, respectively. The working pressure is about 10(-4)-10(-3) Pa. We measure the temperature of the vaporized materials with different shapes, and compare them with the result of modeling. We estimate the efficiency of the IH vapor source. We are aiming at the evaporator's higher melting point material than that of iron.

  7. Induction heating pure vapor source of high temperature melting point materials on electron cyclotron resonance ion sourcea)

    NASA Astrophysics Data System (ADS)

    Kutsumi, Osamu; Kato, Yushi; Matsui, Yuuki; Kitagawa, Atsushi; Muramatsu, Masayuki; Uchida, Takashi; Yoshida, Yoshikazu; Sato, Fuminobu; Iida, Toshiyuki

    2010-02-01

    Multicharged ions that are needed are produced from solid pure material with high melting point in an electron cyclotron resonance ion source. We develop an evaporator by using induction heating (IH) with multilayer induction coil, which is made from bare molybdenum or tungsten wire without water cooling and surrounding the pure vaporized material. We optimize the shapes of induction coil and vaporized materials and operation of rf power supply. We conduct experiment to investigate the reproducibility and stability in the operation and heating efficiency. IH evaporator produces pure material vapor because materials directly heated by eddy currents have no contact with insulated materials, which are usually impurity gas sources. The power and the frequency of the induction currents range from 100to900W and from 48to23kHz, respectively. The working pressure is about 10-4-10-3Pa. We measure the temperature of the vaporized materials with different shapes, and compare them with the result of modeling. We estimate the efficiency of the IH vapor source. We are aiming at the evaporator's higher melting point material than that of iron.

  8. Acyl-gelatins for cell-hybrid biomaterials: preparation of gelatins with high melting point and affinity for hydrophobic surfaces.

    PubMed

    Miyamoto, Keiichi; Chinzei, Hiroko; Komai, Takashi

    2002-12-01

    In the development of cell-hybrid biomaterials, the functional activity of cells depends on the selective binding of cells to artificial ligands on the biomaterials. The extracellular matrix (ECM) is the most important ligand for cell activity. ECM is known to contain collagen, one of whose constituents is gelatin. Although natural gelatin has good cell attachment properties, the melting point of gelatin hydrogel is lower than body temperature. Thus, non-chemically cross-linked gelatin hydrogel is not a biomaterial that is used for prostheses. In the present study, we report the preparation of acyl-gelatin hydrogels with high melting point (>37 degrees C) and high affinity for hydrophobic surfaces for easy handling for transportation and adhesion activities on the hydrophobic surfaces. In addition, the doubling time of endothelial cells on the coated cell culture plate was faster than that of natural gelatin owing to the higher adhesion activity of acyl-gelatin. The results clearly demonstrated that the acyl-gelatin acted as an interface that enabled cell adhesion to artificial materials surfaces.

  9. Structure and thermal expansion of Lu 2O 3 and Yb 2O 3 up to the melting points

    DOE PAGES

    Pavlik, Alfred; Ushakov, Sergey V.; Navrotsky, Alexandra; ...

    2017-08-24

    Knowledge of thermal expansion and high temperature phase transformations is essential for prediction and interpretation of materials behavior under the extreme conditions of high temperature and intense radiation encountered in nuclear reactors. We studied the structure and thermal expansion of Lu 2O 3 and Yb 2O 3 were studied in oxygen and argon atmospheres up to their melting temperatures using synchrotron X-ray diffraction on laser heated levitated samples. Both oxides retained the cubic bixbyite C-type structure in oxygen and argon to melting. In contrast to fluorite-type structures, the increase in the unit cell parameter of Yb 2O 3 and Lumore » 2O 33 with temperature is linear within experimental error from room temperature to the melting point, with mean thermal expansion coefficients (8.5 ± 0.6) · 10 -6 K -1 and (7.7 ± 0.6) · 10 -6 K -1, respectively. There is no indication of a superionic (Bredig) transition in the C-type structure or of a previously suggested Yb 2O 3 phase transformation to hexagonal phase prior to melting.« less

  10. Structure and thermal expansion of Lu 2O 3 and Yb 2O 3 up to the melting points

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Pavlik, Alfred; Ushakov, Sergey V.; Navrotsky, Alexandra

    Knowledge of thermal expansion and high temperature phase transformations is essential for prediction and interpretation of materials behavior under the extreme conditions of high temperature and intense radiation encountered in nuclear reactors. We studied the structure and thermal expansion of Lu 2O 3 and Yb 2O 3 were studied in oxygen and argon atmospheres up to their melting temperatures using synchrotron X-ray diffraction on laser heated levitated samples. Both oxides retained the cubic bixbyite C-type structure in oxygen and argon to melting. In contrast to fluorite-type structures, the increase in the unit cell parameter of Yb 2O 3 and Lumore » 2O 33 with temperature is linear within experimental error from room temperature to the melting point, with mean thermal expansion coefficients (8.5 ± 0.6) · 10 -6 K -1 and (7.7 ± 0.6) · 10 -6 K -1, respectively. There is no indication of a superionic (Bredig) transition in the C-type structure or of a previously suggested Yb 2O 3 phase transformation to hexagonal phase prior to melting.« less

  11. On high-pressure melting of tantalum

    NASA Astrophysics Data System (ADS)

    Luo, Sheng-Nian; Swift, Damian C.

    2007-01-01

    The issues related to high-pressure melting of Ta are discussed within the context of diamond-anvil cell (DAC) and shock wave experiments, theoretical calculations and common melting models. The discrepancies between the extrapolations of the DAC melting curve and the melting point inferred from shock wave experiments, cannot be reconciled either by superheating or solid-solid phase transition. The failure to reproduce low-pressure DAC melting curve by melting models such as dislocation-mediated melting and the Lindemann law, and molecular dynamics and quantum mechanics-based calculations, undermines their predictions at moderate and high pressures. Despite claims to the contrary, the melting curve of Ta (as well as Mo and W) remains inconclusive at high pressures.

  12. Mixing and electronic entropy contributions to thermal energy storage in low melting point alloys

    NASA Astrophysics Data System (ADS)

    Shamberger, Patrick J.; Mizuno, Yasushi; Talapatra, Anjana A.

    2017-07-01

    Melting of crystalline solids is associated with an increase in entropy due to an increase in configurational, rotational, and other degrees of freedom of a system. However, the magnitude of chemical mixing and electronic degrees of freedom, two significant contributions to the entropy of fusion, remain poorly constrained, even in simple 2 and 3 component systems. Here, we present experimentally measured entropies of fusion in the Sn-Pb-Bi and In-Sn-Bi ternary systems, and decouple mixing and electronic contributions. We demonstrate that electronic effects remain the dominant contribution to the entropy of fusion in multi-component post-transition metal and metalloid systems, and that excess entropy of mixing terms can be equal in magnitude to ideal mixing terms, causing regular solution approximations to be inadequate in the general case. Finally, we explore binary eutectic systems using mature thermodynamic databases, identifying eutectics containing at least one semiconducting intermetallic phase as promising candidates to exceed the entropy of fusion of monatomic endmembers, while simultaneously maintaining low melting points. These results have significant implications for engineering high-thermal conductivity metallic phase change materials to store thermal energy.

  13. Melting line of polymeric nitrogen

    NASA Astrophysics Data System (ADS)

    Yakub, L. N.

    2013-05-01

    We made an attempt to predict location of the melting line of polymeric nitrogen using two equations for Helmholtz free energy: proposed earlier for cubic gauche-structure and developed recently for liquid polymerized nitrogen. The P-T relation, orthobaric densities and latent heat of melting were determined using a standard double tangent construction. The estimated melting temperature decreases with increasing pressure, alike the temperature of molecular-nonmolecular transition in solid. We discuss the possibility of a triple point (solid-molecular fluid-polymeric fluid) at ˜80 GPa and observed maximum of melting temperature of nitrogen.

  14. Melting and glass transition for Ni clusters.

    PubMed

    Teng, Yuyong; Zeng, Xianghua; Zhang, Haiyan; Sun, Deyan

    2007-03-08

    The melting of NiN clusters (N = 29, 50-150) has been investigated by using molecular dynamics (MD) simulations with a quantum corrected Sutton-Chen (Q-SC) many-body potential. Surface melting for Ni147, direct melting for Ni79, and the glass transition for Ni29 have been found, and those melting points are equal to 540, 680, and 940 K, respectively. It shows that the melting temperatures are not only size-dependent but also a symmetrical structure effect; in the neighborhood of the clusters, the cluster with higher symmetry has a higher melting point. From the reciprocal slopes of the caloric curves, the specific heats are obtained as 4.1 kB per atom for the liquid and 3.1 kB per atom for the solid; these values are not influenced by the cluster size apart in the transition region. The calculated results also show that latent heat of fusion is the dominant effect on the melting temperatures (Tm), and the relationship between S and L is given.

  15. Some physical aspects of fluid-fluxed melting

    NASA Astrophysics Data System (ADS)

    Patiño Douce, A.

    2012-04-01

    Fluid-fluxed melting is thought to play a crucial role in the origin of many terrestrial magmas. We can visualize the fundamental physics of the process as follows. An infinitesimal amount of fluid infiltrates dry rock at the temperature of its dry solidus. In order to restore equilibrium the temperature must drop, so that enthalpy is released and immediately reabsorbed as enthalpy of melting. The amount of melt produced must be such that the energy balance and thermodynamic equilibrium conditions are simultaneously satisfied. We wish to understand how an initially dry rock melts in response to progressive fluid infiltration, under both batch and fractional melting constraints. The simplest physical model for this process is a binary system in which one of the components makes up a pure solid phase and the other component a pure fluid phase, and in which a binary melt phase exists over certain temperature range. Melting point depression is calculated under the assumption of ideal mixing. The equations of energy balance and thermodynamic equilibrium are solved simultaneously for temperature and melt fraction, using an iterative procedure that allows addition of fluid in infinitesimal increments. Batch melting and fractional melting are simulated by allowing successive melt increments to remain in the system (batch) or not (fractional). Despite their simplified nature, these calculations reveal some important aspects of fluid-fluxed melting. The model confirms that, if the solubility of the fluid in the melt is sufficiently high, fluid fluxed melting is an efficient mechanism of magma generation. One might expect that the temperature of the infiltrating fluid would have a significant effect on melt productivity, but the results of the calculations show this not to be the case, because a relatively small mass of low molecular weight fluid has a strong effect on the melting point of minerals with much higher molecular weights. The calculations reveal the somewhat

  16. Waist circumference values equivalent to body mass index points for predicting absolute cardiovascular disease risks among adults in an Aboriginal community: a prospective cohort study.

    PubMed

    Adegbija, Odewumi; Hoy, Wendy E; Wang, Zhiqiang

    2015-11-13

    There have been suggestions that currently recommended waist circumference (WC) cut-off points for Australians of European origin may not be applicable to Aboriginal people who have different body habitus profiles. We aimed to generate equivalent WC values that correspond to body mass index (BMI) points for identifying absolute cardiovascular disease (CVD) risks. Prospective cohort study. An Aboriginal community in Australia's Northern Territory. From 1992 to 1998, 920 adults without CVD, with age, WC and BMI measurements were followed-up for up to 20 years. Incident CVD, coronary artery disease (CAD) and heart failure (HF) events during the follow-up period ascertained from hospitalisation data. We generated WC values with 10-year absolute risks equivalent for the development of CVD as BMI values (20-34 kg/m(2)) using the Weibull accelerated time-failure model. There were 211 incident cases of CVD over 13,669 person-years of follow-up. At the average age of 35 years, WC values with absolute CVD, CAD and HF risks equivalent to BMI of 25 kg/m(2) were 91.5, 91.8 and 91.7 cm, respectively, for males, and corresponding WC values were 92.5, 92.7 and 93 cm for females. WC values with equal absolute CVD, CAD and HF risks to BMI of 30 kg/m(2) were 101.7, 103.1 and 102.6 cm, respectively, for males, and corresponding values were 99.2, 101.6 and 101.5 cm for females. Association between WC and CVD did not depend on gender (p=0.54). WC ranging from 91 to 93 cm was equivalent to BMI 25 kg/m(2) for overweight, and 99 to 103 cm was equivalent to BMI of 30 kg/m(2) for obesity in terms of predicting 10-year absolute CVD risk. Replicating the absolute risk method in other Aboriginal communities will further validate the WC values generated for future development of WC cut-off points for Aboriginal people. Published by the BMJ Publishing Group Limited. For permission to use (where not already granted under a licence) please go to http://www.bmj.com/company/products-services/rights-and-licensing/

  17. Thermal processing of a poorly water-soluble drug substance exhibiting a high melting point: the utility of KinetiSol® Dispersing.

    PubMed

    Hughey, Justin R; Keen, Justin M; Brough, Chris; Saeger, Sophie; McGinity, James W

    2011-10-31

    Poorly water-soluble drug substances that exhibit high melting points are often difficult to successfully process by fusion-based techniques. The purpose of this study was to identify a suitable polymer system for meloxicam (MLX), a high melting point class II BCS compound, and investigate thermal processing techniques for the preparation of chemically stable single phase solid dispersions. Thermal and solution based screening techniques were utilized to screen hydrophilic polymers suitable for immediate release formulations. Results of the screening studies demonstrated that Soluplus(®)(SOL) provided the highest degree of miscibility and solubility enhancement. A hot-melt extrusion feasibility study demonstrated that high temperatures and extended residence times were required in order to render compositions amorphous, causing significant degradation of MLX. A design of experiments (DOE) was conducted on the KinetiSol(®) Dispersing (KSD) process to evaluate the effect of processing conditions on the chemical stability and amorphous character of MLX. The study demonstrated that ejection temperature significantly impacted MLX stability. All samples prepared by KSD were substantially amorphous. Dissolution analysis of the KSD processed solid dispersions showed increased dissolution rates and extent of supersaturation over the marketed generic MLX tablets. Copyright © 2011 Elsevier B.V. All rights reserved.

  18. Methods for Melting Temperature Calculation

    NASA Astrophysics Data System (ADS)

    Hong, Qi-Jun

    Melting temperature calculation has important applications in the theoretical study of phase diagrams and computational materials screenings. In this thesis, we present two new methods, i.e., the improved Widom's particle insertion method and the small-cell coexistence method, which we developed in order to capture melting temperatures both accurately and quickly. We propose a scheme that drastically improves the efficiency of Widom's particle insertion method by efficiently sampling cavities while calculating the integrals providing the chemical potentials of a physical system. This idea enables us to calculate chemical potentials of liquids directly from first-principles without the help of any reference system, which is necessary in the commonly used thermodynamic integration method. As an example, we apply our scheme, combined with the density functional formalism, to the calculation of the chemical potential of liquid copper. The calculated chemical potential is further used to locate the melting temperature. The calculated results closely agree with experiments. We propose the small-cell coexistence method based on the statistical analysis of small-size coexistence MD simulations. It eliminates the risk of a metastable superheated solid in the fast-heating method, while also significantly reducing the computer cost relative to the traditional large-scale coexistence method. Using empirical potentials, we validate the method and systematically study the finite-size effect on the calculated melting points. The method converges to the exact result in the limit of a large system size. An accuracy within 100 K in melting temperature is usually achieved when the simulation contains more than 100 atoms. DFT examples of Tantalum, high-pressure Sodium, and ionic material NaCl are shown to demonstrate the accuracy and flexibility of the method in its practical applications. The method serves as a promising approach for large-scale automated material screening in which

  19. Empirical equation for predicting the surface tension of some liquid metals at their melting point

    NASA Astrophysics Data System (ADS)

    Ceotto, D.

    2014-07-01

    A new empirical equation is proposed for predicting the surface tension of some pure metals at their melting point. The investigation has been conducted adopting a statistical approach using some of the most accredited data available in literature. It is found that for Ag, Al, Au, Co, Cu, Fe, Ni, and Pb the surface tension can be conveniently expressed in function of the latent heat of fusion and of the geometrical parameters of an ideal liquid spherical drop. The equation proposed has been compared also with the model proposed by Lu and Jiang giving satisfactory agreement for the metals considered.

  20. Characterization of Low-Melting-Point Sn-Bi-In Lead-Free Solders

    NASA Astrophysics Data System (ADS)

    Li, Qin; Ma, Ninshu; Lei, YongPing; Lin, Jian; Fu, HanGuang; Gu, Jian

    2016-11-01

    Development of lead-free solders with low melting temperature is important for substitution of Pb-based solders to reduce direct risks to human health and the environment. In the present work, Sn-Bi-In solders were studied for different ratios of Bi and Sn to obtain solders with low melting temperature. The microstructure, thermal properties, wettability, mechanical properties, and reliability of joints with Cu have been investigated. The results show that the microstructures of the Sn-Bi-In solders were composed of β-Sn, Bi, and InBi phases. The intermetallic compound (IMC) layer was mainly composed of Cu6Sn5, and its thickness increased slightly as the Bi content was increased. The melting temperature of the solders was around 100°C to 104°C. However, when the Sn content exceeded 50 wt.%, the melting range became larger and the wettability became worse. The tensile strength of the solder alloys and solder joints declined with increasing Bi content. Two fracture modes (IMC layer fracture and solder/IMC mixed fracture) were found in solder joints. The fracture mechanism of solder joints was brittle fracture. In addition, cleavage steps on the fracture surface and coarse grains in the fracture structure were comparatively apparent for higher Bi content, resulting in decreased elongation for both solder alloys and solder joints.

  1. Melting of Iron to 290 Gigapascals

    NASA Astrophysics Data System (ADS)

    Sinmyo, R.; Hirose, K.; Ohishi, Y.

    2017-12-01

    The Earth's core is composed mainly of iron. Since liquid core coexists with solid core at the inner core boundary (ICB), the melting point of iron at 330 gigapascals offers a key constraint on core temperatures. However, previous results using a laser-heated diamond-anvil cell (DAC) have been largely inconsistent with each other, likely because of an intrinsic large temperature gradient and its temporal fluctuation. Here we employed an internal-resistance-heated DAC and determined the melting temperature of pure iron up to 290 gigapascals, the highest ever in static compression experiments. A small extrapolation indicates a melting point of 5500 ± 80 kelvin at the ICB, about 500-1000 degrees lower than earlier shock-compression data. It suggests a relatively low temperature for the core-mantle boundary, which avoids global melting of the lowermost mantle in the last more than 1.5 billion years.

  2. Using, Seeing, Feeling, and Doing Absolute Value for Deeper Understanding

    ERIC Educational Resources Information Center

    Ponce, Gregorio A.

    2008-01-01

    Using sticky notes and number lines, a hands-on activity is shared that anchors initial student thinking about absolute value. The initial point of reference should help students successfully evaluate numeric problems involving absolute value. They should also be able to solve absolute value equations and inequalities that are typically found in…

  3. Computing the melting point and thermodynamic stability of the orthorhombic and monoclinic crystalline polymorphs of the ionic liquid 1-n-butyl-3-methylimidazolium chloride

    NASA Astrophysics Data System (ADS)

    Jayaraman, Saivenkataraman; Maginn, Edward J.

    2007-12-01

    The melting point, enthalpy of fusion, and thermodynamic stability of two crystal polymorphs of the ionic liquid 1-n-butyl-3-methylimidazolium chloride are calculated using a thermodynamic integration-based atomistic simulation method. The computed melting point of the orthorhombic phase ranges from 365 to 369 K, depending on the classical force field used. This compares reasonably well with the experimental values, which range from 337 to 339 K. The computed enthalpy of fusion ranges from 19 to 29 kJ/mol, compared to the experimental values of 18.5-21.5 kJ/mol. Only one of the two force fields evaluated in this work yielded a stable monoclinic phase, despite the fact that both give accurate liquid state densities. The computed melting point of the monoclinic polymorph was found to be 373 K, which is somewhat higher than the experimental range of 318-340 K. The computed enthalpy of fusion was 23 kJ/mol, which is also higher than the experimental value of 9.3-14.5 kJ/mol. The simulations predict that the monoclinic form is more stable than the orthorhombic form at low temperature, in agreement with one set of experiments but in conflict with another. The difference in free energy between the two polymorphs is very small, due to the fact that a single trans-gauche conformational difference in an alkyl sidechain distinguishes the two structures. As a result, it is very difficult to construct simple classical force fields that are accurate enough to definitively predict which polymorph is most stable. A liquid phase analysis of the probability distribution of the dihedral angles in the alkyl chain indicates that less than half of the dihedral angles are in the gauche-trans configuration that is adopted in the orthorhombic crystal. The low melting point and glass forming tendency of this ionic liquid is likely due to the energy barrier for conversion of the remaining dihedral angles into the gauche-trans state. The simulation procedure used to perform the melting point

  4. CATALYST-FREE REACTIONS UNDER SOLVENT-FEE CONDITIONS: MICROWAVE-ASSISTED SYNTHESIS OF HETEROCYCLIC HYDRAZONES BELOW THE MELTING POINT OF NEAT REACTANTS: JOURNAL ARTICLE

    EPA Science Inventory

    NRMRL-CIN-1437 Jeselnik, M., Varma*, R.S., Polanc, S., and Kocevar, M. Catalyst-free Reactions under Solvent-fee Conditions: Microwave-assisted Synthesis of Heterocyclic Hydrazones below the Melting Point of Neat Reactants. Published in: Chemical Communications 18:1716-1717 (200...

  5. On the Melting Curve of Sulfur Hexafluoride

    NASA Astrophysics Data System (ADS)

    Harvey, Allan H.

    2017-12-01

    A previous correlation for the melting curve of sulfur hexafluoride (SF6) is inconsistent with the thermodynamic slope at the triple point derived from the Clapeyron equation. It is shown that this is probably due to the previous authors combining an accurate measurement of the triple point with melting-curve data that were distorted by impurities. A new equation is proposed that is consistent with the Clapeyron slope.

  6. Vitrification of waste with conitnuous filling and sequential melting

    DOEpatents

    Powell, James R.; Reich, Morris

    2001-09-04

    A method of filling a canister with vitrified waste starting with a waste, such as high-level radioactive waste, that is cooler than its melting point. Waste is added incrementally to a canister forming a column of waste capable of being separated into an upper zone and a lower zone. The minimum height of the column is defined such that the waste in the lower zone can be dried and melted while maintaining the waste in the upper zone below its melting point. The maximum height of the column is such that the upper zone remains porous enough to permit evolved gases from the lower zone to flow through the upper zone and out of the canister. Heat is applied to the waste in the lower zone to first dry then to raise and maintain its temperature to a target temperature above the melting point of the waste. Then the heat is applied to a new lower zone above the melted waste and the process of adding, drying and melting the waste continues upward in the canister until the entire canister is filled and the entire contents are melted and maintained at the target temperature for the desired period. Cooling of the melted waste takes place incrementally from the bottom of the canister to the top, or across the entire canister surface area, forming a vitrified product.

  7. Absolute calibration of optical flats

    DOEpatents

    Sommargren, Gary E.

    2005-04-05

    The invention uses the phase shifting diffraction interferometer (PSDI) to provide a true point-by-point measurement of absolute flatness over the surface of optical flats. Beams exiting the fiber optics in a PSDI have perfect spherical wavefronts. The measurement beam is reflected from the optical flat and passed through an auxiliary optic to then be combined with the reference beam on a CCD. The combined beams include phase errors due to both the optic under test and the auxiliary optic. Standard phase extraction algorithms are used to calculate this combined phase error. The optical flat is then removed from the system and the measurement fiber is moved to recombine the two beams. The newly combined beams include only the phase errors due to the auxiliary optic. When the second phase measurement is subtracted from the first phase measurement, the absolute phase error of the optical flat is obtained.

  8. Melting behavior of nanometer sized gold isomers

    NASA Astrophysics Data System (ADS)

    Liu, H. B.; Ascencio, J. A.; Perez-Alvarez, M.; Yacaman, M. J.

    2001-09-01

    In the present work, the melting behavior of nanometer sized gold isomers was studied using a tight-binding potential with a second momentum approximation. The cases of cuboctahedra, icosahedra, Bagley decahedra, Marks decahedra and star-like decahedra were considered. We calculated the temperature dependence of the total energy and volume during melting and the melting point for different types and sizes of clusters. In addition, the structural evolutions of the nanosized clusters during the melting transition were monitored and revealed. It is found that the melting process has three characteristic time periods for the intermediate nanosized clusters. The whole process includes surface disordering and reordering, followed by surface melting and a final rapid overall melting. This is a new observation, which it is in contrast with previous reports where surface melting is the dominant step.

  9. Absolute instability of the Gaussian wake profile

    NASA Technical Reports Server (NTRS)

    Hultgren, Lennart S.; Aggarwal, Arun K.

    1987-01-01

    Linear parallel-flow stability theory has been used to investigate the effect of viscosity on the local absolute instability of a family of wake profiles with a Gaussian velocity distribution. The type of local instability, i.e., convective or absolute, is determined by the location of a branch-point singularity with zero group velocity of the complex dispersion relation for the instability waves. The effects of viscosity were found to be weak for values of the wake Reynolds number, based on the center-line velocity defect and the wake half-width, larger than about 400. Absolute instability occurs only for sufficiently large values of the center-line wake defect. The critical value of this parameter increases with decreasing wake Reynolds number, thereby indicating a shrinking region of absolute instability with decreasing wake Reynolds number. If backflow is not allowed, absolute instability does not occur for wake Reynolds numbers smaller than about 38.

  10. Massively parallel digital high resolution melt for rapid and absolutely quantitative sequence profiling

    NASA Astrophysics Data System (ADS)

    Velez, Daniel Ortiz; Mack, Hannah; Jupe, Julietta; Hawker, Sinead; Kulkarni, Ninad; Hedayatnia, Behnam; Zhang, Yang; Lawrence, Shelley; Fraley, Stephanie I.

    2017-02-01

    In clinical diagnostics and pathogen detection, profiling of complex samples for low-level genotypes represents a significant challenge. Advances in speed, sensitivity, and extent of multiplexing of molecular pathogen detection assays are needed to improve patient care. We report the development of an integrated platform enabling the identification of bacterial pathogen DNA sequences in complex samples in less than four hours. The system incorporates a microfluidic chip and instrumentation to accomplish universal PCR amplification, High Resolution Melting (HRM), and machine learning within 20,000 picoliter scale reactions, simultaneously. Clinically relevant concentrations of bacterial DNA molecules are separated by digitization across 20,000 reactions and amplified with universal primers targeting the bacterial 16S gene. Amplification is followed by HRM sequence fingerprinting in all reactions, simultaneously. The resulting bacteria-specific melt curves are identified by Support Vector Machine learning, and individual pathogen loads are quantified. The platform reduces reaction volumes by 99.995% and achieves a greater than 200-fold increase in dynamic range of detection compared to traditional PCR HRM approaches. Type I and II error rates are reduced by 99% and 100% respectively, compared to intercalating dye-based digital PCR (dPCR) methods. This technology could impact a number of quantitative profiling applications, especially infectious disease diagnostics.

  11. Anisotropic surface melting in lyotropic cubic crystals: part 2: facet-by-facet melting at Ia3d/vapor interfaces.

    PubMed

    Leroy, S; Grenier, J; Rohe, D; Even, C; Pieranski, P

    2006-05-01

    From experiments with metal crystals, in the vicinity of their crystal/liquid/vapor triple points, it is known that melting of crystals starts on their surfaces and is anisotropic. Recently, we have shown that anisotropic surface melting occurs also in lyotropic systems. In our previous paper (Eur. Phys. J. E 19, 223 (2006)), we have focused on the case of poor faceting at the Pn3m/L1 interface in C12EO2/water binary mixtures. There anisotropic melting occurs in the vicinity of a Pn3m/L3/L1 triple point. In the present paper, we focus on the opposite case of a rich devil's-staircase-type faceting at Ia3d/vapor interfaces in monoolein/water and phytantriol/water mixtures. We show that anisotropic surface melting takes place in these systems in a narrow humidity range close to the Ia3d-L2 transition. As whole (hkl) sets of facets disappear one after another when the transition is approached, surface melting occurs in a facet-by-facet type.

  12. Solid Lipid Nanoparticle Formulations of Docetaxel Prepared with High Melting Point Triglycerides: In Vitro and in Vivo Evaluation

    PubMed Central

    2015-01-01

    Docetaxel (DCX) is a second generation taxane. It is approved by the U.S. Food and Drug Administration for the treatment of various types of cancer, including breast, non-small cell lung, and head and neck cancers. However, side effects, including those related to Tween 80, an excipient in current DCX formulations, can be severe. In the present study, we developed a novel solid lipid nanoparticle (SLN) composition of DCX. Trimyristin was selected from a list of high melting point triglycerides as the core lipid component of the SLNs, based on the rate at which the DCX was released from the SLNs and the stability of the SLNs. The trimyristin-based, PEGylated DCX-incorporated SLNs (DCX-SLNs) showed significantly higher cytotoxicity against various human and murine cancer cells in culture, as compared to DCX solubilized in a Tween 80/ethanol solution. Moreover, in a mouse model with pre-established tumors, the new DCX-SLNs were significantly more effective than DCX solubilized in a Tween 80/ethanol solution in inhibiting tumor growth without toxicity, likely because the DCX-SLNs increased the concentration of DCX in tumor tissues, but decreased the levels of DCX in major organs such as liver, spleen, heart, lung, and kidney. DCX-incorporated SLNs prepared with one or more high-melting point triglycerides may represent an improved DCX formulation. PMID:24621456

  13. Printing low-melting-point alloy ink to directly make a solidified circuit or functional device with a heating pen

    PubMed Central

    Wang, Lei; Liu, Jing

    2014-01-01

    A new method to directly print out a solidified electronic circuit through low-melting-point metal ink is proposed. A functional pen with heating capability was fabricated. Several typical thermal properties of the alloy ink Bi35In48.6Sn16Zn0.4 were measured and evaluated. Owing to the specifically selected melting point of the ink, which is slightly higher than room temperature, various electronic devices, graphics or circuits can be manufactured in a short period of time and then rapidly solidified by cooling in the surrounding air. The liquid–solid phase change mechanism of the written lines was experimentally characterized using a scanning electron microscope. In order to determine the matching substrate, wettability between the metal ink Bi35In48.6Sn16Zn0.4 and several materials, including mica plate and silicone rubber, was investigated. The resistance–temperature curve of a printed resistor indicated its potential as a temperature control switch. Furthermore, the measured reflection coefficient of a printed double-diamond antenna accords well with the simulated result. With unique merits such as no pollution, no requirement for encapsulation and easy recycling, the present printing approach is an important supplement to current printed electronics and has enormous practical value in the future. PMID:25484611

  14. Printing low-melting-point alloy ink to directly make a solidified circuit or functional device with a heating pen.

    PubMed

    Wang, Lei; Liu, Jing

    2014-12-08

    A new method to directly print out a solidified electronic circuit through low-melting-point metal ink is proposed. A functional pen with heating capability was fabricated. Several typical thermal properties of the alloy ink Bi 35 In 48.6 Sn 16 Zn 0.4 were measured and evaluated. Owing to the specifically selected melting point of the ink, which is slightly higher than room temperature, various electronic devices, graphics or circuits can be manufactured in a short period of time and then rapidly solidified by cooling in the surrounding air. The liquid-solid phase change mechanism of the written lines was experimentally characterized using a scanning electron microscope. In order to determine the matching substrate, wettability between the metal ink Bi 35 In 48.6 Sn 16 Zn 0.4 and several materials, including mica plate and silicone rubber, was investigated. The resistance-temperature curve of a printed resistor indicated its potential as a temperature control switch. Furthermore, the measured reflection coefficient of a printed double-diamond antenna accords well with the simulated result. With unique merits such as no pollution, no requirement for encapsulation and easy recycling, the present printing approach is an important supplement to current printed electronics and has enormous practical value in the future.

  15. Ab-initio calculations on melting of thorium

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mukherjee, D., E-mail: debojyoti@barc.gov.in; Sahoo, B. D.; Joshi, K. D.

    2016-05-23

    Ab-initio molecular dynamics study has been performed on face centered cubic structured thorium to determine its melting temperature at room pressure. The ion-electron interaction potential energy calculated as a function of temperature for three volumes (a{sub 0}){sup 3} and (1.02a{sub 0}){sup 3} and (1.04a{sub 0}){sup 3} increases gradually with temperature and undergoes a sharp jump at ~2200 K, ~2100 K and ~1800 K, respectively. Here, a{sub 0} = 5.043 Å is the equilibrium lattice parameter at 0 K obtained from ab-initio calculations. These jumps in interaction energy are treated as due to the onset of melting and corresponding temperatures asmore » melting point. The melting point of 2100 K is close to the experimental value of 2023 K. Further, the same has been verified by plotting the atomic arrangement evolved at various temperatures and corresponding pair correlation functions.« less

  16. Molecular dynamics simulations of the melting curve of NiAl alloy under pressure

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zhang, Wenjin; Peng, Yufeng; Liu, Zhongli, E-mail: zhongliliu@yeah.net

    2014-05-15

    The melting curve of B2-NiAl alloy under pressure has been investigated using molecular dynamics technique and the embedded atom method (EAM) potential. The melting temperatures were determined with two approaches, the one-phase and the two-phase methods. The first one simulates a homogeneous melting, while the second one involves a heterogeneous melting of materials. Both approaches reduce the superheating effectively and their results are close to each other at the applied pressures. By fitting the well-known Simon equation to our melting data, we yielded the melting curves for NiAl: 1783(1 + P/9.801){sup 0.298} (one-phase approach), 1850(1 + P/12.806){sup 0.357} (two-phase approach).more » The good agreement of the resulting equation of states and the zero-pressure melting point (calc., 1850 ± 25 K, exp., 1911 K) with experiment proved the correctness of these results. These melting data complemented the absence of experimental high-pressure melting of NiAl. To check the transferability of this EAM potential, we have also predicted the melting curves of pure nickel and pure aluminum. Results show the calculated melting point of Nickel agrees well with experiment at zero pressure, while the melting point of aluminum is slightly higher than experiment.« less

  17. Absolute and relative educational inequalities in depression in Europe.

    PubMed

    Dudal, Pieter; Bracke, Piet

    2016-09-01

    To investigate (1) the size of absolute and relative educational inequalities in depression, (2) their variation between European countries, and (3) their relationship with underlying prevalence rates. Analyses are based on the European Social Survey, rounds three and six (N = 57,419). Depression is measured using the shortened Centre of Epidemiologic Studies Depression Scale. Education is coded by use of the International Standard Classification of Education. Country-specific logistic regressions are applied. Results point to an elevated risk of depressive symptoms among the lower educated. The cross-national patterns differ between absolute and relative measurements. For men, large relative inequalities are found for countries including Denmark and Sweden, but are accompanied by small absolute inequalities. For women, large relative and absolute inequalities are found in Belgium, Bulgaria, and Hungary. Results point to an empirical association between inequalities and the underlying prevalence rates. However, the strength of the association is only moderate. This research stresses the importance of including both measurements for comparative research and suggests the inclusion of the level of population health in research into inequalities in health.

  18. A molecular dynamics study of melting and dissociation of tungsten nanoparticles

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Li, Min; Wang, Jun; Fu, Baoqin

    2015-12-15

    Molecular dynamics simulations were conducted to study the melting and dissociation of free tungsten nanoparticles. For the various interatomic potentials applied, the melting points of the tungsten nanoparticles increased with increasing nanoparticle diameter. Combining these results with the melting point of bulk tungsten in the experiment, the melting point of nanoparticles with diameters ranging from 4 to 12 nm could be determined. As the temperature increases, free nanoparticles are subject to dissociation phenomena. The dissociation rate was observed to follow Arrhenius behavior, and the Meyer–Neldel rule was obeyed. These results are useful in understanding the behavior of tungsten dust generatedmore » in nuclear fusion devices as well as for the preparation, formation, and application of tungsten powders.« less

  19. Solubility of NaCl in water and its melting point by molecular dynamics in the slab geometry and a new BK3-compatible force field

    NASA Astrophysics Data System (ADS)

    Kolafa, Jiří

    2016-11-01

    Saturated concentration of rock salt in water is determined by a simulation of brine in contact with a crystal in the slab geometry. The NaCl crystals are rotated to expose facets with higher Miller indices than [001] to brine. The rock salt melting point is obtained by both the standard and adiabatic simulations in the slab geometry with attention paid to finite size effects as well as to a possible influence of facets with higher Miller indices and applied stress. Two force fields are used, the Lennard-Jones-based model by Young and Cheatham with SPC/E water and the Kiss and Baranyai polarizable model with BK3 water. The latter model is refitted to thermomechanical properties of crystal NaCl leading to better values of solubility and the melting point.

  20. Solubility of NaCl in water and its melting point by molecular dynamics in the slab geometry and a new BK3-compatible force field.

    PubMed

    Kolafa, Jiří

    2016-11-28

    Saturated concentration of rock salt in water is determined by a simulation of brine in contact with a crystal in the slab geometry. The NaCl crystals are rotated to expose facets with higher Miller indices than [001] to brine. The rock salt melting point is obtained by both the standard and adiabatic simulations in the slab geometry with attention paid to finite size effects as well as to a possible influence of facets with higher Miller indices and applied stress. Two force fields are used, the Lennard-Jones-based model by Young and Cheatham with SPC/E water and the Kiss and Baranyai polarizable model with BK3 water. The latter model is refitted to thermomechanical properties of crystal NaCl leading to better values of solubility and the melting point.

  1. A Reevaluation of Impact Melt Production

    NASA Astrophysics Data System (ADS)

    Pierazzo, E.; Vickery, A. M.; Melosh, H. J.

    1997-06-01

    The production of melt and vapor is an important process in impact cratering events. Because significant melting and vaporization do not occur in impacts at velocities currently achievable in the laboratory, a detailed study of the production of melt and vapor in planetary impact events is carried out with hydrocode simulations. Sandia's two-dimensional axisymmetric hydrocode CSQ was used to estimate the amount of melt and vapor produced for widely varying initial conditions: 10 to 80 km/sec for impact velocity, 0.2 to 10 km for the projectile radius. Runs with different materials demonstrate the material dependency of the final result. These results should apply to any size projectile (for given impact velocity and material), since the results can be dynamically scaled so long as gravity is unimportant in affecting the early-time flow. In contrast with the assumptions of previous analytical models, a clear difference in shape, impact-size dependence, and depth of burial has been found between the melt regions and the isobaric core. In particular, the depth of the isobaric core is not a good representation of the depth of the melt regions, which form deeper in the target. While near-surface effects cause the computed melt region shapes to look like “squashed spheres” the spherical shape is still a good analytical analog. One of the goals of melt production studies is to find proper scaling laws to infer melt production for any impact event of interest. We tested the point source limit scaling law for melt volumes (μ = 0.55-0.6) proposed by M. D. Bjorkman and K. A. Holsapple (1987,Int. J. Impact Eng.5, 155-163). Our results indicate that the point source limit concept does not apply to melt and vapor production. Rather, melt and vapor production follows an energy scaling law (μ = 0.67), in good agreement with previous results of T. J. Ahrens and J. D. O'Keefe [1977, inImpact and Explosion Cratering(D. J. Roddy, R. O. Pepin, and R. B. Merrill, Eds.), pp. 639

  2. Arctic melt ponds and bifurcations in the climate system

    NASA Astrophysics Data System (ADS)

    Sudakov, I.; Vakulenko, S. A.; Golden, K. M.

    2015-05-01

    Understanding how sea ice melts is critical to climate projections. In the Arctic, melt ponds that develop on the surface of sea ice floes during the late spring and summer largely determine their albedo - a key parameter in climate modeling. Here we explore the possibility of a conceptual sea ice climate model passing through a bifurcation point - an irreversible critical threshold as the system warms, by incorporating geometric information about melt pond evolution. This study is based on a bifurcation analysis of the energy balance climate model with ice-albedo feedback as the key mechanism driving the system to bifurcation points.

  3. A metastable liquid melted from a crystalline solid under decompression

    NASA Astrophysics Data System (ADS)

    Lin, Chuanlong; Smith, Jesse S.; Sinogeikin, Stanislav V.; Kono, Yoshio; Park, Changyong; Kenney-Benson, Curtis; Shen, Guoyin

    2017-01-01

    A metastable liquid may exist under supercooling, sustaining the liquid below the melting point such as supercooled water and silicon. It may also exist as a transient state in solid-solid transitions, as demonstrated in recent studies of colloidal particles and glass-forming metallic systems. One important question is whether a crystalline solid may directly melt into a sustainable metastable liquid. By thermal heating, a crystalline solid will always melt into a liquid above the melting point. Here we report that a high-pressure crystalline phase of bismuth can melt into a metastable liquid below the melting line through a decompression process. The decompression-induced metastable liquid can be maintained for hours in static conditions, and transform to crystalline phases when external perturbations, such as heating and cooling, are applied. It occurs in the pressure-temperature region similar to where the supercooled liquid Bi is observed. Akin to supercooled liquid, the pressure-induced metastable liquid may be more ubiquitous than we thought.

  4. A metastable liquid melted from a crystalline solid under decompression

    PubMed Central

    Lin, Chuanlong; Smith, Jesse S.; Sinogeikin, Stanislav V.; Kono, Yoshio; Park, Changyong; Kenney-Benson, Curtis; Shen, Guoyin

    2017-01-01

    A metastable liquid may exist under supercooling, sustaining the liquid below the melting point such as supercooled water and silicon. It may also exist as a transient state in solid–solid transitions, as demonstrated in recent studies of colloidal particles and glass-forming metallic systems. One important question is whether a crystalline solid may directly melt into a sustainable metastable liquid. By thermal heating, a crystalline solid will always melt into a liquid above the melting point. Here we report that a high-pressure crystalline phase of bismuth can melt into a metastable liquid below the melting line through a decompression process. The decompression-induced metastable liquid can be maintained for hours in static conditions, and transform to crystalline phases when external perturbations, such as heating and cooling, are applied. It occurs in the pressure–temperature region similar to where the supercooled liquid Bi is observed. Akin to supercooled liquid, the pressure-induced metastable liquid may be more ubiquitous than we thought. PMID:28112152

  5. Monte Carlo Study of Melting of a Model Bulk Ice.

    NASA Astrophysics Data System (ADS)

    Han, Kyu-Kwang

    The methods of NVT (constant number, volume and temperature) and NPT (constant number, pressure and temperature) Monte Carlo computer simulations are used to examine the melting of a periodic hexagonal ice (ice Ih) sample with a unit cell of 192 (rigid) water molecules interacting via the revised central force potentials of Stillinger and Rahman (RSL2). In NVT Monte Carlo simulation of P-T plot for a constant density (0.904g/cm^3) is used to locate onset of the liquid-solid coexistence region (where the slope of the pressure changes sign) and estimate the (constant density) melting point. The slope reversal is a natural consequence of the constant density condition for substances which expand upon freezing and it is pointed out that this analysis is extremely useful for substances such as water. In this study, a sign reversal of the pressure slope is observed near 280 K, indicating that the RSL2 potentials reproduce the freezing expansion expected for water and support a bulk ice Ih system which melts <280 K. The internal energy, specific heat, and two dimensional structure factors for the constant density H_2O system are also examined at a range of temperatures between 100 and 370 K and support the P-T analysis for location of the melting point. This P-T analysis might likewise be useful for determining a (constant density) freezing point, or, with multiple simulations at appropriate densities, the triple point. For NPT Monte Carlo simulations preliminary results are presented. In this study the density, enthalpy, specific heat, and structure factor dependences on temperature are monitored during a sequential heating of the system from 100 to 370 K at a constant pressure (1 atm.). A jump in density upon melting is observed and indicates that the RSL2 potentials reproduce the melting contraction of ice. From the dependences of monitored physical properties on temperature an upper bound on the melting temperature is estimated. In this study we made the first

  6. Melting of isolated tin nanoparticles

    PubMed

    Bachels; Guntherodt; Schafer

    2000-08-07

    The melting of isolated neutral tin cluster distributions with mean sizes of about 500 atoms has been investigated in a molecular beam experiment by calorimetrically measuring the clusters' formation energies as a function of their internal temperature. For this purpose the possibility to adjust the temperature of the clusters' internal degrees of freedom by means of the temperature of the cluster source's nozzle was exploited. The melting point of the investigated tin clusters was found to be lowered by 125 K and the latent heat of fusion per atom is reduced by 35% compared to bulk tin. The melting behavior of the isolated tin clusters is discussed with respect to the occurrence of surface premelting.

  7. Our Educational Melting Pot: Have We Reached the Boiling Point?

    ERIC Educational Resources Information Center

    Lauderdale, Katherine Lynn, Ed.; Bonilla, Carlos A., Ed.

    The articles and excerpts in this collection illustrate the complexity of the melting pot concept. Multiculturalism has become a watchword in American life and education, but it may be that in trying to atone for past transgressions educators and others are simply going too far. These essays illustrate some of the problems of a multicultural…

  8. Petrogenesis of melt rocks, Manicouagan impact structure, Quebec

    NASA Technical Reports Server (NTRS)

    Simonds, C. H.; Floran, R. J.; Mcgee, P. E.; Phinney, W. C.; Warner, J. L.

    1978-01-01

    It is suggested, on the basis of previous theoretical studies of shock waves, that the Manicouagan melt formed in 1 or 2 s in a 5-km-radius hemisphere near the point of impact. The melt and the less shocked debris surrounding it flowed downward and outward for a few minutes until the melt formed a lining of a 5- to 8-km deep, 15- to 22-km-radius cavity. Extremely turbulent flow thoroughly homogenized the melt and promoted the incorporation and progressive digestion of debris that had been finely fragmented (but not melted) to grain sizes of less than one mm by the passage of the shock waves. The equilibration of clasts and melt, plagioclase nucleation, and readjustment of the crater floor are discussed.

  9. High-resolution absolute position detection using a multiple grating

    NASA Astrophysics Data System (ADS)

    Schilling, Ulrich; Drabarek, Pawel; Kuehnle, Goetz; Tiziani, Hans J.

    1996-08-01

    To control electro-mechanical engines, high-resolution linear and rotary encoders are needed. Interferometric methods (grating interferometers) promise a resolution of a few nanometers, but have an ambiguity range of some microns. Incremental encoders increase the absolute measurement range by counting the signal periods starting from a defined initial point. In many applications, however, it is not possible to move to this initial point, so that absolute encoders have to be used. Absolute encoders generally have a scale with two or more tracks placed next to each other. Therefore, they use a two-dimensional grating structure to measure a one-dimensional position. We present a new method, which uses a one-dimensional structure to determine the position in one dimension. It is based on a grating with a large grating period up to some millimeters, having the same diffraction efficiency in several predefined diffraction orders (multiple grating). By combining the phase signals of the different diffraction orders, it is possible to establish the position in an absolute range of the grating period with a resolution like incremental grating interferometers. The principal functionality was demonstrated by applying the multiple grating in a heterodyne grating interferometer. The heterodyne frequency was generated by a frequency modulated laser in an unbalanced interferometer. In experimental measurements an absolute range of 8 mm was obtained while achieving a resolution of 10 nm.

  10. Strongly nonlinear theory of rapid solidification near absolute stability

    NASA Astrophysics Data System (ADS)

    Kowal, Katarzyna N.; Altieri, Anthony L.; Davis, Stephen H.

    2017-10-01

    We investigate the nonlinear evolution of the morphological deformation of a solid-liquid interface of a binary melt under rapid solidification conditions near two absolute stability limits. The first of these involves the complete stabilization of the system to cellular instabilities as a result of large enough surface energy. We derive nonlinear evolution equations in several limits in this scenario and investigate the effect of interfacial disequilibrium on the nonlinear deformations that arise. In contrast to the morphological stability problem in equilibrium, in which only cellular instabilities appear and only one absolute stability boundary exists, in disequilibrium the system is prone to oscillatory instabilities and a second absolute stability boundary involving attachment kinetics arises. Large enough attachment kinetics stabilize the oscillatory instabilities. We derive a nonlinear evolution equation to describe the nonlinear development of the solid-liquid interface near this oscillatory absolute stability limit. We find that strong asymmetries develop with time. For uniform oscillations, the evolution equation for the interface reduces to the simple form f''+(βf')2+f =0 , where β is the disequilibrium parameter. Lastly, we investigate a distinguished limit near both absolute stability limits in which the system is prone to both cellular and oscillatory instabilities and derive a nonlinear evolution equation that captures the nonlinear deformations in this limit. Common to all these scenarios is the emergence of larger asymmetries in the resulting shapes of the solid-liquid interface with greater departures from equilibrium and larger morphological numbers. The disturbances additionally sharpen near the oscillatory absolute stability boundary, where the interface becomes deep-rooted. The oscillations are time-periodic only for small-enough initial amplitudes and their frequency depends on a single combination of physical parameters, including the

  11. Effect of low-melting point phases on the microstructure and properties of spark plasma sintered and hot deformed Nd-Fe-B alloys

    NASA Astrophysics Data System (ADS)

    Zhang, Li; Wang, Meiyu; Yan, Xueliang; Lin, Ye; Shield, Jeffrey

    2018-04-01

    The effect of adding a low melting point Pr-Cu-Al alloy during spark plasma sintering of melt-spun Nd-Fe-B ribbons is investigated. Regions of coarse grains were reduced and overall grain refinement was observed after the addition of Pr68Cu25Al7, leading to an enhancement of coercivity from 12.7 kOe to 20.4 kOe. Hot deformation of the samples in the spark plasma sintering system resulted in the formation of platelet-like grains, producing crystallographic alignment and magnetic anisotropy. The hot deformation process improved the remanence and energy product but reduced the coercivity. The decrease of coercivity resulted from grain growth and aggregation of Pr and Nd elements at triple-junction phases.

  12. Melting phenomena: effect of composition for 55-atom Ag-Pd bimetallic clusters.

    PubMed

    Cheng, Daojian; Wang, Wenchuan; Huang, Shiping

    2008-05-14

    Understanding the composition effect on the melting processes of bimetallic clusters is important for their applications. Here, we report the relationship between the melting point and the metal composition for the 55-atom icosahedral Ag-Pd bimetallic clusters by canonical Monte Carlo simulations, using the second-moment approximation of the tight-binding potentials (TB-SMA) for the metal-metal interactions. Abnormal melting phenomena for the systems of interest are found. Our simulation results reveal that the dependence of the melting point on the composition is not a monotonic change, but experiences three different stages. The melting temperatures of the Ag-Pd bimetallic clusters increase monotonically with the concentration of the Ag atoms first. Then, they reach a plateau presenting almost a constant value. Finally, they decrease sharply at a specific composition. The main reason for this change can be explained in terms of the relative stability of the Ag-Pd bimetallic clusters at different compositions. The results suggest that the more stable the cluster, the higher the melting point for the 55-atom icosahedral Ag-Pd bimetallic clusters at different compositions.

  13. CADASTER QSPR Models for Predictions of Melting and Boiling Points of Perfluorinated Chemicals.

    PubMed

    Bhhatarai, Barun; Teetz, Wolfram; Liu, Tao; Öberg, Tomas; Jeliazkova, Nina; Kochev, Nikolay; Pukalov, Ognyan; Tetko, Igor V; Kovarich, Simona; Papa, Ester; Gramatica, Paola

    2011-03-14

    Quantitative structure property relationship (QSPR) studies on per- and polyfluorinated chemicals (PFCs) on melting point (MP) and boiling point (BP) are presented. The training and prediction chemicals used for developing and validating the models were selected from Syracuse PhysProp database and literatures. The available experimental data sets were split in two different ways: a) random selection on response value, and b) structural similarity verified by self-organizing-map (SOM), in order to propose reliable predictive models, developed only on the training sets and externally verified on the prediction sets. Individual linear and non-linear approaches based models developed by different CADASTER partners on 0D-2D Dragon descriptors, E-state descriptors and fragment based descriptors as well as consensus model and their predictions are presented. In addition, the predictive performance of the developed models was verified on a blind external validation set (EV-set) prepared using PERFORCE database on 15 MP and 25 BP data respectively. This database contains only long chain perfluoro-alkylated chemicals, particularly monitored by regulatory agencies like US-EPA and EU-REACH. QSPR models with internal and external validation on two different external prediction/validation sets and study of applicability-domain highlighting the robustness and high accuracy of the models are discussed. Finally, MPs for additional 303 PFCs and BPs for 271 PFCs were predicted for which experimental measurements are unknown. Copyright © 2011 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  14. A metastable liquid melted from a crystalline solid under decompression

    DOE PAGES

    Lin, Chuanlong; Smith, Jesse S.; Sinogeikin, Stanislav V.; ...

    2017-01-23

    A metastable liquid may exist under supercooling, sustaining the liquid below the melting point such as supercooled water and silicon. It may also exist as a transient state in solid–solid transitions, as demonstrated in recent studies of colloidal particles and glass-forming metallic systems. One important question is whether a crystalline solid may directly melt into a sustainable metastable liquid. By thermal heating, a crystalline solid will always melt into a liquid above the melting point. Here we report that a high-pressure crystalline phase of bismuth can melt into a metastable liquid below the melting line through a decompression process. Themore » decompression-induced metastable liquid can be maintained for hours in static conditions, and transform to crystalline phases when external perturbations, such as heating and cooling, are applied. It occurs in the pressure–temperature region similar to where the supercooled liquid Bi is observed. Finally, akin to supercooled liquid, the pressure-induced metastable liquid may be more ubiquitous than we thought.« less

  15. Melt spinning study

    NASA Technical Reports Server (NTRS)

    Workman, Gary L.; Rathz, Thomas

    1993-01-01

    Containerless processing of materials provides an excellent opportunity to study nucleation phenomena and produce unique materials, primarily through the formation of metastable phases and deep undercoolings. Deep undercoolings can be readily achieved in falling drops of molten material. Extended solute solubilities and greatly refined microstructures can also be obtained in containerless processing experiments. The Drop Tube Facility at Marshall Space Flight Center has played an important role in enhancing that area of research. Previous experiments performed in the Drop Tube with refractory metals has shown very interesting microstructural changes associated with deep undercoolings. It is apparent also that the microstructure of the deep undercooled species may be changing due to the release of the latent heat of fusion during recalescence. For scientific purposes, it is important to be able to differentiate between the microstructures of the two types of metallic species. A review of the literature shows that although significant advances have been made with respect to the engineering aspects of rapid solidification phenomena, there is still much to be learned in terms of understanding the basic phenomena. The two major ways in which rapid solidification processing provides improved structures and hence improved properties are: (1) production of refined structures such as fine dendrites and eutectics, and (2) production of new alloy compositions, microstructures, and phases through extended solid solubility, new phase reaction sequences, and the formation of metallic-glass microstructures. The objective of this work has been to determine the optimal methodology required to extract this excess energy without affecting the thermo-physical parameters of the under-cooled melt. In normal containerless processing experiments recalescence occurs as the melt returns toward the melting point in order to solidify. A new type of experiment is sought in which the resultant

  16. Solid and liquid heat capacities of n-alkyl para-aminobenzoates near the melting point.

    PubMed

    Neau, S H; Flynn, G L

    1990-11-01

    The expression that relates the ideal mole fraction solubility of a crystalline compound to physicochemical properties of the compound includes a term involving the difference in the heat capacities of the solid and liquid forms of the solute, delta Cp. There are two alternate conventions which are employed to eliminate this term. The first assumes that the term involving delta Cp, or delta Cp itself, is zero. The alternate assumption assigns the value of the entropy of fusion to the differential heat capacity. The relative validity of these two assumptions was evaluated using the straight-chain alkyl para-aminobenzoates as test compounds. The heat capacities of the solid and liquid forms of each of the para-aminobenzoates, near the respective melting point, were determined by differential scanning calorimetry. The data lead one to conclude that the assumption that the differential heat capacity is not usually negligible and is better approximated by the entropy of fusion.

  17. The gallium melting-point standard: its role in manufacture and quality control of electronic thermometers for the clinical laboratory.

    PubMed

    Sostman, H E

    1977-01-01

    I discuss the traceability of calibration of electronic thermometers to thermometric constants of nature or to the National Bureau of Standards, form a manufacturer's basic standards through the manufacturing process to the user's laboratory. Useful electrical temperature sensors, their advantages, and means for resolving their disadvantages are described. I summarize our development of a cell for realizing the melting phase equilibrium of pure gallium (at 29.770 degrees C) as a thermometer calibration fixed point, and enumerate its advantages in the routine calibration verification of electrical thermometers in the clinical chemistry laboratory.

  18. Quasi-equilibrium melting of quartzite upon extreme friction

    NASA Astrophysics Data System (ADS)

    Lee, Sung Keun; Han, Raehee; Kim, Eun Jeong; Jeong, Gi Young; Khim, Hoon; Hirose, Takehiro

    2017-06-01

    The friction on fault planes that controls how rocks slide during earthquakes decreases significantly as a result of complex fault-lubrication processes involving frictional melting. Fault friction has been characterized in terms of the preferential melting of minerals with low melting points--so-called disequilibrium melting. Quartz, which has a high melting temperature of about 1,726 °C and is a major component of crustal rocks, is not expected to melt often during seismic slip. Here we use high-velocity friction experiments on quartzite to show that quartz can melt at temperatures of 1,350 to 1,500 °C. This implies that quartz within a fault plane undergoing rapid friction sliding could melt at substantially lower temperatures than expected. We suggest that depression of the melting temperature is caused by the preferential melting of ultra-fine particles and metastable melting of β-quartz at about 1,400 °C during extreme frictional slip. The results for quartzite are applicable to complex rocks because of the observed prevalence of dynamic grain fragmentation, the preferential melting of smaller grains and the kinetic preference of β-quartz formation during frictional sliding. We postulate that frictional melting of quartz on a fault plane at temperatures substantially below the melting temperature could facilitate slip-weakening and lead to large earthquakes.

  19. Studies of thermal dissolution of RDX in TNT melt

    NASA Astrophysics Data System (ADS)

    Suvorova, N. A.; Hamilton, V. T.; Oschwald, D. M.; Balakirev, F. F.; Smilowitz, L. B.; Henson, B. F.

    2017-01-01

    The thermal response of energetic materials is studied due to its importance in issues of material safety and surety. Secondary high explosives which melt before they thermally decompose present challenging systems to model due to the addition of material flow. Composition B is a particularly challenging system due to its multiphase nature with a low melt component (TNT) and a high melt component (RDX). The dissolution of RDX crystals in molten TNT at the temperature below RDX melting point has been investigated using hot stage microscopy. In this paper, we present data on the dissolution rate of RDX crystals in molten TNT as a function of temperature above the TNT melt.

  20. Melting processes of oligomeric α and β isotactic polypropylene crystals at ultrafast heating rates

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ji, Xiaojing; He, Xuehao, E-mail: xhhe@tju.edu.cn, E-mail: scjiang@tju.edu.cn; Jiang, Shichun, E-mail: xhhe@tju.edu.cn, E-mail: scjiang@tju.edu.cn

    The melting behaviors of α (stable) and β (metastable) isotactic polypropylene (iPP) crystals at ultrafast heating rates are simulated with atomistic molecular dynamics method. Quantitative information about the melting processes of α- and β-iPP crystals at atomistic level is achieved. The result shows that the melting process starts from the interfaces of lamellar crystal through random dislocation of iPP chains along the perpendicular direction of lamellar crystal structure. In the melting process, the lamellar crystal gradually expands but the corresponding thickness decreases. The analysis shows that the system expansion lags behind the crystallinity decreasing and the lagging extents for α-more » and β-iPP are significantly different. The apparent melting points of α- and β-iPP crystals rise with the increase of the heating rate and lamellar crystal thickness. The apparent melting point of α-iPP crystal is always higher than that of β-iPP at differently heating rates. Applying the Gibbs-Thomson rule and the scaling property of the melting kinetics, the equilibrium melting points of perfect α- and β-iPP crystals are finally predicted and it shows a good agreement with experimental result.« less

  1. Fugacity ratio estimations for high-melting rigid aromatic compounds.

    PubMed

    Van Noort, Paul C M

    2004-07-01

    Prediction of the environmental fate of organic compounds requires knowledge of their tendency to stay in the gas and water phase. Vapor pressure and aqueous solubility are commonly used descriptors for these processes. Depending on the type of distribution process, values for either the pure solid state or the (subcooled) liquid state have to be used. Values for the (subcooled) liquid state can be calculated from those for the solid state, and vice versa, using the fugacity ratio. Fugacity ratios are usually calculated from the entropy of fusion and the melting point. For polycyclic aromatic hydrocarbons, chlorobenzenes, chlorodibenzofuranes, and chlorodibenzo(p)dioxins, fugacity ratios calculated using experimental entropies of fusion were systematically less than those obtained from a thermodynamically more rigorous approach using heat capacity data. The deviation was more than 1 order of magnitude at the highest melting point. The use of a universal value for the entropy of fusion of 56 J/molK resulted in either over or underestimation by up to more than 1 order of magnitude. A simple correction factor, based on the melting point only, was derived. This correction factor allowed the fugacity ratios to be estimated from experimental entropies of fusion and melting point with an accuracy better than 0.1-0.2 log units. Copyright 2004 Elsevier Ltd.

  2. Zipper model for the melting of thin films

    NASA Astrophysics Data System (ADS)

    Abdullah, Mikrajuddin; Khairunnisa, Shafira; Akbar, Fathan

    2016-01-01

    We propose an alternative model to Lindemann’s criterion for melting that explains the melting of thin films on the basis of a molecular zipper-like mechanism. Using this model, a unique criterion for melting is obtained. We compared the results of the proposed model with experimental data of melting points and heat of fusion for many materials and obtained interesting results. The interesting thing reported here is how complex physics problems can sometimes be modeled with simple objects around us that seemed to have no correlation. This kind of approach is sometimes very important in physics education and should always be taught to undergraduate or graduate students.

  3. Thermodynamics of freezing and melting

    PubMed Central

    Pedersen, Ulf R.; Costigliola, Lorenzo; Bailey, Nicholas P.; Schrøder, Thomas B.; Dyre, Jeppe C.

    2016-01-01

    Although the freezing of liquids and melting of crystals are fundamental for many areas of the sciences, even simple properties like the temperature–pressure relation along the melting line cannot be predicted today. Here we present a theory in which properties of the coexisting crystal and liquid phases at a single thermodynamic state point provide the basis for calculating the pressure, density and entropy of fusion as functions of temperature along the melting line, as well as the variation along this line of the reduced crystalline vibrational mean-square displacement (the Lindemann ratio), and the liquid's diffusion constant and viscosity. The framework developed, which applies for the sizable class of systems characterized by hidden scale invariance, is validated by computer simulations of the standard 12-6 Lennard-Jones system. PMID:27530064

  4. Laser-Induced Melting of Co-C Eutectic Cells as a New Research Tool

    NASA Astrophysics Data System (ADS)

    van der Ham, E.; Ballico, M.; Jahan, F.

    2015-08-01

    A new laser-based technique to examine heat transfer and energetics of phase transitions in metal-carbon fixed points and potentially to improve the quality of phase transitions in furnaces with poor uniformity is reported. Being reproducible below 0.1 K, metal-carbon fixed points are increasingly used as reference standards for the calibration of thermocouples and radiation thermometers. At NMIA, the Co-C eutectic point is used for the calibration of thermocouples, with the fixed point traceable to the International Temperature Scale (ITS-90) using radiation thermometry. For thermocouple use, these cells are deep inside a high-uniformity furnace, easily obtaining excellent melting plateaus. However, when used with radiation thermometers, the essential large viewing cone to the crucible restricts the furnace depth and introduces large heat losses from the front furnace zone, affecting the quality of the phase transition. Short laser bursts have been used to illuminate the cavity of a conventional Co-C fixed-point cell during various points in its melting phase transition. The laser is employed to partially melt the metal at the rear of the crucible providing a liquid-solid interface close to the region being observed by the reference pyrometer. As the laser power is known, a quantitative estimate of can be made for the Co-C latent heat of fusion. Using a single laser pulse during a furnace-induced melt, a plateau up to 8 min is observed before the crucible resumes a characteristic conventional melt curve. Although this plateau is satisfyingly flat, well within 100 mK, it is observed that the plateau is laser energy dependent and elevates from the conventional melt "inflection-point" value.

  5. Construction of Gallium Point at NMIJ

    NASA Astrophysics Data System (ADS)

    Widiatmo, J. V.; Saito, I.; Yamazawa, K.

    2017-03-01

    Two open-type gallium point cells were fabricated using ingots whose nominal purities are 7N. Measurement systems for the realization of the melting point of gallium using these cells were built. The melting point of gallium is repeatedly realized by means of the measurement systems for evaluating the repeatability. Measurements for evaluating the effect of hydrostatic pressure coming from the molten gallium existing during the melting process and the effect of gas pressure that fills the cell were also performed. Direct cell comparisons between those cells were conducted. This comparison was aimed to evaluate the consistency of each cell, especially related to the nominal purity. Direct cell comparison between the open-type and the sealed-type gallium point cell was also conducted. Chemical analysis was conducted using samples extracted from ingots used in both the newly built open-type gallium point cells, from which the effect of impurities in the ingot was evaluated.

  6. Creating Stiff, Tough, and Functional Hydrogel Composites with Low-Melting-Point Alloys.

    PubMed

    Takahashi, Riku; Sun, Tao Lin; Saruwatari, Yoshiyuki; Kurokawa, Takayuki; King, Daniel R; Gong, Jian Ping

    2018-04-01

    Reinforcing hydrogels with a rigid scaffold is a promising method to greatly expand the mechanical and physical properties of hydrogels. One of the challenges of creating hydrogel composites is the significant stress that occurs due to swelling mismatch between the water-swollen hydrogel matrix and the rigid skeleton in aqueous media. This stress can cause physical deformation (wrinkling, buckling, or fracture), preventing the fabrication of robust composites. Here, a simple yet versatile method is introduced to create "macroscale" hydrogel composites, by utilizing a rigid reinforcing phase that can relieve stress-induced deformation. A low-melting-point alloy that can transform from a load-bearing solid state to a free-deformable liquid state at relatively low temperature is used as a reinforcing skeleton, which enables the release of any swelling mismatch, regardless of the matrix swelling degree in liquid media. This design can generally provide hydrogels with hybridized functions, including excellent mechanical properties, shape memory, and thermal healing, which are often difficult or impossible to achieve with single-component hydrogel systems. Furthermore, this technique enables controlled electrochemical reactions and channel-structure templating in hydrogel matrices. This work may play an important role in the future design of soft robots, wearable electronics, and biocompatible functional materials. © 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  7. Molecular dynamical simulations of melting Al nanoparticles using a reaxff reactive force field

    NASA Astrophysics Data System (ADS)

    Liu, Junpeng; Wang, Mengjun; Liu, Pingan

    2018-06-01

    Molecular dynamics simulations were performed to study thermal properties and melting points of Al nanoparticles by using a reactive force field under canonical (NVT) ensembles. Al nanoparticles (particle size 2–4 nm) were considered in simulations. A combination of structural and thermodynamic parameters such as the Lindemann index, heat capacities, potential energy and radial-distribution functions was employed to decide melting points. We used annealing technique to obtain the initial Al nanoparticle model. Comparison was made between ReaxFF results and other simulation results. We found that ReaxFF force field is reasonable to describe Al cluster melting behavior. The linear relationship between particle size and melting points was found. After validating the ReaxFF force field, more attention was paid on thermal properties of Al nanoparticles with different defect concentrations. 4 nm Al nanoparticles with different defect concentrations (5%–20%) were considered in this paper. Our results revealed that: the melting points are irrelevant with defect concentration at a certain particle size. The extra storage energy of Al nanoparticles is proportional to nanoparticles’ defect concentration, when defect concentration is 5%–15%. While the particle with 20% defect concentration is similar to the cluster with 10% defect concentration. After melting, the extra energy of all nanoparticles decreases sharply, and the extra storage energy is nearly zero at 600 K. The centro-symmetry parameter analysis shows structure evolution of different models during melting processes.

  8. Why do gallium clusters have a higher melting point than the bulk?

    PubMed

    Chacko, S; Joshi, Kavita; Kanhere, D G; Blundell, S A

    2004-04-02

    Density functional molecular dynamical simulations have been performed on Ga17 and Ga13 clusters to understand the recently observed higher-than-bulk melting temperatures in small gallium clusters [Phys. Rev. Lett. 91, 215508 (2003)

  9. A penalized quantitative structure-property relationship study on melting point of energetic carbocyclic nitroaromatic compounds using adaptive bridge penalty.

    PubMed

    Al-Fakih, A M; Algamal, Z Y; Lee, M H; Aziz, M

    2018-05-01

    A penalized quantitative structure-property relationship (QSPR) model with adaptive bridge penalty for predicting the melting points of 92 energetic carbocyclic nitroaromatic compounds is proposed. To ensure the consistency of the descriptor selection of the proposed penalized adaptive bridge (PBridge), we proposed a ridge estimator ([Formula: see text]) as an initial weight in the adaptive bridge penalty. The Bayesian information criterion was applied to ensure the accurate selection of the tuning parameter ([Formula: see text]). The PBridge based model was internally and externally validated based on [Formula: see text], [Formula: see text], [Formula: see text], [Formula: see text], [Formula: see text], [Formula: see text], the Y-randomization test, [Formula: see text], [Formula: see text], [Formula: see text], [Formula: see text] and the applicability domain. The validation results indicate that the model is robust and not due to chance correlation. The descriptor selection and prediction performance of PBridge for the training dataset outperforms the other methods used. PBridge shows the highest [Formula: see text] of 0.959, [Formula: see text] of 0.953, [Formula: see text] of 0.949 and [Formula: see text] of 0.959, and the lowest [Formula: see text] and [Formula: see text]. For the test dataset, PBridge shows a higher [Formula: see text] of 0.945 and [Formula: see text] of 0.948, and a lower [Formula: see text] and [Formula: see text], indicating its better prediction performance. The results clearly reveal that the proposed PBridge is useful for constructing reliable and robust QSPRs for predicting melting points prior to synthesizing new organic compounds.

  10. Molecular dynamics study of the melting of a supported 887-atom Pd decahedron.

    PubMed

    Schebarchov, D; Hendy, S C; Polak, W

    2009-04-08

    We employ classical molecular dynamics simulations to investigate the melting behaviour of a decahedral Pd(887) cluster on a single layer of graphite (graphene). The interaction between Pd atoms is modelled with an embedded-atom potential, while the adhesion of Pd atoms to the substrate is approximated with a Lennard-Jones potential. We find that the decahedral structure persists at temperatures close to the melting point, but that just below the melting transition, the cluster accommodates to the substrate by means of complete melting and then recrystallization into an fcc structure. These structural changes are in qualitative agreement with recently proposed models, and they verify the existence of an energy barrier preventing softly deposited clusters from 'wetting' the substrate at temperatures below the melting point.

  11. A Two-Dimensional Liquid Structure Explains the Elevated Melting Temperatures of Gallium Nanoclusters.

    PubMed

    Steenbergen, Krista G; Gaston, Nicola

    2016-01-13

    Melting in finite-sized materials differs in two ways from the solid-liquid phase transition in bulk systems. First, there is an inherent scaling of the melting temperature below that of the bulk, known as melting point depression. Second, at small sizes changes in melting temperature become nonmonotonic and show a size-dependence that is sensitive to the structure of the particle. Melting temperatures that exceed those of the bulk material have been shown to occur for a very limited range of nanoclusters, including gallium, but have still never been ascribed a convincing physical explanation. Here, we analyze the structure of the liquid phase in gallium clusters based on molecular dynamics simulations that reproduce the greater-than-bulk melting behavior observed in experiments. We observe persistent nonspherical shape distortion indicating a stabilization of the surface, which invalidates the paradigm of melting point depression. This shape distortion suggests that the surface acts as a constraint on the liquid state that lowers its entropy relative to that of the bulk liquid and thus raises the melting temperature.

  12. Quantum melting of a two-dimensional Wigner crystal

    NASA Astrophysics Data System (ADS)

    Dolgopolov, V. T.

    2017-10-01

    The paper reviews theoretical predictions about the behavior of two-dimensional low-density electron systems at nearly absolute zero temperatures, including the formation of an electron (Wigner) crystal, crystal melting at a critical electron density, and transitions between crystal modifications in more complex (for example, two-layer) systems. The paper presents experimental results obtained from real two-dimensional systems in which the nonconducting (solid) state of the electronic system with indications of collective localization is actually realized. Experimental methods for detecting a quantum liquid-solid phase interface are discussed.

  13. Melting Curve of Molecular Crystal GeI4

    NASA Astrophysics Data System (ADS)

    Fuchizaki, Kazuhiro; Hamaya, Nozomu

    2014-07-01

    In situ synchrotron x-ray diffraction measurements were carried out to determine the melting curve of the molecular crystal GeI4. We found that the melting line rapidly increases with a pressure up to about 3 GPa, at which it abruptly breaks. Such a strong nonlinear shape of the melting curve can be approximately captured by the Kumari-Dass-Kechin equation. The parameters involved in the equation could be determined from the equation of state for the crystalline phase, which was also established in the present study. The melting curve predicted from the equation approaches the actual melting curve as the degree of approximation involved in obtaining the equation is improved. However, the treatment is justifiable only if the slope of the melting curve is everywhere continuous. We believe that this is not the case for GeI4's melting line at the breakpoint, as inferred from the nature of breakdown of the Kraut-Kennedy and the Magalinskii-Zubov relationships.The breakpoint may then be a triple point among the crystalline phase and two possible liquid phases.

  14. Hot-melt extrusion--basic principles and pharmaceutical applications.

    PubMed

    Lang, Bo; McGinity, James W; Williams, Robert O

    2014-09-01

    Originally adapted from the plastics industry, the use of hot-melt extrusion has gained favor in drug delivery applications both in academia and the pharmaceutical industry. Several commercial products made by hot-melt extrusion have been approved by the FDA, demonstrating its commercial feasibility for pharmaceutical processing. A significant number of research articles have reported on advances made regarding the pharmaceutical applications of the hot-melt extrusion processing; however, only limited articles have been focused on general principles regarding formulation and process development. This review provides an in-depth analysis and discussion of the formulation and processing aspects of hot-melt extrusion. The impact of physicochemical properties of drug substances and excipients on formulation development using a hot-melt extrusion process is discussed from a material science point of view. Hot-melt extrusion process development, scale-up, and the interplay of formulation and process attributes are also discussed. Finally, recent applications of hot-melt extrusion to a variety of dosage forms and drug substances have also been addressed.

  15. On a possible melting curve of C60 fullerite

    NASA Astrophysics Data System (ADS)

    Zubov, V. I.; Rodrigues, C. G.; Zubov, I. V.

    2003-07-01

    We study the thermodynamic properties of the high-temperature modification of fullerites on the basis of the Girifalco intermolecular potential. In the present work, using Lindemann's melting criterion, we estimate a possible melting curve Tm(P) of C60 fullerite. To take into account the lattice anharmonicity, which has a strong effect at T > 700 K, we use the correlative method of unsymmetrized self-consistent field. To check this approach, first we have applied it to solid Ar. In the range between its triple point Tt = 83.807 K and 260 K we obtained the mean square relative deviation from experimental data of about 0.7%. The melting curve for C60 fullerite has been calculated from the melting point at normal pressure estimated at 1500 K up to 15 kbar, which corresponds to Tm = 4000 K, i.e. to the temperature estimated by Kim and Tománek [Phys. Rev. Lett. 72, 2418 (1994)] as that of the decomposition of the C60 molecule itself. The temperature dependence of the melting pressure is approximated very well by the Simon equation (Pm(T)/bar - 1)/b = (T/T0)c with T0 = 1500 K, b = 6643.8, and c = 1.209. The temperature dependence of the molar volume along the melting curve is described by Vs(T) = Vs(T0) - 29.20 ln (T/T0.

  16. Melting in Superheated Silicon Films Under Pulsed-Laser Irradiation

    NASA Astrophysics Data System (ADS)

    Wang, Jin Jimmy

    This thesis examines melting in superheated silicon films in contact with SiO2 under pulsed laser irradiation. An excimer-laser pulse was employed to induce heating of the film by irradiating the film through the transparent fused-quartz substrate such that most of the beam energy was deposited near the bottom Si-SiO2 interface. Melting dynamics were probed via in situ transient reflectance measurements. The temperature profile was estimated computationally by incorporating temperature- and phase-dependent physical parameters and the time-dependent intensity profile of the incident excimer-laser beam obtained from the experiments. The results indicate that a significant degree of superheating occurred in the subsurface region of the film. Surface-initiated melting was observed in spite of the internal heating scheme, which resulted in the film being substantially hotter at and near the bottom Si-SiO2 interface. By considering that the surface melts at the equilibrium melting point, the solid-phase-only heat-flow analysis estimates that the bottom Si-SiO2 interface can be superheated by at least 220 K during excimer-laser irradiation. It was found that at higher laser fluences (i.e., at higher temperatures), melting can be triggered internally. At heating rates of 1010 K/s, melting was observed to initiate at or near the (100)-oriented Si-SiO2 interface at temperatures estimated to be over 300 K above the equilibrium melting point. Based on theoretical considerations, it was deduced that melting in the superheated solid initiated via a nucleation and growth process. Nucleation rates were estimated from the experimental data using Johnson-Mehl-Avrami-Kolmogorov (JMAK) analysis. Interpretation of the results using classical nucleation theory suggests that nucleation of the liquid phase occurred via the heterogeneous mechanism along the Si-SiO2 interface.

  17. Melting curve of compressed barium carbonate from in situ ionic conductivity measurements: Implications for the melting behavior of alkaline earth carbonates in Earth's deep carbon cycle

    NASA Astrophysics Data System (ADS)

    Dong, J.; Li, J.; Zhu, F.; Li, Z.; Farawi, R.

    2017-12-01

    The whereabouts of subducted carbonates place a major constraint on the Earth's deep carbon cycle, but the fraction of carbon retained in the slab and transported into the deep mantle, compared to that released from the slab and recycled to the surface, is still under debate. Knowledge of the stability of carbonated mantle rocks is pivotal for assessing the ability of slabs to carry carbonates into the deep mantle. Determination and systematic comparison of the melting curves of alkali and alkaline earth carbonates at high pressure can help construct thermodynamic models to predict the melting behavior of complex carbonated mantle rocks. Among alkaline earth carbonates, the melting behavior of barium carbonate (BaCO3) has not been adequately understood. The reported melting point of BaCO3at 1 bar differ by nearly 800 °C and constraints on the melting curve of BaCO3 at high pressure are not available. In this study, the melting temperatures of BaCO3 were determined up to 11 GPa from in situ ionic conductivity measurements using the multi-anvil apparatus at the University of Michigan. The solid-liquid boundary at high pressure was detected on the basis of a steep rise in conductivity through the sample upon melting. The melting point of BaCO3 was found to drop from 1797 °C at 3.3 GPa to 1600 °C at 5.5 GPa and then rise with pressure to 2180 °C at 11 GPa. The observed melting depression point at 5.5 GPa corresponds to the phase transition of BaCO3 from the aragonite structure (Pmcn) to post-aragonite structure (Pmmn) at 6.3 GPa, 877 °C and 8.0 GPa, 727 °C, determined from synchrotron X-ray diffraction measurements using laser-heated DAC experiments at the Advanced Photon Source, Argonne National Laboratory. These results are also compared with ex situ falling marker experiments, and the three methods together place tight constraints on the melting curve of BaCO3 and elucidates the effect of structural phase transitions on its melting behavior.

  18. Long-Term Stability of WC-C Peritectic Fixed Point

    NASA Astrophysics Data System (ADS)

    Khlevnoy, B. B.; Grigoryeva, I. A.

    2015-03-01

    The tungsten carbide-carbon peritectic (WC-C) melting transition is an attractive high-temperature fixed point with a temperature of . Earlier investigations showed high repeatability, small melting range, low sensitivity to impurities, and robustness of WC-C that makes it a prospective candidate for the highest fixed point of the temperature scale. This paper presents further study of the fixed point, namely the investigation of the long-term stability of the WC-C melting temperature. For this purpose, a new WC-C cell of the blackbody type was built using tungsten powder of 99.999 % purity. The stability of the cell was investigated during the cell aging for 50 h at the cell working temperature that tooks 140 melting/freezing cycles. The method of investigation was based on the comparison of the WC-C tested cell with a reference Re-C fixed-point cell that reduces an influence of the probable instability of a radiation thermometer. It was shown that after the aging period, the deviation of the WC-C cell melting temperature was with an uncertainty of.

  19. Shear melting and high temperature embrittlement: theory and application to machining titanium.

    PubMed

    Healy, Con; Koch, Sascha; Siemers, Carsten; Mukherji, Debashis; Ackland, Graeme J

    2015-04-24

    We describe a dynamical phase transition occurring within a shear band at high temperature and under extremely high shear rates. With increasing temperature, dislocation deformation and grain boundary sliding are supplanted by amorphization in a highly localized nanoscale band, which allows for massive strain and fracture. The mechanism is similar to shear melting and leads to liquid metal embrittlement at high temperature. From simulation, we find that the necessary conditions are lack of dislocation slip systems, low thermal conduction, and temperature near the melting point. The first two are exhibited by bcc titanium alloys, and we show that the final one can be achieved experimentally by adding low-melting-point elements: specifically, we use insoluble rare earth metals (REMs). Under high shear, the REM becomes mixed with the titanium, lowering the melting point within the shear band and triggering the shear-melting transition. This in turn generates heat which remains localized in the shear band due to poor heat conduction. The material fractures along the shear band. We show how to utilize this transition in the creation of new titanium-based alloys with improved machinability.

  20. Absolute Helmholtz free energy of highly anharmonic crystals: theory vs Monte Carlo.

    PubMed

    Yakub, Lydia; Yakub, Eugene

    2012-04-14

    We discuss the problem of the quantitative theoretical prediction of the absolute free energy for classical highly anharmonic solids. Helmholtz free energy of the Lennard-Jones (LJ) crystal is calculated accurately while accounting for both the anharmonicity of atomic vibrations and the pair and triple correlations in displacements of the atoms from their lattice sites. The comparison with most precise computer simulation data on sublimation and melting lines revealed that theoretical predictions are in excellent agreement with Monte Carlo simulation data in the whole range of temperatures and densities studied.

  1. Erythritol: crystal growth from the melt.

    PubMed

    Lopes Jesus, A J; Nunes, Sandra C C; Ramos Silva, M; Matos Beja, A; Redinha, J S

    2010-03-30

    The structural changes occurring on erythritol as it is cooled from the melt to low temperature, and then heated up to the melting point have been investigated by differential scanning calorimetry (DSC), polarized light thermal microscopy (PLTM), X-ray powder diffraction (PXRD) and Fourier transform infrared spectroscopy (FTIR). By DSC, it was possible to set up the conditions to obtain an amorphous solid, a crystalline solid, or a mixture of both materials in different proportions. Two crystalline forms have been identified: a stable and a metastable one with melting points of 117 and 104 degrees C, respectively. The fusion curve decomposition of the stable form revealed the existence of three conformational structures. The main paths of the crystallization from the melt were followed by PLTM. The texture and colour changes allowed the characterization of the different phases and transitions in which they are involved on cooling as well as on heating processes. The type of crystallization front and its velocity were also followed by microscopic observation. These observations, together with the data provided by PXRD, allowed elucidating the transition of the metastable form into the stable one. The structural changes occurring upon the cooling and subsequent heating processes, namely those arising from intermolecular hydrogen bonds, were also accompanied by infrared spectroscopy. Particular attention was given to the spectral changes occurring in the OH stretching region. Copyright (c) 2009 Elsevier B.V. All rights reserved.

  2. Hot and solid gallium clusters: too small to melt.

    PubMed

    Breaux, Gary A; Benirschke, Robert C; Sugai, Toshiki; Kinnear, Brian S; Jarrold, Martin F

    2003-11-21

    A novel multicollision induced dissociation scheme is employed to determine the energy content for mass-selected gallium cluster ions as a function of their temperature. Measurements were performed for Ga(+)(n) (n=17 39, and 40) over a 90-720 K temperature range. For Ga+39 and Ga+40 a broad maximum in the heat capacity-a signature of a melting transition for a small cluster-occurs at around 550 K. Thus small gallium clusters melt at substantially above the 302.9 K melting point of bulk gallium, in conflict with expectations that they will remain liquid to below 150 K. No melting transition is observed for Ga+17.

  3. Melt electrospinning of biodegradable polyurethane scaffolds

    PubMed Central

    Karchin, Ari; Simonovsky, Felix I.; Ratner, Buddy D.; Sanders, Joan E.

    2014-01-01

    Electrospinning from the melt, in contrast to from solution, is an attractive tissue engineering scaffold manufacturing process as it allows for the formation of small diameter fibers while eliminating potentially cytotoxic solvents. Despite this, there is a dearth of literature on scaffold formation via melt electrospinning. This is likely due to the technical challenges related to the need for a well-controlled high temperature setup and the difficulty in developing an appropriate polymer. In this paper, a biodegradable and thermally stable polyurethane (PU) is described specifically for use in melt electrospinning. Polymer formulations of aliphatic PUs based on (CH2)4-content diisocyanates, polycaprolactone (PCL), 1,4-butanediamine and 1,4-butanediol (BD) were evaluated for utility in the melt electrospinning process. The final polymer formulation, a catalyst-purified PU based on 1,4-butane diisocyanate, PCL and BD in a 4/1/3 molar ratio with a weight-average molecular weight of about 40 kDa, yielded a nontoxic polymer that could be readily electrospun from the melt. Scaffolds electrospun from this polymer contained point bonds between fibers and mechanical properties analogous to many in vivo soft tissues. PMID:21640853

  4. Numerical simulation of hot-melt extrusion processes for amorphous solid dispersions using model-based melt viscosity.

    PubMed

    Bochmann, Esther S; Steffens, Kristina E; Gryczke, Andreas; Wagner, Karl G

    2018-03-01

    Simulation of HME processes is a valuable tool for increased process understanding and ease of scale-up. However, the experimental determination of all required input parameters is tedious, namely the melt rheology of the amorphous solid dispersion (ASD) in question. Hence, a procedure to simplify the application of hot-melt extrusion (HME) simulation for forming amorphous solid dispersions (ASD) is presented. The commercial 1D simulation software Ludovic ® was used to conduct (i) simulations using a full experimental data set of all input variables including melt rheology and (ii) simulations using model-based melt viscosity data based on the ASDs glass transition and the physical properties of polymeric matrix only. Both types of HME computation were further compared to experimental HME results. Variation in physical properties (e.g. heat capacity, density) and several process characteristics of HME (residence time distribution, energy consumption) among the simulations and experiments were evaluated. The model-based melt viscosity was calculated by using the glass transition temperature (T g ) of the investigated blend and the melt viscosity of the polymeric matrix by means of a T g -viscosity correlation. The results of measured melt viscosity and model-based melt viscosity were similar with only few exceptions, leading to similar HME simulation outcomes. At the end, the experimental effort prior to HME simulation could be minimized and the procedure enables a good starting point for rational development of ASDs by means of HME. As model excipients, Vinylpyrrolidone-vinyl acetate copolymer (COP) in combination with various APIs (carbamazepine, dipyridamole, indomethacin, and ibuprofen) or polyethylene glycol (PEG 1500) as plasticizer were used to form the ASDs. Copyright © 2017 Elsevier B.V. All rights reserved.

  5. Petrological Geodynamics of Mantle Melting II. AlphaMELTS + Multiphase Flow: Dynamic Fractional Melting

    NASA Astrophysics Data System (ADS)

    Tirone, Massimiliano

    2018-03-01

    In this second installment of a series that aims to investigate the dynamic interaction between the composition and abundance of the solid mantle and its melt products, the classic interpretation of fractional melting is extended to account for the dynamic nature of the process. A multiphase numerical flow model is coupled with the program AlphaMELTS, which provides at the moment possibly the most accurate petrological description of melting based on thermodynamic principles. The conceptual idea of this study is based on a description of the melting process taking place along a 1-D vertical ideal column where chemical equilibrium is assumed to apply in two local sub-systems separately on some spatial and temporal scale. The solid mantle belongs to a local sub-system (ss1) that does not interact chemically with the melt reservoir which forms a second sub-system (ss2). The local melt products are transferred in the melt sub-system ss2 where the melt phase eventually can also crystallize into a different solid assemblage and will evolve dynamically. The main difference with the usual interpretation of fractional melting is that melt is not arbitrarily and instantaneously extracted from the mantle, but instead remains a dynamic component of the model, hence the process is named dynamic fractional melting (DFM). Some of the conditions that may affect the DFM model are investigated in this study, in particular the effect of temperature, mantle velocity at the boundary of the mantle column. A comparison is made with the dynamic equilibrium melting (DEM) model discussed in the first installment. The implications of assuming passive flow or active flow are also considered to some extent. Complete data files of most of the DFM simulations, four animations and two new DEM simulations (passive/active flow) are available following the instructions in the supplementary material.

  6. The importance of accurate interaction potentials in the melting of argon nanoclusters

    NASA Astrophysics Data System (ADS)

    Pahl, E.; Calvo, F.; Schwerdtfeger, P.

    The melting temperatures of argon clusters ArN (N = 13, 55, 147, 309, 561, and 923) and of bulk argon have been obtained from exchange Monte Carlo simulations and are compared using different two-body interaction potentials, namely the standard Lennard-Jones (LJ), Aziz and extended Lennard-Jones (ELJ) potentials. The latter potential has many advantages: while maintaining the computational efficiency of the commonly used LJ potential, it is as accurate as the Aziz potential but the computer time scales more favorably with increasing cluster size. By applying the ELJ form and extrapolating the cluster data to the infinite system, we are able to extract the melting point of argon already in good agreement with experimental measurements. By considering the additional Axilrod-Teller three-body contribution as well, we calculate a melting temperature of T meltELJ = 84.7 K compared to the experimental value of T meltexp = 83.85 K, whereas the LJ potential underestimates the melting point by more than 7 K. Thus melting temperatures within 1 K accuracy are now feasible.

  7. The melting mechanism in binary Pd0.25Ni0.75 nanoparticles: molecular dynamics simulations

    NASA Astrophysics Data System (ADS)

    Domekeli, U.; Sengul, S.; Celtek, M.; Canan, C.

    2018-02-01

    The melting mechanism for Pd0.25Ni0.75 alloy nanoparticles (NPs) was investigated using molecular dynamics (MD) simulations with quantum Sutton-Chen many-body potentials. NPs of six different sizes ranging from 682 to 22,242 atoms were studied to observe the effect of size on the melting point. The melting temperatures of the NPs were estimated by following the changes in both the thermodynamic and structural quantities such as the total energy, heat capacity and Lindemann index. We also used a thermodynamics model to better estimate the melting point and to check the accuracy of MD simulations. We observed that the melting points of the NPs decreased as their sizes decreased. Although the MD simulations for the bulk system yielded higher melting temperatures because of the lack of a seed for the liquid phase, the melting temperatures determined for both the bulk material and the NPs are in good agreement with those predicted from the thermodynamics model. The melting mechanism proceeds in two steps: firstly, a liquid-like shell is formed in the outer regions of the NP with increasing temperature. The thickness of the liquid-like shell increases with increasing temperature until the shell reaches a critical thickness. Then, the entire Pd-Ni NP including core-related solid-like regions melts at once.

  8. Microgravity Studies of Liquid-Liquid Phase Transitions in Alumina-Yttria Melts

    NASA Technical Reports Server (NTRS)

    Guynes, Buddy (Technical Monitor); Weber, Richard; Nordine, Paul

    2004-01-01

    The scientific objective of this research is to increase the fundamental knowledge base for liquid- phase processing of technologically important oxide materials. The experimental objective is to define conditions and hardware requirements for microgravity flight experiments to test and expand the experimental hypotheses that: 1. Liquid phase transitions can occur in undercooled melts by a diffusionless process. 2. Onset of the liquid phase transition is accompanied by a large change in the temperature dependence of melt viscosity. Experiments on undercooled YAG (Y3A15012)- and rare earth oxide aluminate composition liquids demonstrated a large departure from an Arrhenian temperature dependence of viscosity. Liquid YAG is nearly inviscid at its 2240 K melting point. Glass fibers were pulled from melts undercooled by ca. 600 K indicating that the viscosity is on the order of 100 Pans (1000 Poise) at 1600 K. This value of viscosity is 500 times greater than that obtained by extrapolation of data for temperatures above the melting point of YAG. These results show that the liquids are extremely fragile and that the onset of the highly non-Arrhenian viscosity-temperature relationship occurs at a temperature considerably below the equilibrium melting point of the solid phases. Further results on undercooled alumina-yttria melts containing 23-42 mole % yttrium oxide indicate that a congruent liquid-liquid phase transition occurs in the undercooled liquids. The rates of transition are inconsistent with a diffusion-limited process. This research is directed to investigation of the scientifically interesting phenomena of polyamorphism and fragility in undercooled rare earth oxide aluminum oxide liquids. The results bear on the technologically important problem of producing high value rare earth-based optical materials.

  9. Lipid melting and cuticular permeability: new insights into an old problem.

    PubMed

    Gibbs, Allen G.

    2002-04-01

    The idea that the physical properties of cuticular lipids affect cuticular permeability goes back over 65 years. This proposal has achieved textbook status, despite controversy and the general lack of direct supporting evidence. Recent work supports the standard model, in which lipid melting results in increased cuticular permeability. Surprisingly, although all species studied to date can synthesize lipids that remain in a solid state at environmental temperatures, partial melting often occurs due to the deposition of lipids with low melting points. This will tend to increase water loss; the benefits may include better dispersal of lipids or other compounds across the cuticle or improved communication via cuticular pheromones. In addition, insects with high melting-point lipids are not necessarily less permeable at low temperatures. One likely reason is variation in lipid properties within the cuticle. Surface lipids differ from one region to another, and biophysical studies of model mixtures suggest the occurrence of phase separation between melted and solid lipid fractions. Lipid phase separation may have important implications for insect water balance and chemical communication.

  10. The Absolute Magnitude of the Sun in Several Filters

    NASA Astrophysics Data System (ADS)

    Willmer, Christopher N. A.

    2018-06-01

    This paper presents a table with estimates of the absolute magnitude of the Sun and the conversions from vegamag to the AB and ST systems for several wide-band filters used in ground-based and space-based observatories. These estimates use the dustless spectral energy distribution (SED) of Vega, calibrated absolutely using the SED of Sirius, to set the vegamag zero-points and a composite spectrum of the Sun that coadds space-based observations from the ultraviolet to the near-infrared with models of the Solar atmosphere. The uncertainty of the absolute magnitudes is estimated by comparing the synthetic colors with photometric measurements of solar analogs and is found to be ∼0.02 mag. Combined with the uncertainty of ∼2% in the calibration of the Vega SED, the errors of these absolute magnitudes are ∼3%–4%. Using these SEDs, for three of the most utilized filters in extragalactic work the estimated absolute magnitudes of the Sun are M B = 5.44, M V = 4.81, and M K = 3.27 mag in the vegamag system and M B = 5.31, M V = 4.80, and M K = 5.08 mag in AB.

  11. Size-dependent melting modes and behaviors of Ag nanoparticles: a molecular dynamics study

    NASA Astrophysics Data System (ADS)

    Liang, Tianshou; Zhou, Dejian; Wu, Zhaohua; Shi, Pengpeng

    2017-12-01

    The size-dependent melting behaviors and mechanisms of Ag nanoparticles (NPs) with diameters of 3.5-16 nm were investigated by molecular dynamics (MD). Two distinct melting modes, non-premelting and premelting with transition ranges of about 7-8 nm, for Ag NPs were demonstrated via the evolution of distribution and transition of atomic physical states during annealing. The small Ag NPs (3.5-7 nm) melt abruptly without a stable liquid shell before the melting point, which is characterized as non-premelting. A solid-solid crystal transformation is conducted through the migration of adatoms on the surface of Ag NPs with diameters of 3.5-6 nm before the initial melting, which is mainly responsible for slightly increasing the melting point of Ag NPs. On the other hand, surface premelting of Ag NPs with diameters of 8-16 nm propagates from the outer shell to the inner core with initial anisotropy and late isotropy as the temperature increases, and the close-packed facets {111} melt by a side-consumed way which is responsible for facets {111} melting in advance relative to the crystallographic plane {111}. Once a stable liquid shell is formed, its size-independent minimum thickness is obtained, and a three-layer structure of atomic physical states is set up. Lastly, the theory of point defect-pair (vacancy-interstitial) severing as the mechanism of formation and movement of the solid-liquid interface was also confirmed. Our study provides a basic understanding and theoretical guidance for the research, production and application of Ag NPs.

  12. Melting Processes at the Base of the Mantle Wedge: Melt Compositions and Melting Reactions for the First Melts of Vapor-Saturated Lherzolite

    NASA Astrophysics Data System (ADS)

    Grove, T. L.; Till, C. B.

    2014-12-01

    Vapor-saturated melting experiments have been performed at pressures near the base of the mantle wedge (3.2 GPa). The starting composition is a metasomatized lherzolite containing 3 wt. % H2O. Near-solidus melts and coexisting mineral phases have been characterized in experiments that span 925 to 1100 oC with melt % varying from 6 to 9 wt. %. Olivine, orthopyroxene, clinopyroxene and garnet coexist with melt over the entire interval and rutile is also present at < 1000 oC. Melt is andesitic in composition and varies from 60 wt. % SiO2 at 950 oC to 52 wt. % at 1075 oC. The Al2O3 contents of the melt are 13 to 14 wt. %, and CaO contents range from 1 and 4 wt. %. Melting is peritectic with orthopyroxene + liquid produced by melting of garnet + olivine + high-Ca pyroxene. In addition to quenched melt, we observe a quenched silicate component that is rhyolitic (>72 % SiO2) that we interpret as a precipitate from the coexisting supercritical H2O-rich vapor. Extrapolation of the measured compositional variation toward the solidus suggests that the first melt may be very SiO2 rich (i.e., granitic). We suggest that these granitic melts are the first melts of the mantle near the slab-wedge interface. As these SiO2-rich melts ascend into shallower, hotter overlying mantle, they continue to interact with the surrounding mantle and evolve in composition. These first melts may elucidate the geochemical and physical processes that accompany the beginnings of H2O flux melting.

  13. Liquid structure and temperature invariance of sound velocity in supercooled Bi melt

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Emuna, M.; Mayo, M.; Makov, G.

    2014-03-07

    Structural rearrangement of liquid Bi in the vicinity of the melting point has been proposed due to the unique temperature invariant sound velocity observed above the melting temperature, the low symmetry of Bi in the solid phase and the necessity of overheating to achieve supercooling. The existence of this structural rearrangement is examined by measurements on supercooled Bi. The sound velocity of liquid Bi was measured into the supercooled region to high accuracy and it was found to be invariant over a temperature range of ∼60°, from 35° above the melting point to ∼25° into the supercooled region. The structuralmore » origin of this phenomenon was explored by neutron diffraction structural measurements in the supercooled temperature range. These measurements indicate a continuous modification of the short range order in the melt. The structure of the liquid is analyzed within a quasi-crystalline model and is found to evolve continuously, similar to other known liquid pnictide systems. The results are discussed in the context of two competing hypotheses proposed to explain properties of liquid Bi near the melting: (i) liquid bismuth undergoes a structural rearrangement slightly above melting and (ii) liquid Bi exhibits a broad maximum in the sound velocity located incidentally at the melting temperature.« less

  14. Investigating the highest melting temperature materials: A laser melting study of the TaC-HfC system.

    PubMed

    Cedillos-Barraza, Omar; Manara, Dario; Boboridis, K; Watkins, Tyson; Grasso, Salvatore; Jayaseelan, Daniel D; Konings, Rudy J M; Reece, Michael J; Lee, William E

    2016-12-01

    TaC, HfC and their solid solutions are promising candidate materials for thermal protection structures in hypersonic vehicles because of their very high melting temperatures (>4000 K) among other properties. The melting temperatures of slightly hypostoichiometric TaC, HfC and three solid solution compositions (Ta 1-x Hf x C, with x = 0.8, 0.5 and 0.2) have long been identified as the highest known. In the current research, they were reassessed, for the first time in the last fifty years, using a laser heating technique. They were found to melt in the range of 4041-4232 K, with HfC having the highest and TaC the lowest. Spectral radiance of the hot samples was measured in situ, showing that the optical emissivity of these compounds plays a fundamental role in their heat balance. Independently, the results show that the melting point for HfC 0.98 , (4232 ± 84) K, is the highest recorded for any compound studied until now.

  15. Investigating the highest melting temperature materials: A laser melting study of the TaC-HfC system

    NASA Astrophysics Data System (ADS)

    Cedillos-Barraza, Omar; Manara, Dario; Boboridis, K.; Watkins, Tyson; Grasso, Salvatore; Jayaseelan, Daniel D.; Konings, Rudy J. M.; Reece, Michael J.; Lee, William E.

    2016-12-01

    TaC, HfC and their solid solutions are promising candidate materials for thermal protection structures in hypersonic vehicles because of their very high melting temperatures (>4000 K) among other properties. The melting temperatures of slightly hypostoichiometric TaC, HfC and three solid solution compositions (Ta1-xHfxC, with x = 0.8, 0.5 and 0.2) have long been identified as the highest known. In the current research, they were reassessed, for the first time in the last fifty years, using a laser heating technique. They were found to melt in the range of 4041-4232 K, with HfC having the highest and TaC the lowest. Spectral radiance of the hot samples was measured in situ, showing that the optical emissivity of these compounds plays a fundamental role in their heat balance. Independently, the results show that the melting point for HfC0.98, (4232 ± 84) K, is the highest recorded for any compound studied until now.

  16. Investigating the highest melting temperature materials: A laser melting study of the TaC-HfC system

    PubMed Central

    Cedillos-Barraza, Omar; Manara, Dario; Boboridis, K.; Watkins, Tyson; Grasso, Salvatore; Jayaseelan, Daniel D.; Konings, Rudy J. M.; Reece, Michael J.; Lee, William E.

    2016-01-01

    TaC, HfC and their solid solutions are promising candidate materials for thermal protection structures in hypersonic vehicles because of their very high melting temperatures (>4000 K) among other properties. The melting temperatures of slightly hypostoichiometric TaC, HfC and three solid solution compositions (Ta1−xHfxC, with x = 0.8, 0.5 and 0.2) have long been identified as the highest known. In the current research, they were reassessed, for the first time in the last fifty years, using a laser heating technique. They were found to melt in the range of 4041–4232 K, with HfC having the highest and TaC the lowest. Spectral radiance of the hot samples was measured in situ, showing that the optical emissivity of these compounds plays a fundamental role in their heat balance. Independently, the results show that the melting point for HfC0.98, (4232 ± 84) K, is the highest recorded for any compound studied until now. PMID:27905481

  17. Thermophysical and Optical Properties of Semiconducting Ga2Te3 Melt

    NASA Technical Reports Server (NTRS)

    Li, Chao; Su, Ching-Hua; Lehoczky, Sandor L.; Scripa, Rosalie N.; Ban, Heng

    2005-01-01

    The majority of bulk semiconductor single crystals are presently grown from their melts. The thermophysical and optical properties of the melts provide a fundamental understanding of the melt structure and can be used to optimize the growth conditions to obtain higher quality crystals. In this paper, we report several thermophysical and optical properties for Ga2Te3 melts, such as electrical conductivity, viscosity, and optical transmission for temperatures ranging from the melting point up to approximately 990 C. The conductivity and viscosity of the melts are determined using the transient torque technique. The optical transmission of the melts is measured between the wavelengths of 300 and 2000 nm by an dual beam reversed-optics spectrophotometer. The measured properties are in good agreement with the published data. The conductivities indicate that the Ga2Te3 melt is semiconductor-like. The anomalous behavior in the measured properties are used as an indication of a structural transformation in the Ga2Te3 melt and discussed in terms of Eyring's and Bachinskii's predicted behaviors for homogeneous melts.

  18. Experimental program on nucleation and structure in undercooled melts

    NASA Technical Reports Server (NTRS)

    1982-01-01

    Undercooling and structural refinements in droplets of molten metal levitated in an induction field and/or by dispersion in a fluid carrier were studied. Nickel base and lower melting point alloys levitated in molten carrier fluids are considered. The dispersion of molten alloy droplets in a high temperature fluid following the procedures developed by Perepezko and co-workers for lower melting point alloys; obtaining a similar dispersion by room temperature mechanical mixing of particles of the metal and solidified liquid carrier; and solidification of single relatively large droplets in a transparent fluid carrier, enabling high-speed temperature measurement of the recalescence and subsequent cooling behavior are described.

  19. Molecular dynamics simulations of melting and the glass transition of nitromethane.

    PubMed

    Zheng, Lianqing; Luo, Sheng-Nian; Thompson, Donald L

    2006-04-21

    Molecular dynamics simulations have been used to investigate the thermodynamic melting point of the crystalline nitromethane, the melting mechanism of superheated crystalline nitromethane, and the physical properties of crystalline and glassy nitromethane. The maximum superheating and glass transition temperatures of nitromethane are calculated to be 316 and 160 K, respectively, for heating and cooling rates of 8.9 x 10(9) Ks. Using the hysteresis method [Luo et al., J. Chem. Phys. 120, 11640 (2004)] and by taking the glass transition temperature as the supercooling temperature, we calculate a value of 251.1 K for the thermodynamic melting point, which is in excellent agreement with the two-phase result [Agrawal et al., J. Chem. Phys. 119, 9617 (2003)] of 255.5 K and measured value of 244.73 K. In the melting process, the nitromethane molecules begin to rotate about their lattice positions in the crystal, followed by translational freedom of the molecules. A nucleation mechanism for the melting is illustrated by the distribution of the local translational order parameter. The critical values of the Lindemann index for the C and N atoms immediately prior to melting (the Lindemann criterion) are found to be around 0.155 at 1 atm. The intramolecular motions and molecular structure of nitromethane undergo no abrupt changes upon melting, indicating that the intramolecular degrees of freedom have little effect on the melting. The thermal expansion coefficient and bulk modulus are predicted to be about two or three times larger in crystalline nitromethane than in glassy nitromethane. The vibrational density of states is almost identical in both phases.

  20. What Do Nectaris Basin Impact Melt Rocks Look like and Where Can We Find Them?

    NASA Technical Reports Server (NTRS)

    Cohen, B. A.; Petro, N. E.; Lawrence, S. J.

    2015-01-01

    The formation of the Nectaris basin is a key event defining the stratigraphy of the Moon. Its absolute age, therefore, is a linchpin for lunar bombardment history. Fernandes et al. gave a thorough account of the history of different samples thought to originate in Nectaris, with the upshot being there is little agreement on what samples represent Nectaris, if any. We are revisiting the effort to identify Nectaris basin impact-melt rocks at the Apollo 16 site, to model their emplacement, and to use these parameters to examine other sites where Nectaris impact melt is more abundant and/or more recognizable for potential further study.

  1. Controlled Growth of Rubrene Nanowires by Eutectic Melt Crystallization

    NASA Astrophysics Data System (ADS)

    Chung, Jeyon; Hyon, Jinho; Park, Kyung-Sun; Cho, Boram; Baek, Jangmi; Kim, Jueun; Lee, Sang Uck; Sung, Myung Mo; Kang, Youngjong

    2016-03-01

    Organic semiconductors including rubrene, Alq3, copper phthalocyanine and pentacene are crystallized by the eutectic melt crystallization. Those organic semiconductors form good eutectic systems with the various volatile crystallizable additives such as benzoic acid, salicylic acid, naphthalene and 1,3,5-trichlorobenzene. Due to the formation of the eutectic system, organic semiconductors having originally high melting point (Tm > 300 °C) are melted and crystallized at low temperature (Te = 40.8-133 °C). The volatile crystallizable additives are easily removed by sublimation. For a model system using rubrene, single crystalline rubrene nanowires are prepared by the eutectic melt crystallization and the eutectic-melt-assisted nanoimpinting (EMAN) technique. It is demonstrated that crystal structure and the growth direction of rubrene can be controlled by using different volatile crystallizable additives. The field effect mobility of rubrene nanowires prepared using several different crystallizable additives are measured and compared.

  2. Surface Tension and Viscosity of SCN and SCN-acetone Alloys at Melting Points and Higher Temperatures Using Surface Light Scattering Spectrometer

    NASA Technical Reports Server (NTRS)

    Tin, Padetha; deGroh, Henry C., III.

    2003-01-01

    Succinonitrile has been and is being used extensively in NASA's Microgravity Materials Science and Fluid Physics programs and as well as in several ground-based and microgravity studies including the Isothermal Dendritic Growth Experiment (IDGE). Succinonitrile (SCN) is useful as a model for the study of metal solidification, although it is an organic material, it has a BCC crystal structure and solidifies dendriticly like a metal. It is also transparent and has a low melting point (58.08 C). Previous measurements of succinonitrile (SCN) and alloys of succinonitrile and acetone surface tensions are extremely limited. Using the Surface Light Scattering technique we have determined non invasively, the surface tension and viscosity of SCN and SCN-Acetone Alloys at different temperatures. This relatively new and unique technique has several advantages over the classical methods such as, it is non invasive, has good accuracy and measures the surface tension and viscosity simultaneously. The accuracy of interfacial energy values obtained from this technique is better than 2% and viscosity about 10 %. Succinonitrile and succinonitrile-acetone alloys are well-established model materials with several essential physical properties accurately known - except the liquid/vapor surface tension at different elevated temperatures. We will be presenting the experimentally determined liquid/vapor surface energy and liquid viscosity of succinonitrile and succinonitrile-acetone alloys in the temperature range from their melting point to around 100 C using this non-invasive technique. We will also discuss about the measurement technique and new developments of the Surface Light Scattering Spectrometer.

  3. Absolute calibration of ultraviolet filter photometry

    NASA Technical Reports Server (NTRS)

    Bless, R. C.; Fairchild, T.; Code, A. D.

    1972-01-01

    The essential features of the calibration procedure can be divided into three parts. First, the shape of the bandpass of each photometer was determined by measuring the transmissions of the individual optical components and also by measuring the response of the photometer as a whole. Secondly, each photometer was placed in the essentially-collimated synchrotron radiation bundle maintained at a constant intensity level, and the output signal was determined from about 100 points on the objective. Finally, two or three points on the objective were illuminated by synchrotron radiation at several different intensity levels covering the dynamic range of the photometers. The output signals were placed on an absolute basis by the electron counting technique described earlier.

  4. Teaching Absolute Value Meaningfully

    ERIC Educational Resources Information Center

    Wade, Angela

    2012-01-01

    What is the meaning of absolute value? And why do teachers teach students how to solve absolute value equations? Absolute value is a concept introduced in first-year algebra and then reinforced in later courses. Various authors have suggested instructional methods for teaching absolute value to high school students (Wei 2005; Stallings-Roberts…

  5. Axial vibration control of melt structure of sodium nitrate in crystal growth process

    NASA Astrophysics Data System (ADS)

    Sadovskiy, Andrey; Sukhanova, Ekaterina; Belov, Stanislav; Kostikov, Vladimir; Zykova, Marina; Artyushenko, Maxim; Zharikov, Evgeny; Avetissov, Igor

    2015-05-01

    The melt structure evolution under the action of the low-frequency axial vibration control (AVC) technique was studied in situ by Raman spectroscopy for several complex chemical compound melts: sodium nitrate, margarine acid, paraffin mixture (C17-C20). The measurements were conducted in the temperature range from the melting point up to 60 °C above. Comparison of crystallization heats for AVC activated and steady melts with melting heats of AVC-CZ and conventional CZ produced powders allowed to propose the energy diagram of NaNO3 states for activated and non-activated melts and crystals based on DTA, XRD, DSC and Raman experimental data.

  6. Properties of sugar-based low-melting mixtures

    NASA Astrophysics Data System (ADS)

    Fischer, Veronika; Kunz, Werner

    2014-05-01

    Physico-chemical properties of ternary sugar-based low-melting mixtures were determined. Choline chloride, urea and glucose or sorbitol, serving as sugars, were blended in various compositions. The refractive index, density, viscosity, decomposition temperatures and glass transition temperatures were measured. Further, the influence of temperature and water content was investigated. The results show that the mixtures are liquid below room temperature and the viscosity and density are dependent on the temperature and composition. Moreover, the viscosity decreases with increasing water content. These mixtures are biodegradable, low toxic, non-volatile, non-reactive with water and can be accomplished with low-cost materials. In consideration of these advantages and a melting point below room temperature, these low-melting mixtures can be a good alternative to ionic liquids as well as environmentally unfriendly and toxic solvents.

  7. Melt Adsorption as a Manufacturing Method for Fine Particles of Wax Matrices without Any Agglomerates.

    PubMed

    Shiino, Kai; Fujinami, Yukari; Kimura, Shin-Ichiro; Iwao, Yasunori; Noguchi, Shuji; Itai, Shigeru

    2017-01-01

    We have focused on melt adsorption as manufacture method of wax matrices to control particles size of granules more easily than melt granulation. The purpose of present study was to investigate the possibility of identifying a hydrophobic material with a low melting point, currently used as a meltable binder of melt granulation, to apply as a novel carrier in melt adsorption. Glyceryl monostearate (GM) and stearic acid (SA) were selected as candidate hydrophobic materials with low melting points. Neusilin US2 (US2), with a particle diameter of around 100 µm was selected as a surface adsorbent, while dibasic calcium phosphate dihydrate (DCPD), was used as a non-adsorbent control to prepare melting granules as a standard for comparison. We prepared granules containing ibuprofen (IBU) by melt adsorption or melt granulation and evaluated the particle size, physical properties and crystallinity of granules. Compared with melt granulation using DCPD, melt adsorption can be performed over a wide range of 14 to 70% for the ratio of molten components. Moreover, the particle size; d50 of obtained granules was 100-200 µm, and these physical properties showed good flowability and roundness. The process of melt adsorption did not affect the crystalline form of IBU. Therefore, the present study has demonstrated for the first time that melt adsorption using a hydrophobic material, GM or SA, has the potential capability to control the particle size of granules and offers the possibility of application as a novel controlled release technique.

  8. Pre-melting Behaviour in fcc Metals

    NASA Astrophysics Data System (ADS)

    Pamato, M. G.; Wood, I. G.; Dobson, D. P.; Hunt, S.; Vocadlo, L.

    2016-12-01

    Although the Earth's core is accepted to be made of an iron-nickel alloy with a few percent of light elements, its exact structure and composition are still unknown. Seismological and mineralogical models in the Earth's inner core do not agree, with mineralogical models derived from ab initiocalculations predicting shear-wave velocities up to 30% greater than seismically observed values. Recent computer simulations revealed that such difference may be explained by a dramatic, non-linear, softening of the elastic constants of Fe prior to melting. Up to date, computer calculations are the only result on pre-melting of direct applicability to the Earth's core and it is essential to systematically investigate such phenomena at inner core pressures and temperatures. Measuring the pressure dependence of pre-melting effects at such conditions and to the required precision is however extremely challenging. Also, pre-melting effects have been observed or suggested to occur in other materials, particularly noble metals, which exhibit large departures from linearity (modulus defects) at elevated temperatures. The aim of this study is to investigate to what extent pre-melting behaviour occurs in the physical properties of other metals at more experimentally tractable conditions. In particular, we report measurements of density and thermal expansion coefficients of both pure and alloyed gold (Au) up to their melting points. Au is an ideal test material since it crystallises in a simple monatomic face-centred structure and has a relatively low melting temperature. Precise measurements of unit cell lattice parameters were performed using a PANalytical X'Pert Pro powder diffractometer, equipped with an incident beam monochromator (giving very high resolution diffraction patterns) and with environmental stages covering the range from 40 K to 1373 K, with a readily achievable temperature resolution of 1K. We will discuss the circumstances under which pre-melting occurs, its

  9. Pulling Marbles from a Bag: Deducing the Regional Impact History of the SPA Basin from Impact Melt Rocks

    NASA Technical Reports Server (NTRS)

    Cohen, Barbara A.; Coker, R. F.

    2009-01-01

    The South Pole-Aitken (SPA) basin is an important target for absolute age-dating. Vertical and lateral impact mixing ensures that regolith within SPA will contain rock fragments from SPA itself, local impact craters, and faraway giant basins. About 20% of the regolith at any given site is foreign [1, 2], but much of this material will be cold ejecta, not impact melt. We calculated the fraction of contributed impact melt using scaling laws to estimate the amount and provenance of impact melt, demonstrating that SPA melt is the dominant impact melt rock (>70%) likely to be present. We also constructed a statistical model to illustrate how many randomly-selected impact-melt fragments would need to be dated, and with what accuracy, to confidently reproduce the impact history of a site. A detailed impact history becomes recognizable after a few hundred to a thousand randomly-selected marbles, however, it will be useful to have more information (e.g. compositional, mineralogical, remote sensing) to group fragments. These exercises show that SPA melt has a high probability of being present in a scoop sample and that dating of a few hundred to a thousand impact-melt fragments will yield the impact history of the SPA basin.

  10. Experimental research of phase transitions in a melt of high-purity aluminum

    NASA Astrophysics Data System (ADS)

    Vorontsov, V. B.; Pershin, V. K.

    2017-12-01

    This scientific work is devoted to the studying of the genetic connection structures of solid and liquid phases. In this paper Fourier analysis of acoustic emission (AE) signals accompanying heating of high purity aluminum from the melting point up to 860 °C was performed. The experimental data allowed to follow the dynamics of disorder zones in the melt with increasing melt temperature up to their complete destruction. The presented results of spectral analysis of the signals were analyzed from the standpoint of the theory of cluster melting metals.

  11. Using Paraffin with -10 deg C to 10 deg C Melting Point for Payload Thermal Energy Storage in SpaceX Dragon Trunk

    NASA Technical Reports Server (NTRS)

    Choi, Michael K.

    2013-01-01

    A concept of using paraffin wax phase change material (PCM) with a melting point between -10 deg C and 10 deg C for payload thermal energy storage in a Space Exploration Technologies (SpaceX) Dragon trunk is presented. It overcomes the problem of limited heater power available to a payload with significant radiators when the Dragon is berthed to the International Space Station (ISS). It stores adequate thermal energy to keep a payload warm without power for 6 hours during the transfer from the Dragon to an ExPRESS logistics carrier (ELC) on the ISS.

  12. Simultaneous feature selection and parameter optimisation using an artificial ant colony: case study of melting point prediction

    PubMed Central

    O'Boyle, Noel M; Palmer, David S; Nigsch, Florian; Mitchell, John BO

    2008-01-01

    Background We present a novel feature selection algorithm, Winnowing Artificial Ant Colony (WAAC), that performs simultaneous feature selection and model parameter optimisation for the development of predictive quantitative structure-property relationship (QSPR) models. The WAAC algorithm is an extension of the modified ant colony algorithm of Shen et al. (J Chem Inf Model 2005, 45: 1024–1029). We test the ability of the algorithm to develop a predictive partial least squares model for the Karthikeyan dataset (J Chem Inf Model 2005, 45: 581–590) of melting point values. We also test its ability to perform feature selection on a support vector machine model for the same dataset. Results Starting from an initial set of 203 descriptors, the WAAC algorithm selected a PLS model with 68 descriptors which has an RMSE on an external test set of 46.6°C and R2 of 0.51. The number of components chosen for the model was 49, which was close to optimal for this feature selection. The selected SVM model has 28 descriptors (cost of 5, ε of 0.21) and an RMSE of 45.1°C and R2 of 0.54. This model outperforms a kNN model (RMSE of 48.3°C, R2 of 0.47) for the same data and has similar performance to a Random Forest model (RMSE of 44.5°C, R2 of 0.55). However it is much less prone to bias at the extremes of the range of melting points as shown by the slope of the line through the residuals: -0.43 for WAAC/SVM, -0.53 for Random Forest. Conclusion With a careful choice of objective function, the WAAC algorithm can be used to optimise machine learning and regression models that suffer from overfitting. Where model parameters also need to be tuned, as is the case with support vector machine and partial least squares models, it can optimise these simultaneously. The moving probabilities used by the algorithm are easily interpreted in terms of the best and current models of the ants, and the winnowing procedure promotes the removal of irrelevant descriptors. PMID:18959785

  13. Simultaneous feature selection and parameter optimisation using an artificial ant colony: case study of melting point prediction.

    PubMed

    O'Boyle, Noel M; Palmer, David S; Nigsch, Florian; Mitchell, John Bo

    2008-10-29

    We present a novel feature selection algorithm, Winnowing Artificial Ant Colony (WAAC), that performs simultaneous feature selection and model parameter optimisation for the development of predictive quantitative structure-property relationship (QSPR) models. The WAAC algorithm is an extension of the modified ant colony algorithm of Shen et al. (J Chem Inf Model 2005, 45: 1024-1029). We test the ability of the algorithm to develop a predictive partial least squares model for the Karthikeyan dataset (J Chem Inf Model 2005, 45: 581-590) of melting point values. We also test its ability to perform feature selection on a support vector machine model for the same dataset. Starting from an initial set of 203 descriptors, the WAAC algorithm selected a PLS model with 68 descriptors which has an RMSE on an external test set of 46.6 degrees C and R2 of 0.51. The number of components chosen for the model was 49, which was close to optimal for this feature selection. The selected SVM model has 28 descriptors (cost of 5, epsilon of 0.21) and an RMSE of 45.1 degrees C and R2 of 0.54. This model outperforms a kNN model (RMSE of 48.3 degrees C, R2 of 0.47) for the same data and has similar performance to a Random Forest model (RMSE of 44.5 degrees C, R2 of 0.55). However it is much less prone to bias at the extremes of the range of melting points as shown by the slope of the line through the residuals: -0.43 for WAAC/SVM, -0.53 for Random Forest. With a careful choice of objective function, the WAAC algorithm can be used to optimise machine learning and regression models that suffer from overfitting. Where model parameters also need to be tuned, as is the case with support vector machine and partial least squares models, it can optimise these simultaneously. The moving probabilities used by the algorithm are easily interpreted in terms of the best and current models of the ants, and the winnowing procedure promotes the removal of irrelevant descriptors.

  14. New Equations for the Sublimation Pressure and Melting Pressure of H2O Ice Ih

    NASA Astrophysics Data System (ADS)

    Wagner, Wolfgang; Riethmann, Thomas; Feistel, Rainer; Harvey, Allan H.

    2011-12-01

    New reference equations, adopted by the International Association for the Properties of Water and Steam (IAPWS), are presented for the sublimation pressure and melting pressure of ice Ih as a function of temperature. These equations are based on input values derived from the phase-equilibrium condition between the IAPWS-95 scientific standard for thermodynamic properties of fluid H2O and the equation of state of H2O ice Ih adopted by IAPWS in 2006, making them thermodynamically consistent with the bulk-phase properties. Compared to the previous IAPWS formulations, which were empirical fits to experimental data, the new equations have significantly less uncertainty. The sublimation-pressure equation covers the temperature range from 50 K to the vapor-liquid-solid triple point at 273.16 K. The ice Ih melting-pressure equation describes the entire melting curve from 273.16 K to the ice Ih-ice III-liquid triple point at 251.165 K. For completeness, we also give the IAPWS melting-pressure equation for ice III, which is slightly adjusted to agree with the ice Ih melting-pressure equation at the corresponding triple point, and the unchanged IAPWS melting-pressure equations for ice V, ice VI, and ice VII.

  15. Melt Segregation and Tidal Heating at Io

    NASA Astrophysics Data System (ADS)

    Rajendar, A.; Dufek, J.; Roberts, J. H.; Paty, C. S.

    2011-12-01

    Recent evidence of melt beneath Io's surface (Khurana et al., 2010) and repeated observation of volcanic activity and features consistent with volcanic activity at the surface (e.g. Veeder et al, 1994; Rathbun et al., 2004; Lopes-Gautier et al., 1999; Smith et al., 1979) has raised further questions about the structure of the Galilean moon and the processes that shape it. In this study we examine the thermal state, melt fraction, and multiphase dynamics of melt segregation within Io's interior. Using a coupled multiphase dynamics and tidal heating model we explore the location, spatial extent, and temporal residence times of melt in Io's subsurface, as well as response to orbital parameters. In a thermally evolving body subject to tidal forcing, in which melt production and migration takes place, feedback can occur with respect to the physical and thermal properties. We explore this feedback to produce a thermal model of Io, taking into account the rate of tidal heating and fluid motion within the interior. First, a layered model of the internal structure is assumed. The equations of motion for forced oscillations in a layered spherical body are then solved using the propagator matrix method (Sabadini and Vermeesen, 2004) to obtain the displacements and strains due to tidal motion (Roberts and Nimmo, 2008). From this, the radial distribution of tidal heat generation within Io is calculated. This radial heating profile is then used as input for a multi-phase fluid model in order to obtain an estimate of the radial temperature distribution and thus the material properties and melt fractions. In the multiphase model individual phases (melt and solid residue) separately conserve mass, momentum and enthalpy (Dufek and Bachmann, 2010) allowing us to explore melt segregation phenomena. Enthalpy closure is provided by the MELTS (Ghiorso and Sack, 1995) thermodynamics algorithm, which is called at each point in space. This accounts for the partitioning between latent and

  16. Melting of KCl and pressure calibration from in situ ionic conductivity measurements in a multi-anvil apparatus

    NASA Astrophysics Data System (ADS)

    Li, J.; Dong, J.; Zhu, F.

    2017-12-01

    Melting plays an unparalleled role in planetary differentiation processes including the formation of metallic cores, basaltic crusts, and atmospheres. Knowledge of the melting behavior of Earth materials provides critical constraints for establishing the Earth's thermal structure, interpreting regional seismic anomalies, and understanding the nature of chemical heterogeneity. Measuring the melting points of compressed materials, however, have remained challenging mainly because melts are often mobile and reactive, and temperature and pressure gradients across millimeter or micron-sized samples introduce large uncertainties in melting detection. Here the melting curve of KCl was determined through in situ ionic conductivity measurements, using the multi-anvil apparatus at the University of Michigan. The method improves upon the symmetric configuration that was used recently for studying the melting behaviors of NaCl, Na2CO3, and CaCO3 (Li and Li 2015 American Mineralogist, Li et al. 2017 Earth and Planetary Science Letters). In the new configuration, the thermocouple and electrodes are placed together with the sample at the center of a cylindrical heater where the temperature is the highest along the axis, in order to minimize uncertainties in temperature measurements and increase the stability of the sample and electrodes. With 1% reproducibility in melting point determination at pressures up to 20 GPa, this method allows us to determine the sample pressure to oil load relationship at high temperatures during multiple heating and cooling cycles, on the basis of the well-known melting curves of ionic compounds. This approach enables more reliable pressure measurements than relying on a small number of fixed-point phase transitions. The new data on KCl bridge the gap between the piston-cylinder results up to 4 GPa (Pistorius 1965 J. of Physics and Chemistry of Solids) and several diamond-anvil cell data points above 20 GPa (Boehler et al. 1996 Physical Review). We

  17. Convective melting in a magma chamber: theory and numerical experiment.

    NASA Astrophysics Data System (ADS)

    Simakin, A.

    2012-04-01

    We present results of the numerical modeling of convective melting in a magma chamber in 2D. Model was pointed on the silicic system approximated with Qz-Fsp binary undersaturated with water. Viscosity was calculated as a function of the melt composition, temperature and crystal content and comprises for the pure melt 104.5-105.5 Pas. Lower boundary was taken thermally insulated in majority of the runs. Size of FEM (bilinear elements) grid for velocity is 25x25 cm and for the integration of the density term 8x8 cm. Melting of the chamber roof proceeds with the heat supply due to the chaotic thermo-compositional convection and conductive heat loose into melted substrate. We compare our numerical data with existing semi-analytical models. Theoretical studies of the assimilation rates in the magma chambers usually use theoretical semi-analytical model by Huppert and Sparks (1988) (e.g., Snyder, 2000). We find that this model has strong points: 1) Independence of the melting rate on the sill thickness (Ra>>Rac) 2) Independence of the convective heat transfer on the roof temperature 3) Determination of the exponential thermal boundary layer ahead of the melting front and weak points: 1) Ignoring the possibility of the crystallization without melting regime for narrow sills and dykes. 2)Neglecting of two-phase character of convection. 3)Ignoring of the strong viscosity variation near the melting front. Independence of convective flux from the sill size (at Ra>>Rac) allows reducing of computational domain to the geologically small size (10-15 m). Concept of exponential thermal boundary layer is also rather important. Length scale (L0) of this layer is related to the melting rate and thermal diffusivity coefficient kT as L0=kT/um and at the melting rate 10 m/yr becomes about 2 m. Such small scale implies that convective melting is very effective (small conductive heat loss) and part of the numerical domain filled with roof rocks can be taken small. In the H&S model

  18. Easy Absolute Values? Absolutely

    ERIC Educational Resources Information Center

    Taylor, Sharon E.; Mittag, Kathleen Cage

    2015-01-01

    The authors teach a problem-solving course for preservice middle-grades education majors that includes concepts dealing with absolute-value computations, equations, and inequalities. Many of these students like mathematics and plan to teach it, so they are adept at symbolic manipulations. Getting them to think differently about a concept that they…

  19. Absolutely relative or relatively absolute: violations of value invariance in human decision making.

    PubMed

    Teodorescu, Andrei R; Moran, Rani; Usher, Marius

    2016-02-01

    Making decisions based on relative rather than absolute information processing is tied to choice optimality via the accumulation of evidence differences and to canonical neural processing via accumulation of evidence ratios. These theoretical frameworks predict invariance of decision latencies to absolute intensities that maintain differences and ratios, respectively. While information about the absolute values of the choice alternatives is not necessary for choosing the best alternative, it may nevertheless hold valuable information about the context of the decision. To test the sensitivity of human decision making to absolute values, we manipulated the intensities of brightness stimuli pairs while preserving either their differences or their ratios. Although asked to choose the brighter alternative relative to the other, participants responded faster to higher absolute values. Thus, our results provide empirical evidence for human sensitivity to task irrelevant absolute values indicating a hard-wired mechanism that precedes executive control. Computational investigations of several modelling architectures reveal two alternative accounts for this phenomenon, which combine absolute and relative processing. One account involves accumulation of differences with activation dependent processing noise and the other emerges from accumulation of absolute values subject to the temporal dynamics of lateral inhibition. The potential adaptive role of such choice mechanisms is discussed.

  20. Molecular dynamics study of melting and fcc-bcc transitions in Xe.

    PubMed

    Belonoshko, A B; Ahuja, R; Johansson, B

    2001-10-15

    We have investigated the phase diagram of Xe over a wide pressure-temperature range by molecular dynamics. The calculated melting curve is in good agreement with earlier experimental data. At a pressure of around 25 GPa and a temperature of about 2700 K we find a triple fcc-bcc liquid point. The calculated fcc-bcc boundary is in nice agreement with the experimental points, which, however, were interpreted as melting. This finding suggests that the transition from close-packed to bcc structure might be more common at high pressure and high temperature than was previously anticipated.

  1. Chemical layering in the upper mantle of Mars: Evidence from olivine-hosted melt inclusions in Tissint

    NASA Astrophysics Data System (ADS)

    Basu Sarbadhikari, A.; Babu, E. V. S. S. K.; Vijaya Kumar, T.

    2017-02-01

    Melting of Martian mantle, formation, and evolution of primary magma from the depleted mantle were previously modeled from experimental petrology and geochemical studies of Martian meteorites. Based on in situ major and trace element study of a range of olivine-hosted melt inclusions in various stages of crystallization of Tissint, a depleted olivine-phyric shergottite, we further constrain different stages of depletion and enrichment in the depleted mantle source of the shergottite suite. Two types of melt inclusions were petrographically recognized. Type I melt inclusions occur in the megacrystic olivine core (Fo76-70), while type II melt inclusions are hosted by the outer mantle of the olivine (Fo66-55). REE-plot indicates type I melt inclusions, which are unique because they represent the most depleted trace element data from the parent magmas of all the depleted shergottites, are an order of magnitude depleted compared to the type II melt inclusions. The absolute REE content of type II displays parallel trend but somewhat lower value than the Tissint whole-rock. Model calculations indicate two-stage mantle melting events followed by enrichment through mixing with a hypothetical residual melt from solidifying magma ocean. This resulted in 10 times enrichment of incompatible trace elements from parent magma stage to the remaining melt after 45% crystallization, simulating the whole-rock of Tissint. We rule out any assimilation due to crustal recycling into the upper mantle, as proposed by a recent study. Rather, we propose the presence of Al, Ca, Na, P, and REE-rich layer at the shallower upper mantle above the depleted mantle source region during the geologic evolution of Mars.

  2. Predicting major element mineral/melt equilibria - A statistical approach

    NASA Technical Reports Server (NTRS)

    Hostetler, C. J.; Drake, M. J.

    1980-01-01

    Empirical equations have been developed for calculating the mole fractions of NaO0.5, MgO, AlO1.5, SiO2, KO0.5, CaO, TiO2, and FeO in a solid phase of initially unknown identity given only the composition of the coexisting silicate melt. The approach involves a linear multivariate regression analysis in which solid composition is expressed as a Taylor series expansion of the liquid compositions. An internally consistent precision of approximately 0.94 is obtained, that is, the nature of the liquidus phase in the input data set can be correctly predicted for approximately 94% of the entries. The composition of the liquidus phase may be calculated to better than 5 mol % absolute. An important feature of this 'generalized solid' model is its reversibility; that is, the dependent and independent variables in the linear multivariate regression may be inverted to permit prediction of the composition of a silicate liquid produced by equilibrium partial melting of a polymineralic source assemblage.

  3. Anatomic motor point localization for partial quadriceps block in spasticity.

    PubMed

    Albert, T; Yelnik, A; Colle, F; Bonan, I; Lassau, J P

    2000-03-01

    To identify the location of the vastus intermedius nerve and its motor point (point M) and to precisely identify its coordinates in relation to anatomic surface landmarks. Descriptive study. Anatomy institute of a university school of medicine. Twenty-nine adult cadaver limbs immobilized in anatomic position. Anatomic dissection to identify point M. Anatomic surface landmarks were point F, the issuing point of femoral nerve under the inguinal ligament; point R, the middle of superior edge of the patella; segment FR, which corresponds to thigh length; point M', point M orthogonal projection on segment FR. Absolute vertical coordinate, distance FM, relative vertical coordinate compared to the thigh length, FM'/FR ratio; absolute horizontal coordinate, distance MM'. The absolute vertical coordinate was 11.7+/-2 cm. The relative vertical coordinate was at .29+/-.04 of thigh length. The horizontal coordinate was at 2+/-.5 cm lateral to the FR line. Point M can be defined with relative precision by two coordinates. Application and clinical interest of nerve blocking using these coordinates in quadriceps spasticity should be studied.

  4. Realization of the Temperature Scale in the Range from 234.3 K (Hg Triple Point) to 1084.62°C (Cu Freezing Point) in Croatia

    NASA Astrophysics Data System (ADS)

    Zvizdic, Davor; Veliki, Tomislav; Grgec Bermanec, Lovorka

    2008-06-01

    This article describes the realization of the International Temperature Scale in the range from 234.3 K (mercury triple point) to 1084.62°C (copper freezing point) at the Laboratory for Process Measurement (LPM), Faculty of Mechanical Engineering and Naval Architecture (FSB), University of Zagreb. The system for the realization of the ITS-90 consists of the sealed fixed-point cells (mercury triple point, water triple point and gallium melting point) and the apparatus designed for the optimal realization of open fixed-point cells which include the gallium melting point, tin freezing point, zinc freezing point, aluminum freezing point, and copper freezing point. The maintenance of the open fixed-point cells is described, including the system for filling the cells with pure argon and for maintaining the pressure during the realization.

  5. Experimental Investigation of Concrete Runway Snow Melting Utilizing Heat Pipe Technology

    PubMed Central

    Su, Xin; Ye, Qing; Fu, Jianfeng

    2018-01-01

    A full scale snow melting system with heat pipe technology is built in this work, which avoids the negative effects on concrete structure and environment caused by traditional deicing chemicals. The snow melting, ice-freezing performance and temperature distribution characteristics of heat pipe concrete runway were discussed by the outdoor experiments. The results show that the temperature of the concrete pavement is greatly improved with the heat pipe system. The environment temperature and embedded depth of heat pipe play a dominant role among the decision variables of the snow melting system. Heat pipe snow melting pavement melts the snow completely and avoids freezing at any time when the environment temperature is below freezing point, which is secure enough for planes take-off and landing. Besides, the exportation and recovery of geothermal energy indicate that this system can run for a long time. This paper will be useful for the design and application of the heat pipe used in the runway snow melting. PMID:29551957

  6. Experimental Investigation of Concrete Runway Snow Melting Utilizing Heat Pipe Technology.

    PubMed

    Chen, Fengchen; Su, Xin; Ye, Qing; Fu, Jianfeng

    2018-01-01

    A full scale snow melting system with heat pipe technology is built in this work, which avoids the negative effects on concrete structure and environment caused by traditional deicing chemicals. The snow melting, ice-freezing performance and temperature distribution characteristics of heat pipe concrete runway were discussed by the outdoor experiments. The results show that the temperature of the concrete pavement is greatly improved with the heat pipe system. The environment temperature and embedded depth of heat pipe play a dominant role among the decision variables of the snow melting system. Heat pipe snow melting pavement melts the snow completely and avoids freezing at any time when the environment temperature is below freezing point, which is secure enough for planes take-off and landing. Besides, the exportation and recovery of geothermal energy indicate that this system can run for a long time. This paper will be useful for the design and application of the heat pipe used in the runway snow melting.

  7. Segregation effects during solidification in weightless melts

    NASA Technical Reports Server (NTRS)

    Li, C.

    1973-01-01

    Two types of melt segregation effects were studied: (1) evaporative segregation, or segregation due to surface evaporation; and (2) freezing segregation, or segregation due to liquid-solid phase transformation. These segregation effects are closely related. In fact, evaporative segregation always precedes freezing segregation to some degree and must often be studied prior to performing meaningful solidification experiments. This is particularly true since evaporation may cause the melt composition, at least at the critical surface regions or layers to be affected manyfold within seconds so that the surface region or layer melting point and other thermophysical properties, nucleation characteristics, base for undercooling, and critical velocity to avoid constitutional supercooling, may be completely unexpected. An important objective was, therefore, to develop the necessary normal evaporation equations for predicting the compositional changes within specified times at temperature and to correlate these equations with actual experimental data collected from the literature.

  8. Experimental testing of olivine-melt equilibrium models at high temperatures

    NASA Astrophysics Data System (ADS)

    Krasheninnikov, S. P.; Sobolev, A. V.; Batanova, V. G.; Kargaltsev, A. A.; Borisov, A. A.

    2017-08-01

    Data are presented on the equilibrium compositions of olivine and melts in the products of 101 experiments performed at 1300-1600°C, atmospheric pressure, and controlled oxygen fugacity by means of new equipment at the Vernadsky Institute. It was shown that the available models of the olivine-melt equilibrium describe with insufficient adequacy the natural systems at temperatures over 1400°C. The most adequate is the model by Ford et al. (1983). However, this model overestimates systematically the equilibrium temperature with underestimating by 20-40°C at 1450-1600°C. These data point to the need for developing a new, improved quantitative model of the olivine-melt equilibrium for high-temperature magnesian melts, as well as to the possibility of these studies on the basis of the equipment presented.

  9. Melting of Boltzmann particles in different 2D trapping potential

    NASA Astrophysics Data System (ADS)

    Bhattacharya, Dyuti; Filinov, Alexei; Ghosal, Amit; Bonitz, Michael

    2015-03-01

    We analyze the quantum melting of two dimensional Wigner solid in several confined geometries and compare them with corresponding thermal melting in a purely classical system. Our results show that the geometry play little role in deciding the crossover quantum parameter nX, as the effects from boundary is well screened by the quantum zero point motion. The unique phase diagram in the plane of thermal and quantum fluctuations determined from independent melting criteria separates out the Wigner molecule ``phase'' from the classical and quantum ``liquids''. An intriguing signature of weakening liquidity with increasing temperature T have been found in the extreme quantum regime (n). This crossover is associated with production of defects, just like in case of thermal melting, though the role of them in determining the mechanism of the crossover appears different. Our study will help comprehending melting in a variety of experimental realization of confined system - from quantum dots to complex plasma.

  10. The melting curve of Ni to 1 Mbar

    NASA Astrophysics Data System (ADS)

    Lord, Oliver T.; Wood, Ian G.; Dobson, David P.; Vočadlo, Lidunka; Wang, Weiwei; Thomson, Andrew R.; Wann, Elizabeth T. H.; Morard, Guillaume; Mezouar, Mohamed; Walter, Michael J.

    2014-12-01

    The melting curve of Ni has been determined to 125 GPa using laser-heated diamond anvil cell (LH-DAC) experiments in which two melting criteria were used: firstly, the appearance of liquid diffuse scattering (LDS) during in situ X-ray diffraction (XRD) and secondly, plateaux in temperature vs. laser power functions in both in situ and off-line experiments. Our new melting curve, defined by a Simon-Glatzel fit to the data where TM (K) = [ (PM/18.78 ± 10.20 + 1) ]1/2.42 ± 0.66 × 1726, is in good agreement with the majority of the theoretical studies on Ni melting and matches closely the available shock wave melting data. It is however dramatically steeper than the previous off-line LH-DAC studies in which determination of melting was based on the visual observation of motion aided by the laser speckle method. We estimate the melting point (TM) of Ni at the inner-core boundary (ICB) pressure of 330 GPa to be TM = 5800 ± 700 K (2 σ), within error of the value for Fe of TM = 6230 ± 500 K determined in a recent in situ LH-DAC study by similar methods to those employed here. This similarity suggests that the alloying of 5-10 wt.% Ni with the Fe-rich core alloy is unlikely to have any significant effect on the temperature of the ICB, though this is dependent on the details of the topology of the Fe-Ni binary phase diagram at core pressures. Our melting temperature for Ni at 330 GPa is ∼2500 K higher than that found in previous experimental studies employing the laser speckle method. We find that those earlier melting curves coincide with the onset of rapid sub-solidus recrystallization, suggesting that visual observations of motion may have misinterpreted dynamic recrystallization as convective motion of a melt. This finding has significant implications for our understanding of the high-pressure melting behaviour of a number of other transition metals.

  11. Results from a lab study of melting sea ice

    NASA Astrophysics Data System (ADS)

    Wiese, M.; Griewank, P.; Notz, D.

    2012-04-01

    Sea-ice melting is a complex process which is not fully understood yet. In order to study sea-ice melt in detail we perform lab experiments in an approximately 2x0.7x1.2 m large tank in a cold room. We grow sea ice with different salinities at least 10 cm thick. Then we let the ice melt at different air temperatures and oceanic heat fluxes. During the melt period, we measure the evolution of ice thickness, internal temperature, salinity and surface temperature. We will present results from roughly five months of experiments. Topics will include the influence of bulk salinity on melt rates and the surface temperature. The effects of flushing on the salinity evolution and detailed thermal profiles will also be included. To investigate these processes we focus on the energy budget and the salinity evolution. These topics are linked since the thermodynamic properties of sea ice (heat capacity, heat conductivity and latent heat of fusion) are very sensitive to salinity variations. For example the heat capacity of sea ice increases greatly as the temperature approaches the melting point. This increase results in non-linear temperature profiles and enhances heat conduction into the ice. The salinity evolution during the growth phase has been investigated and measured in multiple studies over the last decades. In contrast there are no detailed lab measurements of melting ice available to quantify the effects of flushing melt water and ponding. This is partially due to the fact that the heterogeneity of melting sea ice makes it much more difficult to measure representative values.

  12. Partial Melting of the Indarch (EH4) Meteorite : A Textural, Chemical and Phase Relations View of Melting and Melt Migration

    NASA Technical Reports Server (NTRS)

    McCoy, Timothy J.; Dickinson, Tamara L.; Lofgren, Gary E.

    2000-01-01

    To Test whether Aubrites can be formed by melting of enstatite Chondrites and to understand igneous processes at very low oxygen fugacities, we have conducted partial melting experiments on the Indarch (EH4) chondrite at 1000-1500 C. Silicate melting begins at 1000 C. Substantial melt migration occurs at 1300-1400 C and metal migrates out of the silicate change at 1450 C and approx. 50% silicate partial melting. As a group, our experiments contain three immiscible metallic melts 9Si-, and C-rich), two immiscible sulfide melts(Fe-and FeMgMnCa-rich) and Silicate melt. Our partial melting experiments on the Indarch (EH4) enstatite Chondrite suggest that igneous processes at low fO2 exhibit serveral unique features. The complete melting of sulfides at 1000 C suggest that aubritic sulfides are not relicts. Aubritic oldhamite may have crystallized from Ca and S complexed in the silicate melt. Significant metal-sulfide melt migration might occur at relatively low degrees of silicate partial melting. Substantial elemental exchange occurred between different melts (e.g., between sulfide and silicate, Si between silicate and metal), a feature not observed during experiments at higher fO2. This exchange may help explain the formation of aubrites from known enstatite chondrites.

  13. System and method for calibrating a rotary absolute position sensor

    NASA Technical Reports Server (NTRS)

    Davis, Donald R. (Inventor); Permenter, Frank Noble (Inventor); Radford, Nicolaus A (Inventor)

    2012-01-01

    A system includes a rotary device, a rotary absolute position (RAP) sensor generating encoded pairs of voltage signals describing positional data of the rotary device, a host machine, and an algorithm. The algorithm calculates calibration parameters usable to determine an absolute position of the rotary device using the encoded pairs, and is adapted for linearly-mapping an ellipse defined by the encoded pairs to thereby calculate the calibration parameters. A method of calibrating the RAP sensor includes measuring the rotary position as encoded pairs of voltage signals, linearly-mapping an ellipse defined by the encoded pairs to thereby calculate the calibration parameters, and calculating an absolute position of the rotary device using the calibration parameters. The calibration parameters include a positive definite matrix (A) and a center point (q) of the ellipse. The voltage signals may include an encoded sine and cosine of a rotary angle of the rotary device.

  14. Diameter-Dependent Modulus and Melting Behavior in Electrospun Semicrystalline Polymer Fibers

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Y Liu; S Chen; E Zussman

    2011-12-31

    Confinement of the semicrystalline polymers, poly(ethylene-co-vinyl acetate) (PEVA) and low-density polyethylene (LDPE), produced by electrospinning has been observed to produce fibers with large protrusions, which have not been previously observed in fibers of comparable diameters produced by other methods. SAXS spectra confirmed the crystalline structure and determined that the lamellar spacing was almost unchanged from the bulk. Measurement of the mechanical properties of these fibers, by both shear modulation force microscopy (SMFM) and atomic force acoustic microscopy (AFAM), indicates that the modulii of these fibers increases with decreasing diameter, with the onset at {approx}10 {micro}m, which is an order ofmore » magnitude larger than previously reported. Melting point measurements indicate a decrease of more than 7% in T{sub m}/T{sub 0} (where T{sub m} is the melting point of semicrystalline polymer fibers and T{sub 0} is the melting point of the bulk polymer) for fibers ranging from 4 to 10 {micro}m in diameter. The functional form of the decrease followed a universal curve for PEVA, when scaled with T{sub 0}.« less

  15. The Surface Layer of a Crystal and Its Specific Role in the Process of Melt Formation

    NASA Astrophysics Data System (ADS)

    Sobolev, R. N.

    2018-04-01

    A crystal becomes melted in a few stages. The structure of the crystal surface differs from that of its interior. Therefore, as its interior is gradually involved in the melting process, the phase transition temperature becomes higher. The melting point becomes constant when all atoms have the same number of unsaturated bonds.

  16. Microstructures and microhardness evolutions of melt-spun Al-8Ni-5Nd-4Si alloy

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Karakoese, Ercan, E-mail: ekarakose@karatekin.edu.tr; Keskin, Mustafa

    2012-03-15

    Al-Ni-Nd-Si alloy with nominal composition of Al-8 wt.%Ni-5 wt.%Nd-4 wt.%Si was rapidly solidified by using melt-spinning technique to examine the influence of the cooling rate/conditions on microstructure and mechanical properties. The resulting conventional cast (ingot) and melt-spun ribbons were characterized by X-ray diffraction, optical microscopy, scanning electron microscopy together with energy dispersive spectroscopy, differential scanning calorimetry, differential thermal analysis and Vickers microhardness tester. The ingot alloys consists of four phases namely {alpha}-Al, intermetallic Al{sub 3}Ni, Al{sub 11}Nd{sub 3} and fcc Si. Melt-spun ribbons are completely composed of {alpha}-Al phase. The optical microscopy and scanning electron microscopy results show that themore » microstructures of rapidly solidified ribbons are clearly different from their ingot alloy. The change in microhardness is discussed based on the microstructural observations. - Highlights: Black-Right-Pointing-Pointer Rapid solidification allows a reduction in grain size, extended solid solution ranges. Black-Right-Pointing-Pointer We observed the matrix lattice parameter increases with increasing wheel speed. Black-Right-Pointing-Pointer Melt-spun ribbons consist of partly amorphous phases embedded in crystalline phases. Black-Right-Pointing-Pointer The solidification rate is high enough to retain most of alloying elements in the Al matrix. Black-Right-Pointing-Pointer The rapid solidification has effect on the phase constitution.« less

  17. Absolute biological needs.

    PubMed

    McLeod, Stephen

    2014-07-01

    Absolute needs (as against instrumental needs) are independent of the ends, goals and purposes of personal agents. Against the view that the only needs are instrumental needs, David Wiggins and Garrett Thomson have defended absolute needs on the grounds that the verb 'need' has instrumental and absolute senses. While remaining neutral about it, this article does not adopt that approach. Instead, it suggests that there are absolute biological needs. The absolute nature of these needs is defended by appeal to: their objectivity (as against mind-dependence); the universality of the phenomenon of needing across the plant and animal kingdoms; the impossibility that biological needs depend wholly upon the exercise of the abilities characteristic of personal agency; the contention that the possession of biological needs is prior to the possession of the abilities characteristic of personal agency. Finally, three philosophical usages of 'normative' are distinguished. On two of these, to describe a phenomenon or claim as 'normative' is to describe it as value-dependent. A description of a phenomenon or claim as 'normative' in the third sense does not entail such value-dependency, though it leaves open the possibility that value depends upon the phenomenon or upon the truth of the claim. It is argued that while survival needs (or claims about them) may well be normative in this third sense, they are normative in neither of the first two. Thus, the idea of absolute need is not inherently normative in either of the first two senses. © 2013 John Wiley & Sons Ltd.

  18. Miniature Fixed Points as Temperature Standards for In Situ Calibration of Temperature Sensors

    NASA Astrophysics Data System (ADS)

    Hao, X. P.; Sun, J. P.; Xu, C. Y.; Wen, P.; Song, J.; Xu, M.; Gong, L. Y.; Ding, L.; Liu, Z. L.

    2017-06-01

    Miniature Ga and Ga-In alloy fixed points as temperature standards are developed at National Institute of Metrology, China for the in situ calibration of temperature sensors. A quasi-adiabatic vacuum measurement system is constructed to study the phase-change plateaus of the fixed points. The system comprises a high-stability bath, a quasi-adiabatic vacuum chamber and a temperature control and measurement system. The melting plateau of the Ga fixed point is longer than 2 h at 0.008 W. The standard deviation of the melting temperature of the Ga and Ga-In alloy fixed points is better than 2 mK. The results suggest that the melting temperature of the Ga or Ga-In alloy fixed points is linearly related with the heating power.

  19. Melt Heterogeneity and Degassing at MT Etna from Melt Inclusions

    NASA Astrophysics Data System (ADS)

    Salem, L. C.; Edmonds, M.; Maclennan, J.; Corsaro, R. A.

    2014-12-01

    The melts feeding Mt Etna, Italy, are rich in volatiles and drive long-lasting powerful eruptions of basaltic magma in both effusive and explosive styles of activity. The volatile systematics of the volcanic system are well understood through melt inclusion and volcanic gas studies. Etna's melts are generated from a complex mantle setting, with subduction-related chemical modifications as well as OIB-type features, and then the melts must travel through thick carbonate-rich crust. The continual influx of mantle-derived volatile-rich magma controls the major compositional and eruptive features of Mount Etna and magma mixing has been recognized as an important process driving large eruptions [Kamenetsky, 2007]. Our study focusses on the 1669 eruption, the largest in historical times. Olivine-hosted melt inclusions were analyzed for volatile, trace and major elements using electron microprobe and ion probe (SIMS). We use volatile systematics and geochemical data to deconvolve mantle-derived heterogeneity from melt mixing and crystal fractionation. Our data are well described by a mixing trend between two distinct melts: a CO2-rich (CO2~1000ppm), incompatible trace element depleted melt (La/Yb~16), and a CO2-poor, enriched melt. The mixing also generates a strong correlation between Sr and CO2 in the melt inclusions dataset, reflecting the presence of a strong Sr anomaly in one of the end-member melts. We investigate the origin of this Sr anomaly by considering plagioclase dissolution and crustal assimilation. We also investigate degassing processes in the crust and plumbing system of the volcano. We compare our results with similar studies of OIB and arc-related basalts elsewhere and assess the implications for linking eruption size and style with the nature of the mantle-derived melts. Kamenetsky et al. (2007) Geology 35, 255-258.

  20. The anomalously high melting temperature of bilayer ice.

    PubMed

    Kastelowitz, Noah; Johnston, Jessica C; Molinero, Valeria

    2010-03-28

    Confinement of water usually depresses its melting temperature. Here we use molecular dynamics simulations to determine the liquid-crystal equilibrium temperature for water confined between parallel hydrophobic or mildly hydrophilic plates as a function of the distance between the surfaces. We find that bilayer ice, an ice polymorph in which the local environment of each water molecule strongly departs from the most stable tetrahedral structure, has the highest melting temperature (T(m)) of the series of l-layer ices. The melting temperature of bilayer ice is not only unusually high compared to the other confined ices, but also above the melting point of bulk hexagonal ice. Recent force microscopy experiments of water confined between graphite and a tungsten tip reveal the formation of ice at room temperature [K. B. Jinesh and J. W. M. Frenken, Phys. Rev. Lett. 101, 036101 (2008)]. Our results suggest that bilayer ice, for which we compute a T(m) as high as 310 K in hydrophobic confinement, is the crystal formed in those experiments.

  1. A benchmark initiative on mantle convection with melting and melt segregation

    NASA Astrophysics Data System (ADS)

    Schmeling, Harro; Dannberg, Juliane; Dohmen, Janik; Kalousova, Klara; Maurice, Maxim; Noack, Lena; Plesa, Ana; Soucek, Ondrej; Spiegelman, Marc; Thieulot, Cedric; Tosi, Nicola; Wallner, Herbert

    2016-04-01

    In recent years a number of mantle convection models have been developed which include partial melting within the asthenosphere, estimation of melt volumes, as well as melt extraction with and without redistribution at the surface or within the lithosphere. All these approaches use various simplifying modelling assumptions whose effects on the dynamics of convection including the feedback on melting have not been explored in sufficient detail. To better assess the significance of such assumptions and to provide test cases for the modelling community we carry out a benchmark comparison. The reference model is taken from the mantle convection benchmark, cases 1a to 1c (Blankenbach et al., 1989), assuming a square box with free slip boundary conditions, the Boussinesq approximation, constant viscosity and Rayleigh numbers of 104 to 10^6. Melting is modelled using a simplified binary solid solution with linearly depth dependent solidus and liquidus temperatures, as well as a solidus temperature depending linearly on depletion. Starting from a plume free initial temperature condition (to avoid melting at the onset time) five cases are investigated: Case 1 includes melting, but without thermal or dynamic feedback on the convection flow. This case provides a total melt generation rate (qm) in a steady state. Case 2 is identical to case 1 except that latent heat is switched on. Case 3 includes batch melting, melt buoyancy (melt Rayleigh number Rm) and depletion buoyancy, but no melt percolation. Output quantities are the Nusselt number (Nu), root mean square velocity (vrms), the maximum and the total melt volume and qm approaching a statistical steady state. Case 4 includes two-phase flow, i.e. melt percolation, assuming a constant shear and bulk viscosity of the matrix and various melt retention numbers (Rt). These cases are carried out using the Compaction Boussinseq Approximation (Schmeling, 2000) or the full compaction formulation. For cases 1 - 3 very good agreement

  2. Development of an inhalation system of high melting point metal fumes and its use for exposure of rats to chromium and nickel fumes.

    PubMed

    Serita, F; Homma, K; Fukuda, K; Sawatari, K; Suzuki, Y; Toya, T

    1990-01-01

    An experimental inhalation system was developed for fumes generated from powders of high melting point metals such as chromium, nickel, manganese and iron. The system consisted of a plasma flame metal sprayer as a fume generator, a granular bed type fume collector, a fluidized bed aerosol generator, an exposure and a control chamber of a horizontal-flow type and inhalant monitoring and controlling units. Performance of the chambers was ensured by a distribution test using flyash as a test aerosol. Using this system, rats were exposed to chromium fumes for one week or to nickel fumes for two months. The exposure concentrations of the chromium and nickel fumes were 1.85 +/- 0.55 mg/m3 and 0.51 +/- 0.15 mg/m3 (mean +/- SD), near the target levels of 2 mg/m3 and 0.5 mg/m3, respectively. The mass median aerodynamic diameter and the geometric standard deviation of the chromium fumes were 2.1 microns and 2.00, respectively. Those of the nickel fumes were 3.7 microns and 1.74, respectively. Species analysis of these fume particles revealed that 26.4% of the total chromium was hexavalent and the residue was trivalent and that 1-3% of the total nickel was nickel(III) and the residue was nickel(II). Inhaled-metal concentrations in the lungs showed steady increases with the exposure periods and were within the normal range of variation. On the basis of these results, it is concluded that this system is useful for long-term inhalation experiments using high melting point metal fumes.

  3. Tin in granitic melts: The role of melting temperature and protolith composition

    NASA Astrophysics Data System (ADS)

    Wolf, Mathias; Romer, Rolf L.; Franz, Leander; López-Moro, Francisco Javier

    2018-06-01

    Granite bound tin mineralization typically is seen as the result of extreme magmatic fractionation and late exsolution of magmatic fluids. Mineralization, however, also could be obtained at considerably less fractionation if initial melts already had enhanced Sn contents. We present chemical data and results from phase diagram modeling that illustrate the dominant roles of protolith composition, melting conditions, and melt extraction/evolution for the distribution of Sn between melt and restite and, thus, the Sn content of melts. We compare the element partitioning between leucosome and restite of low-temperature and high-temperature migmatites. During low-temperature melting, trace elements partition preferentially into the restite with the possible exception of Sr, Cd, Bi, and Pb, that may be enriched in the melt. In high-temperature melts, Ga, Y, Cd, Sn, REE, Pb, Bi, and U partition preferentially into the melt whereas Sc, V, Cr, Co, Ni, Mo, and Ba stay in the restite. This contrasting behavior is attributed to the stability of trace element sequestering minerals during melt generation. In particular muscovite, biotite, titanite, and rutile act as host phases for Sn and, therefore prevent Sn enrichment in the melt as long as they are stable phases in the restite. As protolith composition controls both the mineral assemblage and modal contents of the various minerals, protolith composition eventually also controls the fertility of a rock during anatexis, restite mineralogy, and partitioning behavior of trace metals. If a particular trace element is sequestered in a phase that is stable during partial melting, the resulting melt is depleted in this element whereas the restite becomes enriched. Melt generation at high temperature may release Sn when Sn-hosts become unstable. If melt has not been lost before the breakdown of Sn-hosts, Sn contents in the melt will increase but never will be high. In contrast, if melt has been lost before the decomposition of Sn

  4. An absolute photometric system at 10 and 20 microns

    NASA Technical Reports Server (NTRS)

    Rieke, G. H.; Lebofsky, M. J.; Low, F. J.

    1985-01-01

    Two new direct calibrations at 10 and 20 microns are presented in which terrestrial flux standards are referred to infrared standard stars. These measurements give both good agreement and higher accuracy when compared with previous direct calibrations. As a result, the absolute calibrations at 10 and 20 microns have now been determined with accuracies of 3 and 8 percent, respectively. A variety of absolute calibrations based on extrapolation of stellar spectra from the visible to 10 microns are reviewed. Current atmospheric models of A-type stars underestimate their fluxes by about 10 percent at 10 microns, whereas models of solar-type stars agree well with the direct calibrations. The calibration at 20 microns can probably be determined to about 5 percent by extrapolation from the more accurate result at 10 microns. The photometric system at 10 and 20 microns is updated to reflect the new absolute calibration, to base its zero point directly on the colors of A0 stars, and to improve the accuracy in the comparison of the standard stars.

  5. Equations for obtaining melting points for the ternary system ethylene glycol/sodium chloride/water and their application to cryopreservation.

    PubMed

    Woods, E J; Zieger, M A; Gao, D Y; Critser, J K

    1999-06-01

    The present study describes the H(2)O-NaCl-ethylene glycol ternary system by using a differential scanning calorimeter to measure melting points (T(m)) of four different ratios (R) of ethylene glycol to NaCl and then devising equations to fit the experimental measurements. Ultimately an equation is derived which characterizes the liquidus surface above the eutectic for any R value in the system. This study focuses on ethylene glycol in part because of recent evidence indicating it may be less toxic to pancreatic islets than Me(2)SO, which is currently used routinely for islet cryopreservation. The resulting physical data and previously determined information regarding the osmotic characteristics of canine pancreatic islets are combined in a mathematical model to describe the volumetric response to equilibrium-rate freezing in varying initial concentrations of ethylene glycol. Copyright 1999 Academic Press.

  6. The Berg Balance Scale has high intra- and inter-rater reliability but absolute reliability varies across the scale: a systematic review.

    PubMed

    Downs, Stephen; Marquez, Jodie; Chiarelli, Pauline

    2013-06-01

    What is the intra-rater and inter-rater relative reliability of the Berg Balance Scale? What is the absolute reliability of the Berg Balance Scale? Does the absolute reliability of the Berg Balance Scale vary across the scale? Systematic review with meta-analysis of reliability studies. Any clinical population that has undergone assessment with the Berg Balance Scale. Relative intra-rater reliability, relative inter-rater reliability, and absolute reliability. Eleven studies involving 668 participants were included in the review. The relative intrarater reliability of the Berg Balance Scale was high, with a pooled estimate of 0.98 (95% CI 0.97 to 0.99). Relative inter-rater reliability was also high, with a pooled estimate of 0.97 (95% CI 0.96 to 0.98). A ceiling effect of the Berg Balance Scale was evident for some participants. In the analysis of absolute reliability, all of the relevant studies had an average score of 20 or above on the 0 to 56 point Berg Balance Scale. The absolute reliability across this part of the scale, as measured by the minimal detectable change with 95% confidence, varied between 2.8 points and 6.6 points. The Berg Balance Scale has a higher absolute reliability when close to 56 points due to the ceiling effect. We identified no data that estimated the absolute reliability of the Berg Balance Scale among participants with a mean score below 20 out of 56. The Berg Balance Scale has acceptable reliability, although it might not detect modest, clinically important changes in balance in individual subjects. The review was only able to comment on the absolute reliability of the Berg Balance Scale among people with moderately poor to normal balance. Copyright © 2013 Australian Physiotherapy Association. Published by .. All rights reserved.

  7. Experimental evidence for flux-lattice melting. [in high-Tc superconductors

    NASA Technical Reports Server (NTRS)

    Farrell, D. E.; Rice, J. P.; Ginsberg, D. M.

    1991-01-01

    A low-frequency torsional oscillator has been used to search for flux-lattice melting in an untwinned single crystal of YBa2Cu3O(7-delta). The damping of the oscillator was measured as a function of temperature, for applied magnetic fields in the range H = 0.1-2.3 T. A remarkably sharp damping peak has been located. It is suggested that the temperature of the peak corresponds to the melting point of the Abrikosov flux lattice.

  8. Hot melt recharge system. [repairing damaged or missing tiles on space shuttle orbiter

    NASA Technical Reports Server (NTRS)

    Progar, D. J. (Inventor)

    1983-01-01

    A package assembly is described for pecisely positioning a charge of hot melt adhesive onto an attachment pad or point of use. The adhesive is heated to softening or melt temperature (280 F to 325 F) and thereafter cooled to resolidifying temperature. A single sided pressure sensitive polyimide film tape serves with another film strip to protect a sandwiched adhesive strip until use and to hold the adhesive in precise position until thermally bonded to its point of use. Tab ends serve as aids in stripping tapes and from the adhesive charge.

  9. Melt containment member

    DOEpatents

    Rieken, Joel R.; Heidloff, Andrew J.

    2014-09-09

    A tubular melt containment member for transient containment of molten metals and alloys, especially reactive metals and alloys, includes a melt-contacting layer or region that comprises an oxygen-deficient rare earth oxide material that is less reactive as compared to the counterpart stoichiometric rare earth oxide. The oxygen-deficient (sub-stoichiometric) rare earth oxide can comprise oxygen-deficient yttria represented by Y.sub.2O.sub.3-x wherein x is from 0.01 to 0.1. Use of the oxygen-deficient rare earth oxide as the melt-contacting layer or region material reduces reaction with the melt for a given melt temperature and melt contact time.

  10. Optically induced melting of colloidal crystals and their recrystallization.

    PubMed

    Harada, Masashi; Ishii, Masahiko; Nakamura, Hiroshi

    2007-04-15

    Colloidal crystals melt by applying focused light of optical tweezers and recrystallize after removing it. The disturbed zone by the light grows radially from the focus point and the ordering starts from the interface with the crystal. Although the larger disturbed zone is observed for the higher power optical tweezers, a master curve is extracted by normalization of the disturbed zone. The temporal changes of the normalized disturbed zone are well described with exponential functions, indicating that the melting and recrystallization process is governed by a simple relaxation mechanism.

  11. The adverse effects of oral desmopressin lyophilisate (MELT): personal experience on enuretic children

    PubMed Central

    Franceschini, Giulia; Mercurio, Serena; Del Vescovo, Ester; Ianniello, Francesca; Petitti, Tommasangelo

    2018-01-01

    Objective The aim of this study was to evaluate adverse effects of oral desmopressin lyophilisate (MELT) in enuretic children. Material and methods We enrolled 260 children with nocturnal enuresis (NE) referred to the Pediatric Service, ‘Campus Bio-Medico’ University of Rome, from April 2014 to April 2017 in the study, of these 23 were excluded. The study was characterized by 2 phases. During Phase 1 a careful patient’s medical history was obtained and physical examination was performed. After 3 months of treatment with MELT (Minirin/DDAVP®) at the dose of 120 mcg a day, a micturition diary was kept, adherence to therapy and any possible adverse effects were checked during the Phase 2. The study was carried out in compliance with the Helsinki Declaration. Results Among 237 patients included in the study 11 male and 6 female (n=17; 7.2%) patients with a mean age 10.06±2.49 years, reported 22 adverse effects, with an absolute risk of 7.17%. In particular, 5 neurological symptoms, 3 gastrointestinal effects, 4 sleep disturbances, 8 psycho-behavioral disorders, 2 symptoms of fatigue were reported. Conclusion In our study MELT with its higher bioavailability guaranteed lower frequency of adverse effects which resolved spontaneously and rapidly. The MELT formulation actually represents the first line and safe treatment for the NE. PMID:29484228

  12. Refining lunar impact chronology through high spatial resolution (40)Ar/(39)Ar dating of impact melts.

    PubMed

    Mercer, Cameron M; Young, Kelsey E; Weirich, John R; Hodges, Kip V; Jolliff, Bradley L; Wartho, Jo-Anne; van Soest, Matthijs C

    2015-02-01

    Quantitative constraints on the ages of melt-forming impact events on the Moon are based primarily on isotope geochronology of returned samples. However, interpreting the results of such studies can often be difficult because the provenance region of any sample returned from the lunar surface may have experienced multiple impact events over the course of billions of years of bombardment. We illustrate this problem with new laser microprobe (40)Ar/(39)Ar data for two Apollo 17 impact melt breccias. Whereas one sample yields a straightforward result, indicating a single melt-forming event at ca. 3.83 Ga, data from the other sample document multiple impact melt-forming events between ca. 3.81 Ga and at least as young as ca. 3.27 Ga. Notably, published zircon U/Pb data indicate the existence of even older melt products in the same sample. The revelation of multiple impact events through (40)Ar/(39)Ar geochronology is likely not to have been possible using standard incremental heating methods alone, demonstrating the complementarity of the laser microprobe technique. Evidence for 3.83 Ga to 3.81 Ga melt components in these samples reinforces emerging interpretations that Apollo 17 impact breccia samples include a significant component of ejecta from the Imbrium basin impact. Collectively, our results underscore the need to quantitatively resolve the ages of different melt generations from multiple samples to improve our current understanding of the lunar impact record, and to establish the absolute ages of important impact structures encountered during future exploration missions in the inner Solar System.

  13. Cold crucible levitation melting of biomedical Ti-30 wt%Ta alloy.

    PubMed

    Fukui, H; Yang, W; Yamada, S; Fujishiro, Y; Morita, A; Niinomi, M

    2001-06-01

    Recently, titanium-tantalum alloys have been studied as implant materials for dental and orthopedic surgery. However, titanium and tantalum are difficult to mix by common arc melting and induction melting, because of their high melting point and the marked difference between their densities (Ti: 1,680 degrees C, 4.5 g/cm3, Ta: 2,990 degrees C, 16.6 g/cm3). Thus, the Cold Crucible Levitation Melting (CCLM) method was chosen to produce a Ti-30 wt%Ta binary alloy in the present study. The CCLM furnace, with 1 kg capacity, consisted of a water-cooled crucible comprising oxygen-free high purity copper segments and coils wrapped around the crucible and connected to a frequency inverter power supply. A qualified ingot of 1.0 kg of Ti-30 wt%Ta alloy was obtained. The ingot was characterized from the surface quality, chemical composition distribution and microstructure, and finally the melting process was discussed.

  14. Finite element modeling of melting and fluid flow in the laser-heated diamond-anvil cell

    NASA Astrophysics Data System (ADS)

    Gomez-Perez, N.; Rodriguez, J. F.; McWilliams, R. S.

    2017-04-01

    The laser-heated diamond anvil cell is widely used in the laboratory study of materials behavior at high-pressure and high-temperature, including melting curves and liquid properties at extreme conditions. Laser heating in the diamond cell has long been associated with fluid-like motion in samples, which is routinely used to determine melting points and is often described as convective in appearance. However, the flow behavior of this system is poorly understood. A quantitative treatment of melting and flow in the laser-heated diamond anvil cell is developed here to physically relate experimental motion to properties of interest, including melting points and viscosity. Numerical finite-element models are used to characterize the temperature distribution, melting, buoyancy, and resulting natural convection in samples. We find that continuous fluid motion in experiments can be explained most readily by natural convection. Fluid velocities, peaking near values of microns per second for plausible viscosities, are sufficiently fast to be detected experimentally, lending support to the use of convective motion as a criterion for melting. Convection depends on the physical properties of the melt and the sample geometry and is too sluggish to detect for viscosities significantly above that of water at ambient conditions, implying an upper bound on the melt viscosity of about 1 mPa s when convective motion is detected. A simple analytical relationship between melt viscosity and velocity suggests that direct viscosity measurements can be made from flow speeds, given the basic thermodynamic and geometric parameters of samples are known.

  15. Hetero-phase fluctuations in the pre-melting region in ionic crystals

    NASA Astrophysics Data System (ADS)

    Matsunaga, S.; Tamaki, S.

    2008-06-01

    The theory of the pre-melting phenomena in ionic crystals on the basis of the concept of the hetero phase fluctuation has been applied to KCl and AgCl crystal. The large scale molecular dynamics simulations (MD) in KCl and AgCl crystals are also performed to examine the ionic configuration in premelting region in the vicinity of their melting points. The size of the liquid like clusters are estimated by the theory and MD. The structural features of liquid like clusters are discussed by MD results using the Lindemann instability condition. The ionic conductivities in the pre-melting region are also discussed on the same theoretical basis.

  16. A benchmark initiative on mantle convection with melting and melt segregation

    NASA Astrophysics Data System (ADS)

    Schmeling, Harro; Dohmen, Janik; Wallner, Herbert; Noack, Lena; Tosi, Nicola; Plesa, Ana-Catalina; Maurice, Maxime

    2015-04-01

    In recent years a number of mantle convection models have been developed which include partial melting within the asthenosphere, estimation of melt volumes, as well as melt extraction with and without redistribution at the surface or within the lithosphere. All these approaches use various simplifying modelling assumptions whose effects on the dynamics of convection including the feedback on melting have not been explored in sufficient detail. To better assess the significance of such assumptions and to provide test cases for the modelling community we initiate a benchmark comparison. In the initial phase of this endeavor we focus on the usefulness of the definitions of the test cases keeping the physics as sound as possible. The reference model is taken from the mantle convection benchmark, case 1b (Blanckenbach et al., 1989), assuming a square box with free slip boundary conditions, the Boussinesq approximation, constant viscosity and a Rayleigh number of 1e5. Melting is modelled assuming a simplified binary solid solution with linearly depth dependent solidus and liquidus temperatures, as well as a solidus temperature depending linearly on depletion. Starting from a plume free initial temperature condition (to avoid melting at the onset time) three cases are investigated: Case 1 includes melting, but without thermal or dynamic feedback on the convection flow. This case provides a total melt generation rate (qm) in a steady state. Case 2 includes batch melting, melt buoyancy (melt Rayleigh number Rm), depletion buoyancy and latent heat, but no melt percolation. Output quantities are the Nusselt number (Nu), root mean square velocity (vrms) and qm approaching a statistical steady state. Case 3 includes two-phase flow, i.e. melt percolation, assuming a constant shear and bulk viscosity of the matrix and various melt retention numbers (Rt). These cases should be carried out using the Compaction Boussinseq Approximation (Schmeling, 2000) or the full compaction

  17. Low melting high lithia glass compositions and methods

    DOEpatents

    Jantzen, Carol M.; Pickett, John B.; Cicero-Herman, Connie A.; Marra, James C.

    2003-09-23

    The invention relates to methods of vitrifying waste and for lowering the melting point of glass forming systems by including lithia formers in the glass forming composition in significant amounts, typically from about 0.16 wt % to about 11 wt %, based on the total glass forming oxides. The lithia is typically included as a replacement for alkali oxide glass formers that would normally be present in a particular glass forming system. Replacement can occur on a mole percent or weight percent basis, and typically results in a composition wherein lithia forms about 10 wt % to about 100 wt % of the alkali oxide glass formers present in the composition. The present invention also relates to the high lithia glass compositions formed by these methods. The invention is useful for stabilization of numerous types of waste materials, including aqueous waste uranium oxides The decrease in melting point achieved by the present invention desirably prevents volatilization of hazardous or radioactive species during vitrification.

  18. Jasminum flexile flower absolute from India--a detailed comparison with three other jasmine absolutes.

    PubMed

    Braun, Norbert A; Kohlenberg, Birgit; Sim, Sherina; Meier, Manfred; Hammerschmidt, Franz-Josef

    2009-09-01

    Jasminum flexile flower absolute from the south of India and the corresponding vacuum headspace (VHS) sample of the absolute were analyzed using GC and GC-MS. Three other commercially available Indian jasmine absolutes from the species: J. sambac, J. officinale subsp. grandiflorum, and J. auriculatum and the respective VHS samples were used for comparison purposes. One hundred and twenty-one compounds were characterized in J. flexile flower absolute, with methyl linolate, benzyl salicylate, benzyl benzoate, (2E,6E)-farnesol, and benzyl acetate as the main constituents. A detailed olfactory evaluation was also performed.

  19. Absolute nuclear material assay

    DOEpatents

    Prasad, Manoj K [Pleasanton, CA; Snyderman, Neal J [Berkeley, CA; Rowland, Mark S [Alamo, CA

    2012-05-15

    A method of absolute nuclear material assay of an unknown source comprising counting neutrons from the unknown source and providing an absolute nuclear material assay utilizing a model to optimally compare to the measured count distributions. In one embodiment, the step of providing an absolute nuclear material assay comprises utilizing a random sampling of analytically computed fission chain distributions to generate a continuous time-evolving sequence of event-counts by spreading the fission chain distribution in time.

  20. Absolute nuclear material assay

    DOEpatents

    Prasad, Manoj K [Pleasanton, CA; Snyderman, Neal J [Berkeley, CA; Rowland, Mark S [Alamo, CA

    2010-07-13

    A method of absolute nuclear material assay of an unknown source comprising counting neutrons from the unknown source and providing an absolute nuclear material assay utilizing a model to optimally compare to the measured count distributions. In one embodiment, the step of providing an absolute nuclear material assay comprises utilizing a random sampling of analytically computed fission chain distributions to generate a continuous time-evolving sequence of event-counts by spreading the fission chain distribution in time.

  1. Absolute measurement of the extreme UV solar flux

    NASA Technical Reports Server (NTRS)

    Carlson, R. W.; Ogawa, H. S.; Judge, D. L.; Phillips, E.

    1984-01-01

    A windowless rare-gas ionization chamber has been developed to measure the absolute value of the solar extreme UV flux in the 50-575-A region. Successful results were obtained on a solar-pointing sounding rocket. The ionization chamber, operated in total absorption, is an inherently stable absolute detector of ionizing UV radiation and was designed to be independent of effects from secondary ionization and gas effusion. The net error of the measurement is + or - 7.3 percent, which is primarily due to residual outgassing in the instrument, other errors such as multiple ionization, photoelectron collection, and extrapolation to the zero atmospheric optical depth being small in comparison. For the day of the flight, Aug. 10, 1982, the solar irradiance (50-575 A), normalized to unit solar distance, was found to be 5.71 + or - 0.42 x 10 to the 10th photons per sq cm sec.

  2. ELM-induced transient tungsten melting in the JET divertor

    NASA Astrophysics Data System (ADS)

    Coenen, J. W.; Arnoux, G.; Bazylev, B.; Matthews, G. F.; Autricque, A.; Balboa, I.; Clever, M.; Dejarnac, R.; Coffey, I.; Corre, Y.; Devaux, S.; Frassinetti, L.; Gauthier, E.; Horacek, J.; Jachmich, S.; Komm, M.; Knaup, M.; Krieger, K.; Marsen, S.; Meigs, A.; Mertens, Ph.; Pitts, R. A.; Puetterich, T.; Rack, M.; Stamp, M.; Sergienko, G.; Tamain, P.; Thompson, V.; Contributors, JET-EFDA

    2015-02-01

    The original goals of the JET ITER-like wall included the study of the impact of an all W divertor on plasma operation (Coenen et al 2013 Nucl. Fusion 53 073043) and fuel retention (Brezinsek et al 2013 Nucl. Fusion 53 083023). ITER has recently decided to install a full-tungsten (W) divertor from the start of operations. One of the key inputs required in support of this decision was the study of the possibility of W melting and melt splashing during transients. Damage of this type can lead to modifications of surface topology which could lead to higher disruption frequency or compromise subsequent plasma operation. Although every effort will be made to avoid leading edges, ITER plasma stored energies are sufficient that transients can drive shallow melting on the top surfaces of components. JET is able to produce ELMs large enough to allow access to transient melting in a regime of relevance to ITER. Transient W melt experiments were performed in JET using a dedicated divertor module and a sequence of IP = 3.0 MA/BT = 2.9 T H-mode pulses with an input power of PIN = 23 MW, a stored energy of ˜6 MJ and regular type I ELMs at ΔWELM = 0.3 MJ and fELM ˜ 30 Hz. By moving the outer strike point onto a dedicated leading edge in the W divertor the base temperature was raised within ˜1 s to a level allowing transient, ELM-driven melting during the subsequent 0.5 s. Such ELMs (δW ˜ 300 kJ per ELM) are comparable to mitigated ELMs expected in ITER (Pitts et al 2011 J. Nucl. Mater. 415 (Suppl.) S957-64). Although significant material losses in terms of ejections into the plasma were not observed, there is indirect evidence that some small droplets (˜80 µm) were released. Almost 1 mm (˜6 mm3) of W was moved by ˜150 ELMs within 7 subsequent discharges. The impact on the main plasma parameters was minor and no disruptions occurred. The W-melt gradually moved along the leading edge towards the high-field side, driven by j × B forces. The evaporation rate determined

  3. Neutralization of Hydroxide Ion in Melt-Grown NaCl Crystals

    NASA Technical Reports Server (NTRS)

    Otterson, Dumas A.

    1961-01-01

    Many recent studies of solid-state phenomena, particularly in the area of crystal imperfections, have involved the use of melt-grown NaCl single crystals. Quite often trace impurities in these materials have had a prominent effect on these phenomena. Trace amounts of hydroxide ion have been found in melt-grown NaCl crystals. This paper describes a nondestructive method of neutralizing the hydroxide ion in such crystals. Crystals of similar hydroxide content are maintained at an elevated temperature below the melting point of NaCl in a flowing atmosphere containing. dry hydrogen chloride. Heat treatment is continued until an analysis of the test specimens shows no excess hydroxide ion. A colorimetric method previously described4 is used for this analysis.

  4. Divertor tungsten tile melting and its effect on core plasma performance

    NASA Astrophysics Data System (ADS)

    Lipschultz, B.; Coenen, J. W.; Barnard, H. S.; Howard, N. T.; Reinke, M. L.; Whyte, D. G.; Wright, G. M.

    2012-12-01

    For the 2007 and 2008 run campaigns, Alcator C-Mod operated with a full toroidal row of tungsten tiles in the high heat flux region of the outer divertor; tungsten levels in the core plasma were below measurement limits. An accidental creation of a tungsten leading edge in the 2009 campaign led to this study of a melting tungsten source: H-mode operation with strike point in the region of the melting tile was immediately impossible due to some fraction of tungsten droplets reaching the main plasma. Approximately 15 g of tungsten was lost from the tile over ˜100 discharges. Less than 1% of the evaporated tungsten was found re-deposited on surfaces, the rest is assumed to have become dust. The strong discharge variability of the tungsten reaching the core implies that the melt layer topology is always varying. There is no evidence of healing of the surface with repeated melting. Forces on the melted tungsten tend to lead to prominences that extend further into the plasma. A discussion of the implications of melting a divertor tungsten monoblock on the ITER plasma is presented.

  5. String-like cooperative motion in homogeneous melting

    PubMed Central

    Zhang, Hao; Khalkhali, Mohammad; Liu, Qingxia; Douglas, Jack F.

    2013-01-01

    Despite the fundamental nature and practical importance of melting, there is still no generally accepted theory of this ubiquitous phenomenon. Even the earliest simulations of melting of hard discs by Alder and Wainwright indicated the active role of collective atomic motion in melting and here we utilize molecular dynamics simulation to determine whether these correlated motions are similar to those found in recent studies of glass-forming (GF) liquids and other condensed, strongly interacting, particle systems. We indeed find string-like collective atomic motion in our simulations of “superheated” Ni crystals, but other observations indicate significant differences from GF liquids. For example, we observe neither stretched exponential structural relaxation, nor any decoupling phenomenon, while we do find a boson peak, findings that have strong implications for understanding the physical origin of these universal properties of GF liquids. Our simulations also provide a novel view of “homogeneous” melting in which a small concentration of interstitial defects exerts a powerful effect on the crystal stability through their initiation and propagation of collective atomic motion. These relatively rare point defects are found to propagate down the strings like solitons, driving the collective motion. Crystal integrity remains preserved when the permutational atomic motions take the form of ring-like atomic exchanges, but a topological transition occurs at higher temperatures where the rings open to form linear chains similar in geometrical form and length distribution to the strings of GF liquids. The local symmetry breaking effect of the open strings apparently destabilizes the local lattice structure and precipitates crystal melting. The crystal defects are thus not static entities under dynamic conditions, such as elevated temperatures or material loading, but rather are active agents exhibiting a rich nonlinear dynamics that is not addressed in conventional

  6. String-like cooperative motion in homogeneous melting.

    PubMed

    Zhang, Hao; Khalkhali, Mohammad; Liu, Qingxia; Douglas, Jack F

    2013-03-28

    Despite the fundamental nature and practical importance of melting, there is still no generally accepted theory of this ubiquitous phenomenon. Even the earliest simulations of melting of hard discs by Alder and Wainwright indicated the active role of collective atomic motion in melting and here we utilize molecular dynamics simulation to determine whether these correlated motions are similar to those found in recent studies of glass-forming (GF) liquids and other condensed, strongly interacting, particle systems. We indeed find string-like collective atomic motion in our simulations of "superheated" Ni crystals, but other observations indicate significant differences from GF liquids. For example, we observe neither stretched exponential structural relaxation, nor any decoupling phenomenon, while we do find a boson peak, findings that have strong implications for understanding the physical origin of these universal properties of GF liquids. Our simulations also provide a novel view of "homogeneous" melting in which a small concentration of interstitial defects exerts a powerful effect on the crystal stability through their initiation and propagation of collective atomic motion. These relatively rare point defects are found to propagate down the strings like solitons, driving the collective motion. Crystal integrity remains preserved when the permutational atomic motions take the form of ring-like atomic exchanges, but a topological transition occurs at higher temperatures where the rings open to form linear chains similar in geometrical form and length distribution to the strings of GF liquids. The local symmetry breaking effect of the open strings apparently destabilizes the local lattice structure and precipitates crystal melting. The crystal defects are thus not static entities under dynamic conditions, such as elevated temperatures or material loading, but rather are active agents exhibiting a rich nonlinear dynamics that is not addressed in conventional "static

  7. Laboratory Experiments Investigating Glacier Submarine Melt Rates and Circulation in an East Greenland Fjord

    NASA Astrophysics Data System (ADS)

    Cenedese, C.

    2014-12-01

    Idealized laboratory experiments investigate the glacier-ocean boundary dynamics near a vertical 'glacier' (i.e. no floating ice tongue) in a two-layer stratified fluid, similar to Sermilik Fjord where Helheim Glacier terminates. In summer, the discharge of surface runoff at the base of the glacier (subglacial discharge) intensifies the circulation near the glacier and increases the melt rate with respect to that in winter. In the laboratory, the effect of subglacial discharge is simulated by introducing fresh water at melting temperatures from either point or line sources at the base of an ice block representing the glacier. The circulation pattern observed both with and without subglacial discharge resembles those observed in previous studies. The buoyant plume of cold meltwater and subglacial discharge water entrains ambient water and rises vertically until it finds either the interface between the two layers or the free surface. The results suggest that the meltwater deposits within the interior of the water column and not entirely at the free surface, as confirmed by field observations. The submarine melt rate increases with the subglacial discharge rate. Furthermore, the same subglacial discharge causes greater submarine melting if it exits from a point source rather than from a line source. When the subglacial discharge exits from two point sources, two buoyant plumes are formed which rise vertically and interact. The results suggest that the distance between the two subglacial discharges influences the entrainment in the plumes and consequently the amount of submarine melting and the final location of the meltwater within the water column. Hence, the distribution and number of sources of subglacial discharge may play an important role in glacial melt rates and fjord stratification and circulation. Support was given by NSF project OCE-113008.

  8. On the calculation of the absolute grand potential of confined smectic-A phases

    NASA Astrophysics Data System (ADS)

    Huang, Chien-Cheng; Baus, Marc; Ryckaert, Jean-Paul

    2015-09-01

    We determine the absolute grand potential Λ along a confined smectic-A branch of a calamitic liquid crystal system enclosed in a slit pore of transverse area A and width L, using the rod-rod Gay-Berne potential and a rod-wall potential favouring perpendicular orientation at the walls. For a confined phase with an integer number of smectic layers sandwiched between the opposite walls, we obtain the excess properties (excess grand potential Λexc, solvation force fs and adsorption Γ) with respect to the bulk phase at the same μ (chemical potential) and T (temperature) state point. While usual thermodynamic integration methods are used along the confined smectic branch to estimate the grand potential difference as μ is varied at fixed L, T, the absolute grand potential at one reference state point is obtained via the evaluation of the absolute Helmholtz free energy in the (N, L, A, T) canonical ensemble. It proceeds via a sequence of free energy difference estimations involving successively the cost of localising rods on layers and the switching on of a one-dimensional harmonic field to keep layers integrity coupled to the elimination of inter-layers and wall interactions. The absolute free energy of the resulting set of fully independent layers of interacting rods is finally estimated via the existing procedures. This work opens the way to the computer simulation study of phase transitions implying confined layered phases.

  9. Freezing, melting and structure of ice in a hydrophilic nanopore.

    PubMed

    Moore, Emily B; de la Llave, Ezequiel; Welke, Kai; Scherlis, Damian A; Molinero, Valeria

    2010-04-28

    The nucleation, growth, structure and melting of ice in 3 nm diameter hydrophilic nanopores are studied through molecular dynamics simulations with the mW water model. The melting temperature of water in the pore was T(m)(pore) = 223 K, 51 K lower than the melting point of bulk water in the model and in excellent agreement with experimental determinations for 3 nm silica pores. Liquid and ice coexist in equilibrium at the melting point and down to temperatures as low as 180 K. Liquid water is located at the interface of the pore wall, increasing from one monolayer at the freezing temperature, T(f)(pore) = 195 K, to two monolayers a few degrees below T(m)(pore). Crystallization of ice in the pore occurs through homogeneous nucleation. At the freezing temperature, the critical nucleus contains approximately 75 to 100 molecules, with a radius of gyration similar to the radius of the pore. The critical nuclei contain features of both cubic and hexagonal ice, although stacking of hexagonal and cubic layers is not defined until the nuclei reach approximately 150 molecules. The structure of the confined ice is rich in stacking faults, in agreement with the interpretation of X-ray and neutron diffraction experiments. Though the presence of cubic layers is twice as prevalent as hexagonal ones, the crystals should not be considered defective Ic as sequences with more than three adjacent cubic (or hexagonal) layers are extremely rare in the confined ice.

  10. Compositions of Magmatic and Impact Melt Sulfides in Tissint And EETA79001: Precursors of Immiscible Sulfide Melt Blebs in Shergottite Impact Melts

    NASA Technical Reports Server (NTRS)

    Ross, D. K.; Rao, M. N.; Nyquist, L.; Agee, C.; Sutton, S.

    2013-01-01

    Immiscible sulfide melt spherules are locally very abundant in shergottite impact melts. These melts can also contain samples of Martian atmospheric gases [1], and cosmogenic nuclides [2] that are present in impact melt, but not in the host shergottite, indicating some components in the melt resided at the Martian surface. These observations show that some regolith components are, at least locally, present in the impact melts. This view also suggests that one source of the over-abundant sulfur in these impact melts could be sulfates that are major constituents of Martian regolith, and that the sulfates were reduced during shock heating to sulfide. An alternative view is that sulfide spherules in impact melts are produced solely by melting the crystalline sulfide minerals (dominantly pyrrhotite, Fe(1-x)S) that are present in shergottites [3]. In this abstract we report new analyses of the compositions of sulfide immiscible melt spherules and pyrrhotite in the shergottites Tissint, and EETA79001,507, and we use these data to investigate the possible origins of the immiscible sulfide melt spherules. In particular, we use the metal/S ratios determined in these blebs as potential diagnostic criteria for tracking the source material from which the numerous sulfide blebs were generated by shock in these melts.

  11. Molecular mechanism of melting of a helical polymer crystal: Role of conformational order, packing and mobility of polymers

    NASA Astrophysics Data System (ADS)

    Cheerla, Ramesh; Krishnan, Marimuthu

    2018-03-01

    The molecular mechanism of melting of a superheated helical polymer crystal has been investigated using isothermal-isobaric molecular dynamics simulation that allows anisotropic deformation of the crystal lattice. A detailed microscopic analysis of the onset and progression of melting and accompanying changes in the polymer conformational order, translational, and orientation order of the solid along the melting pathway is presented. Upon gradual heating from room temperature to beyond the melting point at ambient pressure, the crystal exhibits signatures of premelting well below the solid-to-liquid melting transition at the melting point. The melting transition is manifested by abrupt changes in the crystal volume, lattice energy, polymer conformation, and dynamical properties. In the premelting stage, the crystal lattice structure and backbone orientation of the polymer chains are retained but with the onset of weakening of long-range helical order and interchain packing of polymers perpendicular to the fibre axis of the crystal. The premelting also marks the onset of conformational defects and anisotropic solid-state diffusion of polymers along the fibre axis. The present study underscores the importance of the interplay between intermolecular packing, interactions, and conformational dynamics at the atomic level in determining the macroscopic melting behavior of polymer crystals.

  12. The protoelectric potential map (PPM): an absolute two-dimensional chemical potential scale for a global understanding of chemistry.

    PubMed

    Radtke, Valentin; Himmel, Daniel; Pütz, Katharina; Goll, Sascha K; Krossing, Ingo

    2014-04-07

    We introduce the protoelectric potential map (PPM) as a novel, two-dimensional plot of the absolute reduction potential (peabs scale) combined with the absolute protochemical potential (Brønsted acidity: pHabs scale). The validity of this thermodynamically derived PPM is solvent-independent due to the scale zero points, which were chosen as the ideal electron gas and the ideal proton gas at standard conditions. To tie a chemical environment to these reference states, the standard Gibbs energies for the transfer of the gaseous electrons/protons to the medium are needed as anchor points. Thereby, the thermodynamics of any redox, acid-base or combined system in any medium can be related to any other, resulting in a predictability of reactions even over different media or phase boundaries. Instruction is given on how to construct the PPM from the anchor points derived and tabulated with this work. Since efforts to establish "absolute" reduction potential scales and also "absolute" pH scales already exist, a short review in this field is given and brought into relation to the PPM. Some comments on the electrochemical validation and realization conclude this concept article. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  13. Automatic twin vessel recrystallizer. Effective purification of acetaminophen by successive automatic recrystallization and absolute determination of purity by DSC.

    PubMed

    Nara, Osamu

    2011-01-24

    I describe an interchangeable twin vessel (J, N) automatic glass recrystallizer that eliminates the time-consuming recovery and recycling of crystals for repeated recrystallization. The sample goes in the dissolution vessel J containing a magnetic stir-bar K; J is clamped to the upper joint H of recrystallizer body D. Empty crystallization vessel N is clamped to the lower joint M. Pure solvent is delivered to the dissolution vessel and the crystallization vessel via the head of the condenser A. Crystallization vessel is heated (P). The dissolution reservoir is stirred and heated by the solvent vapor (F). Continuous outflow of filtrate E out of J keeps N at a stable boiling temperature. This results in efficient dissolution, evaporation and separation of pure crystals Q. Pure solvent in the dissolution reservoir is recovered by suction. Empty dissolution and crystallization vessels are detached. Stirrer magnet is transferred to the crystallization vessel and the role of the vessels are then reversed. Evacuating mother liquor out of the upper twin vessel, the apparatus unit is ready for the next automatic recrystallization by refilling twin vessels with pure solvent. We show successive automatic recrystallization of acetaminophen from diethyl ether obtaining acetaminophen of higher melting temperatures than USP and JP reference standards by 8× automatic recrystallization, 96% yield at each stage. Also, I demonstrate a novel approach to the determination of absolute purity by combining the successive automatic recrystallization with differential scanning calorimetry (DSC) measurement requiring no reference standards. This involves the measurement of the criterial melting temperature T(0) corresponding to the 100% pure material and quantitative ΔT in DSC based on the van't Hoff law of melting point depression. The purity of six commercial acetaminophen samples and reference standards and an eight times recrystallized product evaluated were 98.8 mol%, 97.9 mol%, 99

  14. Melting of size-selected gallium clusters with 60-183 atoms.

    PubMed

    Pyfer, Katheryne L; Kafader, Jared O; Yalamanchali, Anirudh; Jarrold, Martin F

    2014-07-10

    Heat capacities have been measured as a function of temperature for size-selected gallium cluster cations with between 60 and 183 atoms. Almost all clusters studied show a single peak in the heat capacity that is attributed to a melting transition. The peaks can be fit by a two-state model incorporating only fully solid-like and fully liquid-like species, and hence no partially melted intermediates. The exceptions are Ga90(+), which does not show a peak, and Ga80(+) and Ga81(+), which show two peaks. For the clusters with two peaks, the lower temperature peak is attributed to a structural transition. The melting temperatures for clusters with less than 50 atoms have previously been shown to be hundreds of degrees above the bulk melting point. For clusters with more than 60 atoms the melting temperatures decrease, approaching the bulk value (303 K) at around 95 atoms, and then show several small upward excursions with increasing cluster size. A plot of the latent heat against the entropy change for melting reveals two groups of clusters: the latent heats and entropy changes for clusters with less than 94 atoms are distinct from those for clusters with more than 93 atoms. This observation suggests that a significant change in the nature of the bonding or the structure of the clusters occurs at 93-94 atoms. Even though the melting temperatures are close to the bulk value for the larger clusters studied here, the latent heats and entropies of melting are still far from the bulk values.

  15. The role of the "Casimir force analogue" at the microscopic processes of crystallization and melting

    NASA Astrophysics Data System (ADS)

    Chuvildeev, V. N.; Semenycheva, A. V.

    2016-10-01

    Melting (crystallization), a phase transition from a crystalline solid to a liquid state, is a common phenomenon in nature. We suggest a new factor, "the Casimir force analogue", to describe mechanisms of melting and crystallization. The Casimir force analogue is a force occurring between the surfaces of solid and liquid phases of metals caused by different energy density of phonons of these phases. It explains abrupt changes in geometry and thermodynamic parameters at a melting point. "The Casimir force analogue" helps to estimate latent melting heat and to gain an insight into a solid-liquid transition problem.

  16. On Thermocapillary Mechanism of Spatial Separation of Metal Melts

    NASA Astrophysics Data System (ADS)

    Demin, V. A.; Mizev, A. I.; Petukhov, M. I.

    2018-02-01

    Theoretical research has been devoted to the study of binary metal melts behavior in a thin capillary. Earlier it has been found experimentally that unusually significant and quick redistribution of melts components takes place along capillary after the cooling. Numerical simulation of concentration-induced convection has been carried out to explain these experimental data. Two-component melt of both liquid metals filling vertical thin capillary with non-uniform temperature distribution on the boundaries is considered. It is assumed that the condition of absolute non-wetting is valid on the sidewalls. Because of this effect there is a free surface on vertical boundaries, where thermocapillary force is appeared due to the external longitudinal temperature gradient. It makes to move liquid elements at a big distance, compared with axial size of capillary. Effects of adsorption-desorption on the surface, thermal and concentration-capillary forces, convective motion in a volume and diffusion generate the large-scale circulation. This process includes the admixture carrying-out on the surface in the more hot higher part of the channel, its following transfer down along the boundary due to the thermocapillary force and its return in the volume over the desorption in the lower part of capillary. Intensity of motion and processes of adsorption-desorption on the free boundary have the decisive influence upon the formation of concentration fields and speed of components redistribution. Thus, one of the possible mechanisms of longitudinal division on components of liquid binary mixtures in thin channels has been demonstrated.

  17. Melting Inside the Tibetan Crust? Constraint From Electrical Conductivity of Peraluminous Granitic Melt

    NASA Astrophysics Data System (ADS)

    Guo, Xuan; Zhang, Li; Su, Xue; Mao, Zhu; Gao, Xiao-Ying; Yang, Xiaozhi; Ni, Huaiwei

    2018-05-01

    Magnetotelluric and seismological studies suggested the presence of partial melts in the middle to lower Himalaya-Tibetan crust. However, the melt fractions inferred by previous work were based on presumed electrical conductivity of melts. We performed measurements on the electrical conductivity of peraluminous granitic melts with 0.16-8.4 wt % H2O (the expected compositions in the Tibetan crust) at 600-1,300°C and 0.5-1.0 GPa. Peraluminous melt exhibits lower electrical conductivity than peralkaline melt at dry condition, but this difference diminishes at H2O > 2 wt %. With our data, the observed electrical anomalies in the Tibetan crust could be explained by 2-33 vol % of peraluminous granitic melts with H2O > 6 wt %. Possible reasons for our inferred melt fractions being higher than seismological constraints include the following: (1) The real melts are more Na and H2O rich, (2) the effect of melt reducing seismic velocities was overestimated, and (3) the anomalies at some locations are due to fluids.

  18. Mathematical estimation of melt depth in conduction mode of laser spot remelting process

    NASA Astrophysics Data System (ADS)

    Hadi, Iraj

    2012-12-01

    A one-dimensional mathematical model based on the front tracking method was developed to predict the melt depth as a function of internal and external parameters of laser spot remelting process in conduction mode. Power density, pulse duration, and thermophysical properties of material including thermal diffusivity, melting point, latent heat, and absorption coefficient have been taken into account in the model of this article. By comparing the theoretical results and experimental welding data of commercial pure nickel and titanium plates, the validity of the developed model was examined. Comparison shows a reasonably good agreement between the theory and experiment. For the sake of simplicity, a graphical technique was presented to obtain the melt depth of various materials at any arbitrary amount of power density and pulse duration. In the graphical technique, two dimensionless constants including the Stefan number (Ste) and an introduced constant named laser power factor (LPF) are used. Indeed, all of the internal and external parameters have been gathered in LPF. The effect of power density and pulse duration on the variation of melt depth for different materials such as aluminum, copper, and stainless steel were investigated. Additionally, appropriate expressions were extracted to describe the minimum power density and time to reach melting point in terms of process parameters. A simple expression is also extracted to estimate the thickness of mushy zone for alloys.

  19. Rapakivi texture formation via disequilibrium melting in a contact partial melt zone, Antarctica

    NASA Astrophysics Data System (ADS)

    Currier, R. M.

    2017-12-01

    In the McMurdo Dry Valleys of Antarctica, a Jurassic aged dolerite sill induced partial melting of granite in the shallow crust. The melt zone can be traced in full, from high degrees of melting (>60%) along the dolerite contact, to no apparent signs of melting, 10s of meters above the contact. Within this melt zone, the well-known rapakivi texture is found, arrested in various stages of development. High above the contact, and at low degrees of melting, K-feldspar crystals are slightly rounded and unmantled. In the lower half of the melt zone, mantles of cellular textured plagioclase appear on K-feldspar, and thicken towards the contact heat source. At the highest degrees of melting, cellular-textured plagioclase completely replaces restitic K-feldspar. Because of the complete exposure and intact context, the leading models of rapakivi texture formation can be tested against this system. The previously proposed mechanisms of subisothermal decompression, magma-mixing, and hydrothermal exsolution all fail to adequately describe rapakivi generation in this melt zone. Preferred here is a closed system model that invokes the production of a heterogeneous, disequilibrium melt through rapid heating, followed by calcium and sodium rich melt reacting in a peritectic fashion with restitic K-feldspar crystals. This peritectic reaction results in the production of plagioclase of andesine-oligoclase composition—which is consistent with not just mantles in the melt zone, but globally as well. The thickness of the mantle is diffusion limited, and thus a measure of the diffusive length scale of sodium and calcium over the time scale of melting. Thermal modeling provides a time scale of melting that is consistent with the thickness of observed mantles. Lastly, the distribution of mantled feldspars is highly ordered in this melt zone, but if it were mobilized and homogenized—mixing together cellular plagioclase, mantled feldspars, and unmantled feldspars—the result would be

  20. Influence of the Cavity Length on the Behavior of Hybrid Fixed-Point Cells Constructed at INRIM

    NASA Astrophysics Data System (ADS)

    Battuello, M.; Girard, F.; Florio, M.

    2015-03-01

    Hybrid cells with double carbon/carbon sheets are used at the Istituto Nazionale di Ricerca Metrologica (INRIM) for the realization of both pure metal fixed points and high-temperature metal-carbon eutectic points. Cells for the Cu and Co-C fixed points have been prepared to be used in the high-temperature fixed-point project of the Comité Consultatif de Thermométrie. The results of the evaluation processes were not completely satisfactory for the INRIM cells because of their low transition temperatures with respect to the best cells, and of a rather large melting range for the Co-C cell. A new design of the cells was devised, and considerable improvements were achieved with respect to the transition temperature, and the plateau shape and duration. As for the Cu point, the duration of the freezing plateaux increased by more than 50 % and the freezing temperature increased by 18 mK. As for the Co-C point, the melting temperature, expressed in terms of the point of inflection of the melting curve, increased by about 70 mK. The melting range of the plateaux, expressed as a difference was reduced from about 180 mK to about 130 mK, with melting times increased by about 50 %, as a consequence of an improvement of flatness and run-off of the plateaux.

  1. Solidification observations and sliding wear behavior of vacuum arc melting processed Ni-Al-TiC composites

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Karantzalis, A.E., E-mail: akarantz@cc.uoi.gr; Lekatou, A.; Tsirka, K.

    2012-07-15

    Monolithic Ni{sub 3}Al and Ni-25 at.%Al intermetallic matrix TiC-reinforced composites were successfully produced by vacuum arc melting. TiC crystals were formed through a dissolution-reprecipitation mechanism and their final morphology is explained by means of a) Jackson's classical nucleation and growth phenomena and b) solidification rate considerations. The TiC presence altered the matrix microconstituents most likely due to specific melt-particle interactions and crystal plane epitaxial matching. TiC particles caused a significant decrease on the specific wear rate of the monolithic Ni{sub 3}Al alloy and the possible wear mechanisms are approached by means of a) surface oxidation, b) crack/flaws formation, c) materialmore » detachment and d) debris-counter surfaces interactions. - Highlights: Black-Right-Pointing-Pointer Vacuum arc melting (VAM) of Ni-Al based intermetallic matrix composite materials. Black-Right-Pointing-Pointer Solidification phenomena examination. Black-Right-Pointing-Pointer TiC crystal formation and growth mechanisms. Black-Right-Pointing-Pointer Sliding wear examination.« less

  2. Electrical conductivity of basaltic and carbonatite melt-bearing peridotites at high pressures: Implications for melt distribution and melt fraction in the upper mantle

    NASA Astrophysics Data System (ADS)

    Yoshino, Takashi; Laumonier, Mickael; McIsaac, Elizabeth; Katsura, Tomoo

    2010-07-01

    Electrical impedance measurements were performed on two types of partial molten samples with basaltic and carbonatitic melts in a Kawai-type multi-anvil apparatus in order to investigate melt fraction-conductivity relationships and melt distribution of the partial molten mantle peridotite under high pressure. The silicate samples were composed of San Carlos olivine with various amounts of mid-ocean ridge basalt (MORB), and the carbonate samples were a mixture of San Carlos olivine with various amounts of carbonatite. High-pressure experiments on the silicate and carbonate systems were performed up to 1600 K at 1.5 GPa and up to at least 1650 K at 3 GPa, respectively. The sample conductivity increased with increasing melt fraction. Carbonatite-bearing samples show approximately one order of magnitude higher conductivity than basalt-bearing ones at the similar melt fraction. A linear relationship between log conductivity ( σbulk) and log melt fraction ( ϕ) can be expressed well by the Archie's law (Archie, 1942) ( σbulk/ σmelt = Cϕn) with parameters C = 0.68 and 0.97, n = 0.87 and 1.13 for silicate and carbonate systems, respectively. Comparison of the electrical conductivity data with theoretical predictions for melt distribution indicates that the model assuming that the grain boundary is completely wetted by melt is the most preferable melt geometry. The gradual change of conductivity with melt fraction suggests no permeability jump due to melt percolation at a certain melt fraction. The melt fraction of the partial molten region in the upper mantle can be estimated to be 1-3% and ˜ 0.3% for basaltic melt and carbonatite melt, respectively.

  3. Refining lunar impact chronology through high spatial resolution 40Ar/39Ar dating of impact melts

    PubMed Central

    Mercer, Cameron M.; Young, Kelsey E.; Weirich, John R.; Hodges, Kip V.; Jolliff, Bradley L.; Wartho, Jo-Anne; van Soest, Matthijs C.

    2015-01-01

    Quantitative constraints on the ages of melt-forming impact events on the Moon are based primarily on isotope geochronology of returned samples. However, interpreting the results of such studies can often be difficult because the provenance region of any sample returned from the lunar surface may have experienced multiple impact events over the course of billions of years of bombardment. We illustrate this problem with new laser microprobe 40Ar/39Ar data for two Apollo 17 impact melt breccias. Whereas one sample yields a straightforward result, indicating a single melt-forming event at ca. 3.83 Ga, data from the other sample document multiple impact melt–forming events between ca. 3.81 Ga and at least as young as ca. 3.27 Ga. Notably, published zircon U/Pb data indicate the existence of even older melt products in the same sample. The revelation of multiple impact events through 40Ar/39Ar geochronology is likely not to have been possible using standard incremental heating methods alone, demonstrating the complementarity of the laser microprobe technique. Evidence for 3.83 Ga to 3.81 Ga melt components in these samples reinforces emerging interpretations that Apollo 17 impact breccia samples include a significant component of ejecta from the Imbrium basin impact. Collectively, our results underscore the need to quantitatively resolve the ages of different melt generations from multiple samples to improve our current understanding of the lunar impact record, and to establish the absolute ages of important impact structures encountered during future exploration missions in the inner Solar System. PMID:26601128

  4. Viscosity of Hg(0.84)Zn(0.16)Te Pseudobinary Melt

    NASA Technical Reports Server (NTRS)

    Mazuruk, K.; Su, Ching-Hua; Sha, Yi-Gao; Lehoczky, S. L.

    1996-01-01

    An oscillating-cup viscometer was developed to measure viscosity of molten HgZnTe ternary semiconductor alloys. Data were collected for the pseudobinary Hg(0.84)Zn(0.16)Te melt between 770 and 850 C. The kinematic viscosity was found to vary from approximately 1.1 to 1.4 x 10(sup -3)sq cm/s. A slow relaxation phenomena was also observed for temperatures from the melting point of 770 to approx. 800 C. Possible mechanisms for this effect are discussed.

  5. Pitted rock surfaces on Mars: A mechanism of formation by transient melting of snow and ice

    NASA Astrophysics Data System (ADS)

    Head, James W.; Kreslavsky, Mikhail A.; Marchant, David R.

    2011-09-01

    Pits in rocks on the surface of Mars have been observed at several locations. Similar pits are observed in rocks in the Mars-like hyperarid, hypothermal stable upland zone of the Antarctic Dry Valleys; these form by very localized chemical weathering due to transient melting of small amounts of snow on dark dolerite boulders preferentially heated above the melting point of water by sunlight. We examine the conditions under which a similar process might explain the pitted rocks seen on the surface of Mars (rock surface temperatures above the melting point; atmospheric pressure exceeding the triple point pressure of H2O; an available source of solid water to melt). We find that on Mars today each of these conditions is met locally and regionally, but that they do not occur together in such a way as to meet the stringent requirements for this process to operate. In the geological past, however, conditions favoring this process are highly likely to have been met. For example, increases in atmospheric water vapor content (due, for example, to the loss of the south perennial polar CO2 cap) could favor the deposition of snow, which if collected on rocks heated to above the melting temperature during favorable conditions (e.g., perihelion), could cause melting and the type of locally enhanced chemical weathering that can cause pits. Even when these conditions are met, however, the variation in heating of different rock facets under Martian conditions means that different parts of the rock may weather at different times, consistent with the very low weathering rates observed on Mars. Furthermore, as is the case in the stable upland zone of the Antarctic Dry Valleys, pit formation by transient melting of small amounts of snow readily occurs in the absence of subsurface active layer cryoturbation.

  6. Internal stress-induced melting below melting temperature at high-rate laser heating

    NASA Astrophysics Data System (ADS)

    Hwang, Yong Seok; Levitas, Valery I.

    2014-06-01

    In this Letter, continuum thermodynamic and phase field approaches (PFAs) predicted internal stress-induced reduction in melting temperature for laser-irradiated heating of a nanolayer. Internal stresses appear due to thermal strain under constrained conditions and completely relax during melting, producing an additional thermodynamic driving force for melting. Thermodynamic melting temperature for Al reduces from 933.67 K for a stress-free condition down to 898.1 K for uniaxial strain and to 920.8 K for plane strain. Our PFA simulations demonstrated barrierless surface-induced melt nucleation below these temperatures and propagation of two solid-melt interfaces toward each other at the temperatures very close to the corresponding predicted thermodynamic equilibrium temperatures for the heating rate Q ≤1.51×1010K/s. At higher heating rates, kinetic superheating competes with a reduction in melting temperature and melting under uniaxial strain occurs at 902.1 K for Q = 1.51 × 1011 K/s and 936.9 K for Q = 1.46 × 1012 K/s.

  7. Melting Behavior of Al/Pb/Sn/Al Multilayered Thin Films

    NASA Astrophysics Data System (ADS)

    Khan, Patan Yousaf; Devi, M. Manolata; Biswas, Krishanu

    2015-09-01

    Metals or alloy nanoparticles (NPs) have been reported to exhibit superheating on melting when coated with higher melting point material or embedded in a matrix. This is due to the suppression of the heterogeneous nucleation of the melt at the epitaxial interface. For 2D thin films, this necessary condition is not feasible because even if a thin film is sandwiched between higher melting temperature materials with coherent interfaces, the heterogeneous nucleation of melt is possible at various detects. However, it has earlier been reported that 2D thin films of the pure metal sandwiched by other materials can exhibit superheating by suppression of melt growth. In order to probe this effect in case of alloy thin films, the present investigation has been carried out on Pb/Sn multilayers sandwiched between Al layers. The present study shows that such sandwiched thin films prepared by accumulative roll bonding process cause the formation of biphasic NPs in the intermixed region of Pb and Sn. Al layers undergo severe plastic deformation, leading to the generation of dislocations and sub-grain boundaries. DSC (differential canning calorimeter) thermograms of the films indicate superheating of 3 K to 6 K (or 3 °C to 6 °C). Theoretical analysis using currently available literatures has been carried out to justify the finding in the present investigation.

  8. Using a Spreadsheet To Explore Melting, Dissolving and Phase Diagrams.

    ERIC Educational Resources Information Center

    Goodwin, Alan

    2002-01-01

    Compares phase diagrams relating to the solubilities and melting points of various substances in textbooks with those generated by a spreadsheet using data from the literature. Argues that differences between the diagrams give rise to new chemical insights. (Author/MM)

  9. Temperature of Earth's core constrained from melting of Fe and Fe0.9Ni0.1 at high pressures

    NASA Astrophysics Data System (ADS)

    Zhang, Dongzhou; Jackson, Jennifer M.; Zhao, Jiyong; Sturhahn, Wolfgang; Alp, E. Ercan; Hu, Michael Y.; Toellner, Thomas S.; Murphy, Caitlin A.; Prakapenka, Vitali B.

    2016-08-01

    The melting points of fcc- and hcp-structured Fe0.9Ni0.1 and Fe are measured up to 125 GPa using laser heated diamond anvil cells, synchrotron Mössbauer spectroscopy, and a recently developed fast temperature readout spectrometer. The onset of melting is detected by a characteristic drop in the time-integrated synchrotron Mössbauer signal which is sensitive to atomic motion. The thermal pressure experienced by the samples is constrained by X-ray diffraction measurements under high pressures and temperatures. The obtained best-fit melting curves of fcc-structured Fe and Fe0.9Ni0.1 fall within the wide region bounded by previous studies. We are able to derive the γ-ɛ-l triple point of Fe and the quasi triple point of Fe0.9Ni0.1 to be 110 ± 5GPa, 3345 ± 120K and 116 ± 5GPa, 3260 ± 120K, respectively. The measured melting temperatures of Fe at similar pressure are slightly higher than those of Fe0.9Ni0.1 while their one sigma uncertainties overlap. Using previously measured phonon density of states of hcp-Fe, we calculate melting curves of hcp-structured Fe and Fe0.9Ni0.1 using our (quasi) triple points as anchors. The extrapolated Fe0.9Ni0.1 melting curve provides an estimate for the upper bound of Earth's inner core-outer core boundary temperature of 5500 ± 200K. The temperature within the liquid outer core is then approximated with an adiabatic model, which constrains the upper bound of the temperature at the core side of the core-mantle boundary to be 4000 ± 200K. We discuss a potential melting point depression caused by light elements and the implications of the presented core-mantle boundary temperature bounds on phase relations in the lowermost part of the mantle.

  10. Temperature of Earth's core constrained from melting of Fe and Fe 0.9Ni 0.1 at high pressures

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zhang, Dongzhou; Jackson, Jennifer M.; Zhao, Jiyong

    The melting points of fcc- and hcp-structured Fe 0.9Ni 0.1 and Fe are measured up to 125 GPa using laser heated diamond anvil cells, synchrotron Mossbauer spectroscopy, and a recently developed fast temperature readout spectrometer. The onset of melting is detected by a characteristic drop in the time integrated synchrotron Mfissbauer signal which is sensitive to atomic motion. The thermal pressure experienced by the samples is constrained by X-ray diffraction measurements under high pressures and temperatures. The obtained best-fit melting curves of fcc-structured Fe and Fe 0.9Ni 0.1 fall within the wide region bounded by previous studies. We are ablemore » to derive the gamma-is an element of-1 triple point of Fe and the quasi triple point of Fe0.9Ni0.1 to be 110 ± 5 GPa, 3345 ± 120 K and 116 ± 5 GPa, 3260 ± 120 K, respectively. The measured melting temperatures of Fe at similar pressure are slightly higher than those of Fe 0.9Ni 0.1 while their one sigma uncertainties overlap. Using previously measured phonon density of states of hcp-Fe, we calculate melting curves of hcp-structured Fe and Fe 0.9Ni 0.1 using our (quasi) triple points as anchors. The extrapolated Fe 0.9Ni 0.1 melting curve provides an estimate for the upper bound of Earth's inner core-outer core boundary temperature of 5500 ± 200 K. The temperature within the liquid outer core is then approximated with an adiabatic model, which constrains the upper bound of the temperature at the core side of the core -mantle boundary to be 4000 ± 200 K. We discuss a potential melting point depression caused by light elements and the implications of the presented core -mantle boundary temperature bounds on phase relations in the lowermost part of the mantle.« less

  11. Cloud screening and melt water detection over melting sea ice using AATSR/SLSTR

    NASA Astrophysics Data System (ADS)

    Istomina, Larysa; Heygster, Georg

    2014-05-01

    With the onset of melt in the Arctic Ocean, the fraction of melt water on sea ice, the melt pond fraction, increases. The consequences are: the reduced albedo of sea ice, increased transmittance of sea ice and affected heat balance of the system with more heat passing through the ice into the ocean, which facilitates further melting. The onset of melt, duration of melt season and melt pond fraction are good indicators of the climate state of the Arctic and its change. In the absence of reliable sea ice thickness retrievals in summer, melt pond fraction retrieval from satellite is in demand as input for GCM as an indicator of melt state of the sea ice. The retrieval of melt pond fraction with a moderate resolution radiometer as AATSR is, however, a non-trivial task due to a variety of subpixel surface types with very different optical properties, which give non-unique combinations if mixed. In this work this has been solved by employing additional information on the surface and air temperature of the pixel. In the current work, a concept of melt pond detection on sea ice is presented. The basis of the retrieval is the sensitivity of AATSR reflectance channels 550nm and 860nm to the amount of melt water on sea ice. The retrieval features extensive usage of a database of in situ surface albedo spectra. A tree of decisions is employed to select the feasible family of in situ spectra for the retrieval, depending on the melt stage of the surface. Reanalysis air temperature at the surface and brightness temperature measured by the satellite sensor are analyzed in order to evaluate the melting status of the surface. Case studies for FYI and MYI show plausible retrieved melt pond fractions, characteristic for both of the ice types. The developed retrieval can be used to process the historical AATSR (2002-2012) dataset, as well as for the SLSTR sensor onboard the future Sentinel-3 mission (scheduled for launch in 2015), to keep the continuity and obtain longer time sequence

  12. Internal stress-induced melting below melting temperature at high-rate laser heating

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hwang, Yong Seok, E-mail: yshwang@iastate.edu; Levitas, Valery I., E-mail: vlevitas@iastate.edu

    In this Letter, continuum thermodynamic and phase field approaches (PFAs) predicted internal stress-induced reduction in melting temperature for laser-irradiated heating of a nanolayer. Internal stresses appear due to thermal strain under constrained conditions and completely relax during melting, producing an additional thermodynamic driving force for melting. Thermodynamic melting temperature for Al reduces from 933.67 K for a stress-free condition down to 898.1 K for uniaxial strain and to 920.8 K for plane strain. Our PFA simulations demonstrated barrierless surface-induced melt nucleation below these temperatures and propagation of two solid-melt interfaces toward each other at the temperatures very close to the corresponding predicted thermodynamicmore » equilibrium temperatures for the heating rate Q≤1.51×10{sup 10}K/s. At higher heating rates, kinetic superheating competes with a reduction in melting temperature and melting under uniaxial strain occurs at 902.1 K for Q = 1.51 × 10{sup 11 }K/s and 936.9 K for Q = 1.46 × 10{sup 12 }K/s.« less

  13. Improvement of Gaofen-3 Absolute Positioning Accuracy Based on Cross-Calibration

    PubMed Central

    Deng, Mingjun; Li, Jiansong

    2017-01-01

    The Chinese Gaofen-3 (GF-3) mission was launched in August 2016, equipped with a full polarimetric synthetic aperture radar (SAR) sensor in the C-band, with a resolution of up to 1 m. The absolute positioning accuracy of GF-3 is of great importance, and in-orbit geometric calibration is a key technology for improving absolute positioning accuracy. Conventional geometric calibration is used to accurately calibrate the geometric calibration parameters of the image (internal delay and azimuth shifts) using high-precision ground control data, which are highly dependent on the control data of the calibration field, but it remains costly and labor-intensive to monitor changes in GF-3’s geometric calibration parameters. Based on the positioning consistency constraint of the conjugate points, this study presents a geometric cross-calibration method for the rapid and accurate calibration of GF-3. The proposed method can accurately calibrate geometric calibration parameters without using corner reflectors and high-precision digital elevation models, thus improving absolute positioning accuracy of the GF-3 image. GF-3 images from multiple regions were collected to verify the absolute positioning accuracy after cross-calibration. The results show that this method can achieve a calibration accuracy as high as that achieved by the conventional field calibration method. PMID:29240675

  14. Constant average olivine Mg# in cratonic mantle reflects Archaean mantle melting to the exhaustion of orthopyroxene

    NASA Astrophysics Data System (ADS)

    Bernstein, S.; Kelemen, P. B.; Hanghoj, K.

    2006-12-01

    Shallow (garnet-free) cratonic mantle, occurring as xenoliths in kimberlites and alkaline basaltic lavas, has high Mg# (100x Mg/(Mg+Fe)>92) and is poor in Al and Ca compared to off-cratonic mantle. Many xenoliths show rhenium-depletion age of > 3 Ga, and are thus representative of depleted mantle peridotite that form an integral part of the stable nuclei of Archaean (2.5-3.8 Ga) cratons. Accordingly, the depleted composition of the xenolith suites is linked to Archaean melt extraction events. We have compiled data for many suites of shallow cratonic mantle xenoliths worldwide, including samples from cratons of Kaapvaal, Tanzania, Siberia, Slave, North China and Greenland, and encompassing both the classic orthopyroxene-rich peridotites of Kaapvaal and orthopyroxene-poor peridotites from Greenland. The suites show a remarkably small range in average olivine Mg# of 92.8 +/- 0.2. Via comparison with data for experimental melting of mantle peridotite compositions, we explain consistent olivine Mg# in the shallow cratonic mantle as the result of mantle melting and melt extraction to the point of orthopyroxene exhaustion, leaving a nearly monomineralic olivine, or dunitic, residue. Experimental data for peridotite melting at pressures less than 4 GPa and data on natural rocks suggest that mantle olivine has a Mg# of about 92.8 at the point of orthopyroxene exhaustion. If the melt extraction was efficient, no further melting could take place without a considerable temperature increase or melt/fluid flux through the dunite residue at high temperatures. While the high Mg#, dunite-dominated xenolith suites from e.g. Greenland represent simple residues from mantle melting, the orthopyroxene-rich xenolith suites with identical Mg# as known from e. g. Kaapvaal must reflect some additional processes. We envisage their derivation from dunite protoliths via subsequent melt/rock reaction with silica-rich melts or, in some cases, possibly as residues at higher average melting

  15. The effect of salt on the melting of ice: A molecular dynamics simulation study.

    PubMed

    Kim, Jun Soo; Yethiraj, Arun

    2008-09-28

    The effect of added salt (NaCl) on the melting of ice is studied using molecular dynamics simulations. The equilibrium freezing point depression observed in the simulations is in good agreement with experimental data. The kinetic aspects of melting are investigated in terms of the exchange of water molecules between ice and the liquid phase. The ice/liquid equilibrium is a highly dynamic process with frequent exchange of water molecules between ice and the liquid phase. The balance is disturbed when ice melts and the melting proceeds in two stages; the inhibition of the association of water molecules to the ice surface at short times, followed by the increased dissociation of water molecules from the ice surface at longer times. We also find that Cl(-) ions penetrate more deeply into the interfacial region than Na(+) ions during melting. This study provides an understanding of the kinetic aspects of melting that could be useful in other processes such as the inhibition of ice growth by antifreeze proteins.

  16. Performance of Different Light Sources for the Absolute Calibration of Radiation Thermometers

    NASA Astrophysics Data System (ADS)

    Martín, M. J.; Mantilla, J. M.; del Campo, D.; Hernanz, M. L.; Pons, A.; Campos, J.

    2017-09-01

    The evolving mise en pratique for the definition of the kelvin (MeP-K) [1, 2] will, in its forthcoming edition, encourage the realization and dissemination of the thermodynamic temperature either directly (primary thermometry) or indirectly (relative primary thermometry) via fixed points with assigned reference thermodynamic temperatures. In the last years, the Centro Español de Metrología (CEM), in collaboration with the Instituto de Óptica of Consejo Superior de Investigaciones Científicas (IO-CSIC), has developed several setups for absolute calibration of standard radiation thermometers using the radiance method to allow CEM the direct dissemination of the thermodynamic temperature and the assignment of the thermodynamic temperatures to several fixed points. Different calibration facilities based on a monochromator and/or a laser and an integrating sphere have been developed to calibrate CEM's standard radiation thermometers (KE-LP2 and KE-LP4) and filter radiometer (FIRA2). This system is based on the one described in [3] placed in IO-CSIC. Different light sources have been tried and tested for measuring absolute spectral radiance responsivity: a Xe-Hg 500 W lamp, a supercontinuum laser NKT SuperK-EXR20 and a diode laser emitting at 6473 nm with a typical maximum power of 120 mW. Their advantages and disadvantages have been studied such as sensitivity to interferences generated by the laser inside the filter, flux stability generated by the radiant sources and so forth. This paper describes the setups used, the uncertainty budgets and the results obtained for the absolute temperatures of Cu, Co-C, Pt-C and Re-C fixed points, measured with the three thermometers with central wavelengths around 650 nm.

  17. Absolute measurement of the Hugoniot and sound velocity of liquid copper at multimegabar pressures

    DOE PAGES

    McCoy, Chad August; Knudson, Marcus David; Root, Seth

    2017-11-13

    Measurement of the Hugoniot and sound velocity provides information on the bulk modulus and Grüneisen parameter of a material at extreme conditions. The capability to launch multilayered (copper/aluminum) flyer plates at velocities in excess of 20 km/s with the Sandia Z accelerator has enabled high-precision sound-velocity measurements at previously inaccessible pressures. For these experiments, the sound velocity of the copper flyer must be accurately known in the multi-Mbar regime. Here we describe the development of copper as an absolutely calibrated sound-velocity standard for high-precision measurements at pressures in excess of 400 GPa. Using multilayered flyer plates, we performed absolute measurementsmore » of the Hugoniot and sound velocity of copper for pressures from 500 to 1200 GPa. These measurements enabled the determination of the Grüneisen parameter for dense liquid copper, clearly showing a density dependence above the melt transition. As a result, combined with earlier data at lower pressures, these results constrain the sound velocity as a function of pressure, enabling the use of copper as a Hugoniot and sound-velocity standard for pressures up to 1200 GPa.« less

  18. Detection of medically important Candida species by absolute quantitation real-time polymerase chain reaction.

    PubMed

    Than, Leslie Thian Lung; Chong, Pei Pei; Ng, Kee Peng; Seow, Heng Fong

    2015-01-01

    The number of invasive candidiasis cases has risen especially with an increase in the number of immunosuppressed and immunocom promised patients. The early detection of Candida species which is specific and sensitive is important in determining the correct administration of antifungal drugs to patients. This study aims to develop a method for the detection, identification and quantitation of medically important Candida species through quantitative polymerase chain reaction (qPCR). The isocitrate lyase (ICL) gene which is not found in mammals was chosen as the target gene of real-time PCR. Absolute quantitation of the gene copy number was achieved by constructing the plasmid containing the ICL gene which is used to generate standard curve. Twenty fungal species, two bacterial species and human DNA were tested to check the specificity of the detection method. All eight Candida species were successfully detected, identified and quantitated based on the ICL gene. A seven-log range of the gene copy number and a minimum detection limit of 10(3) copies were achieved. A one-tube absolute quantification real-time PCR that differentiates medically important Candida species via individual unique melting temperature was achieved. Analytical sensitivity and specificity were not compromised.

  19. Absolute measurement of the Hugoniot and sound velocity of liquid copper at multimegabar pressures

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    McCoy, Chad August; Knudson, Marcus David; Root, Seth

    Measurement of the Hugoniot and sound velocity provides information on the bulk modulus and Grüneisen parameter of a material at extreme conditions. The capability to launch multilayered (copper/aluminum) flyer plates at velocities in excess of 20 km/s with the Sandia Z accelerator has enabled high-precision sound-velocity measurements at previously inaccessible pressures. For these experiments, the sound velocity of the copper flyer must be accurately known in the multi-Mbar regime. Here we describe the development of copper as an absolutely calibrated sound-velocity standard for high-precision measurements at pressures in excess of 400 GPa. Using multilayered flyer plates, we performed absolute measurementsmore » of the Hugoniot and sound velocity of copper for pressures from 500 to 1200 GPa. These measurements enabled the determination of the Grüneisen parameter for dense liquid copper, clearly showing a density dependence above the melt transition. As a result, combined with earlier data at lower pressures, these results constrain the sound velocity as a function of pressure, enabling the use of copper as a Hugoniot and sound-velocity standard for pressures up to 1200 GPa.« less

  20. Variations in Melt Generation and Migration along the Aleutian Arc (Invited)

    NASA Astrophysics Data System (ADS)

    Plank, T. A.; Van Keken, P. E.

    2013-12-01

    the conductive upper plate (i.e., lithosphere). The conductive lid and isotherms shallow toward the wedge corner. This leads to shallower depths of melt equilibration at shallower depths to the slab. A second effect is infiltration of melt into the thinning lithosphere, likely due to the increase in strain-rate toward the wedge corner, which favors melt segregation, migration, and shallow equilibration [5]. Such a process is developed most beneath Seguam, where melts collect at the Moho (~ 30km), but are still > 1200°C. Such equilibration depths in the uppermost mantle (30-60 km) and temperatures typical of the base of the conductive lid appear to characterize most modeled primary arc magmas [6], and point to a final re-setting point in the mantle that controls the composition of bulk arc crust. [1] Syracuse & Abers, 2006, G3. [2] Syracuse, van Keken, Abers, (2010) PEPI. [3] Lee, Luffi, Plank, Dalton, Leeman (2009) EPSL. [4] Zimmer et al. (2010) J.Pet. [5] Holzman & Kendall (2010). [6] Ruscitto et al. (2012) G3.

  1. Melting of Simple Solids and the Elementary Excitations of the Communal Entropy

    NASA Astrophysics Data System (ADS)

    Bongiorno, Angelo

    2010-03-01

    The melting phase transition of simple solids is addressed through the use of atomistic computer simulations. Three transition metals (Ni, Au, and Pt) and a semiconductor (Si) are considered in this study. Iso-enthalpic molecular dynamics simulations are used to compute caloric curves across the solid-to-liquid phase transition of a periodic crystalline system, to construct the free energy function of the solid and liquid phases, and thus to derive the thermodynamical limit of the melting point, latent heat and entropy of fusion of the material. The computational strategy used in this study yields accurate estimates of melting parameters, it consents to determine the superheating and supercooling temperature limits, and it gives access to the atomistic mechanisms mediating the melting process. In particular, it is found that the melting phase transition in simple solids is driven by exchange steps involving a few atoms and preserving the crystalline structure. These self-diffusion phenomena correspond to the elementary excitations of the communal entropy and, as their rate depends on the local material cohesivity, they mediate both the homogeneous and non-homogeneous melting process in simple solids.

  2. Investigating evaporation of melting ice particles within a bin melting layer model

    NASA Astrophysics Data System (ADS)

    Neumann, Andrea J.

    Single column models have been used to help develop algorithms for remote sensing retrievals. Assumptions in the single-column models may affect the assumptions of the remote sensing retrievals. Studies of the melting layer that use single column models often assume environments that are near or at water saturation. This study investigates the effects of evaporation upon melting particles to determine whether the assumption of negligible mass loss still holds within subsaturated melting layers. A single column, melting layer model is modified to include the effects of sublimation and evaporation upon the particles. Other changes to the model include switching the order in which the model loops over particle sizes and model layers; including a particle sedimentation scheme; adding aggregation, accretion, and collision and coalescence processes; allowing environmental variables such as the water vapor diffusivity and the Schmidt number to vary with the changes in the environment; adding explicitly calculated particle temperature, changing the particle terminal velocity parameterization; and using a newly-derived effective density-dimensional relationship for use in particle mass calculations. Simulations of idealized melting layer environments show that significant mass loss due to evaporation during melting is possible within subsaturated environments. Short melting distances, accelerating particle fall speeds, and short melting times help constrain the amount of mass lost due to evaporation while melting is occurring, even in subsaturated profiles. Sublimation prior to melting can also be a significant source of mass loss. The trends shown on the particle scale also appear in the bulk distribution parameters such as rainfall rate and ice water content. Simulations incorporating observed melting layer environments show that significant mass loss due to evaporation during the melting process is possible under certain environmental conditions. A profile such as the

  3. The role of the “Casimir force analogue” at the microscopic processes of crystallization and melting

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chuvildeev, V.N., E-mail: chuvildeev@gmail.com; Semenycheva, A.V., E-mail: avsemenycheva@gmail.com

    Melting (crystallization), a phase transition from a crystalline solid to a liquid state, is a common phenomenon in nature. We suggest a new factor, “the Casimir force analogue”, to describe mechanisms of melting and crystallization. The Casimir force analogue is a force occurring between the surfaces of solid and liquid phases of metals caused by different energy density of phonons of these phases. It explains abrupt changes in geometry and thermodynamic parameters at a melting point. “The Casimir force analogue” helps to estimate latent melting heat and to gain an insight into a solid–liquid transition problem.

  4. Absolute determination of the gelling point of gelatin under quasi-thermodynamic equilibrium.

    PubMed

    Bellini, Franco; Alberini, Ivana; Ferreyra, María G; Rintoul, Ignacio

    2015-05-01

    Thermodynamic studies on phase transformation of biopolymers in solution are useful to understand their nature and to evaluate their technological potentials. Thermodynamic studies should be conducted avoiding time-related phenomena. This condition is not easily achieved in hydrophilic biopolymers. In this contribution, the simultaneous effects of pH, salt concentration, and cooling rate (Cr) on the folding from random coil to triple helical collagen-like structures of gelatin were systematically studied. The phase transformation temperature at the absolute invariant condition of Cr = 0 °C/min (T(T)Cr=0) ) is introduced as a conceptual parameter to study phase transformations in biopolymers under quasi-thermodynamic equilibrium and avoiding interferences coming from time-related phenomena. Experimental phase diagrams obtained at different Cr are presented. The T(T)(Cr=0) compared with pH and TT(Cr=0) compared with [NaCl] diagram allowed to explore the transformation process at Cr = 0 °C/min. The results were explained by electrostatic interactions between the biopolymers and its solvation milieu. © 2015 Institute of Food Technologists®

  5. Estimating the Triple-Point Isotope Effect and the Corresponding Uncertainties for Cryogenic Fixed Points

    NASA Astrophysics Data System (ADS)

    Tew, W. L.

    2008-02-01

    The sensitivities of melting temperatures to isotopic variations in monatomic and diatomic atmospheric gases using both theoretical and semi-empirical methods are estimated. The current state of knowledge of the vapor-pressure isotope effects (VPIE) and triple-point isotope effects (TPIE) is briefly summarized for the noble gases (except He), and for selected diatomic molecules including oxygen. An approximate expression is derived to estimate the relative shift in the melting temperature with isotopic substitution. In general, the magnitude of the effects diminishes with increasing molecular mass and increasing temperature. Knowledge of the VPIE, molar volumes, and heat of fusion are sufficient to estimate the temperature shift or isotopic sensitivity coefficient via the derived expression. The usefulness of this approach is demonstrated in the estimation of isotopic sensitivities and uncertainties for triple points of xenon and molecular oxygen for which few documented estimates were previously available. The calculated sensitivities from this study are considerably higher than previous estimates for Xe, and lower than other estimates in the case of oxygen. In both these cases, the predicted sensitivities are small and the resulting variations in triple point temperatures due to mass fractionation effects are less than 20 μK.

  6. Simulation and measurement of melting effects on metal sheets caused by direct lightning strikes

    NASA Technical Reports Server (NTRS)

    Kern, Alexander

    1991-01-01

    Direct lightning strikes melt metal parts of various systems, like fuel and propellant tanks of rockets and airplanes, at the point of strike. Responsible for this melting are the impulse current and, if occurring, the long duration current, both carrying a remarkable charge Q. For studying these meltings the simulation in the laboratory has to be based on the parameters of natural lightnings. International standards exist defining certain threat levels of natural lightnings and giving possible generator circuits for the simulation. The melting caused by both types of lightning currents show different appearance. Their characteristics, their differences in melting and heating of metal sheets are investigated. Nevertheless the simulation of lightning in the laboratory is imperfect. While natural lightning is a discharge without a counter electrode, the simulation always demands a close counter electrode. The influence of this counter electrode is studied.

  7. Paradise Lost: Uncertainties in melting and melt extraction processes beneath oceanic spreading ridges

    NASA Astrophysics Data System (ADS)

    Kelemen, P. B.

    2014-12-01

    In many ways, decompression melting and focused melt transport beneath oceanic spreading ridges is the best understood igneous process on Earth. However, there are remaining - increasing - uncertainties in interpreting residual mantle peridotites. Indicators of degree of melting in residual peridotite are questionable. Yb concentration and spinel Cr# are affected by (a) small scale variations in reactive melt transport, (b) variable extents of melt extraction, and (c) "impregnation", i.e. partial crystallization of cooling melt in pore space. Roughly 75% of abyssal peridotites have undergone major element refertilization. Many may have undergone several melting events. The following three statements are inconsistent: (1) Peridotite melt productivity beyond cpx exhaustion is > 0.1%/GPa. (2) Crustal thickness is independent of spreading rate at rates > 2 cm/yr full rate (excluding ultra-slow spreading ridges). (3) Thermal models predict, and observations confirm, thick thermal boundary layers beneath slow spreading ridges. If (a) melt productivity is << 0.1%/GPa beyond cpx-out, and (b) cpx-out occurs > 15 km below the seafloor beneath most ridges, then the independence of crustal thickness with spreading rate can be understood. Most sampled peridotites from ridges melted beyond cpx-out. Cpx in these rocks formed via impregnation and/or exsolution during cooling. Most peridotites beneath ridges may undergo cpx exhaustion during decompression melting. This would entail an upward modification of potential temperature estimates. Alternatively, perhaps oceanic crustal thickness does vary with spreading rate but this is masked by complicated tectonics and serpentinization at slow-spreading ridges. Dissolution channels (dunites) are predicted to coalesce downstream, but numerical models of these have not shown why > 95% of oceanic crust forms in a zone < 5 km wide. There may be permeability barriers guiding deeper melt toward the ridge, but field studies have not identified

  8. X-ray characterization of indium during melting

    NASA Astrophysics Data System (ADS)

    Gondi, P.; Montanari, R.; Costanza, G.

    During melting of Indium the structure of solid and liquid phases have been investigated by X-ray diffractometry (XRD) in 1-g conditions. At the melting point T M a re-orientation of crystalline grains occurs in the solid phase. The texture change, unusually rapid for a thermally activated process, is attributed to an abnormal increase of vacancy concentration. This explanation is in agreement with the observed shifts of XRD peaks towards lower angles. As a consequence of the texture change, the lattice planes facing the first formed liquid are (002) and (101) planes, i.e. those planes allocating 1st and 2nd neighbours around a given atom with shell radii very close to the mean distance of nearest neighbours in liquid as obtained from the radial distribution function (RDF). Convective motions in the liquid can be eliminated by repeating the same XRD measurements in μ-g. To get the best experimental conditions it is discussed the possibility to use thin oxide films grown on the external surface of samples as containers during melting. This technique was already successfully tested by present investigators in the experiment ES 311 A-B carried out during the mission SPACELAB-1.

  9. Estimating the absolute wealth of households.

    PubMed

    Hruschka, Daniel J; Gerkey, Drew; Hadley, Craig

    2015-07-01

    To estimate the absolute wealth of households using data from demographic and health surveys. We developed a new metric, the absolute wealth estimate, based on the rank of each surveyed household according to its material assets and the assumed shape of the distribution of wealth among surveyed households. Using data from 156 demographic and health surveys in 66 countries, we calculated absolute wealth estimates for households. We validated the method by comparing the proportion of households defined as poor using our estimates with published World Bank poverty headcounts. We also compared the accuracy of absolute versus relative wealth estimates for the prediction of anthropometric measures. The median absolute wealth estimates of 1,403,186 households were 2056 international dollars per capita (interquartile range: 723-6103). The proportion of poor households based on absolute wealth estimates were strongly correlated with World Bank estimates of populations living on less than 2.00 United States dollars per capita per day (R(2)  = 0.84). Absolute wealth estimates were better predictors of anthropometric measures than relative wealth indexes. Absolute wealth estimates provide new opportunities for comparative research to assess the effects of economic resources on health and human capital, as well as the long-term health consequences of economic change and inequality.

  10. The PMA Catalogue: 420 million positions and absolute proper motions

    NASA Astrophysics Data System (ADS)

    Akhmetov, V. S.; Fedorov, P. N.; Velichko, A. B.; Shulga, V. M.

    2017-07-01

    We present a catalogue that contains about 420 million absolute proper motions of stars. It was derived from the combination of positions from Gaia DR1 and 2MASS, with a mean difference of epochs of about 15 yr. Most of the systematic zonal errors inherent in the 2MASS Catalogue were eliminated before deriving the absolute proper motions. The absolute calibration procedure (zero-pointing of the proper motions) was carried out using about 1.6 million positions of extragalactic sources. The mean formal error of the absolute calibration is less than 0.35 mas yr-1. The derived proper motions cover the whole celestial sphere without gaps for a range of stellar magnitudes from 8 to 21 mag. In the sky areas where the extragalactic sources are invisible (the avoidance zone), a dedicated procedure was used that transforms the relative proper motions into absolute ones. The rms error of proper motions depends on stellar magnitude and ranges from 2-5 mas yr-1 for stars with 10 mag < G < 17 mag to 5-10 mas yr-1 for faint ones. The present catalogue contains the Gaia DR1 positions of stars for the J2015 epoch. The system of the PMA proper motions does not depend on the systematic errors of the 2MASS positions, and in the range from 14 to 21 mag represents an independent realization of a quasi-inertial reference frame in the optical and near-infrared wavelength range. The Catalogue also contains stellar magnitudes taken from the Gaia DR1 and 2MASS catalogues. A comparison of the PMA proper motions of stars with similar data from certain recent catalogues has been undertaken.

  11. Melt fracture revisited

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Greenberg, J. M.

    2003-07-16

    In a previous paper the author and Demay advanced a model to explain the melt fracture instability observed when molten linear polymer melts are extruded in a capillary rheometer operating under the controlled condition that the inlet flow rate was held constant. The model postulated that the melts were a slightly compressible viscous fluid and allowed for slipping of the melt at the wall. The novel feature of that model was the use of an empirical switch law which governed the amount of wall slip. The model successfully accounted for the oscillatory behavior of the exit flow rate, typically referredmore » to as the melt fracture instability, but did not simultaneously yield the fine scale spatial oscillations in the melt typically referred to as shark skin. In this note a new model is advanced which simultaneously explains the melt fracture instability and shark skin phenomena. The model postulates that the polymer is a slightly compressible linearly viscous fluid but assumes no slip boundary conditions at the capillary wall. In simple shear the shear stress {tau}and strain rate d are assumed to be related by d = F{tau} where F ranges between F{sub 2} and F{sub 1} > F{sub 2}. A strain rate dependent yield function is introduced and this function governs whether F evolves towards F{sub 2} or F{sub 1}. This model accounts for the empirical observation that at high shears polymers align and slide more easily than at low shears and explains both the melt fracture and shark skin phenomena.« less

  12. Predicting the enthalpies of melting and vaporization for pure components

    NASA Astrophysics Data System (ADS)

    Esina, Z. N.; Korchuganova, M. R.

    2014-12-01

    A mathematical model of the melting and vaporization enthalpies of organic components based on the theory of thermodynamic similarity is proposed. In this empirical model, the phase transition enthalpy for the homological series of n-alkanes, carboxylic acids, n-alcohols, glycols, and glycol ethers is presented as a function of the molecular mass, the number of carbon atoms in a molecule, and the normal transition temperature. The model also uses a critical or triple point temperature. It is shown that the results from predicting the melting and vaporization enthalpies enable the calculation of binary phase diagrams.

  13. Method for producing melt-infiltrated ceramic composites using formed supports

    DOEpatents

    Corman, Gregory Scot; Brun, Milivoj Konstantin; McGuigan, Henry Charles

    2003-01-01

    A method for producing shaped articles of ceramic composites provides a high degree of dimensional tolerance to these articles. A fiber preform is disposed on a surface of a stable formed support, a surface of which is formed with a plurality of indentations, such as grooves, slots, or channels. Precursors of ceramic matrix materials are provided to the fiber preform to infiltrate from both sides of the fiber preform. The infiltration is conducted under vacuum at a temperature not much greater than a melting point of the precursors. The melt-infiltrated composite article substantially retains its dimension and shape throughout the fabrication process.

  14. Continuous manufacturing of solid lipid nanoparticles by hot melt extrusion.

    PubMed

    Patil, Hemlata; Kulkarni, Vijay; Majumdar, Soumyajit; Repka, Michael A

    2014-08-25

    Solid lipid nanoparticles (SLN) can either be produced by hot homogenization of melted lipids at higher temperatures or by a cold homogenization process. This paper proposes and demonstrates the formulation of SLN for pharmaceutical applications by combining two processes: hot melt extrusion (HME) technology for melt-emulsification and high-pressure homogenization (HPH) for size reduction. This work aimed at developing continuous and scalable processes for SLN by mixing a lipid and aqueous phase containing an emulsifier in the extruder barrel at temperatures above the melting point of the lipid and further reducing the particle size of emulsion by HPH linked to HME in a sequence. The developed novel platform demonstrated better process control and size reduction compared to the conventional process of hot homogenization (batch process). Varying the process parameters enabled the production of SLN below 200 nm (for 60 mg/ml lipid solution at a flow rate of 100ml/min). Among the several process parameters investigated, the lipid concentration, residence time and screw design played major roles in influencing the size of the SLN. This new process demonstrates the potential use of hot melt extrusion technology for continuous and large-scale production of SLN. Copyright © 2014 Elsevier B.V. All rights reserved.

  15. Digital evaluation of absolute marginal discrepancy: A comparison of ceramic crowns fabricated with conventional and digital techniques.

    PubMed

    Liang, Shanshan; Yuan, Fusong; Luo, Xu; Yu, Zhuoren; Tang, Zhihui

    2018-04-05

    Marginal discrepancy is key to evaluating the accuracy of fixed dental prostheses. An improved method of evaluating marginal discrepancy is needed. The purpose of this in vitro study was to evaluate the absolute marginal discrepancy of ceramic crowns fabricated using conventional and digital methods with a digital method for the quantitative evaluation of absolute marginal discrepancy. The novel method was based on 3-dimensional scanning, iterative closest point registration techniques, and reverse engineering theory. Six standard tooth preparations for the right maxillary central incisor, right maxillary second premolar, right maxillary second molar, left mandibular lateral incisor, left mandibular first premolar, and left mandibular first molar were selected. Ten conventional ceramic crowns and 10 CEREC crowns were fabricated for each tooth preparation. A dental cast scanner was used to obtain 3-dimensional data of the preparations and ceramic crowns, and the data were compared with the "virtual seating" iterative closest point technique. Reverse engineering software used edge sharpening and other functional modules to extract the margins of the preparations and crowns. Finally, quantitative evaluation of the absolute marginal discrepancy of the ceramic crowns was obtained from the 2-dimensional cross-sectional straight-line distance between points on the margin of the ceramic crowns and the standard preparations based on the circumferential function module along the long axis. The absolute marginal discrepancy of the ceramic crowns fabricated using conventional methods was 115 ±15.2 μm, and 110 ±14.3 μm for those fabricated using the digital technique was. ANOVA showed no statistical difference between the 2 methods or among ceramic crowns for different teeth (P>.05). The digital quantitative evaluation method for the absolute marginal discrepancy of ceramic crowns was established. The evaluations determined that the absolute marginal discrepancies were

  16. Probing the atomic structure of basaltic melts generated by partial melting of upper mantle peridotite (KLB-1): Insights from high-resolution solid-state NMR study

    NASA Astrophysics Data System (ADS)

    Park, S. Y.; Lee, S. K.

    2015-12-01

    Probing the structural disorder in multi-component silicate glasses and melts with varying composition is essential to reveal the change of macroscopic properties in natural silicate melts. While a number of NMR studies for the structure of multi-component silicate glasses and melts including basaltic and andesitic glasses have been reported (e.g., Park and Lee, Geochim. Cosmochim. Acta, 2012, 80, 125; Park and Lee, Geochim. Cosmochim. Acta, 2014, 26, 42), many challenges still remain. The composition of multi-component basaltic melts vary with temperature, pressure, and melt fraction (Kushiro, Annu. Rev. Earth Planet. Sci., 2001, 71, 107). Especially, the eutectic point (the composition of first melt) of nepheline-forsterite-quartz (the simplest model of basaltic melts) moves with pressure from silica-saturated to highly undersaturated and alkaline melts. The composition of basaltic melts generated by partial melting of upper mantle peridotite (KLB-1, the xenolith from Kilbourne Hole) also vary with pressure. In this study we report experimental results for the effects of composition on the atomic structure of Na2O-MgO-Al2O3-SiO2 (NMAS) glasses in nepheline (NaAlSiO4)-forsterite (Mg2SiO4)-quartz (SiO2) eutectic composition and basaltic glasses generated by partial melting of upper mantle peridotite (KLB-1) using high-resolution multi-nuclear solid-state NMR. The Al-27 3QMAS (triple quantum magic angle spinning) NMR spectra of NMAS glasses in nepheline-forsterite-quartz eutectic composition show only [4]Al. The Al-27 3QMAS NMR spectra of KLB-1 basaltic glasses show mostly [4]Al and a non-negligible fraction of [5]Al. The fraction of [5]Al, the degree of configurational disorder, increases from 0 at XMgO [MgO/(MgO+Al2O3)]=0.55 to ~3% at XMgO=0.79 in KLB-1 basaltic glasses while only [4]Al are observed in nepheline-forsterite-quartz eutectic composition. The current experimental results provide that the fraction of [5]Al abruptly increases by the effect of

  17. Design considerations and validation of the MSTAR absolute metrology system

    NASA Astrophysics Data System (ADS)

    Peters, Robert D.; Lay, Oliver P.; Dubovitsky, Serge; Burger, Johan; Jeganathan, Muthu

    2004-08-01

    Absolute metrology measures the actual distance between two optical fiducials. A number of methods have been employed, including pulsed time-of-flight, intensity-modulated optical beam, and two-color interferometry. The rms accuracy is currently limited to ~5 microns. Resolving the integer number of wavelengths requires a 1-sigma range accuracy of ~0.1 microns. Closing this gap has a large pay-off: the range (length measurement) accuracy can be increased substantially using the unambiguous optical phase. The MSTAR sensor (Modulation Sideband Technology for Absolute Ranging) is a new system for measuring absolute distance, capable of resolving the integer cycle ambiguity of standard interferometers, and making it possible to measure distance with sub-nanometer accuracy. In this paper, we present recent experiments that use dispersed white light interferometry to independently validate the zero-point of the system. We also describe progress towards reducing the size of optics, and stabilizing the laser wavelength for operation over larger target ranges. MSTAR is a general-purpose tool for conveniently measuring length with much greater accuracy than was previously possible, and has a wide range of possible applications.

  18. Study of preparation of TiB{sub 2} by TiC in Al melts

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ding Haimin; Key Laboratory for Liquid-Solid Structural Evolution and Processing of Materials, Ministry of Education, Shandong University, Jinan 250061; Liu Xiangfa, E-mail: xfliu@sdu.edu.cn

    2012-01-15

    TiB{sub 2} particles are prepared by TiC in Al melts and the characteristics of them are studied. It is found that TiC particles are unstable when boron exists in Al melts with high temperature and will transform to TiB{sub 2} and Al{sub 4}C{sub 3}. Most of the synthesized TiB{sub 2} particles are regular hexagonal prisms with submicron size. The diameter of the undersurfaces of these prisms is ranging from 200 nm to 1 {mu}m and the height is ranging from 100 nm to 300 nm. It is considered that controlling the transformation from TiC to TiB{sub 2} is an effectivemore » method to prepare small and uniform TiB{sub 2} particles. - Highlights: Black-Right-Pointing-Pointer TiC can easily transform into TiB{sub 2} in Al melts. Black-Right-Pointing-Pointer TiB{sub 2} formed by TiC will grow into regular hexagonal prisms with submicron size. Black-Right-Pointing-Pointer Controlling the transformation from TiC to TiB{sub 2} is an effective method to prepare small and uniform TiB{sub 2} particles.« less

  19. Partial melting of TTG gneisses: crustal contamination and the production of granitic melts

    NASA Astrophysics Data System (ADS)

    Meade, F. C.; Masotta, M.; Troll, V. R.; Freda, C.; Johnson, T. E.; Dahren, B.

    2011-12-01

    Understanding partial melting of ancient TTG gneiss terranes is crucial when considering crustal contamination in volcanic systems, as these rocks are unlikely to melt completely at magmatic temperatures (1000-1200 °C) and crustal pressures (<500 MPa). Variations in the bulk composition of the gneiss, magma temperature, pressure (depth) and the composition and abundance of any fluids present will produce a variety of melt compositions, from partial melts enriched in incompatible elements to more complete melts, nearing the bulk chemistry of the parent gneiss. We have used piston cylinder experiments to simulate partial melting in a suite of 12 gneisses from NW Scotland (Lewisian) and Eastern Greenland (Ammassalik, Liverpool Land) under magma chamber temperature and pressure conditions (P=200 MPa, T=975 °C). These gneisses form the basement to much of the North Atlantic Igneous Province, where crustal contamination of magmas was commonplace but the composition of the crustal partial melts are poorly constrained [1]. The experiments produced partial melts in all samples (e.g. Fig 1). Electron microprobe analyses of glasses indicate they are compositionally heterogeneous and are significantly different from the whole rock chemistry of the parent gneisses. The melts have variably evolved compositions but are typically trachy-dacitic to rhyolitic (granitic). This integrated petrological, experimental and in-situ geochemical approach allows quantification of the processes of partial melting of TTG gneiss in a volcanic context, providing accurate major/trace element and isotopic (Sr, Pb) end-members for modeling crustal contamination. The experimental melts and restites will be compared geochemically with a suite of natural TTG gneisses, providing constraints on the extent to which the gneisses have produced and subsequently lost melt. [1] Geldmacher et al. (2002) Scottish Journal of Geology, v.38, p.55-61.

  20. Shear-induced crystallization of a dense rapid granular flow: hydrodynamics beyond the melting point.

    PubMed

    Khain, Evgeniy; Meerson, Baruch

    2006-06-01

    We investigate shear-induced crystallization in a very dense flow of monodisperse inelastic hard spheres. We consider a steady plane Couette flow under constant pressure and neglect gravity. We assume that the granular density is greater than the melting point of the equilibrium phase diagram of elastic hard spheres. We employ a Navier-Stokes hydrodynamics with constitutive relations all of which (except the shear viscosity) diverge at the crystal-packing density, while the shear viscosity diverges at a smaller density. The phase diagram of the steady flow is described by three parameters: an effective Mach number, a scaled energy loss parameter, and an integer number m: the number of half-oscillations in a mechanical analogy that appears in this problem. In a steady shear flow the viscous heating is balanced by energy dissipation via inelastic collisions. This balance can have different forms, producing either a uniform shear flow or a variety of more complicated, nonlinear density, velocity, and temperature profiles. In particular, the model predicts a variety of multilayer two-phase steady shear flows with sharp interphase boundaries. Such a flow may include a few zero-shear (solidlike) layers, each of which moving as a whole, separated by fluidlike regions. As we are dealing with a hard sphere model, the granulate is fluidized within the "solid" layers: the granular temperature is nonzero there, and there is energy flow through the boundaries of the solid layers. A linear stability analysis of the uniform steady shear flow is performed, and a plausible bifurcation diagram of the system, for a fixed m, is suggested. The problem of selection of m remains open.

  1. Melting of Fe and Fe0.9Ni0.1 alloy at high pressures

    NASA Astrophysics Data System (ADS)

    Zhang, D.; Jackson, J. M.; Zhao, J.; Sturhahn, W.; Alp, E. E.; Hu, M. Y.; Toellner, T.

    2014-12-01

    Cosmochemical studies suggest that the cores of terrestrial planets are primarily composed of Fe alloyed with about 5 to 10 wt% Ni, plus some light elements (e.g., McDonough and Sun 1995). Thus, the high pressure melting curve of Fe0.9Ni0.1 is considered to be an important reference for characterizing the cores of terrestrial planets. We have determined the melting points of fcc-structured Fe and Fe0.9Ni0.1 up to 86 GPa using an in-situ method that monitors the atomic dynamics of the Fe atoms in the sample, synchrotron Mössbauer spectroscopy (Jackson et al. 2013). A laser heated diamond anvil cell is used to provide the high pressure-high temperature environmental conditions, and in-situ X-ray diffraction is used to constrain the pressure of the sample. To eliminate the influence of temperature fluctuations experienced by the sample on the determination of melting, we develop a Fast Temperature Readout (FasTeR) spectrometer. The FasTeR spectrometer features a fast reading rate (>100 Hz), a high sensitivity, a large dynamic range and a well-constrained focus. By combining the melting curve of fcc-structured Fe0.9Ni0.1 alloy determined in our study and the fcc-hcp phase boundary from Komabayashi et al. (2012), we calculate the fcc-hcp-liquid triple point of Fe0.9Ni0.1. Using this triple point and the thermophysical parameters from a nuclear resonant inelastic X-ray scattering study on hcp-Fe (Murphy et al. 2011), we compute the melting curve of hcp-structured Fe0.9Ni0.1. We will discuss our new experimental results with implications for the cores of Venus, Earth and Mars. Select references: McDonough & Sun (1995): The composition of the Earth. Chem. Geol. 120, 223-253. Jackson et al. (2013): Melting of compressed iron by monitoring atomic dynamics, EPSL, 362, 143-150. Komabayashi et al. (2012): In situ X-ray diffraction measurements of the fcc-hcp phase transition boundary of an Fe-Ni alloy in an internally heated diamond anvil cell, PCM, 39, 329-338. Murphy et al

  2. Physicochemical properties of film-coated melt-extruded pellets.

    PubMed

    Young, Chistopher R; Crowley, Michael; Dietzsch, Caroline; McGinity, James W

    2007-02-01

    The purpose of this study was to investigate the physicochemical properties of poly(ethylene oxide) (PEO) and guaifenesin containing beads prepared by a melt-extrusion process and film-coated with a methacrylic acid copolymer. Solubility parameter calculations, thermal gravimetric analysis (TGA), scanning electron microscopy (SEM), modulated differential scanning calorimetry (MDSC), X-ray powder diffraction (XRPD) and high performance liquid chromatography (HPLC) were used to determine drug/polymer miscibility and/or the thermal processibility of the systems. Powder blends of guaifenesin, PEO and functional excipients were processed using a melt-extrusion and spheronization technique and then film-coated in a fluidized bed apparatus. Solubility parameter calculations were used to predict miscibility between PEO and guaifenesin, and miscibility was confirmed by SEM and observation of a single melting point for extruded drug/polymer blends during MDSC investigations. The drug was stable following melt-extrusion as determined by TGA and HPLC; however, drug release rate from pellets decreased upon storage in sealed HDPE containers with silica desiccants at 40 degrees C/75% RH. The weight loss on drying, porosity and tortuosity determinations were not influenced by storage. Recrystallization of guaifenesin and PEO was confirmed by SEM and XRPD. Additionally, the pellets exhibited a change in adhesion behaviour during dissolution testing. The addition of ethylcellulose to the extruded powder blend decreased and stabilized the drug release rate from the thermally processed pellets. The current study also demonstrated film-coating to be an efficient process for providing melt-extruded beads with pH-dependent drug release properties that were stable upon storage at accelerated conditions.

  3. Estimating the absolute wealth of households

    PubMed Central

    Gerkey, Drew; Hadley, Craig

    2015-01-01

    Abstract Objective To estimate the absolute wealth of households using data from demographic and health surveys. Methods We developed a new metric, the absolute wealth estimate, based on the rank of each surveyed household according to its material assets and the assumed shape of the distribution of wealth among surveyed households. Using data from 156 demographic and health surveys in 66 countries, we calculated absolute wealth estimates for households. We validated the method by comparing the proportion of households defined as poor using our estimates with published World Bank poverty headcounts. We also compared the accuracy of absolute versus relative wealth estimates for the prediction of anthropometric measures. Findings The median absolute wealth estimates of 1 403 186 households were 2056 international dollars per capita (interquartile range: 723–6103). The proportion of poor households based on absolute wealth estimates were strongly correlated with World Bank estimates of populations living on less than 2.00 United States dollars per capita per day (R2 = 0.84). Absolute wealth estimates were better predictors of anthropometric measures than relative wealth indexes. Conclusion Absolute wealth estimates provide new opportunities for comparative research to assess the effects of economic resources on health and human capital, as well as the long-term health consequences of economic change and inequality. PMID:26170506

  4. New multicomponent solder alloys of low melting pointfor low-cost commercial electronic assembly

    NASA Astrophysics Data System (ADS)

    Al-Ganainy, G. S.; Sakr, M. S.

    2003-09-01

    The requirements of the telecommunications, automobile, electronics and aircraft industries for non-toxic solders with melting points close to that of near-eutectic Pb-Sn alloys has led to the development of new Sn-Zn-In solder alloys. Differential thermal analysis (DTA) shows melting points of 198, 195, 190 and 185 +/- 2 °C for the alloys Sn-9Zn, Sn-9Zn-2In, Sn-9Zn-4In and Sn-9Zn-6In, respectively. An equation that fits the data relating the melting point to the In content in the solders is derived. The X-ray diffraction patterns are analyzed to determine the phases that exist in each solder. The stress-strain curves are studied in the temperature range from 90 to 130 °C for all the solders except for those that contain 4 wt% of In, where the temperature range continues to 150 °C. The work-hardening parameters, y (the yield stress), f (the fracture stress), and the parabolic work-hardening coefficient X, increase with increasing indium content in the solders at all working temperatures. They decrease with increasing working temperature for each solder, and show two relaxation stages only for the Sn-9Zn-4In solder around a temperature of 120 °C. (

  5. Structural phases arising from reconstructive and isostructural transitions in high-melting-point oxides under hydrostatic pressure: A first-principles study

    NASA Astrophysics Data System (ADS)

    Tian, Hao; Kuang, Xiao-Yu; Mao, Ai-Jie; Yang, Yurong; Xu, Changsong; Sayedaghaee, S. Omid; Bellaiche, L.

    2018-01-01

    High-melting-point oxides of chemical formula A B O3 with A =Ca , Sr, Ba and B =Zr , Hf are investigated as a function of hydrostatic pressure up to 200 GPa by combining first-principles calculations with a particle swarm optimization method. Ca- and Sr-based systems: (1) first undergo a reconstructive phase transition from a perovskite state to a novel structure that belongs to the post-post-perovskite family and (2) then experience an isostructural transition to a second, also new post-post-perovskite state at higher pressures, via the sudden formation of a specific out-of-plane B -O bond. In contrast, the studied Ba compounds evolve from a perovskite phase to a third novel post-post-perovskite structure via another reconstructive phase transition. The original characteristics of these three different post-post-perovskite states are emphasized. Unusual electronic properties, including significant piezochromic effects and an insulator-metal transition, are also reported and explained.

  6. Eutectic melting temperature of the lowermost Earth's mantle

    NASA Astrophysics Data System (ADS)

    Andrault, D.; Lo Nigro, G.; Bolfan-Casanova, N.; Bouhifd, M.; Garbarino, G.; Mezouar, M.

    2009-12-01

    Partial melting of the Earth's deep mantle probably occurred at different stages of its formation as a consequence of meteoritic impacts and seismology suggests that it even continues today at the core-mantle boundary. Melts are important because they dominate the chemical evolution of the different Earth's reservoirs and more generally the dynamics of the whole planet. Unfortunately, the most critical parameter, that is the temperature profile inside the deep Earth, remains poorly constrained accross the planet history. Experimental investigations of the melting properties of materials representative of the deep Earth at relevant P-T conditions can provide anchor points to refine past and present temperature profiles and consequently determine the degree of melting at the different geological periods. Previous works report melting relations in the uppermost lower mantle region, using the multi-anvil press [1,2]. On the other hand, the pyrolite solidus was determined up to 65 GPa using optical observations in the laser-heated diamond anvil cell (LH-DAC) [3]. Finally, the melting temperature of (Mg,Fe)2SiO4 olivine is documented at core-mantle boundary (CMB) conditions by shock wave experiments [4]. Solely based on these reports, experimental data remain too sparse to draw a definite melting curve for the lower mantle in the relevant 25-135 GPa pressure range. We reinvestigated melting properties of lower mantle materials by means of in-situ angle dispersive X-ray diffraction measurements in the LH-DAC at the ESRF [5]. Experiments were performed in an extended P-T range for two starting materials: forsterite and a glass with chondrite composition. In both cases, the aim was to determine the onset of melting, and thus the eutectic melting temperatures as a function of pressure. Melting was evidenced from drastic changes of diffraction peak shape on the image plate, major changes in diffraction intensities in the integrated pattern, disappearance of diffraction rings

  7. Is the liquid or the solid phase responsible for the low melting points of ionic liquids? Alkyl-chain-length dependence of thermodynamic properties of [C nmim][Tf 2N

    NASA Astrophysics Data System (ADS)

    Shimizu, Yoshitaka; Ohte, Yoko; Yamamura, Yasuhisa; Saito, Kazuya

    2009-03-01

    To establish the alkyl-chain-length dependences of thermodynamic properties of typical ionic liquids [C nmim][Tf 2N], the heat capacities of compounds with n = 2 and 18 were measured by adiabatic calorimetry. The comparison with other ionic liquids and typical molecular substances reveals that the low melting point of [C nmim][Tf 2N] with a short alkyl chain mainly originate in the large fusion entropy arising from the low entropy of the crystalline phase.

  8. 20 CFR 404.1205 - Absolute coverage groups.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 20 Employees' Benefits 2 2011-04-01 2011-04-01 false Absolute coverage groups. 404.1205 Section... Covered § 404.1205 Absolute coverage groups. (a) General. An absolute coverage group is a permanent... are not under a retirement system. An absolute coverage group may include positions which were...

  9. Comparisons of absolute gravimeters (COOMET.M.G-S1)

    NASA Astrophysics Data System (ADS)

    Vinnichenko, Mr Alexander; Germak, Alessandro, Dr

    2017-01-01

    This report describes the results of the RMO supplementary comparison COOMET.M.G-S1 (also known as bilateral comparison COOMET 634/UA/14). The comparison measurements between the two participants NSC 'IM' (pilot laboratory) and INRIM were started in December 2015 and finished in January 2016. Participants of comparisons were conducted at their national standards the measurements of the free fall acceleration in gravimetric point laboratory of absolute gravimetry of INRIM named INRiM.2. Absolute measurements of gravimetric acceleration were conducted by ballistic gravimeters. The agreement between the two participants is good. Main text To reach the main text of this paper, click on Final Report. Note that this text is that which appears in Appendix B of the BIPM key comparison database kcdb.bipm.org/. The final report has been peer-reviewed and approved for publication by the CCM, according to the provisions of the CIPM Mutual Recognition Arrangement (CIPM MRA).

  10. Energy Saving Melting and Revert Reduction Technology: Melting Efficiency in Die Casting Operations

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    David Schwam

    2012-12-15

    This project addressed multiple aspects of the aluminum melting and handling in die casting operations, with the objective of increasing the energy efficiency while improving the quality of the molten metal. The efficiency of melting has always played an important role in the profitability of aluminum die casting operations. Consequently, die casters need to make careful choices in selecting and operating melting equipment and procedures. The capital cost of new melting equipment with higher efficiency can sometimes be recovered relatively fast when it replaces old melting equipment with lower efficiency. Upgrades designed to improve energy efficiency of existing equipment maymore » be well justified. Energy efficiency is however not the only factor in optimizing melting operations. Melt losses and metal quality are also very important. Selection of melting equipment has to take into consideration the specific conditions at the die casting shop such as availability of floor space, average quantity of metal used as well as the ability to supply more metal during peaks in demand. In all these cases, it is essential to make informed decisions based on the best available data.« less

  11. Three-Phase Melting Curves in the Binary System of Carbon Dioxide and Water

    NASA Astrophysics Data System (ADS)

    Abramson, E. H.

    2017-10-01

    Invariant, three-phase melting curves, of ice VI in equilibrium with solid CO2, of ice VII in equilibrium with solid CO2, and of solid CO2 in simultaneous equilibrium with a majority aqueous and a majority CO2 fluid, were explored in the binary system of carbon dioxide and water. Diamond-anvil cells were used to develop pressures of 5 GPa. Water exhibits a large melting temperature depression (73°C less than its pure melting temperature of 253°C at 5 GPa) indicative of large concentrations of CO2 in the aqueous solution. The melting point of water-saturated CO2 does not show a measureable departure from that of the pure system at temperatures lower than ∼200°C and only 10°C at 5 GPa (from 327°C).

  12. Congruent melting of gallium nitride at 6 GPa and its application to single-crystal growth.

    PubMed

    Utsumi, Wataru; Saitoh, Hiroyuki; Kaneko, Hiroshi; Watanuki, Tetsu; Aoki, Katsutoshi; Shimomura, Osamu

    2003-11-01

    The synthesis of large single crystals of GaN (gallium nitride) is a matter of great importance in optoelectronic devices for blue-light-emitting diodes and lasers. Although high-quality bulk single crystals of GaN suitable for substrates are desired, the standard method of cooling its stoichiometric melt has been unsuccessful for GaN because it decomposes into Ga and N(2) at high temperatures before its melting point. Here we report that applying high pressure completely prevents the decomposition and allows the stoichiometric melting of GaN. At pressures above 6.0 GPa, congruent melting of GaN occurred at about 2,220 degrees C, and decreasing the temperature allowed the GaN melt to crystallize to the original structure, which was confirmed by in situ X-ray diffraction. Single crystals of GaN were formed by cooling the melt slowly under high pressures and were recovered at ambient conditions.

  13. Pressure-Induced Melting of Confined Ice

    PubMed Central

    2017-01-01

    The classic regelation experiment of Thomson in the 1850s deals with cutting an ice cube, followed by refreezing. The cutting was attributed to pressure-induced melting but has been challenged continuously, and only lately consensus emerged by understanding that compression shortens the O:H nonbond and lengthens the H–O bond simultaneously. This H–O elongation leads to energy loss and lowers the melting point. The hot debate survived well over 150 years, mainly due to a poorly defined heat exchange with the environment in the experiment. In our current experiment, we achieved thermal isolation from the environment and studied the fully reversible ice–liquid water transition for water confined between graphene and muscovite mica. We observe a transition from two-dimensional (2D) ice into a quasi-liquid phase by applying a pressure exerted by an atomic force microscopy tip. At room temperature, the critical pressure amounts to about 6 GPa. The transition is completely reversible: refreezing occurs when the applied pressure is lifted. The critical pressure to melt the 2D ice decreases with temperature, and we measured the phase coexistence line between 293 and 333 K. From a Clausius–Clapeyron analysis, we determine the latent heat of fusion of two-dimensional ice at 0.15 eV/molecule, being twice as large as that of bulk ice. PMID:29112376

  14. Pressure-Induced Melting of Confined Ice.

    PubMed

    Sotthewes, Kai; Bampoulis, Pantelis; Zandvliet, Harold J W; Lohse, Detlef; Poelsema, Bene

    2017-12-26

    The classic regelation experiment of Thomson in the 1850s deals with cutting an ice cube, followed by refreezing. The cutting was attributed to pressure-induced melting but has been challenged continuously, and only lately consensus emerged by understanding that compression shortens the O:H nonbond and lengthens the H-O bond simultaneously. This H-O elongation leads to energy loss and lowers the melting point. The hot debate survived well over 150 years, mainly due to a poorly defined heat exchange with the environment in the experiment. In our current experiment, we achieved thermal isolation from the environment and studied the fully reversible ice-liquid water transition for water confined between graphene and muscovite mica. We observe a transition from two-dimensional (2D) ice into a quasi-liquid phase by applying a pressure exerted by an atomic force microscopy tip. At room temperature, the critical pressure amounts to about 6 GPa. The transition is completely reversible: refreezing occurs when the applied pressure is lifted. The critical pressure to melt the 2D ice decreases with temperature, and we measured the phase coexistence line between 293 and 333 K. From a Clausius-Clapeyron analysis, we determine the latent heat of fusion of two-dimensional ice at 0.15 eV/molecule, being twice as large as that of bulk ice.

  15. Shock melting method to determine melting curve by molecular dynamics: Cu, Pd, and Al.

    PubMed

    Liu, Zhong-Li; Zhang, Xiu-Lu; Cai, Ling-Cang

    2015-09-21

    A melting simulation method, the shock melting (SM) method, is proposed and proved to be able to determine the melting curves of materials accurately and efficiently. The SM method, which is based on the multi-scale shock technique, determines melting curves by preheating and/or prepressurizing materials before shock. This strategy was extensively verified using both classical and ab initio molecular dynamics (MD). First, the SM method yielded the same satisfactory melting curve of Cu with only 360 atoms using classical MD, compared to the results from the Z-method and the two-phase coexistence method. Then, it also produced a satisfactory melting curve of Pd with only 756 atoms. Finally, the SM method combined with ab initio MD cheaply achieved a good melting curve of Al with only 180 atoms, which agrees well with the experimental data and the calculated results from other methods. It turned out that the SM method is an alternative efficient method for calculating the melting curves of materials.

  16. The succinonitrile triple-point standard: a fixed point to improve the accuracy of temperature measurements in the clinical laboratory.

    PubMed

    Mangum, B W

    1983-07-01

    In an investigation of the melting and freezing behavior of succinonitrile, the triple-point temperature was determined to be 58.0805 degrees C, with an estimated uncertainty of +/- 0.0015 degrees C relative to the International Practical Temperature Scale of 1968 (IPTS-68). The triple-point temperature of this material is evaluated as a temperature-fixed point, and some clinical laboratory applications of this fixed point are proposed. In conjunction with the gallium and ice points, the availability of succinonitrile permits thermistor thermometers to be calibrated accurately and easily on the IPTS-68.

  17. Predicting critical temperatures of ionic and non-ionic fluids from thermophysical data obtained near the melting point.

    PubMed

    Weiss, Volker C

    2015-10-14

    In the correlation and prediction of thermophysical data of fluids based on a corresponding-states approach, the critical temperature Tc plays a central role. For some fluids, in particular ionic ones, however, the critical region is difficult or even impossible to access experimentally. For molten salts, Tc is on the order of 3000 K, which makes accurate measurements a challenging task. Room temperature ionic liquids (RTILs) decompose thermally between 400 K and 600 K due to their organic constituents; this range of temperatures is hundreds of degrees below recent estimates of their Tc. In both cases, reliable methods to deduce Tc based on extrapolations of experimental data recorded at much lower temperatures near the triple or melting points are needed and useful because the critical point influences the fluid's behavior in the entire liquid region. Here, we propose to employ the scaling approach leading to universal fluid behavior [Román et al., J. Chem. Phys. 123, 124512 (2005)] to derive a very simple expression that allows one to estimate Tc from the density of the liquid, the surface tension, or the enthalpy of vaporization measured in a very narrow range of low temperatures. We demonstrate the validity of the approach for simple and polar neutral fluids, for which Tc is known, and then use the methodology to obtain estimates of Tc for ionic fluids. When comparing these estimates to those reported in the literature, good agreement is found for RTILs, whereas the ones for the molten salts NaCl and KCl are lower than previous estimates by 10%. The coexistence curve for ionic fluids is found to be more adequately described by an effective exponent of βeff = 0.5 than by βeff = 0.33.

  18. Eruption style at Kīlauea Volcano in Hawai‘i linked to primary melt composition

    USGS Publications Warehouse

    Sides. I.R.,; Edmonds, M.; Maclennan, J.; Swanson, Don; Houghton, Bruce F.

    2014-01-01

    Explosive eruptions at basaltic volcanoes have been linked to gas segregation from magmas at shallow depths in the crust. The composition of primary melts formed at greater depths was thought to have little influence on eruptive style. Ocean island basaltic volcanoes are the product of melting of a geochemically heterogeneous mantle plume and are expected to give rise to heterogeneous primary melts. This range in primary melt composition, particularly with respect to the volatile components, will profoundly influence magma buoyancy, storage and eruption style. Here we analyse the geochemistry of a suite of melt inclusions from 25 historical eruptions at the ocean island volcano of Kīlauea, Hawai‘i, over the past 600 years. We find that more explosive styles of eruption at Kīlauea Volcano are associated statistically with more geochemically enriched primary melts that have higher volatile concentrations. These enriched melts ascend faster and retain their primary nature, undergoing little interaction with the magma reservoir at the volcano’s summit. We conclude that the eruption style and magma-supply rate at Kīlauea are fundamentally linked to the geochemistry of the primary melts formed deep below the volcano. Magmas might therefore be predisposed towards explosivity right at the point of formation in their mantle source region.

  19. Stretching and smearing of chemical heterogeneity by melting and melt migration beneath mid-ocean ridges

    NASA Astrophysics Data System (ADS)

    Liu, B.; Liang, Y.

    2017-12-01

    The size of mantle source heterogeneity is important to the interpretation of isotopic signals observed in residual peridotites and basalts. During concurrent melting and melt migration beneath a mid-ocean ridge, both porosity and melt velocity increase upward, resulting in an upward increase in the effective transport velocity for a trace element. Hence a chemical heterogeneity of finite size will be stretched during its transport in the upwelling mantle. This melt migration induced chemical deformation can be quantified by a simple stretching factor. During equilibrium melting, the isotope signals of Sr, Nd and Hf in a 1 km size enriched mantle will be stretched to 2 6 km at the top of the melting column, depending on the style of melt migration. A finite rate of diffusive exchange between residual minerals and partial melt will result in smearing of chemical heterogeneity during its transport in the upwelling melting column. A Gaussian-shaped enriched source in depleted background mantle would be gradually deformed its transit through the melting column. The width of the enriched signal spreads out between the fronts of melt and solid while its amplitude decreases. This melt migration induced smearing also cause mixing of nearby heterogeneities or absorption of enriched heterogeneity by the ambient mantle. Smaller heterogeneities in the solid is more efficiently mixed or aborted by the background mantle than larger ones. Mixing of heterogeneities in the melt depends on the size in the same sense although the erupted melt is more homogenized due to melt accumulation and magma chamber process. The mapping of chemical heterogeneities observed in residual peridotites and basalts into their source region is therefore highly nonlinear. We will show that the observed variations in Nd and Hf isotopes in the global MORB and abyssal peridotites are consistent with kilometer-scale enriched heterogeneities embedded in depleted MORB mantle.

  20. Experiments with the low melting indium-bismuth alloy system

    NASA Technical Reports Server (NTRS)

    Krepski, Richard P.

    1992-01-01

    The following is a laboratory experiment designed to create an interest in and to further understanding of materials science. The primary audience for this material is the junior high school or middle school science student having no previous familiarity with the material, other than some knowledge of temperature and the concepts of atoms, elements, compounds, and chemical reactions. The objective of the experiment is to investigate the indium-bismuth alloy system. Near the eutectic composition, the liquidus is well below the boiling point of water, allowing simple, minimal hazard casting experiments. Such phenomena as metal oxidation, formation of intermetallic compound crystals, and an unusual volume increase during solidification could all be directly observed. A key concept for students to absorb is that properties of an alloy (melting point, mechanical behavior) may not correlate with simple interpolation of properties of the pure components. Discussion of other low melting metals and alloys leads to consideration of environmental and toxicity issues, as well as providing some historical context. Wetting behavior can also be explored.

  1. Tungsten migration in Alcator C-Mod: sputtering and melting

    NASA Astrophysics Data System (ADS)

    Wright, G. M.; Barnard, H.; Lipschultz, B.; Whyte, D. G.

    2010-11-01

    A row of bulk tungsten (W) tiles were installed near the typical outer strike-point location in the Alcator C-Mod divertor in 2007. In the 2009/2010 campaign, one of the W tiles mechanically failed resulting in significant W melting at that location. Post-campaign PIXE surface analysis has been used to observe tungsten (W) deposition and migration patterns in the divertor for the typical operations (sputtering only) and operation with melted components. For sputtering conditions, W deposition of up to 20 nm equivalent thickness is observed at various divertor surfaces indicating prompt re-deposition at the outer divertor, neutral and ion transport through the private-flux region and ion transport in the scrape off layer. For melting conditions, W deposition of up to 400 nm equivalent thickness is observed at some locations at the outer divertor. However, the toroidal distribution of W on the outer divertor is strongly non-uniform. There is no W deposition measured on the inner wall limiter. These results indicate that impurity migration is affected by the erosion mechanism and source, with the migration from melting being less predictable and uniform than from the sputtering case. Supported by USDoE award DE-SC00-02060.

  2. Estimating spring terminus submarine melt rates at a Greenlandic tidewater glacier using satellite imagery

    NASA Astrophysics Data System (ADS)

    Moyer, Alexis N.; Nienow, Peter W.; Gourmelen, Noel; Sole, Andrew J.; Slater, Donald A.

    2017-12-01

    Oceanic forcing of the Greenland Ice Sheet is believed to promote widespread thinning at tidewater glaciers, with submarine melting proposed as a potential trigger of increased glacier calving, retreat, and subsequent acceleration. The precise mechanism(s) driving glacier instability, however, remain poorly understood, and while increasing evidence points to the importance of submarine melting, estimates of melt rates are uncertain. Here we estimate submarine melt rate by examining freeboard changes in the seasonal ice tongue of Kangiata Nunaata Sermia at the head of Kangersuneq Fjord, southwest Greenland. We calculate melt rates for March and May 2013 by differencing along-fjord surface elevation, derived from high-resolution TanDEM-X digital elevation models, in combination with ice velocities derived from offset tracking applied to TerraSAR-X imagery. Estimated steady state melt rates reach up to 1.4 ± 0.5 m d^-1 near the glacier grounding line, with mean values of up to 0.8 ± 0.3 and 0.7 ± 0.3 m d^1 for the eastern and western parts of the ice tongue, respectively. Melt rates decrease with distance from the ice front and vary across the fjord. This methodology reveals spatio-temporal variations in submarine melt rates at tidewater glaciers which develop floating termini, and can be used to improve our understanding of ice-ocean interactions and submarine melting in glacial fjords.

  3. Examination of nanosecond laser melting thresholds in refractory metals by shear wave acoustics

    NASA Astrophysics Data System (ADS)

    Abdullaev, A.; Muminov, B.; Rakhymzhanov, A.; Mynbayev, N.; Utegulov, Z. N.

    2017-07-01

    Nanosecond laser pulse-induced melting thresholds in refractory (Nb, Mo, Ta and W) metals are measured using detected laser-generated acoustic shear waves. Obtained melting threshold values were found to be scaled with corresponding melting point temperatures of investigated materials displaying dissimilar shearing behavior. The experiments were conducted with motorized control of the incident laser pulse energies with small and uniform energy increments to reach high measurement accuracy and real-time monitoring of the epicentral acoustic waveforms from the opposite side of irradiated sample plates. Measured results were found to be in good agreement with numerical finite element model solving coupled elastodynamic and thermal conduction governing equations on structured quadrilateral mesh. Solid-melt phase transition was handled by means of apparent heat capacity method. The onset of melting was attributed to vanished shear modulus and rapid radial molten pool propagation within laser-heated metal leading to preferential generation of transverse acoustic waves from sources surrounding the molten mass resulting in the delay of shear wave transit times. Developed laser-based technique aims for applications involving remote examination of rapid melting processes of materials present in harsh environment (e.g. spent nuclear fuels) with high spatio-temporal resolution.

  4. Simulation on Melting Process of Water Using Molecular Dynamics Method

    NASA Astrophysics Data System (ADS)

    Okawa, Seiji; Saito, Akio; Kang, Chaedong

    Simulation on phase change from ice to water was presented using molecular dynamics method. 576molecules were placed in a cell at ice forming arrangement. The volume of the cell was fixed so that the density of ice was kept at 923 kg/m3. Periodic boundary condition was used. According to the phase diagram of water, melting point of ice at the density of 923 kg/m3 is about 400 K. In order to perform melting process from surface, only the molecules near the boundary were scaled at each time step to keep its average temperature at 420 K, and the average temperature of other molecules were set to 350 K as initial condition. By observing time variation of the change in molecular arrangement, it was found that the hydrogen bond network near the boundary surface started to break its configuration and the melting surface moved towards the center until no more ice forming configuration was observed. This phenomenon was also discussed in a form of temperature and energy variation. The total energy increased and reached to a steady state at the time around 6.5 ps. This increment was due to the energy supplied from the boundary at a constant temperature. The temperature in the cell kept almost constant at 380 K during the period between 0.6 and 5.5 ps. This period coincides with melting process observed in molecular arrangement. Hence, it can be said that 380 K corresponds to the melting point. The total energy stored in the cell consisted of sensible and latent heat. Specific heat of water and ice were calculated, and they were found to be 5.6 kJ/kg·K and 3.7 kJ/kg·K, respectively. Hence, latent heat was found to be 316kJ/kg. These values agreed quite well to the physical properties of water.

  5. The Microwave Properties of Simulated Melting Precipitation Particles: Sensitivity to Initial Melting

    NASA Technical Reports Server (NTRS)

    Johnson, B. T.; Olson, W. S.; Skofronick-Jackson, G.

    2016-01-01

    A simplified approach is presented for assessing the microwave response to the initial melting of realistically shaped ice particles. This paper is divided into two parts: (1) a description of the Single Particle Melting Model (SPMM), a heuristic melting simulation for ice-phase precipitation particles of any shape or size (SPMM is applied to two simulated aggregate snow particles, simulating melting up to 0.15 melt fraction by mass), and (2) the computation of the single-particle microwave scattering and extinction properties of these hydrometeors, using the discrete dipole approximation (via DDSCAT), at the following selected frequencies: 13.4, 35.6, and 94.0GHz for radar applications and 89, 165.0, and 183.31GHz for radiometer applications. These selected frequencies are consistent with current microwave remote-sensing platforms, such as CloudSat and the Global Precipitation Measurement (GPM) mission. Comparisons with calculations using variable-density spheres indicate significant deviations in scattering and extinction properties throughout the initial range of melting (liquid volume fractions less than 0.15). Integration of the single-particle properties over an exponential particle size distribution provides additional insight into idealized radar reflectivity and passive microwave brightness temperature sensitivity to variations in size/mass, shape, melt fraction, and particle orientation.

  6. Experimental correlation of melt structures, nucleation rates, and thermal histories of silicate melts

    NASA Technical Reports Server (NTRS)

    Boynton, W. V.; DRAKE; HILDEBRAND; JONES; LEWIS; TREIMAN; WARK

    1987-01-01

    The theory and measurement of the structure of liquids is an important aspect of modern metallurgy and igneous petrology. Liquid structure exerts strong controls on both the types of crystals that may precipitate from melts and on the chemical composition of those crystals. An interesting aspect of melt structure studies is the problem of melt memories; that is, a melt can retain a memory of previous thermal history. This memory can influence both nucleation behavior and crystal composition. This melt memory may be characterized quantitatively with techniques such as Raman, infrared and NMR spectroscopy to provide information on short-range structure. Melt structure studies at high temperature will take advantage of the microgravity conditions of the Space Station to perform containerless experiments. Melt structure determinations at high temperature (experiments that are greatly facilitated by containerless technology) will provide invaluable information for materials science, glass technology, and geochemistry. In conjunction with studies of nucleation behavior and nucleation rates, information relevant to nucleation in magma chambers in terrestrial planets will be acquired.

  7. String-like collective atomic motion in the melting and freezing of nanoparticles.

    PubMed

    Zhang, Hao; Kalvapalle, Pranav; Douglas, Jack F

    2011-12-08

    The melting of a solid represents a transition between a solid state in which atoms are localized about fixed average crystal lattice positions to a fluid state that is characterized by relative atomic disorder and particle mobility so that the atoms wander around the material as a whole, impelled by the random thermal impulses of surrounding atoms. Despite the fundamental nature and practical importance of this particle delocalization transition, there is still no fundamental theory of melting and instead one often relies on the semi-phenomenological Lindemann-Gilvarry criterion to estimate roughly the melting point as an instability of the crystal lattice. Even the earliest simulations of melting in hexagonally packed hard discs by Alder and Wainwright indicated the active role of nonlocal collective atomic motions in the melting process, and here we utilize molecular dynamics (MD) simulation to determine whether the collective particle motion observed in melting has a similar geometrical form as those in recent studies of nanoparticle (NP) interfacial dynamics and the molecular dynamics of metastable glass-forming liquids. We indeed find string-like collective atomic motion in NP melting that is remarkably similar in form to the collective interfacial motions in NPs at equilibrium and to the collective motions found in the molecular dynamics of glass-forming liquids. We also find that the spatial localization and extent of string-like motion in the course of NP melting and freezing evolves with time in distinct ways. Specifically, the collective atomic motion propagates from the NP surface and from within the NP in melting and freezing, respectively, and the average string length varies smoothly with time during melting. In contrast, the string-like cooperative motion peaks in an intermediate stage of the freezing process, reflecting a general asymmetry in the dynamics of NP superheating and supercooling. © 2011 American Chemical Society

  8. The existence of negative absolute temperatures in Axelrod’s social influence model

    NASA Astrophysics Data System (ADS)

    Villegas-Febres, J. C.; Olivares-Rivas, W.

    2008-06-01

    We introduce the concept of temperature as an order parameter in the standard Axelrod’s social influence model. It is defined as the relation between suitably defined entropy and energy functions, T=(. We show that at the critical point, where the order/disorder transition occurs, this absolute temperature changes in sign. At this point, which corresponds to the transition homogeneous/heterogeneous culture, the entropy of the system shows a maximum. We discuss the relationship between the temperature and other properties of the model in terms of cultural traits.

  9. Molecular dynamics simulation of UO2 nanocrystals melting under isolated and periodic boundary conditions

    NASA Astrophysics Data System (ADS)

    Boyarchenkov, A. S.; Potashnikov, S. I.; Nekrasov, K. A.; Kupryazhkin, A. Ya.

    2012-08-01

    Melting of uranium dioxide (UO2) nanocrystals has been studied by molecular dynamics (MD) simulation. Ten recent and widely used sets of pair potentials were assessed in the rigid ion approximation. Both isolated (in vacuum) and periodic boundary conditions (PBC) were explored. Using barostat under PBC the pressure dependences of melting point were obtained. These curves intersected zero near -20 GPa, saturated near 25 GPa and increased nonlinearly in between. Using simulation of surface under isolated boundary conditions (IBC) recommended melting temperature and density jump were successfully reproduced. However, the heat of fusion is still underestimated. These melting characteristics were calculated for nanocrystals of cubic shape in the range of 768-49 152 particles (volume range of 10-1000 nm3). The obtained reciprocal size dependences decreased nonlinearly. Linear and parabolic extrapolations to macroscopic values are considered. The parabolic one is found to be better suited for analysis of the data on temperature and heat of melting.

  10. Antifreeze protein-induced superheating of ice inside Antarctic notothenioid fishes inhibits melting during summer warming

    PubMed Central

    Cziko, Paul A.; DeVries, Arthur L.; Evans, Clive W.; Cheng, Chi-Hing Christina

    2014-01-01

    Antifreeze proteins (AFPs) of polar marine teleost fishes are widely recognized as an evolutionary innovation of vast adaptive value in that, by adsorbing to and inhibiting the growth of internalized environmental ice crystals, they prevent death by inoculative freezing. Paradoxically, systemic accumulation of AFP-stabilized ice could also be lethal. Whether or how fishes eliminate internal ice is unknown. To investigate if ice inside high-latitude Antarctic notothenioid fishes could melt seasonally, we measured its melting point and obtained a decadal temperature record from a shallow benthic fish habitat in McMurdo Sound, Antarctica. We found that AFP-stabilized ice resists melting at temperatures above the expected equilibrium freezing/melting point (eqFMP), both in vitro and in vivo. Superheated ice was directly observed in notothenioid serum samples and in solutions of purified AFPs, and ice was found to persist inside live fishes at temperatures more than 1 °C above their eqFMP for at least 24 h, and at a lower temperature for at least several days. Field experiments confirmed that superheated ice occurs naturally inside wild fishes. Over the long-term record (1999–2012), seawater temperature surpassed the fish eqFMP in most summers, but never exceeded the highest temperature at which ice persisted inside experimental fishes. Thus, because of the effects of AFP-induced melting inhibition, summer warming may not reliably eliminate internal ice. Our results expose a potentially antagonistic pleiotropic effect of AFPs: beneficial freezing avoidance is accompanied by melting inhibition that may contribute to lifelong accumulation of detrimental internal ice crystals. PMID:25246548

  11. Antifreeze protein-induced superheating of ice inside Antarctic notothenioid fishes inhibits melting during summer warming.

    PubMed

    Cziko, Paul A; DeVries, Arthur L; Evans, Clive W; Cheng, Chi-Hing Christina

    2014-10-07

    Antifreeze proteins (AFPs) of polar marine teleost fishes are widely recognized as an evolutionary innovation of vast adaptive value in that, by adsorbing to and inhibiting the growth of internalized environmental ice crystals, they prevent death by inoculative freezing. Paradoxically, systemic accumulation of AFP-stabilized ice could also be lethal. Whether or how fishes eliminate internal ice is unknown. To investigate if ice inside high-latitude Antarctic notothenioid fishes could melt seasonally, we measured its melting point and obtained a decadal temperature record from a shallow benthic fish habitat in McMurdo Sound, Antarctica. We found that AFP-stabilized ice resists melting at temperatures above the expected equilibrium freezing/melting point (eqFMP), both in vitro and in vivo. Superheated ice was directly observed in notothenioid serum samples and in solutions of purified AFPs, and ice was found to persist inside live fishes at temperatures more than 1 °C above their eqFMP for at least 24 h, and at a lower temperature for at least several days. Field experiments confirmed that superheated ice occurs naturally inside wild fishes. Over the long-term record (1999-2012), seawater temperature surpassed the fish eqFMP in most summers, but never exceeded the highest temperature at which ice persisted inside experimental fishes. Thus, because of the effects of AFP-induced melting inhibition, summer warming may not reliably eliminate internal ice. Our results expose a potentially antagonistic pleiotropic effect of AFPs: beneficial freezing avoidance is accompanied by melting inhibition that may contribute to lifelong accumulation of detrimental internal ice crystals.

  12. Shock melting method to determine melting curve by molecular dynamics: Cu, Pd, and Al

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Liu, Zhong-Li, E-mail: zl.liu@163.com; Zhang, Xiu-Lu; Cai, Ling-Cang

    A melting simulation method, the shock melting (SM) method, is proposed and proved to be able to determine the melting curves of materials accurately and efficiently. The SM method, which is based on the multi-scale shock technique, determines melting curves by preheating and/or prepressurizing materials before shock. This strategy was extensively verified using both classical and ab initio molecular dynamics (MD). First, the SM method yielded the same satisfactory melting curve of Cu with only 360 atoms using classical MD, compared to the results from the Z-method and the two-phase coexistence method. Then, it also produced a satisfactory melting curvemore » of Pd with only 756 atoms. Finally, the SM method combined with ab initio MD cheaply achieved a good melting curve of Al with only 180 atoms, which agrees well with the experimental data and the calculated results from other methods. It turned out that the SM method is an alternative efficient method for calculating the melting curves of materials.« less

  13. Partial melting and melt percolation in the mantle: The message from Fe isotopes

    NASA Astrophysics Data System (ADS)

    Weyer, Stefan; Ionov, Dmitri A.

    2007-07-01

    High precision Fe isotope measurements have been performed on various mantle peridotites (fertile lherzolites, harzburgites, metasomatised Fe-enriched peridotites) and volcanic rocks (mainly oceanic basalts) from different localities and tectonic settings. The peridotites yield an average δ 56Fe = 0.01‰ and are significantly lighter than the basalts (average δ 56Fe = 0.11‰). Furthermore, the peridotites display a negative correlation of δ 56Fe with Mg# indicating a link between δ 56Fe and degrees of melt extraction. Taken together, these findings imply that Fe isotopes fractionate during partial melting, with heavy isotopes preferentially entering the melt. The slope of depletion trends (δ 56Fe versus Mg#) of the peridotites was used to model Fe isotope fractionation during partial melting, resulting in αmantle-melt ≈ 1.0001-1.0003 or ln αmantle-melt ≈ 0.1-0.3‰. In contrast to most other peridotites investigated in this study, spinel lherzolites and harzburgites from three localities (Horoman, Kamchatka and Lherz) are virtually unaffected by metasomatism. These three sites display a particularly good correlation and define an isotope fractionation factor of ln αmantle-melt ≈ 0.3‰. This modelled value implies Fe isotope fractionation between residual mantle and mantle-derived melts corresponding to Δ56Fe mantle-basalt ≈ 0.2-0.3‰, i.e. significantly higher than the observed difference between averages for all the peridotites and the basalts in this study (corresponding to Δ56Fe mantle-basalt ≈ 0.1‰). Either disequilibrium melting increased the modelled αmantle-melt for these particular sites or the difference between average peridotite and basalt may be reduced by partial re-equilibration between the isotopically heavy basalts and the isotopically light depleted lithospheric mantle during melt ascent. The slope of the weaker δ 56Fe-Mg# trend defined by the combined set of all mantle peridotites from this study is more consistent with

  14. Investigation of transient melting of tungsten by ELMs in ASDEX Upgrade

    NASA Astrophysics Data System (ADS)

    Krieger, K.; Sieglin, B.; Balden, M.; Coenen, J. W.; Göths, B.; Laggner, F.; de Marne, P.; Matthews, G. F.; Nille, D.; Rohde, V.; Dejarnac, R.; Faitsch, M.; Giannone, L.; Herrmann, A.; Horacek, J.; Komm, M.; Pitts, R. A.; Ratynskaia, S.; Thoren, E.; Tolias, P.; ASDEX-Upgrade Team; EUROfusion MST1 Team

    2017-12-01

    Repetitive melting of tungsten by power transients originating from edge localized modes (ELMs) has been studied in the tokamak experiment ASDEX Upgrade. Tungsten samples were exposed to H-mode discharges at the outer divertor target plate using the Divertor Manipulator II system. The exposed sample was designed with an elevated sloped surface inclined against the incident magnetic field to increase the projected parallel power flux to a level were transient melting by ELMs would occur. Sample exposure was controlled by moving the outer strike point to the sample location. As extension to previous melt studies in the new experiment both the current flow from the sample to vessel potential and the local surface temperature were measured with sufficient time resolution to resolve individual ELMs. The experiment provided for the first time a direct link of current flow and surface temperature during transient ELM events. This allows to further constrain the MEMOS melt motion code predictions and to improve the validation of its underlying model assumptions. Post exposure ex situ analysis of the retrieved samples confirms the decreased melt motion observed at shallower magnetic field line to surface angles compared to that at leading edges exposed to the parallel power flux.

  15. Hot melt adhesive pad surface attachment assembly concept for on-orbit operations

    NASA Technical Reports Server (NTRS)

    Progar, D. J.; Stein, B. A.

    1984-01-01

    The use of a hot melt adhesive concept to develop a Surface Attachment Assembly (SAA) for on-orbit attachment and detachment operations for the Manned Maneuvering Unit (MMU) was investigated. The concept involved impregnation of the hot melt adhesive into a fiberglass covered pad which contained electrical heating and thermoelectric cooling devices. The polyamide hot melt adhesive selected can be repeatedly heated to its melting point in a vacuum and provide good adhesion to various surfaces, i.e., reusable surface insulation tiles, metals, and composites, when cooled. After a series of adhesive screening tests, Jet-Melt 3746 was selected from a group of commercially available thermoplastic adhesive candidates which met or exceeded many of the criteria established for the SAA system. The SAA system was designed and fabricted with the goal of proving the concept with a working model rather than attempting to optimize all facets of the system. This system evolved by investigating alternate attachment concepts, designing and fabricating electronic systems to heat and cool the adhesive, and then fabricating electronic systems to heat and cool the adhesive, and then fabricating and testing two prototype full-size units.

  16. Experimental Phase Relations of Hydrous, Primitive Melts: Implications for variably depleted mantle melting in arcs and the generation of primitive high-SiO2 melts

    NASA Astrophysics Data System (ADS)

    Weaver, S.; Wallace, P. J.; Johnston, A.

    2010-12-01

    There has been considerable experimental and theoretical work on how the introduction of H2O-rich fluids into the mantle wedge affects partial melting in arcs and chemical evolution of mantle melts as they migrate through the mantle. Studies aimed at describing these processes have become largely quantitative, with an emphasis on creating models that suitably predict the production and evolution of melts and describe the thermal state of arcs worldwide. A complete experimental data set that explores the P-T conditions of melt generation and subsequent melt extraction is crucial to the development, calibration, and testing of these models. This work adds to that data set by constraining the P-T-H2O conditions of primary melt extraction from two end-member subduction zones, a continental arc (Mexico) and an intraoceanic arc (Aleutians). We present our data in context with primitive melts found worldwide and with other experimental studies of melts produced from fertile and variably depleted mantle sources. Additionally, we compare our experimental results to melt compositions predicted by empirical and thermodynamic models. We used a piston-cylinder apparatus and employed an inverse approach in our experiments, constraining the permissible mantle residues with which our melts could be in equilibrium. We confirmed our inverse approach with forced saturation experiments at the P-T-H2O conditions of melt-mantle equilibration. Our experimental results show that a primitive, basaltic andesite melt (JR-28) from monogenetic cinder cone Volcan Jorullo (Central Mexico) last equilibrated with a harzburgite mantle residue at 1.2-1.4 GPa and 1150-1175°C with H2O contents in the range of 5.5-7 wt% H2O prior to ascent and eruption. Phase relations of a tholeiitic high-MgO basaltic melt (ID-16) from the Central Aleutians (Okmok) show the conditions of last equilibration with a fertile lherzolite mantle residue at shallower (1.2 GPa) but hotter (1275°C) conditions with

  17. Thermophysical properties of liquid Ni around the melting temperature from molecular dynamics simulation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Rozas, R. E.; Department of Physics, University of Bío-Bío, Av. Collao 1202, P.O. Box 5C, Concepción; Demiraǧ, A. D.

    Thermophysical properties of liquid nickel (Ni) around the melting temperature are investigated by means of classical molecular dynamics (MD) simulation, using three different embedded atom method potentials to model the interactions between the Ni atoms. Melting temperature, enthalpy, static structure factor, self-diffusion coefficient, shear viscosity, and thermal diffusivity are compared to recent experimental results. Using ab initio MD simulation, we also determine the static structure factor and the mean-squared displacement at the experimental melting point. For most of the properties, excellent agreement is found between experiment and simulation, provided the comparison relative to the corresponding melting temperature. We discuss themore » validity of the Hansen-Verlet criterion for the static structure factor as well as the Stokes-Einstein relation between self-diffusion coefficient and shear viscosity. The thermal diffusivity is extracted from the autocorrelation function of a wavenumber-dependent temperature fluctuation variable.« less

  18. Investigation of the Parameters of Sealed Triple-Point Cells for Cryogenic Gases

    NASA Astrophysics Data System (ADS)

    Fellmuth, B.; Wolber, L.

    2011-01-01

    An overview of the parameters of a large number of sealed triple-point cells for the cryogenic gases hydrogen, oxygen, neon, and argon is given that have been determined within the framework of an international star intercomparison to optimize the measurement of melting curves as well as to establish complete and reliable uncertainty budgets for the realization of temperature fixed points. Special emphasis is given to the question, whether the parameters are primarily influenced by the cell design or the properties of the fixed-point samples. For explaining surprisingly large periods of the thermal recovery after the heat pulses of the intermittent heating through the melting range, a simple model is developed based on a newly defined heat-capacity equivalent, which considers the heat of fusion and a melting-temperature inhomogeneity. The analysis of the recovery using a graded set of exponential functions containing different time constants is also explained in detail.

  19. Ice cream structural elements that affect melting rate and hardness.

    PubMed

    Muse, M R; Hartel, R W

    2004-01-01

    Statistical models were developed to reveal which structural elements of ice cream affect melting rate and hardness. Ice creams were frozen in a batch freezer with three types of sweetener, three levels of the emulsifier polysorbate 80, and two different draw temperatures to produce ice creams with a range of microstructures. Ice cream mixes were analyzed for viscosity, and finished ice creams were analyzed for air cell and ice crystal size, overrun, and fat destabilization. The ice phase volume of each ice cream were calculated based on the freezing point of the mix. Melting rate and hardness of each hardened ice cream was measured and correlated with the structural attributes by using analysis of variance and multiple linear regression. Fat destabilization, ice crystal size, and the consistency coefficient of the mix were found to affect the melting rate of ice cream, whereas hardness was influenced by ice phase volume, ice crystal size, overrun, fat destabilization, and the rheological properties of the mix.

  20. Ar-40-Ar-39 Age of an Impact-Melt Lithology in Lunar Meteorite Dhofar 961

    NASA Technical Reports Server (NTRS)

    Cohen, Barbara; Frasl, Barbara; Jolliff, Brad; Korotev, Randy; Zeigler, Ryan

    2016-01-01

    The Dhofar 961 lunar meteorite was found in 2003 in Oman. It is texturally paired with Dhofar 925 and Dhofar 960 (though Dhofar 961 is more mafic and richer in incompatible elements). Several lines of reasoning point to the South Pole-Aitken Basin (SPA) basin as a plausible source (Figure 2): Mafic character of the melt-breccia lithic clasts consistent the interior of SPA, rules out feldspathic highlands. Compositional differences from Apollo impact-melt groups point to a provenance that is separated and perhaps far distant from the Procellarum KREEP Terrane SPA "hot spots" where Th concentrations reach 5 ppm and it has a broad "background" of about 2 ppm, similar to lithic clasts in Dhofar 961 subsamples If true, impact-melt lithologies in this meteorite may be unaffected by the Imbrium-forming event that is pervasively found in our Apollo sample collection, and instead record the early impact history of the Moon.

  1. Investigation of the Behavior of the Co C Eutectic Fixed Point

    NASA Astrophysics Data System (ADS)

    Girard, F.; Battuello, M.; Florio, M.

    2007-12-01

    The behavior of the Co C eutectic fixed point was investigated at INRIM. Several cells of different design and volume, and filled with cobalt of different purity were constructed and investigated with both Pt/Pd thermocouples and radiation thermometers. The melting behavior was investigated with respect to the melting rate, the pre-freezing rate, and the annealing time. The melting temperatures, as defined, were not significantly affected by the different testing conditions, even if the shape and duration of the plateaux were influenced. Several tens of melt and freeze cycles were performed with the different cells. The spread in the results for all of the different conditions was very limited in extent, giving rise to a standard deviation of less than 0.04 °C; a repeatability of better than 0.02 °C was found with both Pt/Pd thermocouples and radiation thermometers. The results of our measurements are encouraging and confirm the suitability of Co C as a reference point for the high-temperature range in a possible future temperature scale. Investigations of long-term stability remain ongoing.

  2. Absolute continuity for operator valued completely positive maps on C∗-algebras

    NASA Astrophysics Data System (ADS)

    Gheondea, Aurelian; Kavruk, Ali Şamil

    2009-02-01

    Motivated by applicability to quantum operations, quantum information, and quantum probability, we investigate the notion of absolute continuity for operator valued completely positive maps on C∗-algebras, previously introduced by Parthasarathy [in Athens Conference on Applied Probability and Time Series Analysis I (Springer-Verlag, Berlin, 1996), pp. 34-54]. We obtain an intrinsic definition of absolute continuity, we show that the Lebesgue decomposition defined by Parthasarathy is the maximal one among all other Lebesgue-type decompositions and that this maximal Lebesgue decomposition does not depend on the jointly dominating completely positive map, we obtain more flexible formulas for calculating the maximal Lebesgue decomposition, and we point out the nonuniqueness of the Lebesgue decomposition as well as a sufficient condition for uniqueness. In addition, we consider Radon-Nikodym derivatives for absolutely continuous completely positive maps that, in general, are unbounded positive self-adjoint operators affiliated to a certain von Neumann algebra, and we obtain a spectral approximation by bounded Radon-Nikodym derivatives. An application to the existence of the infimum of two completely positive maps is indicated, and formulas in terms of Choi's matrices for the Lebesgue decomposition of completely positive maps in matrix algebras are obtained.

  3. Melt Electrowriting of Thermoplastic Elastomers.

    PubMed

    Hochleitner, Gernot; Fürsattel, Eva; Giesa, Reiner; Groll, Jürgen; Schmidt, Hans-Werner; Dalton, Paul D

    2018-04-14

    Melt electrowriting (MEW), an additive manufacturing process, is established using polycaprolactone as the benchmark material. In this study, a thermoplastic elastomer, namely, poly(urea-siloxane), is synthesized and characterized to identify how different classes of polymers are compatible with MEW. This polyaddition polymer has reversible hydrogen bonding from the melt upon heating/cooling and highly resolved structures are achieved by MEW. The influence of applied voltage, temperature, and feeding pressure on printing outcomes behavior is optimized. Balancing these parameters, highly uniform and smooth-surfaced fibers with diameters ranging from 10 to 20 µm result. The quality of the 3D MEW scaffolds is excellent, with very accurate fiber stacking capacity-up to 50 layers with minimal defects and good fiber fusion between the layers. There is also minimal fiber sagging between the crossover points, which is a characteristic of thicker MEW scaffolds previously reported with other polymers. In summary, poly(urea-siloxane) demonstrates outstanding compatibility with the MEW process and represents a class of polymer-thermoplastic elastomers-that are, until now, untested with this approach. © 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  4. Construction of a Cr3C2-C Peritectic Point Cell for Thermocouple Calibration

    NASA Astrophysics Data System (ADS)

    Ogura, Hideki; Deuze, Thierry; Morice, Ronan; Ridoux, Pascal; Filtz, Jean-Remy

    The melting points of Cr3C2-C peritectic (1826°C) and Cr7C3-Cr3C2 eutectic (1742°C) alloys as materials for high-temperature fixed point cells are investigated for the use of thermocouple calibration. Pretests are performed to establish a suitable procedure for constructing contact thermometry cells based on such chromium-carbon mixtures. Two cells are constructed following two different possible procedures. The above two melting points are successfully observed for one of these cells using tungsten-rhenium alloy thermocouples.

  5. Viscosity Measurement for Tellurium Melt

    NASA Technical Reports Server (NTRS)

    Lin, Bochuan; Li, Chao; Ban, Heng; Scripa, Rosalia N.; Su, Ching-Hua; Lehoczky, Sandor L.

    2006-01-01

    The viscosity of high temperature Te melt was measured using a new technique in which a rotating magnetic field was applied to the melt sealed in a suspended ampoule, and the torque exerted by rotating melt flow on the ampoule wall was measured. Governing equations for the coupled melt flow and ampoule torsional oscillation were solved, and the viscosity was extracted from the experimental data by numerical fitting. The computational result showed good agreement with experimental data. The melt velocity transient initiated by the rotating magnetic field reached a stable condition quickly, allowing the viscosity and electrical conductivity of the melt to be determined in a short period.

  6. Validation of a hand-held point of care device for lactate in adult and pediatric patients using traditional and locally-smoothed median and maximum absolute difference curves.

    PubMed

    Colon-Franco, Jessica Marie; Lo, Stanley F; Tarima, Sergey S; Gourlay, David; Drendel, Amy L; Brook Lerner, E

    2017-05-01

    Lactate is commonly used in septic patients and is a viable biomarker for trauma patients. Its pre-hospital use could assist triaging and managing patients with these conditions. We evaluated the analytical performance of the point-of-care (POC) StatStrip Xpress Lactate Meter (Nova Biomedical) and compared it to the ABL 800 (Radiometer). We measured lactate in 250 adult and 250 pediatric whole blood samples in 2 laboratories. The performance of the POC meter was assessed by traditional linear regression and Bland-Altman plots, and locally-smoothed (LS) median absolute difference and maximum absolute difference (MAD and MaxAD) curves. The StatStrip was linear with acceptable reproducibility at clinically relevant concentrations. Correlation with the ABL800 showed a negative bias for both populations with slope, bias ±SD (% bias) of 0.78, -0.4±0.7 (-14.5%) in children and 0.80-0.3±0.6 (-13.3%) in adults. The proportional bias appeared more significant at concentrations >4mmol/l (36.0mg/dl). The StatStrip misclassified 7.6 and 8.8% pediatric and adult samples, respectively, to lower risk categories defined using guidelines driven cut-offs. The LS MAD curves identified one breakout, concentration where the LS MAD exceeds the total allowable error limit of 0.3mmol/l (2.7mg/dl), at lactate concentrations of 3.8 and 3.2mmol/l (34.2 and 28.8mg/dl) in the pediatric and adult curves, respectively. Breakthroughs, points at which the LS MaxAD curve exceeds the 95th percentile of MaxADs, occur at concentrations above 7.5mmol/l (67.6mg/dl) for both populations where the performance of the POC meter became erratic. We concluded that if serial lactate measurements are performed, the same method should be used for baseline and follow up measurements. The LS MAD and LS MaxAD curves allowed visual and quantitative mapping of the performance of the lactate POC meter over the range of concentrations measured. This approach seems useful for the identification of points at which the

  7. Heat transfer in melt ponds with convection and radiative heating: observationally-inspired modelling

    NASA Astrophysics Data System (ADS)

    Wells, A.; Langton, T.; Rees Jones, D. W.; Moon, W.; Kim, J. H.; Wilkinson, J.

    2016-12-01

    Melt ponds have key impacts on the evolution of Arctic sea ice and summer ice melt. Small changes to the energy budget can have significant consequences, with a net heat-flux perturbation of only a few Watts per square metre sufficient to explain the thinning of sea ice over recent decades. Whilst parameterisations of melt-pond thermodynamics often assume that pond temperatures remain close to the freezing point, recent in-situ observations show more complex thermal structure with significant diurnal and synoptic variability. We here consider the energy budget of melt ponds and explore the role of internal convective heat transfer in determining the thermal structure within the pond in relatively calm conditions with low winds. We quantify the energy fluxes and temperature variability using two-dimensional direct numerical simulations of convective turbulence within a melt pond, driven by internal radiative heating and surface fluxes. Our results show that the convective flow dynamics are modulated by changes to the incoming radiative flux and sensible heat flux at the pond surface. The evolving pond surface temperature controls the outgoing longwave emissions from the pond. Hence the convective flow modifies the net energy balance of a melt pond, modulating the relative fractions of the incoming heat flux that is re-emitted to the atmosphere or transferred downward into the sea ice to drive melt.

  8. Determining the thermodynamic melting parameters of sulfamethoxazole, trimethoprim, urea, nicodin, and their double eutectics by differential scanning calorimetry

    NASA Astrophysics Data System (ADS)

    Agafonova, E. V.; Moshchenskii, Yu. V.; Tkachenko, M. L.

    2013-08-01

    The literature data on the thermodynamic melting characteristics of sulfamethoxazole, urea, trimethoprim, and nicodin are analyzed for individual compounds. Their enthalpies and melting points, either individually or in the composition of eutectics, are found by means of DSC. The entropies of fusion and the cryoscopic constants of individual compounds are calculated.

  9. Olivine-hosted melt inclusions record efficient mixing of mantle melts in continental flood basalt provinces

    NASA Astrophysics Data System (ADS)

    Jennings, E. S.; Gibson, S. A.; Maclennan, J.; Heinonen, J. S.

    2017-12-01

    Primitive melt inclusions trapped in various minerals found in global ridge settings have been shown to record highly variable magmatic compositions. Mantle melting is expected to be near-fractional, producing a wide range of melt compositions that must accumulate and mix in crustal magma chambers. In primitive rocks, the melt inclusion variability observed in major, trace and isotope geochemistry is consistent to the first order with partial melting of variably depleted mantle, and indicate that the host phases began to crystallise prior to the completion of melt aggregation and mixing. We present new major and trace element data from a large number of rehomogenised olivine-hosted melt inclusions from the Cretaceous Paraná-Etendeka and Jurassic Karoo continental flood basalt (CFB) provinces [1]. We show that the major element chemistry of the melt inclusions can be severely disrupted by the rehomogenisation process and, as a consequence, their initial compositions cannot easily be back-calculated. However, despite the age of the samples, the trace element geochemistry of the melt inclusions is well-preserved. Despite coming from near-liquidus olivines from primitive picrites and ferropicrites, the inclusions are remarkably homogeneous; none of the anticipated variability in incompatible trace element compositions is observed. When considered alongside literature data, it appears that variability in primitive melts - as recorded by melt inclusions - is low in CFBs and OIBs relative to ridge settings, e.g. Iceland. We suggest that the tectonic setting imposes a control on the mixing of mantle melts: hot, plume-derived melts generated beneath relatively thick lithosphere may be prone to efficient mixing, perhaps due to their low viscosity, long transport pathways, and/or a superliquidus emplacement temperature [1]. This interpretation is supported by the almost non-existent variability of olivine-hosted inclusions from ferropicrite samples: these magmas represents

  10. Fully distributed absolute blood flow velocity measurement for middle cerebral arteries using Doppler optical coherence tomography

    PubMed Central

    Qi, Li; Zhu, Jiang; Hancock, Aneeka M.; Dai, Cuixia; Zhang, Xuping; Frostig, Ron D.; Chen, Zhongping

    2016-01-01

    Doppler optical coherence tomography (DOCT) is considered one of the most promising functional imaging modalities for neuro biology research and has demonstrated the ability to quantify cerebral blood flow velocity at a high accuracy. However, the measurement of total absolute blood flow velocity (BFV) of major cerebral arteries is still a difficult problem since it is related to vessel geometry. In this paper, we present a volumetric vessel reconstruction approach that is capable of measuring the absolute BFV distributed along the entire middle cerebral artery (MCA) within a large field-of-view. The Doppler angle at each point of the MCA, representing the vessel geometry, is derived analytically by localizing the artery from pure DOCT images through vessel segmentation and skeletonization. Our approach could achieve automatic quantification of the fully distributed absolute BFV across different vessel branches. Experiments on rodents using swept-source optical coherence tomography showed that our approach was able to reveal the consequences of permanent MCA occlusion with absolute BFV measurement. PMID:26977365

  11. Fully distributed absolute blood flow velocity measurement for middle cerebral arteries using Doppler optical coherence tomography.

    PubMed

    Qi, Li; Zhu, Jiang; Hancock, Aneeka M; Dai, Cuixia; Zhang, Xuping; Frostig, Ron D; Chen, Zhongping

    2016-02-01

    Doppler optical coherence tomography (DOCT) is considered one of the most promising functional imaging modalities for neuro biology research and has demonstrated the ability to quantify cerebral blood flow velocity at a high accuracy. However, the measurement of total absolute blood flow velocity (BFV) of major cerebral arteries is still a difficult problem since it is related to vessel geometry. In this paper, we present a volumetric vessel reconstruction approach that is capable of measuring the absolute BFV distributed along the entire middle cerebral artery (MCA) within a large field-of-view. The Doppler angle at each point of the MCA, representing the vessel geometry, is derived analytically by localizing the artery from pure DOCT images through vessel segmentation and skeletonization. Our approach could achieve automatic quantification of the fully distributed absolute BFV across different vessel branches. Experiments on rodents using swept-source optical coherence tomography showed that our approach was able to reveal the consequences of permanent MCA occlusion with absolute BFV measurement.

  12. Fe, Co, Ni: Electrical Resistivity Along their Melting Boundaries

    NASA Astrophysics Data System (ADS)

    Silber, R. E.; Ezenwa, I.; Secco, R.; Yong, W.

    2017-12-01

    Electrical resistivity of Fe, Co, and Ni was measured at pressures up to 11 GPa and temperatures into their liquid states in multi-anvil and cubic-anvil presses. Two thermocouples placed at opposite ends of the wire sample served as T probes as well as 4-wire resistance electrodes in a switched circuit. A polarity switch was also used to remove any bias associated with current flow and voltage measurement using thermocouple legs. Post experimental examination of recovered and sectioned samples was done using electron microprobe analyses to check for diffusion in our samples. The observed large jumps in resistivity at the high P melting T of each metal is consistent with its known P,T phase diagram and with post-run compositional analyses. The electrical resistivity behavior in these late transition metals as a function of increasing P and T shows expected trends consistent with 1atm data. Within the error of measurement, the resistivity values at the melting T at high P of Co and Ni appear to mimic their 1 atm value suggesting constant resistivity along the melting boundary. For liquid Fe, resistivity decreases along the melting boundary up to the triple point at 5.2 GPa, and then is nearly constant at higher pressures. The results are compared to prediction by Stacey and Loper (PEPI, 2007).

  13. Hydrogen-alkali exchange between silicate melts and two-phase aqueous mixtures: an experimental investigation

    NASA Astrophysics Data System (ADS)

    Williams, Thomas J.; Candela, Philip A.; Piccoli, Philip M.

    Experiments were performed in the three-phase system high-silica rhyolite melt + low-salinity aqueous vapor + hydrosaline brine, to investigate the exchange equilibria for hydrogen, potassium, and sodium in magmatic-hydrothermal systems at 800 °C and 100 MPa, and 850 °C and 50 MPa. The Kaqm/meltH,Na and Kaqm/meltH,K for hydrogen-sodium exchange between a vapor + brine mixture and a silicate melt are inversely proportional to the total chloride concentration (ΣCl) in the vapor + brine mixture indicating that HCl/NaCl and HCl/KCl are higher in the low-salinity aqueous vapor relative to high-salinity brine. The equilibrium constants for vapor/melt and brine/melt exchange were extracted from regressions of Kaqm/meltH,Na and Kaqm/meltH,K versus the proportion of aqueous vapor relative to brine in the aqueous mixture (Faqv) at P and T, expressed as a function of ΣCl. No significant pressure effect on the empirically determined exchange constants was observed for the range of pressures investigated. Model equilibrium constants are: Kaqv/meltH,Na(vapor/melt)=26(+/-1.3) at 100 MPa (800 °C), and 19( +/- 7.0) at 50 MPa (850 °C) Kaqv/meltH,K=14(+/-1.1) at 100 MPa (800 °C), and 24(+/-12) at 50 MPa (850 °C) Kaqb/meltH,b(brine/melt)= 1.6(+/-0.7) at 100 MPa (800 °C), and 3.9(+/-2.3) at 50 MPa (850 °C) and Kaqb/meltH,K=2.7(+/-1.2) at 100 MPa (800 °C) and 3.8(+/-2.3) at 50 MPa (850 °C). Values for Kaqv/meltH,K and Kaqb/meltH,K were used to calculate KCl/HCl in the aqueous vapor and brine as a function of melt aluminum saturation index (ASI: molar Al2O3/(K2O+Na2O+CaO) and pressure. The model log KCl/HCl values show that a change in melt ASI from peraluminous (ASI = 1.04) to moderately metaluminous (ASI = 1.01) shifts the cooling pathway (in temperature-log KCl/HCl space) of the aqueous vapor toward the andalusite+muscovite+K-feldspar reaction point.

  14. Modeling of Melt Growth During Carbothermal Processing of Lunar Regolith

    NASA Technical Reports Server (NTRS)

    Balasubramaniam, R.; Gokoglu S.; Hegde, U.

    2012-01-01

    The carbothermal processing of lunar regolith has been proposed as a means to produce carbon monoxide and ultimately oxygen to support human exploration of the moon. In this process, gaseous methane is pyrolyzed as it flows over the hot surface of a molten zone of lunar regolith and is converted to carbon and hydrogen. Carbon gets deposited on the surface of the melt, and mixes and reacts with the metal oxides in it to produce carbon monoxide that bubbles out of the melt. Carbon monoxide is further processed in other reactors downstream to ultimately produce oxygen. The amount of oxygen produced crucially depends on the amount of regolith that is molten. In this paper we develop a model of the heat transfer in carbothermal processing. Regolith in a suitable container is heated by a heat flux at its surface such as by continuously shining a beam of solar energy or a laser on it. The regolith on the surface absorbs the energy and its temperature rises until it attains the melting point. The energy from the heat flux is then used for the latent heat necessary to change phase from solid to liquid, after which the temperature continues to rise. Thus a small melt pool appears under the heated zone shortly after the heat flux is turned on. As time progresses, the pool absorbs more heat and supplies the energy required to melt more of the regolith, and the size of the molten zone increases. Ultimately, a steady-state is achieved when the heat flux absorbed by the melt is balanced by radiative losses from the surface. In this paper, we model the melting and the growth of the melt zone with time in a bed of regolith when a portion of its surface is subjected to a constant heat flux. The heat flux is assumed to impinge on a circular area. Our model is based on an axisymmetric three-dimensional variation of the temperature field in the domain. Heat transfer occurs only by conduction, and effects of convective heat transport are assumed negligible. Radiative heat loss from the

  15. Recent Changes in Arctic Sea Ice Melt Onset, Freeze-Up, and Melt Season Length

    NASA Technical Reports Server (NTRS)

    Markus, Thorsten; Stroeve, Julienne C.; Miller, Jeffrey

    2010-01-01

    In order to explore changes and trends in the timing of Arctic sea ice melt onset and freeze-up and therefore melt season length, we developed a method that obtains this information directly from satellite passive microwave data, creating a consistent data set from 1979 through present. We furthermore distinguish between early melt (the first day of the year when melt is detected) and the first day of continuous melt. A similar distinction is made for the freeze-up. Using this method we analyze trends in melt onset and freeze-up for 10 different Arctic regions. In all regions except for the Sea of Okhotsk, which shows a very slight and statistically insignificant positive trend (O.4 days/decade), trends in melt onset are negative, i.e. towards earlier melt. The trends range from -1.0day/decade for the Bering Sea to -7.3 days/decade for the East Greenland Sea. Except for the Sea of Okhotsk all areas also show a trend towards later autumn freeze onset. The Chukchi/Beaufort Seas and Laptev/East Siberian Seas observe the strongest trends with 7 days/decade. For the entire Arctic, the melt season length has increased by about 20 days over the last 30 years. Largest trends of over 1O days/decade are seen for Hudson Bay, the East Greenland Sea the Laptev/East Siberian Seas, and the Chukchi/Beaufort Seas. Those trends are statistically significant a1 the 99% level.

  16. Deformation, static recrystallization, and reactive melt transport in shallow subcontinental mantle xenoliths (Tok Cenozoic volcanic field, SE Siberia)

    NASA Astrophysics Data System (ADS)

    Tommasi, Andréa; Vauchez, Alain; Ionov, Dmitri A.

    2008-07-01

    Partial melting and reactive melt transport may change the composition, microstructures, and physical properties of mantle rocks. Here we explore the relations between deformation and reactive melt transport through detailed microstructural analysis and crystallographic orientation measurements in spinel peridotite xenoliths that sample the shallow lithospheric mantle beneath the southeastern rim of the Siberian craton. These xenoliths have coarse-grained, annealed microstructures and show petrographic and chemical evidence for variable degrees of reaction with silicate melts and fluids, notably Fe-enrichment and crystallization of metasomatic clinopyroxene (cpx). Olivine crystal preferred orientations (CPO) range from strong to weak. [010]-fiber patterns, characterized by a point concentration of [010] normal to the foliation and by dispersion of [100] in the foliation plane with a weak maximum parallel to the lineation, predominate relative to the [100]-fiber patterns usually observed in lithospheric mantle xenoliths and peridotite massifs. Variations in olivine CPO patterns or intensity are not correlated with modal and chemical compositions. This, together with the analysis of microstructures, suggests that reactive melt percolation postdated both deformation and static recrystallization. Preferential crystallization of metasomatic cpx along (010) olivine grain boundaries points to an influence of the preexisting deformation fabrics on melt transport, with higher permeability along the foliation. Similarity between orthopyroxene (opx) and cpx CPO suggests that cpx orientations may be inherited from those of opx during melt-rock reaction. As observed in previous studies, reactive melt transport does not weaken olivine CPO and seismic anisotropy in the upper mantle, except in melt accumulation domains. In contrast, recovery and selective grain growth during static recrystallization may lead to development of [010]-fiber olivine CPO and, if foliations are

  17. Forecasting Error Calculation with Mean Absolute Deviation and Mean Absolute Percentage Error

    NASA Astrophysics Data System (ADS)

    Khair, Ummul; Fahmi, Hasanul; Hakim, Sarudin Al; Rahim, Robbi

    2017-12-01

    Prediction using a forecasting method is one of the most important things for an organization, the selection of appropriate forecasting methods is also important but the percentage error of a method is more important in order for decision makers to adopt the right culture, the use of the Mean Absolute Deviation and Mean Absolute Percentage Error to calculate the percentage of mistakes in the least square method resulted in a percentage of 9.77% and it was decided that the least square method be worked for time series and trend data.

  18. Determination of calcium carbonate and sodium carbonate melting curves up to Earth's transition zone pressures with implications for the deep carbon cycle

    NASA Astrophysics Data System (ADS)

    Li, Zeyu; Li, Jie; Lange, Rebecca; Liu, Jiachao; Militzer, Burkhard

    2017-01-01

    Melting of carbonated eclogite or peridotite in the mantle influences the Earth's deep volatile cycles and bears on the long-term evolution of the atmosphere. Existing data on the melting curves of calcium carbonate (CaCO3) and sodium carbonate (Na2CO3) are limited to 7 GPa and therefore do not allow a full understanding of carbon storage and cycling in deep Earth. We determined the melting curves of CaCO3 and Na2CO3 to the pressures of Earth's transition zone using a multi-anvil apparatus. Melting was detected in situ by monitoring a steep and large increase in ionic conductivity, or inferred from sunken platinum markers in recovered samples. The melting point of CaCO3 rises from 1870 K at 3 GPa to ∼2000 K at 6 GPa and then stays within 50 K of 2000 K between 6 and 21 GPa. In contrast, the melting point of Na2CO3 increases continuously from ∼1123 K at 3 GPa to ∼1950 K at 17 GPa. A pre-melting peak in the alternating current through solid CaCO3 is attributed to the transition from aragonite to calcite V. Accordingly the calcite V-aragonite-liquid invariant point is placed at 13 ± 1 GPa and 1970 ± 40 K, with the Clapeyron slope of the calcite V to aragonite transition constrained at ∼70 K/GPa. The experiments on CaCO3 suggest a slight decrease in the melting temperature from 8 to 13 GPa, followed by a slight increase from 14 to 21 GPa. The negative melting slope is consistent with the prediction from our ab initio simulations that the liquid may be more compressible and become denser than calcite V at sufficiently high pressure. The positive melting slope at higher pressures is supported by the ab initio prediction that aragonite is denser than the liquid at pressures up to 30 GPa. At transition zone pressures the melting points of CaCO3 are comparable to that of Na2CO3 but nearly 400 K and 500 K lower than that of MgCO3. The fusible nature of compressed CaCO3 may be partially responsible for the majority of carbonatitic melts found on Earth's surface

  19. Partial melting of metagreywackes, Part II. Compositions of minerals and melts

    NASA Astrophysics Data System (ADS)

    Montel, Jean-Marc; Vielzeuf, Daniel

    A series of experiments on the fluid-absent melting of a quartz-rich aluminous metagreywacke has been carried out. In this paper, we report the chemical composition of the phases present in the experimental charges as determined by electron microprobe. This analytical work includes biotite, plagioclase, orthopyroxene, garnet, cordierite, hercynite, staurolite, gedrite, oxide, and glass, over the range 100-1000MPa, 780-1025°C. Biotites are Na- and Mg-rich, with Ti contents increasing with temperature. The compositions of plagioclase range from An17 to An35, with a significant orthoclase component, and are always different from the starting minerals. At high temperature, plagioclase crystals correspond to ternary feldspars with Or contents in the range 11-20 mol%. Garnets are almandine pyrope grossular spessartine solid solutions, with a regular and significant increase of the grossular content with pressure. All glasses are silicic (SiO2=67.6-74.4 wt%), peraluminous, and leucocratic (FeO+MgO=0.9-2.9 wt%), with a bulk composition close to that of peraluminous leucogranites, even for degrees of melting as high as 60 vol.%. With increasing pressure, SiO2 contents decrease while K2O increases. At any pressure, the melt compositions are more potassic than the water-saturated granitic minima. The H2O contents estimated by mass balance are in the range 2.5-5.6 wt%. These values are higher than those predicted by thermodynamic models. Modal compositions were estimated by mass balance calculations and by image processing of the SEM photographs. The positions of the 20 to 70% isotects (curves of equal proportion of melt) have been located in the pressure-temperature space between 100MPa and 1000MPa. With increasing pressure, the isotects shift toward lower temperature between 100 and 200MPa, then bend back toward higher temperature. The melting interval increases with pressure; the difference in temperature between the 20% and the 70% isotects is 40°C at 100MPa, and 150

  20. Channelized Melting Drives Thinning Under a Rapidly Melting Antarctic Ice Shelf

    NASA Astrophysics Data System (ADS)

    Gourmelen, Noel; Goldberg, Dan N.; Snow, Kate; Henley, Sian F.; Bingham, Robert G.; Kimura, Satoshi; Hogg, Anna E.; Shepherd, Andrew; Mouginot, Jeremie; Lenaerts, Jan T. M.; Ligtenberg, Stefan R. M.; van de Berg, Willem Jan

    2017-10-01

    Ice shelves play a vital role in regulating loss of grounded ice and in supplying freshwater to coastal seas. However, melt variability within ice shelves is poorly constrained and may be instrumental in driving ice shelf imbalance and collapse. High-resolution altimetry measurements from 2010 to 2016 show that Dotson Ice Shelf (DIS), West Antarctica, thins in response to basal melting focused along a single 5 km-wide and 60 km-long channel extending from the ice shelf's grounding zone to its calving front. If focused thinning continues at present rates, the channel will melt through, and the ice shelf collapse, within 40-50 years, almost two centuries before collapse is projected from the average thinning rate. Our findings provide evidence of basal melt-driven sub-ice shelf channel formation and its potential for accelerating the weakening of ice shelves.

  1. The melting points of MgO up to 4 TPa predicted based on ab initio thermodynamic integration molecular dynamics

    NASA Astrophysics Data System (ADS)

    Taniuchi, Takashi; Tsuchiya, Taku

    2018-03-01

    The melting curve of MgO is extended up to 4 TPa, corresponding to the Jovian core pressure, based on the one-step thermodynamic integration method implemented on ab initio molecular dynamics. The calculated melting temperatures are 3100 and 16 000 K at 0 and 500 GPa, respectively, which are consistent with previous experimental results, and 20 600 K at 3900 GPa, which is inconsistent with a recent experimental extrapolation, which implies the molten Jovian core. A quite small Clapeyron slope (dT/dP ) of 0.0+/- 0.5 is found at 3900 GPa due to comparable densities of the liquid and B2 phases under extreme compression. The Mg-O coordination number in the liquid phase is saturated at around 7.5 above 1 TPa and remains smaller than that in the B2 phase (8) even at 4 TPa, suggesting no density crossover between liquid and crystal and thus no further denser crystalline phases. Dynamical properties (atomic diffusivity and viscosity) are also investigated along the melting curve to understand these behaviors in greater detail.

  2. Diffusive loss of argon in response to melt vein formation in polygenetic impact melt breccias

    NASA Astrophysics Data System (ADS)

    Mercer, Cameron M.; Hodges, Kip V.

    2017-08-01

    Many planetary surfaces in the solar system have experienced prolonged bombardment. With each impact, new rocks can be assembled that incorporate freshly generated impact melts with fragments of older rocks. Some breccias can become polygenetic, containing multiple generations of impact melt products, and can potentially provide important insights into the extensive bombardment history of a region. However, the amount of chronological information that can be extracted from such samples depends on how well the mineral isotopic systems of geochronometers can preserve the ages of individual melt generations without being disturbed by younger events. We model the thermal evolution of impact melt veins and the resulting loss of Ar from K-bearing phases common in impact melt breccias to assess the potential for preserving the 40Ar/39Ar ages of individual melt generations. Our model results demonstrate that millimeter-scale, clast-free melt veins cause significant heating of adjacent host rock minerals and can cause detectable Ar loss in contact zones that are generally thinner than, and at most about the same thickness as, the vein width. The incorporation of cold clasts in melt veins reduces the magnitudes of heating and Ar loss in the host rocks, and Ar loss can be virtually undetectable for sufficiently clast-rich veins. Quantitative evidence of the timing of impacts, as measured with the 40Ar/39Ar method, can be preserved in polygenetic impact melt breccias, particularly for those containing millimeter-scale bodies of clast-bearing melt products.

  3. Evolutions of lamellar structure during melting and solidification of Fe9577 nanoparticle from molecular dynamics simulations

    NASA Astrophysics Data System (ADS)

    Wu, Yongquan; Shen, Tong; Lu, Xionggang

    2013-03-01

    A structural evolution during solidification and melting processes of nanoparticle Fe9577 was investigated from MD simulations. A perfect lamellar structure, consisting alternately of fcc and hcp layers, was obtained from solidification process. A structural heredity of early embryo is proposed to explain the structural preference of solidification. Defects were found inside the solid core and play the same role as surface premelting on melting. hcp was found more stable than fcc in high temperature. The difference between melting and solidification points can be deduced coming fully from the overcoming of thermodynamic energy barrier, instead of kinetic delay of structural relaxation.

  4. Partial melting of lower oceanic crust gabbro: Constraints from poikilitic clinopyroxene primocrysts

    NASA Astrophysics Data System (ADS)

    Leuthold, Julien; Lissenberg, C. Johan; O'Driscoll, Brian; Karakas, Ozge; Falloon, Trevor; Klimentyeva, Dina N.; Ulmer, Peter

    2018-03-01

    Successive magma batches underplate, ascend, stall and erupt along spreading ridges, building the oceanic crust. It is therefore important to understand the processes and conditions under which magma differentiates at mid ocean ridges. Although fractional crystallization is considered to be the dominant mechanism for magma differentiation, open-system igneous complexes also experience Melting-Assimilation-Storage-Hybridization (MASH, Hildreth and Moorbath, 1988) processes. Here, we examine crystal-scale records of partial melting in lower crustal gabbroic cumulates from the slow-spreading Atlantic oceanic ridge (Kane Megamullion; collected with Jason ROV) and the fast-spreading East Pacific Rise (Hess Deep; IODP expedition 345). Clinopyroxene oikocrysts in these gabbros preserve marked intra-crystal geochemical variations that point to crystallization-dissolution episodes of the gabbro eutectic assemblage. Kane Megamullion and Hess Deep clinopyroxene core1 primocrysts and their plagioclase inclusions indicate crystallization from high temperature basalt (>1160 and >1200°C, respectively), close to clinopyroxene saturation temperature (<50% and <25% crystallization). Step-like compatible Cr (and co-varying Al) and incompatible Ti, Zr, Y and rare earth elements (REE) decrease from anhedral core1 to overgrown core2, while Mg# and Sr/Sr* ratios increase. We show that partial resorption textures and geochemical zoning result from partial melting of REE-poor lower oceanic crust gabbroic cumulate (protolith) following intrusion by hot primitive mantle-derived melt, and subsequent overgrowth crystallization (refertilization) from a hybrid melt. In addition, towards the outer rims of crystals, Ti, Zr, Y and the REE strongly increase and Al, Cr, Mg#, Eu/Eu* and Sr/Sr* decrease, suggesting crystallization either from late-stage percolating relatively differentiated melt or from in situ trapped melt. Intrusion of primitive hot reactive melt and percolation of interstitial

  5. Fault rheology beyond frictional melting.

    PubMed

    Lavallée, Yan; Hirose, Takehiro; Kendrick, Jackie E; Hess, Kai-Uwe; Dingwell, Donald B

    2015-07-28

    During earthquakes, comminution and frictional heating both contribute to the dissipation of stored energy. With sufficient dissipative heating, melting processes can ensue, yielding the production of frictional melts or "pseudotachylytes." It is commonly assumed that the Newtonian viscosities of such melts control subsequent fault slip resistance. Rock melts, however, are viscoelastic bodies, and, at high strain rates, they exhibit evidence of a glass transition. Here, we present the results of high-velocity friction experiments on a well-characterized melt that demonstrate how slip in melt-bearing faults can be governed by brittle fragmentation phenomena encountered at the glass transition. Slip analysis using models that incorporate viscoelastic responses indicates that even in the presence of melt, slip persists in the solid state until sufficient heat is generated to reduce the viscosity and allow remobilization in the liquid state. Where a rock is present next to the melt, we note that wear of the crystalline wall rock by liquid fragmentation and agglutination also contributes to the brittle component of these experimentally generated pseudotachylytes. We conclude that in the case of pseudotachylyte generation during an earthquake, slip even beyond the onset of frictional melting is not controlled merely by viscosity but rather by an interplay of viscoelastic forces around the glass transition, which involves a response in the brittle/solid regime of these rock melts. We warn of the inadequacy of simple Newtonian viscous analyses and call for the application of more realistic rheological interpretation of pseudotachylyte-bearing fault systems in the evaluation and prediction of their slip dynamics.

  6. In situ study on atomic mechanism of melting and freezing of single bismuth nanoparticles

    NASA Astrophysics Data System (ADS)

    Li, Yingxuan; Zang, Ling; Jacobs, Daniel L.; Zhao, Jie; Yue, Xiu; Wang, Chuanyi

    2017-02-01

    Experimental study of the atomic mechanism in melting and freezing processes remains a formidable challenge. We report herein on a unique material system that allows for in situ growth of bismuth nanoparticles from the precursor compound SrBi2Ta2O9 under an electron beam within a high-resolution transmission electron microscope (HRTEM). Simultaneously, the melting and freezing processes within the nanoparticles are triggered and imaged in real time by the HRTEM. The images show atomic-scale evidence for point defect induced melting, and a freezing mechanism mediated by crystallization of an intermediate ordered liquid. During the melting and freezing, the formation of nucleation precursors, nucleation and growth, and the relaxation of the system, are directly observed. Based on these observations, an interaction-relaxation model is developed towards understanding the microscopic mechanism of the phase transitions, highlighting the importance of cooperative multiscale processes.

  7. In situ study on atomic mechanism of melting and freezing of single bismuth nanoparticles.

    PubMed

    Li, Yingxuan; Zang, Ling; Jacobs, Daniel L; Zhao, Jie; Yue, Xiu; Wang, Chuanyi

    2017-02-13

    Experimental study of the atomic mechanism in melting and freezing processes remains a formidable challenge. We report herein on a unique material system that allows for in situ growth of bismuth nanoparticles from the precursor compound SrBi 2 Ta 2 O 9 under an electron beam within a high-resolution transmission electron microscope (HRTEM). Simultaneously, the melting and freezing processes within the nanoparticles are triggered and imaged in real time by the HRTEM. The images show atomic-scale evidence for point defect induced melting, and a freezing mechanism mediated by crystallization of an intermediate ordered liquid. During the melting and freezing, the formation of nucleation precursors, nucleation and growth, and the relaxation of the system, are directly observed. Based on these observations, an interaction-relaxation model is developed towards understanding the microscopic mechanism of the phase transitions, highlighting the importance of cooperative multiscale processes.

  8. In situ study on atomic mechanism of melting and freezing of single bismuth nanoparticles

    PubMed Central

    Li, Yingxuan; Zang, Ling; Jacobs, Daniel L.; Zhao, Jie; Yue, Xiu; Wang, Chuanyi

    2017-01-01

    Experimental study of the atomic mechanism in melting and freezing processes remains a formidable challenge. We report herein on a unique material system that allows for in situ growth of bismuth nanoparticles from the precursor compound SrBi2Ta2O9 under an electron beam within a high-resolution transmission electron microscope (HRTEM). Simultaneously, the melting and freezing processes within the nanoparticles are triggered and imaged in real time by the HRTEM. The images show atomic-scale evidence for point defect induced melting, and a freezing mechanism mediated by crystallization of an intermediate ordered liquid. During the melting and freezing, the formation of nucleation precursors, nucleation and growth, and the relaxation of the system, are directly observed. Based on these observations, an interaction–relaxation model is developed towards understanding the microscopic mechanism of the phase transitions, highlighting the importance of cooperative multiscale processes. PMID:28194017

  9. 20 CFR 404.1205 - Absolute coverage groups.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... 20 Employees' Benefits 2 2014-04-01 2014-04-01 false Absolute coverage groups. 404.1205 Section... INSURANCE (1950- ) Coverage of Employees of State and Local Governments What Groups of Employees May Be Covered § 404.1205 Absolute coverage groups. (a) General. An absolute coverage group is a permanent...

  10. 20 CFR 404.1205 - Absolute coverage groups.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... 20 Employees' Benefits 2 2013-04-01 2013-04-01 false Absolute coverage groups. 404.1205 Section... INSURANCE (1950- ) Coverage of Employees of State and Local Governments What Groups of Employees May Be Covered § 404.1205 Absolute coverage groups. (a) General. An absolute coverage group is a permanent...

  11. 20 CFR 404.1205 - Absolute coverage groups.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... 20 Employees' Benefits 2 2012-04-01 2012-04-01 false Absolute coverage groups. 404.1205 Section... INSURANCE (1950- ) Coverage of Employees of State and Local Governments What Groups of Employees May Be Covered § 404.1205 Absolute coverage groups. (a) General. An absolute coverage group is a permanent...

  12. Melt inclusions: Chapter 6

    USGS Publications Warehouse

    ,; Lowenstern, J. B.

    2014-01-01

    Melt inclusions are small droplets of silicate melt that are trapped in minerals during their growth in a magma. Once formed, they commonly retain much of their initial composition (with some exceptions) unless they are re-opened at some later stage. Melt inclusions thus offer several key advantages over whole rock samples: (i) they record pristine concentrations of volatiles and metals that are usually lost during magma solidification and degassing, (ii) they are snapshots in time whereas whole rocks are the time-integrated end products, thus allowing a more detailed, time-resolved view into magmatic processes (iii) they are largely unaffected by subsolidus alteration. Due to these characteristics, melt inclusions are an ideal tool to study the evolution of mineralized magma systems. This chapter first discusses general aspects of melt inclusions formation and methods for their investigation, before reviewing studies performed on mineralized magma systems.

  13. July 2012 Greenland melt extent enhanced by low-level liquid clouds.

    PubMed

    Bennartz, R; Shupe, M D; Turner, D D; Walden, V P; Steffen, K; Cox, C J; Kulie, M S; Miller, N B; Pettersen, C

    2013-04-04

    Melting of the world's major ice sheets can affect human and environmental conditions by contributing to sea-level rise. In July 2012, an historically rare period of extended surface melting was observed across almost the entire Greenland ice sheet, raising questions about the frequency and spatial extent of such events. Here we show that low-level clouds consisting of liquid water droplets ('liquid clouds'), via their radiative effects, played a key part in this melt event by increasing near-surface temperatures. We used a suite of surface-based observations, remote sensing data, and a surface energy-balance model. At the critical surface melt time, the clouds were optically thick enough and low enough to enhance the downwelling infrared flux at the surface. At the same time they were optically thin enough to allow sufficient solar radiation to penetrate through them and raise surface temperatures above the melting point. Outside this narrow range in cloud optical thickness, the radiative contribution to the surface energy budget would have been diminished, and the spatial extent of this melting event would have been smaller. We further show that these thin, low-level liquid clouds occur frequently, both over Greenland and across the Arctic, being present around 30-50 per cent of the time. Our results may help to explain the difficulties that global climate models have in simulating the Arctic surface energy budget, particularly as models tend to under-predict the formation of optically thin liquid clouds at supercooled temperatures--a process potentially necessary to account fully for temperature feedbacks in a warming Arctic climate.

  14. Greater-than-bulk melting temperatures explained: Gallium melts Gangnam style

    NASA Astrophysics Data System (ADS)

    Gaston, Nicola; Steenbergen, Krista

    2014-03-01

    The experimental discovery of superheating in gallium clusters contradicted the clear and well-demonstrated paradigm that the melting temperature of a particle should decrease with its size. However the extremely sensitive dependence of melting temperature on size also goes to the heart of cluster science, and the interplay between the effects of electronic and geometric structure. We have performed extensive first-principles molecular dynamics calculations, incorporating parallel tempering for an efficient exploration of configurational phase space. This is necessary, due to the complicated energy landscape of gallium. In the nanoparticles, melting is preceded by a transitions between phases. A structural feature, referred to here as the Gangnam motif, is found to increase with the latent heat and appears throughout the observed phase changes of this curious metal. We will present our detailed analysis of the solid-state isomers, performed using extensive statistical sampling of the trajectory data for the assignment of cluster structures to known phases of gallium. Finally, we explain the greater-than-bulk melting through analysis of the factors that stabilise the liquid structures.

  15. Modeling of submarine melting in Petermann Fjord, Northwestern Greenland using an ocean general circulation model

    NASA Astrophysics Data System (ADS)

    Cai, C.; Rignot, E. J.; Xu, Y.; An, L.

    2013-12-01

    Basal melting of the floating tongue of Petermann Glacier, in northwestern Greenland is by far the largest process of mass ablation. Melting of the floating tongue is controlled by the buoyancy of the melt water plume, the pressure-dependence of the melting point of sea ice, and the mixing of warm subsurface water with fresh buoyant subglacial discharge. In prior simulations of this melting process, the role of subglacial discharge has been neglected because in similar configurations (floating ice shelves) in the Antarctic, surface runoff is negligible; this is however not true in Greenland. Here, we use the Mass Institute of Technology general circulation model (MITgcm) at a high spatial resolution (10 m x 10 m) to simulate the melting process of the ice shelf in 2-D. the model is constrained by ice shelf bathymetry and ice thickness from NASA Operation IceBridge, ocean temperature/salinity data from Johnson et al. (2011), and subglacial discharge estimated from output products of the Regional Atmospheric Climate Model (RACMO). We compare the results obtained in winter (no runoff) with summer, and the sensitivity of the results to thermal forcing from the ocean, and to the magnitude of subglacial runoff. We conclude on the impact of the ocean and surface melting on the melting regime of the floating ice tongue of Petermann. This work is performed under a contract with NASA Cryosphere Program.

  16. Variable Basal Melt Rates of Antarctic Peninsula Ice Shelves, 1994-2016

    NASA Astrophysics Data System (ADS)

    Adusumilli, Susheel; Fricker, Helen Amanda; Siegfried, Matthew R.; Padman, Laurie; Paolo, Fernando S.; Ligtenberg, Stefan R. M.

    2018-05-01

    We have constructed 23-year (1994-2016) time series of Antarctic Peninsula (AP) ice-shelf height change using data from four satellite radar altimeters (ERS-1, ERS-2, Envisat, and CryoSat-2). Combining these time series with output from atmospheric and firn models, we partitioned the total height-change signal into contributions from varying surface mass balance, firn state, ice dynamics, and basal mass balance. On the Bellingshausen coast of the AP, ice shelves lost 84 ± 34 Gt a-1 to basal melting, compared to contributions of 50 ± 7 Gt a-1 from surface mass balance and ice dynamics. Net basal melting on the Weddell coast was 51 ± 71 Gt a-1. Recent changes in ice-shelf height include increases over major AP ice shelves driven by changes in firn state. Basal melt rates near Bawden Ice Rise, a major pinning point of Larsen C Ice Shelf, showed large increases, potentially leading to substantial loss of buttressing if sustained.

  17. Viscosity of carbonate-rich melts under different oxygen fugacity conditions

    NASA Astrophysics Data System (ADS)

    Di Genova, Danilo; Hess, Kai-Uwe; Cimarelli, Corrado; Dingwell, Donald B.

    2015-04-01

    ° C. Measured values range between ~2 and 20 mPa sec. The results point out that the viscosity of synthetic samples is inversely related to the cations radius, being Li2CO3 melt the more viscous. Viscosity measurements on natural samples (carbonatitic lava from Lengai volcano, Tanzania), reveal a higher viscosity (~1000 mPa s) and a dramatic higher activation energy than the synthetic samples. Our results have been compared with literature data in order to determine the effect of chemical composition and oxygen fugacity conditions on the liquid viscosity of carbonatitic melts.

  18. Modeling the melting of multicomponent systems: the case of MgSiO3 perovskite under lower mantle conditions

    PubMed Central

    Di Paola, Cono; P. Brodholt, John

    2016-01-01

    Knowledge of the melting properties of materials, especially at extreme pressure conditions, represents a long-standing scientific challenge. For instance, there is currently considerable uncertainty over the melting temperatures of the high-pressure mantle mineral, bridgmanite (MgSiO3-perovskite), with current estimates of the melting T at the base of the mantle ranging from 4800 K to 8000 K. The difficulty with experimentally measuring high pressure melting temperatures has motivated the use of ab initio methods, however, melting is a complex multi-scale phenomenon and the timescale for melting can be prohibitively long. Here we show that a combination of empirical and ab-initio molecular dynamics calculations can be used to successfully predict the melting point of multicomponent systems, such as MgSiO3 perovskite. We predict the correct low-pressure melting T, and at high-pressure we show that the melting temperature is only 5000 K at 120 GPa, a value lower than nearly all previous estimates. In addition, we believe that this strategy is of general applicability and therefore suitable for any system under physical conditions where simpler models fail. PMID:27444854

  19. Experiments on transient melting of tungsten by ELMs in ASDEX Upgrade

    NASA Astrophysics Data System (ADS)

    Krieger, K.; Balden, M.; Coenen, J. W.; Laggner, F.; Matthews, G. F.; Nille, D.; Rohde, V.; Sieglin, B.; Giannone, L.; Göths, B.; Herrmann, A.; de Marne, P.; Pitts, R. A.; Potzel, S.; Vondracek, P.; ASDEX-Upgrade Team; EUROfusion MST1 Team

    2018-02-01

    Repetitive melting of tungsten by power transients originating from edge localized modes (ELMs) has been studied in ASDEX Upgrade. Tungsten samples were exposed to H-mode discharges at the outer divertor target plate using the divertor manipulator II (DIM-II) system (Herrmann et al 2015 Fusion Eng. Des. 98-9 1496-9). Designed as near replicas of the geometries used also in separate experiments on the JET tokamak (Coenen et al 2015 J. Nucl. Mater. 463 78-84 Coenen et al 2015 Nucl. Fusion 55 023010; Matthews et al 2016 Phys. Scr. T167 7), the samples featured a misaligned leading edge and a sloped ridge respectively. Both structures protrude above the default target plate surface thus receiving an increased fraction of the parallel power flux. Transient melting by ELMs was induced by moving the outer strike point to the sample location. The temporal evolution of the measured current flow from the samples to vessel potential confirmed transient melting. Current magnitude and dependency from surface temperature provided strong evidence for thermionic electron emission as main origin of the replacement current driving the melt motion. The different melt patterns observed after exposures at the two sample geometries support the thermionic electron emission model used in the MEMOS melt motion code, which assumes a strong decrease of the thermionic net current at shallow magnetic field to surface angles (Pitts et al 2017 Nucl. Mater. Energy 12 60-74). Post exposure ex situ analysis of the retrieved samples show recrystallization of tungsten at the exposed surface areas to a depth of up to several mm. The melt layer transport to less exposed surface areas leads to ratcheting pile up of re-solidified debris with zonal growth extending from the already enlarged grains at the surface.

  20. Relative and Absolute Error Control in a Finite-Difference Method Solution of Poisson's Equation

    ERIC Educational Resources Information Center

    Prentice, J. S. C.

    2012-01-01

    An algorithm for error control (absolute and relative) in the five-point finite-difference method applied to Poisson's equation is described. The algorithm is based on discretization of the domain of the problem by means of three rectilinear grids, each of different resolution. We discuss some hardware limitations associated with the algorithm,…

  1. Variance computations for functional of absolute risk estimates.

    PubMed

    Pfeiffer, R M; Petracci, E

    2011-07-01

    We present a simple influence function based approach to compute the variances of estimates of absolute risk and functions of absolute risk. We apply this approach to criteria that assess the impact of changes in the risk factor distribution on absolute risk for an individual and at the population level. As an illustration we use an absolute risk prediction model for breast cancer that includes modifiable risk factors in addition to standard breast cancer risk factors. Influence function based variance estimates for absolute risk and the criteria are compared to bootstrap variance estimates.

  2. Variance computations for functional of absolute risk estimates

    PubMed Central

    Pfeiffer, R.M.; Petracci, E.

    2011-01-01

    We present a simple influence function based approach to compute the variances of estimates of absolute risk and functions of absolute risk. We apply this approach to criteria that assess the impact of changes in the risk factor distribution on absolute risk for an individual and at the population level. As an illustration we use an absolute risk prediction model for breast cancer that includes modifiable risk factors in addition to standard breast cancer risk factors. Influence function based variance estimates for absolute risk and the criteria are compared to bootstrap variance estimates. PMID:21643476

  3. Bilateral Comparison of Mercury and Gallium Fixed-Point Cells Using Standard Platinum Resistance Thermometer

    NASA Astrophysics Data System (ADS)

    Bojkovski, J.; Veliki, T.; Zvizdić, D.; Drnovšek, J.

    2011-08-01

    The objective of project EURAMET 1127 (Bilateral comparison of triple point of mercury and melting point of gallium) in the field of thermometry is to compare realization of a triple point of mercury (-38.8344 °C) and melting point of gallium (29.7646 °C) between the Slovenian national laboratory MIRS/UL-FE/LMK and the Croatian national laboratory HMI/FSB-LPM using a long-stem 25 Ω standard platinum resistance thermometer (SPRT). MIRS/UL/FE-LMK participated in a number of intercomparisons on the level of EURAMET. On the other hand, the HMI/LPM-FSB laboratory recently acquired new fixed-point cells which had to be evaluated in the process of intercomparisons. A quartz-sheathed SPRT has been selected and calibrated at HMI/LPM-FSB at the triple point of mercury, the melting point of gallium, and the water triple point. A second set of measurements was made at MIRS/UL/FE-LMK. After its return, the SPRT was again recalibrated at HMI/LPM-FSB. In the comparison, the W value of the SPRT has been used. Results of the bilateral intercomparison confirmed that the new gallium cell of the HMI/LPM-FSB has a value that is within uncertainty limits of both laboratories that participated in the exercise, while the mercury cell experienced problems. After further research, a small leakage in the mercury fixed-point cell has been found.

  4. Volatiles in melt inclusions from Icelandic magmas

    NASA Astrophysics Data System (ADS)

    Nichols, A. R.; Wysoczanski, R. J.; Carroll, M. R.

    2006-12-01

    Melt inclusions hosted in olivine crystals from the glassy rims of subglacially erupted pillow basalts on Iceland have been analysed for volatiles, major elements and trace elements. Volatile measurements were undertaken using Fourier-Transform InfraRed spectroscopy utilising a novel technique which enables unexposed and much smaller inclusions than were previously possible to be analysed. Major elements were measured using electron microprobe and trace elements by laser ablation-inductively coupled plasma-mass spectrometry. Comparison between initial results from the inclusions and the compositions of the bulk glasses show that the inclusions are less evolved and contain more H2O at the same MgO content. In addition many of the inclusions have higher H2O/K2O than their bulk glasses and some even contain CO2 (up to 629 ppm), which is below detection limits in the bulk glasses. This indicates that these inclusions are less affected by degassing. Two inclusions have extreme H2O/K2O (> 10), possibly suggesting that they have assimilated hydrous crustal material. The volatile and major element compositions of the bulk glasses have been used to suggest that the Iceland mantle plume is wet. However, trace element measurements show that enriched Iceland magmas have lower H2O/Ce than the adjacent Reykjanes Ridge. This could reflect syn-eruptive degassing or mixing between undegassed and recycled degassed magmas. Alternatively Iceland magmas could be derived from the EM (enriched mantle) component, which is believed to represent recycled oceanic crust. It is suggested that this material is efficiently dehydrated during the subduction process, so even though it has an enriched character, H2O is relatively depleted. As a result, EM melts have higher absolute H2O contents than mid- ocean ridge basalts (MORB), but lower H2O/Ce (or other H2O-incompatible element ratios), which has led to EM plumes being termed `dampspots'. The inclusion data will be presented in this context

  5. Evolution of melt-vapor surface tension in silicic volcanic systems: Experiments with hydrous melts

    USGS Publications Warehouse

    Mangan, M.; Sisson, T.

    2005-01-01

    We evaluate the melt-vapor surface tension (??) of natural, water-saturated dacite melt at 200 MPa, 950-1055??C, and 4.8-5.7 wt % H2O. We experimentally determine the critical supersaturation pressure for bubble nucleation as a function of dissolved water and then solve for ?? at those conditions using classical nucleation theory. The solutions obtained give dacite melt-vapor surface tensions that vary inversely with dissolved water from 0.042 (??0.003) J m-2 at 5.7 wt% H2O to 0.060 (??0.007) J m-2 at 5.2 wt% H2O to 0.073 (??0.003) J m-2 at 4.8 wt% H2O. Combining our dacite results with data from published hydrous haplogranite and high-silica rhyolite experiments reveals that melt-vapor surface tension also varies inversely with the concentration of mafic melt components (e.g., CaO, FeOtotal, MgO). We develop a thermodynamic context for these observations in which melt-vapor surface tension is represented by a balance of work terms controlled by melt structure. Overall, our results suggest that cooling, crystallization, and vapor exsolution cause systematic changes in ?? that should be considered in dynamic modeling of magmatic processes.

  6. Temperature and composition dependencies of trace element partitioning - Olivine/melt and low-Ca pyroxene/melt

    NASA Technical Reports Server (NTRS)

    Colson, R. O.; Mckay, G. A.; Taylor, L. A.

    1988-01-01

    This paper presents a systematic thermodynamic analysis of the effects of temperature and composition on olivine/melt and low-Ca pyroxene/melt partitioning. Experiments were conducted in several synthetic basalts with a wide range of Fe/Mg, determining partition coefficients for Eu, Ca, Mn, Fe, Ni, Sm, Cd, Y, Yb, Sc, Al, Zr, and Ti and modeling accurately the changes in free energy for trace element exchange between crystal and melt as functions of the trace element size and charge. On the basis of this model, partition coefficients for olivine/melt and low-Ca pyroxene/melt can be predicted for a wide range of elements over a variety of basaltic bulk compositions and temperatures. Moreover, variations in partition coeffeicients during crystallization or melting can be modeled on the basis of changes in temperature and major element chemistry.

  7. Biomass Burning and the 2012 Greenland Ice Sheet (GrIS) melt

    NASA Astrophysics Data System (ADS)

    Choi, H. D.; Soja, A. J.; Polashenski, C.; Fairlie, T. D.; Winker, D. M.; Trepte, C. R.

    2017-12-01

    This study is the part of the Sunlight Absorption on the Greenland ice sheet Experiment (SAGE) project investigating the impact of light absorbing impurities (e.g., aerosols) on the Greenland Ice Sheet (GrIS). Satellite observations, [e.g. Oceansat-2 (OS2) and the Moderate-resolution Imaging Spectroradionmeter (MODIS)] discovered an unusually large melt event in July 2012. NASA sensors showed that nearly 98.6% of the GrIS experienced melting at or near surface [Nghiem et al., 2012]. In this study, we question the extent to which biomass burning derived aerosols enhanced melting across the GrIS. Random points [59 total, 13 coincident with snow pit sites and 46 gridded] are selected across the entire extent of the GrIS from April 1st to August 31st 2012, and then the NASA Langley Trajectory Model (LaTM) is used to simulate the transport of potentially smoke-filled air parcels backwards for 5 days form these points, evaluation the back trajectory for coincidence with active fire detections. The trajectory model is initialized for 24-hour sustained injection from each site, and air parcels are released from the surface to 2 km at 200m intervals. With the trajectory model outputs, we are able to identify trajectories that have coincidences with fires. We focus on events in April through July when the GrIS albedo was dramatically decreased. We also utilize Cloud-Aerosol Lidar and Infrared Pathfinder Satellite Observation (CALIPSO) data to verify smoke-aerosol signatures in boreal regions based on the NASA LaTM results. The results of this study will help us better understand the transport of biomass burning plumes and black carbon deposition that could lead to enhanced GrIS melting.

  8. Fabrication of a mini multi-fixed-point cell for the calibration of industrial platinum resistance thermometers

    NASA Astrophysics Data System (ADS)

    Ragay-Enot, Monalisa; Lee, Young Hee; Kim, Yong-Gyoo

    2017-07-01

    A mini multi-fixed-point cell (length 118 mm, diameter 33 mm) containing three materials (In-Zn eutectic (mass fraction 3.8% Zn), Sn and Pb) in a single crucible was designed and fabricated for the easy and economical fixed-point calibration of industrial platinum resistance thermometers (IPRTs) for use in industrial temperature measurements. The melting and freezing behaviors of the metals were investigated and the phase transition temperatures were determined using a commercial dry-block calibrator. Results showed that the melting plateaus are generally easy to realize and are reproducible, flatter and of longer duration. On the other hand, the freezing process is generally difficult, especially for Sn, due to the high supercooling required to initiate freezing. The observed melting temperatures at optimum set conditions were 143.11 °C (In-Zn), 231.70 °C (Sn) and 327.15 °C (Pb) with expanded uncertainties (k  = 2) of 0.12 °C, 0.10 °C and 0.13 °C, respectively. This multi-fixed-point cell can be treated as a sole reference temperature-generating system. Based on the results, the realization of melting points of the mini multi-fixed-point cell can be recommended for the direct calibration of IPRTs in industrial applications without the need for a reference thermometer.

  9. Realization of the Gallium Triple Point at NMIJ/AIST

    NASA Astrophysics Data System (ADS)

    Nakano, T.; Tamura, O.; Sakurai, H.

    2008-02-01

    The triple point of gallium has been realized by a calorimetric method using capsule-type standard platinum resistance thermometers (CSPRTs) and a small glass cell containing about 97 mmol (6.8 g) of gallium with a nominal purity of 99.99999%. The melting curve shows a very flat and relatively linear dependence on 1/ F in the region from 1/ F = 1 to 1/ F = 20 with a narrow width of the melting curve within 0.1 mK. Also, a large gallium triple-point cell was fabricated for the calibration of client-owned CSPRTs. The gallium triple-point cell consists of a PTFE crucible and a PTFE cap with a re-entrant well and a small vent. The PTFE cell contains 780 g of gallium from the same source as used for the small glass cell. The PTFE cell is completely covered by a stainless-steel jacket with a valve to enable evacuation of the cell. The melting curve of the large cell shows a flat plateau that remains within 0.03 mK over 10 days and that is reproducible within 0.05 mK over 8 months. The calibrated value of a CSPRT obtained using the large cell agrees with that obtained using the small glass cell within the uncertainties of the calibrations.

  10. The Role of CO2 on Silica Undersaturated Melt Structure: Implication for Melt Physical Properties

    NASA Astrophysics Data System (ADS)

    Scaillet, B.; Morizet, Y.; Paris, M.; Gaillard, F.

    2012-12-01

    Silica undersaturated melts such as nephelinite and melilitite are very peculiar magmatic materials. Their occurrence on the Earth surface is often associated with carbonatites melts. These low-silica melts can dissolve a large quantity of CO2 issued from mantle fluid metasomatism. However, the melt structure, the way CO2 dissolves into these melts and the effect of different alkalis element are poorly constrained. We present preliminary experimental results on the melt structure of synthetic nephelinite (NBO/T = 1.25) and Ca-melilitite (NBO/T = 2.50) synthesized in the NKCMAS system and equilibrated at high-pressure (200-300 MPa), high-temperature (1250°C) with an excess C-O-H fluid phase. The nephelinite glasses were synthesized with varying K2O / K2O+Na2O (0-10 mol.% K2O) ratio so as to investigate the differential effect of those two cations. All experiments were conducted under oxidizing conditions (ΔNNO+5) resulting in binary fluid phase composition with CO2 and H2O species. The silicate melt structure, CO2 solubility and speciation were investigated using Micro-Raman and Solid State NMR spectroscopies for 13C, 1H, 29Si, 27Al and 23Na nuclei. The replacement of Na by K does not change the nephelinite melt structure for volatile-free sample suggesting that the basicity of these glasses is not dramatically affected by the presence of mixed alkali. Within 5 mol.% K2O, the CO2 solubility (measured in relative to Raman signature of the melt structure) is only slightly affected with an increasing CO2 solubility with increasing K2O content. As a function of pressure, we observe an increase in CO2 solubility consistent with previous studies. The 13C NMR investigation of the CO2 speciation show three different carbonates environments for CO2 in nephelinite melts attributed to non-network carbonates: 1) 170 ppm shift assigned to NBO-carb. Na or K; 2) 169 ppm assigned to NBO-carb. Ca; and 3) 165 ppm assigned to isolated Na+..CO32- carbonates. As K2O is increased into

  11. Absolute Summ

    NASA Astrophysics Data System (ADS)

    Phillips, Alfred, Jr.

    Summ means the entirety of the multiverse. It seems clear, from the inflation theories of A. Guth and others, that the creation of many universes is plausible. We argue that Absolute cosmological ideas, not unlike those of I. Newton, may be consistent with dynamic multiverse creations. As suggested in W. Heisenberg's uncertainty principle, and with the Anthropic Principle defended by S. Hawking, et al., human consciousness, buttressed by findings of neuroscience, may have to be considered in our models. Predictability, as A. Einstein realized with Invariants and General Relativity, may be required for new ideas to be part of physics. We present here a two postulate model geared to an Absolute Summ. The seedbed of this work is part of Akhnaton's philosophy (see S. Freud, Moses and Monotheism). Most important, however, is that the structure of human consciousness, manifest in Kenya's Rift Valley 200,000 years ago as Homo sapiens, who were the culmination of the six million year co-creation process of Hominins and Nature in Africa, allows us to do the physics that we do. .

  12. Thermodynamics of Oligonucleotide Duplex Melting

    ERIC Educational Resources Information Center

    Schreiber-Gosche, Sherrie; Edwards, Robert A.

    2009-01-01

    Melting temperatures of oligonucleotides are useful for a number of molecular biology applications, such as the polymerase chain reaction (PCR). Although melting temperatures are often calculated with simplistic empirical equations, application of thermodynamics provides more accurate melting temperatures and an opportunity for students to apply…

  13. Thermodynamic Model of the Na-Al-Si-O-F Melts

    NASA Astrophysics Data System (ADS)

    Dolejs, D.; Baker, D. R.

    2004-05-01

    -association in both joins. On the other hand, melt depolymerization by fluorine controls depression of silicate liquidi. The present model is useful for modeling the differentiation of peralkaline fluorine-bearing magmas and provides a starting point for predicting halide, carbonate, sulfide or sulfate saturation in natural melts.

  14. First-principles melting of gallium clusters down to nine atoms: structural and electronic contributions to melting.

    PubMed

    Steenbergen, Krista G; Gaston, Nicola

    2013-10-07

    First-principles Born-Oppenheimer molecular dynamics simulations of small gallium clusters, including parallel tempering, probe the distinction between cluster and molecule in the size range of 7-12 atoms. In contrast to the larger sizes, dynamic measures of structural change at finite temperature demonstrate that Ga7 and Ga8 do not melt, suggesting a size limit to melting in gallium exists at 9 atoms. Analysis of electronic structure further supports this size limit, additionally demonstrating that a covalent nature cannot be identified for clusters larger than the gallium dimer. Ga9, Ga10 and Ga11 melt at greater-than-bulk temperatures, with no evident covalent character. As Ga12 represents the first small gallium cluster to melt at a lower-than-bulk temperature, we examine the structural properties of each cluster at finite temperature in order to probe both the origins of greater-than-bulk melting, as well as the significant differences in melting temperatures induced by a single atom addition. Size-sensitive melting temperatures can be explained by both energetic and entropic differences between the solid and liquid phases for each cluster. We show that the lower-than-bulk melting temperature of the 12-atom cluster can be attributed to persistent pair bonding, reminiscent of the pairing observed in α-gallium. This result supports the attribution of greater-than-bulk melting in gallium clusters to the anomalously low melting temperature of the bulk, due to its dimeric structure.

  15. Automatic Control of Silicon Melt Level

    NASA Technical Reports Server (NTRS)

    Duncan, C. S.; Stickel, W. B.

    1982-01-01

    A new circuit, when combined with melt-replenishment system and melt level sensor, offers continuous closed-loop automatic control of melt-level during web growth. Installed on silicon-web furnace, circuit controls melt-level to within 0.1 mm for as long as 8 hours. Circuit affords greater area growth rate and higher web quality, automatic melt-level control also allows semiautomatic growth of web over long periods which can greatly reduce costs.

  16. Dynamic melting of metals in the diamond cell: Clues for melt viscosity?

    NASA Astrophysics Data System (ADS)

    Boehler, R.; Karandikar, A.; Yang, L.

    2011-12-01

    From the observed decreasing mobility of liquid iron at high pressure in the laser-heated diamond cell and the gradual decrease in the shear modulus in shock experiments, one may derive high viscosity in the liquid outer core of the Earth. A possible explanation could be the presence of local structures in the liquid as has been observed for several transition metals. In order to bridge the large gap in the timescales between static and dynamic melting experiments, we have developed new experimental techniques to solve the large discrepancies in the melting curves of transition metals (Fe, W, Ta, Mo) measured statically in the laser-heated diamond cell and in shock experiments. The new methods employ "single-shot" laser heating in order to reduce problems associated with mechanical instabilities and chemical reactions of the samples subjected to several thousand degrees at megabar pressures. For melt detection, both synchrotron X-ray diffraction and Scanning Electron Microscopy (SEM) on recovered samples are used. A third approach is the measurement of latent heat effects associated with melting or freezing. This method employs simultaneous CW and pulse laser heating and monitoring the temperature-time history with fast photomultipliers. Using the SEM recovery method, we measured first melting temperatures of rhenium, which at high pressure may be one of the most refractory materials. From the melt textures of Re, we did not observe a significant pressure dependence of viscosity.

  17. Understanding Melt-Memory of Commercial Polyolefins

    NASA Astrophysics Data System (ADS)

    Alamo, Rufina

    Self-nucleation (SN) or controlling self-generated seeds in a polymer melt is an avenue to increase the rate of solidification of semicrystalline polymers of commercial relevance. Self-nuclei are remains in the melt of the segmental self-assembly to form polymer crystallites providing a path to enhance primary crystal nucleation. SN has been extensively studied in homopolymers such as iPP. Recently, a strong memory effect of crystallization has been observed in melts of random ethylene copolymers well above the equilibrium melting temperature. The melt memory is associated with clusters or seeds that remain in the melt from the copolymer's sequence length partitioning. Cooling from progressively lower self-seeded melt temperatures, ethylene copolymers with a broad inter-chain comonomer composition (1 - 15 mol%) display first the expected accelerated crystallization, followed by a decrease in the rate in a range of melt temperatures where narrow copolymers show a continuous acceleration of the rate. This unusual inversion of the crystallization rate was postulated to arise from the onset of liquid-liquid phase separation (LLPS) between comonomer-rich and comonomer-poor components of the broad copolymer. The UCST type phase diagram of these commercial copolymers has been documented via SANS using a blend of components, some deuterated, to reproduce the broad distribution. Furthermore, the components that contribute to LLPS have been identified by the crystallization behavior of molar mass fractions. The influence of long chain branching on the topology of copolymer melts has been analyzed using model 3-arm stars hydrogenated polybutadienes. The effect of melt viscosity on strength of melt memory is also evident when SN data of random ethylene copolymers are compared with those of propylene-ethylene copolymers. The strong dependence of melt viscosity on melt memory, and a critical threshold crystallinity level to observe the effect of melt memory on crystallization

  18. Volumetric vessel reconstruction method for absolute blood flow velocity measurement in Doppler OCT images

    NASA Astrophysics Data System (ADS)

    Qi, Li; Zhu, Jiang; Hancock, Aneeka M.; Dai, Cuixia; Zhang, Xuping; Frostig, Ron D.; Chen, Zhongping

    2017-02-01

    Doppler optical coherence tomography (DOCT) is considered one of the most promising functional imaging modalities for neuro biology research and has demonstrated the ability to quantify cerebral blood flow velocity at a high accuracy. However, the measurement of total absolute blood flow velocity (BFV) of major cerebral arteries is still a difficult problem since it not only relates to the properties of the laser and the scattering particles, but also relates to the geometry of both directions of the laser beam and the flow. In this paper, focusing on the analysis of cerebral hemodynamics, we presents a method to quantify the total absolute blood flow velocity in middle cerebral artery (MCA) based on volumetric vessel reconstruction from pure DOCT images. A modified region growing segmentation method is first used to localize the MCA on successive DOCT B-scan images. Vessel skeletonization, followed by an averaging gradient angle calculation method, is then carried out to obtain Doppler angles along the entire MCA. Once the Doppler angles are determined, the absolute blood flow velocity of each position on the MCA is easily found. Given a seed point position on the MCA, our approach could achieve automatic quantification of the fully distributed absolute BFV. Based on experiments conducted using a swept-source optical coherence tomography system, our approach could achieve automatic quantification of the fully distributed absolute BFV across different vessel branches in the rodent brain.

  19. The influence of partial melting and melt migration on the rheology of the continental crust

    NASA Astrophysics Data System (ADS)

    Cavalcante, Geane Carolina G.; Viegas, Gustavo; Archanjo, Carlos José; da Silva, Marcos Egydio

    2016-11-01

    The presence of melt during deformation produces a drastic change in the rheological behavior of the continental crust; rock strength is decreased even for melt fractions as low as ∼7%. At pressure/temperature conditions typical of the middle to lower crust, melt-bearing systems may play a critical role in the process of strain localization and in the overall strength of the continental lithosphere. In this contribution we focus on the role and dynamics of melt flow in two different mid-crustal settings formed during the Brasiliano orogeny: (i) a large-scale anatectic layer in an orthogonal collision belt, represented by the Carlos Chagas anatexite in southeastern Brazil, and (ii) a strike-slip setting, in which the Espinho Branco anatexite in the Patos shear zone (northeast Brazil) serves as an analogue. Both settings, located in eastern Brazil, are part of the Neoproterozoic tectonics that resulted in widespread partial melting, shear zone development and the exhumation of middle to lower crustal layers. These layers consist of compositionally heterogeneous anatexites, with variable former melt fractions and leucosome structures. The leucosomes usually form thick interconnected networks of magma that reflect a high melt content (>30%) during deformation. From a comparison of previous work based on detailed petrostructural and AMS studies of the anatexites exposed in these areas, we discuss the rheological implications caused by the accumulation of a large volume of melt ;trapped; in mid-crustal levels, and by the efficient melt extraction along steep shear zones. Our analyses suggest that rocks undergoing partial melting along shear settings exhibit layers with contrasting competence, implying successive periods of weakening and strengthening. In contrast, regions where a large amount of magma accumulates lack clear evidence of competence contrast between layers, indicating that they experienced only one major stage of dramatic strength drop. This comparative

  20. Partial Melting in the Inner Core

    NASA Astrophysics Data System (ADS)

    Hernlund, J. W.

    2014-12-01

    The inner core boundary (ICB) is often considered to be permeable to flow, because solid iron could melt as it upwells across the ICB. Such a mechanism has been proposed to accompany inner core convective processes (including translation from a freezing to melting hemisphere), and has also been invoked to explain the formation of a dense Fe-rich liquid F-layer above the ICB. However, the conceptions of ICB melting invoked thus far are extremely simplistic, and neglect the many lessons learned from melting in other geological contexts. Owing to some degree of solid solution in relatively incompatible light alloys in solid iron, the onset of melting in the inner core will likely occur as a partial melt, with the liquid being enriched in these light alloys relative to the co-existing solid. Such a partial melt is then subject to upward migration/percolation out of the solid matrix owing to the buoyancy of melt relative to solid. Removal of melt and viscous compaction of the pore space results in an iron-enriched dense solid, whose negative buoyancy will oppose whatever buoyancy forces initially gave rise to upwelling. Either the negative buoyancy will balance these other forces and cause upwelling to cease, or else the solid will become so depleted in light alloys that it is unable to undergo further melting. Thus a proper accounting of partial melting results in a very different melting regime in the inner core, and suppression of upwelling across the ICB. Any fluid that is able to escape into the outer core from inner core partial melting will likely be buoyant because in order to be a melt it should be enriched in incompatiable alloys relative to whatever is freezing at the ICB. Therefore inner core melting is unlikely to contribute to the formation of an F-layer, but instead will tend to de-stabilize it. I will present models that illustrate these processes, and propose that the F-layer is a relic of incomplete mixing of the core during Earth's final stages of

  1. Absolute optical metrology : nanometers to kilometers

    NASA Technical Reports Server (NTRS)

    Dubovitsky, Serge; Lay, O. P.; Peters, R. D.; Liebe, C. C.

    2005-01-01

    We provide and overview of the developments in the field of high-accuracy absolute optical metrology with emphasis on space-based applications. Specific work on the Modulation Sideband Technology for Absolute Ranging (MSTAR) sensor is described along with novel applications of the sensor.

  2. Absolute Calibration of the AXAF Telescope Effective Area

    NASA Technical Reports Server (NTRS)

    Kellogg, E.; Cohen, L.; Edgar, R.; Evans, I.; Freeman, M.; Gaetz, T.; Jerius, D.; McDermott, W. C.; McKinnon, P.; Murray, S.; hide

    1997-01-01

    The prelaunch calibration of AXAF encompasses many aspects of the telescope. In principle, all that is needed is the complete point response function. This is, however, a function of energy, off-axis angle of the source, and operating mode of the facility. No single measurement would yield the entire result. Also, any calibration made prior to launch will be affected by changes in conditions after launch, such as the change from one g to zero g. The reflectivity of the mirror and perhaps even the detectors can change as well, for example by addition or removal of small amounts of material deposited on their surfaces. In this paper, we give a broad view of the issues in performing such a calibration, and discuss how they are being addressed in prelaunch preparation of AXAF. As our title indicates, we concentrate here on the total throughput of the observatory. This can be thought of as the integral of the point response function, i.e. the encircled energy, out ot the largest practical solid angle for an observation. Since there is no standard x-ray source in the sky whose flux is known to the -1% accuracy we are trying to achieve, we must do this calibration on the ground. we also must provide a means for monitoring any possible changes in this calibration from pre-launch until on-orbit operation can transfer the calibration to a celestial x-ray source whose emission is stable. In this paper, we analyze the elements of the absolute throughput calibration, which we call Effective Area. We review the requirements for calibrations of components or subsystems of the AXAF facility, including mirror, detectors, and gratings. We show how it is necessary to calibrate this ground-based detection system at standard man-made x-ray sources, such as electron storage rings. We present the status of all these calibrations, with indications of the measurements remaining to be done, even though the measurements on the AXAF flight optics and detectors will have been completed by the

  3. Melt segregation from partially molten source regions - The importance of melt density and source region size

    NASA Technical Reports Server (NTRS)

    Stolper, E.; Hager, B. H.; Walker, D.; Hays, J. F.

    1981-01-01

    An investigation is conducted regarding the changes expected in the density contrast between basic melts and peridotites with increasing pressure using the limited data available on the compressibilities of silicate melts and data on the densities of mantle minerals. It is concluded that since compressibilities of silicate melts are about an order of magnitude greater than those of mantle minerals, the density contrast between basic melts and mantle minerals must diminish significantly with increasing pressure. An earlier analysis regarding the migration of liquid in partially molten source regions conducted by Walker et al. (1978) is extended, giving particular attention to the influence of the diminished density contrast between melt and residual crystals with increasing source region depth and to the influence of source region size. This analysis leads to several generalizations concerning the factors influencing the depths at which magmas will segregate from their source regions and the degrees of partial melting that can be achieved in these source regions before melt segregation occurs.

  4. Partial melting kinetics of plagioclase-diopside pairs

    NASA Astrophysics Data System (ADS)

    Tsuchiyama, Akira

    1985-09-01

    Partial melting experiments on plagioclase (An60) and diopside have been carried out using pairs of large crystals to investigate textures and kinetics of melting. The experiments were done at one atmosphere pressure as a function of temperature (1,190 1,307° C) and time (1.5 192 h). Melting took place mainly at the plagioclase-diopside contact planes. Reaction zones composed of fine mixtures of calcic plagioclase and melt were developed from the surface of the plagioclase crystal inward. There exists a critical temperature, below which only a few % melting can occur over the duration of the experiments. This sluggish melting is caused by slow NaSi-CaAl diffusion in plagioclase, because the plagioclase crystal must change its composition to produce albite-rich cotectic melts. Diffusion in the solid also affects the chemical composition of the melts. During initial melting, potassium is preferentially extracted from plagioclase because K-Na diffusion in plagioclase is faster than that of NaSi-CaAl. This also causes a shift in the cotectic compositions. Above the “critical temperature”, on the other hand, melting is promoted by a metastable reaction in which the plagioclase composition does not change, and which produces melts with compositional gradients along the original An60-diopside tie line. The critical temperature is determined by the intersection of the cotectic and the An60-diopside tie line. Interdiffusion coefficients of plagioclase-diopside components in the melt are estimated from melting rates above the critical temperature by using a simplified steady-state diffusion model (e.g., 10-8 cm2/sec at 1,300° C). Many examples of reaction zones due to partial melting have been described as spongy or fingerprint-like textures in xenoliths. Metastable melting above the critical temperature is considered to take place in natural melting where there is a high degree of melting. However, we cannot exclude the possibility of disequilibrium created by

  5. Melt volume flow rate and melt flow rate of kenaf fibre reinforced Floreon/magnesium hydroxide biocomposites.

    PubMed

    Lee, C H; Sapuan, S M; Lee, J H; Hassan, M R

    2016-01-01

    A study of the melt volume flow rate (MVR) and the melt flow rate (MFR) of kenaf fibre (KF) reinforced Floreon (FLO) and magnesium hydroxide (MH) biocomposites under different temperatures (160-180 °C) and weight loadings (2.16, 5, 10 kg) is presented in this paper. FLO has the lowest values of MFR and MVR. The increment of the melt flow properties (MVR and MFR) has been found for KF or MH insertion due to the hydrolytic degradation of the polylactic acid in FLO. Deterioration of the entanglement density at high temperature, shear thinning and wall slip velocity were the possible causes for the higher melt flow properties. Increasing the KF loadings caused the higher melt flow properties while the higher MH contents created stronger bonding for higher macromolecular chain flow resistance, hence lower melt flow properties were recorded. However, the complicated melt flow behaviour of the KF reinforced FLO/MH biocomposites was found in this study. The high probability of KF-KF and KF-MH collisions was expected and there were more collisions for higher fibre and filler loading causing lower melt flow properties.

  6. Low melting high lithia glass compositions and methods

    DOEpatents

    Jantzen, Carol M.; Pickett, John B.; Cicero-Herman, Connie A.; Marra, James C.

    2004-11-02

    The invention relates to methods of vitrifying waste and for lowering the melting point of glass forming systems by including lithia formers in the glass forming composition in significant amounts, typically from about 0.16 wt % to about 11 wt %, based on the total glass forming oxides. The lithia is typically included as a replacement for alkali oxide glass formers that would normally be present in a particular glass forming system. Replacement can occur on a mole percent or weight percent basis, and typically results in a composition wherein lithia forms about 10 wt % to about 100 wt % of the alkali oxide glass formers present in the composition. The present invention also relates to the high lithia glass compositions formed by these methods. The invention is useful for stabilization of numerous types of waste materials, including aqueous waste streams, sludge solids, mixtures of aqueous supernate and sludge solids, combinations of spent filter aids from waste water treatment and waste sludges, supernate alone, incinerator ash, incinerator offgas blowdown, or combinations thereof, geological mine tailings and sludges, asbestos, inorganic filter media, cement waste forms in need of remediation, spent or partially spent ion exchange resins or zeolites, contaminated soils, lead paint, etc. The decrease in melting point achieved by the present invention desirably prevents volatilization of hazardous or radioactive species during vitrification.

  7. Low melting high lithia glass compositions and methods

    DOEpatents

    Jantzen, Carol M.; Pickett, John B.; Cicero-Herman, Connie A.; Marra, James C.

    2003-10-07

    The invention relates to methods of vitrifying waste and for lowering the melting point of glass forming systems by including lithia formers in the glass forming composition in significant amounts, typically from about 0.16 wt % to about 11 wt %, based on the total glass forming oxides. The lithia is typically included as a replacement for alkali oxide glass formers that would normally be present in a particular glass forming system. Replacement can occur on a mole percent or weight percent basis, and typically results in a composition wherein lithia forms about 10 wt % to about 100 wt % of the alkali oxide glass formers present in the composition. The present invention also relates to the high lithia glass compositions formed by these methods. The invention is useful for stabilization of numerous types of waste materials, including aqueous waste streams, sludge solids, mixtures of aqueous supernate and sludge solids, combinations of spent filter aids from waste water treatment and waste sludges, supernate alone, incinerator ash, incinerator offgas blowdown, or combinations thereof, geological mine tailings and sludges, asbestos, inorganic filter media, cement waste forms in need of remediation, spent or partially spent ion exchange resins or zeolites, contaminated soils, lead paint, etc. The decrease in melting point achieved by the present invention desirably prevents volatilization of hazardous or radioactive species during vitrification.

  8. Low melting high lithia glass compositions and methods

    DOEpatents

    Jantzen, Carol M.; Pickett, John B.; Cicero-Herman, Connie A.; Marra, James C.

    2000-01-01

    The invention relates to methods of vitrifying waste and for lowering the melting point of glass forming systems by including lithia formers in the glass forming composition in significant amounts, typically from about 0.16 wt % to about 11 wt %, based on the total glass forming oxides. The lithia is typically included as a replacement for alkali oxide glass formers that would normally be present in a particular glass forming system. Replacement can occur on a mole percent or weight percent basis, and typically results in a composition wherein lithia forms about 10 wt % to about 100 wt % of the alkali oxide glass formers present in the composition. The present invention also relates to the high lithia glass compositions formed by these methods. The invention is useful for stabilization of numerous types of waste materials, including aqueous waste streams, sludge solids, mixtures of aqueous supernate and sludge solids, combinations of spent filter aids from waste water treatment and waste sludges, supernate alone, incinerator ash, incinerator offgas blowdown, or combinations thereof, geological mine tailings and sludges, asbestos, inorganic filter media, cement waste forms in need of remediation, spent or partially spent ion exchange resins or zeolites, contaminated soils, lead paint, etc. The decrease in melting point achieved by the present invention desirably prevents volatilization of hazardous or radioactive species during vitrification.

  9. Activities in Cu2S-FeS-PbS melts at 1200 °C

    NASA Astrophysics Data System (ADS)

    Eriç, H.; Timuçin, M.

    1981-09-01

    The dew-point method was used to determine the vapor pressures of PbS over liquid sulfides of the system Cu2S-FeS-PbS at 1200 °C. From the PbS activity data, activities of Cu2S and FeS were evaluated both in binary and ternary melts by Gibbs-Duhem calculations. The systems Cu2S-PbS and Cu2S-FeS exhibit negative departures from ideal behavior, while the FeS-PbS melts are ideal solutions at 1200 °C.

  10. A global algorithm for estimating Absolute Salinity

    NASA Astrophysics Data System (ADS)

    McDougall, T. J.; Jackett, D. R.; Millero, F. J.; Pawlowicz, R.; Barker, P. M.

    2012-12-01

    The International Thermodynamic Equation of Seawater - 2010 has defined the thermodynamic properties of seawater in terms of a new salinity variable, Absolute Salinity, which takes into account the spatial variation of the composition of seawater. Absolute Salinity more accurately reflects the effects of the dissolved material in seawater on the thermodynamic properties (particularly density) than does Practical Salinity. When a seawater sample has standard composition (i.e. the ratios of the constituents of sea salt are the same as those of surface water of the North Atlantic), Practical Salinity can be used to accurately evaluate the thermodynamic properties of seawater. When seawater is not of standard composition, Practical Salinity alone is not sufficient and the Absolute Salinity Anomaly needs to be estimated; this anomaly is as large as 0.025 g kg-1 in the northernmost North Pacific. Here we provide an algorithm for estimating Absolute Salinity Anomaly for any location (x, y, p) in the world ocean. To develop this algorithm, we used the Absolute Salinity Anomaly that is found by comparing the density calculated from Practical Salinity to the density measured in the laboratory. These estimates of Absolute Salinity Anomaly however are limited to the number of available observations (namely 811). In order to provide a practical method that can be used at any location in the world ocean, we take advantage of approximate relationships between Absolute Salinity Anomaly and silicate concentrations (which are available globally).

  11. Melting behavior of Earth's lower mantle minerals at high pressures

    NASA Astrophysics Data System (ADS)

    Fu, S.; Yang, J.; Prakapenka, V. B.; Zhang, Y.; Greenberg, E.; Lin, J. F.

    2017-12-01

    Melting behavior of the most abundant lower mantle minerals, bridgmanite and ferropericlase, at high pressure-temperature (P-T) conditions is of critical importance to understand the dynamic evolution of the early Earth and to explain the seismological and geochemical signatures in the present lowermost mantle. Theoretical calculations [1] and geodynamical models [2] suggested that partial melting of early Earth among MgO-FeO-SiO2 ternary could be located at the eutectic point where a pyrolitic composition formed for the Earth's lower mantle and the eutectic crystallization process could provide a plausible mechanism to the origin of the ultra-low velocity zones (ULVZs) near the core-mantle boundary. Here we have investigated the melting behavior of ferropericlase and Al,Fe-bearing bridgmanite in laser-heated diamond anvil cells coupled with in situ X-ray diffraction up to 120 GPa. Together with chemical and texture characterizations of the quenched samples, these results are analyzed using thermodynamic models to address the effects of iron on the liquidus and solidus temperatures as well as solid-liquid iron partitioning and the eutectic point in ferropericlase-bridgmanite existing system at lower-mantle pressure. In this presentation, we discuss the application of these results to better constrain the seismic observations of the deep lowermost mantle such as large low shear wave velocity provinces (LLSVPs) and ULVZs. We will also discuss the geochemical consequences of the ferropericlase-bridgmanite melting due to the changes in the electronic spin and valence states of iron in the system. ADDIN EN.REFLIST 1. Boukaré, C.E., Y. Ricard, and G. Fiquet, Thermodynamics of the MgO-FeO-SiO2 system up to 140 GPa: Application to the crystallization of Earth's magma ocean. Journal of Geophysical Research: Solid Earth, 2015. 120(9): p. 6085-6101. 2. Labrosse, S., J. Hernlund, and N. Coltice, A crystallizing dense magma ocean at the base of the Earth's mantle. Nature, 2007

  12. Melt migration modeling in partially molten upper mantle

    NASA Astrophysics Data System (ADS)

    Ghods, Abdolreza

    The objective of this thesis is to investigate the importance of melt migration in shaping major characteristics of geological features associated with the partial melting of the upper mantle, such as sea-floor spreading, continental flood basalts and rifting. The partial melting produces permeable partially molten rocks and a buoyant low viscosity melt. Melt migrates through the partially molten rocks, and transfers mass and heat. Due to its much faster velocity and appreciable buoyancy, melt migration has the potential to modify dynamics of the upwelling partially molten plumes. I develop a 2-D, two-phase flow model and apply it to investigate effects of melt migration on the dynamics and melt generation of upwelling mantle plumes and focusing of melt migration beneath mid-ocean ridges. Melt migration changes distribution of the melt-retention buoyancy force and therefore affects the dynamics of the upwelling plume. This is investigated by modeling a plume with a constant initial melt of 10% where no further melting is considered. Melt migration polarizes melt-retention buoyancy force into high and low melt fraction regions at the top and bottom portions of the plume and therefore results in formation of a more slender and faster upwelling plume. Allowing the plume to melt as it ascends through the upper mantle also produces a slender and faster plume. It is shown that melt produced by decompressional melting of the plume migrates to the upper horizons of the plume, increases the upwelling velocity and thus, the volume of melt generated by the plume. Melt migration produces a plume which lacks the mushroom shape observed for the plume models without melt migration. Melt migration forms a high melt fraction layer beneath the sloping base of the impermeable oceanic lithosphere. Using realistic conditions of melting, freezing and melt extraction, I examine whether the high melt fraction layer is able to focus melt from a wide partial melting zone to a narrow region

  13. Modeling absolute plate and plume motions

    NASA Astrophysics Data System (ADS)

    Bodinier, G. P.; Wessel, P.; Conrad, C. P.

    2016-12-01

    Paleomagnetic evidence for plume drift has made modeling of absolute plate motions challenging, especially since direct observations of plume drift are lacking. Predictions of plume drift arising from mantle convection models and broadly satisfying observed paleolatitudes have so far provided the only framework for deriving absolute plate motions over moving hotspots. However, uncertainties in mantle rheology, temperature, and initial conditions make such models nonunique. Using simulated and real data, we will show that age progressions along Pacific hotspot trails provide strong constraints on plume motions for all major trails, and furthermore that it is possible to derive models for relative plume drift from these data alone. Relative plume drift depends on the inter-hotspot distances derived from age progressions but lacks a fixed reference point and orientation. By incorporating paleolatitude histories for the Hawaii and Louisville chains we add further constraints on allowable plume motions, yet one unknown parameter remains: a longitude shift that applies equally to all plumes. To obtain a solution we could restrict either the Hawaii or Louisville plume to have latitudinal motion only, thus satisfying paleolatitude constraints. Yet, restricting one plume to latitudinal motion while all others move freely is not realistic. Consequently, it is only possible to resolve the motion of hotspots relative to an overall and unknown longitudinal shift as a function of time. Our plate motions are therefore dependent on the same shift via an unknown rotation about the north pole. Yet, as plume drifts are consequences of mantle convection, our results place strong constraints on the pattern of convection. Other considerations, such as imposed limits on plate speed, plume speed, proximity to LLSVP edges, model smoothness, or relative plate motions via ridge-spotting may add further constraints that allow a unique model of Pacific absolute plate and plume motions to be

  14. Analysis of Summer 2002 Melt Extent on the Greenland Ice Sheet using MODIS and SSM/I Data

    NASA Technical Reports Server (NTRS)

    Hall, Dorothy K.; Williams, Richard S., Jr.; Steffen, Konrad; Chien, Y. L.; Foster, James L.; Robinson, David A.; Riggs, George A.

    2004-01-01

    Previous work has shown that the summer of 2002 had the greatest area of snow melt extent on the Greenland ice sheet ever recorded using passive-microwave data. In this paper, we compare the 0 degree isotherm derived from the Moderate-Resolution Imaging Spectroradiometer (MODIS) instrument, with Special Sensor Microwave/Imager (SSM/I)-derived melt, at the time of the maximum melt extent in 2002. To validate the MODIS-derived land-surface temperatures (LSTs), we compared the MODIS LSTs with air temperatures from nine stations (using 11 different data points) and found that they agreed to within 2.3 plus or minus 2.09 C, with station temperatures consistently lower than the MODIS LSTs. According to the MODIS LST, the maximum surface melt extended to approximately 2300 m in southern Greenland; while the SSM/I measurements showed that the maximum melt extended to nearly 2700 m in southeastern Greenland. The MODIS and SSM/I data are complementary in providing detailed information about the progression of surface and near-surface melt on the Greenland ice sheet.

  15. Extended T-index models for glacier surface melting: a case study from Chorabari Glacier, Central Himalaya, India

    NASA Astrophysics Data System (ADS)

    Karakoti, Indira; Kesarwani, Kapil; Mehta, Manish; Dobhal, D. P.

    2016-10-01

    Two enhanced temperature-index (T-index) models are proposed by incorporating meteorological parameters viz. relative humidity, wind speed and net radiation. The models are an attempt to explore different climatic variables other than temperature affecting glacier surface melting. Weather data were recorded at Chorabari Glacier using an automatic weather station during the summers of 2010 (July 10 to September 10) and 2012 (June 10 to October 25). The modelled surface melt is validated against the measured point surface melting at the snout. Performance of the developed models is evaluated by comparing with basic temperature-index model and is quantified through different efficiency criteria. The results suggest that proposed models yield considerable improvement in surface melt simulation . Consequently, the study reveals that glacier surface melt depends not only on temperature but also on weather parameters viz. relative humidity, wind speed and net radiation play a significant role in glacier surface melting. This approach provides a major improvement on basic temperature-index method and offers an alternative to energy balance model.

  16. Analysis of Summer 2002 Melt Extent on the Greenland Ice Sheet using MODIS and SSM/I Data

    NASA Technical Reports Server (NTRS)

    Hall, Dorothy K.; Williams, Richard S.; Steffen, Konrad; Chien, Janet Y. L.

    2004-01-01

    Previous work has shown that the summer of 2002 had the greatest area of snow melt extent on the Greenland ice sheet ever recorded using passive-microwave data. In this paper, we compare the 0 deg. isotherm derived from the Moderate-Resolution Imaging Spectroradiometer (MODIS) instrument, with Special Sensor Microwave/Imager (SSM/I)-derived melt, at the time of the maximum melt extent in 2002. To validate the MODIS derived land-surface temperatures (LSTs), we compared the MODIS LSTs with air temperatures from nine stations (using 11 different data points) and found that they agreed to within 2.3 +/- 2.09 C, with station temperatures consistently lower than the MODIS LSTs. According to the MODIS LST, the maximum surface melt extended to approx. 2300 m in southern Greenland; while the SSM/I measurements showed that the maximum melt extended to nearly 2700 m in southeastern Greenland. The MODIS and SSM/I data are complementary in providing detailed information about the progression of surface and near- surface melt on the Greenland ice sheet.

  17. Analysis of summer 2002 melt extent on the Greenland ice sheet using MODIS and SSM/I data

    USGS Publications Warehouse

    Hall, D.K.; Williams, R.S.; Steffen, K.; Chien, Janet Y.L.

    2004-01-01

    Previous work has shown that the summer of 2002 had the greatest area of snow melt extent on the Greenland ice sheet ever recorded using passive-microwave data. In this paper, we compare the 0?? isotherm derived from the Moderate-Resolution Imaging Spectroradiometer (MODIS) instrument, with Special Sensor Microwave/Imager (SSM/I)-derived melt, at the time of the maximum melt extent in 2002. To validate the MODIS-derived land-surface temperatures (LSTs), we compared the MODIS LSTs with air temperatures from nine stations (using 11 different data points) and found that they agreed to within 2.3??2.09??C, with station temperatures consistently lower than the MODIS LSTs. According to the MODIS LST, the maximum surface melt extended to ???2300 m in southern Greenland; while the SSM/I measurements showed that the maximum melt extended to nearly 2700 m in southeastern Greenland. The MODIS and SSM/I data are complementary in providing detailed information about the progression of surface and near-surface melt on the Greenland ice sheet.

  18. Analysis of summer 2002 melt extent on the Greenland ice sheet using MODIS and SSM/I data

    USGS Publications Warehouse

    Hall, D. K.; Williams, R.S.; Steffen, K.; Chien, Janet Y.L.

    2004-01-01

    Previous work has shown that the summer of 2002 had the greatest area of snow melt extent on the Greenland ice sheet ever recorded using passive-microwave data. In this paper, we compare the 0deg isotherm derived from the Moderate-Resolution Imaging Spectroradiometer (MODIS) instrument, with Special Sensor Microwave/Imager (SSM/I)-derived melt, at the time of the maximum melt extent in 2002. To validate the MODIS-derived land-surface temperatures (LSTs), we compared the MODIS LSTs with air temperatures from nine stations (using 11 different data points) and found that they agreed to within 2.3 plusmn 2.09 degC, with station temperatures consistently lower than the MODIS LSTs. According to the MODIS LST, the maximum surface melt extended to ~2300 m in southern Greenland; while the SSM/I measurements showed that the maximum melt extended to nearly 2700 m in southeastern Greenland. The MODIS and SSM/I data are complementary in providing detailed information about the progression of surface and near-surface melt on the Greenland ice sheet.

  19. Oceanic slab melting and mantle metasomatism.

    PubMed

    Scaillet, B; Prouteau, G

    2001-01-01

    Modern plate tectonic brings down oceanic crust along subduction zones where it either dehydrates or melts. Those hydrous fluids or melts migrate into the overlying mantle wedge trigerring its melting which produces arc magmas and thus additional continental crust. Nowadays, melting seems to be restricted to cases of young (< 50 Ma) subducted plates. Slab melts are silicic and strongly sodic (trondhjemitic). They are produced at low temperatures (< 1000 degrees C) and under water excess conditions. Their interaction with mantle peridotite produces hydrous metasomatic phases such as amphibole and phlogopite that can be more or less sodium rich. Upon interaction the slab melt becomes less silicic (dacitic to andesitic), and Mg, Ni and Cr richer. Virtually all exposed slab melts display geochemical evidence of ingestion of mantle material. Modern slab melts are thus unlike Archean Trondhjemite-Tonalite-Granodiorite rocks (TTG), which suggests that both types of magmas were generated via different petrogenetic pathways which may imply an Archean tectonic model of crust production different from that of the present-day, subduction-related, one.

  20. 49 CFR 236.709 - Block, absolute.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 49 Transportation 4 2010-10-01 2010-10-01 false Block, absolute. 236.709 Section 236.709 Transportation Other Regulations Relating to Transportation (Continued) FEDERAL RAILROAD ADMINISTRATION... Block, absolute. A block in which no train is permitted to enter while it is occupied by another train. ...

  1. 49 CFR 236.709 - Block, absolute.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 49 Transportation 4 2011-10-01 2011-10-01 false Block, absolute. 236.709 Section 236.709 Transportation Other Regulations Relating to Transportation (Continued) FEDERAL RAILROAD ADMINISTRATION... Block, absolute. A block in which no train is permitted to enter while it is occupied by another train. ...

  2. Absolute quantification of microbial taxon abundances.

    PubMed

    Props, Ruben; Kerckhof, Frederiek-Maarten; Rubbens, Peter; De Vrieze, Jo; Hernandez Sanabria, Emma; Waegeman, Willem; Monsieurs, Pieter; Hammes, Frederik; Boon, Nico

    2017-02-01

    High-throughput amplicon sequencing has become a well-established approach for microbial community profiling. Correlating shifts in the relative abundances of bacterial taxa with environmental gradients is the goal of many microbiome surveys. As the abundances generated by this technology are semi-quantitative by definition, the observed dynamics may not accurately reflect those of the actual taxon densities. We combined the sequencing approach (16S rRNA gene) with robust single-cell enumeration technologies (flow cytometry) to quantify the absolute taxon abundances. A detailed longitudinal analysis of the absolute abundances resulted in distinct abundance profiles that were less ambiguous and expressed in units that can be directly compared across studies. We further provide evidence that the enrichment of taxa (increase in relative abundance) does not necessarily relate to the outgrowth of taxa (increase in absolute abundance). Our results highlight that both relative and absolute abundances should be considered for a comprehensive biological interpretation of microbiome surveys.

  3. Investigation of TiC C Eutectic and WC C Peritectic High-Temperature Fixed Points

    NASA Astrophysics Data System (ADS)

    Sasajima, Naohiko; Yamada, Yoshiro

    2008-06-01

    TiC C eutectic (2,761°C) and WC C peritectic (2,749°C) fixed points were investigated to compare their potential as high-temperature thermometric reference points. Two TiC C and three WC C fixed-point cells were constructed, and the melting and freezing plateaux were evaluated by means of radiation thermometry. The repeatability of the TiC C eutectic within a day was 60 mK with a melting range roughly 200 mK. The repeatability of the melting temperature of the WC C peritectic within 1 day was 17 mK with a melting range of ˜70 mK. The repeatability of the freezing temperature of the WC C peritectic was 21 mK with a freezing range less than 20 mK. One of the TiC C cells was constructed from a TiC and graphite powder mixture. The filling showed the reaction with the graphite crucible was suppressed and the ingot contained less voids, although the lack of high-purity TiC powder poses a problem. The WC C cells were easily constructed, like metal carbon eutectic cells, without any evident reaction with the crucible. From these results, it is concluded that the WC C peritectic has more potential than the TiC C eutectic as a high-temperature reference point. The investigation of the purification of the TiC C cell during filling and the plateau observation are also reported.

  4. Ice-Shelf Melting Around Antarctica

    NASA Astrophysics Data System (ADS)

    Rignot, E.; Jacobs, S.; Mouginot, J.; Scheuchl, B.

    2013-07-01

    We compare the volume flux divergence of Antarctic ice shelves in 2007 and 2008 with 1979 to 2010 surface accumulation and 2003 to 2008 thinning to determine their rates of melting and mass balance. Basal melt of 1325 ± 235 gigatons per year (Gt/year) exceeds a calving flux of 1089 ± 139 Gt/year, making ice-shelf melting the largest ablation process in Antarctica. The giant cold-cavity Ross, Filchner, and Ronne ice shelves covering two-thirds of the total ice-shelf area account for only 15% of net melting. Half of the meltwater comes from 10 small, warm-cavity Southeast Pacific ice shelves occupying 8% of the area. A similar high melt/area ratio is found for six East Antarctic ice shelves, implying undocumented strong ocean thermal forcing on their deep grounding lines.

  5. Critical porosity of melt segregation during crustal melting: Constraints from zonation of peritectic garnets in a dacite volcano

    NASA Astrophysics Data System (ADS)

    Yu, Xun; Lee, Cin-Ty A.

    2016-09-01

    The presence of leucogranitic dikes in orogenic belts suggests that partial melting may be an important process in the lower crust of active orogenies. Low seismic velocity and low electrical resistivity zones have been observed in the lower crust of active mountain belts and have been argued to reflect the presence of partial melt in the deep crust, but volcanoes are rare or absent above many of these inferred melt zones. Understanding whether these low velocity zones are melt-bearing, and if so, why they do not commonly erupt, is essential for understanding the thermal and rheologic structure of the crust and its dynamic evolution. Central to this problem is an understanding of how much melt can be stored before it can escape from the crust via compaction and eventually erupt. Experimental and theoretical studies predict trapped melt fractions anywhere from <5% to >30%. Here, we examine Mn growth-zoning in peritectic garnets in a Miocene dacite volcano from the ongoing Betic-Rif orogeny in southern Spain to estimate the melt fraction at the time of large-scale melt extraction that subsequently led to eruption. We show that the melt fraction at segregation, corresponding approximately to the critical melt porosity, was ∼30%, implying significant amounts of melt can be stored in the lower crust without draining or erupting. However, seismic velocities in the lower crust beneath active orogenic belts (southern Spain and Tibet) as well as beneath active magmatic zones (e.g., Yellowstone hotspot) correspond to average melt porosities of <10%, suggesting that melt porosities approaching critical values are short-lived or that high melt porosity regions are localized into heterogeneously distributed sills or dikes, which individually cannot be resolved by seismic studies.

  6. Lithospheric processes that enhance melting at rifts

    NASA Astrophysics Data System (ADS)

    Elkins-Tanton, L. T.; Furman, T.

    2008-12-01

    Continental rifts are commonly sites for mantle melting, whether in the form of ridge melting to create new oceanic crust, or as the locus of flood basalt activity, or in the long initial period of rifting before lavas evolve fully into MORBs. The high topography in the lithosphere-asthenosphere boundary under a rift creates mantle upwelling and adiabatic melting even in the absence of a plume. This geometry itself, however, is conducive to lithospheric instability on the sides of the rifts. Unstable lithosphere may founder into the mantle, producing more complex aesthenospheric convective patterns and additional opportunities to produce melt. Lithospheric instabilities can produce additional adiabatic melting in convection produced as they sink, and they may also devolatilize as they sink, introducing the possibility of flux melting to the rift environment. We call this process upside-down melting, since devolatilization and melting proceed as the foundering lithosphere sinks, rather than while rising, as in the more familiar adiabatic decompression melting. Both adiabatic melting and flux melting would take place along the edges of the rift and may even move magmatism outside the rift, as has been seen in Ethiopia. In volcanism postdating the flood basalts on and adjacent to the Ethiopian Plateau there is evidence for both lithospheric thinning and volatile enrichment in the magmas, potentially consistent with the upside-down melting model. Here we present a physical model for the conjunction of adiabatic decompression melting to produce new oceanic crust in the rift, while lithospheric gravitational instabilities drive both adiabatic and flux melting at its margins.

  7. Absolute Humidity and the Seasonality of Influenza (Invited)

    NASA Astrophysics Data System (ADS)

    Shaman, J. L.; Pitzer, V.; Viboud, C.; Grenfell, B.; Goldstein, E.; Lipsitch, M.

    2010-12-01

    Much of the observed wintertime increase of mortality in temperate regions is attributed to seasonal influenza. A recent re-analysis of laboratory experiments indicates that absolute humidity strongly modulates the airborne survival and transmission of the influenza virus. Here we show that the onset of increased wintertime influenza-related mortality in the United States is associated with anomalously low absolute humidity levels during the prior weeks. We then use an epidemiological model, in which observed absolute humidity conditions temper influenza transmission rates, to successfully simulate the seasonal cycle of observed influenza-related mortality. The model results indicate that direct modulation of influenza transmissibility by absolute humidity alone is sufficient to produce this observed seasonality. These findings provide epidemiological support for the hypothesis that absolute humidity drives seasonal variations of influenza transmission in temperate regions. In addition, we show that variations of the basic and effective reproductive numbers for influenza, caused by seasonal changes in absolute humidity, are consistent with the general timing of pandemic influenza outbreaks observed for 2009 A/H1N1 in temperate regions. Indeed, absolute humidity conditions correctly identify the region of the United States vulnerable to a third, wintertime wave of pandemic influenza. These findings suggest that the timing of pandemic influenza outbreaks is controlled by a combination of absolute humidity conditions, levels of susceptibility and changes in population mixing and contact rates.

  8. The Gao-Guenie impact melt breccia—Sampling a rapidly cooled impact melt dike on an H chondrite asteroid?

    NASA Astrophysics Data System (ADS)

    Schmieder, Martin; Kring, David A.; Swindle, Timothy D.; Bond, Jade C.; Moore, Carleton B.

    2016-06-01

    The Gao-Guenie H5 chondrite that fell on Burkina Faso (March 1960) has portions that were impact-melted on an H chondrite asteroid at ~300 Ma and, through later impact events in space, sent into an Earth-crossing orbit. This article presents a petrographic and electron microprobe analysis of a representative sample of the Gao-Guenie impact melt breccia consisting of a chondritic clast domain, quenched melt in contact with chondritic clasts, and an igneous-textured impact melt domain. Olivine is predominantly Fo80-82. The clast domain contains low-Ca pyroxene. Impact melt-grown pyroxene is commonly zoned from low-Ca pyroxene in cores to pigeonite and augite in rims. Metal-troilite orbs in the impact melt domain measure up to ~2 mm across. The cores of metal orbs in the impact melt domain contain ~7.9 wt% of Ni and are typically surrounded by taenite and Ni-rich troilite. The metallography of metal-troilite droplets suggest a stage I cooling rate of order 10 °C s-1 for the superheated impact melt. The subsolidus stage II cooling rate for the impact melt breccia could not be determined directly, but was presumably fast. An analogy between the Ni rim gradients in metal of the Gao-Guenie impact melt breccia and the impact-melted H6 chondrite Orvinio suggests similar cooling rates, probably on the order of ~5000-40,000 °C yr-1. A simple model of conductive heat transfer shows that the Gao-Guenie impact melt breccia may have formed in a melt injection dike ~0.5-5 m in width, generated during a sizeable impact event on the H chondrite parent asteroid.

  9. Ice-shelf melting around Antarctica

    NASA Astrophysics Data System (ADS)

    Rignot, E.; Jacobs, S.

    2008-12-01

    The traditional view on the mass balance of Antarctic ice shelves is that they loose mass principally from iceberg calving with bottom melting a much lower contributing factor. Because ice shelves are now known to play a fundamental role in ice sheet evolution, it is important to re-evaluate their wastage processes from a circumpolar perspective using a combination of remote sensing techniques. We present area average rates deduced from grounding line discharge, snow accumulation, firn depth correction and ice shelf topography. We find that ice shelf melting accounts for roughly half of ice-shelf ablation, with a total melt water production of 1027 Gt/yr. The attrition fraction due to in-situ melting varies from 9 to 90 percent around Antarctica. High melt producers include the Ronne, Ross, Getz, Totten, Amery, George VI, Pine Island, Abbot, Dotson/Crosson, Shackleton, Thwaites and Moscow University Ice Shelves. Low producers include the Larsen C, Princess Astrid and Ragnhild coast, Fimbul, Brunt and Filchner. Correlation between melt water production and grounding line discharge is low (R2 = 0.65). Correlation with thermal ocean forcing from the ocean are highest in the northern parts of West Antarctica where regressions yield R2 of 0.93-0.97. Melt rates in the Amundsen Sea exhibit a quadratic sensitivity to thermal ocean forcing. We conclude that ice shelf melting plays a dominant role in ice shelf mass balance, with a potential to change rapidly in response to altered ocean heat transport onto the Antarctic continental shelf.

  10. Melting in super-earths.

    PubMed

    Stixrude, Lars

    2014-04-28

    We examine the possible extent of melting in rock-iron super-earths, focusing on those in the habitable zone. We consider the energetics of accretion and core formation, the timescale of cooling and its dependence on viscosity and partial melting, thermal regulation via the temperature dependence of viscosity, and the melting curves of rock and iron components at the ultra-high pressures characteristic of super-earths. We find that the efficiency of kinetic energy deposition during accretion increases with planetary mass; considering the likely role of giant impacts and core formation, we find that super-earths probably complete their accretionary phase in an entirely molten state. Considerations of thermal regulation lead us to propose model temperature profiles of super-earths that are controlled by silicate melting. We estimate melting curves of iron and rock components up to the extreme pressures characteristic of super-earth interiors based on existing experimental and ab initio results and scaling laws. We construct super-earth thermal models by solving the equations of mass conservation and hydrostatic equilibrium, together with equations of state of rock and iron components. We set the potential temperature at the core-mantle boundary and at the surface to the local silicate melting temperature. We find that ancient (∼4 Gyr) super-earths may be partially molten at the top and bottom of their mantles, and that mantle convection is sufficiently vigorous to sustain dynamo action over the whole range of super-earth masses.

  11. The absolute magnitudes of RR Lyraes from HIPPARCOS parallaxes and proper motions

    NASA Astrophysics Data System (ADS)

    Fernley, J.; Barnes, T. G.; Skillen, I.; Hawley, S. L.; Hanley, C. J.; Evans, D. W.; Solano, E.; Garrido, R.

    1998-02-01

    We have used HIPPARCOS proper motions and the method of Statistical Parallax to estimate the absolute magnitude of RR Lyrae stars. In addition we used the HIPPARCOS parallax of RR Lyrae itself to determine it's absolute magnitude. These two results are in excellent agreement with each other and give a zero-point for the RR Lyrae M_v,[Fe/H] relation of 0.77+/-0.15 at [Fe/H]=-1.53. This zero-point is in good agreement with that obtained recently by several groups using Baade-Wesselink methods which, averaged over the results from the different groups, gives M_v = 0.73+/-0.14 at [Fe/H]=-1.53. Taking the HIPPARCOS based zero-point and a value of 0.18+/-0.03 for the slope of the M_v,[Fe/H] relation from the literature we find firstly, the distance modulus of the LMC is 18.26+/-0.15 and secondly, the mean age of the Globular Clusters is 17.4+/-3.0 GYrs. These values are compared with recent estimates based on other "standard candles" that have also been calibrated with HIPPARCOS data. It is clear that, in addition to astrophysical problems, there are also problems in the application of HIPPARCOS data that are not yet fully understood. Table 1, which contains the basic data for the RR Lyraes, is available only at CDS. It may be retrieved via anonymous FTP at cdsarc.u-strasbg.fr (130.79.128.5) or via the Web at http://cdsweb.u-strasbg.fr/Abstract.html

  12. Preliminary results of sulfide melt/silicate wetting experiments in a partially melted ordinary chondrite

    NASA Technical Reports Server (NTRS)

    Jurewicz, Stephen R.; Jones, John H.

    1994-01-01

    Recently, mechanisms for core formation in planetary bodies have received considerable attention. Most current theories emphasize the need for large degrees of silicate partial melting to facilitate the coalescence and sinking of sulfide-metal liquid blebs through a low strength semi-crystalline silicate mush. This scenario is based upon observations that sulfide-metal liquid tends to form circular blebs in partially molten meteorites during laboratory experiments. However, recent experimental work by Herpfer and Larimer indicates that some sulfide-Fe liquids have wetting angles at and slightly below 60 deg in an olivine aggregate, implying an interconnected melt structure at any melt fraction. Such melt interconnectivity provides a means for gravitational compaction and extraction of the majority of a sulfide liquid phase in small planetary bodies without invoking large degrees of silicate partial melting. Because of the important ramifications of these results, we conducted a series of experiments using H-chondrite starting material in order to evaluate sulfide-liquid/silicate wetting behavior in a more complex natural system.

  13. Veins in Silicates of IIE Iron Mont Dieu II: Melt Migration Caused by Impact?

    NASA Astrophysics Data System (ADS)

    Van Roosbroek, N.; Debaille, V.; Pittarello, L.; Hecht, L.; Claeys, Ph.

    2014-09-01

    Mont Dieu II is a ~450kg meteorite classified as IIE iron. The primitive silicate inclusions can be linked to the H-chondrites. Thick metal veins with angular clasts crosscut these inclusions and could point to an impact-melt migration formation.

  14. High-pressure melting of molybdenum.

    PubMed

    Belonoshko, A B; Simak, S I; Kochetov, A E; Johansson, B; Burakovsky, L; Preston, D L

    2004-05-14

    The melting curve of the body-centered cubic (bcc) phase of Mo has been determined for a wide pressure range using both direct ab initio molecular dynamics simulations of melting as well as a phenomenological theory of melting. These two methods show very good agreement. The simulations are based on density functional theory within the generalized gradient approximation. Our calculated equation of state of bcc Mo is in excellent agreement with experimental data. However, our melting curve is substantially higher than the one determined in diamond anvil cell experiments up to a pressure of 100 GPa. An explanation is suggested for this discrepancy.

  15. Impact melting early in lunar history

    NASA Technical Reports Server (NTRS)

    Lange, M. A.; Ahrens, T. J.

    1979-01-01

    The total amount of impact melt produced during early lunar history is examined in light of theoretically and experimentally determined relations between crater diameter (D) and impact melt volume. The time dependence of the melt production is given by the time dependent impact rate as derived from cratering statistics for two different crater-size classes. Results show that small scale cratering (D less than or equal to 30 km) leads to melt volumes which fit selected observations specifying the amount of impact melt contained in the lunar regolith and in craters with diameters less than 10 km. Larger craters (D greater than 30 km) are capable of forming the abundant impact melt breccias found on the lunar surface. The group of large craters (D greater than 30 km) produces nearly 10 times as much impact melt as all the smaller craters, and thus, the large impacts dominate the modification of the lunar surface. A contradiction between the distribution of radiometric rock ages and a model of exponentially decreasing cratering rate going back to 4.5 b.y. is reflected in uncertainty in the distribution of impact melt as a function of time on the moon.

  16. Partitioning of rare earth elements between hibonite and melt and implications for nebular condensation of the rare earth elements

    NASA Technical Reports Server (NTRS)

    Drake, Michael J.; Boynton, William V.

    1988-01-01

    The effect of oxygen fugacity on the partitioning of REEs between hibonite and silicate melt is investigated in hibonite-growth experiments at 1470 C. The experimental procedures and apparatus are described, and the results are presented in extensive tables and graphs and characterized in detail. The absolute activity coefficients in hibonite are estimated as 330 for La, 1200 for Eu(3+), and 24,000 for Yb. It is inferred that ideal solution behavior cannot be assumed when calculating REE condensation temperatures for (Ca, Al)-rich inclusions in carbonaceous chondrites.

  17. Dynamics in entangled polyethylene melts using coarse-grained models

    NASA Astrophysics Data System (ADS)

    Peters, Brandon L.; Grest, Gary S.; Salerno, K. Michael; Agrawal, Anupriya; Perahia, Dvora

    Polymer dynamics creates distinctive viscoelastic behavior as a result of a coupled interplay of motion on multiple length scales. Capturing the broad time and length scales of polymeric motion however, remains a challenge. Using polyethylene (PE) as a model system, we probe the effects of the degree of coarse graining on polymer dynamics. Coarse-grained (CG) potentials are derived using iterative Boltzmann inversion (iBi) with 2-6 methyl groups per CG bead from all fully atomistic melt simulations for short chains. While the iBi methods produces non-bonded potentials which give excellent agreement for the atomistic and CG pair correlation functions, the pressure P = 100-500MPa for the CG model. Correcting for potential so P 0 leads to non-bonded models with slightly smaller effective diameter and much deeper minimum. However, both the pressure and non-pressure corrected CG models give similar results for mean squared displacement (MSD) and the stress auto correlation function G(t) for PE melts above the melting point. The time rescaling factor between CG and atomistic models is found to be nearly the same for both CG models. Transferability of potential for different temperatures was tested by comparing the MSD and G(t) for potentials generated at different temperatures.

  18. Melting ice

    NASA Astrophysics Data System (ADS)

    Benedetto, Elmo

    2018-01-01

    In this brief frontline, we want to describe the well-known fact that, when freshwater ice melts, the freshwater liquid level does not change. In the Italian Ministerial programs, fluid statics is introduced in the three years of middle school (students of 11-13 years) and during the first two years of high school (14-15 years). The Italian textbooks do not clearly explain why the abovementioned phenomenon occurs. The explanations are qualitative and they may lead to misinterpretation. I have noted that the students are very curious about this phenomenon. They sought a demonstration from books and from the web; and when they do not find it they asked me. Moreover, they have allowed me to observe that there are contradictory statements about the melting of icebergs. Some authors claim that they would not raise the sea-level, others say the opposite. Honestly speaking, I had never thought about this phenomenon and in classroom I tried to give them proof, expressing my opinion about the melting of icebergs.

  19. Comment on 'Water-fluxed melting of the continental crust: A review' by R.F. Weinberg and P. Hasalová

    NASA Astrophysics Data System (ADS)

    Clemens, J. D.; Stevens, G.

    2015-10-01

    In this invited 'review' article, the authors come to the conclusion that fluid-present partial melting reactions are of widespread occurrence and critical importance in the processes of high-grade metamorphism and crustal differentiation. In their abstract, the authors correctly restate the conclusions of Clemens and Droop (1998) that it is not necessarily the case that melts formed by fluid-present reactions (even by H2O-saturated melting) cannot leave their sources. This realisation is not actually relevant to the question of formation and ascent of granitic magmas by crustal partial melting. Although they refer to Clemens and Watkins (2001), the authors seem ignore the main point of the argument presented therein, namely that the distribution of temperature and H2O contents in felsic igneous systems is only compatible with derivation of the magmas by fluid-absent partial melting reactions at high-temperature, granulite-facies conditions. Neither fluid-saturated nor fluid-deficient partial melting could have resulted in the observed covariation in temperature and melt H2O content.

  20. Low absolute neutrophil counts in African infants.

    PubMed

    Kourtis, Athena P; Bramson, Brian; van der Horst, Charles; Kazembe, Peter; Ahmed, Yusuf; Chasela, Charles; Hosseinipour, Mina; Knight, Rodney; Lugalia, Lebah; Tegha, Gerald; Joaki, George; Jafali, Robert; Jamieson, Denise J

    2005-07-01

    Infants of African origin have a lower normal range of absolute neutrophil counts than white infants; this fact, however, remains under appreciated by clinical researchers in the United States. During the initial stages of a clinical trial in Malawi, the authors noted an unexpectedly high number of infants with absolute neutrophil counts that would be classifiable as neutropenic using the National Institutes of Health's Division of AIDS toxicity tables. The authors argue that the relevant Division of AIDS table does not take into account the available evidence of low absolute neutrophil counts in African infants and that a systematic collection of data from many African settings might help establish the absolute neutrophil count cutpoints to be used for defining neutropenia in African populations.

  1. Absolute colorimetric characterization of a DSLR camera

    NASA Astrophysics Data System (ADS)

    Guarnera, Giuseppe Claudio; Bianco, Simone; Schettini, Raimondo

    2014-03-01

    A simple but effective technique for absolute colorimetric camera characterization is proposed. It offers a large dynamic range requiring just a single, off-the-shelf target and a commonly available controllable light source for the characterization. The characterization task is broken down in two modules, respectively devoted to absolute luminance estimation and to colorimetric characterization matrix estimation. The characterized camera can be effectively used as a tele-colorimeter, giving an absolute estimation of the XYZ data in cd=m2. The user is only required to vary the f - number of the camera lens or the exposure time t, to better exploit the sensor dynamic range. The estimated absolute tristimulus values closely match the values measured by a professional spectro-radiometer.

  2. Study of formation mechanism of incipient melting in thixo-cast Al–Si–Cu–Mg alloys

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Du, Kang, E-mail: du126kang@126.com; Zhu, Qiang, E-mail: zhu.qiang@grinm.com; Li, Daquan, E-mail: lidaquan@grinm.com

    Mechanical properties of thixo-cast Al–Si–Cu–Mg alloys can be enhanced by T61 heat treatment. Copper and magnesium atoms in aluminum matrix can form homogeneously distributed precipitations after solution and aging treatment which harden the alloys. However, microsegregation of these alloying elements could form numerous tiny multi-compound phases during solidification. These phases could cause incipient melting defects in subsequent heat treatment process and degrade the macro-mechanical properties of productions. This study is to present heterogeneous distribution of Cu, Si, and Mg elements and formation of incipient melting defects (pores). In this study, incipient melting pores that occurred during solution treatment at variousmore » temperatures, even lower than common melting points of various intermetallic phases, were identified, in terms of a method of investigating the same surface area in the samples before and after solution treatment in a vacuum environment. The results also show that the incipient melting mostly originates at the clusters with fine intermetallic particles while also some at the edge of block-like Al{sub 2}Cu. The fine particles were determined being Al{sub 2}Cu, Al{sub 5}Cu{sub 2}Mg{sub 8}Si{sub 6} and Al{sub 8}Mg{sub 3}FeSi{sub 2}. Tendency of the incipient melting decreases with decreases of the width of the clusters. The formation mechanism of incipient melting pores in solution treatment process was discussed using both the Fick law and the LSW theory. Finally, a criterion of solution treatment to avoid incipient melting pores for the thixo-cast alloys is proposed. - Highlights: • In-situ comparison technique was used to analysis the change of eutectic phases. • The ralationship between eutectic phase size and incipient melting was studied. • Teat treatment criterion for higher incipient melting resistance was proposed.« less

  3. Do Melt Inclusions Answer Big Questions?

    NASA Astrophysics Data System (ADS)

    Hofmann, A. W.; Sobolev, A. V.

    2009-12-01

    In a pioneering paper, Sobolev and Shimizu (1993) demonstrated the existence of ultra-depleted melt inclusions in olivine phenocrysts in MORB. They interpreted these as evidence for the preservation of parental melts formed by progressive near-fractional melting. Subsequently many cases have been described where melt inclusions from single basalt samples display enormous chemical and isotopic heterogeneity. The interpretation of these observations hinges critically on whether such melt inclusions can faithfully preserve primary or parental melt composition. If they do, melt inclusion data can truly answer big questions from small-scale observations. If they do not, they answer rather small questions. Favoring the second possibility, Danyushevsky et al. (2004) have suggested that much of the observed variability of highly incompatible trace elements in melt inclusions “may not represent geologically significant melts, but instead reflect localized, grain-scale reaction processes within the magmatic plumbing system.” We disagree and show that this mechanism cannot, for example, explain isotopic heterogeneity measured in several suites of melt inclusions, nor does it not account for the presence of ultra-depleted melts and "ghost" plagioclase signatures in other inclusions. More recently, Spandler et al. (2007) have suggested on the basis of experimental evidence that diffusion rates for REE in olivine are so rapid that parental melt compositions in melt inclusions are rapidly falsified by diffusional exchange with (evolved) host lava. We show that the very fact that extreme chemical and isotopic heterogeneities are routinely preserved in melt inclusions demonstrates that this conclusion is unwarranted, either because residence times of the olivine phenocrysts are much shorter than assumed by Spandler et al. or because the high experimental diffusion rates are caused by an unknown experimental artifact. Although there is no obvious flaw in design and execution of

  4. Interface structure and contact melting in AgCu eutectic. A molecular dynamics study

    NASA Astrophysics Data System (ADS)

    Bystrenko, O.; Kartuzov, V.

    2017-12-01

    Molecular dynamics simulations of the interface structure in binary AgCu eutectic were performed by using the realistic EAM potential. In simulations, we examined the time dependence of the total energy in the process of equilibration, the probability distributions, the composition profiles for the components, and the component diffusivities within the interface zone. It is shown that the relaxation to the equilibrium in the solid state is accompanied by the formation of the steady disordered diffusion zone at the boundary between the crystalline components. At higher temperatures, closer to the eutectic point, the increase in the width of the steady diffusion zone is observed. The particle diffusivities grow therewith to the numbers typical for the liquid metals. Above the eutectic point, the steady zone does not form, instead, the complete contact melting in the system occurs. The results of simulations indicate that during the temperature increase the phenomenon of contact melting is preceded by the similar process spatially localized in the vicinity of the interface.

  5. Solidification and Re-melting Phenomena During Slurry Preparation Using the RheoMetal™ Process

    NASA Astrophysics Data System (ADS)

    Payandeh, M.; Sabzevar, Mohsen Haddad; Jarfors, A. E. W.; Wessén, M.

    2017-12-01

    The melting sequence of the enthalpy exchange material (EEM) and formation of a slurry in the RheoMetal™ process was investigated. The EEM was extracted and quenched, together with a portion of the slurry at different processing times before complete melting. The EEM initially increased in size/diameter due to melt freezing onto its surface, forming a freeze- on layer. The initial growth of this layer was followed by a period of a constant diameter of the EEM with subsequent melting and decrease of diameter. Microstructural characterization of the size and morphology of different phases in the EEM and in the freeze-on layer was made. Dendritic equiaxed grains and eutectic regions containing Si particles and Cu-bearing particles and Fe-rich particles were observed in the as-cast EEM. The freeze-on layer consisted of dendritic aluminum tilted by about 30 deg in the upstream direction, caused by the rotation of the EEM. Energy dispersion spectroscopy analysis showed that the freeze-on layer had a composition corresponding to an alloy with higher melting point than the EEM and thus shielding the EEM from the surrounding melt. Microstructural changes in the EEM showed that temperature rapidly increased to 768 K (495 °C), indicated by incipient melting of the lowest temperature melting eutectic in triple junction grain boundary regions with Al2Cu and Al5Mg8Si6Cu2 phases present. As the EEM temperature increased further the binary Al-Si eutectic started to melt to form a region of a fully developed coherent mushy state. Experimental results and a thermal model indicated that as the dendrites spheroidized near to the interface at the EEM/freeze-on layer reached a mushy state with 25 pct solid fraction, coherency was lost and disintegration of the freeze-on layer took place. Subsequently, in the absence of the shielding effect from the freeze-on Layer, the EEM continued to disintegrate with a coherency limit of a solid fraction estimated to be 50 pct.

  6. Early warning of climate tipping points

    NASA Astrophysics Data System (ADS)

    Lenton, Timothy M.

    2011-07-01

    A climate 'tipping point' occurs when a small change in forcing triggers a strongly nonlinear response in the internal dynamics of part of the climate system, qualitatively changing its future state. Human-induced climate change could push several large-scale 'tipping elements' past a tipping point. Candidates include irreversible melt of the Greenland ice sheet, dieback of the Amazon rainforest and shift of the West African monsoon. Recent assessments give an increased probability of future tipping events, and the corresponding impacts are estimated to be large, making them significant risks. Recent work shows that early warning of an approaching climate tipping point is possible in principle, and could have considerable value in reducing the risk that they pose.

  7. Cryogenic, Absolute, High Pressure Sensor

    NASA Technical Reports Server (NTRS)

    Chapman, John J. (Inventor); Shams. Qamar A. (Inventor); Powers, William T. (Inventor)

    2001-01-01

    A pressure sensor is provided for cryogenic, high pressure applications. A highly doped silicon piezoresistive pressure sensor is bonded to a silicon substrate in an absolute pressure sensing configuration. The absolute pressure sensor is bonded to an aluminum nitride substrate. Aluminum nitride has appropriate coefficient of thermal expansion for use with highly doped silicon at cryogenic temperatures. A group of sensors, either two sensors on two substrates or four sensors on a single substrate are packaged in a pressure vessel.

  8. Revisiting the Potential of Melt Pond Fraction as a Predictor for the Seasonal Arctic Sea Ice Extent Minimum

    NASA Technical Reports Server (NTRS)

    Liu, Jiping; Song, Mirong; Horton, Radley M.; Hu, Yongyun

    2015-01-01

    The rapid change in Arctic sea ice in recent decades has led to a rising demand for seasonal sea ice prediction. A recent modeling study that employed a prognostic melt pond model in a stand-alone sea ice model found that September Arctic sea ice extent can be accurately predicted from the melt pond fraction in May. Here we show that satellite observations show no evidence of predictive skill in May. However, we find that a significantly strong relationship (high predictability) first emerges as the melt pond fraction is integrated from early May to late June, with a persistent strong relationship only occurring after late July. Our results highlight that late spring to mid summer melt pond information is required to improve the prediction skill of the seasonal sea ice minimum. Furthermore, satellite observations indicate a much higher percentage of melt pond formation in May than does the aforementioned model simulation, which points to the need to reconcile model simulations and observations, in order to better understand key mechanisms of melt pond formation and evolution and their influence on sea ice state.

  9. Geochemical evidence for the melting of subducting oceanic lithosphere at plate edges

    NASA Astrophysics Data System (ADS)

    Yogodzinski, G. M.; Lees, J. M.; Churikova, T. G.; Dorendorf, F.; Wöerner, G.; Volynets, O. N.

    2001-01-01

    Most island-arc magmatism appears to result from the lowering of the melting point of peridotite within the wedge of mantle above subducting slabs owing to the introduction of fluids from the dehydration of subducting oceanic crust. Volcanic rocks interpreted to contain a component of melt (not just a fluid) from the subducting slab itself are uncommon, but possible examples have been recognized in the Aleutian islands, Baja California, Patagonia and elsewhere. The geochemically distinctive rocks from these areas, termed `adakites', are often associated with subducting plates that are young and warm, and therefore thought to be more prone to melting. But the subducting lithosphere in some adakite locations (such as the Aleutian islands) appears to be too old and hence too cold to melt. This implies either that our interpretation of adakite geochemistry is incorrect, or that our understanding of the tectonic context of adakites is incomplete. Here we present geochemical data from the Kamchatka peninsula and the Aleutian islands that reaffirms the slab-melt interpretation of adakites, but in the tectonic context of the exposure to mantle flow around the edge of a torn subducting plate. We conclude that adakites are likely to form whenever the edge of a subducting plate is warmed or ablated by mantle flow. The use of adakites as tracers for such plate geometry may improve our understanding of magma genesis and thermal structure in a variety of subduction-zone environments.

  10. Study of Using Solar Thermal Power for the Margarine Melting Heat Process.

    PubMed

    Sharaf Eldean, Mohamed A; Soliman, A M

    2015-04-01

    The heating process of melting margarine requires a vast amount of thermal energy due to its high melting point and the size of the reservoir it is contained in. Existing methods to heat margarine have a high hourly cost of production and use fossil fuels which have been shown to have a negative impact on the environment. Thus, we perform an analytical feasibility study of using solar thermal power as an alternative energy source for the margarine melting process. In this study, the efficiency and cost effectiveness of a parabolic trough collector (PTC) solar field are compared with that of a steam boiler. Different working fluids (water vapor and Therminol-VP1 heat transfer oil (HTO)) through the solar field are also investigated. The results reveal the total hourly cost ($/h) by the conventional configuration is much greater than the solar applications regardless of the type of working fluid. Moreover, the conventional configuration causes a negative impact to the environment by increasing the amount of CO 2 , CO, and NO 2 by 117.4 kg/day, 184 kg/day, and 74.7 kg/day, respectively. Optimized period of melt and tank volume parameters at temperature differences not exceeding 25 °C are found to be 8-10 h and 100 m 3 , respectively. The solar PTC operated with water and steam as the working fluid is recommended as a vital alternative for the margarine melting heating process.

  11. Geochemical evidence for the melting of subducting oceanic lithosphere at plate edges.

    PubMed

    Yogodzinski, G M; Lees, J M; Churikova, T G; Dorendorf, F; Wöerner, G; Volynets, O N

    2001-01-25

    Most island-arc magmatism appears to result from the lowering of the melting point of peridotite within the wedge of mantle above subducting slabs owing to the introduction of fluids from the dehydration of subducting oceanic crust. Volcanic rocks interpreted to contain a component of melt (not just a fluid) from the subducting slab itself are uncommon, but possible examples have been recognized in the Aleutian islands, Baja California, Patagonia and elsewhere. The geochemically distinctive rocks from these areas, termed 'adakites, are often associated with subducting plates that are young and warm, and therefore thought to be more prone to melting. But the subducting lithosphere in some adakite locations (such as the Aleutian islands) appears to be too old and hence too cold to melt. This implies either that our interpretation of adakite geochemistry is incorrect, or that our understanding of the tectonic context of adakites is incomplete. Here we present geochemical data from the Kamchatka peninsula and the Aleutian islands that reaffirms the slab-melt interpretation of adakites, but in the tectonic context of the exposure to mantle flow around the edge of a torn subducting plate. We conclude that adakites are likely to form whenever the edge of a subducting plate is warmed or ablated by mantle flow. The use of adakites as tracers for such plate geometry may improve our understanding of magma genesis and thermal structure in a variety of subduction-zone environments.

  12. Using cocrystals to systematically modulate aqueous solubility and melting behavior of an anticancer drug.

    PubMed

    Aakeröy, Christer B; Forbes, Safiyyah; Desper, John

    2009-12-02

    Five cocrystals of an anticancer compound have been assembled using a well-defined hydrogen-bond-based supramolecular approach that produced the necessary structural consistency in the resulting solids. These cocrystals contain aliphatic even-numbered dicarboxylic acids of increasing chain length, and as a result, the physical properties of the cocrystals can be related to the molecular structure of the acid. The melting points of the five cocrystals show an excellent correlation with the melting points of the individual acids, and it has also been shown that aqueous solubility can be increased by a factor of 2.5 relative to that of the individual drug. Consequently, cocrystals can offer a range of solid forms from which can be chosen an active ingredient where a particular physical property can be dialed in, provided that the cocrystals show considerable structural consistency and that systematic changes are made to the participating cocrystallizing agents.

  13. Stress-Driven Melt Segregation and Organization in Partially Molten Rocks III: Annealing Experiments and Surface Tension-Driven Redistribution of Melt

    NASA Astrophysics Data System (ADS)

    Parsons, R.; Hustoft, J. W.; Holtzman, B. K.; Kohlstedt, D. L.; Phipps Morgan, J.

    2004-12-01

    As discussed in the two previous abstracts in this series, simple shear experiments on synthetic upper mantle-type rock samples reveal the segregation of melt into melt-rich bands separated by melt-depleted lenses. Here, we present new results from experiments designed to understand the driving forces working for and against melt segregation. To better understand the kinetics of surface tension-driven melt redistribution, we first deform samples at similar conditions (starting material, sample size, stress and strain) to produce melt-rich band networks that are statistically similar. Then the load is removed and the samples are statically annealed to allow surface tension to redistribute the melt-rich networks. Three samples of olivine + 20 vol% chromite + 4 vol% MORB were deformed at a confining pressure of 300 MPa and a temperature of 1523 K in simple shear at shear stresses of 20 - 55 MPa to shear strains of 3.5 and then statically annealed for 0, 10, or 100 h at the same P-T conditions. Melt-rich bands are fewer in number and appear more diffuse when compared to the deformed but not annealed samples. Bands with less melt tend to disappear more rapidly than more melt-rich ones. The melt fraction in the melt-rich bands decreased from 0.2 in the quenched sample to 0.1 in the sample annealed for 100 h. After deformation, the melt fraction in the melt-depleted regions are ~0.006; after static annealing for 100 h, this value increases to 0.02. These experiments provide new quantitative constraints on the kinetics of melt migration driven by surface tension. By quantifying this driving force in the same samples in which stress-driven distribution occurred, we learn about the relative kinetics of stress-driven melt segregation. The kinetics of both of these processes must be scaled together to mantle conditions to understand the importance of stress-driven melt segregation in the Earth, and to understand the interaction of this process with melt-rock reaction

  14. GPS-derived estimates of surface mass balance and ocean-induced basal melt for Pine Island Glacier ice shelf, Antarctica

    NASA Astrophysics Data System (ADS)

    Shean, David E.; Christianson, Knut; Larson, Kristine M.; Ligtenberg, Stefan R. M.; Joughin, Ian R.; Smith, Ben E.; Stevens, C. Max; Bushuk, Mitchell; Holland, David M.

    2017-11-01

    In the last 2 decades, Pine Island Glacier (PIG) experienced marked speedup, thinning, and grounding-line retreat, likely due to marine ice-sheet instability and ice-shelf basal melt. To better understand these processes, we combined 2008-2010 and 2012-2014 GPS records with dynamic firn model output to constrain local surface and basal mass balance for PIG. We used GPS interferometric reflectometry to precisely measure absolute surface elevation (zsurf) and Lagrangian surface elevation change (Dzsurf/ Dt). Observed surface elevation relative to a firn layer tracer for the initial surface (zsurf - zsurf0') is consistent with model estimates of surface mass balance (SMB, primarily snow accumulation). A relatively abrupt ˜ 0.2-0.3 m surface elevation decrease, likely due to surface melt and increased compaction rates, is observed during a period of warm atmospheric temperatures from December 2012 to January 2013. Observed Dzsurf/ Dt trends (-1 to -4 m yr-1) for the PIG shelf sites are all highly linear. Corresponding basal melt rate estimates range from ˜ 10 to 40 m yr-1, in good agreement with those derived from ice-bottom acoustic ranging, phase-sensitive ice-penetrating radar, and high-resolution stereo digital elevation model (DEM) records. The GPS and DEM records document higher melt rates within and near features associated with longitudinal extension (i.e., transverse surface depressions, rifts). Basal melt rates for the 2012-2014 period show limited temporal variability despite large changes in ocean temperature recorded by moorings in Pine Island Bay. Our results demonstrate the value of long-term GPS records for ice-shelf mass balance studies, with implications for the sensitivity of ice-ocean interaction at PIG.

  15. Activities in Cu2S-FeS-SnS melts at 1200 °C

    NASA Astrophysics Data System (ADS)

    Eric, R. Hurman

    1993-04-01

    The dew-point technique was used to measure the vapor pressures of SnS over liquid sulfides of the system Cu2S-FeS-SnS at 1200 °C. Activities of SnS were generated from the measured vapor pressures of SnS. Activities of Cu2S and FeS were evaluated both in binary and ternary melts by Gibbs-Duhem calculations from the known SnS activity data. The systems Cu2S-SnS and Cu2S-FeS exhibit negative departures from ideal behavior, while FeS-SnS melts exhibit positive deviations.

  16. Absolute Income, Relative Income, and Happiness

    ERIC Educational Resources Information Center

    Ball, Richard; Chernova, Kateryna

    2008-01-01

    This paper uses data from the World Values Survey to investigate how an individual's self-reported happiness is related to (i) the level of her income in absolute terms, and (ii) the level of her income relative to other people in her country. The main findings are that (i) both absolute and relative income are positively and significantly…

  17. Molecular dynamics for near melting temperatures simulations of metals using modified embedded-atom method

    NASA Astrophysics Data System (ADS)

    Etesami, S. Alireza; Asadi, Ebrahim

    2018-01-01

    Availability of a reliable interatomic potential is one of the major challenges in utilizing molecular dynamics (MD) for simulations of metals at near the melting temperatures and melting point (MP). Here, we propose a novel approach to address this challenge in the concept of modified-embedded-atom (MEAM) interatomic potential; also, we apply the approach on iron, nickel, copper, and aluminum as case studies. We propose adding experimentally available high temperature elastic constants and MP of the element to the list of typical low temperature properties used for the development of MD interatomic potential parameters. We show that the proposed approach results in a reasonable agreement between the MD calculations of melting properties such as latent heat, expansion in melting, liquid structure factor, and solid-liquid interface stiffness and their experimental/computational counterparts. Then, we present the physical properties of mentioned elements near melting temperatures using the new MEAM parameters. We observe that the behavior of elastic constants, heat capacity and thermal linear expansion coefficient at room temperature compared to MP follows an empirical linear relation (α±β × MP) for transition metals. Furthermore, a linear relation between the tetragonal shear modulus and the enthalpy change from room temperature to MP is observed for face-centered cubic materials.

  18. Detached Melt and Vapor Growth of InI in SUBSA Furnace

    NASA Technical Reports Server (NTRS)

    Ostrogorsky, A. G.; Riabov, V.; Volz, M. P.; van den Berg, L.; Croll, A.

    2017-01-01

    Indium iodide (InI) is a promising wide energy band gap nuclear detector material. It is ideal for space experiments because it is non-toxic and has a relatively low melting point of only 351 degrees Centigrade. However, it has been established that melt-grown crystals contain a large amount of second phase inclusions/precipitates. The typical size of inclusions are 1 to 27 microns in diameter, while the volume fraction of all sizes is 300 to 600 parts per million. The SEM-EDS (Scanning Electron Microscopy / Energy Dispersive X-Ray Spectroscopy) analysis of the inclusions has revealed that they all contain oxygen and some contain carbon. At present, under sponsorship of NASA and CASIS (Center for the Advancement of Science in Space), we are conducting ground-based experiments with InI in preparation for the flight experiments to be conducted in the SUBSA (Solidification Using a Baffle in Sealed Ampoules) furnace in the Microgravity Science Glovebox at the International Space Station, planned for the summer/fall of 2017. Earth-based experiments include melt and vapor growth conducted in the SUBSA ground unit, measurements of the volumetric expansion coefficient of the melt, and measurements of the wetting angle of molten InI. Finite element modeling has been conducted to optimize the design of the flight ampoules. Alloying with Tl and Ga has given promising results.

  19. A study of mercuric iodide near melting using differential scanning calorimetry, Raman spectroscopy and X-ray diffraction

    NASA Astrophysics Data System (ADS)

    Burger, A.; Morgan, S.; Jiang, H.; Silberman, E.; Schieber, M.; Van Den Berg, L.; Keller, L.; Wagner, C. N. J.

    1989-11-01

    High-temperature studies of mercuric iodide (HgI2) involving differential scanning calorimetry (DSC), Raman spectroscopy and X-ray powder diffraction have failed to confirm the existence of a red-colored tetragonal high-temperature phase called α'-HgI2 reported by S.N. Toubektsis et al. [J. Appl. Phys. 58 (1988) 2070] using DSC measurements. The multiple DSC peaks near melting reported by Toubektsis are found by the present authors only if the sample is heated in a stainless-steel container. Using a Pyrex container or inserting a platinum foil between the HgI2 and the stainless-steel container yields only one sharp, single DSC peak at the melting point. The nonexistence of the α' phase is confirmed by high-temperature X-ray diffraction and Raman spectroscopy performed in the vicinity of the melting point. These methods clearly, indicate the existence of only the yellow orthorhombic β-HgI2 phase. The experimental high-temperature DSC, Raman and X-ray diffraction data are presented and discussed.

  20. Dynamical Scaling and Phase Coexistence in Topologically Constrained DNA Melting.

    PubMed

    Fosado, Y A G; Michieletto, D; Marenduzzo, D

    2017-09-15

    There is a long-standing experimental observation that the melting of topologically constrained DNA, such as circular closed plasmids, is less abrupt than that of linear molecules. This finding points to an important role of topology in the physics of DNA denaturation, which is, however, poorly understood. Here, we shed light on this issue by combining large-scale Brownian dynamics simulations with an analytically solvable phenomenological Landau mean field theory. We find that the competition between melting and supercoiling leads to phase coexistence of denatured and intact phases at the single-molecule level. This coexistence occurs in a wide temperature range, thereby accounting for the broadening of the transition. Finally, our simulations show an intriguing topology-dependent scaling law governing the growth of denaturation bubbles in supercoiled plasmids, which can be understood within the proposed mean field theory.

  1. Effects of water, depth and temperature on partial melting of mantle-wedge fluxed by hydrous sediment-melt in subduction zones

    NASA Astrophysics Data System (ADS)

    Mallik, Ananya; Dasgupta, Rajdeep; Tsuno, Kyusei; Nelson, Jared

    2016-12-01

    This study investigates the partial melting of variable bulk H2O-bearing parcels of mantle-wedge hybridized by partial melt derived from subducted metapelites, at pressure-temperature (P-T) conditions applicable to the hotter core of the mantle beneath volcanic arcs. Experiments are performed on mixtures of 25% sediment-melt and 75% fertile peridotite, from 1200 to 1300 °C, at 2 and 3 GPa, with bulk H2O concentrations of 4 and 6 wt.%. Combining the results from these experiments with previous experiments containing 2 wt.% bulk H2O (Mallik et al., 2015), it is observed that all melt compositions, except those produced in the lowest bulk H2O experiments at 3 GPa, are saturated with olivine and orthopyroxene. Also, higher bulk H2O concentration increases melt fraction at the same P-T condition, and causes exhaustion of garnet, phlogopite and clinopyroxene at lower temperatures, for a given pressure. The activity coefficient of silica (ϒSiO2) for olivine-orthopyroxene saturated melt compositions (where the activity of silica, aSiO2 , is buffered by the reaction olivine + SiO2 = orthopyroxene) from this study and from mantle melting studies in the literature are calculated. In melt compositions generated at 2 GPa or shallower, with increasing H2O concentration, ϒSiO2 increases from <1 to ∼1, indicating a transition from non-ideal mixing as OH- in the melt (ϒSiO2 <1) to ideal mixing as molecular H2O (ϒSiO2 ∼1). At pressures >2 GPa, ϒSiO2 >1 at higher H2O concentrations in the melt, indicate requirement of excess energy to incorporate molecular H2O in the silicate melt structure, along with a preference for bridging species and polyhedral edge decorations. With vapor saturation in the presence of melt, ϒSiO2 decreases indicating approach towards ideal mixing of H2O in silicate melt. For similar H2O concentrations in the melt, ϒSiO2 for olivine-orthopyroxene saturated melts at 3 GPa is higher than melts at 2 GPa or shallower. This results in melts generated at

  2. Universal Cosmic Absolute and Modern Science

    NASA Astrophysics Data System (ADS)

    Kostro, Ludwik

    The official Sciences, especially all natural sciences, respect in their researches the principle of methodic naturalism i.e. they consider all phenomena as entirely natural and therefore in their scientific explanations they do never adduce or cite supernatural entities and forces. The purpose of this paper is to show that Modern Science has its own self-existent, self-acting, and self-sufficient Natural All-in Being or Omni-Being i.e. the entire Nature as a Whole that justifies the scientific methodic naturalism. Since this Natural All-in Being is one and only It should be considered as the own scientifically justified Natural Absolute of Science and should be called, in my opinion, the Universal Cosmic Absolute of Modern Science. It will be also shown that the Universal Cosmic Absolute is ontologically enormously stratified and is in its ultimate i.e. in its most fundamental stratum trans-reistic and trans-personal. It means that in its basic stratum. It is neither a Thing or a Person although It contains in Itself all things and persons with all other sentient and conscious individuals as well, On the turn of the 20th century the Science has begun to look for a theory of everything, for a final theory, for a master theory. In my opinion the natural Universal Cosmic Absolute will constitute in such a theory the radical all penetrating Ultimate Basic Reality and will substitute step by step the traditional supernatural personal Absolute.

  3. Rapid melting dynamics of the Morteratsch glacier (Swiss Alps) from UAV photogrammetry and field spectroscopy data

    NASA Astrophysics Data System (ADS)

    Di Mauro, Biagio; Garzonio, Roberto; Rossini, Micol; Baccolo, Giovanni; Julitta, Tommaso; Cavallini, Giuseppe; Mattavelli, Matteo; Colombo, Roberto

    2017-04-01

    The impact of atmospheric impurities on the optical properties of snow and ice has been largely acknowledged in the scientific literature. Beyond this, the evaluation of the effect of specific organic and inorganic particles on melting dynamics remains a major challenge. In this contribution, we examine the annual melting dynamics of a large valley glacier of the Swiss Alps using UAV photogrammetry. We then compare the melting patterns to the presence of surface impurities on the glacier surface. Two surveys (in July and September 2016) with a lightweight Unmanned Aerial Vehicle (UAV) were organized on the ablation zone of the Morteratsch glacier (Swiss Alps). The UAV (DJI, Phantom 4) was equipped with a high resolution digital camera, and flew at a constant altitude of 150 from the glacier surface. 30 ground control points were placed on the glacier, and their coordinates were determined with a differential GPS (dGPS) for georeferencing UAV images. Contemporary to the UAV surveys, field spectroscopy data were collected on the glacier surface with an Analytical Spectral Device (ASD Field spec.) spectrometer covering the visible and near infrared spectral ranges, and ice samples were collected to determine the abundance of microorganism and algae. From the UAV RGB data, two point clouds were created using Structure from Motion (SfM) algorithms. The point clouds (each consisting of about 15M points) were then converted in Digital Surface Models (DSM) and orthomosaics by interpolation. The difference between the two DSM was calculated and converted in Snow Water Equivalent (SWE), in order to assess the ice lost by the glacier during the ablation season. The point clouds were compared and the displacement vectors were estimated using different algorithms. The elevation changes estimated from UAV data were compared with the abundance of microorganisms and algae. The reflectance spectra of ice with microorganisms and algae show a chlorophyll absorption feature at 680 nm

  4. Melting of superheated molecular crystals

    NASA Astrophysics Data System (ADS)

    Cubeta, Ulyana; Bhattacharya, Deepanjan; Sadtchenko, Vlad

    2017-07-01

    Melting dynamics of micrometer scale, polycrystalline samples of isobutane, dimethyl ether, methyl benzene, and 2-propanol were investigated by fast scanning calorimetry. When films are superheated with rates in excess of 105 K s-1, the melting process follows zero-order, Arrhenius-like kinetics until approximately half of the sample has transformed. Such kinetics strongly imply that melting progresses into the bulk via a rapidly moving solid-liquid interface that is likely to originate at the sample's surface. Remarkably, the apparent activation energies for the phase transformation are large; all exceed the enthalpy of vaporization of each compound and some exceed it by an order of magnitude. In fact, we find that the crystalline melting kinetics are comparable to the kinetics of dielectric α-relaxation in deeply supercooled liquids. Based on these observations, we conclude that the rate of non-isothermal melting for superheated, low-molecular-weight crystals is limited by constituent diffusion into an abnormally dense, glass-like, non-crystalline phase.

  5. Nanorheology of Entangled Polymer Melts

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ge, Ting; Grest, Gary S.; Rubinstein, Michael

    In this study, we use molecular simulations to probe the local viscoelasticity of an entangled polymer melt by tracking the motion of embedded nonsticky nanoparticles (NPs). As in conventional microrheology, the generalized Stokes-Einstein relation is employed to extract an effective stress relaxation function G GSE(t) from the mean square displacement of NPs. G GSE(t) for different NP diameters d are compared with the stress relaxation function G(t) of a pure polymer melt. The deviation of G GSE(t) from G(t) reflects the incomplete coupling between NPs and the dynamic modes of the melt. For linear polymers, a plateau in G GSE(t)more » emerges as d exceeds the entanglement mesh size a and approaches the entanglement plateau in G(t) for a pure melt with increasing d. For ring polymers, as d increases towards the spanning size R of ring polymers, G GSE(t) approaches G(t) of the ring melt with no entanglement plateau.« less

  6. Nanorheology of Entangled Polymer Melts

    DOE PAGES

    Ge, Ting; Grest, Gary S.; Rubinstein, Michael

    2018-02-01

    In this study, we use molecular simulations to probe the local viscoelasticity of an entangled polymer melt by tracking the motion of embedded nonsticky nanoparticles (NPs). As in conventional microrheology, the generalized Stokes-Einstein relation is employed to extract an effective stress relaxation function G GSE(t) from the mean square displacement of NPs. G GSE(t) for different NP diameters d are compared with the stress relaxation function G(t) of a pure polymer melt. The deviation of G GSE(t) from G(t) reflects the incomplete coupling between NPs and the dynamic modes of the melt. For linear polymers, a plateau in G GSE(t)more » emerges as d exceeds the entanglement mesh size a and approaches the entanglement plateau in G(t) for a pure melt with increasing d. For ring polymers, as d increases towards the spanning size R of ring polymers, G GSE(t) approaches G(t) of the ring melt with no entanglement plateau.« less

  7. Note: An absolute X-Y-Θ position sensor using a two-dimensional phase-encoded binary scale

    NASA Astrophysics Data System (ADS)

    Kim, Jong-Ahn; Kim, Jae Wan; Kang, Chu-Shik; Jin, Jonghan

    2018-04-01

    This Note presents a new absolute X-Y-Θ position sensor for measuring planar motion of a precision multi-axis stage system. By analyzing the rotated image of a two-dimensional phase-encoded binary scale (2D), the absolute 2D position values at two separated points were obtained and the absolute X-Y-Θ position could be calculated combining these values. The sensor head was constructed using a board-level camera, a light-emitting diode light source, an imaging lens, and a cube beam-splitter. To obtain the uniform intensity profiles from the vignette scale image, we selected the averaging directions deliberately, and higher resolution in the angle measurement could be achieved by increasing the allowable offset size. The performance of a prototype sensor was evaluated in respect of resolution, nonlinearity, and repeatability. The sensor could resolve 25 nm linear and 0.001° angular displacements clearly, and the standard deviations were less than 18 nm when 2D grid positions were measured repeatedly.

  8. Delusion proneness and 'jumping to conclusions': relative and absolute effects.

    PubMed

    van der Leer, L; Hartig, B; Goldmanis, M; McKay, R

    2015-04-01

    That delusional and delusion-prone individuals 'jump to conclusions' is one of the most robust and important findings in the literature on delusions. However, although the notion of 'jumping to conclusions' (JTC) implies gathering insufficient evidence and reaching premature decisions, previous studies have not investigated whether the evidence gathering of delusion-prone individuals is, in fact, suboptimal. The standard JTC effect is a relative effect but using relative comparisons to substantiate absolute claims is problematic. In this study we investigated whether delusion-prone participants jump to conclusions in both a relative and an absolute sense. Healthy participants (n = 112) completed an incentivized probabilistic reasoning task in which correct decisions were rewarded and additional information could be requested for a small price. This combination of rewards and costs generated optimal decision points. Participants also completed measures of delusion proneness, intelligence and risk aversion. Replicating the standard relative finding, we found that delusion proneness significantly predicted task decisions, such that the more delusion prone the participants were, the earlier they decided. This finding was robust when accounting for the effects of risk aversion and intelligence. Importantly, high-delusion-prone participants also decided in advance of an objective rational optimum, gathering fewer data than would have maximized their expected payoff. Surprisingly, we found that even low-delusion-prone participants jumped to conclusions in this absolute sense. Our findings support and clarify the claim that delusion formation is associated with a tendency to 'jump to conclusions'. In short, most people jump to conclusions, but more delusion-prone individuals 'jump further'.

  9. Jasminum sambac flower absolutes from India and China--geographic variations.

    PubMed

    Braun, Norbert A; Sim, Sherina

    2012-05-01

    Seven Jasminum sambac flower absolutes from different locations in the southern Indian state of Tamil Nadu were analyzed using GC and GC-MS. Focus was placed on 41 key ingredients to investigate geographic variations in this species. These seven absolutes were compared with an Indian bud absolute and commercially available J. sambac flower absolutes from India and China. All absolutes showed broad variations for the 10 main ingredients between 8% and 96%. In addition, the odor of Indian and Chinese J. sambac flower absolutes were assessed.

  10. Advancing Absolute Calibration for JWST and Other Applications

    NASA Astrophysics Data System (ADS)

    Rieke, George; Bohlin, Ralph; Boyajian, Tabetha; Carey, Sean; Casagrande, Luca; Deustua, Susana; Gordon, Karl; Kraemer, Kathleen; Marengo, Massimo; Schlawin, Everett; Su, Kate; Sloan, Greg; Volk, Kevin

    2017-10-01

    We propose to exploit the unique optical stability of the Spitzer telescope, along with that of IRAC, to (1) transfer the accurate absolute calibration obtained with MSX on very bright stars directly to two reference stars within the dynamic range of the JWST imagers (and of other modern instrumentation); (2) establish a second accurate absolute calibration based on the absolutely calibrated spectrum of the sun, transferred onto the astronomical system via alpha Cen A; and (3) provide accurate infrared measurements for the 11 (of 15) highest priority stars with no such data but with accurate interferometrically measured diameters, allowing us to optimize determinations of effective temperatures using the infrared flux method and thus to extend the accurate absolute calibration spectrally. This program is integral to plans for an accurate absolute calibration of JWST and will also provide a valuable Spitzer legacy.

  11. Absolute radiometric calibration of advanced remote sensing systems

    NASA Technical Reports Server (NTRS)

    Slater, P. N.

    1982-01-01

    The distinction between the uses of relative and absolute spectroradiometric calibration of remote sensing systems is discussed. The advantages of detector-based absolute calibration are described, and the categories of relative and absolute system calibrations are listed. The limitations and problems associated with three common methods used for the absolute calibration of remote sensing systems are addressed. Two methods are proposed for the in-flight absolute calibration of advanced multispectral linear array systems. One makes use of a sun-illuminated panel in front of the sensor, the radiance of which is monitored by a spectrally flat pyroelectric radiometer. The other uses a large, uniform, high-radiance reference ground surface. The ground and atmospheric measurements required as input to a radiative transfer program to predict the radiance level at the entrance pupil of the orbital sensor are discussed, and the ground instrumentation is described.

  12. Pressure melting and ice skating

    NASA Astrophysics Data System (ADS)

    Colbeck, S. C.

    1995-10-01

    Pressure melting cannot be responsible for the low friction of ice. The pressure needed to reach the melting temperature is above the compressive failure stress and, if it did occur, high squeeze losses would result in very thin films. Pure liquid water cannot coexist with ice much below -20 °C at any pressure and friction does not increase suddenly in that range. If frictional heating and pressure melting contribute equally, the length of the wetted contact could not exceed 15 μm at a speed of 5 m/s, which seems much too short. If pressure melting is the dominant process, the water films are less than 0.08 μm thick because of the high pressures.

  13. A coupled melt-freeze temperature index approach in a one-layer model to predict bulk volumetric liquid water content dynamics in snow

    NASA Astrophysics Data System (ADS)

    Avanzi, Francesco; Yamaguchi, Satoru; Hirashima, Hiroyuki; De Michele, Carlo

    2016-04-01

    Liquid water in snow rules runoff dynamics and wet snow avalanches release. Moreover, it affects snow viscosity and snow albedo. As a result, measuring and modeling liquid water dynamics in snow have important implications for many scientific applications. However, measurements are usually challenging, while modeling is difficult due to an overlap of mechanical, thermal and hydraulic processes. Here, we evaluate the use of a simple one-layer one-dimensional model to predict hourly time-series of bulk volumetric liquid water content in seasonal snow. The model considers both a simple temperature-index approach (melt only) and a coupled melt-freeze temperature-index approach that is able to reconstruct melt-freeze dynamics. Performance of this approach is evaluated at three sites in Japan. These sites (Nagaoka, Shinjo and Sapporo) present multi-year time-series of snow and meteorological data, vertical profiles of snow physical properties and snow melt lysimeters data. These data-sets are an interesting opportunity to test this application in different climatic conditions, as sites span a wide latitudinal range and are subjected to different snow conditions during the season. When melt-freeze dynamics are included in the model, results show that median absolute differences between observations and predictions of bulk volumetric liquid water content are consistently lower than 1 vol%. Moreover, the model is able to predict an observed dry condition of the snowpack in 80% of observed cases at a non-calibration site, where parameters from calibration sites are transferred. Overall, the analysis show that a coupled melt-freeze temperature-index approach may be a valid solution to predict average wetness conditions of a snow cover at local scale.

  14. Fast Xe-129 relaxation in solid xenon near its melting point: Cross-over from Raman scattering of phonons to vacancy diffusion.

    NASA Astrophysics Data System (ADS)

    Kuzma, N. N.; Patton, B.; Raman, K.; Happer, W.

    2002-03-01

    NMR measurements of longitudinal relaxation times T1 in pure solid xenon were carried out using both natural-abundance and isotopically-enriched samples of hyperpolarized ^129Xe. At temperatures below 120 K and fields above 500 Gauss, the relaxation rate 1/T1 is field- and abundance-independent, consistent with the model of ^129Xe spin-flip Raman scattering of phonons(R. J. Fitzgerald et al.), Phys. Rev. B 59, 8795 (1999).. Above 120 K, vacancies invade the xenon lattice(P. R. Granfors et al.) Phys. Rev. B 24, 4753 (1981)., and a dramatic cross-over to the nuclear dipole-dipole relaxation due to the diffusion of vacancies is observed. As a result, the measured relaxation times of xenon near its melting point strongly depend on field and somewhat on ^129Xe abundance, and can be as short as several seconds, leading to potential difficulties in cryogenic applications of hyperpolarized ^129Xe. The data are analyzed using the theory of nuclear relaxation due to spin diffusion in cubic crystals(C. A. Sholl, J. Phys. C 21), 319 (1988)., and some estimates of the vacancy density and jump rates are discussed.

  15. Heterozygote PCR product melting curve prediction.

    PubMed

    Dwight, Zachary L; Palais, Robert; Kent, Jana; Wittwer, Carl T

    2014-03-01

    Melting curve prediction of PCR products is limited to perfectly complementary strands. Multiple domains are calculated by recursive nearest neighbor thermodynamics. However, the melting curve of an amplicon containing a heterozygous single-nucleotide variant (SNV) after PCR is the composite of four duplexes: two matched homoduplexes and two mismatched heteroduplexes. To better predict the shape of composite heterozygote melting curves, 52 experimental curves were compared with brute force in silico predictions varying two parameters simultaneously: the relative contribution of heteroduplex products and an ionic scaling factor for mismatched tetrads. Heteroduplex products contributed 25.7 ± 6.7% to the composite melting curve, varying from 23%-28% for different SNV classes. The effect of ions on mismatch tetrads scaled to 76%-96% of normal (depending on SNV class) and averaged 88 ± 16.4%. Based on uMelt (www.dna.utah.edu/umelt/umelt.html) with an expanded nearest neighbor thermodynamic set that includes mismatched base pairs, uMelt HETS calculates helicity as a function of temperature for homoduplex and heteroduplex products, as well as the composite curve expected from heterozygotes. It is an interactive Web tool for efficient genotyping design, heterozygote melting curve prediction, and quality control of melting curve experiments. The application was developed in Actionscript and can be found online at http://www.dna.utah.edu/hets/. © 2013 WILEY PERIODICALS, INC.

  16. Pyroxene-melt equilibria. [for lunar maria basalts

    NASA Technical Reports Server (NTRS)

    Nielsen, R. L.; Drake, M. J.

    1979-01-01

    A thermodynamic analysis of pyroxene-melt equilibria is performed through use of a literature survey of analyses of high-Ca pyroxene and coexisting silicate melt pairs and analyses of low-Ca pyroxene silicate melt pairs. Reference is made to a modified version of a model developed by Bottinga and Weill (1972) which more successfully accounts for variations in melt composition than does a model which considers the melt to be composed of simple oxides which mix ideally. By using a variety of pyroxene melt relations, several pyroxene-melt and low-Ca pyroxene-high-Ca pyroxene geothermometers are developed which have internally consistant precisions of approximately + or - 20 C. Finally, it is noted that these equations may have application in modeling the evolution of mineral compositions during differentiation of basaltic magmas.

  17. Estimation of a melting probe's penetration velocity range to reach icy moons' subsurface ocean

    NASA Astrophysics Data System (ADS)

    Erokhina, Olga; Chumachenko, Eugene

    2014-05-01

    In modern space science one of the actual branches is icy satellites explorations. The main interest is concentrated around Jovian's moons Europa and Ganymede, Saturn's moons Titan and Enceladus that are covered by thick icy layer according to "Voyager1", "Voyager2", "Galileo" and "Cassini" missions. There is a big possibility that under icy shell could be a deep ocean. Also conditions on these satellites allow speculating about possible habitability, and considering these moons from an astrobiological point of view. One of the possible tasks of planned missions is a subsurface study. For this goal it is necessary to design special equipment that could be suitable for planetary application. One of the possible means is to use a melting probe which operates by melting and moves by gravitational force. Such a probe should be relatively small, should not weight too much and should require not too much energy. In terrestrial case such kind of probe has been successfully used for glaciers study. And it is possible to extrapolate the usage of such probe to extraterrestrial application. One of the tasks is to estimate melting probe's penetration velocity. Although there are other unsolved problems such as analyzing how the probe will move in low gravity and low atmospheric pressure; knowing whether hole will be closed or not when probe penetrate thick enough; and considering what order could be a penetration velocity. This study explores two techniques of melting probe's movement. One of them based on elasto-plastic theory and so-called "solid water" theory, and other one takes phase changing into account. These two techniques allow estimating melting probe's velocity range and study whole process. Based on these technique several cases of melting probe movement were considered, melting probe's velocity range estimated, influence of different factors studied and discussed and an easy way to optimize parameters of the melting probe proposed.

  18. Experimental and theoretical evidence for bilayer-by-bilayer surface melting of crystalline ice

    PubMed Central

    Sánchez, M. Alejandra; Kling, Tanja; Ishiyama, Tatsuya; van Zadel, Marc-Jan; Mezger, Markus; Jochum, Mara N.; Cyran, Jenée D.; Smit, Wilbert J.; Bakker, Huib J.; Shultz, Mary Jane; Morita, Akihiro; Donadio, Davide; Nagata, Yuki; Bonn, Mischa; Backus, Ellen H. G.

    2017-01-01

    On the surface of water ice, a quasi-liquid layer (QLL) has been extensively reported at temperatures below its bulk melting point at 273 K. Approaching the bulk melting temperature from below, the thickness of the QLL is known to increase. To elucidate the precise temperature variation of the QLL, and its nature, we investigate the surface melting of hexagonal ice by combining noncontact, surface-specific vibrational sum frequency generation (SFG) spectroscopy and spectra calculated from molecular dynamics simulations. Using SFG, we probe the outermost water layers of distinct single crystalline ice faces at different temperatures. For the basal face, a stepwise, sudden weakening of the hydrogen-bonded structure of the outermost water layers occurs at 257 K. The spectral calculations from the molecular dynamics simulations reproduce the experimental findings; this allows us to interpret our experimental findings in terms of a stepwise change from one to two molten bilayers at the transition temperature. PMID:27956637

  19. Experimental results for the rapid determination of the freezing point of fuels

    NASA Technical Reports Server (NTRS)

    Mathiprakasam, B.

    1984-01-01

    Two methods for the rapid determination of the freezing point of fuels were investigated: an optical method, which detected the change in light transmission from the disappearance of solid particles in the melted fuel; and a differential thermal analysis (DTA) method, which sensed the latent heat of fusion. A laboratory apparatus was fabricated to test the two methods. Cooling was done by thermoelectric modules using an ice-water bath as a heat sink. The DTA method was later modified to eliminate the reference fuel. The data from the sample were digitized and a point of inflection, which corresponds to the ASTM D-2386 freezing point (final melting point), was identified from the derivative. The apparatus was modifified to cool the fuel to -60 C and controls were added for maintaining constant cooling rate, rewarming rate, and hold time at minimum temperature. A parametric series of tests were run for twelve fuels with freezing points from -10 C to -50 C, varying cooling rate, rewarming rate, and hold time. Based on the results, an optimum test procedure was established. The results showed good agreement with ASTM D-2386 freezing point and differential scanning calorimetry results.

  20. Modeling of subaqueous melting in Petermann Fjord, Northwestern Greenland using an ocean general circulation model

    NASA Astrophysics Data System (ADS)

    Cai, C.; Rignot, E. J.; Xu, Y.; An, L.; Tinto, K. J.; van den Broeke, M. R.

    2014-12-01

    Basal melting of the floating tongue of Petermann Glacier, in northwestern Greenland is by far the largest process of mass ablation. Melting of the floating tongue is controlled by the buoyancy of the melt water plume, the pressure-dependence of the melting point of sea ice, and the mixing of warm subsurface water with fresh buoyant subglacial discharge. In prior simulations of this melting process, the role of subglacial discharge has been neglected because in similar configurations (floating ice shelves) in the Antarctic, surface runoff is negligible; this is however not true in Greenland. Here, we use the Mass Institute of Technology general circulation model (MITgcm) at a high spatial resolution (10 m x 10 m) to simulate the melting process of the ice shelf in 2-D. The model is constrained by ice shelf bathymetry and ice thickness (refined model in the immediate vicinity of the grounding line) from NASA Operation IceBridge (2011), ocean temperature/salinity data from Johnson et al. (2011), ocean tide height and current from the Arctic Ocean Tidal Inverse Model (AOTIM-5) by Padman and Erofeeva (2004) and subglacial discharge at the grounding line calculated by the hydrostatic potential of the ice from estimated products of the Regional Atmospheric Climate Model (RACMO) of Royal Netherlands Meteorological Institute (KNMI). We compare the results obtained in winter (no runoff) with summer, and the sensitivity of the results to thermal forcing from the ocean, and to the variation of tide height and current, and to the magnitude of subglacial runoff. We conclude on the impact of the ocean and surface melting on the melting regime of the floating ice tongue of Petermann. The basal melt rate increases ~20% with summer surface runoff. This work is performed under a contract with NASA Cryosphere Program.

  1. Submarine melt rates under Greenland's ice tongues

    NASA Astrophysics Data System (ADS)

    Wilson, Nat; Straneo, Fiametta; Heimbach, Patrick; Cenedese, Claudia

    2017-04-01

    The few remaining ice tongues (ice-shelf like extensions) of Greenland's glaciers are undergoing rapid changes with potential implications for the stability of the ice sheet. Submarine melting is recognized as a major contributor to mass loss, yet the magnitude and spatial distribution of melt are poorly known or understood. Here, we use high resolution satellite imagery to infer the magnitude and spatial variability of melt rates under Greenland's largest remaining ice tongues: Ryder Glacier, Petermann Glacier and Nioghalvfjerdsbræ (79 North Glacier). We find that submarine plus aerial melt approximately balance the ice flux from the grounded ice sheet for the first two while at Nioghalvfjerdsbræ the total melt flux exceeds the inflow of ice indicating thinning of the ice tongue. We also show that melt rates under the ice tongues vary considerably, exceeding 60 m yr-1 near the grounding zone and decaying rapidly downstream. Channels, likely originating from upstream subglacial channels, give rise to large melt variations across the ice tongues. Using derived melt rates, we test simplified melt parameterizations appropriate for ice sheet models and find the best agreement with those that incorporate ice tongue geometry in the form of depth and slope.

  2. Thermodynamic Temperature Measurement to the Indium Point Based on Radiance Comparison

    NASA Astrophysics Data System (ADS)

    Yamaguchi, Y.; Yamada, Y.

    2017-04-01

    A multi-national project (the EMRP InK project) was completed recently, which successfully determined the thermodynamic temperatures of several of the high-temperature fixed points above the copper point. The National Metrology Institute of Japan contributed to this project with its newly established absolute spectral radiance calibration capability. In the current study, we have extended the range of thermodynamic temperature measurement to below the copper point and measured the thermodynamic temperatures of the indium point (T_{90} = 429.748 5 K), tin point (505.078 K), zinc point (692.677 K), aluminum point (933.473 K) and the silver point (1 234.93 K) by radiance comparison against the copper point, with a set of radiation thermometers having center wavelengths ranging from 0.65 μm to 1.6 μm. The copper-point temperature was measured by the absolute radiation thermometer which was calibrated by radiance method traceable to the electrical substitution cryogenic radiometer. The radiance of the fixed-point blackbodies was measured by standard radiation thermometers whose spectral responsivity and nonlinearity are precisely evaluated, and then the thermodynamic temperatures were determined from radiance ratios to the copper point. The values of T-T_{90} for the silver-, aluminum-, zinc-, tin- and indium-point cells were determined as -4 mK (U = 104 mK, k=2), -99 mK (88 mK), -76 mK (76 mK), -68 mK (163 mK) and -42 mK (279 mK), respectively.

  3. Dephosphorization of complexly alloyed nickel melts under vacuum induction melting conditions: I. Thermodynamics of dephosphorization

    NASA Astrophysics Data System (ADS)

    Burtsev, V. T.; Anuchkin, S. N.; Sidorov, V. V.; Rigin, V. E.

    2013-01-01

    A thermodynamic computer simulation of the oxidation potential of a gas-melt-ceramic (80 wt% MgO, 20 wt % Al2O3) system under vacuum induction furnace conditions is used to find that the major contribution to this potential at temperatures ranging from 1673 to 2273 K is made by a nickel melt with additives of nickel protoxide. This provides the possibility of oxidative dephosphorization of the metallic melt. The computation of the saturated vapor pressure of phosphorus compounds with the IIA group elements shows that the data obtained for magnesium, calcium, and barium metaphosphates and europium orthophosphate at 1873 K indicate the principal possibility of melt dephosphorization by the evaporation of these compounds under oxidative conditions.

  4. The geometry and volume of melt beneath Ethiopia

    NASA Astrophysics Data System (ADS)

    Kendall, J. M.; Hammond, J. O. S.

    2016-12-01

    A range of seismic measurements can be used to map melt distribution in the crust and uppermost mantle. These include seismic P- and S-wave velocities derived from surface- and body-wave tomography, Vp/Vs ratios obtained from receiver functions, and estimates of seismic anisotropy and attenuation. The most obvious melt parameter that seismic data might be sensitive to is volume fraction. However, such data are more sensitive to the aspect ratio of melt inclusions, which is controlled by the melt wetting angle or in other words the shape of the melt inclusion. To better understand this we perform numerical modelling, varying the shape and amount of melt, to show how various seismic phases are effected by melt. To consider the effects on seismic anisotropy we assume that the melt can be stored in pockets of melt that are either horizontally or vertically aligned (e.g., sills versus dykes). We then consider a range of seismic observations from the rifting environment of Ethiopia. Recent studies of P- and S-wave tomography, Rayleigh and Love waves, and Pn or wide angle P-wave refractions provide provide complimentary constraints on melt volume, orientation and inclusion aspect ratio. Furthermore, receiver functions and shear-wave splitting in body waves show strong anisotropy in this region and can be used to constrain the strike of vertically-aligned partial melt. We show that melt in the mantle beneath Ethiopia is likely stored in low aspect ratio disk-like inclusions, suggesting melt is not in textural equilibrium. We estimate that 2-7% vertically aligned melt is stored beneath the Main Ethiopian Rift, >6% horizontally and vertically aligned melt is stored beneath the Afar-region of the Red Sea Rift and 1-6% horizontally aligned melt is stored beneath the Danakil microplate. This supports ideas of strong shear-derived segregation of melt in narrow parts of the rift and large volumes of melt beneath Afar.

  5. Laser guide star pointing camera for ESO LGS Facilities

    NASA Astrophysics Data System (ADS)

    Bonaccini Calia, D.; Centrone, M.; Pedichini, F.; Ricciardi, A.; Cerruto, A.; Ambrosino, F.

    2014-08-01

    Every observatory using LGS-AO routinely has the experience of the long time needed to bring and acquire the laser guide star in the wavefront sensor field of view. This is mostly due to the difficulty of creating LGS pointing models, because of the opto-mechanical flexures and hysteresis in the launch and receiver telescope structures. The launch telescopes are normally sitting on the mechanical structure of the larger receiver telescope. The LGS acquisition time is even longer in case of multiple LGS systems. In this framework the optimization of the LGS systems absolute pointing accuracy is relevant to boost the time efficiency of both science and technical observations. In this paper we show the rationale, the design and the feasibility tests of a LGS Pointing Camera (LPC), which has been conceived for the VLT Adaptive Optics Facility 4LGSF project. The LPC would assist in pointing the four LGS, while the VLT is doing the initial active optics cycles to adjust its own optics on a natural star target, after a preset. The LPC allows minimizing the needed accuracy for LGS pointing model calibrations, while allowing to reach sub-arcsec LGS absolute pointing accuracy. This considerably reduces the LGS acquisition time and observations operation overheads. The LPC is a smart CCD camera, fed by a 150mm diameter aperture of a Maksutov telescope, mounted on the top ring of the VLT UT4, running Linux and acting as server for the client 4LGSF. The smart camera is able to recognize within few seconds the sky field using astrometric software, determining the stars and the LGS absolute positions. Upon request it returns the offsets to give to the LGS, to position them at the required sky coordinates. As byproduct goal, once calibrated the LPC can calculate upon request for each LGS, its return flux, its fwhm and the uplink beam scattering levels.

  6. Density Affects the Nature of the Hexatic-Liquid Transition in Two-Dimensional Melting of Soft-Core Systems

    NASA Astrophysics Data System (ADS)

    Zu, Mengjie; Liu, Jun; Tong, Hua; Xu, Ning

    2016-08-01

    We find that both continuous and discontinuous hexatic-liquid transitions can happen in the melting of two-dimensional solids of soft-core disks. For three typical model systems, Hertzian, harmonic, and Gaussian-core models, we observe the same scenarios. These systems exhibit reentrant crystallization (melting) with a maximum melting temperature Tm happening at a crossover density ρm. The hexatic-liquid transition at a density smaller than ρm is discontinuous. Liquid and hexatic phases coexist in a density interval, which becomes narrower with increasing temperature and tends to vanish approximately at Tm. Above ρm, the transition is continuous, in agreement with the Kosterlitz-Thouless-Halperin-Nelson-Young theory. For these soft-core systems, the nature of the hexatic-liquid transition depends on density (pressure), with the melting at ρm being a plausible transition point from discontinuous to continuous hexatic-liquid transition.

  7. Melting and subsolidus reactions in the system K2O-CaO-Al2O3-SiO2-H2O

    NASA Astrophysics Data System (ADS)

    Johannes, Wilhelm

    1980-09-01

    Beginning of melting and subsolidus relationships in the system K2O-CaO-Al2O3-SiO2-H2O have been experimentally investigated at pressures up to 20 kbars. The equilibria discussed involve the phases anorthite, sanidine, zoisite, muscovite, quartz, kyanite, gas, and melt and two invariant points: Point [Ky] with the phases An, Or, Zo, Ms, Qz, Vapor, and Melt; point [Or] with An, Zo, Ms, Ky, Qz, Vapor, and Melt. The invariant point [Ky] at 675° C and 8.7 kbars marks the lowest solidus temperature of the system investigated. At pressures above this point the hydrated phases zoisite and muscovite are liquidus phases and the solidus temperatures increase with increasing pressure. At 20 kbars beginning of melting occurs at 740 °C. The solidus temperatures of the quinary system K2O-CaO-Al2O3-SiO2-H2O are almost 60° C (at 20 kbars) and 170° C (at 2kbars) below those of the limiting quaternary system CaO-Al2O3-SiO2-H2O. The maximum water pressure at which anorthite is stable is lowered from 14 to 8.7 kbars in the presence of sanidine. The stability limits of anorthite+ vapor and anorthite+sanidine+vapor at temperatures below 700° C are almost parallel and do not intersect. In the wide temperature — pressure range at pressures above the reaction An+Or+Vapor = Zo+Ms+Qz and temperatures below the melting curve of Zo+Ms+Ky+Qz+Vapor, the feldspar assemblage anorthite+sanidine is replaced by the hydrated phases zoisite and muscovite plus quartz. CaO-Al2O3-SiO2-H2O. Knowledge of the melting relationships involving the minerals zoisite and muscovite contributes to our understanding of the melting processes occuring in the deeper parts of the crust. Beginning of melting in granites and granodiorites depends on the composition of plagioclase. The solidus temperatures of all granites and granodiorites containing plagioclases of intermediate composition are higher than those of the Ca-free alkali feldspar granite system and below those of the Na-free system discussed in this

  8. Method for detecting point mutations in DNA utilizing fluorescence energy transfer

    DOEpatents

    Parkhurst, Lawrence J.; Parkhurst, Kay M.; Middendorf, Lyle

    2001-01-01

    A method for detecting point mutations in DNA using a fluorescently labeled oligomeric probe and Forster resonance energy transfer (FRET) is disclosed. The selected probe is initially labeled at each end with a fluorescence dye, which act together as a donor/acceptor pair for FRET. The fluorescence emission from the dyes changes dramatically from the duplex stage, wherein the probe is hybridized to the complementary strand of DNA, to the single strand stage, when the probe is melted to become detached from the DNA. The change in fluorescence is caused by the dyes coming into closer proximity after melting occurs and the probe becomes detached from the DNA strand. The change in fluorescence emission as a function of temperature is used to calculate the melting temperature of the complex or T.sub.m. In the case where there is a base mismatch between the probe and the DNA strand, indicating a point mutation, the T.sub.m has been found to be significantly lower than the T.sub.m for a perfectly match probelstand duplex. The present invention allows for the detection of the existence and magnitude of T.sub.m, which allows for the quick and accurate detection of a point mutation in the DNA strand and, in some applications, the determination of the approximate location of the mutation within the sequence.

  9. Mapping with MAV: Experimental Study on the Contribution of Absolute and Relative Aerial Position Control

    NASA Astrophysics Data System (ADS)

    Skaloud, J.; Rehak, M.; Lichti, D.

    2014-03-01

    This study highlights the benefit of precise aerial position control in the context of mapping using frame-based imagery taken by small UAVs. We execute several flights with a custom Micro Aerial Vehicle (MAV) octocopter over a small calibration field equipped with 90 signalized targets and 25 ground control points. The octocopter carries a consumer grade RGB camera, modified to insure precise GPS time stamping of each exposure, as well as a multi-frequency/constellation GNSS receiver. The GNSS antenna and camera are rigidly mounted together on a one-axis gimbal that allows control of the obliquity of the captured imagery. The presented experiments focus on including absolute and relative aerial control. We confirm practically that both approaches are very effective: the absolute control allows omission of ground control points while the relative requires only a minimum number of control points. Indeed, the latter method represents an attractive alternative in the context of MAVs for two reasons. First, the procedure is somewhat simplified (e.g. the lever-arm between the camera perspective and antenna phase centers does not need to be determined) and, second, its principle allows employing a single-frequency antenna and carrier-phase GNSS receiver. This reduces the cost of the system as well as the payload, which in turn increases the flying time.

  10. Occurrence of silicate melt, carbonate-rich melt and fluid during medium pressure anatexis of metapelitic gneisses (Oberpfalz, Bavaria) revealed by melt and fluid inclusions study

    NASA Astrophysics Data System (ADS)

    Ferrero, Silvio; O'Brien, Patrick; Hecht, Lutz; Wunder, Bernd

    2014-05-01

    In the last decades our understanding of partial melting processes in the lower crust profited from the investigation of fluid inclusions (Touret et al., 2009) and more recently of anatectic melt inclusions (Cesare et al., 2011) within enclaves and high-grade terranes. The latter finding allowed us to directly analyse the original anatectic melt (Ferrero et al., 2012; Bartoli et al., 2013) preserved within peritectic phases, i.e. mainly garnet, but also ilmenite and spinel, before fractionation, mixing and contamination processes took place. Furthermore, the occurrence of primary fluid inclusions (FI) and anatectic melt inclusions (MI) within enclaves allowed the characterization of the COH fluid present during anatexis under fluid+melt immiscibility conditions (Ferrero et al., 2014). Primary crystallized MI, or "nanogranites", and FI have been identified to occur as clusters in garnet from stromatic migmatites (Zeilengneise) from Oberpfalz, Eastern Bavaria (Moldanubian Zone). During the late Carboniferous, these Grt+Bt+Sill+Crd+Spl metapelitic gneisses underwent HT/MP metamorphism, followed by a HT/LP event (Tanner & Behrmann, 1995). Nanogranites, ≤20 µm in size, consist of Qtz+Bt+Wm+Ab±Ap, and show abundant nanoporosity, localized in the quartz. Fluid inclusions are smaller, generally ≤10 µm, and contain CO2+N2+CH4 plus siderite, pyrophillite and cristobalite, mineral phases not observed in the surrounding rock or as mineral inclusion in garnet. Polycrystalline inclusions containing Cc+Wm+Opx±Qz, commonly ≤10 µm in diameter, occur in the same cluster with MI and FI. Microstructural features, negative-crystal shape and the well-developed crystalline faces of calcite within inclusions suggest that they may result from the crystallization of a carbonate-rich melt. The lack of arrays of carbonate-bearing MI, verified by cathodoluminiscence investigation, supports their primary nature, i.e. they formed during garnet growth. This would suggest the occurrence

  11. Melts of garnet lherzolite: experiments, models and comparison to melts of pyroxenite and carbonated lherzolite

    USGS Publications Warehouse

    Grove, Timothy L.; Holbig, Eva S.; Barr, Jay A.; Till, Christy B.; Krawczynski, Michael J.

    2013-01-01

    Phase equilibrium experiments on a compositionally modified olivine leucitite from the Tibetan plateau have been carried out from 2.2 to 2.8 GPa and 1,380–1,480 °C. The experiments-produced liquids multiply saturated with spinel and garnet lherzolite phase assemblages (olivine, orthopyroxene, clinopyroxene and spinel ± garnet) under nominally anhydrous conditions. These SiO2-undersaturated liquids and published experimental data are utilized to develop a predictive model for garnet lherzolite melting of compositionally variable mantle under anhydrous conditions over the pressure range of 1.9–6 GPa. The model estimates the major element compositions of garnet-saturated melts for a range of mantle lherzolite compositions and predicts the conditions of the spinel to garnet lherzolite phase transition for natural peridotite compositions at above-solidus temperatures and pressures. We compare our predicted garnet lherzolite melts to those of pyroxenite and carbonated lherzolite and develop criteria for distinguishing among melts of these different source types. We also use the model in conjunction with a published predictive model for plagioclase and spinel lherzolite to characterize the differences in major element composition for melts in the plagioclase, spinel and garnet facies and develop tests to distinguish between melts of these three lherzolite facies based on major elements. The model is applied to understand the source materials and conditions of melting for high-K lavas erupted in the Tibetan plateau, basanite–nephelinite lavas erupted early in the evolution of Kilauea volcano, Hawaii, as well as younger tholeiitic to alkali lavas from Kilauea.

  12. On melt solutions for the growth of CaTiO3 crystals

    NASA Astrophysics Data System (ADS)

    Klimm, Detlef; Schmidt, Max; Wolff, Nora; Guguschev, Christo; Ganschow, Steffen

    2018-03-01

    When calcium titanate crystals are grown from stoichiometric melts, they crystallize in the cubic perovskite structure. Upon cooling to room temperature they undergo subsequent phase transitions to tetragonal and orthorhombic modifications. These phase transitions are disruptive and result in severely damaged crystals. This paper presents differential thermal analysis data for several prospective solvents, with the aim to identify a system offering the possibility to perform crystal growth of undistorted CaTiO3 crystals by crystallizing them significantly below the melting point directly in the low temperature modification. From mixtures CaF2:TiO2:CaTiO3 = 3:1:1 (molar ratio) the growth of undistorted, at least millimeter-sized CaTiO3 crystals is possible.

  13. The role of subgrain boundaries in partial melting

    NASA Astrophysics Data System (ADS)

    Levine, Jamie S. F.; Mosher, Sharon; Rahl, Jeffrey M.

    2016-08-01

    Evidence for partial melting along subgrain boundaries in quartz and plagioclase is documented for rocks from the Lost Creek Gneiss of the Llano Uplift, central Texas, the Wet Mountains of central Colorado, and the Albany-Fraser Orogen, southwestern Australia. Domains of quartz or plagioclase crystals along subgrain boundaries are preferentially involved in partial melting over unstrained domains of these minerals. Material along subgrain boundaries in quartz and plagioclase has the same morphology as melt pseudomorphs present along grain boundaries and is commonly laterally continuous with this former grain boundary melt, indicating the material along subgrain boundaries can also be categorized as a melt pseudomorph. Subgrain boundaries consist of arrays of dislocations within a crystal lattice, and unlike fractures would not act as conduits for melt migration. Instead, the presence of former melt along subgrain boundaries requires that partial melting occurred in these locations because it is kinetically more favorable for melting reactions to occur there. Preferential melting in high strain locations may be attributed to strain energy, which provides a minor energetic contribution to the reaction and leads to preferential melting in locations with weakened bonds, and/or the presence of small quantities of water associated with dislocations, which may enhance diffusion rates or locally lower the temperature needed for partial melting.

  14. Ultra-low-frequency vertical vibration isolator based on a two-stage beam structure for absolute gravimetry.

    PubMed

    Wang, G; Wu, K; Hu, H; Li, G; Wang, L J

    2016-10-01

    To reduce seismic and environmental vibration noise, ultra-low-frequency vertical vibration isolation systems play an important role in absolute gravimetry. For this purpose, an isolator based on a two-stage beam structure is proposed and demonstrated. The isolator has a simpler and more robust structure than the present ultra-low-frequency vertical active vibration isolators. In the system, two beams are connected to a frame using flexural pivots. The upper beam is suspended from the frame with a normal hex spring and the lower beam is suspended from the upper one using a zero-length spring. The pivot of the upper beam is not vertically above the pivot of the lower beam. With this special design, the attachment points of the zero-length spring to the beams can be moved to adjust the effective stiffness. A photoelectric detector is used to detect the angle between the two beams, and a voice coil actuator attached to the upper beam is controlled by a feedback circuit to keep the angle at a fixed value. The system can achieve a natural period of 100 s by carefully moving the attachment points of the zero-length spring to the beams and tuning the feedback parameters. The system has been used as an inertial reference in the T-1 absolute gravimeter. The experiment results demonstrate that the system has significant vibration isolation performance that holds promise in applications such as absolute gravimeters.

  15. Ultra-low-frequency vertical vibration isolator based on a two-stage beam structure for absolute gravimetry

    NASA Astrophysics Data System (ADS)

    Wang, G.; Wu, K.; Hu, H.; Li, G.; Wang, L. J.

    2016-10-01

    To reduce seismic and environmental vibration noise, ultra-low-frequency vertical vibration isolation systems play an important role in absolute gravimetry. For this purpose, an isolator based on a two-stage beam structure is proposed and demonstrated. The isolator has a simpler and more robust structure than the present ultra-low-frequency vertical active vibration isolators. In the system, two beams are connected to a frame using flexural pivots. The upper beam is suspended from the frame with a normal hex spring and the lower beam is suspended from the upper one using a zero-length spring. The pivot of the upper beam is not vertically above the pivot of the lower beam. With this special design, the attachment points of the zero-length spring to the beams can be moved to adjust the effective stiffness. A photoelectric detector is used to detect the angle between the two beams, and a voice coil actuator attached to the upper beam is controlled by a feedback circuit to keep the angle at a fixed value. The system can achieve a natural period of 100 s by carefully moving the attachment points of the zero-length spring to the beams and tuning the feedback parameters. The system has been used as an inertial reference in the T-1 absolute gravimeter. The experiment results demonstrate that the system has significant vibration isolation performance that holds promise in applications such as absolute gravimeters.

  16. Impact Melt Emplacement on Mercury

    NASA Astrophysics Data System (ADS)

    Daniels, J. W.; Neish, C. D.

    2018-05-01

    This work proposes that fresh craters on rocky bodies may deposit impact melt externally ultimately according to the strength of its surface gravity, regardless of the body's surface topography and melt abundance.

  17. High-resolution melt analysis to identify and map sequence-tagged site anchor points onto linkage maps: a white lupin (Lupinus albus) map as an exemplar.

    PubMed

    Croxford, Adam E; Rogers, Tom; Caligari, Peter D S; Wilkinson, Michael J

    2008-01-01

    * The provision of sequence-tagged site (STS) anchor points allows meaningful comparisons between mapping studies but can be a time-consuming process for nonmodel species or orphan crops. * Here, the first use of high-resolution melt analysis (HRM) to generate STS markers for use in linkage mapping is described. This strategy is rapid and low-cost, and circumvents the need for labelled primers or amplicon fractionation. * Using white lupin (Lupinus albus, x = 25) as a case study, HRM analysis was applied to identify 91 polymorphic markers from expressed sequence tag (EST)-derived and genomic libraries. Of these, 77 generated STS anchor points in the first fully resolved linkage map of the species. The map also included 230 amplified fragment length polymorphisms (AFLP) loci, spanned 1916 cM (84.2% coverage) and divided into the expected 25 linkage groups. * Quantitative trait loci (QTL) analyses performed on the population revealed genomic regions associated with several traits, including the agronomically important time to flowering (tf), alkaloid synthesis and stem height (Ph). Use of HRM-STS markers also allowed us to make direct comparisons between our map and that of the related crop, Lupinus angustifolius, based on the conversion of RFLP, microsatellite and single nucleotide polymorphism (SNP) markers into HRM markers.

  18. Melting and Freezing of Metals Under the High Pressures of Planetary Interiors

    NASA Astrophysics Data System (ADS)

    Geballe, Zachary Michael

    The goal of this thesis is to help improve models of the evolution of cores of the Earth and other planets, and to improve understanding of melting transitions of metals in general. First, I present laboratory studies of high-pressure melting and near-melting phase transitions of two metals. The epsilon-to-B2 phase boundary of FeSi is constrained to 30 +/- 2 GPa with no measurable pressure-dependence from 1200 +/- 200 to 2300 +/- 200 K using x-ray diffraction in laser heated diamond anvil cells. The miscibility of Si in crystalline Fe likely increases at this transition due to the increasing effective ionic radius of Si, evidenced by the coordination change documented here. The result is that silicon is even more miscible in iron in the cores of Mercury and Mars than shown previously. Solid-solid transitions are also documented in AuGa2 from cubic (fluorite-type) to denser phases above 5.5 GPa and 600 K, in close proximity to the reversal in melting curve from negative slope to positive slope, which is also documented here. The change in melting curve therefore seems to be primarily driven by the crystallographic transitions and not the electronic transitions thought to occur at low temperatures. All transitions described here are reversed in the experiments, revealing hysteresis that ranges from 90 K to less than 15 K, and from 7 GPa to less than 2 GPa. This complexity, along with other complexities seen here and in other studies, suggest the need for new experimental techniques to make unambiguous measurements of a variety of equilibrium properties at melting and near melting. To improve future laboratory studies of melting at high pressure, I analyze several varieties of dynamic heating experiments. Laser heating experiments on metals in diamond anvil cells are shown to be at least 5 times less sensitive (and sometimes > 100 times less sensitive) to the latent heat of melting than suggested by published experimental data from pulsed-heating and continuous

  19. Linking Comparisons of Absolute Gravimeters: A Proof of Concept for a new Global Absolute Gravity Reference System.

    NASA Astrophysics Data System (ADS)

    Wziontek, H.; Palinkas, V.; Falk, R.; Vaľko, M.

    2016-12-01

    Since decades, absolute gravimeters are compared on a regular basis on an international level, starting at the International Bureau for Weights and Measures (BIPM) in 1981. Usually, these comparisons are based on constant reference values deduced from all accepted measurements acquired during the comparison period. Temporal changes between comparison epochs are usually not considered. Resolution No. 2, adopted by IAG during the IUGG General Assembly in Prague 2015, initiates the establishment of a Global Absolute Gravity Reference System based on key comparisons of absolute gravimeters (AG) under the International Committee for Weights and Measures (CIPM) in order to establish a common level in the microGal range. A stable and unique reference frame can only be achieved, if different AG are taking part in different kind of comparisons. Systematic deviations between the respective comparison reference values can be detected, if the AG can be considered stable over time. The continuous operation of superconducting gravimeters (SG) on selected stations further supports the temporal link of comparison reference values by establishing a reference function over time. By a homogenous reprocessing of different comparison epochs and including AG and SG time series at selected stations, links between several comparisons will be established and temporal comparison reference functions will be derived. By this, comparisons on a regional level can be traced to back to the level of key comparisons, providing a reference for other absolute gravimeters. It will be proved and discussed, how such a concept can be used to support the future absolute gravity reference system.

  20. Melting and dissolution of subducting crust at high pressures: the key role of white mica

    NASA Astrophysics Data System (ADS)

    Schmidt, Max W.; Vielzeuf, Daniel; Auzanneau, Estelle

    2004-11-01

    Conditions of melting in the crust are generally controlled by the availability of aqueous fluid and, in the absence of fluid, by the stability of hydroxylated minerals. To depths of 80-90 km, melting is controlled by amphibole and biotite. At greater depths, both phases are unstable in crustal compositions. Simultaneous experiments on a mid-ocean ridge basalt (MORB), a greywacke, and a pelite with excess H2O of 0.4-1.4 wt.% demonstrate that, at >100 km depth (≥3.5 GPa), all three bulk compositions are composed of garnet+clinopyroxene+phengite+coesite±kyanite±rutile, phengitic white mica being the only hydrous mineral present at near-melting temperatures. At 4 GPa, melting reactions, temperatures, and initial melt compositions are thus similar in the entire subducted crust. Fluid-saturated initial melting takes place near 850 °C and melt productivities are proportional to phengite contents. All three bulk compositions produce initially slightly peraluminous potassic Si-rich granites with K:Na molar ratios of 1.4-2.0 and containing 8-13 wt.% H2O. The relatively low Na-contents of these melts result from clinopyroxene/melt partitioning coefficients (Dcpx/melt) of 2.2-4.0 at near solidus temperatures. At higher pressures (≥6.5 GPa), we infer that classical melting does not take place. Instead, the bulk H2O-contents (1.5-2.1 wt.%) in the starting materials, although low, are apparently sufficient to dissolve phengite entirely near 1050 °C. This suggests that pressure conditions beyond the singular endpoint (or second critical point) which terminates the wet solidus as defined by Ricci in 1951 [J.E. Ricci, The phase rule and heterogeneous equilibrium, Dover Publications, Inc. New York (1951) 505 p.] were reached for all three bulk compositions. Extraction of these "supercritical" solute-rich (but Na-poor) melts, which contain about 30-40% H2O, or extraction of the potassic granite melts at lower pressure leave an anhydrous garnet