Sample records for absolute number densities

  1. Determining absolute protein numbers by quantitative fluorescence microscopy.

    PubMed

    Verdaasdonk, Jolien Suzanne; Lawrimore, Josh; Bloom, Kerry

    2014-01-01

    Biological questions are increasingly being addressed using a wide range of quantitative analytical tools to examine protein complex composition. Knowledge of the absolute number of proteins present provides insights into organization, function, and maintenance and is used in mathematical modeling of complex cellular dynamics. In this chapter, we outline and describe three microscopy-based methods for determining absolute protein numbers--fluorescence correlation spectroscopy, stepwise photobleaching, and ratiometric comparison of fluorescence intensity to known standards. In addition, we discuss the various fluorescently labeled proteins that have been used as standards for both stepwise photobleaching and ratiometric comparison analysis. A detailed procedure for determining absolute protein number by ratiometric comparison is outlined in the second half of this chapter. Counting proteins by quantitative microscopy is a relatively simple yet very powerful analytical tool that will increase our understanding of protein complex composition. © 2014 Elsevier Inc. All rights reserved.

  2. Counting numbers of synaptic proteins: absolute quantification and single molecule imaging techniques

    PubMed Central

    Patrizio, Angela; Specht, Christian G.

    2016-01-01

    Abstract. The ability to count molecules is essential to elucidating cellular mechanisms, as these often depend on the absolute numbers and concentrations of molecules within specific compartments. Such is the case at chemical synapses, where the transmission of information from presynaptic to postsynaptic terminals requires complex interactions between small sets of molecules. Be it the subunit stoichiometry specifying neurotransmitter receptor properties, the copy numbers of scaffold proteins setting the limit of receptor accumulation at synapses, or protein packing densities shaping the molecular organization and plasticity of the postsynaptic density, all of these depend on exact quantities of components. A variety of proteomic, electrophysiological, and quantitative imaging techniques have yielded insights into the molecular composition of synaptic complexes. In this review, we compare the different quantitative approaches and consider the potential of single molecule imaging techniques for the quantification of synaptic components. We also discuss specific neurobiological data to contextualize the obtained numbers and to explain how they aid our understanding of synaptic structure and function. PMID:27335891

  3. Counting numbers of synaptic proteins: absolute quantification and single molecule imaging techniques.

    PubMed

    Patrizio, Angela; Specht, Christian G

    2016-10-01

    The ability to count molecules is essential to elucidating cellular mechanisms, as these often depend on the absolute numbers and concentrations of molecules within specific compartments. Such is the case at chemical synapses, where the transmission of information from presynaptic to postsynaptic terminals requires complex interactions between small sets of molecules. Be it the subunit stoichiometry specifying neurotransmitter receptor properties, the copy numbers of scaffold proteins setting the limit of receptor accumulation at synapses, or protein packing densities shaping the molecular organization and plasticity of the postsynaptic density, all of these depend on exact quantities of components. A variety of proteomic, electrophysiological, and quantitative imaging techniques have yielded insights into the molecular composition of synaptic complexes. In this review, we compare the different quantitative approaches and consider the potential of single molecule imaging techniques for the quantification of synaptic components. We also discuss specific neurobiological data to contextualize the obtained numbers and to explain how they aid our understanding of synaptic structure and function.

  4. Cell wall microstructure, pore size distribution and absolute density of hemp shiv

    NASA Astrophysics Data System (ADS)

    Jiang, Y.; Lawrence, M.; Ansell, M. P.; Hussain, A.

    2018-04-01

    This paper, for the first time, fully characterizes the intrinsic physical parameters of hemp shiv including cell wall microstructure, pore size distribution and absolute density. Scanning electron microscopy revealed microstructural features similar to hardwoods. Confocal microscopy revealed three major layers in the cell wall: middle lamella, primary cell wall and secondary cell wall. Computed tomography improved the visualization of pore shape and pore connectivity in three dimensions. Mercury intrusion porosimetry (MIP) showed that the average accessible porosity was 76.67 ± 2.03% and pore size classes could be distinguished into micropores (3-10 nm) and macropores (0.1-1 µm and 20-80 µm). The absolute density was evaluated by helium pycnometry, MIP and Archimedes' methods. The results show that these methods can lead to misinterpretation of absolute density. The MIP method showed a realistic absolute density (1.45 g cm-3) consistent with the density of the known constituents, including lignin, cellulose and hemi-cellulose. However, helium pycnometry and Archimedes' methods gave falsely low values owing to 10% of the volume being inaccessible pores, which require sample pretreatment in order to be filled by liquid or gas. This indicates that the determination of the cell wall density is strongly dependent on sample geometry and preparation.

  5. Cell wall microstructure, pore size distribution and absolute density of hemp shiv

    PubMed Central

    Lawrence, M.; Ansell, M. P.; Hussain, A.

    2018-01-01

    This paper, for the first time, fully characterizes the intrinsic physical parameters of hemp shiv including cell wall microstructure, pore size distribution and absolute density. Scanning electron microscopy revealed microstructural features similar to hardwoods. Confocal microscopy revealed three major layers in the cell wall: middle lamella, primary cell wall and secondary cell wall. Computed tomography improved the visualization of pore shape and pore connectivity in three dimensions. Mercury intrusion porosimetry (MIP) showed that the average accessible porosity was 76.67 ± 2.03% and pore size classes could be distinguished into micropores (3–10 nm) and macropores (0.1–1 µm and 20–80 µm). The absolute density was evaluated by helium pycnometry, MIP and Archimedes' methods. The results show that these methods can lead to misinterpretation of absolute density. The MIP method showed a realistic absolute density (1.45 g cm−3) consistent with the density of the known constituents, including lignin, cellulose and hemi-cellulose. However, helium pycnometry and Archimedes’ methods gave falsely low values owing to 10% of the volume being inaccessible pores, which require sample pretreatment in order to be filled by liquid or gas. This indicates that the determination of the cell wall density is strongly dependent on sample geometry and preparation. PMID:29765652

  6. Particle visualization in high-power impulse magnetron sputtering. II. Absolute density dynamics

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Britun, Nikolay, E-mail: nikolay.britun@umons.ac.be; Palmucci, Maria; Konstantinidis, Stephanos

    2015-04-28

    Time-resolved characterization of an Ar-Ti high-power impulse magnetron sputtering discharge has been performed. The present, second, paper of the study is related to the discharge characterization in terms of the absolute density of species using resonant absorption spectroscopy. The results on the time-resolved density evolution of the neutral and singly-ionized Ti ground state atoms as well as the metastable Ti and Ar atoms during the discharge on- and off-time are presented. Among the others, the questions related to the inversion of population of the Ti energy sublevels, as well as to re-normalization of the two-dimensional density maps in terms ofmore » the absolute density of species, are stressed.« less

  7. A generalized population dynamics model for reproductive interference with absolute density dependence.

    PubMed

    Kyogoku, Daisuke; Sota, Teiji

    2017-05-17

    Interspecific mating interactions, or reproductive interference, can affect population dynamics, species distribution and abundance. Previous population dynamics models have assumed that the impact of frequency-dependent reproductive interference depends on the relative abundances of species. However, this assumption could be an oversimplification inappropriate for making quantitative predictions. Therefore, a more general model to forecast population dynamics in the presence of reproductive interference is required. Here we developed a population dynamics model to describe the absolute density dependence of reproductive interference, which appears likely when encounter rate between individuals is important. Our model (i) can produce diverse shapes of isoclines depending on parameter values and (ii) predicts weaker reproductive interference when absolute density is low. These novel characteristics can create conditions where coexistence is stable and independent from the initial conditions. We assessed the utility of our model in an empirical study using an experimental pair of seed beetle species, Callosobruchus maculatus and Callosobruchus chinensis. Reproductive interference became stronger with increasing total beetle density even when the frequencies of the two species were kept constant. Our model described the effects of absolute density and showed a better fit to the empirical data than the existing model overall.

  8. Absolute flux density calibrations of radio sources: 2.3 GHz

    NASA Technical Reports Server (NTRS)

    Freiley, A. J.; Batelaan, P. D.; Bathker, D. A.

    1977-01-01

    A detailed description of a NASA/JPL Deep Space Network program to improve S-band gain calibrations of large aperture antennas is reported. The program is considered unique in at least three ways; first, absolute gain calibrations of high quality suppressed-sidelobe dual mode horns first provide a high accuracy foundation to the foundation to the program. Second, a very careful transfer calibration technique using an artificial far-field coherent-wave source was used to accurately obtain the gain of one large (26 m) aperture. Third, using the calibrated large aperture directly, the absolute flux density of five selected galactic and extragalactic natural radio sources was determined with an absolute accuracy better than 2 percent, now quoted at the familiar 1 sigma confidence level. The follow-on considerations to apply these results to an operational network of ground antennas are discussed. It is concluded that absolute gain accuracies within + or - 0.30 to 0.40 db are possible, depending primarily on the repeatability (scatter) in the field data from Deep Space Network user stations.

  9. Why to compare absolute numbers of mitochondria.

    PubMed

    Schmitt, Sabine; Schulz, Sabine; Schropp, Eva-Maria; Eberhagen, Carola; Simmons, Alisha; Beisker, Wolfgang; Aichler, Michaela; Zischka, Hans

    2014-11-01

    Prompted by pronounced structural differences between rat liver and rat hepatocellular carcinoma mitochondria, we suspected these mitochondrial populations to differ massively in their molecular composition. Aiming to reveal these mitochondrial differences, we came across the issue on how to normalize such comparisons and decided to focus on the absolute number of mitochondria. To this end, fluorescently stained mitochondria were quantified by flow cytometry. For rat liver mitochondria, this approach resulted in mitochondrial protein contents comparable to earlier reports using alternative methods. We determined similar protein contents for rat liver, heart and kidney mitochondria. In contrast, however, lower protein contents were determined for rat brain mitochondria and for mitochondria from the rat hepatocellular carcinoma cell line McA 7777. This result challenges mitochondrial comparisons that rely on equal protein amounts as a typical normalization method. Exemplarily, we therefore compared the activity and susceptibility toward inhibition of complex II of rat liver and hepatocellular carcinoma mitochondria and obtained significant discrepancies by either normalizing to protein amount or to absolute mitochondrial number. Importantly, the latter normalization, in contrast to the former, demonstrated a lower complex II activity and higher susceptibility toward inhibition in hepatocellular carcinoma mitochondria compared to liver mitochondria. These findings demonstrate that solely normalizing to protein amount may obscure essential molecular differences between mitochondrial populations. Copyright © 2014 Elsevier B.V. and Mitochondria Research Society. All rights reserved.

  10. Spectra of random operators with absolutely continuous integrated density of states

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Rio, Rafael del, E-mail: delrio@iimas.unam.mx, E-mail: delriomagia@gmail.com

    2014-04-15

    The structure of the spectrum of random operators is studied. It is shown that if the density of states measure of some subsets of the spectrum is zero, then these subsets are empty. In particular follows that absolute continuity of the integrated density of states implies singular spectra of ergodic operators is either empty or of positive measure. Our results apply to Anderson and alloy type models, perturbed Landau Hamiltonians, almost periodic potentials, and models which are not ergodic.

  11. Absolute vibrational numbering from isotope shifts in fragmentary spectroscopic data

    NASA Astrophysics Data System (ADS)

    Pashov, A.; Kowalczyk, P.; Jastrzebski, W.

    2018-05-01

    We discuss application of the isotope effect to establish the absolute vibrational numbering in electronic states of diatomic molecules. This is illustrated by examples of states with potential energy curves of both regular and irregular shape, with one or two potential minima. The minimum number of spectroscopic data (either term values or spectral line positions) necessary to provide a unique numbering is considered. We show that at favourable conditions just four term energies (or spectral lines) in one isotopologue and one term energy in the other suffice.

  12. Behaviors of Absolute Densities of N, H, and NH3 at Remote Region of High-Density Radical Source Employing N2-H2 Mixture Plasmas

    NASA Astrophysics Data System (ADS)

    Chen, Shang; Kondo, Hiroki; Ishikawa, Kenji; Takeda, Keigo; Sekine, Makoto; Kano, Hiroyuki; Den, Shoji; Hori, Masaru

    2011-01-01

    For an innovation of molecular-beam-epitaxial (MBE) growth of gallium nitride (GaN), the measurements of absolute densities of N, H, and NH3 at the remote region of the radical source excited by plasmas have become absolutely imperative. By vacuum ultraviolet absorption spectroscopy (VUVAS) at a relatively low pressure of about 1 Pa, we obtained a N atom density of 9×1012 cm-3 for a pure nitrogen gas used, a H atom density of 7×1012 cm-3 for a gas composition of 80% hydrogen mixed with nitrogen gas were measured. The maximum density 2×1013 cm-3 of NH3 was measured by quadruple mass spectrometry (QMS) at H2/(N2+H2)=60%. Moreover, we found that N atom density was considerably affected by processing history, where the characteristic instability was observed during the pure nitrogen plasma discharge sequentially after the hydrogen-containing plasma discharge. These results indicate imply the importance of establishing radical-based processes to control precisely the absolute densities of N, H, and NH3 at the remote region of the radical source.

  13. A global algorithm for estimating Absolute Salinity

    NASA Astrophysics Data System (ADS)

    McDougall, T. J.; Jackett, D. R.; Millero, F. J.; Pawlowicz, R.; Barker, P. M.

    2012-12-01

    The International Thermodynamic Equation of Seawater - 2010 has defined the thermodynamic properties of seawater in terms of a new salinity variable, Absolute Salinity, which takes into account the spatial variation of the composition of seawater. Absolute Salinity more accurately reflects the effects of the dissolved material in seawater on the thermodynamic properties (particularly density) than does Practical Salinity. When a seawater sample has standard composition (i.e. the ratios of the constituents of sea salt are the same as those of surface water of the North Atlantic), Practical Salinity can be used to accurately evaluate the thermodynamic properties of seawater. When seawater is not of standard composition, Practical Salinity alone is not sufficient and the Absolute Salinity Anomaly needs to be estimated; this anomaly is as large as 0.025 g kg-1 in the northernmost North Pacific. Here we provide an algorithm for estimating Absolute Salinity Anomaly for any location (x, y, p) in the world ocean. To develop this algorithm, we used the Absolute Salinity Anomaly that is found by comparing the density calculated from Practical Salinity to the density measured in the laboratory. These estimates of Absolute Salinity Anomaly however are limited to the number of available observations (namely 811). In order to provide a practical method that can be used at any location in the world ocean, we take advantage of approximate relationships between Absolute Salinity Anomaly and silicate concentrations (which are available globally).

  14. Absolute atomic hydrogen densities in a radio frequency discharge measured by two-photon laser induced fluorescence imaging

    NASA Astrophysics Data System (ADS)

    Chérigier, L.; Czarnetzki, U.; Luggenhölscher, D.; Schulz-von der Gathen, V.; Döbele, H. F.

    1999-01-01

    Absolute atomic hydrogen densities were measured in the gaseous electronics conference reference cell parallel plate reactor by Doppler-free two-photon absorption laser induced fluorescence spectroscopy (TALIF) at λ=205 nm. The capacitively coupled radio frequency discharge was operated at 13.56 MHz in pure hydrogen under various input power and pressure conditions. The Doppler-free excitation technique with an unfocused laser beam together with imaging the fluorescence radiation by an intensified charge coupled device camera allows instantaneous spatial resolution along the radial direction. Absolute density calibration is obtained with the aid of a flow tube reactor and titration with NO2. The influence of spatial intensity inhomogenities along the laser beam and subsequent fluorescence are corrected by TALIF in xenon. A full mapping of the absolute density distribution between the electrodes was obtained. The detection limit for atomic hydrogen amounts to about 2×1018 m-3. The dissociation degree is of the order of a few percent.

  15. Absolute and relative densities of fast-food versus other restaurants in relation to weight status: Does restaurant mix matter?

    PubMed

    Polsky, Jane Y; Moineddin, Rahim; Dunn, James R; Glazier, Richard H; Booth, Gillian L

    2016-01-01

    Given the continuing epidemic of obesity, policymakers are increasingly looking for levers within the local retail food environment as a means of promoting healthy weights. To examine the independent and joint associations of absolute and relative densities of restaurants near home with weight status in a large, urban, population-based sample of adults. We studied 10,199 adults living in one of four cities in southern Ontario, Canada, who participated in the Canadian Community Health Survey (cycles 2005, 2007/08, 2009/10). Multivariate models assessed the association of weight status (obesity and body mass index) with absolute densities (numbers) of fast-food, full-service and other restaurants, and the relative density (proportion) of fast-food restaurants (FFR) relative to all restaurants within ~10-minute walk of residential areas. Higher numbers of restaurants of any type were inversely related to excess weight, even in models adjusting for a range of individual covariates and area deprivation. However, these associations were no longer significant after accounting for higher walkability of areas with high volumes of restaurants. In contrast, there was a direct relationship between the proportion of FFR relative to all restaurants and excess weight, particularly in areas with high volumes of FFR (e.g., odds ratio for obesity=2.55 in areas with 5+ FFR, 95% confidence interval: 1.55-4.17, across the interquartile range). Policies aiming to promote healthy weights that target the volume of certain retail food outlets in residential settings may be more effective if they also consider the relative share of outlets serving more and less healthful foods. Copyright © 2015 Elsevier Inc. All rights reserved.

  16. Linear Stability Analysis of Gravitational Effects on a Low-Density Gas Jet Injected into a High-Density Medium

    NASA Technical Reports Server (NTRS)

    Lawson, Anthony L.; Parthasarathy, Ramkumar N.

    2005-01-01

    The objective of this study was to determine the effects of buoyancy on the absolute instability of low-density gas jets injected into high-density gas mediums. Most of the existing analyses of low-density gas jets injected into a high-density ambient have been carried out neglecting effects of gravity. In order to investigate the influence of gravity on the near-injector development of the flow, a spatio-temporal stability analysis of a low-density round jet injected into a high-density ambient gas was performed. The flow was assumed to be isothermal and locally parallel; viscous and diffusive effects were ignored. The variables were represented as the sum of the mean value and a normal-mode small disturbance. An ordinary differential equation governing the amplitude of the pressure disturbance was derived. The velocity and density profiles in the shear layer, and the Froude number (signifying the effects of gravity) were the three important parameters in this equation. Together with the boundary conditions, an eigenvalue problem was formulated. Assuming that the velocity and density profiles in the shear layer to be represented by hyperbolic tangent functions, the eigenvalue problem was solved for various values of Froude number. The Briggs-Bers criterion was combined with the spatio-temporal stability analysis to determine the nature of the absolute instability of the jet whether absolutely or convectively unstable. The roles of the density ratio, Froude number, Schmidt number, and the lateral shift between the density and velocity profiles on the absolute instability of the jet were determined. Comparisons of the results with previous experimental studies show good agreement when the effects of these variables are combined together. Thus, the combination of these variables determines how absolutely unstable the jet will be.

  17. Number-Density Measurements of CO2 in Real Time with an Optical Frequency Comb for High Accuracy and Precision

    NASA Astrophysics Data System (ADS)

    Scholten, Sarah K.; Perrella, Christopher; Anstie, James D.; White, Richard T.; Al-Ashwal, Waddah; Hébert, Nicolas Bourbeau; Genest, Jérôme; Luiten, Andre N.

    2018-05-01

    Real-time and accurate measurements of gas properties are highly desirable for numerous real-world applications. Here, we use an optical-frequency comb to demonstrate absolute number-density and temperature measurements of a sample gas with state-of-the-art precision and accuracy. The technique is demonstrated by measuring the number density of 12C16O2 with an accuracy of better than 1% and a precision of 0.04% in a measurement and analysis cycle of less than 1 s. This technique is transferable to numerous molecular species, thus offering an avenue for near-universal gas concentration measurements.

  18. GeneCount: genome-wide calculation of absolute tumor DNA copy numbers from array comparative genomic hybridization data

    PubMed Central

    Lyng, Heidi; Lando, Malin; Brøvig, Runar S; Svendsrud, Debbie H; Johansen, Morten; Galteland, Eivind; Brustugun, Odd T; Meza-Zepeda, Leonardo A; Myklebost, Ola; Kristensen, Gunnar B; Hovig, Eivind; Stokke, Trond

    2008-01-01

    Absolute tumor DNA copy numbers can currently be achieved only on a single gene basis by using fluorescence in situ hybridization (FISH). We present GeneCount, a method for genome-wide calculation of absolute copy numbers from clinical array comparative genomic hybridization data. The tumor cell fraction is reliably estimated in the model. Data consistent with FISH results are achieved. We demonstrate significant improvements over existing methods for exploring gene dosages and intratumor copy number heterogeneity in cancers. PMID:18500990

  19. Absolute Density Calibration Cell for Laser Induced Fluorescence Erosion Rate Measurements

    NASA Technical Reports Server (NTRS)

    Domonkos, Matthew T.; Stevens, Richard E.

    2001-01-01

    Flight qualification of ion thrusters typically requires testing on the order of 10,000 hours. Extensive knowledge of wear mechanisms and rates is necessary to establish design confidence prior to long duration tests. Consequently, real-time erosion rate measurements offer the potential both to reduce development costs and to enhance knowledge of the dependency of component wear on operating conditions. Several previous studies have used laser-induced fluorescence (LIF) to measure real-time, in situ erosion rates of ion thruster accelerator grids. Those studies provided only relative measurements of the erosion rate. In the present investigation, a molybdenum tube was resistively heated such that the evaporation rate yielded densities within the tube on the order of those expected from accelerator grid erosion. This work examines the suitability of the density cell as an absolute calibration source for LIF measurements, and the intrinsic error was evaluated.

  20. Reader variability in breast density estimation from full-field digital mammograms: the effect of image postprocessing on relative and absolute measures.

    PubMed

    Keller, Brad M; Nathan, Diane L; Gavenonis, Sara C; Chen, Jinbo; Conant, Emily F; Kontos, Despina

    2013-05-01

    Mammographic breast density, a strong risk factor for breast cancer, may be measured as either a relative percentage of dense (ie, radiopaque) breast tissue or as an absolute area from either raw (ie, "for processing") or vendor postprocessed (ie, "for presentation") digital mammograms. Given the increasing interest in the incorporation of mammographic density in breast cancer risk assessment, the purpose of this study is to determine the inherent reader variability in breast density assessment from raw and vendor-processed digital mammograms, because inconsistent estimates could to lead to misclassification of an individual woman's risk for breast cancer. Bilateral, mediolateral-oblique view, raw, and processed digital mammograms of 81 women were retrospectively collected for this study (N = 324 images). Mammographic percent density and absolute dense tissue area estimates for each image were obtained from two radiologists using a validated, interactive software tool. The variability of interreader agreement was not found to be affected by the image presentation style (ie, raw or processed, F-test: P > .5). Interreader estimates of relative and absolute breast density are strongly correlated (Pearson r > 0.84, P < .001) but systematically different (t-test, P < .001) between the two readers. Our results show that mammographic density may be assessed with equal reliability from either raw or vendor postprocessed images. Furthermore, our results suggest that the primary source of density variability comes from the subjectivity of the individual reader in assessing the absolute amount of dense tissue present in the breast, indicating the need to use standardized tools to mitigate this effect. Copyright © 2013 AUR. Published by Elsevier Inc. All rights reserved.

  1. Redefinition of the crater-density and absolute-age boundaries for the chronostratigraphic system of Mars

    USGS Publications Warehouse

    Werner, S.C.; Tanaka, K.L.

    2011-01-01

    For the boundaries of each chronostratigraphic epoch on Mars, we present systematically derived crater-size frequencies based on crater counts of geologic referent surfaces and three proposed " standard" crater size-frequency production distributions as defined by (a) a simple -2 power law, (b) Neukum and Ivanov, (c) Hartmann. In turn, these crater count values are converted to model-absolute ages based on the inferred cratering rate histories. We present a new boundary definition for the Late Hesperian-Early Amazonian transition. Our fitting of crater size-frequency distributions to the chronostratigraphic record of Mars permits the assignment of cumulative counts of craters down to 100. m, 1. km, 2. km, 5. km, and 16. km diameters to martian epochs. Due to differences in the " standard" crater size-frequency production distributions, a generalized crater-density-based definition to the chronostratigraphic system cannot be provided. For the diameter range used for the boundary definitions, the resulting model absolute age fits vary within 1.5% for a given set of production function and chronology model ages. Crater distributions translated to absolute ages utilizing different curve descriptions can result in absolute age differences exceeding 10%. ?? 2011 Elsevier Inc.

  2. Absolute atomic oxygen density measurements for nanosecond-pulsed atmospheric-pressure plasma jets using two-photon absorption laser-induced fluorescence spectroscopy

    NASA Astrophysics Data System (ADS)

    Jiang, C.; Carter, C.

    2014-12-01

    Nanosecond-pulsed plasma jets that are generated under ambient air conditions and free from confinement of electrodes have become of great interest in recent years due to their promising applications in medicine and dentistry. Reactive oxygen species that are generated by nanosecond-pulsed, room-temperature non-equilibrium He-O2 plasma jets among others are believed to play an important role during the bactericidal or sterilization processes. We report here absolute measurements of atomic oxygen density in a 1 mm-diameter He/(1%)O2 plasma jet at atmospheric pressure using two-photon absorption laser-induced fluorescence spectroscopy. Oxygen number density on the order of 1013 cm-3 was obtained in a 150 ns, 6 kV single-pulsed plasma jet for an axial distance up to 5 mm above the device nozzle. Temporally resolved O density measurements showed that there are two maxima, separated in time by 60-70 µs, and a total pulse duration of 260-300 µs. Electrostatic modeling indicated that there are high-electric-field regions near the nozzle exit that may be responsible for the observed temporal behavior of the O production. Both the field-distribution-based estimation of the time interval for the O number density profile and a pulse-energy-dependence study confirmed that electric-field-dependent, direct and indirect electron-induced processes play important roles for O production.

  3. Emission- and fluorescence-spectroscopic investigation of a glow discharge plasma: absolute number density of radiative and nonradiative atoms in the negative glow.

    PubMed

    Takubo, Y; Sato, T; Asaoka, N; Kusaka, K; Akiyama, T; Muroo, K; Yamamoto, M

    2008-01-01

    The excited-state atom densities in the negative glow of a direct-current glow discharge are derived from the spectral-line intensity of radiative atoms and the resonance-fluorescence photon flux of nonradiative atoms. The discharge is operated in a helium-argon gas mixture (molar fraction ratio 91:9; total gas pressure 5 Torr) at a dc current of 0.7-1.2 mA. The observations are made in the region of the maximum luminance in the cathode region, where high-energy electrons accelerated in the cathode fall are injected into the negative glow. The emission intensities of the He I, He II, Ar I, and Ar II spectral lines are measured with a calibrated tungsten ribbon lamp as an absolute spectral-radiance standard. Fluorescence photons scattered by helium and argon atoms in the metastable state and argon atoms in the resonance state are detected by the laser-induced fluorescence (LIF) method with the Rayleigh scattering of nitrogen molecules as an absolute standard of scattering cross section. The laser absorption method is incorporated to confirm the result of the LIF measurement. Excitation energies of the measured spectral lines range from 11.6 (Ar I) to 75.6 eV (He II), where the excitation energy is measured from the ground state of the neutral atom on the assumption that, in the plasma of this study, both the neutral and the ionic lines are excited by electron impact in a single-step process from the ground state of the corresponding neutral atoms. Experimental evidence is shown for the validity of this assumption.

  4. Determination of the Absolute Number of Cytokine mRNA Molecules within Individual Activated Human T Cells

    NASA Technical Reports Server (NTRS)

    Karr, Laurel J.; Marshall, Gwen; Hockett, Richard D.; Bucy, R. Pat; Curreri, Peter A. (Technical Monitor)

    2002-01-01

    A primary function of activated T cells is the expression and subsequent secretion of cytokines, which orchestrate the differentiation of other lymphocytes, modulate antigen presenting cell activity, and alter vascular endothelium to mediate an immune response. Since many features of immune regulation probably result from modest alterations of endogenous rates of multiple interacting processes, quantitative analysis of the frequency and specific activity of individual T cells is critically important. Using a coordinated set of quantitative methods, the absolute number of molecules of several key cytokine mRNA species in individual T cells has been determined. The frequency of human blood T cells activated in vitro by mitogens and recall protein antigens was determined by intracellular cytokine protein staining, in situ hybridization for cytokine mRNA, and by limiting dilution analysis for cytokine mRNA+ cells. The absolute number of mRNA molecules was simultaneously determined in both homogenates of the entire population of cells and in individual cells obtained by limiting dilution, using a quantitative, competitive RT-PCR assay. The absolute numbers of mRNA molecules in a population of cells divided by the frequency of individual positive cells, yielded essentially the same number of mRNA molecules per cell as direct analysis of individual cells by limiting dilution analysis. Mean numbers of mRNA per positive cell from both mitogen and antigen activated T cells, using these stimulation conditions, were 6000 for IL-2, 6300 for IFN-gamma, and 1600 for IL-4.

  5. aCNViewer: Comprehensive genome-wide visualization of absolute copy number and copy neutral variations

    PubMed Central

    Wang-Renault, Shu-Fang; Letouzé, Eric; Imbeaud, Sandrine; Zucman-Rossi, Jessica; Deleuze, Jean-François; How-Kit, Alexandre

    2017-01-01

    Motivation Copy number variations (CNV) include net gains or losses of part or whole chromosomal regions. They differ from copy neutral loss of heterozygosity (cn-LOH) events which do not induce any net change in the copy number and are often associated with uniparental disomy. These phenomena have long been reported to be associated with diseases and particularly in cancer. Losses/gains of genomic regions are often correlated with lower/higher gene expression. On the other hand, loss of heterozygosity (LOH) and cn-LOH are common events in cancer and may be associated with the loss of a functional tumor suppressor gene. Therefore, identifying recurrent CNV and cn-LOH events can be important as they may highlight common biological components and give insights into the development or mechanisms of a disease. However, no currently available tools allow a comprehensive whole-genome visualization of recurrent CNVs and cn-LOH in groups of samples providing absolute quantification of the aberrations leading to the loss of potentially important information. Results To overcome these limitations, we developed aCNViewer (Absolute CNV Viewer), a visualization tool for absolute CNVs and cn-LOH across a group of samples. aCNViewer proposes three graphical representations: dendrograms, bi-dimensional heatmaps showing chromosomal regions sharing similar abnormality patterns, and quantitative stacked histograms facilitating the identification of recurrent absolute CNVs and cn-LOH. We illustrated aCNViewer using publically available hepatocellular carcinomas (HCCs) Affymetrix SNP Array data (Fig 1A). Regions 1q and 8q present a similar percentage of total gains but significantly different copy number gain categories (p-value of 0.0103 with a Fisher exact test), validated by another cohort of HCCs (p-value of 5.6e-7) (Fig 2B). Availability and implementation aCNViewer is implemented in python and R and is available with a GNU GPLv3 license on GitHub https

  6. aCNViewer: Comprehensive genome-wide visualization of absolute copy number and copy neutral variations.

    PubMed

    Renault, Victor; Tost, Jörg; Pichon, Fabien; Wang-Renault, Shu-Fang; Letouzé, Eric; Imbeaud, Sandrine; Zucman-Rossi, Jessica; Deleuze, Jean-François; How-Kit, Alexandre

    2017-01-01

    Copy number variations (CNV) include net gains or losses of part or whole chromosomal regions. They differ from copy neutral loss of heterozygosity (cn-LOH) events which do not induce any net change in the copy number and are often associated with uniparental disomy. These phenomena have long been reported to be associated with diseases and particularly in cancer. Losses/gains of genomic regions are often correlated with lower/higher gene expression. On the other hand, loss of heterozygosity (LOH) and cn-LOH are common events in cancer and may be associated with the loss of a functional tumor suppressor gene. Therefore, identifying recurrent CNV and cn-LOH events can be important as they may highlight common biological components and give insights into the development or mechanisms of a disease. However, no currently available tools allow a comprehensive whole-genome visualization of recurrent CNVs and cn-LOH in groups of samples providing absolute quantification of the aberrations leading to the loss of potentially important information. To overcome these limitations, we developed aCNViewer (Absolute CNV Viewer), a visualization tool for absolute CNVs and cn-LOH across a group of samples. aCNViewer proposes three graphical representations: dendrograms, bi-dimensional heatmaps showing chromosomal regions sharing similar abnormality patterns, and quantitative stacked histograms facilitating the identification of recurrent absolute CNVs and cn-LOH. We illustrated aCNViewer using publically available hepatocellular carcinomas (HCCs) Affymetrix SNP Array data (Fig 1A). Regions 1q and 8q present a similar percentage of total gains but significantly different copy number gain categories (p-value of 0.0103 with a Fisher exact test), validated by another cohort of HCCs (p-value of 5.6e-7) (Fig 2B). aCNViewer is implemented in python and R and is available with a GNU GPLv3 license on GitHub https://github.com/FJD-CEPH/aCNViewer and Docker https

  7. A new method to measure electron density and effective atomic number using dual-energy CT images

    NASA Astrophysics Data System (ADS)

    Ramos Garcia, Luis Isaac; Pérez Azorin, José Fernando; Almansa, Julio F.

    2016-01-01

    The purpose of this work is to present a new method to extract the electron density ({ρ\\text{e}} ) and the effective atomic number (Z eff) from dual-energy CT images, based on a Karhunen-Loeve expansion (KLE) of the atomic cross section per electron. This method was used to calibrate a Siemens Definition CT using the CIRS phantom. The predicted electron density and effective atomic number using 80 kVp and 140 kVp were compared with a calibration phantom and an independent set of samples. The mean absolute deviations between the theoretical and calculated values for all the samples were 1.7 %  ±  0.1 % for {ρ\\text{e}} and 4.1 %  ±  0.3 % for Z eff. Finally, these results were compared with other stoichiometric method. The application of the KLE to represent the atomic cross section per electron is a promising method for calculating {ρ\\text{e}} and Z eff using dual-energy CT images.

  8. Instability Analysis of a Low-Density Gas Jet Injected into a High-Density Gas

    NASA Technical Reports Server (NTRS)

    Lawson, Anthony Layiwola

    2001-01-01

    The objective of this study was to determine the effects of buoyancy on the absolute instability of low-density gas jets injected into high-density gas mediums. Most of the existing analyses of low-density gas jets injected into a high-density ambient have been carried out neglecting effects of gravity. In order to investigate the influence of gravity on the near-injector development of the flow, a linear temporal stability analysis and a spatio-temporal stability analysis of a low-density round jet injected into a high-density ambient gas were performed. The flow was assumed to be isothermal and locally parallel; viscous and diffusive effects were ignored. The variables were represented as the sum of the mean value and a normal-mode small disturbance. An ordinary differential equation governing the amplitude of the pressure disturbance was derived. The velocity and density profiles in the shear layer, and the Froude number (signifying the effects of gravity) were the three important parameters in this equation. Together with the boundary conditions, an eigenvalue problem was formulated. Assuming that the velocity and density profiles in the shear layer to be represented by hyperbolic tangent functions, the eigenvalue problem was solved for various values of Froude number. The temporal growth rates and the phase velocity of the disturbances were obtained. It was found that the presence of variable density within the shear layer resulted in an increase in the temporal amplification rate of the disturbances and an increase in the range of unstable frequencies, accompanied by a reduction in the phase velocities of the disturbances. Also, the temporal growth rates of the disturbances were increased as the Froude number was reduced (i.e. gravitational effects increased), indicating the destabilizing role played by gravity. The spatio-temporal stability analysis was performed to determine the nature of the absolute instability of the jet. The roles of the density ratio

  9. Number density structures in the inner heliosphere

    NASA Astrophysics Data System (ADS)

    Stansby, D.; Horbury, T. S.

    2018-06-01

    Aims: The origins and generation mechanisms of the slow solar wind are still unclear. Part of the slow solar wind is populated by number density structures, discrete patches of increased number density that are frozen in to and move with the bulk solar wind. In this paper we aimed to provide the first in-situ statistical study of number density structures in the inner heliosphere. Methods: We reprocessed in-situ ion distribution functions measured by Helios in the inner heliosphere to provide a new reliable set of proton plasma moments for the entire mission. From this new data set we looked for number density structures measured within 0.5 AU of the Sun and studied their properties. Results: We identified 140 discrete areas of enhanced number density. The structures occurred exclusively in the slow solar wind and spanned a wide range of length scales from 50 Mm to 2000 Mm, which includes smaller scales than have been previously observed. They were also consistently denser and hotter that the surrounding plasma, but had lower magnetic field strengths, and therefore remained in pressure balance. Conclusions: Our observations show that these structures are present in the slow solar wind at a wide range of scales, some of which are too small to be detected by remote sensing instruments. These structures are rare, accounting for only 1% of the slow solar wind measured by Helios, and are not a significant contribution to the mass flux of the solar wind.

  10. Effects of Mean Flow Profiles on the Instability of a Low-Density Gas Jet Injected into a High-Density Gas

    NASA Technical Reports Server (NTRS)

    Vedantam, NandaKishore; Parthasarathy, Ramkumar N.

    2004-01-01

    The effects of the mean velocity profiles on the instability characteristics in the near-injector region of axisymmetric low density gas jets injected vertically upwards into a high-density gas medium were investigated using linear inviscid stability analysis. The flow was assumed to be isothermal and locally parallel. Three velocity profiles, signifying different changes in the mean velocity in the shear layer, were used in the analysis. The effects of the inhomogeneous shear layer and the Froude number (signifying the effects of gravity) on the instability for each set of mean profiles were delineated. At a large Froude number (negligible gravity), a critical density ratio was found for the three profiles at which the jet became absolutely unstable. The critical density ratio for each velocity profile was increased as the Froude number was reduced. A critical Froude number was found for the three sets of profiles, below which the jet was absolutely unstable for all the density ratios less than unity, which demarcated the jet flow into the momentum-driven regime and the buoyancy-driven regime.

  11. Joint constraints on galaxy bias and σ{sub 8} through the N-pdf of the galaxy number density

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Arnalte-Mur, Pablo; Martínez, Vicent J.; Vielva, Patricio

    We present a full description of the N-probability density function of the galaxy number density fluctuations. This N-pdf is given in terms, on the one hand, of the cold dark matter correlations and, on the other hand, of the galaxy bias parameter. The method relies on the assumption commonly adopted that the dark matter density fluctuations follow a local non-linear transformation of the initial energy density perturbations. The N-pdf of the galaxy number density fluctuations allows for an optimal estimation of the bias parameter (e.g., via maximum-likelihood estimation, or Bayesian inference if there exists any a priori information on themore » bias parameter), and of those parameters defining the dark matter correlations, in particular its amplitude (σ{sub 8}). It also provides the proper framework to perform model selection between two competitive hypotheses. The parameters estimation capabilities of the N-pdf are proved by SDSS-like simulations (both, ideal log-normal simulations and mocks obtained from Las Damas simulations), showing that our estimator is unbiased. We apply our formalism to the 7th release of the SDSS main sample (for a volume-limited subset with absolute magnitudes M{sub r} ≤ −20). We obtain b-circumflex  = 1.193 ± 0.074 and σ-bar{sub 8} = 0.862 ± 0.080, for galaxy number density fluctuations in cells of the size of 30h{sup −1}Mpc. Different model selection criteria show that galaxy biasing is clearly favoured.« less

  12. N Vibrational Temperatures and OH Number Density Measurements in a NS Pulse Discharge Hydrogen-Air Plasmas

    NASA Astrophysics Data System (ADS)

    Hung, Yichen; Winters, Caroline; Jans, Elijah R.; Frederickson, Kraig; Adamovich, Igor V.

    2017-06-01

    This work presents time-resolved measurements of nitrogen vibrational temperature, translational-rotational temperature, and absolute OH number density in lean hydrogen-air mixtures excited in a diffuse filament nanosecond pulse discharge, at a pressure of 100 Torr and high specific energy loading. The main objective of these measurements is to study a possible effect of nitrogen vibrational excitation on low-temperature kinetics of HO2 and OH radicals. N2 vibrational temperature and gas temperature in the discharge and the afterglow are measured by ns broadband Coherent Anti-Stokes Scattering (CARS). Hydroxyl radical number density is measured by Laser Induced Fluorescence (LIF) calibrated by Rayleigh scattering. The results show that the discharge generates strong vibrational nonequilibrium in air and H2-air mixtures for delay times after the discharge pulse of up to 1 ms, with peak vibrational temperature of Tv ≈ 2000 K at T ≈ 500 K. Nitrogen vibrational temperature peaks ≈ 200 μs after the discharge pulse, before decreasing due to vibrational-translational relaxation by O atoms (on the time scale of a few hundred μs) and diffusion (on ms time scale). OH number density increases gradually after the discharge pulse, peaking at t 100-300 μs and decaying on a longer time scale, until t 1 ms. Both OH rise time and decay time decrease as H2 fraction in the mixture is increased from 1% to 5%. OH number density in a 1% H2-air mixture peaks at approximately the same time as vibrational temperature in air, suggesting that OH kinetics may be affected by N2 vibrational excitation. However, preliminary kinetic modeling calculations demonstrate that OH number density overshoot is controlled by known reactions of H and O radicals generated in the plasma, rather than by dissociation by HO2 radical in collisions with vibrationally excited N2 molecules, as has been suggested earlier. Additional measurements at higher specific energy loadings and kinetic modeling

  13. Targeted Proteomics and Absolute Protein Quantification for the Construction of a Stoichiometric Host-Pathogen Surface Density Model*

    PubMed Central

    Sjöholm, Kristoffer; Kilsgård, Ola; Teleman, Johan; Happonen, Lotta; Malmström, Lars; Malmström, Johan

    2017-01-01

    Sepsis is a systemic immune response responsible for considerable morbidity and mortality. Molecular modeling of host-pathogen interactions in the disease state represents a promising strategy to define molecular events of importance for the transition from superficial to invasive infectious diseases. Here we used the Gram-positive bacterium Streptococcus pyogenes as a model system to establish a mass spectrometry based workflow for the construction of a stoichiometric surface density model between the S. pyogenes surface, the surface virulence factor M-protein, and adhered human blood plasma proteins. The workflow relies on stable isotope labeled reference peptides and selected reaction monitoring mass spectrometry analysis of a wild-type strain and an M-protein deficient mutant strain, to generate absolutely quantified protein stoichiometry ratios between S. pyogenes and interacting plasma proteins. The stoichiometry ratios in combination with a novel targeted mass spectrometry method to measure cell numbers enabled the construction of a stoichiometric surface density model using protein structures available from the protein data bank. The model outlines the topology and density of the host-pathogen protein interaction network on the S. pyogenes bacterial surface, revealing a dense and highly organized protein interaction network. Removal of the M-protein from S. pyogenes introduces a drastic change in the network topology, validated by electron microscopy. We propose that the stoichiometric surface density model of S. pyogenes in human blood plasma represents a scalable framework that can continuously be refined with the emergence of new results. Future integration of new results will improve the understanding of protein-protein interactions and their importance for bacterial virulence. Furthermore, we anticipate that the general properties of the developed workflow will facilitate the production of stoichiometric surface density models for other types of host

  14. Targeted Proteomics and Absolute Protein Quantification for the Construction of a Stoichiometric Host-Pathogen Surface Density Model.

    PubMed

    Sjöholm, Kristoffer; Kilsgård, Ola; Teleman, Johan; Happonen, Lotta; Malmström, Lars; Malmström, Johan

    2017-04-01

    Sepsis is a systemic immune response responsible for considerable morbidity and mortality. Molecular modeling of host-pathogen interactions in the disease state represents a promising strategy to define molecular events of importance for the transition from superficial to invasive infectious diseases. Here we used the Gram-positive bacterium Streptococcus pyogenes as a model system to establish a mass spectrometry based workflow for the construction of a stoichiometric surface density model between the S. pyogenes surface, the surface virulence factor M-protein, and adhered human blood plasma proteins. The workflow relies on stable isotope labeled reference peptides and selected reaction monitoring mass spectrometry analysis of a wild-type strain and an M-protein deficient mutant strain, to generate absolutely quantified protein stoichiometry ratios between S. pyogenes and interacting plasma proteins. The stoichiometry ratios in combination with a novel targeted mass spectrometry method to measure cell numbers enabled the construction of a stoichiometric surface density model using protein structures available from the protein data bank. The model outlines the topology and density of the host-pathogen protein interaction network on the S. pyogenes bacterial surface, revealing a dense and highly organized protein interaction network. Removal of the M-protein from S. pyogenes introduces a drastic change in the network topology, validated by electron microscopy. We propose that the stoichiometric surface density model of S. pyogenes in human blood plasma represents a scalable framework that can continuously be refined with the emergence of new results. Future integration of new results will improve the understanding of protein-protein interactions and their importance for bacterial virulence. Furthermore, we anticipate that the general properties of the developed workflow will facilitate the production of stoichiometric surface density models for other types of host

  15. A common visual metric for approximate number and density

    PubMed Central

    Dakin, Steven C.; Tibber, Marc S.; Greenwood, John A.; Kingdom, Frederick A. A.; Morgan, Michael J.

    2011-01-01

    There is considerable interest in how humans estimate the number of objects in a scene in the context of an extensive literature on how we estimate the density (i.e., spacing) of objects. Here, we show that our sense of number and our sense of density are intertwined. Presented with two patches, observers found it more difficult to spot differences in either density or numerosity when those patches were mismatched in overall size, and their errors were consistent with larger patches appearing both denser and more numerous. We propose that density is estimated using the relative response of mechanisms tuned to low and high spatial frequencies (SFs), because energy at high SFs is largely determined by the number of objects, whereas low SF energy depends more on the area occupied by elements. This measure is biased by overall stimulus size in the same way as human observers, and by estimating number using the same measure scaled by relative stimulus size, we can explain all of our results. This model is a simple, biologically plausible common metric for perceptual number and density. PMID:22106276

  16. Developing a bubble number-density paleoclimatic indicator for glacier ice

    USGS Publications Warehouse

    Spencer, M.K.; Alley, R.B.; Fitzpatrick, J.J.

    2006-01-01

    Past accumulation rate can be estimated from the measured number-density of bubbles in an ice core and the reconstructed paleotemperature, using a new technique. Density increase and grain growth in polar firn are both controlled by temperature and accumulation rate, and the integrated effects are recorded in the number-density of bubbles as the firn changes to ice. An empirical model of these processes, optimized to fit published data on recently formed bubbles, reconstructs accumulation rates using recent temperatures with an uncertainty of 41% (P < 0.05). For modern sites considered here, no statistically significant trend exists between mean annual temperature and the ratio of bubble number-density to grain number-density at the time of pore close-off; optimum modeled accumulation-rate estimates require an eventual ???2.02 ?? 0.08 (P < 0.05) bubbles per close-off grain. Bubble number-density in the GRIP (Greenland) ice core is qualitatively consistent with independent estimates for a combined temperature decrease and accumulation-rate increase there during the last 5 kyr.

  17. Observation of number-density-dependent growth of plasmonic nanobubbles

    NASA Astrophysics Data System (ADS)

    Nakajima, Takashi; Wang, Xiaolong; Chatterjee, Souvik; Sakka, Tetsuo

    2016-06-01

    Interaction dynamics of laser pulses and nanoparticles are of great interest in recent years. In many cases, laser-nanoparticle interactions result in the formation of plasmonic nanobubbles, and the dynamics of nanoparticles and nanobubbles are inseparable. So far, very little attention has been paid to the number density. Here we report the first observation of number-density-dependent growth of plasmonic nanobubbles. Our results show that the nanobubbles growth depends (does not depend) on the number density at high (low) laser fluence, although the inter-particle distance in the solution is as long as 14-30 μm. This cannot be explained by the existing physical picture, and we propose a new model which takes into account the pressure waves arising from nanoparticles. The numerical results based on this model agree well with the experimental results. Our findings imply that the number density can be a new doorknob to control laser-nanobubble as well as laser-nanoparticle interactions.

  18. Observation of number-density-dependent growth of plasmonic nanobubbles.

    PubMed

    Nakajima, Takashi; Wang, Xiaolong; Chatterjee, Souvik; Sakka, Tetsuo

    2016-06-29

    Interaction dynamics of laser pulses and nanoparticles are of great interest in recent years. In many cases, laser-nanoparticle interactions result in the formation of plasmonic nanobubbles, and the dynamics of nanoparticles and nanobubbles are inseparable. So far, very little attention has been paid to the number density. Here we report the first observation of number-density-dependent growth of plasmonic nanobubbles. Our results show that the nanobubbles growth depends (does not depend) on the number density at high (low) laser fluence, although the inter-particle distance in the solution is as long as 14-30 μm. This cannot be explained by the existing physical picture, and we propose a new model which takes into account the pressure waves arising from nanoparticles. The numerical results based on this model agree well with the experimental results. Our findings imply that the number density can be a new doorknob to control laser-nanobubble as well as laser-nanoparticle interactions.

  19. Cosmology with negative absolute temperatures

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Vieira, J.P.P.; Byrnes, Christian T.; Lewis, Antony, E-mail: J.Pinto-Vieira@sussex.ac.uk, E-mail: ctb22@sussex.ac.uk, E-mail: antony@cosmologist.info

    Negative absolute temperatures (NAT) are an exotic thermodynamical consequence of quantum physics which has been known since the 1950's (having been achieved in the lab on a number of occasions). Recently, the work of Braun et al. [1] has rekindled interest in negative temperatures and hinted at a possibility of using NAT systems in the lab as dark energy analogues. This paper goes one step further, looking into the cosmological consequences of the existence of a NAT component in the Universe. NAT-dominated expanding Universes experience a borderline phantom expansion ( w < -1) with no Big Rip, and their contractingmore » counterparts are forced to bounce after the energy density becomes sufficiently large. Both scenarios might be used to solve horizon and flatness problems analogously to standard inflation and bouncing cosmologies. We discuss the difficulties in obtaining and ending a NAT-dominated epoch, and possible ways of obtaining density perturbations with an acceptable spectrum.« less

  20. Absolute instability of the Gaussian wake profile

    NASA Technical Reports Server (NTRS)

    Hultgren, Lennart S.; Aggarwal, Arun K.

    1987-01-01

    Linear parallel-flow stability theory has been used to investigate the effect of viscosity on the local absolute instability of a family of wake profiles with a Gaussian velocity distribution. The type of local instability, i.e., convective or absolute, is determined by the location of a branch-point singularity with zero group velocity of the complex dispersion relation for the instability waves. The effects of viscosity were found to be weak for values of the wake Reynolds number, based on the center-line velocity defect and the wake half-width, larger than about 400. Absolute instability occurs only for sufficiently large values of the center-line wake defect. The critical value of this parameter increases with decreasing wake Reynolds number, thereby indicating a shrinking region of absolute instability with decreasing wake Reynolds number. If backflow is not allowed, absolute instability does not occur for wake Reynolds numbers smaller than about 38.

  1. Structure elucidation and absolute stereochemistry of isomeric monoterpene chromane esters.

    PubMed

    Batista, João M; Batista, Andrea N L; Mota, Jonas S; Cass, Quezia B; Kato, Massuo J; Bolzani, Vanderlan S; Freedman, Teresa B; López, Silvia N; Furlan, Maysa; Nafie, Laurence A

    2011-04-15

    Six novel monoterpene chromane esters were isolated from the aerial parts of Peperomia obtusifolia (Piperaceae) using chiral chromatography. This is the first time that chiral chromane esters of this kind, ones with a tethered chiral terpene, have been isolated in nature. Due to their structural features, it is not currently possible to assess directly their absolute stereochemistry using any of the standard classical approaches, such as X-ray crystallography, NMR, optical rotation, or electronic circular dichroism (ECD). Herein we report the absolute configuration of these molecules, involving four chiral centers, using vibrational circular dichroism (VCD) and density functional theory (DFT) (B3LYP/6-31G*) calculations. This work further reinforces the capability of VCD to determine unambiguously the absolute configuration of structurally complex molecules in solution, without crystallization or derivatization, and demonstrates the sensitivity of VCD to specify the absolute configuration for just one among a number of chiral centers. We also demonstrate the sufficiency of using the so-called inexpensive basis set 6-31G* compared to the triple-ζ basis set TZVP for absolute configuration analysis of larger molecules using VCD. Overall, this work extends our knowledge of secondary metabolites in plants and provides a straightforward way to determine the absolute configuration of complex natural products involving a chiral parent moiety combined with a chiral terpene adduct.

  2. Determination of the absolute configurations of synthetic daunorubicin analogues using vibrational circular dichroism spectroscopy and density functional theory.

    PubMed

    Yang, Guochun; Tran, Ha; Fan, Eric; Shi, Wei; Lowary, Todd L; Xu, Yunjie

    2010-08-01

    The absolute configurations of three synthesized anthracycline analogues have been determined using vibrational circular dichroism (VCD) spectroscopy and the density functional theory (DFT) calculations. The experimental VCD spectra of the three compounds have been measured for the first time in the film state, prepared from their CDCl(3) solutions. Conformational searches for the monomers and some dimers of the three compounds have been performed at the DFT level using the B3LYP functional and the 6-311G** and 6-311++G** basis sets. The corresponding vibrational absorption and VCD spectra have been calculated. The good agreement between the experimental and the calculated spectra allows one to assign the absolute configurations of the three compounds with high confidence. In addition, the dominant conformers of the three compounds have also been identified. Copyright 2010 Wiley-Liss, Inc.

  3. Absolute Power Spectral Density Changes in the Magnetoencephalographic Activity During the Transition from Childhood to Adulthood.

    PubMed

    Gómez, Carlos M; Rodríguez-Martínez, Elena I; Fernández, Alberto; Maestú, Fernando; Poza, Jesús; Gómez, Carlos

    2017-01-01

    The aim of this study was to define the pattern of reduction in absolute power spectral density (PSD) of magnetoencephalography (MEG) signals throughout development. Specifically, we wanted to explore whether the human skull's high permeability for electromagnetic fields would allow us to question whether the pattern of absolute PSD reduction observed in the human electroencephalogram is due to an increase in the skull's resistive properties with age. Furthermore, the topography of the MEG signals during maturation was explored, providing additional insights about the areas and brain rhythms related to late maturation in the human brain. To attain these goals, spontaneous MEG activity was recorded from 148 sensors in a sample of 59 subjects divided into three age groups: children/adolescents (7-14 years), young adults (17-20 years) and adults (21-26 years). Statistical testing was carried out by means of an analysis of variance (ANOVA), with "age group" as between-subject factor and "sensor group" as within-subject factor. Additionally, correlations of absolute PSD with age were computed to assess the influence of age on the spectral content of MEG signals. Results showed a broadband PSD decrease in frontal areas, which suggests the late maturation of this region, but also a mild increase in high frequency PSD with age in posterior areas. These findings suggest that the intensity of the neural sources during spontaneous brain activity decreases with age, which may be related to synaptic pruning.

  4. Surface charge dynamics and OH and H number density distributions in near-surface nanosecond pulse discharges at a liquid / vapor interface

    NASA Astrophysics Data System (ADS)

    Winters, Caroline; Petrishchev, Vitaly; Yin, Zhiyao; Lempert, Walter R.; Adamovich, Igor V.

    2015-10-01

    The present work provides insight into surface charge dynamics and kinetics of radical species reactions in nanosecond pulse discharges sustained at a liquid-vapor interface, above a distilled water surface. The near-surface plasma is sustained using two different discharge configurations, a surface ionization wave discharge between two exposed metal electrodes and a double dielectric barrier discharge. At low discharge pulse repetition rates (~100 Hz), residual surface charge deposition after the discharge pulse is a minor effect. At high pulse repetition rates (~10 kHz), significant negative surface charge accumulation over multiple discharge pulses is detected, both during alternating polarity and negative polarity pulse trains. Laser induced fluorescence (LIF) and two-photon absorption LIF (TALIF) line imaging are used for in situ measurements of spatial distributions of absolute OH and H atom number densities in near-surface, repetitive nanosecond pulse discharge plasmas. Both in a surface ionization wave discharge and in a double dielectric barrier discharge, peak measured H atom number density, [H] is much higher compared to peak OH number density, due to more rapid OH decay in the afterglow between the discharge pulses. Higher OH number density was measured near the regions with higher plasma emission intensity. Both OH and especially H atoms diffuse out of the surface ionization wave plasma volume, up to several mm from the liquid surface. Kinetic modeling calculations using a quasi-zero-dimensional H2O vapor / Ar plasma model are in qualitative agreement with the experimental data. The results demonstrate the experimental capability of in situ radical species number density distribution measurements in liquid-vapor interface plasmas, in a simple canonical geometry that lends itself to the validation of kinetic models.

  5. Absolute and estimated values of macular pigment optical density in young and aged Asian participants with or without age-related macular degeneration.

    PubMed

    Ozawa, Yoko; Shigeno, Yuta; Nagai, Norihiro; Suzuki, Misa; Kurihara, Toshihide; Minami, Sakiko; Hirano, Eri; Shinoda, Hajime; Kobayashi, Saori; Tsubota, Kazuo

    2017-08-29

    Lutein and zeaxanthin are suggested micronutrient supplements to prevent the progression of age-related macular degeneration (AMD), a leading cause of blindness worldwide. To monitor the levels of lutein/zeaxanthin in the macula, macular pigment optical density (MPOD) is measured. A commercially available device (MPSII®, Elektron Technology, Switzerland), using technology based on heterochromatic flicker photometry, can measure both absolute and estimated values of MPOD. However, whether the estimated value is applicable to Asian individuals and/or AMD patients remains to be determined. The absolute and estimated values of MPOD were measured using the MPSII® device in 77 participants with a best-corrected visual acuity (BCVA) > 0.099 (logMAR score). The studied eyes included 17 young (20-29 years) healthy, 26 aged (>50 years) healthy, 18 aged and AMD-fellow, and 16 aged AMD eyes. The mean BCVA among the groups were not significantly different. Both absolute and estimated values were measurable in all eyes of young healthy group. However, absolute values were measurable in only 57.7%, 66.7%, and 43.8%, of the aged healthy, AMD-fellow, and AMD groups, respectively, and 56.7% of the eyes included in the 3 aged groups. In contrast, the estimated value was measurable in 84.6%, 88.9% and 93.8% of the groups, respectively, and 88.3% of eyes in the pooled aged group. The estimated value was correlated with absolute value in individuals from all groups by Spearman's correlation coefficient analyses (young healthy: R 2  = 0.885, P = 0.0001; aged healthy: R 2  = 0.765, P = 0.001; AMD-fellow: R 2  = 0.851, P = 0.0001; and AMD: R 2  = 0.860, P = 0.013). Using the estimated value, significantly lower MPOD values were found in aged AMD-related eyes, which included both AMD-fellow and AMD eyes, compared with aged healthy eyes by Student's t-test (P = 0.02). Absolute, in contrast to estimated, value was measurable in a limited number of aged participants

  6. Inherent length-scales of periodic solar wind number density structures

    NASA Astrophysics Data System (ADS)

    Viall, N. M.; Kepko, L.; Spence, H. E.

    2008-07-01

    We present an analysis of the radial length-scales of periodic solar wind number density structures. We converted 11 years (1995-2005) of solar wind number density data into radial length series segments and Fourier analyzed them to identify all spectral peaks with radial wavelengths between 72 (116) and 900 (900) Mm for slow (fast) wind intervals. Our window length for the spectral analysis was 9072 Mm, approximately equivalent to 7 (4) h of data for the slow (fast) solar wind. We required that spectral peaks pass both an amplitude test and a harmonic F-test at the 95% confidence level simultaneously. From the occurrence distributions of these spectral peaks for slow and fast wind, we find that periodic number density structures occur more often at certain radial length-scales than at others, and are consistently observed within each speed range over most of the 11-year interval. For the slow wind, those length-scales are L ˜ 73, 120, 136, and 180 Mm. For the fast wind, those length-scales are L ˜ 187, 270 and 400 Mm. The results argue for the existence of inherent radial length-scales in the solar wind number density.

  7. Diamond like carbon coatings: Categorization by atomic number density

    NASA Technical Reports Server (NTRS)

    Angus, John C.

    1986-01-01

    Dense diamond-like hydrocarbon films grown at the NASA Lewis Research Center by radio frequency self bias discharge and by direct ion beam deposition were studied. A new method for categorizing hydrocarbons based on their atomic number density and elemental composition was developed and applied to the diamond-like hydrocarbon films. It was shown that the diamond-like hydrocarbon films are an entirely new class of hydrocarbons with atomic number densities lying between those of single crystal diamond and adamantanes. In addition, a major review article on these new materials was completed in cooperation with NASA Lewis Research Center personnel.

  8. Maximizing Information Yield From Pheromone-Baited Monitoring Traps: Estimating Plume Reach, Trapping Radius, and Absolute Density of Cydia pomonella (Lepidoptera: Tortricidae) in Michigan Apple

    PubMed Central

    Adams, C. G.; Schenker, J. H.; McGhee, P. S.; Gut, L. J.; Brunner, J. F.

    2017-01-01

    Abstract Novel methods of data analysis were used to interpret codling moth (Cydia pomonella) catch data from central-trap, multiple-release experiments using a standard codlemone-baited monitoring trap in commercial apple orchards not under mating disruption. The main objectives were to determine consistency and reliability for measures of: 1) the trapping radius, composed of the trap’s behaviorally effective plume reach and the maximum dispersive distance of a responder population; and 2) the proportion of the population present in the trapping area that is caught. Two moth release designs were used: 1) moth releases at regular intervals in the four cardinal directions, and 2) evenly distributed moth releases across entire approximately 18-ha orchard blocks using both high and low codling moth populations. For both release designs, at high populations, the mean proportion catch was 0.01, and for the even release of low populations, that value was approximately 0.02. Mean maximum dispersive distance for released codling moth males was approximately 260 m. Behaviorally effective plume reach for the standard codling moth trap was < 5 m, and total trapping area for a single trap was approximately 21 ha. These estimates were consistent across three growing seasons and are supported by extraordinarily high replication for this type of field experiment. Knowing the trapping area and mean proportion caught, catch number per single monitoring trap can be translated into absolute pest density using the equation: males per trapping area = catch per trapping area/proportion caught. Thus, catches of 1, 3, 10, and 30 codling moth males per trap translate to approximately 5, 14, 48, and 143 males/ha, respectively, and reflect equal densities of females, because the codling moth sex ratio is 1:1. Combined with life-table data on codling moth fecundity and mortality, along with data on crop yield per trapping area, this fundamental knowledge of how to interpret catch

  9. Absolute quantification of microbial taxon abundances.

    PubMed

    Props, Ruben; Kerckhof, Frederiek-Maarten; Rubbens, Peter; De Vrieze, Jo; Hernandez Sanabria, Emma; Waegeman, Willem; Monsieurs, Pieter; Hammes, Frederik; Boon, Nico

    2017-02-01

    High-throughput amplicon sequencing has become a well-established approach for microbial community profiling. Correlating shifts in the relative abundances of bacterial taxa with environmental gradients is the goal of many microbiome surveys. As the abundances generated by this technology are semi-quantitative by definition, the observed dynamics may not accurately reflect those of the actual taxon densities. We combined the sequencing approach (16S rRNA gene) with robust single-cell enumeration technologies (flow cytometry) to quantify the absolute taxon abundances. A detailed longitudinal analysis of the absolute abundances resulted in distinct abundance profiles that were less ambiguous and expressed in units that can be directly compared across studies. We further provide evidence that the enrichment of taxa (increase in relative abundance) does not necessarily relate to the outgrowth of taxa (increase in absolute abundance). Our results highlight that both relative and absolute abundances should be considered for a comprehensive biological interpretation of microbiome surveys.

  10. Absolute ozone densities in a radio-frequency driven atmospheric pressure plasma using two-beam UV-LED absorption spectroscopy and numerical simulations

    NASA Astrophysics Data System (ADS)

    Wijaikhum, A.; Schröder, D.; Schröter, S.; Gibson, A. R.; Niemi, K.; Friderich, J.; Greb, A.; Schulz-von der Gathen, V.; O'Connell, D.; Gans, T.

    2017-11-01

    The efficient generation of reactive oxygen species (ROS) in cold atmospheric pressure plasma jets (APPJs) is an increasingly important topic, e.g. for the treatment of temperature sensitive biological samples in the field of plasma medicine. A 13.56 MHz radio-frequency (rf) driven APPJ device operated with helium feed gas and small admixtures of oxygen (up to 1%), generating a homogeneous glow-mode plasma at low gas temperatures, was investigated. Absolute densities of ozone, one of the most prominent ROS, were measured across the 11 mm wide discharge channel by means of broadband absorption spectroscopy using the Hartley band centred at λ = 255 nm. A two-beam setup with a reference beam in Mach-Zehnder configuration is employed for improved signal-to-noise ratio allowing high-sensitivity measurements in the investigated single-pass weak-absorbance regime. The results are correlated to gas temperature measurements, deduced from the rotational temperature of the N2 (C 3 {{{\\Pi }}}u+ \\to B 3 {{{\\Pi }}}g+, υ = 0 \\to 2) optical emission from introduced air impurities. The observed opposing trends of both quantities as a function of rf power input and oxygen admixture are analysed and explained in terms of a zero-dimensional plasma-chemical kinetics simulation. It is found that the gas temperature as well as the densities of O and O2(b{}1{{{Σ }}}g+) influence the absolute O3 densities when the rf power is varied.

  11. WFIRST: Predicting the number density of Hα-emitting galaxies

    NASA Astrophysics Data System (ADS)

    Benson, Andrew; Merson, Alex; Wang, Yun; Faisst, Andreas; Masters, Daniel; Kiessling, Alina; Rhodes, Jason

    2018-01-01

    The WFIRST mission will measure the clustering of Hα-emitting galaxies to help probe the nature of dark energy. Knowledge of the number density of such galaxies is therefore vital for forecasting the precision of thesemeasurements and assessing the scientific impact of the WFIRST mission. In this poster we present predictions from a galaxy formation model, Galacticus, for the cumulative number counts of Hα-emitting galaxies. We couple Galacticus to three different dust attenuation methods and examine the counts using each method. A χ2 minimization approach is used to compare the model counts to observed galaxy counts and calibrate the dust parameters. With these calibrated dust methods, we find that the Hα luminosity function from Galacticus is broadly consistent with observed estimates. Finally we present forecasts for the redshift distributions and number counts for a WFIRST-like survey. We predict that over a redshift range of 1 ≤ z ≤ 2 and with a blended flux limit of 1×10-16 erg s-1cm-2 Galacticus predicts that WFIRST would expect to observe a number density between 10400-15200 Hα-emitting galaxies per square degree.

  12. Estimating food portions. Influence of unit number, meal type and energy density.

    PubMed

    Almiron-Roig, Eva; Solis-Trapala, Ivonne; Dodd, Jessica; Jebb, Susan A

    2013-12-01

    Estimating how much is appropriate to consume can be difficult, especially for foods presented in multiple units, those with ambiguous energy content and for snacks. This study tested the hypothesis that the number of units (single vs. multi-unit), meal type and food energy density disrupts accurate estimates of portion size. Thirty-two healthy weight men and women attended the laboratory on 3 separate occasions to assess the number of portions contained in 33 foods or beverages of varying energy density (1.7-26.8 kJ/g). Items included 12 multi-unit and 21 single unit foods; 13 were labelled "meal", 4 "drink" and 16 "snack". Departures in portion estimates from reference amounts were analysed with negative binomial regression. Overall participants tended to underestimate the number of portions displayed. Males showed greater errors in estimation than females (p=0.01). Single unit foods and those labelled as 'meal' or 'beverage' were estimated with greater error than multi-unit and 'snack' foods (p=0.02 and p<0.001 respectively). The number of portions of high energy density foods was overestimated while the number of portions of beverages and medium energy density foods were underestimated by 30-46%. In conclusion, participants tended to underestimate the reference portion size for a range of food and beverages, especially single unit foods and foods of low energy density and, unexpectedly, overestimated the reference portion of high energy density items. There is a need for better consumer education of appropriate portion sizes to aid adherence to a healthy diet. Copyright © 2013 The Authors. Published by Elsevier Ltd.. All rights reserved.

  13. The Number Density of Quiescent Compact Galaxies at Intermediate Redshift

    NASA Astrophysics Data System (ADS)

    Damjanov, Ivana; Hwang, Ho Seong; Geller, Margaret J.; Chilingarian, Igor

    2014-09-01

    Massive compact systems at 0.2 < z < 0.6 are the missing link between the predominantly compact population of massive quiescent galaxies at high redshift and their analogs and relics in the local volume. The evolution in number density of these extreme objects over cosmic time is the crucial constraining factor for the models of massive galaxy assembly. We select a large sample of ~200 intermediate-redshift massive compacts from the Baryon Oscillation Spectroscopic Survey (BOSS) spectroscopy by identifying point-like Sloan Digital Sky Survey photometric sources with spectroscopic signatures of evolved redshifted galaxies. A subset of our targets have publicly available high-resolution ground-based images that we use to augment the dynamical and stellar population properties of these systems by their structural parameters. We confirm that all BOSS compact candidates are as compact as their high-redshift massive counterparts and less than half the size of similarly massive systems at z ~ 0. We use the completeness-corrected numbers of BOSS compacts to compute lower limits on their number densities in narrow redshift bins spanning the range of our sample. The abundance of extremely dense quiescent galaxies at 0.2 < z < 0.6 is in excellent agreement with the number densities of these systems at high redshift. Our lower limits support the models of massive galaxy assembly through a series of minor mergers over the redshift range 0 < z < 2.

  14. Effective atomic numbers and electron density of dosimetric material

    PubMed Central

    Kaginelli, S. B.; Rajeshwari, T.; Sharanabasappa; Kerur, B. R.; Kumar, Anil S.

    2009-01-01

    A novel method for determination of mass attenuation coefficient of x-rays employing NaI (Tl) detector system and radioactive sources is described.in this paper. A rigid geometry arrangement and gating of the spectrometer at FWHM position and selection of absorber foils are all done following detailed investigation, to minimize the effect of small angle scattering and multiple scattering on the mass attenuation coefficient, μ/ρ, value. Firstly, for standardization purposes the mass attenuation coefficients of elemental foils such as Aluminum, Copper, Molybdenum, Tantalum and Lead are measured and then, this method is utilized for dosimetric interested material (sulfates). The experimental mass attenuation coefficient values are compared with the theoretical values to find good agreement between the theory and experiment within one to two per cent. The effective atomic numbers of the biological substitute material are calculated by sum rule and from the graph. The electron density of dosimetric material is calculated using the effective atomic number. The study has discussed in detail the attenuation coefficient, effective atomic number and electron density of dosimetric material/biological substitutes. PMID:20098566

  15. Development of a vector-tensor system to measure the absolute magnetic flux density and its gradient in magnetically shielded rooms.

    PubMed

    Voigt, J; Knappe-Grüneberg, S; Gutkelch, D; Haueisen, J; Neuber, S; Schnabel, A; Burghoff, M

    2015-05-01

    Several experiments in fundamental physics demand an environment of very low, homogeneous, and stable magnetic fields. For the magnetic characterization of such environments, we present a portable SQUID system that measures the absolute magnetic flux density vector and the gradient tensor. This vector-tensor system contains 13 integrated low-critical temperature (LTc) superconducting quantum interference devices (SQUIDs) inside a small cylindrical liquid helium Dewar with a height of 31 cm and 37 cm in diameter. The achievable resolution depends on the flux density of the field under investigation and its temporal drift. Inside a seven-layer mu-metal shield, an accuracy better than ±23 pT for the components of the static magnetic field vector and ±2 pT/cm for each of the nine components of the gradient tensor is reached by using the shifting method.

  16. Small numbers are sensed directly, high numbers constructed from size and density.

    PubMed

    Zimmermann, Eckart

    2018-04-01

    Two theories compete to explain how we estimate the numerosity of visual object sets. The first suggests that the apparent numerosity is derived from an analysis of more low-level features like size and density of the set. The second theory suggests that numbers are sensed directly. Consistent with the latter claim is the existence of neurons in parietal cortex which are specialized for processing the numerosity of elements in the visual scene. However, recent evidence suggests that only low numbers can be sensed directly whereas the perception of high numbers is supported by the analysis of low-level features. Processing of low and high numbers, being located at different levels of the neural hierarchy should involve different receptive field sizes. Here, I tested this idea with visual adaptation. I measured the spatial spread of number adaptation for low and high numerosities. A focused adaptation spread of high numerosities suggested the involvement of early neural levels where receptive fields are comparably small and the broad spread for low numerosities was consistent with processing of number neurons which have larger receptive fields. These results provide evidence for the claim that different mechanism exist generating the perception of visual numerosity. Whereas low numbers are sensed directly as a primary visual attribute, the estimation of high numbers however likely depends on the area size over which the objects are spread. Copyright © 2017 Elsevier B.V. All rights reserved.

  17. Dependence of Some Properties of Groups on Group Local Number Density

    NASA Astrophysics Data System (ADS)

    Deng, Xin-Fa; Wu, Ping

    2014-09-01

    In this study we investigate the dependence of projected size Sizesky, and rms deviation σR of projected distance in the sky from the group center, rms velocities σV , and virial radius RVir of groups on group local number density. In the volume-limited group samples, it is found that groups in high density regions preferentially have larger Sizesky, σR , σV , and RVir than ones in low density regions.

  18. Development of a vector-tensor system to measure the absolute magnetic flux density and its gradient in magnetically shielded rooms

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Voigt, J.; Knappe-Grüneberg, S.; Gutkelch, D.

    2015-05-15

    Several experiments in fundamental physics demand an environment of very low, homogeneous, and stable magnetic fields. For the magnetic characterization of such environments, we present a portable SQUID system that measures the absolute magnetic flux density vector and the gradient tensor. This vector-tensor system contains 13 integrated low-critical temperature (LTc) superconducting quantum interference devices (SQUIDs) inside a small cylindrical liquid helium Dewar with a height of 31 cm and 37 cm in diameter. The achievable resolution depends on the flux density of the field under investigation and its temporal drift. Inside a seven-layer mu-metal shield, an accuracy better than ±23more » pT for the components of the static magnetic field vector and ±2 pT/cm for each of the nine components of the gradient tensor is reached by using the shifting method.« less

  19. An Observational Upper Limit on the Interstellar Number Density of Asteroids and Comets

    NASA Astrophysics Data System (ADS)

    Engelhardt, Toni; Jedicke, Robert; Vereš, Peter; Fitzsimmons, Alan; Denneau, Larry; Beshore, Ed; Meinke, Bonnie

    2017-03-01

    We derived 90% confidence limits (CLs) on the interstellar number density ({ρ }{IS}{CL}) of interstellar objects (ISOs; comets and asteroids) as a function of the slope of their size-frequency distribution (SFD) and limiting absolute magnitude. To account for gravitational focusing, we first generated a quasi-realistic ISO population to ˜ 750 {au} from the Sun and propagated it forward in time to generate a steady state population of ISOs with heliocentric distance < 50 {au}. We then simulated the detection of the synthetic ISOs using pointing data for each image and average detection efficiencies for each of three contemporary solar system surveys—Pan-STARRS1, the Mt. Lemmon Survey, and the Catalina Sky Survey. These simulations allowed us to determine the surveys’ combined ISO detection efficiency under several different but realistic modes of identifying ISOs in the survey data. Some of the synthetic detected ISOs had eccentricities as small as 1.01, which is in the range of the largest eccentricities of several known comets. Our best CL of {ρ }{IS}{CL}=1.4× {10}-4 {{au}}-3 implies that the expectation that extra-solar systems form like our solar system, eject planetesimals in the same way, and then distribute them throughout the Galaxy, is too simplistic, or that the SFD or behavior of ISOs as they pass through our solar system is far from expectation.

  20. Density of mushroom body synaptic complexes limits intraspecies brain miniaturization in highly polymorphic leaf-cutting ant workers

    PubMed Central

    Groh, Claudia; Kelber, Christina; Grübel, Kornelia; Rössler, Wolfgang

    2014-01-01

    Hymenoptera possess voluminous mushroom bodies (MBs), brain centres associated with sensory integration, learning and memory. The mushroom body input region (calyx) is organized in distinct synaptic complexes (microglomeruli, MG) that can be quantified to analyse body size-related phenotypic plasticity of synaptic microcircuits in these small brains. Leaf-cutting ant workers (Atta vollenweideri) exhibit an enormous size polymorphism, which makes them outstanding to investigate neuronal adaptations underlying division of labour and brain miniaturization. We particularly asked how size-related division of labour in polymorphic workers is reflected in volume and total numbers of MG in olfactory calyx subregions. Whole brains of mini, media and large workers were immunolabelled with anti-synapsin antibodies, and mushroom body volumes as well as densities and absolute numbers of MG were determined by confocal imaging and three-dimensional analyses. The total brain volume and absolute volumes of olfactory mushroom body subdivisions were positively correlated with head widths, but mini workers had significantly larger MB to total brain ratios. Interestingly, the density of olfactory MG was remarkably independent from worker size. Consequently, absolute numbers of olfactory MG still were approximately three times higher in large compared with mini workers. The results show that the maximum packing density of synaptic microcircuits may represent a species-specific limit to brain miniaturization. PMID:24807257

  1. Determination of the number density of excited and ground Zn atoms during rf magnetron sputtering of ZnO target

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Maaloul, L.; Gangwar, R. K.; Stafford, L., E-mail: luc.stafford@umontreal.ca

    2015-07-15

    A combination of optical absorption spectroscopy (OAS) and optical emission spectroscopy measurements was used to monitor the number density of Zn atoms in excited 4s4p ({sup 3}P{sub 2} and {sup 3}P{sub 0}) metastable states as well as in ground 4s{sup 2} ({sup 1}S{sub 0}) state in a 5 mTorr Ar radio-frequency (RF) magnetron sputtering plasma used for the deposition of ZnO-based thin films. OAS measurements revealed an increase by about one order of magnitude of Zn {sup 3}P{sub 2} and {sup 3}P{sub 0} metastable atoms by varying the self-bias voltage on the ZnO target from −115 to −300 V. Over themore » whole range of experimental conditions investigated, the triplet-to-singlet metastable density ratio was 5 ± 1, which matches the statistical weight ratio of these states in Boltzmann equilibrium. Construction of a Boltzmann plot using all Zn I emission lines in the 200–500 nm revealed a constant excitation temperature of 0.33 ± 0.04 eV. In combination with measured populations of Zn {sup 3}P{sub 2} and {sup 3}P{sub 0} metastable atoms, this temperature was used to extrapolate the absolute number density of ground state Zn atoms. The results were found to be in excellent agreement with those obtained previously by actinometry on Zn atoms using Ar as the actinometer gas [L. Maaloul and L. Stafford, J. Vac. Sci. Technol., A 31, 061306 (2013)]. This set of data was then correlated to spectroscopic ellipsometry measurements of the deposition rate of Zn atoms on a Si substrate positioned at 12 cm away from the ZnO target. The deposition rate scaled linearly with the number density of Zn atoms. In sharp contrast with previous studies on RF magnetron sputtering of Cu targets, these findings indicate that metastable atoms play a negligible role on the plasma deposition dynamics of Zn-based coatings.« less

  2. Low absolute neutrophil counts in African infants.

    PubMed

    Kourtis, Athena P; Bramson, Brian; van der Horst, Charles; Kazembe, Peter; Ahmed, Yusuf; Chasela, Charles; Hosseinipour, Mina; Knight, Rodney; Lugalia, Lebah; Tegha, Gerald; Joaki, George; Jafali, Robert; Jamieson, Denise J

    2005-07-01

    Infants of African origin have a lower normal range of absolute neutrophil counts than white infants; this fact, however, remains under appreciated by clinical researchers in the United States. During the initial stages of a clinical trial in Malawi, the authors noted an unexpectedly high number of infants with absolute neutrophil counts that would be classifiable as neutropenic using the National Institutes of Health's Division of AIDS toxicity tables. The authors argue that the relevant Division of AIDS table does not take into account the available evidence of low absolute neutrophil counts in African infants and that a systematic collection of data from many African settings might help establish the absolute neutrophil count cutpoints to be used for defining neutropenia in African populations.

  3. Absolute colorimetric characterization of a DSLR camera

    NASA Astrophysics Data System (ADS)

    Guarnera, Giuseppe Claudio; Bianco, Simone; Schettini, Raimondo

    2014-03-01

    A simple but effective technique for absolute colorimetric camera characterization is proposed. It offers a large dynamic range requiring just a single, off-the-shelf target and a commonly available controllable light source for the characterization. The characterization task is broken down in two modules, respectively devoted to absolute luminance estimation and to colorimetric characterization matrix estimation. The characterized camera can be effectively used as a tele-colorimeter, giving an absolute estimation of the XYZ data in cd=m2. The user is only required to vary the f - number of the camera lens or the exposure time t, to better exploit the sensor dynamic range. The estimated absolute tristimulus values closely match the values measured by a professional spectro-radiometer.

  4. Using, Seeing, Feeling, and Doing Absolute Value for Deeper Understanding

    ERIC Educational Resources Information Center

    Ponce, Gregorio A.

    2008-01-01

    Using sticky notes and number lines, a hands-on activity is shared that anchors initial student thinking about absolute value. The initial point of reference should help students successfully evaluate numeric problems involving absolute value. They should also be able to solve absolute value equations and inequalities that are typically found in…

  5. Line-Trapping of Codling Moth (Lepidoptera: Tortricidae): A Novel Approach to Improving the Precision of Capture Numbers in Traps Monitoring Pest Density.

    PubMed

    Adams, C G; McGhee, P S; Schenker, J H; Gut, L J; Miller, J R

    2017-08-01

    This field study of codling moth, Cydia pomonella (L.), response to single versus multiple monitoring traps baited with codlemone demonstrates that precision of a given capture number is alarmingly poor when the population is held constant by releasing moths. Captures as low as zero and as high as 12 males per single trap are to be expected where the catch mode is three. Here, we demonstrate that the frequency of false negatives and overestimated positives for codling moth trapping can be substantially reduced by employing the tactic of line-trapping, where five traps were deployed 4 m apart along a row of apple trees. Codling moth traps spaced closely competed only slightly. Therefore, deploying five traps closely in a line is a sampling technique nearly as good as deploying five traps spaced widely. But line trapping offers a substantial savings in time and therefore cost when servicing aggregated versus distributed traps. As the science of pest management matures by mastering the ability to translate capture numbers into estimates of absolute pest density, it will be important to employ a tactic like line-trapping so as to shrink the troublesome variability associated with capture numbers in single traps that thwarts accurate decisions about if and when to spray. Line-trapping might similarly increase the reliability and utility of density estimates derived from capture numbers in monitoring traps for various pest and beneficial insects. © The Authors 2017. Published by Oxford University Press on behalf of Entomological Society of America.

  6. Distribution of E/N and N/e/ in a cross-flow electric discharge laser. [electric field to neutral gas density and electron number density

    NASA Technical Reports Server (NTRS)

    Dunning, J. W., Jr.; Lancashire, R. B.; Manista, E. J.

    1976-01-01

    Measurements have been conducted of the effect of the convection of ions and electrons on the discharge characteristics in a large scale laser. The results are presented for one particular distribution of ballast resistance. Values of electric field, current density, input power density, ratio of electric field to neutral gas density (E/N), and electron number density were calculated on the basis of measurements of the discharge properties. In a number of graphs, the E/N ratio, current density, power density, and electron density are plotted as a function of row number (downstream position) with total discharge current and gas velocity as parameters. From the dependence of the current distribution on the total current, it appears that the electron production in the first two rows significantly affects the current flowing in the succeeding rows.

  7. Influence of Population Density on Offspring Number and Size in Burying Beetles

    ERIC Educational Resources Information Center

    Rauter, Claudia M.

    2010-01-01

    This laboratory exercise investigates the influence of population density on offspring number and size in burying beetles. Students test the theoretical predictions that brood size declines and offspring size increases when competition over resources becomes stronger with increasing population density. Students design the experiment, collect and…

  8. BACOM2.0 facilitates absolute normalization and quantification of somatic copy number alterations in heterogeneous tumor

    NASA Astrophysics Data System (ADS)

    Fu, Yi; Yu, Guoqiang; Levine, Douglas A.; Wang, Niya; Shih, Ie-Ming; Zhang, Zhen; Clarke, Robert; Wang, Yue

    2015-09-01

    Most published copy number datasets on solid tumors were obtained from specimens comprised of mixed cell populations, for which the varying tumor-stroma proportions are unknown or unreported. The inability to correct for signal mixing represents a major limitation on the use of these datasets for subsequent analyses, such as discerning deletion types or detecting driver aberrations. We describe the BACOM2.0 method with enhanced accuracy and functionality to normalize copy number signals, detect deletion types, estimate tumor purity, quantify true copy numbers, and calculate average-ploidy value. While BACOM has been validated and used with promising results, subsequent BACOM analysis of the TCGA ovarian cancer dataset found that the estimated average tumor purity was lower than expected. In this report, we first show that this lowered estimate of tumor purity is the combined result of imprecise signal normalization and parameter estimation. Then, we describe effective allele-specific absolute normalization and quantification methods that can enhance BACOM applications in many biological contexts while in the presence of various confounders. Finally, we discuss the advantages of BACOM in relation to alternative approaches. Here we detail this revised computational approach, BACOM2.0, and validate its performance in real and simulated datasets.

  9. An improved probabilistic approach for linking progenitor and descendant galaxy populations using comoving number density

    NASA Astrophysics Data System (ADS)

    Wellons, Sarah; Torrey, Paul

    2017-06-01

    Galaxy populations at different cosmic epochs are often linked by cumulative comoving number density in observational studies. Many theoretical works, however, have shown that the cumulative number densities of tracked galaxy populations not only evolve in bulk, but also spread out over time. We present a method for linking progenitor and descendant galaxy populations which takes both of these effects into account. We define probability distribution functions that capture the evolution and dispersion of galaxy populations in number density space, and use these functions to assign galaxies at redshift zf probabilities of being progenitors/descendants of a galaxy population at another redshift z0. These probabilities are used as weights for calculating distributions of physical progenitor/descendant properties such as stellar mass, star formation rate or velocity dispersion. We demonstrate that this probabilistic method provides more accurate predictions for the evolution of physical properties than the assumption of either a constant number density or an evolving number density in a bin of fixed width by comparing predictions against galaxy populations directly tracked through a cosmological simulation. We find that the constant number density method performs least well at recovering galaxy properties, the evolving method density slightly better and the probabilistic method best of all. The improvement is present for predictions of stellar mass as well as inferred quantities such as star formation rate and velocity dispersion. We demonstrate that this method can also be applied robustly and easily to observational data, and provide a code package for doing so.

  10. Effective atomic numbers and electron densities of bioactive glasses for photon interaction

    NASA Astrophysics Data System (ADS)

    Shantappa, Anil; Hanagodimath, S. M.

    2015-08-01

    This work was carried out to study the nature of mass attenuation coefficient of bioactive glasses for gamma rays. Bioactive glasses are a group of synthetic silica-based bioactive materials with unique bone bonding properties. In the present study, we have calculated the effective atomic number, electron density for photon interaction of some selected bioactive glasses viz., SiO2-Na2O, SiO2-Na2O-CaO and SiO2-Na2O-P2O5 in the energy range 1 keV to 100 MeV. We have also computed the single valued effective atomic number by using XMuDat program. It is observed that variation in effective atomic number (ZPI, eff) depends also upon the weight fractions of selected bioactive glasses and range of atomic numbers of the elements. The results shown here on effective atomic number, electron density will be more useful in the medical dosimetry for the calculation of absorbed dose and dose rate.

  11. Galaxy growth from redshift 5 to 0 at fixed comoving number density

    NASA Astrophysics Data System (ADS)

    van de Voort, Freeke

    2016-10-01

    Studying the average properties of galaxies at a fixed comoving number density over a wide redshift range has become a popular observational method, because it may trace the evolution of galaxies statistically. We test this method by comparing the evolution of galaxies at fixed number density and by following individual galaxies through cosmic time (z = 0-5) in cosmological, hydrodynamical simulations from the OverWhelmingly Large Simulations project. Comparing progenitors, descendants, and galaxies selected at fixed number density at each redshift, we find differences of up to a factor of 3 for galaxy and interstellar medium (ISM) masses. The difference is somewhat larger for black hole masses. The scatter in ISM mass increases significantly towards low redshift with all selection techniques. We use the fixed number density technique to study the assembly of dark matter, gas, stars, and black holes and the evolution in accretion and star formation rates. We find three different regimes for massive galaxies, consistent with observations: at high redshift the gas accretion rate dominates, at intermediate redshifts the star formation rate is the highest, and at low redshift galaxies grow mostly through mergers. Quiescent galaxies have much lower ISM masses (by definition) and much higher black hole masses, but the stellar and halo masses are fairly similar. Without active galactic nucleus (AGN) feedback, massive galaxies are dominated by star formation down to z = 0 and most of their stellar mass growth occurs in the centre. With AGN feedback, stellar mass is only added to the outskirts of galaxies by mergers and they grow inside-out.

  12. Density enhancement mechanism of upwind schemes for low Mach number flows

    NASA Astrophysics Data System (ADS)

    Lin, Bo-Xi; Yan, Chao; Chen, Shu-Sheng

    2018-06-01

    Many all-speed Roe schemes have been proposed to improve performance in terms of low speeds. Among them, the F-Roe and T-D-Roe schemes have been found to get incorrect density fluctuation in low Mach flows, which is expected to be with the square of Mach number. Asymptotic analysis presents the mechanism of how the density fluctuation problem relates to the incorrect order of terms in the energy equation \\tilde{ρ {\\tilde{a}} {\\tilde{U}}Δ U}. It is known that changing the upwind scheme coefficients of the pressure-difference dissipation term D^P and the velocity-difference dissipation term in the momentum equation D^{ρ U} to the order of O(c^{-1}) and O(c0) can improve the level of pressure and velocity accuracy at low speeds. This paper shows that corresponding changes in energy equation can also improve the density accuracy in low speeds. We apply this modification to a recently proposed scheme, TV-MAS, to get a new scheme, TV-MAS2. Unsteady Gresho vortex flow, double shear-layer flow, low Mach number flows over the inviscid cylinder, and NACA0012 airfoil show that energy equation modification in these schemes can obtain the expected square Ma scaling of density fluctuations, which is in good agreement with corresponding asymptotic analysis. Therefore, this density correction is expected to be widely implemented into all-speed compressible flow solvers.

  13. [Absolute numbers of peripheral blood CD34+ hematopoietic stem cells prior to a leukapheresis procedure as a parameter predicting the efficiency of stem cell collection].

    PubMed

    Galtseva, I V; Davydova, Yu O; Gaponova, T V; Kapranov, N M; Kuzmina, L A; Troitskaya, V V; Gribanova, E O; Kravchenko, S K; Mangasarova, Ya K; Zvonkov, E E; Parovichnikova, E N; Mendeleeva, L P; Savchenko, V G

    To identify a parameter predicting a collection of at least 2·106 CD34+ hematopoietic stem cells (HSC)/kg body weight per leukapheresis (LA) procedure. The investigation included 189 patients with hematological malignancies and 3 HSC donors, who underwent mobilization of stem cells with their subsequent collection by LA. Absolute numbers of peripheral blood leukocytes and CD34+ cells before a LA procedure, as well as a number of CD34+ cells/kg body weight (BW) in the LA product stored on the same day were determined in each patient (donor). There was no correlation between the number of leukocytes and that of stored CD34+ cells/kg BW. There was a close correlation between the count of peripheral blood CD34+ cells prior to LA and that of collected CD34+ cells calculated with reference to kg BW. The optimal absolute blood CD34+ cell count was estimated to 20 per µl, at which a LA procedure makes it possible to collect 2·106 or more CD34+ cells/kg BW.

  14. A NEW DENSITY VARIANCE-MACH NUMBER RELATION FOR SUBSONIC AND SUPERSONIC ISOTHERMAL TURBULENCE

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Konstandin, L.; Girichidis, P.; Federrath, C.

    The probability density function of the gas density in subsonic and supersonic, isothermal, driven turbulence is analyzed using a systematic set of hydrodynamical grid simulations with resolutions of up to 1024{sup 3} cells. We perform a series of numerical experiments with root-mean-square (rms) Mach number M ranging from the nearly incompressible, subsonic (M=0.1) to the highly compressible, supersonic (M=15) regime. We study the influence of two extreme cases for the driving mechanism by applying a purely solenoidal (divergence-free) and a purely compressive (curl-free) forcing field to drive the turbulence. We find that our measurements fit the linear relation between themore » rms Mach number and the standard deviation (std. dev.) of the density distribution in a wide range of Mach numbers, where the proportionality constant depends on the type of forcing. In addition, we propose a new linear relation between the std. dev. of the density distribution {sigma}{sub {rho}} and that of the velocity in compressible modes, i.e., the compressible component of the rms Mach number, M{sub comp}. In this relation the influence of the forcing is significantly reduced, suggesting a linear relation between {sigma}{sub {rho}} and M{sub comp}, independent of the forcing, and ranging from the subsonic to the supersonic regime.« less

  15. Motor unit number estimation based on high-density surface electromyography decomposition.

    PubMed

    Peng, Yun; He, Jinbao; Yao, Bo; Li, Sheng; Zhou, Ping; Zhang, Yingchun

    2016-09-01

    To advance the motor unit number estimation (MUNE) technique using high density surface electromyography (EMG) decomposition. The K-means clustering convolution kernel compensation algorithm was employed to detect the single motor unit potentials (SMUPs) from high-density surface EMG recordings of the biceps brachii muscles in eight healthy subjects. Contraction forces were controlled at 10%, 20% and 30% of the maximal voluntary contraction (MVC). Achieved MUNE results and the representativeness of the SMUP pools were evaluated using a high-density weighted-average method. Mean numbers of motor units were estimated as 288±132, 155±87, 107±99 and 132±61 by using the developed new MUNE at 10%, 20%, 30% and 10-30% MVCs, respectively. Over 20 SMUPs were obtained at each contraction level, and the mean residual variances were lower than 10%. The new MUNE method allows a convenient and non-invasive collection of a large size of SMUP pool with great representativeness. It provides a useful tool for estimating the motor unit number of proximal muscles. The present new MUNE method successfully avoids the use of intramuscular electrodes or multiple electrical stimuli which is required in currently available MUNE techniques; as such the new MUNE method can minimize patient discomfort for MUNE tests. Copyright © 2016 International Federation of Clinical Neurophysiology. Published by Elsevier Ireland Ltd. All rights reserved.

  16. Modal density function and number of propagating modes in ducts

    NASA Technical Reports Server (NTRS)

    Rice, E. J.

    1976-01-01

    The question of the number of propagating modes within a small range of mode cut off ratio was raised. The population density of modes were shown to be greatest near cut off and least for the well propagating modes. It was shown that modes of nearly the same cut off ratio behave nearly the same in a sound absorbing duct as well as in the way they propagate to the far. Handling all of the propagating modes individually, they can be grouped into several cut off ratio ranges. It is important to know the modal density function to estimate acoustic power distribution.

  17. Ice nucleation in the upper troposphere: Sensitivity to aerosol number density, temperature, and cooling rate

    NASA Technical Reports Server (NTRS)

    Jensen, E. J.; Toon, O. B.

    1994-01-01

    We have investigated the processes that control ice crystal nucleation in the upper troposphere using a numerical model. Nucleation of ice resulting from cooling was simulated for a range of aerosol number densities, initial temperatures, and cooling rates. In contrast to observations of stratus clouds, we find that the number of ice crystals that nucleate in cirrus is relatively insensitive to the number of aerosols present. The ice crystal size distribution at the end of the nucleation process is unaffected by the assumed initial aerosol number density. Essentially, nucleation continues until enough ice crystals are present such that their deposition growth rapidly depletes the vapor and shuts off any further nucleation. However, the number of ice crystals nucleated increases rapidly with decreasing initial temperature and increasing cooling rate. This temperature dependence alone could explain the large ice crystal number density observed in very cold tropical cirrus.

  18. Effective atomic numbers and electron densities of bioactive glasses for photon interaction

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Shantappa, Anil, E-mail: anilmalipatil@yahoo.co.in; Hanagodimath, S. M., E-mail: smhmath@rediffmail.com

    2015-08-28

    This work was carried out to study the nature of mass attenuation coefficient of bioactive glasses for gamma rays. Bioactive glasses are a group of synthetic silica-based bioactive materials with unique bone bonding properties. In the present study, we have calculated the effective atomic number, electron density for photon interaction of some selected bioactive glasses viz., SiO{sub 2}-Na{sub 2}O, SiO{sub 2}-Na{sub 2}O-CaO and SiO{sub 2}-Na{sub 2}O-P{sub 2}O{sub 5} in the energy range 1 keV to 100 MeV. We have also computed the single valued effective atomic number by using XMuDat program. It is observed that variation in effective atomic number (Z{submore » PI,} {sub eff}) depends also upon the weight fractions of selected bioactive glasses and range of atomic numbers of the elements. The results shown here on effective atomic number, electron density will be more useful in the medical dosimetry for the calculation of absorbed dose and dose rate.« less

  19. Strongly nonlinear theory of rapid solidification near absolute stability

    NASA Astrophysics Data System (ADS)

    Kowal, Katarzyna N.; Altieri, Anthony L.; Davis, Stephen H.

    2017-10-01

    We investigate the nonlinear evolution of the morphological deformation of a solid-liquid interface of a binary melt under rapid solidification conditions near two absolute stability limits. The first of these involves the complete stabilization of the system to cellular instabilities as a result of large enough surface energy. We derive nonlinear evolution equations in several limits in this scenario and investigate the effect of interfacial disequilibrium on the nonlinear deformations that arise. In contrast to the morphological stability problem in equilibrium, in which only cellular instabilities appear and only one absolute stability boundary exists, in disequilibrium the system is prone to oscillatory instabilities and a second absolute stability boundary involving attachment kinetics arises. Large enough attachment kinetics stabilize the oscillatory instabilities. We derive a nonlinear evolution equation to describe the nonlinear development of the solid-liquid interface near this oscillatory absolute stability limit. We find that strong asymmetries develop with time. For uniform oscillations, the evolution equation for the interface reduces to the simple form f''+(βf')2+f =0 , where β is the disequilibrium parameter. Lastly, we investigate a distinguished limit near both absolute stability limits in which the system is prone to both cellular and oscillatory instabilities and derive a nonlinear evolution equation that captures the nonlinear deformations in this limit. Common to all these scenarios is the emergence of larger asymmetries in the resulting shapes of the solid-liquid interface with greater departures from equilibrium and larger morphological numbers. The disturbances additionally sharpen near the oscillatory absolute stability boundary, where the interface becomes deep-rooted. The oscillations are time-periodic only for small-enough initial amplitudes and their frequency depends on a single combination of physical parameters, including the

  20. A density-functional study of the phase diagram of cementite-type (Fe,Mn)3C at absolute zero temperature.

    PubMed

    Von Appen, Jörg; Eck, Bernhard; Dronskowski, Richard

    2010-11-15

    The phase diagram of (Fe(1-x) Mn(x))(3)C has been investigated by means of density-functional theory (DFT) calculations at absolute zero temperature. The atomic distributions of the metal atoms are not random-like as previously proposed but we find three different, ordered regions within the phase range. The key role is played by the 8d metal site which forms, as a function of the composition, differing magnetic layers, and these dominate the physical properties. We calculated the magnetic moments, the volumes, the enthalpies of mixing and formation of 13 different compositions and explain the changes of the macroscopic properties with changes in the electronic and magnetic structures by means of bonding analyses using the Crystal Orbital Hamilton Population (COHP) technique. 2010 Wiley Periodicals, Inc.

  1. Absolute Humidity and the Seasonality of Influenza (Invited)

    NASA Astrophysics Data System (ADS)

    Shaman, J. L.; Pitzer, V.; Viboud, C.; Grenfell, B.; Goldstein, E.; Lipsitch, M.

    2010-12-01

    Much of the observed wintertime increase of mortality in temperate regions is attributed to seasonal influenza. A recent re-analysis of laboratory experiments indicates that absolute humidity strongly modulates the airborne survival and transmission of the influenza virus. Here we show that the onset of increased wintertime influenza-related mortality in the United States is associated with anomalously low absolute humidity levels during the prior weeks. We then use an epidemiological model, in which observed absolute humidity conditions temper influenza transmission rates, to successfully simulate the seasonal cycle of observed influenza-related mortality. The model results indicate that direct modulation of influenza transmissibility by absolute humidity alone is sufficient to produce this observed seasonality. These findings provide epidemiological support for the hypothesis that absolute humidity drives seasonal variations of influenza transmission in temperate regions. In addition, we show that variations of the basic and effective reproductive numbers for influenza, caused by seasonal changes in absolute humidity, are consistent with the general timing of pandemic influenza outbreaks observed for 2009 A/H1N1 in temperate regions. Indeed, absolute humidity conditions correctly identify the region of the United States vulnerable to a third, wintertime wave of pandemic influenza. These findings suggest that the timing of pandemic influenza outbreaks is controlled by a combination of absolute humidity conditions, levels of susceptibility and changes in population mixing and contact rates.

  2. Absolute and Convective Instability of a Liquid Jet in Microgravity

    NASA Technical Reports Server (NTRS)

    Lin, Sung P.; Vihinen, I.; Honohan, A.; Hudman, Michael D.

    1996-01-01

    The transition from convective to absolute instability is observed in the 2.2 second drop tower of the NASA Lewis Research Center. In convective instability the disturbance grows spatially as it is convected downstream. In absolute instability the disturbance propagates both downstream and upstream, and manifests itself as an expanding sphere. The transition Reynolds numbers are determined for two different Weber numbers by use of Glycerin and a Silicone oil. Preliminary comparisons with theory are made.

  3. Electrical Noise and the Measurement of Absolute Temperature, Boltzmann's Constant and Avogadro's Number.

    ERIC Educational Resources Information Center

    Ericson, T. J.

    1988-01-01

    Describes an apparatus capable of measuring absolute temperatures of a tungsten filament bulb up to normal running temperature and measuring Botzmann's constant to an accuracy of a few percent. Shows that electrical noise techniques are convenient to demonstrate how the concept of temperature is related to the micro- and macroscopic world. (CW)

  4. Absolute configuration of a chiral CHD group via neutron diffraction: confirmation of the absolute stereochemistry of the enzymatic formation of malic acid

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bau, R.; Brewer, I.; Chiang, M.Y.

    Neutron diffraction has been used to monitor the absolute stereochemistry of an enzymatic reaction. (-)(2S)malic-3-d acid was prepared by the action of fumarase on fumaric acid in D/sub 2/O. After a large number of cations were screened, it was found that (+)(R)..cap alpha..-phenylethylamine forms the large crystals necessary for a neutron diffraction analysis. The subsequent structure determination showed that (+)(R)..cap alpha..-phenylethylammonium (-)(2S)malate-3-d has an absolute configuration of R at the CHD site. This result confirms the absolute stereochemistry of fumarate-to-malate transformation as catalyzed by the enzyme fumarase.

  5. Reducing the Density and Number of Tobacco Retailers: Policy Solutions and Legal Issues

    PubMed Central

    Ackerman, Amy; Etow, Alexis; Bartel, Sara

    2017-01-01

    Introduction: Because higher density of tobacco retailers is associated with greater tobacco use, U.S. communities seek ways to reduce the density and number of tobacco retailers. This approach can reduce the concentration of tobacco retailers in poorer communities, limit youth exposure to tobacco advertising, and prevent misleading associations between tobacco and health messaging. Methods: Communities can reduce the density and number of tobacco retailers by imposing minimum distance requirements between existing retailers, capping the number of retailers in a given geographic area, establishing a maximum number of retailers proportional to population size, and prohibiting sales at certain types of establishments, such as pharmacies, or within a certain distance of locations serving youth. Local governments use direct regulation, licensing, or zoning laws to enact these changes. We analyze each approach under U.S. constitutional law to assist communities in selecting and implementing one or more of these methods. There are few published legal opinions that address these strategies in the context of tobacco control. But potential constitutional challenges include violations of the Takings Clause of the Fifth Amendment, which protects property owners from onerous government regulations, and under the Fourteenth Amendment’s Equal Protection and Due Process Clauses, which protect business owners from arbitrary or unreasonable regulations that do not further a legitimate government interest. Conclusion: Because there is an evidentiary basis linking the density of tobacco retailers to smoking rates in a community, courts are likely to reject constitutional challenges to carefully crafted laws that reduce the number of tobacco retailers. Implications: Our review of the relevant constitutional issues confirms that local governments have the authority to utilize laws and policies to reduce the density and number of tobacco retailers in their communities, given existing

  6. Relationship between the Geotail spacecraft potential and the magnetospheric electron number density including the distant tail regions

    NASA Astrophysics Data System (ADS)

    Ishisaka, K.; Okada, T.; Tsuruda, K.; Hayakawa, H.; Mukai, T.; Matsumoto, H.

    2001-04-01

    The spacecraft potential has been used to derive the electron number density surrounding the spacecraft in the magnetosphere and solar wind. We have investigated the correlation between the spacecraft potential of the Geotail spacecraft and the electron number density derived from the plasma waves in the solar wind and almost all the regions of the magnetosphere, except for the high-density plasmasphere, and obtained an empirical formula to show their relation. The new formula is effective in the range of spacecraft potential from a few volts up to 90 V, corresponding to the electron number density from 0.001 to 50 cm-3. We compared the electron number density obtained by the empirical formula with the density obtained by the plasma wave and plasma particle measurements. On occasions the density determined by plasma wave measurements in the lobe region is different from that calculated by the empirical formula. Using the difference in the densities measured by two methods, we discuss whether or not the lower cutoff frequency of the plasma waves, such as continuum radiation, indicates the local electron density near the spacecraft. Then we applied the new relation to the spacecraft potential measured by the Geotail spacecraft during the period from October 1993 to December 1995, and obtained the electron spatial distribution in the solar wind and magnetosphere, including the distant tail region. Higher electron number density is clearly observed on the dawnside than on the duskside of the magnetosphere in the distant tail beyond 100RE.

  7. Reducing the Density and Number of Tobacco Retailers: Policy Solutions and Legal Issues.

    PubMed

    Ackerman, Amy; Etow, Alexis; Bartel, Sara; Ribisl, Kurt M

    2017-02-01

    Because higher density of tobacco retailers is associated with greater tobacco use, U.S. communities seek ways to reduce the density and number of tobacco retailers. This approach can reduce the concentration of tobacco retailers in poorer communities, limit youth exposure to tobacco advertising, and prevent misleading associations between tobacco and health messaging. Communities can reduce the density and number of tobacco retailers by imposing minimum distance requirements between existing retailers, capping the number of retailers in a given geographic area, establishing a maximum number of retailers proportional to population size, and prohibiting sales at certain types of establishments, such as pharmacies, or within a certain distance of locations serving youth. Local governments use direct regulation, licensing, or zoning laws to enact these changes. We analyze each approach under U.S. constitutional law to assist communities in selecting and implementing one or more of these methods. There are few published legal opinions that address these strategies in the context of tobacco control. But potential constitutional challenges include violations of the Takings Clause of the Fifth Amendment, which protects property owners from onerous government regulations, and under the Fourteenth Amendment's Equal Protection and Due Process Clauses, which protect business owners from arbitrary or unreasonable regulations that do not further a legitimate government interest. Because there is an evidentiary basis linking the density of tobacco retailers to smoking rates in a community, courts are likely to reject constitutional challenges to carefully crafted laws that reduce the number of tobacco retailers. Our review of the relevant constitutional issues confirms that local governments have the authority to utilize laws and policies to reduce the density and number of tobacco retailers in their communities, given existing public health data. The analysis guides policy

  8. Determination of CT number and density profile of binderless, pre-treated and tannin-based Rhizophora spp. particleboards using computed tomography imaging and electron density phantom

    NASA Astrophysics Data System (ADS)

    Yusof, Mohd Fahmi Mohd; Hamid, Puteri Nor Khatijah Abdul; Bauk, Sabar; Hashim, Rokiah; Tajuddin, Abdul Aziz

    2015-04-01

    Plug density phantoms were constructed in accordance to CT density phantom model 062M CIRS using binderless, pre-treated and tannin-based Rhizophora Spp. particleboards. The Rhizophora Spp. plug phantoms were scanned along with the CT density phantom using Siemens Somatom Definition AS CT scanner at three CT energies of 80, 120 and 140 kVp. 15 slices of images with 1.0 mm thickness each were taken from the central axis of CT density phantom for CT number and CT density profile analysis. The values were compared to water substitute plug phantom from the CT density phantom. The tannin-based Rhizophora Spp. gave the nearest value of CT number to water substitute at 80 and 120 kVp CT energies with χ2 value of 0.011 and 0.014 respectively while the binderless Rhizphora Spp. gave the nearest CT number to water substitute at 140 kVp CT energy with χ2 value of 0.023. The tannin-based Rhizophora Spp. gave the nearest CT density profile to water substitute at all CT energies. This study indicated the suitability of Rhizophora Spp. particleboard as phantom material for the use in CT imaging studies.

  9. Number and density discrimination rely on a common metric: Similar psychophysical effects of size, contrast, and divided attention.

    PubMed

    Tibber, Marc S; Greenwood, John A; Dakin, Steven C

    2012-06-04

    While observers are adept at judging the density of elements (e.g., in a random-dot image), it has recently been proposed that they also have an independent visual sense of number. To test the independence of number and density discrimination, we examined the effects of manipulating stimulus structure (patch size, element size, contrast, and contrast-polarity) and available attentional resources on both judgments. Five observers made a series of two-alternative, forced-choice discriminations based on the relative numerosity/density of two simultaneously presented patches containing 16-1,024 Gaussian blobs. Mismatches of patch size and element size (across reference and test) led to bias and reduced sensitivity in both tasks, whereas manipulations of contrast and contrast-polarity had varied effects on observers, implying differing strategies. Nonetheless, the effects reported were consistent across density and number judgments, the only exception being when luminance cues were made available. Finally, density and number judgment were similarly impaired by attentional load in a dual-task experiment. These results are consistent with a common underlying metric to density and number judgments, with the caveat that additional cues may be exploited when they are available.

  10. Determination of CT number and density profile of binderless, pre-treated and tannin-based Rhizophora spp. particleboards using computed tomography imaging and electron density phantom

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yusof, Mohd Fahmi Mohd, E-mail: mfahmi@usm.my; Hamid, Puteri Nor Khatijah Abdul; Tajuddin, Abdul Aziz

    2015-04-29

    Plug density phantoms were constructed in accordance to CT density phantom model 062M CIRS using binderless, pre-treated and tannin-based Rhizophora Spp. particleboards. The Rhizophora Spp. plug phantoms were scanned along with the CT density phantom using Siemens Somatom Definition AS CT scanner at three CT energies of 80, 120 and 140 kVp. 15 slices of images with 1.0 mm thickness each were taken from the central axis of CT density phantom for CT number and CT density profile analysis. The values were compared to water substitute plug phantom from the CT density phantom. The tannin-based Rhizophora Spp. gave the nearest valuemore » of CT number to water substitute at 80 and 120 kVp CT energies with χ{sup 2} value of 0.011 and 0.014 respectively while the binderless Rhizphora Spp. gave the nearest CT number to water substitute at 140 kVp CT energy with χ{sup 2} value of 0.023. The tannin-based Rhizophora Spp. gave the nearest CT density profile to water substitute at all CT energies. This study indicated the suitability of Rhizophora Spp. particleboard as phantom material for the use in CT imaging studies.« less

  11. Teaching Absolute Value Meaningfully

    ERIC Educational Resources Information Center

    Wade, Angela

    2012-01-01

    What is the meaning of absolute value? And why do teachers teach students how to solve absolute value equations? Absolute value is a concept introduced in first-year algebra and then reinforced in later courses. Various authors have suggested instructional methods for teaching absolute value to high school students (Wei 2005; Stallings-Roberts…

  12. Absolute densities in exoplanetary systems. Photodynamical modelling of Kepler-138.

    NASA Astrophysics Data System (ADS)

    Almenara, J. M.; Díaz, R. F.; Dorn, C.; Bonfils, X.; Udry, S.

    2018-04-01

    In favourable conditions, the density of transiting planets in multiple systems can be determined from photometry data alone. Dynamical information can be extracted from light curves, providing modelling is done self-consistently, i.e. using a photodynamical model, which simulates the individual photometric observations instead of the more generally used transit times. We apply this methodology to the Kepler-138 planetary system. The derived planetary bulk densities are a factor of two more precise than previous determinations, and we find a discrepancy in the stellar bulk density with respect to a previous study. This leads, in turn, to a discrepancy in the determination of masses and radii of the star and the planets. In particular, we find that interior planet, Kepler-138 b, has a size in between Mars and the Earth. Given our mass and density estimates, we characterize the planetary interiors using a generalized Bayesian inference model. This model allows us to quantify for interior degeneracy and calculate confidence regions of interior parameters such as thicknesses of the core, the mantle, and ocean and gas layers. We find that Kepler-138 b and Kepler-138 d have significantly thick volatile layers, and that the gas layer of Kepler-138 b is likely enriched. On the other hand, Kepler-138 c can be purely rocky.

  13. Absolute densities in exoplanetary systems: photodynamical modelling of Kepler-138

    NASA Astrophysics Data System (ADS)

    Almenara, J. M.; Díaz, R. F.; Dorn, C.; Bonfils, X.; Udry, S.

    2018-07-01

    In favourable conditions, the density of transiting planets in multiple systems can be determined from photometry data alone. Dynamical information can be extracted from light curves, providing modelling is done self-consistently, i.e. using a photodynamical model, which simulates the individual photometric observations instead of the more generally used transit times. We apply this methodology to the Kepler-138 planetary system. The derived planetary bulk densities are a factor of 2 more precise than previous determinations, and we find a discrepancy in the stellar bulk density with respect to a previous study. This leads, in turn, to a discrepancy in the determination of masses and radii of the star and the planets. In particular, we find that interior planet, Kepler-138b, has a size in between Mars and the Earth. Given our mass and density estimates, we characterize the planetary interiors using a generalized Bayesian inference model. This model allows us to quantify for interior degeneracy and calculate confidence regions of interior parameters such as thicknesses of the core, the mantle, and ocean and gas layers. We find that Kepler-138b and Kepler-138 d have significantly thick volatile layers and that the gas layer of Kepler-138b is likely enriched. On the other hand, Kepler-138c can be purely rocky.

  14. A generalised random encounter model for estimating animal density with remote sensor data.

    PubMed

    Lucas, Tim C D; Moorcroft, Elizabeth A; Freeman, Robin; Rowcliffe, J Marcus; Jones, Kate E

    2015-05-01

    Wildlife monitoring technology is advancing rapidly and the use of remote sensors such as camera traps and acoustic detectors is becoming common in both the terrestrial and marine environments. Current methods to estimate abundance or density require individual recognition of animals or knowing the distance of the animal from the sensor, which is often difficult. A method without these requirements, the random encounter model (REM), has been successfully applied to estimate animal densities from count data generated from camera traps. However, count data from acoustic detectors do not fit the assumptions of the REM due to the directionality of animal signals.We developed a generalised REM (gREM), to estimate absolute animal density from count data from both camera traps and acoustic detectors. We derived the gREM for different combinations of sensor detection widths and animal signal widths (a measure of directionality). We tested the accuracy and precision of this model using simulations of different combinations of sensor detection widths and animal signal widths, number of captures and models of animal movement.We find that the gREM produces accurate estimates of absolute animal density for all combinations of sensor detection widths and animal signal widths. However, larger sensor detection and animal signal widths were found to be more precise. While the model is accurate for all capture efforts tested, the precision of the estimate increases with the number of captures. We found no effect of different animal movement models on the accuracy and precision of the gREM.We conclude that the gREM provides an effective method to estimate absolute animal densities from remote sensor count data over a range of sensor and animal signal widths. The gREM is applicable for count data obtained in both marine and terrestrial environments, visually or acoustically (e.g. big cats, sharks, birds, echolocating bats and cetaceans). As sensors such as camera traps and acoustic

  15. Evaluation of the ion-density measurements by the Indian satellite SROSS-C2

    NASA Astrophysics Data System (ADS)

    Subrahmanyam, P.; Jain, A. R.; Maini, H. K.; Bahl, M.; Das, Rupesh M.; Garg, S. C.; Niranjan, K.

    2010-12-01

    The ion and electron F region plasma measurements made by the ion and electron Retarding Potential Analyzers (RPAs) onboard the Indian satellite SROSS-C2, have yielded excellent data set over the Indian region for more than half a solar cycle, after the SROSS-C2 launch in May 1994. The absolute ion density, ion temperature, and ion composition parameters are derived from these in situ measurements and used by many workers. In this paper the absolute values of ion density derived from the ion RPA measurements are compared and evaluated with the measurements made by ground-based ionosondes located in the Indian region and close to the SROSS-C2 orbital path. It is shown that a slight adjustment in efficiency factor of the ion RPA sensor brings the in situ measurements much closer to those obtained from the ground-based ionosonde measurements taking into account the model calculations. It may be mentioned that this is a correction to the ion density measurement by SROSS-C2 by a fixed proportion (14-11.4%). The effect of change in efficiency factor on the ion current, which is used to deduce the ion number density, is demonstrated and discussed.

  16. Area vs. density: influence of visual variables and cardinality knowledge in early number comparison.

    PubMed

    Abreu-Mendoza, Roberto A; Soto-Alba, Elia E; Arias-Trejo, Natalia

    2013-01-01

    Current research in the number development field has focused in individual differences regarding the acuity of children's approximate number system (ANS). The most common task to evaluate children's acuity is through non-symbolic numerical comparison. Efforts have been made to prevent children from using perceptual cues by controlling the visual properties of the stimuli (e.g., density, contour length, and area); nevertheless, researchers have used these visual controls interchangeably. Studies have also tried to understand the relation between children's cardinality knowledge and their performance in a number comparison task; divergent results may in fact be rooted in the use of different visual controls. The main goal of the present study is to explore how the usage of different visual controls (density, total filled area, and correlated and anti-correlated area) affects children's performance in a number comparison task, and its relationship to children's cardinality knowledge. For that purpose, 77 preschoolers participated in three tasks: (1) counting list elicitation to test whether children could recite the counting list up to ten, (2) give a number to evaluate children's cardinality knowledge, and (3) number comparison to evaluate their ability to compare two quantities. During this last task, children were asked to point at the set with more geometric figures when two sets were displayed on a screen. Children were exposed only to one of the three visual controls. Results showed that overall, children performed above chance in the number comparison task; nonetheless, density was the easiest control, while correlated and anti-correlated area was the most difficult in most cases. Only total filled area was sensitive to discriminate cardinal principal knowers from non-cardinal principal knowers. How this finding helps to explain conflicting evidence from previous research, and how the present outcome relates to children's number word knowledge is discussed.

  17. Area vs. density: influence of visual variables and cardinality knowledge in early number comparison

    PubMed Central

    Abreu-Mendoza, Roberto A.; Soto-Alba, Elia E.; Arias-Trejo, Natalia

    2013-01-01

    Current research in the number development field has focused in individual differences regarding the acuity of children's approximate number system (ANS). The most common task to evaluate children's acuity is through non-symbolic numerical comparison. Efforts have been made to prevent children from using perceptual cues by controlling the visual properties of the stimuli (e.g., density, contour length, and area); nevertheless, researchers have used these visual controls interchangeably. Studies have also tried to understand the relation between children's cardinality knowledge and their performance in a number comparison task; divergent results may in fact be rooted in the use of different visual controls. The main goal of the present study is to explore how the usage of different visual controls (density, total filled area, and correlated and anti-correlated area) affects children's performance in a number comparison task, and its relationship to children's cardinality knowledge. For that purpose, 77 preschoolers participated in three tasks: (1) counting list elicitation to test whether children could recite the counting list up to ten, (2) give a number to evaluate children's cardinality knowledge, and (3) number comparison to evaluate their ability to compare two quantities. During this last task, children were asked to point at the set with more geometric figures when two sets were displayed on a screen. Children were exposed only to one of the three visual controls. Results showed that overall, children performed above chance in the number comparison task; nonetheless, density was the easiest control, while correlated and anti-correlated area was the most difficult in most cases. Only total filled area was sensitive to discriminate cardinal principal knowers from non-cardinal principal knowers. How this finding helps to explain conflicting evidence from previous research, and how the present outcome relates to children's number word knowledge is discussed

  18. Effect of the gas flow rate on the spatiotemporal distribution of Ar(1s5) absolute densities in a ns pulsed plasma jet impinging on a glass surface

    NASA Astrophysics Data System (ADS)

    Gazeli, K.; Bauville, G.; Fleury, M.; Jeanney, P.; Neveu, O.; Pasquiers, S.; Santos Sousa, J.

    2018-06-01

    This work presents spatial (axial-z and transversal-y) and temporal distributions of Ar(1s5) metastable absolute densities in an atmospheric pressure argon micro-plasma jet impinging on an ungrounded glass surface. Guided streamers are generated with a DBD device driven by pulsed positive high voltages of 6 kV in amplitude, 224 +/- 3 ns in FWHM and 20 kHz in frequency. The argon flow rate is varied between 200 and 600 sccm. The glass plate is placed at 5 mm away from the reactor’s nozzle and perpendicular to the streamers propagation. At these conditions, a diffuse stable discharge is established after the passage of the streamers allowing the quantification of the Ar(1s5) absolute density by means of a conventional TDLAS technique coupled with emission spectroscopy and ICCD imaging. The good reproducibility of the absorption signals is demonstrated. The experiments show the strong dependence of the maximum density ({0.5-4}× {10}13 {{{cm}}}-3) on the gas flow rate and the axial and transversal position. At 200 sccm, high maximum densities (> 2.4× {10}13 {{{cm}}}-3) are obtained in a small area close to the plasma source, while with increasing flow rate this area expands towards the glass plate. In the transversal direction, density maxima are obtained in a small zone around the propagation axis of the streamers. Finally, a noticeable increase is measured on the Ar(1s5) effective lifetime close to the glass surface by varying the flow rate from 200 to 600 sccm. In overall, the effective lifetime varies between ∼25 and ∼550 ns, depending on the gas flow rate and the values of z and y coordinates. The results obtained suggest that the present system can be implemented in various applications and particularly in what concerns the detection of weakly volatile organic compounds present in trace amounts on different surfaces.

  19. Late-Holocene climate evolution at the WAIS Divide site, West Antarctica: Bubble number-density estimates

    USGS Publications Warehouse

    Fegyveresi, John M.; Alley, R.B.; Spencer, M.K.; Fitzpatrick, J.J.; Steig, E.J.; White, J.W.C.; McConnell, J.R.; Taylor, K.C.

    2011-01-01

    A surface cooling of ???1.7??C occurred over the ???two millennia prior to ???1700 CE at the West Antarctic ice sheet (WAIS) Divide site, based on trends in observed bubble number-density of samples from the WDC06A ice core, and on an independently constructed accumulation-rate history using annual-layer dating corrected for density variations and thinning from ice flow. Density increase and grain growth in polar firn are both controlled by temperature and accumulation rate, and the integrated effects are recorded in the number-density of bubbles as the firn changes to ice. Numberdensity is conserved in bubbly ice following pore close-off, allowing reconstruction of either paleotemperature or paleo-accumulation rate if the other is known. A quantitative late-Holocene paleoclimate reconstruction is presented for West Antarctica using data obtained from the WAIS Divide WDC06A ice core and a steady-state bubble number-density model. The resultant temperature history agrees closely with independent reconstructions based on stable-isotopic ratios of ice. The ???1.7??C cooling trend observed is consistent with a decrease in Antarctic summer duration from changing orbital obliquity, although it remains possible that elevation change at the site contributed part of the signal. Accumulation rate and temperature dropped together, broadly consistent with control by saturation vapor pressure.

  20. Absolute limit on rotation of gravitationally bound stars

    NASA Astrophysics Data System (ADS)

    Glendenning, N. K.

    1994-03-01

    The authors seek an absolute limit on the rotational period for a neutron star as a function of its mass, based on the minimal constraints imposed by Einstein's theory of relativity, Le Chatelier's principle, causality, and a low-density equation of state, uncertainties which can be evaluated as to their effect on the result. This establishes a limiting curve in the mass-period plane below which no pulsar that is a neutron star can lie. For example, the minimum possible Kepler period, which is an absolute limit on rotation below which mass-shedding would occur, is 0.33 ms for a M = 1.442 solar mass neutron star (the mass of PSR1913+16). If the limit were found to be broken by any pulsar, it would signal that the confined hadronic phase of ordinary nucleons and nuclei is only metastable.

  1. Decay of the electron number density in the nitrogen afterglow using a hairpin resonator probe

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Siefert, Nicholas S.; Ganguly, Biswa N.; Sands, Brian L.

    A hairpin resonator was used to measure the electron number density in the afterglow of a nitrogen glow discharge (p=0.25-0.75 Torr). Electron number densities were measured using a time-dependent approach similar to the approach used by Spencer et al. [J. Phys. D 20, 923 (1987)]. The decay time of the electron number density was used to determine the electron temperature in the afterglow, assuming a loss of electrons via ambipolar diffusion to the walls. The electron temperature in the near afterglow remained between 0.4 and 0.6 eV, depending on pressure. This confirms the work by Guerra et al. [IEEE Trans.more » Plasma. Sci. 31, 542 (2003)], who demonstrated experimentally and numerically that the electron temperature stays significantly above room temperature via superelastic collisions with highly vibrationally excited ground state molecules and metastables, such as A {sup 3}{sigma}{sub u}{sup +}.« less

  2. Investigation of Aerosol Surface Area Estimation from Number and Mass Concentration Measurements: Particle Density Effect.

    PubMed

    Ku, Bon Ki; Evans, Douglas E

    2012-04-01

    For nanoparticles with nonspherical morphologies, e.g., open agglomerates or fibrous particles, it is expected that the actual density of agglomerates may be significantly different from the bulk material density. It is further expected that using the material density may upset the relationship between surface area and mass when a method for estimating aerosol surface area from number and mass concentrations (referred to as "Maynard's estimation method") is used. Therefore, it is necessary to quantitatively investigate how much the Maynard's estimation method depends on particle morphology and density. In this study, aerosol surface area estimated from number and mass concentration measurements was evaluated and compared with values from two reference methods: a method proposed by Lall and Friedlander for agglomerates and a mobility based method for compact nonspherical particles using well-defined polydisperse aerosols with known particle densities. Polydisperse silver aerosol particles were generated by an aerosol generation facility. Generated aerosols had a range of morphologies, count median diameters (CMD) between 25 and 50 nm, and geometric standard deviations (GSD) between 1.5 and 1.8. The surface area estimates from number and mass concentration measurements correlated well with the two reference values when gravimetric mass was used. The aerosol surface area estimates from the Maynard's estimation method were comparable to the reference method for all particle morphologies within the surface area ratios of 3.31 and 0.19 for assumed GSDs 1.5 and 1.8, respectively, when the bulk material density of silver was used. The difference between the Maynard's estimation method and surface area measured by the reference method for fractal-like agglomerates decreased from 79% to 23% when the measured effective particle density was used, while the difference for nearly spherical particles decreased from 30% to 24%. The results indicate that the use of particle density

  3. Model-Observation Comparisons of Electron Number Densities in the Coma of 67P/Churyumov-Gerasimenko during January 2015

    NASA Astrophysics Data System (ADS)

    Vigren, E.; Altwegg, K.; Edberg, N. J. T.; Eriksson, A. I.; Galand, M.; Henri, P.; Johansson, F.; Odelstad, E.; Tzou, C.-Y.; Valliéres, X.

    2016-09-01

    During 2015 January 9-11, at a heliocentric distance of ˜2.58-2.57 au, the ESA Rosetta spacecraft resided at a cometocentric distance of ˜28 km from the nucleus of comet 67P/Churyumov-Gerasimenko, sweeping the terminator at northern latitudes of 43°N-58°N. Measurements by the Rosetta Orbiter Spectrometer for Ion and Neutral Analysis/Comet Pressure Sensor (ROSINA/COPS) provided neutral number densities. We have computed modeled electron number densities using the neutral number densities as input into a Field Free Chemistry Free model, assuming H2O dominance and ion-electron pair formation by photoionization only. A good agreement (typically within 25%) is found between the modeled electron number densities and those observed from measurements by the Mutual Impedance Probe (RPC/MIP) and the Langmuir Probe (RPC/LAP), both being subsystems of the Rosetta Plasma Consortium. This indicates that ions along the nucleus-spacecraft line were strongly coupled to the neutrals, moving radially outward with about the same speed. Such a statement, we propose, can be further tested by observations of H3O+/H2O+ number density ratios and associated comparisons with model results.

  4. Assessing agreement between malaria slide density readings.

    PubMed

    Alexander, Neal; Schellenberg, David; Ngasala, Billy; Petzold, Max; Drakeley, Chris; Sutherland, Colin

    2010-01-04

    Several criteria have been used to assess agreement between replicate slide readings of malaria parasite density. Such criteria may be based on percent difference, or absolute difference, or a combination. Neither the rationale for choosing between these types of criteria, nor that for choosing the magnitude of difference which defines acceptable agreement, are clear. The current paper seeks a procedure which avoids the disadvantages of these current options and whose parameter values are more clearly justified. Variation of parasite density within a slide is expected, even when it has been prepared from a homogeneous sample. This places lower limits on sensitivity and observer agreement, quantified by the Poisson distribution. This means that, if a criterion of fixed percent difference criterion is used for satisfactory agreement, the number of discrepant readings is over-estimated at low parasite densities. With a criterion of fixed absolute difference, the same happens at high parasite densities. For an ideal slide, following the Poisson distribution, a criterion based on a constant difference in square root counts would apply for all densities. This can be back-transformed to a difference in absolute counts, which, as expected, gives a wider range of acceptable agreement at higher average densities. In an example dataset from Tanzania, observed differences in square root counts correspond to a 95% limits of agreement of -2,800 and +2,500 parasites/microl at average density of 2,000 parasites/microl, and -6,200 and +5,700 parasites/microl at 10,000 parasites/microl. However, there were more outliers beyond those ranges at higher densities, meaning that actual coverage of these ranges was not a constant 95%, but decreased with density. In a second study, a trial of microscopist training, the corresponding ranges of agreement are wider and asymmetrical: -8,600 to +5,200/microl, and -19,200 to +11,700/microl, respectively. By comparison, the optimal limits of

  5. Easy Absolute Values? Absolutely

    ERIC Educational Resources Information Center

    Taylor, Sharon E.; Mittag, Kathleen Cage

    2015-01-01

    The authors teach a problem-solving course for preservice middle-grades education majors that includes concepts dealing with absolute-value computations, equations, and inequalities. Many of these students like mathematics and plan to teach it, so they are adept at symbolic manipulations. Getting them to think differently about a concept that they…

  6. Temperature and number density measurements using Raman scattering in turbulent-supersonic-combusting flows

    NASA Astrophysics Data System (ADS)

    Jeyashekar, Nigil Satish

    Scramjet engines propelled at hypersonic velocities have the potential to replace existing rocket launchers. Commercializing the vehicle is an arduous task, owing to issues relating to low combustion efficiency. The performance, thrust, and speed of the engine can be improved by optimizing: turbulence-chemistry interaction to provide mixing conditions favorable for the chemistry, pressure buildup, and re-circulation of hydrogen throughout the engine. The performance of the engine can be measured, flow and chemical dynamics can be evaluated when all three variables in the transport equations are known. The variables are instantaneous flow velocity, static temperature (refers to the macroscopic temperature and not the molecular species temperature), and total number density at a point in the flow. The motive is to build a non-intrusive tool to measure thermodynamic quantities (static temperature and total number density). This can be integrated with a velocity measurement tool, in the future, to obtain all three variables simultaneously and instantaneously. The dissertation describes in detail the motivation for the proposed work, with introduction to the formalism involved, with a concise literature review, followed by mathematical perspective to obtain the working equations for temperature and number density. The design of the adiabatic burner and the experimental setup used for calibration is discussed with the uncertainty involved in measurements. The measurements are made for a certain set of flow conditions in the laminar burner by Raman scattering and is validated by comparing it to the theoretical/adiabatic flame temperature and mole fraction plots, in lean and rich regime. This technique is applied to turbulent, supersonic, hydrogen-air flame of an afterburning rocket nozzle. The statistics of temperature and total number density versus the corresponding values at adiabatic conditions gives the departure from thermal and chemical equilibrium. The extent of

  7. On extending Kohn-Sham density functionals to systems with fractional number of electrons.

    PubMed

    Li, Chen; Lu, Jianfeng; Yang, Weitao

    2017-06-07

    We analyze four ways of formulating the Kohn-Sham (KS) density functionals with a fractional number of electrons, through extending the constrained search space from the Kohn-Sham and the generalized Kohn-Sham (GKS) non-interacting v-representable density domain for integer systems to four different sets of densities for fractional systems. In particular, these density sets are (I) ensemble interacting N-representable densities, (II) ensemble non-interacting N-representable densities, (III) non-interacting densities by the Janak construction, and (IV) non-interacting densities whose composing orbitals satisfy the Aufbau occupation principle. By proving the equivalence of the underlying first order reduced density matrices associated with these densities, we show that sets (I), (II), and (III) are equivalent, and all reduce to the Janak construction. Moreover, for functionals with the ensemble v-representable assumption at the minimizer, (III) reduces to (IV) and thus justifies the previous use of the Aufbau protocol within the (G)KS framework in the study of the ground state of fractional electron systems, as defined in the grand canonical ensemble at zero temperature. By further analyzing the Aufbau solution for different density functional approximations (DFAs) in the (G)KS scheme, we rigorously prove that there can be one and only one fractional occupation for the Hartree Fock functional, while there can be multiple fractional occupations for general DFAs in the presence of degeneracy. This has been confirmed by numerical calculations using the local density approximation as a representative of general DFAs. This work thus clarifies important issues on density functional theory calculations for fractional electron systems.

  8. Absolutely relative or relatively absolute: violations of value invariance in human decision making.

    PubMed

    Teodorescu, Andrei R; Moran, Rani; Usher, Marius

    2016-02-01

    Making decisions based on relative rather than absolute information processing is tied to choice optimality via the accumulation of evidence differences and to canonical neural processing via accumulation of evidence ratios. These theoretical frameworks predict invariance of decision latencies to absolute intensities that maintain differences and ratios, respectively. While information about the absolute values of the choice alternatives is not necessary for choosing the best alternative, it may nevertheless hold valuable information about the context of the decision. To test the sensitivity of human decision making to absolute values, we manipulated the intensities of brightness stimuli pairs while preserving either their differences or their ratios. Although asked to choose the brighter alternative relative to the other, participants responded faster to higher absolute values. Thus, our results provide empirical evidence for human sensitivity to task irrelevant absolute values indicating a hard-wired mechanism that precedes executive control. Computational investigations of several modelling architectures reveal two alternative accounts for this phenomenon, which combine absolute and relative processing. One account involves accumulation of differences with activation dependent processing noise and the other emerges from accumulation of absolute values subject to the temporal dynamics of lateral inhibition. The potential adaptive role of such choice mechanisms is discussed.

  9. Numbers Defy the Law of Large Numbers

    ERIC Educational Resources Information Center

    Falk, Ruma; Lann, Avital Lavie

    2015-01-01

    As the number of independent tosses of a fair coin grows, the rates of heads and tails tend to equality. This is misinterpreted by many students as being true also for the absolute numbers of the two outcomes, which, conversely, depart unboundedly from each other in the process. Eradicating that misconception, as by coin-tossing experiments,…

  10. Investigation of Aerosol Surface Area Estimation from Number and Mass Concentration Measurements: Particle Density Effect

    PubMed Central

    Ku, Bon Ki; Evans, Douglas E.

    2015-01-01

    For nanoparticles with nonspherical morphologies, e.g., open agglomerates or fibrous particles, it is expected that the actual density of agglomerates may be significantly different from the bulk material density. It is further expected that using the material density may upset the relationship between surface area and mass when a method for estimating aerosol surface area from number and mass concentrations (referred to as “Maynard’s estimation method”) is used. Therefore, it is necessary to quantitatively investigate how much the Maynard’s estimation method depends on particle morphology and density. In this study, aerosol surface area estimated from number and mass concentration measurements was evaluated and compared with values from two reference methods: a method proposed by Lall and Friedlander for agglomerates and a mobility based method for compact nonspherical particles using well-defined polydisperse aerosols with known particle densities. Polydisperse silver aerosol particles were generated by an aerosol generation facility. Generated aerosols had a range of morphologies, count median diameters (CMD) between 25 and 50 nm, and geometric standard deviations (GSD) between 1.5 and 1.8. The surface area estimates from number and mass concentration measurements correlated well with the two reference values when gravimetric mass was used. The aerosol surface area estimates from the Maynard’s estimation method were comparable to the reference method for all particle morphologies within the surface area ratios of 3.31 and 0.19 for assumed GSDs 1.5 and 1.8, respectively, when the bulk material density of silver was used. The difference between the Maynard’s estimation method and surface area measured by the reference method for fractal-like agglomerates decreased from 79% to 23% when the measured effective particle density was used, while the difference for nearly spherical particles decreased from 30% to 24%. The results indicate that the use of

  11. Is actinometry reliable for monitoring Si and silicone halides produced in silicon etching plasmas? A comparison with their absolute densities measured by UV broad band absorption

    NASA Astrophysics Data System (ADS)

    Kogelschatz, M.; Cunge, G.; Sadeghi, N.

    2006-03-01

    SiCl{x} radicals, the silicon etching by-products, are playing a major role in silicon gate etching processes because their redeposition on the wafer leads to the formation of a SiOCl{x} passivation layer on the feature sidewalls, which controls the final shape of the etching profile. These radicals are also the precursors to the formation of a similar layer on the reactor walls, leading to process drifts. As a result, the understanding and modelling of these processes rely on the knowledge of their densities in the plasma. Actinometry technique, based on optical emission, is often used to measure relative variations of the density of the above mentioned radicals, even if it is well known that the results obtained with this technique might not always be reliable. To determine the validity domain of actinometry in industrial silicon-etching high density plasmas, we measure the RF source power and pressure dependences of the absolute densities of SiCl{x} (x=0{-}2), SiF and SiBr radicals, deduced from UV broad band absorption spectroscopy. These results are compared to the evolution of the corresponding actinometry signals from these radicals. It is shown that actinometry predicts the global trends of the species density variations when the RF power is changed at constant pressure (that is to say when only the electron density changes) but it completely fails if the gas pressure, hence the electron temperature, changes.

  12. Contribution of HI-bearing ultra-diffuse galaxies to the cosmic number density of galaxies

    NASA Astrophysics Data System (ADS)

    Jones, M. G.; Papastergis, E.; Pandya, V.; Leisman, L.; Romanowsky, A. J.; Yung, L. Y. A.; Somerville, R. S.; Adams, E. A. K.

    2018-06-01

    We estimate the cosmic number density of the recently identified class of HI-bearing ultra-diffuse sources (HUDs) based on the completeness limits of the ALFALFA survey. These objects have HI masses approximately in the range 8.5 < logMHI/M⊙ < 9.5, average r-band surface brightnesses fainter than 24 mag arcsec-2, half-light radii greater than 1.5 kpc, and are separated from neighbours by at least 350 kpc. In this work we demonstrate that they contribute at most 6% of the population of HI-bearing dwarfs detected by ALFALFA (with similar HI masses), have a total cosmic number density of (1.5 ± 0.6) × 10-3 Mpc-3, and an HI mass density of (6.0 ± 0.8) × 105 M⊙ Mpc-3. We estimate that this is similar to the total cosmic number density of ultra-diffuse galaxies (UDGs) in groups and clusters, and conclude that the relation between the number of UDGs hosted in a halo and the halo mass must have a break below M200 1012 M⊙ in order to account for the abundance of HUDs in the field. The distribution of the velocity widths of HUDs rises steeply towards low values, indicating a preference for slow rotation rates compared to the global HI-rich dwarf population. These objects were already included in previous measurements of the HI mass function, but have been absent from measurements of the galaxy stellar mass function owing to their low surface brightness. However, we estimate that due to their low number density the inclusion of HUDs would constitute a correction of less than 1%. Comparison with the Santa Cruz semi-analytic model shows that it produces HI-rich central UDGs that have similar colours to HUDs, but that these UDGs are currently produced in a much greater number. While previous results from this sample have favoured formation scenarios where HUDs form in high spin-parameter halos, comparisons with recent results which invoke that formation mechanism reveal that this model produces an order of magnitude more field UDGs than we observe in the HUD population

  13. Temporal Dynamics of Microbial Rhodopsin Fluorescence Reports Absolute Membrane Voltage

    PubMed Central

    Hou, Jennifer H.; Venkatachalam, Veena; Cohen, Adam E.

    2014-01-01

    Plasma membrane voltage is a fundamentally important property of a living cell; its value is tightly coupled to membrane transport, the dynamics of transmembrane proteins, and to intercellular communication. Accurate measurement of the membrane voltage could elucidate subtle changes in cellular physiology, but existing genetically encoded fluorescent voltage reporters are better at reporting relative changes than absolute numbers. We developed an Archaerhodopsin-based fluorescent voltage sensor whose time-domain response to a stepwise change in illumination encodes the absolute membrane voltage. We validated this sensor in human embryonic kidney cells. Measurements were robust to variation in imaging parameters and in gene expression levels, and reported voltage with an absolute accuracy of 10 mV. With further improvements in membrane trafficking and signal amplitude, time-domain encoding of absolute voltage could be applied to investigate many important and previously intractable bioelectric phenomena. PMID:24507604

  14. Absolute and convective instabilities in combined Couette-Poiseuille flow past a neo-Hookean solid

    NASA Astrophysics Data System (ADS)

    Patne, Ramkarn; Shankar, V.

    2017-12-01

    Temporal and spatio-temporal stability analyses are carried out to characterize the occurrence of convective and absolute instabilities in combined Couette-Poiseuille flow of a Newtonian fluid past a deformable, neo-Hookean solid layer in the creeping-flow limit. Plane Couette flow of a Newtonian fluid past a neo-Hookean solid becomes temporally unstable in the inertia-less limit when the parameter Γ = V η/(GR) exceeds a critical value. Here, V is the velocity of the top plate, η is the fluid viscosity, G is the shear modulus of the solid layer, and R is the fluid layer thickness. The Kupfer-Bers method is employed to demarcate regions of absolute and convective instabilities in the Γ-H parameter space, where H is the ratio of solid to fluid thickness in the system. For certain ranges of the thickness ratio H, we find that the flow could be absolutely unstable, and the critical Γ required for absolute instability is very close to that for temporal instability, thus making the flow absolutely unstable at the onset of temporal instability. In some cases, there is a gap in the parameter Γ between the temporal and absolute instability boundaries. The present study thus shows that absolute instabilities are possible, even at very low Reynolds numbers in flow past deformable solid surfaces. The presence of absolute instabilities could potentially be exploited in the enhancement of mixing at low Reynolds numbers in flow through channels with deformable solid walls.

  15. Absolute biological needs.

    PubMed

    McLeod, Stephen

    2014-07-01

    Absolute needs (as against instrumental needs) are independent of the ends, goals and purposes of personal agents. Against the view that the only needs are instrumental needs, David Wiggins and Garrett Thomson have defended absolute needs on the grounds that the verb 'need' has instrumental and absolute senses. While remaining neutral about it, this article does not adopt that approach. Instead, it suggests that there are absolute biological needs. The absolute nature of these needs is defended by appeal to: their objectivity (as against mind-dependence); the universality of the phenomenon of needing across the plant and animal kingdoms; the impossibility that biological needs depend wholly upon the exercise of the abilities characteristic of personal agency; the contention that the possession of biological needs is prior to the possession of the abilities characteristic of personal agency. Finally, three philosophical usages of 'normative' are distinguished. On two of these, to describe a phenomenon or claim as 'normative' is to describe it as value-dependent. A description of a phenomenon or claim as 'normative' in the third sense does not entail such value-dependency, though it leaves open the possibility that value depends upon the phenomenon or upon the truth of the claim. It is argued that while survival needs (or claims about them) may well be normative in this third sense, they are normative in neither of the first two. Thus, the idea of absolute need is not inherently normative in either of the first two senses. © 2013 John Wiley & Sons Ltd.

  16. Birds have primate-like numbers of neurons in the forebrain

    PubMed Central

    Olkowicz, Seweryn; Kocourek, Martin; Lučan, Radek K.; Porteš, Michal; Fitch, W. Tecumseh; Herculano-Houzel, Suzana; Němec, Pavel

    2016-01-01

    Some birds achieve primate-like levels of cognition, even though their brains tend to be much smaller in absolute size. This poses a fundamental problem in comparative and computational neuroscience, because small brains are expected to have a lower information-processing capacity. Using the isotropic fractionator to determine numbers of neurons in specific brain regions, here we show that the brains of parrots and songbirds contain on average twice as many neurons as primate brains of the same mass, indicating that avian brains have higher neuron packing densities than mammalian brains. Additionally, corvids and parrots have much higher proportions of brain neurons located in the pallial telencephalon compared with primates or other mammals and birds. Thus, large-brained parrots and corvids have forebrain neuron counts equal to or greater than primates with much larger brains. We suggest that the large numbers of neurons concentrated in high densities in the telencephalon substantially contribute to the neural basis of avian intelligence. PMID:27298365

  17. Preliminary scaling laws for plasma current, ion kinetic temperature, and plasma number density in the NASA Lewis bumpy torus plasma

    NASA Technical Reports Server (NTRS)

    Roth, J. R.

    1976-01-01

    Parametric variation of independent variables which may affect the characteristics of bumpy torus plasma have identified those which have a significant effect on the plasma current, ion kinetic temperature, and plasma number density, and those which do not. Empirical power law correlations of the plasma current, and the ion kinetic temperature and number density were obtained as functions of potential applied to the midplane electrode rings, the background neutral gas pressure, and the magnetic field strength. Additional parameters studied included the type of gas, the polarity of the midplane electrode rings, the mode of plasma operation, and the method of measuring the plasma number density. No significant departures from the scaling laws appear to occur at the highest ion kinetic temperatures or number densities obtained to date.

  18. MODEL-OBSERVATION COMPARISONS OF ELECTRON NUMBER DENSITIES IN THE COMA OF 67P/CHURYUMOV–GERASIMENKO DURING 2015 JANUARY

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Vigren, E.; Edberg, N. J. T.; Eriksson, A. I.

    2016-09-01

    During 2015 January 9–11, at a heliocentric distance of ∼2.58–2.57 au, the ESA Rosetta spacecraft resided at a cometocentric distance of ∼28 km from the nucleus of comet 67P/Churyumov–Gerasimenko, sweeping the terminator at northern latitudes of 43°N–58°N. Measurements by the Rosetta Orbiter Spectrometer for Ion and Neutral Analysis/Comet Pressure Sensor (ROSINA/COPS) provided neutral number densities. We have computed modeled electron number densities using the neutral number densities as input into a Field Free Chemistry Free model, assuming H{sub 2}O dominance and ion-electron pair formation by photoionization only. A good agreement (typically within 25%) is found between the modeled electron numbermore » densities and those observed from measurements by the Mutual Impedance Probe (RPC/MIP) and the Langmuir Probe (RPC/LAP), both being subsystems of the Rosetta Plasma Consortium. This indicates that ions along the nucleus-spacecraft line were strongly coupled to the neutrals, moving radially outward with about the same speed. Such a statement, we propose, can be further tested by observations of H{sub 3}O{sup +}/H{sub 2}O{sup +} number density ratios and associated comparisons with model results.« less

  19. Buoyancy Effects on Flow Structure and Instability of Low-Density Gas Jets

    NASA Technical Reports Server (NTRS)

    Pasumarthi, Kasyap Sriramachandra

    2004-01-01

    Reynolds number was varied from 200 to 1500 and jet Richardson number was varied from 0.72 to 0.002. Power spectra plots generated from Fast Fourier Transform (FFT) analysis of angular deflection data acquired at a temporal resolution of 1000Hz reveal substantial damping of the oscillation amplitude in microgravity at low Richardson numbers (0.002). Quantitative concentration data in the form of spatial and temporal evolutions of the instability data in Earth gravity and microgravity reveal significant variations in the jet flow structure upon removal of buoyancy forces. Radial variation of the frequency spectra and time traces of helium concentration revealed the importance of gravitational effects in the jet shear layer region. Linear temporal and spatio-temporal stability analyses of a low-density round gas jet injected into a high-density ambient gas were performed by assuming hyper-tan mean velocity and density profiles. The flow was assumed to be non parallel. Viscous and diffusive effects were ignored. The mean flow parameters were represented as the sum of the mean value and a small normal-mode fluctuation. A second order differential equation governing the pressure disturbance amplitude was derived from the basic conservation equations. The effects of the inhomogeneous shear layer and the Froude number (signifying the effects of gravity) on the temporal and spatio-temporal results were delineated. A decrease in the density ratio (ratio of the density of the jet to the density of the ambient gas) resulted in an increase in the temporal amplification rate of the disturbances. The temporal growth rate of the disturbances increased as the Froude number was reduced. The spatio-temporal analysis performed to determine the absolute instability characteristics of the jet yield positive absolute temporal growth rates at all Fr and different axial locations. As buoyancy was removed (Fr . 8), the previously existing absolute instability disappeared at all locations

  20. Effects of Mean Flow Profiles on Instability of a Low-Density Gas Jet Injected into a High-Density Gas

    NASA Technical Reports Server (NTRS)

    Vedantam, Nanda Kishore

    2003-01-01

    The objective of this study was to investigate the effects of the mean flow profiles on the instability characteristics in the near-injector region of low-density gas jets injected into high-density ambient gas mediums. To achieve this, a linear temporal stability analysis and a spatio-temporal stability analysis of a low-density round gas jet injected vertically upwards into a high-density ambient gas were performed by assuming three different sets of mean velocity and density profiles. The flow was assumed to be isothermal and locally parallel. Viscous and diffusive effects were ignored. The mean flow parameters were represented as the sum of the mean value and a small normal-mode fluctuation. A second order differential equation governing the pressure disturbance amplitude was derived from the basic conservation equations. The first set of mean velocity and density profiles assumed were those used by Monkewitz and Sohn for investigating absolute instability in hot jets. The second set of velocity and density profiles assumed for this study were the ones used by Lawson. And the third set of mean profiles included a parabolic velocity profile and a hyperbolic tangent density profile. The effects of the inhomogeneous shear layer and the Froude number (signifying the effects of gravity) on the temporal and spatio-temporal results for each set of mean profiles were delineated. Additional information is included in the original extended abstract.

  1. Analysis by oxygen atom number density measurement of high-speed hydrophilic treatment of polyimide using atmospheric pressure microwave plasma

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ono, S.

    2015-03-30

    This paper describes the fundamental experimental data of the plasma surface modification of the polyimide using atmospheric pressure microwave plasma source. The experimental results were discussed from the point of view of the radical’s behavior, which significantly affects the modification mechanism. The purpose of the study is to examine how the value of the oxygen atom density will affect the hydrophilic treatment in the upstream region of the plasma where gas temperature is very high. The surface modification experiments were performed by setting the polyimide film sample in the downstream region of the plasma. The degree of the modification wasmore » measured by a water contact angle measurement. The water contact angle decreased less than 30 degrees within 1 second treatment time in the upstream region. Very high speed modification was observed. The reason of this high speed modification seems that the high density radical which contributes the surface modification exist in the upstream region of the plasma. This tendency is supposed to the measured relatively high electron density (~10{sup 15}cm{sup −3}) at the center of the plasma. We used the electric heating catalytic probe method for oxygen radical measurement. An absolute value of oxygen radical density was determined by catalytic probe measurement and the results show that ~10{sup 15}cm{sup −3} of the oxygen radical density in the upstream region and decreases toward downstream region. The experimental results of the relation of the oxygen radical density and hydrophilic modification of polyimide was discussed.« less

  2. Design considerations and validation of the MSTAR absolute metrology system

    NASA Astrophysics Data System (ADS)

    Peters, Robert D.; Lay, Oliver P.; Dubovitsky, Serge; Burger, Johan; Jeganathan, Muthu

    2004-08-01

    Absolute metrology measures the actual distance between two optical fiducials. A number of methods have been employed, including pulsed time-of-flight, intensity-modulated optical beam, and two-color interferometry. The rms accuracy is currently limited to ~5 microns. Resolving the integer number of wavelengths requires a 1-sigma range accuracy of ~0.1 microns. Closing this gap has a large pay-off: the range (length measurement) accuracy can be increased substantially using the unambiguous optical phase. The MSTAR sensor (Modulation Sideband Technology for Absolute Ranging) is a new system for measuring absolute distance, capable of resolving the integer cycle ambiguity of standard interferometers, and making it possible to measure distance with sub-nanometer accuracy. In this paper, we present recent experiments that use dispersed white light interferometry to independently validate the zero-point of the system. We also describe progress towards reducing the size of optics, and stabilizing the laser wavelength for operation over larger target ranges. MSTAR is a general-purpose tool for conveniently measuring length with much greater accuracy than was previously possible, and has a wide range of possible applications.

  3. Jasminum flexile flower absolute from India--a detailed comparison with three other jasmine absolutes.

    PubMed

    Braun, Norbert A; Kohlenberg, Birgit; Sim, Sherina; Meier, Manfred; Hammerschmidt, Franz-Josef

    2009-09-01

    Jasminum flexile flower absolute from the south of India and the corresponding vacuum headspace (VHS) sample of the absolute were analyzed using GC and GC-MS. Three other commercially available Indian jasmine absolutes from the species: J. sambac, J. officinale subsp. grandiflorum, and J. auriculatum and the respective VHS samples were used for comparison purposes. One hundred and twenty-one compounds were characterized in J. flexile flower absolute, with methyl linolate, benzyl salicylate, benzyl benzoate, (2E,6E)-farnesol, and benzyl acetate as the main constituents. A detailed olfactory evaluation was also performed.

  4. Absolute nuclear material assay

    DOEpatents

    Prasad, Manoj K [Pleasanton, CA; Snyderman, Neal J [Berkeley, CA; Rowland, Mark S [Alamo, CA

    2012-05-15

    A method of absolute nuclear material assay of an unknown source comprising counting neutrons from the unknown source and providing an absolute nuclear material assay utilizing a model to optimally compare to the measured count distributions. In one embodiment, the step of providing an absolute nuclear material assay comprises utilizing a random sampling of analytically computed fission chain distributions to generate a continuous time-evolving sequence of event-counts by spreading the fission chain distribution in time.

  5. Absolute nuclear material assay

    DOEpatents

    Prasad, Manoj K [Pleasanton, CA; Snyderman, Neal J [Berkeley, CA; Rowland, Mark S [Alamo, CA

    2010-07-13

    A method of absolute nuclear material assay of an unknown source comprising counting neutrons from the unknown source and providing an absolute nuclear material assay utilizing a model to optimally compare to the measured count distributions. In one embodiment, the step of providing an absolute nuclear material assay comprises utilizing a random sampling of analytically computed fission chain distributions to generate a continuous time-evolving sequence of event-counts by spreading the fission chain distribution in time.

  6. Preliminary scaling laws for plasma current, ion kinetic temperature, and plasma number density in the NASA Lewis Bumpy Torus plasma

    NASA Technical Reports Server (NTRS)

    Roth, J. R.

    1976-01-01

    Parametric variation of independent variables which may affect the characteristics of the NASA Lewis Bumpy Torus plasma have identified those which have a significant effect on the plasma current, ion kinetic temperature, and plasma number density, and those which do not. Empirical power-law correlations of the plasma current, and the ion kinetic temperature and number density were obtained as functions of the potential applied to the midplane electrode rings, the background neutral gas pressure, and the magnetic field strength. Additional parameters studied include the type of gas, the polarity of the midplane electrode rings (and hence the direction of the radial electric field), the mode of plasma operation, and the method of measuring the plasma number density. No significant departures from the scaling laws appear to occur at the highest ion kinetic temperatures or number densities obtained to date.

  7. Analytical gradients for subsystem density functional theory within the slater-function-based amsterdam density functional program.

    PubMed

    Schlüns, Danny; Franchini, Mirko; Götz, Andreas W; Neugebauer, Johannes; Jacob, Christoph R; Visscher, Lucas

    2017-02-05

    We present a new implementation of analytical gradients for subsystem density-functional theory (sDFT) and frozen-density embedding (FDE) into the Amsterdam Density Functional program (ADF). The underlying theory and necessary expressions for the implementation are derived and discussed in detail for various FDE and sDFT setups. The parallel implementation is numerically verified and geometry optimizations with different functional combinations (LDA/TF and PW91/PW91K) are conducted and compared to reference data. Our results confirm that sDFT-LDA/TF yields good equilibrium distances for the systems studied here (mean absolute deviation: 0.09 Å) compared to reference wave-function theory results. However, sDFT-PW91/PW91k quite consistently yields smaller equilibrium distances (mean absolute deviation: 0.23 Å). The flexibility of our new implementation is demonstrated for an HCN-trimer test system, for which several different setups are applied. © 2016 Wiley Periodicals, Inc. © 2016 Wiley Periodicals, Inc.

  8. Absolute Hugoniot measurements from a spherically convergent shock using x-ray radiography

    NASA Astrophysics Data System (ADS)

    Swift, Damian C.; Kritcher, Andrea L.; Hawreliak, James A.; Lazicki, Amy; MacPhee, Andrew; Bachmann, Benjamin; Döppner, Tilo; Nilsen, Joseph; Collins, Gilbert W.; Glenzer, Siegfried; Rothman, Stephen D.; Kraus, Dominik; Falcone, Roger W.

    2018-05-01

    The canonical high pressure equation of state measurement is to induce a shock wave in the sample material and measure two mechanical properties of the shocked material or shock wave. For accurate measurements, the experiment is normally designed to generate a planar shock which is as steady as possible in space and time, and a single state is measured. A converging shock strengthens as it propagates, so a range of shock pressures is induced in a single experiment. However, equation of state measurements must then account for spatial and temporal gradients. We have used x-ray radiography of spherically converging shocks to determine states along the shock Hugoniot. The radius-time history of the shock, and thus its speed, was measured by radiographing the position of the shock front as a function of time using an x-ray streak camera. The density profile of the shock was then inferred from the x-ray transmission at each instant of time. Simultaneous measurement of the density at the shock front and the shock speed determines an absolute mechanical Hugoniot state. The density profile was reconstructed using the known, unshocked density which strongly constrains the density jump at the shock front. The radiographic configuration and streak camera behavior were treated in detail to reduce systematic errors. Measurements were performed on the Omega and National Ignition Facility lasers, using a hohlraum to induce a spatially uniform drive over the outside of a solid, spherical sample and a laser-heated thermal plasma as an x-ray source for radiography. Absolute shock Hugoniot measurements were demonstrated for carbon-containing samples of different composition and initial density, up to temperatures at which K-shell ionization reduced the opacity behind the shock. Here we present the experimental method using measurements of polystyrene as an example.

  9. Solid state structure and absolute configuration of filifolinol acetate.

    PubMed

    Muñoz, Marcelo A; Urzúa, Alejandro; Echeverría, Javier; Modak, Brenda; Joseph-Nathan, Pedro

    2011-06-01

    Careful reevaluation of the 1H and 13C NMR spectroscopic data of filifolinol acetate (4) led to the reassignment of the C-10 and C-11 signals, as well as the gem-dimethyl signals. Single crystal X-ray analysis provided an independent structural confirmation of 4, and comparison of the experimental vibrational circular dichroism spectrum with calculations performed using density functional theory provided the absolute configuration of this 3H-spiro-1-benzofuran-2,1'-cyclohexane and related molecules.

  10. Novel Associations between Common Breast Cancer Susceptibility Variants and Risk-Predicting Mammographic Density Measures

    PubMed Central

    Stone, Jennifer; Thompson, Deborah J.; dos-Santos-Silva, Isabel; Scott, Christopher; Tamimi, Rulla M.; Lindstrom, Sara; Kraft, Peter; Hazra, Aditi; Li, Jingmei; Eriksson, Louise; Czene, Kamila; Hall, Per; Jensen, Matt; Cunningham, Julie; Olson, Janet E.; Purrington, Kristen; Couch, Fergus J.; Brown, Judith; Leyland, Jean; Warren, Ruth M. L.; Luben, Robert N.; Khaw, Kay-Tee; Smith, Paula; Wareham, Nicholas J.; Jud, Sebastian M.; Heusinger, Katharina; Beckmann, Matthias W.; Douglas, Julie A.; Shah, Kaanan P.; Chan, Heang-Ping; Helvie, Mark A.; Le Marchand, Loic; Kolonel, Laurence N.; Woolcott, Christy; Maskarinec, Gertraud; Haiman, Christopher; Giles, Graham G.; Baglietto, Laura; Krishnan, Kavitha; Southey, Melissa C.; Apicella, Carmel; Andrulis, Irene L.; Knight, Julia A.; Ursin, Giske; Grenaker Alnaes, Grethe I.; Kristensen, Vessela N.; Borresen-Dale, Anne-Lise; Gram, Inger Torhild; Bolla, Manjeet K.; Wang, Qin; Michailidou, Kyriaki; Dennis, Joe; Simard, Jacques; Paroah, Paul; Dunning, Alison M.; Easton, Douglas F.; Fasching, Peter A.; Pankratz, V. Shane; Hopper, John; Vachon, Celine M.

    2015-01-01

    Mammographic density measures adjusted for age and body mass index (BMI) are heritable predictors of breast cancer risk but few mammographic density-associated genetic variants have been identified. Using data for 10,727 women from two international consortia, we estimated associations between 77 common breast cancer susceptibility variants and absolute dense area, percent dense area and absolute non-dense area adjusted for study, age and BMI using mixed linear modeling. We found strong support for established associations between rs10995190 (in the region of ZNF365), rs2046210 (ESR1) and rs3817198 (LSP1) and adjusted absolute and percent dense areas (all p <10−5). Of 41 recently discovered breast cancer susceptibility variants, associations were found between rs1432679 (EBF1), rs17817449 (MIR1972-2: FTO), rs12710696 (2p24.1), and rs3757318 (ESR1) and adjusted absolute and percent dense areas, respectively. There were associations between rs6001930 (MKL1) and both adjusted absolute dense and non-dense areas, and between rs17356907 (NTN4) and adjusted absolute non-dense area. Trends in all but two associations were consistent with those for breast cancer risk. Results suggested that 18% of breast cancer susceptibility variants were associated with at least one mammographic density measure. Genetic variants at multiple loci were associated with both breast cancer risk and the mammographic density measures. Further understanding of the underlying mechanisms at these loci could help identify etiological pathways implicated in how mammographic density predicts breast cancer risk. PMID:25862352

  11. Relative and absolute level populations in beam-foil-excited neutral helium

    NASA Technical Reports Server (NTRS)

    Davidson, J.

    1975-01-01

    Relative and absolute populations of 19 levels in beam-foil-excited neutral helium at 0.275 MeV have been measured. The singlet angular-momentum sequences show dependences on principal quantum number consistent with n to the -3rd power, but the triplet sequences do not. Singlet and triplet angular-momentum sequences show similar dependences on level excitation energy. Excitation functions for six representative levels were measured in the range from 0.160 to 0.500 MeV. The absolute level populations increase with energy, whereas the neutral fraction of the beam decreases with energy. Further, the P angular-momentum levels are found to be overpopulated with respect to the S and D levels. The overpopulation decreases with increasing principal quantum number.

  12. Common pitfalls in statistical analysis: Absolute risk reduction, relative risk reduction, and number needed to treat

    PubMed Central

    Ranganathan, Priya; Pramesh, C. S.; Aggarwal, Rakesh

    2016-01-01

    In the previous article in this series on common pitfalls in statistical analysis, we looked at the difference between risk and odds. Risk, which refers to the probability of occurrence of an event or outcome, can be defined in absolute or relative terms. Understanding what these measures represent is essential for the accurate interpretation of study results. PMID:26952180

  13. Fundamental principles of absolute radiometry and the philosophy of this NBS program (1968 to 1971)

    NASA Technical Reports Server (NTRS)

    Geist, J.

    1972-01-01

    A description is given work performed on a program to develop an electrically calibrated detector (also called absolute radiometer, absolute detector, and electrically calibrated radiometer) that could be used to realize, maintain, and transfer a scale of total irradiance. The program includes a comprehensive investigation of the theoretical basis of absolute detector radiometry, as well as the design and construction of a number of detectors. A theoretical analysis of the sources of error is also included.

  14. Retrieval of sodium number density profiles in the mesosphere and lower thermosphere from SCIAMACHY limb emission measurements

    NASA Astrophysics Data System (ADS)

    Langowski, M. P.; von Savigny, C.; Burrows, J. P.; Rozanov, V. V.; Dunker, T.; Hoppe, U.-P.; Sinnhuber, M.; Aikin, A. C.

    2015-07-01

    An algorithm has been developed for the retrieval of sodium atom (Na) number density on a latitude and altitude grid from SCIAMACHY limb measurements of the Na resonance fluorescence. The results are obtained between 50 and 150 km altitude and the resulting global seasonal variations of Na are analysed. The retrieval approach is adapted from that used for the retrieval of magnesium atom (Mg) and magnesium ion (Mg+) number density profiles recently reported by Langowski et al. (2014). Monthly mean values of Na are presented as a function of altitude and latitude. This data set was retrieved from the 4 years of spectroscopic limb data of the SCIAMACHY mesosphere and lower thermosphere (MLT) measurement mode. The Na layer has a nearly constant altitude of 90-93 km for all latitudes and seasons, and has a full width at half maximum of 5-15 km. Small but substantial seasonal variations in Na are identified for latitudes less than 40°, where the maximum Na number densities are 3000-4000 atoms cm-3. At mid to high latitudes a clear seasonal variation with a winter maximum of up to 6000 atoms cm-3 is observed. The high latitudes, which are only measured in the Summer Hemisphere, have lower number densities with peak densities being approximately 1000 Na atoms cm-3. The full width at half maximum of the peak varies strongly at high latitudes and is 5 km near the polar summer mesopause, while it exceeds 10 km at lower latitudes. In summer the Na atom concentration at high latitudes and at altitudes below 88 km is significantly smaller than that at mid latitudes. The results are compared with other observations and models and there is overall a good agreement with these.

  15. Retrieval of sodium number density profiles in the mesosphere and lower thermosphere from SCIAMACHY limb emission measurements

    NASA Astrophysics Data System (ADS)

    Langowski, M. P.; von Savigny, C.; Burrows, J. P.; Rozanov, V. V.; Dunker, T.; Hoppe, U.-P.; Sinnhuber, M.; Aikin, A. C.

    2016-01-01

    An algorithm has been developed for the retrieval of sodium atom (Na) number density on a latitude and altitude grid from SCIAMACHY (SCanning Imaging Absorption spectroMeter for Atmospheric CHartographY) limb measurements of the Na resonance fluorescence. The results are obtained between 50 and 150 km altitude and the resulting global seasonal variations of Na are analyzed. The retrieval approach is adapted from that used for the retrieval of magnesium atom (Mg) and magnesium ion (Mg+) number density profiles recently reported by Langowski et al. (2014). Monthly mean values of Na are presented as a function of altitude and latitude. This data set was retrieved from the 4 years of spectroscopic limb data of the SCIAMACHY mesosphere and lower thermosphere (MLT) measurement mode (mid-2008 to early 2012). The Na layer has a nearly constant peak altitude of 90-93 km for all latitudes and seasons, and has a full width at half maximum of 5-15 km. Small but significant seasonal variations in Na are identified for latitudes less than 40°, where the maximum Na number densities are 3000-4000 atoms cm-3. At middle to high latitudes a clear seasonal variation with a winter maximum of up to 6000 atoms cm-3 is observed. The high latitudes, which are only measured in the summer hemisphere, have lower number densities, with peak densities being approximately 1000 Na atoms cm-3. The full width at half maximum of the peak varies strongly at high latitudes and is 5 km near the polar summer mesopause, while it exceeds 10 km at lower latitudes. In summer the Na atom concentration at high latitudes and at altitudes below 88 km is significantly smaller than that at middle latitudes. The results are compared with other observations and models and there is overall a good agreement with these.

  16. The relationship between bone mineral density and mammographic density in Korean women: the Healthy Twin study.

    PubMed

    Sung, Joohon; Song, Yun-Mi; Stone, Jennifer; Lee, Kayoung

    2011-09-01

    Mammographic density is one of the strong risk factors for breast cancer. A potential mechanism for this association is that cumulative exposure to mammographic density may reflect cumulative exposure to hormones that stimulate cell division in breast stroma and epithelium, which may have corresponding effects on breast cancer development. Bone mineral density (BMD), a marker of lifetime estrogen exposure, has been found to be associated with breast cancer. We examined the association between BMD and mammographic density in a Korean population. Study subjects were 730 Korean women selected from the Healthy Twin study. BMD (g/cm(2)) was measured with dual-energy X-ray absorptiometry. Mammographic density was measured from digital mammograms using a computer-assisted thresholding method. Linear mixed model considering familial correlations and a wide range of covariates was used for analyses. Quantitative genetic analysis was completed using SOLAR. In premenopausal women, positive associations existed between absolute dense area and BMD at ribs, pelvis, and legs, and between percent dense area and BMD at pelvis and legs. However, in postmenopausal women, there was no association between BMD at any site and mammographic density measures. An evaluation of additive genetic cross-trait correlation showed that absolute dense area had a weak-positive additive genetic cross-trait correlation with BMD at ribs and spines after full adjustment of covariates. This finding suggests that the association between mammographic density and breast cancer could, at least in part, be attributable to an estrogen-related hormonal mechanism.

  17. A high-energy-density, high-Mach number single jet experiment

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hansen, J. F.; Dittrich, T. R.; Elliott, J. B.

    2011-08-15

    A high-energy-density, x-ray-driven, high-Mach number (M{>=} 17) single jet experiment shows constant propagation speeds of the jet and its bowshock into the late time regime. The jet assumes a characteristic mushroom shape with a stalk and a head. The width of the head and the bowshock also grow linearly in time. The width of the stalk decreases exponentially toward an asymptotic value. In late time images, the stalk kinks and develops a filamentary nature, which is similar to experiments with applied magnetic fields. Numerical simulations match the experiment reasonably well, but ''exterior'' details of the laser target must be includedmore » to obtain a match at late times.« less

  18. Planar imaging of OH density distributions in a supersonic combustion tunnel

    NASA Technical Reports Server (NTRS)

    Quagliaroli, T. M.; Laufer, G.; Krauss, R. H.; Mcdaniel, J. C., Jr.

    1993-01-01

    Images of absolute OH number density were obtained using planar laser-induced fluorescence (PLIF) in a supersonic H2-air combustion tunnel. A tunable KrF excimer laser was used to excite the Q2(11) ro-vibronic line. Calibration of the PLIF images was obtained by referencing the signal measured in the flame to that obtained by the excitation of OH produced by thermal dissociation of H2O in an atmospheric furnace. Measurement errors due to uncertainty in internal furnace atmospheric conditions and image temperature correction are estimated.

  19. Density-dependent nest predation in waterfowl: the relative importance of nest density versus nest dispersion

    USGS Publications Warehouse

    Ackerman, Joshua T.; Ringelman, Kevin M.; Eadie, J.M.

    2012-01-01

    When nest predation levels are very high or very low, the absolute range of observable nest success is constrained (a floor/ceiling effect), and it may be more difficult to detect density-dependent nest predation. Density-dependent nest predation may be more detectable in years with moderate predation rates, simply because there can be a greater absolute difference in nest success between sites. To test this, we replicated a predation experiment 10 years after the original study, using both natural and artificial nests, comparing a year when overall rates of nest predation were high (2000) to a year with moderate nest predation (2010). We found no evidence for density-dependent predation on artificial nests in either year, indicating that nest predation is not density-dependent at the spatial scale of our experimental replicates (1-ha patches). Using nearest-neighbor distances as a measure of nest dispersion, we also found little evidence for “dispersion-dependent” predation on artificial nests. However, when we tested for dispersion-dependent predation using natural nests, we found that nest survival increased with shorter nearest-neighbor distances, and that neighboring nests were more likely to share the same nest fate than non-adjacent nests. Thus, at small spatial scales, density-dependence appears to operate in the opposite direction as predicted: closer nearest neighbors are more likely to be successful. We suggest that local nest dispersion, rather than larger-scale measures of nest density per se, may play a more important role in density-dependent nest predation.

  20. Flow Velocity Computation, from Temperature and Number Density Measurements using Spontaneous Raman Scattering, for Supersonic Chemically Reacting Flows.

    NASA Astrophysics Data System (ADS)

    Satish Jeyashekar, Nigil; Seiner, John

    2006-11-01

    The closure problem in chemically reacting turbulent flows would be solved when velocity, temperature and number density (transport variables) are known. The transport variables provide input to momentum, heat and mass transport equations leading to analysis of turbulence-chemistry interaction, providing a pathway to improve combustion efficiency. There are no measurement techniques to determine all three transport variables simultaneously. This paper shows the formulation to compute flow velocity from temperature and number density measurements, made from spontaneous Raman scattering, using kinetic theory of dilute gases coupled with Maxwell-Boltzmann velocity distribution. Temperature and number density measurements are made in a mach 1.5 supersonic air flow with subsonic hydrogen co-flow. Maxwell-Boltzmann distribution can be used to compute the average molecular velocity of each species, which in turn is used to compute the mass-averaged velocity or flow velocity. This formulation was validated by Raman measurements in a laminar adiabatic burner where the computed flow velocities were in good agreement with hot-wire velocity measurements.

  1. Estimating the absolute wealth of households.

    PubMed

    Hruschka, Daniel J; Gerkey, Drew; Hadley, Craig

    2015-07-01

    To estimate the absolute wealth of households using data from demographic and health surveys. We developed a new metric, the absolute wealth estimate, based on the rank of each surveyed household according to its material assets and the assumed shape of the distribution of wealth among surveyed households. Using data from 156 demographic and health surveys in 66 countries, we calculated absolute wealth estimates for households. We validated the method by comparing the proportion of households defined as poor using our estimates with published World Bank poverty headcounts. We also compared the accuracy of absolute versus relative wealth estimates for the prediction of anthropometric measures. The median absolute wealth estimates of 1,403,186 households were 2056 international dollars per capita (interquartile range: 723-6103). The proportion of poor households based on absolute wealth estimates were strongly correlated with World Bank estimates of populations living on less than 2.00 United States dollars per capita per day (R(2)  = 0.84). Absolute wealth estimates were better predictors of anthropometric measures than relative wealth indexes. Absolute wealth estimates provide new opportunities for comparative research to assess the effects of economic resources on health and human capital, as well as the long-term health consequences of economic change and inequality.

  2. Driven tracer with absolute negative mobility

    NASA Astrophysics Data System (ADS)

    Cividini, J.; Mukamel, D.; Posch, H. A.

    2018-02-01

    Instances of negative mobility, where a system responds to a perturbation in a way opposite to naive expectation, have been studied theoretically and experimentally in numerous nonequilibrium systems. In this work we show that absolute negative mobility (ANM), whereby current is produced in a direction opposite to the drive, can occur around equilibrium states. This is demonstrated with a simple one-dimensional lattice model with a driven tracer. We derive analytical predictions in the linear response regime and elucidate the mechanism leading to ANM by studying the high-density limit. We also study numerically a model of hard Brownian disks in a narrow planar channel, for which the lattice model can be viewed as a toy model. We find that the model exhibits negative differential mobility (NDM), but no ANM.

  3. Increasing positive ion number densities below the peak of ion-electron pair production in Titan's ionosphere

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Vigren, E.; Galand, M.; Shebanits, O.

    2014-05-01

    We combine derived ion-electron pair formation rates with Cassini Radio Plasma Wave Science Langmuir Probe measurements of electron and positive ion number densities in Titan's sunlit ionosphere. We show that positive ion number densities in Titan's sunlit ionosphere can increase toward significantly lower altitudes than the peak of ion-electron pair formation despite that the effective ion-electron recombination coefficient increases. This is explained by the increased mixing ratios of negative ions, which are formed by electron attachment to neutrals. While such a process acts as a sink for free electrons, the positive ions become longer-lived as the rate coefficients for ion-anionmore » neutralization reactions are smaller than those for ion-electron dissociative recombination reactions.« less

  4. Estimating the absolute wealth of households

    PubMed Central

    Gerkey, Drew; Hadley, Craig

    2015-01-01

    Abstract Objective To estimate the absolute wealth of households using data from demographic and health surveys. Methods We developed a new metric, the absolute wealth estimate, based on the rank of each surveyed household according to its material assets and the assumed shape of the distribution of wealth among surveyed households. Using data from 156 demographic and health surveys in 66 countries, we calculated absolute wealth estimates for households. We validated the method by comparing the proportion of households defined as poor using our estimates with published World Bank poverty headcounts. We also compared the accuracy of absolute versus relative wealth estimates for the prediction of anthropometric measures. Findings The median absolute wealth estimates of 1 403 186 households were 2056 international dollars per capita (interquartile range: 723–6103). The proportion of poor households based on absolute wealth estimates were strongly correlated with World Bank estimates of populations living on less than 2.00 United States dollars per capita per day (R2 = 0.84). Absolute wealth estimates were better predictors of anthropometric measures than relative wealth indexes. Conclusion Absolute wealth estimates provide new opportunities for comparative research to assess the effects of economic resources on health and human capital, as well as the long-term health consequences of economic change and inequality. PMID:26170506

  5. Electron density and effective atomic number (Zeff) determination through x-ray Moiré deflectometry

    NASA Astrophysics Data System (ADS)

    Valdivia Leiva, Maria Pia; Stutman, Dan; Finkenthal, Michael

    2014-10-01

    Talbot-Lau based Moiré deflectometry is a powerful density diagnostic capable of delivering refraction information and attenuation from a single image, through the accurate detection of X-ray phase-shift and intensity. The technique is able to accurately measure both the real part of the index of refraction δ (directly related to electron density) and the attenuation coefficient μ of an object placed in the x-ray beam. Since the atomic number Z (or Zeff for a composite sample) is proportional to these quantities, an elemental map of the effective atomic number can be obtained with the ratio of the phase and the absorption image. The determination of Zeff from refraction and attenuation measurements with Moiré deflectometry could be of high interest in various fields of HED research such as shocked materials and ICF experiments as Zeff is linked, by definition, to the x-ray absorption properties of a specific material. This work is supported by U.S. DoE/NNSA Grant No. 435 DENA0001835.

  6. Anticipatory flexibility: larval population density in moths determines male investment in antennae, wings and testes.

    PubMed

    Johnson, Tamara L; Symonds, Matthew R E; Elgar, Mark A

    2017-11-15

    Developmental plasticity provides individuals with a distinct advantage when the reproductive environment changes dramatically. Variation in population density, in particular, can have profound effects on male reproductive success. Females may be easier to locate in dense populations, but there may be a greater risk of sperm competition. Thus, males should invest in traits that enhance fertilization success over traits that enhance mate location. Conversely, males in less dense populations should invest more in structures that will facilitate mate location. In Lepidoptera, this may result in the development of larger antennae to increase the likelihood of detecting female sex pheromones, and larger wings to fly more efficiently. We explored the effects of larval density on adult morphology in the gum-leaf skeletonizer moth, Uraba lugens , by manipulating both the number of larvae and the size of the rearing container. This experimental arrangement allowed us to reveal the cues used by larvae to assess whether absolute number or density influences adult responses. Male investment in testes size depended on the number of individuals, while male investment in wings and antennae depended upon larval density. By contrast, the size of female antennae and wings were influenced by an interaction of larval number and container size. This study demonstrates that male larvae are sensitive to cues that may reveal adult population density, and adjust investment in traits associated with fertilization success and mate detection accordingly. © 2017 The Author(s).

  7. Urban occupational structures as information networks: The effect on network density of increasing number of occupations.

    PubMed

    Shutters, Shade T; Lobo, José; Muneepeerakul, Rachata; Strumsky, Deborah; Mellander, Charlotta; Brachert, Matthias; Farinha, Teresa; Bettencourt, Luis M A

    2018-01-01

    Urban economies are composed of diverse activities, embodied in labor occupations, which depend on one another to produce goods and services. Yet little is known about how the nature and intensity of these interdependences change as cities increase in population size and economic complexity. Understanding the relationship between occupational interdependencies and the number of occupations defining an urban economy is relevant because interdependence within a networked system has implications for system resilience and for how easily can the structure of the network be modified. Here, we represent the interdependencies among occupations in a city as a non-spatial information network, where the strengths of interdependence between pairs of occupations determine the strengths of the links in the network. Using those quantified link strengths we calculate a single metric of interdependence-or connectedness-which is equivalent to the density of a city's weighted occupational network. We then examine urban systems in six industrialized countries, analyzing how the density of urban occupational networks changes with network size, measured as the number of unique occupations present in an urban workforce. We find that in all six countries, density, or economic interdependence, increases superlinearly with the number of distinct occupations. Because connections among occupations represent flows of information, we provide evidence that connectivity scales superlinearly with network size in information networks.

  8. Urban occupational structures as information networks: The effect on network density of increasing number of occupations

    PubMed Central

    Lobo, José; Muneepeerakul, Rachata; Strumsky, Deborah; Mellander, Charlotta; Brachert, Matthias; Farinha, Teresa; Bettencourt, Luis M. A.

    2018-01-01

    Urban economies are composed of diverse activities, embodied in labor occupations, which depend on one another to produce goods and services. Yet little is known about how the nature and intensity of these interdependences change as cities increase in population size and economic complexity. Understanding the relationship between occupational interdependencies and the number of occupations defining an urban economy is relevant because interdependence within a networked system has implications for system resilience and for how easily can the structure of the network be modified. Here, we represent the interdependencies among occupations in a city as a non-spatial information network, where the strengths of interdependence between pairs of occupations determine the strengths of the links in the network. Using those quantified link strengths we calculate a single metric of interdependence–or connectedness–which is equivalent to the density of a city’s weighted occupational network. We then examine urban systems in six industrialized countries, analyzing how the density of urban occupational networks changes with network size, measured as the number of unique occupations present in an urban workforce. We find that in all six countries, density, or economic interdependence, increases superlinearly with the number of distinct occupations. Because connections among occupations represent flows of information, we provide evidence that connectivity scales superlinearly with network size in information networks. PMID:29734354

  9. 20 CFR 404.1205 - Absolute coverage groups.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 20 Employees' Benefits 2 2011-04-01 2011-04-01 false Absolute coverage groups. 404.1205 Section... Covered § 404.1205 Absolute coverage groups. (a) General. An absolute coverage group is a permanent... are not under a retirement system. An absolute coverage group may include positions which were...

  10. Volumetric mammographic density: heritability and association with breast cancer susceptibility loci.

    PubMed

    Brand, Judith S; Humphreys, Keith; Thompson, Deborah J; Li, Jingmei; Eriksson, Mikael; Hall, Per; Czene, Kamila

    2014-12-01

    Mammographic density is a strong heritable trait, but data on its genetic component are limited to area-based and qualitative measures. We studied the heritability of volumetric mammographic density ascertained by a fully-automated method and the association with breast cancer susceptibility loci. Heritability of volumetric mammographic density was estimated with a variance component model in a sib-pair sample (N pairs = 955) of a Swedish screening based cohort. Associations with 82 established breast cancer loci were assessed in an independent sample of the same cohort (N = 4025 unrelated women) using linear models, adjusting for age, body mass index, and menopausal status. All tests were two-sided, except for heritability analyses where one-sided tests were used. After multivariable adjustment, heritability estimates (standard error) for percent dense volume, absolute dense volume, and absolute nondense volume were 0.63 (0.06) and 0.43 (0.06) and 0.61 (0.06), respectively (all P < .001). Percent and absolute dense volume were associated with rs10995190 (ZNF365; P = 9.0 × 10(-6) and 8.9 × 10(-7), respectively) and rs9485372 (TAB2; P = 1.8 × 10(-5) and 1.8 × 10(-3), respectively). We also observed associations of rs9383938 (ESR1) and rs2046210 (ESR1) with the absolute dense volume (P = 2.6 × 10(-4) and 4.6 × 10(-4), respectively), and rs6001930 (MLK1) and rs17356907 (NTN4) with the absolute nondense volume (P = 6.7 × 10(-6) and 8.4 × 10(-5), respectively). Our results support the high heritability of mammographic density, though estimates are weaker for absolute than percent dense volume. We also demonstrate that the shared genetic component with breast cancer is not restricted to dense tissues only. © The Author 2014. Published by Oxford University Press. All rights reserved. For Permissions, please e-mail: journals.permissions@oup.com.

  11. Comparison of measured and modelled negative hydrogen ion densities at the ECR-discharge HOMER

    NASA Astrophysics Data System (ADS)

    Rauner, D.; Kurutz, U.; Fantz, U.

    2015-04-01

    As the negative hydrogen ion density nH- is a key parameter for the investigation of negative ion sources, its diagnostic quantification is essential in source development and operation as well as for fundamental research. By utilizing the photodetachment process of negative ions, generally two different diagnostic methods can be applied: via laser photodetachment, the density of negative ions is measured locally, but only relatively to the electron density. To obtain absolute densities, the electron density has to be measured additionally, which induces further uncertainties. Via cavity ring-down spectroscopy (CRDS), the absolute density of H- is measured directly, however LOS-averaged over the plasma length. At the ECR-discharge HOMER, where H- is produced in the plasma volume, laser photodetachment is applied as the standard method to measure nH-. The additional application of CRDS provides the possibility to directly obtain absolute values of nH-, thereby successfully bench-marking the laser photodetachment system as both diagnostics are in good agreement. In the investigated pressure range from 0.3 to 3 Pa, the measured negative hydrogen ion density shows a maximum at 1 to 1.5 Pa and an approximately linear response to increasing input microwave powers from 200 up to 500 W. Additionally, the volume production of negative ions is 0-dimensionally modelled by balancing H- production and destruction processes. The modelled densities are adapted to the absolute measurements of nH- via CRDS, allowing to identify collisions of H- with hydrogen atoms (associative and non-associative detachment) to be the dominant loss process of H- in the plasma volume at HOMER. Furthermore, the characteristic peak of nH- observed at 1 to 1.5 Pa is identified to be caused by a comparable behaviour of the electron density with varying pressure, as ne determines the volume production rate via dissociative electron attachment to vibrationally excited hydrogen molecules.

  12. On recontamination and directional-bias problems in Monte Carlo simulation of PDF turbulence models. [probability density function

    NASA Technical Reports Server (NTRS)

    Hsu, Andrew T.

    1992-01-01

    Turbulent combustion can not be simulated adequately by conventional moment closure turbulent models. The probability density function (PDF) method offers an attractive alternative: in a PDF model, the chemical source terms are closed and do not require additional models. Because the number of computational operations grows only linearly in the Monte Carlo scheme, it is chosen over finite differencing schemes. A grid dependent Monte Carlo scheme following J.Y. Chen and W. Kollmann has been studied in the present work. It was found that in order to conserve the mass fractions absolutely, one needs to add further restrictions to the scheme, namely alpha(sub j) + gamma(sub j) = alpha(sub j - 1) + gamma(sub j + 1). A new algorithm was devised that satisfied this restriction in the case of pure diffusion or uniform flow problems. Using examples, it is shown that absolute conservation can be achieved. Although for non-uniform flows absolute conservation seems impossible, the present scheme has reduced the error considerably.

  13. Development of vacuum ultraviolet absorption spectroscopy system for wide measurement range of number density using a dual-tube inductively coupled plasma light source

    NASA Astrophysics Data System (ADS)

    Kuwahara, Akira; Matsui, Makoto; Yamagiwa, Yoshiki

    2012-12-01

    A vacuum ultraviolet absorption spectroscopy system for a wide measurement range of atomic number densities is developed. Dual-tube inductively coupled plasma was used as a light source. The probe beam profile was optimized for the target number density range by changing the mass flow rate of the inner and outer tubes. This system was verified using cold xenon gas. As a result, the measurement number density range was extended from the conventional two orders to five orders of magnitude.

  14. Monte Carlo Approach for Estimating Density and Atomic Number From Dual-Energy Computed Tomography Images of Carbonate Rocks

    NASA Astrophysics Data System (ADS)

    Victor, Rodolfo A.; Prodanović, Maša.; Torres-Verdín, Carlos

    2017-12-01

    We develop a new Monte Carlo-based inversion method for estimating electron density and effective atomic number from 3-D dual-energy computed tomography (CT) core scans. The method accounts for uncertainties in X-ray attenuation coefficients resulting from the polychromatic nature of X-ray beam sources of medical and industrial scanners, in addition to delivering uncertainty estimates of inversion products. Estimation of electron density and effective atomic number from CT core scans enables direct deterministic or statistical correlations with salient rock properties for improved petrophysical evaluation; this condition is specifically important in media such as vuggy carbonates where CT resolution better captures core heterogeneity that dominates fluid flow properties. Verification tests of the inversion method performed on a set of highly heterogeneous carbonate cores yield very good agreement with in situ borehole measurements of density and photoelectric factor.

  15. Column Number Density Expressions Through M = 0 and M = 1 Point Source Plumes Along Any Straight Path

    NASA Technical Reports Server (NTRS)

    Woronowicz, Michael

    2016-01-01

    Analytical expressions for column number density (CND) are developed for optical line of sight paths through a variety of steady free molecule point source models including directionally-constrained effusion (Mach number M = 0) and flow from a sonic orifice (M = 1). Sonic orifice solutions are approximate, developed using a fair simulacrum fitted to the free molecule solution. Expressions are also developed for a spherically-symmetric thermal expansion (M = 0). CND solutions are found for the most general paths relative to these sources and briefly explored. It is determined that the maximum CND from a distant location through directed effusion and sonic orifice cases occurs along the path parallel to the source plane that intersects the plume axis. For the effusive case this value is exactly twice the CND found along the ray originating from that point of intersection and extending to infinity along the plume's axis. For sonic plumes this ratio is reduced to about 4/3. For high Mach number cases the maximum CND will be found along the axial centerline path. Keywords: column number density, plume flows, outgassing, free molecule flow.

  16. Influence of anatomical location on CT numbers in cone beam computed tomography.

    PubMed

    Oliveira, Matheus L; Tosoni, Guilherme M; Lindsey, David H; Mendoza, Kristopher; Tetradis, Sotirios; Mallya, Sanjay M

    2013-04-01

    To assess the influence of anatomical location on computed tomography (CT) numbers in mid- and full field of view (FOV) cone beam computed tomography (CBCT) scans. Polypropylene tubes with varying concentrations of dipotassium hydrogen phosphate (K₂HPO₄) solutions (50-1200 mg/mL) were imaged within the incisor, premolar, and molar dental sockets of a human skull phantom. CBCT scans were acquired using the NewTom 3G and NewTom 5G units. The CT numbers of the K₂HPO₄ phantoms were measured, and the relationship between CT numbers and K₂HPO₄ concentration was examined. The measured CT numbers of the K₂HPO₄ phantoms were compared between anatomical sites. At all six anatomical locations, there was a strong linear relationship between CT numbers and K₂HPO₄ concentration (R(2)>0.93). However, the absolute CT numbers varied considerably with the anatomical location. The relationship between CT numbers and object density is not uniform through the dental arch on CBCT scans. Copyright © 2013 Elsevier Inc. All rights reserved.

  17. Cascaded lattice Boltzmann method with improved forcing scheme for large-density-ratio multiphase flow at high Reynolds and Weber numbers.

    PubMed

    Lycett-Brown, Daniel; Luo, Kai H

    2016-11-01

    A recently developed forcing scheme has allowed the pseudopotential multiphase lattice Boltzmann method to correctly reproduce coexistence curves, while expanding its range to lower surface tensions and arbitrarily high density ratios [Lycett-Brown and Luo, Phys. Rev. E 91, 023305 (2015)PLEEE81539-375510.1103/PhysRevE.91.023305]. Here, a third-order Chapman-Enskog analysis is used to extend this result from the single-relaxation-time collision operator, to a multiple-relaxation-time cascaded collision operator, whose additional relaxation rates allow a significant increase in stability. Numerical results confirm that the proposed scheme enables almost independent control of density ratio, surface tension, interface width, viscosity, and the additional relaxation rates of the cascaded collision operator. This allows simulation of large density ratio flows at simultaneously high Reynolds and Weber numbers, which is demonstrated through binary collisions of water droplets in air (with density ratio up to 1000, Reynolds number 6200 and Weber number 440). This model represents a significant improvement in multiphase flow simulation by the pseudopotential lattice Boltzmann method in which real-world parameters are finally achievable.

  18. On-site monitoring of atomic density number for an all-optical atomic magnetometer based on atomic spin exchange relaxation.

    PubMed

    Zhang, Hong; Zou, Sheng; Chen, Xiyuan; Ding, Ming; Shan, Guangcun; Hu, Zhaohui; Quan, Wei

    2016-07-25

    We present a method for monitoring the atomic density number on site based on atomic spin exchange relaxation. When the spin polarization P ≪ 1, the atomic density numbers could be estimated by measuring magnetic resonance linewidth in an applied DC magnetic field by using an all-optical atomic magnetometer. The density measurement results showed that the experimental results the theoretical predictions had a good consistency in the investigated temperature range from 413 K to 463 K, while, the experimental results were approximately 1.5 ∼ 2 times less than the theoretical predictions estimated from the saturated vapor pressure curve. These deviations were mainly induced by the radiative heat transfer efficiency, which inevitably leaded to a lower temperature in cell than the setting temperature.

  19. Quark matter at high density based on an extended confined isospin-density-dependent mass model

    NASA Astrophysics Data System (ADS)

    Qauli, A. I.; Sulaksono, A.

    2016-01-01

    We investigate the effect of the inclusion of relativistic Coulomb terms in a confined-isospin-density-dependent-mass (CIDDM) model of strange quark matter (SQM). We found that if we include the Coulomb term in scalar density form, the SQM equation of state (EOS) at high densities is stiffer but if we include the Coulomb term in vector density form it is softer than that of the standard CIDDM model. We also investigate systematically the role of each term of the extended CIDDM model. Compared with what was reported by Chu and Chen [Astrophys. J. 780, 135 (2014)], we found the stiffness of SQM EOS is controlled by the interplay among the oscillator harmonic, isospin asymmetry and Coulomb contributions depending on the parameter's range of these terms. We have found that the absolute stable condition of SQM and the mass of 2 M⊙ pulsars can constrain the parameter of oscillator harmonic κ1≈0.53 in the case the Coulomb term is excluded. If the Coulomb term is included, for the models with their parameters are consistent with SQM absolute stability condition, the 2.0 M⊙ constraint more prefers the maximum mass prediction of the model with the scalar Coulomb term than that of the model with the vector Coulomb term. On the contrary, the high densities EOS predicted by the model with the vector Coulomb is more compatible with the recent perturbative quantum chromodynamics result [1] than that predicted by the model with the scalar Coulomb. Furthermore, we also observed the quark composition in a very high density region depends quite sensitively on the kind of Coulomb term used.

  20. Updated Absolute Age Estimates for the Tolstoj and Caloris Basins, Mercury

    NASA Astrophysics Data System (ADS)

    Ernst, C. M.; Denevi, B. W.; Ostrach, L. R.

    2016-12-01

    Time-stratigraphic systems are developed to provide a framework to derive the relative ages of terrains across a given planet, estimate their absolute ages, and aid cross-planet comparisons. Mercury's time-stratigraphic system was modeled after that of the Moon, with five systems defined on the basis of geologic mapping using Mariner 10 images. From oldest to youngest, Mercury's time-stratigraphic system contains the pre-Tolstojan, Tolstojan, Calorian, Mansurian, and Kuiperian systems. The formations of the Tolstoj and Caloris basins mark the start of the Tolstojan and Calorian systems, respectively. The Mansurian and Kuiperian systems are defined by the type craters for which they are named. The completion of MESSENGER's global image dataset marks an appropriate time to re-assess the time-stratigraphic system of the innermost planet. Recent work suggests the Mansurian and Kuiperian systems may have begun as recently as 1.7 Ga and 280 Ma, respectively (Banks et al., 2016). We used MESSENGER data to re-evaluate the relative and absolute ages of the Tolstoj and Caloris basins in to complete the reassessment of Mercury's time-stratigraphic system. We redefine basin rim units for Tolstoj and Caloris determine the crater size-frequency distribution for craters larger than 10 km in diameter. Two models for crater production are used to derive absolute ages from the crater counts: Marchi et al., 2009 (M) using a main belt asteroid-like impactor size-frequency distribution, hard rock crater scaling relations, target strength of 2e7 dyne/cm2, and target and projectile densities of 3.4 g/cm3 and 2.6 g/cm3; and Le Feuvre and Wieczorek 2011 (L&W) using non-porous scaling relations. We find N(20) values (the number of craters ≥ 20 km in diameter per million square km) for the Caloris rim of 37 ± 7 and for the Tolstoj rim of 93 ± 15. We derived model ages of 3.9 Ga (M) and 3.7 Ga (L&W) for Tolstoj and 3.7 Ga (M) and 3.1 Ga (L&W) for Caloris. Analysis to refine the ages using

  1. Evaluation of computed tomography numbers for treatment planning of lung cancer

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mira, J.G.; Fullerton, G.D.; Ezekiel, J.

    1982-09-01

    Computerized tomography numbers (CTN) were evaluated in 32 computerized tomography scans performed on patients with carcinoma of the lung, with the aim of evaluating CTN in normal (lung, blood, muscle, etc) and pathologic tissues (tumor, atelectasis, effusion, post-radiation fibrosis). Our main findings are: 1. Large individual CTN variations are encountered in both normal and pathologic tissues, above and below mean values. Hence, absolute numbers are meaningless. Measurements of any abnormal intrathoracic structure should be compared in relation to normal tissue CTN values in the same scan. 2. Tumor and complete atelectasis have CTN basically similar to soft tissue. Hence, thesemore » numbers are not useful for differential diagnosis. 3. Effusions usually have lower CTN and can be distinguished from previous situations. 4. Dosimetry based on uniform lung density assumptions (i.e., 300 mg/cm/sup 3/) might produce substantial dose errors as lung CTN exhibit variations indicating densities well above and below this value. 5. Preliminary information indicates that partial atelectasis and incipient post-radiation fibrosis can have very low CTN. Hence, they can be differentiated from solid tumors in certain cases, and help in differential diagnosis of post radiation recurrence within the radiotherapy field versus fibrosis.« less

  2. Photon mass attenuation coefficients, effective atomic numbers and electron densities of some thermoluminescent dosimetric compounds

    NASA Astrophysics Data System (ADS)

    Gowda, Shivalinge; Krishnaveni, S.; Yashoda, T.; Umesh, T. K.; Gowda, Ramakrishna

    2004-09-01

    Photon mass attenuation coefficients of some thermoluminescent dosimetric (TLD) compounds, such as LiF, CaCO_3, CaSO_4, CaSO_4\\cdot2H_2O, SrSO_4, CdSO_4, BaSO_4, C_4H_6BaO_4 and 3CdSO_4\\cdot8H_2O were determined at 279.2, 320.07, 514.0, 661.6, 1115.5, 1173.2 and 1332.5 keV in a well-collimated narrow beam good geometry set-up using a high resolution, hyper pure germanium detector. The attenuation coefficient data were then used to compute the effective atomic number and the electron density of TLD compounds. The interpolation of total attenuation cross-sections of photons of energy E in elements of atomic number Z was performed using the logarithmic regression analysis of the data measured by the authors and reported earlier. The best-fit coefficients so obtained in the photon energy range of 279.2 to 320.07 keV, 514.0 to 661.6 keV and 1115.5 to 1332.5 keV by a piece-wise interpolation method were then used to find the effective atomic number and electron density of the compounds. These values are found to be in agreement with other available published values.

  3. Prediction of Particle Number Density and Particle Properties in the Flow Field Observed by the Nephelometer Experiment on the Galileo Probe

    NASA Technical Reports Server (NTRS)

    Naughton, Jonathan W.

    1998-01-01

    This report summarizes the work performed to assist in the analysis of data returned from the Galileo Probe's Nephelometer instrument. A computation of the flow field around the Galileo Probe during its descent through the Jovian atmosphere was simulated. The behavior of cloud particles that passed around the Galileo probe was then computed and the number density in the vicinity of the Nephelometer instrument was predicted. The results of our analysis support the finding that the number density of cloud particles was not the same in each of the four sampling volumes of the Nephelometer instrument. The number densities calculated in this study are currently being used to assist in the reanalysis of the data returned from the Galileo Probe.

  4. Directly relating gas-phase cluster measurements to solution-phase hydrolysis, the absolute standard hydrogen electrode potential, and the absolute proton solvation energy.

    PubMed

    Donald, William A; Leib, Ryan D; O'Brien, Jeremy T; Williams, Evan R

    2009-06-08

    Solution-phase, half-cell potentials are measured relative to other half-cell potentials, resulting in a thermochemical ladder that is anchored to the standard hydrogen electrode (SHE), which is assigned an arbitrary value of 0 V. A new method for measuring the absolute SHE potential is demonstrated in which gaseous nanodrops containing divalent alkaline-earth or transition-metal ions are reduced by thermally generated electrons. Energies for the reactions 1) M(H(2)O)(24)(2+)(g) + e(-)(g)-->M(H(2)O)(24)(+)(g) and 2) M(H(2)O)(24)(2+)(g) + e(-)(g)-->MOH(H(2)O)(23)(+)(g) + H(g) and the hydrogen atom affinities of MOH(H(2)O)(23)(+)(g) are obtained from the number of water molecules lost through each pathway. From these measurements on clusters containing nine different metal ions and known thermochemical values that include solution hydrolysis energies, an average absolute SHE potential of +4.29 V vs. e(-)(g) (standard deviation of 0.02 V) and a real proton solvation free energy of -265 kcal mol(-1) are obtained. With this method, the absolute SHE potential can be obtained from a one-electron reduction of nanodrops containing divalent ions that are not observed to undergo one-electron reduction in aqueous solution.

  5. Directly Relating Gas-Phase Cluster Measurements to Solution-Phase Hydrolysis, the Absolute Standard Hydrogen Electrode Potential, and the Absolute Proton Solvation Energy

    PubMed Central

    Donald, William A.; Leib, Ryan D.; O’Brien, Jeremy T.; Williams, Evan R.

    2009-01-01

    Solution-phase, half-cell potentials are measured relative to other half-cell potentials, resulting in a thermochemical ladder that is anchored to the standard hydrogen electrode (SHE), which is assigned an arbitrary value of 0 V. A new method for measuring the absolute SHE potential is demonstrated in which gaseous nanodrops containing divalent alkaline-earth or transition-metal ions are reduced by thermally generated electrons. Energies for the reactions 1) M-(H2O)242+(g)+e−(g)→M(H2O)24+(g) and 2) M(H2O)242+(g)+e−(g)→MOH(H2O)23+(g)+H(g) and the hydrogen atom affinities of MOH(H2O)23+(g) are obtained from the number of water molecules lost through each pathway. From these measurements on clusters containing nine different metal ions and known thermochemical values that include solution hydrolysis energies, an average absolute SHE potential of +4.29 V vs. e−(g) (standard deviation of 0.02 V) and a real proton solvation free energy of −265 kcal mol−1 are obtained. With this method, the absolute SHE potential can be obtained from a one-electron reduction of nanodrops containing divalent ions that are not observed to undergo one-electron reduction in aqueous solution. PMID:19440999

  6. Associations between breast density and a panel of single nucleotide polymorphisms linked to breast cancer risk: a cohort study with digital mammography.

    PubMed

    Keller, Brad M; McCarthy, Anne Marie; Chen, Jinbo; Armstrong, Katrina; Conant, Emily F; Domchek, Susan M; Kontos, Despina

    2015-03-18

    Breast density and single-nucleotide polymorphisms (SNPs) have both been associated with breast cancer risk. To determine the extent to which these two breast cancer risk factors are associated, we investigate the association between a panel of validated SNPs related to breast cancer and quantitative measures of mammographic density in a cohort of Caucasian and African-American women. In this IRB-approved, HIPAA-compliant study, we analyzed a screening population of 639 women (250 African American and 389 Caucasian) who were tested with a validated panel assay of 12 SNPs previously associated to breast cancer risk. Each woman underwent digital mammography as part of routine screening and all were interpreted as negative. Both absolute and percent estimates of area and volumetric density were quantified on a per-woman basis using validated software. Associations between the number of risk alleles in each SNP and the density measures were assessed through a race-stratified linear regression analysis, adjusted for age, BMI, and Gail lifetime risk. The majority of SNPs were not found to be associated with any measure of breast density. SNP rs3817198 (in LSP1) was significantly associated with both absolute area (p = 0.004) and volumetric (p = 0.019) breast density in Caucasian women. In African-American women, SNPs rs3803662 (in TNRC9/TOX3) and rs4973768 (in NEK10) were significantly associated with absolute (p = 0.042) and percent (p = 0.028) volume density respectively. The majority of SNPs investigated in our study were not found to be significantly associated with breast density, even when accounting for age, BMI, and Gail risk, suggesting that these two different risk factors contain potentially independent information regarding a woman's risk to develop breast cancer. Additionally, the few statistically significant associations between breast density and SNPs were different for Caucasian versus African American women. Larger prospective studies

  7. Forecasting Error Calculation with Mean Absolute Deviation and Mean Absolute Percentage Error

    NASA Astrophysics Data System (ADS)

    Khair, Ummul; Fahmi, Hasanul; Hakim, Sarudin Al; Rahim, Robbi

    2017-12-01

    Prediction using a forecasting method is one of the most important things for an organization, the selection of appropriate forecasting methods is also important but the percentage error of a method is more important in order for decision makers to adopt the right culture, the use of the Mean Absolute Deviation and Mean Absolute Percentage Error to calculate the percentage of mistakes in the least square method resulted in a percentage of 9.77% and it was decided that the least square method be worked for time series and trend data.

  8. Microwave resonance lamp absorption technique for measuring temperature and OH number density in combustion environments

    NASA Technical Reports Server (NTRS)

    Lempert, Walter R.

    1988-01-01

    A simple technique for simultaneous determination of temperature and OH number density is described, along with characteristic results obtained from measurements using a premixed, hydrogen air flat flame burner. The instrumentation is based upon absorption of resonant radiation from a flowing microwave discharge lamp, and is rugged, relatively inexpensive, and very simple to operate.

  9. Gravitational Effects on Flow Instability and Transition in Low Density Jets

    NASA Technical Reports Server (NTRS)

    Agrawal A. K.; Parthasarathy, K.; Pasumarthi, K.; Griffin, D. W.

    2000-01-01

    Recent experiments have shown that low-density gas jets injected into a high-density ambient gas undergo an instability mode, leading to highly-periodic oscillations in the flow-field for certain conditions. The transition from laminar to turbulent flow in these jets is abrupt, without the gradual change in scales. Even the fine scale turbulent structure repeats itself with extreme regularity from cycle to cycle. Similar observations were obtained in buoyancy-dominated and momentum-dominated jets characterized by the Richardson numbers, Ri = [gD(rho(sub a)-rho(sub j))/rho(sub j)U(sub j)(exp 2) ] where g is the gravitational acceleration, D is the jet diameter, rho(sub a) and rho(sub a) are, respectively, the free-stream and jet densities, and U(sub j) is the mean jet exit velocity. At high Richardson numbers, the instability is presumably caused by buoyancy since the flow-oscillation frequency (f) or the Strouhal number, St = [fD/U(sub j)] scales with Ri. In momentum-dominated jets, however, the Strouhal number of the oscillating flow is relatively independent of the Ri. In this case, a local absolute instability is predicted in the potential core of low-density jets with S [= rho(sub j)/rho(sub a)] < 0.7, which agrees qualitatively with experiments. Although the instability in gas jets of high Richardson numbers is attributed to buoyancy, direct physical evidence has not been acquired in experiments. If the instability is indeed caused by buoyancy, the near-field flow structure of the jet will change significantly when the buoyancy is removed, for example, in the microgravity environment. Thus, quantitative data on the spatial and temporal evolutions of the instability, length and time scale of the oscillating mode and its effects on the mean flow and breakdown of the potential core are needed in normal and microgravity to delineate gravitational effects in buoyant jets. In momentum dominated low-density jets, the instability is speculated to originate in the

  10. Monitoring Microbial Numbers in Food by Density Centrifugation

    PubMed Central

    Basel, Richard M.; Richter, Edward R.; Banwart, George J.

    1983-01-01

    Some foods contain low numbers of microbes that may be difficult to enumerate by the plate count method due to small food particles that interfere with the counting of colonies. Ludox colloidal silicon was coated with reducing agents to produce a nontoxic density material. Food homogenates were applied to a layered 10 and 80% mixture of modified Ludox and centrifuged at low speed. The top and bottom of the tube contained the food material, and the Ludox-containing portion was evaluated by conventional pour plate techniques. Plate counts of the Ludox mixture agreed with plate counts of the food homogenate alone. The absence of small food particles from pour plates resulted in a plate that was more easily read than pour plates of the homogenate alone. Modified Ludox was evaluated for its effect on bacteria at 4°C during a 24-h incubation period. No inhibition was observed. This method is applicable to food products, such as doughnuts, spices, tomato products, and meat, in which small food particles often interfere with routine plate counts or low dilution may inhibit colony formation. Inhibitory substances can be removed from spices, resulting in higher counts. Ludox is more economical than similar products, such as Percoll. Modified Ludox is easily rendered nontoxic by the addition of common laboratory reagents. In addition, the mixture is compatible with microbiological media. PMID:6303217

  11. 20 CFR 404.1205 - Absolute coverage groups.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... 20 Employees' Benefits 2 2014-04-01 2014-04-01 false Absolute coverage groups. 404.1205 Section... INSURANCE (1950- ) Coverage of Employees of State and Local Governments What Groups of Employees May Be Covered § 404.1205 Absolute coverage groups. (a) General. An absolute coverage group is a permanent...

  12. 20 CFR 404.1205 - Absolute coverage groups.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... 20 Employees' Benefits 2 2013-04-01 2013-04-01 false Absolute coverage groups. 404.1205 Section... INSURANCE (1950- ) Coverage of Employees of State and Local Governments What Groups of Employees May Be Covered § 404.1205 Absolute coverage groups. (a) General. An absolute coverage group is a permanent...

  13. 20 CFR 404.1205 - Absolute coverage groups.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... 20 Employees' Benefits 2 2012-04-01 2012-04-01 false Absolute coverage groups. 404.1205 Section... INSURANCE (1950- ) Coverage of Employees of State and Local Governments What Groups of Employees May Be Covered § 404.1205 Absolute coverage groups. (a) General. An absolute coverage group is a permanent...

  14. Density of Jatropha curcas Seed Oil and its Methyl Esters: Measurement and Estimations

    NASA Astrophysics Data System (ADS)

    Veny, Harumi; Baroutian, Saeid; Aroua, Mohamed Kheireddine; Hasan, Masitah; Raman, Abdul Aziz; Sulaiman, Nik Meriam Nik

    2009-04-01

    Density data as a function of temperature have been measured for Jatropha curcas seed oil, as well as biodiesel jatropha methyl esters at temperatures from above their melting points to 90 ° C. The data obtained were used to validate the method proposed by Spencer and Danner using a modified Rackett equation. The experimental and estimated density values using the modified Rackett equation gave almost identical values with average absolute percent deviations less than 0.03% for the jatropha oil and 0.04% for the jatropha methyl esters. The Janarthanan empirical equation was also employed to predict jatropha biodiesel densities. This equation performed equally well with average absolute percent deviations within 0.05%. Two simple linear equations for densities of jatropha oil and its methyl esters are also proposed in this study.

  15. Absolute Hugoniot measurements for CH foams in the 1.5-8 Mbar range

    NASA Astrophysics Data System (ADS)

    Aglitskiy, Y.; Velikovich, A. L.; Schmitt, A. J.; Karasik, M.; Serlin, V.; Weaver, J. L.; Oh, J.; Obenschain, S. P.

    2016-10-01

    We report the absolute Hugoniot measurements for dry CH foams at 10% of solid polystyrene density. The 400 μm thick, 500 μm wide planar foam slabs covered with a 10 μm solid plastic ablator were driven with 4 ns long Nike KrF laser pulses whose intensity was varied between 10 and 50 TW/cm2. The trajectories of the shock front and the ablative piston, as well as the rarefaction fan emerging after the shock breakout from the rear surface of the target were clearly observed using the side-on monochromatic x-ray imaging radiography. From these measurements the shock density compression ratio and the shock pressure are evaluated directly. The observed compression ratios varied between 4 and 8, and the corresponding shock pressures - between 1.5 and 8 Mbar. The data was simulated with the FASTRAD3D hydrocode, using standard models of inverse bremsstrahlung absorption, flux-limited thermal conduction, and multi-group radiation diffusion. The demonstrated diagnostics technique applied in a cryo experiment would make it possible to make the first absolute Hugoniot measurements for liquid deuterium or DT-wetted CH foams, which is relevant for designing the wetted-foam indirect-drive ignition targets for NIF. This work was supported by the US DOE/NNSA.

  16. Absolute versus convective helical magnetorotational instability in a Taylor-Couette flow.

    PubMed

    Priede, Jānis; Gerbeth, Gunter

    2009-04-01

    We analyze numerically the magnetorotational instability of a Taylor-Couette flow in a helical magnetic field [helical magnetorotational instability (HMRI)] using the inductionless approximation defined by a zero magnetic Prandtl number (Pr_{m}=0) . The Chebyshev collocation method is used to calculate the eigenvalue spectrum for small-amplitude perturbations. First, we carry out a detailed conventional linear stability analysis with respect to perturbations in the form of Fourier modes that corresponds to the convective instability which is not in general self-sustained. The helical magnetic field is found to extend the instability to a relatively narrow range beyond its purely hydrodynamic limit defined by the Rayleigh line. There is not only a lower critical threshold at which HMRI appears but also an upper one at which it disappears again. The latter distinguishes the HMRI from a magnetically modified Taylor vortex flow. Second, we find an absolute instability threshold as well. In the hydrodynamically unstable regime before the Rayleigh line, the threshold of absolute instability is just slightly above the convective one although the critical wavelength of the former is noticeably shorter than that of the latter. Beyond the Rayleigh line the lower threshold of absolute instability rises significantly above the corresponding convective one while the upper one descends significantly below its convective counterpart. As a result, the extension of the absolute HMRI beyond the Rayleigh line is considerably shorter than that of the convective instability. The absolute HMRI is supposed to be self-sustained and, thus, experimentally observable without any external excitation in a system of sufficiently large axial extension.

  17. Absolute empirical rate coefficient for the excitation of the 117.6 nm line in C III

    NASA Astrophysics Data System (ADS)

    Gardner, L. D.; Daw, A. N.; Janzen, P. H.; Atkins, N.; Kohl, J. L.

    2005-05-01

    We have measured the absolute cross sections for electron impact excitation (EIE) of C2+ (2s2p 3P° - 2p2 3P) for energies from below threshold to 17 eV above and derived EIE rate coefficients required for astrophysical applications. The uncertainty in the rate coefficient at a typical solar temperature of formation of C2+ is less than ± 6 %. Ions are produced in a 5 GHz Electron Cyclotron Resonance (ECR) ion source, extracted, formed into a beam, and transported to a collision chamber where they collide with electrons from an electron beam inclined at 45 degrees. The beams are modulated and the radiation from the decay of the excited ions at λ 117.6 nm is detected synchronously using an absolutely calibrated optical system that subtends slightly over π steradians. The fractional population of the C2+ metastable state in the incident ion beam has been determined experimentally to be 0.42 ± 0.03 (1.65 σ). At the reported ± 15 % total experimental uncertainty level (1.65 σ), the measured structure and absolute scale of the cross section are in fairly good agreement with 6-term close-coupling R-matrix calculations and 90-term R-matrix with pseudo-states calculations, although some minor differences are seen just above threshold. As density-sensitive line intensity ratios vary by only about a factor of 5 as the density changes by nearly a factor of 100, even a 30 % uncertainty in the excitation rate can lead to a factor of 3 error in density. This work is supported by NASA Supporting Research and Technology grants NAG5- 9516 and NAG5-12863 in Solar and Heliospheric Physics and by the Smithsonian Astrophysical Observatory.

  18. Zero absolute vorticity: insight from experiments in rotating laminar plane Couette flow.

    PubMed

    Suryadi, Alexandre; Segalini, Antonio; Alfredsson, P Henrik

    2014-03-01

    For pressure-driven turbulent channel flows undergoing spanwise system rotation, it has been observed that the absolute vorticity, i.e., the sum of the averaged spanwise flow vorticity and system rotation, tends to zero in the central region of the channel. This observation has so far eluded a convincing theoretical explanation, despite experimental and numerical evidence reported in the literature. Here we show experimentally that three-dimensional laminar structures in plane Couette flow, which appear under anticyclonic system rotation, give the same effect, namely, that the absolute vorticity tends to zero if the rotation rate is high enough. It is shown that this is equivalent to a local Richardson number of approximately zero, which would indicate a stable condition. We also offer an explanation based on Kelvin's circulation theorem to demonstrate that the absolute vorticity should remain constant and approximately equal to zero in the central region of the channel when going from the nonrotating fully turbulent state to any state with sufficiently high rotation.

  19. Variance computations for functional of absolute risk estimates.

    PubMed

    Pfeiffer, R M; Petracci, E

    2011-07-01

    We present a simple influence function based approach to compute the variances of estimates of absolute risk and functions of absolute risk. We apply this approach to criteria that assess the impact of changes in the risk factor distribution on absolute risk for an individual and at the population level. As an illustration we use an absolute risk prediction model for breast cancer that includes modifiable risk factors in addition to standard breast cancer risk factors. Influence function based variance estimates for absolute risk and the criteria are compared to bootstrap variance estimates.

  20. Variance computations for functional of absolute risk estimates

    PubMed Central

    Pfeiffer, R.M.; Petracci, E.

    2011-01-01

    We present a simple influence function based approach to compute the variances of estimates of absolute risk and functions of absolute risk. We apply this approach to criteria that assess the impact of changes in the risk factor distribution on absolute risk for an individual and at the population level. As an illustration we use an absolute risk prediction model for breast cancer that includes modifiable risk factors in addition to standard breast cancer risk factors. Influence function based variance estimates for absolute risk and the criteria are compared to bootstrap variance estimates. PMID:21643476

  1. Absolute GPS Positioning Using Genetic Algorithms

    NASA Astrophysics Data System (ADS)

    Ramillien, G.

    A new inverse approach for restoring the absolute coordinates of a ground -based station from three or four observed GPS pseudo-ranges is proposed. This stochastic method is based on simulations of natural evolution named genetic algorithms (GA). These iterative procedures provide fairly good and robust estimates of the absolute positions in the Earth's geocentric reference system. For comparison/validation, GA results are compared to the ones obtained using the classical linearized least-square scheme for the determination of the XYZ location proposed by Bancroft (1985) which is strongly limited by the number of available observations (i.e. here, the number of input pseudo-ranges must be four). The r.m.s. accuracy of the non -linear cost function reached by this latter method is typically ~10-4 m2 corresponding to ~300-500-m accuracies for each geocentric coordinate. However, GA can provide more acceptable solutions (r.m.s. errors < 10-5 m2), even when only three instantaneous pseudo-ranges are used, such as a lost of lock during a GPS survey. Tuned GA parameters used in different simulations are N=1000 starting individuals, as well as Pc=60-70% and Pm=30-40% for the crossover probability and mutation rate, respectively. Statistical tests on the ability of GA to recover acceptable coordinates in presence of important levels of noise are made simulating nearly 3000 random samples of erroneous pseudo-ranges. Here, two main sources of measurement errors are considered in the inversion: (1) typical satellite-clock errors and/or 300-metre variance atmospheric delays, and (2) Geometrical Dilution of Precision (GDOP) due to the particular GPS satellite configuration at the time of acquisition. Extracting valuable information and even from low-quality starting range observations, GA offer an interesting alternative for high -precision GPS positioning.

  2. The Mental Number Line in Dyscalculia: Impaired Number Sense or Access From Symbolic Numbers?

    PubMed

    Lafay, Anne; St-Pierre, Marie-Catherine; Macoir, Joël

    Numbers may be manipulated and represented mentally over a compressible number line oriented from left to right. According to numerous studies, one of the primary reasons for dyscalculia is related to improper understanding of the mental number line. Children with dyscalculia usually show difficulty when they have to place Arabic numbers on a physical number line. However, it remains unclear whether they have a deficit with the mental number line per se or a deficit with accessing it from nonsymbolic and/or symbolic numbers. Quebec French-speaking 8- to 9-year-old children with (24) and without (37) dyscalculia were assessed with transcoding tasks ( number-to-position and position-to-number) designed to assess the acuity of the mental number line with Arabic and spoken numbers as well as with analogic numerosities. Results showed that children with dyscalculia produced a larger percentage absolute error than children without mathematics difficulties in every task except the number-to-position transcoding task with analogic numerosities. Hence, these results suggested that children with dyscalculia do not have a general deficit of the mental number line but rather a deficit with accessing it from symbolic numbers.

  3. Postmenopausal hormone therapy and changes in mammographic density.

    PubMed

    van Duijnhoven, Fränzel J B; Peeters, Petra H M; Warren, Ruth M L; Bingham, Sheila A; van Noord, Paulus A H; Monninkhof, Evelyn M; Grobbee, Diederick E; van Gils, Carla H

    2007-04-10

    Hormone therapy (HT) use has been associated with an increased breast cancer risk. We explored the underlying mechanism further by determining the effects of HT on mammographic density, a measure of dense tissue in the breast and a consistent breast cancer risk factor. A total of 620 HT users and 620 never users from the Dutch Prospect-European Prospective Investigation into Cancer and Nutrition (EPIC) cohort and 175 HT users and 161 never users from the United Kingdom EPIC-Norfolk cohort were included. For HT users, one mammogram before and one mammogram during HT use was included. For never users, mammograms with similar time intervals were included. Mammographic density was assessed using a computer-assisted method. Changes in density were analyzed using linear regression. The median time between mammograms was 3.0 years and the median duration of HT use was 1 year. The absolute mean decline in percent density was larger in never users (7.3%) than in estrogen therapy users (6.4%; P = .22) and combined HT users (3.5%; P < .01). The effect of HT appeared to be high in a small number of women, whereas most women were unaffected. Our results suggest that HT use, and especially estrogen and progestin use, slows the changes from dense patterns to more fatty patterns that are normally seen in women with increasing age. Given that it is postulated that lifetime cumulative exposure to high density may be related to breast cancer risk, a delay in density decline in HT users potentially could explain their increased breast cancer risk.

  4. Absolute Summ

    NASA Astrophysics Data System (ADS)

    Phillips, Alfred, Jr.

    Summ means the entirety of the multiverse. It seems clear, from the inflation theories of A. Guth and others, that the creation of many universes is plausible. We argue that Absolute cosmological ideas, not unlike those of I. Newton, may be consistent with dynamic multiverse creations. As suggested in W. Heisenberg's uncertainty principle, and with the Anthropic Principle defended by S. Hawking, et al., human consciousness, buttressed by findings of neuroscience, may have to be considered in our models. Predictability, as A. Einstein realized with Invariants and General Relativity, may be required for new ideas to be part of physics. We present here a two postulate model geared to an Absolute Summ. The seedbed of this work is part of Akhnaton's philosophy (see S. Freud, Moses and Monotheism). Most important, however, is that the structure of human consciousness, manifest in Kenya's Rift Valley 200,000 years ago as Homo sapiens, who were the culmination of the six million year co-creation process of Hominins and Nature in Africa, allows us to do the physics that we do. .

  5. Measurements of mass attenuation coefficient, effective atomic number and electron density of some amino acids

    NASA Astrophysics Data System (ADS)

    Kore, Prashant S.; Pawar, Pravina P.

    2014-05-01

    The mass attenuation coefficients of some amino acids, such as DL-aspartic acid-LR(C4H7NO4), L-glutamine (C4H10N2O3), creatine monohydrate LR(C4H9N3O2H2O), creatinine hydrochloride (C4H7N3O·HCl) L-asparagine monohydrate(C4H9N3O2H2O), L-methionine LR(C5H11NO2S), were measured at 122, 356, 511, 662, 1170, 1275 and 1330 keV photon energies using a well-collimated narrow beam good geometry set-up. The gamma-rays were detected using NaI (Tl) scintillation detection system with a resolution of 0.101785 at 662 keV. The attenuation coefficient data were then used to obtain the effective atomic numbers (Zeff), and effective electron densities (Neff) of amino acids. It was observed that the effective atomic number (Zeff) and effective electron densities (Neff) initially decrease and tend to be almost constant as a function of gamma-ray energy. Zeff and Neff experimental values showed good agreement with the theoretical values with less than 1% error for amino acids.

  6. Absolute fracture risk assessment using lumbar spine and femoral neck bone density measurements: derivation and validation of a hybrid system.

    PubMed

    Leslie, William D; Lix, Lisa M

    2011-03-01

    The World Health Organization (WHO) Fracture Risk Assessment Tool (FRAX) computes 10-year probability of major osteoporotic fracture from multiple risk factors, including femoral neck (FN) T-scores. Lumbar spine (LS) measurements are not currently part of the FRAX formulation but are used widely in clinical practice, and this creates confusion when there is spine-hip discordance. Our objective was to develop a hybrid 10-year absolute fracture risk assessment system in which nonvertebral (NV) fracture risk was assessed from the FN and clinical vertebral (V) fracture risk was assessed from the LS. We identified 37,032 women age 45 years and older undergoing baseline FN and LS dual-energy X-ray absorptiometry (DXA; 1990-2005) from a population database that contains all clinical DXA results for the Province of Manitoba, Canada. Results were linked to longitudinal health service records for physician billings and hospitalizations to identify nontrauma vertebral and nonvertebral fracture codes after bone mineral density (BMD) testing. The population was randomly divided into equal-sized derivation and validation cohorts. Using the derivation cohort, three fracture risk prediction systems were created from Cox proportional hazards models (adjusted for age and multiple FRAX risk factors): FN to predict combined all fractures, FN to predict nonvertebral fractures, and LS to predict vertebral (without nonvertebral) fractures. The hybrid system was the sum of nonvertebral risk from the FN model and vertebral risk from the LS model. The FN and hybrid systems were both strongly predictive of overall fracture risk (p < .001). In the validation cohort, ROC analysis showed marginally better performance of the hybrid system versus the FN system for overall fracture prediction (p = .24) and significantly better performance for vertebral fracture prediction (p < .001). In a discordance subgroup with FN and LS T-score differences greater than 1 SD, there was a significant

  7. Thermospheric density and satellite drag modeling

    NASA Astrophysics Data System (ADS)

    Mehta, Piyush Mukesh

    The United States depends heavily on its space infrastructure for a vast number of commercial and military applications. Space Situational Awareness (SSA) and Threat Assessment require maintaining accurate knowledge of the orbits of resident space objects (RSOs) and the associated uncertainties. Atmospheric drag is the largest source of uncertainty for low-perigee RSOs. The uncertainty stems from inaccurate modeling of neutral atmospheric mass density and inaccurate modeling of the interaction between the atmosphere and the RSO. In order to reduce the uncertainty in drag modeling, both atmospheric density and drag coefficient (CD) models need to be improved. Early atmospheric density models were developed from orbital drag data or observations of a few early compact satellites. To simplify calculations, densities derived from orbit data used a fixed CD value of 2.2 measured in a laboratory using clean surfaces. Measurements from pressure gauges obtained in the early 1990s have confirmed the adsorption of atomic oxygen on satellite surfaces. The varying levels of adsorbed oxygen along with the constantly changing atmospheric conditions cause large variations in CD with altitude and along the orbit of the satellite. Therefore, the use of a fixed CD in early development has resulted in large biases in atmospheric density models. A technique for generating corrections to empirical density models using precision orbit ephemerides (POE) as measurements in an optimal orbit determination process was recently developed. The process generates simultaneous corrections to the atmospheric density and ballistic coefficient (BC) by modeling the corrections as statistical exponentially decaying Gauss-Markov processes. The technique has been successfully implemented in generating density corrections using the CHAMP and GRACE satellites. This work examines the effectiveness, specifically the transfer of density models errors into BC estimates, of the technique using the CHAMP and

  8. Absolute optical metrology : nanometers to kilometers

    NASA Technical Reports Server (NTRS)

    Dubovitsky, Serge; Lay, O. P.; Peters, R. D.; Liebe, C. C.

    2005-01-01

    We provide and overview of the developments in the field of high-accuracy absolute optical metrology with emphasis on space-based applications. Specific work on the Modulation Sideband Technology for Absolute Ranging (MSTAR) sensor is described along with novel applications of the sensor.

  9. Dietary Resistant Starch Supplementation Increases High-Density Lipoprotein Particle Number in Pigs Fed a Western Diet.

    PubMed

    Rideout, Todd C; Harding, Scott V; Raslawsky, Amy; Rempel, Curtis B

    2017-05-04

    Resistant starch (RS) has been well characterized for its glycemic control properties; however, there is little consensus regarding the influence of RS on blood lipid concentrations and lipoprotein distribution and size. Therefore, this study aimed to characterize the effect of daily RS supplementation in a controlled capsule delivery on biomarkers of cardiovascular (blood lipids, lipoproteins) and diabetes (glucose, insulin) risk in a pig model. Twelve 8-week-old male Yorkshire pigs were placed on a synthetic Western diet and randomly divided into two groups (n = 6/group) for 30 days: (1) a placebo group supplemented with capsules containing unmodified pre-gelatinized potato starch (0 g/RS/day); and (2) an RS group supplemented with capsules containing resistant potato starch (10 g/RS/day). Serum lipids including total-cholesterol (C), low-density lipoprotein cholesterol (LDL-C), high-density lipoprotein cholesterol (HDL-C), and triglycerides did not differ (p > 0.05) between the RS and placebo groups. Although the total numbers of very low-density lipoprotein (VLDL) and low-density lipoprotein (LDL) particles were similar (p > 0.05) between the two groups, total high-density lipoprotein (HDL) particles were higher (+28%, p < 0.05) in the RS group compared with placebo, resulting from an increase (p < 0.05) in the small HDL subclass particles (+32%). Compared with the placebo group, RS supplementation lowered (p < 0.05) fasting serum glucose (-20%) and improved (p < 0.05) insulin resistance as estimated by Homeostatic Model Assessment-Insulin Resistance (HOMA-IR) without a change in insulin. Additionally, total serum glucagon-like-peptide 1 (GLP-1) was higher (+141%, p < 0.05) following RS supplementation compared with placebo. This data suggests that in addition to the more well-characterized effect of RS intake in lowering blood glucose and improving insulin sensitivity, the consumption of RS may be beneficial in lipid management strategies by enhancing total

  10. Radiographic absorptiometry method in measurement of localized alveolar bone density changes.

    PubMed

    Kuhl, E D; Nummikoski, P V

    2000-03-01

    The objective of this study was to measure the accuracy and precision of a radiographic absorptiometry method by using an occlusal density reference wedge in quantification of localized alveolar bone density changes. Twenty-two volunteer subjects had baseline and follow-up radiographs taken of mandibular premolar-molar regions with an occlusal density reference wedge in both films and added bone chips in the baseline films. The absolute bone equivalent densities were calculated in the areas that contained bone chips from the baseline and follow-up radiographs. The differences in densities described the masses of the added bone chips that were then compared with the true masses by using regression analysis. The correlation between the estimated and true bone-chip masses ranged from R = 0.82 to 0.94, depending on the background bone density. There was an average 22% overestimation of the mass of the bone chips when they were in low-density background, and up to 69% overestimation when in high-density background. The precision error of the method, which was calculated from duplicate bone density measurements of non-changing areas in both films, was 4.5%. The accuracy of the intraoral radiographic absorptiometry method is low when used for absolute quantification of bone density. However, the precision of the method is good and the correlation is linear, indicating that the method can be used for serial assessment of bone density changes at individual sites.

  11. Twist number and order properties of periodic orbits

    NASA Astrophysics Data System (ADS)

    Petrisor, Emilia

    2013-11-01

    A less studied numerical characteristic of periodic orbits of area preserving twist maps of the annulus is the twist or torsion number, called initially the amount of rotation Mather (1984) [2]. It measures the average rotation of tangent vectors under the action of the derivative of the map along that orbit, and characterizes the degree of complexity of the dynamics. The aim of this paper is to give new insights into the definition and properties of the twist number and to relate its range to the order properties of periodic orbits. We derive an algorithm to deduce the exact value or a demi-unit interval containing the exact value of the twist number. We prove that at a period-doubling bifurcation threshold of a mini-maximizing periodic orbit, the new born doubly periodic orbit has the absolute twist number larger than the absolute twist of the original orbit after bifurcation. We give examples of periodic orbits having large absolute twist number, that are badly ordered, and illustrate how characterization of these orbits only by their residue can lead to incorrect results. In connection to the study of the twist number of periodic orbits of standard-like maps we introduce a new tool, called 1-cone function. We prove that the location of minima of this function with respect to the vertical symmetry lines of a standard-like map encodes a valuable information on the symmetric periodic orbits and their twist number.

  12. 49 CFR 236.709 - Block, absolute.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 49 Transportation 4 2010-10-01 2010-10-01 false Block, absolute. 236.709 Section 236.709 Transportation Other Regulations Relating to Transportation (Continued) FEDERAL RAILROAD ADMINISTRATION... Block, absolute. A block in which no train is permitted to enter while it is occupied by another train. ...

  13. 49 CFR 236.709 - Block, absolute.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 49 Transportation 4 2011-10-01 2011-10-01 false Block, absolute. 236.709 Section 236.709 Transportation Other Regulations Relating to Transportation (Continued) FEDERAL RAILROAD ADMINISTRATION... Block, absolute. A block in which no train is permitted to enter while it is occupied by another train. ...

  14. Effects of nonthermal distribution of electrons and polarity of net dust-charge number density on nonplanar dust-ion-acoustic solitary waves.

    PubMed

    Mamun, A A; Shukla, P K

    2009-09-01

    Effects of the nonthermal distribution of electrons as well as the polarity of the net dust-charge number density on nonplanar (viz. cylindrical and spherical) dust-ion-acoustic solitary waves (DIASWs) are investigated by employing the reductive perturbation method. It is found that the basic features of the DIASWs are significantly modified by the effects of nonthermal electron distribution, polarity of net dust-charge number density, and nonplanar geometry. The implications of our results in some space and laboratory dusty plasma environments are briefly discussed.

  15. Absolute Two-Photon Absorption Coefficients in UltraViolet Window Materials

    DTIC Science & Technology

    1977-12-01

    fvtt* tld » II ntctHB,-y md Idtnlll’ by block number; The absolute two-photon absorption coefficiehts of u. v. transmitting materials have been...measured using well-calibrated single picosecond pulses, at the third and fourth harmonic of a mode locked Nd:YAG laser systems. Twc photon...30, 1977. Work in the area of laser induced breakdown and multiphoton absorption in ultraviolet and infrared laser window materials was carried

  16. Fine mapping of copy number variations on two cattle genome assemblies using high density SNP array

    USDA-ARS?s Scientific Manuscript database

    Btau_4.0 and UMD3.1 are two distinct cattle reference genome assemblies. In our previous study using the low density BovineSNP50 array, we reported a copy number variation (CNV) analysis on Btau_4.0 with 521 animals of 21 cattle breeds, yielding 682 CNV regions with a total length of 139.8 megabases...

  17. Global statistics of liquid water content and effective number density of water clouds over ocean derived from combined CALIPSO and MODIS measurements

    NASA Astrophysics Data System (ADS)

    Hu, Y.; Vaughan, M.; McClain, C.; Behrenfeld, M.; Maring, H.; Anderson, D.; Sun-Mack, S.; Flittner, D.; Huang, J.; Wielicki, B.; Minnis, P.; Weimer, C.; Trepte, C.; Kuehn, R.

    2007-03-01

    This study presents an empirical relation that links layer integrated depolarization ratios, the extinction coefficients, and effective radii of water clouds, based on Monte Carlo simulations of CALIPSO lidar observations. Combined with cloud effective radius retrieved from MODIS, cloud liquid water content and effective number density of water clouds are estimated from CALIPSO lidar depolarization measurements in this study. Global statistics of the cloud liquid water content and effective number density are presented.

  18. Measuring liquid density using Archimedes' principle

    NASA Astrophysics Data System (ADS)

    Hughes, Stephen W.

    2006-09-01

    A simple technique is described for measuring absolute and relative liquid density based on Archimedes' principle. The technique involves placing a container of the liquid under test on an electronic balance and suspending a probe (e.g. a glass marble) attached to a length of line beneath the surface of the liquid. If the volume of the probe is known, the density of liquid is given by the difference between the balance reading before and after immersion of the probe divided by the volume of the probe. A test showed that the density of water at room temperature could be measured to an accuracy and precision of 0.01 ± 0.1%. The probe technique was also used to measure the relative density of milk, Coca-Cola, fruit juice, olive oil and vinegar.

  19. Patients with Rheumatoid Arthritis and Chronic Pain Display Enhanced Alpha Power Density at Rest.

    PubMed

    Meneses, Francisco M; Queirós, Fernanda C; Montoya, Pedro; Miranda, José G V; Dubois-Mendes, Selena M; Sá, Katia N; Luz-Santos, Cleber; Baptista, Abrahão F

    2016-01-01

    Patients with chronic pain due to neuropathy or musculoskeletal injury frequently exhibit reduced alpha and increased theta power densities. However, little is known about electrical brain activity and chronic pain in patients with rheumatoid arthritis (RA). For this purpose, we evaluated power densities of spontaneous electroencephalogram (EEG) band frequencies (delta, theta, alpha, and beta) in females with persistent pain due to RA. This was a cross-sectional study of 21 participants with RA and 21 healthy controls (mean age = 47.20; SD = 10.40). EEG was recorded at rest over 5 min with participant's eyes closed. Twenty electrodes were placed over five brain regions (frontal, central, parietal, temporal, and occipital). Significant differences were observed in depression and anxiety with higher scores in RA participants than healthy controls (p = 0.002). Participants with RA exhibited increased average absolute alpha power density in all brain regions when compared to controls [F (1.39) = 6.39, p = 0.016], as well as increased average relative alpha power density [F (1.39) = 5.82, p = 0.021] in all regions, except the frontal region, controlling for depression/anxiety. Absolute theta power density also increased in the frontal, central, and parietal regions for participants with RA when compared to controls [F (1, 39) = 4.51, p = 0.040], controlling for depression/anxiety. Differences were not exhibited on beta and delta absolute and relative power densities. The diffuse increased alpha may suggest a possible neurogenic mechanism for chronic pain in individuals with RA.

  20. Comparison of measured and modelled negative hydrogen ion densities at the ECR-discharge HOMER

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Rauner, D.; Kurutz, U.; Fantz, U.

    2015-04-08

    As the negative hydrogen ion density n{sub H{sup −}} is a key parameter for the investigation of negative ion sources, its diagnostic quantification is essential in source development and operation as well as for fundamental research. By utilizing the photodetachment process of negative ions, generally two different diagnostic methods can be applied: via laser photodetachment, the density of negative ions is measured locally, but only relatively to the electron density. To obtain absolute densities, the electron density has to be measured additionally, which induces further uncertainties. Via cavity ring-down spectroscopy (CRDS), the absolute density of H{sup −} is measured directly,more » however LOS-averaged over the plasma length. At the ECR-discharge HOMER, where H{sup −} is produced in the plasma volume, laser photodetachment is applied as the standard method to measure n{sub H{sup −}}. The additional application of CRDS provides the possibility to directly obtain absolute values of n{sub H{sup −}}, thereby successfully bench-marking the laser photodetachment system as both diagnostics are in good agreement. In the investigated pressure range from 0.3 to 3 Pa, the measured negative hydrogen ion density shows a maximum at 1 to 1.5 Pa and an approximately linear response to increasing input microwave powers from 200 up to 500 W. Additionally, the volume production of negative ions is 0-dimensionally modelled by balancing H{sup −} production and destruction processes. The modelled densities are adapted to the absolute measurements of n{sub H{sup −}} via CRDS, allowing to identify collisions of H{sup −} with hydrogen atoms (associative and non-associative detachment) to be the dominant loss process of H{sup −} in the plasma volume at HOMER. Furthermore, the characteristic peak of n{sub H{sup −}} observed at 1 to 1.5 Pa is identified to be caused by a comparable behaviour of the electron density with varying pressure, as n{sub e

  1. Absolute Helmholtz free energy of highly anharmonic crystals: theory vs Monte Carlo.

    PubMed

    Yakub, Lydia; Yakub, Eugene

    2012-04-14

    We discuss the problem of the quantitative theoretical prediction of the absolute free energy for classical highly anharmonic solids. Helmholtz free energy of the Lennard-Jones (LJ) crystal is calculated accurately while accounting for both the anharmonicity of atomic vibrations and the pair and triple correlations in displacements of the atoms from their lattice sites. The comparison with most precise computer simulation data on sublimation and melting lines revealed that theoretical predictions are in excellent agreement with Monte Carlo simulation data in the whole range of temperatures and densities studied.

  2. The JILA (Joint Institute for Laboratory Astrophysics) portable absolute gravity apparatus

    NASA Astrophysics Data System (ADS)

    Faller, J. E.; Guo, Y. G.; Gschwind, J.; Niebauer, T. M.; Rinker, R. L.; Xue, J.

    1983-08-01

    We have developed a new and highly portable absolute gravity apparatus based on the principles of free-fall laser interferometry. A primary concern over the past several years has been the detection, understanding, and elimination of systematic errors. In the Spring of 1982, we used this instrument to carry out a survey at twelve sites in the United States. Over a period of eight weeks, the instrument was driven a distance of nearly 20,000 km to sites in California, New Mexico, Colorado, Wyoming, Maryland, and Massachusetts. The time required to carry out a measurement at each location was typically one day. Over the next several years, our intention is to see absolute gravity measurements become both usable and used in the field. To this end, and in the context of cooperative research programs with a number of scientific institutes throughout the world, we are building additional instruments (incorporating further refinements) which are to be used for geodetic, geophysical, geological, and tectonic studies. With these new instruments we expect to improve (perhaps by a factor of two) on the 6-10 microgal accuracy of our present instrument. Today, one can make absolutely gravity measurements as accurately as - possibly even more accurately than - one can make relative measurements. Given reasonable success with the new instruments in the field, the last years of this century should see absolute gravity measurement mature both as a new geodetic data type and as a useful geophysical tool.

  3. Detection of medically important Candida species by absolute quantitation real-time polymerase chain reaction.

    PubMed

    Than, Leslie Thian Lung; Chong, Pei Pei; Ng, Kee Peng; Seow, Heng Fong

    2015-01-01

    The number of invasive candidiasis cases has risen especially with an increase in the number of immunosuppressed and immunocom promised patients. The early detection of Candida species which is specific and sensitive is important in determining the correct administration of antifungal drugs to patients. This study aims to develop a method for the detection, identification and quantitation of medically important Candida species through quantitative polymerase chain reaction (qPCR). The isocitrate lyase (ICL) gene which is not found in mammals was chosen as the target gene of real-time PCR. Absolute quantitation of the gene copy number was achieved by constructing the plasmid containing the ICL gene which is used to generate standard curve. Twenty fungal species, two bacterial species and human DNA were tested to check the specificity of the detection method. All eight Candida species were successfully detected, identified and quantitated based on the ICL gene. A seven-log range of the gene copy number and a minimum detection limit of 10(3) copies were achieved. A one-tube absolute quantification real-time PCR that differentiates medically important Candida species via individual unique melting temperature was achieved. Analytical sensitivity and specificity were not compromised.

  4. Effect of the absolute statistic on gene-sampling gene-set analysis methods.

    PubMed

    Nam, Dougu

    2017-06-01

    Gene-set enrichment analysis and its modified versions have commonly been used for identifying altered functions or pathways in disease from microarray data. In particular, the simple gene-sampling gene-set analysis methods have been heavily used for datasets with only a few sample replicates. The biggest problem with this approach is the highly inflated false-positive rate. In this paper, the effect of absolute gene statistic on gene-sampling gene-set analysis methods is systematically investigated. Thus far, the absolute gene statistic has merely been regarded as a supplementary method for capturing the bidirectional changes in each gene set. Here, it is shown that incorporating the absolute gene statistic in gene-sampling gene-set analysis substantially reduces the false-positive rate and improves the overall discriminatory ability. Its effect was investigated by power, false-positive rate, and receiver operating curve for a number of simulated and real datasets. The performances of gene-set analysis methods in one-tailed (genome-wide association study) and two-tailed (gene expression data) tests were also compared and discussed.

  5. A strategy for absolute proteome quantification with mass spectrometry by hierarchical use of peptide-concatenated standards.

    PubMed

    Kito, Keiji; Okada, Mitsuhiro; Ishibashi, Yuko; Okada, Satoshi; Ito, Takashi

    2016-05-01

    The accurate and precise absolute abundance of proteins can be determined using mass spectrometry by spiking the sample with stable isotope-labeled standards. In this study, we developed a strategy of hierarchical use of peptide-concatenated standards (PCSs) to quantify more proteins over a wider dynamic range. Multiple primary PCSs were used for quantification of many target proteins. Unique "ID-tag peptides" were introduced into individual primary PCSs, allowing us to monitor the exact amounts of individual PCSs using a "secondary PCS" in which all "ID-tag peptides" were concatenated. Furthermore, we varied the copy number of the "ID-tag peptide" in each PCS according to a range of expression levels of target proteins. This strategy accomplished absolute quantification over a wider range than that of the measured ratios. The quantified abundance of budding yeast proteins showed a high reproducibility for replicate analyses and similar copy numbers per cell for ribosomal proteins, demonstrating the accuracy and precision of this strategy. A comparison with the absolute abundance of transcripts clearly indicated different post-transcriptional regulation of expression for specific functional groups. Thus, the approach presented here is a faithful method for the absolute quantification of proteomes and provides insights into biological mechanisms, including the regulation of expressed protein abundance. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  6. The generalization of charged AdS black hole specific volume and number density

    NASA Astrophysics Data System (ADS)

    Wang, Zi-Liang; He, Miao; Fang, Chao; Sun, Dao-Quan; Deng, Jian-Bo

    2017-04-01

    In this paper, by proposing a generalized specific volume, we restudy the P- V criticality of charged AdS black holes in the extended phase space. The results show that most of the previous conclusions can be generalized without change, but the ratio {\\tilde{ρ }}_c should be 3 {\\tilde{α }}/16 in general case. Further research on the thermodynamical phase transition of black hole leads us to a natural interpretation of our assumption, and more black hole properties can be generalized. Finally, we study the number density for charged AdS black hole in higher dimensions, the results show the necessity of our assumption.

  7. Uncertainty representation of grey numbers and grey sets.

    PubMed

    Yang, Yingjie; Liu, Sifeng; John, Robert

    2014-09-01

    In the literature, there is a presumption that a grey set and an interval-valued fuzzy set are equivalent. This presumption ignores the existence of discrete components in a grey number. In this paper, new measurements of uncertainties of grey numbers and grey sets, consisting of both absolute and relative uncertainties, are defined to give a comprehensive representation of uncertainties in a grey number and a grey set. Some simple examples are provided to illustrate that the proposed uncertainty measurement can give an effective representation of both absolute and relative uncertainties in a grey number and a grey set. The relationships between grey sets and interval-valued fuzzy sets are also analyzed from the point of view of the proposed uncertainty representation. The analysis demonstrates that grey sets and interval-valued fuzzy sets provide different but overlapping models for uncertainty representation in sets.

  8. Densities of 5-15 micron interplanetary dust particles

    NASA Technical Reports Server (NTRS)

    Love, S. G.; Joswiak, D. J.; Brownlee, D. E.

    1993-01-01

    We have measured the densities of about 100 5-15 micron stratospheric IDPs. Great care was taken to minimize selection bias in the sample population. Masses were determined using an absolute x-ray analysis technique with a transmission electron microscope, and volumes were found using scanning electron microscope imagery. Unmelted chondritic particles have densities between 0.5 and 6.0 g/cc. Roughly half of the particles have densities below 2 g/cc, indicating appreciable porosity, but porosities greater than about 70 percent are rare. IDPs with densities above 3.5 g/cc usually contain large sulfide grains. We find no evidence of bimodality in the unmelted particle density distribution. Chondritic spherules (melted particles) have densities near 3.5 g/cc, consistent with previous results for deep sea spherules.

  9. Cryogenic, Absolute, High Pressure Sensor

    NASA Technical Reports Server (NTRS)

    Chapman, John J. (Inventor); Shams. Qamar A. (Inventor); Powers, William T. (Inventor)

    2001-01-01

    A pressure sensor is provided for cryogenic, high pressure applications. A highly doped silicon piezoresistive pressure sensor is bonded to a silicon substrate in an absolute pressure sensing configuration. The absolute pressure sensor is bonded to an aluminum nitride substrate. Aluminum nitride has appropriate coefficient of thermal expansion for use with highly doped silicon at cryogenic temperatures. A group of sensors, either two sensors on two substrates or four sensors on a single substrate are packaged in a pressure vessel.

  10. Absolute Income, Relative Income, and Happiness

    ERIC Educational Resources Information Center

    Ball, Richard; Chernova, Kateryna

    2008-01-01

    This paper uses data from the World Values Survey to investigate how an individual's self-reported happiness is related to (i) the level of her income in absolute terms, and (ii) the level of her income relative to other people in her country. The main findings are that (i) both absolute and relative income are positively and significantly…

  11. Relationship between postoperative refractive outcomes and cataract density: multiple regression analysis.

    PubMed

    Ueda, Tetsuo; Ikeda, Hitoe; Ota, Takeo; Matsuura, Toyoaki; Hara, Yoshiaki

    2010-05-01

    To evaluate the relationship between cataract density and the deviation from the predicted refraction. Department of Ophthalmology, Nara Medical University, Kashihara, Japan. Axial length (AL) was measured in eyes with mainly nuclear cataract using partial coherence interferometry (IOLMaster). The postoperative AL was measured in pseudophakic mode. The AL difference was calculated by subtracting the postoperative AL from the preoperative AL. Cataract density was measured with the pupil dilated using anterior segment Scheimpflug imaging (EAS-1000). The predicted postoperative refraction was calculated using the SRK/T formula. The subjective refraction 3 months postoperatively was also measured. The mean absolute prediction error (MAE) (mean of absolute difference between predicted postoperative refraction and spherical equivalent of postoperative subjective refraction) was calculated. The relationship between the MAE and cataract density, age, preoperative visual acuity, anterior chamber depth, corneal radius of curvature, and AL difference was evaluated using multiple regression analysis. In the 96 eyes evaluated, the MAE was correlated with cataract density (r = 0.37, P = .001) and the AL difference (r = 0.34, P = .003) but not with the other parameters. The AL difference was correlated with cataract density (r = 0.53, P<.0001). The postoperative refractive outcome was affected by cataract density. This should be taken into consideration in eyes with a higher density cataract. (c) 2010 ASCRS and ESCRS. Published by Elsevier Inc. All rights reserved.

  12. Absolute versus relative intensity of physical activity in a dose-response context.

    PubMed

    Shephard, R J

    2001-06-01

    To examine the importance of relative versus absolute intensities of physical activity in the context of population health. A standard computer-search of the literature was supplemented by review of extensive personal files. Consensus reports (Category D Evidence) have commonly recommended moderate rather than hard physical activity in the context of population health. Much of the available literature provides Category C Evidence. It has often confounded issues of relative intensity with absolute intensity or total weekly dose of exercise. In terms of cardiovascular health, there is some evidence for a threshold intensity of effort, perhaps as high as 6 METs, in addition to a minimum volume of physical activity. Decreases in blood pressure and prevention of stroke seem best achieved by moderate rather than high relative intensities of physical activity. Many aspects of metabolic health depend on the total volume of activity; moderate relative intensities of effort are more effective in mobilizing body fat, but harder relative intensities may help to increase energy expenditures postexercise. Hard relative intensities seem needed to augment bone density, but this may reflect an associated increase in volume of activity. Hard relative intensities of exercise induce a transient immunosuppression. The optimal intensity of effort, relative or absolute, for protection against various types of cancer remains unresolved. Acute effects of exercise on mood state also require further study; long-term benefits seem associated with a moderate rather than a hard relative intensity of effort. The importance of relative versus absolute intensity of effort depends on the desired health outcome, and many issues remain to be resolved. Progress will depend on more precise epidemiological methods of assessing energy expenditures and studies that equate total energy expenditures between differing relative intensities. There is a need to focus on gains in quality-adjusted life expectancy.

  13. Plasma protein absolute quantification by nano-LC Q-TOF UDMSE for clinical biomarker verification

    PubMed Central

    ILIES, MARIA; IUGA, CRISTINA ADELA; LOGHIN, FELICIA; DHOPLE, VISHNU MUKUND; HAMMER, ELKE

    2017-01-01

    Background and aims Proteome-based biomarker studies are targeting proteins that could serve as diagnostic, prognosis, and prediction molecules. In the clinical routine, immunoassays are currently used for the absolute quantification of such biomarkers, with the major limitation that only one molecule can be targeted per assay. The aim of our study was to test a mass spectrometry based absolute quantification method for the verification of plasma protein sets which might serve as reliable biomarker panels for the clinical practice. Methods Six EDTA plasma samples were analyzed after tryptic digestion using a high throughput data independent acquisition nano-LC Q-TOF UDMSE proteomics approach. Synthetic Escherichia coli standard peptides were spiked in each sample for the absolute quantification. Data analysis was performed using ProgenesisQI v2.0 software (Waters Corporation). Results Our method ensured absolute quantification of 242 non redundant plasma proteins in a single run analysis. The dynamic range covered was 105. 86% were represented by classical plasma proteins. The overall median coefficient of variation was 0.36, while a set of 63 proteins was found to be highly stable. Absolute protein concentrations strongly correlated with values reviewed in the literature. Conclusions Nano-LC Q-TOF UDMSE proteomic analysis can be used for a simple and rapid determination of absolute amounts of plasma proteins. A large number of plasma proteins could be analyzed, while a wide dynamic range was covered with low coefficient of variation at protein level. The method proved to be a reliable tool for the quantification of protein panel for biomarker verification in the clinical practice. PMID:29151793

  14. Lattice vibrations in the Frenkel-Kontorova model. I. Phonon dispersion, number density, and energy

    NASA Astrophysics Data System (ADS)

    Meng, Qingping; Wu, Lijun; Welch, David O.; Zhu, Yimei

    2015-06-01

    We studied the lattice vibrations of two interpenetrating atomic sublattices via the Frenkel-Kontorova (FK) model of a linear chain of harmonically interacting atoms subjected to an on-site potential using the technique of thermodynamic Green's functions based on quantum field-theoretical methods. General expressions were deduced for the phonon frequency-wave-vector dispersion relations, number density, and energy of the FK model system. As the application of the theory, we investigated in detail cases of linear chains with various periods of the on-site potential of the FK model. Some unusual but interesting features for different amplitudes of the on-site potential of the FK model are discussed. In the commensurate structure, the phonon spectrum always starts at a finite frequency, and the gaps of the spectrum are true ones with a zero density of modes. In the incommensurate structure, the phonon spectrum starts from zero frequency, but at a nonzero wave vector; there are some modes inside these gap regions, but their density is very low. In our approximation, the energy of a higher-order commensurate state of the one-dimensional system at a finite temperature may become indefinitely close to the energy of an incommensurate state. This finding implies that the higher-order incommensurate-commensurate transitions are continuous ones and that the phase transition may exhibit a "devil's staircase" behavior at a finite temperature.

  15. Universal Cosmic Absolute and Modern Science

    NASA Astrophysics Data System (ADS)

    Kostro, Ludwik

    The official Sciences, especially all natural sciences, respect in their researches the principle of methodic naturalism i.e. they consider all phenomena as entirely natural and therefore in their scientific explanations they do never adduce or cite supernatural entities and forces. The purpose of this paper is to show that Modern Science has its own self-existent, self-acting, and self-sufficient Natural All-in Being or Omni-Being i.e. the entire Nature as a Whole that justifies the scientific methodic naturalism. Since this Natural All-in Being is one and only It should be considered as the own scientifically justified Natural Absolute of Science and should be called, in my opinion, the Universal Cosmic Absolute of Modern Science. It will be also shown that the Universal Cosmic Absolute is ontologically enormously stratified and is in its ultimate i.e. in its most fundamental stratum trans-reistic and trans-personal. It means that in its basic stratum. It is neither a Thing or a Person although It contains in Itself all things and persons with all other sentient and conscious individuals as well, On the turn of the 20th century the Science has begun to look for a theory of everything, for a final theory, for a master theory. In my opinion the natural Universal Cosmic Absolute will constitute in such a theory the radical all penetrating Ultimate Basic Reality and will substitute step by step the traditional supernatural personal Absolute.

  16. Absolute Effect of Prostate Cancer Screening: Balance of benefits and harms by center within the European Randomized Study of Prostate Cancer Screening

    PubMed Central

    Auvinen, Anssi; Moss, Sue M; Tammela, Teuvo L J; Taari, Kimmo; Roobol, Monique J; Schröder, Fritz H; Bangma, Chris H; Carlsson, Sigrid; Aus, Gunnar; Zappa, Marco; Puliti, Donella; Denis, Louis J; Nelen, Vera; Kwiatkowski, Maciej; Randazzo, Marco; Paez, Alvaro; Lujan, Marcos; Hugosson, Jonas

    2016-01-01

    Purpose The balance of benefits and harms in prostate cancer screening has not been sufficiently characterized. We related indicators of mortality reduction and overdetection by center within the European Randomized Study of Prostate Cancer Screening. Experimental Design We analyzed the absolute mortality reduction expressed as number needed to invite (NNI=1/absolute risk reduction; indicating how many men had to be randomized to screening arm to avert a prostate cancer death) for screening and the absolute excess of prostate cancer detection as number needed for overdetection (NNO=1/absolute excess incidence; indicating the number of men invited per additional prostate cancer case), and compared their relationship across the seven ERSPC centers. Results Both absolute mortality reduction (NNI) and absolute overdetection (NNO) varied widely between the centers: NNI 200-7000 and NNO 16-69. Extent of overdiagnosis and mortality reduction were closely associated (correlation coefficient r=0.76, weighted linear regression coefficient β=33, 95% 5-62, R2=0.72). For an averted prostate cancer death at 13 years of follow-up, 12-36 excess cases had to be detected in various centers. Conclusions The differences between the ERSPC centers likely reflect variations in prostate cancer incidence and mortality, as well as in screening protocol and performance. The strong interrelation between the benefits and harms suggests that efforts to maximize the mortality effect are bound to increase overdiagnosis, and might be improved by focusing on high-risk populations. The optimal balance between screening intensity and risk of overdiagnosis remains unclear. PMID:26289069

  17. Measurement of the Number of Light Neutrino Generations, Z Resonance Parameters, and Absolute Luminosity at the Aleph Detector

    NASA Astrophysics Data System (ADS)

    Wear, James A.

    Measurements of the production cross section sigma (e^+e^-to Z to hadrons) have been made with the ALEPH detector in a seven-point energy scan across the Z resonance at the LEP e^+e^ - collider. The selection of hadronic Z decays is performed with a systematic uncertainty of 0.3%, resulting in 147,836 events. The absolute luminosity has been determined with a systematic uncertainty of 0.9%. These hadronic cross sections and ALEPH's measurement of Z decay into charged leptons, sigma(e^+e^ -to Z to l^+l^ -), are used in fits to extract parameters of the Z resonance in a model-independent way. The Z mass and total width are measured to be M_{Z } = 91.177 +/- 0.010 _{exp} +/- 0.020_{LEP} GeV and Gamma_{Z} = 2.482 +/- 0.018_{exp} +/- 0.006_{LEP } GeV where the second errors are due to LEP beam energy uncertainties. The Z decay partial widths are measured to be Gamma_{h} = 1.738 +/- 0.016 GeV, Gamma_{l} = 83.45 +/- 0.76 MeV, and Gamma_ {inv} = 0.493 +/- 0.015 GeV. The Born-level peak hadronic cross section is sigma_sp{had}{0 } = 41.58 +/- 0.44 nb, R = Gamma_{h }/Gamma_{l} = 20.83 +/- 0.21, and Gamma_{inv}/Gamma _{l} = 5.91 +/- 0.18. The number of light neutrino generations is determined to be N_{nu} = 2.96 +/- 0.09 and the Standard Model electroweak mixing angle to be sin^2 theta_{W} = 0.2325 +/- 0.0027.

  18. Jasminum sambac flower absolutes from India and China--geographic variations.

    PubMed

    Braun, Norbert A; Sim, Sherina

    2012-05-01

    Seven Jasminum sambac flower absolutes from different locations in the southern Indian state of Tamil Nadu were analyzed using GC and GC-MS. Focus was placed on 41 key ingredients to investigate geographic variations in this species. These seven absolutes were compared with an Indian bud absolute and commercially available J. sambac flower absolutes from India and China. All absolutes showed broad variations for the 10 main ingredients between 8% and 96%. In addition, the odor of Indian and Chinese J. sambac flower absolutes were assessed.

  19. Absolute versus relative ascertainment of pedophilia in men.

    PubMed

    Blanchard, Ray; Kuban, Michael E; Blak, Thomas; Cantor, James M; Klassen, Philip E; Dickey, Robert

    2009-12-01

    There are at least two different criteria for assessing pedophilia in men: absolute ascertainment (their sexual interest in children is intense) and relative ascertainment (their sexual interest in children is greater than their interest in adults). The American Psychiatric Association's Diagnostic and Statistical Manual of Mental Disorders, 3rd edition (DSM-III) used relative ascertainment in its diagnostic criteria for pedophilia; this was abandoned and replaced by absolute ascertainment in the DSM-III-R and all subsequent editions. The present study was conducted to demonstrate the continuing need for relative ascertainment, particularly in the laboratory assessment of pedophilia. A total of 402 heterosexual men were selected from a database of patients referred to a specialty clinic. These had undergone phallometric testing, a psychophysiological procedure in which their penile blood volume was monitored while they were presented with a standardized set of laboratory stimuli depicting male and female children, pubescents, and adults.The 130 men selected for the Teleiophilic Profile group responded substantially to prepubescent girls but even more to adult women; the 272 men selected for the Pedophilic Profile group responded weakly to prepubescent girls but even less to adult women. In terms of absolute magnitude, every patient in the Pedophilic Profile group had a lesser penile response to prepubescent girls than every patient in the Teleiophilic Profile group. Nevertheless, the Pedophilic Profile group had a significantly greater number of known sexual offenses against prepubescent girls, indicating that they contained a higher proportion of true pedophiles. These results dramatically demonstrate the utility-or perhaps necessity-of relative ascertainment in the laboratory assessment of erotic age-preference.

  20. Advancing Absolute Calibration for JWST and Other Applications

    NASA Astrophysics Data System (ADS)

    Rieke, George; Bohlin, Ralph; Boyajian, Tabetha; Carey, Sean; Casagrande, Luca; Deustua, Susana; Gordon, Karl; Kraemer, Kathleen; Marengo, Massimo; Schlawin, Everett; Su, Kate; Sloan, Greg; Volk, Kevin

    2017-10-01

    We propose to exploit the unique optical stability of the Spitzer telescope, along with that of IRAC, to (1) transfer the accurate absolute calibration obtained with MSX on very bright stars directly to two reference stars within the dynamic range of the JWST imagers (and of other modern instrumentation); (2) establish a second accurate absolute calibration based on the absolutely calibrated spectrum of the sun, transferred onto the astronomical system via alpha Cen A; and (3) provide accurate infrared measurements for the 11 (of 15) highest priority stars with no such data but with accurate interferometrically measured diameters, allowing us to optimize determinations of effective temperatures using the infrared flux method and thus to extend the accurate absolute calibration spectrally. This program is integral to plans for an accurate absolute calibration of JWST and will also provide a valuable Spitzer legacy.

  1. Absolute radiometric calibration of advanced remote sensing systems

    NASA Technical Reports Server (NTRS)

    Slater, P. N.

    1982-01-01

    The distinction between the uses of relative and absolute spectroradiometric calibration of remote sensing systems is discussed. The advantages of detector-based absolute calibration are described, and the categories of relative and absolute system calibrations are listed. The limitations and problems associated with three common methods used for the absolute calibration of remote sensing systems are addressed. Two methods are proposed for the in-flight absolute calibration of advanced multispectral linear array systems. One makes use of a sun-illuminated panel in front of the sensor, the radiance of which is monitored by a spectrally flat pyroelectric radiometer. The other uses a large, uniform, high-radiance reference ground surface. The ground and atmospheric measurements required as input to a radiative transfer program to predict the radiance level at the entrance pupil of the orbital sensor are discussed, and the ground instrumentation is described.

  2. The effect of different initial densities of nematode (Meloidogyne javanica) on the build-up of Pasteuria penetrans population.

    PubMed

    Darban, Daim Ali; Pathan, Mumtaz Ali; Bhatti, Abdul Ghaffar; Maitelo, Sultan Ahmed

    2005-02-01

    Pasteuria penetrans will build-up faster where there is a high initial nematode density and can suppress root-knot nematode populations in the roots of tomato plants. The effect of different initial densities of nematode (Meloidogyne javanica) (150, 750, 1500, 3000) and P. penetrans infected females (F1, F3) densities (F0=control and AC=absolute control without nematode or P. penetrans inoculum) on the build-up of Pasteuria population was investigated over four crop cycles. Two major points of interest were highlighted. First, that within a confined soil volume, densities of P. penetrans can increase >100 times within 2 or 3 crop cycles. Second, from a relatively small amount of spore inoculum, infection of the host is very high. There were more infected females in the higher P. penetrans doses. The root growth data confirms the greater number of females in the controls particularly at the higher inoculum densities in the third and fourth crops. P. penetrans generally caused the fresh root weights to be higher than those in the control. P. penetrans has shown greater reduction of egg masses per plant at most densities. The effects of different initial densities of M. javanica and P. penetrans on the development of the pest and parasite populations were monitored. And no attempt was made to return the P. penetrans spores to the pots after each crop so the build-up in actual numbers of infected females and spores under natural conditions may be underestimated.

  3. Normal incidence spectrophotometer using high density transmission grating technology and highly efficiency silicon photodiodes for absolute solar EUV irradiance measurements

    NASA Technical Reports Server (NTRS)

    Ogawa, H. S.; Mcmullin, D.; Judge, D. L.; Korde, R.

    1992-01-01

    New developments in transmission grating and photodiode technology now make it possible to realize spectrometers in the extreme ultraviolet (EUV) spectral region (wavelengths less than 1000 A) which are expected to be virtually constant in their diffraction and detector properties. Time dependent effects associated with reflection gratings are eliminated through the use of free standing transmission gratings. These gratings together with recently developed and highly stable EUV photodiodes have been utilized to construct a highly stable normal incidence spectrophotometer to monitor the variability and absolute intensity of the solar 304 A line. Owing to its low weight and compactness, such a spectrometer will be a valuable tool for providing absolute solar irradiance throughout the EUV. This novel instrument will also be useful for cross-calibrating other EUV flight instruments and will be flown on a series of Hitchhiker Shuttle Flights and on SOHO. A preliminary version of this instrument has been fabricated and characterized, and the results are described.

  4. Absolute Calibration of Image Plate for electrons at energy between 100 keV and 4 MeV

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chen, H; Back, N L; Eder, D C

    2007-12-10

    The authors measured the absolute response of image plate (Fuji BAS SR2040) for electrons at energies between 100 keV to 4 MeV using an electron spectrometer. The electron source was produced from a short pulse laser irradiated on the solid density targets. This paper presents the calibration results of image plate Photon Stimulated Luminescence PSL per electrons at this energy range. The Monte Carlo radiation transport code MCNPX results are also presented for three representative incident angles onto the image plates and corresponding electron energies depositions at these angles. These provide a complete set of tools that allows extraction ofmore » the absolute calibration to other spectrometer setting at this electron energy range.« less

  5. SU-F-T-492: The Impact of Water Temperature On Absolute Dose Calibration

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Islam, N; Podgorsak, M; Roswell Park Cancer Institute, Buffalo, NY

    Purpose: The Task Group 51 (TG 51) protocol prescribes that dose calibration of photon beams be done by irradiating an ionization chamber in a water tank at pre-defined depths. Methodologies are provided to account for variations in measurement conditions by applying correction factors. However, the protocol does not completely account for the impact of water temperature. It is well established that water temperature will influence the density of air in the ion chamber collecting volume. Water temperature, however, will also influence the size of the collecting volume via thermal expansion of the cavity wall and the density of the watermore » in the tank. In this work the overall effect of water temperature on absolute dosimetry has been investigated. Methods: Dose measurements were made using a Farmer-type ion chamber for 6 and 23 MV photon beams with water temperatures ranging from 10 to 40°C. A reference ion chamber was used to account for fluctuations in beam output between successive measurements. Results: For the same beam output, the dose determined using TG 51 was dependent on the temperature of the water in the tank. A linear regression of the data suggests that the dependence is statistically significant with p-values of the slope equal to 0.003 and 0.01 for 6 and 23 MV beams, respectively. For a 10 degree increase in water phantom temperature, the absolute dose determined with TG 51 increased by 0.27% and 0.31% for 6 and 23 MV beams, respectively. Conclusion: There is a measurable effect of water temperature on absolute dose calibration. To account for this effect, a reference temperature can be defined and a correction factor applied to account for deviations from this reference temperature during beam calibration. Such a factor is expected to be of similar magnitude to most of the existing TG 51 correction factors.« less

  6. A new lunar absolute control point: established by images from the landing camera on Chang'e-3

    NASA Astrophysics Data System (ADS)

    Wang, Fen-Fei; Liu, Jian-Jun; Li, Chun-Lai; Ren, Xin; Mu, Ling-Li; Yan, Wei; Wang, Wen-Rui; Xiao, Jing-Tao; Tan, Xu; Zhang, Xiao-Xia; Zou, Xiao-Duan; Gao, Xing-Ye

    2014-12-01

    The establishment of a lunar control network is one of the core tasks in selenodesy, in which defining an absolute control point on the Moon is the most important step. However, up to now, the number of absolute control points has been very sparse. These absolute control points have mainly been lunar laser ranging retroreflectors, whose geographical location can be observed by observations on Earth and also identified in high resolution lunar satellite images. The Chang'e-3 (CE-3) probe successfully landed on the Moon, and its geographical location has been monitored by an observing station on Earth. Since its positional accuracy is expected to reach the meter level, the CE-3 landing site can become a new high precision absolute control point. We use a sequence of images taken from the landing camera, as well as satellite images taken by CE-1 and CE-2, to identify the location of the CE-3 lander. With its geographical location known, the CE-3 landing site can be established as a new absolute control point, which will effectively expand the current area of the lunar absolute control network by 22%, and can greatly facilitate future research in the field of lunar surveying and mapping, as well as selenodesy.

  7. Investigation of the on-axis atom number density in the supersonic gas jet under high gas backing pressure by simulation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chen, Guanglong; Xu, Yi; Cao, Yunjiu

    The supersonic gas jets from conical nozzles are simulated using 2D model. The on-axis atom number density in gas jet is investigated in detail by comparing the simulated densities with the idealized densities of straight streamline model in scaling laws. It is found that the density is generally lower than the idealized one and the deviation between them is mainly dependent on the opening angle of conical nozzle, the nozzle length and the gas backing pressure. The density deviation is then used to discuss the deviation of the equivalent diameter of a conical nozzle from the idealized d{sub eq} inmore » scaling laws. The investigation on the lateral expansion of gas jet indicates the lateral expansion could be responsible for the behavior of the density deviation. These results could be useful for the estimation of cluster size and the understanding of experimental results in laser-cluster interaction experiments.« less

  8. Absolute Quantification of Middle- to High-Abundant Plasma Proteins via Targeted Proteomics.

    PubMed

    Dittrich, Julia; Ceglarek, Uta

    2017-01-01

    The increasing number of peptide and protein biomarker candidates requires expeditious and reliable quantification strategies. The utilization of liquid chromatography coupled to quadrupole tandem mass spectrometry (LC-MS/MS) for the absolute quantitation of plasma proteins and peptides facilitates the multiplexed verification of tens to hundreds of biomarkers from smallest sample quantities. Targeted proteomics assays derived from bottom-up proteomics principles rely on the identification and analysis of proteotypic peptides formed in an enzymatic digestion of the target protein. This protocol proposes a procedure for the establishment of a targeted absolute quantitation method for middle- to high-abundant plasma proteins waiving depletion or enrichment steps. Essential topics as proteotypic peptide identification and LC-MS/MS method development as well as sample preparation and calibration strategies are described in detail.

  9. Plant Density Effect on Grain Number and Weight of Two Winter Wheat Cultivars at Different Spikelet and Grain Positions

    PubMed Central

    Ni, Yingli; Zheng, Mengjing; Yang, Dongqing; Jin, Min; Chen, Jin; Wang, Zhenlin; Yin, Yanping

    2016-01-01

    In winter wheat, grain development is asynchronous. The grain number and grain weight vary significantly at different spikelet and grain positions among wheat cultivars grown at different plant densities. In this study, two winter wheat (Triticum aestivum L.) cultivars, ‘Wennong6’ and ‘Jimai20’, were grown under four different plant densities for two seasons, in order to study the effect of plant density on the grain number and grain weight at different spikelet and grain positions. The results showed that the effects of spikelet and grain positions on grain weight varied with the grain number of spikelets. In both cultivars, the single-grain weight of the basal and middle two-grain spikelets was higher at the 2nd grain position than that at the 1st grain position, while the opposite occurred in the top two-grain spikelets. In the three-grain spikelets, the distribution of the single-grain weight was different between cultivars. In the four-grain spikelets of Wennong6, the single-grain weight was the highest at the 2nd grain position, followed by the 1st, 3rd, and 4th grain positions. Regardless of the spikelet and grain positions, the single-grain weight was the highest at the 1st and 2nd grain positions and the lowest at the 3rd and 4th grain positions. Overall, plant density affected the yield by controlling the seed-setting characteristics of the tiller spike. Therefore, wheat yield can be increased by decreasing the sterile basal and top spikelets and enhancing the grain weight at the 3rd and 4th grain positions, while maintaining it at the 1st and 2nd grain positions on the spikelet. PMID:27171343

  10. Conditional associative memory for musical stimuli in nonmusicians: implications for absolute pitch.

    PubMed

    Bermudez, Patrick; Zatorre, Robert J

    2005-08-24

    A previous positron emission tomography (PET) study of musicians with and without absolute pitch put forth the hypothesis that the posterior dorsolateral prefrontal cortex is involved in the conditional associative aspect of the identification of a pitch. In the work presented here, we tested this hypothesis by training eight nonmusicians to associate each of four different complex musical sounds (triad chords) with an arbitrary number in a task designed to have limited analogy to absolute-pitch identification. Each subject under-went a functional magnetic resonance imaging scanning procedure both before and after training. Active condition (identification of chords)-control condition (amplitude-matched noise bursts) comparisons for the pretraining scan showed no significant activation maxima. The same comparison for the posttraining scan revealed significant peaks of activation in posterior dorsolateral prefrontal, ventrolateral prefrontal, and parietal areas. A conjunction analysis was performed to show that the posterior dorsolateral prefrontal activity in this study is similar to that observed in the aforementioned PET study. We conclude that the posterior dorsolateral prefrontal cortex is selectively involved in the conditional association aspect of our task, as it is in the attribution of a verbal label to a note by absolute-pitch musicians.

  11. Linking Comparisons of Absolute Gravimeters: A Proof of Concept for a new Global Absolute Gravity Reference System.

    NASA Astrophysics Data System (ADS)

    Wziontek, H.; Palinkas, V.; Falk, R.; Vaľko, M.

    2016-12-01

    Since decades, absolute gravimeters are compared on a regular basis on an international level, starting at the International Bureau for Weights and Measures (BIPM) in 1981. Usually, these comparisons are based on constant reference values deduced from all accepted measurements acquired during the comparison period. Temporal changes between comparison epochs are usually not considered. Resolution No. 2, adopted by IAG during the IUGG General Assembly in Prague 2015, initiates the establishment of a Global Absolute Gravity Reference System based on key comparisons of absolute gravimeters (AG) under the International Committee for Weights and Measures (CIPM) in order to establish a common level in the microGal range. A stable and unique reference frame can only be achieved, if different AG are taking part in different kind of comparisons. Systematic deviations between the respective comparison reference values can be detected, if the AG can be considered stable over time. The continuous operation of superconducting gravimeters (SG) on selected stations further supports the temporal link of comparison reference values by establishing a reference function over time. By a homogenous reprocessing of different comparison epochs and including AG and SG time series at selected stations, links between several comparisons will be established and temporal comparison reference functions will be derived. By this, comparisons on a regional level can be traced to back to the level of key comparisons, providing a reference for other absolute gravimeters. It will be proved and discussed, how such a concept can be used to support the future absolute gravity reference system.

  12. Lattice vibrations in the Frenkel-Kontorova model. I. Phonon dispersion, number density, and energy

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Meng, Qingping; Wu, Lijun; Welch, David O.

    2015-06-17

    We studied the lattice vibrations of two inter-penetrating atomic sublattices via the Frenkel-Kontorova (FK) model of a linear chain of harmonically interacting atoms subjected to an on-site potential, using the technique of thermodynamic Green's functions based on quantum field-theoretical methods. General expressions were deduced for the phonon frequency-wave-vector dispersion relations, number density, and energy of the FK model system. In addition, as the application of the theory, we investigated in detail cases of linear chains with various periods of the on-site potential of the FK model. Some unusual but interesting features for different amplitudes of the on-site potential of themore » FK model are discussed. In the commensurate structure, the phonon spectrum always starts at a finite frequency, and the gaps of the spectrum are true ones with a zero density of modes. In the incommensurate structure, the phonon spectrum starts from zero frequency, but at a non-zero wave vector; there are some modes inside these gap regions, but their density is very low. In our approximation, the energy of a higher-order commensurate state of the one-dimensional system at a finite temperature may become indefinitely close to the energy of an incommensurate state. This finding implies that the higher-order incommensurate-commensurate transitions are continuous ones and that the phase transition may exhibit a “devil's staircase” behavior at a finite temperature.« less

  13. Uncertainties in Climatological Seawater Density Calculations

    NASA Astrophysics Data System (ADS)

    Dai, Hao; Zhang, Xining

    2018-03-01

    In most applications, with seawater conductivity, temperature, and pressure data measured in situ by various observation instruments e.g., Conductivity-Temperature-Depth instruments (CTD), the density which has strong ties to ocean dynamics and so on is computed according to equations of state for seawater. This paper, based on density computational formulae in the Thermodynamic Equation of Seawater 2010 (TEOS-10), follows the Guide of the expression of Uncertainty in Measurement (GUM) and assesses the main sources of uncertainties. By virtue of climatological decades-average temperature/Practical Salinity/pressure data sets in the global ocean provided by the National Oceanic and Atmospheric Administration (NOAA), correlation coefficients between uncertainty sources are determined and the combined standard uncertainties uc>(ρ>) in seawater density calculations are evaluated. For grid points in the world ocean with 0.25° resolution, the standard deviations of uc>(ρ>) in vertical profiles cover the magnitude order of 10-4 kg m-3. The uc>(ρ>) means in vertical profiles of the Baltic Sea are about 0.028kg m-3 due to the larger scatter of Absolute Salinity anomaly. The distribution of the uc>(ρ>) means in vertical profiles of the world ocean except for the Baltic Sea, which covers the range of >(0.004,0.01>) kg m-3, is related to the correlation coefficient r>(SA,p>) between Absolute Salinity SA and pressure p. The results in the paper are based on sensors' measuring uncertainties of high accuracy CTD. Larger uncertainties in density calculations may arise if connected with lower sensors' specifications. This work may provide valuable uncertainty information required for reliability considerations of ocean circulation and global climate models.

  14. Studies on effective atomic numbers, electron densities from mass attenuation coefficients near the K edge in some samarium compounds.

    PubMed

    Akman, F; Durak, R; Turhan, M F; Kaçal, M R

    2015-07-01

    The effective atomic numbers and electron densities of some samarium compounds were determined using the experimental total mass attenuation coefficient values near the K edge in the X-ray energy range from 36.847 up to 57.142 keV. The measurements, in the region from 36.847 to 57.142 keV, were done in a transmission geometry utilizing the Kα2, Kα1, Kβ1 and Kβ2 X-rays from different secondary source targets excited by the 59.54 keV gamma-photons from an Am-241 annular source. This paper presents the first measurement of the effective atomic numbers and electron densities for some samarium compounds near the K edge. The results of the study showed that the measured values were in good agreement with the theoretically calculated ones. Copyright © 2015 Elsevier Ltd. All rights reserved.

  15. Fruit and vegetable purchasing and the relative density of healthy and unhealthy food stores: evidence from an Australian multilevel study.

    PubMed

    Mason, Kate E; Bentley, Rebecca J; Kavanagh, Anne M

    2013-03-01

    Evidence of a relationship between residential retail food environments and diet-related outcomes is inconsistent. One reason for this may be that food environments are typically defined in terms of the absolute number of particular store types in an area, whereas a measure of the relative number of healthy and unhealthy stores may be more appropriate. Using cross-sectional data from the VicLANES study conducted in Melbourne, Australia, multilevel logistic regression analysis was used to estimate the independent associations between absolute measures (numbers of healthy and unhealthy stores) and a relative measure (relative density of healthy stores) of the food environment, and self-reported variety of fruit and vegetable purchasing in local households. Purchasing behaviour was measured as the odds of purchasing above the median level of fruit and vegetables. Compared to households in areas where healthy food stores made up no more than 10% of all healthy and unhealthy stores, households in areas with 10.1-15.0% healthy food stores and >15% healthy stores had increased odds of healthier purchasing (OR=1.48 (95% CI 1.12 to 1.96) and OR=1.45 (95% CI 1.09 to 1.91), respectively). There was less evidence of an association between absolute numbers of healthy or unhealthy stores and fruit and vegetable purchasing. We found strong evidence of healthier fruit and vegetable purchasing in households located in areas where the proportion of food stores that were healthy was greater. Policies aimed at improving the balance between healthy and unhealthy stores within areas may therefore be effective in promoting greater consumption of fruit and vegetables.

  16. Investigating Absolute Value: A Real World Application

    ERIC Educational Resources Information Center

    Kidd, Margaret; Pagni, David

    2009-01-01

    Making connections between various representations is important in mathematics. In this article, the authors discuss the numeric, algebraic, and graphical representations of sums of absolute values of linear functions. The initial explanations are accessible to all students who have experience graphing and who understand that absolute value simply…

  17. Measurement of absolute laser energy absorption by nano-structured targets

    NASA Astrophysics Data System (ADS)

    Park, Jaebum; Tommasini, R.; London, R.; Bargsten, C.; Hollinger, R.; Capeluto, M. G.; Shlyaptsev, V. N.; Rocca, J. J.

    2017-10-01

    Nano-structured targets have been reported to allow the realization of extreme plasma conditions using table top lasers, and have gained much interest as a platform to investigate the ultra-high energy density plasmas (>100 MJ/cm3) . One reason for these targets to achieve extreme conditions is increased laser energy absorption (LEA). The absolute LEA by nano-structured targets has been measured for the first time and compared to that by foil targets. The experimental results, including the effects of target parameters on the LEA, will be presented. This work was performed under the auspices of the U.S. Department of Energy by Lawrence Livermore National Laboratory under Contract DE-AC52097NA27344, and funded by LDRD (#15-ERD-054).

  18. Stimulus probability effects in absolute identification.

    PubMed

    Kent, Christopher; Lamberts, Koen

    2016-05-01

    This study investigated the effect of stimulus presentation probability on accuracy and response times in an absolute identification task. Three schedules of presentation were used to investigate the interaction between presentation probability and stimulus position within the set. Data from individual participants indicated strong effects of presentation probability on both proportion correct and response times. The effects were moderated by the ubiquitous stimulus position effect. The accuracy and response time data were predicted by an exemplar-based model of perceptual cognition (Kent & Lamberts, 2005). The bow in discriminability was also attenuated when presentation probability for middle items was relatively high, an effect that will constrain future model development. The study provides evidence for item-specific learning in absolute identification. Implications for other theories of absolute identification are discussed. (PsycINFO Database Record (c) 2016 APA, all rights reserved).

  19. Enantiomeric high-performance liquid chromatography resolution and absolute configuration of 6β-benzoyloxy-3α-tropanol.

    PubMed

    Muñoz, Marcelo A; González, Natalia; Joseph-Nathan, Pedro

    2016-07-01

    The absolute configuration of the naturally occurring isomers of 6β-benzoyloxy-3α-tropanol (1) has been established by the combined use of chiral high-performance liquid chromatography with electronic circular dichroism detection and optical rotation detection. For this purpose (±)-1, prepared in two steps from racemic 6-hydroxytropinone (4), was subjected to chiral high-performance liquid chromatography with electronic circular dichroism and optical rotation detection allowing the online measurement of both chiroptical properties for each enantiomer, which in turn were compared with the corresponding values obtained from density functional theory calculations. In an independent approach, preparative high-performance liquid chromatography separation using an automatic fraction collector, yielded an enantiopure sample of OR (+)-1 whose vibrational circular dichroism spectrum allowed its absolute configuration assignment when the bands in the 1100-950 cm(-1) region were compared with those of the enantiomers of esters derived from 3α,6β-tropanediol. In addition, an enantiomerically enriched sample of 4, instead of OR (±)-4, was used for the same transformation sequence, whose high-performance liquid chromatography follow-up allowed their spectroscopic correlation. All evidences lead to the OR (+)-(1S,3R,5S,6R) and OR (-)-(1R,3S,5R,6S) absolute configurations, from where it follows that samples of 1 isolated from Knightia strobilina and Erythroxylum zambesiacum have the OR (+)-(1S,3R,5S,6R) absolute configuration, while the sample obtained from E. rotundifolium has the OR (-)-(1R,3S,5R,6S) absolute configuration. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  20. A Conceptual Approach to Absolute Value Equations and Inequalities

    ERIC Educational Resources Information Center

    Ellis, Mark W.; Bryson, Janet L.

    2011-01-01

    The absolute value learning objective in high school mathematics requires students to solve far more complex absolute value equations and inequalities. When absolute value problems become more complex, students often do not have sufficient conceptual understanding to make any sense of what is happening mathematically. The authors suggest that the…

  1. Absolute Hugoniot measurements for CH foams in the 2-9 Mbar range

    NASA Astrophysics Data System (ADS)

    Aglitskiy, Y.; Velikovich, A. L.; Karasik, M.; Schmitt, A. J.; Serlin, V.; Weaver, J. L.; Oh, J.; Obenschain, S. P.; Cochrane, K. R.

    2018-03-01

    Absolute Hugoniot measurements for empty plastic foams at ˜10% of solid polystyrene density and supporting rad-hydro simulation results are reported. Planar foam slabs, ˜400 μm thick and ˜500 μm wide, some of which were covered with a 10 μm solid plastic ablator, were directly driven by 4 ns long Nike krypton-fluoride 248 nm wavelength laser pulses that produced strong shock waves in the foam. The shock and mass velocities in our experiments were up to 104 km/s and 84 km/s, respectively, and the shock pressures up to ˜9 Mbar. The motion of the shock and ablation fronts was recorded using side-on monochromatic x-ray imaging radiography. The steadiness of the observed shock and ablation fronts within ˜1% has been verified. The Hugoniot data inferred from our velocity measurements agree with the predictions of the SESAME and CALEOS equation-of-state models near the highest pressure ˜9 Mbar and density compression ratio ˜5. In the lower pressure range 2-5 Mbar, a lower shock density compression is observed than that predicted by the models. Possible causes for this discrepancy are discussed.

  2. Low lymphatic vessel density associates with chronic rhinosinusitis with nasal polyps.

    PubMed

    Luukkainen, A; Seppälä, M; Renkonen, J; Renkonen, R; Hagstrő M, J; Huhtala, H; Rautiainen, M; Myller, J; Paavonen, T; Ranta, A; Torkkeli, T; Toppila-Salmi, S

    2017-06-01

    Chronic rhinosinusitis with and without nasal polyps (CRSwNP and CRSsNP) and antrochoanal polyps (ACP) are different upper airway inflammation phenotypes with different pathomechanisms. In order to understand the development of tissue edema, the present study aimed to evaluate lymphatic vessel density in CRSsNP, CRSwNP and ACP. 120 retrospective nasal and maxillary sinus specimens were stained immunohistochemically with a von Willebrand factor polyclonal antibody recognizing vascular and lymphatic endothelium, and with a podoplanin monoclonal antibody recognizing lymphatic endothelium. Vessels were studied by microscopy in a blinded fashion, and the vessel density and the relative density of lymphatic vessels were calculated. Patient characteristic factors and follow-up data of in average 9 years were collected from patient records. In the nasal cavity, the low absolute and relative density of vessels and of lymphatic vessels was associated with CRSwNP and ACP tissues compared to control inferior turbinate. This was observed also in the inflammatory hotspot area. In the maxillary sinus, lower absolute and relative density of lymphatic vessels associated with the CRSwNP phenotype. High lymphatic vessel density in polyp tissue associated with the need for revision CRS-surgery. As a conclusion, low density of lymphatic vessels distinguished patients with CRSwNP not only in the hotspot area of polyp tissue, but also in maxillary sinus mucosa. Yet, higher lymphatic vessel density seems to associate with polyp recurrence. Further studies are still needed to explore if formation of nasal polyps could be diminished by intranasal therapeutics affecting lymphangiogenesis.

  3. Absolute pitch in a four-year-old boy with autism.

    PubMed

    Brenton, James N; Devries, Seth P; Barton, Christine; Minnich, Heike; Sokol, Deborah K

    2008-08-01

    Absolute pitch is the ability to identify the pitch of an isolated tone. We report on a 4-year-old boy with autism and absolute pitch, one of the youngest reported in the literature. Absolute pitch is thought to be attributable to a single gene, transmitted in an autosomal-dominant fashion. The association of absolute pitch with autism raises the speculation that this talent could be linked to a genetically distinct subset of children with autism. Further, the identification of absolute pitch in even young children with autism may lead to a lifelong skill.

  4. Absolute shape measurements using high-resolution optoelectronic holography methods

    NASA Astrophysics Data System (ADS)

    Furlong, Cosme; Pryputniewicz, Ryszard J.

    2000-01-01

    Characterization of surface shape and deformation is of primary importance in a number of testing and metrology applications related to the functionality, performance, and integrity of components. In this paper, a unique, compact, and versatile state-of-the-art fiber-optic-based optoelectronic holography (OEH) methodology is described. This description addresses apparatus and analysis algorithms, especially developed to perform measurements of both absolute surface shape and deformation. The OEH can be arranged in multiple configurations, which include the three-camera, three-illumination, and in-plane speckle correlation setups. With the OEH apparatus and analysis algorithms, absolute shape measurements can be made, using present setup, with a spatial resolution and accuracy of better than 30 and 10 micrometers , respectively, for volumes characterized by a 300-mm length. Optimizing the experimental setup and incorporating equipment, as it becomes available, having superior capabilities to the ones utilized in the present investigations can further increase resolution and accuracy in the measurements. The particular feature of this methodology is its capability to export the measurements data directly into CAD environments for subsequent processing, analysis, and definition of CAD/CAE models.

  5. Stand Density and Canopy Gaps

    Treesearch

    Boris Zeide

    2004-01-01

    Estimation of stand density is based on a relationship between number of trees and their average diameter in fully stocked stands. Popular measures of density (Reineke’s stand density index and basal area) assume that number of trees decreases as a power function of diameter. Actually, number of trees drops faster than predicted by the power function because the number...

  6. The Absolute Spectrum Polarimeter (ASP)

    NASA Technical Reports Server (NTRS)

    Kogut, A. J.

    2010-01-01

    The Absolute Spectrum Polarimeter (ASP) is an Explorer-class mission to map the absolute intensity and linear polarization of the cosmic microwave background and diffuse astrophysical foregrounds over the full sky from 30 GHz to 5 THz. The principal science goal is the detection and characterization of linear polarization from an inflationary epoch in the early universe, with tensor-to-scalar ratio r much greater than 1O(raised to the power of { -3}) and Compton distortion y < 10 (raised to the power of{-6}). We describe the ASP instrument and mission architecture needed to detect the signature of an inflationary epoch in the early universe using only 4 semiconductor bolometers.

  7. The absolute disparity anomaly and the mechanism of relative disparities.

    PubMed

    Chopin, Adrien; Levi, Dennis; Knill, David; Bavelier, Daphne

    2016-06-01

    There has been a long-standing debate about the mechanisms underlying the perception of stereoscopic depth and the computation of the relative disparities that it relies on. Relative disparities between visual objects could be computed in two ways: (a) using the difference in the object's absolute disparities (Hypothesis 1) or (b) using relative disparities based on the differences in the monocular separations between objects (Hypothesis 2). To differentiate between these hypotheses, we measured stereoscopic discrimination thresholds for lines with different absolute and relative disparities. Participants were asked to judge the depth of two lines presented at the same distance from the fixation plane (absolute disparity) or the depth between two lines presented at different distances (relative disparity). We used a single stimulus method involving a unique memory component for both conditions, and no extraneous references were available. We also measured vergence noise using Nonius lines. Stereo thresholds were substantially worse for absolute disparities than for relative disparities, and the difference could not be explained by vergence noise. We attribute this difference to an absence of conscious readout of absolute disparities, termed the absolute disparity anomaly. We further show that the pattern of correlations between vergence noise and absolute and relative disparity acuities can be explained jointly by the existence of the absolute disparity anomaly and by the assumption that relative disparity information is computed from absolute disparities (Hypothesis 1).

  8. The absolute disparity anomaly and the mechanism of relative disparities

    PubMed Central

    Chopin, Adrien; Levi, Dennis; Knill, David; Bavelier, Daphne

    2016-01-01

    There has been a long-standing debate about the mechanisms underlying the perception of stereoscopic depth and the computation of the relative disparities that it relies on. Relative disparities between visual objects could be computed in two ways: (a) using the difference in the object's absolute disparities (Hypothesis 1) or (b) using relative disparities based on the differences in the monocular separations between objects (Hypothesis 2). To differentiate between these hypotheses, we measured stereoscopic discrimination thresholds for lines with different absolute and relative disparities. Participants were asked to judge the depth of two lines presented at the same distance from the fixation plane (absolute disparity) or the depth between two lines presented at different distances (relative disparity). We used a single stimulus method involving a unique memory component for both conditions, and no extraneous references were available. We also measured vergence noise using Nonius lines. Stereo thresholds were substantially worse for absolute disparities than for relative disparities, and the difference could not be explained by vergence noise. We attribute this difference to an absence of conscious readout of absolute disparities, termed the absolute disparity anomaly. We further show that the pattern of correlations between vergence noise and absolute and relative disparity acuities can be explained jointly by the existence of the absolute disparity anomaly and by the assumption that relative disparity information is computed from absolute disparities (Hypothesis 1). PMID:27248566

  9. Numerical evaluation of magnetic absolute measurements with arbitrarily distributed DI-fluxgate theodolite orientations

    NASA Astrophysics Data System (ADS)

    Brunke, Heinz-Peter; Matzka, Jürgen

    2018-01-01

    At geomagnetic observatories the absolute measurements are needed to determine the calibration parameters of the continuously recording vector magnetometer (variometer). Absolute measurements are indispensable for determining the vector of the geomagnetic field over long periods of time. A standard DI (declination, inclination) measuring scheme for absolute measurements establishes routines in magnetic observatories. The traditional measuring schema uses a fixed number of eight orientations (Jankowski et al., 1996).

    We present a numerical method, allowing for the evaluation of an arbitrary number (minimum of five as there are five independent parameters) of telescope orientations. Our method provides D, I and Z base values and calculated error bars of them.

    A general approach has significant advantages. Additional measurements may be seamlessly incorporated for higher accuracy. Individual erroneous readings are identified and can be discarded without invalidating the entire data set. A priori information can be incorporated. We expect the general method to also ease requirements for automated DI-flux measurements. The method can reveal certain properties of the DI theodolite which are not captured by the conventional method.

    Based on the alternative evaluation method, a new faster and less error-prone measuring schema is presented. It avoids needing to calculate the magnetic meridian prior to the inclination measurements.

    Measurements in the vicinity of the magnetic equator are possible with theodolites and without a zenith ocular.

    The implementation of the method in MATLAB is available as source code at the GFZ Data Center Brunke (2017).

  10. Densities of aqueous blended amines

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hsu, C.H.; Li, M.H.

    1997-05-01

    Solutions of alkanolamines are an industrially important class of compounds used in the natural gas and synthetic ammonia industries and petroleum chemical plants for the removal of CO{sub 2} and H{sub 2}S from gas streams. The densities of aqueous mixtures of diethanolamine (DEA) + N-methyldiethanolamine (MDEA) + water, DEA + 2-amino-2-methyl-1-propanol (AMP) + water, and monoethanolamine (MEA) + 2-piperidineethanol (2-PE) + water were measured from 30 C to 80 C. A Redlich-Kister equation of the excess volume was applied to represent the density. Based on the available density data for five ternary systems: MEA + MDEA + H{sub 2}O, MEAmore » + AMP + H{sub 2}O, DEA + MDEA + H{sub 2}O, DEA + AMP + H{sub 2}O, and MEA + 2-PE + H{sub 2}O, a generalized set of binary parameters were determined. The density calculations show quite satisfactory results. The overall average absolute percent deviation is about 0.04% for a total of 686 data points.« less

  11. [Number of teeth and hormonal profile of postmenopausal women with osteoporosis, osteopenia and normal bone mineral density--a preliminary study].

    PubMed

    Stagraczyński, Maciej; Kulczyk, Tomasz; Leszczyński, Piotr; Męczekalski, Błażej

    2015-10-01

    Profound hypoestrogenism causes increased risk of osteoporosis and bone fracture in menopause. This period of women life is also characterized by decrease number of teeth and deterioration of oral cavity health. The aim of the study was to assess the number of teeth, hormonal profile (Follicle-stimualting hormone (FSH), estradiol (E2), testosterone (T) and dehydroepiandrosterone sulphate (DHEA-S) and the bone mineral density (BMD) of the lumbar part of the spine in postmenopausal women with osteoporosis, osteopenia and normal BMD. The next step of the study was to determine whether there was a correlation between vertebral mineral bone density, the hormonal profile and the number of teeth. A total number of 47 women was involved in the study. Based on the results of densitometry tests (DEXA) of vertebral column the subjects were divided into 3 groups: 10 with osteoporosis, 20 with osteopenia and 17 with normal BMD. All the subjects had undergone a hormonal assessment which included blood serum estimation for FSH, E2, DHEA-S and T levels. Also the total number of teeth present was recorded. Serum estradiol and testosterone levels in postmenopausal women were found to be positively correlated with the number of teeth present. A negative correlation was found between age and the number of maxillary teeth in postmenopausal women with osteopenia. There was no influence of serum FSH, estradiol, testosterone and DHEA-S levels on vertebral BMD loss in postmenopausal women. There was no correlation between teeth number and BMD of vertebral column. Serum levels of estradiol and testosterone in postmenopausal women positively correlate with teeth numbers. Age is the main risk factor for teeth loss in postmenopausal women. © 2015 MEDPRESS.

  12. The brightness temperature of Venus and the absolute flux-density scale at 608 MHz.

    NASA Technical Reports Server (NTRS)

    Muhleman, D. O.; Berge, G. L.; Orton, G. S.

    1973-01-01

    The disk temperature of Venus was measured at 608 MHz near the inferior conjunction of 1972, and a value of 498 plus or minus 33 K was obtained using a nominal CKL flux-density scale. The result is consistent with earlier measurements, but has a much smaller uncertainty. Our theoretical model prediction is larger by a factor of 1.21 plus or minus 0.09. This discrepancy has been noticed previously for frequencies below 1400 MHz, but was generally disregarded because of the large observational uncertainties. No way could be found to change the model to produce agreement without causing a conflict with well-established properties of Venus. Thus it is suggested that the flux-density scale may require an upward revision, at least near this frequency, in excess of what has previously been considered likely.

  13. Mipomersen preferentially reduces small low-density lipoprotein particle number in patients with hypercholesterolemia.

    PubMed

    Santos, Raul D; Raal, Frederick J; Donovan, Joanne M; Cromwell, William C

    2015-01-01

    Because of variability in lipoprotein cholesterol content, low-density lipoprotein (LDL) cholesterol frequently underrepresents or overrepresents the number of LDL particles. Mipomersen is an antisense oligonucleotide that reduces hepatic production of apolipoprotein B-100, the sole apolipoprotein of LDL. To characterize the effects of mipomersen on lipoprotein particle numbers as well as subclass distribution using nuclear magnetic resonance (NMR) spectroscopy. We compared the tertiary results for the direct measurement of LDL particle numbers by NMR among 4 placebo-controlled, phase 3 studies of mipomersen that had similar study designs but different patient populations: homozygous familial hypercholesterolemia (HoFH), severe hypercholesterolemia, heterozygous familial hypercholesterolemia with established coronary artery disease, or hypercholesterolemia with high risk for coronary heart disease (HC-CHD). HoFH patients had the highest median total LDL particles at baseline compared with HC-CHD patients, who had the lowest. At baseline, the HoFH population uniquely had a greater mean percentage of large LDL particles (placebo, 60.2%; mipomersen, 54.9%) compared with small LDL particles (placebo, 33.1%; mipomersen, 38.9%). In all 4 studies, mipomersen was associated with greater reductions from baseline in the concentrations of small LDL particles compared with those of large LDL particles, and both total LDL particles and small LDL particles were statistically significantly reduced. Mipomersen consistently reduced all LDL particle numbers and preferentially reduced the concentration of small LDL particles in all 4 phase 3 studies. Copyright © 2015 National Lipid Association. Published by Elsevier Inc. All rights reserved.

  14. Spatial distribution of limited resources and local density regulation in juvenile Atlantic salmon.

    PubMed

    Finstad, Anders G; Einum, Sigurd; Ugedal, Ola; Forseth, Torbjørn

    2009-01-01

    1. Spatial heterogeneity of resources may influence competition among individuals and thus have a fundamental role in shaping population dynamics and carrying capacity. In the present study, we identify shelter opportunities as a limiting resource for juvenile Atlantic salmon (Salmo salar L.). Experimental and field studies are combined in order to demonstrate how the spatial distribution of shelters may influence population dynamics on both within and among population scales. 2. In closed experimental streams, fish performance scaled negatively with decreasing shelter availability and increasing densities. In contrast, the fish in open stream channels dispersed according to shelter availability and performance of fish remaining in the streams did not depend on initial density or shelters. 3. The field study confirmed that spatial variation in densities of 1-year-old juveniles was governed both by initial recruit density and shelter availability. Strength of density-dependent population regulation, measured as carrying capacity, increased with decreasing number of shelters. 4. Nine rivers were surveyed for spatial variation in shelter availability and increased shelter heterogeneity tended to decrease maximum observed population size (measured using catch statistics of adult salmon as a proxy). 5. Our studies highlight the importance of small-scale within-population spatial structure in population dynamics and demonstrate that not only the absolute amount of limiting resources but also their spatial arrangement can be an important factor influencing population carrying capacity.

  15. Two-photon LIF on the HIT-SI3 experiment: Absolute density and temperature measurements of deuterium neutrals

    NASA Astrophysics Data System (ADS)

    Elliott, Drew; Sutherland, Derek; Siddiqui, Umair; Scime, Earl; Everson, Chris; Morgan, Kyle; Hossack, Aaron; Nelson, Brian; Jarboe, Tom

    2016-11-01

    Two-photon laser-induced fluorescence measurements were performed on the helicity injected torus (HIT-SI3) device to determine the density and temperature of the background neutral deuterium population. Measurements were taken in 2 ms long pulsed plasmas after the inductive helicity injectors were turned off. Attempts to measure neutrals during the main phase of the plasma were unsuccessful, likely due to the density of neutrals being below the detection threshold of the diagnostic. An unexpectedly low density of atomic deuterium was measured in the afterglow; roughly 100 times lower than the theoretical prediction of 1017 m-3. The neutral temperatures measured were on the order of 1 eV. Temporally and spatially resolved neutral density and temperature data are presented.

  16. Abnormalities of High Density Lipoproteins in Abetalipoproteinemia*

    PubMed Central

    Jones, John W.; Ways, Peter

    1967-01-01

    Detailed studies of the high density lipoproteins from three patients with abetalipoproteinemia have revealed the following principal abnormalities: 1) High density lipoprotein 3 (HDL3) is reduced in both absolute and relative concentration, although HDL2 is present in normal amounts. 2) The phospholipid distribution of both HDL fractions is abnormal, with low concentrations of lecithin and an increased percentage (though normal absolute quantity) of sphingomyelin. 3) In both HDL fractions, lecithin contains less linoleate and more oleate than normal. The cholesteryl esters are also low in linoleic acid, and the sphingomyelin is high in nervonic acid. Dietary intake influences the linoleic acid concentration within 2 weeks, and perhaps sooner, but the elevated sphingomyelin nervonic acid is little affected by up to 6 months of corn oil supplementation. Qualitatively similar changes in fatty acid composition, but not phospholipid distribution, are also found in other malabsorption states. The available evidence suggests that the abnormally low levels of HDL3 and the deranged phospholipid distribution are more specific for abetalipoproteinemia than the fatty acid abnormalities. However, the absence of these abnormalities in obligate heterozygous subjects makes their relationship to the primary defect of abetalipoproteinemia difficult to assess. Images PMID:6027078

  17. Introducing the Mean Absolute Deviation "Effect" Size

    ERIC Educational Resources Information Center

    Gorard, Stephen

    2015-01-01

    This paper revisits the use of effect sizes in the analysis of experimental and similar results, and reminds readers of the relative advantages of the mean absolute deviation as a measure of variation, as opposed to the more complex standard deviation. The mean absolute deviation is easier to use and understand, and more tolerant of extreme…

  18. Monolithically integrated absolute frequency comb laser system

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wanke, Michael C.

    2016-07-12

    Rather than down-convert optical frequencies, a QCL laser system directly generates a THz frequency comb in a compact monolithically integrated chip that can be locked to an absolute frequency without the need of a frequency-comb synthesizer. The monolithic, absolute frequency comb can provide a THz frequency reference and tool for high-resolution broad band spectroscopy.

  19. Absolute calibration of a charge-coupled device camera with twin beams

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Meda, A.; Ruo-Berchera, I., E-mail: i.ruoberchera@inrim.it; Degiovanni, I. P.

    2014-09-08

    We report on the absolute calibration of a Charge-Coupled Device (CCD) camera by exploiting quantum correlation. This method exploits a certain number of spatial pairwise quantum correlated modes produced by spontaneous parametric-down-conversion. We develop a measurement model accounting for all the uncertainty contributions, and we reach the relative uncertainty of 0.3% in low photon flux regime. This represents a significant step forward for the characterization of (scientific) CCDs used in mesoscopic light regime.

  20. Electronic Absolute Cartesian Autocollimator

    NASA Technical Reports Server (NTRS)

    Leviton, Douglas B.

    2006-01-01

    An electronic absolute Cartesian autocollimator performs the same basic optical function as does a conventional all-optical or a conventional electronic autocollimator but differs in the nature of its optical target and the manner in which the position of the image of the target is measured. The term absolute in the name of this apparatus reflects the nature of the position measurement, which, unlike in a conventional electronic autocollimator, is based absolutely on the position of the image rather than on an assumed proportionality between the position and the levels of processed analog electronic signals. The term Cartesian in the name of this apparatus reflects the nature of its optical target. Figure 1 depicts the electronic functional blocks of an electronic absolute Cartesian autocollimator along with its basic optical layout, which is the same as that of a conventional autocollimator. Referring first to the optical layout and functions only, this or any autocollimator is used to measure the compound angular deviation of a flat datum mirror with respect to the optical axis of the autocollimator itself. The optical components include an illuminated target, a beam splitter, an objective or collimating lens, and a viewer or detector (described in more detail below) at a viewing plane. The target and the viewing planes are focal planes of the lens. Target light reflected by the datum mirror is imaged on the viewing plane at unit magnification by the collimating lens. If the normal to the datum mirror is parallel to the optical axis of the autocollimator, then the target image is centered on the viewing plane. Any angular deviation of the normal from the optical axis manifests itself as a lateral displacement of the target image from the center. The magnitude of the displacement is proportional to the focal length and to the magnitude (assumed to be small) of the angular deviation. The direction of the displacement is perpendicular to the axis about which the

  1. On the calculation of the absolute grand potential of confined smectic-A phases

    NASA Astrophysics Data System (ADS)

    Huang, Chien-Cheng; Baus, Marc; Ryckaert, Jean-Paul

    2015-09-01

    We determine the absolute grand potential Λ along a confined smectic-A branch of a calamitic liquid crystal system enclosed in a slit pore of transverse area A and width L, using the rod-rod Gay-Berne potential and a rod-wall potential favouring perpendicular orientation at the walls. For a confined phase with an integer number of smectic layers sandwiched between the opposite walls, we obtain the excess properties (excess grand potential Λexc, solvation force fs and adsorption Γ) with respect to the bulk phase at the same μ (chemical potential) and T (temperature) state point. While usual thermodynamic integration methods are used along the confined smectic branch to estimate the grand potential difference as μ is varied at fixed L, T, the absolute grand potential at one reference state point is obtained via the evaluation of the absolute Helmholtz free energy in the (N, L, A, T) canonical ensemble. It proceeds via a sequence of free energy difference estimations involving successively the cost of localising rods on layers and the switching on of a one-dimensional harmonic field to keep layers integrity coupled to the elimination of inter-layers and wall interactions. The absolute free energy of the resulting set of fully independent layers of interacting rods is finally estimated via the existing procedures. This work opens the way to the computer simulation study of phase transitions implying confined layered phases.

  2. Mammographic density, breast cancer risk and risk prediction

    PubMed Central

    Vachon, Celine M; van Gils, Carla H; Sellers, Thomas A; Ghosh, Karthik; Pruthi, Sandhya; Brandt, Kathleen R; Pankratz, V Shane

    2007-01-01

    In this review, we examine the evidence for mammographic density as an independent risk factor for breast cancer, describe the risk prediction models that have incorporated density, and discuss the current and future implications of using mammographic density in clinical practice. Mammographic density is a consistent and strong risk factor for breast cancer in several populations and across age at mammogram. Recently, this risk factor has been added to existing breast cancer risk prediction models, increasing the discriminatory accuracy with its inclusion, albeit slightly. With validation, these models may replace the existing Gail model for clinical risk assessment. However, absolute risk estimates resulting from these improved models are still limited in their ability to characterize an individual's probability of developing cancer. Promising new measures of mammographic density, including volumetric density, which can be standardized using full-field digital mammography, will likely result in a stronger risk factor and improve accuracy of risk prediction models. PMID:18190724

  3. Chiral phase structure of three flavor QCD at vanishing baryon number density

    DOE PAGES

    Bazavov, A.; Ding, H. -T.; Hegde, P.; ...

    2017-04-12

    In this paper, we investigate the phase structure of QCD with three degenerate quark flavors as a function of the degenerate quark masses at vanishing baryon number density. We use the highly improved staggered quarks on lattices with temporal extent N τ = 6 and perform calculations for six values of quark masses, which in the continuum limit correspond to pion masses in the range 80 MeV ≲ m π ≲ 230 MeV. By analyzing the volume and temperature dependence of the chiral condensate and chiral susceptibility, we find no direct evidence for a first-order phase transition in this rangemore » of pion mass values. Finally, relying on the universal scaling behaviors of the chiral observables near an anticipated chiral critical point, we estimate an upper bound for the critical pion mass m c π ≲ 50 MeV, below which a region of first-order chiral phase transition is favored.« less

  4. Measurement of the lunar neutron density profile. [Apollo 17 flight

    NASA Technical Reports Server (NTRS)

    Woolum, D. S.; Burnett, D. S.; Furst, M.; Weiss, J. R.

    1974-01-01

    An in situ measurement of the lunar neutron density from 20 to 400 g/sq cm depth between the lunar surface was made by the Apollo 17 Lunar Neutron Probe Experiment using particle tracks produced by the B10(n, alpha)Li7 reaction. Both the absolute magnitude and depth profile of the neutron density are in good agreement with past theoretical calculations. The effect of cadmium absorption on the neutron density and in the relative Sm149 to Gd157 capture rates obtained experimentally implies that the true lunar Gd157 capture rate is about one half of that calculated theoretically.

  5. Ionospheric electron number densities from CUTLASS dual-frequency velocity measurements using artificial backscatter over EISCAT

    NASA Astrophysics Data System (ADS)

    Sarno-Smith, Lois K.; Kosch, Michael J.; Yeoman, Timothy; Rietveld, Michael; Nel, Amore'; Liemohn, Michael W.

    2016-08-01

    Using quasi-simultaneous line-of-sight velocity measurements at multiple frequencies from the Hankasalmi Cooperative UK Twin Auroral Sounding System (CUTLASS) on the Super Dual Auroral Radar Network (SuperDARN), we calculate electron number densities using a derivation outlined in Gillies et al. (2010, 2012). Backscatter targets were generated using the European Incoherent Scatter (EISCAT) ionospheric modification facility at Tromsø, Norway. We use two methods on two case studies. The first approach is to use the dual-frequency capability on CUTLASS and compare line-of-sight velocities between frequencies with a MHz or greater difference. The other method used the kHz frequency shifts automatically made by the SuperDARN radar during routine operations. Using ray tracing to obtain the approximate altitude of the backscatter, we demonstrate that for both methods, SuperDARN significantly overestimates Ne compared to those obtained from the EISCAT incoherent scatter radar over the same time period. The discrepancy between the Ne measurements of both radars may be largely due to SuperDARN sensitivity to backscatter produced by localized density irregularities which obscure the background levels.

  6. Counting the Photons: Determining the Absolute Storage Capacity of Persistent Phosphors

    PubMed Central

    Rodríguez Burbano, Diana C.; Capobianco, John A.

    2017-01-01

    The performance of a persistent phosphor is often determined by comparing luminance decay curves, expressed in cd/m2. However, these photometric units do not enable a straightforward, objective comparison between different phosphors in terms of the total number of emitted photons, as these units are dependent on the emission spectrum of the phosphor. This may lead to incorrect conclusions regarding the storage capacity of the phosphor. An alternative and convenient technique of characterizing the performance of a phosphor was developed on the basis of the absolute storage capacity of phosphors. In this technique, the phosphor is incorporated in a transparent polymer and the measured afterglow is converted into an absolute number of emitted photons, effectively quantifying the amount of energy that can be stored in the material. This method was applied to the benchmark phosphor SrAl2O4:Eu,Dy and to the nano-sized phosphor CaS:Eu. The results indicated that only a fraction of the Eu ions (around 1.6% in the case of SrAl2O4:Eu,Dy) participated in the energy storage process, which is in line with earlier reports based on X-ray absorption spectroscopy. These findings imply that there is still a significant margin for improving the storage capacity of persistent phosphors. PMID:28773228

  7. Time-resolved study of the electron temperature and number density of argon metastable atoms in argon-based dielectric barrier discharges

    NASA Astrophysics Data System (ADS)

    Desjardins, E.; Laurent, M.; Durocher-Jean, A.; Laroche, G.; Gherardi, N.; Naudé, N.; Stafford, L.

    2018-01-01

    A combination of optical emission spectroscopy and collisional-radiative modelling is used to determine the time-resolved electron temperature (assuming Maxwellian electron energy distribution function) and number density of Ar 1s states in atmospheric pressure Ar-based dielectric barrier discharges in presence of either NH3 or ethyl lactate. In both cases, T e values were higher early in the discharge cycle (around 0.8 eV), decreased down to about 0.35 eV with the rise of the discharge current, and then remained fairly constant during discharge extinction. The opposite behaviour was observed for Ar 1s states, with cycle-averaged values in the 1017 m-3 range. Based on these findings, a link was established between the discharge ionization kinetics (and thus the electron temperature) and the number density of Ar 1s state.

  8. Enhancement of autonomic and psychomotor arousal by exposures to blue wavelength light: importance of both absolute and relative contents of melanopic component.

    PubMed

    Yuda, Emi; Ogasawara, Hiroki; Yoshida, Yutaka; Hayano, Junichiro

    2017-01-31

    Blue light containing rich melanopsin-stimulating (melanopic) component has been reported to enhance arousal level, but it is unclear whether the determinant of the effects is the absolute or relative content of melanopic component. We compared the autonomic and psychomotor arousal effects of melanopic-enriched blue light of organic light-emitting diode (OLED) with those of OLED lights with lesser absolute amount of melanopic component (green light) and with greater absolute but lesser relative content (white light). Using a ceiling light consisting of 120 panels (55 × 55 mm square) of OLED modules with adjustable color and brightness, we examined the effects of blue, green, and white lights (melanopic photon flux densities, 0.23, 0.14, and 0.38 μmol/m 2 /s and its relative content ratios, 72, 17, and 14%, respectively) on heart rate variability (HRV) during exposures and on the performance of psychomotor vigilance test (PVT) after exposures in ten healthy subjects with normal color vision. For each of the three colors, five consecutive 10-min sessions of light exposures were performed in the supine position, interleaved by four 10-min intervals during which 5-min PVT was performed under usual fluorescent light in sitting position. Low-frequency (LF, 0.04-0.15 Hz) and high-frequency (HF, 0.15-0.40 Hz) power and LF-to-HF ratio (LF/HF) of HRV during light exposures and reaction time (RT) and minor lapse (RT >500 ms) of PVT were analyzed. Heart rate was higher and the HF power reflecting autonomic resting was lower during exposures to the blue light than the green and white lights, while LF/HF did not differ significantly. Also, the number of minor lapse and the variation of reaction time reflecting decreased vigilance were lower after exposures to the blue light than the green light. The effects of blue OLED light for maintaining autonomic and psychomotor arousal levels depend on both absolute and relative contents of melanopic component in the light.

  9. Technical Note: exploring the limit for the conversion of energy-subtracted CT number to electron density for high-atomic-number materials.

    PubMed

    Saito, Masatoshi; Tsukihara, Masayoshi

    2014-07-01

    For accurate tissue inhomogeneity correction in radiotherapy treatment planning, the authors had previously proposed a novel conversion of the energy-subtracted CT number to an electron density (ΔHU-ρe conversion), which provides a single linear relationship between ΔHU and ρe over a wide ρe range. The purpose of this study is to address the limitations of the conversion method with respect to atomic number (Z) by elucidating the role of partial photon interactions in the ΔHU-ρe conversion process. The authors performed numerical analyses of the ΔHU-ρe conversion for 105 human body tissues, as listed in ICRU Report 46, and elementary substances with Z = 1-40. Total and partial attenuation coefficients for these materials were calculated using the XCOM photon cross section database. The effective x-ray energies used to calculate the attenuation were chosen to imitate a dual-source CT scanner operated at 80-140 kV/Sn under well-calibrated and poorly calibrated conditions. The accuracy of the resultant calibrated electron density,[Formula: see text], for the ICRU-46 body tissues fully satisfied the IPEM-81 tolerance levels in radiotherapy treatment planning. If a criterion of [Formula: see text]ρe - 1 is assumed to be within ± 2%, the predicted upper limit of Z applicable for the ΔHU-ρe conversion under the well-calibrated condition is Z = 27. In the case of the poorly calibrated condition, the upper limit of Z is approximately 16. The deviation from the ΔHU-ρe linearity for higher Z substances is mainly caused by the anomalous variation in the photoelectric-absorption component. Compensation among the three partial components of the photon interactions provides for sufficient linearity of the ΔHU-ρe conversion to be applicable for most human tissues even for poorly conditioned scans in which there exists a large variation of effective x-ray energies owing to beam-hardening effects arising from the mismatch between the sizes of the object and the

  10. Determination of Absolute Configuration of Secondary Alcohols Using Thin-Layer Chromatography

    PubMed Central

    Wagner, Alexander J.; Rychnovsky, Scott D.

    2013-01-01

    A new implementation of the Competing Enantioselective Conversion (CEC) method was developed to qualitatively determine the absolute configuration of enantioenriched secondary alcohols using thin-layer chromatography. The entire process for the method requires approximately 60 min and utilizes micromole quantities of the secondary alcohol being tested. A number of synthetically relevant secondary alcohols are presented. Additionally, 1H NMR spectroscopy was conducted on all samples to provide evidence of reaction conversion that supports the qualitative method presented herein. PMID:23593963

  11. Two types of nonlinear wave equations for diffractive beams in bubbly liquids with nonuniform bubble number density.

    PubMed

    Kanagawa, Tetsuya

    2015-05-01

    This paper theoretically treats the weakly nonlinear propagation of diffracted sound beams in nonuniform bubbly liquids. The spatial distribution of the number density of the bubbles, initially in a quiescent state, is assumed to be a slowly varying function of the spatial coordinates; the amplitude of variation is assumed to be small compared to the mean number density. A previous derivation method of nonlinear wave equations for plane progressive waves in uniform bubbly liquids [Kanagawa, Yano, Watanabe, and Fujikawa (2010). J. Fluid Sci. Technol. 5(3), 351-369] is extended to handle quasi-plane beams in weakly nonuniform bubbly liquids. The diffraction effect is incorporated by adding a relation that scales the circular sound source diameter to the wavelength into the original set of scaling relations composed of nondimensional physical parameters. A set of basic equations for bubbly flows is composed of the averaged equations of mass and momentum, the Keller equation for bubble wall, and supplementary equations. As a result, two types of evolution equations, a nonlinear Schrödinger equation including dissipation, diffraction, and nonuniform effects for high-frequency short-wavelength case, and a Khokhlov-Zabolotskaya-Kuznetsov equation including dispersion and nonuniform effects for low-frequency long-wavelength case, are derived from the basic set.

  12. PREDICTIONS OF ION PRODUCTION RATES AND ION NUMBER DENSITIES WITHIN THE DIAMAGNETIC CAVITY OF COMET 67P/CHURYUMOV-GERASIMENKO AT PERIHELION

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Vigren, E.; Galand, M., E-mail: e.vigren@imperial.ac.uk

    2013-07-20

    We present a one-dimensional ion chemistry model of the diamagnetic cavity of comet 67P/Churyumov-Gerasimenko, the target comet for the ESA Rosetta mission. We solve the continuity equations for ionospheric species and predict number densities of electrons and selected ions considering only gas-phase reactions. We apply the model to the subsolar direction and consider conditions expected to be encountered by Rosetta at perihelion (1.29 AU) in 2015 August. Our default simulation predicts a maximum electron number density of {approx}8 Multiplication-Sign 10{sup 4} cm{sup -3} near the surface of the comet, while the electron number densities for cometocentric distances r > 10more » km are approximately proportional to 1/r {sup 1.23} assuming that the electron temperature is equal to the neutral temperature. We show that even a small mixing ratio ({approx}0.3%-1%) of molecules having higher proton affinity than water is sufficient for the proton transfer from H{sub 3}O{sup +} to occur so readily that other ions than H{sub 3}O{sup +}, such as NH{sub 4} {sup +} or CH{sub 3}OH{sub 2} {sup +}, become dominant in terms of volume mixing ratio in part of, if not throughout, the diamagnetic cavity. Finally, we test how the predicted electron and ion densities are influenced by changes of model input parameters, including the neutral background, the impinging EUV solar spectrum, the solar zenith angle, the cross sections for photo- and electron-impact processes, the electron temperature profile, and the temperature dependence of ion-neutral reactions.« less

  13. Absolute Hugoniot measurements for CH foams in the 2–9 Mbar range

    DOE PAGES

    Aglitskiy, Y.; Velikovich, A. L.; Karasik, M.; ...

    2018-03-19

    Absolute Hugoniot measurements for empty plastic foams at ~10% of solid polystyrene density and supporting rad-hydro simulation results are reported. Planar foam slabs, ~400 μm thick and ~500 μm wide, some of which were covered with a 10 μm solid plastic ablator, were directly driven by 4 ns long Nike krypton-fluoride 248 nm wavelength laser pulses that produced strong shock waves in the foam. The shock and mass velocities in our experiments were up to 104 km/s and 84 km/s, respectively, and the shock pressures up to ~9 Mbar. The motion of the shock and ablation fronts was recorded usingmore » side-on monochromatic x-ray imaging radiography. Here, the steadiness of the observed shock and ablation fronts within ~1% has been verified. The Hugoniot data inferred from our velocity measurements agree with the predictions of the SESAME and CALEOS equation-of-state models near the highest pressure ~9 Mbar and density compression ratio ~5. In the lower pressure range 2–5 Mbar, a lower shock density compression is observed than that predicted by the models. Possible causes for this discrepancy are discussed.« less

  14. Shapes of Magnetically Controlled Electron Density Structures in the Dayside Martian Ionosphere

    NASA Astrophysics Data System (ADS)

    Diéval, C.; Kopf, A. J.; Wild, J. A.

    2018-05-01

    Nonhorizontal localized electron density structures associated with regions of near-radial crustal magnetic fields are routinely detected via radar oblique echoes on the dayside of Mars with the ionospheric sounding mode of the Mars Advanced Radar for Subsurface and Ionospheric Sounding (MARSIS) radar onboard Mars Express. Previous studies mostly investigated these structures at a fixed plasma frequency and assumed that the larger apparent altitude of the structures compared to the normal surrounding ionosphere implied that they are bulges. However, the signal is subjected to dispersion when it propagates through the plasma, so interpretations based on the apparent altitude should be treated with caution. We go further by investigating the frequency dependence (i.e., the altitude dependence) of the shape of 48 density structure events, using time series of MARSIS electron density profiles corrected for signal dispersion. Four possible simplest shapes are detected in these time series, which can give oblique echoes: bulges, dips, downhill slopes, and uphill slopes. The altitude differences between the density structures and their edges are, in absolute value, larger at low frequency (high altitude) than at high frequency (low altitude), going from a few tens of kilometers to a few kilometers as frequency increases. Bulges dominate in numbers in most of the frequency range. Finally, the geographical extension of the density structures covers a wide range of crustal magnetic fields orientations, with near-vertical fields toward their center and near-horizontal fields toward their edges, as expected. Transport processes are suggested to be a key driver for these density structures.

  15. Tomography of atomic number and density of materials using dual-energy imaging and the Alvarez and Macovski attenuation model

    NASA Astrophysics Data System (ADS)

    Paziresh, M.; Kingston, A. M.; Latham, S. J.; Fullagar, W. K.; Myers, G. M.

    2016-06-01

    Dual-energy computed tomography and the Alvarez and Macovski [Phys. Med. Biol. 21, 733 (1976)] transmitted intensity (AMTI) model were used in this study to estimate the maps of density (ρ) and atomic number (Z) of mineralogical samples. In this method, the attenuation coefficients are represented [Alvarez and Macovski, Phys. Med. Biol. 21, 733 (1976)] in the form of the two most important interactions of X-rays with atoms that is, photoelectric absorption (PE) and Compton scattering (CS). This enables material discrimination as PE and CS are, respectively, dependent on the atomic number (Z) and density (ρ) of materials [Alvarez and Macovski, Phys. Med. Biol. 21, 733 (1976)]. Dual-energy imaging is able to identify sample materials even if the materials have similar attenuation coefficients at single-energy spectrum. We use the full model rather than applying one of several applied simplified forms [Alvarez and Macovski, Phys. Med. Biol. 21, 733 (1976); Siddiqui et al., SPE Annual Technical Conference and Exhibition (Society of Petroleum Engineers, 2004); Derzhi, U.S. patent application 13/527,660 (2012); Heismann et al., J. Appl. Phys. 94, 2073-2079 (2003); Park and Kim, J. Korean Phys. Soc. 59, 2709 (2011); Abudurexiti et al., Radiol. Phys. Technol. 3, 127-135 (2010); and Kaewkhao et al., J. Quant. Spectrosc. Radiat. Transfer 109, 1260-1265 (2008)]. This paper describes the tomographic reconstruction of ρ and Z maps of mineralogical samples using the AMTI model. The full model requires precise knowledge of the X-ray energy spectra and calibration of PE and CS constants and exponents of atomic number and energy that were estimated based on fits to simulations and calibration measurements. The estimated ρ and Z images of the samples used in this paper yield average relative errors of 2.62% and 1.19% and maximum relative errors of 2.64% and 7.85%, respectively. Furthermore, we demonstrate that the method accounts for the beam hardening effect in density (ρ) and

  16. Measurements of neutral helium density in helicon plasmas.

    PubMed

    Houshmandyar, Saeid; Sears, Stephanie H; Thakur, Saikat Chakraborty; Carr, Jerry; Galante, Matthew E; Scime, Earl E

    2010-10-01

    Laser-induced-fluorescence (LIF) is used to measure the density of helium atoms in a helicon plasma source. For a pump wavelength of 587.725 nm (vacuum) and laser injection along the magnetic field, the LIF signal exhibits a signal decrease at the Doppler shifted central wavelength. The drop in signal results from the finite optical depth of the plasma and the magnitude of the decrease is proportional to the density of excited state neutral atoms. Using Langmuir probe measurements of plasma density and electron temperature and a collisional-radiative model, the absolute ground state neutral density is calculated from the optical depth measurements. Optimal plasma performance, i.e., the largest neutral depletion on the axis of the system, is observed for antenna frequencies of 13.0 and 13.5 MHz and magnetic field strengths of 550-600 G.

  17. 4-Arylflavan-3-ols as Proanthocyanidin Models: Absolute Configuration via Density Functional Calculation of Electronic Circular Dichroism

    USDA-ARS?s Scientific Manuscript database

    Density functional theory/B3LYP has been employed to optimize the conformations of selected 4-arylflavan-3-ols and their phenolic methyl ether 3-O-acetates. The electronic circular dichroism spectra of the major conformers have been calculated using time-dependent density functional theory to valida...

  18. Quantification of Absolute Fat Mass by Magnetic Resonance Imaging: a Validation Study against Chemical Analysis

    PubMed Central

    Hu, Houchun H.; Li, Yan; Nagy, Tim R.; Goran, Michael I.; Nayak, Krishna S.

    2011-01-01

    Objective To develop a magnetic resonance imaging (MRI)-based approach for quantifying absolute fat mass in organs, muscles, and adipose tissues, and to validate its accuracy against reference chemical analysis (CA). Methods Chemical-shift imaging can accurately decompose water and fat signals from the acquired MRI data. A proton density fat fraction (PDFF) can be computed from the separated images, and reflects the relative fat content on a voxel-by-voxel basis. The PDFF is mathematically closely related to the fat mass fraction and can be converted to absolute fat mass in grams by multiplying by the voxel volume and the mass density of fat. In this validation study, 97 freshly excised and unique samples from four pigs, comprising of organs, muscles, and adipose and lean tissues were imaged by MRI and then analyzed independently by CA. Linear regression was used to assess correlation, agreement, and measurement differences between MRI and CA. Results Considering all 97 samples, a strong correlation and agreement was obtained between MRI and CA-derived fat mass (slope = 1.01, intercept = 1.99g, r2 = 0.98, p < 0.01). The mean difference d between MRI and CA was 2.17±3.40g. MRI did not exhibit any tendency to under or overestimate CA (p > 0.05). When considering samples from each pig separately, the results were (slope = 1.05, intercept = 1.11g, r2 = 0.98, d = 2.66±4.36g), (slope = 0.99, intercept = 2.33g, r2 = 0.99, d = 1.88±2.68g), (slope = 1.07, intercept = 1.52g, r2 = 0.96, d = 2.73±2.50g), and (slope=0.92, intercept=2.84g, r2 = 0.97, d = 1.18±3.90g), respectively. Conclusion Chemical-shift MRI and PDFF provides an accurate means of determining absolute fat mass in organs, muscles, and adipose and lean tissues. PMID:23204926

  19. Comparison of Mammographic Density Assessed as Volumes and Areas among Women Undergoing Diagnostic Image-Guided Breast Biopsy

    PubMed Central

    Gierach, Gretchen L.; Geller, Berta M.; Shepherd, John A.; Patel, Deesha A.; Vacek, Pamela M.; Weaver, Donald L.; Chicoine, Rachael E.; Pfeiffer, Ruth M.; Fan, Bo; Mahmoudzadeh, Amir Pasha; Wang, Jeff; Johnson, Jason M.; Herschorn, Sally D.; Brinton, Louise A.; Sherman, Mark E.

    2014-01-01

    Background Mammographic density (MD), the area of non-fatty appearing tissue divided by total breast area, is a strong breast cancer risk factor. Most MD analyses have employed visual categorizations or computer-assisted quantification, which ignore breast thickness. We explored MD volume and area, using a volumetric approach previously validated as predictive of breast cancer risk, in relation to risk factors among women undergoing breast biopsy. Methods Among 413 primarily white women, ages 40–65, undergoing diagnostic breast biopsies between 2007–2010 at an academic facility in Vermont, MD volume (cm3) was quantified in cranio-caudal views of the breast contralateral to the biopsy target using a density phantom, while MD area (cm2) was measured on the same digital mammograms using thresholding software. Risk factor associations with continuous MD measurements were evaluated using linear regression. Results Percent MD volume and area were correlated (r=0.81) and strongly and inversely associated with age, body mass index (BMI), and menopause. Both measures were inversely associated with smoking and positively associated with breast biopsy history. Absolute MD measures were correlated (r=0.46) and inversely related to age and menopause. Whereas absolute dense area was inversely associated with BMI, absolute dense volume was positively associated. Conclusions Volume and area MD measures exhibit some overlap in risk factor associations, but divergence as well, particularly for BMI. Impact Findings suggest that volume and area density measures differ in subsets of women; notably, among obese women, absolute density was higher with volumetric methods, suggesting that breast cancer risk assessments may vary for these techniques. PMID:25139935

  20. Absolute determination of power density in the VVER-1000 mock-up on the LR-0 research reactor.

    PubMed

    Košt'ál, Michal; Švadlenková, Marie; Milčák, Ján

    2013-08-01

    The work presents a detailed comparison of calculated and experimentally determined net peak areas of selected fission products gamma lines. The fission products were induced during a 2.5 h irradiation on the power level of 9.5 W in selected fuel pins of the VVER-1000 Mock-Up. The calculations were done with deterministic and stochastic (Monte Carlo) methods. The effects of different nuclear data libraries used for calculations are discussed as well. The Net Peak Area (NPA) may be used for the determination of fission density across the mock-up. This fission density is practically identical to power density. Copyright © 2013 Elsevier Ltd. All rights reserved.

  1. Self-digitization microfluidic chip for absolute quantification of mRNA in single cells.

    PubMed

    Thompson, Alison M; Gansen, Alexander; Paguirigan, Amy L; Kreutz, Jason E; Radich, Jerald P; Chiu, Daniel T

    2014-12-16

    Quantification of mRNA in single cells provides direct insight into how intercellular heterogeneity plays a role in disease progression and outcomes. Quantitative polymerase chain reaction (qPCR), the current gold standard for evaluating gene expression, is insufficient for providing absolute measurement of single-cell mRNA transcript abundance. Challenges include difficulties in handling small sample volumes and the high variability in measurements. Microfluidic digital PCR provides far better sensitivity for minute quantities of genetic material, but the typical format of this assay does not allow for counting of the absolute number of mRNA transcripts samples taken from single cells. Furthermore, a large fraction of the sample is often lost during sample handling in microfluidic digital PCR. Here, we report the absolute quantification of single-cell mRNA transcripts by digital, one-step reverse transcription PCR in a simple microfluidic array device called the self-digitization (SD) chip. By performing the reverse transcription step in digitized volumes, we find that the assay exhibits a linear signal across a wide range of total RNA concentrations and agrees well with standard curve qPCR. The SD chip is found to digitize a high percentage (86.7%) of the sample for single-cell experiments. Moreover, quantification of transferrin receptor mRNA in single cells agrees well with single-molecule fluorescence in situ hybridization experiments. The SD platform for absolute quantification of single-cell mRNA can be optimized for other genes and may be useful as an independent control method for the validation of mRNA quantification techniques.

  2. Absolute nuclear material assay using count distribution (LAMBDA) space

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Prasad, Mano K.; Snyderman, Neal J.; Rowland, Mark S.

    A method of absolute nuclear material assay of an unknown source comprising counting neutrons from the unknown source and providing an absolute nuclear material assay utilizing a model to optimally compare to the measured count distributions. In one embodiment, the step of providing an absolute nuclear material assay comprises utilizing a random sampling of analytically computed fission chain distributions to generate a continuous time-evolving sequence of event-counts by spreading the fission chain distribution in time.

  3. Planck absolute entropy of a rotating BTZ black hole

    NASA Astrophysics Data System (ADS)

    Riaz, S. M. Jawwad

    2018-04-01

    In this paper, the Planck absolute entropy and the Bekenstein-Smarr formula of the rotating Banados-Teitelboim-Zanelli (BTZ) black hole are presented via a complex thermodynamical system contributed by its inner and outer horizons. The redefined entropy approaches zero as the temperature of the rotating BTZ black hole tends to absolute zero, satisfying the Nernst formulation of a black hole. Hence, it can be regarded as the Planck absolute entropy of the rotating BTZ black hole.

  4. Absolute nuclear material assay using count distribution (LAMBDA) space

    DOEpatents

    Prasad, Manoj K [Pleasanton, CA; Snyderman, Neal J [Berkeley, CA; Rowland, Mark S [Alamo, CA

    2012-06-05

    A method of absolute nuclear material assay of an unknown source comprising counting neutrons from the unknown source and providing an absolute nuclear material assay utilizing a model to optimally compare to the measured count distributions. In one embodiment, the step of providing an absolute nuclear material assay comprises utilizing a random sampling of analytically computed fission chain distributions to generate a continuous time-evolving sequence of event-counts by spreading the fission chain distribution in time.

  5. ON THE ELECTRON-TO-NEUTRAL NUMBER DENSITY RATIO IN THE COMA OF COMET 67P/CHURYUMOV–GERASIMENKO: GUIDING EXPRESSION AND SOURCES FOR DEVIATIONS

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Vigren, E.; Eriksson, A. I.; Edberg, N. J. T.

    2015-10-10

    We compute partial photoionization frequencies of H{sub 2}O, CO{sub 2}, and CO, the major molecules in the coma of comet 67P/Churyumov–Gerasimenko, the target comet of the ongoing ESA Rosetta mission. Values are computed from Thermosphere Ionosphere Mesosphere Energy and Dynamics/Solar EUV Experiment solar EUV spectra for 2014 August 1, 2015 March 1, and for perihelion (2015 August, as based on prediction). From the varying total photoionization frequency of H{sub 2}O, as computed from 2014 August 1 to 2015 May 20, we derive a simple analytical expression for the electron-to-neutral number density ratio as a function of cometocentric and heliocentric distance. Themore » underlying model assumes radial movement of the coma constituents and does not account for chemical loss or the presence of electric fields. We discuss various effects/processes that can cause deviations between values from the analytical expression and actual electron-to-neutral number density ratios. The analytical expression is thus not strictly meant as predicting the actual electron-to-neutral number density ratio, but is useful in comparisons with observations as an indicator of processes at play in the cometary coma.« less

  6. Mean wind speed below building height in residential neighborhoods with different tree densities

    Treesearch

    G.M. Heisler

    1990-01-01

    There is little available knowledge of the absolute or relative effects of trees and buildings on wind at or below building height in residential neighborhoods. In this study, mean wind speed was measured at a height of 6.6 ft (2 m) in neighborhoods of single-family houses. BuIlding densities ranged between 6% and 12% of the land ares, and tree-cover densities were...

  7. Diffusion with chemical reaction: An attempt to explain number density anomalies in experiments involving alkali vapor

    NASA Technical Reports Server (NTRS)

    Snow, W. L.

    1974-01-01

    The mutual diffusion of two reacting gases is examined which takes place in a bath of inert gas atoms. Solutions are obtained between concentric spheres, each sphere acting as a source for one of the reactants. The calculational model is used to illustrate severe number density gradients observed in absorption experiments with alkali vapor. Severe gradients result when sq root k/D R is approximately 5 where k, D, and R are respectively the second order rate constant, the multicomponent diffusion constant, and the geometrical dimension of the experiment.

  8. Droplet Digital Enzyme-Linked Oligonucleotide Hybridization Assay for Absolute RNA Quantification.

    PubMed

    Guan, Weihua; Chen, Liben; Rane, Tushar D; Wang, Tza-Huei

    2015-09-03

    We present a continuous-flow droplet-based digital Enzyme-Linked Oligonucleotide Hybridization Assay (droplet digital ELOHA) for sensitive detection and absolute quantification of RNA molecules. Droplet digital ELOHA incorporates direct hybridization and single enzyme reaction via the formation of single probe-RNA-probe (enzyme) complex on magnetic beads. It enables RNA detection without reverse transcription and PCR amplification processes. The magnetic beads are subsequently encapsulated into a large number of picoliter-sized droplets with enzyme substrates in a continuous-flow device. This device is capable of generating droplets at high-throughput. It also integrates in-line enzymatic incubation and detection of fluorescent products. Our droplet digital ELOHA is able to accurately quantify (differentiate 40% difference) as few as ~600 RNA molecules in a 1 mL sample (equivalent to 1 aM or lower) without molecular replication. The absolute quantification ability of droplet digital ELOHA is demonstrated with the analysis of clinical Neisseria gonorrhoeae 16S rRNA to show its potential value in real complex samples.

  9. Droplet Digital Enzyme-Linked Oligonucleotide Hybridization Assay for Absolute RNA Quantification

    PubMed Central

    Guan, Weihua; Chen, Liben; Rane, Tushar D.; Wang, Tza-Huei

    2015-01-01

    We present a continuous-flow droplet-based digital Enzyme-Linked Oligonucleotide Hybridization Assay (droplet digital ELOHA) for sensitive detection and absolute quantification of RNA molecules. Droplet digital ELOHA incorporates direct hybridization and single enzyme reaction via the formation of single probe-RNA-probe (enzyme) complex on magnetic beads. It enables RNA detection without reverse transcription and PCR amplification processes. The magnetic beads are subsequently encapsulated into a large number of picoliter-sized droplets with enzyme substrates in a continuous-flow device. This device is capable of generating droplets at high-throughput. It also integrates in-line enzymatic incubation and detection of fluorescent products. Our droplet digital ELOHA is able to accurately quantify (differentiate 40% difference) as few as ~600 RNA molecules in a 1 mL sample (equivalent to 1 aM or lower) without molecular replication. The absolute quantification ability of droplet digital ELOHA is demonstrated with the analysis of clinical Neisseria gonorrhoeae 16S rRNA to show its potential value in real complex samples. PMID:26333806

  10. Droplet Digital Enzyme-Linked Oligonucleotide Hybridization Assay for Absolute RNA Quantification

    NASA Astrophysics Data System (ADS)

    Guan, Weihua; Chen, Liben; Rane, Tushar D.; Wang, Tza-Huei

    2015-09-01

    We present a continuous-flow droplet-based digital Enzyme-Linked Oligonucleotide Hybridization Assay (droplet digital ELOHA) for sensitive detection and absolute quantification of RNA molecules. Droplet digital ELOHA incorporates direct hybridization and single enzyme reaction via the formation of single probe-RNA-probe (enzyme) complex on magnetic beads. It enables RNA detection without reverse transcription and PCR amplification processes. The magnetic beads are subsequently encapsulated into a large number of picoliter-sized droplets with enzyme substrates in a continuous-flow device. This device is capable of generating droplets at high-throughput. It also integrates in-line enzymatic incubation and detection of fluorescent products. Our droplet digital ELOHA is able to accurately quantify (differentiate 40% difference) as few as ~600 RNA molecules in a 1 mL sample (equivalent to 1 aM or lower) without molecular replication. The absolute quantification ability of droplet digital ELOHA is demonstrated with the analysis of clinical Neisseria gonorrhoeae 16S rRNA to show its potential value in real complex samples.

  11. Plasma volume methodology: Evans blue, hemoglobin-hematocrit, and mass density transformations

    NASA Technical Reports Server (NTRS)

    Greenleaf, J. E.; Hinghofer-Szalkay, H.

    1985-01-01

    Methods for measuring absolute levels and changes in plasma volume are presented along with derivations of pertinent equations. Reduction in variability of the Evans blue dye dilution technique using chromatographic column purification suggests that the day-to-day variability in the plasma volume in humans is less than + or - 20 m1. Mass density determination using the mechanical-oscillator technique provides a method for measuring vascular fluid shifts continuously for assessing the density of the filtrate, and for quantifying movements of protein across microvascular walls. Equations for the calculation of volume and density of shifted fluid are presented.

  12. Absolute calibration of the Agfa Structurix series films at energies between 2.7 and 6.2 keV.

    PubMed

    Lanier, N E; Cowan, J S

    2014-11-01

    Although photo-emulsion technology is many decades old, x-ray film still remains a key asset for diagnosing hydrodynamic features in High-Energy Density (HED) experiments. For decades, the preferred option had been Kodak's direct exposure film. After its discontinuance in 2004, the push to find alternatives began. In many situations, the Agfa Structurix series offers the most favorable substitute, but being new to the HED community, its characterization was lacking. To remedy this, recent experiments, conducted at Brookhaven's National Synchrotron Light Source, provide absolute, monochromatic calibration data for the Agfa Structurix series films at K-shell backlighter energies between 2.7 and 6.2 keV. Absolute response curves are presented for Agfa D8, D7, D4, D4sc, D3, and D2. Moreover, the transmission of each film type is also measured.

  13. Absolute calibration of the Agfa Structurix series films at energies between 2.7 and 6.2 keVa)

    NASA Astrophysics Data System (ADS)

    Lanier, N. E.; Cowan, J. S.

    2014-11-01

    Although photo-emulsion technology is many decades old, x-ray film still remains a key asset for diagnosing hydrodynamic features in High-Energy Density (HED) experiments. For decades, the preferred option had been Kodak's direct exposure film. After its discontinuance in 2004, the push to find alternatives began. In many situations, the Agfa Structurix series offers the most favorable substitute, but being new to the HED community, its characterization was lacking. To remedy this, recent experiments, conducted at Brookhaven's National Synchrotron Light Source, provide absolute, monochromatic calibration data for the Agfa Structurix series films at K-shell backlighter energies between 2.7 and 6.2 keV. Absolute response curves are presented for Agfa D8, D7, D4, D4sc, D3, and D2. Moreover, the transmission of each film type is also measured.

  14. Photon number density operator

    NASA Astrophysics Data System (ADS)

    Melde, Thomas

    Carbon nanotubes (CNTs) with extraordinary properties and thus many potential applications have been predicted to be the best reinforcements for the next-generation multifunctional composite materials. Difficulties exist in transferring the most use of the unprecedented properties of individual CNTs to macroscopic forms of CNT assemblies. Therefore, this thesis focuses on two main goals: 1) discussing the issues that influence the performance of bulk CNT products, and 2) fabricating high-performance dry CNT films and composite films with an understanding of the fundamental structure-property relationship in these materials. Dry CNT films were fabricated by a winding process using CNT arrays with heights of 230 mum, 300 im and 360 mum. The structures of the as-produced films, as well as their mechanical and electrical properties were examined in order to find out the effects of different CNT lengths. It was found that the shorter CNTs synthesized by shorter time in the CVD furnace exhibited less structural defects and amorphous carbon, resulting in more compact packing and better nanotube alignment when made into dry films, thus, having better mechanical and electrical performance. A novel microcombing approach was developed to mitigate the CNT waviness and alignment in the dry films, and ultrahigh mechanical properties and exceptional electrical performance were obtained. This method utilized a pair of sharp surgical blades with microsized features at the blade edges as micro-combs to, for the first time, disentangle and straighten the wavy CNTs in the dry-drawn CNT sheet at single-layer level. The as-combed CNT sheet exhibited high level of nanotube alignment and straightness, reduced structural defects, and enhanced nanotube packing density. The dry CNT films produced by microcombing had a very high Young's modulus of 172 GPa, excellent tensile strength of 3.2 GPa, and unprecedented electrical conductivity of 1.8x10 5 S/m, which were records for CNT films or

  15. Identification of two novel mammographic density loci at 6Q25.1.

    PubMed

    Brand, Judith S; Li, Jingmei; Humphreys, Keith; Karlsson, Robert; Eriksson, Mikael; Ivansson, Emma; Hall, Per; Czene, Kamila

    2015-06-03

    Mammographic density (MD) is a strong heritable and intermediate phenotype for breast cancer, but much of its genetic variation remains unexplained. We performed a large-scale genetic association study including 8,419 women of European ancestry to identify MD loci. Participants of three Swedish studies were genotyped on a custom Illumina iSelect genotyping array and percent and absolute mammographic density were ascertained using semiautomated and fully automated methods from film and digital mammograms. Linear regression analysis was used to test for SNP-MD associations, adjusting for age, body mass index, menopausal status and six principal components. Meta-analyses were performed by combining P values taking sample size, study-specific inflation factor and direction of effect into account. Genome-wide significant associations were observed for two previously identified loci: ZNF365 (rs10995194, P = 2.3 × 10(-8) for percent MD and P = 8.7 × 10(-9) for absolute MD) and AREG (rs10034692, P = 6.7 × 10(-9) for absolute MD). In addition, we found evidence of association for two variants at 6q25.1, both of which are known breast cancer susceptibility loci: rs9485370 in the TAB2 gene (P = 4.8 × 10(-9) for percent MD and P = 2.5 × 10(-8) for absolute MD) and rs60705924 in the CCDC170/ESR1 region (P = 2.2 × 10(-8) for absolute MD). Both regions have been implicated in estrogen receptor signaling with TAB2 being a potential regulator of tamoxifen response. We identified two novel MD loci at 6q25.1. These findings underscore the importance of 6q25.1 as a susceptibility region and provide more insight into the mechanisms through which MD influences breast cancer risk.

  16. Elevation correction factor for absolute pressure measurements

    NASA Technical Reports Server (NTRS)

    Panek, Joseph W.; Sorrells, Mark R.

    1996-01-01

    With the arrival of highly accurate multi-port pressure measurement systems, conditions that previously did not affect overall system accuracy must now be scrutinized closely. Errors caused by elevation differences between pressure sensing elements and model pressure taps can be quantified and corrected. With multi-port pressure measurement systems, the sensing elements are connected to pressure taps that may be many feet away. The measurement system may be at a different elevation than the pressure taps due to laboratory space or test article constraints. This difference produces a pressure gradient that is inversely proportional to height within the interface tube. The pressure at the bottom of the tube will be higher than the pressure at the top due to the weight of the tube's column of air. Tubes with higher pressures will exhibit larger absolute errors due to the higher air density. The above effect is well documented but has generally been taken into account with large elevations only. With error analysis techniques, the loss in accuracy from elevation can be easily quantified. Correction factors can be applied to maintain the high accuracies of new pressure measurement systems.

  17. Absolute dose calculations for Monte Carlo simulations of radiotherapy beams

    NASA Astrophysics Data System (ADS)

    Popescu, I. A.; Shaw, C. P.; Zavgorodni, S. F.; Beckham, W. A.

    2005-07-01

    Monte Carlo (MC) simulations have traditionally been used for single field relative comparisons with experimental data or commercial treatment planning systems (TPS). However, clinical treatment plans commonly involve more than one field. Since the contribution of each field must be accurately quantified, multiple field MC simulations are only possible by employing absolute dosimetry. Therefore, we have developed a rigorous calibration method that allows the incorporation of monitor units (MU) in MC simulations. This absolute dosimetry formalism can be easily implemented by any BEAMnrc/DOSXYZnrc user, and applies to any configuration of open and blocked fields, including intensity-modulated radiation therapy (IMRT) plans. Our approach involves the relationship between the dose scored in the monitor ionization chamber of a radiotherapy linear accelerator (linac), the number of initial particles incident on the target, and the field size. We found that for a 10 × 10 cm2 field of a 6 MV photon beam, 1 MU corresponds, in our model, to 8.129 × 1013 ± 1.0% electrons incident on the target and a total dose of 20.87 cGy ± 1.0% in the monitor chambers of the virtual linac. We present an extensive experimental verification of our MC results for open and intensity-modulated fields, including a dynamic 7-field IMRT plan simulated on the CT data sets of a cylindrical phantom and of a Rando anthropomorphic phantom, which were validated by measurements using ionization chambers and thermoluminescent dosimeters (TLD). Our simulation results are in excellent agreement with experiment, with percentage differences of less than 2%, in general, demonstrating the accuracy of our Monte Carlo absolute dose calculations.

  18. Absolute dose calculations for Monte Carlo simulations of radiotherapy beams.

    PubMed

    Popescu, I A; Shaw, C P; Zavgorodni, S F; Beckham, W A

    2005-07-21

    Monte Carlo (MC) simulations have traditionally been used for single field relative comparisons with experimental data or commercial treatment planning systems (TPS). However, clinical treatment plans commonly involve more than one field. Since the contribution of each field must be accurately quantified, multiple field MC simulations are only possible by employing absolute dosimetry. Therefore, we have developed a rigorous calibration method that allows the incorporation of monitor units (MU) in MC simulations. This absolute dosimetry formalism can be easily implemented by any BEAMnrc/DOSXYZnrc user, and applies to any configuration of open and blocked fields, including intensity-modulated radiation therapy (IMRT) plans. Our approach involves the relationship between the dose scored in the monitor ionization chamber of a radiotherapy linear accelerator (linac), the number of initial particles incident on the target, and the field size. We found that for a 10 x 10 cm2 field of a 6 MV photon beam, 1 MU corresponds, in our model, to 8.129 x 10(13) +/- 1.0% electrons incident on the target and a total dose of 20.87 cGy +/- 1.0% in the monitor chambers of the virtual linac. We present an extensive experimental verification of our MC results for open and intensity-modulated fields, including a dynamic 7-field IMRT plan simulated on the CT data sets of a cylindrical phantom and of a Rando anthropomorphic phantom, which were validated by measurements using ionization chambers and thermoluminescent dosimeters (TLD). Our simulation results are in excellent agreement with experiment, with percentage differences of less than 2%, in general, demonstrating the accuracy of our Monte Carlo absolute dose calculations.

  19. Mammographic Density Phenotypes and Risk of Breast Cancer: A Meta-analysis

    PubMed Central

    Graff, Rebecca E.; Ursin, Giske; dos Santos Silva, Isabel; McCormack, Valerie; Baglietto, Laura; Vachon, Celine; Bakker, Marije F.; Giles, Graham G.; Chia, Kee Seng; Czene, Kamila; Eriksson, Louise; Hall, Per; Hartman, Mikael; Warren, Ruth M. L.; Hislop, Greg; Chiarelli, Anna M.; Hopper, John L.; Krishnan, Kavitha; Li, Jingmei; Li, Qing; Pagano, Ian; Rosner, Bernard A.; Wong, Chia Siong; Scott, Christopher; Stone, Jennifer; Maskarinec, Gertraud; Boyd, Norman F.; van Gils, Carla H.

    2014-01-01

    Background Fibroglandular breast tissue appears dense on mammogram, whereas fat appears nondense. It is unclear whether absolute or percentage dense area more strongly predicts breast cancer risk and whether absolute nondense area is independently associated with risk. Methods We conducted a meta-analysis of 13 case–control studies providing results from logistic regressions for associations between one standard deviation (SD) increments in mammographic density phenotypes and breast cancer risk. We used random-effects models to calculate pooled odds ratios and 95% confidence intervals (CIs). All tests were two-sided with P less than .05 considered to be statistically significant. Results Among premenopausal women (n = 1776 case patients; n = 2834 control subjects), summary odds ratios were 1.37 (95% CI = 1.29 to 1.47) for absolute dense area, 0.78 (95% CI = 0.71 to 0.86) for absolute nondense area, and 1.52 (95% CI = 1.39 to 1.66) for percentage dense area when pooling estimates adjusted for age, body mass index, and parity. Corresponding odds ratios among postmenopausal women (n = 6643 case patients; n = 11187 control subjects) were 1.38 (95% CI = 1.31 to 1.44), 0.79 (95% CI = 0.73 to 0.85), and 1.53 (95% CI = 1.44 to 1.64). After additional adjustment for absolute dense area, associations between absolute nondense area and breast cancer became attenuated or null in several studies and summary odds ratios became 0.82 (95% CI = 0.71 to 0.94; P heterogeneity = .02) for premenopausal and 0.85 (95% CI = 0.75 to 0.96; P heterogeneity < .01) for postmenopausal women. Conclusions The results suggest that percentage dense area is a stronger breast cancer risk factor than absolute dense area. Absolute nondense area was inversely associated with breast cancer risk, but it is unclear whether the association is independent of absolute dense area. PMID:24816206

  20. Novalis' Poetic Uncertainty: A "Bildung" with the Absolute

    ERIC Educational Resources Information Center

    Mika, Carl

    2016-01-01

    Novalis, the Early German Romantic poet and philosopher, had at the core of his work a mysterious depiction of the "absolute." The absolute is Novalis' name for a substance that defies precise knowledge yet calls for a tentative and sensitive speculation. How one asserts a truth, represents an object, and sets about encountering things…

  1. Population-based absolute risk estimation with survey data

    PubMed Central

    Kovalchik, Stephanie A.; Pfeiffer, Ruth M.

    2013-01-01

    Absolute risk is the probability that a cause-specific event occurs in a given time interval in the presence of competing events. We present methods to estimate population-based absolute risk from a complex survey cohort that can accommodate multiple exposure-specific competing risks. The hazard function for each event type consists of an individualized relative risk multiplied by a baseline hazard function, which is modeled nonparametrically or parametrically with a piecewise exponential model. An influence method is used to derive a Taylor-linearized variance estimate for the absolute risk estimates. We introduce novel measures of the cause-specific influences that can guide modeling choices for the competing event components of the model. To illustrate our methodology, we build and validate cause-specific absolute risk models for cardiovascular and cancer deaths using data from the National Health and Nutrition Examination Survey. Our applications demonstrate the usefulness of survey-based risk prediction models for predicting health outcomes and quantifying the potential impact of disease prevention programs at the population level. PMID:23686614

  2. Absolute Radiation Measurements in Earth and Mars Entry Conditions

    NASA Technical Reports Server (NTRS)

    Cruden, Brett A.

    2014-01-01

    This paper reports on the measurement of radiative heating for shock heated flows which simulate conditions for Mars and Earth entries. Radiation measurements are made in NASA Ames' Electric Arc Shock Tube at velocities from 3-15 km/s in mixtures of N2/O2 and CO2/N2/Ar. The technique and limitations of the measurement are summarized in some detail. The absolute measurements will be discussed in regards to spectral features, radiative magnitude and spatiotemporal trends. Via analysis of spectra it is possible to extract properties such as electron density, and rotational, vibrational and electronic temperatures. Relaxation behind the shock is analyzed to determine how these properties relax to equilibrium and are used to validate and refine kinetic models. It is found that, for some conditions, some of these values diverge from non-equilibrium indicating a lack of similarity between the shock tube and free flight conditions. Possible reasons for this are discussed.

  3. Absolute marine gravimetry with matter-wave interferometry.

    PubMed

    Bidel, Y; Zahzam, N; Blanchard, C; Bonnin, A; Cadoret, M; Bresson, A; Rouxel, D; Lequentrec-Lalancette, M F

    2018-02-12

    Measuring gravity from an aircraft or a ship is essential in geodesy, geophysics, mineral and hydrocarbon exploration, and navigation. Today, only relative sensors are available for onboard gravimetry. This is a major drawback because of the calibration and drift estimation procedures which lead to important operational constraints. Atom interferometry is a promising technology to obtain onboard absolute gravimeter. But, despite high performances obtained in static condition, no precise measurements were reported in dynamic. Here, we present absolute gravity measurements from a ship with a sensor based on atom interferometry. Despite rough sea conditions, we obtained precision below 10 -5  m s -2 . The atom gravimeter was also compared with a commercial spring gravimeter and showed better performances. This demonstration opens the way to the next generation of inertial sensors (accelerometer, gyroscope) based on atom interferometry which should provide high-precision absolute measurements from a moving platform.

  4. Newton's absolute time and space in general relativity

    NASA Astrophysics Data System (ADS)

    Gautreau, Ronald

    2000-04-01

    I describe a reference system in a spherically symmetric gravitational field that is built around times recorded by radially moving geodesic clocks. The geodesic time coordinate t and the curvature spatial radial coordinate R result in spacetime descriptions of the motion of the geodesic clocks that are exactly identical with equations following from Newton's absolute time and space used with his inverse square law. I show how to use the resulting Newtonian/general-relativistic equations for geodesic clocks to generate exact relativistic metric forms in terms of the coordinates (R,t). Newtonian theory does not describe light. However, the motion of light can be determined from the (R,t) general-relativistic metric forms obtained from Newtonian theory by setting ds2(R,t)=0. In this sense, a theory of light can be related to absolute time and space of Newtonian gravitational theory. I illustrate the (R,t) methodology by first solving the equations that result from a Newtonian picture and then examining the exact metric forms for the general-relativistic problems of the Schwarzschild field, gravitational collapse and expansion of a zero-pressure perfect fluid, and zero-pressure big-bang cosmology. I also briefly describe other applications of the Newtonian/general-relativistic formulation to: embedding a Schwarzschild mass into cosmology; continuously following an expanding universe from radiation to matter domination; Dirac's Large Numbers hypothesis; the incompleteness of Kruskal-Szekeres spacetime; double valuedness in cosmology; and the de Sitter universe.

  5. The absolute counting of red cell-derived microparticles with red cell bead by flow rate based assay.

    PubMed

    Nantakomol, Duangdao; Imwong, Malika; Soontarawirat, Ingfar; Kotjanya, Duangporn; Khakhai, Chulalak; Ohashi, Jun; Nuchnoi, Pornlada

    2009-05-01

    Activation of red blood cell is associated with the formation of red cell-derived microparticles (RMPs). Analysis of circulating RMPs is becoming more refined and clinically useful. A quantitative Trucount tube method is the conventional method uses for quantitating RMPs. In this study, we validated a quantitative method called "flow rate based assay using red cell bead (FCB)" to measure circulating RMPs in the peripheral blood of healthy subjects. Citrated blood samples collected from 30 cases of healthy subjects were determined the RMPs count by using double labeling of annexin V-FITC and anti-glycophorin A-PE. The absolute RMPs numbers were measured by FCB, and the results were compared with the Trucount or with flow rate based calibration (FR). Statistical correlation and agreement were analyzed using linear regression and Bland-Altman analysis. There was no significant difference in the absolute number of RMPs quantitated by FCB when compared with those two reference methods including the Trucount tube and FR method. The absolute RMPs count obtained from FCB method was highly correlated with those obtained from Trucount tube (r(2) = 0.98, mean bias 4 cell/microl, limit of agreement [LOA] -20.3 to 28.3 cell/microl), and FR method (r(2) = 1, mean bias 10.3 cell/microl, and LOA -5.5 to 26.2 cell/microl). This study demonstrates that FCB is suitable and more affordable for RMPs quantitation in the clinical samples. This method is a low cost and interchangeable to latex bead-based method for generating the absolute counts in the resource-limited areas. (c) 2008 Clinical Cytometry Society.

  6. The absolute dynamic ocean topography (ADOT)

    NASA Astrophysics Data System (ADS)

    Bosch, Wolfgang; Savcenko, Roman

    The sea surface slopes relative to the geoid (an equipotential surface) basically carry the in-formation on the absolute velocity field of the surface circulation. Pure oceanographic models may remain unspecific with respect to the absolute level of the ocean topography. In contrast, the geodetic approach to estimate the ocean topography as difference between sea level and the geoid gives by definition an absolute dynamic ocean topography (ADOT). This approach requires, however, a consistent treatment of geoid and sea surface heights, the first being usually derived from a band limited spherical harmonic series of the Earth gravity field and the second observed with much higher spectral resolution by satellite altimetry. The present contribution shows a procedure for estimating the ADOT along the altimeter profiles, preserving as much sea surface height details as the consistency w.r.t. the geoid heights will allow. The consistent treatment at data gaps and the coast is particular demanding and solved by a filter correction. The ADOT profiles are inspected for their innocent properties towards the coast and compared to external estimates of the ocean topography or the velocity field of the surface circulation as derived, for example, by ARGO floats.

  7. Simultaneous measurement of absolute strain and differential strain based on fiber Bragg grating Fabry-Perot sensor

    NASA Astrophysics Data System (ADS)

    Wang, Kuiru; Wang, Bo; Yan, Binbin; Sang, Xinzhu; Yuan, Jinhui; Peng, Gang-Ding

    2013-10-01

    We present a fiber Bragg grating Fabry-Perot (FBG-FP) sensor using the fast Fourier transform (FFT) demodulation for measuring the absolute strain and differential strain simultaneously. The amplitude and phase characteristics of Fourier transform spectrum have been studied. The relation between the amplitude of Fourier spectrum and the differential strain has been presented. We fabricate the fiber grating FP cavity sensor, and carry out the experiment on the measurement of absolute strain and differential strain. Experimental results verify the demodulation method, and show that this sensor has a good accuracy in the scope of measurement. The demodulating method can expand the number of multiplexed sensors combining with wavelength division multiplexing and time division multiplexing.

  8. [Disease numbers in pneumology - a projection to 2060].

    PubMed

    Pritzkuleit, R; Beske, F; Katalinic, A

    2010-09-01

    The demographic change leads to a change in the age-composition of the population. We have calculated a status quo projection of the absolute numbers for five diagnoses of the lung (COPD, CAP, lung cancer, bronchial asthma and tuberculosis) for Germany up to 2060. Based on the 12 (th) coordinated population prediction of the Federal Statistics Office, we transferred age- and sex-specific incidence and prevalence rates, respectively, to the expected population. All described developments are based solely on demographic changes. The absolute numbers of bronchial asthma and tuberculosis will experience a minor decrease. We expect at first increasing and later decreasing case numbers for COPD and lung cancer. A major increase of the case numbers for CAP will be probable. By reason of a decreasing population, the rates (burden of disease for the population) will increase considerably. The demographic change is mainly caused by increasing life expectancy, constantly low birth rates, and the entry of the baby-boom generation into the age of higher disease risks. A discussion about prioritisation of health care is needed because of the rising burdens for the health system, including diseases of the lung. Copyright Georg Thieme Verlag KG Stuttgart . New York.

  9. The Absolute Magnitude of the Sun in Several Filters

    NASA Astrophysics Data System (ADS)

    Willmer, Christopher N. A.

    2018-06-01

    This paper presents a table with estimates of the absolute magnitude of the Sun and the conversions from vegamag to the AB and ST systems for several wide-band filters used in ground-based and space-based observatories. These estimates use the dustless spectral energy distribution (SED) of Vega, calibrated absolutely using the SED of Sirius, to set the vegamag zero-points and a composite spectrum of the Sun that coadds space-based observations from the ultraviolet to the near-infrared with models of the Solar atmosphere. The uncertainty of the absolute magnitudes is estimated by comparing the synthetic colors with photometric measurements of solar analogs and is found to be ∼0.02 mag. Combined with the uncertainty of ∼2% in the calibration of the Vega SED, the errors of these absolute magnitudes are ∼3%–4%. Using these SEDs, for three of the most utilized filters in extragalactic work the estimated absolute magnitudes of the Sun are M B = 5.44, M V = 4.81, and M K = 3.27 mag in the vegamag system and M B = 5.31, M V = 4.80, and M K = 5.08 mag in AB.

  10. Relationship between LIBS Ablation and Pit Volume for Geologic Samples: Applications for in situ Absolute Geochronology

    NASA Technical Reports Server (NTRS)

    Devismes, D.; Cohen, Barbara A.

    2014-01-01

    In planetary sciences, in situ absolute geochronology is a scientific and engineering challenge. Currently, the age of the Martian surface can only be determined by crater density counting. However this method has significant uncertainties and needs to be calibrated with absolute ages. We are developing an instrument to acquire in situ absolute geochronology based on the K-Ar method. The protocol is based on the laser ablation of a rock by hundreds of laser pulses. Laser Induced Breakdown Spectroscopy (LIBS) gives the potassium content of the ablated material and a mass spectrometer (quadrupole or ion trap) measures the quantity of 40Ar released. In order to accurately measure the quantity of released 40Ar in cases where Ar is an atmospheric constituent (e.g., Mars), the sample is first put into a chamber under high vacuum. The 40Arquantity, the concentration of K and the estimation of the ablated mass are the parameters needed to give the age of the rocks. The main uncertainties with this method are directly linked to the measures of the mass (typically some µg) and of the concentration of K by LIBS (up to 10%). Because the ablated mass is small compared to the mass of the sample, and because material is redeposited onto the sample after ablation, it is not possible to directly measure the ablated mass. Our current protocol measures the ablated volume and estimates the sample density to calculate ablated mass. The precision and accuracy of this method may be improved by using knowledge of the sample's geologic properties to predict its response to laser ablation, i.e., understanding whether natural samples have a predictable relationship between laser energy deposited and resultant ablation volume. In contrast to most previous studies of laser ablation, theoretical equations are not highly applicable. The reasons are numerous, but the most important are: a) geologic rocks are complex, polymineralic materials; b) the conditions of ablation are unusual (for example

  11. Absolute calibration of sniffer probes on Wendelstein 7-X

    NASA Astrophysics Data System (ADS)

    Moseev, D.; Laqua, H. P.; Marsen, S.; Stange, T.; Braune, H.; Erckmann, V.; Gellert, F.; Oosterbeek, J. W.

    2016-08-01

    Here we report the first measurements of the power levels of stray radiation in the vacuum vessel of Wendelstein 7-X using absolutely calibrated sniffer probes. The absolute calibration is achieved by using calibrated sources of stray radiation and the implicit measurement of the quality factor of the Wendelstein 7-X empty vacuum vessel. Normalized absolute calibration coefficients agree with the cross-calibration coefficients that are obtained by the direct measurements, indicating that the measured absolute calibration coefficients and stray radiation levels in the vessel are valid. Close to the launcher, the stray radiation in the empty vessel reaches power levels up to 340 kW/m2 per MW injected beam power. Furthest away from the launcher, i.e., half a toroidal turn, still 90 kW/m2 per MW injected beam power is measured.

  12. Absolute calibration of sniffer probes on Wendelstein 7-X.

    PubMed

    Moseev, D; Laqua, H P; Marsen, S; Stange, T; Braune, H; Erckmann, V; Gellert, F; Oosterbeek, J W

    2016-08-01

    Here we report the first measurements of the power levels of stray radiation in the vacuum vessel of Wendelstein 7-X using absolutely calibrated sniffer probes. The absolute calibration is achieved by using calibrated sources of stray radiation and the implicit measurement of the quality factor of the Wendelstein 7-X empty vacuum vessel. Normalized absolute calibration coefficients agree with the cross-calibration coefficients that are obtained by the direct measurements, indicating that the measured absolute calibration coefficients and stray radiation levels in the vessel are valid. Close to the launcher, the stray radiation in the empty vessel reaches power levels up to 340 kW/m(2) per MW injected beam power. Furthest away from the launcher, i.e., half a toroidal turn, still 90 kW/m(2) per MW injected beam power is measured.

  13. Preparation of an oakmoss absolute with reduced allergenic potential.

    PubMed

    Ehret, C; Maupetit, P; Petrzilka, M; Klecak, G

    1992-06-01

    Synopsis Oakmoss absolute, an extract of the lichen Evernia prunastri, is known to cause allergenic skin reactions due to the presence of certain aromatic aldehydes such as atranorin, chloratranorin, ethyl hematommate and ethyl chlorohematommate. In this paper it is shown that treatment of Oakmoss absolute with amino acids such as lysine and/or leucine, lowers considerably the content of these allergenic constituents including atranol and chloratranol. The resulting Oakmoss absolute, which exhibits an excellent olfactive quality, was tested extensively in comparative studies on guinea pigs and on man. The results of the Guinea Pig Maximization Test (GPMT) and Human Repeated Insult Patch Test (HRIPT) indicate that, in comparison with the commercial test sample, the allergenicity of this new quality of Oakmoss absolute was considerably reduced, and consequently better skin tolerance of this fragrance for man was achieved.

  14. Physics of negative absolute temperatures.

    PubMed

    Abraham, Eitan; Penrose, Oliver

    2017-01-01

    Negative absolute temperatures were introduced into experimental physics by Purcell and Pound, who successfully applied this concept to nuclear spins; nevertheless, the concept has proved controversial: a recent article aroused considerable interest by its claim, based on a classical entropy formula (the "volume entropy") due to Gibbs, that negative temperatures violated basic principles of statistical thermodynamics. Here we give a thermodynamic analysis that confirms the negative-temperature interpretation of the Purcell-Pound experiments. We also examine the principal arguments that have been advanced against the negative temperature concept; we find that these arguments are not logically compelling, and moreover that the underlying "volume" entropy formula leads to predictions inconsistent with existing experimental results on nuclear spins. We conclude that, despite the counterarguments, negative absolute temperatures make good theoretical sense and did occur in the experiments designed to produce them.

  15. A measurement of the absolute neutron beam polarization produced by an optically pumped 3He neutron spin filter

    NASA Astrophysics Data System (ADS)

    Rich, D. R.; Bowman, J. D.; Crawford, B. E.; Delheij, P. P. J.; Espy, M. A.; Haseyama, T.; Jones, G.; Keith, C. D.; Knudson, J.; Leuschner, M. B.; Masaike, A.; Masuda, Y.; Matsuda, Y.; Penttilä, S. I.; Pomeroy, V. R.; Smith, D. A.; Snow, W. M.; Szymanski, J. J.; Stephenson, S. L.; Thompson, A. K.; Yuan, V.

    2002-04-01

    The capability of performing accurate absolute measurements of neutron beam polarization opens a number of exciting opportunities in fundamental neutron physics and in neutron scattering. At the LANSCE pulsed neutron source we have measured the neutron beam polarization with an absolute accuracy of 0.3% in the neutron energy range from 40 meV to 10 eV using an optically pumped polarized 3He spin filter and a relative transmission measurement technique. 3He was polarized using the Rb spin-exchange method. We describe the measurement technique, present our results, and discuss some of the systematic effects associated with the method.

  16. Determination of absolute expression profiles using multiplexed miRNA analysis

    PubMed Central

    Song, Jee Hoon; Cheng, Yulan; Saeui, Christopher T.; Cheung, Douglas G.; Croce, Carlo M.; Yarema, Kevin J.; Meltzer, Stephen J.; Liu, Kelvin J.; Wang, Tza-Huei

    2017-01-01

    Accurate measurement of miRNA expression is critical to understanding their role in gene expression as well as their application as disease biomarkers. Correct identification of changes in miRNA expression rests on reliable normalization to account for biological and technological variance between samples. Ligo-miR is a multiplex assay designed to rapidly measure absolute miRNA copy numbers, thus reducing dependence on biological controls. It uses a simple 2-step ligation process to generate length coded products that can be quantified using a variety of DNA sizing methods. We demonstrate Ligo-miR’s ability to quantify miRNA expression down to 20 copies per cell sensitivity, accurately discriminate between closely related miRNA, and reliably measure differential changes as small as 1.2-fold. Then, benchmarking studies were performed to show the high correlation between Ligo-miR, microarray, and TaqMan qRT-PCR. Finally, Ligo-miR was used to determine copy number profiles in a number of breast, esophageal, and pancreatic cell lines and to demonstrate the utility of copy number analysis for providing layered insight into expression profile changes. PMID:28704432

  17. Analyzing forensic evidence based on density with magnetic levitation.

    PubMed

    Lockett, Matthew R; Mirica, Katherine A; Mace, Charles R; Blackledge, Robert D; Whitesides, George M

    2013-01-01

    This paper describes a method for determining the density of contact trace objects with magnetic levitation (MagLev). MagLev measurements accurately determine the density (± 0.0002 g/cm(3) ) of a diamagnetic object and are compatible with objects that are nonuniform in shape and size. The MagLev device (composed of two permanent magnets with like poles facing) and the method described provide a means of accurately determining the density of trace objects. This method is inexpensive, rapid, and verifiable and provides numerical values--independent of the specific apparatus or analyst--that correspond to the absolute density of the sample that may be entered into a searchable database. We discuss the feasibility of MagLev as a possible means of characterizing forensic-related evidence and demonstrate the ability of MagLev to (i) determine the density of samples of glitter and gunpowder, (ii) separate glitter particles of different densities, and (iii) determine the density of a glitter sample that was removed from a complex sample matrix. © 2012 American Academy of Forensic Sciences.

  18. Absolute gravimetry for monitoring geodynamics in Greenland.

    NASA Astrophysics Data System (ADS)

    Nielsen, E.; Strykowski, G.; Forsberg, R.

    2015-12-01

    Here are presented the preliminary results of the absolute gravity measurements done in Greenland by DTU Space with their A10 absolute gravimeter (the A10-019). The purpose, besides establishing and maintaining a national gravity network, is to study geodynamics.The absolute gravity measurements are juxtaposed with the permanent GNET GNSS stations. The first measurements were conducted in 2009 and a few sites have been re-visited. As of present is there a gravity value at 18 GNET sites.There are challenges in interpreting the measurements from Greenland and several signals has to be taken into account, besides the geodynamical signals originating from the changing load of the ice, there is also a clear signal of direct attraction from different masses. Here are presented the preliminary results of our measurements in Greenland and attempts explain them through modelling of the geodynamical signals and the direct attraction from the ocean and ice.

  19. On the Correlation Between Biomass and the P-Band Polarisation Phase Difference, and Its Potential for Biomass and Tree Number Density Estimation

    NASA Astrophysics Data System (ADS)

    Soja, Maciej J.; Blomberg, Erik; Ulander, Lars M. H.

    2015-04-01

    In this paper, a significant correlation between the HH/VV phase difference (polarisation phase difference, PPD) and the above-ground biomass (AGB) is observed for incidence angles above 30° in airborne P-band SAR data acquired over two boreal test sites in Sweden. A geometric model is used to explain the dependence of the AGB on tree height, stem radius, and tree number density, whereas a cylinder-over-ground model is used to explain the dependence of the PPD on the same three forest parameters. The models show that forest anisotropy need to be accounted for at P-band in order to obtain a linear relationship between the PPD and the AGB. An approach to the estimation of tree number density is proposed, based on a comparison between the modelled and observed PPDs.

  20. Absolute measurement of the Hugoniot and sound velocity of liquid copper at multimegabar pressures

    DOE PAGES

    McCoy, Chad August; Knudson, Marcus David; Root, Seth

    2017-11-13

    Measurement of the Hugoniot and sound velocity provides information on the bulk modulus and Grüneisen parameter of a material at extreme conditions. The capability to launch multilayered (copper/aluminum) flyer plates at velocities in excess of 20 km/s with the Sandia Z accelerator has enabled high-precision sound-velocity measurements at previously inaccessible pressures. For these experiments, the sound velocity of the copper flyer must be accurately known in the multi-Mbar regime. Here we describe the development of copper as an absolutely calibrated sound-velocity standard for high-precision measurements at pressures in excess of 400 GPa. Using multilayered flyer plates, we performed absolute measurementsmore » of the Hugoniot and sound velocity of copper for pressures from 500 to 1200 GPa. These measurements enabled the determination of the Grüneisen parameter for dense liquid copper, clearly showing a density dependence above the melt transition. As a result, combined with earlier data at lower pressures, these results constrain the sound velocity as a function of pressure, enabling the use of copper as a Hugoniot and sound-velocity standard for pressures up to 1200 GPa.« less

  1. Absolute measurement of the Hugoniot and sound velocity of liquid copper at multimegabar pressures

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    McCoy, Chad August; Knudson, Marcus David; Root, Seth

    Measurement of the Hugoniot and sound velocity provides information on the bulk modulus and Grüneisen parameter of a material at extreme conditions. The capability to launch multilayered (copper/aluminum) flyer plates at velocities in excess of 20 km/s with the Sandia Z accelerator has enabled high-precision sound-velocity measurements at previously inaccessible pressures. For these experiments, the sound velocity of the copper flyer must be accurately known in the multi-Mbar regime. Here we describe the development of copper as an absolutely calibrated sound-velocity standard for high-precision measurements at pressures in excess of 400 GPa. Using multilayered flyer plates, we performed absolute measurementsmore » of the Hugoniot and sound velocity of copper for pressures from 500 to 1200 GPa. These measurements enabled the determination of the Grüneisen parameter for dense liquid copper, clearly showing a density dependence above the melt transition. As a result, combined with earlier data at lower pressures, these results constrain the sound velocity as a function of pressure, enabling the use of copper as a Hugoniot and sound-velocity standard for pressures up to 1200 GPa.« less

  2. Background risk of breast cancer and the association between physical activity and mammographic density.

    PubMed

    Trinh, Thang; Eriksson, Mikael; Darabi, Hatef; Bonn, Stephanie E; Brand, Judith S; Cuzick, Jack; Czene, Kamila; Sjölander, Arvid; Bälter, Katarina; Hall, Per

    2015-04-02

    High physical activity has been shown to decrease the risk of breast cancer, potentially by a mechanism that also reduces mammographic density. We tested the hypothesis that the risk of developing breast cancer in the next 10 years according to the Tyrer-Cuzick prediction model influences the association between physical activity and mammographic density. We conducted a population-based cross-sectional study of 38,913 Swedish women aged 40-74 years. Physical activity was assessed using the validated web-questionnaire Active-Q and mammographic density was measured by the fully automated volumetric Volpara method. The 10-year risk of breast cancer was estimated using the Tyrer-Cuzick (TC) prediction model. Linear regression analyses were performed to assess the association between physical activity and volumetric mammographic density and the potential interaction with the TC breast cancer risk. Overall, high physical activity was associated with lower absolute dense volume. As compared to women with the lowest total activity level (<40 metabolic equivalent hours [MET-h] per day), women with the highest total activity level (≥50 MET-h/day) had an estimated 3.4 cm(3) (95% confidence interval, 2.3-4.7) lower absolute dense volume. The inverse association was seen for any type of physical activity among women with <3.0% TC 10-year risk, but only for total and vigorous activities among women with 3.0-4.9% TC risk, and only for vigorous activity among women with ≥5.0% TC risk. The association between total activity and absolute dense volume was modified by the TC breast cancer risk (P interaction = 0.05). As anticipated, high physical activity was also associated with lower non-dense volume. No consistent association was found between physical activity and percent dense volume. Our results suggest that physical activity may decrease breast cancer risk through reducing mammographic density, and that the physical activity needed to reduce mammographic density may depend

  3. Camera traps and activity signs to estimate wild boar density and derive abundance indices.

    PubMed

    Massei, Giovanna; Coats, Julia; Lambert, Mark Simon; Pietravalle, Stephane; Gill, Robin; Cowan, Dave

    2018-04-01

    Populations of wild boar and feral pigs are increasing worldwide, in parallel with their significant environmental and economic impact. Reliable methods of monitoring trends and estimating abundance are needed to measure the effects of interventions on population size. The main aims of this study, carried out in five English woodlands were: (i) to compare wild boar abundance indices obtained from camera trap surveys and from activity signs; and (ii) to assess the precision of density estimates in relation to different densities of camera traps. For each woodland, we calculated a passive activity index (PAI) based on camera trap surveys, rooting activity and wild boar trails on transects, and estimated absolute densities based on camera trap surveys. PAIs obtained using different methods showed similar patterns. We found significant between-year differences in abundance of wild boar using PAIs based on camera trap surveys and on trails on transects, but not on signs of rooting on transects. The density of wild boar from camera trap surveys varied between 0.7 and 7 animals/km 2 . Increasing the density of camera traps above nine per km 2 did not increase the precision of the estimate of wild boar density. PAIs based on number of wild boar trails and on camera trap data appear to be more sensitive to changes in population size than PAIs based on signs of rooting. For wild boar densities similar to those recorded in this study, nine camera traps per km 2 are sufficient to estimate the mean density of wild boar. © 2017 Crown copyright. Pest Management Science © 2017 Society of Chemical Industry. © 2017 Crown copyright. Pest Management Science © 2017 Society of Chemical Industry.

  4. Absolute far-ultraviolet spectrophotometry of hot subluminous stars from Voyager

    NASA Technical Reports Server (NTRS)

    Holberg, J. B.; Ali, B.; Carone, T. E.; Polidan, R. S.

    1991-01-01

    Observations, obtained with the Voyager ultraviolet spectrometers, are presented of absolute fluxes for two well-known hot subluminous stars: BD + 28 deg 4211, an sdO, and G191 - B2B, a hot DA white dwarf. Complete absolute energy distributions for these two stars, from the Lyman limit at 912 A to 1 micron, are given. For BD + 28 deg 4211, a single power law closely represents the entire observed energy distribution. For G191 - B2B, a pure hydrogen model atmosphere provides an excellent match to the entire absolute energy distribution. Voyager absolute fluxes are discussed in relation to those reported from various sounding rocket experiments, including a recent rocket observation of BD + 28 deg 4211.

  5. Determination of the absolute configurations of natural products via density functional theory calculations of optical rotation, electronic circular dichroism, and vibrational circular dichroism: the cytotoxic sesquiterpene natural products quadrone, suberosenone, suberosanone, and suberosenol A acetate.

    PubMed

    Stephens, P J; McCann, D M; Devlin, F J; Smith, A B

    2006-07-01

    The determination of the absolute configurations (ACs) of chiral molecules using the chiroptical techniques of optical rotation (OR), electronic circular dichroism (ECD), and vibrational circular dichroism (VCD) has been revolutionized by the development of density functional theory (DFT) methods for the prediction of these properties. Here, we demonstrate the significance of these advances for the stereochemical characterization of natural products. Time-dependent DFT (TDDFT) calculations of the specific rotations, [alpha](D), of four cytotoxic natural products, quadrone (1), suberosenone (2), suberosanone (3), and suberosenol A acetate (4), are used to assign their ACs. TDDFT calculations of the ECD of 1 are used to assign its AC. The VCD spectrum of 1 is reported and also used, together with DFT calculations, to assign its AC. The ACs of 1 derived from its [alpha](D), ECD, and VCD are identical and in agreement with the AC previously determined via total synthesis. The previously undetermined ACs of 2-4, derived from their [alpha](D) values, have absolute configurations of their tricyclic cores identical to that of 1. Further studies of the ACs of these molecules using ECD and, especially, VCD are recommended to establish more definitively this finding. Our studies of the OR, ECD, and VCD of quadrone are the first to utilize DFT calculations of all three properties for the determination of the AC of a chiral natural product molecule.

  6. From Hubble's NGSL to Absolute Fluxes

    NASA Technical Reports Server (NTRS)

    Heap, Sara R.; Lindler, Don

    2012-01-01

    Hubble's Next Generation Spectral Library (NGSL) consists of R-l000 spectra of 374 stars of assorted temperature, gravity, and metallicity. Each spectrum covers the wavelength range, 0.18-1.00 microns. The library can be viewed and/or downloaded from the website, http://archive.stsci.edu/prepds/stisngsll. Stars in the NGSL are now being used as absolute flux standards at ground-based observatories. However, the uncertainty in the absolute flux is about 2%, which does not meet the requirements of dark-energy surveys. We are therefore developing an observing procedure that should yield fluxes with uncertainties less than 1 % and will take part in an HST proposal to observe up to 15 stars using this new procedure.

  7. Absolute calibration of optical flats

    DOEpatents

    Sommargren, Gary E.

    2005-04-05

    The invention uses the phase shifting diffraction interferometer (PSDI) to provide a true point-by-point measurement of absolute flatness over the surface of optical flats. Beams exiting the fiber optics in a PSDI have perfect spherical wavefronts. The measurement beam is reflected from the optical flat and passed through an auxiliary optic to then be combined with the reference beam on a CCD. The combined beams include phase errors due to both the optic under test and the auxiliary optic. Standard phase extraction algorithms are used to calculate this combined phase error. The optical flat is then removed from the system and the measurement fiber is moved to recombine the two beams. The newly combined beams include only the phase errors due to the auxiliary optic. When the second phase measurement is subtracted from the first phase measurement, the absolute phase error of the optical flat is obtained.

  8. Debiased estimates for NEO orbits, absolute magnitudes, and source regions

    NASA Astrophysics Data System (ADS)

    Granvik, Mikael; Morbidelli, Alessandro; Jedicke, Robert; Bolin, Bryce T.; Bottke, William; Beshore, Edward C.; Vokrouhlicky, David; Nesvorny, David; Michel, Patrick

    2017-10-01

    The debiased absolute-magnitude and orbit distributions as well as source regions for near-Earth objects (NEOs) provide a fundamental frame of reference for studies on individual NEOs as well as on more complex population-level questions. We present a new four-dimensional model of the NEO population that describes debiased steady-state distributions of semimajor axis (a), eccentricity (e), inclination (i), and absolute magnitude (H). We calibrate the model using NEO detections by the 703 and G96 stations of the Catalina Sky Survey (CSS) during 2005-2012 corresponding to objects with 17absolute sense using the biases computed for CSS (Jedicke et al. 2016, Icarus 266, 173). The model makes use of six source regions or escape routes from the main asteroid belt as identified by Granvik et al. (2017, A&A 598, A52) in addition to Jupiter-family comets: Hungaria and Phocaea asteroids, and main-belt asteroids escaping through the ν6, 3:1J, 5:2J and 2:1J resonance complexes. We account for the destruction of asteroids with small perihelion distances (Granvik et al. 2016, Nature 530, 303) by fitting a penalty function in perihelion distance. Our model accurately reproduces the observed distribution of NEOs and the predicted numbers, particularly for the larger NEOs, are in agreement with other contemporary estimates. Our model also provides updated estimates for the likelihood of the various source regions and escape routes as a function of NEO (a,e,i,H) parameters. We present the model and its predictions, and discuss them in the context of other contemporary estimates.

  9. Absolute Standard Hydrogen Electrode Potential Measured by Reduction of Aqueous Nanodrops in the Gas Phase

    PubMed Central

    Donald, William A.; Leib, Ryan D.; O'Brien, Jeremy T.; Bush, Matthew F.; Williams, Evan R.

    2008-01-01

    In solution, half-cell potentials are measured relative to those of other half cells, thereby establishing a ladder of thermochemical values that are referenced to the standard hydrogen electrode (SHE), which is arbitrarily assigned a value of exactly 0 V. Although there has been considerable interest in, and efforts toward, establishing an absolute electrochemical half-cell potential in solution, there is no general consensus regarding the best approach to obtain this value. Here, ion-electron recombination energies resulting from electron capture by gas-phase nanodrops containing individual [M(NH3)6]3+, M = Ru, Co, Os, Cr, and Ir, and Cu2+ ions are obtained from the number of water molecules that are lost from the reduced precursors. These experimental data combined with nanodrop solvation energies estimated from Born theory and solution-phase entropies estimated from limited experimental data provide absolute reduction energies for these redox couples in bulk aqueous solution. A key advantage of this approach is that solvent effects well past two solvent shells, that are difficult to model accurately, are included in these experimental measurements. By evaluating these data relative to known solution-phase reduction potentials, an absolute value for the SHE of 4.2 ± 0.4 V versus a free electron is obtained. Although not achieved here, the uncertainty of this method could potentially be reduced to below 0.1 V, making this an attractive method for establishing an absolute electrochemical scale that bridges solution and gas-phase redox chemistry. PMID:18288835

  10. Column Number Density Expressions Through M = 0 and M = 1 Point Source Plumes Along Any Straight Path

    NASA Technical Reports Server (NTRS)

    Woronowicz, Michael S.

    2016-01-01

    Analytical expressions for column number density (CND) are developed for optical line of sight paths through a variety of steady free molecule point source models including directionally-constrained effusion (Mach number M = 0) and flow from a sonic orifice (M 1). Sonic orifice solutions are approximate, developed using a fair simulacrum fitted to the free molecule solution. Expressions are also developed for a spherically-symmetric thermal expansion (M = 0). CND solutions are found for the most general paths relative to these sources and briefly explored. It is determined that the maximum CND from a distant location through directed effusion and sonic orifice cases occurs along the path parallel to the source plane that intersects the plume axis. For the effusive case this value is exactly twice the CND found along the ray originating from that point of intersection and extending to infinity along the plumes axis. For sonic plumes this ratio is reduced to about 43. For high Mach number cases the maximum CND will be found along the axial centerline path.

  11. Paramagnetic ionic liquids for measurements of density using magnetic levitation.

    PubMed

    Bwambok, David K; Thuo, Martin M; Atkinson, Manza B J; Mirica, Katherine A; Shapiro, Nathan D; Whitesides, George M

    2013-09-03

    Paramagnetic ionic liquids (PILs) provide new capabilities to measurements of density using magnetic levitation (MagLev). In a typical measurement, a diamagnetic object of unknown density is placed in a container containing a PIL. The container is placed between two magnets (typically NdFeB, oriented with like poles facing). The density of the diamagnetic object can be determined by measuring its position in the magnetic field along the vertical axis (levitation height, h), either as an absolute value or relative to internal standards of known density. For density measurements by MagLev, PILs have three advantages over solutions of paramagnetic salts in aqueous or organic solutions: (i) negligible vapor pressures; (ii) low melting points; (iii) high thermal stabilities. In addition, the densities, magnetic susceptibilities, glass transition temperatures, thermal decomposition temperatures, viscosities, and hydrophobicities of PILs can be tuned over broad ranges by choosing the cation-anion pair. The low melting points and high thermal stabilities of PILs provide large liquidus windows for density measurements. This paper demonstrates applications and advantages of PILs in density-based analyses using MagLev.

  12. WIND measurements of proton and alpha particle flow and number density

    NASA Technical Reports Server (NTRS)

    Steinberg, J. T.; Lazarus, A. J.; Ogilvie, J. T.; Lepping, R.; Byrnes, J.; Chornay, D.; Keller, J.; Torbert, R. B.; Bodet, D.; Needell, G. J.

    1995-01-01

    We propose to review measurements of the solar wind proton and alpha particle flow velocities and densities made since launch with the WIND SWE instrument. The SWE Faraday cup ion sensors are designed to be able to determine accurately flow vector directions, and thus can be used to detect proton-alpha particle differential flow. Instances of differential flow, and the solar wind features with which they are associated will be discussed. Additionally, the variability of the percentage of alpha particles as a fraction of the total solar wind ion density will be presented.

  13. Probative value of absolute and relative judgments in eyewitness identification.

    PubMed

    Clark, Steven E; Erickson, Michael A; Breneman, Jesse

    2011-10-01

    It is well-accepted that eyewitness identification decisions based on relative judgments are less accurate than identification decisions based on absolute judgments. However, the theoretical foundation for this view has not been established. In this study relative and absolute judgments were compared through simulations of the WITNESS model (Clark, Appl Cogn Psychol 17:629-654, 2003) to address the question: Do suspect identifications based on absolute judgments have higher probative value than suspect identifications based on relative judgments? Simulations of the WITNESS model showed a consistent advantage for absolute judgments over relative judgments for suspect-matched lineups. However, simulations of same-foils lineups showed a complex interaction based on the accuracy of memory and the similarity relationships among lineup members.

  14. Oxygen-promoted catalyst sintering influences number density, alignment, and wall number of vertically aligned carbon nanotubes.

    PubMed

    Shi, Wenbo; Li, Jinjing; Polsen, Erik S; Oliver, C Ryan; Zhao, Yikun; Meshot, Eric R; Barclay, Michael; Fairbrother, D Howard; Hart, A John; Plata, Desiree L

    2017-04-20

    A lack of synthetic control and reproducibility during vertically aligned carbon nanotube (CNT) synthesis has stifled many promising applications of organic nanomaterials. Oxygen-containing species are particularly precarious in that they have both beneficial and deleterious effects and are notoriously difficult to control. Here, we demonstrated diatomic oxygen's ability, independent of water, to tune oxide-supported catalyst thin film dewetting and influence nanoscale (diameter and wall number) and macro-scale (alignment and density) properties for as-grown vertically aligned CNTs. In particular, single- or few-walled CNT forests were achieved at very low oxygen loading, with single-to-multi-walled CNT diameters ranging from 4.8 ± 1.3 nm to 6.4 ± 1.1 nm over 0-800 ppm O 2 , and an expected variation in alignment, where both were related to the annealed catalyst morphology. Morphological differences were not the result of subsurface diffusion, but instead occurred via Ostwald ripening under several hundred ppm O 2 , and this effect was mitigated by high H 2 concentrations and not due to water vapor (as confirmed in O 2 -free water addition experiments), supporting the importance of O 2 specifically. Further characterization of the interface between the Fe catalyst and Al 2 O 3 support revealed that either oxygen-deficit metal oxide or oxygen-adsorption on metals could be functional mechanisms for the observed catalyst nanoparticle evolution. Taken as a whole, our results suggest that the impacts of O 2 and H 2 on the catalyst evolution have been underappreciated and underleveraged in CNT synthesis, and these could present a route toward facile manipulation of CNT forest morphology through control of the reactive gaseous atmosphere alone.

  15. Determination of Absolute Zero Using a Computer-Based Laboratory

    ERIC Educational Resources Information Center

    Amrani, D.

    2007-01-01

    We present a simple computer-based laboratory experiment for evaluating absolute zero in degrees Celsius, which can be performed in college and undergraduate physical sciences laboratory courses. With a computer, absolute zero apparatus can help demonstrators or students to observe the relationship between temperature and pressure and use…

  16. Inhibitory control and visuo-spatial reversibility in Piaget's seminal number conservation task: a high-density ERP study

    PubMed Central

    Borst, Grégoire; Simon, Grégory; Vidal, Julie; Houdé, Olivier

    2013-01-01

    The present high-density event-related potential (ERP) study on 13 adults aimed to determine whether number conservation relies on the ability to inhibit the overlearned length-equals-number strategy and then imagine the shortening of the row that was lengthened. Participants performed the number-conservation task and, after the EEG session, the mental imagery task. In the number-conservation task, first two rows with the same number of tokens and the same length were presented on a computer screen (COV condition) and then, the tokens in one of the two rows were spread apart (INT condition). Participants were instructed to determine whether the two rows had an identical number of tokens. In the mental imagery task, two rows with different lengths but the same number of tokens were presented and participants were instructed to imagine the tokens in the longer row aligning with the tokens in the shorter row. In the number-conservation task, we found that the amplitudes of the centro-parietal N2 and fronto-central P3 were higher in the INT than in the COV conditions. In addition, the differences in response times between the two conditions were correlated with the differences in the amplitudes of the fronto-central P3. In light of previous results reported on the number-conservation task in adults, the present results suggest that inhibition might be necessary to succeed the number-conservation task in adults even when the transformation of the length of one of the row is displayed. Finally, we also reported correlations between the speed at which participants could imagine the shortening of one of the row in the mental imagery task, the speed at which participants could determine that the two rows had the same number of tokens after the tokens in one of the row were spread apart and the latency of the late positive parietal component in the number-conservation task. Therefore, performing the number-conservation task might involve mental transformation processes in

  17. Computationally Aided Absolute Stereochemical Determination of Enantioenriched Amines.

    PubMed

    Zhang, Jun; Gholami, Hadi; Ding, Xinliang; Chun, Minji; Vasileiou, Chrysoula; Nehira, Tatsuo; Borhan, Babak

    2017-03-17

    A simple and efficient protocol for sensing the absolute stereochemistry and enantiomeric excess of chiral monoamines is reported. Preparation of the sample requires a single-step reaction of the 1,1'-(bromomethylene)dinaphthalene (BDN) with the chiral amine. Analysis of the exciton coupled circular dichroism generated from the BDN-derivatized chiral amine sample, along with comparison to conformational analysis performed computationally, yields the absolute stereochemistry of the parent chiral monoamine.

  18. Effects of distribution density and cell dimension of 3D vegetation model on canopy NDVI simulation base on DART

    NASA Astrophysics Data System (ADS)

    Tao, Zhu; Shi, Runhe; Zeng, Yuyan; Gao, Wei

    2017-09-01

    The 3D model is an important part of simulated remote sensing for earth observation. Regarding the small-scale spatial extent of DART software, both the details of the model itself and the number of models of the distribution have an important impact on the scene canopy Normalized Difference Vegetation Index (NDVI).Taking the phragmitesaustralis in the Yangtze Estuary as an example, this paper studied the effect of the P.australias model on the canopy NDVI, based on the previous studies of the model precision, mainly from the cell dimension of the DART software and the density distribution of the P.australias model in the scene, As well as the choice of the density of the P.australiass model under the cost of computer running time in the actual simulation. The DART Cell dimensions and the density of the scene model were set by using the optimal precision model from the existing research results. The simulation results of NDVI with different model densities under different cell dimensions were analyzed by error analysis. By studying the relationship between relative error, absolute error and time costs, we have mastered the density selection method of P.australias model in the simulation of small-scale spatial scale scene. Experiments showed that the number of P.australias in the simulated scene need not be the same as those in the real environment due to the difference between the 3D model and the real scenarios. The best simulation results could be obtained by keeping the density ratio of about 40 trees per square meter, simultaneously, of the visual effects.

  19. Use of Absolute and Comparative Performance Feedback in Absolute and Comparative Judgments and Decisions

    ERIC Educational Resources Information Center

    Moore, Don A.; Klein, William M. P.

    2008-01-01

    Which matters more--beliefs about absolute ability or ability relative to others? This study set out to compare the effects of such beliefs on satisfaction with performance, self-evaluations, and bets on future performance. In Experiment 1, undergraduate participants were told they had answered 20% correct, 80% correct, or were not given their…

  20. A Special Application of Absolute Value Techniques in Authentic Problem Solving

    ERIC Educational Resources Information Center

    Stupel, Moshe

    2013-01-01

    There are at least five different equivalent definitions of the absolute value concept. In instances where the task is an equation or inequality with only one or two absolute value expressions, it is a worthy educational experience for learners to solve the task using each one of the definitions. On the other hand, if more than two absolute value…

  1. Bio-Inspired Stretchable Absolute Pressure Sensor Network

    PubMed Central

    Guo, Yue; Li, Yu-Hung; Guo, Zhiqiang; Kim, Kyunglok; Chang, Fu-Kuo; Wang, Shan X.

    2016-01-01

    A bio-inspired absolute pressure sensor network has been developed. Absolute pressure sensors, distributed on multiple silicon islands, are connected as a network by stretchable polyimide wires. This sensor network, made on a 4’’ wafer, has 77 nodes and can be mounted on various curved surfaces to cover an area up to 0.64 m × 0.64 m, which is 100 times larger than its original size. Due to Micro Electro-Mechanical system (MEMS) surface micromachining technology, ultrathin sensing nodes can be realized with thicknesses of less than 100 µm. Additionally, good linearity and high sensitivity (~14 mV/V/bar) have been achieved. Since the MEMS sensor process has also been well integrated with a flexible polymer substrate process, the entire sensor network can be fabricated in a time-efficient and cost-effective manner. Moreover, an accurate pressure contour can be obtained from the sensor network. Therefore, this absolute pressure sensor network holds significant promise for smart vehicle applications, especially for unmanned aerial vehicles. PMID:26729134

  2. On the Perceptual Subprocess of Absolute Pitch.

    PubMed

    Kim, Seung-Goo; Knösche, Thomas R

    2017-01-01

    Absolute pitch (AP) is the rare ability of musicians to identify the pitch of tonal sound without external reference. While there have been behavioral and neuroimaging studies on the characteristics of AP, how the AP is implemented in human brains remains largely unknown. AP can be viewed as comprising of two subprocesses: perceptual (processing auditory input to extract a pitch chroma) and associative (linking an auditory representation of pitch chroma with a verbal/non-verbal label). In this review, we focus on the nature of the perceptual subprocess of AP. Two different models on how the perceptual subprocess works have been proposed: either via absolute pitch categorization (APC) or based on absolute pitch memory (APM). A major distinction between the two views is that whether the AP uses unique auditory processing (i.e., APC) that exists only in musicians with AP or it is rooted in a common phenomenon (i.e., APM), only with heightened efficiency. We review relevant behavioral and neuroimaging evidence that supports each notion. Lastly, we list open questions and potential ideas to address them.

  3. On the Perceptual Subprocess of Absolute Pitch

    PubMed Central

    Kim, Seung-Goo; Knösche, Thomas R.

    2017-01-01

    Absolute pitch (AP) is the rare ability of musicians to identify the pitch of tonal sound without external reference. While there have been behavioral and neuroimaging studies on the characteristics of AP, how the AP is implemented in human brains remains largely unknown. AP can be viewed as comprising of two subprocesses: perceptual (processing auditory input to extract a pitch chroma) and associative (linking an auditory representation of pitch chroma with a verbal/non-verbal label). In this review, we focus on the nature of the perceptual subprocess of AP. Two different models on how the perceptual subprocess works have been proposed: either via absolute pitch categorization (APC) or based on absolute pitch memory (APM). A major distinction between the two views is that whether the AP uses unique auditory processing (i.e., APC) that exists only in musicians with AP or it is rooted in a common phenomenon (i.e., APM), only with heightened efficiency. We review relevant behavioral and neuroimaging evidence that supports each notion. Lastly, we list open questions and potential ideas to address them. PMID:29085275

  4. Spectral density of mixtures of random density matrices for qubits

    NASA Astrophysics Data System (ADS)

    Zhang, Lin; Wang, Jiamei; Chen, Zhihua

    2018-06-01

    We derive the spectral density of the equiprobable mixture of two random density matrices of a two-level quantum system. We also work out the spectral density of mixture under the so-called quantum addition rule. We use the spectral densities to calculate the average entropy of mixtures of random density matrices, and show that the average entropy of the arithmetic-mean-state of n qubit density matrices randomly chosen from the Hilbert-Schmidt ensemble is never decreasing with the number n. We also get the exact value of the average squared fidelity. Some conjectures and open problems related to von Neumann entropy are also proposed.

  5. Moral absolutism and ectopic pregnancy.

    PubMed

    Kaczor, C

    2001-02-01

    If one accepts a version of absolutism that excludes the intentional killing of any innocent human person from conception to natural death, ectopic pregnancy poses vexing difficulties. Given that the embryonic life almost certainly will die anyway, how can one retain one's moral principle and yet adequately respond to a situation that gravely threatens the life of the mother and her future fertility? The four options of treatment most often discussed in the literature are non-intervention, salpingectomy (removal of tube with embryo), salpingostomy (removal of embryo alone), and use of methotrexate (MXT). In this essay, I review these four options and introduce a fifth (the milking technique). In order to assess these options in terms of the absolutism mentioned, it will also be necessary to discuss various accounts of the intention/foresight distinction. I conclude that salpingectomy, salpingostomy, and the milking technique are compatible with absolutist presuppositions, but not the use of methotrexate.

  6. Effect of Instrument Lubricants on the Surface Degree of Conversion and Crosslinking Density of Nanocomposites.

    PubMed

    de Paula, Felipe Costa; Valentin, Regis de Souza; Borges, Boniek Castillo Dutra; Medeiros, Maria Cristina Dos Santos; de Oliveira, Raiza Freitas; da Silva, Ademir Oliveira

    2016-01-01

    The surface degree of conversion and crosslink density of composites should not be affected by the use of instrument lubricants in order to provide long-lasting tooth restorations. This study aimed to analyze the effect of instrument lubricants on the degree of conversion and crosslink density of nanocomposites. Samples (N = 10) were fabricated according to the composites (Filtek Z350 XT, 3M ESPE, St. Paul, MN, USA; and IPS Empress Direct, Ivoclar Vivadent AG, Schaan, Liechtenstein and lubricants used (Adper Single Bond 2 and Scotchbond Multi-Purpose bonding agent adhesive systems, 3M ESPE; 70% ethanol, absolute ethanol, and no lubricant). Single composite increments were inserted into a Teflon mold using the same dental instrument. The composite surface was then modeled using a brush wiped with each adhesive system and a spatula wiped with each ethanol. The control group was fabricated with no additional modeling. The surface degree of conversion and crosslink density were measured by Fourier transform infrared spectroscopy and the hardness decrease test, respectively. Data were analyzed using two-way analysis of variance and the Tukey's test (p < 0.05). Filtek Z350 XT showed statistically similar degree of conversion regardless of the lubricant used, whereas the use of adhesive systems and 70% ethanol decreased the degree of conversion for IPS Empress Direct. Only Scotchbond Multi-Purpose bonding agent decreased crosslink density for Filtek Z350 XT, whereas both adhesive systems decreased crosslink density for IPS Empress Direct. Filtek Z350 XT appeared to be less sensitive to the effects of lubricants, and absolute ethanol did not affect the degree of conversion and crosslink density of the nanocomposites tested. Although the use of lubricants may be recommended to minimize the stickiness of dental instruments and composite resin, dentists should choose materials that do not have a negative effect on the surface properties of composites. Only the use of

  7. Absolute irradiance of the Moon for on-orbit calibration

    USGS Publications Warehouse

    Stone, T.C.; Kieffer, H.H.; ,

    2002-01-01

    The recognized need for on-orbit calibration of remote sensing imaging instruments drives the ROLO project effort to characterize the Moon for use as an absolute radiance source. For over 5 years the ground-based ROLO telescopes have acquired spatially-resolved lunar images in 23 VNIR (Moon diameter ???500 pixels) and 9 SWIR (???250 pixels) passbands at phase angles within ??90 degrees. A numerical model for lunar irradiance has been developed which fits hundreds of ROLO images in each band, corrected for atmospheric extinction and calibrated to absolute radiance, then integrated to irradiance. The band-coupled extinction algorithm uses absorption spectra of several gases and aerosols derived from MODTRAN to fit time-dependent component abundances to nightly observations of standard stars. The absolute radiance scale is based upon independent telescopic measurements of the star Vega. The fitting process yields uncertainties in lunar relative irradiance over small ranges of phase angle and the full range of lunar libration well under 0.5%. A larger source of uncertainty enters in the absolute solar spectral irradiance, especially in the SWIR, where solar models disagree by up to 6%. Results of ROLO model direct comparisons to spacecraft observations demonstrate the ability of the technique to track sensor responsivity drifts to sub-percent precision. Intercomparisons among instruments provide key insights into both calibration issues and the absolute scale for lunar irradiance.

  8. High-resolution absolute position detection using a multiple grating

    NASA Astrophysics Data System (ADS)

    Schilling, Ulrich; Drabarek, Pawel; Kuehnle, Goetz; Tiziani, Hans J.

    1996-08-01

    To control electro-mechanical engines, high-resolution linear and rotary encoders are needed. Interferometric methods (grating interferometers) promise a resolution of a few nanometers, but have an ambiguity range of some microns. Incremental encoders increase the absolute measurement range by counting the signal periods starting from a defined initial point. In many applications, however, it is not possible to move to this initial point, so that absolute encoders have to be used. Absolute encoders generally have a scale with two or more tracks placed next to each other. Therefore, they use a two-dimensional grating structure to measure a one-dimensional position. We present a new method, which uses a one-dimensional structure to determine the position in one dimension. It is based on a grating with a large grating period up to some millimeters, having the same diffraction efficiency in several predefined diffraction orders (multiple grating). By combining the phase signals of the different diffraction orders, it is possible to establish the position in an absolute range of the grating period with a resolution like incremental grating interferometers. The principal functionality was demonstrated by applying the multiple grating in a heterodyne grating interferometer. The heterodyne frequency was generated by a frequency modulated laser in an unbalanced interferometer. In experimental measurements an absolute range of 8 mm was obtained while achieving a resolution of 10 nm.

  9. Absolute OH Number Density Measurements in Lean Fuel-Air Mixtures Excited by a Repetitively Pulsed Nanosecond Discharge

    DTIC Science & Technology

    2013-01-01

    cross section quartz channel with wall thickness of 1.75 mm. Two plane quartz windows are fused to the ends of the channel at Brewster angle (for ~308...ttp :// ar c. ai aa .o rg | D O I: 1 0. 25 14 /6 .2 01 3- 43 2 4 about 1 J/pulse, softly focused over the flame using a lens with a focal...region with an f=550 mm lens . The LIF signal sampling volume was about 100 mm away from the laser focal point, to avoid transition saturation. The

  10. Absolute Distance Measurement with the MSTAR Sensor

    NASA Technical Reports Server (NTRS)

    Lay, Oliver P.; Dubovitsky, Serge; Peters, Robert; Burger, Johan; Ahn, Seh-Won; Steier, William H.; Fetterman, Harrold R.; Chang, Yian

    2003-01-01

    The MSTAR sensor (Modulation Sideband Technology for Absolute Ranging) is a new system for measuring absolute distance, capable of resolving the integer cycle ambiguity of standard interferometers, and making it possible to measure distance with sub-nanometer accuracy. The sensor uses a single laser in conjunction with fast phase modulators and low frequency detectors. We describe the design of the system - the principle of operation, the metrology source, beamlaunching optics, and signal processing - and show results for target distances up to 1 meter. We then demonstrate how the system can be scaled to kilometer-scale distances.

  11. An atomic orbital based real-time time-dependent density functional theory for computing electronic circular dichroism band spectra

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Goings, Joshua J.; Li, Xiaosong, E-mail: xsli@uw.edu

    2016-06-21

    One of the challenges of interpreting electronic circular dichroism (ECD) band spectra is that different states may have different rotatory strength signs, determined by their absolute configuration. If the states are closely spaced and opposite in sign, observed transitions may be washed out by nearby states, unlike absorption spectra where transitions are always positive additive. To accurately compute ECD bands, it is necessary to compute a large number of excited states, which may be prohibitively costly if one uses the linear-response time-dependent density functional theory (TDDFT) framework. Here we implement a real-time, atomic-orbital based TDDFT method for computing the entiremore » ECD spectrum simultaneously. The method is advantageous for large systems with a high density of states. In contrast to previous implementations based on real-space grids, the method is variational, independent of nuclear orientation, and does not rely on pseudopotential approximations, making it suitable for computation of chiroptical properties well into the X-ray regime.« less

  12. Absolute and Relative Socioeconomic Health Inequalities across Age Groups

    PubMed Central

    van Zon, Sander K. R.; Bültmann, Ute; Mendes de Leon, Carlos F.; Reijneveld, Sijmen A.

    2015-01-01

    Background The magnitude of socioeconomic health inequalities differs across age groups. It is less clear whether socioeconomic health inequalities differ across age groups by other factors that are known to affect the relation between socioeconomic position and health, like the indicator of socioeconomic position, the health outcome, gender, and as to whether socioeconomic health inequalities are measured in absolute or in relative terms. The aim is to investigate whether absolute and relative socioeconomic health inequalities differ across age groups by indicator of socioeconomic position, health outcome and gender. Methods The study sample was derived from the baseline measurement of the LifeLines Cohort Study and consisted of 95,432 participants. Socioeconomic position was measured as educational level and household income. Physical and mental health were measured with the RAND-36. Age concerned eleven 5-years age groups. Absolute inequalities were examined by comparing means. Relative inequalities were examined by comparing Gini-coefficients. Analyses were performed for both health outcomes by both educational level and household income. Analyses were performed for all age groups, and stratified by gender. Results Absolute and relative socioeconomic health inequalities differed across age groups by indicator of socioeconomic position, health outcome, and gender. Absolute inequalities were most pronounced for mental health by household income. They were larger in younger than older age groups. Relative inequalities were most pronounced for physical health by educational level. Gini-coefficients were largest in young age groups and smallest in older age groups. Conclusions Absolute and relative socioeconomic health inequalities differed cross-sectionally across age groups by indicator of socioeconomic position, health outcome and gender. Researchers should critically consider the implications of choosing a specific age group, in addition to the indicator of

  13. Absolute Equation-of-State Measurement for Polystyrene from 25 - 60 Mbar Using a Spherically Converging Shock Wave

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Glenzer, Siegfried

    We have developed an experimental platform for the National Ignition Facility (NIF) that uses spherically converging shock waves for absolute equation of state (EOS) measurements along the principal Hugoniot. In this Letter we present radiographic compression measurements for polystyrene that were taken at shock pressures reaching 60 Mbar (6 TPa). This significantly exceeds previously published results obtained on the Nova laser [Cauble et al., Phys. Rev. Lett. 80, 1248 (1998)] at strongly improved precision, allowing to discriminate between different EOS models. We find excellent agreement with Kohn-Sham Density Functional Theory based molecular dynamics simulations.

  14. Do we really need a large number of particles to simulate bimolecular reactive transport with random walk methods? A kernel density estimation approach

    NASA Astrophysics Data System (ADS)

    Rahbaralam, Maryam; Fernàndez-Garcia, Daniel; Sanchez-Vila, Xavier

    2015-12-01

    Random walk particle tracking methods are a computationally efficient family of methods to solve reactive transport problems. While the number of particles in most realistic applications is in the order of 106-109, the number of reactive molecules even in diluted systems might be in the order of fractions of the Avogadro number. Thus, each particle actually represents a group of potentially reactive molecules. The use of a low number of particles may result not only in loss of accuracy, but also may lead to an improper reproduction of the mixing process, limited by diffusion. Recent works have used this effect as a proxy to model incomplete mixing in porous media. In this work, we propose using a Kernel Density Estimation (KDE) of the concentrations that allows getting the expected results for a well-mixed solution with a limited number of particles. The idea consists of treating each particle as a sample drawn from the pool of molecules that it represents; this way, the actual location of a tracked particle is seen as a sample drawn from the density function of the location of molecules represented by that given particle, rigorously represented by a kernel density function. The probability of reaction can be obtained by combining the kernels associated to two potentially reactive particles. We demonstrate that the observed deviation in the reaction vs time curves in numerical experiments reported in the literature could be attributed to the statistical method used to reconstruct concentrations (fixed particle support) from discrete particle distributions, and not to the occurrence of true incomplete mixing. We further explore the evolution of the kernel size with time, linking it to the diffusion process. Our results show that KDEs are powerful tools to improve computational efficiency and robustness in reactive transport simulations, and indicates that incomplete mixing in diluted systems should be modeled based on alternative mechanistic models and not on a

  15. Some things ought never be done: moral absolutes in clinical ethics.

    PubMed

    Pellegrino, Edmund D

    2005-01-01

    Moral absolutes have little or no moral standing in our morally diverse modern society. Moral relativism is far more palatable for most ethicists and to the public at large. Yet, when pressed, every moral relativist will finally admit that there are some things which ought never be done. It is the rarest of moral relativists that will take rape, murder, theft, child sacrifice as morally neutral choices. In general ethics, the list of those things that must never be done will vary from person to person. In clinical ethics, however, the nature of the physician-patient relationship is such that certain moral absolutes are essential to the attainment of the good of the patient - the end of the relationship itself. These are all derivatives of the first moral absolute of all morality: Do good and avoid evil. In the clinical encounter, this absolute entails several subsidiary absolutes - act for the good of the patient, do not kill, keep promises, protect the dignity of the patient, do not lie, avoid complicity with evil. Each absolute is intrinsic to the healing and helping ends of the clinical encounter.

  16. Absolute and relative educational inequalities in depression in Europe.

    PubMed

    Dudal, Pieter; Bracke, Piet

    2016-09-01

    To investigate (1) the size of absolute and relative educational inequalities in depression, (2) their variation between European countries, and (3) their relationship with underlying prevalence rates. Analyses are based on the European Social Survey, rounds three and six (N = 57,419). Depression is measured using the shortened Centre of Epidemiologic Studies Depression Scale. Education is coded by use of the International Standard Classification of Education. Country-specific logistic regressions are applied. Results point to an elevated risk of depressive symptoms among the lower educated. The cross-national patterns differ between absolute and relative measurements. For men, large relative inequalities are found for countries including Denmark and Sweden, but are accompanied by small absolute inequalities. For women, large relative and absolute inequalities are found in Belgium, Bulgaria, and Hungary. Results point to an empirical association between inequalities and the underlying prevalence rates. However, the strength of the association is only moderate. This research stresses the importance of including both measurements for comparative research and suggests the inclusion of the level of population health in research into inequalities in health.

  17. Absolute configuration of (-)-myrtenal by vibrational circular dichroism.

    PubMed

    Burgueño-Tapia, Eleuterio; Zepeda, L Gerardo; Joseph-Nathan, Pedro

    2010-07-01

    The VCD spectrum of the monoterpene (-)-myrtenal (1) was compared with theoretical spectra using ab initio density functional theory (DFT) calculations at the B3LYP/6-31G(d,p), B3LYP/6-31G+(d,p), B3LYP/6-311G+(d,p), B3LYP/DGDZVP, and B3PW91/DGTZVP levels of theory. Conformational analysis of 1 indicated that the lowest energy conformer was s-trans-C2-C10, which contributes more than 98.5% to the total conformational population regardless of the employed level of theory. The use of a recently developed confidence level algorithm demonstrated that VCD spectra calculated for the main conformer, using the indicated hybrid functionals and basis set, gave no significant changes, from where it follows that B3LYP/DGDZVP calculations provide a superior balance between computer cost and VCD spectral accuracy. The DGDZVP basis set demanded around a quarter the time than the 6-311G+(d,p) basis set while providing similar results. The spectral comparison also provided evidence that the levorotatory enantiomer of myrtenal has the 1R absolute configuration. 2010 Elsevier Ltd. All rights reserved.

  18. Systematic measurements of opacity dependence on temperature, density, and atomic number at stellar interior conditions

    NASA Astrophysics Data System (ADS)

    Nagayama, Taisuke

    2017-10-01

    Model predictions for iron opacity are notably different from measurements performed at matter conditions similar to the boundary between the solar radiation and convection zones. The calculated iron opacities have narrower spectral lines, weaker quasi-continuum at short wavelength, and deeper opacity windows than the measurements. If correct, these measurements help resolve a decade old problem in solar physics. A key question is therefore: What is responsible for the model-data discrepancy? The answer is complex because the experiments are challenging and opacity theories depend on multiple entangled physical processes such as the influence of completeness and accuracy of atomic states, line broadening, contributions from myriad transitions from excited states, and multi-photon absorption processes. To help determine the cause of this discrepancy, a systematic study of opacity variation with temperature, density, and atomic number is underway. Measurements of chromium, iron, and nickel opacities have been performed at two different temperatures and densities. The collection of measured opacities provides constraints on hypotheses to explain the discrepancy. We will discuss implications of measured opacities, experimental errors, and possible opacity model refinements. Sandia National Laboratories is a multi-mission laboratory managed and operated by National Technology and Engineering Solutions of Sandia, LLC., a wholly owned subsidiary of Honeywell International, Inc., for the U.S. Department of Energy's National Nuclear Security Administration under contract DE-NA0003525.

  19. Density- and luminosity-functions for UBV-photometric discand halo-stars in SA 54, compared with earlier RGU-results in this field

    NASA Astrophysics Data System (ADS)

    Fenkart, R.; Esin-Yilmaz, F.

    1983-12-01

    Space density- and luminosity-functions for the photometric halo- and disc-populations in the test-field SA 54 of the Basle Halo Program have been derived on the basis of UBV observations of the same 1377 stars used already for the corresponding RGU investigation by Fenkart (1968). The statistical method for separating the photometrically defined populations and for attributing absolute magnitudes to their members developed, described and first applied to SA 51 in RGU by Becker (1965) has been adapted for use in the UBV system. The (U-B, B- V) diagrams for consecutive intervals in apparent V-magnitude of figures 2a to f contain, contrary to what was first expected in this system, substantial numbers of stars in the < blanketing-region above and to the right of the late branch of the two-colour diagram main-sequence. The density-functions for different MVintervals within the overall interval < 3m, 7m> covered by this investigation for halo and disc are given in tables IIa and b, and plotted in figures 3 and 4, respectively. The corresponding luminosity-functions within the partial volume up to 1 kpc from the sun over the same overall MVinterval are given together with Glieses (1969) solar values for population I, in table III, and plotted in figure 5. The overall density-functions (3m ≦ MV ≦ 7m) for both populations can be and are compared with the corresponding ones (3m ≦ MG ≦ 8m) in RGU (last column in table II) in figures 6 and 7, for halo and disc, respectively. The coincidence of the density results between UBV and RGU is much better for both populations than the mean misidentification rate per system derived in section 5 would let us expect, suggesting a statistically fairly repartition of the misidentifications with respect to absolute magnitudes and distances.

  20. Relativistic Absolutism in Moral Education.

    ERIC Educational Resources Information Center

    Vogt, W. Paul

    1982-01-01

    Discusses Emile Durkheim's "Moral Education: A Study in the Theory and Application of the Sociology of Education," which holds that morally healthy societies may vary in culture and organization but must possess absolute rules of moral behavior. Compares this moral theory with current theory and practice of American educators. (MJL)

  1. Bubbling in unbounded coflowing liquids.

    PubMed

    Gañán-Calvo, Alfonso M; Herrada, Miguel A; Garstecki, Piotr

    2006-03-31

    An investigation of the stability of low density and viscosity fluid jets and spouts in unbounded coflowing liquids is presented. A full parametrical analysis from low to high Weber and Reynolds numbers shows that the presence of any fluid of finite density and viscosity inside the hollow jet elicits a transition from an absolute to a convective instability at a finite value of the Weber number, for any value of the Reynolds number. Below that critical value of the Weber number, the absolute character of the instability leads to local breakup, and consequently to local bubbling. Experimental data support our model.

  2. Self-interaction-corrected time-dependent density-functional-theory calculations of x-ray-absorption spectra

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Tu, Guangde; Rinkevicius, Zilvinas; Vahtras, Olav

    We outline an approach within time-dependent density functional theory that predicts x-ray spectra on an absolute scale. The approach rests on a recent formulation of the resonant-convergent first-order polarization propagator [P. Norman et al., J. Chem. Phys. 123, 194103 (2005)] and corrects for the self-interaction energy of the core orbital. This polarization propagator approach makes it possible to directly calculate the x-ray absorption cross section at a particular frequency without explicitly addressing the excited-state spectrum. The self-interaction correction for the employed density functional accounts for an energy shift of the spectrum, and fully correlated absolute-scale x-ray spectra are thereby obtainedmore » based solely on optimization of the electronic ground state. The procedure is benchmarked against experimental spectra of a set of small organic molecules at the carbon, nitrogen, and oxygen K edges.« less

  3. Oxygen-promoted catalyst sintering influences number density, alignment, and wall number of vertically aligned carbon nanotubes

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Shi, Wenbo; Li, Jinjing; Polsen, Erik S.

    A lack of synthetic control and reproducibility during vertically aligned carbon nanotube (CNT) synthesis has stifled many promising applications of organic nanomaterials. Oxygen-containing species are particularly precarious in that they have both beneficial and deleterious effects and are notoriously difficult to control. In this paper, we demonstrated diatomic oxygen's ability, independent of water, to tune oxide-supported catalyst thin film dewetting and influence nanoscale (diameter and wall number) and macro-scale (alignment and density) properties for as-grown vertically aligned CNTs. In particular, single- or few-walled CNT forests were achieved at very low oxygen loading, with single-to-multi-walled CNT diameters ranging from 4.8 ±more » 1.3 nm to 6.4 ± 1.1 nm over 0–800 ppm O 2, and an expected variation in alignment, where both were related to the annealed catalyst morphology. Morphological differences were not the result of subsurface diffusion, but instead occurred via Ostwald ripening under several hundred ppm O 2, and this effect was mitigated by high H 2 concentrations and not due to water vapor (as confirmed in O 2-free water addition experiments), supporting the importance of O 2 specifically. Further characterization of the interface between the Fe catalyst and Al 2O 3 support revealed that either oxygen-deficit metal oxide or oxygen-adsorption on metals could be functional mechanisms for the observed catalyst nanoparticle evolution. Finally, taken as a whole, our results suggest that the impacts of O 2 and H 2 on the catalyst evolution have been underappreciated and underleveraged in CNT synthesis, and these could present a route toward facile manipulation of CNT forest morphology through control of the reactive gaseous atmosphere alone.« less

  4. Oxygen-promoted catalyst sintering influences number density, alignment, and wall number of vertically aligned carbon nanotubes

    DOE PAGES

    Shi, Wenbo; Li, Jinjing; Polsen, Erik S.; ...

    2017-04-11

    A lack of synthetic control and reproducibility during vertically aligned carbon nanotube (CNT) synthesis has stifled many promising applications of organic nanomaterials. Oxygen-containing species are particularly precarious in that they have both beneficial and deleterious effects and are notoriously difficult to control. In this paper, we demonstrated diatomic oxygen's ability, independent of water, to tune oxide-supported catalyst thin film dewetting and influence nanoscale (diameter and wall number) and macro-scale (alignment and density) properties for as-grown vertically aligned CNTs. In particular, single- or few-walled CNT forests were achieved at very low oxygen loading, with single-to-multi-walled CNT diameters ranging from 4.8 ±more » 1.3 nm to 6.4 ± 1.1 nm over 0–800 ppm O 2, and an expected variation in alignment, where both were related to the annealed catalyst morphology. Morphological differences were not the result of subsurface diffusion, but instead occurred via Ostwald ripening under several hundred ppm O 2, and this effect was mitigated by high H 2 concentrations and not due to water vapor (as confirmed in O 2-free water addition experiments), supporting the importance of O 2 specifically. Further characterization of the interface between the Fe catalyst and Al 2O 3 support revealed that either oxygen-deficit metal oxide or oxygen-adsorption on metals could be functional mechanisms for the observed catalyst nanoparticle evolution. Finally, taken as a whole, our results suggest that the impacts of O 2 and H 2 on the catalyst evolution have been underappreciated and underleveraged in CNT synthesis, and these could present a route toward facile manipulation of CNT forest morphology through control of the reactive gaseous atmosphere alone.« less

  5. Inappropriately Applying Natural Number Properties in Rational Number Tasks: Characterizing the Development of the Natural Number Bias through Primary and Secondary Education

    ERIC Educational Resources Information Center

    van Hoof, Jo; Verschaffel, Lieven; van Dooren, Wim

    2015-01-01

    The natural number bias is known to explain many difficulties learners have with understanding rational numbers. The research field distinguishes three aspects where natural number properties are sometimes inappropriately applied in rational number tasks: density, size, and operations. The overall goal of this study was to characterize the…

  6. Establishing Ion Ratio Thresholds Based on Absolute Peak Area for Absolute Protein Quantification using Protein Cleavage Isotope Dilution Mass Spectrometry

    PubMed Central

    Loziuk, Philip L.; Sederoff, Ronald R.; Chiang, Vincent L.; Muddiman, David C.

    2014-01-01

    Quantitative mass spectrometry has become central to the field of proteomics and metabolomics. Selected reaction monitoring is a widely used method for the absolute quantification of proteins and metabolites. This method renders high specificity using several product ions measured simultaneously. With growing interest in quantification of molecular species in complex biological samples, confident identification and quantitation has been of particular concern. A method to confirm purity or contamination of product ion spectra has become necessary for achieving accurate and precise quantification. Ion abundance ratio assessments were introduced to alleviate some of these issues. Ion abundance ratios are based on the consistent relative abundance (RA) of specific product ions with respect to the total abundance of all product ions. To date, no standardized method of implementing ion abundance ratios has been established. Thresholds by which product ion contamination is confirmed vary widely and are often arbitrary. This study sought to establish criteria by which the relative abundance of product ions can be evaluated in an absolute quantification experiment. These findings suggest that evaluation of the absolute ion abundance for any given transition is necessary in order to effectively implement RA thresholds. Overall, the variation of the RA value was observed to be relatively constant beyond an absolute threshold ion abundance. Finally, these RA values were observed to fluctuate significantly over a 3 year period, suggesting that these values should be assessed as close as possible to the time at which data is collected for quantification. PMID:25154770

  7. Association of infertility and fertility treatment with mammographic density in a large screening-based cohort of women: a cross-sectional study.

    PubMed

    Lundberg, Frida E; Johansson, Anna L V; Rodriguez-Wallberg, Kenny; Brand, Judith S; Czene, Kamila; Hall, Per; Iliadou, Anastasia N

    2016-04-13

    Ovarian stimulation drugs, in particular hormonal agents used for controlled ovarian stimulation (COS) required to perform in vitro fertilization, increase estrogen and progesterone levels and have therefore been suspected to influence breast cancer risk. This study aims to investigate whether infertility and hormonal fertility treatment influences mammographic density, a strong hormone-responsive risk factor for breast cancer. Cross-sectional study including 43,313 women recruited to the Karolinska Mammography Project between 2010 and 2013. Among women who reported having had infertility, 1576 had gone through COS, 1429 had had hormonal stimulation without COS and 5958 had not received any hormonal fertility treatment. Percent and absolute mammographic densities were obtained using the volumetric method Volpara™. Associations with mammographic density were assessed using multivariable generalized linear models, estimating mean differences (MD) with 95 % confidence intervals (CI). After multivariable adjustment, women with a history of infertility had 1.53 cm(3) higher absolute dense volume compared to non-infertile women (95 % CI: 0.70 to 2.35). Among infertile women, only those who had gone through COS treatment had a higher absolute dense volume than those who had not received any hormone treatment (adjusted MD 3.22, 95 % CI: 1.10 to 5.33). No clear associations were observed between infertility, fertility treatment and percent volumetric density. Overall, women reporting infertility had more dense tissue in the breast. The higher absolute dense volume in women treated with COS may indicate a treatment effect, although part of the association might also be due to the underlying infertility. Continued monitoring of cancer risk in infertile women, especially those who undergo COS, is warranted.

  8. Study on the number density of nanobubbles at varying concentration of ethanol in ethanol-water solution

    NASA Astrophysics Data System (ADS)

    Rajib, Md. Mahadi; Farzeen, Parisa; Ali, Mohammad

    2017-12-01

    In recent years, nanobubble technology has drawn great attention due to its extensive incorporation to substantial aspects of science and technology such as water treatment, drug delivery enhancement to cells, solvent and nutritional supplements manufacturing and many others. Bulk nanobubbles may be present in most aqueous solutions, possibly being constantly created by cosmic radiation and agitation and surface nanobubbles are present at most surfaces [1,2]. But, for utilizing these nanobubbles in a definitive way it's important to know whether an added amount of solution making substance has constructive or adverse effect on the nanobubble. In this work, the change of number density of nanobubbles in ethanol-water solution was studied by varying the ethanol concentration.

  9. Essential Oils, Part VI: Sandalwood Oil, Ylang-Ylang Oil, and Jasmine Absolute.

    PubMed

    de Groot, Anton C; Schmidt, Erich

    In this article, some aspects of sandalwood oil, ylang-ylang oil, and jasmine absolute are discussed including their botanical origin, uses of the plants and the oils and absolute, chemical composition, contact allergy to and allergic contact dermatitis from these essential oils and absolute, and their causative allergenic ingredients.

  10. Characterizing flow in oil reservoir rock using SPH: absolute permeability

    NASA Astrophysics Data System (ADS)

    Holmes, David W.; Williams, John R.; Tilke, Peter; Leonardi, Christopher R.

    2016-04-01

    In this paper, a three-dimensional smooth particle hydrodynamics (SPH) simulator for modeling grain scale fluid flow in porous rock is presented. The versatility of the SPH method has driven its use in increasingly complex areas of flow analysis, including flows related to permeable rock for both groundwater and petroleum reservoir research. While previous approaches to such problems using SPH have involved the use of idealized pore geometries (cylinder/sphere packs etc), in this paper we detail the characterization of flow in models with geometries taken from 3D X-ray microtomographic imaging of actual porous rock; specifically 25.12 % porosity dolomite. This particular rock type has been well characterized experimentally and described in the literature, thus providing a practical `real world' means of verification of SPH that will be key to its acceptance by industry as a viable alternative to traditional reservoir modeling tools. The true advantages of SPH are realized when adding the complexity of multiple fluid phases, however, the accuracy of SPH for single phase flow is, as yet, under developed in the literature and will be the primary focus of this paper. Flow in reservoir rock will typically occur in the range of low Reynolds numbers, making the enforcement of no-slip boundary conditions an important factor in simulation. To this end, we detail the development of a new, robust, and numerically efficient method for implementing no-slip boundary conditions in SPH that can handle the degree of complexity of boundary surfaces, characteristic of an actual permeable rock sample. A study of the effect of particle density is carried out and simulation results for absolute permeability are presented and compared to those from experimentation showing good agreement and validating the method for such applications.

  11. Density-ratio effects on buoyancy-driven variable-density turbulent mixing

    NASA Astrophysics Data System (ADS)

    Aslangil, Denis; Livescu, Daniel; Banerjee, Arindam

    2017-11-01

    Density-ratio effects on the turbulent mixing of two incompressible, miscible fluids with different densities subject to constant acceleration are studied by means of high-resolution Direct Numerical Simulations. In a triply periodic domain, turbulence is generated by stirring in response to the differential buoyancy forces within the flow. Later, as the fluids become molecularly mixed, dissipation starts to overcome turbulence generation by bouyancy. Thus, the flow evolution includes both turbulence growth and decay, and it displays features present in the core region of the mixing layer of the Rayleigh-Taylor as well as Richtmyer-Meshkov instabilities. We extend the previous studies by investigating a broad range of density-ratio, from 1-14.4:1, corresponding to Atwood numbers of 0.05-0.87. Here, we focus on the Atwood number dependence of mixing-efficiency, that is defined based on the energy-conversion ratios from potential energy to total and turbulent kinetic energies, the decay characteristics of buoyancy-assisted variable-density homogeneous turbulence, and the effects of high density-ratios on the turbulence structure and mixing process. Authors acknowledge financial support from DOE-SSAA (DE-NA0003195) and NSF CAREER (#1453056) awards.

  12. Demand for Higher Education, by Field. Policy Note. Number 5

    ERIC Educational Resources Information Center

    Group of Eight (NJ1), 2012

    2012-01-01

    Over the period 2001-2011, the number of applications for university places increased by 17.8%, or just over 37,000. At the same time, the number of offers increased faster in percentage terms (20.5%), while absolute growth was slightly smaller at just under 35,000. As demand for higher education has grown, there has been a trend towards Science,…

  13. 242Pu absolute neutron-capture cross section measurement

    NASA Astrophysics Data System (ADS)

    Buckner, M. Q.; Wu, C. Y.; Henderson, R. A.; Bucher, B.; Chyzh, A.; Bredeweg, T. A.; Baramsai, B.; Couture, A.; Jandel, M.; Mosby, S.; O'Donnell, J. M.; Ullmann, J. L.

    2017-09-01

    The absolute neutron-capture cross section of 242Pu was measured at the Los Alamos Neutron Science Center using the Detector for Advanced Neutron-Capture Experiments array along with a compact parallel-plate avalanche counter for fission-fragment detection. During target fabrication, a small amount of 239Pu was added to the active target so that the absolute scale of the 242Pu(n,γ) cross section could be set according to the known 239Pu(n,f) resonance at En,R = 7.83 eV. The relative scale of the 242Pu(n,γ) cross section covers four orders of magnitude for incident neutron energies from thermal to ≈ 40 keV. The cross section reported in ENDF/B-VII.1 for the 242Pu(n,γ) En,R = 2.68 eV resonance was found to be 2.4% lower than the new absolute 242Pu(n,γ) cross section.

  14. A new Ultra Precision Interferometer for absolute length measurements down to cryogenic temperatures

    NASA Astrophysics Data System (ADS)

    Schödel, R.; Walkov, A.; Zenker, M.; Bartl, G.; Meeß, R.; Hagedorn, D.; Gaiser, C.; Thummes, G.; Heltzel, S.

    2012-09-01

    A new Ultra Precision Interferometer (UPI) was built at Physikalisch-Technische Bundesanstalt. As its precursor, the precision interferometer, it was designed for highly precise absolute length measurements of prismatic bodies, e.g. gauge blocks, under well-defined temperature conditions and pressure, making use of phase stepping imaging interferometry. The UPI enables a number of enhanced features, e.g. it is designed for a much better lateral resolution and better temperature stability. In addition to the original concept, the UPI is equipped with an external measurement pathway (EMP) in which a prismatic body can be placed alternatively. The temperature of the EMP can be controlled in a much wider range compared to the temperature of the interferometer's main chamber. An appropriate cryostat system, a precision temperature measurement system and improved imaging interferometry were established to permit absolute length measurements down to cryogenic temperature, demonstrated for the first time ever. Results of such measurements are important for studying thermal expansion of materials from room temperature towards less than 10 K.

  15. Seasonal Activity, Density, and Collection Efficiency of the Blacklegged Tick (Ixodes scapularis) (Acari: Ixodidae) in Mid-Western Pennsylvania.

    PubMed

    Simmons, T W; Shea, J; Myers-Claypole, M A; Kruise, R; Hutchinson, M L

    2015-11-01

    Although Pennsylvania has recently reported the greatest number of Lyme disease cases in the United States, with the largest increase for PA occurring in its western region, the population biology of the blacklegged tick (Ixodes scapularis Say) has not been adequately characterized in western PA. We studied the seasonal activity of host-seeking I. scapularis larvae, nymphs, and adults in mid-western PA over the course of a year, including a severe winter, and determined their absolute densities and collection efficiencies using replicated mark-release-recapture or removal methods. Our results are compared to those from similar studies conducted in the highly Lyme disease endemic Hudson Valley region of southeastern New York State. The seasonal activity of I. scapularis was intermediate between patterns observed in the coastal northeastern and upper Midwestern United States. Only one peak of larval activity was observed, which was later than the major peak in the Midwest, but earlier than in the northeast. Seasonal synchrony of larvae and nymphs was similar to the northeast, but the activity peaks were much closer together, although not completely overlapping as in the Midwest. Pre- and postwinter relative densities of questing adult I. scapularis were not significantly different from one another. The absolute densities and collection efficiencies of larvae, nymphs, and adults were comparable to results from classic research conducted at the Louis Calder Center in Westchester County, NY. We conclude that the population biology of I. scapularis in mid-western PA is similar to southeastern NYS contributing to a high acarological Lyme disease risk. © The Authors 2015. Published by Oxford University Press on behalf of Entomological Society of America. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

  16. [Prognostic value of absolute monocyte count in chronic lymphocytic leukaemia].

    PubMed

    Szerafin, László; Jakó, János; Riskó, Ferenc

    2015-04-01

    The low peripheral absolute lymphocyte and high monocyte count have been reported to correlate with poor clinical outcome in various lymphomas and other cancers. However, a few data known about the prognostic value of absolute monocyte count in chronic lymphocytic leukaemia. The aim of the authors was to investigate the impact of absolute monocyte count measured at the time of diagnosis in patients with chronic lymphocytic leukaemia on the time to treatment and overal survival. Between January 1, 2005 and December 31, 2012, 223 patients with newly-diagnosed chronic lymphocytic leukaemia were included. The rate of patients needing treatment, time to treatment, overal survival and causes of mortality based on Rai stages, CD38, ZAP-70 positivity and absolute monocyte count were analyzed. Therapy was necessary in 21.1%, 57.4%, 88.9%, 88.9% and 100% of patients in Rai stage 0, I, II, III an IV, respectively; in 61.9% and 60.8% of patients exhibiting CD38 and ZAP-70 positivity, respectively; and in 76.9%, 21.2% and 66.2% of patients if the absolute monocyte count was <0.25 G/l, between 0.25-0.75 G/l and >0.75 G/l, respectively. The median time to treatment and the median overal survival were 19.5, 65, and 35.5 months; and 41.5, 65, and 49.5 months according to the three groups of monocyte counts. The relative risk of beginning the therapy was 1.62 (p<0.01) in patients with absolute monocyte count <0.25 G/l or >0.75 G/l, as compared to those with 0.25-0.75 G/l, and the risk of overal survival was 2.41 (p<0.01) in patients with absolute monocyte count lower than 0.25 G/l as compared to those with higher than 0.25 G/l. The relative risks remained significant in Rai 0 patients, too. The leading causes of mortality were infections (41.7%) and the chronic lymphocytic leukaemia (58.3%) in patients with low monocyte count, while tumours (25.9-35.3%) and other events (48.1 and 11.8%) occurred in patients with medium or high monocyte counts. Patients with low and high monocyte

  17. A case-control study to assess the impact of mammographic density on breast cancer risk in women aged 40-49 at intermediate familial risk.

    PubMed

    Assi, Valentina; Massat, Nathalie J; Thomas, Susan; MacKay, James; Warwick, Jane; Kataoka, Masako; Warsi, Iqbal; Brentnall, Adam; Warren, Ruth; Duffy, Stephen W

    2015-05-15

    Mammographic density is a strong risk factor for breast cancer, but its potential application in risk management is not clear, partly due to uncertainties about its interaction with other breast cancer risk factors. We aimed to quantify the impact of mammographic density on breast cancer risk in women aged 40-49 at intermediate familial risk of breast cancer (average lifetime risk of 23%), in particular in premenopausal women, and to investigate its relationship with other breast cancer risk factors in this population. We present the results from a case-control study nested with the FH01 cohort study of 6,710 women mostly aged 40-49 at intermediate familial risk of breast cancer. One hundred and three cases of breast cancer were age-matched to one or two controls. Density was measured by semiautomated interactive thresholding. Absolute density, but not percent density, was a significant risk factor for breast cancer in this population after adjusting for area of nondense tissue (OR per 10 cm(2) = 1.07, 95% CI 1.00-1.15, p = 0.04). The effect was stronger in premenopausal women, who made up the majority of the study population. Absolute density remained a significant predictor of breast cancer risk after adjusting for age at menarche, age at first live birth, parity, past or present hormone replacement therapy, and the Tyrer-Cuzick 10-year relative risk estimate of breast cancer. Absolute density can improve breast cancer risk stratification and delineation of high-risk groups alongside the Tyrer-Cuzick 10-year relative risk estimate. © 2014 UICC.

  18. Probabilistic estimates of number of undiscovered deposits and their total tonnages in permissive tracts using deposit densities

    USGS Publications Warehouse

    Singer, Donald A.; Kouda, Ryoichi

    2011-01-01

    Empirical evidence indicates that processes affecting number and quantity of resources in geologic settings are very general across deposit types. Sizes of permissive tracts that geologically could contain the deposits are excellent predictors of numbers of deposits. In addition, total ore tonnage of mineral deposits of a particular type in a tract is proportional to the type’s median tonnage in a tract. Regressions using size of permissive tracts and median tonnage allow estimation of number of deposits and of total tonnage of mineralization. These powerful estimators, based on 10 different deposit types from 109 permissive worldwide control tracts, generalize across deposit types. Estimates of number of deposits and of total tonnage of mineral deposits are made by regressing permissive area, and mean (in logs) tons in deposits of the type, against number of deposits and total tonnage of deposits in the tract for the 50th percentile estimates. The regression equations (R2 = 0.91 and 0.95) can be used for all deposit types just by inserting logarithmic values of permissive area in square kilometers, and mean tons in deposits in millions of metric tons. The regression equations provide estimates at the 50th percentile, and other equations are provided for 90% confidence limits for lower estimates and 10% confidence limits for upper estimates of number of deposits and total tonnage. Equations for these percentile estimates along with expected value estimates are presented here along with comparisons with independent expert estimates. Also provided are the equations for correcting for the known well-explored deposits in a tract. These deposit-density models require internally consistent grade and tonnage models and delineations for arriving at unbiased estimates.

  19. Confidence-Accuracy Calibration in Absolute and Relative Face Recognition Judgments

    ERIC Educational Resources Information Center

    Weber, Nathan; Brewer, Neil

    2004-01-01

    Confidence-accuracy (CA) calibration was examined for absolute and relative face recognition judgments as well as for recognition judgments from groups of stimuli presented simultaneously or sequentially (i.e., simultaneous or sequential mini-lineups). When the effect of difficulty was controlled, absolute and relative judgments produced…

  20. Reliable absolute analog code retrieval approach for 3D measurement

    NASA Astrophysics Data System (ADS)

    Yu, Shuang; Zhang, Jing; Yu, Xiaoyang; Sun, Xiaoming; Wu, Haibin; Chen, Deyun

    2017-11-01

    The wrapped phase of phase-shifting approach can be unwrapped by using Gray code, but both the wrapped phase error and Gray code decoding error can result in period jump error, which will lead to gross measurement error. Therefore, this paper presents a reliable absolute analog code retrieval approach. The combination of unequal-period Gray code and phase shifting patterns at high frequencies are used to obtain high-frequency absolute analog code, and at low frequencies, the same unequal-period combination patterns are used to obtain the low-frequency absolute analog code. Next, the difference between the two absolute analog codes was employed to eliminate period jump errors, and a reliable unwrapped result can be obtained. Error analysis was used to determine the applicable conditions, and this approach was verified through theoretical analysis. The proposed approach was further verified experimentally. Theoretical analysis and experimental results demonstrate that the proposed approach can perform reliable analog code unwrapping.

  1. Precision measurements of linear scattering density using muon tomography

    NASA Astrophysics Data System (ADS)

    Åström, E.; Bonomi, G.; Calliari, I.; Calvini, P.; Checchia, P.; Donzella, A.; Faraci, E.; Forsberg, F.; Gonella, F.; Hu, X.; Klinger, J.; Sundqvist Ökvist, L.; Pagano, D.; Rigoni, A.; Ramous, E.; Urbani, M.; Vanini, S.; Zenoni, A.; Zumerle, G.

    2016-07-01

    We demonstrate that muon tomography can be used to precisely measure the properties of various materials. The materials which have been considered have been extracted from an experimental blast furnace, including carbon (coke) and iron oxides, for which measurements of the linear scattering density relative to the mass density have been performed with an absolute precision of 10%. We report the procedures that are used in order to obtain such precision, and a discussion is presented to address the expected performance of the technique when applied to heavier materials. The results we obtain do not depend on the specific type of material considered and therefore they can be extended to any application.

  2. Auditory working memory predicts individual differences in absolute pitch learning.

    PubMed

    Van Hedger, Stephen C; Heald, Shannon L M; Koch, Rachelle; Nusbaum, Howard C

    2015-07-01

    Absolute pitch (AP) is typically defined as the ability to label an isolated tone as a musical note in the absence of a reference tone. At first glance the acquisition of AP note categories seems like a perceptual learning task, since individuals must assign a category label to a stimulus based on a single perceptual dimension (pitch) while ignoring other perceptual dimensions (e.g., loudness, octave, instrument). AP, however, is rarely discussed in terms of domain-general perceptual learning mechanisms. This is because AP is typically assumed to depend on a critical period of development, in which early exposure to pitches and musical labels is thought to be necessary for the development of AP precluding the possibility of adult acquisition of AP. Despite this view of AP, several previous studies have found evidence that absolute pitch category learning is, to an extent, trainable in a post-critical period adult population, even if the performance typically achieved by this population is below the performance of a "true" AP possessor. The current studies attempt to understand the individual differences in learning to categorize notes using absolute pitch cues by testing a specific prediction regarding cognitive capacity related to categorization - to what extent does an individual's general auditory working memory capacity (WMC) predict the success of absolute pitch category acquisition. Since WMC has been shown to predict performance on a wide variety of other perceptual and category learning tasks, we predict that individuals with higher WMC should be better at learning absolute pitch note categories than individuals with lower WMC. Across two studies, we demonstrate that auditory WMC predicts the efficacy of learning absolute pitch note categories. These results suggest that a higher general auditory WMC might underlie the formation of absolute pitch categories for post-critical period adults. Implications for understanding the mechanisms that underlie the

  3. Internal Forced Convection to Low Prandtl Number Gas Mixtures.

    DTIC Science & Technology

    1984-07-15

    heating; v iV 0" ..- . --- NCX~ENCLATURE (continued) Greek Symbols -/K Force constant in Lennard - Jones potential ; y Ratio of specific heats, c p/cV...Absolute viscosity; V Kinematic viscosity; P Density; C Force constant in Lennard - Jones potential ; Nondimensional Parameters 2 f Friction factor, g P DAp...Reynolds and Perkins, 1968] id= c = (T - Tref)and (9) C VyRT= v(5/3)RT The Lennard - Jones (6-12) potential can be employed in the Chapman- Enskog kinetic

  4. Affinity proteomic profiling of plasma for proteins associated to area-based mammographic breast density.

    PubMed

    Byström, Sanna; Eklund, Martin; Hong, Mun-Gwan; Fredolini, Claudia; Eriksson, Mikael; Czene, Kamila; Hall, Per; Schwenk, Jochen M; Gabrielson, Marike

    2018-02-14

    Mammographic breast density is one of the strongest risk factors for breast cancer, but molecular understanding of how breast density relates to cancer risk is less complete. Studies of proteins in blood plasma, possibly associated with mammographic density, are well-suited as these allow large-scale analyses and might shed light on the association between breast cancer and breast density. Plasma samples from 1329 women in the Swedish KARMA project, without prior history of breast cancer, were profiled with antibody suspension bead array (SBA) assays. Two sample sets comprising 729 and 600 women were screened by two different SBAs targeting a total number of 357 proteins. Protein targets were selected through searching the literature, for either being related to breast cancer or for being linked to the extracellular matrix. Association between proteins and absolute area-based breast density (AD) was assessed by quantile regression, adjusting for age and body mass index (BMI). Plasma profiling revealed linear association between 20 proteins and AD, concordant in the two sets of samples (p < 0.05). Plasma levels of seven proteins were positively associated and 13 proteins negatively associated with AD. For eleven of these proteins evidence for gene expression in breast tissue existed. Among these, ABCC11, TNFRSF10D, F11R and ERRF were positively associated with AD, and SHC1, CFLAR, ACOX2, ITGB6, RASSF1, FANCD2 and IRX5 were negatively associated with AD. Screening proteins in plasma indicates associations between breast density and processes of tissue homeostasis, DNA repair, cancer development and/or progression in breast cancer. Further validation and follow-up studies of the shortlisted protein candidates in independent cohorts will be needed to infer their role in breast density and its progression in premenopausal and postmenopausal women.

  5. Method and apparatus for two-dimensional absolute optical encoding

    NASA Technical Reports Server (NTRS)

    Leviton, Douglas B. (Inventor)

    2004-01-01

    This invention presents a two-dimensional absolute optical encoder and a method for determining position of an object in accordance with information from the encoder. The encoder of the present invention comprises a scale having a pattern being predetermined to indicate an absolute location on the scale, means for illuminating the scale, means for forming an image of the pattern; and detector means for outputting signals derived from the portion of the image of the pattern which lies within a field of view of the detector means, the field of view defining an image reference coordinate system, and analyzing means, receiving the signals from the detector means, for determining the absolute location of the object. There are two types of scale patterns presented in this invention: grid type and starfield type.

  6. New design and facilities for the International Database for Absolute Gravity Measurements (AGrav): A support for the Establishment of a new Global Absolute Gravity Reference System

    NASA Astrophysics Data System (ADS)

    Wziontek, Hartmut; Falk, Reinhard; Bonvalot, Sylvain; Rülke, Axel

    2017-04-01

    After about 10 years of successful joint operation by BGI and BKG, the International Database for Absolute Gravity Measurements "AGrav" (see references hereafter) was under a major revision. The outdated web interface was replaced by a responsive, high level web application framework based on Python and built on top of Pyramid. Functionality was added, like interactive time series plots or a report generator and the interactive map-based station overview was updated completely, comprising now clustering and the classification of stations. Furthermore, the database backend was migrated to PostgreSQL for better support of the application framework and long-term availability. As comparisons of absolute gravimeters (AG) become essential to realize a precise and uniform gravity standard, the database was extended to document the results on international and regional level, including those performed at monitoring stations equipped with SGs. By this it will be possible to link different AGs and to trace their equivalence back to the key comparisons under the auspices of International Committee for Weights and Measures (CIPM) as the best metrological realization of the absolute gravity standard. In this way the new AGrav database accommodates the demands of the new Global Absolute Gravity Reference System as recommended by the IAG Resolution No. 2 adopted in Prague 2015. The new database will be presented with focus on the new user interface and new functionality, calling all institutions involved in absolute gravimetry to participate and contribute with their information to built up a most complete picture of high precision absolute gravimetry and improve its visibility. A Digital Object Identifier (DOI) will be provided by BGI to contributors to give a better traceability and facilitate the referencing of their gravity surveys. Links and references: BGI mirror site : http://bgi.obs-mip.fr/data-products/Gravity-Databases/Absolute-Gravity-data/ BKG mirror site: http

  7. 237Np absolute delayed neutron yield measurements

    NASA Astrophysics Data System (ADS)

    Doré, D.; Ledoux, X.; Nolte, R.; Gagnon-Moisan, F.; Thulliez, L.; Litaize, O.; Roettger, S.; Serot, O.

    2017-09-01

    237Np absolute delayed neutron yields have been measured at different incident neutron energies from 1.5 to 16 MeV. The experiment was performed at the Physikalisch-Technische Bundesanstalt (PTB) facility where the Van de Graaff accelerator and the cyclotron CV28 delivered 9 different neutron energy beams using p+T, d+D and d+T reactions. The detection system is made up of twelve 3He tubes inserted into a polyethylene cylinder. In this paper, the experimental setup and the data analysis method are described. The evolution of the absolute DN yields as a function of the neutron incident beam energies are presented and compared to experimental data found in the literature and data from the libraries.

  8. An absolute measure for a key currency

    NASA Astrophysics Data System (ADS)

    Oya, Shunsuke; Aihara, Kazuyuki; Hirata, Yoshito

    It is generally considered that the US dollar and the euro are the key currencies in the world and in Europe, respectively. However, there is no absolute general measure for a key currency. Here, we investigate the 24-hour periodicity of foreign exchange markets using a recurrence plot, and define an absolute measure for a key currency based on the strength of the periodicity. Moreover, we analyze the time evolution of this measure. The results show that the credibility of the US dollar has not decreased significantly since the Lehman shock, when the Lehman Brothers bankrupted and influenced the economic markets, and has increased even relatively better than that of the euro and that of the Japanese yen.

  9. Non-Invasive Method of Determining Absolute Intracranial Pressure

    NASA Technical Reports Server (NTRS)

    Yost, William T. (Inventor); Cantrell, John H., Jr. (Inventor); Hargens, Alan E. (Inventor)

    2004-01-01

    A method is presented for determining absolute intracranial pressure (ICP) in a patient. Skull expansion is monitored while changes in ICP are induced. The patient's blood pressure is measured when skull expansion is approximately zero. The measured blood pressure is indicative of a reference ICP value. Subsequently, the method causes a known change in ICP and measured the change in skull expansion associated therewith. The absolute ICP is a function of the reference ICP value, the known change in ICP and its associated change in skull expansion; and a measured change in skull expansion.

  10. A highly accurate absolute gravimetric network for Albania, Kosovo and Montenegro

    NASA Astrophysics Data System (ADS)

    Ullrich, Christian; Ruess, Diethard; Butta, Hubert; Qirko, Kristaq; Pavicevic, Bozidar; Murat, Meha

    2016-04-01

    The objective of this project is to establish a basic gravity network in Albania, Kosovo and Montenegro to enable further investigations in geodetic and geophysical issues. Therefore the first time in history absolute gravity measurements were performed in these countries. The Norwegian mapping authority Kartverket is assisting the national mapping authorities in Kosovo (KCA) (Kosovo Cadastral Agency - Agjencia Kadastrale e Kosovës), Albania (ASIG) (Autoriteti Shtetëror i Informacionit Gjeohapësinor) and in Montenegro (REA) (Real Estate Administration of Montenegro - Uprava za nekretnine Crne Gore) in improving the geodetic frameworks. The gravity measurements are funded by Kartverket. The absolute gravimetric measurements were performed from BEV (Federal Office of Metrology and Surveying) with the absolute gravimeter FG5-242. As a national metrology institute (NMI) the Metrology Service of the BEV maintains the national standards for the realisation of the legal units of measurement and ensures their international equivalence and recognition. Laser and clock of the absolute gravimeter were calibrated before and after the measurements. The absolute gravimetric survey was carried out from September to October 2015. Finally all 8 scheduled stations were successfully measured: there are three stations located in Montenegro, two stations in Kosovo and three stations in Albania. The stations are distributed over the countries to establish a gravity network for each country. The vertical gradients were measured at all 8 stations with the relative gravimeter Scintrex CG5. The high class quality of some absolute gravity stations can be used for gravity monitoring activities in future. The measurement uncertainties of the absolute gravity measurements range around 2.5 micro Gal at all stations (1 microgal = 10-8 m/s2). In Montenegro the large gravity difference of 200 MilliGal between station Zabljak and Podgorica can be even used for calibration of relative gravimeters

  11. Chemical composition of French mimosa absolute oil.

    PubMed

    Perriot, Rodolphe; Breme, Katharina; Meierhenrich, Uwe J; Carenini, Elise; Ferrando, Georges; Baldovini, Nicolas

    2010-02-10

    Since decades mimosa (Acacia dealbata) absolute oil has been used in the flavor and perfume industry. Today, it finds an application in over 80 perfumes, and its worldwide industrial production is estimated five tons per year. Here we report on the chemical composition of French mimosa absolute oil. Straight-chain analogues from C6 to C26 with different functional groups (hydrocarbons, esters, aldehydes, diethyl acetals, alcohols, and ketones) were identified in the volatile fraction. Most of them are long-chain molecules: (Z)-heptadec-8-ene, heptadecane, nonadecane, and palmitic acid are the most abundant, and constituents such as 2-phenethyl alcohol, methyl anisate, and ethyl palmitate are present in smaller amounts. The heavier constituents were mainly triterpenoids such as lupenone and lupeol, which were identified as two of the main components. (Z)-Heptadec-8-ene, lupenone, and lupeol were quantified by GC-MS in SIM mode using external standards and represents 6%, 20%, and 7.8% (w/w) of the absolute oil. Moreover, odorant compounds were extracted by SPME and analyzed by GC-sniffing leading to the perception of 57 odorant zones, of which 37 compounds were identified by their odorant description, mass spectrum, retention index, and injection of the reference compound.

  12. Measurement of absolute gravity acceleration in Firenze

    NASA Astrophysics Data System (ADS)

    de Angelis, M.; Greco, F.; Pistorio, A.; Poli, N.; Prevedelli, M.; Saccorotti, G.; Sorrentino, F.; Tino, G. M.

    2011-01-01

    This paper reports the results from the accurate measurement of the acceleration of gravity g taken at two separate premises in the Polo Scientifico of the University of Firenze (Italy). In these laboratories, two separate experiments aiming at measuring the Newtonian constant and testing the Newtonian law at short distances are in progress. Both experiments require an independent knowledge on the local value of g. The only available datum, pertaining to the italian zero-order gravity network, was taken more than 20 years ago at a distance of more than 60 km from the study site. Gravity measurements were conducted using an FG5 absolute gravimeter, and accompanied by seismic recordings for evaluating the noise condition at the site. The absolute accelerations of gravity at the two laboratories are (980 492 160.6 ± 4.0) μGal and (980 492 048.3 ± 3.0) μGal for the European Laboratory for Non-Linear Spectroscopy (LENS) and Dipartimento di Fisica e Astronomia, respectively. Other than for the two referenced experiments, the data here presented will serve as a benchmark for any future study requiring an accurate knowledge of the absolute value of the acceleration of gravity in the study region.

  13. Absolute angular encoder based on optical diffraction

    NASA Astrophysics Data System (ADS)

    Wu, Jian; Zhou, Tingting; Yuan, Bo; Wang, Liqiang

    2015-08-01

    A new encoding method for absolute angular encoder based on optical diffraction was proposed in the present study. In this method, an encoder disc is specially designed that a series of elements are uniformly spaced in one circle and each element is consisted of four diffraction gratings, which are tilted in the directions of 30°, 60°, -60° and -30°, respectively. The disc is illuminated by a coherent light and the diffractive signals are received. The positions of diffractive spots are used for absolute encoding and their intensities are for subdivision, which is different from the traditional optical encoder based on transparent/opaque binary principle. Since the track's width in the disc is not limited in the diffraction pattern, it provides a new way to solve the contradiction between the size and resolution, which is good for minimization of encoder. According to the proposed principle, the diffraction pattern disc with a diameter of 40 mm was made by lithography in the glass substrate. A prototype of absolute angular encoder with a resolution of 20" was built up. Its maximum error was tested as 78" by comparing with a small angle measuring system based on laser beam deflection.

  14. Energy dispersive X-ray analysis on an absolute scale in scanning transmission electron microscopy.

    PubMed

    Chen, Z; D'Alfonso, A J; Weyland, M; Taplin, D J; Allen, L J; Findlay, S D

    2015-10-01

    We demonstrate absolute scale agreement between the number of X-ray counts in energy dispersive X-ray spectroscopy using an atomic-scale coherent electron probe and first-principles simulations. Scan-averaged spectra were collected across a range of thicknesses with precisely determined and controlled microscope parameters. Ionization cross-sections were calculated using the quantum excitation of phonons model, incorporating dynamical (multiple) electron scattering, which is seen to be important even for very thin specimens. Copyright © 2015 Elsevier B.V. All rights reserved.

  15. The Strength of an Ig Switch Region is Determined by its Ability to Drive R-loop Formation and its Number of WGCW Sites

    PubMed Central

    Zhang, Zheng Z.; Pannunzio, Nicholas R.; Han, Li; Hsieh, Chih-Lin; Yu, Kefei; Lieber, Michael R.

    2014-01-01

    SUMMARY R-loops exist at the murine IgH switch regions and possibly other locations, but their functional importance is unclear. In biochemical systems, R-loop initiation requires DNA sequence regions containing clusters of G nucleotides, but cellular studies have not been done. Here, we vary the G-clustering, total switch region length, and the number of target sites (WGCW sites for the activation-induced deaminase) at synthetic switch regions in a murine B cell line to determine the effect on class switch recombination (CSR). G-clusters increase CSR, regardless of their immediate proximity to the WGCW sites. This increase is accompanied by an increase in R-loop formation. CSR efficiency correlates better with the absolute number of WGCW sites in the switch region rather than the total switch region length or density of WGCW sites. Thus, the overall strength of the switch region depends on G-clusters, which initiate R-loop formation, and on the number of WGCW sites. PMID:25017067

  16. Absolute Radiometric Calibration of EUNIS-06

    NASA Technical Reports Server (NTRS)

    Thomas, R. J.; Rabin, D. M.; Kent, B. J.; Paustian, W.

    2007-01-01

    The Extreme-Ultraviolet Normal-Incidence Spectrometer (EUNIS) is a soundingrocket payload that obtains imaged high-resolution spectra of individual solar features, providing information about the Sun's corona and upper transition region. Shortly after its successful initial flight last year, a complete end-to-end calibration was carried out to determine the instrument's absolute radiometric response over its Longwave bandpass of 300 - 370A. The measurements were done at the Rutherford-Appleton Laboratory (RAL) in England, using the same vacuum facility and EUV radiation source used in the pre-flight calibrations of both SOHO/CDS and Hinode/EIS, as well as in three post-flight calibrations of our SERTS sounding rocket payload, the precursor to EUNIS. The unique radiation source provided by the Physikalisch-Technische Bundesanstalt (PTB) had been calibrated to an absolute accuracy of 7% (l-sigma) at 12 wavelengths covering our bandpass directly against the Berlin electron storage ring BESSY, which is itself a primary radiometric source standard. Scans of the EUNIS aperture were made to determine the instrument's absolute spectral sensitivity to +- 25%, considering all sources of error, and demonstrate that EUNIS-06 was the most sensitive solar E W spectrometer yet flown. The results will be matched against prior calibrations which relied on combining measurements of individual optical components, and on comparisons with theoretically predicted 'insensitive' line ratios. Coordinated observations were made during the EUNIS-06 flight by SOHO/CDS and EIT that will allow re-calibrations of those instruments as well. In addition, future EUNIS flights will provide similar calibration updates for TRACE, Hinode/EIS, and STEREO/SECCHI/EUVI.

  17. Small-mammal density estimation: A field comparison of grid-based vs. web-based density estimators

    USGS Publications Warehouse

    Parmenter, R.R.; Yates, Terry L.; Anderson, D.R.; Burnham, K.P.; Dunnum, J.L.; Franklin, A.B.; Friggens, M.T.; Lubow, B.C.; Miller, M.; Olson, G.S.; Parmenter, Cheryl A.; Pollard, J.; Rexstad, E.; Shenk, T.M.; Stanley, T.R.; White, Gary C.

    2003-01-01

    Statistical models for estimating absolute densities of field populations of animals have been widely used over the last century in both scientific studies and wildlife management programs. To date, two general classes of density estimation models have been developed: models that use data sets from capture–recapture or removal sampling techniques (often derived from trapping grids) from which separate estimates of population size (NÌ‚) and effective sampling area (AÌ‚) are used to calculate density (DÌ‚ = NÌ‚/AÌ‚); and models applicable to sampling regimes using distance-sampling theory (typically transect lines or trapping webs) to estimate detection functions and densities directly from the distance data. However, few studies have evaluated these respective models for accuracy, precision, and bias on known field populations, and no studies have been conducted that compare the two approaches under controlled field conditions. In this study, we evaluated both classes of density estimators on known densities of enclosed rodent populations. Test data sets (n = 11) were developed using nine rodent species from capture–recapture live-trapping on both trapping grids and trapping webs in four replicate 4.2-ha enclosures on the Sevilleta National Wildlife Refuge in central New Mexico, USA. Additional “saturation” trapping efforts resulted in an enumeration of the rodent populations in each enclosure, allowing the computation of true densities. Density estimates (DÌ‚) were calculated using program CAPTURE for the grid data sets and program DISTANCE for the web data sets, and these results were compared to the known true densities (D) to evaluate each model's relative mean square error, accuracy, precision, and bias. In addition, we evaluated a variety of approaches to each data set's analysis by having a group of independent expert analysts calculate their best density estimates without a priori knowledge of the true densities; this

  18. Towards an Absolute Chronology for the Aegean Iron Age: New Radiocarbon Dates from Lefkandi, Kalapodi and Corinth

    PubMed Central

    Toffolo, Michael B.; Fantalkin, Alexander; Lemos, Irene S.; Felsch, Rainer C. S.; Niemeier, Wolf-Dietrich; Sanders, Guy D. R.; Finkelstein, Israel; Boaretto, Elisabetta

    2013-01-01

    The relative chronology of the Aegean Iron Age is robust. It is based on minute stylistic changes in the Submycenaean, Protogeometric and Geometric styles and their sub-phases. Yet, the absolute chronology of the time-span between the final stages of Late Helladic IIIC in the late second millennium BCE and the archaic colonization of Italy and Sicily toward the end of the 8th century BCE lacks archaeological contexts that can be directly related to events carrying absolute dates mentioned in Egyptian/Near Eastern historical sources, or to well-dated Egyptian/Near Eastern rulers. The small number of radiocarbon dates available for this time span is not sufficient to establish an absolute chronological sequence. Here we present a new set of short-lived radiocarbon dates from the sites of Lefkandi, Kalapodi and Corinth in Greece. We focus on the crucial transition from the Submycenaean to the Protogeometric periods. This transition is placed in the late 11th century BCE according to the Conventional Aegean Chronology and in the late 12th century BCE according to the High Aegean Chronology. Our results place it in the second half of the 11th century BCE. PMID:24386150

  19. Laser interferometry method for absolute measurement of the acceleration of gravity

    NASA Technical Reports Server (NTRS)

    Hudson, O. K.

    1971-01-01

    Gravimeter permits more accurate and precise absolute measurement of g without reference to Potsdam values as absolute standards. Device is basically Michelson laser beam interferometer in which one arm is mass fitted with corner cube reflector.

  20. Revisiting Absolute Radio Backgrounds in Light of Juno Cruise Data

    NASA Astrophysics Data System (ADS)

    Chang, Tzu-Ching

    Radio backgrounds have played a critical role in recent progress in astronomy and cosmology. Major amongst them, the Cosmic Microwave Background (CMB) is currently our most precise window on the physics of the early universe. Both its near perfect blackbody spectrum and its angular fluctuations led to unique cosmological inferences. Beyond the CMB, radio backgrounds have offered golden insights to Galactic and extragalactic astrophysics. In this proposal, we take note of the recently released "cruise data" collected over five years by the MicroWave Radiometer (MWR) instrument on board the Juno planetary mission to construct new, unprecedented and well-characterized full-sky maps at 6 frequencies ranging from 0.6 to 22 GHz. We propose to generate, validate and release these full-sky maps and investigate their rich and unique astrophysical implications. In particular, we expect the use of Juno data to shed light on the "ARCADE excess" and lead to new insights on Galactic and extragalactic radio signals. Over the past several years, evidence indicating the existence of a significant isotropic radio background has been hinted at by a number of instruments. In 2011, the Absolute Radiometer for Cosmology, Astrophysics and Diffuse Emission (ARCADE 2) collaboration reported measurements of the absolute sky temperature at a number of frequencies between 3 and 90 GHz (Fixsen et al. 2011). While these measurements are dominated by the CMB at frequencies above several GHz, they reveal the presence of significant excess power at the lowest measured frequencies (Seiffert et al. 2011). This conclusion is strengthened by a number of observations at lower frequencies, reported at 22 MHz, 45 MHz, 408 MHz and 1.42 GHz: the emission observed by each of these groups appears to be in significant excess to what can be attributed to Galactic emission, or to unresolved members of known extragalactic radio source populations. In addition, it appears to be anomalously spatially smooth to be

  1. Absolute Coefficients and the Graphical Representation of Airfoil Characteristics

    NASA Technical Reports Server (NTRS)

    Munk, Max

    1921-01-01

    It is argued that there should be an agreement as to what conventions to use in determining absolute coefficients used in aeronautics and in how to plot those coefficients. Of particular importance are the absolute coefficients of lift and drag. The author argues for the use of the German method over the kind in common use in the United States and England, and for the Continental over the usual American and British method of graphically representing the characteristics of an airfoil. The author notes that, on the whole, it appears that the use of natural absolute coefficients in a polar diagram is the logical method for presentation of airfoil characteristics, and that serious consideration should be given to the advisability of adopting this method in all countries, in order to advance uniformity and accuracy in the science of aeronautics.

  2. Peripheral absolute threshold spectral sensitivity in retinitis pigmentosa.

    PubMed Central

    Massof, R W; Johnson, M A; Finkelstein, D

    1981-01-01

    Dark-adapted spectral sensitivities were measured in the peripheral retinas of 38 patients diagnosed as having typical retinitis pigmentosa (RP) and in 3 normal volunteers. The patients included those having autosomal dominant and autosomal recessive inheritance patterns. Results were analysed by comparisons with the CIE standard scotopic spectral visibility function and with Judd's modification of the photopic spectral visibility function, with consideration of contributions from changes in spectral transmission of preretinal media. The data show 3 general patterns. One group of patients had absolute threshold spectral sensitivities that were fit by Judd's photopic visibility curve. Absolute threshold spectral sensitivities for a second group of patients were fit by a normal scotopic spectral visibility curve. The third group of patients had absolute threshold spectral sensitivities that were fit by a combination of scotopic and photopic spectral visibility curves. The autosomal dominant and autosomal recessive modes of inheritance were represented in each group of patients. These data indicate that RP patients have normal rod and/or cone spectral sensitivities, and support the subclassification of patients described previously by Massof and Finkelstein. PMID:7459312

  3. Effect of rain gauge density over the accuracy of rainfall: a case study over Bangalore, India.

    PubMed

    Mishra, Anoop Kumar

    2013-12-01

    Rainfall is an extremely variable parameter in both space and time. Rain gauge density is very crucial in order to quantify the rainfall amount over a region. The level of rainfall accuracy is highly dependent on density and distribution of rain gauge stations over a region. Indian Space Research Organisation (ISRO) have installed a number of Automatic Weather Station (AWS) rain gauges over Indian region to study rainfall. In this paper, the effect of rain gauge density over daily accumulated rainfall is analyzed using ISRO AWS gauge observations. A region of 50 km × 50 km box over southern part of Indian region (Bangalore) with good density of rain gauges is identified for this purpose. Rain gauge numbers are varied from 1-8 in 50 km box to study the variation in the daily accumulated rainfall. Rainfall rates from the neighbouring stations are also compared in this study. Change in the rainfall as a function of gauge spacing is studied. Use of gauge calibrated satellite observations to fill the gauge station value is also studied. It is found that correlation coefficients (CC) decrease from 82% to 21% as gauge spacing increases from 5 km to 40 km while root mean square error (RMSE) increases from 8.29 mm to 51.27 mm with increase in gauge spacing from 5 km to 40 km. Considering 8 rain gauges as a standard representative of rainfall over the region, absolute error increases from 15% to 64% as gauge numbers are decreased from 7 to 1. Small errors are reported while considering 4 to 7 rain gauges to represent 50 km area. However, reduction to 3 or less rain gauges resulted in significant error. It is also observed that use of gauge calibrated satellite observations significantly improved the rainfall estimation over the region with very few rain gauge observations.

  4. Reineke’s stand density index: a quantitative and non-unitless measure of stand density

    Treesearch

    Curtis L. VanderSchaaf

    2013-01-01

    When used as a measure of relative density, Reineke’s stand density index (SDI) can be made unitless by relating the current SDI to a standard density but when used as a quantitative measure of stand density SDI is not unitless. Reineke’s SDI relates the current stand density to an equivalent number of trees per unit area in a stand with a quadratic mean diameter (Dq)...

  5. Millimeter-wave Line Ratios and Sub-beam Volume Density Distributions

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Leroy, Adam K.; Gallagher, Molly; Usero, Antonio

    We explore the use of mm-wave emission line ratios to trace molecular gas density when observations integrate over a wide range of volume densities within a single telescope beam. For observations targeting external galaxies, this case is unavoidable. Using a framework similar to that of Krumholz and Thompson, we model emission for a set of common extragalactic lines from lognormal and power law density distributions. We consider the median density of gas that produces emission and the ability to predict density variations from observed line ratios. We emphasize line ratio variations because these do not require us to know themore » absolute abundance of our tracers. Patterns of line ratio variations have the potential to illuminate the high-end shape of the density distribution, and to capture changes in the dense gas fraction and median volume density. Our results with and without a high-density power law tail differ appreciably; we highlight better knowledge of the probability density function (PDF) shape as an important area. We also show the implications of sub-beam density distributions for isotopologue studies targeting dense gas tracers. Differential excitation often implies a significant correction to the naive case. We provide tabulated versions of many of our results, which can be used to interpret changes in mm-wave line ratios in terms of adjustments to the underlying density distributions.« less

  6. Photo-detachment of negative ions in Ar-CO2 dc discharge employing Langmuir probe

    NASA Astrophysics Data System (ADS)

    Rodríguez, Jannet; Yousif, Farook Bashir; Fuentes, Beatriz E.; Vázquez, Federico; Rivera, Marco; López-Patiño, J.; Figueroa, Aldo; Martínez, Horacio

    2018-05-01

    The electronegativity of the A r - C O 2 gas mixture was investigated, and the total relative negative oxygen ion density O2- + O- in the bulk of a dc discharge has been determined employing Langmuir probe assisted laser photo-detachment. The relative electron density and absolute temperature were obtained for the mixture at discharge powers between 200 and 3000 mW and pressures between 0.2 and 0.6 mbar, employing the collisional radiative model for several Ar gas mixtures. The absolute metastable number density for 1s3 and 1s5 levels was measured, and both showed an increasing trend as a function of pressure and power. The absolute number density of the 1s5 level was found to be higher than that of the 1s3 level. Electronegativity was found to decrease as a function of power and as a function of the increasing Ar percentage in the gas mixture.

  7. Neural Sensitivity to Absolute and Relative Anticipated Reward in Adolescents

    PubMed Central

    Vaidya, Jatin G.; Knutson, Brian; O'Leary, Daniel S.; Block, Robert I.; Magnotta, Vincent

    2013-01-01

    Adolescence is associated with a dramatic increase in risky and impulsive behaviors that have been attributed to developmental differences in neural processing of rewards. In the present study, we sought to identify age differences in anticipation of absolute and relative rewards. To do so, we modified a commonly used monetary incentive delay (MID) task in order to examine brain activity to relative anticipated reward value (neural sensitivity to the value of a reward as a function of other available rewards). This design also made it possible to examine developmental differences in brain activation to absolute anticipated reward magnitude (the degree to which neural activity increases with increasing reward magnitude). While undergoing fMRI, 18 adolescents and 18 adult participants were presented with cues associated with different reward magnitudes. After the cue, participants responded to a target to win money on that trial. Presentation of cues was blocked such that two reward cues associated with $.20, $1.00, or $5.00 were in play on a given block. Thus, the relative value of the $1.00 reward varied depending on whether it was paired with a smaller or larger reward. Reflecting age differences in neural responses to relative anticipated reward (i.e., reference dependent processing), adults, but not adolescents, demonstrated greater activity to a $1 reward when it was the larger of the two available rewards. Adults also demonstrated a more linear increase in ventral striatal activity as a function of increasing absolute reward magnitude compared to adolescents. Additionally, reduced ventral striatal sensitivity to absolute anticipated reward (i.e., the difference in activity to medium versus small rewards) correlated with higher levels of trait Impulsivity. Thus, ventral striatal activity in anticipation of absolute and relative rewards develops with age. Absolute reward processing is also linked to individual differences in Impulsivity. PMID:23544046

  8. Assessing epistemic sophistication by considering domain-specific absolute and multiplicistic beliefs separately.

    PubMed

    Peter, Johannes; Rosman, Tom; Mayer, Anne-Kathrin; Leichner, Nikolas; Krampen, Günter

    2016-06-01

    Particularly in higher education, not only a view of science as a means of finding absolute truths (absolutism), but also a view of science as generally tentative (multiplicism) can be unsophisticated and obstructive for learning. Most quantitative epistemic belief inventories neglect this and understand epistemic sophistication as disagreement with absolute statements. This article suggests considering absolutism and multiplicism as separate dimensions. Following our understanding of epistemic sophistication as a cautious and reluctant endorsement of both positions, we assume evaluativism (a contextually adaptive view of knowledge as personally constructed and evidence-based) to be reflected by low agreement with both generalized absolute and generalized multiplicistic statements. Three studies with a total sample size of N = 416 psychology students were conducted. A domain-specific inventory containing both absolute and multiplicistic statements was developed. Expectations were tested by exploratory factor analysis, confirmatory factor analysis, and correlational analyses. Results revealed a two-factor solution with an absolute and a multiplicistic factor. Criterion validity of both factors was confirmed. Cross-sectional analyses revealed that agreement to generalized multiplicistic statements decreases with study progress. Moreover, consistent with our understanding of epistemic sophistication as a reluctant attitude towards generalized epistemic statements, evidence for a negative relationship between epistemic sophistication and need for cognitive closure was found. We recommend including multiplicistic statements into epistemic belief questionnaires and considering them as a separate dimension, especially when investigating individuals in later stages of epistemic development (i.e., in higher education). © 2015 The British Psychological Society.

  9. Absolute Effective Area of the Chandra High-Resolution Mirror Assembly

    NASA Technical Reports Server (NTRS)

    Schwartz, D. A.; David, L. P.; Donnelly, R. H.; Edgar, R. J.; Gaetz, T. J.; Jerius, D.; Juda, M.; Kellogg, E. M.; McNamara, B. R.; Dewey, D.

    2000-01-01

    The Chandra X-ray Observatory was launched in July 1999, and is returning exquisite sub-arcsecond x-ray images of star groups, supernova remnants, galaxies, quasars, and clusters of galaxies. In addition to being the premier X-ray observatory in terms of angular and spectral resolution, Chandra is the best calibrated X-ray facility ever flown. We discuss here the calibration of the effective area of the High Resolution Mirror Assembly. Because we do not know the absolute X-ray flux density of any celestial source, this must be based primarily on ground measurements and on modeling. In particular, we must remove the calibrated modeled responses of the detectors and gratings to obtain the mirror area. For celestial sources which may be assumed to have smoothly varying spectra, such as the Crab Nebula, we may verify the continuity of the area calibration as a function of energy. This is of significance in energy regions such as the Ir M-edges, or near the critical grazing angle cutoff of the various mirror shells.

  10. Energy decomposition analysis for exciplexes using absolutely localized molecular orbitals

    NASA Astrophysics Data System (ADS)

    Ge, Qinghui; Mao, Yuezhi; Head-Gordon, Martin

    2018-02-01

    An energy decomposition analysis (EDA) scheme is developed for understanding the intermolecular interaction involving molecules in their excited states. The EDA utilizes absolutely localized molecular orbitals to define intermediate states and is compatible with excited state methods based on linear response theory such as configuration interaction singles and time-dependent density functional theory. The shift in excitation energy when an excited molecule interacts with the environment is decomposed into frozen, polarization, and charge transfer contributions, and the frozen term can be further separated into Pauli repulsion and electrostatics. These terms can be added to their counterparts obtained from the ground state EDA to form a decomposition of the total interaction energy. The EDA scheme is applied to study a variety of systems, including some model systems to demonstrate the correct behavior of all the proposed energy components as well as more realistic systems such as hydrogen-bonding complexes (e.g., formamide-water, pyridine/pyrimidine-water) and halide (F-, Cl-)-water clusters that involve charge-transfer-to-solvent excitations.

  11. Absolute photon-flux measurements in the vacuum ultraviolet

    NASA Technical Reports Server (NTRS)

    Samson, J. A. R.; Haddad, G. N.

    1974-01-01

    Absolute photon-flux measurements in the vacuum ultraviolet have extended to short wavelengths by use of rare-gas ionization chambers. The technique involves the measurement of the ion current as a function of the gas pressure in the ion chamber. The true value of the ion current, and hence the absolute photon flux, is obtained by extrapolating the ion current to zero gas pressure. Examples are given at 162 and 266 A. The short-wavelength limit is determined only by the sensitivity of the current-measuring apparatus and by present knowledge of the photoionization processes that occur in the rate gases.

  12. Stimulus Probability Effects in Absolute Identification

    ERIC Educational Resources Information Center

    Kent, Christopher; Lamberts, Koen

    2016-01-01

    This study investigated the effect of stimulus presentation probability on accuracy and response times in an absolute identification task. Three schedules of presentation were used to investigate the interaction between presentation probability and stimulus position within the set. Data from individual participants indicated strong effects of…

  13. Absolute gravity measurements in California

    NASA Astrophysics Data System (ADS)

    Zumberge, M. A.; Sasagawa, G.; Kappus, M.

    1986-08-01

    An absolute gravity meter that determines the local gravitational acceleration by timing a freely falling mass with a laser interferometer has been constructed. The instrument has made measurements at 11 sites in California, four in Nevada, and one in France. The uncertainty in the results is typically 10 microgal. Repeated measurements have been made at several of the sites; only one shows a substantial change in gravity.

  14. Relational versus absolute representation in categorization.

    PubMed

    Edwards, Darren J; Pothos, Emmanuel M; Perlman, Amotz

    2012-01-01

    This study explores relational-like and absolute-like representations in categorization. Although there is much evidence that categorization processes can involve information about both the particular physical properties of studied instances and abstract (relational) properties, there has been little work on the factors that lead to one kind of representation as opposed to the other. We tested 370 participants in 6 experiments, in which participants had to classify new items into predefined artificial categories. In 4 experiments, we observed a predominantly relational-like mode of classification, and in 2 experiments we observed a shift toward an absolute-like mode of classification. These results suggest 3 factors that promote a relational-like mode of classification: fewer items per group, more training groups, and the presence of a time delay. Overall, we propose that less information about the distributional properties of a category or weaker memory traces for the category exemplars (induced, e.g., by having smaller categories or a time delay) can encourage relational-like categorization.

  15. Standardization approaches in absolute quantitative proteomics with mass spectrometry.

    PubMed

    Calderón-Celis, Francisco; Encinar, Jorge Ruiz; Sanz-Medel, Alfredo

    2017-07-31

    Mass spectrometry-based approaches have enabled important breakthroughs in quantitative proteomics in the last decades. This development is reflected in the better quantitative assessment of protein levels as well as to understand post-translational modifications and protein complexes and networks. Nowadays, the focus of quantitative proteomics shifted from the relative determination of proteins (ie, differential expression between two or more cellular states) to absolute quantity determination, required for a more-thorough characterization of biological models and comprehension of the proteome dynamism, as well as for the search and validation of novel protein biomarkers. However, the physico-chemical environment of the analyte species affects strongly the ionization efficiency in most mass spectrometry (MS) types, which thereby require the use of specially designed standardization approaches to provide absolute quantifications. Most common of such approaches nowadays include (i) the use of stable isotope-labeled peptide standards, isotopologues to the target proteotypic peptides expected after tryptic digestion of the target protein; (ii) use of stable isotope-labeled protein standards to compensate for sample preparation, sample loss, and proteolysis steps; (iii) isobaric reagents, which after fragmentation in the MS/MS analysis provide a final detectable mass shift, can be used to tag both analyte and standard samples; (iv) label-free approaches in which the absolute quantitative data are not obtained through the use of any kind of labeling, but from computational normalization of the raw data and adequate standards; (v) elemental mass spectrometry-based workflows able to provide directly absolute quantification of peptides/proteins that contain an ICP-detectable element. A critical insight from the Analytical Chemistry perspective of the different standardization approaches and their combinations used so far for absolute quantitative MS-based (molecular and

  16. Towards absolute laser spectroscopic CO2 isotope ratio measurements

    NASA Astrophysics Data System (ADS)

    Anyangwe Nwaboh, Javis; Werhahn, Olav; Ebert, Volker

    2017-04-01

    Knowledge of isotope composition of carbon dioxide (CO2) in the atmosphere is necessary to identify sources and sinks of this key greenhouse gas. In the last years, laser spectroscopic techniques such as cavity ring-down spectroscopy (CRDS) and tunable diode laser absorption spectroscopy (TDLAS) have been shown to perform accurate isotope ratio measurements for CO2 and other gases like water vapour (H2O) [1,2]. Typically, isotope ratios are reported in literature referring to reference materials provided by e.g. the International Atomic Energy Agency (IAEA). However, there could be some benefit if field deployable absolute isotope ratio measurement methods were developed to address issues such as exhausted reference material like the Pee Dee Belemnite (PDB) standard. Absolute isotope ratio measurements would be particularly important for situations where reference materials do not even exist. Here, we present CRDS and TDLAS-based absolute isotope ratios (13C/12C ) in atmospheric CO2. We demonstrate the capabilities of the used methods by measuring CO2 isotope ratios in gas standards. We compare our results to values reported for the isotope certified gas standards. Guide to the expression of uncertainty in measurement (GUM) compliant uncertainty budgets on the CRDS and TDLAS absolute isotope ratio measurements are presented, and traceability is addressed. We outline the current impediments in realizing high accuracy absolute isotope ratio measurements using laser spectroscopic methods, propose solutions and the way forward. Acknowledgement Parts of this work have been carried out within the European Metrology Research Programme (EMRP) ENV52 project-HIGHGAS. The EMRP is jointly funded by the EMRP participating countries within EURAMET and the European Union. References [1] B. Kühnreich, S. Wagner, J. C. Habig,·O. Möhler, H. Saathoff, V. Ebert, Appl. Phys. B 119:177-187 (2015). [2] E. Kerstel, L. Gianfrani, Appl. Phys. B 92, 439-449 (2008).

  17. Large-scale fluctuations in the number density of galaxies in independent surveys of deep fields

    NASA Astrophysics Data System (ADS)

    Shirokov, S. I.; Lovyagin, N. Yu.; Baryshev, Yu. V.; Gorokhov, V. L.

    2016-06-01

    New arguments supporting the reality of large-scale fluctuations in the density of the visible matter in deep galaxy surveys are presented. A statistical analysis of the radial distributions of galaxies in the COSMOS and HDF-N deep fields is presented. Independent spectral and photometric surveys exist for each field, carried out in different wavelength ranges and using different observing methods. Catalogs of photometric redshifts in the optical (COSMOS-Zphot) and infrared (UltraVISTA) were used for the COSMOS field in the redshift interval 0.1 < z < 3.5, as well as the zCOSMOS (10kZ) spectroscopic survey and the XMM-COSMOS and ALHAMBRA-F4 photometric redshift surveys. The HDFN-Zphot and ALHAMBRA-F5 catalogs of photometric redshifts were used for the HDF-N field. The Pearson correlation coefficient for the fluctuations in the numbers of galaxies obtained for independent surveys of the same deep field reaches R = 0.70 ± 0.16. The presence of this positive correlation supports the reality of fluctuations in the density of visible matter with sizes of up to 1000 Mpc and amplitudes of up to 20% at redshifts z ~ 2. The absence of correlations between the fluctuations in different fields (the correlation coefficient between COSMOS and HDF-N is R = -0.20 ± 0.31) testifies to the independence of structures visible in different directions on the celestial sphere. This also indicates an absence of any influence from universal systematic errors (such as "spectral voids"), which could imitate the detection of correlated structures.

  18. Effect of Absolute From Hibiscus syriacus L. Flower on Wound Healing in Keratinocytes

    PubMed Central

    Yoon, Seok Won; Lee, Kang Pa; Kim, Do-Yoon; Hwang, Dae Il; Won, Kyung-Jong; Lee, Dae Won; Lee, Hwan Myung

    2017-01-01

    Background: Proliferation and migration of keratinocytes are essential for the repair of cutaneous wounds. Hibiscus syriacus L. has been used in Asian medicine; however, research on keratinocytes is inadequate. Objective: To establish the dermatological properties of absolute from Hibiscus syriacus L. flower (HSF) and to provide fundamental research for alternative medicine. Materials and Methods: We identified the composition of HSF absolute using gas chromatography-mass spectrometry analysis. We also examined the effect of HSF absolute in HaCaT cells using the XTT assay, Boyden chamber assay, sprout-out growth assay, and western blotting. We conducted an in-vivo wound healing assay in rat tail-skin. Results: Ten major active compounds were identified from HSF absolute. As determined by the XTT assay, Boyden chamber assay, and sprout-out growth assay results, HSF absolute exhibited similar effects as that of epidermal growth factor on the proliferation and migration patterns of keratinocytes (HaCaT cells), which were significantly increased after HSF absolute treatment. The expression levels of the phosphorylated signaling proteins relevant to proliferation, including extracellular signal-regulated kinase 1/2 (Erk 1/2) and Akt, were also determined by western blot analysis. Conclusion: These results of our in-vitro and ex-vivo studies indicate that HSF absolute induced cell growth and migration of HaCaT cells by phosphorylating both Erk 1/2 and Akt. Moreover, we confirmed the wound-healing effect of HSF on injury of the rat tail-skin. Therefore, our results suggest that HSF absolute is promising for use in cosmetics and alternative medicine. SUMMARY Hisbiscus syriacus L. flower absolute increases HaCaT cell migration and proliferation.Hisbiscus syriacus L. flower absolute regulates phosphorylation of ERK 1/2 and Akt in HaCaT cell.Treatment with Hisbiscus syriacus L. flower induced sprout outgrowth.The wound in the tail-skin of rat was reduced by Hisbiscus syriacus

  19. Effect of Absolute From Hibiscus syriacus L. Flower on Wound Healing in Keratinocytes.

    PubMed

    Yoon, Seok Won; Lee, Kang Pa; Kim, Do-Yoon; Hwang, Dae Il; Won, Kyung-Jong; Lee, Dae Won; Lee, Hwan Myung

    2017-01-01

    Proliferation and migration of keratinocytes are essential for the repair of cutaneous wounds. Hibiscus syriacus L. has been used in Asian medicine; however, research on keratinocytes is inadequate. To establish the dermatological properties of absolute from Hibiscus syriacus L. flower (HSF) and to provide fundamental research for alternative medicine. We identified the composition of HSF absolute using gas chromatography-mass spectrometry analysis. We also examined the effect of HSF absolute in HaCaT cells using the XTT assay, Boyden chamber assay, sprout-out growth assay, and western blotting. We conducted an in-vivo wound healing assay in rat tail-skin. Ten major active compounds were identified from HSF absolute. As determined by the XTT assay, Boyden chamber assay, and sprout-out growth assay results, HSF absolute exhibited similar effects as that of epidermal growth factor on the proliferation and migration patterns of keratinocytes (HaCaT cells), which were significantly increased after HSF absolute treatment. The expression levels of the phosphorylated signaling proteins relevant to proliferation, including extracellular signal-regulated kinase 1/2 (Erk 1/2) and Akt, were also determined by western blot analysis. These results of our in-vitro and ex-vivo studies indicate that HSF absolute induced cell growth and migration of HaCaT cells by phosphorylating both Erk 1/2 and Akt. Moreover, we confirmed the wound-healing effect of HSF on injury of the rat tail-skin. Therefore, our results suggest that HSF absolute is promising for use in cosmetics and alternative medicine. Hisbiscus syriacus L. flower absolute increases HaCaT cell migration and proliferation. Hisbiscus syriacus L. flower absolute regulates phosphorylation of ERK 1/2 and Akt in HaCaT cell.Treatment with Hisbiscus syriacus L. flower induced sprout outgrowth.The wound in the tail-skin of rat was reduced by Hisbiscus syriacus L. flower absolute Abbreviations used: HSF: Hibiscus syriacus L. flower

  20. Absolute calibration of Kodak Biomax-MS film response to x rays in the 1.5- to 8-keV energy range

    NASA Astrophysics Data System (ADS)

    Marshall, F. J.; Knauer, J. P.; Anderson, D.; Schmitt, B. L.

    2006-10-01

    The absolute response of Kodak Biomax-MS film to x rays in the range from 1.5- to 8-keV has been measured using a laboratory electron-beam generated x-ray source. The measurements were taken at specific line energies by using Bragg diffraction to produce monochromatic beams of x rays. Multiple exposures were taken on Biomax MS film up to levels exceeding optical densities of 2 as measured by a microdensitometer. The absolute beam intensity for each exposure was measured with a Si (Li) detector. Additional response measurements were taken with Kodak direct exposure film (DEF) so as to compare the results of this technique to previously published calibrations. The Biomax-MS results have been fitted to a semiempirical mathematical model (Knauer et al., these proceedings). Users of the model can infer absolute fluences from observed exposure levels at either interpolated or extrapolated energies. To summarize the results: Biomax MS has comparable sensitivity to DEF film below 3keV but has reduced sensitivity above 3keV (˜50%). The lower exposure results from thinner emulsion layers, designed for use with phosphor screens. The ease with which Biomax-MS can be used in place of DEF (same format film, same developing process, and comparable sensitivity) makes it a good replacement.

  1. The fading American dream: Trends in absolute income mobility since 1940.

    PubMed

    Chetty, Raj; Grusky, David; Hell, Maximilian; Hendren, Nathaniel; Manduca, Robert; Narang, Jimmy

    2017-04-28

    We estimated rates of "absolute income mobility"-the fraction of children who earn more than their parents-by combining data from U.S. Census and Current Population Survey cross sections with panel data from de-identified tax records. We found that rates of absolute mobility have fallen from approximately 90% for children born in 1940 to 50% for children born in the 1980s. Increasing Gross Domestic Product (GDP) growth rates alone cannot restore absolute mobility to the rates experienced by children born in the 1940s. However, distributing current GDP growth more equally across income groups as in the 1940 birth cohort would reverse more than 70% of the decline in mobility. These results imply that reviving the "American dream" of high rates of absolute mobility would require economic growth that is shared more broadly across the income distribution. Copyright © 2017, American Association for the Advancement of Science.

  2. 34 CFR 648.33 - What priorities and absolute preferences does the Secretary establish?

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 34 Education 3 2011-07-01 2011-07-01 false What priorities and absolute preferences does the... AREAS OF NATIONAL NEED How Does the Secretary Make an Award? § 648.33 What priorities and absolute... area of national need and gives absolute preference to one or more of the general disciplines and sub...

  3. 34 CFR 648.33 - What priorities and absolute preferences does the Secretary establish?

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 34 Education 3 2010-07-01 2010-07-01 false What priorities and absolute preferences does the... AREAS OF NATIONAL NEED How Does the Secretary Make an Award? § 648.33 What priorities and absolute... area of national need and gives absolute preference to one or more of the general disciplines and sub...

  4. Endogenous sex hormones and breast density in young women.

    PubMed

    Jung, Seungyoun; Stanczyk, Frank Z; Egleston, Brian L; Snetselaar, Linda G; Stevens, Victor J; Shepherd, John A; Van Horn, Linda; LeBlanc, Erin S; Paris, Kenneth; Klifa, Catherine; Dorgan, Joanne F

    2015-02-01

    Breast density is a strong risk factor for breast cancer and reflects epithelial and stromal content. Breast tissue is particularly sensitive to hormonal stimuli before it fully differentiates following the first full-term pregnancy. Few studies have examined associations between sex hormones and breast density among young women. We conducted a cross-sectional study among 180 women ages 25 to 29 years old who participated in the Dietary Intervention Study in Children 2006 Follow-up Study. Eighty-five percent of participants attended a clinic visit during their luteal phase of menstrual cycle. Magnetic resonance imaging measured the percentage of dense breast volume (%DBV), absolute dense breast volume (ADBV), and absolute nondense breast volume (ANDBV). Multiple-linear mixed-effect regression models were used to evaluate the association of sex hormones and sex hormone-binding globulin (SHBG) with %DBV, ADBV, and ANDBV. Testosterone was significantly positively associated with %DBV and ADBV. The multivariable geometric mean of %DBV and ADBV across testosterone quartiles increased from 16.5% to 20.3% and from 68.6 to 82.3 cm(3), respectively (Ptrend ≤ 0.03). There was no association of %DBV or ADBV with estrogens, progesterone, non-SHBG-bound testosterone, or SHBG (Ptrend ≥ 0.27). Neither sex hormones nor SHBG was associated with ANDBV except progesterone; however, the progesterone result was nonsignificant in analysis restricted to women in the luteal phase. These findings suggest a modest positive association between testosterone and breast density in young women. Hormonal influences at critical periods may contribute to morphologic differences in the breast associated with breast cancer risk later in life. ©2014 American Association for Cancer Research.

  5. Absolute or relative? A comparative analysis of the relationship between poverty and mortality.

    PubMed

    Fritzell, Johan; Rehnberg, Johan; Bacchus Hertzman, Jennie; Blomgren, Jenni

    2015-01-01

    We aimed to examine the cross-national and cross-temporal association between poverty and mortality, in particular differentiating the impact of absolute and relative poverty. We employed pooled cross-sectional time series analysis. Our measure of relative poverty was based upon the standard 60% of median income. The measure of absolute, or fixed, poverty was based upon the US poverty threshold. Our analyses were conducted on data for 30 countries between 1978 and 2010, a total of 149 data points. We separately studied infant, child, and adult mortality. Our findings highlight the importance of relative poverty for mortality. Especially for infant and child mortality, we found that our estimates of fixed poverty is close to zero either in the crude models, or when adjusting for gross domestic product. Conversely, the relative poverty estimates increased when adjusting for confounders. Our results seemed robust to a number of sensitivity tests. If we agree that risk of death is important, the public policy implication of our findings is that relative poverty, which has close associations to overall inequality, should be a major concern also among rich countries.

  6. Full-Field Calibration of Color Camera Chromatic Aberration using Absolute Phase Maps.

    PubMed

    Liu, Xiaohong; Huang, Shujun; Zhang, Zonghua; Gao, Feng; Jiang, Xiangqian

    2017-05-06

    The refractive index of a lens varies for different wavelengths of light, and thus the same incident light with different wavelengths has different outgoing light. This characteristic of lenses causes images captured by a color camera to display chromatic aberration (CA), which seriously reduces image quality. Based on an analysis of the distribution of CA, a full-field calibration method based on absolute phase maps is proposed in this paper. Red, green, and blue closed sinusoidal fringe patterns are generated, consecutively displayed on an LCD (liquid crystal display), and captured by a color camera from the front viewpoint. The phase information of each color fringe is obtained using a four-step phase-shifting algorithm and optimum fringe number selection method. CA causes the unwrapped phase of the three channels to differ. These pixel deviations can be computed by comparing the unwrapped phase data of the red, blue, and green channels in polar coordinates. CA calibration is accomplished in Cartesian coordinates. The systematic errors introduced by the LCD are analyzed and corrected. Simulated results show the validity of the proposed method and experimental results demonstrate that the proposed full-field calibration method based on absolute phase maps will be useful for practical software-based CA calibration.

  7. A Numerical Fit of Analytical to Simulated Density Profiles in Dark Matter Haloes

    NASA Astrophysics Data System (ADS)

    Caimmi, R.; Marmo, C.; Valentinuzzi, T.

    2005-06-01

    Analytical and geometrical properties of generalized power-law (GPL) density profiles are investigated in detail. In particular, a one-to-one correspondence is found between mathematical parameters (a scaling radius, r_0, a scaling density, rho_0, and three exponents, alpha, beta, gamma), and geometrical parameters (the coordinates of the intersection of the asymptotes, x_C, y_C, and three vertical intercepts, b, b_beta, b_gamma, related to the curve and the asymptotes, respectively): (r_0,rho_0,alpha,beta,gamma) <--> (x_C,y_C,b,b_beta,b_gamma). Then GPL density profiles are compared with simulated dark haloes (SDH) density profiles, and nonlinear least-absolute values and least-squares fits involving the above mentioned five parameters (RFSM5 method) are prescribed. More specifically, the sum of absolute values or squares of absolute logarithmic residuals, R_i= log rhoSDH(r_i)-log rhoGPL(r_i), is evaluated on 10^5 points making a 5- dimension hypergrid, through a few iterations. The size is progressively reduced around a fiducial minimum, and superpositions on nodes of earlier hypergrids are avoided. An application is made to a sample of 17 SDHs on the scale of cluster of galaxies, within a flat LambdaCDM cosmological model (Rasia et al. 2004). In dealing with the mean SDH density profile, a virial radius, rvir, averaged over the whole sample, is assigned, which allows the calculation of the remaining parameters. Using a RFSM5 method provides a better fit with respect to other methods. The geometrical parameters, averaged over the whole sample of best fitting GPL density profiles, yield (alpha,beta,gamma) approx(0.6,3.1,1.0), to be compared with (alpha,beta,gamma)=(1,3,1), i.e. the NFW density profile (Navarro et al. 1995, 1996, 1997), (alpha,beta,gamma)=(1.5,3,1.5) (Moore et al. 1998, 1999), (alpha,beta,gamma)=(1,2.5,1) (Rasia et al. 2004); and, in addition, gamma approx 1.5 (Hiotelis 2003), deduced from the application of a RFSM5 method, but using a different

  8. Absolute branching fraction measurements of exclusive D+ semileptonic decays.

    PubMed

    Huang, G S; Miller, D H; Pavlunin, V; Sanghi, B; Shipsey, I P J; Adams, G S; Chasse, M; Cravey, M; Cummings, J P; Danko, I; Napolitano, J; He, Q; Muramatsu, H; Park, C S; Park, W; Thorndike, E H; Coan, T E; Gao, Y S; Liu, F; Artuso, M; Boulahouache, C; Blusk, S; Butt, J; Dambasuren, E; Dorjkhaidav, O; Li, J; Menaa, N; Mountain, R; Nandakumar, R; Randrianarivony, K; Redjimi, R; Sia, R; Skwarnicki, T; Stone, S; Wang, J C; Zhang, K; Csorna, S E; Bonvicini, G; Cinabro, D; Dubrovin, M; Briere, R A; Chen, G P; Chen, J; Ferguson, T; Tatishvili, G; Vogel, H; Watkins, M E; Rosner, J L; Adam, N E; Alexander, J P; Berkelman, K; Cassel, D G; Crede, V; Duboscq, J E; Ecklund, K M; Ehrlich, R; Fields, L; Gibbons, L; Gittelman, B; Gray, R; Gray, S W; Hartill, D L; Heltsley, B K; Hertz, D; Hsu, L; Jones, C D; Kandaswamy, J; Kreinick, D L; Kuznetsov, V E; Mahlke-Krüger, H; Meyer, T O; Onyisi, P U E; Patterson, J R; Peterson, D; Phillips, E A; Pivarski, J; Riley, D; Ryd, A; Sadoff, A J; Schwarthoff, H; Shi, X; Shepherd, M R; Stroiney, S; Sun, W M; Urner, D; Weaver, K M; Wilksen, T; Weinberger, M; Athar, S B; Avery, P; Breva-Newell, L; Patel, R; Potlia, V; Stoeck, H; Yelton, J; Rubin, P; Cawlfield, C; Eisenstein, B I; Gollin, G D; Karliner, I; Kim, D; Lowrey, N; Naik, P; Sedlack, C; Selen, M; Williams, J; Wiss, J; Edwards, K W; Besson, D; Pedlar, T K; Cronin-Hennessy, D; Gao, K Y; Gong, D T; Hietala, J; Kubota, Y; Klein, T; Lang, B W; Li, S Z; Poling, R; Scott, A W; Smith, A; Dobbs, S; Metreveli, Z; Seth, K K; Tomaradze, A; Zweber, P; Ernst, J; Mahmood, A H; Severini, H; Asner, D M; Dytman, S A; Love, W; Mehrabyan, S; Mueller, J A; Savinov, V; Li, Z; Lopez, A; Mendez, H; Ramirez, J

    2005-10-28

    Using data collected at the psi(3770) resonance with the CLEO-c detector at the Cornell e+e- storage ring, we present improved measurements of the absolute branching fractions of D+decays to K0e+ve, pi0e+ve, K*0e+ve, and p0e+ve, and the first observation and absolute branching fraction measurement of D+ --> omega e+ve. We also report the most precise tests to date of isospin invariance in semileptonic D0 and D+ decays.

  9. The effect of modeled absolute timing variability and relative timing variability on observational learning.

    PubMed

    Grierson, Lawrence E M; Roberts, James W; Welsher, Arthur M

    2017-05-01

    There is much evidence to suggest that skill learning is enhanced by skill observation. Recent research on this phenomenon indicates a benefit of observing variable/erred demonstrations. In this study, we explore whether it is variability within the relative organization or absolute parameterization of a movement that facilitates skill learning through observation. To do so, participants were randomly allocated into groups that observed a model with no variability, absolute timing variability, relative timing variability, or variability in both absolute and relative timing. All participants performed a four-segment movement pattern with specific absolute and relative timing goals prior to and following the observational intervention, as well as in a 24h retention test and transfers tests that featured new relative and absolute timing goals. Absolute timing error indicated that all groups initially acquired the absolute timing, maintained their performance at 24h retention, and exhibited performance deterioration in both transfer tests. Relative timing error revealed that the observation of no variability and relative timing variability produced greater performance at the post-test, 24h retention and relative timing transfer tests, but for the no variability group, deteriorated at absolute timing transfer test. The results suggest that the learning of absolute timing following observation unfolds irrespective of model variability. However, the learning of relative timing benefits from holding the absolute features constant, while the observation of no variability partially fails in transfer. We suggest learning by observing no variability and variable/erred models unfolds via similar neural mechanisms, although the latter benefits from the additional coding of information pertaining to movements that require a correction. Copyright © 2017 Elsevier B.V. All rights reserved.

  10. A New Gimmick for Assigning Absolute Configuration.

    ERIC Educational Resources Information Center

    Ayorinde, F. O.

    1983-01-01

    A five-step procedure is provided to help students in making the assignment absolute configuration less bothersome. Examples for both single (2-butanol) and multi-chiral carbon (3-chloro-2-butanol) molecules are included. (JN)

  11. Absolute Equilibrium Entropy

    NASA Technical Reports Server (NTRS)

    Shebalin, John V.

    1997-01-01

    The entropy associated with absolute equilibrium ensemble theories of ideal, homogeneous, fluid and magneto-fluid turbulence is discussed and the three-dimensional fluid case is examined in detail. A sigma-function is defined, whose minimum value with respect to global parameters is the entropy. A comparison is made between the use of global functions sigma and phase functions H (associated with the development of various H-theorems of ideal turbulence). It is shown that the two approaches are complimentary though conceptually different: H-theorems show that an isolated system tends to equilibrium while sigma-functions allow the demonstration that entropy never decreases when two previously isolated systems are combined. This provides a more complete picture of entropy in the statistical mechanics of ideal fluids.

  12. A Java program for LRE-based real-time qPCR that enables large-scale absolute quantification.

    PubMed

    Rutledge, Robert G

    2011-03-02

    Linear regression of efficiency (LRE) introduced a new paradigm for real-time qPCR that enables large-scale absolute quantification by eliminating the need for standard curves. Developed through the application of sigmoidal mathematics to SYBR Green I-based assays, target quantity is derived directly from fluorescence readings within the central region of an amplification profile. However, a major challenge of implementing LRE quantification is the labor intensive nature of the analysis. Utilizing the extensive resources that are available for developing Java-based software, the LRE Analyzer was written using the NetBeans IDE, and is built on top of the modular architecture and windowing system provided by the NetBeans Platform. This fully featured desktop application determines the number of target molecules within a sample with little or no intervention by the user, in addition to providing extensive database capabilities. MS Excel is used to import data, allowing LRE quantification to be conducted with any real-time PCR instrument that provides access to the raw fluorescence readings. An extensive help set also provides an in-depth introduction to LRE, in addition to guidelines on how to implement LRE quantification. The LRE Analyzer provides the automated analysis and data storage capabilities required by large-scale qPCR projects wanting to exploit the many advantages of absolute quantification. Foremost is the universal perspective afforded by absolute quantification, which among other attributes, provides the ability to directly compare quantitative data produced by different assays and/or instruments. Furthermore, absolute quantification has important implications for gene expression profiling in that it provides the foundation for comparing transcript quantities produced by any gene with any other gene, within and between samples.

  13. Number of Patients Eligible for PCSK9 Inhibitors Based on Real-world Data From 2.5 Million Patients.

    PubMed

    Zamora, Alberto; Masana, Luís; Comas-Cufi, Marc; Plana, Núria; Vila, Àlex; García-Gil, Maria; Alves-Cabratosa, Lia; Elosua, Roberto; Marrugat, Jaume; Ramos, Rafel

    2018-03-29

    PCSK9 inhibitors (PCSK9i) are safe and effective lipid-lowering drugs. Their main limitation is their high cost. The aim of this study was to estimate the number of patients eligible for treatment with PCSK9i according to distinct published criteria. Data were obtained from the Information System for the Development of Research in Primary Care. Included patients were equal to or older than 18 years and had at least 1 low-density lipoprotein cholesterol measurement recorded between 2006 and 2014 (n = 2 500 907). An indication for treatment with PCSK9i was assigned according to the following guidelines: National Health System, Spanish Society of Arteriosclerosis, Spanish Society of Cardiology, National Institute for Health and Care Excellence, and the European Society of Cardiology/European Atherosclerosis Society Task Force. Lipid-lowering treatment was defined as optimized if it reduced low-density lipoprotein levels by ≥ 50% and adherence was > 80%. Among the Spanish population aged 18 years or older, the number of possible candidates to receive PCSK9i in an optimal lipid-lowering treatment scenario ranged from 0.1% to 1.7%, depending on the guideline considered. The subgroup of patients with the highest proportion of potential candidates consisted of patients with familial hypercholesterolemia, and the subgroup with the highest absolute number consisted of patients in secondary cardiovascular prevention. The number of candidates to receive PCSK9i in conditions of real-world clinical practice is high and varies widely depending on the recommendations of distinct scientific societies. Copyright © 2017 Sociedad Española de Cardiología. Published by Elsevier España, S.L.U. All rights reserved.

  14. Absolute instabilities of travelling wave solutions in a Keller-Segel model

    NASA Astrophysics Data System (ADS)

    Davis, P. N.; van Heijster, P.; Marangell, R.

    2017-11-01

    We investigate the spectral stability of travelling wave solutions in a Keller-Segel model of bacterial chemotaxis with a logarithmic chemosensitivity function and a constant, sublinear, and linear consumption rate. Linearising around the travelling wave solutions, we locate the essential and absolute spectrum of the associated linear operators and find that all travelling wave solutions have parts of the essential spectrum in the right half plane. However, we show that in the case of constant or sublinear consumption there exists a range of parameters such that the absolute spectrum is contained in the open left half plane and the essential spectrum can thus be weighted into the open left half plane. For the constant and sublinear consumption rate models we also determine critical parameter values for which the absolute spectrum crosses into the right half plane, indicating the onset of an absolute instability of the travelling wave solution. We observe that this crossing always occurs off of the real axis.

  15. Parametric scaling of neutral and ion excited state densities in an argon helicon source

    NASA Astrophysics Data System (ADS)

    McCarren, D.; Scime, E.

    2016-04-01

    We report measurements of the absolute density and temperature of ion and neutral excited states in an argon helicon source. The excited ion state density, which depends on ion density, electron density, and electron temperature, increases sharply with increasing magnetic field in the source. The neutral argon metastable density measurements are consistent with an increasing ionization fraction with increasing magnetic field strength. The ion temperature shows no evidence of increased heating with increasing magnetic field strength (which has only been observed in helicon sources operating at driving frequencies close to the lower hybrid frequency). The measurements were obtained through cavity ring down spectroscopy, a measurement technique that does not require the target excited state to be metastable or part of a fluorescence scheme; and is therefore applicable to any laser accessible atomic or ionic transition in a plasma.

  16. Patch testing with serial dilutions and thin-layer chromatograms of oak moss absolutes containing high and low levels of atranol and chloroatranol.

    PubMed

    Mowitz, Martin; Zimerson, Erik; Svedman, Cecilia; Bruze, Magnus

    2013-12-01

    Oak moss absolute (Evernia prunastri extract) contains a large number of substances, among them the potent allergens atranol and chloroatranol. Since 2008, their content in oak moss absolute has been restricted by the International Fragrance Association to a maximum level of 100 ppm each. To compare the elicitation capacities of a traditional (sample A) and a treated (sample B) oak moss absolute containing, in total, 27 000 and 66 ppm of atranol and chloroatranol, respectively, and to investigate reactions to components of oak moss absolute separated by thin-layer chromatography (TLC). Fifteen oak moss-allergic subjects were patch tested with serial dilutions and TLC strips of samples A and B. Fifteen subjects reacted to sample A at concentrations ≤ 2.0%, and 2 subjects reacted to sample B at 2.0% but not to lower concentrations. Among 13 subjects reacting to the TLC strip of sample A, 11 reacted to spots with retardation factor values corresponding to those of atranol and/or chloroatranol, and 11 reacted to other areas on the TLC strip. Only one subject reacted to the TLC strip of sample B. The patch test reactivity of sample B was significantly lower than that of sample A. The TLC patch tests indicate the presence of sensitizers other than atranol and chloroatranol in oak moss absolute. © 2013 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  17. Assigning crystallographic electron densities with free energy calculations—The case of the fluoride channel Fluc

    PubMed Central

    2018-01-01

    Approximately 90% of the structures in the Protein Data Bank (PDB) were obtained by X-ray crystallography or electron microscopy. Whereas the overall quality of structure is considered high, thanks to a wide range of tools for structure validation, uncertainties may arise from density maps of small molecules, such as organic ligands, ions or water, which are non-covalently bound to the biomolecules. Even with some experience and chemical intuition, the assignment of such disconnected electron densities is often far from obvious. In this study, we suggest the use of molecular dynamics (MD) simulations and free energy calculations, which are well-established computational methods, to aid in the assignment of ambiguous disconnected electron densities. Specifically, estimates of (i) relative binding affinities, for instance between an ion and water, (ii) absolute binding free energies, i.e., free energies for transferring a solute from bulk solvent to a binding site, and (iii) stability assessments during equilibrium simulations may reveal the most plausible assignments. We illustrate this strategy using the crystal structure of the fluoride specific channel (Fluc), which contains five disconnected electron densities previously interpreted as four fluoride and one sodium ion. The simulations support the assignment of the sodium ion. In contrast, calculations of relative and absolute binding free energies as well as stability assessments during free MD simulations suggest that four of the densities represent water molecules instead of fluoride. The assignment of water is compatible with the loss of these densities in the non-conductive F82I/F85I mutant of Fluc. We critically discuss the role of the ion force fields for the calculations presented here. Overall, these findings indicate that MD simulations and free energy calculations are helpful tools for modeling water and ions into crystallographic density maps. PMID:29771936

  18. DFT benchmark study for the oxidative addition of CH 4 to Pd. Performance of various density functionals

    NASA Astrophysics Data System (ADS)

    de Jong, G. Theodoor; Geerke, Daan P.; Diefenbach, Axel; Matthias Bickelhaupt, F.

    2005-06-01

    We have evaluated the performance of 24 popular density functionals for describing the potential energy surface (PES) of the archetypal oxidative addition reaction of the methane C-H bond to the palladium atom by comparing the results with our recent ab initio [CCSD(T)] benchmark study of this reaction. The density functionals examined cover the local density approximation (LDA), the generalized gradient approximation (GGA), meta-GGAs as well as hybrid density functional theory. Relativistic effects are accounted for through the zeroth-order regular approximation (ZORA). The basis-set dependence of the density-functional-theory (DFT) results is assessed for the Becke-Lee-Yang-Parr (BLYP) functional using a hierarchical series of Slater-type orbital (STO) basis sets ranging from unpolarized double-ζ (DZ) to quadruply polarized quadruple-ζ quality (QZ4P). Stationary points on the reaction surface have been optimized using various GGA functionals, all of which yield geometries that differ only marginally. Counterpoise-corrected relative energies of stationary points are converged to within a few tenths of a kcal/mol if one uses the doubly polarized triple-ζ (TZ2P) basis set and the basis-set superposition error (BSSE) drops to 0.0 kcal/mol for our largest basis set (QZ4P). Best overall agreement with the ab initio benchmark PES is achieved by functionals of the GGA, meta-GGA, and hybrid-DFT type, with mean absolute errors of 1.3-1.4 kcal/mol and errors in activation energies ranging from +0.8 to -1.4 kcal/mol. Interestingly, the well-known BLYP functional compares very reasonably with an only slightly larger mean absolute error of 2.5 kcal/mol and an underestimation by -1.9 kcal/mol of the overall barrier (i.e., the difference in energy between the TS and the separate reactants). For comparison, with B3LYP we arrive at a mean absolute error of 3.8 kcal/mol and an overestimation of the overall barrier by 4.5 kcal/mol.

  19. Absolute Lower Bound on the Bounce Action

    NASA Astrophysics Data System (ADS)

    Sato, Ryosuke; Takimoto, Masahiro

    2018-03-01

    The decay rate of a false vacuum is determined by the minimal action solution of the tunneling field: bounce. In this Letter, we focus on models with scalar fields which have a canonical kinetic term in N (>2 ) dimensional Euclidean space, and derive an absolute lower bound on the bounce action. In the case of four-dimensional space, we show the bounce action is generically larger than 24 /λcr, where λcr≡max [-4 V (ϕ )/|ϕ |4] with the false vacuum being at ϕ =0 and V (0 )=0 . We derive this bound on the bounce action without solving the equation of motion explicitly. Our bound is derived by a quite simple discussion, and it provides useful information even if it is difficult to obtain the explicit form of the bounce solution. Our bound offers a sufficient condition for the stability of a false vacuum, and it is useful as a quick check on the vacuum stability for given models. Our bound can be applied to a broad class of scalar potential with any number of scalar fields. We also discuss a necessary condition for the bounce action taking a value close to this lower bound.

  20. MEERCAT: Multiplexed Efficient Cell Free Expression of Recombinant QconCATs For Large Scale Absolute Proteome Quantification*

    PubMed Central

    Takemori, Nobuaki; Takemori, Ayako; Tanaka, Yuki; Endo, Yaeta; Hurst, Jane L.; Gómez-Baena, Guadalupe; Harman, Victoria M.; Beynon, Robert J.

    2017-01-01

    A major challenge in proteomics is the absolute accurate quantification of large numbers of proteins. QconCATs, artificial proteins that are concatenations of multiple standard peptides, are well established as an efficient means to generate standards for proteome quantification. Previously, QconCATs have been expressed in bacteria, but we now describe QconCAT expression in a robust, cell-free system. The new expression approach rescues QconCATs that previously were unable to be expressed in bacteria and can reduce the incidence of proteolytic damage to QconCATs. Moreover, it is possible to cosynthesize QconCATs in a highly-multiplexed translation reaction, coexpressing tens or hundreds of QconCATs simultaneously. By obviating bacterial culture and through the gain of high level multiplexing, it is now possible to generate tens of thousands of standard peptides in a matter of weeks, rendering absolute quantification of a complex proteome highly achievable in a reproducible, broadly deployable system. PMID:29055021

  1. NIST Stars: Absolute Spectrophotometric Calibration of Vega and Sirius

    NASA Astrophysics Data System (ADS)

    Deustua, Susana; Woodward, John T.; Rice, Joseph P.; Brown, Steven W.; Maxwell, Stephen E.; Alberding, Brian G.; Lykke, Keith R.

    2018-01-01

    Absolute flux calibration of standard stars, traceable to SI (International System of Units) standards, is essential for 21st century astrophysics. Dark energy investigations that rely on observations of Type Ia supernovae and precise photometric redshifts of weakly lensed galaxies require a minimum accuracy of 0.5 % in the absolute color calibration. Studies that aim to address fundamental stellar astrophysics also benefit. In the era of large telescopes and all sky surveys well-calibrated standard stars that do not saturate and that are available over the whole sky are needed. Significant effort has been expended to obtain absolute measurements of the fundamental standards Vega and Sirius (and other stars) in the visible and near infrared, achieving total uncertainties between1% and 3%, depending on wavelength, that do not meet the needed accuracy. The NIST Stars program aims to determine the top-of-the-atmosphere absolute spectral irradiance of bright stars to an uncertainty less than 1% from a ground-based observatory. NIST Stars has developed a novel, fully SI-traceable laboratory calibration strategy that will enable achieving the desired accuracy. This strategy has two key components. The first is the SI-traceable calibration of the entire instrument system, and the second is the repeated spectroscopic measurement of the target star throughout the night. We will describe our experimental strategy, present preliminary results for Vega and Sirius and an end-to-end uncertainty budget

  2. An Integrated Model of Choices and Response Times in Absolute Identification

    ERIC Educational Resources Information Center

    Brown, Scott D.; Marley, A. A. J.; Donkin, Christopher; Heathcote, Andrew

    2008-01-01

    Recent theoretical developments in the field of absolute identification have stressed differences between relative and absolute processes, that is, whether stimulus magnitudes are judged relative to a shorter term context provided by recently presented stimuli or a longer term context provided by the entire set of stimuli. The authors developed a…

  3. Equilibrium problems for Raney densities

    NASA Astrophysics Data System (ADS)

    Forrester, Peter J.; Liu, Dang-Zheng; Zinn-Justin, Paul

    2015-07-01

    The Raney numbers are a class of combinatorial numbers generalising the Fuss-Catalan numbers. They are indexed by a pair of positive real numbers (p, r) with p > 1 and 0 < r ⩽ p, and form the moments of a probability density function. For certain (p, r) the latter has the interpretation as the density of squared singular values for certain random matrix ensembles, and in this context equilibrium problems characterising the Raney densities for (p, r) = (θ + 1, 1) and (θ/2 + 1, 1/2) have recently been proposed. Using two different techniques—one based on the Wiener-Hopf method for the solution of integral equations and the other on an analysis of the algebraic equation satisfied by the Green's function—we establish the validity of the equilibrium problems for general θ > 0 and similarly use both methods to identify the equilibrium problem for (p, r) = (θ/q + 1, 1/q), θ > 0 and q \\in Z+ . The Wiener-Hopf method is used to extend the latter to parameters (p, r) = (θ/q + 1, m + 1/q) for m a non-negative integer, and also to identify the equilibrium problem for a family of densities with moments given by certain binomial coefficients.

  4. Absolute branching fraction measurements of exclusive D0 semileptonic decays.

    PubMed

    Coan, T E; Gao, Y S; Liu, F; Artuso, M; Boulahouache, C; Blusk, S; Butt, J; Dambasuren, E; Dorjkhaidav, O; Li, J; Menaa, N; Mountain, R; Nandakumar, R; Redjimi, R; Sia, R; Skwarnicki, T; Stone, S; Wang, J C; Zhang, K; Csorna, S E; Bonvicini, G; Cinabro, D; Dubrovin, M; Briere, R A; Chen, G P; Chen, J; Ferguson, T; Tatishvili, G; Vogel, H; Watkins, M E; Rosner, J L; Adam, N E; Alexander, J P; Berkelman, K; Cassel, D G; Crede, V; Duboscq, J E; Ecklund, K M; Ehrlich, R; Fields, L; Gibbons, L; Gittelman, B; Gray, R; Gray, S W; Hartill, D L; Heltsley, B K; Hertz, D; Hsu, L; Jones, C D; Kandaswamy, J; Kreinick, D L; Kuznetsov, V E; Mahlke-Krüger, H; Meyer, T O; Onyisi, P U E; Patterson, J R; Peterson, D; Pivarski, J; Phillips, E A; Riley, D; Ryd, A; Sadoff, A J; Schwarthoff, H; Shepherd, M R; Stroiney, S; Sun, W M; Urner, D; Wilksen, T; Weinberger, M; Athar, S B; Avery, P; Breva-Newell, L; Patel, R; Potlia, V; Stoeck, H; Yelton, J; Rubin, P; Cawlfield, C; Eisenstein, B I; Gollin, G D; Karliner, I; Kim, D; Lowrey, N; Naik, P; Sedlack, C; Selen, M; Williams, J; Wiss, J; Edwards, K W; Besson, D; Pedlar, T K; Cronin-Hennessy, D; Gao, K Y; Gong, D T; Kubota, Y; Klein, T; Lang, B W; Li, S Z; Poling, R; Scott, A W; Smith, A; Dobbs, S; Metreveli, Z; Seth, K K; Tomaradze, A; Zweber, P; Ernst, J; Mahmood, A H; Severini, H; Asner, D M; Dytman, S A; Love, W; Mehrabyan, S; Mueller, J A; Savinov, V; Li, Z; Lopez, A; Mendez, H; Ramirez, J; Huang, G S; Miller, D H; Pavlunin, V; Sanghi, B; Shibata, E I; Shipsey, I P J; Adams, G S; Chasse, M; Cravey, M; Cummings, J P; Danko, I; Napolitano, J; He, Q; Muramatsu, H; Park, C S; Park, W; Thorndike, E H

    2005-10-28

    With the first data sample collected by the CLEO-c detector at the psi(3770) resonance we have studied four exclusive semileptonic decays of the D0 meson. Our results include the first observation and absolute branching fraction measurement for D0 --> p-e+ve and improved measurements of the absolute branching fractions for D0 decays to K-e+ve, pi-e+ve, and K*-e+ve.

  5. Improvements in absolute seismometer sensitivity calibration using local earth gravity measurements

    USGS Publications Warehouse

    Anthony, Robert E.; Ringler, Adam; Wilson, David

    2018-01-01

    The ability to determine both absolute and relative seismic amplitudes is fundamentally limited by the accuracy and precision with which scientists are able to calibrate seismometer sensitivities and characterize their response. Currently, across the Global Seismic Network (GSN), errors in midband sensitivity exceed 3% at the 95% confidence interval and are the least‐constrained response parameter in seismic recording systems. We explore a new methodology utilizing precise absolute Earth gravity measurements to determine the midband sensitivity of seismic instruments. We first determine the absolute sensitivity of Kinemetrics EpiSensor accelerometers to 0.06% at the 99% confidence interval by inverting them in a known gravity field at the Albuquerque Seismological Laboratory (ASL). After the accelerometer is calibrated, we install it in its normal configuration next to broadband seismometers and subject the sensors to identical ground motions to perform relative calibrations of the broadband sensors. Using this technique, we are able to determine the absolute midband sensitivity of the vertical components of Nanometrics Trillium Compact seismometers to within 0.11% and Streckeisen STS‐2 seismometers to within 0.14% at the 99% confidence interval. The technique enables absolute calibrations from first principles that are traceable to National Institute of Standards and Technology (NIST) measurements while providing nearly an order of magnitude more precision than step‐table calibrations.

  6. Absolute photoionization cross-section of the methyl radical.

    PubMed

    Taatjes, Craig A; Osborn, David L; Selby, Talitha M; Meloni, Giovanni; Fan, Haiyan; Pratt, Stephen T

    2008-10-02

    The absolute photoionization cross-section of the methyl radical has been measured using two completely independent methods. The CH3 photoionization cross-section was determined relative to that of acetone and methyl vinyl ketone at photon energies of 10.2 and 11.0 eV by using a pulsed laser-photolysis/time-resolved synchrotron photoionization mass spectrometry method. The time-resolved depletion of the acetone or methyl vinyl ketone precursor and the production of methyl radicals following 193 nm photolysis are monitored simultaneously by using time-resolved synchrotron photoionization mass spectrometry. Comparison of the initial methyl signal with the decrease in precursor signal, in combination with previously measured absolute photoionization cross-sections of the precursors, yields the absolute photoionization cross-section of the methyl radical; sigma(CH3)(10.2 eV) = (5.7 +/- 0.9) x 10(-18) cm(2) and sigma(CH3)(11.0 eV) = (6.0 +/- 2.0) x 10(-18) cm(2). The photoionization cross-section for vinyl radical determined by photolysis of methyl vinyl ketone is in good agreement with previous measurements. The methyl radical photoionization cross-section was also independently measured relative to that of the iodine atom by comparison of ionization signals from CH3 and I fragments following 266 nm photolysis of methyl iodide in a molecular-beam ion-imaging apparatus. These measurements gave a cross-section of (5.4 +/- 2.0) x 10(-18) cm(2) at 10.460 eV, (5.5 +/- 2.0) x 10(-18) cm(2) at 10.466 eV, and (4.9 +/- 2.0) x 10(-18) cm(2) at 10.471 eV. The measurements allow relative photoionization efficiency spectra of methyl radical to be placed on an absolute scale and will facilitate quantitative measurements of methyl concentrations by photoionization mass spectrometry.

  7. Absolute Stability Analysis of a Phase Plane Controlled Spacecraft

    NASA Technical Reports Server (NTRS)

    Jang, Jiann-Woei; Plummer, Michael; Bedrossian, Nazareth; Hall, Charles; Jackson, Mark; Spanos, Pol

    2010-01-01

    Many aerospace attitude control systems utilize phase plane control schemes that include nonlinear elements such as dead zone and ideal relay. To evaluate phase plane control robustness, stability margin prediction methods must be developed. Absolute stability is extended to predict stability margins and to define an abort condition. A constrained optimization approach is also used to design flex filters for roll control. The design goal is to optimize vehicle tracking performance while maintaining adequate stability margins. Absolute stability is shown to provide satisfactory stability constraints for the optimization.

  8. Impact of density information on Rayleigh surface wave inversion results

    NASA Astrophysics Data System (ADS)

    Ivanov, Julian; Tsoflias, Georgios; Miller, Richard D.; Peterie, Shelby; Morton, Sarah; Xia, Jianghai

    2016-12-01

    We assessed the impact of density on the estimation of inverted shear-wave velocity (Vs) using the multi-channel analysis of surface waves (MASW) method. We considered the forward modeling theory, evaluated model sensitivity, and tested the effect of density information on the inversion of seismic data acquired in the Arctic. Theoretical review, numerical modeling and inversion of modeled and real data indicated that the density ratios between layers, not the actual density values, impact the determination of surface-wave phase velocities. Application on real data compared surface-wave inversion results using: a) constant density, the most common approach in practice, b) indirect density estimates derived from refraction compressional-wave velocity observations, and c) from direct density measurements in a borehole. The use of indirect density estimates reduced the final shear-wave velocity (Vs) results typically by 6-7% and the use of densities from a borehole reduced the final Vs estimates by 10-11% compared to those from assumed constant density. In addition to the improved absolute Vs accuracy, the resulting overall Vs changes were unevenly distributed laterally when viewed on a 2-D section leading to an overall Vs model structure that was more representative of the subsurface environment. It was observed that the use of constant density instead of increasing density with depth not only can lead to Vs overestimation but it can also create inaccurate model structures, such as a low-velocity layer. Thus, optimal Vs estimations can be best achieved using field estimates of subsurface density ratios.

  9. Absolute & Convective Instabilities in the Boundary Layer on a Rotating Sphere

    NASA Astrophysics Data System (ADS)

    Garrett, Stephen; Peake, Nigel

    2001-11-01

    We are concerned with absolute (AI) and convective instabilities (CI) in the boundary-layer on a sphere rotating in an otherwise still fluid. Both AI and CI are found at every latitude within specific parameter spaces. The local Reynolds number at the predicted onset of AI matches experimental data well for the onset of turbulence at ψ =30^o from the axis of rotation, beyond this latitude the discrepancy increases but remains relatively small below ψ =70^o. We suggest that this AI may cause the onset of transition. The results of the CI analysis show that a crossflow instability mode is the most dangerous below ψ =66^o. Above this latitude a streamline-curvature mode is found to be the most dangerous, which coincides with the appearance of reverse flow in the radial component of the mean flow. Our predictions of the Reynolds number and vortex angle at the onset of CI are consistent with existing experimental measurements. Close to the pole the predictions of each stability analysis are seen to approach those of existing rotating disk investigations.

  10. Absolute Points for Multiple Assignment Problems

    ERIC Educational Resources Information Center

    Adlakha, V.; Kowalski, K.

    2006-01-01

    An algorithm is presented to solve multiple assignment problems in which a cost is incurred only when an assignment is made at a given cell. The proposed method recursively searches for single/group absolute points to identify cells that must be loaded in any optimal solution. Unlike other methods, the first solution is the optimal solution. The…

  11. The PMA Catalogue: 420 million positions and absolute proper motions

    NASA Astrophysics Data System (ADS)

    Akhmetov, V. S.; Fedorov, P. N.; Velichko, A. B.; Shulga, V. M.

    2017-07-01

    We present a catalogue that contains about 420 million absolute proper motions of stars. It was derived from the combination of positions from Gaia DR1 and 2MASS, with a mean difference of epochs of about 15 yr. Most of the systematic zonal errors inherent in the 2MASS Catalogue were eliminated before deriving the absolute proper motions. The absolute calibration procedure (zero-pointing of the proper motions) was carried out using about 1.6 million positions of extragalactic sources. The mean formal error of the absolute calibration is less than 0.35 mas yr-1. The derived proper motions cover the whole celestial sphere without gaps for a range of stellar magnitudes from 8 to 21 mag. In the sky areas where the extragalactic sources are invisible (the avoidance zone), a dedicated procedure was used that transforms the relative proper motions into absolute ones. The rms error of proper motions depends on stellar magnitude and ranges from 2-5 mas yr-1 for stars with 10 mag < G < 17 mag to 5-10 mas yr-1 for faint ones. The present catalogue contains the Gaia DR1 positions of stars for the J2015 epoch. The system of the PMA proper motions does not depend on the systematic errors of the 2MASS positions, and in the range from 14 to 21 mag represents an independent realization of a quasi-inertial reference frame in the optical and near-infrared wavelength range. The Catalogue also contains stellar magnitudes taken from the Gaia DR1 and 2MASS catalogues. A comparison of the PMA proper motions of stars with similar data from certain recent catalogues has been undertaken.

  12. The Cosmological Impact of AGN Outflows: Measuring Absolute Abundances and Kinetic Luminosities

    NASA Astrophysics Data System (ADS)

    Arav, Nahum

    2009-07-01

    AGN outflows are increasingly invoked as a major contributor to the formation and evolution of supermassive black holes, their host galaxies, the surrounding IGM, and cluster cooling flows. Our HST/COS proposal will determine reliable absolute chemical abundances in six AGN outflows, which influences several of the processes mentioned above. To date there is only one such determination, done by our team on Mrk 279 using 16 HST/STIS orbits and 100 ksec of FUSE time. The advent of COS and its high sensitivity allows us to choose among fainter objects at redshifts high enough to preclude the need for FUSE. This will allow us to determine the absolute abundances for six AGN {all fainter than Mrk 279} using only 40 HST COS orbits. This will put abundances studies in AGN on a firm footing, an elusive goal for the past four decades. In addition, prior FUSE observations of four of these targets indicate that it is probable that the COS observations will detect troughs from excited levels of C III. These will allow us to measure the distances of the outflows and thereby determine their kinetic luminosity, a major goal in AGN feedback research. We will use our state of the art column density extraction methods and velocity-dependent photoionization models to determine the abundances and kinetic luminosity. Previous AGN outflow projects suffered from the constraints of deciding what science we could do using ONE of the handful of bright targets that were observable. With COS we can choose the best sample for our experiment. As an added bonus, most of the spectral range of our targets has not been observed previously, greatly increasing the discovery phase space.

  13. Ozone synthesis improves by increasing number density of plasma channels and lower voltage in a nonthermal plasma

    NASA Astrophysics Data System (ADS)

    Arif Malik, Muhammad; Hughes, David

    2016-04-01

    Improvements in ozone synthesis from air and oxygen by increasing the number density of plasma channels and lower voltage for the same specific input energy (SIE) were explored in a nonthermal plasma based on a sliding discharge. The number of plasma channels and energy per pulse increased in direct proportion to the increase in the effective length of the anode (the high voltage electrode). Decreasing the discharge gap increased the energy per pulse for the same length and allowed the installation of more electrode pairs in the same space. It allowed the increase of the number of plasma channels in the same space to achieve the same SIE at a lower peak voltage with less energy per plasma channel. The ozone concentration gradually increased to ~1500 ppmv (140 to 50 g kWh-1) from air and to ~6000 ppmv (400 to 200 g kWh-1) from oxygen with a gradual increase in the SIE to ~200 J L-1, irrespective of the variations in electrode geometry, applied voltage or flow rate of the feed gas. A gradual increase in SIE beyond 200 J L-1 gradually increased the ozone concentration to a certain maximum value followed by a decline, but the rate of increase and the maximum value was higher for the greater number of plasma channels and lower peak voltage combination. The maximum ozone concentration was ~5000 ppmv (~30 g kWh-1) from air and ~22 000 ppmv (~80 g kWh-1) from oxygen. The results are explained on the basis of characteristics of the plasma and ozone synthesis mechanism.

  14. The Positronium Radiative Combination Spectrum: Calculation in the Limit of Thermal Positrons and Low Densities

    NASA Technical Reports Server (NTRS)

    Wallyn, P.; Mahoney, W. A.; Durouchoux, Ph.; Chapuis, C.

    1996-01-01

    We calculate the intensities of the positronium de-excitation lines for two processes: (1) the radiative combination of free thermal electrons and positrons for transitions with principal quantum number n less than 20, and (2) charge exchange between free positrons and hydrogen and helium atoms, restricting our evaluation to the Lyman-alpha line. We consider a low-density medium modeled by the case A assumption of Baker & Menzel and use the "nL method" of Pengelly to calculate the absolute intensities. We also evaluate the positronium fine and hyperfine intensities and show that these transitions are in all cases much weaker than positronium de-excitation lines in the same wavelength range. We also extrapolate our positronium de-excitation intensities to the submillimeter, millimeter, and centimeter wavelengths. Our results favor the search of infrared transitions of positronium lines for point sources when the visual extinction A, is greater than approx. 5.

  15. Development and validation of a cerebral oximeter capable of absolute accuracy.

    PubMed

    MacLeod, David B; Ikeda, Keita; Vacchiano, Charles; Lobbestael, Aaron; Wahr, Joyce A; Shaw, Andrew D

    2012-12-01

    Cerebral oximetry may be a valuable monitor, but few validation data are available, and most report the change from baseline rather than absolute accuracy, which may be affected by individuals whose oximetric values are outside the expected range. The authors sought to develop and validate a cerebral oximeter capable of absolute accuracy. An in vivo research study. A university human physiology laboratory. Healthy human volunteers were enrolled in calibration and validation studies of 2 cerebral oximetric sensors, the Nonin 8000CA and 8004CA. The 8000CA validation study identified 5 individuals with atypical cerebral oxygenation values; their data were used to design the 8004CA sensor, which subsequently underwent calibration and validation. Volunteers were taken through a stepwise hypoxia protocol to a minimum saturation of peripheral oxygen. Arteriovenous saturation (70% jugular bulb venous saturation and 30% arterial saturation) at 6 hypoxic plateaus was used as the reference value for the cerebral oximeter. Absolute accuracy was defined using a combination of the bias and precision of the paired saturations (A(RMS)). In the validation study for the 8000CA sensor (n = 9, 106 plateaus), relative accuracy was an A(RMS) of 2.7, with an absolute accuracy of 8.1, meeting the criteria for a relative (trend) monitor, but not an absolute monitor. In the validation study for the 8004CA sensor (n = 11, 119 plateaus), the A(RMS) of the 8004CA was 4.1, meeting the prespecified success criterion of <5.0. The Nonin cerebral oximeter using the 8004CA sensor can provide absolute data on regional cerebral saturation compared with arteriovenous saturation, even in subjects previously shown to have values outside the normal population distribution curves. Copyright © 2012 Elsevier Inc. All rights reserved.

  16. Excited-state structure and electronic dephasing time of Nile blue from absolute resonance Raman intensities

    NASA Astrophysics Data System (ADS)

    Lawless, Mary K.; Mathies, Richard A.

    1992-06-01

    Absolute resonance Raman cross sections are measured for Nile blue 690 perchlorate dissolved in ethylene glycol with excitation at 514, 531, and 568 nm. These values and the absorption spectrum are modeled using a time-dependent wave packet formalism. The excited-state equilibrium geometry changes are quantitated for 40 resonance Raman active modes, seven of which (590, 1141, 1351, 1429, 1492, 1544, and 1640 cm-1 ) carry 70% of the total resonance Raman intensity. This demonstrates that in addition to the prominent 590 and 1640 cm-1 modes, a large number of vibrational degrees of freedom are Franck-Condon coupled to the electronic transition. After exposure of the explicit vibrational progressions, the residual absorption linewidth is separated into its homogeneous [350 cm-1 half-width at half-maximum (HWHM)] and inhomogeneous (313 cm-1 HWHM) components through an analysis of the absolute Raman cross sections. The value of the electronic dephasing time derived from this study (25 fs) compares well to previously published results. These data should be valuable in multimode modeling of femtosecond experiments on Nile blue.

  17. Design Difficulties in Stand Density Studies

    Treesearch

    Frank A. Bennett

    1969-01-01

    Designing unbiased stand density studies is difficult. An acceptable sample requires stratification of the plots of age, site, and density. When basal area, percent stocking, or Reineke's stand density index is used as the density measure, this stratification forces a high negative correlation between site and number of trees per acre. Mortality in trees per acre...

  18. Effects of Density Stratification in Compressible Polytropic Convection

    NASA Astrophysics Data System (ADS)

    Manduca, Cathryn M.; Anders, Evan H.; Bordwell, Baylee; Brown, Benjamin P.; Burns, Keaton J.; Lecoanet, Daniel; Oishi, Jeffrey S.; Vasil, Geoffrey M.

    2017-11-01

    We study compressible convection in polytropically-stratified atmospheres, exploring the effect of varying the total density stratification. Using the Dedalus pseudospectral framework, we perform 2D and 3D simulations. In these experiments we vary the number of density scale heights, studying atmospheres with little stratification (1 density scale height) and significant stratification (5 density scale heights). We vary the level of convective driving (quantified by the Rayleigh number), and study flows at similar Mach numbers by fixing the initial superadiabaticity. We explore the differences between 2D and 3D simulations, and in particular study the equilibration between different reservoirs of energy (kinetic, potential and internal) in the evolved states.

  19. Brain Tissue Compartment Density Estimated Using Diffusion-Weighted MRI Yields Tissue Parameters Consistent With Histology

    PubMed Central

    Sepehrband, Farshid; Clark, Kristi A.; Ullmann, Jeremy F.P.; Kurniawan, Nyoman D.; Leanage, Gayeshika; Reutens, David C.; Yang, Zhengyi

    2015-01-01

    We examined whether quantitative density measures of cerebral tissue consistent with histology can be obtained from diffusion magnetic resonance imaging (MRI). By incorporating prior knowledge of myelin and cell membrane densities, absolute tissue density values were estimated from relative intra-cellular and intra-neurite density values obtained from diffusion MRI. The NODDI (neurite orientation distribution and density imaging) technique, which can be applied clinically, was used. Myelin density estimates were compared with the results of electron and light microscopy in ex vivo mouse brain and with published density estimates in a healthy human brain. In ex vivo mouse brain, estimated myelin densities in different sub-regions of the mouse corpus callosum were almost identical to values obtained from electron microscopy (Diffusion MRI: 42±6%, 36±4% and 43±5%; electron microscopy: 41±10%, 36±8% and 44±12% in genu, body and splenium, respectively). In the human brain, good agreement was observed between estimated fiber density measurements and previously reported values based on electron microscopy. Estimated density values were unaffected by crossing fibers. PMID:26096639

  20. A vibration correction method for free-fall absolute gravimeters

    NASA Astrophysics Data System (ADS)

    Qian, J.; Wang, G.; Wu, K.; Wang, L. J.

    2018-02-01

    An accurate determination of gravitational acceleration, usually approximated as 9.8 m s-2, has been playing an important role in the areas of metrology, geophysics, and geodetics. Absolute gravimetry has been experiencing rapid developments in recent years. Most absolute gravimeters today employ a free-fall method to measure gravitational acceleration. Noise from ground vibration has become one of the most serious factors limiting measurement precision. Compared to vibration isolators, the vibration correction method is a simple and feasible way to reduce the influence of ground vibrations. A modified vibration correction method is proposed and demonstrated. A two-dimensional golden section search algorithm is used to search for the best parameters of the hypothetical transfer function. Experiments using a T-1 absolute gravimeter are performed. It is verified that for an identical group of drop data, the modified method proposed in this paper can achieve better correction effects with much less computation than previous methods. Compared to vibration isolators, the correction method applies to more hostile environments and even dynamic platforms, and is expected to be used in a wider range of applications.

  1. An absolute photometric system at 10 and 20 microns

    NASA Technical Reports Server (NTRS)

    Rieke, G. H.; Lebofsky, M. J.; Low, F. J.

    1985-01-01

    Two new direct calibrations at 10 and 20 microns are presented in which terrestrial flux standards are referred to infrared standard stars. These measurements give both good agreement and higher accuracy when compared with previous direct calibrations. As a result, the absolute calibrations at 10 and 20 microns have now been determined with accuracies of 3 and 8 percent, respectively. A variety of absolute calibrations based on extrapolation of stellar spectra from the visible to 10 microns are reviewed. Current atmospheric models of A-type stars underestimate their fluxes by about 10 percent at 10 microns, whereas models of solar-type stars agree well with the direct calibrations. The calibration at 20 microns can probably be determined to about 5 percent by extrapolation from the more accurate result at 10 microns. The photometric system at 10 and 20 microns is updated to reflect the new absolute calibration, to base its zero point directly on the colors of A0 stars, and to improve the accuracy in the comparison of the standard stars.

  2. Wide-field absolute transverse blood flow velocity mapping in vessel centerline

    NASA Astrophysics Data System (ADS)

    Wu, Nanshou; Wang, Lei; Zhu, Bifeng; Guan, Caizhong; Wang, Mingyi; Han, Dingan; Tan, Haishu; Zeng, Yaguang

    2018-02-01

    We propose a wide-field absolute transverse blood flow velocity measurement method in vessel centerline based on absorption intensity fluctuation modulation effect. The difference between the light absorption capacities of red blood cells and background tissue under low-coherence illumination is utilized to realize the instantaneous and average wide-field optical angiography images. The absolute fuzzy connection algorithm is used for vessel centerline extraction from the average wide-field optical angiography. The absolute transverse velocity in the vessel centerline is then measured by a cross-correlation analysis according to instantaneous modulation depth signal. The proposed method promises to contribute to the treatment of diseases, such as those related to anemia or thrombosis.

  3. Significant inconsistency of vegetation carbon density in CMIP5 Earth system models against observational data: Vegetation Carbon Density in ESMs

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Song, Xia; Hoffman, Forrest M.; Iversen, Colleen M.

    Earth system models (ESMs) have been widely used for projecting global vegetation carbon dynamics, yet how well ESMs performed for simulating vegetation carbon density remains untested. Here we have compiled observational data of vegetation carbon density from literature and existing data sets to evaluate nine ESMs at site, biome, latitude, and global scales. Three variables—root (including fine and coarse roots), total vegetation carbon density, and the root:total vegetation carbon ratios (R/T ratios), were chosen for ESM evaluation. ESM models performed well in simulating the spatial distribution of carbon densities in root (r = 0.71) and total vegetation (r = 0.62).more » However, ESM models had significant biases in simulating absolute carbon densities in root and total vegetation biomass across the majority of land ecosystems, especially in tropical and arctic ecosystems. Particularly, ESMs significantly overestimated carbon density in root (183%) and total vegetation biomass (167%) in climate zones of 10°S–10°N. Substantial discrepancies between modeled and observed R/T ratios were found: the R/T ratios from ESMs were relatively constant, approximately 0.2 across all ecosystems, along latitudinal gradients, and in tropic, temperate, and arctic climatic zones, which was significantly different from the observed large variations in the R/T ratios (0.1–0.8). There were substantial inconsistencies between ESM-derived carbon density in root and total vegetation biomass and the R/T ratio at multiple scales, indicating urgent needs for model improvements on carbon allocation algorithms and more intensive field campaigns targeting carbon density in all key vegetation components.« less

  4. Significant inconsistency of vegetation carbon density in CMIP5 Earth system models against observational data: Vegetation Carbon Density in ESMs

    DOE PAGES

    Song, Xia; Hoffman, Forrest M.; Iversen, Colleen M.; ...

    2017-09-09

    Earth system models (ESMs) have been widely used for projecting global vegetation carbon dynamics, yet how well ESMs performed for simulating vegetation carbon density remains untested. Here we have compiled observational data of vegetation carbon density from literature and existing data sets to evaluate nine ESMs at site, biome, latitude, and global scales. Three variables—root (including fine and coarse roots), total vegetation carbon density, and the root:total vegetation carbon ratios (R/T ratios), were chosen for ESM evaluation. ESM models performed well in simulating the spatial distribution of carbon densities in root (r = 0.71) and total vegetation (r = 0.62).more » However, ESM models had significant biases in simulating absolute carbon densities in root and total vegetation biomass across the majority of land ecosystems, especially in tropical and arctic ecosystems. Particularly, ESMs significantly overestimated carbon density in root (183%) and total vegetation biomass (167%) in climate zones of 10°S–10°N. Substantial discrepancies between modeled and observed R/T ratios were found: the R/T ratios from ESMs were relatively constant, approximately 0.2 across all ecosystems, along latitudinal gradients, and in tropic, temperate, and arctic climatic zones, which was significantly different from the observed large variations in the R/T ratios (0.1–0.8). There were substantial inconsistencies between ESM-derived carbon density in root and total vegetation biomass and the R/T ratio at multiple scales, indicating urgent needs for model improvements on carbon allocation algorithms and more intensive field campaigns targeting carbon density in all key vegetation components.« less

  5. Investigation of estimators of probability density functions

    NASA Technical Reports Server (NTRS)

    Speed, F. M.

    1972-01-01

    Four research projects are summarized which include: (1) the generation of random numbers on the IBM 360/44, (2) statistical tests used to check out random number generators, (3) Specht density estimators, and (4) use of estimators of probability density functions in analyzing large amounts of data.

  6. Reliability of quantitative EEG (qEEG) measures and LORETA current source density at 30 days.

    PubMed

    Cannon, Rex L; Baldwin, Debora R; Shaw, Tiffany L; Diloreto, Dominic J; Phillips, Sherman M; Scruggs, Annie M; Riehl, Timothy C

    2012-06-14

    There is a growing interest for using quantitative EEG and LORETA current source density in clinical and research settings. Importantly, if these indices are to be employed in clinical settings then the reliability of these measures is of great concern. Neuroguide (Applied Neurosciences) is sophisticated software developed for the analyses of power, and connectivity measures of the EEG as well as LORETA current source density. To date there are relatively few data evaluating topographical EEG reliability contrasts for all 19 channels and no studies have evaluated reliability for LORETA calculations. We obtained 4 min eyes-closed and eyes-opened EEG recordings at 30-day intervals. The EEG was analyzed in Neuroguide and FFT power, coherence and phase was computed for traditional frequency bands (delta, theta, alpha and beta) and LORETA current source density was calculated in 1 Hz increments and summed for total power in eight regions of interest (ROI). In order to obtain a robust measure of reliability we utilized a random effects model with an absolute agreement definition. The results show very good reproducibility for total absolute power and coherence. Phase shows lower reliability coefficients. LORETA current source density shows very good reliability with an average 0.81 for ECB and 0.82 for EOB. Similarly, the eight regions of interest show good to very good agreement across time. Implications for future directions and use of qEEG and LORETA in clinical populations are discussed. Copyright © 2012 Elsevier Ireland Ltd. All rights reserved.

  7. Repeat Absolute and Relative Gravity Measurements for Geothermal Reservoir Monitoring in the Ogiri Geothermal Field, Southern Kyushu, Japan

    NASA Astrophysics Data System (ADS)

    Nishijima, J.; Umeda, C.; Fujimitsu, Y.; Takayama, J.; Hiraga, N.; Higuchi, S.

    2016-09-01

    Repeat hybrid microgravity measurements were conducted around the Ogiri Geothermal Field on the western slope of Kirishima volcano, southern Kyushu, Japan. This study was undertaken to detect the short-term gravity change caused by the temporary shutdown of production and reinjection wells for regular maintenance in 2011 and 2013. Repeat microgravity measurements were taken using an A-10 absolute gravimeter (Micro-g LaCoste) and CG-5 gravimeter (Scintrex) before and after regular maintenance. Both instruments had an accuracy of 10 μgal. The gravity stations were established at 27 stations (two stations for absolute measurements and 25 stations for relative measurements). After removal of noise effects (e.g., tidal movement, precipitation, shallow groundwater level changes), the residual gravity changes were subdivided into five types of response. We detected a gravity decrease (up to 20 μgal) in the reinjection area and a gravity increase (up to 30 μgal) in the production area 1 month after the temporary shutdown. Most of the gravity stations recovered after the maintenance. The temporal density changes in the geothermal reservoir were estimated based on these gravity changes.

  8. On determining absolute entropy without quantum theory or the third law of thermodynamics

    NASA Astrophysics Data System (ADS)

    Steane, Andrew M.

    2016-04-01

    We employ classical thermodynamics to gain information about absolute entropy, without recourse to statistical methods, quantum mechanics or the third law of thermodynamics. The Gibbs-Duhem equation yields various simple methods to determine the absolute entropy of a fluid. We also study the entropy of an ideal gas and the ionization of a plasma in thermal equilibrium. A single measurement of the degree of ionization can be used to determine an unknown constant in the entropy equation, and thus determine the absolute entropy of a gas. It follows from all these examples that the value of entropy at absolute zero temperature does not need to be assigned by postulate, but can be deduced empirically.

  9. A Java Program for LRE-Based Real-Time qPCR that Enables Large-Scale Absolute Quantification

    PubMed Central

    Rutledge, Robert G.

    2011-01-01

    Background Linear regression of efficiency (LRE) introduced a new paradigm for real-time qPCR that enables large-scale absolute quantification by eliminating the need for standard curves. Developed through the application of sigmoidal mathematics to SYBR Green I-based assays, target quantity is derived directly from fluorescence readings within the central region of an amplification profile. However, a major challenge of implementing LRE quantification is the labor intensive nature of the analysis. Findings Utilizing the extensive resources that are available for developing Java-based software, the LRE Analyzer was written using the NetBeans IDE, and is built on top of the modular architecture and windowing system provided by the NetBeans Platform. This fully featured desktop application determines the number of target molecules within a sample with little or no intervention by the user, in addition to providing extensive database capabilities. MS Excel is used to import data, allowing LRE quantification to be conducted with any real-time PCR instrument that provides access to the raw fluorescence readings. An extensive help set also provides an in-depth introduction to LRE, in addition to guidelines on how to implement LRE quantification. Conclusions The LRE Analyzer provides the automated analysis and data storage capabilities required by large-scale qPCR projects wanting to exploit the many advantages of absolute quantification. Foremost is the universal perspective afforded by absolute quantification, which among other attributes, provides the ability to directly compare quantitative data produced by different assays and/or instruments. Furthermore, absolute quantification has important implications for gene expression profiling in that it provides the foundation for comparing transcript quantities produced by any gene with any other gene, within and between samples. PMID:21407812

  10. Spectral optimization for measuring electron density by the dual-energy computed tomography coupled with balanced filter method.

    PubMed

    Saito, Masatoshi

    2009-08-01

    Dual-energy computed tomography (DECT) has the potential for measuring electron density distribution in a human body to predict the range of particle beams for treatment planning in proton or heavy-ion radiotherapy. However, thus far, a practical dual-energy method that can be used to precisely determine electron density for treatment planning in particle radiotherapy has not been developed. In this article, another DECT technique involving a balanced filter method using a conventional x-ray tube is described. For the spectral optimization of DECT using balanced filters, the author calculates beam-hardening error and air kerma required to achieve a desired noise level in electron density and effective atomic number images of a cylindrical water phantom with 50 cm diameter. The calculation enables the selection of beam parameters such as tube voltage, balanced filter material, and its thickness. The optimized parameters were applied to cases with different phantom diameters ranging from 5 to 50 cm for the calculations. The author predicts that the optimal combination of tube voltages would be 80 and 140 kV with Tb/Hf and Bi/Mo filter pairs for the 50-cm-diameter water phantom. When a single phantom calibration at a diameter of 25 cm was employed to cover all phantom sizes, maximum absolute beam-hardening errors were 0.3% and 0.03% for electron density and effective atomic number, respectively, over a range of diameters of the water phantom. The beam-hardening errors were 1/10 or less as compared to those obtained by conventional DECT, although the dose was twice that of the conventional DECT case. From the viewpoint of beam hardening and the tube-loading efficiency, the present DECT using balanced filters would be significantly more effective in measuring the electron density than the conventional DECT. Nevertheless, further developments of low-exposure imaging technology should be necessary as well as x-ray tubes with higher outputs to apply DECT coupled with the

  11. Fingerprints of flower absolutes using supercritical fluid chromatography hyphenated with high resolution mass spectrometry.

    PubMed

    Santerre, Cyrille; Vallet, Nadine; Touboul, David

    2018-06-02

    Supercritical fluid chromatography hyphenated with high resolution mass spectrometry (SFC-HRMS) was developed for fingerprint analysis of different flower absolutes commonly used in cosmetics field, especially in perfumes. Supercritical fluid chromatography-atmospheric pressure photoionization-high resolution mass spectrometry (SFC-APPI-HRMS) technique was employed to identify the components of the fingerprint. The samples were separated with a porous graphitic carbon (PGC) Hypercarb™ column (100 mm × 2.1 mm, 3 μm) by gradient elution using supercritical CO 2 and ethanol (0.0-20.0 min (2-30% B), 20.0-25.0 min (30% B), 25.0-26.0 min (30-2% B) and 26.0-30.0 min (2% B)) as mobile phase at a flow rate of 1.5 mL/min. In order to compare the SFC fingerprints between five different flower absolutes: Jasminum grandiflorum absolutes, Jasminum sambac absolutes, Narcissus jonquilla absolutes, Narcissus poeticus absolutes, Lavandula angustifolia absolutes from different suppliers and batches, the chemometric procedure including principal component analysis (PCA) was applied to classify the samples according to their genus and their species. Consistent results were obtained to show that samples could be successfully discriminated. Copyright © 2018 Elsevier B.V. All rights reserved.

  12. Forecasting the absolute and relative shortage of physicians in Japan using a system dynamics model approach

    PubMed Central

    2013-01-01

    Background In Japan, a shortage of physicians, who serve a key role in healthcare provision, has been pointed out as a major medical issue. The healthcare workforce policy planner should consider future dynamic changes in physician numbers. The purpose of this study was to propose a physician supply forecasting methodology by applying system dynamics modeling to estimate future absolute and relative numbers of physicians. Method We constructed a forecasting model using a system dynamics approach. Forecasting the number of physician was performed for all clinical physician and OB/GYN specialists. Moreover, we conducted evaluation of sufficiency for the number of physicians and sensitivity analysis. Result & conclusion As a result, it was forecast that the number of physicians would increase during 2008–2030 and the shortage would resolve at 2026 for all clinical physicians. However, the shortage would not resolve for the period covered. This suggests a need for measures for reconsidering the allocation system of new entry physicians to resolve maldistribution between medical departments, in addition, for increasing the overall number of clinical physicians. PMID:23981198

  13. Forecasting the absolute and relative shortage of physicians in Japan using a system dynamics model approach.

    PubMed

    Ishikawa, Tomoki; Ohba, Hisateru; Yokooka, Yuki; Nakamura, Kozo; Ogasawara, Katsuhiko

    2013-08-27

    In Japan, a shortage of physicians, who serve a key role in healthcare provision, has been pointed out as a major medical issue. The healthcare workforce policy planner should consider future dynamic changes in physician numbers. The purpose of this study was to propose a physician supply forecasting methodology by applying system dynamics modeling to estimate future absolute and relative numbers of physicians. We constructed a forecasting model using a system dynamics approach. Forecasting the number of physician was performed for all clinical physician and OB/GYN specialists. Moreover, we conducted evaluation of sufficiency for the number of physicians and sensitivity analysis. As a result, it was forecast that the number of physicians would increase during 2008-2030 and the shortage would resolve at 2026 for all clinical physicians. However, the shortage would not resolve for the period covered. This suggests a need for measures for reconsidering the allocation system of new entry physicians to resolve maldistribution between medical departments, in addition, for increasing the overall number of clinical physicians.

  14. Estimating the densities of benzene-derived explosives using atomic volumes.

    PubMed

    Ghule, Vikas D; Nirwan, Ayushi; Devi, Alka

    2018-02-09

    The application of average atomic volumes to predict the crystal densities of benzene-derived energetic compounds of general formula C a H b N c O d is presented, along with the reliability of this method. The densities of 119 neutral nitrobenzenes, energetic salts, and cocrystals with diverse compositions were estimated and compared with experimental data. Of the 74 nitrobenzenes for which direct comparisons could be made, the % error in the estimated density was within 0-3% for 54 compounds, 3-5% for 12 compounds, and 5-8% for the remaining 8 compounds. Among 45 energetic salts and cocrystals, the % error in the estimated density was within 0-3% for 25 compounds, 3-5% for 13 compounds, and 5-7.4% for 7 compounds. The absolute error surpassed 0.05 g/cm 3 for 27 of the 119 compounds (22%). The largest errors occurred for compounds containing fused rings and for compounds with three -NH 2 or -OH groups. Overall, the present approach for estimating the densities of benzene-derived explosives with different functional groups was found to be reliable. Graphical abstract Application and reliability of average atom volume in the crystal density prediction of energetic compounds containing benzene ring.

  15. Telling in-tune from out-of-tune: widespread evidence for implicit absolute intonation.

    PubMed

    Van Hedger, Stephen C; Heald, Shannon L M; Huang, Alex; Rutstein, Brooke; Nusbaum, Howard C

    2017-04-01

    Absolute pitch (AP) is the rare ability to name or produce an isolated musical note without the aid of a reference note. One skill thought to be unique to AP possessors is the ability to provide absolute intonation judgments (e.g., classifying an isolated note as "in-tune" or "out-of-tune"). Recent work has suggested that absolute intonation perception among AP possessors is not crystallized in a critical period of development, but is dynamically maintained by the listening environment, in which the vast majority of Western music is tuned to a specific cultural standard. Given that all listeners of Western music are constantly exposed to this specific cultural tuning standard, our experiments address whether absolute intonation perception extends beyond AP possessors. We demonstrate that non-AP listeners are able to accurately judge the intonation of completely isolated notes. Both musicians and nonmusicians showed evidence for absolute intonation recognition when listening to familiar timbres (piano and violin). When testing unfamiliar timbres (triangle and inverted sine waves), only musicians showed weak evidence of absolute intonation recognition (Experiment 2). Overall, these results highlight a previously unknown similarity between AP and non-AP possessors' long-term musical note representations, including evidence of sensitivity to frequency.

  16. Absolute calibration of Kodak Biomax-MS film response to x rays in the 1.5- to 8-keV energy range

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Marshall, F. J.; Knauer, J. P.; Anderson, D.

    2006-10-15

    The absolute response of Kodak Biomax-MS film to x rays in the range from 1.5- to 8-keV has been measured using a laboratory electron-beam generated x-ray source. The measurements were taken at specific line energies by using Bragg diffraction to produce monochromatic beams of x rays. Multiple exposures were taken on Biomax MS film up to levels exceeding optical densities of 2 as measured by a microdensitometer. The absolute beam intensity for each exposure was measured with a Si(Li) detector. Additional response measurements were taken with Kodak direct exposure film (DEF) so as to compare the results of this techniquemore » to previously published calibrations. The Biomax-MS results have been fitted to a semiempirical mathematical model (Knauer et al., these proceedings). Users of the model can infer absolute fluences from observed exposure levels at either interpolated or extrapolated energies. To summarize the results: Biomax MS has comparable sensitivity to DEF film below 3 keV but has reduced sensitivity above 3 keV ({approx}50%). The lower exposure results from thinner emulsion layers, designed for use with phosphor screens. The ease with which Biomax-MS can be used in place of DEF (same format film, same developing process, and comparable sensitivity) makes it a good replacement.« less

  17. Chirality and numbering of substituted tropane alkaloids.

    PubMed

    Humam, Munir; Shoul, Tarik; Jeannerat, Damien; Muñoz, Orlando; Christen, Philippe

    2011-08-25

    The strict application of IUPAC rules for the numbering of tropane alkaloids is not always applied by authors and there is hence a lot of confusion in the literature. In most cases, the notation of 3, 6/7-disubstituted derivatives has been chosen arbitrarily, based on NMR and MS data, without taking into account the absolute configuration of these two carbons. This paper discusses the problem and the relevance of CD and NMR to determine molecular configurations. We report on the use of (1)H-NMR anisochrony (Δδ) induced by the Mosher's chiral auxiliary reagents (R)-(-)- and (S)-(+)-α-methoxy-α-trifluoromethyl-phenylacetyl chlorides (MTPA-Cl), to determine the absolute configuration of (3R,6R)-3α-hydroxy-6β-senecioyloxytropane, a disubstituted tropane alkaloid isolated from the aerial parts of Schizanthus grahamii (Solanaceae). These analytical tools should help future works in correctly assigning the configuration of additional 3, 6/7 disubstituted tropane derivatives.

  18. Improved Absolute Radiometric Calibration of a UHF Airborne Radar

    NASA Technical Reports Server (NTRS)

    Chapin, Elaine; Hawkins, Brian P.; Harcke, Leif; Hensley, Scott; Lou, Yunling; Michel, Thierry R.; Moreira, Laila; Muellerschoen, Ronald J.; Shimada, Joanne G.; Tham, Kean W.; hide

    2015-01-01

    The AirMOSS airborne SAR operates at UHF and produces fully polarimetric imagery. The AirMOSS radar data are used to produce Root Zone Soil Moisture (RZSM) depth profiles. The absolute radiometric accuracy of the imagery, ideally of better than 0.5 dB, is key to retrieving RZSM, especially in wet soils where the backscatter as a function of soil moisture function tends to flatten out. In this paper we assess the absolute radiometric uncertainty in previously delivered data, describe a method to utilize Built In Test (BIT) data to improve the radiometric calibration, and evaluate the improvement from applying the method.

  19. Absolute metrology for space interferometers

    NASA Astrophysics Data System (ADS)

    Salvadé, Yves; Courteville, Alain; Dändliker, René

    2017-11-01

    The crucial issue of space-based interferometers is the laser interferometric metrology systems to monitor with very high accuracy optical path differences. Although classical high-resolution laser interferometers using a single wavelength are well developed, this type of incremental interferometer has a severe drawback: any interruption of the interferometer signal results in the loss of the zero reference, which requires a new calibration, starting at zero optical path difference. We propose in this paper an absolute metrology system based on multiplewavelength interferometry.

  20. Absolute continuum intensity diagnostics of a novel large coaxial gridded hollow cathode argon plasma

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gao, Ruilin; Yuan, Chengxun, E-mail: yuancx@hit.edu.cn, E-mail: zhouzx@hit.edu.cn; Jia, Jieshu

    2016-08-15

    This paper reports a novel coaxial gridded hollow discharge during operation at low pressure (20 Pa–80 Pa) in an argon atmosphere. A homogeneous hollow discharge was observed under different conditions, and the excitation mechanism and the discharge parameters for the hollow cathode plasma were examined at length. An optical emission spectrometry (OES) method, with a special focus on absolute continuum intensity method, was employed to measure the plasma parameters. The Langmuir probe measurement (LPM) was used to verify the OES results. Both provided electron density values (n{sub e}) in the order of 10{sup 16} m{sup −3} for different plasma settings. Taken together, themore » results show that the OES method is an effective approach to diagnosing the similar plasma, especially when the LPM is hardly operated.« less

  1. System and method for calibrating a rotary absolute position sensor

    NASA Technical Reports Server (NTRS)

    Davis, Donald R. (Inventor); Permenter, Frank Noble (Inventor); Radford, Nicolaus A (Inventor)

    2012-01-01

    A system includes a rotary device, a rotary absolute position (RAP) sensor generating encoded pairs of voltage signals describing positional data of the rotary device, a host machine, and an algorithm. The algorithm calculates calibration parameters usable to determine an absolute position of the rotary device using the encoded pairs, and is adapted for linearly-mapping an ellipse defined by the encoded pairs to thereby calculate the calibration parameters. A method of calibrating the RAP sensor includes measuring the rotary position as encoded pairs of voltage signals, linearly-mapping an ellipse defined by the encoded pairs to thereby calculate the calibration parameters, and calculating an absolute position of the rotary device using the calibration parameters. The calibration parameters include a positive definite matrix (A) and a center point (q) of the ellipse. The voltage signals may include an encoded sine and cosine of a rotary angle of the rotary device.

  2. Influence of lifestyle factors on mammographic density in postmenopausal women.

    PubMed

    Brand, Judith S; Czene, Kamila; Eriksson, Louise; Trinh, Thang; Bhoo-Pathy, Nirmala; Hall, Per; Celebioglu, Fuat

    2013-01-01

    Mammographic density is a strong risk factor for breast cancer. Apart from hormone replacement therapy (HRT), little is known about lifestyle factors that influence breast density. We examined the effect of smoking, alcohol and physical activity on mammographic density in a population-based sample of postmenopausal women without breast cancer. Lifestyle factors were assessed by a questionnaire and percentage and area measures of mammographic density were measured using computer-assisted software. General linear models were used to assess the association between lifestyle factors and mammographic density and effect modification by body mass index (BMI) and HRT was studied. Overall, alcohol intake was positively associated with percent mammographic density (P trend  = 0.07). This association was modified by HRT use (P interaction  = 0.06): increasing alcohol intake was associated with increasing percent density in current HRT users (P trend  = 0.01) but not in non-current users (P trend  = 0.82). A similar interaction between alcohol and HRT was found for the absolute dense area, with a positive association being present in current HRT users only (P interaction  = 0.04). No differences in mammographic density were observed across categories of smoking and physical activity, neither overall nor in stratified analyses by BMI and HRT use. Increasing alcohol intake is associated with an increase in mammography density, whereas smoking and physical activity do not seem to influence density. The observed interaction between alcohol and HRT may pose an opportunity for HRT users to lower their mammographic density and breast cancer risk.

  3. Neighbourhood socioeconomic inequalities in incidence of acute myocardial infarction: a cohort study quantifying age- and gender-specific differences in relative and absolute terms.

    PubMed

    Koopman, Carla; van Oeffelen, Aloysia A M; Bots, Michiel L; Engelfriet, Peter M; Verschuren, W M Monique; van Rossem, Lenie; van Dis, Ineke; Capewell, Simon; Vaartjes, Ilonca

    2012-08-07

    Socioeconomic status has a profound effect on the risk of having a first acute myocardial infarction (AMI). Information on socioeconomic inequalities in AMI incidence across age-gender-groups is lacking. Our objective was to examine socioeconomic inequalities in the incidence of AMI considering both relative and absolute measures of risk differences, with a particular focus on age and gender. We identified all patients with a first AMI from 1997 to 2007 through linked hospital discharge and death records covering the Dutch population. Relative risks (RR) of AMI incidence were estimated by mean equivalent household income at neighbourhood-level for strata of age and gender using Poisson regression models. Socioeconomic inequalities were also shown within the stratified age-gender groups by calculating the total number of events attributable to socioeconomic disadvantage. Between 1997 and 2007, 317,564 people had a first AMI. When comparing the most deprived socioeconomic quintile with the most affluent quintile, the overall RR for AMI was 1.34 (95 % confidence interval (CI): 1.32-1.36) in men and 1.44 (95 % CI: 1.42-1.47) in women. The socioeconomic gradient decreased with age. Relative socioeconomic inequalities were most apparent in men under 35 years and in women under 65 years. The largest number of events attributable to socioeconomic inequalities was found in men aged 45-74 years and in women aged 65-84 years. The total proportion of AMIs that was attributable to socioeconomic inequalities in the Dutch population of 1997 to 2007 was 14 % in men and 18 % in women. Neighbourhood socioeconomic inequalities were observed in AMI incidence in the Netherlands, but the magnitude across age-gender groups depended on whether inequality was expressed in relative or absolute terms. Relative socioeconomic inequalities were high in young persons and women, where the absolute burden of AMI was low. Absolute socioeconomic inequalities in AMI were highest in

  4. Modeling number of claims and prediction of total claim amount

    NASA Astrophysics Data System (ADS)

    Acar, Aslıhan Şentürk; Karabey, Uǧur

    2017-07-01

    In this study we focus on annual number of claims of a private health insurance data set which belongs to a local insurance company in Turkey. In addition to Poisson model and negative binomial model, zero-inflated Poisson model and zero-inflated negative binomial model are used to model the number of claims in order to take into account excess zeros. To investigate the impact of different distributional assumptions for the number of claims on the prediction of total claim amount, predictive performances of candidate models are compared by using root mean square error (RMSE) and mean absolute error (MAE) criteria.

  5. Predicting Stability Constants for Uranyl Complexes Using Density Functional Theory

    DOE PAGES

    Vukovic, Sinisa; Hay, Benjamin P.; Bryantsev, Vyacheslav S.

    2015-04-02

    The ability to predict the equilibrium constants for the formation of 1:1 uranyl:ligand complexes (log K 1 values) provides the essential foundation for the rational design of ligands with enhanced uranyl affinity and selectivity. We also use density functional theory (B3LYP) and the IEFPCM continuum solvation model to compute aqueous stability constants for UO 2 2+ complexes with 18 donor ligands. Theoretical calculations permit reasonably good estimates of relative binding strengths, while the absolute log K 1 values are significantly overestimated. Accurate predictions of the absolute log K 1 values (root mean square deviation from experiment < 1.0 for logmore » K 1 values ranging from 0 to 16.8) can be obtained by fitting the experimental data for two groups of mono and divalent negative oxygen donor ligands. The utility of correlations is demonstrated for amidoxime and imide dioxime ligands, providing a useful means of screening for new ligands with strong chelate capability to uranyl.« less

  6. Absolute surface energy calculations of Wurtzite (0001)/(000-1): a study of ZnO and GaN

    NASA Astrophysics Data System (ADS)

    Zhang, Jingzhao; Zhang, Yiou; Tse, Kinfai; Deng, Bei; Xu, Hu; Zhu, Junyi

    The accurate absolute surface energies of (0001)/(000-1) surfaces of wurtzite structures are crucial in determining the thin film growth mode of important energy materials. However, the surface energies still remain to be solved due to the intrinsic difficulty of calculating dangling bond energy of asymmetrically bonded surface atoms. We used a pseudo-hydrogen passivation method to estimate the dangling bond energy and calculate the polar surfaces of ZnO and GaN. The calculations were based on the pseudo chemical potentials obtained from a set of tetrahedral clusters or simple pseudo-molecules, using density functional theory approaches, for both GGA and HSE. And the surface energies of (0001)/(000-1) surfaces of wurtzite ZnO and GaN we obtained showed relatively high self-consistencies. A wedge structure calculation with a new bottom surface passivation scheme of group I and group VII elements was also proposed and performed to show converged absolute surface energy of wurtzite ZnO polar surfaces. Part of the computing resources was provided by the High Performance Cluster Computing Centre, Hong Kong Baptist University. This work was supported by the start-up funding and direct Grant with the Project code of 4053134 at CUHK.

  7. Greater absolute risk for all subtypes of breast cancer in the US than Malaysia.

    PubMed

    Horne, Hisani N; Beena Devi, C R; Sung, Hyuna; Tang, Tieng Swee; Rosenberg, Philip S; Hewitt, Stephen M; Sherman, Mark E; Anderson, William F; Yang, Xiaohong R

    2015-01-01

    Hormone receptor (HR) negative breast cancers are relatively more common in low-risk than high-risk countries and/or populations. However, the absolute variations between these different populations are not well established given the limited number of cancer registries with incidence rate data by breast cancer subtype. We, therefore, used two unique population-based resources with molecular data to compare incidence rates for the 'intrinsic' breast cancer subtypes between a low-risk Asian population in Malaysia and high-risk non-Hispanic white population in the National Cancer Institute's surveillance, epidemiology, and end results 18 registries database (SEER 18). The intrinsic breast cancer subtypes were recapitulated with the joint expression of the HRs (estrogen receptor and progesterone receptor) and human epidermal growth factor receptor-2 (HER2). Invasive breast cancer incidence rates overall were fivefold greater in SEER 18 than in Malaysia. The majority of breast cancers were HR-positive in SEER 18 and HR-negative in Malaysia. Notwithstanding the greater relative distribution for HR-negative cancers in Malaysia, there was a greater absolute risk for all subtypes in SEER 18; incidence rates were nearly 7-fold higher for HR-positive and 2-fold higher for HR-negative cancers in SEER 18. Despite the well-established relative breast cancer differences between low-risk and high-risk countries and/or populations, there was a greater absolute risk for HR-positive and HR-negative subtypes in the US than Malaysia. Additional analytical studies are sorely needed to determine the factors responsible for the elevated risk of all subtypes of breast cancer in high-risk countries like the United States.

  8. Calculation of the absolute free energy of a smectic-A phase

    NASA Astrophysics Data System (ADS)

    Huang, Chien-Cheng; Ramachandran, Sanoop; Ryckaert, Jean-Paul

    2014-12-01

    In this paper, we provide a scheme to compute the absolute free energy of a smectic-A phase via the "indirect method." The state of interest is connected through a three-step reversible path to a reference state. This state consists of a low-density layer of rods coupled to two external fields maintaining these rods close to the layer's plane and oriented preferably normal to the layer. The low-density free energy of the reference state can be computed on the basis of the relevant second virial coefficients between two rods coupled to the two external fields. We apply this technique to the Gay-Berne potential for calamitics with a parameter set leading to stable isotropic (I), nematic (N), smectic-A (SmA), and crystal (Cr) phases. We locate the I-SmA phase transition at low pressure and the sequence of phase transitions I-N-SmA along higher-pressure isobars and we establish the location of the I-N-SmA triple point. Close to this triple point, we show that the N-SmA transition is clearly first order. Our results are compared to the coexistence lines of the approximate phase diagram elucidated by de Miguel et al. [J. Chem. Phys. 121, 11183 (2004), 10.1063/1.1810472] established through the direct observation of the sequence of phase transitions occurring along isobars under heating or cooling sequences of runs. Finally, we discuss the potential of our technique in studying similar transitions observed on layered phases under confinement.

  9. Linear ultrasonic motor for absolute gravimeter.

    PubMed

    Jian, Yue; Yao, Zhiyuan; Silberschmidt, Vadim V

    2017-05-01

    Thanks to their compactness and suitability for vacuum applications, linear ultrasonic motors are considered as substitutes for classical electromagnetic motors as driving elements in absolute gravimeters. Still, their application is prevented by relatively low power output. To overcome this limitation and provide better stability, a V-type linear ultrasonic motor with a new clamping method is proposed for a gravimeter. In this paper, a mechanical model of stators with flexible clamping components is suggested, according to a design criterion for clamps of linear ultrasonic motors. After that, an effect of tangential and normal rigidity of the clamping components on mechanical output is studied. It is followed by discussion of a new clamping method with sufficient tangential rigidity and a capability to facilitate pre-load. Additionally, a prototype of the motor with the proposed clamping method was fabricated and the performance tests in vertical direction were implemented. Experimental results show that the suggested motor has structural stability and high dynamic performance, such as no-load speed of 1.4m/s and maximal thrust of 43N, meeting the requirements for absolute gravimeters. Copyright © 2017 Elsevier B.V. All rights reserved.

  10. Absolute surface reconstruction by slope metrology and photogrammetry

    NASA Astrophysics Data System (ADS)

    Dong, Yue

    Developing the manufacture of aspheric and freeform optical elements requires an advanced metrology method which is capable of inspecting these elements with arbitrary freeform surfaces. In this dissertation, a new surface measurement scheme is investigated for such a purpose, which is to measure the absolute surface shape of an object under test through its surface slope information obtained by photogrammetric measurement. A laser beam propagating toward the object reflects on its surface while the vectors of the incident and reflected beams are evaluated from the four spots they leave on the two parallel transparent windows in front of the object. The spots' spatial coordinates are determined by photogrammetry. With the knowledge of the incident and reflected beam vectors, the local slope information of the object surface is obtained through vector calculus and finally yields the absolute object surface profile by a reconstruction algorithm. An experimental setup is designed and the proposed measuring principle is experimentally demonstrated by measuring the absolute surface shape of a spherical mirror. The measurement uncertainty is analyzed, and efforts for improvement are made accordingly. In particular, structured windows are designed and fabricated to generate uniform scattering spots left by the transmitted laser beams. Calibration of the fringe reflection instrument, another typical surface slope measurement method, is also reported in the dissertation. Finally, a method for uncertainty analysis of a photogrammetry measurement system by optical simulation is investigated.

  11. A MEGACAM SURVEY OF OUTER HALO SATELLITES. II. BLUE STRAGGLERS IN THE LOWEST STELLAR DENSITY SYSTEMS

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Santana, Felipe A.; Munoz, Ricardo R.; Geha, Marla

    2013-09-10

    We present a homogeneous study of blue straggler stars across 10 outer halo globular clusters, 3 classical dwarf spheroidal galaxies, and 9 ultra-faint galaxies based on deep and wide-field photometric data taken with MegaCam on the Canada-France-Hawaii Telescope. We find blue straggler stars to be ubiquitous among these Milky Way satellites. Based on these data, we can test the importance of primordial binaries or multiple systems on blue straggler star formation in low-density environments. For the outer halo globular clusters, we find an anti-correlation between the specific frequency of blue stragglers and absolute magnitude, similar to that previously observed formore » inner halo clusters. When plotted against density and encounter rate, the frequency of blue stragglers is well fit by a single trend with a smooth transition between dwarf galaxies and globular clusters; this result points to a common origin for these satellites' blue stragglers. The fraction of blue stragglers stays constant and high in the low encounter rate regime spanned by our dwarf galaxies, and decreases with density and encounter rate in the range spanned by our globular clusters. We find that young stars can mimic blue stragglers in dwarf galaxies only if their ages are 2.5 {+-} 0.5 Gyr and they represent {approx}1%-7% of the total number of stars, which we deem highly unlikely. These results point to mass-transfer or mergers of primordial binaries or multiple systems as the dominant blue straggler formation mechanism in low-density systems.« less

  12. A novel capacitive absolute positioning sensor based on time grating with nanometer resolution

    NASA Astrophysics Data System (ADS)

    Pu, Hongji; Liu, Hongzhong; Liu, Xiaokang; Peng, Kai; Yu, Zhicheng

    2018-05-01

    The present work proposes a novel capacitive absolute positioning sensor based on time grating. The sensor includes a fine incremental-displacement measurement component combined with a coarse absolute-position measurement component to obtain high-resolution absolute positioning measurements. A single row type sensor was proposed to achieve fine displacement measurement, which combines the two electrode rows of a previously proposed double-row type capacitive displacement sensor based on time grating into a single row. To achieve absolute positioning measurement, the coarse measurement component is designed as a single-row type displacement sensor employing a single spatial period over the entire measurement range. In addition, this component employs a rectangular induction electrode and four groups of orthogonal discrete excitation electrodes with half-sinusoidal envelope shapes, which were formed by alternately extending the rectangular electrodes of the fine measurement component. The fine and coarse measurement components are tightly integrated to form a compact absolute positioning sensor. A prototype sensor was manufactured using printed circuit board technology for testing and optimization of the design in conjunction with simulations. Experimental results show that the prototype sensor achieves a ±300 nm measurement accuracy with a 1 nm resolution over a displacement range of 200 mm when employing error compensation. The proposed sensor is an excellent alternative to presently available long-range absolute nanometrology sensors owing to its low cost, simple structure, and ease of manufacturing.

  13. Characterizing absolute piezoelectric microelectromechanical system displacement using an atomic force microscope

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Evans, J., E-mail: radiant@ferrodevices.com; Chapman, S., E-mail: radiant@ferrodevices.com

    Piezoresponse Force Microscopy (PFM) is a popular tool for the study of ferroelectric and piezoelectric materials at the nanometer level. Progress in the development of piezoelectric MEMS fabrication is highlighting the need to characterize absolute displacement at the nanometer and Ångstrom scales, something Atomic Force Microscopy (AFM) might do but PFM cannot. Absolute displacement is measured by executing a polarization measurement of the ferroelectric or piezoelectric capacitor in question while monitoring the absolute vertical position of the sample surface with a stationary AFM cantilever. Two issues dominate the execution and precision of such a measurement: (1) the small amplitude ofmore » the electrical signal from the AFM at the Ångstrom level and (2) calibration of the AFM. The authors have developed a calibration routine and test technique for mitigating the two issues, making it possible to use an atomic force microscope to measure both the movement of a capacitor surface as well as the motion of a micro-machine structure actuated by that capacitor. The theory, procedures, pitfalls, and results of using an AFM for absolute piezoelectric measurement are provided.« less

  14. Transfer of absolute and relative predictiveness in human contingency learning.

    PubMed

    Kattner, Florian

    2015-03-01

    Previous animal-learning studies have shown that the effect of the predictive history of a cue on its associability depends on whether priority was set to the absolute or relative predictiveness of that cue. The present study tested this assumption in a human contingency-learning task. In both experiments, one group of participants was trained with predictive and nonpredictive cues that were presented according to an absolute-predictiveness principle (either continuously or partially reinforced cue configurations), whereas a second group was trained with co-occurring cues that differed in predictiveness (emphasizing the relative predictive validity of the cues). In both groups, later test discriminations were learned more readily if the discriminative cues had been predictive in the previous learning stage than if they had been nonpredictive. These results imply that both the absolute and relative predictiveness of a cue lead positive transfer with regard to its associability. The data are discussed with respect to attentional models of associative learning.

  15. Neutron activation analysis of certified samples by the absolute method

    NASA Astrophysics Data System (ADS)

    Kadem, F.; Belouadah, N.; Idiri, Z.

    2015-07-01

    The nuclear reactions analysis technique is mainly based on the relative method or the use of activation cross sections. In order to validate nuclear data for the calculated cross section evaluated from systematic studies, we used the neutron activation analysis technique (NAA) to determine the various constituent concentrations of certified samples for animal blood, milk and hay. In this analysis, the absolute method is used. The neutron activation technique involves irradiating the sample and subsequently performing a measurement of the activity of the sample. The fundamental equation of the activation connects several physical parameters including the cross section that is essential for the quantitative determination of the different elements composing the sample without resorting to the use of standard sample. Called the absolute method, it allows a measurement as accurate as the relative method. The results obtained by the absolute method showed that the values are as precise as the relative method requiring the use of standard sample for each element to be quantified.

  16. Assessing Epistemic Sophistication by Considering Domain-Specific Absolute and Multiplicistic Beliefs Separately

    ERIC Educational Resources Information Center

    Peter, Johannes; Rosman, Tom; Mayer, Anne-Kathrin; Leichner, Nikolas; Krampen, Günter

    2016-01-01

    Background: Particularly in higher education, not only a view of science as a means of finding absolute truths (absolutism), but also a view of science as generally tentative (multiplicism) can be unsophisticated and obstructive for learning. Most quantitative epistemic belief inventories neglect this and understand epistemic sophistication as…

  17. Absolute gravimetry as an operational tool for geodynamics research

    NASA Astrophysics Data System (ADS)

    Torge, W.

    Relative gravimetric techniques have been used for nearly 30 years for measuring non-tidal gravity variations with time, and thus have contributed to geodynamics research by monitoring vertical crustal movements and internal mass shifts. With today's accuracy of about ± 0.05µms-2 (or 5µGal), significant results have been obtained in numerous control nets of local extension, especially in connection with seismic and volcanic events. Nevertheless, the main drawbacks of relative gravimetry, which are deficiencies in absolute datum and calibration, set a limit for its application, especially with respect to large-scale networks and long-term investigations. These problems can now be successfully attacked by absolute gravimetry, with transportable gravimeters available since about 20 years. While the absolute technique during the first two centuries of gravimetry's history was based on the pendulum method, the free-fall method can now be employed taking advantage of laser-interferometry, electronic timing, vacuum and shock absorbing techniques, and on-line computer-control. The accuracy inherent in advanced instruments is about ± 0.05 µms-2. In field work, generally an accuracy of ±0.1 µms-2 may be expected, strongly depending on local environmental conditions.

  18. Solving Absolute Value Equations Algebraically and Geometrically

    ERIC Educational Resources Information Center

    Shiyuan, Wei

    2005-01-01

    The way in which students can improve their comprehension by understanding the geometrical meaning of algebraic equations or solving algebraic equation geometrically is described. Students can experiment with the conditions of the absolute value equation presented, for an interesting way to form an overall understanding of the concept.

  19. Achieving Climate Change Absolute Accuracy in Orbit

    NASA Technical Reports Server (NTRS)

    Wielicki, Bruce A.; Young, D. F.; Mlynczak, M. G.; Thome, K. J; Leroy, S.; Corliss, J.; Anderson, J. G.; Ao, C. O.; Bantges, R.; Best, F.; hide

    2013-01-01

    The Climate Absolute Radiance and Refractivity Observatory (CLARREO) mission will provide a calibration laboratory in orbit for the purpose of accurately measuring and attributing climate change. CLARREO measurements establish new climate change benchmarks with high absolute radiometric accuracy and high statistical confidence across a wide range of essential climate variables. CLARREO's inherently high absolute accuracy will be verified and traceable on orbit to Système Internationale (SI) units. The benchmarks established by CLARREO will be critical for assessing changes in the Earth system and climate model predictive capabilities for decades into the future as society works to meet the challenge of optimizing strategies for mitigating and adapting to climate change. The CLARREO benchmarks are derived from measurements of the Earth's thermal infrared spectrum (5-50 micron), the spectrum of solar radiation reflected by the Earth and its atmosphere (320-2300 nm), and radio occultation refractivity from which accurate temperature profiles are derived. The mission has the ability to provide new spectral fingerprints of climate change, as well as to provide the first orbiting radiometer with accuracy sufficient to serve as the reference transfer standard for other space sensors, in essence serving as a "NIST [National Institute of Standards and Technology] in orbit." CLARREO will greatly improve the accuracy and relevance of a wide range of space-borne instruments for decadal climate change. Finally, CLARREO has developed new metrics and methods for determining the accuracy requirements of climate observations for a wide range of climate variables and uncertainty sources. These methods should be useful for improving our understanding of observing requirements for most climate change observations.

  20. Impact of experimental human pneumococcal carriage on nasopharyngeal bacterial densities in healthy adults.

    PubMed

    Shak, Joshua R; Cremers, Amelieke J H; Gritzfeld, Jenna F; de Jonge, Marien I; Hermans, Peter W M; Vidal, Jorge E; Klugman, Keith P; Gordon, Stephen B

    2014-01-01

    Colonization of the nasopharynx by Streptococcus pneumoniae is a necessary precursor to pneumococcal diseases that result in morbidity and mortality worldwide. The nasopharynx is also host to other bacterial species, including the common pathogens Staphylococcus aureus, Haemophilus influenzae, and Moraxella catarrhalis. To better understand how these bacteria change in relation to pneumococcal colonization, we used species-specific quantitative PCR to examine bacterial densities in 52 subjects 7 days before, and 2, 7, and 14 days after controlled inoculation of healthy human adults with S. pneumoniae serotype 6B. Overall, 33 (63%) of subjects carried S. pneumoniae post-inoculation. The baseline presence and density of S. aureus, H. influenzae, and M. catarrhalis were not statistically associated with likelihood of successful pneumococcal colonization at this study's sample size, although a lower rate of pneumococcal colonization in the presence of S. aureus (7/14) was seen compared to that in the presence of H. influenzae (12/16). Among subjects colonized with pneumococci, the number also carrying either H. influenzae or S. aureus fell during the study and at 14 days post-inoculation, the proportion carrying S. aureus was significantly lower among those who were colonized with S. pneumoniae (p = 0.008) compared to non-colonized subjects. These data on bacterial associations are the first to be reported surrounding experimental human pneumococcal colonization and show that co-colonizing effects are likely subtle rather than absolute.