Sample records for absolute parametric instability

  1. Parametric instability of shaft with discs

    NASA Astrophysics Data System (ADS)

    Wahab, A. M. Abdul; Rasid, Z. A.; Abu, A.; Rudin, N. F. Mohd Noor

    2017-12-01

    The occurrence of resonance is a major criterion to be considered in the design of shaft. While force resonance occurs merely when the natural frequency of the rotor system equals speed of the shaft, parametric resonance or parametric instability can occur at excitation speed that is integral or sub-multiple of the frequency of the rotor. This makes the study on parametric resonance crucial. Parametric instability of a shaft system consisting of a shaft and disks has been investigated in this study. The finite element formulation of the Mathieu-Hill equation that represents the parametric instability problem of the shaft is developed based on Timoshenko’s beam theory and Nelson’s finite element method (FEM) model that considers the effect of torsional motion on such problem. The Bolotin’s method is used to determine the regions of instability and the Strut-Ince diagram. The validation works show that the results of this study are in close agreement to past results. It is found that a larger radius of disk will cause the shaft to become more unstable compared to smaller radius although both weights are similar. Furthermore, the effect of torsional motion on the parametric instability of the shaft is significant at higher rotating speed.

  2. Absolute instability of the Gaussian wake profile

    NASA Technical Reports Server (NTRS)

    Hultgren, Lennart S.; Aggarwal, Arun K.

    1987-01-01

    Linear parallel-flow stability theory has been used to investigate the effect of viscosity on the local absolute instability of a family of wake profiles with a Gaussian velocity distribution. The type of local instability, i.e., convective or absolute, is determined by the location of a branch-point singularity with zero group velocity of the complex dispersion relation for the instability waves. The effects of viscosity were found to be weak for values of the wake Reynolds number, based on the center-line velocity defect and the wake half-width, larger than about 400. Absolute instability occurs only for sufficiently large values of the center-line wake defect. The critical value of this parameter increases with decreasing wake Reynolds number, thereby indicating a shrinking region of absolute instability with decreasing wake Reynolds number. If backflow is not allowed, absolute instability does not occur for wake Reynolds numbers smaller than about 38.

  3. Parametric instability induced by X-mode wave heating at EISCAT

    NASA Astrophysics Data System (ADS)

    Wang, Xiang; Zhou, Chen; Liu, Moran; Honary, Farideh; Ni, Binbin; Zhao, Zhengyu

    2016-10-01

    In this paper, we present results of parametric instability induced by X-mode wave heating observed by EISCAT (European Incoherent Scatter Scientific Association) radar at Tromsø, Norway. Three typical X-mode ionospheric heating experiments on 22 October 2013, 19 October 2012, and 21 February 2013 are investigated in details. Both parametric decay instability (PDI) and oscillating two-stream instability are observed during the X-mode heating period. We suggest that the full dispersion relationship of the Langmuir wave can be employed to analyze the X-mode parametric instability excitation. A modified kinetic electron distribution is proposed and analyzed, which is able to satisfy the matching condition of parametric instability excitation. Parallel electric field component of X-mode heating wave can also exceed the parametric instability excitation threshold under certain conditions.

  4. Parametric Instability Rates in Periodically Driven Band Systems

    NASA Astrophysics Data System (ADS)

    Lellouch, S.; Bukov, M.; Demler, E.; Goldman, N.

    2017-04-01

    In this work, we analyze the dynamical properties of periodically driven band models. Focusing on the case of Bose-Einstein condensates, and using a mean-field approach to treat interparticle collisions, we identify the origin of dynamical instabilities arising from the interplay between the external drive and interactions. We present a widely applicable generic numerical method to extract instability rates and link parametric instabilities to uncontrolled energy absorption at short times. Based on the existence of parametric resonances, we then develop an analytical approach within Bogoliubov theory, which quantitatively captures the instability rates of the system and provides an intuitive picture of the relevant physical processes, including an understanding of how transverse modes affect the formation of parametric instabilities. Importantly, our calculations demonstrate an agreement between the instability rates determined from numerical simulations and those predicted by theory. To determine the validity regime of the mean-field analysis, we compare the latter to the weakly coupled conserving approximation. The tools developed and the results obtained in this work are directly relevant to present-day ultracold-atom experiments based on shaken optical lattices and are expected to provide an insightful guidance in the quest for Floquet engineering.

  5. Parametric instabilities of rotor-support systems with application to industrial ventilators

    NASA Technical Reports Server (NTRS)

    Parszewski, Z.; Krodkiemski, T.; Marynowski, K.

    1980-01-01

    Rotor support systems interaction with parametric excitation is considered for both unequal principal shaft stiffness (generators) and offset disc rotors (ventilators). Instability regions and types of instability are computed in the first case, and parametric resonances in the second case. Computed and experimental results are compared for laboratory machine models. A field case study of parametric vibrations in industrial ventilators is reported. Computed parametric resonances are confirmed in field measurements, and some industrial failures are explained. Also the dynamic influence and gyroscopic effect of supporting structures are shown and computed.

  6. Absolute and Convective Instability of a Liquid Jet in Microgravity

    NASA Technical Reports Server (NTRS)

    Lin, Sung P.; Vihinen, I.; Honohan, A.; Hudman, Michael D.

    1996-01-01

    The transition from convective to absolute instability is observed in the 2.2 second drop tower of the NASA Lewis Research Center. In convective instability the disturbance grows spatially as it is convected downstream. In absolute instability the disturbance propagates both downstream and upstream, and manifests itself as an expanding sphere. The transition Reynolds numbers are determined for two different Weber numbers by use of Glycerin and a Silicone oil. Preliminary comparisons with theory are made.

  7. Absolute versus convective helical magnetorotational instability in a Taylor-Couette flow.

    PubMed

    Priede, Jānis; Gerbeth, Gunter

    2009-04-01

    We analyze numerically the magnetorotational instability of a Taylor-Couette flow in a helical magnetic field [helical magnetorotational instability (HMRI)] using the inductionless approximation defined by a zero magnetic Prandtl number (Pr_{m}=0) . The Chebyshev collocation method is used to calculate the eigenvalue spectrum for small-amplitude perturbations. First, we carry out a detailed conventional linear stability analysis with respect to perturbations in the form of Fourier modes that corresponds to the convective instability which is not in general self-sustained. The helical magnetic field is found to extend the instability to a relatively narrow range beyond its purely hydrodynamic limit defined by the Rayleigh line. There is not only a lower critical threshold at which HMRI appears but also an upper one at which it disappears again. The latter distinguishes the HMRI from a magnetically modified Taylor vortex flow. Second, we find an absolute instability threshold as well. In the hydrodynamically unstable regime before the Rayleigh line, the threshold of absolute instability is just slightly above the convective one although the critical wavelength of the former is noticeably shorter than that of the latter. Beyond the Rayleigh line the lower threshold of absolute instability rises significantly above the corresponding convective one while the upper one descends significantly below its convective counterpart. As a result, the extension of the absolute HMRI beyond the Rayleigh line is considerably shorter than that of the convective instability. The absolute HMRI is supposed to be self-sustained and, thus, experimentally observable without any external excitation in a system of sufficiently large axial extension.

  8. Observational Signatures of Parametric Instability at 1AU

    NASA Astrophysics Data System (ADS)

    Bowen, T. A.; Bale, S. D.; Badman, S.

    2017-12-01

    Observations and simulations of inertial compressive turbulence in the solar wind are characterized by density structures anti-correlated with magnetic fluctuations parallel to the mean field. This signature has been interpreted as observational evidence for non-propagating pressure balanced structures (PBS), kinetic ion acoustic waves, as well as the MHD slow mode. Recent work, specifically Verscharen et al. (2017), has highlighted the unexpected fluid like nature of the solar wind. Given the high damping rates of parallel propagating compressive fluctuations, their ubiquity in satellite observations is surprising and suggests the presence of a driving process. One possible candidate for the generation of compressive fluctuations in the solar wind is the parametric instability, in which large amplitude Alfvenic fluctuations decay into parallel propagating compressive waves. This work employs 10 years of WIND observations in order to test the parametric decay process as a source of compressive waves in the solar wind through comparing collisionless damping rates of compressive fluctuations with growth rates of the parametric instability. Preliminary results suggest that generation of compressive waves through parametric decay is overdamped at 1 AU. However, the higher parametric decay rates expected in the inner heliosphere likely allow for growth of the slow mode-the remnants of which could explain density fluctuations observed at 1AU.

  9. Absolute and convective instabilities in combined Couette-Poiseuille flow past a neo-Hookean solid

    NASA Astrophysics Data System (ADS)

    Patne, Ramkarn; Shankar, V.

    2017-12-01

    Temporal and spatio-temporal stability analyses are carried out to characterize the occurrence of convective and absolute instabilities in combined Couette-Poiseuille flow of a Newtonian fluid past a deformable, neo-Hookean solid layer in the creeping-flow limit. Plane Couette flow of a Newtonian fluid past a neo-Hookean solid becomes temporally unstable in the inertia-less limit when the parameter Γ = V η/(GR) exceeds a critical value. Here, V is the velocity of the top plate, η is the fluid viscosity, G is the shear modulus of the solid layer, and R is the fluid layer thickness. The Kupfer-Bers method is employed to demarcate regions of absolute and convective instabilities in the Γ-H parameter space, where H is the ratio of solid to fluid thickness in the system. For certain ranges of the thickness ratio H, we find that the flow could be absolutely unstable, and the critical Γ required for absolute instability is very close to that for temporal instability, thus making the flow absolutely unstable at the onset of temporal instability. In some cases, there is a gap in the parameter Γ between the temporal and absolute instability boundaries. The present study thus shows that absolute instabilities are possible, even at very low Reynolds numbers in flow past deformable solid surfaces. The presence of absolute instabilities could potentially be exploited in the enhancement of mixing at low Reynolds numbers in flow through channels with deformable solid walls.

  10. White-light parametric instabilities in plasmas.

    PubMed

    Santos, J E; Silva, L O; Bingham, R

    2007-06-08

    Parametric instabilities driven by partially coherent radiation in plasmas are described by a generalized statistical Wigner-Moyal set of equations, formally equivalent to the full wave equation, coupled to the plasma fluid equations. A generalized dispersion relation for stimulated Raman scattering driven by a partially coherent pump field is derived, revealing a growth rate dependence, with the coherence width sigma of the radiation field, scaling with 1/sigma for backscattering (three-wave process), and with 1/sigma1/2 for direct forward scattering (four-wave process). Our results demonstrate the possibility to control the growth rates of these instabilities by properly using broadband pump radiation fields.

  11. Parametric Instability of Static Shafts-Disk System Using Finite Element Method

    NASA Astrophysics Data System (ADS)

    Wahab, A. M.; Rasid, Z. A.; Abu, A.

    2017-10-01

    Parametric instability condition is an important consideration in design process as it can cause failure in machine elements. In this study, parametric instability behaviour was studied for a simple shaft and disk system that was subjected to axial load under pinned-pinned boundary condition. The shaft was modelled based on the Nelson’s beam model, which considered translational and rotary inertias, transverse shear deformation and torsional effect. The Floquet’s method was used to estimate the solution for Mathieu equation. Finite element codes were developed using MATLAB to establish the instability chart. The effect of additional disk mass on the stability chart was investigated for pinned-pinned boundary conditions. Numerical results and illustrative examples are given. It is found that the additional disk mass decreases the instability region during static condition. The location of the disk as well has significant effect on the instability region of the shaft.

  12. Absolute/convective secondary instabilities and the role of confinement in free shear layers

    NASA Astrophysics Data System (ADS)

    Arratia, Cristóbal; Mowlavi, Saviz; Gallaire, François

    2018-05-01

    We study the linear spatiotemporal stability of an infinite row of equal point vortices under symmetric confinement between parallel walls. These rows of vortices serve to model the secondary instability leading to the merging of consecutive (Kelvin-Helmholtz) vortices in free shear layers, allowing us to study how confinement limits the growth of shear layers through vortex pairings. Using a geometric construction akin to a Legendre transform on the dispersion relation, we compute the growth rate of the instability in different reference frames as a function of the frame velocity with respect to the vortices. This approach is verified and complemented with numerical computations of the linear impulse response, fully characterizing the absolute/convective nature of the instability. Similar to results by Healey on the primary instability of parallel tanh profiles [J. Fluid Mech. 623, 241 (2009), 10.1017/S0022112008005284], we observe a range of confinement in which absolute instability is promoted. For a parallel shear layer with prescribed confinement and mixing length, the threshold for absolute/convective instability of the secondary pairing instability depends on the separation distance between consecutive vortices, which is physically determined by the wavelength selected by the previous (primary or pairing) instability. In the presence of counterflow and moderate to weak confinement, small (large) wavelength of the vortex row leads to absolute (convective) instability. While absolute secondary instabilities in spatially developing flows have been previously related to an abrupt transition to a complex behavior, this secondary pairing instability regenerates the flow with an increased wavelength, eventually leading to a convectively unstable row of vortices. We argue that since the primary instability remains active for large wavelengths, a spatially developing shear layer can directly saturate on the wavelength of such a convectively unstable row, by

  13. Study of parametric instability in gravitational wave detectors with silicon test masses

    NASA Astrophysics Data System (ADS)

    Zhang, Jue; Zhao, Chunnong; Ju, Li; Blair, David

    2017-03-01

    Parametric instability is an intrinsic risk in high power laser interferometer gravitational wave detectors, in which the optical cavity modes interact with the acoustic modes of the mirrors, leading to exponential growth of the acoustic vibration. In this paper, we investigate the potential parametric instability for a proposed next generation gravitational wave detector, the LIGO Voyager blue design, with cooled silicon test masses of size 45 cm in diameter and 55 cm in thickness. It is shown that there would be about two unstable modes per test mass at an arm cavity power of 3 MW, with the highest parametric gain of  ∼76. While this is less than the predicted number of unstable modes for Advanced LIGO (∼40 modes with max gain of  ∼32 at the designed operating power of 830 kW), the importance of developing suitable instability suppression schemes is emphasized.

  14. Resonant dampers for parametric instabilities in gravitational wave detectors

    NASA Astrophysics Data System (ADS)

    Gras, S.; Fritschel, P.; Barsotti, L.; Evans, M.

    2015-10-01

    Advanced gravitational wave interferometric detectors will operate at their design sensitivity with nearly ˜1 MW of laser power stored in the arm cavities. Such large power may lead to the uncontrolled growth of acoustic modes in the test masses due to the transfer of optical energy to the mechanical modes of the arm cavity mirrors. These parametric instabilities have the potential to significantly compromise the detector performance and control. Here we present the design of "acoustic mode dampers" that use the piezoelectric effect to reduce the coupling of optical to mechanical energy. Experimental measurements carried on an Advanced LIGO-like test mass have shown a tenfold reduction in the amplitude of several mechanical modes, thus suggesting that this technique can greatly mitigate the impact of parametric instabilities in advanced detectors.

  15. A theoretical investigation on the parametric instability excited by X-mode polarized electromagnetic wave at Tromsø

    NASA Astrophysics Data System (ADS)

    Wang, Xiang; Cannon, Patrick; Zhou, Chen; Honary, Farideh; Ni, Binbin; Zhao, Zhengyu

    2016-04-01

    Recent ionospheric modification experiments performed at Tromsø, Norway, have indicated that X-mode pump wave is capable of stimulating high-frequency enhanced plasma lines, which manifests the excitation of parametric instability. This paper investigates theoretically how the observation can be explained by the excitation of parametric instability driven by X-mode pump wave. The threshold of the parametric instability has been calculated for several recent experimental observations at Tromsø, illustrating that our derived equations for the excitation of parametric instability for X-mode heating can explain the experimental observations. According to our theoretical calculation, a minimum fraction of pump wave electric field needs to be directed along the geomagnetic field direction in order for the parametric instability threshold to be met. A full-wave finite difference time domain simulation has been performed to demonstrate that a small parallel component of pump wave electric field can be achieved during X-mode heating in the presence of inhomogeneous plasma.

  16. Coaxial Dump Ramjet Combustor Combustion Instabilities. Part I. Parametric Test Data.

    DTIC Science & Technology

    1981-07-01

    AD-AIII 355 COAXIAL DUP RA8.? COMBUSTOR COMBUSTION INSTABILITIES I/~ PART I PARAUER1C. 1111 AIR FORCE WRIONT AERONUTICAL LAOS WRIOIII-PATTERSOll...MICROCOPY RESOLUTION TEST CHART NATIONAL BUREAU OF STANOAROS - 193- A AFWAL-TR-81 -2047 Part 1 COAXIAL DUMP RAMJET COMBUSTOR COMBUSTION INSTABILITIES PART...COMBUSTOR Interim Report for Period COMBUSTION INSTABILITIES February 1979 - March 1980 Part I - Parametric Test Data S. PERFORMING ORG. REPORT NUMBER 7

  17. A Cartesian parametrization for the numerical analysis of material instability

    DOE PAGES

    Mota, Alejandro; Chen, Qiushi; Foulk, III, James W.; ...

    2016-02-25

    We examine four parametrizations of the unit sphere in the context of material stability analysis by means of the singularity of the acoustic tensor. We then propose a Cartesian parametrization for vectors that lie a cube of side length two and use these vectors in lieu of unit normals to test for the loss of the ellipticity condition. This parametrization is then used to construct a tensor akin to the acoustic tensor. It is shown that both of these tensors become singular at the same time and in the same planes in the presence of a material instability. Furthermore, themore » performance of the Cartesian parametrization is compared against the other parametrizations, with the results of these comparisons showing that in general, the Cartesian parametrization is more robust and more numerically efficient than the others.« less

  18. A Cartesian parametrization for the numerical analysis of material instability

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mota, Alejandro; Chen, Qiushi; Foulk, III, James W.

    We examine four parametrizations of the unit sphere in the context of material stability analysis by means of the singularity of the acoustic tensor. We then propose a Cartesian parametrization for vectors that lie a cube of side length two and use these vectors in lieu of unit normals to test for the loss of the ellipticity condition. This parametrization is then used to construct a tensor akin to the acoustic tensor. It is shown that both of these tensors become singular at the same time and in the same planes in the presence of a material instability. Furthermore, themore » performance of the Cartesian parametrization is compared against the other parametrizations, with the results of these comparisons showing that in general, the Cartesian parametrization is more robust and more numerically efficient than the others.« less

  19. Parametric Decay Instability of Near-Acoustic Waves in Fluid and Kinetic Regimes

    NASA Astrophysics Data System (ADS)

    Affolter, M.; Anderegg, F.; Driscoll, C. F.; Valentini, F.

    2016-10-01

    We present quantitative measurements of parametric wave-wave coupling rates and decay instabilities in the range 10 meV parametric coupling rates are measured between mz = 2 waves with large amplitude δn2/n0, and small amplitude mz = 1 waves, which have a small frequency detuning Δω = 2ω1 -ω2 . On cold plasmas, the parametric coupling rates Γ (δn2/n0) are consistent with cold fluid, 3-wave instability theory, and the decay instability occurs when Γ > Δω /2. In contrast, at higher temperatures, the mz = 2 wave is more unstable. The instability threshold is reduced from the cold fluid prediction as the plasma temperature is increased, which is in qualitative agreement with Vlasov simulations, but is not yet understood theoretically. Supported by DOE/HEDLP Grant DE-SC0008693 and DOE Fusion Energy Science Postdoctoral Research Program administered by the Oak Ridge Institute for Science and Education.

  20. The Parametric Instability of Alfvén Waves: Effects of Temperature Anisotropy

    NASA Astrophysics Data System (ADS)

    Tenerani, Anna; Velli, Marco; Hellinger, Petr

    2017-12-01

    We study the stability of large-amplitude, circularly polarized Alfvén waves in an anisotropic plasma described by the double-adiabatic/CGL closure, and in particular the effect of a background thermal pressure anisotropy on the well-known properties of Alfvén wave parametric decay in magnetohydrodynamics (MHD). Anisotropy allows instability over a much wider range of values of parallel plasma beta (β ∥) when ξ = p 0⊥/p 0∥ > 1. When the pressure anisotropy exceeds a critical value, ξ ≥ ξ* with ξ* ≃ 2.7, there is a new regime in which the parametric instability is no longer quenched at high β ∥, and in the limit β ∥ ≫ 1, the growth rate becomes independent of β ∥. In the opposite case of ξ < ξ*, the instability is strongly suppressed with increasing parallel plasma beta, similarly to the MHD case. We analyze marginal stability conditions for parametric decay in the (ξ, β ∥) parameter space and discuss possible implications for Alfvénic turbulence in the solar wind.

  1. Parametric instability analysis of truncated conical shells using the Haar wavelet method

    NASA Astrophysics Data System (ADS)

    Dai, Qiyi; Cao, Qingjie

    2018-05-01

    In this paper, the Haar wavelet method is employed to analyze the parametric instability of truncated conical shells under static and time dependent periodic axial loads. The present work is based on the Love first-approximation theory for classical thin shells. The displacement field is expressed as the Haar wavelet series in the axial direction and trigonometric functions in the circumferential direction. Then the partial differential equations are reduced into a system of coupled Mathieu-type ordinary differential equations describing dynamic instability behavior of the shell. Using Bolotin's method, the first-order and second-order approximations of principal instability regions are determined. The correctness of present method is examined by comparing the results with those in the literature and very good agreement is observed. The difference between the first-order and second-order approximations of principal instability regions for tensile and compressive loads is also investigated. Finally, numerical results are presented to bring out the influences of various parameters like static load factors, boundary conditions and shell geometrical characteristics on the domains of parametric instability of conical shells.

  2. Local parametric instability near elliptic points in vortex flows under shear deformation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Koshel, Konstantin V., E-mail: kvkoshel@poi.dvo.ru; Institute of Applied Mathematics, FEB RAS, 7, Radio Street, Vladivostok 690022; Far Eastern Federal University, 8, Sukhanova Street, Vladivostok 690950

    The dynamics of two point vortices embedded in an oscillatory external flow consisted of shear and rotational components is addressed. The region associated with steady-state elliptic points of the vortex motion is established to experience local parametric instability. The instability forces the point vortices with initial positions corresponding to the steady-state elliptic points to move in spiral-like divergent trajectories. This divergent motion continues until the nonlinear effects suppress their motion near the region associated with the steady-state separatrices. The local parametric instability is then demonstrated not to contribute considerably to enhancing the size of the chaotic motion regions. Instead, themore » size of the chaotic motion region mostly depends on overlaps of the nonlinear resonances emerging in the perturbed system.« less

  3. First Demonstration of Electrostatic Damping of Parametric Instability at Advanced LIGO

    NASA Astrophysics Data System (ADS)

    Blair, Carl; Gras, Slawek; Abbott, Richard; Aston, Stuart; Betzwieser, Joseph; Blair, David; DeRosa, Ryan; Evans, Matthew; Frolov, Valera; Fritschel, Peter; Grote, Hartmut; Hardwick, Terra; Liu, Jian; Lormand, Marc; Miller, John; Mullavey, Adam; O'Reilly, Brian; Zhao, Chunnong; Abbott, B. P.; Abbott, T. D.; Adams, C.; Adhikari, R. X.; Anderson, S. B.; Ananyeva, A.; Appert, S.; Arai, K.; Ballmer, S. W.; Barker, D.; Barr, B.; Barsotti, L.; Bartlett, J.; Bartos, I.; Batch, J. C.; Bell, A. S.; Billingsley, G.; Birch, J.; Biscans, S.; Biwer, C.; Bork, R.; Brooks, A. F.; Ciani, G.; Clara, F.; Countryman, S. T.; Cowart, M. J.; Coyne, D. C.; Cumming, A.; Cunningham, L.; Danzmann, K.; Da Silva Costa, C. F.; Daw, E. J.; DeBra, D.; DeSalvo, R.; Dooley, K. L.; Doravari, S.; Driggers, J. C.; Dwyer, S. E.; Effler, A.; Etzel, T.; Evans, T. M.; Factourovich, M.; Fair, H.; Fernández Galiana, A.; Fisher, R. P.; Fulda, P.; Fyffe, M.; Giaime, J. A.; Giardina, K. D.; Goetz, E.; Goetz, R.; Gray, C.; Gushwa, K. E.; Gustafson, E. K.; Gustafson, R.; Hall, E. D.; Hammond, G.; Hanks, J.; Hanson, J.; Harry, G. M.; Heintze, M. C.; Heptonstall, A. W.; Hough, J.; Izumi, K.; Jones, R.; Kandhasamy, S.; Karki, S.; Kasprzack, M.; Kaufer, S.; Kawabe, K.; Kijbunchoo, N.; King, E. J.; King, P. J.; Kissel, J. S.; Korth, W. Z.; Kuehn, G.; Landry, M.; Lantz, B.; Lockerbie, N. A.; Lundgren, A. P.; MacInnis, M.; Macleod, D. M.; Márka, S.; Márka, Z.; Markosyan, A. S.; Maros, E.; Martin, I. W.; Martynov, D. V.; Mason, K.; Massinger, T. J.; Matichard, F.; Mavalvala, N.; McCarthy, R.; McClelland, D. E.; McCormick, S.; McIntyre, G.; McIver, J.; Mendell, G.; Merilh, E. L.; Meyers, P. M.; Mittleman, R.; Moreno, G.; Mueller, G.; Munch, J.; Nuttall, L. K.; Oberling, J.; Oppermann, P.; Oram, Richard J.; Ottaway, D. J.; Overmier, H.; Palamos, J. R.; Paris, H. R.; Parker, W.; Pele, A.; Penn, S.; Phelps, M.; Pierro, V.; Pinto, I.; Principe, M.; Prokhorov, L. G.; Puncken, O.; Quetschke, V.; Quintero, E. A.; Raab, F. J.; Radkins, H.; Raffai, P.; Reid, S.; Reitze, D. H.; Robertson, N. A.; Rollins, J. G.; Roma, V. J.; Romie, J. H.; Rowan, S.; Ryan, K.; Sadecki, T.; Sanchez, E. J.; Sandberg, V.; Savage, R. L.; Schofield, R. M. S.; Sellers, D.; Shaddock, D. A.; Shaffer, T. J.; Shapiro, B.; Shawhan, P.; Shoemaker, D. H.; Sigg, D.; Slagmolen, B. J. J.; Smith, B.; Smith, J. R.; Sorazu, B.; Staley, A.; Strain, K. A.; Tanner, D. B.; Taylor, R.; Thomas, M.; Thomas, P.; Thorne, K. A.; Thrane, E.; Torrie, C. I.; Traylor, G.; Vajente, G.; Valdes, G.; van Veggel, A. A.; Vecchio, A.; Veitch, P. J.; Venkateswara, K.; Vo, T.; Vorvick, C.; Walker, M.; Ward, R. L.; Warner, J.; Weaver, B.; Weiss, R.; Weßels, P.; Willke, B.; Wipf, C. C.; Worden, J.; Wu, G.; Yamamoto, H.; Yancey, C. C.; Yu, Hang; Yu, Haocun; Zhang, L.; Zucker, M. E.; Zweizig, J.; LSC Instrument Authors

    2017-04-01

    Interferometric gravitational wave detectors operate with high optical power in their arms in order to achieve high shot-noise limited strain sensitivity. A significant limitation to increasing the optical power is the phenomenon of three-mode parametric instabilities, in which the laser field in the arm cavities is scattered into higher-order optical modes by acoustic modes of the cavity mirrors. The optical modes can further drive the acoustic modes via radiation pressure, potentially producing an exponential buildup. One proposed technique to stabilize parametric instability is active damping of acoustic modes. We report here the first demonstration of damping a parametrically unstable mode using active feedback forces on the cavity mirror. A 15 538 Hz mode that grew exponentially with a time constant of 182 sec was damped using electrostatic actuation, with a resulting decay time constant of 23 sec. An average control force of 0.03 nN was required to maintain the acoustic mode at its minimum amplitude.

  4. Parametric instability, inverse cascade and the range of solar-wind turbulence

    NASA Astrophysics Data System (ADS)

    Chandran, Benjamin D. G.

    2018-02-01

    In this paper, weak-turbulence theory is used to investigate the nonlinear evolution of the parametric instability in three-dimensional low- plasmas at wavelengths much greater than the ion inertial length under the assumption that slow magnetosonic waves are strongly damped. It is shown analytically that the parametric instability leads to an inverse cascade of Alfvén wave quanta, and several exact solutions to the wave kinetic equations are presented. The main results of the paper concern the parametric decay of Alfvén waves that initially satisfy +\\gg e-$ , where +$ and -$ are the frequency ( ) spectra of Alfvén waves propagating in opposite directions along the magnetic field lines. If +$ initially has a peak frequency 0$ (at which +$ is maximized) and an `infrared' scaling p$ at smaller with , then +$ acquires an -1$ scaling throughout a range of frequencies that spreads out in both directions from 0$ . At the same time, -$ acquires an -2$ scaling within this same frequency range. If the plasma parameters and infrared +$ spectrum are chosen to match conditions in the fast solar wind at a heliocentric distance of 0.3 astronomical units (AU), then the nonlinear evolution of the parametric instability leads to an +$ spectrum that matches fast-wind measurements from the Helios spacecraft at 0.3 AU, including the observed -1$ scaling at -4~\\text{Hz}$ . The results of this paper suggest that the -1$ spectrum seen by Helios in the fast solar wind at -4~\\text{Hz}$ is produced in situ by parametric decay and that the -1$ range of +$ extends over an increasingly narrow range of frequencies as decreases below 0.3 AU. This prediction will be tested by measurements from the Parker Solar Probe.

  5. Waves and instabilities in plasmas

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chen, L.

    1987-01-01

    The contents of this book are: Plasma as a Dielectric Medium; Nyquist Technique; Absolute and Convective Instabilities; Landau Damping and Phase Mixing; Particle Trapping and Breakdown of Linear Theory; Solution of Viasov Equation via Guilding-Center Transformation; Kinetic Theory of Magnetohydrodynamic Waves; Geometric Optics; Wave-Kinetic Equation; Cutoff and Resonance; Resonant Absorption; Mode Conversion; Gyrokinetic Equation; Drift Waves; Quasi-Linear Theory; Ponderomotive Force; Parametric Instabilities; Problem Sets for Homework, Midterm and Final Examinations.

  6. The Absolute Stability Analysis in Fuzzy Control Systems with Parametric Uncertainties and Reference Inputs

    NASA Astrophysics Data System (ADS)

    Wu, Bing-Fei; Ma, Li-Shan; Perng, Jau-Woei

    This study analyzes the absolute stability in P and PD type fuzzy logic control systems with both certain and uncertain linear plants. Stability analysis includes the reference input, actuator gain and interval plant parameters. For certain linear plants, the stability (i.e. the stable equilibriums of error) in P and PD types is analyzed with the Popov or linearization methods under various reference inputs and actuator gains. The steady state errors of fuzzy control systems are also addressed in the parameter plane. The parametric robust Popov criterion for parametric absolute stability based on Lur'e systems is also applied to the stability analysis of P type fuzzy control systems with uncertain plants. The PD type fuzzy logic controller in our approach is a single-input fuzzy logic controller and is transformed into the P type for analysis. In our work, the absolute stability analysis of fuzzy control systems is given with respect to a non-zero reference input and an uncertain linear plant with the parametric robust Popov criterion unlike previous works. Moreover, a fuzzy current controlled RC circuit is designed with PSPICE models. Both numerical and PSPICE simulations are provided to verify the analytical results. Furthermore, the oscillation mechanism in fuzzy control systems is specified with various equilibrium points of view in the simulation example. Finally, the comparisons are also given to show the effectiveness of the analysis method.

  7. The effect of transverse crack upon parametric instability of a rotor-bearing system with an asymmetric disk

    NASA Astrophysics Data System (ADS)

    Han, Qinkai; Chu, Fulei

    2012-12-01

    It is well known that either the asymmetric disk or transverse crack brings parametric inertia (or stiffness) excitation to the rotor-bearing system. When both of them appear in a rotor system, the parametric instability behaviors have not gained sufficient attentions. Thus, the effect of transverse crack upon parametric instability of a rotor-bearing system with an asymmetric disk is studied. First, the finite element equations of motion are established for the asymmetric rotor system. Both the open and breathing transverse cracks are taken into account in the model. Then, the discrete state transition matrix (DSTM) method is introduced for numerically acquiring the instability regions. Based upon these, some computations for a practical asymmetric rotor system with open or breathing transverse crack are conducted, respectively. Variations of the primary and combination instability regions induced by the asymmetric disk with the crack depth are observed, and the effect of the orientation angle between the crack and asymmetric disk on various instability regions are discussed in detail. It is shown that for the asymmetric angle around 0, the existence of transverse (either open or breathing) crack has attenuation effect upon the instability regions. Under certain crack depth, the instability regions could be vanished by the transverse crack. When the asymmetric angle is around π/2, increasing the crack depth would enhance the instability regions.

  8. Numerical parametric studies of spray combustion instability

    NASA Technical Reports Server (NTRS)

    Pindera, M. Z.

    1993-01-01

    A coupled numerical algorithm has been developed for studies of combustion instabilities in spray-driven liquid rocket engines. The model couples gas and liquid phase physics using the method of fractional steps. Also introduced is a novel, efficient methodology for accounting for spray formation through direct solution of liquid phase equations. Preliminary parametric studies show marked sensitivity of spray penetration and geometry to droplet diameter, considerations of liquid core, and acoustic interactions. Less sensitivity was shown to the combustion model type although more rigorous (multi-step) formulations may be needed for the differences to become apparent.

  9. Experiments and theory on parametric instabilities excited in HF heating experiments at HAARP

    NASA Astrophysics Data System (ADS)

    Kuo, Spencer; Snyder, Arnold; Lee, M. C.

    2014-06-01

    Parametric instabilities excited by O-mode HF heater and the induced ionospheric modification were explored via HAARP digisonde operated in a fast mode. The impact of excited Langmuir waves and upper hybrid waves on the ionosphere are manifested by bumps in the virtual spread, which expand the ionogram echoes upward as much as 140 km and the downward range spread of the sounding echoes, which exceeds 50 km over a significant frequency range. The theory of parametric instabilities is presented. The theory identifies the ionogram bump located between the 3.2 MHz heater frequency and the upper hybrid resonance frequency and the bump below the upper hybrid resonance frequency to be associated with the Langmuir and upper hybrid instabilities, respectively. The Langmuir bump is located close to the upper hybrid resonance frequency, rather than to the heater frequency, consistent with the theory. Each bump in the virtual height spread of the ionogram is similar to the cusp occurring in daytime ionograms at the E-F2 layer transition, indicating that there is a small ledge in the density profile similar to E-F2 layer transitions. The experimental results also show that the strong impact of the upper hybrid instability on the ionosphere can suppress the Langmuir instability.

  10. Harmonic generation and parametric decay in the ion cyclotron frequency range

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Skiff, F.N.; Wong, K.L.; Ono, M.

    1984-06-01

    Harmonic generation and parametric decay are examined in a toroidal ACT-I plasma using electrostatic plate antennas. The harmonic generation, which is consistent with sheath rectification, is sufficiently strong that the nonlinearly generated harmonic modes themselves decay parametrically. Resonant and nonresonant parametric decay of the second harmonic are observed and compared with uniform pump theory. Resonant decay of lower hybrid waves into lower hybrid waves and slow ion cyclotron waves is seen for the first time. Surprisingly, the decay processes are nonlinearly saturated, indicating absolute instability.

  11. Parametric instabilities of finite-amplitude, circularly polarized Alfven waves in an anisotropic plasma

    NASA Technical Reports Server (NTRS)

    Hamabata, Hiromitsu

    1993-01-01

    A class of parametric instabilities of finite-amplitude, circularly polarized Alfven waves in a plasma with pressure anisotropy is studied by application of the CGL equations. A linear perturbation analysis is used to find the dispersion relation governing the instabilities, which is a fifth-order polynomial and is solved numerically. A large-amplitude, circularly polarized wave is unstable with respect to decay into three waves: one sound-like wave and two side-band Alfven-like waves. It is found that, in addition to the decay instability, two new instabilities that are absent in the framework of the MHD equations can occur, depending on the plasma parameters.

  12. Experiments and theory on parametric instabilities excited in HF heating experiments at HAARP

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kuo, Spencer; Snyder, Arnold; Lee, M. C.

    2014-06-15

    Parametric instabilities excited by O-mode HF heater and the induced ionospheric modification were explored via HAARP digisonde operated in a fast mode. The impact of excited Langmuir waves and upper hybrid waves on the ionosphere are manifested by bumps in the virtual spread, which expand the ionogram echoes upward as much as 140 km and the downward range spread of the sounding echoes, which exceeds 50 km over a significant frequency range. The theory of parametric instabilities is presented. The theory identifies the ionogram bump located between the 3.2 MHz heater frequency and the upper hybrid resonance frequency and the bump below themore » upper hybrid resonance frequency to be associated with the Langmuir and upper hybrid instabilities, respectively. The Langmuir bump is located close to the upper hybrid resonance frequency, rather than to the heater frequency, consistent with the theory. Each bump in the virtual height spread of the ionogram is similar to the cusp occurring in daytime ionograms at the E-F2 layer transition, indicating that there is a small ledge in the density profile similar to E-F2 layer transitions. The experimental results also show that the strong impact of the upper hybrid instability on the ionosphere can suppress the Langmuir instability.« less

  13. Parametric Instability, Inverse Cascade, and the 1/f Range of Solar-Wind Turbulence.

    PubMed

    Chandran, Benjamin D G

    2018-02-01

    In this paper, weak turbulence theory is used to investigate the nonlinear evolution of the parametric instability in 3D low- β plasmas at wavelengths much greater than the ion inertial length under the assumption that slow magnetosonic waves are strongly damped. It is shown analytically that the parametric instability leads to an inverse cascade of Alfvén wave quanta, and several exact solutions to the wave kinetic equations are presented. The main results of the paper concern the parametric decay of Alfvén waves that initially satisfy e + ≫ e - , where e + and e - are the frequency ( f ) spectra of Alfvén waves propagating in opposite directions along the magnetic field lines. If e + initially has a peak frequency f 0 (at which fe + is maximized) and an "infrared" scaling f p at smaller f with -1 < p < 1, then e + acquires an f -1 scaling throughout a range of frequencies that spreads out in both directions from f 0 . At the same time, e - acquires an f -2 scaling within this same frequency range. If the plasma parameters and infrared e + spectrum are chosen to match conditions in the fast solar wind at a heliocentric distance of 0.3 astronomical units (AU), then the nonlinear evolution of the parametric instability leads to an e + spectrum that matches fast-wind measurements from the Helios spacecraft at 0.3 AU, including the observed f -1 scaling at f ≳ 3 × 10 -4 Hz. The results of this paper suggest that the f -1 spectrum seen by Helios in the fast solar wind at f ≳ 3 × 10 -4 Hz is produced in situ by parametric decay and that the f -1 range of e + extends over an increasingly narrow range of frequencies as r decreases below 0.3 AU. This prediction will be tested by measurements from the Parker Solar Probe .

  14. Absolute and convective instabilities and their roles in the forecasting of large frontal meanderings

    NASA Astrophysics Data System (ADS)

    Liang, X. San; Robinson, Allan R.

    2013-10-01

    Frontal meanderings are generally difficult to predict. In this study, we demonstrate through an exercise with the Iceland-Faeroe Front (IFF) that satisfactory predictions may be achieved with the aid of hydrodynamic instability analysis. As discovered earlier on, underlying the IFF meandering is a convective instability in the western boundary region followed by an absolute instability in the interior; correspondingly the disturbance growth reveals a switch of pattern from spatial amplification to temporal amplification. To successfully forecast the meandering, the two instability processes must be faithfully reproduced. This sets stringent constraints for the tunable model parameters, e.g., boundary relaxation, temporal relaxation, eddy diffusivity, etc. By analyzing the instability dispersion properties, these parameters can be rather accurately set and their respective ranges of sensitivity estimated. It is shown that too much relaxation inhibits the front from varying; on the other hand, too little relaxation may have the model completely skip the spatial growth phase, leading to a meandering way more upstream along the front. Generally speaking, dissipation/diffusion tends to stabilize the simulation, but unrealistically large dissipation/diffusion could trigger a spurious absolute instability, and hence a premature meandering intrusion. The belief that taking in more data will improve the forecast does not need to be true; it depends on whether the model setup admits the two instabilities. This study may help relieve modelers from the laborious and tedious work of parameter tuning; it also provides us criteria to distinguish a physically relevant forecast from numerical artifacts.

  15. Absolute instabilities of travelling wave solutions in a Keller-Segel model

    NASA Astrophysics Data System (ADS)

    Davis, P. N.; van Heijster, P.; Marangell, R.

    2017-11-01

    We investigate the spectral stability of travelling wave solutions in a Keller-Segel model of bacterial chemotaxis with a logarithmic chemosensitivity function and a constant, sublinear, and linear consumption rate. Linearising around the travelling wave solutions, we locate the essential and absolute spectrum of the associated linear operators and find that all travelling wave solutions have parts of the essential spectrum in the right half plane. However, we show that in the case of constant or sublinear consumption there exists a range of parameters such that the absolute spectrum is contained in the open left half plane and the essential spectrum can thus be weighted into the open left half plane. For the constant and sublinear consumption rate models we also determine critical parameter values for which the absolute spectrum crosses into the right half plane, indicating the onset of an absolute instability of the travelling wave solution. We observe that this crossing always occurs off of the real axis.

  16. Parametric instabilities of the circularly polarized Alfven waves including dispersion. [for solar wind

    NASA Technical Reports Server (NTRS)

    Wong, H. K.; Goldstein, M. L.

    1986-01-01

    A class of parametric instabilities of large-amplitude, circularly polarized Alfven waves is considered in which finite frequency (dispersive) effects are included. The dispersion equation governing the instabilities is a sixth-order polynomial which is solved numerically. As a function of K identically equal to k/k-sub-0 (where k-sub-0 and k are the wave number of the 'pump' wave and unstable sound wave, respectively), there are three regionals of instability: a modulation instability at K less than 1, a decay instability at K greater than 1, and a relatively weak and narrow instability at K close to squared divided by v-sub-A squared (where c-sub-s and v-sub-A are the sound and Alfven speeds respectively), the modulational instability occurs when beta is less than 1 (more than 1) for left-hand (right-hand) pump waves, in agreement with the previous results of Sakai and Sonnerup (1983). The growth rate of the decay instability of left-hand waves is greater than the modulational instability at all values of beta. Applications to large-amplitude wave observed in the solar wind, in computer simulations, and in the vicinity of planetary and interplanetary collisionless shocks are discussed.

  17. Saturation of radiation-induced parametric instabilities by excitation of Langmuir turbulence

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Dubois, D.F.; Rose, H.A.; Russell, D.

    1995-12-01

    Progress made in the last few years in the calculation of the saturation spectra of parametric instabilities which involve Langmuir daughter waves will be reviewed. These instabilities include the ion acoustic decay instability, the two plasmon decay instability (TPDI), and stimulated Raman scattering (SRS). In particular I will emphasize spectral signatures which can be directly compared with experiment. The calculations are based on reduced models of driven Laugmuir turbulence. Thomson scattering from hf-induced Langmuir turbulence in the unpreconditioned ionosphere has resulted in detailed agreement between theory and experiment at early times. Strong turbulence signatures dominate in this regime where themore » weak turbulence approximation fails completely. Recent experimental studies of the TPDI have measured the Fourier spectra of Langmuir waves as well as the angular and frequency, spectra of light emitted near 3/2 of the pump frequency again permitting some detailed comparisons with theory. The experiments on SRS are less detailed but by Thomson scattering the secondary decay of the daughter Langmuir wave has been observed. Scaling laws derived from a local model of SRS saturation are compared with full simulations and recent Nova experiments.« less

  18. Parametric instabilities and their control in multidimensional nonuniform gain media

    NASA Astrophysics Data System (ADS)

    Charbonneau-Lefort, Mathieu; Afeyan, Bedros; Fejer, Martin

    2007-11-01

    In order to control parametric instabilities in large scale long pulse laser produced plasmas, optical mixing techniques seem most promising [1]. We examine ways of controlling the growth of some modes while creating other unstable ones in nonuniform gain media, including the effects of transverse localization of the pump wave. We show that multidimensional effects are essential to understand laser-gain medium interactions [2] and that one dimensional models such as the celebrated Rosenbluth result [3] can be misleading [4]. These findings are verified in experiments carried out in a chirped quasi-phase-matched gratings in optical parametric amplifiers where thousands of shots can be taken and statistically significant and stable results obtained. [1] B. Afeyan, et al., IFSA Proceedings, 2003. [2] M. M. Sushchik and G. I. Freidman, Radiofizika 13, 1354 (1970). [3] M. N. Rosenbluth, Phys. Rev. Lett. 29, 565 (1972). [4] M. Charbonneau-Lefort, PhD thesis, Stanford University, 2007.

  19. Ion dynamics during the parametric instabilities of a left-hand polarized Alfvén wave in a proton-electron-alpha plasma

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gao, Xinliang; Lu, Quanming; Hao, Yufei

    2014-01-01

    The parametric instabilities of an Alfvén wave in a proton-electron plasma system are found to have great influence on proton dynamics, where part of the protons can be accelerated through the Landau resonance with the excited ion acoustic waves, and a beam component along the background magnetic field is formed. In this paper, with a one-dimensional hybrid simulation model, we investigate the evolution of the parametric instabilities of a monochromatic left-hand polarized Alfvén wave in a proton-electron-alpha plasma with a low beta. When the drift velocity between the protons and alpha particles is sufficiently large, the wave numbers of themore » backward daughter Alfvén waves can be cascaded toward higher values due to the modulational instability during the nonlinear evolution of the parametric instabilities, and the alpha particles are resonantly heated in both the parallel and perpendicular direction by the backward waves. On the other hand, when the drift velocity of alpha particles is small, the alpha particles are heated in the linear growth stage of the parametric instabilities due to the Landau resonance with the excited ion acoustic waves. Therefore, the heating occurs only in the parallel direction, and there is no obvious heating in the perpendicular direction. The relevance of our results to the preferential heating of heavy ions observed in the solar wind within 0.3 AU is also discussed in this paper.« less

  20. A numerical study on piezoelectric energy harvesting by combining transverse galloping and parametric instability phenomena

    NASA Astrophysics Data System (ADS)

    Franzini, Guilherme Rosa; Santos, Rebeca Caramêz Saraiva; Pesce, Celso Pupo

    2017-12-01

    This paper aims to numerically investigate the effects of parametric instability on piezoelectric energy harvesting from the transverse galloping of a square prism. A two degrees-of-freedom reduced-order model for this problem is proposed and numerically integrated. A usual quasi-steady galloping model is applied, where the transverse force coefficient is adopted as a cubic polynomial function with respect to the angle of attack. Time-histories of nondimensional prism displacement, electric voltage and power dissipated at both the dashpot and the electrical resistance are obtained as functions of the reduced velocity. Both, oscillation amplitude and electric voltage, increased with the reduced velocity for all parametric excitation conditions tested. For low values of reduced velocity, 2:1 parametric excitation enhances the electric voltage. On the other hand, for higher reduced velocities, a 1:1 parametric excitation (i.e., the same as the natural frequency) enhances both oscillation amplitude and electric voltage. It has been also found that, depending on the parametric excitation frequency, the harvested electrical power can be amplified in 70% when compared to the case under no parametric excitation.

  1. Order parameter description of walk-off effect on pattern selection in degenerate optical parametric oscillators

    NASA Astrophysics Data System (ADS)

    Taki, Majid; San Miguel, Maxi; Santagiustina, Marco

    2000-02-01

    Degenerate optical parametric oscillators can exhibit both uniformly translating fronts and nonuniformly translating envelope fronts under the walk-off effect. The nonlinear dynamics near threshold is shown to be described by a real convective Swift-Hohenberg equation, which provides the main characteristics of the walk-off effect on pattern selection. The predictions of the selected wave vector and the absolute instability threshold are in very good quantitative agreement with numerical solutions found from the equations describing the optical parametric oscillator.

  2. Parametric instabilities in resonantly-driven Bose–Einstein condensates

    NASA Astrophysics Data System (ADS)

    Lellouch, S.; Goldman, N.

    2018-04-01

    Shaking optical lattices in a resonant manner offers an efficient and versatile method to devise artificial gauge fields and topological band structures for ultracold atomic gases. This was recently demonstrated through the experimental realization of the Harper–Hofstadter model, which combined optical superlattices and resonant time-modulations. Adding inter-particle interactions to these engineered band systems is expected to lead to strongly-correlated states with topological features, such as fractional Chern insulators. However, the interplay between interactions and external time-periodic drives typically triggers violent instabilities and uncontrollable heating, hence potentially ruling out the possibility of accessing such intriguing states of matter in experiments. In this work, we study the early-stage parametric instabilities that occur in systems of resonantly-driven Bose–Einstein condensates in optical lattices. We apply and extend an approach based on Bogoliubov theory (Lellouch et al 2017 Phys. Rev. X 7 021015) to a variety of resonantly-driven band models, from a simple shaken Wannier–Stark ladder to the more intriguing driven-induced Harper–Hofstadter model. In particular, we provide ab initio numerical and analytical predictions for the stability properties of these topical models. This work sheds light on general features that could guide current experiments to stable regimes of operation.

  3. Comment on "Parametric Instability Induced by X-Mode Wave Heating at EISCAT" by Wang et al. (2016)

    NASA Astrophysics Data System (ADS)

    Blagoveshchenskaya, N. F.; Borisova, T. D.; Yeoman, T. K.

    2017-12-01

    In their recent article Wang et al. (2016) analyzed observations from EISCAT (European Incoherent Scatter) Scientific Association Russian X-mode heating experiments and claimed to explain the potential mechanisms for the parametric decay instability (PDI) and oscillating two-stream instability (OTSI). Wang et al. (2016) claim that they cannot separate the HF-enhanced plasma and ion lines excited by O or X mode in the EISCAT UHF radar spectra. Because of this they distinguished the parametric instability excited by O-/X-mode heating waves according to their different excitation heights. Their reflection heights were determined from ionosonde records, which provide a rough measure of excitation altitudes and cannot be used for the separation of the O- and X-mode effects. The serious limitation in their analysis is the use of a 30 s integration time of the UHF radar data. There are also serious disagreements between their analysis and the real observational facts. The fact is that it is the radical difference in the behavior of the X- and O-mode plasma and ion line spectra derived with a 5 s resolution, which provides the correct separation of the X- and O-mode effects. It is not discussed and explained how the parallel component of the electric field under X-mode heating is generated. Apart from the leakage to the O mode, results by Wang et al. (2016) do not explain the potential mechanisms for PDI and OTSI and add nothing to understanding the physical factors accounting for the parametric instability generated by an X-mode HF pump wave.

  4. Transition from convective to absolute Raman instability via the longitudinal relativistic effect by using Vlasov-Maxwell simulations

    NASA Astrophysics Data System (ADS)

    Wang, Q.; Liu, Z. J.; Zheng, C. Y.; Xiao, C. Z.; Feng, Q. S.; Zhang, H. C.; He, X. T.

    2018-01-01

    The longitudinal relativistic effect on stimulated Raman backscattering (SRBS) is investigated by using one-dimensional (1D) Vlasov-Maxwell simulations. Using a short backscattered light seed pulse with a very small amplitude, the linear gain spectra of SRBS in the strongly convective regime is presented by combining the relativistic and non-relativistic 1D Vlasov-Maxwell simulations, which is in agreement with the steady-state linear theory. More interestingly, by considering transition from convective to absolute instability due to electron trapping, we successfully predict the critical duration of the seed which can just trigger the kinetic inflation of the excited SRBS after the seed leaves the simulation box. The critical duration in the relativistic case is much shorter than that in the nonrelativistic case, which indicates that the kinetic inflation more easily occurs in the relativistic case than in the nonrelativistic case. In the weakly convective regime, the transition from convective to absolute instability for SRBS can directly occur in the linear regime due to the longitudinal relativistic modification. For the same pump, our simulations first demonstrate that the SRBS excited by a short and small seed pulse is a convective instability in the nonrelativistic case but becomes an absolute instability due to the decrease of the linear Landau damping from the longitudinal relativistic modification in the relativistic case. In more detail, the growth rate of the backscattered light is also in excellent agreement with theoretical prediction.

  5. Parametric decay instability near the upper hybrid resonance in magnetically confined fusion plasmas

    NASA Astrophysics Data System (ADS)

    Hansen, S. K.; Nielsen, S. K.; Salewski, M.; Stejner, M.; Stober, J.; the ASDEX Upgrade Team

    2017-10-01

    In this paper we investigate parametric decay of an electromagnetic pump wave into two electrostatic daughter waves, particularly an X-mode pump wave decaying into a warm upper hybrid wave (a limit of an electron Bernstein wave) and a warm lower hybrid wave. We describe the general theory of the above parametric decay instability (PDI), unifying earlier treatments, and show that it may occur in underdense and weakly overdense plasmas. The PDI theory is used to explain anomalous sidebands observed in collective Thomson scattering (CTS) spectra at the ASDEX Upgrade tokamak. The theory may also account for similar observations during CTS experiments in stellarators, as well as in some 1st harmonic electron cyclotron resonance and O-X-B heating experiments.

  6. Parametric Instabilities During High Power Helicon Wave Injection on DIII-D

    NASA Astrophysics Data System (ADS)

    Porkolab, M.; Pinsker, R. I.

    2017-10-01

    High power helicon (whistler) waves at a frequency of 0.47 GHz are being considered for efficient off-axis current generation in high performance DIII-D plasmas and in K-Star [3]. The need for deploying helicon waves for current profile control has been noted in previous publications since penetration to the core of reactor grade plasmas is easier than with lower hybrid slow waves (LHCD) which suffer from accessibility limitations and strong electron Landau absorption in fusion grade high temperature plasmas. In this work we show that under typical experimental conditions in present day tokamaks with 1 MW of RF power coupled per antenna, the associated perpendicular electric fields of the order of 40 kV/m can drive strong parametric decay instabilities near the lower hybrid layer. The EXB and polarization drift velocities which are the dominant driver of the PDI can be comparable to the speed of sound in the outer plasma layers, a key measure of driving PDI instabilities. Here we calculate growth rates and convective thresholds for PDIs, and we find that decay waves into hot ion lower hybrid waves and ion cyclotron quasi modes dominate in the vicinity of the lower hybrid layer, possibly leading to pump depletion. Such instabilities in future reactor grade high temperature plasmas are less likely.

  7. Observation of Geometric Parametric Instability Induced by the Periodic Spatial Self-Imaging of Multimode Waves

    NASA Astrophysics Data System (ADS)

    Krupa, Katarzyna; Tonello, Alessandro; Barthélémy, Alain; Couderc, Vincent; Shalaby, Badr Mohamed; Bendahmane, Abdelkrim; Millot, Guy; Wabnitz, Stefan

    2016-05-01

    Spatiotemporal mode coupling in highly multimode physical systems permits new routes for exploring complex instabilities and forming coherent wave structures. We present here the first experimental demonstration of multiple geometric parametric instability sidebands, generated in the frequency domain through resonant space-time coupling, owing to the natural periodic spatial self-imaging of a multimode quasi-continuous-wave beam in a standard graded-index multimode fiber. The input beam was launched in the fiber by means of an amplified microchip laser emitting sub-ns pulses at 1064 nm. The experimentally observed frequency spacing among sidebands agrees well with analytical predictions and numerical simulations. The first-order peaks are located at the considerably large detuning of 123.5 THz from the pump. These results open the remarkable possibility to convert a near-infrared laser directly into a broad spectral range spanning visible and infrared wavelengths, by means of a single resonant parametric nonlinear effect occurring in the normal dispersion regime. As further evidence of our strong space-time coupling regime, we observed the striking effect that all of the different sideband peaks were carried by a well-defined and stable bell-shaped spatial profile.

  8. Parametric dependence of density limits in the Tokamak Experiment for Technology Oriented Research (TEXTOR): Comparison of thermal instability theory with experiment

    NASA Astrophysics Data System (ADS)

    Kelly, F. A.; Stacey, W. M.; Rapp, J.

    2001-11-01

    The observed dependence of the TEXTOR [Tokamak Experiment for Technology Oriented Research: E. Hintz, P. Bogen, H. A. Claassen et al., Contributions to High Temperature Plasma Physics, edited by K. H. Spatschek and J. Uhlenbusch (Akademie Verlag, Berlin, 1994), p. 373] density limit on global parameters (I, B, P, etc.) and wall conditioning is compared with the predicted density limit parametric scaling of thermal instability theory. It is necessary first to relate the edge parameters of the thermal instability theory to n¯ and the other global parameters. The observed parametric dependence of the density limit in TEXTOR is generally consistent with the predicted density limit scaling of thermal instability theory. The observed wall conditioning dependence of the density limit can be reconciled with the theory in terms of the radiative emissivity temperature dependence of different impurities in the plasma edge. The thermal instability theory also provides an explanation of why symmetric detachment precedes radiative collapse for most low power shots, while a multifaceted asymmetric radiation from the edge MARFE precedes detachment for most high power shots.

  9. Absolute & Convective Instabilities in the Boundary Layer on a Rotating Sphere

    NASA Astrophysics Data System (ADS)

    Garrett, Stephen; Peake, Nigel

    2001-11-01

    We are concerned with absolute (AI) and convective instabilities (CI) in the boundary-layer on a sphere rotating in an otherwise still fluid. Both AI and CI are found at every latitude within specific parameter spaces. The local Reynolds number at the predicted onset of AI matches experimental data well for the onset of turbulence at ψ =30^o from the axis of rotation, beyond this latitude the discrepancy increases but remains relatively small below ψ =70^o. We suggest that this AI may cause the onset of transition. The results of the CI analysis show that a crossflow instability mode is the most dangerous below ψ =66^o. Above this latitude a streamline-curvature mode is found to be the most dangerous, which coincides with the appearance of reverse flow in the radial component of the mean flow. Our predictions of the Reynolds number and vortex angle at the onset of CI are consistent with existing experimental measurements. Close to the pole the predictions of each stability analysis are seen to approach those of existing rotating disk investigations.

  10. The Influence of Trapped Particles on the Parametric Decay Instability of Near-Acoustic Waves

    NASA Astrophysics Data System (ADS)

    Affolter, M.; Anderegg, F.; Dubin, D. H. E.; Driscoll, C. F.

    2017-10-01

    We present quantitative measurements of a decay instability to lower frequencies of near-acoustic waves. These experiments are conducted on pure ion plasmas confined in a cylindrical Penning-Malmberg trap. The axisymmetric, standing plasma waves have near-acoustic dispersion, discretized by the axial wave number kz =mz(π /Lp) . The nonlinear coupling rates are measured between large amplitude mz = 2 (pump) waves and small amplitude mz = 1 (daughter) waves, which have a small frequency detuning Δω = 2ω1 -ω2 . Classical 3-wave parametric coupling rates are proportional to pump wave amplitude as Γ (δn2 /n0) , with oscillatory energy exchange for Γ < Δω / 2 and decay instability for Γ > Δω / 2 . Experiments on cold plasmas agree quantitatively for oscillatory energy exchange, and agree within a factor-of-two for decay instability rates. However, nascent theory suggest that this latter agreement is merely fortuitous, and that the instability mechanism is trapped particles. Experiments at higher temperatures show that trapped particles reduce the instability threshold below classical 3-wave theory predictions. Supported by NSF Grant PHY-1414570, and DOE Grants DE-SC0002451 and DE-SC0008693. M. Affolter is supported by the DOE FES Postdoctoral Research Program administered by ORISE for the DOE. ORISE is managed by ORAU under DOE Contract Number DE-SC0014664.

  11. Kinetic Effects in Parametric Instabilities of Finite Amplitude Alfven Waves in a Drifting Multi-Species Plasma

    NASA Astrophysics Data System (ADS)

    Maneva, Y. G.; Araneda, J. A.; Poedts, S.

    2014-12-01

    We consider parametric instabilities of finite-amplitude large-scale Alfven waves in a low-beta collisionless multi-species plasma, consisting of fluid electrons, kinetic protons and a drifting population of minor ions. Complementary to many theoretical studies, relying on fluid or multi-fluid approach, in this work we present the solutions of the parametric instability dispersion relation, including kinetic effects in the parallel direction, along the ambient magnetic field. This provides us with the opportunity to predict the importance of some wave-particle interactions like Landau damping of the daughter ion-acoustic waves for the given pump wave and plasma conditions. We apply the dispersion relation to plasma parameters, typical for low-beta collisionless solar wind close to the Sun. We compare the analytical solutions to the linear stage of hybrid numerical simulations and discuss the application of the model to the problems of preferential heating and differential acceleration of minor ions in the solar corona and the fast solar wind. The results of this study provide tools for prediction and interpretation of the magnetic field and particles data as expected from the future Solar Orbiter and Solar Probe Plus missions.

  12. Secondary instability in boundary-layer flows

    NASA Technical Reports Server (NTRS)

    Nayfeh, A. H.; Bozatli, A. N.

    1979-01-01

    The stability of a secondary Tollmien-Schlichting wave, whose wavenumber and frequency are nearly one half those of a fundamental Tollmien-Schlichting instability wave is analyzed using the method of multiple scales. Under these conditions, the fundamental wave acts as a parametric exciter for the secondary wave. The results show that the amplitude of the fundamental wave must exceed a critical value to trigger this parametric instability. This value is proportional to a detuning parameter which is the real part of k - 2K, where k and K are the wavenumbers of the fundamental and its subharmonic, respectively. For Blasius flow, the critical amplitude is approximately 29% of the mean flow, and hence many other secondary instabilities take place before this parametric instability becomes significant. For other flows where the detuning parameter is small, such as free-shear layer flows, the critical amplitude can be small, thus the parametric instability might play a greater role.

  13. Parametric instability in the high power era of Advanced LIGO

    NASA Astrophysics Data System (ADS)

    Hardwick, Terra; Blair, Carl; Kennedy, Ross; Evans, Matthew; Fritschel, Peter; LIGO Virgo Scientific Collaboration

    2017-01-01

    After the first direct detections of gravitational waves, Advanced LIGO aims to increase its detection rate during the upcoming science runs through a series of detector improvements, including increased optical power. Higher circulating power increases the likelihood for three-mode parametric instabilities (PIs), in which mechanical modes of the mirrors scatter light into higher-order optical modes in the cavity and the resulting optical modes reinforce the mechanical modes via radiation pressure. Currently, LIGO uses two PI mitigation methods: thermal tuning to change the cavity g-factor and effectively decrease the frequency overlap between mechanical and optical modes, and active damping of mechanical modes with electrostatic actuation. While the combined methods provide stability at the current operating power, there is evidence that these will be insufficient for the next planned power increase; future suppression methods including acoustic mode dampers and dynamic g-factor modulation are discussed.

  14. Parametric study of the mode coupling instability for a simple system with planar or rectilinear friction

    NASA Astrophysics Data System (ADS)

    Charroyer, L.; Chiello, O.; Sinou, J.-J.

    2016-12-01

    In this paper, the study of a damped mass-spring system of three degrees of freedom with friction is proposed in order to highlight the differences in mode coupling instabilities between planar and rectilinear friction assumptions. Well-known results on the effect of structural damping in the field of friction-induced vibration are extended to the specific case of a damped mechanical system with planar friction. It is emphasised that the lowering and smoothing effects are not so intuitive in this latter case. The stability analysis is performed by calculating the complex eigenvalues of the linearised system and by using the Routh-Hurwitz criterion. Parametric studies are carried out in order to evaluate the effects of various system parameters on stability. Special attention is paid to the understanding of the role of damping and the associated destabilisation paradox in mode-coupling instabilities with planar and rectilinear friction assumptions.

  15. Saturation of low-threshold two-plasmon parametric decay leading to excitation of one localized upper hybrid wave

    NASA Astrophysics Data System (ADS)

    Gusakov, E. Z.; Popov, A. Yu.; Saveliev, A. N.

    2018-06-01

    We analyze the saturation of the low-threshold absolute parametric decay instability of an extraordinary pump wave leading to the excitation of two upper hybrid (UH) waves, only one of which is trapped in the vicinity of a local maximum of the plasma density profile. The pump depletion and the secondary decay of the localized daughter UH wave are treated as the most likely moderators of a primary two-plasmon decay instability. The reduced equations describing the nonlinear saturation phenomena are derived. The general analytical consideration is accompanied by the numerical analysis performed under the experimental conditions typical of the off-axis X2-mode ECRH experiments at TEXTOR. The possibility of substantial (up to 20%) anomalous absorption of the pump wave is predicted.

  16. Absolute And Convective Instability and Splitting of a Liquid Jet at Microgravity

    NASA Technical Reports Server (NTRS)

    Lin, S. P.

    2001-01-01

    The objective is to establish a definitive role of the capillary, viscous, and inertial forces at a liquid-gas interface in the absence of gravity by using the fluid dynamics problem of the stability of a liquid jet as a vehicle. The objective is achieved by reexamining known theories and new theories that can be verified completely only in microgravity. The experiments performed in the microgravity facility at NASA Glenn Research Center enable the verification of the theory with experimental data. Of particular interest are (1) to capture for the first time the image of absolute instability, (2) to elucidate the fundamental difference in the physical mechanism of the drop and spray formation from a liquid jet, and (3) to find the origin of the newly discovered phenomenon of jet splitting on earth and in space.

  17. Parametric study on kink instabilities of twisted magnetic flux ropes in the solar atmosphere

    NASA Astrophysics Data System (ADS)

    Mei, Z. X.; Keppens, R.; Roussev, I. I.; Lin, J.

    2018-01-01

    Aims: Twisted magnetic flux ropes (MFRs) in the solar atmosphere have been researched extensively because of their close connection to many solar eruptive phenomena, such as flares, filaments, and coronal mass ejections (CMEs). In this work, we performed a set of 3D isothermal magnetohydrodynamic (MHD) numerical simulations, which use analytical twisted MFR models and study dynamical processes parametrically inside and around current-carrying twisted loops. We aim to generalize earlier findings by applying finite plasma β conditions. Methods: Inside the MFR, approximate internal equilibrium is obtained by pressure from gas and toroidal magnetic fields to maintain balance with the poloidal magnetic field. We selected parameter values to isolate best either internal or external kink instability before studying complex evolutions with mixed characteristics. We studied kink instabilities and magnetic reconnection in MFRs with low and high twists. Results: The curvature of MFRs is responsible for a tire tube force due to its internal plasma pressure, which tends to expand the MFR. The curvature effect of toroidal field inside the MFR leads to a downward movement toward the photosphere. We obtain an approximate internal equilibrium using the opposing characteristics of these two forces. A typical external kink instability totally dominates the evolution of MFR with infinite twist turns. Because of line-tied conditions and the curvature, the central MFR region loses its external equilibrium and erupts outward. We emphasize the possible role of two different kink instabilities during the MFR evolution: internal and external kink. The external kink is due to the violation of the Kruskal-Shafranov condition, while the internal kink requires a safety factor q = 1 surface inside the MFR. We show that in mixed scenarios, where both instabilities compete, complex evolutions occur owing to reconnections around and within the MFR. The S-shaped structures in current distributions

  18. Parametric instability and wave turbulence driven by tidal excitation of internal waves

    NASA Astrophysics Data System (ADS)

    Le Reun, Thomas; Favier, Benjamin; Le Bars, Michael

    2018-04-01

    We investigate the stability of stratified fluid layers undergoing homogeneous and periodic tidal deformation. We first introduce a local model which allows to study velocity and buoyancy fluctuations in a Lagrangian domain periodically stretched and sheared by the tidal base flow. While keeping the key physical ingredients only, such a model is efficient to simulate planetary regimes where tidal amplitudes and dissipation are small. With this model, we prove that tidal flows are able to drive parametric subharmonic resonances of internal waves, in a way reminiscent of the elliptical instability in rotating fluids. The growth rates computed via Direct Numerical Simulations (DNS) are in very good agreement with WKB analysis and Floquet theory. We also investigate the turbulence driven by this instability mechanism. With spatio-temporal analysis, we show that it is a weak internal wave turbulence occurring at small Froude and buoyancy Reynolds numbers. When the gap between the excitation and the Brunt-V\\"ais\\"al\\"a frequencies is increased, the frequency spectrum of this wave turbulence displays a -2 power law reminiscent of the high-frequency branch of the Garett and Munk spectrum (Garrett & Munk 1979) which has been measured in the oceans. In addition, we find that the mixing efficiency is altered compared to what is computed in the context of DNS of stratified turbulence excited at small Froude and large buoyancy Reynolds numbers and is consistent with a superposition of waves.

  19. Absolute and convective instabilities of a film flow down a vertical fiber subjected to a radial electric field

    NASA Astrophysics Data System (ADS)

    Liu, Rong; Chen, Xue; Ding, Zijing

    2018-01-01

    We consider the motion of a gravity-driven flow down a vertical fiber subjected to a radial electric field. This flow exhibits rich dynamics including the formation of droplets, or beads, driven by a Rayleigh-Plateau mechanism modified by the presence of gravity as well as the Maxwell stress at the interface. A spatiotemporal stability analysis is performed to investigate the effect of electric field on the absolute-convective instability (AI-CI) characteristics. We performed a numerical simulation on the nonlinear evolution of the film to examine the transition from CI to AI regime. The numerical results are in excellent agreement with the spatiotemporal stability analysis. The blowup behavior of nonlinear simulation predicts the formation of touchdown singularity of the interface due to the effect of electric field. We try to connect the blowup behavior with the AI-CI characteristics. It is found that the singularities mainly occur in the AI regime. The results indicate that the film may have a tendency to form very sharp tips due to the enhancement of the absolute instability induced by the electric field. We perform a theoretical analysis to study the behaviors of the singularities. The results show that there exists a self-similarity between the temporal and spatial distances from the singularities.

  20. NUMERICAL SIMULATIONS OF KELVIN–HELMHOLTZ INSTABILITY: A TWO-DIMENSIONAL PARAMETRIC STUDY

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Tian, Chunlin; Chen, Yao, E-mail: chunlin.tian@sdu.edu.cn

    2016-06-10

    Using two-dimensional simulations, we numerically explore the dependences of Kelvin–Helmholtz (KH) instability upon various physical parameters, including viscosity, the width of the sheared layer, flow speed, and magnetic field strength. In most cases, a multi-vortex phase exists between the initial growth phase and the final single-vortex phase. The parametric study shows that the evolutionary properties, such as phase duration and vortex dynamics, are generally sensitive to these parameters, except in certain regimes. An interesting result is that for supersonic flows, the phase durations and saturation of velocity growth approach constant values asymptotically as the sonic Mach number increases. We confirmmore » that the linear coupling between magnetic field and KH modes is negligible if the magnetic field is weak enough. The morphological behavior suggests that the multi-vortex coalescence might be driven by the underlying wave–wave interaction. Based on these results, we present a preliminary discussion of several events observed in the solar corona. The numerical models need to be further improved to perform a practical diagnostic of the coronal plasma properties.« less

  1. On a new scenario for the saturation of the low-threshold two-plasmon parametric decay instability of an extraordinary wave in the inhomogeneous plasma of magnetic traps

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gusakov, E. Z., E-mail: Evgeniy.Gusakov@mail.ioffe.ru; Popov, A. Yu., E-mail: a.popov@mail.ioffe.ru; Irzak, M. A., E-mail: irzak@mail.ioffe.ru

    The most probable scenario for the saturation of the low-threshold two-plasmon parametric decay instability of an electron cyclotron extraordinary wave has been analyzed. Within this scenario two upperhybrid plasmons at frequencies close to half the pump wave frequency radially trapped in the vicinity of the local maximum of the plasma density profile are excited due to the excitation of primary instability. The primary instability saturation results from the decays of the daughter upper-hybrid waves into secondary upperhybrid waves that are also radially trapped in the vicinity of the local maximum of the plasma density profile and ion Bernstein waves.

  2. Parametric scaling from species relative abundances to absolute abundances in the computation of biological diversity: a first proposal using Shannon's entropy.

    PubMed

    Ricotta, Carlo

    2003-01-01

    Traditional diversity measures such as the Shannon entropy are generally computed from the species' relative abundance vector of a given community to the exclusion of species' absolute abundances. In this paper, I first mention some examples where the total information content associated with a given community may be more adequate than Shannon's average information content for a better understanding of ecosystem functioning. Next, I propose a parametric measure of statistical information that contains both Shannon's entropy and total information content as special cases of this more general function.

  3. Strongly nonlinear theory of rapid solidification near absolute stability

    NASA Astrophysics Data System (ADS)

    Kowal, Katarzyna N.; Altieri, Anthony L.; Davis, Stephen H.

    2017-10-01

    We investigate the nonlinear evolution of the morphological deformation of a solid-liquid interface of a binary melt under rapid solidification conditions near two absolute stability limits. The first of these involves the complete stabilization of the system to cellular instabilities as a result of large enough surface energy. We derive nonlinear evolution equations in several limits in this scenario and investigate the effect of interfacial disequilibrium on the nonlinear deformations that arise. In contrast to the morphological stability problem in equilibrium, in which only cellular instabilities appear and only one absolute stability boundary exists, in disequilibrium the system is prone to oscillatory instabilities and a second absolute stability boundary involving attachment kinetics arises. Large enough attachment kinetics stabilize the oscillatory instabilities. We derive a nonlinear evolution equation to describe the nonlinear development of the solid-liquid interface near this oscillatory absolute stability limit. We find that strong asymmetries develop with time. For uniform oscillations, the evolution equation for the interface reduces to the simple form f''+(βf')2+f =0 , where β is the disequilibrium parameter. Lastly, we investigate a distinguished limit near both absolute stability limits in which the system is prone to both cellular and oscillatory instabilities and derive a nonlinear evolution equation that captures the nonlinear deformations in this limit. Common to all these scenarios is the emergence of larger asymmetries in the resulting shapes of the solid-liquid interface with greater departures from equilibrium and larger morphological numbers. The disturbances additionally sharpen near the oscillatory absolute stability boundary, where the interface becomes deep-rooted. The oscillations are time-periodic only for small-enough initial amplitudes and their frequency depends on a single combination of physical parameters, including the

  4. Observation of large-scale density cavities and parametric-decay instabilities in the high-altitude discrete auroral ionosphere under pulsed electromagnetic radiation.

    PubMed

    Wong, A Y; Chen, J; Lee, L C; Liu, L Y

    2009-03-13

    A large density cavity that measured 2000 km across and 500 km in height was observed by DEMETER and Formosat/COSMIC satellites in temporal and spatial relation to a new mode of propagation of electromagnetic (em) pulses between discrete magnetic field-aligned auroral plasmas to high altitudes. Recorded positive plasma potential from satellite probes is consistent with the expulsion of electrons in the creation of density cavities. High-frequency decay spectra support the concept of parametric instabilities fed by free energy sources.

  5. Spatial Holmboe instability

    NASA Astrophysics Data System (ADS)

    Ortiz, Sabine; Chomaz, Jean-Marc; Loiseleux, Thomas

    2002-08-01

    In mixing-layers between two parallel streams of different densities, shear and gravity effects interplay; buoyancy acts as a restoring force and the Kelvin-Helmholtz mode is known to be stabilized by the stratification. If the density interface is sharp enough, two new instability modes, known as Holmboe modes, appear, propagating in opposite directions. This mechanism has been studied in the temporal instability framework. The present paper analyzes the associated spatial instability problem. It considers, in the Boussinesq approximation, two immiscible inviscid fluids with a piecewise linear broken-line velocity profile. We show how the classical scenario for transition between absolute and convective instability should be modified due to the presence of propagating waves. In the convective region, the spatial theory is relevant and the slowest propagating wave is shown to be the most spatially amplified, as suggested by intuition. Predictions of spatial linear theory are compared with mixing-layer [C. G. Koop and F. K. Browand, J. Fluid Mech. 93, 135 (1979)] and exchange flow [G. Pawlak and L. Armi, J. Fluid Mech. 376, 1 (1999)] experiments. The physical mechanism for Holmboe mode destabilization is analyzed via an asymptotic expansion that predicts the absolute instability domain at large Richardson number.

  6. Spatial Holmboe Instability

    NASA Astrophysics Data System (ADS)

    Sabine, Ortiz; Marc, Chomaz Jean; Thomas, Loiseleux

    2001-11-01

    In mixing layers between two parallel streams of different densities, shear and gravity effects interplay. When the Roosby number, which compares the nonlinear acceleration terms to the Coriolis forces, is large enough, buoyancy acts as a restoring force, the Kelvin-Helmholtz mode is known to be stabilized by the stratification. If the density interface is sharp enough, two new instability modes, known as Holmboe modes, propagating in opposite directions appear. This mechanism has been study in the temporal instability framework. We analyze the associated spatial instability problem, in the Boussinesq approximation, for two immiscible inviscid fluids with broken-line velocity profile. We show how the classical scenario for transition between absolute and convective instability should be modified due to the presence of propagating waves. In convective region, the spatial theory is relevant and the slowest propagative wave is shown to be the most spatially amplified, as suggested by the intuition. Spatial theory is compared with mixing layer experiments (C.G. Koop and Browand J. Fluid Mech. 93, part 1, 135 (1979)), and wedge flows (G. Pawlak and L. Armi J. Fluid Mech. 376, 1 (1999)). Physical mechanism for the Holmboe mode destabilization is analyzed via an asymptotic expansion that explains precisely the absolute instability domain at large Richardson number.

  7. Parametric spatiotemporal oscillation in reaction-diffusion systems

    NASA Astrophysics Data System (ADS)

    Ghosh, Shyamolina; Ray, Deb Shankar

    2016-03-01

    We consider a reaction-diffusion system in a homogeneous stable steady state. On perturbation by a time-dependent sinusoidal forcing of a suitable scaling parameter the system exhibits parametric spatiotemporal instability beyond a critical threshold frequency. We have formulated a general scheme to calculate the threshold condition for oscillation and the range of unstable spatial modes lying within a V-shaped region reminiscent of Arnold's tongue. Full numerical simulations show that depending on the specificity of nonlinearity of the models, the instability may result in time-periodic stationary patterns in the form of standing clusters or spatially localized breathing patterns with characteristic wavelengths. Our theoretical analysis of the parametric oscillation in reaction-diffusion system is corroborated by full numerical simulation of two well-known chemical dynamical models: chlorite-iodine-malonic acid and Briggs-Rauscher reactions.

  8. Parametric spatiotemporal oscillation in reaction-diffusion systems.

    PubMed

    Ghosh, Shyamolina; Ray, Deb Shankar

    2016-03-01

    We consider a reaction-diffusion system in a homogeneous stable steady state. On perturbation by a time-dependent sinusoidal forcing of a suitable scaling parameter the system exhibits parametric spatiotemporal instability beyond a critical threshold frequency. We have formulated a general scheme to calculate the threshold condition for oscillation and the range of unstable spatial modes lying within a V-shaped region reminiscent of Arnold's tongue. Full numerical simulations show that depending on the specificity of nonlinearity of the models, the instability may result in time-periodic stationary patterns in the form of standing clusters or spatially localized breathing patterns with characteristic wavelengths. Our theoretical analysis of the parametric oscillation in reaction-diffusion system is corroborated by full numerical simulation of two well-known chemical dynamical models: chlorite-iodine-malonic acid and Briggs-Rauscher reactions.

  9. Parametrically excited helicopter ground resonance dynamics with high blade asymmetries

    NASA Astrophysics Data System (ADS)

    Sanches, L.; Michon, G.; Berlioz, A.; Alazard, D.

    2012-07-01

    The present work is aimed at verifying the influence of high asymmetries in the variation of in-plane lead-lag stiffness of one blade on the ground resonance phenomenon in helicopters. The periodical equations of motions are analyzed by using Floquet's Theory (FM) and the boundaries of instabilities predicted. The stability chart obtained as a function of asymmetry parameters and rotor speed reveals a complex evolution of critical zones and the existence of bifurcation points at low rotor speed values. Additionally, it is known that when treated as parametric excitations; periodic terms may cause parametric resonances in dynamic systems, some of which can become unstable. Therefore, the helicopter is later considered as a parametrically excited system and the equations are treated analytically by applying the Method of Multiple Scales (MMS). A stability analysis is used to verify the existence of unstable parametric resonances with first and second-order sets of equations. The results are compared and validated with those obtained by Floquet's Theory. Moreover, an explanation is given for the presence of unstable motion at low rotor speeds due to parametric instabilities of the second order.

  10. A micromachined device describing over a hundred orders of parametric resonance

    NASA Astrophysics Data System (ADS)

    Jia, Yu; Du, Sijun; Arroyo, Emmanuelle; Seshia, Ashwin A.

    2018-04-01

    Parametric resonance in mechanical oscillators can onset from the periodic modulation of at least one of the system parameters, and the behaviour of the principal (1st order) parametric resonance has long been well established. However, the theoretically predicted higher orders of parametric resonance, in excess of the first few orders, have mostly been experimentally elusive due to the fast diminishing instability intervals. A recent paper experimentally reported up to 28 orders in a micromachined membrane oscillator. This paper reports the design and characterisation of a micromachined membrane oscillator with a segmented proof mass topology, in an attempt to amplify the inherent nonlinearities within the membrane layer. The resultant oscillator device exhibited up to over a hundred orders of parametric resonance, thus experimentally validating these ultra-high orders as well as overlapping instability transitions between these higher orders. This research introduces design possibilities for the transducer and dynamic communities, by exploiting the behaviour of these previously elusive higher order resonant regimes.

  11. Using X-ray spectroscopy of relativistic laser plasma interaction to reveal parametric decay instabilities: a modeling tool for astrophysics.

    PubMed

    Oks, E; Dalimier, E; Faenov, A Ya; Angelo, P; Pikuz, S A; Tubman, E; Butler, N M H; Dance, R J; Pikuz, T A; Skobelev, I Yu; Alkhimova, M A; Booth, N; Green, J; Gregory, C; Andreev, A; Zhidkov, A; Kodama, R; McKenna, P; Woolsey, N

    2017-02-06

    By analyzing profiles of experimental x-ray spectral lines of Si XIV and Al XIII, we found that both Langmuir and ion acoustic waves developed in plasmas produced via irradiation of thin Si foils by relativistic laser pulses (intensities ~1021 W/cm2). We prove that these waves are due to the parametric decay instability (PDI). This is the first time that the PDI-induced ion acoustic turbulence was discovered by the x-ray spectroscopy in laser-produced plasmas. These conclusions are also supported by PIC simulations. Our results can be used for laboratory modeling of physical processes in astrophysical objects and a better understanding of intense laser-plasma interactions.

  12. Parametric Decay Instability and Dissipation of Low-frequency Alfvén Waves in Low-beta Turbulent Plasmas

    NASA Astrophysics Data System (ADS)

    Fu, Xiangrong; Li, Hui; Guo, Fan; Li, Xiaocan; Roytershteyn, Vadim

    2018-03-01

    Evolution of the parametric decay instability (PDI) of a circularly polarized Alfvén wave in a turbulent low-beta plasma background is investigated using 3D hybrid simulations. It is shown that the turbulence reduces the growth rate of PDI as compared to the linear theory predictions, but PDI can still exist. Interestingly, the damping rate of the ion acoustic mode (as the product of PDI) is also reduced as compared to the linear Vlasov predictions. Nonetheless, significant heating of ions in the direction parallel to the background magnetic field is observed due to resonant Landau damping of the ion acoustic waves. In low-beta turbulent plasmas, PDI can provide an important channel for energy dissipation of low-frequency Alfvén waves at a scale much larger than the ion kinetic scales, different from the traditional turbulence dissipation models.

  13. Instability of rectangular jets

    NASA Technical Reports Server (NTRS)

    Tam, Christopher K. W.; Thies, Andrew T.

    1993-01-01

    The instability of rectangular jets is investigated using a vortex-sheet model. It is shown that such jets support four linearly independent families of instability waves. Within each family there are infinitely many modes. A way to classify these modes according to the characteristics of their mode shapes or eigenfunctions is proposed. It is demonstrated that the boundary element method can be used to calculate the dispersion relations and eigenfunctions of these instability wave modes. The method is robust and efficient. A parametric study of the instability wave characteristics has been carried out. A sample of the numerical results is reported here. It is found that the first and third modes of each instability wave family are corner modes. The pressure fluctuations associated with these instability waves are localized near the corners of the jet. The second mode, however, is a center mode with maximum fluctuations concentrated in the central portion of the jet flow. The center mode has the largest spatial growth rate. It is anticipated that as the instability waves propagate downstream the center mode would emerge as the dominant instability of the jet.

  14. Density Fluctuations in the Solar Wind Driven by Alfvén Wave Parametric Decay

    NASA Astrophysics Data System (ADS)

    Bowen, Trevor A.; Badman, Samuel; Hellinger, Petr; Bale, Stuart D.

    2018-02-01

    Measurements and simulations of inertial compressive turbulence in the solar wind are characterized by anti-correlated magnetic fluctuations parallel to the mean field and density structures. This signature has been interpreted as observational evidence for non-propagating pressure balanced structures, kinetic ion-acoustic waves, as well as the MHD slow-mode. Given the high damping rates of parallel propagating compressive fluctuations, their ubiquity in satellite observations is surprising and suggestive of a local driving process. One possible candidate for the generation of compressive fluctuations in the solar wind is the Alfvén wave parametric instability. Here, we test the parametric decay process as a source of compressive waves in the solar wind by comparing the collisionless damping rates of compressive fluctuations with growth rates of the parametric decay instability daughter waves. Our results suggest that generation of compressive waves through parametric decay is overdamped at 1 au, but that the presence of slow-mode-like density fluctuations is correlated with the parametric decay of Alfvén waves.

  15. Phase noise suppression through parametric filtering

    NASA Astrophysics Data System (ADS)

    Cassella, Cristian; Strachan, Scott; Shaw, Steven W.; Piazza, Gianluca

    2017-02-01

    In this work, we introduce and experimentally demonstrate a parametric phase noise suppression technique, which we call "parametric phase noise filtering." This technique is based on the use of a solid-state parametric amplifier operating in its instability region and included in a non-autonomous feedback loop connected at the output of a noisy oscillator. We demonstrate that such a system behaves as a parametrically driven Duffing resonator and can operate at special points where it becomes largely immune to the phase fluctuations that affect the oscillator output signal. A prototype of a parametric phase noise filter (PFIL) was designed and fabricated to operate in the very-high-frequency range. The PFIL prototype allowed us to significantly reduce the phase noise at the output of a commercial signal generator operating around 220 MHz. Noise reduction of 16 dB (40×) and 13 dB (20×) were obtained, respectively, at 1 and 10 kHz offsets from the carrier frequency. The demonstration of this phase noise suppression technique opens up scenarios in the development of passive and low-cost phase noise cancellation circuits for any application demanding high quality frequency generation.

  16. Why preferring parametric forecasting to nonparametric methods?

    PubMed

    Jabot, Franck

    2015-05-07

    A recent series of papers by Charles T. Perretti and collaborators have shown that nonparametric forecasting methods can outperform parametric methods in noisy nonlinear systems. Such a situation can arise because of two main reasons: the instability of parametric inference procedures in chaotic systems which can lead to biased parameter estimates, and the discrepancy between the real system dynamics and the modeled one, a problem that Perretti and collaborators call "the true model myth". Should ecologists go on using the demanding parametric machinery when trying to forecast the dynamics of complex ecosystems? Or should they rely on the elegant nonparametric approach that appears so promising? It will be here argued that ecological forecasting based on parametric models presents two key comparative advantages over nonparametric approaches. First, the likelihood of parametric forecasting failure can be diagnosed thanks to simple Bayesian model checking procedures. Second, when parametric forecasting is diagnosed to be reliable, forecasting uncertainty can be estimated on virtual data generated with the fitted to data parametric model. In contrast, nonparametric techniques provide forecasts with unknown reliability. This argumentation is illustrated with the simple theta-logistic model that was previously used by Perretti and collaborators to make their point. It should convince ecologists to stick to standard parametric approaches, until methods have been developed to assess the reliability of nonparametric forecasting. Copyright © 2015 Elsevier Ltd. All rights reserved.

  17. Self-Induced Faraday Instability Laser

    NASA Astrophysics Data System (ADS)

    Perego, A. M.; Smirnov, S. V.; Staliunas, K.; Churkin, D. V.; Wabnitz, S.

    2018-05-01

    We predict the onset of self-induced parametric or Faraday instabilities in a laser, spontaneously caused by the presence of pump depletion, which leads to a periodic gain landscape for light propagating in the cavity. As a result of the instability, continuous wave oscillation becomes unstable even in the normal dispersion regime of the cavity, and a periodic train of pulses with ultrahigh repetition rate is generated. Application to the case of Raman fiber lasers is described, in good quantitative agreement between our conceptual analysis and numerical modeling.

  18. Self-Induced Faraday Instability Laser.

    PubMed

    Perego, A M; Smirnov, S V; Staliunas, K; Churkin, D V; Wabnitz, S

    2018-05-25

    We predict the onset of self-induced parametric or Faraday instabilities in a laser, spontaneously caused by the presence of pump depletion, which leads to a periodic gain landscape for light propagating in the cavity. As a result of the instability, continuous wave oscillation becomes unstable even in the normal dispersion regime of the cavity, and a periodic train of pulses with ultrahigh repetition rate is generated. Application to the case of Raman fiber lasers is described, in good quantitative agreement between our conceptual analysis and numerical modeling.

  19. Characterization of onset of parametric decay instability of lower hybrid waves

    NASA Astrophysics Data System (ADS)

    Baek, S. G.; Bonoli, P. T.; Parker, R. R.; Shiraiwa, S.; Wallace, G. M.; Porkolab, M.; Takase, Y.; Brunner, D.; Faust, I. C.; Hubbard, A. E.; LaBombard, B. L.; Lau, C.

    2014-02-01

    The goal of the lower hybrid current drive (LHCD) program on Alcator C-Mod is to develop and optimize ITER-relevant steady-state plasmas by controlling the current density profile. Using a 4×16 waveguide array, over 1 MW of LH power at 4.6 GHz has been successfully coupled to the plasmas. However, current drive efficiency precipitously drops as the line averaged density (n¯e) increases above 1020m-3. Previous numerical work shows that the observed loss of current drive efficiency in high density plasmas stems from the interactions of LH waves with edge/scrape-off layer (SOL) plasmas [Wallace et al., Physics of Plasmas 19, 062505 (2012)]. Recent observations of parametric decay instability (PDI) suggest that non-linear effects should be also taken into account to fully characterize the parasitic loss mechanisms [Baek et al., Plasma Phys. Control Fusion 55, 052001 (2013)]. In particular, magnetic configuration dependent ion cyclotron PDIs are observed using the probes near n¯e≈1.2×1020m-3. In upper single null plasmas, ion cyclotron PDI is excited near the low field side separatrix with no apparent indications of pump depletion. The observed ion cyclotron PDI becomes weaker in inner wall limited plasmas, which exhibit enhanced current drive effects. In lower single null plasmas, the dominant ion cyclotron PDI is excited near the high field side (HFS) separatrix. In this case, the onset of PDI is correlated with the decrease in pump power, indicating that pump wave power propagates to the HFS and is absorbed locally near the HFS separatrix. Comparing the observed spectra with the homogeneous growth rate calculation indicates that the observed ion cyclotron instability is excited near the plasma periphery. The incident pump power density is high enough to overcome the collisional homogeneous threshold. For C-Mod plasma parameters, the growth rate of ion sound quasi-modes is found to be typically smaller by an order of magnitude than that of ion cyclotron quasi

  20. Competing Turing and Faraday Instabilities in Longitudinally Modulated Passive Resonators.

    PubMed

    Copie, François; Conforti, Matteo; Kudlinski, Alexandre; Mussot, Arnaud; Trillo, Stefano

    2016-04-08

    We experimentally investigate the interplay of Turing (modulational) and Faraday (parametric) instabilities in a bistable passive nonlinear resonator. The Faraday branch is induced via parametric resonance owing to a periodic modulation of the resonator dispersion. We show that the bistable switching dynamics is dramatically affected by the competition between the two instability mechanisms, which dictates two completely novel scenarios. At low detunings from resonance, switching occurs between the stable stationary lower branch and the Faraday-unstable upper branch, whereas at high detunings we observe the crossover between the Turing and Faraday periodic structures. The results are well explained in terms of the universal Lugiato-Lefever model.

  1. Anisotropic Magnetohydrodynamic Turbulence Driven by Parametric Decay Instability: The Onset of Phase Mixing and Alfvén Wave Turbulence

    NASA Astrophysics Data System (ADS)

    Shoda, Munehito; Yokoyama, Takaaki

    2018-06-01

    We conduct a 3D magnetohydrodynamic (MHD) simulation of the parametric decay instability of Alfvén waves and resultant compressible MHD turbulence, which is likely to develop in the solar wind acceleration region. Because of the presence of the mean magnetic field, the nonlinear stage is characterized by filament-like structuring and anisotropic cascading. By calculating the timescales of phase mixing and the evolution of Alfvén wave turbulence, we have found that the early nonlinear stage is dominated by phase mixing, while the later phase is dominated by imbalanced Alfvén wave turbulence. Our results indicate that the regions in the solar atmosphere with large density fluctuation, such as the coronal bottom and wind acceleration region, are heated by phase-mixed Alfvén waves, while the other regions are heated by Alfvén wave turbulence.

  2. Heating and thermal squeezing in parametrically driven oscillators with added noise.

    PubMed

    Batista, Adriano A

    2012-11-01

    In this paper we report a theoretical model based on Green's functions, Floquet theory, and averaging techniques up to second order that describes the dynamics of parametrically driven oscillators with added thermal noise. Quantitative estimates for heating and quadrature thermal noise squeezing near and below the transition line of the first parametric instability zone of the oscillator are given. Furthermore, we give an intuitive explanation as to why heating and thermal squeezing occur. For small amplitudes of the parametric pump the Floquet multipliers are complex conjugate of each other with a constant magnitude. As the pump amplitude is increased past a threshold value in the stable zone near the first parametric instability, the two Floquet multipliers become real and have different magnitudes. This creates two different effective dissipation rates (one smaller and the other larger than the real dissipation rate) along the stable manifolds of the first-return Poincaré map. We also show that the statistical average of the input power due to thermal noise is constant and independent of the pump amplitude and frequency. The combination of these effects causes most of heating and thermal squeezing. Very good agreement between analytical and numerical estimates of the thermal fluctuations is achieved.

  3. Near-self-imaging cavity for three-mode optoacoustic parametric amplifiers using silicon microresonators.

    PubMed

    Liu, Jian; Torres, F A; Ma, Yubo; Zhao, C; Ju, L; Blair, D G; Chao, S; Roch-Jeune, I; Flaminio, R; Michel, C; Liu, K-Y

    2014-02-10

    Three-mode optoacoustic parametric amplifiers (OAPAs), in which a pair of photon modes are strongly coupled to an acoustic mode, provide a general platform for investigating self-cooling, parametric instability and very sensitive transducers. Their realization requires an optical cavity with tunable transverse modes and a high quality-factor mirror resonator. This paper presents the design of a table-top OAPA based on a near-self-imaging cavity design, using a silicon torsional microresonator. The design achieves a tuning coefficient for the optical mode spacing of 2.46  MHz/mm. This allows tuning of the mode spacing between amplification and self-cooling regimes of the OAPA device. Based on demonstrated resonator parameters (frequencies ∼400  kHz and quality-factors ∼7.5×10(5) we predict that the OAPA can achieve parametric instability with 1.6 μW of input power and mode cooling by a factor of 1.9×10(4) with 30 mW of input power.

  4. Characterization of onset of parametric decay instability of lower hybrid waves

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Baek, S. G.; Bonoli, P. T.; Parker, R. R.

    2014-02-12

    The goal of the lower hybrid current drive (LHCD) program on Alcator C-Mod is to develop and optimize ITER-relevant steady-state plasmas by controlling the current density profile. Using a 4×16 waveguide array, over 1 MW of LH power at 4.6 GHz has been successfully coupled to the plasmas. However, current drive efficiency precipitously drops as the line averaged density (nÐœ„{sub e}) increases above 10{sup 20}m{sup −3}. Previous numerical work shows that the observed loss of current drive efficiency in high density plasmas stems from the interactions of LH waves with edge/scrape-off layer (SOL) plasmas [Wallace et al., Physics of Plasmasmore » 19, 062505 (2012)]. Recent observations of parametric decay instability (PDI) suggest that non-linear effects should be also taken into account to fully characterize the parasitic loss mechanisms [Baek et al., Plasma Phys. Control Fusion 55, 052001 (2013)]. In particular, magnetic configuration dependent ion cyclotron PDIs are observed using the probes near nÐœ„{sub e}≈1.2×10{sup 20}m{sup −3}. In upper single null plasmas, ion cyclotron PDI is excited near the low field side separatrix with no apparent indications of pump depletion. The observed ion cyclotron PDI becomes weaker in inner wall limited plasmas, which exhibit enhanced current drive effects. In lower single null plasmas, the dominant ion cyclotron PDI is excited near the high field side (HFS) separatrix. In this case, the onset of PDI is correlated with the decrease in pump power, indicating that pump wave power propagates to the HFS and is absorbed locally near the HFS separatrix. Comparing the observed spectra with the homogeneous growth rate calculation indicates that the observed ion cyclotron instability is excited near the plasma periphery. The incident pump power density is high enough to overcome the collisional homogeneous threshold. For C-Mod plasma parameters, the growth rate of ion sound quasi-modes is found to be typically smaller by

  5. Computational parametric study of a Richtmyer-Meshkov instability for an inclined interface.

    PubMed

    McFarland, Jacob A; Greenough, Jeffrey A; Ranjan, Devesh

    2011-08-01

    A computational study of the Richtmyer-Meshkov instability for an inclined interface is presented. The study covers experiments to be performed in the Texas A&M University inclined shock tube facility. Incident shock wave Mach numbers from 1.2 to 2.5, inclination angles from 30° to 60°, and gas pair Atwood numbers of ∼0.67 and ∼0.95 are used in this parametric study containing 15 unique combinations of these parameters. Qualitative results are examined through a time series of density plots for multiple combinations of these parameters, and the qualitative effects of each of the parameters are discussed. Pressure, density, and vorticity fields are presented in animations available online to supplement the discussion of the qualitative results. These density plots show the evolution of two main regions in the flow field: a mixing region containing driver and test gas that is dominated by large vortical structures, and a more homogeneous region of unmixed fluid which can separate away from the mixing region in some cases. The interface mixing width is determined for various combinations of the parameters listed at the beginning of the Abstract. A scaling method for the mixing width is proposed using the interface geometry and wave velocities calculated using one-dimensional gas dynamic equations. This model uses the transmitted wave velocity for the characteristic velocity and an initial offset time based on the travel time of strong reflected waves. It is compared to an adapted Richtmyer impulsive model scaling and shown to scale the initial mixing width growth rate more effectively for fixed Atwood number.

  6. A novel approach to study effects of asymmetric stiffness on parametric instabilities of multi-rotor-system

    NASA Astrophysics Data System (ADS)

    Jain, Anuj Kumar; Rastogi, Vikas; Agrawal, Atul Kumar

    2018-01-01

    The main focus of this paper is to study effects of asymmetric stiffness on parametric instabilities of multi-rotor-system through extended Lagrangian formalism, where symmetries are broken in terms of the rotor stiffness. The complete insight of dynamic behaviour of multi-rotor-system with asymmetries is evaluated through extension of Lagrangian equation with a case study. In this work, a dynamic mathematical model of a multi-rotor-system through a novel approach of extension of Lagrangian mechanics is developed, where the system is having asymmetries due to varying stiffness. The amplitude and the natural frequency of the rotor are obtained analytically through the proposed methodology. The bond graph modeling technique is used for modeling the asymmetric rotor. Symbol-shakti® software is used for the simulation of the model. The effects of the stiffness of multi-rotor-system on amplitude and frequencies are studied using numerical simulation. Simulation results show a considerable agreement with the theoretical results obtained through extended Lagrangian formalism. It is further shown that amplitude of the rotor increases inversely the stiffness of the rotor up to a certain limit, which is also affirmed theoretically.

  7. Modeling, Modal Properties, and Mesh Stiffness Variation Instabilities of Planetary Gears

    NASA Technical Reports Server (NTRS)

    Parker, Robert G.; Lin, Jian; Krantz, Timothy L. (Technical Monitor)

    2001-01-01

    Planetary gear noise and vibration are primary concerns in their applications in helicopters, automobiles, aircraft engines, heavy machinery and marine vehicles. Dynamic analysis is essential to the noise and vibration reduction. This work analytically investigates some critical issues and advances the understanding of planetary gear dynamics. A lumped-parameter model is built for the dynamic analysis of general planetary gears. The unique properties of the natural frequency spectra and vibration modes are rigorously characterized. These special structures apply for general planetary gears with cyclic symmetry and, in practically important case, systems with diametrically opposed planets. The special vibration properties are useful for subsequent research. Taking advantage of the derived modal properties, the natural frequency and vibration mode sensitivities to design parameters are investigated. The key parameters include mesh stiffnesses, support/bearing stiffnesses, component masses, moments of inertia, and operating speed. The eigen-sensitivities are expressed in simple, closed-form formulae associated with modal strain and kinetic energies. As disorders (e.g., mesh stiffness variation. manufacturing and assembling errors) disturb the cyclic symmetry of planetary gears, their effects on the free vibration properties are quantitatively examined. Well-defined veering rules are derived to identify dramatic changes of natural frequencies and vibration modes under parameter variations. The knowledge of free vibration properties, eigen-sensitivities, and veering rules provide important information to effectively tune the natural frequencies and optimize structural design to minimize noise and vibration. Parametric instabilities excited by mesh stiffness variations are analytically studied for multi-mesh gear systems. The discrepancies of previous studies on parametric instability of two-stage gear chains are clarified using perturbation and numerical methods. The

  8. Growth rates of new parametric instabilities occurring in a plasma with streaming He(2+)

    NASA Technical Reports Server (NTRS)

    Jayanti, V.; Hollweg, Joseph V.

    1994-01-01

    We consider parametic instabilities of a circularly polarized pump Alfven wave, which propagates parallel to the ambient magnetic field; the daughter waves are also parallel-propagating. We follow Hollweg et al. (1993) and consider several new instabilites that owe their existence to the presence of streaming alpha particles. One of the new instabilites is similar to the famililar decay instability, but the daughter waves are a forward going alpha sound wave and a backward going Alfven wave. The growth rate of this instability is usually small if the alpha abundance is small. The other three new instabilities occur at high frequencies and small wavelengths. We find that the new instability which involves the proton cyclotron wave and alpha sound (i.e., the +f, - alpha) instability, which involves both the proton and alpha cycltron resonances, but if the pump wave must have low frequency and large amplitude. These instabilities may be a means of heating and accelerating alpha particles in the solar wind, but this claim is unproven until a fully kinetic study is carried out.

  9. Parametric Excitation of Electrostatic Dust-Modes by Ion-Cyclotron Waves in a Dusty Plasma

    NASA Astrophysics Data System (ADS)

    Islam, M. K.; Salahuddin, M.; Ferdous, T.; Salimullah, M.

    A large amplitude electrostatic ion-cyclotron wave propagating through a magnetized and collisional dusty plasma undergoes strong parametric instability off the low-frequency dust-modes. The presence of the dust-component has effect on the nonlinear coupling via the dust-modes. The ion-neutral collisions are seen to have significant effect on the damping and consequent overall growth of the parametric excitation process.

  10. The parametric resonance—from LEGO Mindstorms to cold atoms

    NASA Astrophysics Data System (ADS)

    Kawalec, Tomasz; Sierant, Aleksandra

    2017-07-01

    We show an experimental setup based on a popular LEGO Mindstorms set, allowing us to both observe and investigate the parametric resonance phenomenon. The presented method is simple but covers a variety of student activities like embedded software development, conducting measurements, data collection and analysis. It may be used during science shows, as part of student projects and to illustrate the parametric resonance in mechanics or even quantum physics, during lectures or classes. The parametrically driven LEGO pendulum gains energy in a spectacular way, increasing its amplitude from 10° to about 100° within a few tens of seconds. We provide also a short description of a wireless absolute orientation sensor that may be used in quantitative analysis of driven or free pendulum movement.

  11. The Parametric Decay Instability of Alfvén Waves in Turbulent Plasmas and the Applications in the Solar Wind

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Shi, Mijie; Xiao, Chijie; Wang, Xiaogang

    2017-06-10

    We perform three-dimensional ideal magnetohydrodynamic (MHD) simulations to study the parametric decay instability (PDI) of Alfvén waves in turbulent plasmas and explore its possible applications in the solar wind. We find that, over a broad range of parameters in background turbulence amplitudes, the PDI of an Alfvén wave with various amplitudes can still occur, though its growth rate in turbulent plasmas tends to be lower than both the theoretical linear theory prediction and that in the non-turbulent situations. Spatial–temporal FFT analyses of density fluctuations produced by the PDI match well with the dispersion relation of the slow MHD waves. Thismore » result may provide an explanation of the generation mechanism of slow waves in the solar wind observed at 1 au. It further highlights the need to explore the effects of density variations in modifying the turbulence properties as well as in heating the solar wind plasmas.« less

  12. Ducks in space: from nonlinear absolute instability to noise-sustained structures in a pattern-forming system

    NASA Astrophysics Data System (ADS)

    Avitabile, D.; Desroches, M.; Knobloch, E.; Krupa, M.

    2017-11-01

    A subcritical pattern-forming system with nonlinear advection in a bounded domain is recast as a slow-fast system in space and studied using a combination of geometric singular perturbation theory and numerical continuation. Two types of solutions describing the possible location of stationary fronts are identified, whose origin is traced to the onset of convective and absolute instability when the system is unbounded. The former are present only for non-zero upstream boundary conditions and provide a quantitative understanding of noise-sustained structures in systems of this type. The latter correspond to the onset of a global mode and are present even with zero upstream boundary conditions. The role of canard trajectories in the nonlinear transition between these states is clarified and the stability properties of the resulting spatial structures are determined. Front location in the convective regime is highly sensitive to the upstream boundary condition, and its dependence on this boundary condition is studied using a combination of numerical continuation and Monte Carlo simulations of the partial differential equation. Statistical properties of the system subjected to random or stochastic boundary conditions at the inlet are interpreted using the deterministic slow-fast spatial dynamical system.

  13. Ducks in space: from nonlinear absolute instability to noise-sustained structures in a pattern-forming system.

    PubMed

    Avitabile, D; Desroches, M; Knobloch, E; Krupa, M

    2017-11-01

    A subcritical pattern-forming system with nonlinear advection in a bounded domain is recast as a slow-fast system in space and studied using a combination of geometric singular perturbation theory and numerical continuation. Two types of solutions describing the possible location of stationary fronts are identified, whose origin is traced to the onset of convective and absolute instability when the system is unbounded. The former are present only for non-zero upstream boundary conditions and provide a quantitative understanding of noise-sustained structures in systems of this type. The latter correspond to the onset of a global mode and are present even with zero upstream boundary conditions. The role of canard trajectories in the nonlinear transition between these states is clarified and the stability properties of the resulting spatial structures are determined. Front location in the convective regime is highly sensitive to the upstream boundary condition, and its dependence on this boundary condition is studied using a combination of numerical continuation and Monte Carlo simulations of the partial differential equation. Statistical properties of the system subjected to random or stochastic boundary conditions at the inlet are interpreted using the deterministic slow-fast spatial dynamical system.

  14. Weakly Nonlinear Description of Parametric Instabilities in Vibrating Flows

    NASA Technical Reports Server (NTRS)

    Knobloch, E.; Vega, J. M.

    1999-01-01

    This project focuses on the effects of weak dissipation on vibrational flows in microgravity and in particular on (a) the generation of mean flows through viscous effects and their reaction on the flows themselves, and (b) the effects of finite group velocity and dispersion on the resulting dynamics in large domains. The basic mechanism responsible for the generation of such flows is nonlinear and was identified by Schlichting [21] and Longuet-Higgins. However, only recently has it become possible to describe such flows self-consistently in terms of amplitude equations for the parametrically excited waves coupled to a mean flow equation. The derivation of these equations is nontrivial because the limit of zero viscosity is singular. This project focuses on various aspects of this singular problem (i.e., the limit C equivalent to (nu)((g)(h(exp 3)))exp -1/2 << 1,where nu is the kinematic viscosity and h is the liquid depth) in the weakly nonlinear regime. A number of distinct cases is identified depending on the values of the Bond number, the size of the nonlinear terms, distance above threshold and the length scales of interest. The theory provides a quantitative explanation of a number of experiments on the vibration modes of liquid bridges and related experiments on parametric excitation of capillary waves in containers of both small and large aspect ratio. The following is a summary of results obtained thus far.

  15. Population-based absolute risk estimation with survey data

    PubMed Central

    Kovalchik, Stephanie A.; Pfeiffer, Ruth M.

    2013-01-01

    Absolute risk is the probability that a cause-specific event occurs in a given time interval in the presence of competing events. We present methods to estimate population-based absolute risk from a complex survey cohort that can accommodate multiple exposure-specific competing risks. The hazard function for each event type consists of an individualized relative risk multiplied by a baseline hazard function, which is modeled nonparametrically or parametrically with a piecewise exponential model. An influence method is used to derive a Taylor-linearized variance estimate for the absolute risk estimates. We introduce novel measures of the cause-specific influences that can guide modeling choices for the competing event components of the model. To illustrate our methodology, we build and validate cause-specific absolute risk models for cardiovascular and cancer deaths using data from the National Health and Nutrition Examination Survey. Our applications demonstrate the usefulness of survey-based risk prediction models for predicting health outcomes and quantifying the potential impact of disease prevention programs at the population level. PMID:23686614

  16. Secondary subharmonic instability of boundary layers with pressure gradient and suction

    NASA Technical Reports Server (NTRS)

    El-Hady, Nabil M.

    1988-01-01

    Three-dimensional linear secondary instability is investigated for boundary layers with pressure gradient and suction in the presence of a finite amplitude TS wave. The focus is on principal parametric resonance responsible for a strong growth of subharmonics in a low disturbance environment. Calculations are presented for the effect of pressure gradients and suction on controlling the onset and amplification of the secondary instability.

  17. Surfactants and the Rayleigh-Taylor instability of Couette type flows

    NASA Astrophysics Data System (ADS)

    Frenkel, A. L.; Halpern, D.; Schweiger, A. S.

    2011-11-01

    We study the Rayleigh-Taylor instability of slow Couette- type flows in the presence of insoluble surfactants. It is known that with zero gravity, the surfactant makes the flow unstable to longwave disturbances in certain regions of the parameter space; while in other parametric regions, it reinforces the flow stability (Frenkel and Halpern 2002). Here, we show that in the latter parametric sectors, and when the (gravity) Bond number Bo is below a certain threshold value, the Rayleigh-Taylor instability is completely stabilized for a finite interval of Ma, the (surfactant) Marangoni number: MaL instability is longwave: the finite interval of unstable wavenumbers borders on the zero value. For Ma >Ma2, and also for MaL instability is ``midwave'': the interval of unstable wavenumbers is bounded away from both the zero and infinity. By numerical and asymptotic means, we determine typical dispersion curves and also characteristic dependencies such as the critical Marangoni numbers MaL, Ma1, and Ma2 as functions of the Bond number. We note that (for an interval of the Bond number) there are two distinct criticalities with nonzero (and distinct) critical wavenumbers.

  18. Broadband sidebands generated by parametric instability in lower hybrid current drive experiments on EAST

    NASA Astrophysics Data System (ADS)

    Amicucci, L.; Ding, B. J.; Castaldo, C.; Cesario, R.; Giovannozzi, E.; Li, M. H.; Tuccillo, A. A.

    2015-12-01

    Modern research on nuclear fusion energy, based on the tokamak concept, has strong need of tools for actively driving non-inductive current especially at the periphery of plasma column, where tools available so far have poor efficiency. This is essential for solving one of the most critical problems for thermonuclear reactor, consisting in how to achieve the figure of fusion gain in the context of sufficient stability. The lower hybrid current drive (LHCD) effect has the potential capability of driving current at large radii of reactor plasma with high efficiency [1]. Experiments recently carried out on EAST showed that a strong activity of LH sideband waves (from the RF probe spectra), accompanied by weak core penetration of the coupled LH power, is present when operating at relatively high plasma densities. Previous theoretical results, confirmed by experiments on FTU, showed that the LH sideband phenomenon is produced by parametric instability (PI), which are mitigated by higher plasma edge temperatures. This condition is thus useful for enabling the LH power propagation when operating with profiles having high plasma densities even at the edge. In the present work, we show new PI modeling of EAST plasmas data, obtained in condition of higher plasma edge temperature due to chamber lithisation. The obtained trend of the PI frequencies and growth rates is consistent with data of RF probe spectra, available in different regimes of lithisated and not lithisated vessel. Moreover, these spectra are interpreted as PI effect occurring at the periphery of plasma column, however in the low field side where the LH power is coupled.

  19. Chaotic neoclassical separatrix dissipation in parametric drift-wave decay.

    PubMed

    Kabantsev, A A; Tsidulko, Yu A; Driscoll, C F

    2014-02-07

    Experiments and theory characterize a parametric decay instability between plasma drift waves when the nonlinear coupling is modified by an electrostatic barrier. Novel mode coupling terms representing enhanced dissipation and mode phase shifts are caused by chaotic separatrix crossings on the wave-ruffled separatrix. Experimental determination of these coupling terms is in broad agreement with new chaotic neoclassical transport analyses.

  20. Parametric amplification and bidirectional invisibility in PT -symmetric time-Floquet systems

    NASA Astrophysics Data System (ADS)

    Koutserimpas, Theodoros T.; Alù, Andrea; Fleury, Romain

    2018-01-01

    Parity-time (PT )-symmetric wave devices, which exploit balanced interactions between material gain and loss, exhibit extraordinary properties, including lasing and flux-conserving scattering processes. In a seemingly different research field, periodically driven systems, also known as time-Floquet systems, have been widely studied as a relevant platform for reconfigurable active wave control and manipulation. In this article, we explore the connection between PT -symmetry and parametric time-Floquet systems. Instead of relying on material gain, we use parametric amplification by considering a time-periodic modulation of the refractive index at a frequency equal to twice the incident signal frequency. We show that the scattering from a simple parametric slab, whose dynamics follows the Mathieu equation, can be described by a PT -symmetric scattering matrix, whose PT -breaking threshold corresponds to the Mathieu instability threshold. By combining different parametric slabs modulated out of phase, we create PT -symmetric time-Floquet systems that feature exceptional scattering properties, such as coherent perfect absorption (CPA)-laser operation and bidirectional invisibility. These bidirectional properties, rare for regular PT -symmetric systems, are related to a compensation of parametric amplification due to multiple scattering between two parametric systems modulated with a phase difference.

  1. Turing instability in reaction-diffusion systems with nonlinear diffusion

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zemskov, E. P., E-mail: zemskov@ccas.ru

    2013-10-15

    The Turing instability is studied in two-component reaction-diffusion systems with nonlinear diffusion terms, and the regions in parametric space where Turing patterns can form are determined. The boundaries between super- and subcritical bifurcations are found. Calculations are performed for one-dimensional brusselator and oregonator models.

  2. A general framework for parametric survival analysis.

    PubMed

    Crowther, Michael J; Lambert, Paul C

    2014-12-30

    Parametric survival models are being increasingly used as an alternative to the Cox model in biomedical research. Through direct modelling of the baseline hazard function, we can gain greater understanding of the risk profile of patients over time, obtaining absolute measures of risk. Commonly used parametric survival models, such as the Weibull, make restrictive assumptions of the baseline hazard function, such as monotonicity, which is often violated in clinical datasets. In this article, we extend the general framework of parametric survival models proposed by Crowther and Lambert (Journal of Statistical Software 53:12, 2013), to incorporate relative survival, and robust and cluster robust standard errors. We describe the general framework through three applications to clinical datasets, in particular, illustrating the use of restricted cubic splines, modelled on the log hazard scale, to provide a highly flexible survival modelling framework. Through the use of restricted cubic splines, we can derive the cumulative hazard function analytically beyond the boundary knots, resulting in a combined analytic/numerical approach, which substantially improves the estimation process compared with only using numerical integration. User-friendly Stata software is provided, which significantly extends parametric survival models available in standard software. Copyright © 2014 John Wiley & Sons, Ltd.

  3. Parametric Interactions between Alfven waves in LaPD

    NASA Astrophysics Data System (ADS)

    Brugman, B.; Carter, T. A.; Cowley, S. C.; Pribyl, P.; Lybarger, W.

    2004-11-01

    The physics governing interactions between large amplitude Alfvén waves, which are relevant to plasmas in space as well as the laboratory, is at present not well understood. A major class of such interactions which are believed to occur in compressible plasmas is referred to as parametric decay. We will present the results of a series of experiments involving the interactions of large amplitude LHP Alfvén wave conducted on the Large Plasma Device (LaPD); where β ≪ 1, n ˜ 10^12 frac1cm^3 and B0 in (200,2500) G. These experiments show strong signs of one form of parametric decay, known as the Modulational Instability, which represents the interaction of two Alfvén waves and a low frequency density perturbation. This interaction is believed to occur in plasmas with β < 1 as well as β > 1, over a broad range of wavevector space, and for RHP as well as LHP Alfvén waves - distinguishing it from the Beat and Decay instabilities. Details of this interaction, in particular the structure of the incident waves as well as that of their byproducts, will be shown in physical as well as wavevector space. The generation of large amplitude waves using both an Alfvén wave MASER and high current loop antennas will also be illustrated. Lastly theoretical descriptions of parametric decay will be presented and compared to observations. Future work will also include comparisons of experimental results with applicable simulations, such as GS2. Work supported by DOE grant number DE-FG03-02ER54688

  4. Modeling of second order space charge driven coherent sum and difference instabilities

    NASA Astrophysics Data System (ADS)

    Yuan, Yao-Shuo; Boine-Frankenheim, Oliver; Hofmann, Ingo

    2017-10-01

    Second order coherent oscillation modes in intense particle beams play an important role for beam stability in linear or circular accelerators. In addition to the well-known second order even envelope modes and their instability, coupled even envelope modes and odd (skew) modes have recently been shown in [Phys. Plasmas 23, 090705 (2016), 10.1063/1.4963851] to lead to parametric instabilities in periodic focusing lattices with sufficiently different tunes. While this work was partly using the usual envelope equations, partly also particle-in-cell (PIC) simulation, we revisit these modes here and show that the complete set of second order even and odd mode phenomena can be obtained in a unifying approach by using a single set of linearized rms moment equations based on "Chernin's equations." This has the advantage that accurate information on growth rates can be obtained and gathered in a "tune diagram." In periodic focusing we retrieve the parametric sum instabilities of coupled even and of odd modes. The stop bands obtained from these equations are compared with results from PIC simulations for waterbag beams and found to show very good agreement. The "tilting instability" obtained in constant focusing confirms the equivalence of this method with the linearized Vlasov-Poisson system evaluated in second order.

  5. Ince-Strutt stability charts for ship parametric roll resonance in irregular waves

    NASA Astrophysics Data System (ADS)

    Zhang, Xiao; Yang, He-zhen; Xiao, Fei; Xu, Pei-ji

    2017-08-01

    Ince-Strutt stability chart of ship parametric roll resonance in irregular waves is conducted and utilized for the exploration of the parametric roll resonance in irregular waves. Ship parametric roll resonance will lead to large amplitude roll motion and even wreck. Firstly, the equation describing the parametric roll resonance in irregular waves is derived according to Grim's effective theory and the corresponding Ince-Strutt stability charts are obtained. Secondly, the differences of stability charts for the parametric roll resonance in irregular and regular waves are compared. Thirdly, wave phases and peak periods are taken into consideration to obtain a more realistic sea condition. The influence of random wave phases should be taken into consideration when the analyzed points are located near the instability boundary. Stability charts for different wave peak periods are various. Stability charts are helpful for the parameter determination in design stage to better adapt to sailing condition. Last, ship variables are analyzed according to stability charts by a statistical approach. The increase of the metacentric height will help improve ship stability.

  6. Elliptical Instability of Rotating Von Karman Street

    NASA Astrophysics Data System (ADS)

    Stegner, A.; Pichon, T.; Beunier, M.

    Clouds often reveal a meso-scale vortex shedding in the wake of mountainous islands. Unlike the classical bi-dimensional Von-Karman street, these observed vortex street are affected by the earth rot ation and vertical stratification. Theses effects could induce a selective destabilization of anticyclonic vortices. It is well known that inertial instability (also called centrifugal instability) induce a three- dimensional destabilization of anticyclonic structures when the absolute vorticity is larger than the local Coriolis parameter. However, we have shown, by the mean of laboratory experiments, that it is a different type of instability which is mainly responsible for asymmetric rotating Von-Karman street. A serie of experiments were performed to study the wake of a cylinder in a rotating fluid, at medium Reynolds number and order one Rossby number. We have shown that the vertical structure of unstable anticyclonic vortices is characteristic of an elliptical instability. Besides, unlike the inertial instability, the vertical unstable wavelength depends on the Rossby number.

  7. Convective Electrokinetic Instability With Conductivity Gradients

    NASA Astrophysics Data System (ADS)

    Chen, Chuan-Hua; Lin, Hao; Lele, Sanjiva; Santiago, Juan

    2003-11-01

    Electrokinetic flow instability has been experimentally identified and quantified in a glass T-junction microchannel system with a cross section of 11 um x 155 um. In this system, buffers of different conductivities were electrokinetically driven into a common mixing channel by a DC electric field. A convective instability was observed with a threshold electric field of 0.45 kV/cm for a 10:1 conductivity ratio. A physical model has been developed which consists of a modified Ohmic model formulation for electrolyte solutions and the Navier-Stokes equations with an electric body force term. The model and experiments show that bulk charge accumulation in regions of conductivity gradients is the key mechanism of such instabilities. A linear stability analysis was performed in a convective framework, and Briggs-Bers criteria were applied to determine the nature of instability. The analysis shows the instability is governed by two key parameters: the ratio of molecular diffusion to electroviscous time scale which governs the onset of instability, and the ratio of electroviscous to electroosmotic velocity which governs whether the instability is convective or absolute. The model predicted critical electric field, growth rate, wavelength, and phase speed which were comparable to experimental data.

  8. Strings, vortex rings, and modes of instability

    DOE PAGES

    Gubser, Steven S.; Nayar, Revant; Parikh, Sarthak

    2015-01-12

    We treat string propagation and interaction in the presence of a background Neveu–Schwarz three-form field strength, suitable for describing vortex rings in a superfluid or low-viscosity normal fluid. A circular vortex ring exhibits instabilities which have been recognized for many years, but whose precise boundaries we determine for the first time analytically in the small core limit. Two circular vortices colliding head-on exhibit stronger instabilities which cause splitting into many small vortices at late times. We provide an approximate analytic treatment of these instabilities and show that the most unstable wavelength is parametrically larger than a dynamically generated length scalemore » which in many hydrodynamic systems is close to the cutoff. We also summarize how the string construction we discuss can be derived from the Gross–Pitaevskii Lagrangian, and also how it compares to the action for giant gravitons.« less

  9. The Growth of Instabilities in Annular Liquid Sheets

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Duke, Daniel J.; Honnery, Damon R; Soria, Julio

    An annular liquid sheet surrounded by parallel co-flowing gas is an effective atomiser. However, the initial instabilities which determine the primary break-up of the liquid sheet are not well understood. Lack of agreement on the influence of the boundary conditions and the non-dimension scaling of the initial instability persists between theoretical stability analyses and experiments. To address this matter, we have undertaken an experimental parametric study of an aerodynamically-driven, non-swirling annular water sheet. The effects of sheet thickness, inner and outer gas-liquid momentum ratio were investigated over an order of magnitude variation in Reynolds and Weber number. From high-speed imagemore » correlation measurements in the near-nozzle region, we propose new empirical correlations for the frequency of the instability as a function of the total gas-liquid momentum ratio, with good non-dimensional collapse. From analysis of the instability velocity probability densities, we find two persistent and distinct superimposed instabilities with different growth rates. The first is a short-lived, rapidly saturating sawtooth-like instability. The second is a slower-growing stochastic instability which persists through the break-up of the sheet. The presence of multiple instabilities whose growth rates do not strongly correlate with the shear velocities may explain some of the discrepancies between experiments and stability analyses.« less

  10. Electron acceleration by parametrically excited Langmuir waves. [in ionospheric modification

    NASA Technical Reports Server (NTRS)

    Fejer, J. A.; Graham, K. N.

    1974-01-01

    Simple physical arguments are used to estimate the downward-going energetic electron flux due to parametrically excited Langmuir waves in ionospheric modification experiments. The acceleration mechanism is a single velocity reversal as seen in the frame of the Langmuir wave. The flux is sufficient to produce the observed ionospheric airglow if focusing-type instabilities are invoked to produce moderate local enhancements of the pump field.

  11. Effect of wave localization on plasma instabilities

    NASA Astrophysics Data System (ADS)

    Levedahl, William Kirk

    1987-10-01

    The Anderson model of wave localization in random media is involved to study the effect of solar wind density turbulence on plasma processes associated with the solar type III radio burst. ISEE-3 satellite data indicate that a possible model for the type III process is the parametric decay of Langmuir waves excited by solar flare electron streams into daughter electromagnetic and ion acoustic waves. The threshold for this instability, however, is much higher than observed Langmuir wave levels because of rapid wave convection of the transverse electromagnetic daughter wave in the case where the solar wind is assumed homogeneous. Langmuir and transverse waves near critical density satisfy the Ioffe-Reigel criteria for wave localization in the solar wind with observed density fluctuations -1 percent. Numerical simulations of wave propagation in random media confirm the localization length predictions of Escande and Souillard for stationary density fluctations. For mobile density fluctuations localized wave packets spread at the propagation velocity of the density fluctuations rather than the group velocity of the waves. Computer simulations using a linearized hybrid code show that an electron beam will excite localized Langmuir waves in a plasma with density turbulence. An action principle approach is used to develop a theory of non-linear wave processes when waves are localized. A theory of resonant particles diffusion by localized waves is developed to explain the saturation of the beam-plasma instability. It is argued that localization of electromagnetic waves will allow the instability threshold to be exceeded for the parametric decay discussed above.

  12. Bubbling in unbounded coflowing liquids.

    PubMed

    Gañán-Calvo, Alfonso M; Herrada, Miguel A; Garstecki, Piotr

    2006-03-31

    An investigation of the stability of low density and viscosity fluid jets and spouts in unbounded coflowing liquids is presented. A full parametrical analysis from low to high Weber and Reynolds numbers shows that the presence of any fluid of finite density and viscosity inside the hollow jet elicits a transition from an absolute to a convective instability at a finite value of the Weber number, for any value of the Reynolds number. Below that critical value of the Weber number, the absolute character of the instability leads to local breakup, and consequently to local bubbling. Experimental data support our model.

  13. Exponential bound in the quest for absolute zero

    NASA Astrophysics Data System (ADS)

    Stefanatos, Dionisis

    2017-10-01

    In most studies for the quantification of the third law of thermodynamics, the minimum temperature which can be achieved with a long but finite-time process scales as a negative power of the process duration. In this article, we use our recent complete solution for the optimal control problem of the quantum parametric oscillator to show that the minimum temperature which can be obtained in this system scales exponentially with the available time. The present work is expected to motivate further research in the active quest for absolute zero.

  14. Exponential bound in the quest for absolute zero.

    PubMed

    Stefanatos, Dionisis

    2017-10-01

    In most studies for the quantification of the third law of thermodynamics, the minimum temperature which can be achieved with a long but finite-time process scales as a negative power of the process duration. In this article, we use our recent complete solution for the optimal control problem of the quantum parametric oscillator to show that the minimum temperature which can be obtained in this system scales exponentially with the available time. The present work is expected to motivate further research in the active quest for absolute zero.

  15. Complementary optical rogue waves in parametric three-wave mixing.

    PubMed

    Chen, Shihua; Cai, Xian-Ming; Grelu, Philippe; Soto-Crespo, J M; Wabnitz, Stefan; Baronio, Fabio

    2016-03-21

    We investigate the resonant interaction of two optical pulses of the same group velocity with a pump pulse of different velocity in a weakly dispersive quadratic medium and report on the complementary rogue wave dynamics which are unique to such a parametric three-wave mixing. Analytic rogue wave solutions up to the second order are explicitly presented and their robustness is confirmed by numerical simulations, in spite of the onset of modulation instability activated by quantum noise.

  16. Improving carrier-envelope phase stability in optical parametric chirped-pulse amplifiers by control of timing jitter.

    PubMed

    Hädrich, S; Rothhardt, J; Krebs, M; Demmler, S; Limpert, J; Tünnermann, A

    2012-12-01

    It is shown that timing jitter in optical parametric chirped-pulse amplification induces spectral drifts that transfer to carrier-envelope phase (CEP) instabilities via dispersion. Reduction of this effect requires temporal synchronization, which is realized with feedback obtained from the angularly dispersed idler. Furthermore, a novel method to measure the CEP drifts by utilizing parasitic second harmonic generation within parametric amplifiers is presented. Stabilization of the timing allows the obtainment of a CEP stability of 86 mrad over 40 min at 150 kHz repetition rate.

  17. Polarization switch of four-wave mixing in a lawtunable fiber optical parametric oscillator.

    PubMed

    Yang, Kangwen; Ye, Pengbo; Zheng, Shikai; Jiang, Jieshi; Huang, Kun; Hao, Qiang; Zeng, Heping

    2018-02-05

    We reported the simultaneous generation and selective manipulation of scalar and cross-phase modulation instabilities in a fiber optical parametric oscillator. Numerical and experimental results show independent control of parametric gain by changing the input pump polarization state. The resonant cavity enables power enhancement of 45 dB for the spontaneous sidebands, generating laser pulses tunable from 783 to 791 nm and 896 to 1005 nm due to the combination of four-wave mixing, cascaded Raman scattering and other nonlinear effects. This gain controlled, wavelength tunable, fiber-based laser source may find applications in the fields of nonlinear biomedical imaging and stimulated Raman spectroscopy.

  18. Non-linear hydrodynamic instability and turbulence in eccentric astrophysical discs with vertical structure

    NASA Astrophysics Data System (ADS)

    Wienkers, A. F.; Ogilvie, G. I.

    2018-07-01

    Non-linear evolution of the parametric instability of inertial waves inherent to eccentric discs is studied by way of a new local numerical model. Mode coupling of tidal deformation with the disc eccentricity is known to produce exponentially growing eccentricities at certain mean-motion resonances. However, the details of an efficient saturation mechanism balancing this growth still are not fully understood. This paper develops a local numerical model for an eccentric quasi-axisymmetric shearing box which generalizes the often-used Cartesian shearing box model. The numerical method is an overall second-order well-balanced finite volume method which maintains the stratified and oscillatory steady-state solution by construction. This implementation is employed to study the non-linear outcome of the parametric instability in eccentric discs with vertical structure. Stratification is found to constrain the perturbation energy near the mid-plane and localize the effective region of inertial wave breaking that sources turbulence. A saturated marginally sonic turbulent state results from the non-linear breaking of inertial waves and is subsequently unstable to large-scale axisymmetric zonal flow structures. This resulting limit-cycle behaviour reduces access to the eccentric energy source and prevents substantial transport of angular momentum radially through the disc. Still, the saturation of this parametric instability of inertial waves is shown to damp eccentricity on a time-scale of a thousand orbital periods. It may thus be a promising mechanism for intermittently regaining balance with the exponential growth of eccentricity from the eccentric Lindblad resonances and may also help explain the occurrence of 'bursty' dynamics such as the superhump phenomenon.

  19. Parametric instability of spinning elastic rings excited by fluctuating space-fixed stiffnesses

    NASA Astrophysics Data System (ADS)

    Liu, Chunguang; Cooley, Christopher G.; Parker, Robert G.

    2017-07-01

    This study investigates the vibration of rotating elastic rings that are dynamically excited by an arbitrary number of space-fixed discrete stiffnesses with periodically fluctuating stiffnesses. The rotating, elastic ring is modeled using thin-ring theory with radial and tangential deformations. Primary and combination instability regions are determined in closed-form using the method of multiple scales. The ratio of peak-to-peak fluctuation to average discrete stiffness is used as the perturbation parameter, so the resulting perturbation analysis is not limited to small mean values of discrete stiffnesses. The natural frequencies and vibration modes are determined by discretizing the governing equations using Galerkin's method. Results are demonstrated for compliant gear applications. The perturbation results are validated by direct numerical integration of the equations of motion and Floquet theory. The bandwidths of the instability regions correlate with the fractional strain energy stored in the discrete stiffnesses. For rings with multiple discrete stiffnesses, the phase differences between them can eliminate large amplitude response under certain conditions.

  20. Nondegenerate parametric oscillations in a tunable superconducting resonator

    NASA Astrophysics Data System (ADS)

    Bengtsson, Andreas; Krantz, Philip; Simoen, Michaël; Svensson, Ida-Maria; Schneider, Ben; Shumeiko, Vitaly; Delsing, Per; Bylander, Jonas

    2018-04-01

    We investigate nondegenerate parametric oscillations in a superconducting microwave multimode resonator that is terminated by a superconducting quantum interference device (SQUID). The parametric effect is achieved by modulating magnetic flux through the SQUID at a frequency close to the sum of two resonator-mode frequencies. For modulation amplitudes exceeding an instability threshold, self-sustained oscillations are observed in both modes. The amplitudes of these oscillations show good quantitative agreement with a theoretical model. The oscillation phases are found to be correlated and exhibit strong fluctuations which broaden the oscillation spectral linewidths. These linewidths are significantly reduced by applying a weak on-resonant tone, which also suppresses the phase fluctuations. When the weak tone is detuned, we observe synchronization of the oscillation frequency with the frequency of the input. For the detuned input, we also observe an emergence of three idlers in the output. This observation is in agreement with theory indicating four-mode amplification and squeezing of a coherent input.

  1. Three-Dimensional Aerodynamic Instabilities In Multi-Stage Axial Compressors

    NASA Technical Reports Server (NTRS)

    Tan, Choon S.; Gong, Yifang; Suder, Kenneth L. (Technical Monitor)

    2001-01-01

    This thesis presents the conceptualization and development of a computational model for describing three-dimensional non-linear disturbances associated with instability and inlet distortion in multistage compressors. Specifically, the model is aimed at simulating the non-linear aspects of short wavelength stall inception, part span stall cells, and compressor response to three-dimensional inlet distortions. The computed results demonstrated the first-of-a-kind capability for simulating short wavelength stall inception in multistage compressors. The adequacy of the model is demonstrated by its application to reproduce the following phenomena: (1) response of a compressor to a square-wave total pressure inlet distortion; (2) behavior of long wavelength small amplitude disturbances in compressors; (3) short wavelength stall inception in a multistage compressor and the occurrence of rotating stall inception on the negatively sloped portion of the compressor characteristic; (4) progressive stalling behavior in the first stage in a mismatched multistage compressor; (5) change of stall inception type (from modal to spike and vice versa) due to IGV stagger angle variation, and "unique rotor tip incidence" at these points where the compressor stalls through short wavelength disturbances. The model has been applied to determine the parametric dependence of instability inception behavior in terms of amplitude and spatial distribution of initial disturbance, and intra-blade-row gaps. It is found that reducing the inter-blade row gaps suppresses the growth of short wavelength disturbances. It is also concluded from these parametric investigations that each local component group (rotor and its two adjacent stators) has its own instability point (i.e. conditions at which disturbances are sustained) for short wavelength disturbances, with the instability point for the compressor set by the most unstable component group. For completeness, the methodology has been extended to

  2. Majority of Solar Wind Intervals Support Ion-Driven Instabilities

    NASA Astrophysics Data System (ADS)

    Klein, K. G.; Alterman, B. L.; Stevens, M. L.; Vech, D.; Kasper, J. C.

    2018-05-01

    We perform a statistical assessment of solar wind stability at 1 AU against ion sources of free energy using Nyquist's instability criterion. In contrast to typically employed threshold models which consider a single free-energy source, this method includes the effects of proton and He2 + temperature anisotropy with respect to the background magnetic field as well as relative drifts between the proton core, proton beam, and He2 + components on stability. Of 309 randomly selected spectra from the Wind spacecraft, 53.7% are unstable when the ion components are modeled as drifting bi-Maxwellians; only 4.5% of the spectra are unstable to long-wavelength instabilities. A majority of the instabilities occur for spectra where a proton beam is resolved. Nearly all observed instabilities have growth rates γ slower than instrumental and ion-kinetic-scale timescales. Unstable spectra are associated with relatively large He2 + drift speeds and/or a departure of the core proton temperature from isotropy; other parametric dependencies of unstable spectra are also identified.

  3. Majority of Solar Wind Intervals Support Ion-Driven Instabilities.

    PubMed

    Klein, K G; Alterman, B L; Stevens, M L; Vech, D; Kasper, J C

    2018-05-18

    We perform a statistical assessment of solar wind stability at 1 AU against ion sources of free energy using Nyquist's instability criterion. In contrast to typically employed threshold models which consider a single free-energy source, this method includes the effects of proton and He^{2+} temperature anisotropy with respect to the background magnetic field as well as relative drifts between the proton core, proton beam, and He^{2+} components on stability. Of 309 randomly selected spectra from the Wind spacecraft, 53.7% are unstable when the ion components are modeled as drifting bi-Maxwellians; only 4.5% of the spectra are unstable to long-wavelength instabilities. A majority of the instabilities occur for spectra where a proton beam is resolved. Nearly all observed instabilities have growth rates γ slower than instrumental and ion-kinetic-scale timescales. Unstable spectra are associated with relatively large He^{2+} drift speeds and/or a departure of the core proton temperature from isotropy; other parametric dependencies of unstable spectra are also identified.

  4. Inverse four-wave-mixing and self-parametric amplification effect in optical fibre

    PubMed Central

    Turitsyn, Sergei K.; Bednyakova, Anastasia E.; Fedoruk, Mikhail P.; Papernyi, Serguei B.; Clements, Wallace R.L.

    2015-01-01

    An important group of nonlinear processes in optical fibre involves the mixing of four waves due to the intensity dependence of the refractive index. It is customary to distinguish between nonlinear effects that require external/pumping waves (cross-phase modulation and parametric processes such as four-wave mixing) and self-action of the propagating optical field (self-phase modulation and modulation instability). Here, we present a new nonlinear self-action effect, self-parametric amplification (SPA), which manifests itself as optical spectrum narrowing in normal dispersion fibre, leading to very stable propagation with a distinctive spectral distribution. The narrowing results from an inverse four-wave mixing, resembling an effective parametric amplification of the central part of the spectrum by energy transfer from the spectral tails. SPA and the observed stable nonlinear spectral propagation with random temporal waveform can find applications in optical communications and high power fibre lasers with nonlinear intra-cavity dynamics. PMID:26345290

  5. DSMC Studies of the Richtmyer-Meshkov Instability

    NASA Astrophysics Data System (ADS)

    Gallis, M. A.; Koehler, T. P.; Torczynski, J. R.

    2014-11-01

    A new exascale-capable Direct Simulation Monte Carlo (DSMC) code, SPARTA, developed to be highly efficient on massively parallel computers, has extended the applicability of DSMC to challenging, transient three-dimensional problems in the continuum regime. Because DSMC inherently accounts for compressibility, viscosity, and diffusivity, it has the potential to improve the understanding of the mechanisms responsible for hydrodynamic instabilities. Here, the Richtmyer-Meshkov instability at the interface between two gases was studied parametrically using SPARTA. Simulations performed on Sequoia, an IBM Blue Gene/Q supercomputer at Lawrence Livermore National Laboratory, are used to investigate various Atwood numbers (0.33-0.94) and Mach numbers (1.2-12.0) for two-dimensional and three-dimensional perturbations. Comparisons with theoretical predictions demonstrate that DSMC accurately predicts the early-time growth of the instability. Sandia National Laboratories is a multi-program laboratory managed and operated by Sandia Corporation, a wholly owned subsidiary of Lockheed Martin Corporation, for the U.S. Department of Energy's National Nuclear Security Administration under contract DE-AC04-94AL85000.

  6. Secondary Instability of Second Modes in Hypersonic Boundary Layers

    NASA Technical Reports Server (NTRS)

    Li, Fei; Choudhari, Meelan M.; Chang, Chau-Lyan; White, Jeffery A.

    2012-01-01

    Second mode disturbances dominate the primary instability stage of transition in a number of hypersonic flow configurations. The highest amplification rates of second mode disturbances are usually associated with 2D (or axisymmetric) perturbations and, therefore, a likely scenario for the onset of the three-dimensionality required for laminar-turbulent transition corresponds to the parametric amplification of 3D secondary instabilities in the presence of 2D, finite amplitude second mode disturbances. The secondary instability of second mode disturbances is studied for selected canonical flow configurations. The basic state for the secondary instability analysis is obtained by tracking the linear and nonlinear evolution of 2D, second mode disturbances using nonlinear parabolized stability equations. Unlike in previous studies, the selection of primary disturbances used for the secondary instability analysis was based on their potential relevance to transition in a low disturbance environment and the effects of nonlinearity on the evolution of primary disturbances was accounted for. Strongly nonlinear effects related to the self-interaction of second mode disturbances lead to an upstream shift in the upper branch neutral location. Secondary instability computations confirm the previously known dominance of subharmonic modes at relatively small primary amplitudes. However, for the Purdue Mach 6 compression cone configuration, it was shown that a strong fundamental secondary instability can exist for a range of initial amplitudes of the most amplified second mode disturbance, indicating that the exclusive focus on subharmonic modes in the previous applications of secondary instability theory to second mode primary instability may not have been fully justified.

  7. Parametric Excitation of Marangoni Instability in a Heated Thin Layer Covered by Insoluble Surfactant

    NASA Astrophysics Data System (ADS)

    Mikishev, Alexander B.; Nepomnyashchy, Alexander A.

    2018-05-01

    The paper presents the analysis of the impact of vertical periodic vibrations on the long-wavelength Marangoni instability in a liquid layer with poorly conducting boundaries in the presence of insoluble surfactant on the deformable gas-liquid interface. The layer is subject to a uniform transverse temperature gradient. Linear stability analysis is performed in order to find critical values of Marangoni numbers for both monotonic and oscillatory instability modes. Longwave asymptotic expansions are used. At the leading order, the critical values are independent on vibration parameters; at the next order of approximation we obtained the rise of stability thresholds due to vibration.

  8. Absolute calibration of a charge-coupled device camera with twin beams

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Meda, A.; Ruo-Berchera, I., E-mail: i.ruoberchera@inrim.it; Degiovanni, I. P.

    2014-09-08

    We report on the absolute calibration of a Charge-Coupled Device (CCD) camera by exploiting quantum correlation. This method exploits a certain number of spatial pairwise quantum correlated modes produced by spontaneous parametric-down-conversion. We develop a measurement model accounting for all the uncertainty contributions, and we reach the relative uncertainty of 0.3% in low photon flux regime. This represents a significant step forward for the characterization of (scientific) CCDs used in mesoscopic light regime.

  9. Compressible instability of rapidly expanding spherical material interfaces

    NASA Astrophysics Data System (ADS)

    Mankbadi, Mina Reda

    The focus herein is on the instability of a material interface formed during an abrupt release of concentrated energy as in detonative combustion, explosive dispersals, and inertial-confinement fusion. These applications are modeled as a spherical shock-tube in which high-pressure gas initially contained in a small spherical shell is suddenly released. A forward-moving shock and an inward-moving secondary shock are formed, and between them a material interface develops that separates high-density fluid from the low-density one. The wrinkling of this interface controls mixing and energy release. The interface's stability is studied with and without the inclusion of metalized particulates. A numerical scheme is developed to discretize the full nonlinear equations of the base flow, and the 3D linearized perturbed flow equations. Linearization is followed by spherical harmonic decomposition of the disturbances, thereby reducing the 3D computational domain to one-dimensional radial domain. The 3D physical nature of the disturbances is maintained throughout the procedure. An extended Roe-Pike scheme coupled with a WENO scheme is developed to capture the discontinuities and accurately predict the disturbances. In Chapter 2, the contact interface's stability is analyzed in the inviscid single-phase. The disturbances grow exponentially and the growth rate is insensitive to the radial initial-disturbance profile. For wave numbers less than 100, the results are in accordance with previous theories but clarify that compressibility reduces the growth rate. Unlike the classical RTI, the growth rate reaches saturation at high wavenumbers. The parametric studies show that for specific ratios of initial pressure and temperature, the instability can be eliminated altogether. Chapter 3 discusses the full effects of viscosity and thermal diffusivity. Although Prandtl number effects are minimal, viscous effects dampen the high-wave numbers. For a given Reynolds number there is a peak

  10. Characterization of long-scale-length plasmas produced from plastic foam targets for laser plasma instability (LPI) research

    NASA Astrophysics Data System (ADS)

    Oh, Jaechul; Weaver, J. L.; Serlin, V.; Obenschain, S. P.

    2017-10-01

    We report on an experimental effort to produce plasmas with long scale lengths for the study of parametric instabilities, such as two plasmon decay (TPD) and stimulated Raman scattering (SRS), under conditions relevant to fusion plasma. In the current experiment, plasmas are formed from low density (10-100 mg/cc) CH foam targets irradiated by Nike krypton fluoride laser pulses (λ = 248 nm, 1 nsec FWHM) with energies up to 1 kJ. This experiment is conducted with two primary diagnostics: the grid image refractometer (Nike-GIR) to measure electron density and temperature profiles of the coronas, and time-resolved spectrometers with absolute intensity calibration to examine scattered light features of TPD or SRS. Nike-GIR was recently upgraded with a 5th harmonic probe laser (λ = 213 nm) to access plasma regions near quarter critical density of 248 nm light (4.5 ×1021 cm-3). The results will be discussed with data obtained from 120 μm scale-length plasmas created on solid CH targets in previous LPI experiments at Nike. Work supported by DoE/NNSA.

  11. Frequency-dependent Alfvén-wave Propagation in the Solar Wind: Onset and Suppression of Parametric Decay Instability

    NASA Astrophysics Data System (ADS)

    Shoda, Munehito; Yokoyama, Takaaki; Suzuki, Takeru K.

    2018-06-01

    Using numerical simulations we investigate the onset and suppression of parametric decay instability (PDI) in the solar wind, focusing on the suppression effect by the wind acceleration and expansion. Wave propagation and dissipation from the coronal base to 1 au is solved numerically in a self-consistent manner; we take into account the feedback of wave energy and pressure in the background. Monochromatic waves with various injection frequencies, f 0, are injected to discuss the suppression of PDI, while broadband waves are applied to compare the numerical results with observation. We find that high-frequency ({f}0≳ {10}-3 {Hz}) Alfvén waves are subject to PDI. Meanwhile, the maximum growth rate of the PDI of low-frequency ({f}0≲ {10}-4 {Hz}) Alfvén waves becomes negative due to acceleration and expansion effects. Medium-frequency ({f}0≈ {10}-3.5 {Hz}) Alfvén waves have a positive growth rate but do not show the signature of PDI up to 1 au because the growth rate is too small. The medium-frequency waves experience neither PDI nor reflection so they propagate through the solar wind most efficiently. The solar wind is shown to possess a frequency-filtering mechanism with respect to Alfvén waves. The simulations with broadband waves indicate that the observed trend of the density fluctuation is well explained by the evolution of PDI while the observed cross-helicity evolution is in agreement with low-frequency wave propagation.

  12. Linear instability of supersonic plane wakes

    NASA Technical Reports Server (NTRS)

    Papageorgiou, D. T.

    1989-01-01

    In this paper we present a theoretical and numerical study of the growth of linear disturbances in the high-Reynolds-number and laminar compressible wake behind a flat plate which is aligned with a uniform stream. No ad hoc assumptions are made as to the nature of the undisturbed flow (in contrast to previous investigations) but instead the theory is developed rationally by use of proper wake-profiles which satisfy the steady equations of motion. The initial growth of near wake perturbation is governed by the compressible Rayleigh equation which is studied analytically for long- and short-waves. These solutions emphasize the asymptotic structures involved and provide a rational basis for a nonlinear development. The evolution of arbitrary wavelength perturbations is addressed numerically and spatial stability solutions are presented that account for the relative importance of the different physical mechanisms present, such as three-dimensionality, increasing Mach numbers enough (subsonic) Mach numbers, there exists a region of absolute instability very close to the trailing-edge with the majority of the wake being convectively unstable. At higher Mach numbers (but still not large-hypersonic) the absolute instability region seems to disappear and the maximum available growth-rates decrease considerably. Three-dimensional perturbations provide the highest spatial growth-rates.

  13. Jeans instability of a dusty plasma with dust charge variations

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hakimi Pajouh, H., E-mail: hakimi@alzahra.ac.ir; Afshari, N.

    2015-09-15

    The effect of the dust charge variations on the stability of a self-gravitating dusty plasma has been theoretically investigated. The dispersion relation for the dust-acoustic waves in a self-gravitating dusty plasma is obtained. It is shown that the dust charge variations have significant effects. It increases the growth rate of instability and the instability cutoff wavenumbers. It is found that by increasing the value of the ions temperature and the absolute value of the equilibrium dust charge, the cutoff wavenumber decreases and the stability region is extended.

  14. Numerical investigation of galloping instabilities in Z-shaped profiles.

    PubMed

    Gomez, Ignacio; Chavez, Miguel; Alonso, Gustavo; Valero, Eusebio

    2014-01-01

    Aeroelastic effects are relatively common in the design of modern civil constructions such as office blocks, airport terminal buildings, and factories. Typical flexible structures exposed to the action of wind are shading devices, normally slats or louvers. A typical cross-section for such elements is a Z-shaped profile, made out of a central web and two-side wings. Galloping instabilities are often determined in practice using the Glauert-Den Hartog criterion. This criterion relies on accurate predictions of the dependence of the aerodynamic force coefficients with the angle of attack. The results of a parametric analysis based on a numerical analysis and performed on different Z-shaped louvers to determine translational galloping instability regions are presented in this paper. These numerical analysis results have been validated with a parametric analysis of Z-shaped profiles based on static wind tunnel tests. In order to perform this validation, the DLR TAU Code, which is a standard code within the European aeronautical industry, has been used. This study highlights the focus on the numerical prediction of the effect of galloping, which is shown in a visible way, through stability maps. Comparisons between numerical and experimental data are presented with respect to various meshes and turbulence models.

  15. Electromagnetic ion beam instabilities - Growth at cyclotron harmonic wave numbers

    NASA Technical Reports Server (NTRS)

    Smith, Charles W.; Gary, S. Peter

    1987-01-01

    The linear theory of electromagnetic ion beam instabilities for arbitrary angles of propagation is studied, with an emphasis on the conditions necessary to generate unstable modes at low harmonics of the ion cyclotron resonance condition. The present results extend the analysis of Smith et al. (1985). That paper considered only the plasma parameters at a time during which harmonic wave modes were observed in the earth's foreshock. The parameters of that paper are used as the basis of parametric variations here to establish the range of beam properties which may give rise to observable harmonic spectra. It is shown that the growth rates of both left-hand and right-hand cyclotron harmonic instabilities are enhanced by an increase in the beam temperature anisotropy and/or the beam speed. Decreases in the beam density and/or the core-ion beta reduce the overall growth of the cyclotron harmonic instabilities but favor the growth of these modes over the growth of the nonresonant instability and thereby enhance the observability of the harmonics.

  16. Parametric decay of an extraordinary electromagnetic wave in relativistic plasma

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Dorofeenko, V. G.; Krasovitskiy, V. B., E-mail: krasovit@mail.ru; Turikov, V. A.

    2015-03-15

    Parametric instability of an extraordinary electromagnetic wave in plasma preheated to a relativistic temperature is considered. A set of self-similar nonlinear differential equations taking into account the electron “thermal” mass is derived and investigated. Small perturbations of the parameters of the heated plasma are analyzed in the linear approximation by using the dispersion relation determining the phase velocities of the fast and slow extraordinary waves. In contrast to cold plasma, the evanescence zone in the frequency range above the electron upper hybrid frequency vanishes and the asymptotes of both branches converge. Theoretical analysis of the set of nonlinear equations showsmore » that the growth rate of decay instability increases with increasing initial temperature of plasma electrons. This result is qualitatively confirmed by numerical simulations of plasma heating by a laser pulse injected from vacuum.« less

  17. Dissipation of Alfven Waves at Fluid Scale through Parametric Decay Instabilities in Low-beta Turbulent Plasma

    NASA Astrophysics Data System (ADS)

    Fu, X.; Li, H.; Guo, F.; Li, X.; Roytershteyn, V.

    2017-12-01

    The solar wind is a turbulent magnetized plasma extending from the upper atmosphere of the sun to the edge of the heliosphere. It carries charged particles and magnetic fields originated from the Sun, which have great impact on the geomagnetic environment and human activities in space. In such a magnetized plasma, Alfven waves play a crucial role in carrying energy from the surface of the Sun, injecting into the solar wind and establishing power-law spectra through turbulent energy cascades. On the other hand, in compressible plasmas large amplitude Alfven waves are subject to a parametric decay instability (PDI) which converts an Alfven wave to another counter-propagating Alfven wave and an ion acoustic wave (slow mode). The counter-propagating Alfven wave provides an important ingredient for turbulent cascade, and the slow-mode wave provides a channel for solar wind heating in a spatial scale much larger than ion kinetic scales. Growth and saturation of PDI in quiet plasma have been intensively studied using linear theory and nonlinear simulations in the past. Here using 3D hybrid simulations, we show that PDI is still effective in turbulent low-beta plasmas, generating slow modes and causing ion heating. Selected events in WIND data are analyzed to identify slow modes in the solar wind and the role of PDI, and compared with our simulation results. We also investigate the validity of linear Vlasov theory regarding PDI growth and slow mode damping in turbulent plasmas. Since PDI favors low plasma beta, we expect to see more evidence of PDI in the solar wind close to the Sun, especially from the upcoming NASA's Parker Solar Probe mission which will provide unprecedented wave and plasma data as close as 8.5 solar radii from the Sun.

  18. Computational study of the shock driven instability of a multiphase particle-gas system

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    None, None

    This paper considers the interaction of a shock wave with a multiphase particle-gas system which creates an instability somewhat similar to the Richtmyer-Meshkov instability but with a larger parameter space. Because this parameter space is large, we only present an introductory survey of the effects of many of these parameters. We highlight the effects of particle-gas coupling, incident shock strength, particle size, effective system density differences, and multiple particle relaxation time effects. We focus on dilute flows with mass loading up to 40% and do not attempt to cover all parametric combinations. Instead, we vary one parameter at a timemore » leaving additional parametric combinations for future work. The simulations are run with the Ares code, developed at Lawrence Livermore National Laboratory, which uses a multiphase particulate transport method to model two-way momentum and energy coupling. A brief validation of these models is presented and coupling effects are explored. It is shown that even for small particles, on the order of 1μm, multi-phase coupling effects are important and diminish the circulation deposition on the interface by up to 25%. These coupling effects are shown to create large temperature deviations from the dusty gas approximation, up to 20% greater, especially at higher shock strengths. It is also found that for a multiphase instability, the vortex sheet deposited at the interface separates into two sheets. In conclusion, depending on the particle and particle-gas Atwood numbers, the instability may be suppressed or enhanced by the interactions of these two vortex sheets.« less

  19. Computational study of the shock driven instability of a multiphase particle-gas system

    DOE PAGES

    None, None

    2016-02-01

    This paper considers the interaction of a shock wave with a multiphase particle-gas system which creates an instability somewhat similar to the Richtmyer-Meshkov instability but with a larger parameter space. Because this parameter space is large, we only present an introductory survey of the effects of many of these parameters. We highlight the effects of particle-gas coupling, incident shock strength, particle size, effective system density differences, and multiple particle relaxation time effects. We focus on dilute flows with mass loading up to 40% and do not attempt to cover all parametric combinations. Instead, we vary one parameter at a timemore » leaving additional parametric combinations for future work. The simulations are run with the Ares code, developed at Lawrence Livermore National Laboratory, which uses a multiphase particulate transport method to model two-way momentum and energy coupling. A brief validation of these models is presented and coupling effects are explored. It is shown that even for small particles, on the order of 1μm, multi-phase coupling effects are important and diminish the circulation deposition on the interface by up to 25%. These coupling effects are shown to create large temperature deviations from the dusty gas approximation, up to 20% greater, especially at higher shock strengths. It is also found that for a multiphase instability, the vortex sheet deposited at the interface separates into two sheets. In conclusion, depending on the particle and particle-gas Atwood numbers, the instability may be suppressed or enhanced by the interactions of these two vortex sheets.« less

  20. Computational study of the shock driven instability of a multiphase particle-gas system

    NASA Astrophysics Data System (ADS)

    McFarland, Jacob A.; Black, Wolfgang J.; Dahal, Jeevan; Morgan, Brandon E.

    2016-02-01

    This paper considers the interaction of a shock wave with a multiphase particle-gas system which creates an instability similar in some ways to the Richtmyer-Meshkov instability but with a larger parameter space. As this parameter space is large, we only present an introductory survey of the effects of many of these parameters. We highlight the effects of particle-gas coupling, incident shock strength, particle size, effective system density differences, and multiple particle relaxation time effects. We focus on dilute flows with mass loading up to 40% and do not attempt to cover all parametric combinations. Instead, we vary one parameter at a time leaving additional parametric combinations for future work. The simulations are run with the Ares code, developed at Lawrence Livermore National Laboratory, which uses a multiphase particulate transport method to model two-way momentum and energy coupling. A brief validation of these models is presented and coupling effects are explored. It is shown that even for small particles, on the order of 1 μm, multi-phase coupling effects are important and diminish the circulation deposition on the interface by up to 25%. These coupling effects are shown to create large temperature deviations from the dusty gas approximation, up to 20% greater, especially at higher shock strengths. It is also found that for a multiphase instability, the vortex sheet deposited at the interface separates into two sheets. Depending on the particle and particle-gas Atwood numbers, the instability may be suppressed or enhanced by the interactions of these two vortex sheets.

  1. Ensuring long-term stability of infrared camera absolute calibration.

    PubMed

    Kattnig, Alain; Thetas, Sophie; Primot, Jérôme

    2015-07-13

    Absolute calibration of cryogenic 3-5 µm and 8-10 µm infrared cameras is notoriously instable and thus has to be repeated before actual measurements. Moreover, the signal to noise ratio of the imagery is lowered, decreasing its quality. These performances degradations strongly lessen the suitability of Infrared Imaging. These defaults are often blamed on detectors reaching a different "response state" after each return to cryogenic conditions, while accounting for the detrimental effects of imperfect stray light management. We show here that detectors are not to be blamed and that the culprit can also dwell in proximity electronics. We identify an unexpected source of instability in the initial voltage of the integrating capacity of detectors. Then we show that this parameter can be easily measured and taken into account. This way we demonstrate that a one month old calibration of a 3-5 µm camera has retained its validity.

  2. Parametric decay of oblique Alfvén waves in two-dimensional hybrid simulations.

    PubMed

    Verscharen, D; Marsch, E; Motschmann, U; Müller, J

    2012-08-01

    Certain types of plasma waves are known to become parametrically unstable under specific plasma conditions, in which the pump wave will decay into several daughter waves with different wavenumbers and frequencies. In the past, the related plasma instabilities have been treated analytically for various parameter regimes and by use of various numerical methods, yet the oblique propagation with respect to the background magnetic field has rarely been dealt with in two dimensions, mainly because of the high computational demand. Here we present a hybrid-simulation study of the parametric decay of a moderately oblique Alfvén wave having elliptical polarization. It is found that such a compressive wave can decay into waves with higher and lower wavenumbers than the pump.

  3. Characterization and Simulation of Thermoacoustic Instability in a Low Emissions Combustor Prototype

    NASA Technical Reports Server (NTRS)

    DeLaat, John C.; Paxson, Daniel E.

    2008-01-01

    Extensive research is being done toward the development of ultra-low-emissions combustors for aircraft gas turbine engines. However, these combustors have an increased susceptibility to thermoacoustic instabilities. This type of instability was recently observed in an advanced, low emissions combustor prototype installed in a NASA Glenn Research Center test stand. The instability produces pressure oscillations that grow with increasing fuel/air ratio, preventing full power operation. The instability behavior makes the combustor a potentially useful test bed for research into active control methods for combustion instability suppression. The instability behavior was characterized by operating the combustor at various pressures, temperatures, and fuel and air flows representative of operation within an aircraft gas turbine engine. Trends in instability behavior vs. operating condition have been identified and documented. A simulation developed at NASA Glenn captures the observed instability behavior. The physics-based simulation includes the relevant physical features of the combustor and test rig, employs a Sectored 1-D approach, includes simplified reaction equations, and provides time-accurate results. A computationally efficient method is used for area transitions, which decreases run times and allows the simulation to be used for parametric studies, including control method investigations. Simulation results show that the simulation exhibits a self-starting, self-sustained combustion instability and also replicates the experimentally observed instability trends vs. operating condition. Future plans are to use the simulation to investigate active control strategies to suppress combustion instabilities and then to experimentally demonstrate active instability suppression with the low emissions combustor prototype, enabling full power, stable operation.

  4. Effect of wave localization on plasma instabilities. Ph.D. Thesis

    NASA Technical Reports Server (NTRS)

    Levedahl, William Kirk

    1987-01-01

    The Anderson model of wave localization in random media is involved to study the effect of solar wind density turbulence on plasma processes associated with the solar type III radio burst. ISEE-3 satellite data indicate that a possible model for the type III process is the parametric decay of Langmuir waves excited by solar flare electron streams into daughter electromagnetic and ion acoustic waves. The threshold for this instability, however, is much higher than observed Langmuir wave levels because of rapid wave convection of the transverse electromagnetic daughter wave in the case where the solar wind is assumed homogeneous. Langmuir and transverse waves near critical density satisfy the Ioffe-Reigel criteria for wave localization in the solar wind with observed density fluctuations -1 percent. Numerical simulations of wave propagation in random media confirm the localization length predictions of Escande and Souillard for stationary density fluctations. For mobile density fluctuations localized wave packets spread at the propagation velocity of the density fluctuations rather than the group velocity of the waves. Computer simulations using a linearized hybrid code show that an electron beam will excite localized Langmuir waves in a plasma with density turbulence. An action principle approach is used to develop a theory of non-linear wave processes when waves are localized. A theory of resonant particles diffusion by localized waves is developed to explain the saturation of the beam-plasma instability. It is argued that localization of electromagnetic waves will allow the instability threshold to be exceeded for the parametric decay discussed above.

  5. Instability behaviour of cosmic gravito-coupled correlative complex bi-fluidic admixture

    NASA Astrophysics Data System (ADS)

    Das, Papari; Karmakar, Pralay Kumar

    2017-10-01

    The gravitational instability of an unbounded infinitely extended composite gravitating cloud system composed of gravito-coupled neutral gaseous fluid (NGF) and dark matter fluid (DMF) is theoretically investigated in a classical framework. It is based on a spatially-flat geometry approximation (1D, sheet-like, boundless) at the backdrop that the radius of curvature of the gravito-confined bi-fluidic-boundary is much larger than all the hydro-characteristic scale lengths of interest. The relevant collective correlative dynamics, via the lowest-order mnemonic viscoelasticity, is mooted. We apply a standard formalism of normal mode analysis to yield a unique brand of generalized quadratic dispersion relation having variable multi-parametric coefficients dependent on the diversified equilibrium properties. It is parametrically seen that the DMF flow speed and the DMF viscoelasticity introduce stabilizing effects against the composite cloud collapse. The instability physiognomies, as specialized extreme corollaries, are in good accord with the previously reported predictions. The analysis may be widely useful to see the gravito-thermally coupled wave dynamics leading to the formation of large-scale hierarchical non-homologous structures in dark-matter-dominated dwarf galaxies.

  6. Parametric study of shock-induced combustion in a hydrogen air system

    NASA Technical Reports Server (NTRS)

    Ahuja, J. K.; Tiwari, Surendra N.

    1994-01-01

    A numerical parametric study is conducted to simulate shock-induced combustion under various free-stream conditions and varying blunt body diameter. A steady combustion front is established if the free-stream Mach number is above the Chapman-Jouguet speed of the mixture, whereas an unsteady reaction front is established if the free-stream Mach number is below or at the Chapman-Jouguet speed of the mixture. The above two cases have been simulated for Mach 5.11 and Mach 6.46 with a projectile diameter of 15 mm. Mach 5.11, which is an underdriven case, shows an unsteady reaction front, whereas Mach 6.46, which is an overdriven case, shows a steady reaction front. Next for Mach 5. 11 reducing the diameter to 2.5 mm causes the instabilities to disappear, whereas, for Mach 6.46 increasing the diameter of the projectile to 225 mm causes the instabilities to reappear, indicating that Chapman-Jouguet speed is not the only deciding factor for these instabilities to trigger. The other key parameters are the projectile diameter, induction time, activation energy and the heat release. The appearance and disappearance of the instabilities have been explained by the one-dimensional wave interaction model.

  7. Parametric decay of plasma waves near the upper-hybrid resonance

    DOE PAGES

    Dodin, I. Y.; Arefiev, A. V.

    2017-03-28

    An intense X wave propagating perpendicularly to dc magnetic field is unstable with respect to a parametric decay into an electron Bernstein wave and a lower-hybrid wave. A modified theory of this effect is proposed that extends to the high-intensity regime, where the instability rate γ ceases to be a linear function of the incident-wave amplitude. An explicit formula for γ is derived and expressed in terms of cold-plasma parameters. Here, theory predictions are in reasonable agreement with the results of the particle-in-cell simulations presented in a separate publication.

  8. Observation of parametric instabilities in the quarter critical density region driven by the Nike KrF laser

    NASA Astrophysics Data System (ADS)

    Weaver, J. L.; Oh, J.; Phillips, L.; Afeyan, B.; Seely, J.; Kehne, D.; Brown, C. M.; Obenschain, S. P.; Serlin, V.; Schmitt, A. J.; Feldman, U.; Lehmberg, R. H.; Mclean, E.; Manka, C.

    2013-02-01

    The krypton-fluoride (KrF) laser is an attractive choice for inertial confinement fusion due to its combination of short wavelength (λ =248 nm), large bandwidth (up to 3 THz), and superior beam smoothing by induced spatial incoherence. These qualities improve the overall hydrodynamics of directly driven pellet implosions and should allow use of increased laser intensity due to higher thresholds for laser plasma instabilities when compared to frequency tripled Nd:glass lasers (λ =351 nm). Here, we report the first observations of the two-plasmon decay instability using a KrF laser. The experiments utilized the Nike laser facility to irradiate solid plastic planar targets over a range of pulse lengths (0.35 ns≤τ≤1.25 ns) and intensities (up to 2×1015 W/cm2). Variation of the laser pulse created different combinations of electron temperature and electron density scale length. The observed onset of instability growth was consistent with the expected scaling that KrF lasers have a higher intensity threshold for instabilities in the quarter critical density region.

  9. Axisymmetry breaking instabilities of natural convection in a vertical bridgman growth configuration

    NASA Astrophysics Data System (ADS)

    Gelfgat, A. Yu.; Bar-Yoseph, P. Z.; Solan, A.

    2000-12-01

    A study of the three-dimensional axisymmetry-breaking instability of an axisymmetric convective flow associated with crystal growth from bulk of melt is presented. Convection in a vertical cylinder with a parabolic temperature profile on the sidewall is considered as a representative model. The main objective is the calculation of critical parameters corresponding to a transition from the steady axisymmetric to the three-dimensional non-axisymmetric (steady or oscillatory) flow pattern. A parametric study of the dependence of the critical Grashof number Gr cr on the Prandtl number 0⩽Pr⩽0.05 (characteristic for semiconductor melts) and the aspect ratio of the cylinder 1⩽ A⩽4 ( A=height/radius) is carried out. The stability diagram Grcr(Pr, A) corresponding to the axisymmetric — three-dimensional transition is reported for the first time. The calculations are done using the spectral Galerkin method allowing an effective and accurate three-dimensional stability analysis. It is shown that the axisymmetric flow in relatively low cylinders tends to be oscillatory unstable, while in tall cylinders the instability sets in due to a steady bifurcation caused by the Rayleigh-Benard mechanism. The calculated neutral curves are non-monotonous and contain hysteresis loops. The strong dependence of the critical Grashof number and the azimuthal periodicity of the resulting three-dimensional flow indicate the importance of a comprehensive parametric stability analysis in different crystal growth configurations. In particular, it is shown that the first instability of the flow considered is always three-dimensional.

  10. Secondary instability of high-speed flows and the influence of wall cooling and suction

    NASA Technical Reports Server (NTRS)

    El-Hady, Nabil M.

    1992-01-01

    The periodic streamwise modulation of the supersonic and hypersonic boundary layers by a two dimensional first mode or second mode wave makes the resulting base flow susceptible to a broadband spanwise-periodic three dimensional type of instability. The principal parametric resonance of this instability (subharmonic) was analyzed using Floquet theory. The effect of Mach number and the effectiveness of wall cooling or wall suction in controlling the onset, the growth rate, and the vortical nature of the subharmonic secondary instability are assessed for both a first mode and a second mode primary wave. Results indicate that the secondary subharmonic instability of the insulated wall boundary layer is weakened as Mach number increases. Cooling of the wall destabilizes the secondary subharmonic of a second mode primary wave, but stabilizes it when the primary wave is a first mode. Suction stabilizes the secondary subharmonic at all Mach numbers.

  11. Computational material design for Q&P steels with plastic instability theory

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Cheng, G.; Choi, K. S.; Hu, X. H.

    In this paper, the deformation limits of Quenching and Partitioning (Q&P) steels are examined with the plastic instability theory. For this purpose, the constituent phase properties of various Q&P steels were first experimentally obtained, and used to estimate the overall tensile stress-strain curves based on the simple rule of mixture (ROM) with the iso-strain and iso-stress assumptions. Plastic instability theory was then applied to the obtained overall stress-strain curves in order to estimate the deformation limits of the Q&P steels. A parametric study was also performed to examine the effects of various material parameters on the deformation limits of Q&Pmore » steels. Computational material design was subsequently carried out based on the information obtained from the parametric study. The results show that the plastic instability theory with iso-stress-based stress-strain curve may be used to provide the lower bound estimate of the uniform elongation (UE) for the various Q&P steels considered. The results also indicate that higher austenite stability/volume fractions, less strength difference between the primary phases, higher hardening exponents of the constituent phases are generally beneficial for the performance improvement of Q&P steels, and that various material parameters may be concurrently adjusted in a cohesive way in order to improve the performance of Q&P steel. The information from this study may be used to devise new heat treatment parameters and alloying elements to produce Q&P steels with the improved performance.« less

  12. Digital multi-channel stabilization of four-mode phase-sensitive parametric multicasting.

    PubMed

    Liu, Lan; Tong, Zhi; Wiberg, Andreas O J; Kuo, Bill P P; Myslivets, Evgeny; Alic, Nikola; Radic, Stojan

    2014-07-28

    Stable four-mode phase-sensitive (4MPS) process was investigated as a means to enhance two-pump driven parametric multicasting conversion efficiency (CE) and signal to noise ratio (SNR). Instability of multi-beam, phase sensitive (PS) device that inherently behaves as an interferometer, with output subject to ambient induced fluctuations, was addressed theoretically and experimentally. A new stabilization technique that controls phases of three input waves of the 4MPS multicaster and maximizes CE was developed and described. Stabilization relies on digital phase-locked loop (DPLL) specifically was developed to control pump phases to guarantee stable 4MPS operation that is independent of environmental fluctuations. The technique also controls a single (signal) input phase to optimize the PS-induced improvement of the CE and SNR. The new, continuous-operation DPLL has allowed for fully stabilized PS parametric broadband multicasting, demonstrating CE improvement over 20 signal copies in excess of 10 dB.

  13. Cross-phase-modulation-induced instability in photonic-crystal fibers.

    PubMed

    Serebryannikov, E E; Konorov, S O; Ivanov, A A; Alfimov, M V; Scalora, M; Zheltikov, A M

    2005-08-01

    Cross-phase-modulation-induced instability is identified as a significant mechanism for efficient parametric four-wave-mixing frequency conversion in photonic-crystal fibers. Fundamental-wavelength femtosecond pulses of a Cr, forsterite laser are used in our experiments to transform the spectrum of copropagating second-harmonic pulses of the same laser in a photonic-crystal fiber. Efficient generation of sidebands shifted by more than 80 THz with respect to the central frequency of the second harmonic is observed in the output spectrum of the probe field.

  14. Parametric disordering of meta-atoms and nonlinear topological transitions in liquid metacrystals

    NASA Astrophysics Data System (ADS)

    Zharov, Alexander A.; Zharova, Nina A.; Zharov, Alexander A.

    2017-09-01

    We show that amplitude-modulated electromagnetic wave incident onto a liquid metacrystal may cause parametric instability of meta-atoms resulting in isotropization of the medium that can be treated in terms of effective temperature. It makes possible to switch the sign of certain components of dielectric permittivity and/or magnetic permeability tensors that, in turn, modifies the topology of isofrequency surface. At the same time it leads to the changes of the conditions of electromagnetic wave propagation appearing in the form of focusing or defocusing nonlinearity.

  15. Encapsulated high frequency (235 kHz), high-Q (100 k) disk resonator gyroscope with electrostatic parametric pump

    NASA Astrophysics Data System (ADS)

    Ahn, C. H.; Nitzan, S.; Ng, E. J.; Hong, V. A.; Yang, Y.; Kimbrell, T.; Horsley, D. A.; Kenny, T. W.

    2014-12-01

    In this paper, we explore the effects of electrostatic parametric amplification on a high quality factor (Q > 100 000) encapsulated disk resonator gyroscope (DRG), fabricated in <100> silicon. The DRG was operated in the n = 2 degenerate wineglass mode at 235 kHz, and electrostatically tuned so that the frequency split between the two degenerate modes was less than 100 mHz. A parametric pump at twice the resonant frequency is applied to the sense axis of the DRG, resulting in a maximum scale factor of 156.6 μV/(°/s), an 8.8× improvement over the non-amplified performance. When operated with a parametric gain of 5.4, a minimum angle random walk of 0.034°/√h and bias instability of 1.15°/h are achieved, representing an improvement by a factor of 4.3× and 1.5×, respectively.

  16. Convective instability and boundary driven oscillations in a reaction-diffusion-advection model

    NASA Astrophysics Data System (ADS)

    Vidal-Henriquez, Estefania; Zykov, Vladimir; Bodenschatz, Eberhard; Gholami, Azam

    2017-10-01

    In a reaction-diffusion-advection system, with a convectively unstable regime, a perturbation creates a wave train that is advected downstream and eventually leaves the system. We show that the convective instability coexists with a local absolute instability when a fixed boundary condition upstream is imposed. This boundary induced instability acts as a continuous wave source, creating a local periodic excitation near the boundary, which initiates waves travelling both up and downstream. To confirm this, we performed analytical analysis and numerical simulations of a modified Martiel-Goldbeter reaction-diffusion model with the addition of an advection term. We provide a quantitative description of the wave packet appearing in the convectively unstable regime, which we found to be in excellent agreement with the numerical simulations. We characterize this new instability and show that in the limit of high advection speed, it is suppressed. This type of instability can be expected for reaction-diffusion systems that present both a convective instability and an excitable regime. In particular, it can be relevant to understand the signaling mechanism of the social amoeba Dictyostelium discoideum that may experience fluid flows in its natural habitat.

  17. Multi-segment foot landing kinematics in subjects with chronic ankle instability.

    PubMed

    De Ridder, Roel; Willems, Tine; Vanrenterghem, Jos; Robinson, Mark A; Palmans, Tanneke; Roosen, Philip

    2015-07-01

    Chronic ankle instability has been associated with altered joint kinematics at the ankle, knee and hip. However, no studies have investigated possible kinematic deviations at more distal segments of the foot. The purpose of this study was to evaluate if subjects with ankle instability and copers show altered foot and ankle kinematics and altered kinetics during a landing task when compared to controls. Ninety-six subjects (38 subjects with chronic ankle instability, 28 copers and 30 controls) performed a vertical drop and side jump task. Foot kinematics were obtained using the Ghent Foot Model and a single-segment foot model. Group differences were evaluated using statistical parametric mapping and analysis of variance. Subjects with ankle instability had a more inverted midfoot position in relation to the rearfoot when compared to controls during the side jump. They also had a greater midfoot inversion/eversion range of motion than copers during the vertical drop. Copers exhibited less plantar flexion/dorsiflexion range of motion in the lateral and medial forefoot. Furthermore, the ankle instability and coper group exhibited less ankle plantar flexion at touchdown. Additionally, the ankle instability group demonstrated a decreased plantar flexion/dorsiflexion range of motion at the ankle compared to the control group. Analysis of ground reaction forces showed a higher vertical peak and loading rate during the vertical drop in subjects with ankle instability. Subjects with chronic ankle instability displayed an altered, stiffer kinematic landing strategy and related alterations in landing kinetics, which might predispose them for episodes of giving way and actual ankle sprains. Copyright © 2015 Elsevier Ltd. All rights reserved.

  18. Multi-water-bag models of ion temperature gradient instability in cylindrical geometry

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Coulette, David; Besse, Nicolas

    2013-05-15

    Ion temperature gradient instabilities play a major role in the understanding of anomalous transport in core fusion plasmas. In the considered cylindrical geometry, ion dynamics is described using a drift-kinetic multi-water-bag model for the parallel velocity dependency of the ion distribution function. In a first stage, global linear stability analysis is performed. From the obtained normal modes, parametric dependencies of the main spectral characteristics of the instability are then examined. Comparison of the multi-water-bag results with a reference continuous Maxwellian case allows us to evaluate the effects of discrete parallel velocity sampling induced by the Multi-Water-Bag model. Differences between themore » global model and local models considered in previous works are discussed. Using results from linear, quasilinear, and nonlinear numerical simulations, an analysis of the first stage saturation dynamics of the instability is proposed, where the divergence between the three models is examined.« less

  19. Parametric instability of a non-uniform beam with thermal gradient and elastic end support

    NASA Astrophysics Data System (ADS)

    Kar, R. C.; Sujata, T.

    1988-04-01

    The influence of an elastic end support and a thermal gradient on the dynamic instability of a non-uniform cantilever beam subjected to a pulsating axial load has been studied. The results reveal that stiffening of the end support has a stabilizing effect, whereas increasing the thermal gradient has a destabilizing one.

  20. Characterization and Simulation of the Thermoacoustic Instability Behavior of an Advanced, Low Emissions Combustor Prototype

    NASA Technical Reports Server (NTRS)

    DeLaat, John C.; Paxson, Daniel E.

    2008-01-01

    Extensive research is being done toward the development of ultra-low-emissions combustors for aircraft gas turbine engines. However, these combustors have an increased susceptibility to thermoacoustic instabilities. This type of instability was recently observed in an advanced, low emissions combustor prototype installed in a NASA Glenn Research Center test stand. The instability produces pressure oscillations that grow with increasing fuel/air ratio, preventing full power operation. The instability behavior makes the combustor a potentially useful test bed for research into active control methods for combustion instability suppression. The instability behavior was characterized by operating the combustor at various pressures, temperatures, and fuel and air flows representative of operation within an aircraft gas turbine engine. Trends in instability behavior versus operating condition have been identified and documented, and possible explanations for the trends provided. A simulation developed at NASA Glenn captures the observed instability behavior. The physics-based simulation includes the relevant physical features of the combustor and test rig, employs a Sectored 1-D approach, includes simplified reaction equations, and provides time-accurate results. A computationally efficient method is used for area transitions, which decreases run times and allows the simulation to be used for parametric studies, including control method investigations. Simulation results show that the simulation exhibits a self-starting, self-sustained combustion instability and also replicates the experimentally observed instability trends versus operating condition. Future plans are to use the simulation to investigate active control strategies to suppress combustion instabilities and then to experimentally demonstrate active instability suppression with the low emissions combustor prototype, enabling full power, stable operation.

  1. Parametric and Nonparametric Statistical Methods for Genomic Selection of Traits with Additive and Epistatic Genetic Architectures

    PubMed Central

    Howard, Réka; Carriquiry, Alicia L.; Beavis, William D.

    2014-01-01

    Parametric and nonparametric methods have been developed for purposes of predicting phenotypes. These methods are based on retrospective analyses of empirical data consisting of genotypic and phenotypic scores. Recent reports have indicated that parametric methods are unable to predict phenotypes of traits with known epistatic genetic architectures. Herein, we review parametric methods including least squares regression, ridge regression, Bayesian ridge regression, least absolute shrinkage and selection operator (LASSO), Bayesian LASSO, best linear unbiased prediction (BLUP), Bayes A, Bayes B, Bayes C, and Bayes Cπ. We also review nonparametric methods including Nadaraya-Watson estimator, reproducing kernel Hilbert space, support vector machine regression, and neural networks. We assess the relative merits of these 14 methods in terms of accuracy and mean squared error (MSE) using simulated genetic architectures consisting of completely additive or two-way epistatic interactions in an F2 population derived from crosses of inbred lines. Each simulated genetic architecture explained either 30% or 70% of the phenotypic variability. The greatest impact on estimates of accuracy and MSE was due to genetic architecture. Parametric methods were unable to predict phenotypic values when the underlying genetic architecture was based entirely on epistasis. Parametric methods were slightly better than nonparametric methods for additive genetic architectures. Distinctions among parametric methods for additive genetic architectures were incremental. Heritability, i.e., proportion of phenotypic variability, had the second greatest impact on estimates of accuracy and MSE. PMID:24727289

  2. Parametric Cost Deployment

    NASA Technical Reports Server (NTRS)

    Dean, Edwin B.

    1995-01-01

    Parametric cost analysis is a mathematical approach to estimating cost. Parametric cost analysis uses non-cost parameters, such as quality characteristics, to estimate the cost to bring forth, sustain, and retire a product. This paper reviews parametric cost analysis and shows how it can be used within the cost deployment process.

  3. Analysis of combustion instability in liquid fuel rocket motors. Ph.D. Thesis

    NASA Technical Reports Server (NTRS)

    Wong, K. W.

    1979-01-01

    The development of an analytical technique used in the solution of nonlinear velocity-sensitive combustion instability problems is presented. The Galerkin method was used and proved successful. The pressure wave forms exhibit a strong second harmonic distortion and a variety of behaviors are possible depending on the nature of the combustion process and the parametric values involved. A one dimensional model provides insight into the problem by allowing a comparison of Galerkin solutions with more exact finite difference computations.

  4. Decay instability of an electron plasma wave in a dusty plasma

    NASA Astrophysics Data System (ADS)

    Amin, M. R.; Ferdous, T.; Salimullah, M.

    1996-03-01

    The parametric decay instability of an electron plasma wave in a homogeneous, unmagnetized, hot and collisionless dusty plasma has been investigated analytically. The Vlasov equation has been solved perturbatively to find the nonlinear response of the plasma particles. The presence of the charged dust grains introduces a background inhomogeneous electric field that significantly influences the dispersive properties of the plasma and the decay process. The growth rate of the decay instability through the usual ion-acoustic mode is modified, and depends upon the dust perturbation parameter μi, dust correlation length q0, and the related ion motion. However, the decay process of the electron plasma wave through the ultralow frequency dust mode, excited due to the presence of the dust particles, is more efficient than the decay through the usual ion-acoustic mode in the dusty plasma.

  5. Eikonal instability of Gauss-Bonnet-(anti-)-de Sitter black holes

    NASA Astrophysics Data System (ADS)

    Konoplya, R. A.; Zhidenko, A.

    2017-05-01

    Here we have shown that asymptotically anti-de Sitter (AdS) black holes in the Einstein-Gauss-Bonnet (GB) theory are unstable under linear perturbations of space-time in some region of parameters. This (eikonal) instability develops at high multipole numbers. We found the exact parametric regions of the eikonal instability and extended this consideration to asymptotically flat and de Sitter cases. The approach to the threshold of instability is driven by purely imaginary quasinormal modes, which are similar to those found recently in Grozdanov, Kaplis, and Starinets, [J. High Energy Phys. 07 (2016) 151, 10.1007/JHEP07(2016)151] for the higher curvature corrected black hole with the planar horizon. The found instability may indicate limits of holographic applicability of the GB-AdS backgrounds. Recently, through the analysis of critical behavior in AdS space-time in the presence of the Gauss-Bonnet term, it was shown [Deppe et al, Phys. Rev. Lett. 114, 071102 (2015), 10.1103/PhysRevLett.114.071102], that, if the total energy content of the AdS space-time is small, then no black holes can be formed with mass less than some critical value. A similar mass gap was also found when considering collapse of mass shells in asymptotically flat Gauss-Bonnet theories [Frolov, Phys. Rev. Lett. 115, 051102 (2015), 10.1103/PhysRevLett.115.051102]. The found instability of all sufficiently small Einstein-Gauss-Bonnet-AdS, dS and asymptotically flat black holes may explain the existing mass gaps in their formation.

  6. Parametric and non-parametric modeling of short-term synaptic plasticity. Part I: computational study

    PubMed Central

    Marmarelis, Vasilis Z.; Berger, Theodore W.

    2009-01-01

    Parametric and non-parametric modeling methods are combined to study the short-term plasticity (STP) of synapses in the central nervous system (CNS). The nonlinear dynamics of STP are modeled by means: (1) previously proposed parametric models based on mechanistic hypotheses and/or specific dynamical processes, and (2) non-parametric models (in the form of Volterra kernels) that transforms the presynaptic signals into postsynaptic signals. In order to synergistically use the two approaches, we estimate the Volterra kernels of the parametric models of STP for four types of synapses using synthetic broadband input–output data. Results show that the non-parametric models accurately and efficiently replicate the input–output transformations of the parametric models. Volterra kernels provide a general and quantitative representation of the STP. PMID:18506609

  7. Noise-Enhanced Eversion Force Sense in Ankles With or Without Functional Instability.

    PubMed

    Ross, Scott E; Linens, Shelley W; Wright, Cynthia J; Arnold, Brent L

    2015-08-01

    Force sense impairments are associated with functional ankle instability. Stochastic resonance stimulation (SRS) may have implications for correcting these force sense deficits. To determine if SRS improved force sense. Case-control study. Research laboratory. Twelve people with functional ankle instability (age = 23 ± 3 years, height = 174 ± 8 cm, mass = 69 ± 10 kg) and 12 people with stable ankles (age = 22 ± 2 years, height = 170 ± 7 cm, mass = 64 ± 10 kg). The eversion force sense protocol required participants to reproduce a targeted muscle tension (10% of maximum voluntary isometric contraction). This protocol was assessed under SRSon and SRSoff (control) conditions. During SRSon, random subsensory mechanical noise was applied to the lower leg at a customized optimal intensity for each participant. Constant error, absolute error, and variable error measures quantified accuracy, overall performance, and consistency of force reproduction, respectively. With SRS, we observed main effects for force sense absolute error (SRSoff = 1.01 ± 0.67 N, SRSon = 0.69 ± 0.42 N) and variable error (SRSoff = 1.11 ± 0.64 N, SRSon = 0.78 ± 0.56 N) (P < .05). No other main effects or treatment-by-group interactions were found (P > .05). Although SRS reduced the overall magnitude (absolute error) and variability (variable error) of force sense errors, it had no effect on the directionality (constant error). Clinically, SRS may enhance muscle tension ability, which could have treatment implications for ankle stability.

  8. Parametric instability of optical non-Hermitian systems near the exceptional point

    PubMed Central

    Zyablovsky, A. A.; Andrianov, E. S.; Pukhov, A. A.

    2016-01-01

    In contrast to Hermitian systems, the modes of non-Hermitian systems are generally nonorthogonal. As a result, the power of the system signal depends not only on the mode amplitudes but also on the phase shift between them. In this work, we show that it is possible to increase the mode amplitudes without increasing the power of the signal. Moreover, we demonstrate that when the system is at the exceptional point, any infinitesimally small change in the system parameters increases the mode amplitudes. As a result, the system becomes unstable with respect to such perturbation. We show such instability by using the example of two coupled waveguides in which loss prevails over gain and all modes are decaying. This phenomenon enables compensation for losses in dissipative systems and opens a wide range of applications in optics, plasmonics, and optoelectronics, in which loss is an inevitable problem and plays a crucial role. PMID:27405541

  9. Gravitational Effects on Flow Instability and Transition in Low Density Jets

    NASA Technical Reports Server (NTRS)

    Agrawal A. K.; Parthasarathy, K.; Pasumarthi, K.; Griffin, D. W.

    2000-01-01

    Recent experiments have shown that low-density gas jets injected into a high-density ambient gas undergo an instability mode, leading to highly-periodic oscillations in the flow-field for certain conditions. The transition from laminar to turbulent flow in these jets is abrupt, without the gradual change in scales. Even the fine scale turbulent structure repeats itself with extreme regularity from cycle to cycle. Similar observations were obtained in buoyancy-dominated and momentum-dominated jets characterized by the Richardson numbers, Ri = [gD(rho(sub a)-rho(sub j))/rho(sub j)U(sub j)(exp 2) ] where g is the gravitational acceleration, D is the jet diameter, rho(sub a) and rho(sub a) are, respectively, the free-stream and jet densities, and U(sub j) is the mean jet exit velocity. At high Richardson numbers, the instability is presumably caused by buoyancy since the flow-oscillation frequency (f) or the Strouhal number, St = [fD/U(sub j)] scales with Ri. In momentum-dominated jets, however, the Strouhal number of the oscillating flow is relatively independent of the Ri. In this case, a local absolute instability is predicted in the potential core of low-density jets with S [= rho(sub j)/rho(sub a)] < 0.7, which agrees qualitatively with experiments. Although the instability in gas jets of high Richardson numbers is attributed to buoyancy, direct physical evidence has not been acquired in experiments. If the instability is indeed caused by buoyancy, the near-field flow structure of the jet will change significantly when the buoyancy is removed, for example, in the microgravity environment. Thus, quantitative data on the spatial and temporal evolutions of the instability, length and time scale of the oscillating mode and its effects on the mean flow and breakdown of the potential core are needed in normal and microgravity to delineate gravitational effects in buoyant jets. In momentum dominated low-density jets, the instability is speculated to originate in the

  10. Modeling absolute differences in life expectancy with a censored skew-normal regression approach

    PubMed Central

    Clough-Gorr, Kerri; Zwahlen, Marcel

    2015-01-01

    Parameter estimates from commonly used multivariable parametric survival regression models do not directly quantify differences in years of life expectancy. Gaussian linear regression models give results in terms of absolute mean differences, but are not appropriate in modeling life expectancy, because in many situations time to death has a negative skewed distribution. A regression approach using a skew-normal distribution would be an alternative to parametric survival models in the modeling of life expectancy, because parameter estimates can be interpreted in terms of survival time differences while allowing for skewness of the distribution. In this paper we show how to use the skew-normal regression so that censored and left-truncated observations are accounted for. With this we model differences in life expectancy using data from the Swiss National Cohort Study and from official life expectancy estimates and compare the results with those derived from commonly used survival regression models. We conclude that a censored skew-normal survival regression approach for left-truncated observations can be used to model differences in life expectancy across covariates of interest. PMID:26339544

  11. Parametric vs. non-parametric statistics of low resolution electromagnetic tomography (LORETA).

    PubMed

    Thatcher, R W; North, D; Biver, C

    2005-01-01

    This study compared the relative statistical sensitivity of non-parametric and parametric statistics of 3-dimensional current sources as estimated by the EEG inverse solution Low Resolution Electromagnetic Tomography (LORETA). One would expect approximately 5% false positives (classification of a normal as abnormal) at the P < .025 level of probability (two tailed test) and approximately 1% false positives at the P < .005 level. EEG digital samples (2 second intervals sampled 128 Hz, 1 to 2 minutes eyes closed) from 43 normal adult subjects were imported into the Key Institute's LORETA program. We then used the Key Institute's cross-spectrum and the Key Institute's LORETA output files (*.lor) as the 2,394 gray matter pixel representation of 3-dimensional currents at different frequencies. The mean and standard deviation *.lor files were computed for each of the 2,394 gray matter pixels for each of the 43 subjects. Tests of Gaussianity and different transforms were computed in order to best approximate a normal distribution for each frequency and gray matter pixel. The relative sensitivity of parametric vs. non-parametric statistics were compared using a "leave-one-out" cross validation method in which individual normal subjects were withdrawn and then statistically classified as being either normal or abnormal based on the remaining subjects. Log10 transforms approximated Gaussian distribution in the range of 95% to 99% accuracy. Parametric Z score tests at P < .05 cross-validation demonstrated an average misclassification rate of approximately 4.25%, and range over the 2,394 gray matter pixels was 27.66% to 0.11%. At P < .01 parametric Z score cross-validation false positives were 0.26% and ranged from 6.65% to 0% false positives. The non-parametric Key Institute's t-max statistic at P < .05 had an average misclassification error rate of 7.64% and ranged from 43.37% to 0.04% false positives. The nonparametric t-max at P < .01 had an average misclassification rate

  12. Parametrization of DFTB3/3OB for Magnesium and Zinc for Chemical and Biological Applications

    PubMed Central

    2015-01-01

    We report the parametrization of the approximate density functional theory, DFTB3, for magnesium and zinc for chemical and biological applications. The parametrization strategy follows that established in previous work that parametrized several key main group elements (O, N, C, H, P, and S). This 3OB set of parameters can thus be used to study many chemical and biochemical systems. The parameters are benchmarked using both gas-phase and condensed-phase systems. The gas-phase results are compared to DFT (mostly B3LYP), ab initio (MP2 and G3B3), and PM6, as well as to a previous DFTB parametrization (MIO). The results indicate that DFTB3/3OB is particularly successful at predicting structures, including rather complex dinuclear metalloenzyme active sites, while being semiquantitative (with a typical mean absolute deviation (MAD) of ∼3–5 kcal/mol) for energetics. Single-point calculations with high-level quantum mechanics (QM) methods generally lead to very satisfying (a typical MAD of ∼1 kcal/mol) energetic properties. DFTB3/MM simulations for solution and two enzyme systems also lead to encouraging structural and energetic properties in comparison to available experimental data. The remaining limitations of DFTB3, such as the treatment of interaction between metal ions and highly charged/polarizable ligands, are also discussed. PMID:25178644

  13. Beam-plasma instabilities and the beam-plasma discharge

    NASA Technical Reports Server (NTRS)

    Kellogg, P. J.; Boswell, R. W.

    1986-01-01

    Using a new waves on magnetized beams and turbulence (WOMBAT) 0-450 eV electron gun, measurements bearing on the generation of beam-plasma discharge (BPD) are made. The new gun has a narrower divergence angle than the old, and the BPD ignition current is found to be proportional to the cross-sectional area of the plasma. The high-frequency instabilities are identified with the two Trivelpiece-Gould modes, (1959). The upper frequency is identified as a Cerenkov resonance with the upper Trivelpiece-Gould mode, and the lower frequency with a cyclotron resonance with the lower mode, in agreement with theoretical expectations. Convective growth rates are found to be small. A mechanism involving the conversion of a convective instability to an absolute one by trapping of the unstable waves in the density perturbations of the low-frequency waves, is suggested for the low-frequency wave control of the onset of the high frequency precursors to the BPD.

  14. The use of instability to train the core musculature.

    PubMed

    Behm, David G; Drinkwater, Eric J; Willardson, Jeffrey M; Cowley, Patrick M

    2010-02-01

    Training of the trunk or core muscles for enhanced health, rehabilitation, and athletic performance has received renewed emphasis. Instability resistance exercises have become a popular means of training the core and improving balance. Whether instability resistance training is as, more, or less effective than traditional ground-based resistance training is not fully resolved. The purpose of this review is to address the effectiveness of instability resistance training for athletic, nonathletic, and rehabilitation conditioning. The anatomical core is defined as the axial skeleton and all soft tissues with a proximal attachment on the axial skeleton. Spinal stability is an interaction of passive and active muscle and neural subsystems. Training programs must prepare athletes for a wide variety of postures and external forces, and should include exercises with a destabilizing component. While unstable devices have been shown to be effective in decreasing the incidence of low back pain and increasing the sensory efficiency of soft tissues, they are not recommended as the primary exercises for hypertrophy, absolute strength, or power, especially in trained athletes. For athletes, ground-based free-weight exercises with moderate levels of instability should form the foundation of exercises to train the core musculature. Instability resistance exercises can play an important role in periodization and rehabilitation, and as alternative exercises for the recreationally active individual with less interest or access to ground-based free-weight exercises. Based on the relatively high proportion of type I fibers, the core musculature might respond well to multiple sets with high repetitions (e.g., >15 per set); however, a particular sport may necessitate fewer repetitions.

  15. DC dynamic pull-in instability of a dielectric elastomer balloon: an energy-based approach

    NASA Astrophysics Data System (ADS)

    Sharma, Atul Kumar; Arora, Nitesh; Joglekar, M. M.

    2018-03-01

    This paper reports an energy-based method for the dynamic pull-in instability analysis of a spherical dielectric elastomer (DE) balloon subjected to a quasi-statically applied inflation pressure and a Heaviside step voltage across the balloon wall. The proposed technique relies on establishing the energy balance at the point of maximum stretch in an oscillation cycle, followed by the imposition of an instability condition for extracting the threshold parameters. The material models of the Ogden family are employed for describing the hyperelasticity of the balloon. The accuracy of the critical dynamic pull-in parameters is established by examining the saddle-node bifurcation in the transient response of the balloon obtained by integrating numerically the equation of motion, derived using the Euler-Lagrange equation. The parametric study brings out the effect of inflation pressure on the onset of the pull-in instability in the DE balloon. A quantitative comparison between the static and dynamic pull-in parameters at four different levels of the inflation pressure is presented. The results indicate that the dynamic pull-in instability gets triggered at electric fields that are lower than those corresponding to the static instability. The results of the present investigation can find potential use in the design and development of the balloon actuators subjected to transient loading. The method developed is versatile and can be used in the dynamic instability analysis of other conservative systems of interest.

  16. DC dynamic pull-in instability of a dielectric elastomer balloon: an energy-based approach.

    PubMed

    Sharma, Atul Kumar; Arora, Nitesh; Joglekar, M M

    2018-03-01

    This paper reports an energy-based method for the dynamic pull-in instability analysis of a spherical dielectric elastomer (DE) balloon subjected to a quasi-statically applied inflation pressure and a Heaviside step voltage across the balloon wall. The proposed technique relies on establishing the energy balance at the point of maximum stretch in an oscillation cycle, followed by the imposition of an instability condition for extracting the threshold parameters. The material models of the Ogden family are employed for describing the hyperelasticity of the balloon. The accuracy of the critical dynamic pull-in parameters is established by examining the saddle-node bifurcation in the transient response of the balloon obtained by integrating numerically the equation of motion, derived using the Euler-Lagrange equation. The parametric study brings out the effect of inflation pressure on the onset of the pull-in instability in the DE balloon. A quantitative comparison between the static and dynamic pull-in parameters at four different levels of the inflation pressure is presented. The results indicate that the dynamic pull-in instability gets triggered at electric fields that are lower than those corresponding to the static instability. The results of the present investigation can find potential use in the design and development of the balloon actuators subjected to transient loading. The method developed is versatile and can be used in the dynamic instability analysis of other conservative systems of interest.

  17. Summarizing techniques that combine three non-parametric scores to detect disease-associated 2-way SNP-SNP interactions.

    PubMed

    Sengupta Chattopadhyay, Amrita; Hsiao, Ching-Lin; Chang, Chien Ching; Lian, Ie-Bin; Fann, Cathy S J

    2014-01-01

    Identifying susceptibility genes that influence complex diseases is extremely difficult because loci often influence the disease state through genetic interactions. Numerous approaches to detect disease-associated SNP-SNP interactions have been developed, but none consistently generates high-quality results under different disease scenarios. Using summarizing techniques to combine a number of existing methods may provide a solution to this problem. Here we used three popular non-parametric methods-Gini, absolute probability difference (APD), and entropy-to develop two novel summary scores, namely principle component score (PCS) and Z-sum score (ZSS), with which to predict disease-associated genetic interactions. We used a simulation study to compare performance of the non-parametric scores, the summary scores, the scaled-sum score (SSS; used in polymorphism interaction analysis (PIA)), and the multifactor dimensionality reduction (MDR). The non-parametric methods achieved high power, but no non-parametric method outperformed all others under a variety of epistatic scenarios. PCS and ZSS, however, outperformed MDR. PCS, ZSS and SSS displayed controlled type-I-errors (<0.05) compared to GS, APDS, ES (>0.05). A real data study using the genetic-analysis-workshop 16 (GAW 16) rheumatoid arthritis dataset identified a number of interesting SNP-SNP interactions. © 2013 Elsevier B.V. All rights reserved.

  18. Adaptive and Nonadaptive Feedback Control of Global Instabilities with Application to a Heated 2-D Jet

    DTIC Science & Technology

    1992-04-01

    Hannemann & Oertel (1989) and many others. If the the mean flow is weakly nonparallel, i.e. evolves slowly on the scale of a typical instability wave... HANNEMANN , K. & OERTEL, H. Jr. 1989 Numerical simulation of the absolutely and convectively unstable wake. J. Fluid Mech. 199, 55-88. HUERRE, P. & MONKEWITZ

  19. Transverse mode coupling instability threshold with space charge and different wakefields

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Balbekov, V.

    Transverse mode coupling instability of a bunch with space charge and wake field is considered in frameworks of the boxcar model. Eigenfunctions of the bunch without wake are used as the basis for solution of the equations with the wake field included. Dispersion equation for the bunch eigentunes is obtained in the form of an infinite continued fraction. It is shown that influence of space charge on the instability essentially depends on the wake sign. In particular, threshold of the negative wake increases in absolute value until the space charge tune shift is rather small, and goes to zero atmore » higher space charge. The explanation of this behavior is developed by analysis of the bunch spectrum. As a result, a comparison of the results with published articles is represented.« less

  20. Transverse mode coupling instability threshold with space charge and different wakefields

    DOE PAGES

    Balbekov, V.

    2017-03-10

    Transverse mode coupling instability of a bunch with space charge and wake field is considered in frameworks of the boxcar model. Eigenfunctions of the bunch without wake are used as the basis for solution of the equations with the wake field included. Dispersion equation for the bunch eigentunes is obtained in the form of an infinite continued fraction. It is shown that influence of space charge on the instability essentially depends on the wake sign. In particular, threshold of the negative wake increases in absolute value until the space charge tune shift is rather small, and goes to zero atmore » higher space charge. The explanation of this behavior is developed by analysis of the bunch spectrum. As a result, a comparison of the results with published articles is represented.« less

  1. Multiple Frequency Parametric Sonar

    DTIC Science & Technology

    2015-09-28

    300003 1 MULTIPLE FREQUENCY PARAMETRIC SONAR STATEMENT OF GOVERNMENT INTEREST [0001] The invention described herein may be manufactured and...a method for increasing the bandwidth of a parametric sonar system by using multiple primary frequencies rather than only two primary frequencies...2) Description of Prior Art [0004] Parametric sonar generates narrow beams at low frequencies by projecting sound at two distinct primary

  2. Fundamental cavity impedance and longitudinal coupled-bunch instabilities at the High Luminosity Large Hadron Collider

    NASA Astrophysics Data System (ADS)

    Baudrenghien, P.; Mastoridis, T.

    2017-01-01

    The interaction between beam dynamics and the radio frequency (rf) station in circular colliders is complex and can lead to longitudinal coupled-bunch instabilities at high beam currents. The excitation of the cavity higher order modes is traditionally damped using passive devices. But the wakefield developed at the cavity fundamental frequency falls in the frequency range of the rf power system and can, in theory, be compensated by modulating the generator drive. Such a regulation is the responsibility of the low-level rf (llrf) system that measures the cavity field (or beam current) and generates the rf power drive. The Large Hadron Collider (LHC) rf was designed for the nominal LHC parameter of 0.55 A DC beam current. At 7 TeV the synchrotron radiation damping time is 13 hours. Damping of the instability growth rates due to the cavity fundamental (400.789 MHz) can only come from the synchrotron tune spread (Landau damping) and will be very small (time constant in the order of 0.1 s). In this work, the ability of the present llrf compensation to prevent coupled-bunch instabilities with the planned high luminosity LHC (HiLumi LHC) doubling of the beam current to 1.1 A DC is investigated. The paper conclusions are based on the measured performances of the present llrf system. Models of the rf and llrf systems were developed at the LHC start-up. Following comparisons with measurements, the system was parametrized using these models. The parametric model then provides a more realistic estimation of the instability growth rates than an ideal model of the rf blocks. With this modeling approach, the key rf settings can be varied around their set value allowing for a sensitivity analysis (growth rate sensitivity to rf and llrf parameters). Finally, preliminary measurements from the LHC at 0.44 A DC are presented to support the conclusions of this work.

  3. Teaching Absolute Value Meaningfully

    ERIC Educational Resources Information Center

    Wade, Angela

    2012-01-01

    What is the meaning of absolute value? And why do teachers teach students how to solve absolute value equations? Absolute value is a concept introduced in first-year algebra and then reinforced in later courses. Various authors have suggested instructional methods for teaching absolute value to high school students (Wei 2005; Stallings-Roberts…

  4. Knee motion variability in patients with knee osteoarthritis: the effect of self-reported instability

    PubMed Central

    Gustafson, Jonathan A.; Robinson, Megan E.; Fitzgerald, G. Kelley; Tashman, Scott; Farrokhi, Shawn

    2015-01-01

    Background Knee osteoarthritis has been previously associated with a stereotypical knee-stiffening gait pattern and reduced knee joint motion variability due to increased antagonist muscle co-contractions and smaller utilized arc of motion during gait. However, episodic self-reported instability may be a sign of excessive motion variability for a large subgroup of patients with knee osteoarthritis. The objective of this work was to evaluate the differences in knee joint motion variability during gait in patients with knee osteoarthritis with and without self-reported instability compared to a control group of older adults with asymptomatic knees. Methods Forty-three subjects, 8 with knee osteoarthritis but no reports of instability (stable), 11 with knee osteoarthritis and self-reported instability (unstable), and 24 without knee osteoarthritis or instability (control) underwent Dynamic Stereo X-ray analysis during a decline gait task on a treadmill. Knee motion variability was assessed using parametric phase plots during the loading response phase of decline gait. Findings The stable group demonstrated decreased sagittal-plane motion variability compared to the control group (p=0.04), while the unstable group demonstrated increased sagittal-plane motion variability compared to the control (p=0.003) and stable groups (p<0.001). The unstable group also demonstrated increased anterior-posterior joint contact point motion variability for the medial tibiofemoral compartment compared to the control (p=0.03) and stable groups (p=0.03). Interpretation The finding of decreased knee motion variability in patients with knee osteoarthritis without self-reported instability supports previous research. However, presence of self-reported instability is associated with increased knee motion variability in patients with knee osteoarthritis and warrants further investigation. PMID:25796536

  5. Tinker-OpenMM: Absolute and relative alchemical free energies using AMOEBA on GPUs.

    PubMed

    Harger, Matthew; Li, Daniel; Wang, Zhi; Dalby, Kevin; Lagardère, Louis; Piquemal, Jean-Philip; Ponder, Jay; Ren, Pengyu

    2017-09-05

    The capabilities of the polarizable force fields for alchemical free energy calculations have been limited by the high computational cost and complexity of the underlying potential energy functions. In this work, we present a GPU-based general alchemical free energy simulation platform for polarizable potential AMOEBA. Tinker-OpenMM, the OpenMM implementation of the AMOEBA simulation engine has been modified to enable both absolute and relative alchemical simulations on GPUs, which leads to a ∼200-fold improvement in simulation speed over a single CPU core. We show that free energy values calculated using this platform agree with the results of Tinker simulations for the hydration of organic compounds and binding of host-guest systems within the statistical errors. In addition to absolute binding, we designed a relative alchemical approach for computing relative binding affinities of ligands to the same host, where a special path was applied to avoid numerical instability due to polarization between the different ligands that bind to the same site. This scheme is general and does not require ligands to have similar scaffolds. We show that relative hydration and binding free energy calculated using this approach match those computed from the absolute free energy approach. © 2017 Wiley Periodicals, Inc. © 2017 Wiley Periodicals, Inc.

  6. On the tertiary instability formalism of zonal flows in magnetized plasmas

    NASA Astrophysics Data System (ADS)

    Rath, F.; Peeters, A. G.; Buchholz, R.; Grosshauser, S. R.; Seiferling, F.; Weikl, A.

    2018-05-01

    This paper investigates the so-called tertiary instabilities driven by the zonal flow in gyro-kinetic tokamak core turbulence. The Kelvin Helmholtz instability is first considered within a 2D fluid model and a threshold in the zonal flow wave vector kZF>kZF,c for instability is found. This critical scale is related to the breaking of the rotational symmetry by flux-surfaces, which is incorporated into the modified adiabatic electron response. The stability of undamped Rosenbluth-Hinton zonal flows is then investigated in gyro-kinetic simulations. Absolute instability, in the sense that the threshold zonal flow amplitude tends towards zero, is found above a zonal flow wave vector kZF,cρi≈1.3 ( ρi is the ion thermal Larmor radius), which is comparable to the 2D fluid results. Large scale zonal flows with kZFinstability is examined. Although temperature perturbations favor instability, the realistic values of gradient-driven gyro-kinetic simulations still lie deeply in the stable parameter regime. Therefore, the relevance of the tertiary instability as a saturation mechanism to the zonal flow amplitude is questioned, as most of the zonal flow intensity is concentrated in modes satisfying kZF≪kZF,c as well as ωE×B≪ωE×B,c .

  7. Resonant Drag Instabilities in protoplanetary disks: the streaming instability and new, faster-growing instabilities

    NASA Astrophysics Data System (ADS)

    Squire, Jonathan; Hopkins, Philip F.

    2018-04-01

    We identify and study a number of new, rapidly growing instabilities of dust grains in protoplanetary disks, which may be important for planetesimal formation. The study is based on the recognition that dust-gas mixtures are generically unstable to a Resonant Drag Instability (RDI), whenever the gas, absent dust, supports undamped linear modes. We show that the "streaming instability" is an RDI associated with epicyclic oscillations; this provides simple interpretations for its mechanisms and accurate analytic expressions for its growth rates and fastest-growing wavelengths. We extend this analysis to more general dust streaming motions and other waves, including buoyancy and magnetohydrodynamic oscillations, finding various new instabilities. Most importantly, we identify the disk "settling instability," which occurs as dust settles vertically into the midplane of a rotating disk. For small grains, this instability grows many orders of magnitude faster than the standard streaming instability, with a growth rate that is independent of grain size. Growth timescales for realistic dust-to-gas ratios are comparable to the disk orbital period, and the characteristic wavelengths are more than an order of magnitude larger than the streaming instability (allowing the instability to concentrate larger masses). This suggests that in the process of settling, dust will band into rings then filaments or clumps, potentially seeding dust traps, high-metallicity regions that in turn seed the streaming instability, or even overdensities that coagulate or directly collapse to planetesimals.

  8. An Interactive Software for Conceptual Wing Flutter Analysis and Parametric Study

    NASA Technical Reports Server (NTRS)

    Mukhopadhyay, Vivek

    1996-01-01

    An interactive computer program was developed for wing flutter analysis in the conceptual design stage. The objective was to estimate the flutter instability boundary of a flexible cantilever wing, when well-defined structural and aerodynamic data are not available, and then study the effect of change in Mach number, dynamic pressure, torsional frequency, sweep, mass ratio, aspect ratio, taper ratio, center of gravity, and pitch inertia, to guide the development of the concept. The software was developed for Macintosh or IBM compatible personal computers, on MathCad application software with integrated documentation, graphics, data base and symbolic mathematics. The analysis method was based on non-dimensional parametric plots of two primary flutter parameters, namely Regier number and Flutter number, with normalization factors based on torsional stiffness, sweep, mass ratio, taper ratio, aspect ratio, center of gravity location and pitch inertia radius of gyration. The parametric plots were compiled in a Vought Corporation report from a vast data base of past experiments and wind-tunnel tests. The computer program was utilized for flutter analysis of the outer wing of a Blended-Wing-Body concept, proposed by McDonnell Douglas Corp. Using a set of assumed data, preliminary flutter boundary and flutter dynamic pressure variation with altitude, Mach number and torsional stiffness were determined.

  9. Rephasing invariant parametrization of flavor mixing

    NASA Astrophysics Data System (ADS)

    Lee, Tae-Hun

    A new rephasing invariant parametrization for the 3 x 3 CKM matrix, called (x, y) parametrization, is introduced and the properties and applications of the parametrization are discussed. The overall phase condition leads this parametrization to have only six rephsing invariant parameters and two constraints. Its simplicity and regularity become apparent when it is applied to the one-loop RGE (renormalization group equations) for the Yukawa couplings. The implications of this parametrization for unification of the Yukawa couplings are also explored.

  10. Easy Absolute Values? Absolutely

    ERIC Educational Resources Information Center

    Taylor, Sharon E.; Mittag, Kathleen Cage

    2015-01-01

    The authors teach a problem-solving course for preservice middle-grades education majors that includes concepts dealing with absolute-value computations, equations, and inequalities. Many of these students like mathematics and plan to teach it, so they are adept at symbolic manipulations. Getting them to think differently about a concept that they…

  11. Parametric Inlet Tested in Glenn's 10- by 10-Foot Supersonic Wind Tunnel

    NASA Technical Reports Server (NTRS)

    Slater, John W.; Davis, David O.; Solano, Paul A.

    2005-01-01

    The Parametric Inlet is an innovative concept for the inlet of a gas-turbine propulsion system for supersonic aircraft. The concept approaches the performance of past inlet concepts, but with less mechanical complexity, lower weight, and greater aerodynamic stability and safety. Potential applications include supersonic cruise aircraft and missiles. The Parametric Inlet uses tailored surfaces to turn the incoming supersonic flow inward toward an axis of symmetry. The terminal shock spans the opening of the subsonic diffuser leading to the engine. The external cowl area is smaller, which reduces cowl drag. The use of only external supersonic compression avoids inlet unstart--an unsafe shock instability present in previous inlet designs that use internal supersonic compression. This eliminates the need for complex mechanical systems to control unstart, which reduces weight. The conceptual design was conceived by TechLand Research, Inc. (North Olmsted, OH), which received funding through NASA s Small-Business Innovation Research program. The Boeing Company (Seattle, WA) also participated in the conceptual design. The NASA Glenn Research Center became involved starting with the preliminary design of a model for testing in Glenn s 10- by 10-Foot Supersonic Wind Tunnel (10 10 SWT). The inlet was sized for a speed of Mach 2.35 while matching requirements of an existing cold pipe used in previous inlet tests. The parametric aspects of the model included interchangeable components for different cowl lip, throat slot, and sidewall leading-edge shapes and different vortex generator configurations. Glenn researchers used computational fluid dynamics (CFD) tools for three-dimensional, turbulent flow analysis to further refine the aerodynamic design.

  12. Three-dimensional instability analysis of boundary layers perturbed by streamwise vortices

    NASA Astrophysics Data System (ADS)

    Martín, Juan A.; Paredes, Pedro

    2017-12-01

    A parametric study is presented for the incompressible, zero-pressure-gradient flat-plate boundary layer perturbed by streamwise vortices. The vortices are placed near the leading edge and model the vortices induced by miniature vortex generators (MVGs), which consist in a spanwise-periodic array of small winglet pairs. The introduction of MVGs has been experimentally proved to be a successful passive flow control strategy for delaying laminar-turbulent transition caused by Tollmien-Schlichting (TS) waves. The counter-rotating vortex pairs induce non-modal, transient growth that leads to a streaky boundary layer flow. The initial intensity of the vortices and their wall-normal distances to the plate wall are varied with the aim of finding the most effective location for streak generation and the effect on the instability characteristics of the perturbed flow. The study includes the solution of the three-dimensional, stationary, streaky boundary layer flows by using the boundary region equations, and the three-dimensional instability analysis of the resulting basic flows by using the plane-marching parabolized stability equations. Depending on the initial circulation and positioning of the vortices, planar TS waves are stabilized by the presence of the streaks, resulting in a reduction in the region of instability and shrink of the neutral stability curve. For a fixed maximum streak amplitude below the threshold for secondary instability (SI), the most effective wall-normal distance for the formation of the streaks is found to also offer the most stabilization of TS waves. By setting a maximum streak amplitude above the threshold for SI, sinuous shear layer modes become unstable, as well as another instability mode that is amplified in a narrow region near the vortex inlet position.

  13. Absolutely relative or relatively absolute: violations of value invariance in human decision making.

    PubMed

    Teodorescu, Andrei R; Moran, Rani; Usher, Marius

    2016-02-01

    Making decisions based on relative rather than absolute information processing is tied to choice optimality via the accumulation of evidence differences and to canonical neural processing via accumulation of evidence ratios. These theoretical frameworks predict invariance of decision latencies to absolute intensities that maintain differences and ratios, respectively. While information about the absolute values of the choice alternatives is not necessary for choosing the best alternative, it may nevertheless hold valuable information about the context of the decision. To test the sensitivity of human decision making to absolute values, we manipulated the intensities of brightness stimuli pairs while preserving either their differences or their ratios. Although asked to choose the brighter alternative relative to the other, participants responded faster to higher absolute values. Thus, our results provide empirical evidence for human sensitivity to task irrelevant absolute values indicating a hard-wired mechanism that precedes executive control. Computational investigations of several modelling architectures reveal two alternative accounts for this phenomenon, which combine absolute and relative processing. One account involves accumulation of differences with activation dependent processing noise and the other emerges from accumulation of absolute values subject to the temporal dynamics of lateral inhibition. The potential adaptive role of such choice mechanisms is discussed.

  14. Instability of surface electron cyclotron TM-modes influenced by non-monochromatic alternating electric field

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Girka, I. O., E-mail: igorgirka@karazin.ua; Girka, V. O.; Sydora, R. D.

    2016-06-15

    The influence of non-monochromaticity of an external alternating electric field on excitation of TM eigenmodes at harmonics of the electron cyclotron frequency is considered here. These TM-modes propagate along the plasma interface in a metal waveguide. An external static constant magnetic field is oriented perpendicularly to the plasma interface. The problem is solved theoretically using the kinetic Vlasov-Boltzmann equation for description of plasma particles motion and the Maxwell equations for description of the electromagnetic mode fields. The external alternating electric field is supposed to be a superposition of two waves, whose amplitudes are different and their frequencies correlate as 2:1.more » An infinite set of equations for electric field harmonics of these modes is derived with the aid of nonlinear boundary conditions. This set is solved using the wave packet approach consisting of the main harmonic frequency and two nearest satellite temporal harmonics. Analytical studies of the obtained set of equations allow one to find two different regimes of parametric instability, namely, enhancement and suppression of the instability. Numerical analysis of the instability is carried out for the three first electron cyclotron harmonics.« less

  15. Combined non-parametric and parametric approach for identification of time-variant systems

    NASA Astrophysics Data System (ADS)

    Dziedziech, Kajetan; Czop, Piotr; Staszewski, Wieslaw J.; Uhl, Tadeusz

    2018-03-01

    Identification of systems, structures and machines with variable physical parameters is a challenging task especially when time-varying vibration modes are involved. The paper proposes a new combined, two-step - i.e. non-parametric and parametric - modelling approach in order to determine time-varying vibration modes based on input-output measurements. Single-degree-of-freedom (SDOF) vibration modes from multi-degree-of-freedom (MDOF) non-parametric system representation are extracted in the first step with the use of time-frequency wavelet-based filters. The second step involves time-varying parametric representation of extracted modes with the use of recursive linear autoregressive-moving-average with exogenous inputs (ARMAX) models. The combined approach is demonstrated using system identification analysis based on the experimental mass-varying MDOF frame-like structure subjected to random excitation. The results show that the proposed combined method correctly captures the dynamics of the analysed structure, using minimum a priori information on the model.

  16. Oscillations and instabilities of fast and differentially rotating relativistic stars

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Krueger, Christian; Gaertig, Erich; Kokkotas, Kostas D.

    2010-04-15

    We study nonaxisymmetric oscillations of rapidly and differentially rotating relativistic stars in the Cowling approximation. Our equilibrium models are sequences of relativistic polytropes, where the differential rotation is described by the relativistic j-constant law. We show that a small degree of differential rotation raises the critical rotation value for which the quadrupolar f-mode becomes prone to the Chandrasekhar-Friedman-Schutz (CFS) instability, while the critical value of T/|W| at the mass-shedding limit is raised even more. For stiffer equations of state these effects are even more pronounced. When increasing differential rotation further to a high degree, the neutral point of the CFSmore » instability first reaches a local maximum and is lowered afterwards. For stars with a rather high compactness we find that for a large degree of differential rotation the absolute value of the critical T/|W| is below the corresponding value for rigid rotation. We conclude that the onset of the CFS instability is eased for a small degree of differential rotation and for a large degree at least in stars with a higher compactness. Moreover, we were able to extract the eigenfrequencies and the eigenfunctions of r-modes for differentially rotating stars and our simulations show a good qualitative agreement with previous Newtonian results.« less

  17. Parametric Cooling of Ultracold Atoms

    NASA Astrophysics Data System (ADS)

    Boguslawski, Matthew; Bharath, H. M.; Barrios, Maryrose; Chapman, Michael

    2017-04-01

    An oscillator is characterized by a restoring force which determines the natural frequency at which oscillations occur. The amplitude and phase-noise of these oscillations can be amplified or squeezed by modulating the magnitude of this force (e.g. the stiffness of the spring) at twice the natural frequency. This is parametric excitation; a long-studied phenomena in both the classical and quantum regimes. Parametric cooling, or the parametric squeezing of thermo-mechanical noise in oscillators has been studied in micro-mechanical oscillators and trapped ions. We study parametric cooling in ultracold atoms. This method shows a modest reduction of the variance of atomic momenta, and can be easily employed with pre-existing controls in many experiments. Parametric cooling is comparable to delta-kicked cooling, sharing similar limitations. We expect this cooling to find utility in microgravity experiments where the experiment duration is limited by atomic free expansion.

  18. Engine-Scale Combustor Rig Designed, Fabricated, and Tested for Combustion Instability Control Research

    NASA Technical Reports Server (NTRS)

    DeLaat, John C.; Breisacher, Kevin J.

    2000-01-01

    configuration and engine configuration had similar longitudinal acoustic characteristics, increasing the likelihood that the engine instability would be replicated in the rig. Parametric analytical studies were performed to understand the influence of geometry and condition variations and to establish a combustion test plan. Cold-flow experiments verified that the design values of area and flow distributions were obtained. Combustion test results established the existence of a longitudinal combustion instability in the 500-Hz range with a measured amplitude approximating that observed in the engine. Modifications to the rig configuration during testing also showed the potential for injector independence. The research combustor rig was developed in partnership with Pratt & Whitney of West Palm Beach, Florida, and United Technologies Research Center of East Hartford, Connecticut. Experimental testing of the combustor rig took place at United Technologies Research Center.

  19. Absolute biological needs.

    PubMed

    McLeod, Stephen

    2014-07-01

    Absolute needs (as against instrumental needs) are independent of the ends, goals and purposes of personal agents. Against the view that the only needs are instrumental needs, David Wiggins and Garrett Thomson have defended absolute needs on the grounds that the verb 'need' has instrumental and absolute senses. While remaining neutral about it, this article does not adopt that approach. Instead, it suggests that there are absolute biological needs. The absolute nature of these needs is defended by appeal to: their objectivity (as against mind-dependence); the universality of the phenomenon of needing across the plant and animal kingdoms; the impossibility that biological needs depend wholly upon the exercise of the abilities characteristic of personal agency; the contention that the possession of biological needs is prior to the possession of the abilities characteristic of personal agency. Finally, three philosophical usages of 'normative' are distinguished. On two of these, to describe a phenomenon or claim as 'normative' is to describe it as value-dependent. A description of a phenomenon or claim as 'normative' in the third sense does not entail such value-dependency, though it leaves open the possibility that value depends upon the phenomenon or upon the truth of the claim. It is argued that while survival needs (or claims about them) may well be normative in this third sense, they are normative in neither of the first two. Thus, the idea of absolute need is not inherently normative in either of the first two senses. © 2013 John Wiley & Sons Ltd.

  20. Experiments on the Richtmyer-Meshkov Instability of Incompressible Fluids

    NASA Technical Reports Server (NTRS)

    Jacobs, J.; Niederhaus, C.

    2000-01-01

    with an initial sinusoidal perturbation. The amplitude of the disturbance during the experiment is measured and compared to theory. The results show good agreement (within 10%) with linear stability theory up to nondimensional amplitude ka = 0.7 (wavenumber x amplitude). These results hold true for an initial ka (before acceleration) of -0.7 less than ka less than -0.06, while the linear theory was developed for absolute value of ka much less than 1. In addition, a third order weakly nonlinear perturbation theory is shown to be accurate for amplitudes as large as ka = 1.3, even though the interface becomes double-valued at ka = 1.1. As time progresses, the vorticity on the interface concentrates, and the interface spirals around the alternating sign vortex centers to form a mushroom pattern. At higher Reynolds Number (based on circulation), an instability of the vortex cores has been observed. While time limitations of the apparatus prevent determination of a critical Reynolds Number, the lowest Reynolds Number this vortex instability has been observed at is 5000.

  1. Acoustic instability driven by cosmic-ray streaming

    NASA Technical Reports Server (NTRS)

    Begelman, Mitchell C.; Zweibel, Ellen G.

    1994-01-01

    We study the linear stability of compressional waves in a medium through which cosmic rays stream at the Alfven speed due to strong coupling with Alfven waves. Acoustic waves can be driven unstable by the cosmic-ray drift, provided that the streaming speed is sufficiently large compared to the thermal sound speed. Two effects can cause instability: (1) the heating of the thermal gas due to the damping of Alfven waves driven unstable by cosmic-ray streaming; and (2) phase shifts in the cosmic-ray pressure perturbation caused by the combination of cosmic-ray streaming and diffusion. The instability does not depend on the magnitude of the background cosmic-ray pressure gradient, and occurs whether or not cosmic-ray diffusion is important relative to streaming. When the cosmic-ray pressure is small compared to the gas pressure, or cosmic-ray diffusion is strong, the instability manifests itself as a weak overstability of slow magnetosonic waves. Larger cosmic-ray pressure gives rise to new hybrid modes, which can be strongly unstable in the limits of both weak and strong cosmic-ray diffusion and in the presence of thermal conduction. Parts of our analysis parallel earlier work by McKenzie & Webb (which were brought to our attention after this paper was accepted for publication), but our treatment of diffusive effects, thermal conduction, and nonlinearities represent significant extensions. Although the linear growth rate of instability is independent of the background cosmic-ray pressure gradient, the onset of nonlinear eff ects does depend on absolute value of DEL (vector differential operator) P(sub c). At the onset of nonlinearity the fractional amplitude of cosmic-ray pressure perturbations is delta P(sub C)/P(sub C) approximately (kL) (exp -1) much less than 1, where k is the wavenumber and L is the pressure scale height of the unperturbed cosmic rays. We speculate that the instability may lead to a mode of cosmic-ray transport in which plateaus of uniform cosmic

  2. Magnetorotational Instability in Eccentric Disks

    NASA Astrophysics Data System (ADS)

    Chan, Chi-Ho; Krolik, Julian H.; Piran, Tsvi

    2018-03-01

    Eccentric disks arise in such astrophysical contexts as tidal disruption events, but it is unknown whether the magnetorotational instability (MRI), which powers accretion in circular disks, operates in eccentric disks as well. We examine the linear evolution of unstratified, incompressible MRI in an eccentric disk orbiting a point mass. We consider vertical modes of wavenumber k on a background flow with uniform eccentricity e and vertical Alfvén speed {v}{{A}} along an orbit with mean motion n. We find two mode families, one with dominant magnetic components, the other with dominant velocity components. The former is unstable at {(1-e)}3 {f}2≲ 3, where f\\equiv {{kv}}{{A}}/n, and the latter at e ≳ 0.8. For f 2 ≲ 3, MRI behaves much like in circular disks, but the growth per orbit declines slowly with increasing e; for f 2 ≳ 3, modes grow by parametric amplification, which is resonant for 0 < e ≪ 1. MRI growth and the attendant angular momentum and energy transport happen chiefly near pericenter, where orbital shear dominates magnetic tension.

  3. Thin-film-induced morphological instabilities over calcite surfaces

    PubMed Central

    Vesipa, R.; Camporeale, C.; Ridolfi, L.

    2015-01-01

    Precipitation of calcium carbonate from water films generates fascinating calcite morphologies that have attracted scientific interest over past centuries. Nowadays, speleothems are no longer known only for their beauty but they are also recognized to be precious records of past climatic conditions, and research aims to unveil and understand the mechanisms responsible for their morphological evolution. In this paper, we focus on crenulations, a widely observed ripple-like instability of the the calcite–water interface that develops orthogonally to the film flow. We expand a previous work providing new insights about the chemical and physical mechanisms that drive the formation of crenulations. In particular, we demonstrate the marginal role played by carbon dioxide transport in generating crenulation patterns, which are indeed induced by the hydrodynamic response of the free surface of the water film. Furthermore, we investigate the role of different environmental parameters, such as temperature, concentration of dissolved ions and wall slope. We also assess the convective/absolute nature of the crenulation instability. Finally, the possibility of using crenulation wavelength as a proxy of past flows is briefly discussed from a theoretical point of view. PMID:27547086

  4. Laser-driven interactions and resultant instabilities in materials with high dielectric constant

    NASA Astrophysics Data System (ADS)

    Rajpoot, Moolchandra; Dixit, Sanjay

    2015-07-01

    An analytical investigation of nonlinear interactions resulting in parametric amplification of acoustic wave is made by obtaining the dispersion relation using hydrodynamic model of inhomogeneous plasma by applying large static field at an arbitrary angle with the pump wave. The investigation shows that many early studies have neglected dependence of dielectric constant on deformation of materials but deformation of materials does infect depends on the dielectric constant of medium. Thus we have assumed to high dielectric material like BaTiO3 which resulted in substantially high growth rate of threshold electric field which opens a new dimension to study nonlinear interactions and instabilities.

  5. Interface Instabilities in the Interstellar Medium

    NASA Technical Reports Server (NTRS)

    Hunter, J. H., Jr.; Siopis, C.; Whitaker, R. W.; Lovelace, R. V. E.

    1995-01-01

    In the present communication, we reexamine two limiting cases of star-forming mechanisms involving self-gravity, thermodynamics, and velocity fields, that we believe must be ubiquitous in the ISM -- the generally oblique collision of supersonic gas streams or turbulent eddies. The general case of oblique collisions has not yet been examined. However, two limiting cases have been studied in detail: (1) The head-on collision of two identical gas streams that form dense, cool accretion shocks that become unstable and may form Jeans mass clouds, which subsequently undergo collapse. (2) Linearly unstable tangential velocity discontinuities, which result in Kelvin-Helmholtz (K-H) instabilities and related phenomena. The compressible K-H instabilities exhibit rich and unexpected behaviors. Moreover a new thermal-dynamic (T-D) mode was discovered that arises from the coupling of the perturbed thermal behavior and the unperturbed flow. The T-D mode has the curious characteristic that it may be strongly unstable to interface modes when the global modes in either medium are absolutely thermally stable. In the present communication additional models of case 1 are described and discussed, and self-gravity is added in the linear theory of tangential discontinuities, case 2. We prove that self-gravity fundamentally changes the behavior of interfacial modes -- density discontinuities (or steps) are inherently unstable on roughly the free-fall timescale of the denser medium to perturbations of all wavelengths.

  6. Electrostatic streaming instability modes in complex viscoelastic quantum plasmas

    NASA Astrophysics Data System (ADS)

    Karmakar, P. K.; Goutam, H. P.

    2016-11-01

    A generalized quantum hydrodynamic model is procedurally developed to investigate the electrostatic streaming instability modes in viscoelastic quantum electron-ion-dust plasma. Compositionally, inertialess electrons are anticipated to be degenerate quantum particles owing to their large de Broglie wavelengths. In contrast, inertial ions and dust particulates are treated in the same classical framework of linear viscoelastic fluids (non-Newtonian). It considers a dimensionality-dependent Bohmian quantum correction prefactor, γ = [(D - 2)/3D], in electron quantum dynamics, with D symbolizing the problem dimensionality. Applying a regular Fourier-formulaic plane-wave analysis around the quasi-neutral hydrodynamic equilibrium, two distinct instabilities are explored to exist. They stem in ion-streaming (relative to electrons and dust) and dust-streaming (relative to electrons and ions). Their stability is numerically illustrated in judicious parametric windows in both the hydrodynamic and kinetic regimes. The non-trivial influential roles by the relative streams, viscoelasticities, and correction prefactor are analyzed. It is seen that γ acts as a stabilizer for the ion-stream case only. The findings alongside new entailments, as special cases of realistic interest, corroborate well with the earlier predictions in plasma situations. Applicability of the analysis relevant in cosmic and astronomical environments of compact dwarf stars is concisely indicated.

  7. A Parametric k-Means Algorithm

    PubMed Central

    Tarpey, Thaddeus

    2007-01-01

    Summary The k points that optimally represent a distribution (usually in terms of a squared error loss) are called the k principal points. This paper presents a computationally intensive method that automatically determines the principal points of a parametric distribution. Cluster means from the k-means algorithm are nonparametric estimators of principal points. A parametric k-means approach is introduced for estimating principal points by running the k-means algorithm on a very large simulated data set from a distribution whose parameters are estimated using maximum likelihood. Theoretical and simulation results are presented comparing the parametric k-means algorithm to the usual k-means algorithm and an example on determining sizes of gas masks is used to illustrate the parametric k-means algorithm. PMID:17917692

  8. Progress in indirect and direct-drive planar experiments on hydrodynamic instabilities at the ablation front

    DOE PAGES

    Casner, A.; Masse, L.; Delorme, B.; ...

    2014-12-01

    Understanding and mitigating hydrodynamic instabilities and the fuel mix are the key elements for achieving ignition in Inertial Confinement Fusion. Cryogenic indirect-drive implosions on the National Ignition Facility have evidenced that the ablative Rayleigh-Taylor Instability (RTI) is a driver of the hot spot mix. This motivates the switch to a more flexible higher adiabat implosion design [O. A. Hurricane et al., Phys. Plasmas 21, 056313 (2014)]. The shell instability is also the main candidate for performance degradation in low-adiabat direct drive cryogenic implosions [Goncharov et al., Phys. Plasmas 21, 056315 (2014)]. This paper reviews recent results acquired in planar experimentsmore » performed on the OMEGA laser facility and devoted to the modeling and mitigation of hydrodynamic instabilities at the ablation front. In application to the indirect-drive scheme, we describe results obtained with a specific ablator composition such as the laminated ablator or a graded-dopant emulator. In application to the direct drive scheme, we discuss experiments devoted to the study of laser imprinted perturbations with special phase plates. The simulations of the Richtmyer-Meshkov phase reversal during the shock transit phase are challenging, and of crucial interest because this phase sets the seed of the RTI growth. Recent works were dedicated to increasing the accuracy of measurements of the phase inversion. We conclude by presenting a novel imprint mitigation mechanism based on the use of underdense foams. Lastly, the foams induce laser smoothing by parametric instabilities thus reducing the laser imprint on the CH foil.« less

  9. On the role of acoustic feedback in boundary-layer instability.

    PubMed

    Wu, Xuesong

    2014-07-28

    In this paper, the classical triple-deck formalism is employed to investigate two instability problems in which an acoustic feedback loop plays an essential role. The first concerns a subsonic boundary layer over a flat plate on which two well-separated roughness elements are present. A spatially amplifying Tollmien-Schlichting (T-S) wave between the roughness elements is scattered by the downstream roughness to emit a sound wave that propagates upstream and impinges on the upstream roughness to regenerate the T-S wave, thereby forming a closed feedback loop in the streamwise direction. Numerical calculations suggest that, at high Reynolds numbers and for moderate roughness heights, the long-range acoustic coupling may lead to absolute instability, which is characterized by self-sustained oscillations at discrete frequencies. The dominant peak frequency may jump from one value to another as the Reynolds number, or the distance between the roughness elements, is varied gradually. The second problem concerns the supersonic 'twin boundary layers' that develop along two well-separated parallel flat plates. The two boundary layers are in mutual interaction through the impinging and reflected acoustic waves. It is found that the interaction leads to a new instability that is absent in the unconfined boundary layer. © 2014 The Author(s) Published by the Royal Society. All rights reserved.

  10. Jasminum flexile flower absolute from India--a detailed comparison with three other jasmine absolutes.

    PubMed

    Braun, Norbert A; Kohlenberg, Birgit; Sim, Sherina; Meier, Manfred; Hammerschmidt, Franz-Josef

    2009-09-01

    Jasminum flexile flower absolute from the south of India and the corresponding vacuum headspace (VHS) sample of the absolute were analyzed using GC and GC-MS. Three other commercially available Indian jasmine absolutes from the species: J. sambac, J. officinale subsp. grandiflorum, and J. auriculatum and the respective VHS samples were used for comparison purposes. One hundred and twenty-one compounds were characterized in J. flexile flower absolute, with methyl linolate, benzyl salicylate, benzyl benzoate, (2E,6E)-farnesol, and benzyl acetate as the main constituents. A detailed olfactory evaluation was also performed.

  11. Long-range parametric amplification of THz wave with absorption loss exceeding parametric gain.

    PubMed

    Wang, Tsong-Dong; Huang, Yen-Chieh; Chuang, Ming-Yun; Lin, Yen-Hou; Lee, Ching-Han; Lin, Yen-Yin; Lin, Fan-Yi; Kitaeva, Galiya Kh

    2013-01-28

    Optical parametric mixing is a popular scheme to generate an idler wave at THz frequencies, although the THz wave is often absorbing in the nonlinear optical material. It is widely suggested that the useful material length for co-directional parametric mixing with strong THz-wave absorption is comparable to the THz-wave absorption length in the material. Here we show that, even in the limit of the absorption loss exceeding parametric gain, the THz idler wave can grows monotonically from optical parametric amplification over a much longer distance in a nonlinear optical material until pump depletion. The coherent production of the non-absorbing signal wave can assist the growth of the highly absorbing idler wave. We also show that, for the case of an equal input pump and signal in difference frequency generation, the quick saturation of the THz idler wave predicted from a much simplified and yet popular plane-wave model fails when fast diffraction of the THz wave from the co-propagating optical mixing waves is considered.

  12. Absolute nuclear material assay

    DOEpatents

    Prasad, Manoj K [Pleasanton, CA; Snyderman, Neal J [Berkeley, CA; Rowland, Mark S [Alamo, CA

    2012-05-15

    A method of absolute nuclear material assay of an unknown source comprising counting neutrons from the unknown source and providing an absolute nuclear material assay utilizing a model to optimally compare to the measured count distributions. In one embodiment, the step of providing an absolute nuclear material assay comprises utilizing a random sampling of analytically computed fission chain distributions to generate a continuous time-evolving sequence of event-counts by spreading the fission chain distribution in time.

  13. Absolute nuclear material assay

    DOEpatents

    Prasad, Manoj K [Pleasanton, CA; Snyderman, Neal J [Berkeley, CA; Rowland, Mark S [Alamo, CA

    2010-07-13

    A method of absolute nuclear material assay of an unknown source comprising counting neutrons from the unknown source and providing an absolute nuclear material assay utilizing a model to optimally compare to the measured count distributions. In one embodiment, the step of providing an absolute nuclear material assay comprises utilizing a random sampling of analytically computed fission chain distributions to generate a continuous time-evolving sequence of event-counts by spreading the fission chain distribution in time.

  14. Effects of Mean Flow Profiles on the Instability of a Low-Density Gas Jet Injected into a High-Density Gas

    NASA Technical Reports Server (NTRS)

    Vedantam, NandaKishore; Parthasarathy, Ramkumar N.

    2004-01-01

    The effects of the mean velocity profiles on the instability characteristics in the near-injector region of axisymmetric low density gas jets injected vertically upwards into a high-density gas medium were investigated using linear inviscid stability analysis. The flow was assumed to be isothermal and locally parallel. Three velocity profiles, signifying different changes in the mean velocity in the shear layer, were used in the analysis. The effects of the inhomogeneous shear layer and the Froude number (signifying the effects of gravity) on the instability for each set of mean profiles were delineated. At a large Froude number (negligible gravity), a critical density ratio was found for the three profiles at which the jet became absolutely unstable. The critical density ratio for each velocity profile was increased as the Froude number was reduced. A critical Froude number was found for the three sets of profiles, below which the jet was absolutely unstable for all the density ratios less than unity, which demarcated the jet flow into the momentum-driven regime and the buoyancy-driven regime.

  15. Cardiac-gated parametric images from 82 Rb PET from dynamic frames and direct 4D reconstruction.

    PubMed

    Germino, Mary; Carson, Richard E

    2018-02-01

    function of iteration. Convergence of direct reconstruction was slow with uniform initialization; lower bias was achieved in fewer iterations by initializing with the filtered indirect iteration 1 images. For most parameters and regions evaluated, the direct method achieved the same or lower absolute bias at matched iteration as the indirect method, with 23%-65% lower noise. Additionally, the direct method gave better contrast between the perfusion defect and surrounding normal tissue than the indirect method. Gated parametric images from the human dataset had comparable relative performance of indirect and direct, in terms of mean parameter values per iteration. Changes in myocardial wall thickness and blood pool size across gates were readily visible in the gated parametric images, with higher contrast between myocardium and left ventricle blood pool in parametric images than gated SUV images. Direct reconstruction can produce parametric images with less noise than the indirect method, opening the potential utility of gated parametric imaging for perfusion PET. © 2017 American Association of Physicists in Medicine.

  16. Hyperbolic and semi-parametric models in finance

    NASA Astrophysics Data System (ADS)

    Bingham, N. H.; Kiesel, Rüdiger

    2001-02-01

    The benchmark Black-Scholes-Merton model of mathematical finance is parametric, based on the normal/Gaussian distribution. Its principal parametric competitor, the hyperbolic model of Barndorff-Nielsen, Eberlein and others, is briefly discussed. Our main theme is the use of semi-parametric models, incorporating the mean vector and covariance matrix as in the Markowitz approach, plus a non-parametric part, a scalar function incorporating features such as tail-decay. Implementation is also briefly discussed.

  17. Frequency Upconversion and Parametric Surface Instabilities in Microwave Plasma Interactions.

    NASA Astrophysics Data System (ADS)

    Rappaport, Harold Lee

    In this thesis the interaction of radiation with plasmas whose density profiles are nearly step functions of space and/or time are studied. The wavelengths of radiation discussed are large compared with plasma density gradient scale lengths. The frequency spectra are evaluated and the energy balance investigated for the transmitted and reflected transient electromagnetic waves that are generated when a monochromatic source drives a finite width plasma in which a temporal step increase in density occurs. Transmission resonances associated with the abrupt boundaries manifest themselves as previously unreported multiple frequency peaks in the transmitted electromagnetic spectrum. A tunneling effect is described in which a burst of energy is transmitted from the plasma immediately following a temporal density transition. Stability of an abruptly bounded plasma, one for which the incident radiation wavelength is large compared with the plasma density gradient scale length, is investigated for both s and p polarized radiation types. For s-polarized radiation a new formalism is introduced in which pump induced perturbations are expressed as an explicit superposition of linear and non-linear plasma half-space modes. Results for a particular regime and a summary of relevant literature is presented. We conclude that when s-polarized radiation acts alone on an abrupt diffusely bounded underdense plasma stimulated excitation of electron surface modes is suppressed. For p-polarized radiation the recently proposed Lagrangian Frame Two-Plasmon Decay mode (LFTPD) ^dag is investigated in the regime in which the instability is not resonantly coupled to surface waves propagating along the boundary region. In this case, spatially dependent growth rate profiles and spatially dependent transit layer magnetic fields are reported. The regime is of interest because we have found that when the perturbation wavenumber parallel to the boundary is less than the pump frequency divided by twice

  18. Linear and nonlinear instability in vertical counter-current laminar gas-liquid flows

    NASA Astrophysics Data System (ADS)

    Schmidt, Patrick; Ó Náraigh, Lennon; Lucquiaud, Mathieu; Valluri, Prashant

    2016-04-01

    We consider the genesis and dynamics of interfacial instability in vertical gas-liquid flows, using as a model the two-dimensional channel flow of a thin falling film sheared by counter-current gas. The methodology is linear stability theory (Orr-Sommerfeld analysis) together with direct numerical simulation of the two-phase flow in the case of nonlinear disturbances. We investigate the influence of two main flow parameters on the interfacial dynamics, namely the film thickness and pressure drop applied to drive the gas stream. To make contact with existing studies in the literature, the effect of various density contrasts is also examined. Energy budget analyses based on the Orr-Sommerfeld theory reveal various coexisting unstable modes (interfacial, shear, internal) in the case of high density contrasts, which results in mode coalescence and mode competition, but only one dynamically relevant unstable interfacial mode for low density contrast. A study of absolute and convective instability for low density contrast shows that the system is absolutely unstable for all but two narrow regions of the investigated parameter space. Direct numerical simulations of the same system (low density contrast) show that linear theory holds up remarkably well upon the onset of large-amplitude waves as well as the existence of weakly nonlinear waves. For high density contrasts, corresponding more closely to an air-water-type system, linear stability theory is also successful at determining the most-dominant features in the interfacial wave dynamics at early-to-intermediate times. Nevertheless, the short waves selected by the linear theory undergo secondary instability and the wave train is no longer regular but rather exhibits chaotic motion. The same linear stability theory predicts when the direction of travel of the waves changes — from downwards to upwards. We outline the practical implications of this change in terms of loading and flooding. The change in direction of the

  19. Parametric resonance in tunable superconducting cavities

    NASA Astrophysics Data System (ADS)

    Wustmann, Waltraut; Shumeiko, Vitaly

    2013-05-01

    We develop a theory of parametric resonance in tunable superconducting cavities. The nonlinearity introduced by the superconducting quantum interference device (SQUID) attached to the cavity and damping due to connection of the cavity to a transmission line are taken into consideration. We study in detail the nonlinear classical dynamics of the cavity field below and above the parametric threshold for the degenerate parametric resonance, featuring regimes of multistability and parametric radiation. We investigate the phase-sensitive amplification of external signals on resonance, as well as amplification of detuned signals, and relate the amplifier performance to that of linear parametric amplifiers. We also discuss applications of the device for dispersive qubit readout. Beyond the classical response of the cavity, we investigate small quantum fluctuations around the amplified classical signals. We evaluate the noise power spectrum both for the internal field in the cavity and the output field. Other quantum-statistical properties of the noise are addressed such as squeezing spectra, second-order coherence, and two-mode entanglement.

  20. Instability timescale for the inclination instability in the solar system

    NASA Astrophysics Data System (ADS)

    Zderic, Alexander; Madigan, Ann-Marie; Fleisig, Jacob

    2018-04-01

    The gravitational influence of small bodies is often neglected in the study of solar system dynamics. However, this is not always an appropriate assumption. For example, mutual secular torques between low mass particles on eccentric orbits can result in a self-gravity instability (`inclination instability'; Madigan & McCourt 2016). During the instability, inclinations increase exponentially, eccentricities decrease (detachment), and orbits cluster in argument of perihelion. In the solar system, the orbits of the most distant objects show all three of these characteristics (high inclination: Volk & Malhotra (2017), detachment: Delsanti & Jewitt (2006), and argument of perihelion clustering: Trujillo & Sheppard (2014)). The inclination instability is a natural explanation for these phenomena.Unfortunately, full N-body simulations of the solar system are unfeasible (N ≈ O(1012)), and the behavior of the instability depends on N, prohibiting the direct application of lower N simulations. Here we present the instability timescale's functional dependence on N, allowing us to extrapolate our simulation results to that appropriate for the solar system. We show that ~5 MEarth of small icy bodies in the Sedna region is sufficient for the inclination instability to occur in the outer solar system.

  1. Robust control of combustion instabilities

    NASA Astrophysics Data System (ADS)

    Hong, Boe-Shong

    Several interactive dynamical subsystems, each of which has its own time-scale and physical significance, are decomposed to build a feedback-controlled combustion- fluid robust dynamics. On the fast-time scale, the phenomenon of combustion instability is corresponding to the internal feedback of two subsystems: acoustic dynamics and flame dynamics, which are parametrically dependent on the slow-time-scale mean-flow dynamics controlled for global performance by a mean-flow controller. This dissertation constructs such a control system, through modeling, analysis and synthesis, to deal with model uncertainties, environmental noises and time- varying mean-flow operation. Conservation law is decomposed as fast-time acoustic dynamics and slow-time mean-flow dynamics, served for synthesizing LPV (linear parameter varying)- L2-gain robust control law, in which a robust observer is embedded for estimating and controlling the internal status, while achieving trade- offs among robustness, performances and operation. The robust controller is formulated as two LPV-type Linear Matrix Inequalities (LMIs), whose numerical solver is developed by finite-element method. Some important issues related to physical understanding and engineering application are discussed in simulated results of the control system.

  2. Parametric nanomechanical amplification at very high frequency.

    PubMed

    Karabalin, R B; Feng, X L; Roukes, M L

    2009-09-01

    Parametric resonance and amplification are important in both fundamental physics and technological applications. Here we report very high frequency (VHF) parametric resonators and mechanical-domain amplifiers based on nanoelectromechanical systems (NEMS). Compound mechanical nanostructures patterned by multilayer, top-down nanofabrication are read out by a novel scheme that parametrically modulates longitudinal stress in doubly clamped beam NEMS resonators. Parametric pumping and signal amplification are demonstrated for VHF resonators up to approximately 130 MHz and provide useful enhancement of both resonance signal amplitude and quality factor. We find that Joule heating and reduced thermal conductance in these nanostructures ultimately impose an upper limit to device performance. We develop a theoretical model to account for both the parametric response and nonequilibrium thermal transport in these composite nanostructures. The results closely conform to our experimental observations, elucidate the frequency and threshold-voltage scaling in parametric VHF NEMS resonators and sensors, and establish the ultimate sensitivity limits of this approach.

  3. Parametric and non-parametric approach for sensory RATA (Rate-All-That-Apply) method of ledre profile attributes

    NASA Astrophysics Data System (ADS)

    Hastuti, S.; Harijono; Murtini, E. S.; Fibrianto, K.

    2018-03-01

    This current study is aimed to investigate the use of parametric and non-parametric approach for sensory RATA (Rate-All-That-Apply) method. Ledre as Bojonegoro unique local food product was used as point of interest, in which 319 panelists were involved in the study. The result showed that ledre is characterized as easy-crushed texture, sticky in mouth, stingy sensation and easy to swallow. It has also strong banana flavour with brown in colour. Compared to eggroll and semprong, ledre has more variances in terms of taste as well the roll length. As RATA questionnaire is designed to collect categorical data, non-parametric approach is the common statistical procedure. However, similar results were also obtained as parametric approach, regardless the fact of non-normal distributed data. Thus, it suggests that parametric approach can be applicable for consumer study with large number of respondents, even though it may not satisfy the assumption of ANOVA (Analysis of Variances).

  4. Rayleigh-Taylor instability of two-specie laser-accelerated foils

    NASA Astrophysics Data System (ADS)

    Ratliff, T. H.; Yi, S. A.; Khudik, V.; Yu, T. P.; Pukhov, A.; Chen, M.; Shvets, G.

    2010-11-01

    When an ultra intense circularly polarized laser pulse irradiates an ultra thin film, a monoenergetic ion beam is produced with characteristics well suited for applications in science and medicine. Upon laser incidence, the electrons in the foil are pushed via the ponderomotive force to the foil rear; the charge separation field then accelerates ions. In the accelerating frame the ions are trapped in a potential well formed by the electrostatic and inertial forces. However, their energy spectrum can be quickly degraded by the Rayleigh-Taylor (RT) instability. Stabilization in the case of a two-specie foil is the subject of this poster. First, we use a 1D particle-in-cell (PIC) simulation to establish an equilibrium state of the two-specie foil in the accelerating frame. Next we perturb this equilibrium and analytically investigate the 2D RT instability. Analytical results are compared with 2-D simulations. We also investigate parametrically various effects on the RT growth rate. The protons completely separate from the carbons, and although the vacuum-carbon interface remains unstable, the large spatial extent of the carbon layer prevents perturbations from feeding through to the proton layer. The monoenergetic proton beam is shown to persist beyond the conclusion of the laser pulse interaction. [1] T.P. Yu, A. Pukhov, G. Shvets, and M Chen, Phys. Rev. Lett. (in press)

  5. Multibeam Formation with a Parametric Sonar

    DTIC Science & Technology

    1976-03-05

    AD-A022 815 MULTIBEAM FORMATION WITH A PARAMETRIC SONAR Robert L. White Texas University at Austin Prepared for: Office of Naval Research 5 March...PARAMETRIC SONAR Final Report under Contract N00014-70-A-0166, Task 0020 1 February - 31 July 1974 Robe&, L. White OFFICE OF NAVAL RESEARCH Contract N00014...78712 APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED. r-X: ~ ... ABSTRACT Parametric sonar has proven to be an effective concept in sonar

  6. A Unified and Comprehensible View of Parametric and Kernel Methods for Genomic Prediction with Application to Rice.

    PubMed

    Jacquin, Laval; Cao, Tuong-Vi; Ahmadi, Nourollah

    2016-01-01

    One objective of this study was to provide readers with a clear and unified understanding of parametric statistical and kernel methods, used for genomic prediction, and to compare some of these in the context of rice breeding for quantitative traits. Furthermore, another objective was to provide a simple and user-friendly R package, named KRMM, which allows users to perform RKHS regression with several kernels. After introducing the concept of regularized empirical risk minimization, the connections between well-known parametric and kernel methods such as Ridge regression [i.e., genomic best linear unbiased predictor (GBLUP)] and reproducing kernel Hilbert space (RKHS) regression were reviewed. Ridge regression was then reformulated so as to show and emphasize the advantage of the kernel "trick" concept, exploited by kernel methods in the context of epistatic genetic architectures, over parametric frameworks used by conventional methods. Some parametric and kernel methods; least absolute shrinkage and selection operator (LASSO), GBLUP, support vector machine regression (SVR) and RKHS regression were thereupon compared for their genomic predictive ability in the context of rice breeding using three real data sets. Among the compared methods, RKHS regression and SVR were often the most accurate methods for prediction followed by GBLUP and LASSO. An R function which allows users to perform RR-BLUP of marker effects, GBLUP and RKHS regression, with a Gaussian, Laplacian, polynomial or ANOVA kernel, in a reasonable computation time has been developed. Moreover, a modified version of this function, which allows users to tune kernels for RKHS regression, has also been developed and parallelized for HPC Linux clusters. The corresponding KRMM package and all scripts have been made publicly available.

  7. Parametric infrared tunable laser system

    NASA Technical Reports Server (NTRS)

    Garbuny, M.; Henningsen, T.; Sutter, J. R.

    1980-01-01

    A parametric tunable infrared laser system was built to serve as transmitter for the remote detection and density measurement of pollutant, poisonous, or trace gases in the atmosphere. The system operates with a YAG:Nd laser oscillator amplifier chain which pumps a parametric tunable frequency converter. The completed system produced pulse energies of up to 30 mJ. The output is tunable from 1.5 to 3.6 micrometers at linewidths of 0.2-0.5 /cm (FWHM), although the limits of the tuning range and the narrower line crystals presently in the parametric converter by samples of the higher quality already demonstrated is expected to improve the system performance further.

  8. Mechanical Parametric Oscillations and Waves

    ERIC Educational Resources Information Center

    Dittrich, William; Minkin, Leonid; Shapovalov, Alexander S.

    2013-01-01

    Usually parametric oscillations are not the topic of general physics courses. Probably it is because the mathematical theory of this phenomenon is relatively complicated, and until quite recently laboratory experiments for students were difficult to implement. However parametric oscillations are good illustrations of the laws of physics and can be…

  9. Buoyancy Effects on Flow Structure and Instability of Low-Density Gas Jets

    NASA Technical Reports Server (NTRS)

    Pasumarthi, Kasyap Sriramachandra

    2004-01-01

    Reynolds number was varied from 200 to 1500 and jet Richardson number was varied from 0.72 to 0.002. Power spectra plots generated from Fast Fourier Transform (FFT) analysis of angular deflection data acquired at a temporal resolution of 1000Hz reveal substantial damping of the oscillation amplitude in microgravity at low Richardson numbers (0.002). Quantitative concentration data in the form of spatial and temporal evolutions of the instability data in Earth gravity and microgravity reveal significant variations in the jet flow structure upon removal of buoyancy forces. Radial variation of the frequency spectra and time traces of helium concentration revealed the importance of gravitational effects in the jet shear layer region. Linear temporal and spatio-temporal stability analyses of a low-density round gas jet injected into a high-density ambient gas were performed by assuming hyper-tan mean velocity and density profiles. The flow was assumed to be non parallel. Viscous and diffusive effects were ignored. The mean flow parameters were represented as the sum of the mean value and a small normal-mode fluctuation. A second order differential equation governing the pressure disturbance amplitude was derived from the basic conservation equations. The effects of the inhomogeneous shear layer and the Froude number (signifying the effects of gravity) on the temporal and spatio-temporal results were delineated. A decrease in the density ratio (ratio of the density of the jet to the density of the ambient gas) resulted in an increase in the temporal amplification rate of the disturbances. The temporal growth rate of the disturbances increased as the Froude number was reduced. The spatio-temporal analysis performed to determine the absolute instability characteristics of the jet yield positive absolute temporal growth rates at all Fr and different axial locations. As buoyancy was removed (Fr . 8), the previously existing absolute instability disappeared at all locations

  10. Laser parametric instability experiments of a 3ω, 15 kJ, 6-ns laser pulse in gas-filled hohlraums at the Ligne d'Intégration Laser facility

    NASA Astrophysics Data System (ADS)

    Rousseaux, C.; Huser, G.; Loiseau, P.; Casanova, M.; Alozy, E.; Villette, B.; Wrobel, R.; Henry, O.; Raffestin, D.

    2015-02-01

    Experimental investigation of stimulated Raman (SRS) and Brillouin (SBS) scattering have been obtained at the Ligne-d'Intégration-Laser facility (LIL, CEA-Cesta, France). The parametric instabilities (LPI) are driven by firing four laser beamlets (one quad) into millimeter size, gas-filled hohlraum targets. A quad delivers energy on target of 15 kJ at 3ω in a 6-ns shaped laser pulse. The quad is focused by means of 3ω gratings and is optically smoothed with a kinoform phase plate and with smoothing by spectral dispersion-like 2 GHz and/or 14 GHz laser bandwidth. Open- and closed-geometry hohlraums have been used, all being filled with 1-atm, neo-pentane (C5H12) gas. For SRS and SBS studies, the light backscattered into the focusing optics is analyzed with spectral and time resolutions. Near-backscattered light at 3ω and transmitted light at 3ω are also monitored in the open geometry case. Depending on the target geometry (plasma length and hydrodynamic evolution of the plasma), it is shown that, at maximum laser intensity about 9 × 1014 W/cm2, Raman reflectivity noticeably increases up to 30% in 4-mm long plasmas while SBS stays below 10%. Consequently, laser transmission through long plasmas drops to about 10% of incident energy. Adding 14 GHz bandwidth to the laser always reduces LPI reflectivities, although this reduction is not dramatic.

  11. Influence of motion coupling and nonlinear effects on parametric roll for a floating production storage and offloading platform

    PubMed Central

    Greco, M.; Lugni, C.; Faltinsen, O. M.

    2015-01-01

    Occurrence and features of parametric roll (PR) on a weather-vaning floating production storage and offloading (FPSO) platform with a turret single-point mooring-line system are examined. The main focus is on the relevance of motions coupling and nonlinear effects on this phenomenon and on more general unstable conditions as well as on the occurrence and severity of water on deck. This work was motivated by recent experiments on an FPSO model without mooring systems highlighting the occurrence of parametric resonance owing to roll–yaw coupling. A three-dimensional numerical hybrid potential-flow seakeeping solver was able to capture this behaviour. The same method, extended to include the mooring lines, is adopted here to investigate the platform behaviour for different incident wavelengths, steepnesses, headings, locations of the turret and pretensions. From the results, sway and yaw tend to destabilize the system, also bringing chaotic features. The sway–roll–yaw coupling widens the existence region of PR resonance and increases PR severity; it also results in a larger amount of shipped water, especially at smaller wavelength-to-ship length ratio and larger steepness. The chaotic features are excited when a sufficiently large yaw amplitude is reached. Consistently, a simplified stability analysis showed the relevance of nonlinear-restoring coefficients, first those connected with the sway–yaw coupling then those associated with the roll–yaw coupling, both destabilizing. From the stability analysis, the system is unstable for all longitudinal locations of the turret and pre-tensions examined, but the instability weakens as the turret is moved forward, and the pre-tension is increased. The use of a suitable dynamic-positioning system can control the horizontal motions, avoiding the instability. PMID:25512590

  12. Instability Analysis of a Low-Density Gas Jet Injected into a High-Density Gas

    NASA Technical Reports Server (NTRS)

    Lawson, Anthony Layiwola

    2001-01-01

    The objective of this study was to determine the effects of buoyancy on the absolute instability of low-density gas jets injected into high-density gas mediums. Most of the existing analyses of low-density gas jets injected into a high-density ambient have been carried out neglecting effects of gravity. In order to investigate the influence of gravity on the near-injector development of the flow, a linear temporal stability analysis and a spatio-temporal stability analysis of a low-density round jet injected into a high-density ambient gas were performed. The flow was assumed to be isothermal and locally parallel; viscous and diffusive effects were ignored. The variables were represented as the sum of the mean value and a normal-mode small disturbance. An ordinary differential equation governing the amplitude of the pressure disturbance was derived. The velocity and density profiles in the shear layer, and the Froude number (signifying the effects of gravity) were the three important parameters in this equation. Together with the boundary conditions, an eigenvalue problem was formulated. Assuming that the velocity and density profiles in the shear layer to be represented by hyperbolic tangent functions, the eigenvalue problem was solved for various values of Froude number. The temporal growth rates and the phase velocity of the disturbances were obtained. It was found that the presence of variable density within the shear layer resulted in an increase in the temporal amplification rate of the disturbances and an increase in the range of unstable frequencies, accompanied by a reduction in the phase velocities of the disturbances. Also, the temporal growth rates of the disturbances were increased as the Froude number was reduced (i.e. gravitational effects increased), indicating the destabilizing role played by gravity. The spatio-temporal stability analysis was performed to determine the nature of the absolute instability of the jet. The roles of the density ratio

  13. Development of a compact optical absolute frequency reference for space with 10-15 instability.

    PubMed

    Schuldt, Thilo; Döringshoff, Klaus; Kovalchuk, Evgeny V; Keetman, Anja; Pahl, Julia; Peters, Achim; Braxmaier, Claus

    2017-02-01

    We report on a compact and ruggedized setup for laser frequency stabilization employing Doppler-free spectroscopy of molecular iodine near 532 nm. Using a 30 cm long iodine cell in a triple-pass configuration in combination with noise-canceling detection and residual amplitude modulation control, a frequency instability of 6×10-15 at 1 s integration time and a Flicker noise floor below 3×10-15 for integration times between 100 and 1000 s was found. A specific assembly-integration technology was applied for the realization of the spectroscopy setup, ensuring high beam pointing stability and high thermal and mechanical rigidity. The setup was developed with respect to future applications in space, including high-sensitivity interspacecraft interferometry, tests of fundamental physics, and navigation and ranging.

  14. Collective instabilities

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    K.Y. Ng

    2003-08-25

    The lecture covers mainly Sections 2.VIII and 3.VII of the book ''Accelerator Physics'' by S.Y. Lee, plus mode-coupling instabilities and chromaticity-driven head-tail instability. Besides giving more detailed derivation of many equations, simple interpretations of many collective instabilities are included with the intention that the phenomena can be understood more easily without going into too much mathematics. The notations of Lee's book as well as the e{sup jwt} convention are followed.

  15. [Shoulder instability].

    PubMed

    Sailer, J; Imhof, H

    2004-06-01

    Shoulder instability is a common clinical feature leading to recurrent pain and limited range of motion within the glenohumeral joint. Instability can be due a single traumatic event, general joint laxity or repeated episodes of microtrauma. Differentiation between traumatic and atraumatic forms of shoulder instability requires careful history and a systemic clinical examination. Shoulder laxity has to be differentiated from true instability followed by the clinical assessment of direction and degree of glenohumeral translation. Conventional radiography and CT are used for the diagnosis of bony lesions. MR imaging and MR arthrography help in the detection of soft tissue affection, especially of the glenoid labrum and the capsuloligamentous complex. The most common lesion involving the labrum is the anterior labral tear, associated with capsuloperiostal stripping (Bankart lesion). A number of variants of the Bankart lesion have been described, such as ALPSA, SLAP or HAGL lesions. The purpose of this review is to highlight different forms of shoulder instability and its associated radiological findings with a focus on MR imaging.

  16. Estimating the absolute wealth of households.

    PubMed

    Hruschka, Daniel J; Gerkey, Drew; Hadley, Craig

    2015-07-01

    To estimate the absolute wealth of households using data from demographic and health surveys. We developed a new metric, the absolute wealth estimate, based on the rank of each surveyed household according to its material assets and the assumed shape of the distribution of wealth among surveyed households. Using data from 156 demographic and health surveys in 66 countries, we calculated absolute wealth estimates for households. We validated the method by comparing the proportion of households defined as poor using our estimates with published World Bank poverty headcounts. We also compared the accuracy of absolute versus relative wealth estimates for the prediction of anthropometric measures. The median absolute wealth estimates of 1,403,186 households were 2056 international dollars per capita (interquartile range: 723-6103). The proportion of poor households based on absolute wealth estimates were strongly correlated with World Bank estimates of populations living on less than 2.00 United States dollars per capita per day (R(2)  = 0.84). Absolute wealth estimates were better predictors of anthropometric measures than relative wealth indexes. Absolute wealth estimates provide new opportunities for comparative research to assess the effects of economic resources on health and human capital, as well as the long-term health consequences of economic change and inequality.

  17. Nonlinear study of the parallel velocity/tearing instability using an implicit, nonlinear resistive MHD solver

    NASA Astrophysics Data System (ADS)

    Chacon, L.; Finn, J. M.; Knoll, D. A.

    2000-10-01

    Recently, a new parallel velocity instability has been found.(J. M. Finn, Phys. Plasmas), 2, 12 (1995) This mode is a tearing mode driven unstable by curvature effects and sound wave coupling in the presence of parallel velocity shear. Under such conditions, linear theory predicts that tearing instabilities will grow even in situations in which the classical tearing mode is stable. This could then be a viable seed mechanism for the neoclassical tearing mode, and hence a non-linear study is of interest. Here, the linear and non-linear stages of this instability are explored using a fully implicit, fully nonlinear 2D reduced resistive MHD code,(L. Chacon et al), ``Implicit, Jacobian-free Newton-Krylov 2D reduced resistive MHD nonlinear solver,'' submitted to J. Comput. Phys. (2000) including viscosity and particle transport effects. The nonlinear implicit time integration is performed using the Newton-Raphson iterative algorithm. Krylov iterative techniques are employed for the required algebraic matrix inversions, implemented Jacobian-free (i.e., without ever forming and storing the Jacobian matrix), and preconditioned with a ``physics-based'' preconditioner. Nonlinear results indicate that, for large total plasma beta and large parallel velocity shear, the instability results in the generation of large poloidal shear flows and large magnetic islands even in regimes when the classical tearing mode is absolutely stable. For small viscosity, the time asymptotic state can be turbulent.

  18. Posterior Shoulder Instability

    PubMed Central

    Antosh, Ivan J.; Tokish, John M.; Owens, Brett D.

    2016-01-01

    Context: Posterior shoulder instability has become more frequently recognized and treated as a unique subset of shoulder instability, especially in the military. Posterior shoulder pathology may be more difficult to accurately diagnose than its anterior counterpart, and commonly, patients present with complaints of pain rather than instability. “Posterior instability” may encompass both dislocation and subluxation, and the most common presentation is recurrent posterior subluxation. Arthroscopic and open treatment techniques have improved as understanding of posterior shoulder instability has evolved. Evidence Acquisition: Electronic databases including PubMed and MEDLINE were queried for articles relating to posterior shoulder instability. Study Design: Clinical review. Level of Evidence: Level 4. Results: In low-demand patients, nonoperative treatment of posterior shoulder instability should be considered a first line of treatment and is typically successful. Conservative treatment, however, is commonly unsuccessful in active patients, such as military members. Those patients with persistent shoulder pain, instability, or functional limitations after a trial of conservative treatment may be considered surgical candidates. Arthroscopic posterior shoulder stabilization has demonstrated excellent clinical outcomes, high patient satisfaction, and low complication rates. Advanced techniques may be required in select cases to address bone loss, glenoid dysplasia, or revision. Conclusion: Posterior instability represents about 10% of shoulder instability and has become increasingly recognized and treated in military members. Nonoperative treatment is commonly unsuccessful in active patients, and surgical stabilization can be considered in patients who do not respond. Isolated posterior labral repairs constitute up to 24% of operatively treated labral repairs in a military population. Arthroscopic posterior stabilization is typically considered as first-line surgical

  19. Electromagnetic radiation by parametric decay of upper hybrid waves in ionospheric modification experiments

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Leyser, T.B.

    1994-06-01

    A nonlinear dispersion relation for the parametric decay of an electrostatic upper hybrid wave into an ordinary mode electromagnetic wave, propagating parallel to the ambient magnetic field, and an electrostatic low frequency wave, being either a lower hybrid wave or a high harmonic ion Bernstein wave, is derived. The coherent and resonant wave interaction is considered to take place in a weakly magnetized and collisionless Vlasov plasma. The instability growth rate is computed for parameter values typical of ionospheric modification experiments, in which a powerful high frequency electromagnetic pump wave is injected into the ionospheric F-region from ground-based transmitters. Themore » electromagnetic radiation which is excited by the decaying upper hybrid wave is found to be consistent with the prominent and commonly observed downshifted maximum (DM) emission in the spectrum of stimulated electromagnetic emission.« less

  20. Convection- and SASI-driven flows in parametrized models of core-collapse supernova explosions

    DOE PAGES

    Endeve, E.; Cardall, C. Y.; Budiardja, R. D.; ...

    2016-01-21

    We present initial results from three-dimensional simulations of parametrized core-collapse supernova (CCSN) explosions obtained with our astrophysical simulation code General Astrophysical Simulation System (GenASIS). We are interested in nonlinear flows resulting from neutrino-driven convection and the standing accretion shock instability (SASI) in the CCSN environment prior to and during the explosion. By varying parameters in our model that control neutrino heating and shock dissociation, our simulations result in convection-dominated and SASI-dominated evolution. We describe this initial set of simulation results in some detail. To characterize the turbulent flows in the simulations, we compute and compare velocity power spectra from convection-dominatedmore » and SASI-dominated (both non-exploding and exploding) models. When compared to SASI-dominated models, convection-dominated models exhibit significantly more power on small spatial scales.« less

  1. Estimating the absolute wealth of households

    PubMed Central

    Gerkey, Drew; Hadley, Craig

    2015-01-01

    Abstract Objective To estimate the absolute wealth of households using data from demographic and health surveys. Methods We developed a new metric, the absolute wealth estimate, based on the rank of each surveyed household according to its material assets and the assumed shape of the distribution of wealth among surveyed households. Using data from 156 demographic and health surveys in 66 countries, we calculated absolute wealth estimates for households. We validated the method by comparing the proportion of households defined as poor using our estimates with published World Bank poverty headcounts. We also compared the accuracy of absolute versus relative wealth estimates for the prediction of anthropometric measures. Findings The median absolute wealth estimates of 1 403 186 households were 2056 international dollars per capita (interquartile range: 723–6103). The proportion of poor households based on absolute wealth estimates were strongly correlated with World Bank estimates of populations living on less than 2.00 United States dollars per capita per day (R2 = 0.84). Absolute wealth estimates were better predictors of anthropometric measures than relative wealth indexes. Conclusion Absolute wealth estimates provide new opportunities for comparative research to assess the effects of economic resources on health and human capital, as well as the long-term health consequences of economic change and inequality. PMID:26170506

  2. Self-seeding ring optical parametric oscillator

    DOEpatents

    Smith, Arlee V [Albuquerque, NM; Armstrong, Darrell J [Albuquerque, NM

    2005-12-27

    An optical parametric oscillator apparatus utilizing self-seeding with an external nanosecond-duration pump source to generate a seed pulse resulting in increased conversion efficiency. An optical parametric oscillator with a ring configuration are combined with a pump that injection seeds the optical parametric oscillator with a nanosecond duration, mJ pulse in the reverse direction as the main pulse. A retroreflecting means outside the cavity injects the seed pulse back into the cavity in the direction of the main pulse to seed the main pulse, resulting in higher conversion efficiency.

  3. Artificial plasma cusp generated by upper hybrid instabilities in HF heating experiments at HAARP

    NASA Astrophysics Data System (ADS)

    Kuo, Spencer; Snyder, Arnold

    2013-05-01

    High Frequency Active Auroral Research Program digisonde was operated in a fast mode to record ionospheric modifications by the HF heating wave. With the O mode heater of 3.2 MHz turned on for 2 min, significant virtual height spread was observed in the heater off ionograms, acquired beginning the moment the heater turned off. Moreover, there is a noticeable bump in the virtual height spread of the ionogram trace that appears next to the plasma frequency (~ 2.88 MHz) of the upper hybrid resonance layer of the HF heating wave. The enhanced spread and the bump disappear in the subsequent heater off ionograms recorded 1 min later. The height distribution of the ionosphere in the spread situation indicates that both electron density and temperature increases exceed 10% over a large altitude region (> 30 km) from below to above the upper hybrid resonance layer. This "mini cusp" (bump) is similar to the cusp occurring in daytime ionograms at the F1-F2 layer transition, indicating that there is a small ledge in the density profile reminiscent of F1-F2 layer transitions. Two parametric processes exciting upper hybrid waves as the sidebands by the HF heating waves are studied. Field-aligned purely growing mode and lower hybrid wave are the respective decay modes. The excited upper hybrid and lower hybrid waves introduce the anomalous electron heating which results in the ionization enhancement and localized density ledge. The large-scale density irregularities formed in the heat flow, together with the density irregularities formed through the parametric instability, give rise to the enhanced virtual height spread. The results of upper hybrid instability analysis are also applied to explain the descending feature in the development of the artificial ionization layers observed in electron cyclotron harmonic resonance heating experiments.

  4. Parametric amplification in MoS2 drum resonator.

    PubMed

    Prasad, Parmeshwar; Arora, Nishta; Naik, A K

    2017-11-30

    Parametric amplification is widely used in diverse areas from optics to electronic circuits to enhance low level signals by varying relevant system parameters. Parametric amplification has also been performed in several micro-nano resonators including nano-electromechanical system (NEMS) resonators based on a two-dimensional (2D) material. Here, we report the enhancement of mechanical response in a MoS 2 drum resonator using degenerate parametric amplification. We use parametric pumping to modulate the spring constant of the MoS 2 resonator and achieve a 10 dB amplitude gain. We also demonstrate quality factor enhancement in the resonator with parametric amplification. We investigate the effect of cubic nonlinearity on parametric amplification and show that it limits the gain of the mechanical resonator. Amplifying ultra-small displacements at room temperature and understanding the limitations of the amplification in these devices is key for using these devices for practical applications.

  5. Confronting stillbirths and newborn deaths in areas of conflict and political instability: a neglected global imperative.

    PubMed

    Wise, Paul H; Darmstadt, Gary L

    2015-08-01

    Despite considerable improvements in reproductive and newborn health throughout the world, relatively poor outcomes persist in areas plagued by conflict or political instability. To assess the contribution of areas of conflict and instability to global patterns of stillbirths and newborn deaths and to identify opportunities for effective intervention in these areas. Analysis of the available data on stillbirths and neonatal mortality in association with conflict and governance indicators, and review of epidemiological and political literature pertaining to the provision of health and public services in areas of conflict and instability. Of the 15 countries with the highest neonatal mortality rates in the world, 14 are characterized by chronic conflict or political instability. If India and China are excluded, countries experiencing chronic conflict or political instability account for approximately 42% of all neonatal deaths worldwide. Efforts to address adverse reproductive and newborn outcomes in these areas must adapt recommended intervention protocols to the special security and governance conditions associated with unstable political environment. Despite troubling relative and absolute indicators, the special requirements of improving reproductive and neonatal outcomes in areas affected by conflict and political instability have not received adequate attention. New integrated political and technical strategies will be required. This should include moving beyond traditional approaches concerned with complex humanitarian emergencies. Rather, global efforts must be based on a deeper understanding of the specific governance requirements associated with protracted and widespread health requirements. A focus on women's roles, regional strategies which take advantage of relative stability and governance capacity in neighbouring states, virtual infrastructure, and assistance regimens directed specifically to unstable areas may prove useful.

  6. 20 CFR 404.1205 - Absolute coverage groups.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 20 Employees' Benefits 2 2011-04-01 2011-04-01 false Absolute coverage groups. 404.1205 Section... Covered § 404.1205 Absolute coverage groups. (a) General. An absolute coverage group is a permanent... are not under a retirement system. An absolute coverage group may include positions which were...

  7. Characteristics of stereo reproduction with parametric loudspeakers

    NASA Astrophysics Data System (ADS)

    Aoki, Shigeaki; Toba, Masayoshi; Tsujita, Norihisa

    2012-05-01

    A parametric loudspeaker utilizes nonlinearity of a medium and is known as a super-directivity loudspeaker. The parametric loudspeaker is one of the prominent applications of nonlinear ultrasonics. So far, the applications have been limited monaural reproduction sound system for public address in museum, station and street etc. In this paper, we discussed characteristics of stereo reproduction with two parametric loudspeakers by comparing with those with two ordinary dynamic loudspeakers. In subjective tests, three typical listening positions were selected to investigate the possibility of correct sound localization in a wide listening area. The binaural information was ILD (Interaural Level Difference) or ITD (Interaural Time Delay). The parametric loudspeaker was an equilateral hexagon. The inner and outer diameters were 99 and 112 mm, respectively. Signals were 500 Hz, 1 kHz, 2 kHz and 4 kHz pure tones and pink noise. Three young males listened to test signals 10 times in each listening condition. Subjective test results showed that listeners at the three typical listening positions perceived correct sound localization of all signals using the parametric loudspeakers. It was almost similar to those using the ordinary dynamic loudspeakers, however, except for the case of sinusoidal waves with ITD. It was determined the parametric loudspeaker could exclude the contradiction between the binaural information ILD and ITD that occurred in stereo reproduction with ordinary dynamic loudspeakers because the super directivity of parametric loudspeaker suppressed the cross talk components.

  8. An improvement of quantum parametric methods by using SGSA parameterization technique and new elementary parametric functionals

    NASA Astrophysics Data System (ADS)

    Sánchez, M.; Oldenhof, M.; Freitez, J. A.; Mundim, K. C.; Ruette, F.

    A systematic improvement of parametric quantum methods (PQM) is performed by considering: (a) a new application of parameterization procedure to PQMs and (b) novel parametric functionals based on properties of elementary parametric functionals (EPF) [Ruette et al., Int J Quantum Chem 2008, 108, 1831]. Parameterization was carried out by using the simplified generalized simulated annealing (SGSA) method in the CATIVIC program. This code has been parallelized and comparison with MOPAC/2007 (PM6) and MINDO/SR was performed for a set of molecules with C=C, C=H, and H=H bonds. Results showed better accuracy than MINDO/SR and MOPAC-2007 for a selected trial set of molecules.

  9. Grating lobe elimination in steerable parametric loudspeaker.

    PubMed

    Shi, Chuang; Gan, Woon-Seng

    2011-02-01

    In the past two decades, the majority of research on the parametric loudspeaker has concentrated on the nonlinear modeling of acoustic propagation and pre-processing techniques to reduce nonlinear distortion in sound reproduction. There are, however, very few studies on directivity control of the parametric loudspeaker. In this paper, we propose an equivalent circular Gaussian source array that approximates the directivity characteristics of the linear ultrasonic transducer array. By using this approximation, the directivity of the sound beam from the parametric loudspeaker can be predicted by the product directivity principle. New theoretical results, which are verified through measurements, are presented to show the effectiveness of the delay-and-sum beamsteering structure for the parametric loudspeaker. Unlike the conventional loudspeaker array, where the spacing between array elements must be less than half the wavelength to avoid spatial aliasing, the parametric loudspeaker can take advantage of grating lobe elimination to extend the spacing of ultrasonic transducer array to more than 1.5 wavelengths in a typical application.

  10. Estimating technical efficiency in the hospital sector with panel data: a comparison of parametric and non-parametric techniques.

    PubMed

    Siciliani, Luigi

    2006-01-01

    Policy makers are increasingly interested in developing performance indicators that measure hospital efficiency. These indicators may give the purchasers of health services an additional regulatory tool to contain health expenditure. Using panel data, this study compares different parametric (econometric) and non-parametric (linear programming) techniques for the measurement of a hospital's technical efficiency. This comparison was made using a sample of 17 Italian hospitals in the years 1996-9. Highest correlations are found in the efficiency scores between the non-parametric data envelopment analysis under the constant returns to scale assumption (DEA-CRS) and several parametric models. Correlation reduces markedly when using more flexible non-parametric specifications such as data envelopment analysis under the variable returns to scale assumption (DEA-VRS) and the free disposal hull (FDH) model. Correlation also generally reduces when moving from one output to two-output specifications. This analysis suggests that there is scope for developing performance indicators at hospital level using panel data, but it is important that extensive sensitivity analysis is carried out if purchasers wish to make use of these indicators in practice.

  11. Shoulder Instability

    MedlinePlus

    ... as bad as the pain of a sudden injury. Your shoulder might be sore when you move it. It ... Treatment How is shoulder instability treated? Treatment for shoulder instability depends on how bad your injury is and how important it is for you ...

  12. Femoral neck BMD is a strong predictor of hip fracture susceptibility in elderly men and women because it detects cortical bone instability: the Rotterdam Study.

    PubMed

    Rivadeneira, Fernando; Zillikens, M Carola; De Laet, Chris Edh; Hofman, Albert; Uitterlinden, André G; Beck, Thomas J; Pols, Huibert Ap

    2007-11-01

    We studied HSA measurements in relation to hip fracture risk in 4,806 individuals (2,740 women). Hip fractures (n = 147) occurred at the same absolute levels of bone instability in both sexes. Cortical instability (propensity of thinner cortices in wide diameters to buckle) explains why hip fracture risk at different BMD levels is the same across sexes. Despite the sexual dimorphism of bone, hip fracture risk is very similar in men and women at the same absolute BMD. We aimed to elucidate the main structural properties of bone that underlie the measured BMD and that ultimately determines the risk of hip fracture in elderly men and women. This study is part of the Rotterdam Study (a large prospective population-based cohort) and included 147 incident hip fracture cases in 4,806 participants with DXA-derived hip structural analysis (mean follow-up, 8.6 yr). Indices compared in relation to fracture included neck width, cortical thickness, section modulus (an index of bending strength), and buckling ratio (an index of cortical bone instability). We used a mathematical model to calculate the hip fracture distribution by femoral neck BMD, BMC, bone area, and hip structure analysis (HSA) parameters (cortical thickness, section modulus narrow neck width, and buckling ratio) and compared it with prospective data from the Rotterdam Study. In the prospective data, hip fracture cases in both sexes had lower BMD, thinner cortices, greater bone width, lower strength, and higher instability at baseline. In fractured individuals, men had an average BMD that was 0.09 g/cm(2) higher than women (p < 0.00001), whereas no significant difference in buckling ratios was seen. Modeled fracture distribution by BMD and buckling ratio levels were in concordance to the prospective data and showed that hip fractures seem to occur at the same absolute levels of bone instability (buckling ratio) in both men and women. No significant differences were observed between the areas under the ROC curves

  13. Propagation of arbitrary initial wave packets in a quantum parametric oscillator: Instability zones for higher order moments

    NASA Astrophysics Data System (ADS)

    Biswas, Subhadip; Chattopadhyay, Rohitashwa; Bhattacharjee, Jayanta K.

    2018-05-01

    We consider the dynamics of a particle in a parametric oscillator with a view to exploring any quantum feature of the initial wave packet that shows divergent (in time) behaviour for parameter values where the classical motion dynamics of the mean position is bounded. We use Ehrenfest's theorem to explore the dynamics of nth order moment which reduces exactly to a linear non autonomous differential equation of order n + 1. It is found that while the width and skewness of the packet is unbounded exactly in the zones where the classical motion is unbounded, the kurtosis of an initially non-gaussian wave packet can become infinitely large in certain additional zones. This implies that the shape of the wave packet can change drastically with time in these zones.

  14. Parametric mapping of [18F]fluoromisonidazole positron emission tomography using basis functions.

    PubMed

    Hong, Young T; Beech, John S; Smith, Rob; Baron, Jean-Claude; Fryer, Tim D

    2011-02-01

    In this study, we show a basis function method (BAFPIC) for voxelwise calculation of kinetic parameters (K(1), k(2), k(3), K(i)) and blood volume using an irreversible two-tissue compartment model. BAFPIC was applied to rat ischaemic stroke micro-positron emission tomography data acquired with the hypoxia tracer [(18)F]fluoromisonidazole because irreversible two-tissue compartmental modelling provided good fits to data from both hypoxic and normoxic tissues. Simulated data show that BAFPIC produces kinetic parameters with significantly lower variability and bias than nonlinear least squares (NLLS) modelling in hypoxic tissue. The advantage of BAFPIC over NLLS is less pronounced in normoxic tissue. K(i) determined from BAFPIC has lower variability than that from the Patlak-Gjedde graphical analysis (PGA) by up to 40% and lower bias, except for normoxic tissue at mid-high noise levels. Consistent with the simulation results, BAFPIC parametric maps of real data suffer less noise-induced variability than do NLLS and PGA. Delineation of hypoxia on BAFPIC k(3) maps is aided by low variability in normoxic tissue, which matches that in K(i) maps. BAFPIC produces K(i) values that correlate well with those from PGA (r(2)=0.93 to 0.97; slope 0.99 to 1.05, absolute intercept <0.00002 mL/g per min). BAFPIC is a computationally efficient method of determining parametric maps with low bias and variance.

  15. Influence of motion coupling and nonlinear effects on parametric roll for a floating production storage and offloading platform.

    PubMed

    Greco, M; Lugni, C; Faltinsen, O M

    2015-01-28

    Occurrence and features of parametric roll (PR) on a weather-vaning floating production storage and offloading (FPSO) platform with a turret single-point mooring-line system are examined. The main focus is on the relevance of motions coupling and nonlinear effects on this phenomenon and on more general unstable conditions as well as on the occurrence and severity of water on deck. This work was motivated by recent experiments on an FPSO model without mooring systems highlighting the occurrence of parametric resonance owing to roll-yaw coupling. A three-dimensional numerical hybrid potential-flow seakeeping solver was able to capture this behaviour. The same method, extended to include the mooring lines, is adopted here to investigate the platform behaviour for different incident wavelengths, steepnesses, headings, locations of the turret and pretensions. From the results, sway and yaw tend to destabilize the system, also bringing chaotic features. The sway-roll-yaw coupling widens the existence region of PR resonance and increases PR severity; it also results in a larger amount of shipped water, especially at smaller wavelength-to-ship length ratio and larger steepness. The chaotic features are excited when a sufficiently large yaw amplitude is reached. Consistently, a simplified stability analysis showed the relevance of nonlinear-restoring coefficients, first those connected with the sway-yaw coupling then those associated with the roll-yaw coupling, both destabilizing. From the stability analysis, the system is unstable for all longitudinal locations of the turret and pre-tensions examined, but the instability weakens as the turret is moved forward, and the pre-tension is increased. The use of a suitable dynamic-positioning system can control the horizontal motions, avoiding the instability. © 2014 The Author(s) Published by the Royal Society. All rights reserved.

  16. Linear and nonlinear instability in vertical counter-current laminar gas-liquid flows

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Schmidt, Patrick; Lucquiaud, Mathieu; Valluri, Prashant, E-mail: prashant.valluri@ed.ac.uk

    We consider the genesis and dynamics of interfacial instability in vertical gas-liquid flows, using as a model the two-dimensional channel flow of a thin falling film sheared by counter-current gas. The methodology is linear stability theory (Orr-Sommerfeld analysis) together with direct numerical simulation of the two-phase flow in the case of nonlinear disturbances. We investigate the influence of two main flow parameters on the interfacial dynamics, namely the film thickness and pressure drop applied to drive the gas stream. To make contact with existing studies in the literature, the effect of various density contrasts is also examined. Energy budget analysesmore » based on the Orr-Sommerfeld theory reveal various coexisting unstable modes (interfacial, shear, internal) in the case of high density contrasts, which results in mode coalescence and mode competition, but only one dynamically relevant unstable interfacial mode for low density contrast. A study of absolute and convective instability for low density contrast shows that the system is absolutely unstable for all but two narrow regions of the investigated parameter space. Direct numerical simulations of the same system (low density contrast) show that linear theory holds up remarkably well upon the onset of large-amplitude waves as well as the existence of weakly nonlinear waves. For high density contrasts, corresponding more closely to an air-water-type system, linear stability theory is also successful at determining the most-dominant features in the interfacial wave dynamics at early-to-intermediate times. Nevertheless, the short waves selected by the linear theory undergo secondary instability and the wave train is no longer regular but rather exhibits chaotic motion. The same linear stability theory predicts when the direction of travel of the waves changes — from downwards to upwards. We outline the practical implications of this change in terms of loading and flooding. The change in direction

  17. Tremor Detection Using Parametric and Non-Parametric Spectral Estimation Methods: A Comparison with Clinical Assessment

    PubMed Central

    Martinez Manzanera, Octavio; Elting, Jan Willem; van der Hoeven, Johannes H.; Maurits, Natasha M.

    2016-01-01

    In the clinic, tremor is diagnosed during a time-limited process in which patients are observed and the characteristics of tremor are visually assessed. For some tremor disorders, a more detailed analysis of these characteristics is needed. Accelerometry and electromyography can be used to obtain a better insight into tremor. Typically, routine clinical assessment of accelerometry and electromyography data involves visual inspection by clinicians and occasionally computational analysis to obtain objective characteristics of tremor. However, for some tremor disorders these characteristics may be different during daily activity. This variability in presentation between the clinic and daily life makes a differential diagnosis more difficult. A long-term recording of tremor by accelerometry and/or electromyography in the home environment could help to give a better insight into the tremor disorder. However, an evaluation of such recordings using routine clinical standards would take too much time. We evaluated a range of techniques that automatically detect tremor segments in accelerometer data, as accelerometer data is more easily obtained in the home environment than electromyography data. Time can be saved if clinicians only have to evaluate the tremor characteristics of segments that have been automatically detected in longer daily activity recordings. We tested four non-parametric methods and five parametric methods on clinical accelerometer data from 14 patients with different tremor disorders. The consensus between two clinicians regarding the presence or absence of tremor on 3943 segments of accelerometer data was employed as reference. The nine methods were tested against this reference to identify their optimal parameters. Non-parametric methods generally performed better than parametric methods on our dataset when optimal parameters were used. However, one parametric method, employing the high frequency content of the tremor bandwidth under consideration

  18. Studies of central interactions of Si ions at 14.5 x A GeV/c in Au and Cu

    NASA Astrophysics Data System (ADS)

    Eiseman, S. E.; Etkin, A.; Foley, K. J.; Hackenburg, R. W.; Longacre, R. S.; Love, W. A.; Morris, T. W.; Platner, E. D.; Saulys, A. C.; Lindenbaum, S. J.

    Understanding the growth and saturation of parametric instabilities in laser-produced plasmas requires knowledge of the nonlinear properties of the instabilities and their interaction with each other. Nonlinear behavior of parametric instabilities, which are usually associated with unique optical features, were evidenced in numerous experiments on a variety of laser facilities. Four examples of nonlinear behavior in laser-produced plasmas are discussed: nonlinear stimulated Brillouin scattering spectra, suppression of stimulated Raman scattering by stimulated Brillouin scattering, the parametric decay instability and the onset of turbulence, and the transition to bursting behavior of the two-plasmon decay instability. Experiments are discussed that demonstrate the nonlinear effects which occur as a consequence.

  19. Parametric robust control and system identification: Unified approach

    NASA Technical Reports Server (NTRS)

    Keel, Leehyun

    1994-01-01

    Despite significant advancement in the area of robust parametric control, the problem of synthesizing such a controller is still a wide open problem. Thus, we attempt to give a solution to this important problem. Our approach captures the parametric uncertainty as an H(sub infinity) unstructured uncertainty so that H(sub infinity) synthesis techniques are applicable. Although the techniques cannot cope with the exact parametric uncertainty, they give a reasonable guideline to model the unstructured uncertainty that contains the parametric uncertainty. An additional loop shaping technique is also introduced to relax its conservatism.

  20. Zero- vs. one-dimensional, parametric vs. non-parametric, and confidence interval vs. hypothesis testing procedures in one-dimensional biomechanical trajectory analysis.

    PubMed

    Pataky, Todd C; Vanrenterghem, Jos; Robinson, Mark A

    2015-05-01

    Biomechanical processes are often manifested as one-dimensional (1D) trajectories. It has been shown that 1D confidence intervals (CIs) are biased when based on 0D statistical procedures, and the non-parametric 1D bootstrap CI has emerged in the Biomechanics literature as a viable solution. The primary purpose of this paper was to clarify that, for 1D biomechanics datasets, the distinction between 0D and 1D methods is much more important than the distinction between parametric and non-parametric procedures. A secondary purpose was to demonstrate that a parametric equivalent to the 1D bootstrap exists in the form of a random field theory (RFT) correction for multiple comparisons. To emphasize these points we analyzed six datasets consisting of force and kinematic trajectories in one-sample, paired, two-sample and regression designs. Results showed, first, that the 1D bootstrap and other 1D non-parametric CIs were qualitatively identical to RFT CIs, and all were very different from 0D CIs. Second, 1D parametric and 1D non-parametric hypothesis testing results were qualitatively identical for all six datasets. Last, we highlight the limitations of 1D CIs by demonstrating that they are complex, design-dependent, and thus non-generalizable. These results suggest that (i) analyses of 1D data based on 0D models of randomness are generally biased unless one explicitly identifies 0D variables before the experiment, and (ii) parametric and non-parametric 1D hypothesis testing provide an unambiguous framework for analysis when one׳s hypothesis explicitly or implicitly pertains to whole 1D trajectories. Copyright © 2015 Elsevier Ltd. All rights reserved.

  1. Network of time-multiplexed optical parametric oscillators as a coherent Ising machine

    NASA Astrophysics Data System (ADS)

    Marandi, Alireza; Wang, Zhe; Takata, Kenta; Byer, Robert L.; Yamamoto, Yoshihisa

    2014-12-01

    Finding the ground states of the Ising Hamiltonian maps to various combinatorial optimization problems in biology, medicine, wireless communications, artificial intelligence and social network. So far, no efficient classical and quantum algorithm is known for these problems and intensive research is focused on creating physical systems—Ising machines—capable of finding the absolute or approximate ground states of the Ising Hamiltonian. Here, we report an Ising machine using a network of degenerate optical parametric oscillators (OPOs). Spins are represented with above-threshold binary phases of the OPOs and the Ising couplings are realized by mutual injections. The network is implemented in a single OPO ring cavity with multiple trains of femtosecond pulses and configurable mutual couplings, and operates at room temperature. We programmed a small non-deterministic polynomial time-hard problem on a 4-OPO Ising machine and in 1,000 runs no computational error was detected.

  2. Registration of parametric dynamic F-18-FDG PET/CT breast images with parametric dynamic Gd-DTPA breast images

    NASA Astrophysics Data System (ADS)

    Magri, Alphonso; Krol, Andrzej; Lipson, Edward; Mandel, James; McGraw, Wendy; Lee, Wei; Tillapaugh-Fay, Gwen; Feiglin, David

    2009-02-01

    This study was undertaken to register 3D parametric breast images derived from Gd-DTPA MR and F-18-FDG PET/CT dynamic image series. Nonlinear curve fitting (Levenburg-Marquardt algorithm) based on realistic two-compartment models was performed voxel-by-voxel separately for MR (Brix) and PET (Patlak). PET dynamic series consists of 50 frames of 1-minute duration. Each consecutive PET image was nonrigidly registered to the first frame using a finite element method and fiducial skin markers. The 12 post-contrast MR images were nonrigidly registered to the precontrast frame using a free-form deformation (FFD) method. Parametric MR images were registered to parametric PET images via CT using FFD because the first PET time frame was acquired immediately after the CT image on a PET/CT scanner and is considered registered to the CT image. We conclude that nonrigid registration of PET and MR parametric images using CT data acquired during PET/CT scan and the FFD method resulted in their improved spatial coregistration. The success of this procedure was limited due to relatively large target registration error, TRE = 15.1+/-7.7 mm, as compared to spatial resolution of PET (6-7 mm), and swirling image artifacts created in MR parametric images by the FFD. Further refinement of nonrigid registration of PET and MR parametric images is necessary to enhance visualization and integration of complex diagnostic information provided by both modalities that will lead to improved diagnostic performance.

  3. Parametric and non-parametric species delimitation methods result in the recognition of two new Neotropical woody bamboo species.

    PubMed

    Ruiz-Sanchez, Eduardo

    2015-12-01

    The Neotropical woody bamboo genus Otatea is one of five genera in the subtribe Guaduinae. Of the eight described Otatea species, seven are endemic to Mexico and one is also distributed in Central and South America. Otatea acuminata has the widest geographical distribution of the eight species, and two of its recently collected populations do not match the known species morphologically. Parametric and non-parametric methods were used to delimit the species in Otatea using five chloroplast markers, one nuclear marker, and morphological characters. The parametric coalescent method and the non-parametric analysis supported the recognition of two distinct evolutionary lineages. Molecular clock estimates were used to estimate divergence times in Otatea. The results for divergence time in Otatea estimated the origin of the speciation events from the Late Miocene to Late Pleistocene. The species delimitation analyses (parametric and non-parametric) identified that the two populations of O. acuminata from Chiapas and Hidalgo are from two separate evolutionary lineages and these new species have morphological characters that separate them from O. acuminata s.s. The geological activity of the Trans-Mexican Volcanic Belt and the Isthmus of Tehuantepec may have isolated populations and limited the gene flow between Otatea species, driving speciation. Based on the results found here, I describe Otatea rzedowskiorum and Otatea victoriae as two new species, morphologically different from O. acuminata. Copyright © 2015 Elsevier Inc. All rights reserved.

  4. A review of parametric approaches specific to aerodynamic design process

    NASA Astrophysics Data System (ADS)

    Zhang, Tian-tian; Wang, Zhen-guo; Huang, Wei; Yan, Li

    2018-04-01

    Parametric modeling of aircrafts plays a crucial role in the aerodynamic design process. Effective parametric approaches have large design space with a few variables. Parametric methods that commonly used nowadays are summarized in this paper, and their principles have been introduced briefly. Two-dimensional parametric methods include B-Spline method, Class/Shape function transformation method, Parametric Section method, Hicks-Henne method and Singular Value Decomposition method, and all of them have wide application in the design of the airfoil. This survey made a comparison among them to find out their abilities in the design of the airfoil, and the results show that the Singular Value Decomposition method has the best parametric accuracy. The development of three-dimensional parametric methods is limited, and the most popular one is the Free-form deformation method. Those methods extended from two-dimensional parametric methods have promising prospect in aircraft modeling. Since different parametric methods differ in their characteristics, real design process needs flexible choice among them to adapt to subsequent optimization procedure.

  5. Investigation of the photon statistics of parametric fluorescence in a traveling-wave parametric amplifier by means of self-homodyne tomography.

    PubMed

    Vasilyev, M; Choi, S K; Kumar, P; D'Ariano, G M

    1998-09-01

    Photon-number distributions for parametric fluorescence from a nondegenerate optical parametric amplifier are measured with a novel self-homodyne technique. These distributions exhibit the thermal-state character predicted by theory. However, a difference between the fluorescence gain and the signal gain of the parametric amplifier is observed. We attribute this difference to a change in the signal-beam profile during the traveling-wave pulsed amplification process.

  6. The temporal interplay of self-esteem instability and affective instability in borderline personality disorder patients' everyday lives.

    PubMed

    Santangelo, Philip S; Reinhard, Iris; Koudela-Hamila, Susanne; Bohus, Martin; Holtmann, Jana; Eid, Michael; Ebner-Priemer, Ulrich W

    2017-11-01

    Borderline personality disorder (BPD) is defined by a pervasive pattern of instability. Although there is ample empirical evidence that unstable self-esteem is associated with a myriad of BPD-like symptoms, self-esteem instability and its temporal dynamics have received little empirical attention in patients with BPD. Even worse, the temporal interplay of affective instability and self-esteem instability has been neglected completely, although it has been hypothesized recently that the lack of specificity of affective instability in association with BPD might be explained by the highly intertwined temporal relationship between affective and self-esteem instability. To investigate self-esteem instability, its temporal interplay with affective instability, and its association with psychopathology, 60 patients with BPD and 60 healthy controls (HCs) completed electronic diaries for 4 consecutive days during their everyday lives. Participants reported their current self-esteem, valence, and tense arousal levels 12 times a day in approximately one-hr intervals. We used multiple state-of-the-art statistical techniques and graphical approaches to reveal patterns of instability, clarify group differences, and examine the temporal interplay of self-esteem instability and affective instability. As hypothesized, instability in both self-esteem and affect was clearly elevated in the patients with BPD. In addition, self-esteem instability and affective instability were highly correlated. Both types of instability were related to general psychopathology. Because self-esteem instability could not fully explain affective instability and vice versa and neither affective instability nor self-esteem instability was able to explain psychopathology completely, our findings suggest that these types of instability represent unique facets of BPD. (PsycINFO Database Record (c) 2017 APA, all rights reserved).

  7. Parametrization and calibration of a quasi-analytical algorithm for tropical eutrophic waters

    NASA Astrophysics Data System (ADS)

    Watanabe, Fernanda; Mishra, Deepak R.; Astuti, Ike; Rodrigues, Thanan; Alcântara, Enner; Imai, Nilton N.; Barbosa, Cláudio

    2016-11-01

    Quasi-analytical algorithm (QAA) was designed to derive the inherent optical properties (IOPs) of water bodies from above-surface remote sensing reflectance (Rrs). Several variants of QAA have been developed for environments with different bio-optical characteristics. However, most variants of QAA suffer from moderate to high negative IOP prediction when applied to tropical eutrophic waters. This research is aimed at parametrizing a QAA for tropical eutrophic water dominated by cyanobacteria. The alterations proposed in the algorithm yielded accurate absorption coefficients and chlorophyll-a (Chl-a) concentration. The main changes accomplished were the selection of wavelengths representative of the optically relevant constituents (ORCs) and calibration of values directly associated with the pigments and detritus plus colored dissolved organic material (CDM) absorption coefficients. The re-parametrized QAA eliminated the retrieval of negative values, commonly identified in other variants of QAA. The calibrated model generated a normalized root mean square error (NRMSE) of 21.88% and a mean absolute percentage error (MAPE) of 28.27% for at(λ), where the largest errors were found at 412 nm and 620 nm. Estimated NRMSE for aCDM(λ) was 18.86% with a MAPE of 31.17%. A NRMSE of 22.94% and a MAPE of 60.08% were obtained for aφ(λ). Estimated aφ(665) and aφ(709) was used to predict Chl-a concentration. aφ(665) derived from QAA for Barra Bonita Hydroelectric Reservoir (QAA_BBHR) was able to predict Chl-a accurately, with a NRMSE of 11.3% and MAPE of 38.5%. The performance of the Chl-a model was comparable to some of the most widely used empirical algorithms such as 2-band, 3-band, and the normalized difference chlorophyll index (NDCI). The new QAA was parametrized based on the band configuration of MEdium Resolution Imaging Spectrometer (MERIS), Sentinel-2A and 3A and can be readily scaled-up for spatio-temporal monitoring of IOPs in tropical waters.

  8. A snapshot of internal waves and hydrodynamic instabilities in the southern Bay of Bengal

    NASA Astrophysics Data System (ADS)

    Lozovatsky, Iossif; Wijesekera, Hemantha; Jarosz, Ewa; Lilover, Madis-Jaak; Pirro, Annunziata; Silver, Zachariah; Centurioni, Luca; Fernando, H. J. S.

    2016-08-01

    Measurements conducted in the southern Bay of Bengal (BoB) as a part of the ASIRI-EBoB Program portray the characteristics of high-frequency internal waves in the upper pycnocline as well as the velocity structure with episodic events of shear instability. A 20 h time series of CTD, ADCP, and acoustic backscatter profiles down to 150 m as well as temporal CTD measurements in the pycnocline at z = 54 m were taken to the east of Sri Lanka. Internal waves of periods ˜10-40 min were recorded at all depths below a shallow (˜20-30 m) surface mixed layer in the background of an 8 m amplitude internal tide. The absolute values of vertical displacements associated with high-frequency waves followed the Nakagami distribution with a median value of 2.1 m and a 95% quintile 6.5 m. The internal wave amplitudes are normally distributed. The tails of the distribution deviate from normality due to episodic high-amplitude displacements. The sporadic appearance of internal waves with amplitudes exceeding ˜5 m usually coincided with patches of low Richardson numbers, pointing to local shear instability as a possible mechanism of internal-wave-induced turbulence. The probability of shear instability in the summer BoB pycnocline based on an exponential distribution of the inverse Richardson number, however, appears to be relatively low, not exceeding 4% for Ri < 0.25 and about 10% for Ri < 0.36 (K-H billows). The probability of the generation of asymmetric breaking internal waves and Holmboe instabilities is above ˜25%.

  9. Joint Instability and Osteoarthritis

    PubMed Central

    Blalock, Darryl; Miller, Andrew; Tilley, Michael; Wang, Jinxi

    2015-01-01

    Joint instability creates a clinical and economic burden in the health care system. Injuries and disorders that directly damage the joint structure or lead to joint instability are highly associated with osteoarthritis (OA). Thus, understanding the physiology of joint stability and the mechanisms of joint instability-induced OA is of clinical significance. The first section of this review discusses the structure and function of major joint tissues, including periarticular muscles, which play a significant role in joint stability. Because the knee, ankle, and shoulder joints demonstrate a high incidence of ligament injury and joint instability, the second section summarizes the mechanisms of ligament injury-associated joint instability of these joints. The final section highlights the recent advances in the understanding of the mechanical and biological mechanisms of joint instability-induced OA. These advances may lead to new opportunities for clinical intervention in the prevention and early treatment of OA. PMID:25741184

  10. Joint instability and osteoarthritis.

    PubMed

    Blalock, Darryl; Miller, Andrew; Tilley, Michael; Wang, Jinxi

    2015-01-01

    Joint instability creates a clinical and economic burden in the health care system. Injuries and disorders that directly damage the joint structure or lead to joint instability are highly associated with osteoarthritis (OA). Thus, understanding the physiology of joint stability and the mechanisms of joint instability-induced OA is of clinical significance. The first section of this review discusses the structure and function of major joint tissues, including periarticular muscles, which play a significant role in joint stability. Because the knee, ankle, and shoulder joints demonstrate a high incidence of ligament injury and joint instability, the second section summarizes the mechanisms of ligament injury-associated joint instability of these joints. The final section highlights the recent advances in the understanding of the mechanical and biological mechanisms of joint instability-induced OA. These advances may lead to new opportunities for clinical intervention in the prevention and early treatment of OA.

  11. Parametric Cost Models for Space Telescopes

    NASA Technical Reports Server (NTRS)

    Stahl, H. Philip

    2010-01-01

    A study is in-process to develop a multivariable parametric cost model for space telescopes. Cost and engineering parametric data has been collected on 30 different space telescopes. Statistical correlations have been developed between 19 variables of 59 variables sampled. Single Variable and Multi-Variable Cost Estimating Relationships have been developed. Results are being published.

  12. MHD instabilities in astrophysical plasmas: very different from MHD instabilities in tokamaks!

    NASA Astrophysics Data System (ADS)

    Goedbloed, J. P.

    2018-01-01

    The extensive studies of MHD instabilities in thermonuclear magnetic confinement experiments, in particular of the tokamak as the most promising candidate for a future energy producing machine, have led to an ‘intuitive’ description based on the energy principle that is very misleading for most astrophysical plasmas. The ‘intuitive’ picture almost directly singles out the dominant stabilizing field line bending energy of the Alfvén waves and, consequently, concentrates on expansion schemes that minimize that contribution. This happens when the wave vector {{k}}0 of the perturbations, on average, is perpendicular to the magnetic field {B}. Hence, all macroscopic instabilities of tokamaks (kinks, interchanges, ballooning modes, ELMs, neoclassical tearing modes, etc) are characterized by satisfying the condition {{k}}0 \\perp {B}, or nearly so. In contrast, some of the major macroscopic instabilities of astrophysical plasmas (the Parker instability and the magneto-rotational instability) occur when precisely the opposite condition is satisfied: {{k}}0 \\parallel {B}. How do those instabilities escape from the dominance of the stabilizing Alfvén wave? The answer to that question involves, foremost, the recognition that MHD spectral theory of waves and instabilities of laboratory plasmas could be developed to such great depth since those plasmas are assumed to be in static equilibrium. This assumption is invalid for astrophysical plasmas where rotational and gravitational accelerations produce equilibria that are at best stationary, and the associated spectral theory is widely, and incorrectly, believed to be non-self adjoint. These complications are addressed, and cured, in the theory of the Spectral Web, recently developed by the author. Using this method, an extensive survey of instabilities of astrophysical plasmas demonstrates how the Alfvén wave is pushed into insignificance under these conditions to give rise to a host of instabilities that do not

  13. Step-Down Test Assessment of Postural Stability in Patients With Chronic Ankle Instability.

    PubMed

    Bolt, Doris; Giger, René; Wirth, Stefan; Swanenburg, Jaap

    2018-01-23

    The underlying mechanism in 27% of ankle sprains is a fall while navigating stairs. Therefore, the step-down test (SDT) may be useful to investigate dynamic postural stability deficits in individuals with chronic ankle instability (CAI). To investigate the test-retest reliability and validity of the forward and lateral SDT protocol between individuals with CAI and uninjured controls. Test-retest study. University hospital. A total of 46  individuals, 23 with CAI and 23 uninjured controls. Time to stabilization of the forward and lateral SDT. The absolute reliability (SEM = 0.04-0.12 s; SDD = 0.11-0.33 s) of the SDT protocol was acceptable, whereas the relative reliability (ICC 3 , k = 0.12-0.63) and discriminant validity (P = .42-.99; AUC = 0.50-0.57) were not. The SDT appears to not be challenging enough to detect dynamic postural stability differences between individuals with and without CAI. However, the SDT may be capable of measuring change over time based on its good absolute reliability.

  14. Viscoelastic Taylor-Couette instability as analog of the magnetorotational instability.

    PubMed

    Bai, Yang; Crumeyrolle, Olivier; Mutabazi, Innocent

    2015-09-01

    A linear stability analysis and an experimental study of a viscoelastic Taylor-Couette flow corotating in the Keplerian ratio allow us to elucidate the analogy between the viscoelastic instability and the magnetorotational instability (MRI). A generalized Rayleigh criterion allows us to determine the potentially unstable zone to pure-elasticity-driven perturbations. Experiments with a viscoelastic polymer solution yield four modes: one pure-elasticity mode and three elastorotational instability (ERI) modes that represent the MRI-analog modes. The destabilization by the polymer viscosity is evidenced for the ERI modes.

  15. Multiple frequency radar observations of high-latitude E region irregularities in the HF modified ionosphere

    NASA Technical Reports Server (NTRS)

    Noble, S. T.; Gordon, W. E.; Djuth, F. T.; Jost, R. J.; Hedberg, A.

    1987-01-01

    This paper discusses the results of the September 1983 observations of artificial field-aligned irregularities (AFAIs) in the Tromso, Norway region, made by backscatter radars operating at 46.9, 143.8, 21.4, and 140.0 MHz. Four classes of resonant instability processes at work in the E and F regions are examined in detail: (1) the coupling of parametric decay instability waves across geomagnetic field lines, (2) thermal parametric instability, (3) four-wave interaction thermal parametric instability, and (4) the resonance instability. The characteristics of the AFAI scatter are described, with special attention given to the growth and decay time constants, functional dependence on the heater power and polarization, and the scattering cross sections of the irregularities.

  16. Forecasting Error Calculation with Mean Absolute Deviation and Mean Absolute Percentage Error

    NASA Astrophysics Data System (ADS)

    Khair, Ummul; Fahmi, Hasanul; Hakim, Sarudin Al; Rahim, Robbi

    2017-12-01

    Prediction using a forecasting method is one of the most important things for an organization, the selection of appropriate forecasting methods is also important but the percentage error of a method is more important in order for decision makers to adopt the right culture, the use of the Mean Absolute Deviation and Mean Absolute Percentage Error to calculate the percentage of mistakes in the least square method resulted in a percentage of 9.77% and it was decided that the least square method be worked for time series and trend data.

  17. Parametric and Non-Parametric Vibration-Based Structural Identification Under Earthquake Excitation

    NASA Astrophysics Data System (ADS)

    Pentaris, Fragkiskos P.; Fouskitakis, George N.

    2014-05-01

    The problem of modal identification in civil structures is of crucial importance, and thus has been receiving increasing attention in recent years. Vibration-based methods are quite promising as they are capable of identifying the structure's global characteristics, they are relatively easy to implement and they tend to be time effective and less expensive than most alternatives [1]. This paper focuses on the off-line structural/modal identification of civil (concrete) structures subjected to low-level earthquake excitations, under which, they remain within their linear operating regime. Earthquakes and their details are recorded and provided by the seismological network of Crete [2], which 'monitors' the broad region of south Hellenic arc, an active seismic region which functions as a natural laboratory for earthquake engineering of this kind. A sufficient number of seismic events are analyzed in order to reveal the modal characteristics of the structures under study, that consist of the two concrete buildings of the School of Applied Sciences, Technological Education Institute of Crete, located in Chania, Crete, Hellas. Both buildings are equipped with high-sensitivity and accuracy seismographs - providing acceleration measurements - established at the basement (structure's foundation) presently considered as the ground's acceleration (excitation) and at all levels (ground floor, 1st floor, 2nd floor and terrace). Further details regarding the instrumentation setup and data acquisition may be found in [3]. The present study invokes stochastic, both non-parametric (frequency-based) and parametric methods for structural/modal identification (natural frequencies and/or damping ratios). Non-parametric methods include Welch-based spectrum and Frequency response Function (FrF) estimation, while parametric methods, include AutoRegressive (AR), AutoRegressive with eXogeneous input (ARX) and Autoregressive Moving-Average with eXogeneous input (ARMAX) models[4, 5

  18. Parametrically disciplined operation of a vibratory gyroscope

    NASA Technical Reports Server (NTRS)

    Shcheglov, Kirill V. (Inventor); Challoner, A. Dorian (Inventor); Hayworth, Ken J. (Inventor); Peay, Chris S. (Inventor)

    2008-01-01

    Parametrically disciplined operation of a symmetric nearly degenerate mode vibratory gyroscope is disclosed. A parametrically-disciplined inertial wave gyroscope having a natural oscillation frequency in the neighborhood of a sub-harmonic of an external stable clock reference is produced by driving an electrostatic bias electrode at approximately twice this sub-harmonic frequency to achieve disciplined frequency and phase operation of the resonator. A nearly symmetric parametrically-disciplined inertial wave gyroscope that can oscillate in any transverse direction and has more than one bias electrostatic electrode that can be independently driven at twice its oscillation frequency at an amplitude and phase that disciplines its damping to zero in any vibration direction. In addition, operation of a parametrically-disciplined inertial wave gyroscope is taught in which the precession rate of the driven vibration pattern is digitally disciplined to a prescribed non-zero reference value.

  19. Active control of combustion instabilities

    NASA Astrophysics Data System (ADS)

    Al-Masoud, Nidal A.

    and LQG. Since the observed instabilities are harmonic, the concept of "harmonic input" is successfully implemented using a parametric controller to eliminate the thermo-acoustic instability. This control scheme relies on the determination of a phase-shift to maximize the energy dissipation and a controller gain to assure stability and minimize a pre-specified performance index. The closed loop control law design is based on finding an optimal phase angle such that the heat release produced by secondary oscillatory fuel injection is out of phase with the mode's pressure oscillations, thus maximizing energy dissipation, and on finding the limits on the controller gain that ensures system stability. The optimal gains are determined using ITA, ISE, ITAE performance indices. Simulations show successful implementation of the proposed technique.

  20. Interfacial instabilities in vibrated fluids

    NASA Astrophysics Data System (ADS)

    Porter, Jeff; Laverón-Simavilla, Ana; Tinao Perez-Miravete, Ignacio; Fernandez Fraile, Jose Javier

    2016-07-01

    Vibrations induce a range of different interfacial phenomena in fluid systems depending on the frequency and orientation of the forcing. With gravity, (large) interfaces are approximately flat and there is a qualitative difference between vertical and horizontal forcing. Sufficient vertical forcing produces subharmonic standing waves (Faraday waves) that extend over the whole interface. Horizontal forcing can excite both localized and extended interfacial phenomena. The vibrating solid boundaries act as wavemakers to excite traveling waves (or sloshing modes at low frequencies) but they also drive evanescent bulk modes whose oscillatory pressure gradient can parametrically excite subharmonic surface waves like cross-waves. Depending on the magnitude of the damping and the aspect ratio of the container, these locally generated surfaces waves may interact in the interior resulting in temporal modulation and other complex dynamics. In the case where the interface separates two fluids of different density in, for example, a rectangular container, the mass transfer due to vertical motion near the endwalls requires a counterflow in the interior region that can lead to a Kelvin-Helmholtz type instability and a ``frozen wave" pattern. In microgravity, the dominance of surface forces favors non-flat equilibrium configurations and the distinction between vertical and horizontal applied forcing can be lost. Hysteresis and multiplicity of solutions are more common, especially in non-wetting systems where disconnected (partial) volumes of fluid can be established. Furthermore, the vibrational field contributes a dynamic pressure term that competes with surface tension to select the (time averaged) shape of the surface. These new (quasi-static) surface configurations, known as vibroequilibria, can differ substantially from the hydrostatic state. There is a tendency for the interface to orient perpendicular to the vibrational axis and, in some cases, a bulge or cavity is induced

  1. Parametric FEM for geometric biomembranes

    NASA Astrophysics Data System (ADS)

    Bonito, Andrea; Nochetto, Ricardo H.; Sebastian Pauletti, M.

    2010-05-01

    We consider geometric biomembranes governed by an L2-gradient flow for bending energy subject to area and volume constraints (Helfrich model). We give a concise derivation of a novel vector formulation, based on shape differential calculus, and corresponding discretization via parametric FEM using quadratic isoparametric elements and a semi-implicit Euler method. We document the performance of the new parametric FEM with a number of simulations leading to dumbbell, red blood cell and toroidal equilibrium shapes while exhibiting large deformations.

  2. Imaging of shoulder instability

    PubMed Central

    Martínez Martínez, Alberto; Tomás Muñoz, Pablo; Pozo Sánchez, José; Zarza Pérez, Antonio

    2017-01-01

    This extended review tries to cover the imaging findings of the wide range of shoulder injuries secondary to shoulder joint instability. Usefulness of the different imaging methods is stressed, including radiography, computed tomography (CT) and magnetic resonance. The main topics to be covered include traumatic, atraumatic and minor instability syndromes. Radiography may show bone abnormalities associated to instability, including developmental and post-traumatic changes. CT is the best technique depicting and quantifying skeletal changes. MR-arthrography is the main tool in diagnosing the shoulder instability injuries. PMID:28932699

  3. Ku band low noise parametric amplifier

    NASA Technical Reports Server (NTRS)

    1976-01-01

    A low noise, K sub u-band, parametric amplifier (paramp) was developed. The unit is a spacecraft-qualifiable, prototype, parametric amplifier for eventual application in the shuttle orbiter. The amplifier was required to have a noise temperature of less than 150 K. A noise temperature of less than 120 K at a gain level of 17 db was achieved. A 3-db bandwidth in excess of 350 MHz was attained, while deviation from phase linearity of about + or - 1 degree over 50 MHz was achieved. The paramp operates within specification over an ambient temperature range of -5 C to +50 C. The performance requirements and the operation of the K sub u-band parametric amplifier system are described. The final test results are also given.

  4. Parametric analysis of ATM solar array.

    NASA Technical Reports Server (NTRS)

    Singh, B. K.; Adkisson, W. B.

    1973-01-01

    The paper discusses the methods used for the calculation of ATM solar array performance characteristics and provides the parametric analysis of solar panels used in SKYLAB. To predict the solar array performance under conditions other than test conditions, a mathematical model has been developed. Four computer programs have been used to convert the solar simulator test data to the parametric curves. The first performs module summations, the second determines average solar cell characteristics which will cause a mathematical model to generate a curve matching the test data, the third is a polynomial fit program which determines the polynomial equations for the solar cell characteristics versus temperature, and the fourth program uses the polynomial coefficients generated by the polynomial curve fit program to generate the parametric data.

  5. 20 CFR 404.1205 - Absolute coverage groups.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... 20 Employees' Benefits 2 2014-04-01 2014-04-01 false Absolute coverage groups. 404.1205 Section... INSURANCE (1950- ) Coverage of Employees of State and Local Governments What Groups of Employees May Be Covered § 404.1205 Absolute coverage groups. (a) General. An absolute coverage group is a permanent...

  6. 20 CFR 404.1205 - Absolute coverage groups.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... 20 Employees' Benefits 2 2013-04-01 2013-04-01 false Absolute coverage groups. 404.1205 Section... INSURANCE (1950- ) Coverage of Employees of State and Local Governments What Groups of Employees May Be Covered § 404.1205 Absolute coverage groups. (a) General. An absolute coverage group is a permanent...

  7. 20 CFR 404.1205 - Absolute coverage groups.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... 20 Employees' Benefits 2 2012-04-01 2012-04-01 false Absolute coverage groups. 404.1205 Section... INSURANCE (1950- ) Coverage of Employees of State and Local Governments What Groups of Employees May Be Covered § 404.1205 Absolute coverage groups. (a) General. An absolute coverage group is a permanent...

  8. Housing price prediction: parametric versus semi-parametric spatial hedonic models

    NASA Astrophysics Data System (ADS)

    Montero, José-María; Mínguez, Román; Fernández-Avilés, Gema

    2018-01-01

    House price prediction is a hot topic in the economic literature. House price prediction has traditionally been approached using a-spatial linear (or intrinsically linear) hedonic models. It has been shown, however, that spatial effects are inherent in house pricing. This article considers parametric and semi-parametric spatial hedonic model variants that account for spatial autocorrelation, spatial heterogeneity and (smooth and nonparametrically specified) nonlinearities using penalized splines methodology. The models are represented as a mixed model that allow for the estimation of the smoothing parameters along with the other parameters of the model. To assess the out-of-sample performance of the models, the paper uses a database containing the price and characteristics of 10,512 homes in Madrid, Spain (Q1 2010). The results obtained suggest that the nonlinear models accounting for spatial heterogeneity and flexible nonlinear relationships between some of the individual or areal characteristics of the houses and their prices are the best strategies for house price prediction.

  9. A Conceptual Wing Flutter Analysis Tool for Systems Analysis and Parametric Design Study

    NASA Technical Reports Server (NTRS)

    Mukhopadhyay, Vivek

    2003-01-01

    An interactive computer program was developed for wing flutter analysis in the conceptual design stage. The objective was to estimate flutt er instability boundaries of a typical wing, when detailed structural and aerodynamic data are not available. Effects of change in key flu tter parameters can also be estimated in order to guide the conceptual design. This userfriendly software was developed using MathCad and M atlab codes. The analysis method was based on non-dimensional paramet ric plots of two primary flutter parameters, namely Regier number and Flutter number, with normalization factors based on wing torsion stiffness, sweep, mass ratio, taper ratio, aspect ratio, center of gravit y location and pitch-inertia radius of gyration. These parametric plo ts were compiled in a Chance-Vought Corporation report from database of past experiments and wind tunnel test results. An example was prese nted for conceptual flutter analysis of outer-wing of a Blended-Wing- Body aircraft.

  10. Robust dynamic mitigation of instabilities

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kawata, S.; Karino, T.

    2015-04-15

    A dynamic mitigation mechanism for instability growth was proposed and discussed in the paper [S. Kawata, Phys. Plasmas 19, 024503 (2012)]. In the present paper, the robustness of the dynamic instability mitigation mechanism is discussed further. The results presented here show that the mechanism of the dynamic instability mitigation is rather robust against changes in the phase, the amplitude, and the wavelength of the wobbling perturbation applied. Generally, instability would emerge from the perturbation of the physical quantity. Normally, the perturbation phase is unknown so that the instability growth rate is discussed. However, if the perturbation phase is known, themore » instability growth can be controlled by a superposition of perturbations imposed actively: If the perturbation is induced by, for example, a driving beam axis oscillation or wobbling, the perturbation phase could be controlled, and the instability growth is mitigated by the superposition of the growing perturbations.« less

  11. Chronic ankle instability: Current perspectives

    PubMed Central

    Al-Mohrej, Omar A.; Al-Kenani, Nader S.

    2016-01-01

    Ankle sprain is reported to be among the most common recurrent injuries. About 20% of acute ankle sprain patients develop chronic ankle instability. The failure of functional rehabilitation after acute ankle sprain leads to the development of chronic ankle instability. Differentiation between functional and anatomical ankle instability is very essential to guide the proper treatment. Stability testing by varus stress test and anterior drawer test should be carried out. Subtalar instability is an important pathology that is commonly by passed during the assessment of chronic ankle instability. Unlike acute ankle sprain, chronic ankle instability might require surgical intervention. The surgical and conservative management options can be very much developed by in-depth knowledge of the ankle anatomy, biomechanics, and pathology. Anatomical repair, augmentation by tendon, or both are the basic methods of surgical intervention. Arthroscopy is becoming more popular in the management of chronic ankle instability. PMID:27843798

  12. SOA does not Reveal the Absolute Time Course of Cognitive Processing in Fast Priming Experiments

    PubMed Central

    Tzur, Boaz; Frost, Ram

    2007-01-01

    Applying Bloch's law to visual word recognition research, both exposure duration of the prime and its luminance determine the prime's overall energy, and consequently determine the size of the priming effect. Nevertheless, experimenters using fast-priming paradigms traditionally focus only on the SOA between prime and target to reflect the absolute speed of cognitive processes under investigation. Some of the discrepancies in results regarding the time course of orthographic and phonological activation in word recognition research may be due to this factor. This hypothesis was examined by manipulating parametrically the luminance of the prime and its exposure duration, measuring their joint impact on masked repetition priming. The results show that small and non-significant priming effects can be more than tripled as a result of simply increasing luminance, when SOA is kept constant. Moreover, increased luminance may compensate for briefer exposure duration and vice versa. PMID:18379635

  13. Comparison of thawing and freezing dark energy parametrizations

    NASA Astrophysics Data System (ADS)

    Pantazis, G.; Nesseris, S.; Perivolaropoulos, L.

    2016-05-01

    Dark energy equation of state w (z ) parametrizations with two parameters and given monotonicity are generically either convex or concave functions. This makes them suitable for fitting either freezing or thawing quintessence models but not both simultaneously. Fitting a data set based on a freezing model with an unsuitable (concave when increasing) w (z ) parametrization [like Chevallier-Polarski-Linder (CPL)] can lead to significant misleading features like crossing of the phantom divide line, incorrect w (z =0 ), incorrect slope, etc., that are not present in the underlying cosmological model. To demonstrate this fact we generate scattered cosmological data at both the level of w (z ) and the luminosity distance DL(z ) based on either thawing or freezing quintessence models and fit them using parametrizations of convex and of concave type. We then compare statistically significant features of the best fit w (z ) with actual features of the underlying model. We thus verify that the use of unsuitable parametrizations can lead to misleading conclusions. In order to avoid these problems it is important to either use both convex and concave parametrizations and select the one with the best χ2 or use principal component analysis thus splitting the redshift range into independent bins. In the latter case, however, significant information about the slope of w (z ) at high redshifts is lost. Finally, we propose a new family of parametrizations w (z )=w0+wa(z/1 +z )n which generalizes the CPL and interpolates between thawing and freezing parametrizations as the parameter n increases to values larger than 1.

  14. Non-covalent interactions across organic and biological subsets of chemical space: Physics-based potentials parametrized from machine learning

    NASA Astrophysics Data System (ADS)

    Bereau, Tristan; DiStasio, Robert A.; Tkatchenko, Alexandre; von Lilienfeld, O. Anatole

    2018-06-01

    Classical intermolecular potentials typically require an extensive parametrization procedure for any new compound considered. To do away with prior parametrization, we propose a combination of physics-based potentials with machine learning (ML), coined IPML, which is transferable across small neutral organic and biologically relevant molecules. ML models provide on-the-fly predictions for environment-dependent local atomic properties: electrostatic multipole coefficients (significant error reduction compared to previously reported), the population and decay rate of valence atomic densities, and polarizabilities across conformations and chemical compositions of H, C, N, and O atoms. These parameters enable accurate calculations of intermolecular contributions—electrostatics, charge penetration, repulsion, induction/polarization, and many-body dispersion. Unlike other potentials, this model is transferable in its ability to handle new molecules and conformations without explicit prior parametrization: All local atomic properties are predicted from ML, leaving only eight global parameters—optimized once and for all across compounds. We validate IPML on various gas-phase dimers at and away from equilibrium separation, where we obtain mean absolute errors between 0.4 and 0.7 kcal/mol for several chemically and conformationally diverse datasets representative of non-covalent interactions in biologically relevant molecules. We further focus on hydrogen-bonded complexes—essential but challenging due to their directional nature—where datasets of DNA base pairs and amino acids yield an extremely encouraging 1.4 kcal/mol error. Finally, and as a first look, we consider IPML for denser systems: water clusters, supramolecular host-guest complexes, and the benzene crystal.

  15. Variance computations for functional of absolute risk estimates.

    PubMed

    Pfeiffer, R M; Petracci, E

    2011-07-01

    We present a simple influence function based approach to compute the variances of estimates of absolute risk and functions of absolute risk. We apply this approach to criteria that assess the impact of changes in the risk factor distribution on absolute risk for an individual and at the population level. As an illustration we use an absolute risk prediction model for breast cancer that includes modifiable risk factors in addition to standard breast cancer risk factors. Influence function based variance estimates for absolute risk and the criteria are compared to bootstrap variance estimates.

  16. Variance computations for functional of absolute risk estimates

    PubMed Central

    Pfeiffer, R.M.; Petracci, E.

    2011-01-01

    We present a simple influence function based approach to compute the variances of estimates of absolute risk and functions of absolute risk. We apply this approach to criteria that assess the impact of changes in the risk factor distribution on absolute risk for an individual and at the population level. As an illustration we use an absolute risk prediction model for breast cancer that includes modifiable risk factors in addition to standard breast cancer risk factors. Influence function based variance estimates for absolute risk and the criteria are compared to bootstrap variance estimates. PMID:21643476

  17. Parametric pendulum based wave energy converter

    NASA Astrophysics Data System (ADS)

    Yurchenko, Daniil; Alevras, Panagiotis

    2018-01-01

    The paper investigates the dynamics of a novel wave energy converter based on the parametrically excited pendulum. The herein developed concept of the parametric pendulum allows reducing the influence of the gravity force thereby significantly improving the device performance at a regular sea state, which could not be achieved in the earlier proposed original point-absorber design. The suggested design of a wave energy converter achieves a dominant rotational motion without any additional mechanisms, like a gearbox, or any active control involvement. Presented numerical results of deterministic and stochastic modeling clearly reflect the advantage of the proposed design. A set of experimental results confirms the numerical findings and validates the new design of a parametric pendulum based wave energy converter. Power harvesting potential of the novel device is also presented.

  18. SPM analysis of parametric (R)-[11C]PK11195 binding images: plasma input versus reference tissue parametric methods.

    PubMed

    Schuitemaker, Alie; van Berckel, Bart N M; Kropholler, Marc A; Veltman, Dick J; Scheltens, Philip; Jonker, Cees; Lammertsma, Adriaan A; Boellaard, Ronald

    2007-05-01

    (R)-[11C]PK11195 has been used for quantifying cerebral microglial activation in vivo. In previous studies, both plasma input and reference tissue methods have been used, usually in combination with a region of interest (ROI) approach. Definition of ROIs, however, can be labourious and prone to interobserver variation. In addition, results are only obtained for predefined areas and (unexpected) signals in undefined areas may be missed. On the other hand, standard pharmacokinetic models are too sensitive to noise to calculate (R)-[11C]PK11195 binding on a voxel-by-voxel basis. Linearised versions of both plasma input and reference tissue models have been described, and these are more suitable for parametric imaging. The purpose of this study was to compare the performance of these plasma input and reference tissue parametric methods on the outcome of statistical parametric mapping (SPM) analysis of (R)-[11C]PK11195 binding. Dynamic (R)-[11C]PK11195 PET scans with arterial blood sampling were performed in 7 younger and 11 elderly healthy subjects. Parametric images of volume of distribution (Vd) and binding potential (BP) were generated using linearised versions of plasma input (Logan) and reference tissue (Reference Parametric Mapping) models. Images were compared at the group level using SPM with a two-sample t-test per voxel, both with and without proportional scaling. Parametric BP images without scaling provided the most sensitive framework for determining differences in (R)-[11C]PK11195 binding between younger and elderly subjects. Vd images could only demonstrate differences in (R)-[11C]PK11195 binding when analysed with proportional scaling due to intersubject variation in K1/k2 (blood-brain barrier transport and non-specific binding).

  19. Characterization of a multimode coplanar waveguide parametric amplifier

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Simoen, M., E-mail: simoen@chalmers.se; Krantz, P.; Bylander, Jonas

    2015-10-21

    We characterize a Josephson parametric amplifier based on a flux-tunable quarter-wavelength resonator. The fundamental resonance frequency is ∼1 GHz, but we use higher modes of the resonator for our measurements. An on-chip tuning line allows for magnetic flux pumping of the amplifier. We investigate and compare degenerate parametric amplification, involving a single mode, and nondegenerate parametric amplification, using a pair of modes. We show that we reach quantum-limited noise performance in both cases.

  20. Relativistic electromagnetic ion cyclotron instabilities

    NASA Astrophysics Data System (ADS)

    Chen, K. R.; Huang, R. D.; Wang, J. C.; Chen, Y. Y.

    2005-03-01

    The relativistic instabilities of electromagnetic ion cyclotron waves driven by MeV ions are analytically and numerically studied. As caused by wave magnetic field and in sharp contrast to the electrostatic case, interesting characteristics such as Alfvénic behavior and instability transition are discovered and illuminated in detail. The instabilities are reactive and are raised from the coupling of slow ions’ first-order resonance and fast ions’ second-order resonance, that is an essential extra mechanism due to relativistic effect. Because of the wave magnetic field, the nonresonant plasma dielectric is usually negative and large, that affects the instability conditions and scaling laws. A negative harmonic cyclotron frequency mismatch between the fast and slow ions is required for driving a cubic (and a coupled quadratic) instability; the cubic (square) root scaling of the peak growth rate makes the relativistic effect more important than classical mechanism, especially for low fast ion density and Lorentz factor being close to unity. For the cubic instability, there is a threshold (ceiling) on the slow ion temperature and density (the external magnetic field and the fast ion energy); the Alfvén velocity is required to be low. This Alfvénic behavior is interesting in physics and important for its applications. The case of fast protons in thermal deuterons is numerically studied and compared with the analytical results. When the slow ion temperature or density (the external magnetic field or the fast ion energy) is increased (reduced) to about twice (half) the threshold (ceiling), the same growth rate peak transits from the cubic instability to the coupled quadratic instability and a different cubic instability branch appears. The instability transition is an interesting new phenomenon for instability.

  1. Effect of axial magnetic field on three-dimensional instability of natural convection in a vertical Bridgman growth configuration

    NASA Astrophysics Data System (ADS)

    Gelfgat, A. Yu.; Bar-Yoseph, P. Z.; Solan, A.

    2001-08-01

    A study of the effect of an externally imposed magnetic field on the axisymmetry-breaking instability of an axisymmetric convective flow, associated with crystal growth from bulk of melt, is presented. Convection in a vertical cylinder with a parabolic temperature profile on the sidewall is considered as a representative model. A parametric study of the dependence of the critical Grashof number Gr cr on the Hartmann number Ha for fixed values of the Prandtl number (Pr=0.015) and the aspect ratio of the cylinder ( A=height/radius=1, 2 and 3) is carried out. The stability diagram Gr cr(Ha) corresponding to the axisymmetric—three-dimensional transition for increasing values of the axial magnetic field is obtained. The calculations are done using the spectral Galerkin method allowing an effective and accurate three-dimensional stability analysis. It is shown that at relatively small values of Ha the axisymmetric flow tends to be oscillatory unstable. After the magnitude of the magnetic field (Ha) exceeds a certain value the instability switches to a steady bifurcation caused by the Rayleigh-Bénard mechanism.

  2. Bar Mode Instability in Relativistic Rotating Stars: A Post-Newtonian Treatment

    NASA Astrophysics Data System (ADS)

    Shapiro, Stuart L.; Zane, Silvia

    1998-08-01

    We construct analytic models of incompressible, uniformly rotating stars in post-Newtonian (PN) gravity and evaluate their stability against nonaxisymmetric bar modes. We model the PN configurations by homogeneous triaxial ellipsoids and employ an energy variational principle to determine their equilibrium shape and stability. The spacetime metric is obtained by solving Einstein's equations of general relativity in 3 + 1 ADM form. We use an approximate subset of these equations well suited to numerical integration in the case of strong-field, three-dimensional configurations in quasi equilibrium. However, the adopted equations are exact at PN order, where they admit an analytic solution for homogeneous ellipsoids. We obtain this solution for the metric, as well as analytic functionals for the conserved global quantities, M, M0, and J. We present sequences of axisymmetric, rotating equilibria of constant density and rest mass parametrized by their eccentricity. These configurations represent the PN generalization of Newtonian Maclaurin spheroids, which we compare to other PN and full relativistic incompressible equilibrium sequences constructed by previous investigators. We employ the variational principle to consider nonaxisymmetric ellipsoidal deformations of the configurations, holding the angular momentum constant and the rotation uniform. We locate the point along each sequence at which these Jacobi-like bar modes will be driven secularly unstable by the presence of a dissipative agent such as viscosity. We find that the value of the eccentricity, as well as related ratios such as Ω2/(πρ0) and T/|W| (=rotational kinetic energy/gravitational potential energy), defined invariantly, all increase at the onset of instability as the stars become more relativistic. Since higher degrees of rotation are required to trigger a viscosity-driven bar mode instability as the stars become more compact, the effect of general relativity is to weaken the instability, at least

  3. Absolute Summ

    NASA Astrophysics Data System (ADS)

    Phillips, Alfred, Jr.

    Summ means the entirety of the multiverse. It seems clear, from the inflation theories of A. Guth and others, that the creation of many universes is plausible. We argue that Absolute cosmological ideas, not unlike those of I. Newton, may be consistent with dynamic multiverse creations. As suggested in W. Heisenberg's uncertainty principle, and with the Anthropic Principle defended by S. Hawking, et al., human consciousness, buttressed by findings of neuroscience, may have to be considered in our models. Predictability, as A. Einstein realized with Invariants and General Relativity, may be required for new ideas to be part of physics. We present here a two postulate model geared to an Absolute Summ. The seedbed of this work is part of Akhnaton's philosophy (see S. Freud, Moses and Monotheism). Most important, however, is that the structure of human consciousness, manifest in Kenya's Rift Valley 200,000 years ago as Homo sapiens, who were the culmination of the six million year co-creation process of Hominins and Nature in Africa, allows us to do the physics that we do. .

  4. The transverse instability in a differentially heated vertical cavity filled with molecular radiating gases. I. Linear stability analysis

    NASA Astrophysics Data System (ADS)

    Borget, V.; Bdéoui, F.; Soufiani, A.; Le Quéré, P.

    2001-05-01

    Radiation effects on the onset of the transverse instability in a differentially heated vertical cavity containing molecular emitting and absorbing gases in the so-called conduction regime is studied theoretically. Radiative transfer is treated using the full integro-differential formulation. The neutral stability curves are determined using a combined Galerkin-collocation method based on Chebyshev polynomials. A modified correlated-k model and the absorption distribution function model are used in order to take into account the spectral structure of the absorption coefficient for radiating molecules such as H2O and CO2. For transparent media, perfect agreement is found with the available data reported in the literature and, particularly, the principle of exchange of stability is found to hold for Prandtl number values less than 12.46. The study of gray media allows us to examine the basic mechanisms that yield to the onset of transverse instability as traveling waves. For real radiating gases, a parametric study for H2O and CO2 is reported. It is shown that the radiative transfer delays the onset of the transverse instability and this delay increases with temperature and decreases with boundary emissivities, while layer depth effects depend on the level of saturation of the gas active absorption bands. Whatever the gas considered, it is found that neither radiation effect on the basic flow nor the radiative power disturbances can be neglected.

  5. Parametric Methods for Dynamic 11C-Phenytoin PET Studies.

    PubMed

    Mansor, Syahir; Yaqub, Maqsood; Boellaard, Ronald; Froklage, Femke E; de Vries, Anke; Bakker, Esther D M; Voskuyl, Rob A; Eriksson, Jonas; Schwarte, Lothar A; Verbeek, Joost; Windhorst, Albert D; Lammertsma, Adriaan A

    2017-03-01

    In this study, the performance of various methods for generating quantitative parametric images of dynamic 11 C-phenytoin PET studies was evaluated. Methods: Double-baseline 60-min dynamic 11 C-phenytoin PET studies, including online arterial sampling, were acquired for 6 healthy subjects. Parametric images were generated using Logan plot analysis, a basis function method, and spectral analysis. Parametric distribution volume (V T ) and influx rate ( K 1 ) were compared with those obtained from nonlinear regression analysis of time-activity curves. In addition, global and regional test-retest (TRT) variability was determined for parametric K 1 and V T values. Results: Biases in V T observed with all parametric methods were less than 5%. For K 1 , spectral analysis showed a negative bias of 16%. The mean TRT variabilities of V T and K 1 were less than 10% for all methods. Shortening the scan duration to 45 min provided similar V T and K 1 with comparable TRT performance compared with 60-min data. Conclusion: Among the various parametric methods tested, the basis function method provided parametric V T and K 1 values with the least bias compared with nonlinear regression data and showed TRT variabilities lower than 5%, also for smaller volume-of-interest sizes (i.e., higher noise levels) and shorter scan duration. © 2017 by the Society of Nuclear Medicine and Molecular Imaging.

  6. Parametric Modeling for Fluid Systems

    NASA Technical Reports Server (NTRS)

    Pizarro, Yaritzmar Rosario; Martinez, Jonathan

    2013-01-01

    Fluid Systems involves different projects that require parametric modeling, which is a model that maintains consistent relationships between elements as is manipulated. One of these projects is the Neo Liquid Propellant Testbed, which is part of Rocket U. As part of Rocket U (Rocket University), engineers at NASA's Kennedy Space Center in Florida have the opportunity to develop critical flight skills as they design, build and launch high-powered rockets. To build the Neo testbed; hardware from the Space Shuttle Program was repurposed. Modeling for Neo, included: fittings, valves, frames and tubing, between others. These models help in the review process, to make sure regulations are being followed. Another fluid systems project that required modeling is Plant Habitat's TCUI test project. Plant Habitat is a plan to develop a large growth chamber to learn the effects of long-duration microgravity exposure to plants in space. Work for this project included the design and modeling of a duct vent for flow test. Parametric Modeling for these projects was done using Creo Parametric 2.0.

  7. Thermal shrinkage for shoulder instability.

    PubMed

    Toth, Alison P; Warren, Russell F; Petrigliano, Frank A; Doward, David A; Cordasco, Frank A; Altchek, David W; O'Brien, Stephen J

    2011-07-01

    Thermal capsular shrinkage was popular for the treatment of shoulder instability, despite a paucity of outcomes data in the literature defining the indications for this procedure or supporting its long-term efficacy. The purpose of this study was to perform a clinical evaluation of radiofrequency thermal capsular shrinkage for the treatment of shoulder instability, with a minimum 2-year follow-up. From 1999 to 2001, 101 consecutive patients with mild to moderate shoulder instability underwent shoulder stabilization surgery with thermal capsular shrinkage using a monopolar radiofrequency device. Follow-up included a subjective outcome questionnaire, discussion of pain, instability, and activity level. Mean follow-up was 3.3 years (range 2.0-4.7 years). The thermal capsular shrinkage procedure failed due to instability and/or pain in 31% of shoulders at a mean time of 39 months. In patients with unidirectional anterior instability and those with concomitant labral repair, the procedure proved effective. Patients with multidirectional instability had moderate success. In contrast, four of five patients with isolated posterior instability failed. Thermal capsular shrinkage has been advocated for the treatment of shoulder instability, particularly mild to moderate capsular laxity. The ease of the procedure makes it attractive. However, our retrospective review revealed an overall failure rate of 31% in 80 patients with 2-year minimum follow-up. This mid- to long-term cohort study adds to the literature lacking support for thermal capsulorrhaphy in general, particularly posterior instability. The online version of this article (doi:10.1007/s11420-010-9187-7) contains supplementary material, which is available to authorized users.

  8. Instability of liquid crystal elastomers

    NASA Astrophysics Data System (ADS)

    An, Ning; Li, Meie; Zhou, Jinxiong

    2016-01-01

    Nematic liquid crystal elastomers (LCEs) contract in the director direction but expand in other directions, perpendicular to the director, when heated. If the expansion of an LCE is constrained, compressive stress builds up in the LCE, and it wrinkles or buckles to release the stored elastic energy. Although the instability of soft materials is ubiquitous, the mechanism and programmable modulation of LCE instability has not yet been fully explored. We describe a finite element method (FEM) scheme to model the inhomogeneous deformation and instability of LCEs. A constrained LCE beam working as a valve for microfluidic flow, and a piece of LCE laminated with a nanoscale poly(styrene) (PS) film are analyzed in detail. The former uses the buckling of the LCE beam to occlude the microfluidic channel, while the latter utilizes wrinkling or buckling to measure the mechanical properties of hard film or to realize self-folding. Through rigorous instability analysis, we predict the critical conditions for the onset of instability, the wavelength and amplitude evolution of instability, and the instability patterns. The FEM results are found to correlate well with analytical results and reported experiments. These efforts shed light on the understanding and exploitation of the instabilities of LCEs.

  9. Absolute optical metrology : nanometers to kilometers

    NASA Technical Reports Server (NTRS)

    Dubovitsky, Serge; Lay, O. P.; Peters, R. D.; Liebe, C. C.

    2005-01-01

    We provide and overview of the developments in the field of high-accuracy absolute optical metrology with emphasis on space-based applications. Specific work on the Modulation Sideband Technology for Absolute Ranging (MSTAR) sensor is described along with novel applications of the sensor.

  10. Non-thermal plasma instabilities induced by deformation of the electron energy distribution function

    NASA Astrophysics Data System (ADS)

    Dyatko, N. A.; Kochetov, I. V.; Napartovich, A. P.

    2014-08-01

    Non-thermal plasma is a key component in gas lasers, microelectronics, medical applications, waste gas cleaners, ozone generators, plasma igniters, flame holders, flow control in high-speed aerodynamics and others. A specific feature of non-thermal plasma is its high sensitivity to variations in governing parameters (gas composition, pressure, pulse duration, E/N parameter). This sensitivity is due to complex deformations of the electron energy distribution function (EEDF) shape induced by variations in electric field strength, electron and ion number densities and gas excitation degree. Particular attention in this article is paid to mechanisms of instabilities based on non-linearity of plasma properties for specific conditions: gas composition, steady-state and decaying plasma produced by the electron beam, or by an electric current pulse. The following effects are analyzed: the negative differential electron conductivity; the absolute negative electron mobility; the stepwise changes of plasma properties induced by the EEDF bi-stability; thermo-current instability and the constriction of the glow discharge column in rare gases. Some of these effects were observed experimentally and some of them were theoretically predicted and still wait for experimental confirmation.

  11. Shoulder instability in professional football players.

    PubMed

    Leclere, Lance E; Asnis, Peter D; Griffith, Matthew H; Granito, David; Berkson, Eric M; Gill, Thomas J

    2013-09-01

    Shoulder instability is a common problem in American football players entering the National Football League (NFL). Treatment options include nonoperative and surgical stabilization. This study evaluated how the method of treatment of pre-NFL shoulder instability affects the rate of recurrence and the time elapsed until recurrence in players on 1 NFL team. Retrospective cohort. Medical records from 1980 to 2008 for 1 NFL team were reviewed. There were 328 players included in the study who started their career on the team and remained on the team for at least 2 years (mean, 3.9 years; range, 2-14 years). The history of instability prior to entering the NFL and the method of treatment were collected. Data on the occurrence of instability while in the NFL were recorded to determine the rate and timing of recurrence. Thirty-one players (9.5%) had a history of instability prior to entering the NFL. Of the 297 players with no history of instability, 39 (13.1%) had a primary event at a mean of 18.4 ± 22.2 months (range, 0-102 months) after joining the team. In the group of players with prior instability treated with surgical stabilization, there was no statistical difference in the rate of recurrence (10.5%) or the timing to the instability episode (mean, 26 months) compared with players with no history of instability. Twelve players had shoulder instability treated nonoperatively prior to the NFL. Five of these players (41.7%) had recurrent instability at a mean of 4.4 ± 7.0 months (range, 0-16 months). The patients treated nonoperatively had a significantly higher rate of recurrence (P = 0.02) and an earlier time of recurrence (P = 0.04). The rate of contralateral instability was 25.8%, occurring at a mean of 8.6 months. Recurrent shoulder instability is more common in NFL players with a history of nonoperative treatment. Surgical stabilization appears to restore the rate and timing of instability to that of players with no prior history of instability.

  12. Bacterial Genome Instability

    PubMed Central

    Darmon, Elise

    2014-01-01

    SUMMARY Bacterial genomes are remarkably stable from one generation to the next but are plastic on an evolutionary time scale, substantially shaped by horizontal gene transfer, genome rearrangement, and the activities of mobile DNA elements. This implies the existence of a delicate balance between the maintenance of genome stability and the tolerance of genome instability. In this review, we describe the specialized genetic elements and the endogenous processes that contribute to genome instability. We then discuss the consequences of genome instability at the physiological level, where cells have harnessed instability to mediate phase and antigenic variation, and at the evolutionary level, where horizontal gene transfer has played an important role. Indeed, this ability to share DNA sequences has played a major part in the evolution of life on Earth. The evolutionary plasticity of bacterial genomes, coupled with the vast numbers of bacteria on the planet, substantially limits our ability to control disease. PMID:24600039

  13. Rapid computation of single PET scan rest-stress myocardial blood flow parametric images by table look up.

    PubMed

    Guehl, Nicolas J; Normandin, Marc D; Wooten, Dustin W; Rozen, Guy; Ruskin, Jeremy N; Shoup, Timothy M; Woo, Jonghye; Ptaszek, Leon M; Fakhri, Georges El; Alpert, Nathaniel M

    2017-09-01

    We have recently reported a method for measuring rest-stress myocardial blood flow (MBF) using a single, relatively short, PET scan session. The method requires two IV tracer injections, one to initiate rest imaging and one at peak stress. We previously validated absolute flow quantitation in ml/min/cc for standard bull's eye, segmental analysis. In this work, we extend the method for fast computation of rest-stress MBF parametric images. We provide an analytic solution to the single-scan rest-stress flow model which is then solved using a two-dimensional table lookup method (LM). Simulations were performed to compare the accuracy and precision of the lookup method with the original nonlinear method (NLM). Then the method was applied to 16 single scan rest/stress measurements made in 12 pigs: seven studied after infarction of the left anterior descending artery (LAD) territory, and nine imaged in the native state. Parametric maps of rest and stress MBF as well as maps of left (f LV ) and right (f RV ) ventricular spill-over fractions were generated. Regions of interest (ROIs) for 17 myocardial segments were defined in bull's eye fashion on the parametric maps. The mean of each ROI was then compared to the rest (K 1r ) and stress (K 1s ) MBF estimates obtained from fitting the 17 regional TACs with the NLM. In simulation, the LM performed as well as the NLM in terms of precision and accuracy. The simulation did not show that bias was introduced by the use of a predefined two-dimensional lookup table. In experimental data, parametric maps demonstrated good statistical quality and the LM was computationally much more efficient than the original NLM. Very good agreement was obtained between the mean MBF calculated on the parametric maps for each of the 17 ROIs and the regional MBF values estimated by the NLM (K 1map LM  = 1.019 × K 1 ROI NLM  + 0.019, R 2  = 0.986; mean difference = 0.034 ± 0.036 mL/min/cc). We developed a table lookup method for fast

  14. Instability in Rotating Machinery

    NASA Technical Reports Server (NTRS)

    1985-01-01

    The proceedings contain 45 papers on a wide range of subjects including flow generated instabilities in fluid flow machines, cracked shaft detection, case histories of instability phenomena in compressors, turbines, and pumps, vibration control in turbomachinery (including antiswirl techniques), and the simulation and estimation of destabilizing forces in rotating machines. The symposium was held to serve as an update on the understanding and control of rotating machinery instability problems.

  15. Extended parametric representation of compressor fans and turbines. Volume 2: Part user's manual (parametric turbine)

    NASA Technical Reports Server (NTRS)

    Coverse, G. L.

    1984-01-01

    A turbine modeling technique has been developed which will enable the user to obtain consistent and rapid off-design performance from design point input. This technique is applicable to both axial and radial flow turbine with flow sizes ranging from about one pound per second to several hundred pounds per second. The axial flow turbines may or may not include variable geometry in the first stage nozzle. A user-specified option will also permit the calculation of design point cooling flow levels and corresponding changes in efficiency for the axial flow turbines. The modeling technique has been incorporated into a time-sharing program in order to facilitate its use. Because this report contains a description of the input output data, values of typical inputs, and example cases, it is suitable as a user's manual. This report is the second of a three volume set. The titles of the three volumes are as follows: (1) Volume 1 CMGEN USER's Manual (Parametric Compressor Generator); (2) Volume 2 PART USER's Manual (Parametric Turbine); (3) Volume 3 MODFAN USER's Manual (Parametric Modulation Flow Fan).

  16. A global algorithm for estimating Absolute Salinity

    NASA Astrophysics Data System (ADS)

    McDougall, T. J.; Jackett, D. R.; Millero, F. J.; Pawlowicz, R.; Barker, P. M.

    2012-12-01

    The International Thermodynamic Equation of Seawater - 2010 has defined the thermodynamic properties of seawater in terms of a new salinity variable, Absolute Salinity, which takes into account the spatial variation of the composition of seawater. Absolute Salinity more accurately reflects the effects of the dissolved material in seawater on the thermodynamic properties (particularly density) than does Practical Salinity. When a seawater sample has standard composition (i.e. the ratios of the constituents of sea salt are the same as those of surface water of the North Atlantic), Practical Salinity can be used to accurately evaluate the thermodynamic properties of seawater. When seawater is not of standard composition, Practical Salinity alone is not sufficient and the Absolute Salinity Anomaly needs to be estimated; this anomaly is as large as 0.025 g kg-1 in the northernmost North Pacific. Here we provide an algorithm for estimating Absolute Salinity Anomaly for any location (x, y, p) in the world ocean. To develop this algorithm, we used the Absolute Salinity Anomaly that is found by comparing the density calculated from Practical Salinity to the density measured in the laboratory. These estimates of Absolute Salinity Anomaly however are limited to the number of available observations (namely 811). In order to provide a practical method that can be used at any location in the world ocean, we take advantage of approximate relationships between Absolute Salinity Anomaly and silicate concentrations (which are available globally).

  17. Minor shoulder instability.

    PubMed

    Castagna, Alessandro; Nordenson, Ulf; Garofalo, Raffaele; Karlsson, Jon

    2007-02-01

    The wide spectrum of shoulder instability is difficult to include in 1 classification. The distinction between traumatic, unidirectional, and atraumatic multidirectional instability is still widely used, even though this classification is not sufficiently precise to include all the different pathological findings of shoulder instability. We present "minor instability," which is a pathological condition causing a dysfunction of the glenohumeral articulation, especially in combination with microtrauma, repetitive or not, or after a period of immobilization or inactivity. When "minor shoulder instability" is suspected, the patient's history and detailed clinical examination represent the most important factors when establishing the diagnosis. In particular, the apprehension test stressing the middle glenohumeral ligament (MGHL)/labral complex in the position of midabduction and external rotation may be painful and may even reveal anterior instability or subluxation. Conventional radiographs are negative in most cases, as is magnetic resonance imaging arthrography. It is only after an accurate arthroscopic assessment that the pathological lesion can be found. The major pathological process can be identified at the level of the anterior superior labrum, in particular the MGHL complex, and appears as hyperemia, fraying, stretching, loosening, thinning, hypoplasia, or even absence. It may, however, be difficult to distinguish between a normal variant and a pathological lesion. Clinical symptoms and examination should always be correlated with arthroscopic findings. Recommended treatment is to restore shoulder stability and thereby prevent shoulder pain secondary to the increase in laxity. A reduction in range of motion should be expected during the postoperative phase, at least up to six to nine months. External rotation is usually permanently reduced by a few degrees.

  18. Instabilities and subharmonic resonances of subsonic heated round jets, volume 2. Ph.D. Thesis Final Report

    NASA Technical Reports Server (NTRS)

    Ng, Lian Lai

    1990-01-01

    When a jet is perturbed by a periodic excitation of suitable frequency, a large-scale coherent structure develops and grows in amplitude as it propagates downstream. The structure eventually rolls up into vortices at some downstream location. The wavy flow associated with the roll-up of a coherent structure is approximated by a parallel mean flow and a small, spatially periodic, axisymmetric wave whose phase velocity and mode shape are given by classical (primary) stability theory. The periodic wave acts as a parametric excitation in the differential equations governing the secondary instability of a subharmonic disturbance. The (resonant) conditions for which the periodic flow can strongly destabilize a subharmonic disturbance are derived. When the resonant conditions are met, the periodic wave plays a catalytic role to enhance the growth rate of the subharmonic. The stability characteristics of the subharmonic disturbance, as a function of jet Mach number, jet heating, mode number and the amplitude of the periodic wave, are studied via a secondary instability analysis using two independent but complementary methods: (1) method of multiple scales, and (2) normal mode analysis. It is found that the growth rates of the subharmonic waves with azimuthal numbers beta = 0 and beta = 1 are enhanced strongly, but comparably, when the amplitude of the periodic wave is increased. Furthermore, compressibility at subsonic Mach numbers has a moderate stabilizing influence on the subharmonic instability modes. Heating suppresses moderately the subharmonic growth rate of an axisymmetric mode, and it reduces more significantly the corresponding growth rate for the first spinning mode. Calculations also indicate that while the presence of a finite-amplitude periodic wave enhances the growth rates of subharmonic instability modes, it minimally distorts the mode shapes of the subharmonic waves.

  19. Regularization of instabilities in gravity theories

    NASA Astrophysics Data System (ADS)

    Ramazanoǧlu, Fethi M.

    2018-01-01

    We investigate instabilities and their regularization in theories of gravitation. Instabilities can be beneficial since their growth often leads to prominent observable signatures, which makes them especially relevant to relatively low signal-to-noise ratio measurements such as gravitational wave detections. An indefinitely growing instability usually renders a theory unphysical; hence, a desirable instability should also come with underlying physical machinery that stops the growth at finite values, i.e., regularization mechanisms. The prototypical gravity theory that presents such an instability is the spontaneous scalarization phenomena of scalar-tensor theories, which feature a tachyonic instability. We identify the regularization mechanisms in this theory and show that they can be utilized to regularize other instabilities as well. Namely, we present theories in which spontaneous growth is triggered by a ghost rather than a tachyon and numerically calculate stationary solutions of scalarized neutron stars in these theories. We speculate on the possibility of regularizing known divergent instabilities in certain gravity theories using our findings and discuss alternative theories of gravitation in which regularized instabilities may be present. Even though we study many specific examples, our main point is the recognition of regularized instabilities as a common theme and unifying mechanism in a vast array of gravity theories.

  20. Gravitational Instabilities in Circumstellar Disks

    NASA Astrophysics Data System (ADS)

    Kratter, Kaitlin; Lodato, Giuseppe

    2016-09-01

    Star and planet formation are the complex outcomes of gravitational collapse and angular momentum transport mediated by protostellar and protoplanetary disks. In this review, we focus on the role of gravitational instability in this process. We begin with a brief overview of the observational evidence for massive disks that might be subject to gravitational instability and then highlight the diverse ways in which the instability manifests itself in protostellar and protoplanetary disks: the generation of spiral arms, small-scale turbulence-like density fluctuations, and fragmentation of the disk itself. We present the analytic theory that describes the linear growth phase of the instability supplemented with a survey of numerical simulations that aim to capture the nonlinear evolution. We emphasize the role of thermodynamics and large-scale infall in controlling the outcome of the instability. Despite apparent controversies in the literature, we show a remarkable level of agreement between analytic predictions and numerical results. In the next part of our review, we focus on the astrophysical consequences of the instability. We show that the disks most likely to be gravitationally unstable are young and relatively massive compared with their host star, Md/M*≥0.1. They will develop quasi-stable spiral arms that process infall from the background cloud. Although instability is less likely at later times, once infall becomes less important, the manifestations of the instability are more varied. In this regime, the disk thermodynamics, often regulated by stellar irradiation, dictates the development and evolution of the instability. In some cases the instability may lead to fragmentation into bound companions. These companions are more likely to be brown dwarfs or stars than planetary mass objects. Finally, we highlight open questions related to the development of a turbulent cascade in thin disks and the role of mode-mode coupling in setting the maximum angular

  1. Marginally specified priors for non-parametric Bayesian estimation

    PubMed Central

    Kessler, David C.; Hoff, Peter D.; Dunson, David B.

    2014-01-01

    Summary Prior specification for non-parametric Bayesian inference involves the difficult task of quantifying prior knowledge about a parameter of high, often infinite, dimension. A statistician is unlikely to have informed opinions about all aspects of such a parameter but will have real information about functionals of the parameter, such as the population mean or variance. The paper proposes a new framework for non-parametric Bayes inference in which the prior distribution for a possibly infinite dimensional parameter is decomposed into two parts: an informative prior on a finite set of functionals, and a non-parametric conditional prior for the parameter given the functionals. Such priors can be easily constructed from standard non-parametric prior distributions in common use and inherit the large support of the standard priors on which they are based. Additionally, posterior approximations under these informative priors can generally be made via minor adjustments to existing Markov chain approximation algorithms for standard non-parametric prior distributions. We illustrate the use of such priors in the context of multivariate density estimation using Dirichlet process mixture models, and in the modelling of high dimensional sparse contingency tables. PMID:25663813

  2. Incorporating parametric uncertainty into population viability analysis models

    USGS Publications Warehouse

    McGowan, Conor P.; Runge, Michael C.; Larson, Michael A.

    2011-01-01

    Uncertainty in parameter estimates from sampling variation or expert judgment can introduce substantial uncertainty into ecological predictions based on those estimates. However, in standard population viability analyses, one of the most widely used tools for managing plant, fish and wildlife populations, parametric uncertainty is often ignored in or discarded from model projections. We present a method for explicitly incorporating this source of uncertainty into population models to fully account for risk in management and decision contexts. Our method involves a two-step simulation process where parametric uncertainty is incorporated into the replication loop of the model and temporal variance is incorporated into the loop for time steps in the model. Using the piping plover, a federally threatened shorebird in the USA and Canada, as an example, we compare abundance projections and extinction probabilities from simulations that exclude and include parametric uncertainty. Although final abundance was very low for all sets of simulations, estimated extinction risk was much greater for the simulation that incorporated parametric uncertainty in the replication loop. Decisions about species conservation (e.g., listing, delisting, and jeopardy) might differ greatly depending on the treatment of parametric uncertainty in population models.

  3. 49 CFR 236.709 - Block, absolute.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 49 Transportation 4 2010-10-01 2010-10-01 false Block, absolute. 236.709 Section 236.709 Transportation Other Regulations Relating to Transportation (Continued) FEDERAL RAILROAD ADMINISTRATION... Block, absolute. A block in which no train is permitted to enter while it is occupied by another train. ...

  4. 49 CFR 236.709 - Block, absolute.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 49 Transportation 4 2011-10-01 2011-10-01 false Block, absolute. 236.709 Section 236.709 Transportation Other Regulations Relating to Transportation (Continued) FEDERAL RAILROAD ADMINISTRATION... Block, absolute. A block in which no train is permitted to enter while it is occupied by another train. ...

  5. Ankle instability.

    PubMed

    Ferran, Nicholas A; Oliva, Francesco; Maffulli, Nicola

    2009-06-01

    Acute ankle sprains are common, and if inadequately treated may result in chronic instability. Lateral ankle injuries are most common, with deltoid injuries rare and associated with ankle fractures/dislocation. Medial ankle instability is rare. Functional management of acute lateral ankle sprains is the treatment of choice, with acute ligament repair reserved for athletes. Chronic lateral ankle instability is initially managed conservatively, however, failure of rehabilitation is an indication for surgical management. Nonanatomic tenodesis reconstructions have poor long-term results, sacrifice peroneal tendons, and disrupt normal ankle and hindfoot biomechanics. Anatomic repair of the anterior talofibular and calcaneofibular ligaments is recommended when the quality of the ruptured ligaments permits. Anatomic reconstruction with autograft or allograft should be performed when ligaments are attenuated. The role of arthroscopic reconstruction is evolving. Ankle arthroscopy should be performed at the time of repair or reconstruction and should address any other intra-articular causes of pain.

  6. Absolute quantification of microbial taxon abundances.

    PubMed

    Props, Ruben; Kerckhof, Frederiek-Maarten; Rubbens, Peter; De Vrieze, Jo; Hernandez Sanabria, Emma; Waegeman, Willem; Monsieurs, Pieter; Hammes, Frederik; Boon, Nico

    2017-02-01

    High-throughput amplicon sequencing has become a well-established approach for microbial community profiling. Correlating shifts in the relative abundances of bacterial taxa with environmental gradients is the goal of many microbiome surveys. As the abundances generated by this technology are semi-quantitative by definition, the observed dynamics may not accurately reflect those of the actual taxon densities. We combined the sequencing approach (16S rRNA gene) with robust single-cell enumeration technologies (flow cytometry) to quantify the absolute taxon abundances. A detailed longitudinal analysis of the absolute abundances resulted in distinct abundance profiles that were less ambiguous and expressed in units that can be directly compared across studies. We further provide evidence that the enrichment of taxa (increase in relative abundance) does not necessarily relate to the outgrowth of taxa (increase in absolute abundance). Our results highlight that both relative and absolute abundances should be considered for a comprehensive biological interpretation of microbiome surveys.

  7. Triggering of longitudinal combustion instabilities in solid rocket motors: Nonlinear combustion response

    NASA Technical Reports Server (NTRS)

    Wicker, J. M.; Greene, W. D.; Kim, S. I.; Yang, V.

    1995-01-01

    Pulsed oscillations in solid rocket motors are investigated with emphasis on nonlinear combustion response. The study employs a wave equation governing the unsteady motions in a two-phase flow, and a solution technique based on spatial- and time-averaging. A wide class of combustion response functions is studied to second-order in fluctuation amplitude to determine if, when, and how triggered instabilities arise. Conditions for triggering are derived from analysis of limit cycles, and regions of triggering are found in parametric space. Based on the behavior of model dynamical systems, introduction of linear cross-coupling and quadratic self-coupling among the acoustic modes appears to be the manner in which the nonlinear combustion response produces triggering to a stable limit cycle. Regions of initial conditions corresponding to stable pulses were found, suggesting that stability depends on initial phase angle and harmonic content, as well as the composite amplitude, of the pulse.

  8. Magnetic resonance imaging in glenohumeral instability

    PubMed Central

    Jana, Manisha; Gamanagatti, Shivanand

    2011-01-01

    The glenohumeral joint is the most commonly dislocated joint of the body and anterior instability is the most common type of shoulder instability. Magnetic resonance (MR) imaging, and more recently, MR arthrography, have become the essential investigation modalities of glenohumeral instability, especially for pre-procedure evaluation before arthroscopic surgery. Injuries associated with glenohumeral instability are variable, and can involve the bones, the labor-ligamentous components, or the rotator cuff. Anterior instability is associated with injuries of the anterior labrum and the anterior band of the inferior glenohumeral ligament, in the form of Bankart lesion and its variants; whereas posterior instability is associated with reverse Bankart and reverse Hill-Sachs lesion. Multidirectional instability often has no labral pathology on imaging but shows specific osseous changes such as increased chondrolabral retroversion. This article reviews the relevant anatomy in brief, the MR imaging technique and the arthrographic technique, and describes the MR findings in each type of instability as well as common imaging pitfalls. PMID:22007285

  9. Ion heating, burnout of the high-frequency field, and ion sound generation under the development of a modulation instability of an intense Langmuir wave in a plasma

    NASA Astrophysics Data System (ADS)

    Kirichok, A. V.; Kuklin, V. M.; Pryimak, A. V.; Zagorodny, A. G.

    2015-09-01

    The development of one-dimensional parametric instabilities of intense long plasma waves is considered in terms of the so-called hybrid models, with electrons being treated as a fluid and ions being regarded as particles. The analysis is performed for both cases when the average plasma field energy is lower (Zakharov's hybrid model—ZHM) or greater (Silin's hybrid model—SHM) than the plasma thermal energy. The efficiency of energy transfer to ions and to ion perturbations under the development of the instability is considered for various values of electron-to-ion mass ratios. The energy of low-frequency oscillations (ion-sound waves) is found to be much lower than the final ion kinetic energy. We also discuss the influence of the changes in the damping rate of the high-frequency (HF) field on the instability development. The decrease of the absorption of the HF field inhibits the HF field burnout within plasma density cavities and gives rise to the broadening of the HF spectrum. At the same time, the ion velocity distribution tends to the normal distribution in both ZHM and SHM.

  10. Instability of vortex pair leapfrogging

    NASA Astrophysics Data System (ADS)

    Tophøj, Laust; Aref, Hassan

    2013-01-01

    Leapfrogging is a periodic solution of the four-vortex problem with two positive and two negative point vortices all of the same absolute circulation arranged as co-axial vortex pairs. The set of co-axial motions can be parameterized by the ratio 0 < α < 1 of vortex pair sizes at the time when one pair passes through the other. Leapfrogging occurs for α > σ2, where σ = sqrt{2}-1 is the silver ratio. The motion is known in full analytical detail since the 1877 thesis of Gröbli and a well known 1894 paper by Love. Acheson ["Instability of vortex leapfrogging," Eur. J. Phys. 21, 269-273 (2000)], 10.1088/0143-0807/21/3/310 determined by numerical experiments that leapfrogging is linearly unstable for σ2 < α < 0.382, but apparently stable for larger α. Here we derive a linear system of equations governing small perturbations of the leapfrogging motion. We show that symmetry-breaking perturbations are essentially governed by a 2D linear system with time-periodic coefficients and perform a Floquet analysis. We find transition from linearly unstable to stable leapfrogging at α = ϕ2 ≈ 0.381966, where φ = 1/2(sqrt{5}-1) is the golden ratio. Acheson also suggested that there was a sharp transition between a "disintegration" instability mode, where two pairs fly off to infinity, and a "walkabout" mode, where the vortices depart from leapfrogging but still remain within a finite distance of one another. We show numerically that this transition is more gradual, a result that we relate to earlier investigations of chaotic scattering of vortex pairs [L. Tophøj and H. Aref, "Chaotic scattering of two identical point vortex pairs revisited," Phys. Fluids 20, 093605 (2008)], 10.1063/1.2974830. Both leapfrogging and "walkabout" motions can appear as intermediate states in chaotic scattering at the same values of linear impulse and energy.

  11. Absolute Humidity and the Seasonality of Influenza (Invited)

    NASA Astrophysics Data System (ADS)

    Shaman, J. L.; Pitzer, V.; Viboud, C.; Grenfell, B.; Goldstein, E.; Lipsitch, M.

    2010-12-01

    Much of the observed wintertime increase of mortality in temperate regions is attributed to seasonal influenza. A recent re-analysis of laboratory experiments indicates that absolute humidity strongly modulates the airborne survival and transmission of the influenza virus. Here we show that the onset of increased wintertime influenza-related mortality in the United States is associated with anomalously low absolute humidity levels during the prior weeks. We then use an epidemiological model, in which observed absolute humidity conditions temper influenza transmission rates, to successfully simulate the seasonal cycle of observed influenza-related mortality. The model results indicate that direct modulation of influenza transmissibility by absolute humidity alone is sufficient to produce this observed seasonality. These findings provide epidemiological support for the hypothesis that absolute humidity drives seasonal variations of influenza transmission in temperate regions. In addition, we show that variations of the basic and effective reproductive numbers for influenza, caused by seasonal changes in absolute humidity, are consistent with the general timing of pandemic influenza outbreaks observed for 2009 A/H1N1 in temperate regions. Indeed, absolute humidity conditions correctly identify the region of the United States vulnerable to a third, wintertime wave of pandemic influenza. These findings suggest that the timing of pandemic influenza outbreaks is controlled by a combination of absolute humidity conditions, levels of susceptibility and changes in population mixing and contact rates.

  12. Glenohumeral Instability Related to Special Conditions: SLAP Tears, Pan-labral Tears, and Multidirectional Instability.

    PubMed

    Van Blarcum, Gregory S; Svoboda, Steven J

    2017-09-01

    Glenohumeral instability is one of the more common conditions seen by sports medicine physicians, especially in young, active athletes. The associated anatomy of the glenohumeral joint (the shallow nature of the glenoid and the increased motion it allows) make the shoulder more prone to instability events as compared with other joints. Although traumatic dislocations or instability events associated with acute labral tears (ie, Bankart lesions) are well described in the literature, there exists other special shoulder conditions that are also associated with shoulder instability: superior labrum anterior/posterior (SLAP) tears, pan-labral tears, and multidirectional instability. SLAP tears can be difficult to diagnose and arthroscopic diagnosis remains the gold standard. Surgical treatment as ranged from repair to biceps tenodesis with varying reports of success. Along the spectrum of SLAP tears, pan-labral tears consist of 360-degree injuries to the labrum. Patients can present complaining of either anterior or posterior instability alone, making the physical examination and advanced imaging a crucial component of the work up of the patients. Arthroscopic labral repair remains a good initial option for surgical treatment of these conditions. Multidirectional instability remains one of the more difficult conditions for the sports medicine physician to diagnose and treat. Symptoms may only be reported as vague pain versus frank instability making the diagnoses particularly challenging, especially in a patient with overall joint laxity. Conservative management to include physical therapy is the mainstay initial treatment in patients without an identifiable structural abnormality. Surgical management of this condition has evolved from open to arthroscopic capsular shifts with comparable results.

  13. Modulation of precipitation by conditional symmetric instability release

    NASA Astrophysics Data System (ADS)

    Glinton, Michael R.; Gray, Suzanne L.; Chagnon, Jeffrey M.; Morcrette, Cyril J.

    2017-03-01

    Although many theoretical and observational studies have investigated the mechanism of conditional symmetric instability (CSI) release and associated it with mesoscale atmospheric phenomena such as frontal precipitation bands, cloud heads in rapidly developing extratropical cyclones and sting jets, its climatology and contribution to precipitation have not been extensively documented. The aim of this paper is to quantify the contribution of CSI release, yielding slantwise convection, to climatological precipitation accumulations for the North Atlantic and western Europe. Case studies reveal that CSI release could be common along cold fronts of mature extratropical cyclones and the North Atlantic storm track is found to be a region with large CSI according to two independent CSI metrics. Correlations of CSI with accumulated precipitation are also large in this region and CSI release is inferred to be occurring about 20% of the total time over depths of over 1 km. We conclude that the inability of current global weather forecast and climate prediction models to represent CSI release (due to insufficient resolution yet lack of subgrid parametrization schemes) may lead to errors in precipitation distributions, particularly in the region of the North Atlantic storm track.

  14. Behaviors of Absolute Densities of N, H, and NH3 at Remote Region of High-Density Radical Source Employing N2-H2 Mixture Plasmas

    NASA Astrophysics Data System (ADS)

    Chen, Shang; Kondo, Hiroki; Ishikawa, Kenji; Takeda, Keigo; Sekine, Makoto; Kano, Hiroyuki; Den, Shoji; Hori, Masaru

    2011-01-01

    For an innovation of molecular-beam-epitaxial (MBE) growth of gallium nitride (GaN), the measurements of absolute densities of N, H, and NH3 at the remote region of the radical source excited by plasmas have become absolutely imperative. By vacuum ultraviolet absorption spectroscopy (VUVAS) at a relatively low pressure of about 1 Pa, we obtained a N atom density of 9×1012 cm-3 for a pure nitrogen gas used, a H atom density of 7×1012 cm-3 for a gas composition of 80% hydrogen mixed with nitrogen gas were measured. The maximum density 2×1013 cm-3 of NH3 was measured by quadruple mass spectrometry (QMS) at H2/(N2+H2)=60%. Moreover, we found that N atom density was considerably affected by processing history, where the characteristic instability was observed during the pure nitrogen plasma discharge sequentially after the hydrogen-containing plasma discharge. These results indicate imply the importance of establishing radical-based processes to control precisely the absolute densities of N, H, and NH3 at the remote region of the radical source.

  15. Helical instability in film blowing process: Analogy to buckling instability

    NASA Astrophysics Data System (ADS)

    Lee, Joo Sung; Kwon, Ilyoung; Jung, Hyun Wook; Hyun, Jae Chun

    2017-12-01

    The film blowing process is one of the most important polymer processing operations, widely used for producing bi-axially oriented film products in a single-step process. Among the instabilities observed in this film blowing process, i.e., draw resonance and helical motion occurring on the inflated film bubble, the helical instability is a unique phenomenon portraying the snake-like undulation motion of the bubble, having the period on the order of few seconds. This helical instability in the film blowing process is commonly found at the process conditions of a high blow-up ratio with too low a freezeline position and/or too high extrusion temperature. In this study, employing an analogy to the buckling instability for falling viscous threads, the compressive force caused by the pressure difference between inside and outside of the film bubble is introduced into the simulation model along with the scaling law derived from the force balance between viscous force and centripetal force of the film bubble. The simulation using this model reveals a close agreement with the experimental results of the film blowing process of polyethylene polymers such as low density polyethylene and linear low density polyethylene.

  16. Patients with triangular fibrocartilage complex injuries and distal radioulnar joint instability have reduced rotational torque in the forearm.

    PubMed

    Andersson, J K; Axelsson, P; Strömberg, J; Karlsson, J; Fridén, J

    2016-09-01

    A total of 20 patients scheduled for wrist arthroscopy, all with clinical signs of rupture to the triangular fibrocartilage complex and distal radioulnar joint instability, were tested pre-operatively by an independent observer for strength of forearm rotation. During surgery, the intra-articular pathology was documented by photography and also subsequently individually analysed by another independent hand surgeon. Arthroscopy revealed a type 1-B injury to the triangular fibrocartilage complex in 18 of 20 patients. Inter-rater reliability between the operating surgeon and the independent reviewer showed absolute agreement in all but one patient (95%) in terms of the injury to the triangular fibrocartilage complex and its classification. The average pre-operative torque strength was 71% of the strength of the non-injured contralateral side in pronation and supination. Distal radioulnar joint instability with an arthroscopically verified injury to the triangular fibrocartilage complex is associated with a significant loss of both pronation and supination torque. Case series, Level IV. © The Author(s) 2015.

  17. Injection-seeded optical parametric oscillator and system

    DOEpatents

    Lucht, Robert P.; Kulatilaka, Waruna D.; Anderson, Thomas N.; Bougher, Thomas L.

    2007-10-09

    Optical parametric oscillators (OPO) and systems are provided. The OPO has a non-linear optical material located between two optical elements where the product of the reflection coefficients of the optical elements are higher at the output wavelength than at either the pump or idler wavelength. The OPO output may be amplified using an additional optical parametric amplifier (OPA) stage.

  18. Low absolute neutrophil counts in African infants.

    PubMed

    Kourtis, Athena P; Bramson, Brian; van der Horst, Charles; Kazembe, Peter; Ahmed, Yusuf; Chasela, Charles; Hosseinipour, Mina; Knight, Rodney; Lugalia, Lebah; Tegha, Gerald; Joaki, George; Jafali, Robert; Jamieson, Denise J

    2005-07-01

    Infants of African origin have a lower normal range of absolute neutrophil counts than white infants; this fact, however, remains under appreciated by clinical researchers in the United States. During the initial stages of a clinical trial in Malawi, the authors noted an unexpectedly high number of infants with absolute neutrophil counts that would be classifiable as neutropenic using the National Institutes of Health's Division of AIDS toxicity tables. The authors argue that the relevant Division of AIDS table does not take into account the available evidence of low absolute neutrophil counts in African infants and that a systematic collection of data from many African settings might help establish the absolute neutrophil count cutpoints to be used for defining neutropenia in African populations.

  19. Absolute colorimetric characterization of a DSLR camera

    NASA Astrophysics Data System (ADS)

    Guarnera, Giuseppe Claudio; Bianco, Simone; Schettini, Raimondo

    2014-03-01

    A simple but effective technique for absolute colorimetric camera characterization is proposed. It offers a large dynamic range requiring just a single, off-the-shelf target and a commonly available controllable light source for the characterization. The characterization task is broken down in two modules, respectively devoted to absolute luminance estimation and to colorimetric characterization matrix estimation. The characterized camera can be effectively used as a tele-colorimeter, giving an absolute estimation of the XYZ data in cd=m2. The user is only required to vary the f - number of the camera lens or the exposure time t, to better exploit the sensor dynamic range. The estimated absolute tristimulus values closely match the values measured by a professional spectro-radiometer.

  20. An instability due to the nonlinear coupling of p-modes to g-modes: Implications for coalescing neutron star binaries

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Weinberg, Nevin N.; Arras, Phil; Burkart, Joshua, E-mail: nevin@mit.edu

    2013-06-01

    A weakly nonlinear fluid wave propagating within a star can be unstable to three-wave interactions. The resonant parametric instability is a well-known form of three-wave interaction in which a primary wave of frequency ω {sub a} excites a pair of secondary waves of frequency ω {sub b} + ω {sub c} ≅ ω {sub a}. Here we consider a nonresonant form of three-wave interaction in which a low-frequency primary wave excites a high-frequency p-mode and a low-frequency g-mode such that ω {sub b} + ω {sub c} >> ω {sub a}. We show that a p-mode can couple so stronglymore » to a g-mode of similar radial wavelength that this type of nonresonant interaction is unstable even if the primary wave amplitude is small. As an application, we analyze the stability of the tide in coalescing neutron star binaries to p-g mode coupling. We find that the equilibrium tide and dynamical tide are both p-g unstable at gravitational wave frequencies f {sub gw} ≳ 20 Hz and drive short wavelength p-g mode pairs to significant energies on very short timescales (much less than the orbital decay time due to gravitational radiation). Resonant parametric coupling to the tide is, by contrast, either stable or drives modes at a much smaller rate. We do not solve for the saturation of the p-g instability and therefore we cannot say precisely how it influences the evolution of neutron star binaries. However, we show that if even a single daughter mode saturates near its wave breaking amplitude, the p-g instability of the equilibrium tide will (1) induce significant orbital phase errors (Δφ ≳ 1 radian) that accumulate primarily at low frequencies (f {sub gw} ≲ 50 Hz) and (2) heat the neutron star core to a temperature of T ∼ 10{sup 10} K. Since there are at least ∼100 unstable p-g daughter pairs, Δφ and T are potentially much larger than these values. Tides might therefore significantly influence the gravitational wave signal and electromagnetic emission from coalescing neutron star

  1. Study of cavitating inducer instabilities

    NASA Technical Reports Server (NTRS)

    Young, W. E.; Murphy, R.; Reddecliff, J. M.

    1972-01-01

    An analytic and experimental investigation into the causes and mechanisms of cavitating inducer instabilities was conducted. Hydrofoil cascade tests were performed, during which cavity sizes were measured. The measured data were used, along with inducer data and potential flow predictions, to refine an analysis for the prediction of inducer blade suction surface cavitation cavity volume. Cavity volume predictions were incorporated into a linearized system model, and instability predictions for an inducer water test loop were generated. Inducer tests were conducted and instability predictions correlated favorably with measured instability data.

  2. Modeling the directivity of parametric loudspeaker

    NASA Astrophysics Data System (ADS)

    Shi, Chuang; Gan, Woon-Seng

    2012-09-01

    The emerging applications of the parametric loudspeaker, such as 3D audio, demands accurate directivity control at the audible frequency (i.e. the difference frequency). Though the delay-and-sum beamforming has been proven adequate to adjust the steering angles of the parametric loudspeaker, accurate prediction of the mainlobe and sidelobes remains a challenging problem. It is mainly because of the approximations that are used to derive the directivity of the difference frequency from the directivity of the primary frequency, and the mismatches between the theoretical directivity and the measured directivity caused by system errors incurred at different stages of the implementation. In this paper, we propose a directivity model of the parametric loudspeaker. The directivity model consists of two tuning vectors corresponding to the spacing error and the weight error for the primary frequency. The directivity model adopts a modified form of the product directivity principle for the difference frequency to further improve the modeling accuracy.

  3. Direct parametric reconstruction in dynamic PET myocardial perfusion imaging: in vivo studies.

    PubMed

    Petibon, Yoann; Rakvongthai, Yothin; El Fakhri, Georges; Ouyang, Jinsong

    2017-05-07

    Dynamic PET myocardial perfusion imaging (MPI) used in conjunction with tracer kinetic modeling enables the quantification of absolute myocardial blood flow (MBF). However, MBF maps computed using the traditional indirect method (i.e. post-reconstruction voxel-wise fitting of kinetic model to PET time-activity-curves-TACs) suffer from poor signal-to-noise ratio (SNR). Direct reconstruction of kinetic parameters from raw PET projection data has been shown to offer parametric images with higher SNR compared to the indirect method. The aim of this study was to extend and evaluate the performance of a direct parametric reconstruction method using in vivo dynamic PET MPI data for the purpose of quantifying MBF. Dynamic PET MPI studies were performed on two healthy pigs using a Siemens Biograph mMR scanner. List-mode PET data for each animal were acquired following a bolus injection of ~7-8 mCi of 18 F-flurpiridaz, a myocardial perfusion agent. Fully-3D dynamic PET sinograms were obtained by sorting the coincidence events into 16 temporal frames covering ~5 min after radiotracer administration. Additionally, eight independent noise realizations of both scans-each containing 1/8th of the total number of events-were generated from the original list-mode data. Dynamic sinograms were then used to compute parametric maps using the conventional indirect method and the proposed direct method. For both methods, a one-tissue compartment model accounting for spillover from the left and right ventricle blood-pools was used to describe the kinetics of 18 F-flurpiridaz. An image-derived arterial input function obtained from a TAC taken in the left ventricle cavity was used for tracer kinetic analysis. For the indirect method, frame-by-frame images were estimated using two fully-3D reconstruction techniques: the standard ordered subset expectation maximization (OSEM) reconstruction algorithm on one side, and the one-step late maximum a posteriori (OSL-MAP) algorithm on the other

  4. Direct parametric reconstruction in dynamic PET myocardial perfusion imaging: in-vivo studies

    PubMed Central

    Petibon, Yoann; Rakvongthai, Yothin; Fakhri, Georges El; Ouyang, Jinsong

    2017-01-01

    Dynamic PET myocardial perfusion imaging (MPI) used in conjunction with tracer kinetic modeling enables the quantification of absolute myocardial blood flow (MBF). However, MBF maps computed using the traditional indirect method (i.e. post-reconstruction voxel-wise fitting of kinetic model to PET time-activity-curves -TACs) suffer from poor signal-to-noise ratio (SNR). Direct reconstruction of kinetic parameters from raw PET projection data has been shown to offer parametric images with higher SNR compared to the indirect method. The aim of this study was to extend and evaluate the performance of a direct parametric reconstruction method using in-vivo dynamic PET MPI data for the purpose of quantifying MBF. Dynamic PET MPI studies were performed on two healthy pigs using a Siemens Biograph mMR scanner. List-mode PET data for each animal were acquired following a bolus injection of ~7-8 mCi of 18F-flurpiridaz, a myocardial perfusion agent. Fully-3D dynamic PET sinograms were obtained by sorting the coincidence events into 16 temporal frames covering ~5 min after radiotracer administration. Additionally, eight independent noise realizations of both scans - each containing 1/8th of the total number of events - were generated from the original list-mode data. Dynamic sinograms were then used to compute parametric maps using the conventional indirect method and the proposed direct method. For both methods, a one-tissue compartment model accounting for spillover from the left and right ventricle blood-pools was used to describe the kinetics of 18F-flurpiridaz. An image-derived arterial input function obtained from a TAC taken in the left ventricle cavity was used for tracer kinetic analysis. For the indirect method, frame-by-frame images were estimated using two fully-3D reconstruction techniques: the standard Ordered Subset Expectation Maximization (OSEM) reconstruction algorithm on one side, and the One-Step Late Maximum a Posteriori (OSL-MAP) algorithm on the other

  5. Direct parametric reconstruction in dynamic PET myocardial perfusion imaging: in vivo studies

    NASA Astrophysics Data System (ADS)

    Petibon, Yoann; Rakvongthai, Yothin; El Fakhri, Georges; Ouyang, Jinsong

    2017-05-01

    Dynamic PET myocardial perfusion imaging (MPI) used in conjunction with tracer kinetic modeling enables the quantification of absolute myocardial blood flow (MBF). However, MBF maps computed using the traditional indirect method (i.e. post-reconstruction voxel-wise fitting of kinetic model to PET time-activity-curves-TACs) suffer from poor signal-to-noise ratio (SNR). Direct reconstruction of kinetic parameters from raw PET projection data has been shown to offer parametric images with higher SNR compared to the indirect method. The aim of this study was to extend and evaluate the performance of a direct parametric reconstruction method using in vivo dynamic PET MPI data for the purpose of quantifying MBF. Dynamic PET MPI studies were performed on two healthy pigs using a Siemens Biograph mMR scanner. List-mode PET data for each animal were acquired following a bolus injection of ~7-8 mCi of 18F-flurpiridaz, a myocardial perfusion agent. Fully-3D dynamic PET sinograms were obtained by sorting the coincidence events into 16 temporal frames covering ~5 min after radiotracer administration. Additionally, eight independent noise realizations of both scans—each containing 1/8th of the total number of events—were generated from the original list-mode data. Dynamic sinograms were then used to compute parametric maps using the conventional indirect method and the proposed direct method. For both methods, a one-tissue compartment model accounting for spillover from the left and right ventricle blood-pools was used to describe the kinetics of 18F-flurpiridaz. An image-derived arterial input function obtained from a TAC taken in the left ventricle cavity was used for tracer kinetic analysis. For the indirect method, frame-by-frame images were estimated using two fully-3D reconstruction techniques: the standard ordered subset expectation maximization (OSEM) reconstruction algorithm on one side, and the one-step late maximum a posteriori (OSL-MAP) algorithm on the other

  6. A LEAST ABSOLUTE SHRINKAGE AND SELECTION OPERATOR (LASSO) FOR NONLINEAR SYSTEM IDENTIFICATION

    NASA Technical Reports Server (NTRS)

    Kukreja, Sunil L.; Lofberg, Johan; Brenner, Martin J.

    2006-01-01

    Identification of parametric nonlinear models involves estimating unknown parameters and detecting its underlying structure. Structure computation is concerned with selecting a subset of parameters to give a parsimonious description of the system which may afford greater insight into the functionality of the system or a simpler controller design. In this study, a least absolute shrinkage and selection operator (LASSO) technique is investigated for computing efficient model descriptions of nonlinear systems. The LASSO minimises the residual sum of squares by the addition of a 1 penalty term on the parameter vector of the traditional 2 minimisation problem. Its use for structure detection is a natural extension of this constrained minimisation approach to pseudolinear regression problems which produces some model parameters that are exactly zero and, therefore, yields a parsimonious system description. The performance of this LASSO structure detection method was evaluated by using it to estimate the structure of a nonlinear polynomial model. Applicability of the method to more complex systems such as those encountered in aerospace applications was shown by identifying a parsimonious system description of the F/A-18 Active Aeroelastic Wing using flight test data.

  7. Developmental instability of gynodioecious Teucrium lusitanicum

    USGS Publications Warehouse

    Alados, C.L.; Navarro, T.; Cabezudo, B.; Emlen, J.M.; Freeman, C.

    1998-01-01

    Developmental instability was assessed in two geographical races of Teucrium lusitanicum using morphometric measures of vegetative and reproductive structures. T. lusitanicum is a gynodioecious species. Male sterile (female) individuals showed greater developmental instability at all sites. Plants located inland had higher developmental instability of vegetative characters and lower developmental instability of reproductive characters than coastal plants. These results support the contentions that (1) developmental instability is affected more by the disruption of co-adapted gene complexes than by lower heterozygosity, and (2) different habitat characteristics result in the differential response of vegetative and reproductive structures.

  8. Cryogenic, Absolute, High Pressure Sensor

    NASA Technical Reports Server (NTRS)

    Chapman, John J. (Inventor); Shams. Qamar A. (Inventor); Powers, William T. (Inventor)

    2001-01-01

    A pressure sensor is provided for cryogenic, high pressure applications. A highly doped silicon piezoresistive pressure sensor is bonded to a silicon substrate in an absolute pressure sensing configuration. The absolute pressure sensor is bonded to an aluminum nitride substrate. Aluminum nitride has appropriate coefficient of thermal expansion for use with highly doped silicon at cryogenic temperatures. A group of sensors, either two sensors on two substrates or four sensors on a single substrate are packaged in a pressure vessel.

  9. The degenerate parametric oscillator and Ince's equation

    NASA Astrophysics Data System (ADS)

    Cordero-Soto, Ricardo; Suslov, Sergei K.

    2011-01-01

    We construct Green's function for the quantum degenerate parametric oscillator in the coordinate representation in terms of standard solutions of Ince's equation in a framework of a general approach to variable quadratic Hamiltonians. Exact time-dependent wavefunctions and their connections with dynamical invariants and SU(1, 1) group are also discussed. An extension to the degenerate parametric oscillator with time-dependent amplitude and phase is also mentioned.

  10. Transverse Instabilities in the Fermilab Recycler

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Prost, L.R.; Burov, A.; Shemyakin, A.

    2011-07-01

    Transverse instabilities of the antiproton beam have been observed in the Recycler ring soon after its commissioning. After installation of transverse dampers, the threshold for the instability limit increased significantly but the instability is still found to limit the brightness of the antiprotons extracted from the Recycler for Tevatron shots. In this paper, we describe observations of the instabilities during the extraction process as well as during dedicated studies. The measured instability threshold phase density agrees with the prediction of the rigid beam model within a factor of 2. Also, we conclude that the instability threshold can be significantly loweredmore » for a bunch contained in a narrow and shallow potential well due to effective exclusion of the longitudinal tails from Landau damping.« less

  11. Absolute Income, Relative Income, and Happiness

    ERIC Educational Resources Information Center

    Ball, Richard; Chernova, Kateryna

    2008-01-01

    This paper uses data from the World Values Survey to investigate how an individual's self-reported happiness is related to (i) the level of her income in absolute terms, and (ii) the level of her income relative to other people in her country. The main findings are that (i) both absolute and relative income are positively and significantly…

  12. Stochastic stability of parametrically excited random systems

    NASA Astrophysics Data System (ADS)

    Labou, M.

    2004-01-01

    Multidegree-of-freedom dynamic systems subjected to parametric excitation are analyzed for stochastic stability. The variation of excitation intensity with time is described by the sum of a harmonic function and a stationary random process. The stability boundaries are determined by the stochastic averaging method. The effect of random parametric excitation on the stability of trivial solutions of systems of differential equations for the moments of phase variables is studied. It is assumed that the frequency of harmonic component falls within the region of combination resonances. Stability conditions for the first and second moments are obtained. It turns out that additional parametric excitation may have a stabilizing or destabilizing effect, depending on the values of certain parameters of random excitation. As an example, the stability of a beam in plane bending is analyzed.

  13. Universal Cosmic Absolute and Modern Science

    NASA Astrophysics Data System (ADS)

    Kostro, Ludwik

    The official Sciences, especially all natural sciences, respect in their researches the principle of methodic naturalism i.e. they consider all phenomena as entirely natural and therefore in their scientific explanations they do never adduce or cite supernatural entities and forces. The purpose of this paper is to show that Modern Science has its own self-existent, self-acting, and self-sufficient Natural All-in Being or Omni-Being i.e. the entire Nature as a Whole that justifies the scientific methodic naturalism. Since this Natural All-in Being is one and only It should be considered as the own scientifically justified Natural Absolute of Science and should be called, in my opinion, the Universal Cosmic Absolute of Modern Science. It will be also shown that the Universal Cosmic Absolute is ontologically enormously stratified and is in its ultimate i.e. in its most fundamental stratum trans-reistic and trans-personal. It means that in its basic stratum. It is neither a Thing or a Person although It contains in Itself all things and persons with all other sentient and conscious individuals as well, On the turn of the 20th century the Science has begun to look for a theory of everything, for a final theory, for a master theory. In my opinion the natural Universal Cosmic Absolute will constitute in such a theory the radical all penetrating Ultimate Basic Reality and will substitute step by step the traditional supernatural personal Absolute.

  14. Mode instability in one-dimensional anharmonic lattices: Variational equation approach

    NASA Astrophysics Data System (ADS)

    Yoshimura, K.

    1999-03-01

    The stability of normal mode oscillations has been studied in detail under the single-mode excitation condition for the Fermi-Pasta-Ulam-β lattice. Numerical experiments indicate that the mode stability depends strongly on k/N, where k is the wave number of the initially excited mode and N is the number of degrees of freedom in the system. It has been found that this feature does not change when N increases. We propose an average variational equation - approximate version of the variational equation - as a theoretical tool to facilitate a linear stability analysis. It is shown that this strong k/N dependence of the mode stability can be explained from the view point of the linear stability of the relevant orbits. We introduce a low-dimensional approximation of the average variational equation, which approximately describes the time evolution of variations in four normal mode amplitudes. The linear stability analysis based on this four-mode approximation demonstrates that the parametric instability mechanism plays a crucial role in the strong k/N dependence of the mode stability.

  15. Modeling self-excited combustion instabilities using a combination of two- and three-dimensional simulations

    NASA Astrophysics Data System (ADS)

    Harvazinski, Matthew Evan

    Self-excited combustion instabilities have been studied using a combination of two- and three-dimensional computational fluid dynamics (CFD) simulations. This work was undertaken to assess the ability of CFD simulations to generate the high-amplitude resonant combustion dynamics without external forcing or a combustion response function. Specifically, detached eddy simulations (DES), which allow for significantly coarser grid resolutions in wall bounded flows than traditional large eddy simulations (LES), were investigated for their capability of simulating the instability. A single-element laboratory rocket combustor which produces self-excited longitudinal instabilities is used for the configuration. The model rocket combustor uses an injector configuration based on practical oxidizer-rich staged-combustion devices; a sudden expansion combustion section; and uses decomposed hydrogen peroxide as the oxidizer and gaseous methane as the fuel. A better understanding of the physics has been achieved using a series of diagnostics. Standard CFD outputs like instantaneous and time averaged flowfield outputs are combined with other tools, like the Rayleigh index to provide additional insight. The Rayleigh index is used to identify local regions in the combustor which are responsible for driving and damping the instability. By comparing the Rayleigh index to flowfield parameters it is possible to connect damping and driving to specific flowfield conditions. A cost effective procedure to compute multidimensional local Rayleigh index was developed. This work shows that combustion instabilities can be qualitatively simulated using two-dimensional axisymmetric simulations for fuel rich operating conditions. A full three-dimensional simulation produces a higher level of instability which agrees quite well with the experimental results. In addition to matching the level of instability the three-dimensional simulation also predicts the harmonic nature of the instability that is

  16. Absolute parameters of young stars: QZ Carinae

    NASA Astrophysics Data System (ADS)

    Walker, W. S. G.; Blackford, M.; Butland, R.; Budding, E.

    2017-09-01

    New high-resolution spectroscopy and BVR photometry together with literature data on the complex massive quaternary star QZ Car are collected and analysed. Absolute parameters are found as follows. System A: M1 = 43 (±3), M2 = 19 (+3 -7), R1 = 28 (±2), R2 = 6 (±2), (⊙); T1 ˜ 28 000, T2 ˜ 33 000 K; System B: M1 = 30 (±3), M2 = 20 (±3), R1 = 10 (±0.5), R2 = 20 (±1), (⊙); T1 ˜ 36 000, T2 ˜ 30 000 K (model dependent temperatures). The wide system AB: Period = 49.5 (±1) yr, Epochs, conjunction = 1984.8 (±1), periastron = 2005.3 (±3) yr, mean separation = 65 (±3), (au); orbital inclination = 85 (+5 -15) deg, photometric distance ˜2700 (±300) pc, age = 4 (±1) Myr. Other new contributions concern: (a) analysis of the timing of minima differences (O - C)s for the eclipsing binary (System B); (b) the width of the eclipses, pointing to relatively large effects of radiation pressure; (c) inferences from the rotational widths of lines for both Systems A and B; and (d) implications for theoretical models of early-type stars. While feeling greater confidence on the quaternary's general parametrization, observational complications arising from strong wind interactions or other, unclear, causes still inhibit precision and call for continued multiwavelength observations. Our high-inclination value for the AB system helps to explain failures to resolve the wide binary in the previous years. The derived young age independently confirms membership of QZ Car to the open cluster Collinder 228.

  17. Jasminum sambac flower absolutes from India and China--geographic variations.

    PubMed

    Braun, Norbert A; Sim, Sherina

    2012-05-01

    Seven Jasminum sambac flower absolutes from different locations in the southern Indian state of Tamil Nadu were analyzed using GC and GC-MS. Focus was placed on 41 key ingredients to investigate geographic variations in this species. These seven absolutes were compared with an Indian bud absolute and commercially available J. sambac flower absolutes from India and China. All absolutes showed broad variations for the 10 main ingredients between 8% and 96%. In addition, the odor of Indian and Chinese J. sambac flower absolutes were assessed.

  18. Advancing Absolute Calibration for JWST and Other Applications

    NASA Astrophysics Data System (ADS)

    Rieke, George; Bohlin, Ralph; Boyajian, Tabetha; Carey, Sean; Casagrande, Luca; Deustua, Susana; Gordon, Karl; Kraemer, Kathleen; Marengo, Massimo; Schlawin, Everett; Su, Kate; Sloan, Greg; Volk, Kevin

    2017-10-01

    We propose to exploit the unique optical stability of the Spitzer telescope, along with that of IRAC, to (1) transfer the accurate absolute calibration obtained with MSX on very bright stars directly to two reference stars within the dynamic range of the JWST imagers (and of other modern instrumentation); (2) establish a second accurate absolute calibration based on the absolutely calibrated spectrum of the sun, transferred onto the astronomical system via alpha Cen A; and (3) provide accurate infrared measurements for the 11 (of 15) highest priority stars with no such data but with accurate interferometrically measured diameters, allowing us to optimize determinations of effective temperatures using the infrared flux method and thus to extend the accurate absolute calibration spectrally. This program is integral to plans for an accurate absolute calibration of JWST and will also provide a valuable Spitzer legacy.

  19. Absolute radiometric calibration of advanced remote sensing systems

    NASA Technical Reports Server (NTRS)

    Slater, P. N.

    1982-01-01

    The distinction between the uses of relative and absolute spectroradiometric calibration of remote sensing systems is discussed. The advantages of detector-based absolute calibration are described, and the categories of relative and absolute system calibrations are listed. The limitations and problems associated with three common methods used for the absolute calibration of remote sensing systems are addressed. Two methods are proposed for the in-flight absolute calibration of advanced multispectral linear array systems. One makes use of a sun-illuminated panel in front of the sensor, the radiance of which is monitored by a spectrally flat pyroelectric radiometer. The other uses a large, uniform, high-radiance reference ground surface. The ground and atmospheric measurements required as input to a radiative transfer program to predict the radiance level at the entrance pupil of the orbital sensor are discussed, and the ground instrumentation is described.

  20. The Spiral Wave Instability Induced by a Giant Planet. I. Particle Stirring in the Inner Regions of Protoplanetary Disks

    NASA Astrophysics Data System (ADS)

    Bae, Jaehan; Nelson, Richard P.; Hartmann, Lee

    2016-12-01

    We have recently shown that spiral density waves propagating in accretion disks can undergo a parametric instability by resonantly coupling with and transferring energy into pairs of inertial waves (or inertial-gravity waves when buoyancy is important). In this paper, we perform inviscid three-dimensional global hydrodynamic simulations to examine the growth and consequence of this instability operating on the spiral waves driven by a Jupiter-mass planet in a protoplanetary disk. We find that the spiral waves are destabilized via the spiral wave instability (SWI), generating hydrodynamic turbulence and sustained radially alternating vertical flows that appear to be associated with long wavelength inertial modes. In the interval 0.3 {R}{{p}}≤slant R≤slant 0.7{R}{{p}}, where R p denotes the semimajor axis of the planetary orbit (assumed to be 5 au), the estimated vertical diffusion rate associated with the turbulence is characterized by {α }{diff}∼ (0.2{--}1.2)× {10}-2. For the disk model considered here, the diffusion rate is such that particles with sizes up to several centimeters are vertically mixed within the first pressure scale height. This suggests that the instability of spiral waves launched by a giant planet can significantly disperse solid particles and trace chemical species from the midplane. In planet formation models where the continuous local production of chondrules/pebbles occurs over Myr timescales to provide a feedstock for pebble accretion onto these bodies, this stirring of solid particles may add a time constraint: planetary embryos and large asteroids have to form before a gas giant forms in the outer disk, otherwise the SWI will significantly decrease the chondrule/pebble accretion efficiency.

  1. Interactive flutter analysis and parametric study for conceptual wing design

    NASA Technical Reports Server (NTRS)

    Mukhopadhyay, Vivek

    1995-01-01

    An interactive computer program was developed for wing flutter analysis in the conceptual design stage. The objective was to estimate the flutter instability boundary of a flexible cantilever wing, when well defined structural and aerodynamic data are not available, and then study the effect of change in Mach number, dynamic pressure, torsional frequency, sweep, mass ratio, aspect ratio, taper ratio, center of gravity, and pitch inertia, to guide the development of the concept. The software was developed on MathCad (trademark) platform for Macintosh, with integrated documentation, graphics, database and symbolic mathematics. The analysis method was based on nondimensional parametric plots of two primary flutter parameters, namely Regier number and Flutter number, with normalization factors based on torsional stiffness, sweep, mass ratio, aspect ratio, center of gravity location and pitch inertia radius of gyration. The plots were compiled in a Vaught Corporation report from a vast database of past experiments and wind tunnel tests. The computer program was utilized for flutter analysis of the outer wing of a Blended Wing Body concept, proposed by McDonnell Douglas Corporation. Using a set of assumed data, preliminary flutter boundary and flutter dynamic pressure variation with altitude, Mach number and torsional stiffness were determined.

  2. Rayleigh-type parametric chemical oscillation.

    PubMed

    Ghosh, Shyamolina; Ray, Deb Shankar

    2015-09-28

    We consider a nonlinear chemical dynamical system of two phase space variables in a stable steady state. When the system is driven by a time-dependent sinusoidal forcing of a suitable scaling parameter at a frequency twice the output frequency and the strength of perturbation exceeds a threshold, the system undergoes sustained Rayleigh-type periodic oscillation, wellknown for parametric oscillation in pipe organs and distinct from the usual forced quasiperiodic oscillation of a damped nonlinear system where the system is oscillatory even in absence of any external forcing. Our theoretical analysis of the parametric chemical oscillation is corroborated by full numerical simulation of two well known models of chemical dynamics, chlorite-iodine-malonic acid and iodine-clock reactions.

  3. Turbine instabilities: Case histories

    NASA Technical Reports Server (NTRS)

    Laws, C. W.

    1985-01-01

    Several possible causes of turbine rotor instability are discussed and the related design features of a wide range of turbomachinery types and sizes are considered. The instrumentation options available for detecting rotor instability and assessing its severity are also discussed.

  4. Parametric amplification in a resonant sensing array

    NASA Astrophysics Data System (ADS)

    Yie, Zi; Miller, Nicholas J.; Shaw, Steven W.; Turner, Kimberly L.

    2012-03-01

    We demonstrate parametric amplification of a multidegree of freedom resonant mass sensing array via an applied base motion containing the appropriate frequency content and phases. Applying parametric forcing in this manner is simple and aligns naturally with the vibrational properties of the sensing structure. Using this technique, we observe an increase in the quality factors of the coupled array resonances, which provides an effective means of improving device sensitivity.

  5. Towards an Empirically Based Parametric Explosion Spectral Model

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ford, S R; Walter, W R; Ruppert, S

    2009-08-31

    Small underground nuclear explosions need to be confidently detected, identified, and characterized in regions of the world where they have never before been tested. The focus of our work is on the local and regional distances (< 2000 km) and phases (Pn, Pg, Sn, Lg) necessary to see small explosions. We are developing a parametric model of the nuclear explosion seismic source spectrum that is compatible with the earthquake-based geometrical spreading and attenuation models developed using the Magnitude Distance Amplitude Correction (MDAC) techniques (Walter and Taylor, 2002). The explosion parametric model will be particularly important in regions without any priormore » explosion data for calibration. The model is being developed using the available body of seismic data at local and regional distances for past nuclear explosions at foreign and domestic test sites. Parametric modeling is a simple and practical approach for widespread monitoring applications, prior to the capability to carry out fully deterministic modeling. The achievable goal of our parametric model development is to be able to predict observed local and regional distance seismic amplitudes for event identification and yield determination in regions with incomplete or no prior history of underground nuclear testing. The relationship between the parametric equations and the geologic and containment conditions will assist in our physical understanding of the nuclear explosion source.« less

  6. A capacitive ultrasonic transducer based on parametric resonance.

    PubMed

    Surappa, Sushruta; Satir, Sarp; Levent Degertekin, F

    2017-07-24

    A capacitive ultrasonic transducer based on a parametric resonator structure is described and experimentally demonstrated. The transducer structure, which we call capacitive parametric ultrasonic transducer (CPUT), uses a parallel plate capacitor with a movable membrane as part of a degenerate parametric series RLC resonator circuit with a resonance frequency of f o . When the capacitor plate is driven with an incident harmonic ultrasonic wave at the pump frequency of 2f o with sufficient amplitude, the RLC circuit becomes unstable and ultrasonic energy can be efficiently converted to an electrical signal at f o frequency in the RLC circuit. An important characteristic of the CPUT is that unlike other electrostatic transducers, it does not require DC bias or permanent charging to be used as a receiver. We describe the operation of the CPUT using an analytical model and numerical simulations, which shows drive amplitude dependent operation regimes including parametric resonance when a certain threshold is exceeded. We verify these predictions by experiments with a micromachined membrane based capacitor structure in immersion where ultrasonic waves incident at 4.28 MHz parametrically drive a signal with significant amplitude in the 2.14 MHz RLC circuit. With its unique features, the CPUT can be particularly advantageous for applications such as wireless power transfer for biomedical implants and acoustic sensing.

  7. History of shoulder instability surgery.

    PubMed

    Randelli, Pietro; Cucchi, Davide; Butt, Usman

    2016-02-01

    The surgical management of shoulder instability is an expanding and increasingly complex area of study within orthopaedics. This article describes the history and evolution of shoulder instability surgery, examining the development of its key principles, the currently accepted concepts and available surgical interventions. A comprehensive review of the available literature was performed using PubMed. The reference lists of reviewed articles were also scrutinised to ensure relevant information was included. The various types of shoulder instability including anterior, posterior and multidirectional instability are discussed, focussing on the history of surgical management of these topics, the current concepts and the results of available surgical interventions. The last century has seen important advancements in the understanding and treatment of shoulder instability. The transition from open to arthroscopic surgery has allowed the discovery of previously unrecognised pathologic entities and facilitated techniques to treat these. Nevertheless, open surgery still produces comparable results in the treatment of many instability-related conditions and is often required in complex or revision cases, particularly in the presence of bone loss. More high-quality research is required to better understand and characterise this spectrum of conditions so that successful evidence-based management algorithms can be developed. IV.

  8. Fingering instability of Bingham fluids

    NASA Astrophysics Data System (ADS)

    Ghadge, Shilpa; Myers, Tim

    2005-11-01

    Contact line instabilities have been extensively studied and many useful results obtained for industrial applications. Our research in this area is to explore these instabilities for non-Newtonian fluids which has wide scope in geological, biological as well as industrial areas. In this talk, we will present an analysis of fingering instability near a contact line of the thin sheet of fluid flowing down on a moderately inclined plane. This instability has been well studied for Newtonian fluids. We explore the effect of a yield strength of the fluid on this instability. We have conveniently assumed the presence of the precussor film of small thickness ahead of the fluid film to avoid some mathematical singularities. Using a lubrication-type approximation, we perform a linear stability analysis of a straight contact line. We will show comparison with some experimental results using suspensions of kaolin in silicone oil as a yield strength fluid.

  9. Instabilities in mimetic matter perturbations

    NASA Astrophysics Data System (ADS)

    Firouzjahi, Hassan; Gorji, Mohammad Ali; Mansoori, Seyed Ali Hosseini

    2017-07-01

    We study cosmological perturbations in mimetic matter scenario with a general higher derivative function. We calculate the quadratic action and show that both the kinetic term and the gradient term have the wrong sings. We perform the analysis in both comoving and Newtonian gauges and confirm that the Hamiltonians and the associated instabilities are consistent with each other in both gauges. The existence of instabilities is independent of the specific form of higher derivative function which generates gradients for mimetic field perturbations. It is verified that the ghost instability in mimetic perturbations is not associated with the higher derivative instabilities such as the Ostrogradsky ghost.

  10. Modeling personnel turnover in the parametric organization

    NASA Technical Reports Server (NTRS)

    Dean, Edwin B.

    1991-01-01

    A model is developed for simulating the dynamics of a newly formed organization, credible during all phases of organizational development. The model development process is broken down into the activities of determining the tasks required for parametric cost analysis (PCA), determining the skills required for each PCA task, determining the skills available in the applicant marketplace, determining the structure of the model, implementing the model, and testing it. The model, parameterized by the likelihood of job function transition, has demonstrated by the capability to represent the transition of personnel across functional boundaries within a parametric organization using a linear dynamical system, and the ability to predict required staffing profiles to meet functional needs at the desired time. The model can be extended by revisions of the state and transition structure to provide refinements in functional definition for the parametric and extended organization.

  11. A Parametric Oscillator Experiment for Undergraduates

    NASA Astrophysics Data System (ADS)

    Huff, Alison; Thompson, Johnathon; Pate, Jacob; Kim, Hannah; Chiao, Raymond; Sharping, Jay

    We describe an upper-division undergraduate-level analytic mechanics experiment or classroom demonstration of a weakly-damped pendulum driven into parametric resonance. Students can derive the equations of motion from first principles and extract key oscillator features, such as quality factor and parametric gain, from experimental data. The apparatus is compact, portable and easily constructed from inexpensive components. Motion control and data acquisition are accomplished using an Arduino micro-controller incorporating a servo motor, laser sensor, and data logger. We record the passage time of the pendulum through its equilibrium position and obtain the maximum speed per oscillation as a function of time. As examples of the interesting physics which the experiment reveals, we present contour plots depicting the energy of the system as functions of driven frequency and modulation depth. We observe the transition to steady state oscillation and compare the experimental oscillation threshold with theoretical expectations. A thorough understanding of this hands-on laboratory exercise provides a foundation for current research in quantum information and opto-mechanics, where damped harmonic motion, quality factor, and parametric amplification are central.

  12. Parametric Cost Models for Space Telescopes

    NASA Technical Reports Server (NTRS)

    Stahl, H. Philip; Henrichs, Todd; Dollinger, Courtney

    2010-01-01

    Multivariable parametric cost models for space telescopes provide several benefits to designers and space system project managers. They identify major architectural cost drivers and allow high-level design trades. They enable cost-benefit analysis for technology development investment. And, they provide a basis for estimating total project cost. A survey of historical models found that there is no definitive space telescope cost model. In fact, published models vary greatly [1]. Thus, there is a need for parametric space telescopes cost models. An effort is underway to develop single variable [2] and multi-variable [3] parametric space telescope cost models based on the latest available data and applying rigorous analytical techniques. Specific cost estimating relationships (CERs) have been developed which show that aperture diameter is the primary cost driver for large space telescopes; technology development as a function of time reduces cost at the rate of 50% per 17 years; it costs less per square meter of collecting aperture to build a large telescope than a small telescope; and increasing mass reduces cost.

  13. The impact of parametrized convection on cloud feedback.

    PubMed

    Webb, Mark J; Lock, Adrian P; Bretherton, Christopher S; Bony, Sandrine; Cole, Jason N S; Idelkadi, Abderrahmane; Kang, Sarah M; Koshiro, Tsuyoshi; Kawai, Hideaki; Ogura, Tomoo; Roehrig, Romain; Shin, Yechul; Mauritsen, Thorsten; Sherwood, Steven C; Vial, Jessica; Watanabe, Masahiro; Woelfle, Matthew D; Zhao, Ming

    2015-11-13

    We investigate the sensitivity of cloud feedbacks to the use of convective parametrizations by repeating the CMIP5/CFMIP-2 AMIP/AMIP + 4K uniform sea surface temperature perturbation experiments with 10 climate models which have had their convective parametrizations turned off. Previous studies have suggested that differences between parametrized convection schemes are a leading source of inter-model spread in cloud feedbacks. We find however that 'ConvOff' models with convection switched off have a similar overall range of cloud feedbacks compared with the standard configurations. Furthermore, applying a simple bias correction method to allow for differences in present-day global cloud radiative effects substantially reduces the differences between the cloud feedbacks with and without parametrized convection in the individual models. We conclude that, while parametrized convection influences the strength of the cloud feedbacks substantially in some models, other processes must also contribute substantially to the overall inter-model spread. The positive shortwave cloud feedbacks seen in the models in subtropical regimes associated with shallow clouds are still present in the ConvOff experiments. Inter-model spread in shortwave cloud feedback increases slightly in regimes associated with trade cumulus in the ConvOff experiments but is quite similar in the most stable subtropical regimes associated with stratocumulus clouds. Inter-model spread in longwave cloud feedbacks in strongly precipitating regions of the tropics is substantially reduced in the ConvOff experiments however, indicating a considerable local contribution from differences in the details of convective parametrizations. In both standard and ConvOff experiments, models with less mid-level cloud and less moist static energy near the top of the boundary layer tend to have more positive tropical cloud feedbacks. The role of non-convective processes in contributing to inter-model spread in cloud feedback

  14. Machine learning-based dual-energy CT parametric mapping

    NASA Astrophysics Data System (ADS)

    Su, Kuan-Hao; Kuo, Jung-Wen; Jordan, David W.; Van Hedent, Steven; Klahr, Paul; Wei, Zhouping; Helo, Rose Al; Liang, Fan; Qian, Pengjiang; Pereira, Gisele C.; Rassouli, Negin; Gilkeson, Robert C.; Traughber, Bryan J.; Cheng, Chee-Wai; Muzic, Raymond F., Jr.

    2018-06-01

    The aim is to develop and evaluate machine learning methods for generating quantitative parametric maps of effective atomic number (Zeff), relative electron density (ρ e), mean excitation energy (I x ), and relative stopping power (RSP) from clinical dual-energy CT data. The maps could be used for material identification and radiation dose calculation. Machine learning methods of historical centroid (HC), random forest (RF), and artificial neural networks (ANN) were used to learn the relationship between dual-energy CT input data and ideal output parametric maps calculated for phantoms from the known compositions of 13 tissue substitutes. After training and model selection steps, the machine learning predictors were used to generate parametric maps from independent phantom and patient input data. Precision and accuracy were evaluated using the ideal maps. This process was repeated for a range of exposure doses, and performance was compared to that of the clinically-used dual-energy, physics-based method which served as the reference. The machine learning methods generated more accurate and precise parametric maps than those obtained using the reference method. Their performance advantage was particularly evident when using data from the lowest exposure, one-fifth of a typical clinical abdomen CT acquisition. The RF method achieved the greatest accuracy. In comparison, the ANN method was only 1% less accurate but had much better computational efficiency than RF, being able to produce parametric maps in 15 s. Machine learning methods outperformed the reference method in terms of accuracy and noise tolerance when generating parametric maps, encouraging further exploration of the techniques. Among the methods we evaluated, ANN is the most suitable for clinical use due to its combination of accuracy, excellent low-noise performance, and computational efficiency.

  15. Machine learning-based dual-energy CT parametric mapping.

    PubMed

    Su, Kuan-Hao; Kuo, Jung-Wen; Jordan, David W; Van Hedent, Steven; Klahr, Paul; Wei, Zhouping; Al Helo, Rose; Liang, Fan; Qian, Pengjiang; Pereira, Gisele C; Rassouli, Negin; Gilkeson, Robert C; Traughber, Bryan J; Cheng, Chee-Wai; Muzic, Raymond F

    2018-06-08

    The aim is to develop and evaluate machine learning methods for generating quantitative parametric maps of effective atomic number (Z eff ), relative electron density (ρ e ), mean excitation energy (I x ), and relative stopping power (RSP) from clinical dual-energy CT data. The maps could be used for material identification and radiation dose calculation. Machine learning methods of historical centroid (HC), random forest (RF), and artificial neural networks (ANN) were used to learn the relationship between dual-energy CT input data and ideal output parametric maps calculated for phantoms from the known compositions of 13 tissue substitutes. After training and model selection steps, the machine learning predictors were used to generate parametric maps from independent phantom and patient input data. Precision and accuracy were evaluated using the ideal maps. This process was repeated for a range of exposure doses, and performance was compared to that of the clinically-used dual-energy, physics-based method which served as the reference. The machine learning methods generated more accurate and precise parametric maps than those obtained using the reference method. Their performance advantage was particularly evident when using data from the lowest exposure, one-fifth of a typical clinical abdomen CT acquisition. The RF method achieved the greatest accuracy. In comparison, the ANN method was only 1% less accurate but had much better computational efficiency than RF, being able to produce parametric maps in 15 s. Machine learning methods outperformed the reference method in terms of accuracy and noise tolerance when generating parametric maps, encouraging further exploration of the techniques. Among the methods we evaluated, ANN is the most suitable for clinical use due to its combination of accuracy, excellent low-noise performance, and computational efficiency.

  16. The impact of parametrized convection on cloud feedback

    PubMed Central

    Webb, Mark J.; Lock, Adrian P.; Bretherton, Christopher S.; Bony, Sandrine; Cole, Jason N. S.; Idelkadi, Abderrahmane; Kang, Sarah M.; Koshiro, Tsuyoshi; Kawai, Hideaki; Ogura, Tomoo; Roehrig, Romain; Shin, Yechul; Mauritsen, Thorsten; Sherwood, Steven C.; Vial, Jessica; Watanabe, Masahiro; Woelfle, Matthew D.; Zhao, Ming

    2015-01-01

    We investigate the sensitivity of cloud feedbacks to the use of convective parametrizations by repeating the CMIP5/CFMIP-2 AMIP/AMIP + 4K uniform sea surface temperature perturbation experiments with 10 climate models which have had their convective parametrizations turned off. Previous studies have suggested that differences between parametrized convection schemes are a leading source of inter-model spread in cloud feedbacks. We find however that ‘ConvOff’ models with convection switched off have a similar overall range of cloud feedbacks compared with the standard configurations. Furthermore, applying a simple bias correction method to allow for differences in present-day global cloud radiative effects substantially reduces the differences between the cloud feedbacks with and without parametrized convection in the individual models. We conclude that, while parametrized convection influences the strength of the cloud feedbacks substantially in some models, other processes must also contribute substantially to the overall inter-model spread. The positive shortwave cloud feedbacks seen in the models in subtropical regimes associated with shallow clouds are still present in the ConvOff experiments. Inter-model spread in shortwave cloud feedback increases slightly in regimes associated with trade cumulus in the ConvOff experiments but is quite similar in the most stable subtropical regimes associated with stratocumulus clouds. Inter-model spread in longwave cloud feedbacks in strongly precipitating regions of the tropics is substantially reduced in the ConvOff experiments however, indicating a considerable local contribution from differences in the details of convective parametrizations. In both standard and ConvOff experiments, models with less mid-level cloud and less moist static energy near the top of the boundary layer tend to have more positive tropical cloud feedbacks. The role of non-convective processes in contributing to inter-model spread in cloud

  17. Direct Estimation of Kinetic Parametric Images for Dynamic PET

    PubMed Central

    Wang, Guobao; Qi, Jinyi

    2013-01-01

    Dynamic positron emission tomography (PET) can monitor spatiotemporal distribution of radiotracer in vivo. The spatiotemporal information can be used to estimate parametric images of radiotracer kinetics that are of physiological and biochemical interests. Direct estimation of parametric images from raw projection data allows accurate noise modeling and has been shown to offer better image quality than conventional indirect methods, which reconstruct a sequence of PET images first and then perform tracer kinetic modeling pixel-by-pixel. Direct reconstruction of parametric images has gained increasing interests with the advances in computing hardware. Many direct reconstruction algorithms have been developed for different kinetic models. In this paper we review the recent progress in the development of direct reconstruction algorithms for parametric image estimation. Algorithms for linear and nonlinear kinetic models are described and their properties are discussed. PMID:24396500

  18. Radiating Instabilities of Internal Inertio-gravity Waves

    NASA Astrophysics Data System (ADS)

    Kwasniok, F.; Schmitz, G.

    The vertical radiation of local convective and shear instabilities of internal inertio- gravity waves is examined within linear stability theory. A steady, plane-parallel Boussinesq flow with vertical profiles of horizontal velocity and static stability re- sembling an internal inertio-gravity wave packet without mean vertical shear is used as dynamical framework. The influence of primary-wave frequency and amplitude as well as orientation and horizontal wavenumber of the instability on vertical radi- ation is discussed. Considerable radiation occurs at small to intermediate instability wavenumbers for basic state gravity waves with high to intermediate frequencies and moderately convectively supercritical amplitudes. Radiation is then strongest when the horizontal wavevector of the instability is aligned parallel to the horizontal wavevector of the basic state gravity wave. These radiating modes are essentially formed by shear instability. Modes of convective instability, that occur at large instability wavenum- bers or strongly convectively supercritical amplitudes, as well as modes at convec- tively subcritical amplitudes are nonradiating, trapped in the region of instability. The radiation of an instability is found to be related to the existence of critical levels, a radiating mode being characterized by the absence of critical levels outside the region of instability of the primary wave.

  19. Combustion Instability in an Acid-Heptane Rocket with a Pressurized-Gas Propellant Pumping System

    NASA Technical Reports Server (NTRS)

    Tischler, Adelbert O.; Bellman, Donald R.

    1951-01-01

    Results of experimental measurements of low-frequency combustion instability of a 300-pound thrust acid-heptane rocket engine were compared to the trends predicted by an analysis of combustion instability in a rocket engine with a pressurized-gas propellant pumping system. The simplified analysis, which assumes a monopropellant model, was based on the concept of a combustion the delay occurring from the moment of propellant injection to the moment of propellant combustion. This combustion time delay was experimentally measured; the experimental values were of approximately half the magnitude predicted by the analysis. The pressure-fluctuation frequency for a rocket engine with a characteristic length of 100 inches and operated at a combustion-chamber pressure of 280 pounds per square inch absolute was 38 cycles per second; the analysis indicated. a frequency of 37 cycles per second. Increasing combustion-chamber characteristic length decreased the pressure-fluctuation frequency, in conformity to the analysis. Increasing the chamber operating pressure or increasing the injector pressure drop increased the frequency. These latter two effects are contrary to the analysis; the discrepancies are attributed to the conflict between the assumptions made to simplify the analysis and the experimental conditions. Oxidant-fuel ratio had no apparent effect on the experimentally measured pressure-fluctuation frequency for acid-heptane ratios from 3.0 to 7.0. The frequencies decreased with increased amplitude of the combustion-chamber pressure variations. The analysis indicated that if the combustion time delay were sufficiently short, low-frequency combustion instability would be eliminated.

  20. Implementing quantum optics with parametrically driven superconducting circuits

    NASA Astrophysics Data System (ADS)

    Aumentado, Jose

    Parametric coupling has received much attention, in part because it forms the core of many low-noise amplifiers in superconducting quantum information experiments. However, parametric coupling in superconducting circuits is, as a general rule, simple to generate and forms the basis of a methodology for interacting microwave fields at different frequencies. In the quantum regime, this has important consequences, allowing relative novices to do experiments in superconducting circuits today that were previously heroic efforts in quantum optics and cavity-QED. In this talk, I'll give an overview of some of our work demonstrating parametric coupling within the context of circuit-QED as well as some of the possibilities this concept creates in our field.

  1. The Instability of Instability

    DTIC Science & Technology

    1991-05-01

    thermodynamic principles, changes cannot be effected without some cost. The decision - making associated with Model I can be viewed as rational behavior. Consider...number Democratic simple majority voting is perhaps the most widely used method of group decision making i;i our time. Current theory, based on...incorporate any of several plausible characteristics of decision - making , then the instability theorems do not hold and in fact the probability of

  2. Mode-locking via dissipative Faraday instability

    PubMed Central

    Tarasov, Nikita; Perego, Auro M.; Churkin, Dmitry V.; Staliunas, Kestutis; Turitsyn, Sergei K.

    2016-01-01

    Emergence of coherent structures and patterns at the nonlinear stage of modulation instability of a uniform state is an inherent feature of many biological, physical and engineering systems. There are several well-studied classical modulation instabilities, such as Benjamin–Feir, Turing and Faraday instability, which play a critical role in the self-organization of energy and matter in non-equilibrium physical, chemical and biological systems. Here we experimentally demonstrate the dissipative Faraday instability induced by spatially periodic zig-zag modulation of a dissipative parameter of the system—spectrally dependent losses—achieving generation of temporal patterns and high-harmonic mode-locking in a fibre laser. We demonstrate features of this instability that distinguish it from both the Benjamin–Feir and the purely dispersive Faraday instability. Our results open the possibilities for new designs of mode-locked lasers and can be extended to other fields of physics and engineering. PMID:27503708

  3. Mode-locking via dissipative Faraday instability.

    PubMed

    Tarasov, Nikita; Perego, Auro M; Churkin, Dmitry V; Staliunas, Kestutis; Turitsyn, Sergei K

    2016-08-09

    Emergence of coherent structures and patterns at the nonlinear stage of modulation instability of a uniform state is an inherent feature of many biological, physical and engineering systems. There are several well-studied classical modulation instabilities, such as Benjamin-Feir, Turing and Faraday instability, which play a critical role in the self-organization of energy and matter in non-equilibrium physical, chemical and biological systems. Here we experimentally demonstrate the dissipative Faraday instability induced by spatially periodic zig-zag modulation of a dissipative parameter of the system-spectrally dependent losses-achieving generation of temporal patterns and high-harmonic mode-locking in a fibre laser. We demonstrate features of this instability that distinguish it from both the Benjamin-Feir and the purely dispersive Faraday instability. Our results open the possibilities for new designs of mode-locked lasers and can be extended to other fields of physics and engineering.

  4. Linking Comparisons of Absolute Gravimeters: A Proof of Concept for a new Global Absolute Gravity Reference System.

    NASA Astrophysics Data System (ADS)

    Wziontek, H.; Palinkas, V.; Falk, R.; Vaľko, M.

    2016-12-01

    Since decades, absolute gravimeters are compared on a regular basis on an international level, starting at the International Bureau for Weights and Measures (BIPM) in 1981. Usually, these comparisons are based on constant reference values deduced from all accepted measurements acquired during the comparison period. Temporal changes between comparison epochs are usually not considered. Resolution No. 2, adopted by IAG during the IUGG General Assembly in Prague 2015, initiates the establishment of a Global Absolute Gravity Reference System based on key comparisons of absolute gravimeters (AG) under the International Committee for Weights and Measures (CIPM) in order to establish a common level in the microGal range. A stable and unique reference frame can only be achieved, if different AG are taking part in different kind of comparisons. Systematic deviations between the respective comparison reference values can be detected, if the AG can be considered stable over time. The continuous operation of superconducting gravimeters (SG) on selected stations further supports the temporal link of comparison reference values by establishing a reference function over time. By a homogenous reprocessing of different comparison epochs and including AG and SG time series at selected stations, links between several comparisons will be established and temporal comparison reference functions will be derived. By this, comparisons on a regional level can be traced to back to the level of key comparisons, providing a reference for other absolute gravimeters. It will be proved and discussed, how such a concept can be used to support the future absolute gravity reference system.

  5. Centrifugally Driven Rayleigh-Taylor Instability

    NASA Astrophysics Data System (ADS)

    Scase, Matthew; Hill, Richard

    2017-11-01

    The instability that develops at the interface between two fluids of differing density due to the rapid rotation of the system may be considered as a limit of high-rotation rate Rayleigh-Taylor instability. Previously the authors have considered the effect of rotation on a gravitationally dominated Rayleigh-Taylor instability and have shown that some growth modes of instability may be suppressed completely by the stabilizing effect of rotation (Phys. Rev. Fluids 2:024801, Sci. Rep. 5:11706). Here we consider the case of very high rotation rates and a negligible gravitational field. The initial condition is of a dense inner cylinder of fluid surrounded by a lighter layer of fluid. As the system is rotated about the generating axis of the cylinder, the dense inner fluid moves away from the axis and the familiar bubbles and spikes of Rayleigh-Taylor instability develop at the interface. The system may be thought of as a ``fluid-fluid centrifuge''. By developing a model based on an Orr-Sommerfeld equation, we consider the effects of viscosity, surface tension and interface diffusion on the growth rate and modes of instability. We show that under particular circumstances some modes may be stabilized. School of Mathematical Sciences.

  6. Problems of the design of low-noise input devices. [parametric amplifiers

    NASA Technical Reports Server (NTRS)

    Manokhin, V. M.; Nemlikher, Y. A.; Strukov, I. A.; Sharfov, Y. A.

    1974-01-01

    An analysis is given of the requirements placed on the elements of parametric centimeter waveband amplifiers for achievement of minimal noise temperatures. A low-noise semiconductor parametric amplifier using germanium parametric diodes for a receiver operating in the 4 GHz band was developed and tested confirming the possibility of satisfying all requirements.

  7. Attitude Stability of a Spacecraft with Slosh Mass Subject to Parametric Excitation

    NASA Astrophysics Data System (ADS)

    Kang, Ja-Young

    2003-09-01

    The attitude motion of a spin-stabilized, upper-stage spacecraft is investigated based on a two-body model, consisting of a symmetric body, representing the spacecraft, and a spherical pendulum, representing the liquid slag pool entrapped in the aft section of the rocket motor. Exact time-varying nonlinear equations are derived and used to eliminate the drawbacks of conventional linear models. To study the stability of the spacecraft's attitude motion, both the spacecraft and pendulum are assumed to be in states of steady spin about the symmetry axis of the spacecraft and the coupled time-varying nonlinear equation of the pendulum is simplified. A quasi-stationary solution to that equation and approximate resonance conditions are determined in terms of the system parameters. The analysis shows that the pendulum is subject to a combination of parametric and external-type excitation by the main body and that energy from the excited pendulum is fed into the main body to develop the coning instability. In this paper, numerical examples are presented to explain the mechanism of the coning angle growth and how angular momenta and disturbance moments are generated.

  8. THE EFFECTS OF KINETIC INSTABILITIES ON SMALL-SCALE TURBULENCE IN EARTH’S MAGNETOSHEATH

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Breuillard, H.; Yordanova, E.; Vaivads, A.

    2016-09-20

    The Earth's magnetosheath is the region delimited by the bow shock and the magnetopause. It is characterized by highly turbulent fluctuations covering all scales from MHD down to kinetic scales. Turbulence is thought to play a fundamental role in key processes such as energy transport and dissipation in plasma. In addition to turbulence, different plasma instabilities are generated in the magnetosheath because of the large anisotropies in plasma temperature introduced by its boundaries. In this study we use high-quality magnetic field measurements from Cluster spacecraft to investigate the effects of such instabilities on the small-scale turbulence (from ion down tomore » electron scales). We show that the steepening of the power spectrum of magnetic field fluctuations in the magnetosheath occurs at the largest characteristic ion scale. However, the spectrum can be modified by the presence of waves/structures at ion scales, shifting the onset of the small-scale turbulent cascade toward the smallest ion scale. This cascade is therefore highly dependent on the presence of kinetic instabilities, waves, and local plasma parameters. Here we show that in the absence of strong waves the small-scale turbulence is quasi-isotropic and has a spectral index α ≈ −2.8. When transverse or compressive waves are present, we observe an anisotropy in the magnetic field components and a decrease in the absolute value of α . Slab/2D turbulence also develops in the presence of transverse/compressive waves, resulting in gyrotropy/non-gyrotropy of small-scale fluctuations. The presence of both types of waves reduces the anisotropy in the amplitude of fluctuations in the small-scale range.« less

  9. Noise-enhanced Parametric Resonance in Perturbed Galaxies

    NASA Astrophysics Data System (ADS)

    Sideris, Ioannis V.; Kandrup, Henry E.

    2004-02-01

    This paper describes how parametric resonances associated with a galactic potential subjected to relatively low-amplitude, strictly periodic time-dependent perturbations can be impacted by pseudo-random variations in the pulsation frequency, modeled as colored noise. One aim thereby is to allow for the effects of a changing oscillation frequency as the density distribution associated with a galaxy evolves during violent relaxation. Another is to mimic the possible effects of internal substructures, satellite galaxies, and/or a high-density environment. The principal conclusions are that allowing for a variable frequency does not vitiate the effects of parametric resonance, and that, in at least some cases, such variations can increase the overall importance of parametric resonance associated with systematic pulsations. In memory of Professor H. E. Kandrup, a brilliant scientist, excellent teacher, and good friend. His genius and sense of humor will be greatly missed.

  10. Josephson Parametric Reflection Amplifier with Integrated Directionality

    NASA Astrophysics Data System (ADS)

    Westig, M. P.; Klapwijk, T. M.

    2018-06-01

    A directional superconducting parametric amplifier in the GHz frequency range is designed and analyzed, suitable for low-power read-out of microwave kinetic inductance detectors employed in astrophysics and when combined with a nonreciprocal device at its input also for circuit quantum electrodynamics. It consists of a one-wavelength-long nondegenerate Josephson parametric reflection amplifier circuit. The device has two Josephson-junction oscillators, connected via a tailored impedance to an on-chip passive circuit which directs the in- to the output port. The amplifier provides a gain of 20 dB over a bandwidth of 220 MHz on the signal as well as on the idler portion of the amplified input and the total photon shot noise referred to the input corresponds to maximally approximately 1.3 photons per second per Hertz of bandwidth. We predict a factor of 4 increase in dynamic range compared to conventional Josephson parametric amplifiers.

  11. Ion heating, burnout of the high-frequency field, and ion sound generation under the development of a modulation instability of an intense Langmuir wave in a plasma

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kirichok, A. V., E-mail: sandyrcs@gmail.com; Kuklin, V. M.; Pryimak, A. V.

    The development of one-dimensional parametric instabilities of intense long plasma waves is considered in terms of the so-called hybrid models, with electrons being treated as a fluid and ions being regarded as particles. The analysis is performed for both cases when the average plasma field energy is lower (Zakharov's hybrid model—ZHM) or greater (Silin's hybrid model—SHM) than the plasma thermal energy. The efficiency of energy transfer to ions and to ion perturbations under the development of the instability is considered for various values of electron-to-ion mass ratios. The energy of low-frequency oscillations (ion-sound waves) is found to be much lowermore » than the final ion kinetic energy. We also discuss the influence of the changes in the damping rate of the high-frequency (HF) field on the instability development. The decrease of the absorption of the HF field inhibits the HF field burnout within plasma density cavities and gives rise to the broadening of the HF spectrum. At the same time, the ion velocity distribution tends to the normal distribution in both ZHM and SHM.« less

  12. Investigating Absolute Value: A Real World Application

    ERIC Educational Resources Information Center

    Kidd, Margaret; Pagni, David

    2009-01-01

    Making connections between various representations is important in mathematics. In this article, the authors discuss the numeric, algebraic, and graphical representations of sums of absolute values of linear functions. The initial explanations are accessible to all students who have experience graphing and who understand that absolute value simply…

  13. Quantization of simple parametrized systems

    NASA Astrophysics Data System (ADS)

    Ruffini, G.

    2005-11-01

    I study the canonical formulation and quantization of some simple parametrized systems, including the non-relativistic parametrized particle and the relativistic parametrized particle. Using Dirac's formalism I construct for each case the classical reduced phase space and study the dependence on the gauge fixing used. Two separate features of these systems can make this construction difficult: the actions are not invariant at the boundaries, and the constraints may have disconnected solution spaces. The relativistic particle is affected by both, while the non-relativistic particle displays only by the first. Analyzing the role of canonical transformations in the reduced phase space, I show that a change of gauge fixing is equivalent to a canonical transformation. In the relativistic case, quantization of one branch of the constraint at the time is applied and I analyze the electromagenetic backgrounds in which it is possible to quantize simultaneously both branches and still obtain a covariant unitary quantum theory. To preserve unitarity and space-time covariance, second quantization is needed unless there is no electric field. I motivate a definition of the inner product in all these cases and derive the Klein-Gordon inner product for the relativistic case. I construct phase space path integral representations for amplitudes for the BFV and the Faddeev path integrals, from which the path integrals in coordinate space (Faddeev-Popov and geometric path integrals) are derived.

  14. Acceleration of the direct reconstruction of linear parametric images using nested algorithms.

    PubMed

    Wang, Guobao; Qi, Jinyi

    2010-03-07

    Parametric imaging using dynamic positron emission tomography (PET) provides important information for biological research and clinical diagnosis. Indirect and direct methods have been developed for reconstructing linear parametric images from dynamic PET data. Indirect methods are relatively simple and easy to implement because the image reconstruction and kinetic modeling are performed in two separate steps. Direct methods estimate parametric images directly from raw PET data and are statistically more efficient. However, the convergence rate of direct algorithms can be slow due to the coupling between the reconstruction and kinetic modeling. Here we present two fast gradient-type algorithms for direct reconstruction of linear parametric images. The new algorithms decouple the reconstruction and linear parametric modeling at each iteration by employing the principle of optimization transfer. Convergence speed is accelerated by running more sub-iterations of linear parametric estimation because the computation cost of the linear parametric modeling is much less than that of the image reconstruction. Computer simulation studies demonstrated that the new algorithms converge much faster than the traditional expectation maximization (EM) and the preconditioned conjugate gradient algorithms for dynamic PET.

  15. Stimulus probability effects in absolute identification.

    PubMed

    Kent, Christopher; Lamberts, Koen

    2016-05-01

    This study investigated the effect of stimulus presentation probability on accuracy and response times in an absolute identification task. Three schedules of presentation were used to investigate the interaction between presentation probability and stimulus position within the set. Data from individual participants indicated strong effects of presentation probability on both proportion correct and response times. The effects were moderated by the ubiquitous stimulus position effect. The accuracy and response time data were predicted by an exemplar-based model of perceptual cognition (Kent & Lamberts, 2005). The bow in discriminability was also attenuated when presentation probability for middle items was relatively high, an effect that will constrain future model development. The study provides evidence for item-specific learning in absolute identification. Implications for other theories of absolute identification are discussed. (PsycINFO Database Record (c) 2016 APA, all rights reserved).

  16. Pearling Instabilities of a Viscoelastic Thread

    NASA Astrophysics Data System (ADS)

    Deblais, A.; Velikov, K. P.; Bonn, D.

    2018-05-01

    Pearling instabilities of slender viscoelastic threads have received much attention, but remain incompletely understood. We study the instabilities in polymer solutions subject to uniaxial elongational flow. Two distinctly different instabilites are observed: beads on a string and blistering. The beads-on-a-string structure arises from a capillary instability whereas the blistering instability has a different origin: it is due to a coupling between stress and polymer concentration. By varying the temperature to change the solution properties we elucidate the interplay between flow and phase separation.

  17. Prevalence Incidence Mixture Models

    Cancer.gov

    The R package and webtool fits Prevalence Incidence Mixture models to left-censored and irregularly interval-censored time to event data that is commonly found in screening cohorts assembled from electronic health records. Absolute and relative risk can be estimated for simple random sampling, and stratified sampling (the two approaches of superpopulation and a finite population are supported for target populations). Non-parametric (absolute risks only), semi-parametric, weakly-parametric (using B-splines), and some fully parametric (such as the logistic-Weibull) models are supported.

  18. Parametric Amplifier and Oscillator Based on Josephson Junction Circuitry

    NASA Astrophysics Data System (ADS)

    Yamamoto, T.; Koshino, K.; Nakamura, Y.

    While the demand for low-noise amplification is ubiquitous, applications where the quantum-limited noise performance is indispensable are not very common. Microwave parametric amplifiers with near quantum-limited noise performance were first demonstrated more than 20 years ago. However, there had been little effort until recently to improve the performance or the ease of use of these amplifiers, partly because of a lack of any urgent motivation. The emergence of the field of quantum information processing in superconducting systems has changed this situation dramatically. The need to reliably read out the state of a given qubit using a very weak microwave probe within a very short time has led to renewed interest in these quantum-limited microwave amplifiers, which are already widely used as tools in this field. Here, we describe the quantum mechanical theory for one particular parametric amplifier design, called the flux-driven Josephson parametric amplifier, which we developed in 2008. The theory predicts the performance of this parametric amplifier, including its gain, bandwidth, and noise temperature. We also present the phase detection capability of this amplifier when it is operated with a pump power that is above the threshold, i.e., as a parametric phase-locked oscillator or parametron.

  19. A Conceptual Approach to Absolute Value Equations and Inequalities

    ERIC Educational Resources Information Center

    Ellis, Mark W.; Bryson, Janet L.

    2011-01-01

    The absolute value learning objective in high school mathematics requires students to solve far more complex absolute value equations and inequalities. When absolute value problems become more complex, students often do not have sufficient conceptual understanding to make any sense of what is happening mathematically. The authors suggest that the…

  20. Parametric number covariance in quantum chaotic spectra.

    PubMed

    Vinayak; Kumar, Sandeep; Pandey, Akhilesh

    2016-03-01

    We study spectral parametric correlations in quantum chaotic systems and introduce the number covariance as a measure of such correlations. We derive analytic results for the classical random matrix ensembles using the binary correlation method and obtain compact expressions for the covariance. We illustrate the universality of this measure by presenting the spectral analysis of the quantum kicked rotors for the time-reversal invariant and time-reversal noninvariant cases. A local version of the parametric number variance introduced earlier is also investigated.

  1. Parametric Amplification For Detecting Weak Optical Signals

    NASA Technical Reports Server (NTRS)

    Hemmati, Hamid; Chen, Chien; Chakravarthi, Prakash

    1996-01-01

    Optical-communication receivers of proposed type implement high-sensitivity scheme of optical parametric amplification followed by direct detection for reception of extremely weak signals. Incorporates both optical parametric amplification and direct detection into optimized design enhancing effective signal-to-noise ratios during reception in photon-starved (photon-counting) regime. Eliminates need for complexity of heterodyne detection scheme and partly overcomes limitations imposed on older direct-detection schemes by noise generated in receivers and by limits on quantum efficiencies of photodetectors.

  2. Optical parametric amplification and oscillation assisted by low-frequency stimulated emission.

    PubMed

    Longhi, Stefano

    2016-04-15

    Optical parametric amplification and oscillation provide powerful tools for coherent light generation in spectral regions inaccessible to lasers. Parametric gain is based on a frequency down-conversion process and, thus, it cannot be realized for signal waves at a frequency ω3 higher than the frequency of the pump wave ω1. In this Letter, we suggest a route toward the realization of upconversion optical parametric amplification and oscillation, i.e., amplification of the signal wave by a coherent pump wave of lower frequency, assisted by stimulated emission of the auxiliary idler wave. When the signal field is resonated in an optical cavity, parametric oscillation is obtained. Design parameters for the observation of upconversion optical parametric oscillation at λ3=465 nm are given for a periodically poled lithium-niobate (PPLN) crystal doped with Nd(3+) ions.

  3. Absolute pitch in a four-year-old boy with autism.

    PubMed

    Brenton, James N; Devries, Seth P; Barton, Christine; Minnich, Heike; Sokol, Deborah K

    2008-08-01

    Absolute pitch is the ability to identify the pitch of an isolated tone. We report on a 4-year-old boy with autism and absolute pitch, one of the youngest reported in the literature. Absolute pitch is thought to be attributable to a single gene, transmitted in an autosomal-dominant fashion. The association of absolute pitch with autism raises the speculation that this talent could be linked to a genetically distinct subset of children with autism. Further, the identification of absolute pitch in even young children with autism may lead to a lifelong skill.

  4. Terahertz parametric sources and imaging applications

    NASA Astrophysics Data System (ADS)

    Kawase, Kodo; Ogawa, Yuichi; Minamide, Hiroaki; Ito, Hiromasa

    2005-07-01

    We have studied the generation of terahertz (THz) waves by optical parametric processes based on laser light scattering from the polariton mode of nonlinear crystals. Using parametric oscillation of LiNbO3 or MgO-doped LiNbO3 crystal pumped by a nano-second Q-switched Nd:YAG laser, we have realized a widely tunable coherent THz-wave source with a simple configuration. We report the detailed characteristics of the oscillation and the radiation including tunability, spatial and temporal coherency, uni-directivity, and efficiency. A Fourier transform limited THz-wave spectrum narrowing was achieved by introducing the injection seeding method. Further, we have developed a spectroscopic THz imaging system using a THz-wave parametric oscillator, which allows detection and identification of drugs concealed in envelopes, by introducing the component spatial pattern analysis. Several images of the envelope are recorded at different THz frequencies and then processed. The final result is an image that reveals what substances are present in the envelope, in what quantity, and how they are distributed across the envelope area. The example presented here shows the identification of three drugs, two of which are illegal, while one is an over-the-counter drug.

  5. On the interrelation of divergence, flutter and auto-parametric resonance.

    NASA Technical Reports Server (NTRS)

    Herrmann, G.; Hauger, W.

    1973-01-01

    The dependence between static instability and kinetic instability (flutter) on autoparameteric resonance is studied by taking compressibility into account in a model of a cantilever beam under the action of a follower force. It is shown that both instabilities are formally special cases of instabilities known as subharmonic and combination resonances.

  6. Mood instability: significance, definition and measurement.

    PubMed

    Broome, M R; Saunders, K E A; Harrison, P J; Marwaha, S

    2015-10-01

    Mood instability is common, and an important feature of several psychiatric disorders. We discuss the definition and measurement of mood instability, and review its prevalence, characteristics, neurobiological correlates and clinical implications. We suggest that mood instability has underappreciated transdiagnostic potential as an investigational and therapeutic target. © The Royal College of Psychiatrists 2015.

  7. THz-wave parametric sources and imaging applications

    NASA Astrophysics Data System (ADS)

    Kawase, Kodo

    2004-12-01

    We have studied the generation of terahertz (THz) waves by optical parametric processes based on laser light scattering from the polariton mode of nonlinear crystals. Using parametric oscillation of MgO-doped LiNbO3 crystal pumped by a nano-second Q-switched Nd:YAG laser, we have realized a widely tunable coherent THz-wave sources with a simple configuration. We have also developed a novel basic technology for THz imaging, which allows detection and identification of chemicals by introducing the component spatial pattern analysis. The spatial distributions of the chemicals were obtained from terahertz multispectral trasillumination images, using absorption spectra previously measured with a widely tunable THz-wave parametric oscillator. Further we have applied this technique to the detection and identification of illicit drugs concealed in envelopes. The samples we used were methamphetamine and MDMA, two of the most widely consumed illegal drugs in Japan, and aspirin as a reference.

  8. Instability following total knee arthroplasty.

    PubMed

    Rodriguez-Merchan, E Carlos

    2011-10-01

    Background Knee prosthesis instability (KPI) is a frequent cause of failure of total knee arthroplasty. Moreover, the degree of constraint required to achieve immediate and long-term stability in total knee arthroplasty (TKA) is frequently debated. Questions This review aims to define the problem, analyze risk factors, and review strategies for prevention and treatment of KPI. Methods A PubMed (MEDLINE) search of the years 2000 to 2010 was performed using two key words: TKA and instability. One hundred and sixty-five initial articles were identified. The most important (17) articles as judged by the author were selected for this review. The main criteria for selection were that the articles addressed and provided solutions to the diagnosis and treatment of KPI. Results Patient-related risk factors predisposing to post-operative instability include deformity requiring a large surgical correction and aggressive ligament release, general or regional neuromuscular pathology, and hip or foot deformities. KPI can be prevented in most cases with appropriate selection of implants and good surgical technique. When ligament instability is anticipated post-operatively, the need for implants with a greater degree of constraint should be anticipated. In patients without significant varus or valgus malalignment and without significant flexion contracture, the posterior cruciate ligament (PCL) can be retained. However, the PCL should be sacrificed when deformity exists particularly in patients with rheumatoid arthritis, previous patellectomy, previous high tibial osteotomy or distal femoral osteotomy, and posttraumatic osteoarthritis with disruption of the PCL. In most cases, KPI requires revision surgery. Successful outcomes can only be obtained if the cause of KPI is identified and addressed. Conclusions Instability following TKA is a common cause of the need for revision. Typically, knees with deformity, rheumatoid arthritis, previous patellectomy or high tibial osteotomy, and

  9. The Absolute Spectrum Polarimeter (ASP)

    NASA Technical Reports Server (NTRS)

    Kogut, A. J.

    2010-01-01

    The Absolute Spectrum Polarimeter (ASP) is an Explorer-class mission to map the absolute intensity and linear polarization of the cosmic microwave background and diffuse astrophysical foregrounds over the full sky from 30 GHz to 5 THz. The principal science goal is the detection and characterization of linear polarization from an inflationary epoch in the early universe, with tensor-to-scalar ratio r much greater than 1O(raised to the power of { -3}) and Compton distortion y < 10 (raised to the power of{-6}). We describe the ASP instrument and mission architecture needed to detect the signature of an inflationary epoch in the early universe using only 4 semiconductor bolometers.

  10. The absolute disparity anomaly and the mechanism of relative disparities.

    PubMed

    Chopin, Adrien; Levi, Dennis; Knill, David; Bavelier, Daphne

    2016-06-01

    There has been a long-standing debate about the mechanisms underlying the perception of stereoscopic depth and the computation of the relative disparities that it relies on. Relative disparities between visual objects could be computed in two ways: (a) using the difference in the object's absolute disparities (Hypothesis 1) or (b) using relative disparities based on the differences in the monocular separations between objects (Hypothesis 2). To differentiate between these hypotheses, we measured stereoscopic discrimination thresholds for lines with different absolute and relative disparities. Participants were asked to judge the depth of two lines presented at the same distance from the fixation plane (absolute disparity) or the depth between two lines presented at different distances (relative disparity). We used a single stimulus method involving a unique memory component for both conditions, and no extraneous references were available. We also measured vergence noise using Nonius lines. Stereo thresholds were substantially worse for absolute disparities than for relative disparities, and the difference could not be explained by vergence noise. We attribute this difference to an absence of conscious readout of absolute disparities, termed the absolute disparity anomaly. We further show that the pattern of correlations between vergence noise and absolute and relative disparity acuities can be explained jointly by the existence of the absolute disparity anomaly and by the assumption that relative disparity information is computed from absolute disparities (Hypothesis 1).

  11. The absolute disparity anomaly and the mechanism of relative disparities

    PubMed Central

    Chopin, Adrien; Levi, Dennis; Knill, David; Bavelier, Daphne

    2016-01-01

    There has been a long-standing debate about the mechanisms underlying the perception of stereoscopic depth and the computation of the relative disparities that it relies on. Relative disparities between visual objects could be computed in two ways: (a) using the difference in the object's absolute disparities (Hypothesis 1) or (b) using relative disparities based on the differences in the monocular separations between objects (Hypothesis 2). To differentiate between these hypotheses, we measured stereoscopic discrimination thresholds for lines with different absolute and relative disparities. Participants were asked to judge the depth of two lines presented at the same distance from the fixation plane (absolute disparity) or the depth between two lines presented at different distances (relative disparity). We used a single stimulus method involving a unique memory component for both conditions, and no extraneous references were available. We also measured vergence noise using Nonius lines. Stereo thresholds were substantially worse for absolute disparities than for relative disparities, and the difference could not be explained by vergence noise. We attribute this difference to an absence of conscious readout of absolute disparities, termed the absolute disparity anomaly. We further show that the pattern of correlations between vergence noise and absolute and relative disparity acuities can be explained jointly by the existence of the absolute disparity anomaly and by the assumption that relative disparity information is computed from absolute disparities (Hypothesis 1). PMID:27248566

  12. Rotordynamic Instability Problems in High-Performance Turbomachinery

    NASA Technical Reports Server (NTRS)

    1982-01-01

    Rotor dynamic instability problems in high performance turbomachinery are reviewed. Mechanical instability mechanisms are discussed. Seal forces and working fluid forces in turbomachinery are discussed. Control of rotor instability is also investigated.

  13. Parametric Modelling of As-Built Beam Framed Structure in Bim Environment

    NASA Astrophysics Data System (ADS)

    Yang, X.; Koehl, M.; Grussenmeyer, P.

    2017-02-01

    A complete documentation and conservation of a historic timber roof requires the integration of geometry modelling, attributional and dynamic information management and results of structural analysis. Recently developed as-built Building Information Modelling (BIM) technique has the potential to provide a uniform platform, which provides possibility to integrate the traditional geometry modelling, parametric elements management and structural analysis together. The main objective of the project presented in this paper is to develop a parametric modelling tool for a timber roof structure whose elements are leaning and crossing beam frame. Since Autodesk Revit, as the typical BIM software, provides the platform for parametric modelling and information management, an API plugin, able to automatically create the parametric beam elements and link them together with strict relationship, was developed. The plugin under development is introduced in the paper, which can obtain the parametric beam model via Autodesk Revit API from total station points and terrestrial laser scanning data. The results show the potential of automatizing the parametric modelling by interactive API development in BIM environment. It also integrates the separate data processing and different platforms into the uniform Revit software.

  14. Multi-parametric centrality method for graph network models

    NASA Astrophysics Data System (ADS)

    Ivanov, Sergei Evgenievich; Gorlushkina, Natalia Nikolaevna; Ivanova, Lubov Nikolaevna

    2018-04-01

    The graph model networks are investigated to determine centrality, weights and the significance of vertices. For centrality analysis appliesa typical method that includesany one of the properties of graph vertices. In graph theory, methods of analyzing centrality are used: in terms by degree, closeness, betweenness, radiality, eccentricity, page-rank, status, Katz and eigenvector. We have proposed a new method of multi-parametric centrality, which includes a number of basic properties of the network member. The mathematical model of multi-parametric centrality method is developed. Comparison of results for the presented method with the centrality methods is carried out. For evaluate the results for the multi-parametric centrality methodthe graph model with hundreds of vertices is analyzed. The comparative analysis showed the accuracy of presented method, includes simultaneously a number of basic properties of vertices.

  15. Topographic-driven instabilities in terrestrial bodies

    NASA Astrophysics Data System (ADS)

    Vantieghem, S.; Cebron, D.; Herreman, W.; Lacaze, L.

    2013-12-01

    Models of internal planetary fluid layers (core flows, subsurface oceans) commonly assume that these fluid envelopes have a spherical shape. This approximation however entails a serious restriction from the fluid dynamics point of view. Indeed, in the presence of mechanical forcings (precession, libration, nutation or tides) due to gravitational interaction with orbiting partners, boundary topography (e.g. of the core-mantle boundary) may excite flow instabilities and space-filling turbulence. These phenomena may affect heat transport and dissipation at the main order. Here, we focus on instabilities driven by longitudinal libration. Using a suite of theoretical tools and numerical simulations, we are able to discern a parameter range for which instability may be excited. We thereby consider deformations of different azimuthal order. This study gives the first numerical evidence of the tripolar instability. Furthermore, we explore the non-linear regime and investigate the amplitude as well as the dissipation of the saturated instability. Indeed, these two quantities control the torques on the solid layers and the thermal transport. Furthermore, based on this results, we address the issue of magnetic field generation associated with these flows (by induction or by dynamo process). This instability mechanism applies to both synchronized as non-synchronized bodies. As such, our results show that a tripolar instability might be present in various terrestrial bodies (Early Moon, Gallilean moons, asteroids, etc.), where it could participate in dynamo action. Simulation of a libration-driven tripolar instability in a deformed spherical fluid layer: snapshot of the velocity magnitude, where a complex 3D flow pattern is established.

  16. Relativistic centrifugal instability

    NASA Astrophysics Data System (ADS)

    Gourgouliatos, Konstantinos N.; Komissarov, Serguei S.

    2018-03-01

    Near the central engine, many astrophysical jets are expected to rotate about their axis. Further out they are expected to go through the processes of reconfinement and recollimation. In both these cases, the flow streams along a concave surface and hence, it is subject to the centrifugal force. It is well known that such flows may experience the centrifugal instability (CFI), to which there are many laboratory examples. The recent computer simulations of relativistic jets from active galactic nuclei undergoing the process of reconfinement show that in such jets CFI may dominate over the Kelvin-Helmholtz instability associated with velocity shear (Gourgouliatos & Komissarov). In this letter, we generalize the Rayleigh criterion for CFI in rotating fluids to relativistic flows using a heuristic analysis. We also present the results of computer simulations which support our analytic criterion for the case of an interface separating two uniformly rotating cylindrical flows. We discuss the difference between CFI and the Rayleigh-Taylor instability in flows with curved streamlines.

  17. History and Physical Examination for Shoulder Instability.

    PubMed

    Haley, Col Chad A

    2017-09-01

    Glenohumeral instability frequently occurs in young active individuals especially those engaged in athletic and military activities. With advanced imaging and arthroscopic evaluation, our understanding of the injury patterns associated with instability has significantly improved. The majority of instability results from a traumatic anterior event which presents with common findings in the history, examination, and imaging studies. As such, a comprehensive evaluation of the patient is important to correctly diagnose the instability patterns and thus provide appropriate treatment intervention. With the correct diagnosis and improved surgical techniques, the majority of patients with instability can return to preinjury levels.

  18. A new classification system for shoulder instability.

    PubMed

    Kuhn, John E

    2010-04-01

    Glenohumeral joint instability is extremely common yet the definition and classification of instability remains unclear. In order to find the best ways to treat instability, the condition must be clearly defined and classified. This is particularly important so that treatment studies can be compared or combined, which can only be done if the patient population under study is the same. The purpose of this paper was to review the problems with historical methods of defining and classifying instability and to introduce the FEDS system of classifying instability, which was developed to have content validity and found to have high interobserver and intraobserver agreement.

  19. Introducing the Mean Absolute Deviation "Effect" Size

    ERIC Educational Resources Information Center

    Gorard, Stephen

    2015-01-01

    This paper revisits the use of effect sizes in the analysis of experimental and similar results, and reminds readers of the relative advantages of the mean absolute deviation as a measure of variation, as opposed to the more complex standard deviation. The mean absolute deviation is easier to use and understand, and more tolerant of extreme…

  20. Monolithically integrated absolute frequency comb laser system

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wanke, Michael C.

    2016-07-12

    Rather than down-convert optical frequencies, a QCL laser system directly generates a THz frequency comb in a compact monolithically integrated chip that can be locked to an absolute frequency without the need of a frequency-comb synthesizer. The monolithic, absolute frequency comb can provide a THz frequency reference and tool for high-resolution broad band spectroscopy.

  1. MR imaging in sports-related glenohumeral instability

    PubMed Central

    Waldt, Simone

    2006-01-01

    Sports-related shoulder pain and injuries represent a common problem. In this context, glenohumeral instability is currently believed to play a central role either as a recognized or as an unrecognized condition. Shoulder instabilities can roughly be divided into traumatic, atraumatic, and microtraumatic glenohumeral instabilities. In athletes, atraumatic and microtraumatic instabilities can lead to secondary impingement syndromes and chronic damage to intraarticular structures. Magnetic resonance (MR) arthrography is superior to conventional MR imaging in the diagnosis of labro-ligamentous injuries, intrinsic impingement, and SLAP (superior labral anteroposterior) lesions, and thus represents the most informative imaging modality in the overall assessment of glenohumeral instability. This article reviews the imaging criteria for the detection and classification of instability-related injuries in athletes with special emphasis on the influence of MR findings on therapeutic decisions. PMID:16633790

  2. Taylor instability in rhyolite lava flows

    NASA Technical Reports Server (NTRS)

    Baum, B. A.; Krantz, W. B.; Fink, J. H.; Dickinson, R. E.

    1989-01-01

    A refined Taylor instability model is developed to describe the surface morphology of rhyolite lava flows. The effect of the downslope flow of the lava on the structures resulting from the Taylor instability mechanism is considered. Squire's (1933) transformation is developed for this flow in order to extend the results to three-dimensional modes. This permits assessing why ridges thought to arise from the Taylor instability mechanism are preferentially oriented transverse to the direction of lava flow. Measured diapir and ridge spacings for the Little and Big Glass Mountain rhyolite flows in northern California are used in conjunction with the model in order to explore the implications of the Taylor instability for flow emplacement. The model suggests additional lava flow features that can be measured in order to test whether the Taylor instability mechanism has influenced the flows surface morphology.

  3. Stimulated Parametric Decay of Large Amplitude Alfvén waves in the Large Plasma Device (LaPD)

    NASA Astrophysics Data System (ADS)

    Dorfman, S. E.; Carter, T.; Pribyl, P.; Tripathi, S.; Van Compernolle, B.; Vincena, S. T.

    2012-12-01

    Alfvén waves, a fundamental mode of magnetized plasmas, are ubiquitous in lab and space. While the linear behaviour of these waves has been extensively studied [1], non-linear effects are important in many real systems, including the solar wind and solar corona. In particular, a parametric decay process in which a large amplitude Alfvén wave decays into an ion acoustic wave and backward propagating Alfvén wave may be key to the spectrum of solar wind turbulence. Ion acoustic waves have been observed in the heliosphere, but their origin and role have not yet been determined [2]. Such waves produced by parametric decay in the corona could contribute to coronal heating [3]. Parametric decay has also been suggested as an intermediate instability mediating the observed turbulent cascade of Alfvén waves to small spatial scales [4]. The present laboratory experiments aim to stimulate the parametric decay process by launching counter-propagating Alfvén waves from antennas placed at either end of the Large Plasma Device (LaPD). The resulting beat response has a dispersion relation consistent with an ion acoustic wave. Also consistent with a stimulated decay process: 1) The beat amplitude peaks when the frequency difference between the two Alfvén waves is near the value predicted by Alfvén-ion acoustic wave coupling. 2) This peak beat frequency scales with antenna and plasma parameters as predicted by three wave matching. 3) The beat amplitude peaks at the same location as the magnetic field from the Alfvén waves. 4) The beat wave is carried by the ions and propagates in the direction of the higher-frequency Alfvén wave. Strong damping observed after the pump Alfvén waves are turned off and observed heating of the plasma by the Alfvén waves are under investigation. [1] W. Gekelman, J. Geophys. Res., 104:14417-14436, July 1999. [2] A. Mangeney,et. al., Annales Geophysicae, Volume 17, Number 3 (1999). [3] F. Pruneti, F and M. Velli, ESA Spec. Pub. 404, 623 (1997

  4. Smectic layer instabilities in liquid crystals.

    PubMed

    Dierking, Ingo; Mitov, Michel; Osipov, Mikhail A

    2015-02-07

    Scientists aspire to understand the underlying physics behind the formation of instabilities in soft matter and how to manipulate them for diverse investigations, while engineers aim to design materials that inhibit or impede the nucleation and growth of these instabilities in critical applications. The present paper reviews the field-induced rotational instabilities which may occur in chiral smectic liquid-crystalline layers when subjected to an asymmetric electric field. Such instabilities destroy the so-named bookshelf geometry (in which the smectic layers are normal to the cell surfaces) and have a detrimental effect on all applications of ferroelectric liquid crystals as optical materials. The transformation of the bookshelf geometry into horizontal chevron structures (in which each layer is in a V-shaped structure), and the reorientation dynamics of these chevrons, are discussed in details with respect to the electric field conditions, the material properties and the boundary conditions. Particular attention is given to the polymer-stabilisation of smectic phases as a way to forbid the occurrence of instabilities and the decline of related electro-optical performances. It is also shown which benefit may be gained from layer instabilities to enhance the alignment of the liquid-crystalline geometry in practical devices, such as optical recording by ferroelectric liquid crystals. Finally, the theoretical background of layer instabilities is given and discussed in relation to the experimental data.

  5. Electronic Absolute Cartesian Autocollimator

    NASA Technical Reports Server (NTRS)

    Leviton, Douglas B.

    2006-01-01

    An electronic absolute Cartesian autocollimator performs the same basic optical function as does a conventional all-optical or a conventional electronic autocollimator but differs in the nature of its optical target and the manner in which the position of the image of the target is measured. The term absolute in the name of this apparatus reflects the nature of the position measurement, which, unlike in a conventional electronic autocollimator, is based absolutely on the position of the image rather than on an assumed proportionality between the position and the levels of processed analog electronic signals. The term Cartesian in the name of this apparatus reflects the nature of its optical target. Figure 1 depicts the electronic functional blocks of an electronic absolute Cartesian autocollimator along with its basic optical layout, which is the same as that of a conventional autocollimator. Referring first to the optical layout and functions only, this or any autocollimator is used to measure the compound angular deviation of a flat datum mirror with respect to the optical axis of the autocollimator itself. The optical components include an illuminated target, a beam splitter, an objective or collimating lens, and a viewer or detector (described in more detail below) at a viewing plane. The target and the viewing planes are focal planes of the lens. Target light reflected by the datum mirror is imaged on the viewing plane at unit magnification by the collimating lens. If the normal to the datum mirror is parallel to the optical axis of the autocollimator, then the target image is centered on the viewing plane. Any angular deviation of the normal from the optical axis manifests itself as a lateral displacement of the target image from the center. The magnitude of the displacement is proportional to the focal length and to the magnitude (assumed to be small) of the angular deviation. The direction of the displacement is perpendicular to the axis about which the

  6. Photon number amplification/duplication through parametric conversion

    NASA Technical Reports Server (NTRS)

    Dariano, G. M.; Macchiavello, C.; Paris, M.

    1993-01-01

    The performance of parametric conversion in achieving number amplification and duplication is analyzed. It is shown that the effective maximum gains G(sub *) remain well below their integer ideal values, even for large signals. Correspondingly, one has output Fano factors F(sub *) which are increasing functions of the input photon number. On the other hand, in the inverse (deamplifier/recombiner) operating mode quasi-ideal gains G(sub *) and small factors F(sub *) approximately equal to 10 percent are obtained. Output noise and non-ideal gains are ascribed to spontaneous parametric emission.

  7. Nonlinear ideal magnetohydrodynamics instabilities

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Pfirsch, D.; Sudan, R.N.

    1993-07-01

    Explosive phenomena such as internal disruptions in toroidal discharges and solar flares are difficult to explain in terms of linear instabilities. A plasma approaching a linear stability limit can, however, become nonlinearly and explosively unstable, with noninfinitesimal perturbations even before the marginal state is reached. For such investigations, a nonlinear extension of the usual MHD (magnetohydrodynamic) energy principle is helpful. (This was obtained by Merkel and Schlueter, Sitzungsberichted. Bayer. Akad. Wiss., Munich, 1976, No. 7, for Cartesian coordinate systems.) A coordinate system independent Eulerian formulation for the Lagrangian allowing for equilibria with flow and with built-in conservation laws for mass,more » magnetic flux, and entropy is developed in this paper which is similar to Newcomb's Lagrangian method of 1962 [Nucl. Fusion, Suppl., Pt. II, 452 (1962)]. For static equilibria nonlinear stability is completely determined by the potential energy. For a potential energy which contains second- and [ital n]th order or some more general contributions only, it is shown in full generality that linearly unstable and marginally stable systems are explosively unstable even for infinitesimal perturbations; linearly absolutely stable systems require finite initial perturbations. For equilibria with Abelian symmetries symmetry breaking initial perturbations are needed, which should be observed in numerical simulations. Nonlinear stability is proved for two simple examples, [ital m]=0 perturbations of a Bennet Z-pinch and [ital z]-independent perturbations of a [theta] pinch. The algebra for treating these cases reduces considerably if symmetries are taken into account from the outset, as suggested by M. N. Rosenbluth (private communication, 1992).« less

  8. Nonlinear ideal magnetohydrodynamics instabilities

    NASA Astrophysics Data System (ADS)

    Pfirsch, D.; Sudan, R. N.

    1993-07-01

    Explosive phenomena such as internal disruptions in toroidal discharges and solar flares are difficult to explain in terms of linear instabilities. A plasma approaching a linear stability limit can, however, become nonlinearly and explosively unstable, with noninfinitesimal perturbations even before the marginal state is reached. For such investigations, a nonlinear extension of the usual MHD (magnetohydrodynamic) energy principle is helpful. (This was obtained by Merkel and Schlüter, Sitzungsberichted. Bayer. Akad. Wiss., Munich, 1976, No. 7, for Cartesian coordinate systems.) A coordinate system independent Eulerian formulation for the Lagrangian allowing for equilibria with flow and with built-in conservation laws for mass, magnetic flux, and entropy is developed in this paper which is similar to Newcomb's Lagrangian method of 1962 [Nucl. Fusion, Suppl., Pt. II, 452 (1962)]. For static equilibria nonlinear stability is completely determined by the potential energy. For a potential energy which contains second- and nth order or some more general contributions only, it is shown in full generality that linearly unstable and marginally stable systems are explosively unstable even for infinitesimal perturbations; linearly absolutely stable systems require finite initial perturbations. For equilibria with Abelian symmetries symmetry breaking initial perturbations are needed, which should be observed in numerical simulations. Nonlinear stability is proved for two simple examples, m=0 perturbations of a Bennet Z-pinch and z-independent perturbations of a θ pinch. The algebra for treating these cases reduces considerably if symmetries are taken into account from the outset, as suggested by M. N. Rosenbluth (private communication, 1992).

  9. Secondary instabilities of hypersonic stationary crossflow waves

    NASA Astrophysics Data System (ADS)

    Edelman, Joshua B.

    A sharp, circular 7° half-angle cone was tested in the Boeing/AFOSR Mach-6 Quiet Tunnel at 6° angle of attack. Using a variety of roughness configurations, measurements were made using temperature-sensitive paint (TSP) and fast pressure sensors. High-frequency secondary instabilities of the stationary crossflow waves were detected near the aft end of the cone, from 110° to 163° from the windward ray. At least two frequency bands of the secondary instabilities were measured. The secondary instabilities have high coherence between upstream and downstream sensor pairs. In addition, the amplitudes of the instabilities increase with the addition of roughness elements near the nose of the cone. Two of the measured instabilities were captured over a range of axial Reynolds numbers of about 1 - 2 million, with amplitudes ranging from low to turbulent breakdown. For these instabilities, the wave speed and amplitude growth can be calculated. The wave speeds were all near the edge velocity. Measured growth before breakdown for the two instabilities are between e3 and e4 from background noise levels. The initial linear growth rates for the instabilities are near 50 /m. Simultaneous measurement of two frequency bands of the secondary instabilities was made during a single run. It was found that each mode was spatially confined within a small azimuthal region, and that the regions of peak amplitude for one mode correspond to regions of minimal amplitude for the other.

  10. Parametric modelling of cost data in medical studies.

    PubMed

    Nixon, R M; Thompson, S G

    2004-04-30

    The cost of medical resources used is often recorded for each patient in clinical studies in order to inform decision-making. Although cost data are generally skewed to the right, interest is in making inferences about the population mean cost. Common methods for non-normal data, such as data transformation, assuming asymptotic normality of the sample mean or non-parametric bootstrapping, are not ideal. This paper describes possible parametric models for analysing cost data. Four example data sets are considered, which have different sample sizes and degrees of skewness. Normal, gamma, log-normal, and log-logistic distributions are fitted, together with three-parameter versions of the latter three distributions. Maximum likelihood estimates of the population mean are found; confidence intervals are derived by a parametric BC(a) bootstrap and checked by MCMC methods. Differences between model fits and inferences are explored.Skewed parametric distributions fit cost data better than the normal distribution, and should in principle be preferred for estimating the population mean cost. However for some data sets, we find that models that fit badly can give similar inferences to those that fit well. Conversely, particularly when sample sizes are not large, different parametric models that fit the data equally well can lead to substantially different inferences. We conclude that inferences are sensitive to choice of statistical model, which itself can remain uncertain unless there is enough data to model the tail of the distribution accurately. Investigating the sensitivity of conclusions to choice of model should thus be an essential component of analysing cost data in practice. Copyright 2004 John Wiley & Sons, Ltd.

  11. First-Order Parametric Model of Reflectance Spectra for Dyed Fabrics

    DTIC Science & Technology

    2016-02-19

    Unclassified Unlimited 31 Daniel Aiken (202) 279-5293 Parametric modeling Inverse /direct analysis This report describes a first-order parametric model of...Appendix: Dielectric Response Functions for Dyes Obtained by Inverse Analysis ……………………………...…………………………………………………….19 1 First-Order Parametric...which provides for both their inverse and direct modeling1. The dyes considered contain spectral features that are of interest to the U.S. Navy for

  12. Ghost imaging via optical parametric amplification

    NASA Astrophysics Data System (ADS)

    Li, Hong-Guo; Zhang, De-Jian; Xu, De-Qin; Zhao, Qiu-Li; Wang, Sen; Wang, Hai-Bo; Xiong, Jun; Wang, Kaige

    2015-10-01

    We investigate theoretically and experimentally thermal light ghost imaging where the light transmitted through the object as the seed light is amplified by an optical parametric amplifier (OPA). In conventional lens imaging systems with OPA, the spectral bandwidth of OPA dominates the image resolution. Theoretically, we prove that in ghost imaging via optical parametric amplification (GIOPA) the bandwidth of OPA will not affect the image resolution. The experimental results show that for weak seed light the image quality in GIOPA is better than that of conventional ghost imaging. Our work may be valuable in remote sensing with ghost imaging technique, where the light passed through the object is weak after a long-distance propagation.

  13. Instability Coupling Experiments*

    NASA Astrophysics Data System (ADS)

    Chrien, R. E.; Hoffman, N. M.; Magelssen, G. R.; Schappert, G. T.; Smitherman, D. P.

    1996-11-01

    The coupling of Richtmyer-Meshkov (RM) and ablative Rayleigh-Taylor (ART) instabilities is being studied with indirectly-driven planar foil experiments on the Nova laser at Livermore. The foil is attached to a 1.6-mm-diameter, 2.75-mm-long Au hohlraum driven by a 2.2-ns long, 1:5-contrast-ratio shaped laser pulse. A shock is generated in 35-μm or 86-μm thick Al foils with a 50-μm-wavelength, 4-μm-amplitude sinusoidal perturbation on its rear surface. In some experiments, the perturbation is applied to a 10-μm Be layer on the Al. A RM instability develops when the shock encounters the perturbed surface. The flow field of the RM instability can ``feed out'' to the ablation surface of the foil and provide the seed for ART perturbation growth. Face-on and side-on x-radiography are used to observe areal density perturbations in the foil. For the 86-μm foil, the perturbation arrives at the ablation surface while the hohlraum drive is dropping and the data are consistent with RM instability alone. For the 35-μm foil, the perturbation feeds out while the hohlraum drive is close to its peak and the data appear to show strong ART perturbation growth. Comparisons with LASNEX simulations will be presented. *This work supported under USDOE contract W-7405-ENG-36.

  14. Insights into the Streaming Instability in Protoplanetary Disks

    NASA Astrophysics Data System (ADS)

    Youdin, Andrew N.; Lin, Min-Kai; Li, Rixin

    2017-10-01

    The streaming instability is a leading mechanism to concentrate particles in protoplanetary disks, thereby triggering planetesimal formation. I will present recent analytical and numerical work on the origin of the streaming instability and its robustness. Our recent analytic work examines the origin of, and relationship between, a variety of drag-induced instabilities, including the streaming instability as well as secular gravitational instabilities, a drag instability driven by self-gravity. We show that drag instabilities are powered by a specific phase relationship between gas pressure and particle concentrations, which power the instability via pressure work. This mechanism is analogous to pulsating instabilities in stars. This mechanism differs qualitatively from other leading particle concentration mechanisms in pressure bumps and vortices. Our recent numerical work investigates the numerical robustness of non-linear particle clumping by the streaming instability, especially with regard to the location and boundary condition of vertical boundaries. We find that particle clumping is robust to these choices in boxes that are not too short. However, hydrodynamic activity away from the particle-dominated midplane is significantly affected by vertical boundary conditions. This activity affects the observationally significant lofting of small dust grains. We thus emphasize the need for larger scale simulations which connect disk surface layers, including outflowing winds, to the planet-forming midplane.

  15. New graph polynomials in parametric QED Feynman integrals

    NASA Astrophysics Data System (ADS)

    Golz, Marcel

    2017-10-01

    In recent years enormous progress has been made in perturbative quantum field theory by applying methods of algebraic geometry to parametric Feynman integrals for scalar theories. The transition to gauge theories is complicated not only by the fact that their parametric integrand is much larger and more involved. It is, moreover, only implicitly given as the result of certain differential operators applied to the scalar integrand exp(-ΦΓ /ΨΓ) , where ΨΓ and ΦΓ are the Kirchhoff and Symanzik polynomials of the Feynman graph Γ. In the case of quantum electrodynamics we find that the full parametric integrand inherits a rich combinatorial structure from ΨΓ and ΦΓ. In the end, it can be expressed explicitly as a sum over products of new types of graph polynomials which have a combinatoric interpretation via simple cycle subgraphs of Γ.

  16. Parametrically driven scalar field in an expanding background

    NASA Astrophysics Data System (ADS)

    Yanez-Pagans, Sergio; Urzagasti, Deterlino; Oporto, Zui

    2017-10-01

    We study the existence and dynamic behavior of localized and extended structures in a massive scalar inflaton field ϕ in 1 +1 dimensions in the framework of an expanding universe with constant Hubble parameter. We introduce a parametric forcing, produced by another quantum scalar field ψ , over the effective mass squared around the minimum of the inflaton potential. For this purpose, we study the system in the context of the cubic quintic complex Ginzburg-Landau equation and find the associated amplitude equation to the cosmological scalar field equation, which near the parametric resonance allows us to find the field amplitude. We find homogeneous null solutions, flat-top expanding solitons, and dark soliton patterns. No persistent non-null solutions are found in the absence of parametric forcing, and divergent solutions are obtained when the forcing amplitude is greater than 4 /3 .

  17. A unified framework for weighted parametric multiple test procedures.

    PubMed

    Xi, Dong; Glimm, Ekkehard; Maurer, Willi; Bretz, Frank

    2017-09-01

    We describe a general framework for weighted parametric multiple test procedures based on the closure principle. We utilize general weighting strategies that can reflect complex study objectives and include many procedures in the literature as special cases. The proposed weighted parametric tests bridge the gap between rejection rules using either adjusted significance levels or adjusted p-values. This connection is made by allowing intersection hypotheses of the underlying closed test procedure to be tested at level smaller than α. This may be also necessary to take certain study situations into account. For such cases we introduce a subclass of exact α-level parametric tests that satisfy the consonance property. When the correlation is known only for certain subsets of the test statistics, a new procedure is proposed to fully utilize this knowledge within each subset. We illustrate the proposed weighted parametric tests using a clinical trial example and conduct a simulation study to investigate its operating characteristics. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  18. Phase space evolution in linear instabilities

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Pantellini, F.G.E.; Burgess, D.; Schwartz, S.J.

    1994-12-01

    A simple and powerful way to investigate the linear evolution of particle distribution functions in kinetic instabilities in a homogeneous collisionless plasma is presented. The method can be applied to any kind of instability, provided the characteristics (growth rate, frequency, wave vector, and polarization) of the mode are known and can also be used to estimate the amplitude of the waves at the end of the linear phase of growth. Two didactic examples are used to illustrate the versatility of the technique: the Alfven Ion Cyclotron (AIC) instability, which is electromagnetic, and the Electron Ion Cyclotron (EIC) instability, which ismore » electrostatic.« less

  19. Fitting C 2 Continuous Parametric Surfaces to Frontiers Delimiting Physiologic Structures

    PubMed Central

    Bayer, Jason D.

    2014-01-01

    We present a technique to fit C 2 continuous parametric surfaces to scattered geometric data points forming frontiers delimiting physiologic structures in segmented images. Such mathematical representation is interesting because it facilitates a large number of operations in modeling. While the fitting of C 2 continuous parametric curves to scattered geometric data points is quite trivial, the fitting of C 2 continuous parametric surfaces is not. The difficulty comes from the fact that each scattered data point should be assigned a unique parametric coordinate, and the fit is quite sensitive to their distribution on the parametric plane. We present a new approach where a polygonal (quadrilateral or triangular) surface is extracted from the segmented image. This surface is subsequently projected onto a parametric plane in a manner to ensure a one-to-one mapping. The resulting polygonal mesh is then regularized for area and edge length. Finally, from this point, surface fitting is relatively trivial. The novelty of our approach lies in the regularization of the polygonal mesh. Process performance is assessed with the reconstruction of a geometric model of mouse heart ventricles from a computerized tomography scan. Our results show an excellent reproduction of the geometric data with surfaces that are C 2 continuous. PMID:24782911

  20. Genomic Instability and Radiation Risk in Molecular Pathways to Colon Cancer

    PubMed Central

    Kaiser, Jan Christian; Meckbach, Reinhard; Jacob, Peter

    2014-01-01

    Colon cancer is caused by multiple genomic alterations which lead to genomic instability (GI). GI appears in molecular pathways of microsatellite instability (MSI) and chromosomal instability (CIN) with clinically observed case shares of about 15–20% and 80–85%. Radiation enhances the colon cancer risk by inducing GI, but little is known about different outcomes for MSI and CIN. Computer-based modelling can facilitate the understanding of the phenomena named above. Comprehensive biological models, which combine the two main molecular pathways to colon cancer, are fitted to incidence data of Japanese a-bomb survivors. The preferred model is selected according to statistical criteria and biological plausibility. Imprints of cell-based processes in the succession from adenoma to carcinoma are identified by the model from age dependences and secular trends of the incidence data. Model parameters show remarkable compliance with mutation rates and growth rates for adenoma, which has been reported over the last fifteen years. Model results suggest that CIN begins during fission of intestinal crypts. Chromosomal aberrations are generated at a markedly elevated rate which favors the accelerated growth of premalignant adenoma. Possibly driven by a trend of Westernization in the Japanese diet, incidence rates for the CIN pathway increased notably in subsequent birth cohorts, whereas rates pertaining to MSI remained constant. An imbalance between number of CIN and MSI cases began to emerge in the 1980s, whereas in previous decades the number of cases was almost equal. The CIN pathway exhibits a strong radio-sensitivity, probably more intensive in men. Among young birth cohorts of both sexes the excess absolute radiation risk related to CIN is larger by an order of magnitude compared to the MSI-related risk. Observance of pathway-specific risks improves the determination of the probability of causation for radiation-induced colon cancer in individual patients, if their

  1. Numerical MHD study for plasmoid instability in uniform resistivity

    NASA Astrophysics Data System (ADS)

    Shimizu, Tohru; Kondoh, Koji; Zenitani, Seiji

    2017-11-01

    The plasmoid instability (PI) caused in uniform resistivity is numerically studied with a MHD numerical code of HLLD scheme. It is shown that the PI observed in numerical studies may often include numerical (non-physical) tearing instability caused by the numerical dissipations. By increasing the numerical resolutions, the numerical tearing instability gradually disappears and the physical tearing instability remains. Hence, the convergence of the numerical results is observed. Note that the reconnection rate observed in the numerical tearing instability can be higher than that of the physical tearing instability. On the other hand, regardless of the numerical and physical tearing instabilities, the tearing instability can be classified into symmetric and asymmetric tearing instability. The symmetric tearing instability tends to occur when the thinning of current sheet is stopped by the physical or numerical dissipations, often resulting in the drastic changes in plasmoid chain's structure and its activity. In this paper, by eliminating the numerical tearing instability, we could not specify the critical Lundquist number Sc beyond which PI is fully developed. It suggests that Sc does not exist, at least around S = 105.

  2. Free response approach in a parametric system

    NASA Astrophysics Data System (ADS)

    Huang, Dishan; Zhang, Yueyue; Shao, Hexi

    2017-07-01

    In this study, a new approach to predict the free response in a parametric system is investigated. It is proposed in the special form of a trigonometric series with an exponentially decaying function of time, based on the concept of frequency splitting. By applying harmonic balance, the parametric vibration equation is transformed into an infinite set of homogeneous linear equations, from which the principal oscillation frequency can be computed, and all coefficients of harmonic components can be obtained. With initial conditions, arbitrary constants in a general solution can be determined. To analyze the computational accuracy and consistency, an approach error function is defined, which is used to assess the computational error in the proposed approach and in the standard numerical approach based on the Runge-Kutta algorithm. Furthermore, an example of a dynamic model of airplane wing flutter on a turbine engine is given to illustrate the applicability of the proposed approach. Numerical solutions show that the proposed approach exhibits high accuracy in mathematical expression, and it is valuable for theoretical research and engineering applications of parametric systems.

  3. Kozai-Lidov disc instability

    NASA Astrophysics Data System (ADS)

    Lubow, Stephen H.; Ogilvie, Gordon I.

    2017-08-01

    Recent results by Martin et al. showed in 3D smoothed particle hydrodynamics simulations that tilted discs in binary systems can be unstable to the development of global, damped Kozai-Lidov (KL) oscillations in which the discs exchange tilt for eccentricity. We investigate the linear stability of KL modes for tilted inviscid discs under the approximations that the disc eccentricity is small and the disc remains flat. By using 1D equations, we are able to probe regimes of large ratios of outer to inner disc edge radii that are realistic for binary systems of hundreds of astronomical unit separations and are not easily probed by multidimensional simulations. For order unity binary mass ratios, KL instability is possible for a window of disc aspect ratios H/r in the outer parts of a disc that roughly scale as (nb/n)2 ≲ H/r ≲ nb/n, for binary orbital frequency nb and orbital frequency n at the disc outer edge. We present a framework for understanding the zones of instability based on the determination of branches of marginally unstable modes. In general, multiple growing eccentric KL modes can be present in a disc. Coplanar apsidal-nodal precession resonances delineate instability branches. We determine the range of tilt angles for unstable modes as a function of disc aspect ratio. Unlike the KL instability for free particles that involves a critical (minimum) tilt angle, disc instability is possible for any non-zero tilt angle depending on the disc aspect ratio.

  4. State Instability and Terrorism

    DTIC Science & Technology

    2010-01-01

    instability at the country-level using a modified breakdown theoretical framework. This framework is based especially upon the work of Emile Durkheim ...Quantitative Criminology, ed. Alex R. Piquero and David Weisburd. New York: Springer New York. 225 Durkheim , Emile . 1930 [1951]. Suicide: A...terrorism is a form ( Durkheim , 1930 [1951]; Useem, 1998). In addition, different types of instability ought to invite different levels of terrorism

  5. Rotor internal friction instability

    NASA Technical Reports Server (NTRS)

    Bently, D. E.; Muszynska, A.

    1985-01-01

    Two aspects of internal friction affecting stability of rotating machines are discussed. The first role of internal friction consists of decreasing the level of effective damping during rotor subsynchronous and backward precessional vibrations caused by some other instability mechanisms. The second role of internal frication consists of creating rotor instability, i.e., causing self-excited subsynchronous vibrations. Experimental test results document both of these aspects.

  6. Comparison of parametric and bootstrap method in bioequivalence test.

    PubMed

    Ahn, Byung-Jin; Yim, Dong-Seok

    2009-10-01

    The estimation of 90% parametric confidence intervals (CIs) of mean AUC and Cmax ratios in bioequivalence (BE) tests are based upon the assumption that formulation effects in log-transformed data are normally distributed. To compare the parametric CIs with those obtained from nonparametric methods we performed repeated estimation of bootstrap-resampled datasets. The AUC and Cmax values from 3 archived datasets were used. BE tests on 1,000 resampled datasets from each archived dataset were performed using SAS (Enterprise Guide Ver.3). Bootstrap nonparametric 90% CIs of formulation effects were then compared with the parametric 90% CIs of the original datasets. The 90% CIs of formulation effects estimated from the 3 archived datasets were slightly different from nonparametric 90% CIs obtained from BE tests on resampled datasets. Histograms and density curves of formulation effects obtained from resampled datasets were similar to those of normal distribution. However, in 2 of 3 resampled log (AUC) datasets, the estimates of formulation effects did not follow the Gaussian distribution. Bias-corrected and accelerated (BCa) CIs, one of the nonparametric CIs of formulation effects, shifted outside the parametric 90% CIs of the archived datasets in these 2 non-normally distributed resampled log (AUC) datasets. Currently, the 80~125% rule based upon the parametric 90% CIs is widely accepted under the assumption of normally distributed formulation effects in log-transformed data. However, nonparametric CIs may be a better choice when data do not follow this assumption.

  7. Comparison of Parametric and Bootstrap Method in Bioequivalence Test

    PubMed Central

    Ahn, Byung-Jin

    2009-01-01

    The estimation of 90% parametric confidence intervals (CIs) of mean AUC and Cmax ratios in bioequivalence (BE) tests are based upon the assumption that formulation effects in log-transformed data are normally distributed. To compare the parametric CIs with those obtained from nonparametric methods we performed repeated estimation of bootstrap-resampled datasets. The AUC and Cmax values from 3 archived datasets were used. BE tests on 1,000 resampled datasets from each archived dataset were performed using SAS (Enterprise Guide Ver.3). Bootstrap nonparametric 90% CIs of formulation effects were then compared with the parametric 90% CIs of the original datasets. The 90% CIs of formulation effects estimated from the 3 archived datasets were slightly different from nonparametric 90% CIs obtained from BE tests on resampled datasets. Histograms and density curves of formulation effects obtained from resampled datasets were similar to those of normal distribution. However, in 2 of 3 resampled log (AUC) datasets, the estimates of formulation effects did not follow the Gaussian distribution. Bias-corrected and accelerated (BCa) CIs, one of the nonparametric CIs of formulation effects, shifted outside the parametric 90% CIs of the archived datasets in these 2 non-normally distributed resampled log (AUC) datasets. Currently, the 80~125% rule based upon the parametric 90% CIs is widely accepted under the assumption of normally distributed formulation effects in log-transformed data. However, nonparametric CIs may be a better choice when data do not follow this assumption. PMID:19915699

  8. Jeans instability in a viscoelastic fluid

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Janaki, M. S.; Chakrabarti, N.; Banerjee, D.

    2011-01-15

    The well known Jeans instability is studied for a viscoelastic gravitational fluid using generalized hydrodynamic equations of motions. It is found that the threshold for the onset of instability appears at higher wavelengths in a viscoelastic medium. Elastic effects playing a role similar to thermal pressure are found to lower the growth rate of the gravitational instability. Such features may manifest themselves in matter constituting dense astrophysical objects.

  9. Frequency domain optical parametric amplification

    PubMed Central

    Schmidt, Bruno E.; Thiré, Nicolas; Boivin, Maxime; Laramée, Antoine; Poitras, François; Lebrun, Guy; Ozaki, Tsuneyuki; Ibrahim, Heide; Légaré, François

    2014-01-01

    Today’s ultrafast lasers operate at the physical limits of optical materials to reach extreme performances. Amplification of single-cycle laser pulses with their corresponding octave-spanning spectra still remains a formidable challenge since the universal dilemma of gain narrowing sets limits for both real level pumped amplifiers as well as parametric amplifiers. We demonstrate that employing parametric amplification in the frequency domain rather than in time domain opens up new design opportunities for ultrafast laser science, with the potential to generate single-cycle multi-terawatt pulses. Fundamental restrictions arising from phase mismatch and damage threshold of nonlinear laser crystals are not only circumvented but also exploited to produce a synergy between increased seed spectrum and increased pump energy. This concept was successfully demonstrated by generating carrier envelope phase stable, 1.43 mJ two-cycle pulses at 1.8 μm wavelength. PMID:24805968

  10. Reduced modeling of the magnetorotational instability

    NASA Astrophysics Data System (ADS)

    Jamroz, Ben F.

    2009-06-01

    Accretion describes the process by which matter in an astrophysical disk falls onto a central massive object. Accretion disks are present in many astrophysical situations including binary star systems, young stellar objects, and near black holes at the center of galaxies. Measurements from observations of these disks have shown that viscous processes are unable to transport the necessary levels of angular momentum needed for accretion. Therefore, accretion requires an efficient mechanism of angular momentum transport. Mixing by turbulent processes greatly enhances the level of angular momentum transport in a turbulent fluid. Thus, the generation of turbulence in these disks may provide the mechanism needed for accretion. A classical result of hydrodynamic theory is that typical accretion disks are hydrodynamically stable to shear instabilities, since the specific angular momentum increases outwards. Other processes of generating hydrodynamic turbulence (barotropic instability, baroclinic instability, sound wave, shock waves, finite amplitude instabilities) may be present in these disks, however, none of these mechanisms has been shown to produce the level of angular momentum transport needed for accretion. Hydrodynamical turbulence does not produce enough angular momentum transport to produce the level of accretion observed in astrophysical accretion disks. The leading candidate for the source of turbulence leading to the transport of angular momentum is the magnetorotational instability, a linear axisymmetric instability of electrically conducting fluid in the presence of an imposed magnetic field and shear (or differential rotation). This instability is an efficient mechanism of angular momentum transport generating the level of transport needed for accretion. The level of effective angular momentum transport is determined by the saturated state of sustained turbulence generated by the instability. The mechanism of nonlinear saturation of this instability is not

  11. Observation of beat oscillation generation by coupled waves associated with parametric decay during radio frequency wave heating of a spherical tokamak plasma.

    PubMed

    Nagashima, Yoshihiko; Oosako, Takuya; Takase, Yuichi; Ejiri, Akira; Watanabe, Osamu; Kobayashi, Hiroaki; Adachi, Yuuki; Tojo, Hiroshi; Yamaguchi, Takashi; Kurashina, Hiroki; Yamada, Kotaro; An, Byung Il; Kasahara, Hiroshi; Shimpo, Fujio; Kumazawa, Ryuhei; Hayashi, Hiroyuki; Matsuzawa, Haduki; Hiratsuka, Junichi; Hanashima, Kentaro; Kakuda, Hidetoshi; Sakamoto, Takuya; Wakatsuki, Takuma

    2010-06-18

    We present an observation of beat oscillation generation by coupled modes associated with parametric decay instability (PDI) during radio frequency (rf) wave heating experiments on the Tokyo Spherical Tokamak-2. Nearly identical PDI spectra, which are characterized by the coexistence of the rf pump wave, the lower-sideband wave, and the low-frequency oscillation in the ion-cyclotron range of frequency, are observed at various locations in the edge plasma. A bispectral power analysis was used to experimentally discriminate beat oscillation from the resonant mode for the first time. The pump and lower-sideband waves have resonant mode components, while the low-frequency oscillation is exclusively excited by nonlinear coupling of the pump and lower-sideband waves. Newly discovered nonlocal transport channels in spectral space and in real space via PDI are described.

  12. Parametrization study of the land multiparameter VTI elastic waveform inversion

    NASA Astrophysics Data System (ADS)

    He, W.; Plessix, R.-É.; Singh, S.

    2018-06-01

    Multiparameter inversion of seismic data remains challenging due to the trade-off between the different elastic parameters and the non-uniqueness of the solution. The sensitivity of the seismic data to a given subsurface elastic parameter depends on the source and receiver ray/wave path orientations at the subsurface point. In a high-frequency approximation, this is commonly analysed through the study of the radiation patterns that indicate the sensitivity of each parameter versus the incoming (from the source) and outgoing (to the receiver) angles. In practice, this means that the inversion result becomes sensitive to the choice of parametrization, notably because the null-space of the inversion depends on this choice. We can use a least-overlapping parametrization that minimizes the overlaps between the radiation patterns, in this case each parameter is only sensitive in a restricted angle domain, or an overlapping parametrization that contains a parameter sensitive to all angles, in this case overlaps between the radiation parameters occur. Considering a multiparameter inversion in an elastic vertically transverse isotropic medium and a complex land geological setting, we show that the inversion with the least-overlapping parametrization gives less satisfactory results than with the overlapping parametrization. The difficulties come from the complex wave paths that make difficult to predict the areas of sensitivity of each parameter. This shows that the parametrization choice should not only be based on the radiation pattern analysis but also on the angular coverage at each subsurface point that depends on geology and the acquisition layout.

  13. Faraday instability on patterned surfaces

    NASA Astrophysics Data System (ADS)

    Feng, Jie; Rubinstein, Gregory; Jacobi, Ian; Stone, Howard

    2013-11-01

    We show how micro-scale surface patterning can be used to control the onset of the Faraday instability in thin liquid films. It is well known that when a liquid film on a planar substrate is subject to sufficient vibrational accelerations, the free surface destabilizes, exhibiting a family of non-linear standing waves. This instability remains a canonical problem in the study of spontaneous pattern formation, but also has practical uses. For example, the surface waves induced by the Faraday instability have been studied as a means of enhanced damping for mechanical vibrations (Genevaux et al. 2009). Also the streaming within the unstable layer has been used as a method for distributing heterogeneous cell cultures on growth medium (Takagi et al. 2002). In each of these applications, the roughness of the substrate significantly affects the unstable flow field. We consider the effect of patterned substrates on the onset and behavior of the Faraday instability over a range of pattern geometries and feature heights where the liquid layer is thicker than the pattern height. Also, we describe a physical model for the influence of patterned roughness on the destabilization of a liquid layer in order to improve the design of practical systems which exploit the Faraday instability.

  14. The universal instability in general geometry

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Helander, P.; Plunk, G. G.

    2015-09-15

    The “universal” instability has recently been revived by Landreman et al. [Phys. Rev. Lett. 114, 095003 (2015)], who showed that it indeed exists in plasma geometries with straight (but sheared) magnetic field lines. Here, it is demonstrated analytically that this instability can be presented in more general sheared and toroidal geometries. In a torus, the universal instability is shown to be closely related to the trapped-electron mode, although the trapped-electron drive is usually dominant. However, this drive can be weakened or eliminated, as in the case in stellarators with the maximum-J property, leaving the parallel Landau resonance to drive amore » residual mode, which is identified as the universal instability.« less

  15. Shoulder instability: evaluation with MR imaging.

    PubMed

    Seeger, L L; Gold, R H; Bassett, L W

    1988-09-01

    Instability of the glenohumeral joint is a common cause of chronic shoulder pain and disability. One or more episodes of subluxation or dislocation may result in a tear, detachment, or attenuation of the glenoid labrum, stripping of the joint capsule from the scapula, or trauma to the tendons or muscles of the rotator cuff. A series of 27 shoulders examined with magnetic resonance (MR) imaging showed changes of glenohumeral instability, which were confirmed with open or arthroscopic surgery. MR imaging was capable of displaying common types of pathologic conditions resulting from instability, including labral trauma, capsular detachment, and retraction of the subscapularis muscle. MR imaging is a valuable diagnostic tool for the evaluation of glenohumeral instability.

  16. Aircraft conceptual design - an adaptable parametric sizing methodology

    NASA Astrophysics Data System (ADS)

    Coleman, Gary John, Jr.

    Aerospace is a maturing industry with successful and refined baselines which work well for traditional baseline missions, markets and technologies. However, when new markets (space tourism) or new constrains (environmental) or new technologies (composite, natural laminar flow) emerge, the conventional solution is not necessarily best for the new situation. Which begs the question "how does a design team quickly screen and compare novel solutions to conventional solutions for new aerospace challenges?" The answer is rapid and flexible conceptual design Parametric Sizing. In the product design life-cycle, parametric sizing is the first step in screening the total vehicle in terms of mission, configuration and technology to quickly assess first order design and mission sensitivities. During this phase, various missions and technologies are assessed. During this phase, the designer is identifying design solutions of concepts and configurations to meet combinations of mission and technology. This research undertaking contributes the state-of-the-art in aircraft parametric sizing through (1) development of a dedicated conceptual design process and disciplinary methods library, (2) development of a novel and robust parametric sizing process based on 'best-practice' approaches found in the process and disciplinary methods library, and (3) application of the parametric sizing process to a variety of design missions (transonic, supersonic and hypersonic transports), different configurations (tail-aft, blended wing body, strut-braced wing, hypersonic blended bodies, etc.), and different technologies (composite, natural laminar flow, thrust vectored control, etc.), in order to demonstrate the robustness of the methodology and unearth first-order design sensitivities to current and future aerospace design problems. This research undertaking demonstrates the importance of this early design step in selecting the correct combination of mission, technologies and configuration to

  17. Shoulder instability: impact of glenohumeral arthrotomography on treatment.

    PubMed

    el-Khoury, G Y; Kathol, M H; Chandler, J B; Albright, J P

    1986-09-01

    We used arthrotomography to study the glenoid labrum in 114 patients. Sixty-nine of the patients had anatomic instability of the shoulder (including recurrent dislocation and subluxation of the shoulder), and 45 patients had functional instability of the shoulder (denoted by chronic pain, clicking of the joint, and the sensation that an unstable condition exists without the objective signs of it). Labral tears were revealed arthrotomographically in 86% of the patients with anatomic instability, while only 40% of the patients with functional instability had labral abnormalities, and these were primarily of minor severity. Fifty-six patients (44 of whom had anatomic instability; 12, functional instability) required surgery. The surgical findings were correlated with the arthrotomographic findings, and no false-positive results were revealed. However, arthrotomography demonstrated only part of the pathologic condition of two patients. These results confirm that there is a strong correlation between labral pathologic conditions and anatomic instability of the shoulder. Arthrotomographic studies have a great impact on the selection of therapy in cases of both anatomic and functional instability of the shoulder.

  18. Electrothermal instability growth in magnetically driven pulsed power liners

    NASA Astrophysics Data System (ADS)

    Peterson, Kyle J.; Sinars, Daniel B.; Yu, Edmund P.; Herrmann, Mark C.; Cuneo, Michael E.; Slutz, Stephen A.; Smith, Ian C.; Atherton, Briggs W.; Knudson, Marcus D.; Nakhleh, Charles

    2012-09-01

    This paper explores the role of electro-thermal instabilities on the dynamics of magnetically accelerated implosion systems. Electro-thermal instabilities result from non-uniform heating due to temperature dependence in the conductivity of a material. Comparatively little is known about these types of instabilities compared to the well known Magneto-Rayleigh-Taylor (MRT) instability. We present simulations that show electrothermal instabilities form immediately after the surface material of a conductor melts and can act as a significant seed to subsequent MRT instability growth. We also present the results of several experiments performed on Sandia National Laboratories Z accelerator to investigate signatures of electrothermal instability growth on well characterized initially solid aluminum and copper rods driven with a 20 MA, 100 ns risetime current pulse. These experiments show excellent agreement with electrothermal instability simulations and exhibit larger instability growth than can be explained by MRT theory alone.

  19. Intimate partner violence and housing instability.

    PubMed

    Pavao, Joanne; Alvarez, Jennifer; Baumrind, Nikki; Induni, Marta; Kimerling, Rachel

    2007-02-01

    The mental and physical health consequences of intimate partner violence (IPV) have been well established, yet little is known about the impact of violence on a woman's ability to obtain and maintain housing. This cross-sectional study examines the relationship between recent IPV and housing instability among a representative sample of California women. It is expected that women who have experienced IPV will be at increased risk for housing instability as evidenced by: (1) late rent or mortgage, (2) frequent moves because of difficulty obtaining affordable housing, and/or (3) without their own housing. Data were taken from the 2003 California Women's Health Survey, a population-based, random-digit-dial, annual probability survey of adult California women (N=3619). Logistic regressions were used to predict housing instability in the past 12 months, adjusting for the following covariates; age, race/ethnicity, education, poverty status, marital status, children in the household, and past year IPV. In the multivariate model, age, race/ethnicity, marital status, poverty, and IPV were significant predictors of housing instability. After adjusting for all covariates, women who experienced IPV in the last year had almost four times the odds of reporting housing instability than women who did not experience IPV (adjusted odds ratio=3.98, 95% confidence interval: 2.94-5.39). This study found that IPV was associated with housing instability among California women. Future prospective studies are needed to learn more about the nature and direction of the relationship between IPV and housing instability and the possible associated negative health consequences.

  20. Free-form geometric modeling by integrating parametric and implicit PDEs.

    PubMed

    Du, Haixia; Qin, Hong

    2007-01-01

    Parametric PDE techniques, which use partial differential equations (PDEs) defined over a 2D or 3D parametric domain to model graphical objects and processes, can unify geometric attributes and functional constraints of the models. PDEs can also model implicit shapes defined by level sets of scalar intensity fields. In this paper, we present an approach that integrates parametric and implicit trivariate PDEs to define geometric solid models containing both geometric information and intensity distribution subject to flexible boundary conditions. The integrated formulation of second-order or fourth-order elliptic PDEs permits designers to manipulate PDE objects of complex geometry and/or arbitrary topology through direct sculpting and free-form modeling. We developed a PDE-based geometric modeling system for shape design and manipulation of PDE objects. The integration of implicit PDEs with parametric geometry offers more general and arbitrary shape blending and free-form modeling for objects with intensity attributes than pure geometric models.

  1. Theoretical studies of the solar atmosphere and interstellar pickup ions

    NASA Technical Reports Server (NTRS)

    1994-01-01

    Solar atmosphere research activities are summarized. Specific topics addressed include: (1) coronal mass ejections and related phenomena; (2) parametric instabilities of Alfven waves; (3) pickup ions in the solar wind; and (4) cosmic rays in the outer heliosphere. Also included is a list of publications covering the following topics: catastrophic evolution of a force-free flux rope; maximum energy release in flux-rope models of eruptive flares; sheet approximations in models of eruptive flares; material ejection, motions of loops and ribbons of two-ribbon flares; dispersion relations for parametric instabilities of parallel-propagating; parametric instabilities of parallel-propagating Alfven waves; beat, modulation, and decay instabilities of a circularly-polarized Alfven wave; effects of time-dependent photoionization on interstellar pickup helium; observation of waves generated by the solar wind pickup of interstellar hydrogen ions; ion thermalization and wave excitation downstream of the quasi-perpendicular bowshock; ion cyclotron instability and the inverse correlation between proton anisotrophy and proton beta; and effects of cosmic rays and interstellar gas on the dynamics of a wind.

  2. Cultural diversity, economic development and societal instability.

    PubMed

    Nettle, Daniel; Grace, James B; Choisy, Marc; Cornell, Howard V; Guégan, Jean-François; Hochberg, Michael E

    2007-09-26

    Social scientists have suggested that cultural diversity in a nation leads to societal instability. However, societal instability may be affected not only by within-nation or alpha diversity, but also diversity between a nation and its neighbours or beta diversity. It is also necessary to distinguish different domains of diversity, namely linguistic, ethnic and religious, and to distinguish between the direct effects of diversity on societal instability, and effects that are mediated by economic conditions. We assembled a large cross-national dataset with information on alpha and beta cultural diversity, economic conditions, and indices of societal instability. Structural equation modeling was used to evaluate the direct and indirect effects of cultural diversity on economics and societal stability. Results show that different types and domains of diversity have interacting effects. As previously documented, linguistic alpha diversity has a negative effect on economic performance, and we show that it is largely through this economic mechanism that it affects societal instability. For beta diversity, the higher the linguistic diversity among nations in a region, the less stable the nation. But, religious beta diversity has the opposite effect, reducing instability, particularly in the presence of high linguistic diversity. Within-nation linguistic diversity is associated with reduced economic performance, which, in turn, increases societal instability. Nations which differ linguistically from their neighbors are also less stable. However, religious diversity between neighboring nations has the opposite effect, decreasing societal instability.

  3. Cultural diversity, economic development and societal instability

    USGS Publications Warehouse

    Nettle, D.; Grace, J.B.; Choisy, M.; Cornell, H.V.; Guegan, J.-F.; Hochberg, M.E.

    2007-01-01

    Background. Social scientists have suggested that cultural diversity in a nation leads to societal instability. However, societal instability may be affected not only by within-nation on ?? diversity, but also diversity between a nation and its neighbours or ?? diversity. It is also necessary to distinguish different domains of diversity, namely linguistic, ethnic and religious, and to distinguish between the direct effects of diversity on societal instability, and effects that are mediated by economic conditions. Methodology/Principal Findings. We assembled a large cross-national dataset with information on ?? and ?? cultural diversity, economic conditions, and indices of societal instability. Structural equation modeling was used to evaluate the direct and indirect effects of cultural diversity on economics and societal stability. Results show that different type and domains of diversity have interacting effects. As previously documented, linguistic ?? diversity has a negative effect on economic performance, and we show that it is largely through this economic mechanism that it affects societal instability. For ?? diversity, the higher the linguistic diversity among nations in a region, the less stable the nation. But, religious ?? diversity has the opposite effect, reducing instability, particularly in the presence of high linguistic diversity. Conclusions. Within-nation linguistic diversity is associated with reduced economic performance, which, in turn, increases societal instability. Nations which differ linguistically from their neighbors are also less stable. However, religious diversity between, neighboring nations has the opposite effect, decreasing societal instability.

  4. Cultural Diversity, Economic Development and Societal Instability

    PubMed Central

    Nettle, Daniel; Grace, James B.; Choisy, Marc; Cornell, Howard V.; Guégan, Jean-François; Hochberg, Michael E.

    2007-01-01

    Background Social scientists have suggested that cultural diversity in a nation leads to societal instability. However, societal instability may be affected not only by within-nation or α diversity, but also diversity between a nation and its neighbours or β diversity. It is also necessary to distinguish different domains of diversity, namely linguistic, ethnic and religious, and to distinguish between the direct effects of diversity on societal instability, and effects that are mediated by economic conditions. Methodology/Principal Findings We assembled a large cross-national dataset with information on α and β cultural diversity, economic conditions, and indices of societal instability. Structural equation modeling was used to evaluate the direct and indirect effects of cultural diversity on economics and societal stability. Results show that different types and domains of diversity have interacting effects. As previously documented, linguistic α diversity has a negative effect on economic performance, and we show that it is largely through this economic mechanism that it affects societal instability. For β diversity, the higher the linguistic diversity among nations in a region, the less stable the nation. But, religious β diversity has the opposite effect, reducing instability, particularly in the presence of high linguistic diversity. Conclusions Within-nation linguistic diversity is associated with reduced economic performance, which, in turn, increases societal instability. Nations which differ linguistically from their neighbors are also less stable. However, religious diversity between neighboring nations has the opposite effect, decreasing societal instability. PMID:17895970

  5. Using, Seeing, Feeling, and Doing Absolute Value for Deeper Understanding

    ERIC Educational Resources Information Center

    Ponce, Gregorio A.

    2008-01-01

    Using sticky notes and number lines, a hands-on activity is shared that anchors initial student thinking about absolute value. The initial point of reference should help students successfully evaluate numeric problems involving absolute value. They should also be able to solve absolute value equations and inequalities that are typically found in…

  6. Parametric-Studies and Data-Plotting Modules for the SOAP

    NASA Technical Reports Server (NTRS)

    2008-01-01

    "Parametric Studies" and "Data Table Plot View" are the names of software modules in the Satellite Orbit Analysis Program (SOAP). Parametric Studies enables parameterization of as many as three satellite or ground-station attributes across a range of values and computes the average, minimum, and maximum of a specified metric, the revisit time, or 21 other functions at each point in the parameter space. This computation produces a one-, two-, or three-dimensional table of data representing statistical results across the parameter space. Inasmuch as the output of a parametric study in three dimensions can be a very large data set, visualization is a paramount means of discovering trends in the data (see figure). Data Table Plot View enables visualization of the data table created by Parametric Studies or by another data source: this module quickly generates a display of the data in the form of a rotatable three-dimensional-appearing plot, making it unnecessary to load the SOAP output data into a separate plotting program. The rotatable three-dimensionalappearing plot makes it easy to determine which points in the parameter space are most desirable. Both modules provide intuitive user interfaces for ease of use.

  7. Absolute nuclear material assay using count distribution (LAMBDA) space

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Prasad, Mano K.; Snyderman, Neal J.; Rowland, Mark S.

    A method of absolute nuclear material assay of an unknown source comprising counting neutrons from the unknown source and providing an absolute nuclear material assay utilizing a model to optimally compare to the measured count distributions. In one embodiment, the step of providing an absolute nuclear material assay comprises utilizing a random sampling of analytically computed fission chain distributions to generate a continuous time-evolving sequence of event-counts by spreading the fission chain distribution in time.

  8. Planck absolute entropy of a rotating BTZ black hole

    NASA Astrophysics Data System (ADS)

    Riaz, S. M. Jawwad

    2018-04-01

    In this paper, the Planck absolute entropy and the Bekenstein-Smarr formula of the rotating Banados-Teitelboim-Zanelli (BTZ) black hole are presented via a complex thermodynamical system contributed by its inner and outer horizons. The redefined entropy approaches zero as the temperature of the rotating BTZ black hole tends to absolute zero, satisfying the Nernst formulation of a black hole. Hence, it can be regarded as the Planck absolute entropy of the rotating BTZ black hole.

  9. Absolute nuclear material assay using count distribution (LAMBDA) space

    DOEpatents

    Prasad, Manoj K [Pleasanton, CA; Snyderman, Neal J [Berkeley, CA; Rowland, Mark S [Alamo, CA

    2012-06-05

    A method of absolute nuclear material assay of an unknown source comprising counting neutrons from the unknown source and providing an absolute nuclear material assay utilizing a model to optimally compare to the measured count distributions. In one embodiment, the step of providing an absolute nuclear material assay comprises utilizing a random sampling of analytically computed fission chain distributions to generate a continuous time-evolving sequence of event-counts by spreading the fission chain distribution in time.

  10. Longitudinal instability of the forearm.

    PubMed

    Phadnis, J; Watts, A C

    2016-10-01

    The Essex Lopresti lesion is a rare triad of injury to the radial head, interosseous membrane of the forearm and distal radio-ulnar joint, which results in longitudinal instability of the radius. If unrecognized this leads to chronic pain and disability which is difficult to salvage. Early recognition and appropriate treatment is therefore desirable to prevent long-term problems. The aim of this article is to review the pathoanatomy of longitudinal radius instability and use the existing literature and authors' experience to provide recommendations for recognition and treatment of acute and chronic forearm instability, including description of the author's technique for interosseous membrane reconstruction.

  11. Instabilities in mimetic matter perturbations

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Firouzjahi, Hassan; Gorji, Mohammad Ali; Mansoori, Seyed Ali Hosseini, E-mail: firouz@ipm.ir, E-mail: gorji@ipm.ir, E-mail: shosseini@shahroodut.ac.ir, E-mail: shossein@ipm.ir

    2017-07-01

    We study cosmological perturbations in mimetic matter scenario with a general higher derivative function. We calculate the quadratic action and show that both the kinetic term and the gradient term have the wrong sings. We perform the analysis in both comoving and Newtonian gauges and confirm that the Hamiltonians and the associated instabilities are consistent with each other in both gauges. The existence of instabilities is independent of the specific form of higher derivative function which generates gradients for mimetic field perturbations. It is verified that the ghost instability in mimetic perturbations is not associated with the higher derivative instabilitiesmore » such as the Ostrogradsky ghost.« less

  12. Parametric Equations: Push 'Em Back, Push 'Em Back, Way Back!

    ERIC Educational Resources Information Center

    Cieply, Joseph F.

    1993-01-01

    Stresses using the features of graphing calculators to teach parametric equations much earlier in the curriculum than is presently done. Examples using parametric equations to teach slopes and lines in beginning algebra, inverse functions in advanced algebra, the wrapping function, and simulations of physical phenomena are presented. (MAZ)

  13. Parametric Architecture in the Urban Space

    NASA Astrophysics Data System (ADS)

    Januszkiewicz, Krystyna; Kowalski, Karol G.

    2017-10-01

    The paper deals with the parametric architecture which is trying to introduce a new spatial language in the context for urban tissue that correspond to the artistic consciousness and the attitude of information and digital technologies era. The first part of the paper defines the main features of parametric architecture (such as: folding, continuity and curvilinearity) which are are characteristic of the new style of named the “parametricism”. This architecture is a strong emphasis on geometry, materiality, feasibility and sustainability, what emerges is an explicit agenda promoting material ornamentation, spatial spectacle and formal theatricality. The second part presents result of case study, especially parametric public use buildings, within the tissue of city. The analyzed objects are: The Sage Gateshead (1998-2004) in Gateshead, Kunsthaus in Graz (2000-2003), the Weltstadthaus (2003-2005) in Cologne, The Golden Terraces in Warsaw (2000-2007), the Metropol Parasol in Seville (2005-2011) the King Cross Station (2005-2012) in London, the headquarters of the Pathé Foundation (2006-2014) in Paris. Each of the enumerated examples shows a diverse approach to designing in the urban space, which reflect the age of digital technologies and the information society. In conclusion emphasizes, that new concept of the spatialization of architecture is the equivalent of the democratization of the political system, the liberalization of the economy, among other examples.

  14. Josephson parametric converter saturation and higher order effects

    NASA Astrophysics Data System (ADS)

    Liu, G.; Chien, T.-C.; Cao, X.; Lanes, O.; Alpern, E.; Pekker, D.; Hatridge, M.

    2017-11-01

    Microwave parametric amplifiers based on Josephson junctions have become indispensable components of many quantum information experiments. One key limitation which has not been well predicted by theory is the gain saturation behavior which limits the amplifier's ability to process large amplitude signals. The typical explanation for this behavior in phase-preserving amplifiers based on three-wave mixing, such as the Josephson Parametric Converter, is pump depletion, in which the consumption of pump photons to produce amplification results in a reduction in gain. However, in this work, we present experimental data and theoretical calculations showing that the fourth-order Kerr nonlinearities inherent in Josephson junctions are the dominant factor. The Kerr-based theory has the unusual property of causing saturation to both lower and higher gains, depending on bias conditions. This work presents an efficient methodology for optimizing device performance in the presence of Kerr nonlinearities while retaining device tunability and points to the necessity of controlling higher-order Hamiltonian terms to make further improvements in parametric devices.

  15. Epicyclic helical channels for parametric resonance ionization cooling

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Johson, Rolland Paul; Derbenev, Yaroslav

    Proposed next-generation muon colliders will require major technical advances to achieve rapid muon beam cooling requirements. Parametric-resonance Ionization Cooling (PIC) is proposed as the final 6D cooling stage of a high-luminosity muon collider. In PIC, a half-integer parametric resonance causes strong focusing of a muon beam at appropriately placed energy absorbers while ionization cooling limits the beam’s angular spread. Combining muon ionization cooling with parametric resonant dynamics in this way should then allow much smaller final transverse muon beam sizes than conventional ionization cooling alone. One of the PIC challenges is compensation of beam aberrations over a sufficiently wide parametermore » range while maintaining the dynamical stability with correlated behavior of the horizontal and vertical betatron motion and dispersion. We explore use of a coupling resonance to reduce the dimensionality of the problem and to shift the dynamics away from non-linear resonances. PIC simulations are presented.« less

  16. Interfacial fluid instabilities and Kapitsa pendula.

    PubMed

    Krieger, Madison S

    2017-07-01

    The onset and development of instabilities is one of the central problems in fluid mechanics. Here we develop a connection between instabilities of free fluid interfaces and inverted pendula. When acted upon solely by the gravitational force, the inverted pendulum is unstable. This position can be stabilized by the Kapitsa phenomenon, in which high-frequency low-amplitude vertical vibrations of the base creates a fictitious force which opposes the gravitational force. By transforming the dynamical equations governing a fluid interface into an appropriate pendulum-type equation, we demonstrate how stability can be induced in fluid systems by properly tuned vibrations. We construct a "dictionary"-type relationship between various pendula and the classical Rayleigh-Taylor, Kelvin-Helmholtz, Rayleigh-Plateau and the self-gravitational instabilities. This makes several results in control theory and dynamical systems directly applicable to the study of tunable fluid instabilities, where the critical wavelength depends on the external forces or the instability is suppressed entirely. We suggest some applications and instances of the effect ranging in scale from microns to the radius of a galaxy.

  17. Perturbation solutions of combustion instability problems

    NASA Technical Reports Server (NTRS)

    Googerdy, A.; Peddieson, J., Jr.; Ventrice, M.

    1979-01-01

    A method involving approximate modal analysis using the Galerkin method followed by an approximate solution of the resulting modal-amplitude equations by the two-variable perturbation method (method of multiple scales) is applied to two problems of pressure-sensitive nonlinear combustion instability in liquid-fuel rocket motors. One problem exhibits self-coupled instability while the other exhibits mode-coupled instability. In both cases it is possible to carry out the entire linear stability analysis and significant portions of the nonlinear stability analysis in closed form. In the problem of self-coupled instability the nonlinear stability boundary and approximate forms of the limit-cycle amplitudes and growth and decay rates are determined in closed form while the exact limit-cycle amplitudes and growth and decay rates are found numerically. In the problem of mode-coupled instability the limit-cycle amplitudes are found in closed form while the growth and decay rates are found numerically. The behavior of the solutions found by the perturbation method are in agreement with solutions obtained using complex numerical methods.

  18. Morphological instabilities of rapidly solidified binary alloys under weak flow

    NASA Astrophysics Data System (ADS)

    Kowal, Katarzyna; Davis, Stephen

    2017-11-01

    Additive manufacturing, or three-dimensional printing, offers promising advantages over existing manufacturing techniques. However, it is still subject to a range of undesirable effects. One of these involves the onset of flow resulting from sharp thermal gradients within the laser melt pool, affecting the morphological stability of the solidified alloys. We examine the linear stability of the interface of a rapidly solidifying binary alloy under weak boundary-layer flow by performing an asymptotic analysis for a singular perturbation problem that arises as a result of departures from the equilibrium phase diagram. Under no flow, the problem involves cellular and pulsatile instabilities, stabilised by surface tension and attachment kinetics. We find that travelling waves appear as a result of flow and we map out the effect of flow on two absolute stability boundaries as well as on the cells and solute bands that have been observed in experiments under no flow. This work is supported by the National Institute of Standards and Technology [Grant Number 70NANB14H012].

  19. Surface instabilities in shock loaded granular media

    NASA Astrophysics Data System (ADS)

    Kandan, K.; Khaderi, S. N.; Wadley, H. N. G.; Deshpande, V. S.

    2017-12-01

    The initiation and growth of instabilities in granular materials loaded by air shock waves are investigated via shock-tube experiments and numerical calculations. Three types of granular media, dry sand, water-saturated sand and a granular solid comprising PTFE spheres were experimentally investigated by air shock loading slugs of these materials in a transparent shock tube. Under all shock pressures considered here, the free-standing dry sand slugs remained stable while the shock loaded surface of the water-saturated sand slug became unstable resulting in mixing of the shocked air and the granular material. By contrast, the PTFE slugs were stable at low pressures but displayed instabilities similar to the water-saturated sand slugs at higher shock pressures. The distal surfaces of the slugs remained stable under all conditions considered here. Eulerian fluid/solid interaction calculations, with the granular material modelled as a Drucker-Prager solid, reproduced the onset of the instabilities as seen in the experiments to a high level of accuracy. These calculations showed that the shock pressures to initiate instabilities increased with increasing material friction and decreasing yield strain. Moreover, the high Atwood number for this problem implied that fluid/solid interaction effects were small, and the initiation of the instability is adequately captured by directly applying a pressure on the slug surface. Lagrangian calculations with the directly applied pressures demonstrated that the instability was caused by spatial pressure gradients created by initial surface perturbations. Surface instabilities are also shown to exist in shock loaded rear-supported granular slugs: these experiments and calculations are used to infer the velocity that free-standing slugs need to acquire to initiate instabilities on their front surfaces. The results presented here, while in an idealised one-dimensional setting, provide physical understanding of the conditions required to

  20. Gated frequency-resolved optical imaging with an optical parametric amplifier

    DOEpatents

    Cameron, Stewart M.; Bliss, David E.; Kimmel, Mark W.; Neal, Daniel R.

    1999-01-01

    A system for detecting objects in a turbid media utilizes an optical parametric amplifier as an amplifying gate for received light from the media. An optical gating pulse from a second parametric amplifier permits the system to respond to and amplify only ballistic photons from the object in the media.

  1. Pair-instability supernovae of fast rotating stars

    NASA Astrophysics Data System (ADS)

    Chen, Ke-Jung

    2015-01-01

    We present 2D simulations of pair-instability supernovae considering rapid rotation during their explosion phases. Recent studies of the Population III (Pop III) star formation suggested that these stars could be born with a mass scale about 100 M⊙ and with a strong rotation. Based on stellar evolution models, these massive Pop III stars might have died as highly energetic pair-instability supernovae. We perform 2D calculations to investigate the impact of rotation on pair-instability supernovae. Our results suggest that rotation leads to an aspherical explosion due to an anisotropic collapse. If the first stars have a 50% of keplerian rotational rate of the oxygen core before their pair-instability explosions, the overall 56Ni production can be significantly reduced by about two orders of magnitude. An extreme case of 100% keplerian rotational rate shows an interesting feature of fluid instabilities along the equatorial plane caused by non-synchronized and non-isotropic ignitions of explosions, so that the shocks run into the in-falling gas and generate the Richtmyer-Meshkov instability.

  2. Conservation laws in baroclinic inertial-symmetric instabilities

    NASA Astrophysics Data System (ADS)

    Grisouard, Nicolas; Fox, Morgan B.; Nijjer, Japinder

    2017-04-01

    Submesoscale oceanic density fronts are structures in geostrophic and hydrostatic balance, but are more prone to instabilities than mesoscale flows. As a consequence, they are believed to play a large role in air-sea exchanges, near-surface turbulence and dissipation of kinetic energy of geostrophically and hydrostatically balanced flows. We will present two-dimensional (x, z) Boussinesq numerical experiments of submesoscale baroclinic fronts on the f-plane. Instabilities of the mixed inertial and symmetric types (the actual name varies across the literature) develop, with the absence of along-front variations prohibiting geostrophic baroclinic instabilities. Two new salient facts emerge. First, contrary to pure inertial and/or pure symmetric instability, the potential energy budget is affected, the mixed instability extracting significant available potential energy from the front and dissipating it locally. Second, in the submesoscale regime, the growth rate of this mixed instability is sufficiently large that significant radiation of near-inertial internal waves occurs. Although energetically small compared to e.g. local dissipation within the front, this process might be a significant source of near-inertial energy in the ocean.

  3. Circulation and Directional Amplification in the Josephson Parametric Converter

    NASA Astrophysics Data System (ADS)

    Hatridge, Michael

    Nonreciprocal transport and directional amplification of weak microwave signals are fundamental ingredients in performing efficient measurements of quantum states of flying microwave light. This challenge has been partly met, as quantum-limited amplification is now regularly achieved with parametrically-driven, Josephson-junction based superconducting circuits. However, these devices are typically non-directional, requiring external circulators to separate incoming and outgoing signals. Recently this limitation has been overcome by several proposals and experimental realizations of both directional amplifiers and circulators based on interference between several parametric processes in a single device. This new class of multi-parametrically driven devices holds the promise of achieving a variety of desirable characteristics simultaneously- directionality, reduced gain-bandwidth constraints and quantum-limited added noise, and are good candidates for on-chip integration with other superconducting circuits such as qubits.

  4. Simulations relevant to the beam instability in the foreshock

    NASA Technical Reports Server (NTRS)

    Cairns, I. H.; Nishikawa, K.-I.

    1989-01-01

    The results presently obtained from two-dimensional simulations of the reactive instability for Maxwellian beams and cutoff distributions are noted to be consistent with recent suggestions that electrons backstreaming into earth's foreshock have steep-sided cutoff distributions, which are initially unstable to the reactive instability, and that the back-reaction to the wave growth causes the instability to pass into its kinetic phase. It is demonstrated that the reactive instability is a bunching instability, and that the reactive instability saturates and passes over into the kinetic phase by particle trapping.

  5. Raman-Suppressing Coupling for Optical Parametric Oscillator

    NASA Technical Reports Server (NTRS)

    Savchenkov, Anatoliy; Maleki, Lute; Matsko, Andrey; Rubiola, Enrico

    2007-01-01

    A Raman-scattering-suppressing input/ output coupling scheme has been devised for a whispering-gallery-mode optical resonator that is used as a four-wave-mixing device to effect an all-optical parametric oscillator. Raman scattering is undesired in such a device because (1) it is a nonlinear process that competes with the desired nonlinear four-wave conversion process involved in optical parametric oscillation and (2) as such, it reduces the power of the desired oscillation and contributes to output noise. The essence of the present input/output coupling scheme is to reduce output loading of the desired resonator modes while increasing output loading of the undesired ones.

  6. Off-equatorial current-driven instabilities ahead of approaching dipolarization fronts

    NASA Astrophysics Data System (ADS)

    Zhang, Xu; Angelopoulos, V.; Pritchett, P. L.; Liu, Jiang

    2017-05-01

    Recent kinetic simulations have revealed that electromagnetic instabilities near the ion gyrofrequency and slightly away from the equatorial plane can be driven by a current parallel to the magnetic field prior to the arrival of dipolarization fronts. Such instabilities are important because of their potential contribution to global electromagnetic energy conversion near dipolarization fronts. Of the several instabilities that may be consistent with such waves, the most notable are the current-driven electromagnetic ion cyclotron instability and the current-driven kink-like instability. To confirm the existence and characteristics of these instabilities, we used observations by two Time History of Events and Macroscale Interactions during Substorms satellites, one near the neutral sheet observing dipolarization fronts and the other at the boundary layer observing precursor waves and currents. We found that such instabilities with monochromatic signatures are rare, but one of the few cases was selected for further study. Two different instabilities, one at about 0.3 Hz and the other at a much lower frequency, 0.02 Hz, were seen in the data from the off-equatorial spacecraft. A parallel current attributed to an electron beam coexisted with the waves. Our instability analysis attributes the higher-frequency instability to a current-driven ion cyclotron instability and the lower frequency instability to a kink-like instability. The current-driven kink-like instability we observed is consistent with the instabilities observed in the simulation. We suggest that the currents needed to excite these low-frequency instabilities are so intense that the associated electron beams are easily thermalized and hence difficult to observe.

  7. Parametric models of reflectance spectra for dyed fabrics

    NASA Astrophysics Data System (ADS)

    Aiken, Daniel C.; Ramsey, Scott; Mayo, Troy; Lambrakos, Samuel G.; Peak, Joseph

    2016-05-01

    This study examines parametric modeling of NIR reflectivity spectra for dyed fabrics, which provides for both their inverse and direct modeling. The dye considered for prototype analysis is triarylamine dye. The fabrics considered are camouflage textiles characterized by color variations. The results of this study provide validation of the constructed parametric models, within reasonable error tolerances for practical applications, including NIR spectral characteristics in camouflage textiles, for purposes of simulating NIR spectra corresponding to various dye concentrations in host fabrics, and potentially to mixtures of dyes.

  8. Dispersion-Engineered Traveling Wave Kinetic Inductance Parametric Amplifier

    NASA Technical Reports Server (NTRS)

    Zmuidzinas, Jonas (Inventor); Day, Peter K. (Inventor)

    2014-01-01

    A traveling wave kinetic inductance parametric amplifier comprises a superconducting transmission line and a dispersion control element. The transmission line can include periodic variations of its dimension along its length. The superconducting material can include a high normal state resistivity material. In some instances the high normal state resistivity material includes nitrogen and a metal selected from the group consisting of titanium, niobium and vanadium. The traveling wave kinetic inductance parametric amplifier is expected to exhibit a noise temperature below 100 mK/GHz.

  9. Electrostatic ion cyclotron velocity shear instability

    NASA Technical Reports Server (NTRS)

    Lemons, D. S.; Winske, D.; Gary, S. P.

    1992-01-01

    A local electrostatic dispersion equation is derived for a shear flow perpendicular to an ambient magnetic field, which includes all kinetic effects and involves only one important parameter. The dispersion equation is cast in the form of Gordeyev integrals and is solved numerically. Numerical solutions indicate that an ion cyclotron instability is excited. The instability occurs roughly at multiples of the ion cyclotron frequency (modified by the shear), with the growth rate or the individual harmonics overlapping in the wavenumber. At large values of the shear parameter, the instability is confined to long wavelengths, but at smaller shear, a second distinct branch at shorter wavelengths also appears. The properties of the instability obtained are compared with those obtained in the nonlocal limit by Ganguli et al. (1985, 1988).

  10. Competition between Langmuir and upper-hybrid turbulence in a high-frequency-pumped ionosphere.

    PubMed

    Thidé, B; Sergeev, E N; Grach, S M; Leyser, T B; Carozzi, T D

    2005-12-16

    We show how the secondary escaping radiation, also known as stimulated electromagnetic emission (SEE), from the ionosphere irradiated by a high-intensity radio beam, can be used to study both reflection altitude ponderomotive parametric instabilities and upper-hybrid altitude thermal parametric instabilities. This has allowed us to observe the transfer of energy from smaller to higher sideband frequency offsets and to identify a new transient SEE feature.

  11. Novalis' Poetic Uncertainty: A "Bildung" with the Absolute

    ERIC Educational Resources Information Center

    Mika, Carl

    2016-01-01

    Novalis, the Early German Romantic poet and philosopher, had at the core of his work a mysterious depiction of the "absolute." The absolute is Novalis' name for a substance that defies precise knowledge yet calls for a tentative and sensitive speculation. How one asserts a truth, represents an object, and sets about encountering things…

  12. Efficient model reduction of parametrized systems by matrix discrete empirical interpolation

    NASA Astrophysics Data System (ADS)

    Negri, Federico; Manzoni, Andrea; Amsallem, David

    2015-12-01

    In this work, we apply a Matrix version of the so-called Discrete Empirical Interpolation (MDEIM) for the efficient reduction of nonaffine parametrized systems arising from the discretization of linear partial differential equations. Dealing with affinely parametrized operators is crucial in order to enhance the online solution of reduced-order models (ROMs). However, in many cases such an affine decomposition is not readily available, and must be recovered through (often) intrusive procedures, such as the empirical interpolation method (EIM) and its discrete variant DEIM. In this paper we show that MDEIM represents a very efficient approach to deal with complex physical and geometrical parametrizations in a non-intrusive, efficient and purely algebraic way. We propose different strategies to combine MDEIM with a state approximation resulting either from a reduced basis greedy approach or Proper Orthogonal Decomposition. A posteriori error estimates accounting for the MDEIM error are also developed in the case of parametrized elliptic and parabolic equations. Finally, the capability of MDEIM to generate accurate and efficient ROMs is demonstrated on the solution of two computationally-intensive classes of problems occurring in engineering contexts, namely PDE-constrained shape optimization and parametrized coupled problems.

  13. Hypersonic Viscous Flow Over Large Roughness Elements

    NASA Technical Reports Server (NTRS)

    Chang, Chau-Lyan; Choudhari, Meelan M.

    2009-01-01

    Viscous flow over discrete or distributed surface roughness has great implications for hypersonic flight due to aerothermodynamic considerations related to laminar-turbulent transition. Current prediction capability is greatly hampered by the limited knowledge base for such flows. To help fill that gap, numerical computations are used to investigate the intricate flow physics involved. An unstructured mesh, compressible Navier-Stokes code based on the space-time conservation element, solution element (CESE) method is used to perform time-accurate Navier-Stokes calculations for two roughness shapes investigated in wind tunnel experiments at NASA Langley Research Center. It was found through 2D parametric study that at subcritical Reynolds numbers of the boundary layers, absolute instability resulting in vortex shedding downstream, is likely to weaken at supersonic free-stream conditions. On the other hand, convective instability may be the dominant mechanism for supersonic boundary layers. Three-dimensional calculations for a rectangular or cylindrical roughness element at post-shock Mach numbers of 4.1 and 6.5 also confirm that no self-sustained vortex generation is present.

  14. Stability and dewetting of metal nanoparticle filled thin polymer films: control of instability length scale and dynamics.

    PubMed

    Mukherjee, Rabibrata; Das, Soma; Das, Anindya; Sharma, Satinder K; Raychaudhuri, Arup K; Sharma, Ashutosh

    2010-07-27

    We investigate the influence of gold nanoparticle addition on the stability, dewetting, and pattern formation in ultrathin polymer-nanoparticle (NP) composite films by examining the length and time scales of instability, morphology, and dynamics of dewetting. For these 10-50 nm thick (h) polystyrene (PS) thin films containing uncapped gold nanoparticles (diameter approximately 3-4 nm), transitions from complete dewetting to arrested dewetting to absolute stability were observed depending on the concentration of the particles. Experiments show the existence of three distinct stability regimes: regime 1, complete dewetting leading to droplet formation for nanoparticle concentration of 2% (w/w) or below; regime 2, partial dewetting leading to formation of arrested holes for NP concentrations in the range of 3-6%; and regime 3, complete inhibition of dewetting for NP concentrations of 7% and above. Major results are (a) length scale of instability, where lambdaH approximately hn remains unchanged with NP concentration in regime 1 (n approximately 2) but increases in regime 2 with a change in the scaling relation (n approximately 3-3.5); (b) dynamics of instability and dewetting becomes progressively sluggish with an increase in the NP concentration; (c) there are distinct regimes of dewetting velocity at low NP concentrations; (d) force modulation AFM, as well as micro-Raman analysis, shows phase separation and aggregation of the gold nanoparticles within each dewetted polymer droplet leading to the formation of a metal core-polymer shell morphology. The polymer shell could be removed by washing in a selective solvent, thus exposing an array of bare gold nanoparticle aggregates.

  15. Protein instability and immunogenicity: roadblocks to clinical application of injectable protein delivery systems for sustained release.

    PubMed

    Jiskoot, Wim; Randolph, Theodore W; Volkin, David B; Middaugh, C Russell; Schöneich, Christian; Winter, Gerhard; Friess, Wolfgang; Crommelin, Daan J A; Carpenter, John F

    2012-03-01

    Protein instability and immunogenicity are two main roadblocks to the clinical success of novel protein drug delivery systems. In this commentary, we discuss the need for more extensive analytical characterization in relation to concerns about protein instability in injectable drug delivery systems for sustained release. We then will briefly address immunogenicity concerns and outline current best practices for using state-of-the-art analytical assays to monitor protein stability for both conventional and novel therapeutic protein dosage forms. Next, we provide a summary of the stresses on proteins arising during preparation of drug delivery systems and subsequent in vivo release. We note the challenges and difficulties in achieving the absolute requirement of quantitatively assessing the degradation of protein molecules in a drug delivery system. We describe the potential roles for academic research in further improving protein stability and developing new analytical technologies to detect protein degradation byproducts in novel drug delivery systems. Finally, we provide recommendations for the appropriate approaches to formulation design and assay development to ensure that stable, minimally immunogenic formulations of therapeutic proteins are created. These approaches should help to increase the probability that novel drug delivery systems for sustained protein release will become more readily available as effective therapeutic agents to treat and benefit patients. Copyright © 2011 Wiley Periodicals, Inc.

  16. Gated frequency-resolved optical imaging with an optical parametric amplifier

    DOEpatents

    Cameron, S.M.; Bliss, D.E.; Kimmel, M.W.; Neal, D.R.

    1999-08-10

    A system for detecting objects in a turbid media utilizes an optical parametric amplifier as an amplifying gate for received light from the media. An optical gating pulse from a second parametric amplifier permits the system to respond to and amplify only ballistic photons from the object in the media. 13 figs.

  17. Effects of visual feedback balance training on the balance and ankle instability in adult men with functional ankle instability.

    PubMed

    Nam, Seung-Min; Kim, Kyoung; Lee, Do Youn

    2018-01-01

    [Purpose] This study examined the effects of visual feedback balance training on the balance and ankle instability in adult men with functional ankle instability. [Subjects and Methods] Twenty eight adults with functional ankle instability, divided randomly into an experimental group, which performed visual feedback balance training for 20 minutes and ankle joint exercises for 10 minutes, and a control group, which performed ankle joint exercise for 30 minutes. Exercises were completed three times a week for 8 weeks. Bio rescue was used for balance ability. It measured limit of stability at one minute. For ankle instability was measured using Cumberland ankle instability tool (CAIT). This measure was performed before and after the experiments in each group. [Results] The experimental group had significant increase in the Limit of Stability and CAIT score. The control group had significant increase in CAIT score. While the Limit of Stability increased without significance. [Conclusion] In conclusion, visual feedback balance training can be recommended as a treatment method for patients with functional ankle instability.

  18. Lending sociodynamics and economic instability

    NASA Astrophysics Data System (ADS)

    Hawkins, Raymond J.

    2011-11-01

    We show how the dynamics of economic instability and financial crises articulated by Keynes in the General Theory and developed by Minsky as the Financial Instability Hypothesis can be formalized using Weidlich’s sociodynamics of opinion formation. The model addresses both the lending sentiment of a lender in isolation as well as the impact on that lending sentiment of the behavior of other lenders. The risk associated with lending is incorporated through a stochastic treatment of loan dynamics that treats prepayment and default as competing risks. With this model we are able to generate endogenously the rapid changes in lending opinion that attend slow changes in lending profitability and find these dynamics to be consistent with the rise and collapse of the non-Agency mortgage-backed securities market in 2007/2008. As the parameters of this model correspond to well-known phenomena in cognitive and social psychology, we can both explain why economic instability has proved robust to advances in risk measurement and suggest how policy for reducing economic instability might be formulated in an experimentally sound manner.

  19. Absolute marine gravimetry with matter-wave interferometry.

    PubMed

    Bidel, Y; Zahzam, N; Blanchard, C; Bonnin, A; Cadoret, M; Bresson, A; Rouxel, D; Lequentrec-Lalancette, M F

    2018-02-12

    Measuring gravity from an aircraft or a ship is essential in geodesy, geophysics, mineral and hydrocarbon exploration, and navigation. Today, only relative sensors are available for onboard gravimetry. This is a major drawback because of the calibration and drift estimation procedures which lead to important operational constraints. Atom interferometry is a promising technology to obtain onboard absolute gravimeter. But, despite high performances obtained in static condition, no precise measurements were reported in dynamic. Here, we present absolute gravity measurements from a ship with a sensor based on atom interferometry. Despite rough sea conditions, we obtained precision below 10 -5  m s -2 . The atom gravimeter was also compared with a commercial spring gravimeter and showed better performances. This demonstration opens the way to the next generation of inertial sensors (accelerometer, gyroscope) based on atom interferometry which should provide high-precision absolute measurements from a moving platform.

  20. Least Squares Approximation By G1 Piecewise Parametric Cubes

    DTIC Science & Technology

    1993-12-01

    ADDRESS(ES) 10.SPONSORING/MONITORING AGENCY REPORT NUMBER 11. SUPPLEMENTARY NOTES The views expressed in this thesis are those of the author and do not...CODE Approved for public release; distribution is unlimited. 13. ABSTRACT (maximum 200 words) Parametric piecewise cubic polynomials are used throughout...piecewise parametric cubic polynomial to a sequence of ordered points in the plane. Cubic Bdzier curves are used as a basis. The parameterization, the