Estimating the absolute position of a mobile robot using position probability grids
Burgard, W.; Fox, D.; Hennig, D.; Schmidt, T.
1996-12-31
In order to re-use existing models of the environment mobile robots must be able to estimate their position and orientation in such models. Most of the existing methods for position estimation are based on special purpose sensors or aim at tracking the robot`s position relative to the known starting point. This paper describes the position probability grid approach to estimating the robot`s absolute position and orientation in a metric model of the environment. Our method is designed to work with standard sensors and is independent of any knowledge about the starting point. It is a Bayesian approach based on certainty grids. In each cell of such a grid we store the probability that this cell refers to the current position of the robot. These probabilities are obtained by integrating the likelihoods of sensor readings over time. Results described in this paper show that our technique is able to reliably estimate the position of a robot in complex environments. Our approach has proven to be robust with respect to inaccurate environmental models, noisy sensors, and ambiguous situations.
Estimation of the absolute position of mobile systems by an optoelectronic processor
NASA Technical Reports Server (NTRS)
Feng, Liqiang; Fainman, Yeshaiahu; Koren, Yoram
1992-01-01
A method that determine the absolute position of a mobile system with a hybrid optoelectronic processor has been developed. Position estimates are based on an analysis of circular landmarks that are detected by a TV camera attached to the mobile system. The difference between the known shape of the landmark and its image provides the information needed to determine the absolute position of the mobile system. For robust operation, the parameters of the landmark image are extracted at high speeds using an optical processor that performs an optical Hough transform. The coordinates of the mobile system are computed from these parameters in a digital co-processor using fast algorithms. Different sources of position estimation errors have also been analyzed, and consequent algorithms to improve the navigation performance of the mobile system have been developed and evaluated by both computer simulation and experiments.
Precision absolute positional measurement of laser beams.
Fitzsimons, Ewan D; Bogenstahl, Johanna; Hough, James; Killow, Christian J; Perreur-Lloyd, Michael; Robertson, David I; Ward, Henry
2013-04-20
We describe an instrument which, coupled with a suitable coordinate measuring machine, facilitates the absolute measurement within the machine frame of the propagation direction of a millimeter-scale laser beam to an accuracy of around ±4 μm in position and ±20 μrad in angle. PMID:23669658
Absolute angular positioning in ultrahigh vacuum
Schief, H.; Marsico, V.; Kern, K.
1996-05-01
Commercially available angular resolvers, which are routinely used in machine tools and robotics, are modified and adapted to be used under ultrahigh-vacuum (UHV) conditions. They provide straightforward and reliable measurements of angular positions for any kind of UHV sample manipulators. The corresponding absolute reproducibility is on the order of 0.005{degree}, whereas the relative resolution is better than 0.001{degree}, as demonstrated by high-resolution helium-reflectivity measurements. The mechanical setup and possible applications are discussed. {copyright} {ital 1996 American Institute of Physics.}
Absolute Position Encoders With Vertical Image Binning
NASA Technical Reports Server (NTRS)
Leviton, Douglas B.
2005-01-01
Improved optoelectronic patternrecognition encoders that measure rotary and linear 1-dimensional positions at conversion rates (numbers of readings per unit time) exceeding 20 kHz have been invented. Heretofore, optoelectronic pattern-recognition absoluteposition encoders have been limited to conversion rates <15 Hz -- too low for emerging industrial applications in which conversion rates ranging from 1 kHz to as much as 100 kHz are required. The high conversion rates of the improved encoders are made possible, in part, by use of vertically compressible or binnable (as described below) scale patterns in combination with modified readout sequences of the image sensors [charge-coupled devices (CCDs)] used to read the scale patterns. The modified readout sequences and the processing of the images thus read out are amenable to implementation by use of modern, high-speed, ultra-compact microprocessors and digital signal processors or field-programmable gate arrays. This combination of improvements makes it possible to greatly increase conversion rates through substantial reductions in all three components of conversion time: exposure time, image-readout time, and image-processing time.
System and method for calibrating a rotary absolute position sensor
NASA Technical Reports Server (NTRS)
Davis, Donald R. (Inventor); Permenter, Frank Noble (Inventor); Radford, Nicolaus A (Inventor)
2012-01-01
A system includes a rotary device, a rotary absolute position (RAP) sensor generating encoded pairs of voltage signals describing positional data of the rotary device, a host machine, and an algorithm. The algorithm calculates calibration parameters usable to determine an absolute position of the rotary device using the encoded pairs, and is adapted for linearly-mapping an ellipse defined by the encoded pairs to thereby calculate the calibration parameters. A method of calibrating the RAP sensor includes measuring the rotary position as encoded pairs of voltage signals, linearly-mapping an ellipse defined by the encoded pairs to thereby calculate the calibration parameters, and calculating an absolute position of the rotary device using the calibration parameters. The calibration parameters include a positive definite matrix (A) and a center point (q) of the ellipse. The voltage signals may include an encoded sine and cosine of a rotary angle of the rotary device.
Optimal Centroid Position Estimation
Candy, J V; McClay, W A; Awwal, A S; Ferguson, S W
2004-07-23
The alignment of high energy laser beams for potential fusion experiments demand high precision and accuracy by the underlying positioning algorithms. This paper discusses the feasibility of employing online optimal position estimators in the form of model-based processors to achieve the desired results. Here we discuss the modeling, development, implementation and processing of model-based processors applied to both simulated and actual beam line data.
Population-based absolute risk estimation with survey data.
Kovalchik, Stephanie A; Pfeiffer, Ruth M
2014-04-01
Absolute risk is the probability that a cause-specific event occurs in a given time interval in the presence of competing events. We present methods to estimate population-based absolute risk from a complex survey cohort that can accommodate multiple exposure-specific competing risks. The hazard function for each event type consists of an individualized relative risk multiplied by a baseline hazard function, which is modeled nonparametrically or parametrically with a piecewise exponential model. An influence method is used to derive a Taylor-linearized variance estimate for the absolute risk estimates. We introduce novel measures of the cause-specific influences that can guide modeling choices for the competing event components of the model. To illustrate our methodology, we build and validate cause-specific absolute risk models for cardiovascular and cancer deaths using data from the National Health and Nutrition Examination Survey. Our applications demonstrate the usefulness of survey-based risk prediction models for predicting health outcomes and quantifying the potential impact of disease prevention programs at the population level. PMID:23686614
Absolute position total internal reflection microscopy with an optical tweezer
Liu, Lulu; Woolf, Alexander; Rodriguez, Alejandro W.; Capasso, Federico
2014-01-01
A noninvasive, in situ calibration method for total internal reflection microscopy (TIRM) based on optical tweezing is presented, which greatly expands the capabilities of this technique. We show that by making only simple modifications to the basic TIRM sensing setup and procedure, a probe particle’s absolute position relative to a dielectric interface may be known with better than 10 nm precision out to a distance greater than 1 μm from the surface. This represents an approximate 10× improvement in error and 3× improvement in measurement range over conventional TIRM methods. The technique’s advantage is in the direct measurement of the probe particle’s scattering intensity vs. height profile in situ, rather than relying on assumptions, inexact system analogs, or detailed knowledge of system parameters for calibration. To demonstrate the improved versatility of the TIRM method in terms of tunability, precision, and range, we show our results for the hindered near-wall diffusion coefficient for a spherical dielectric particle. PMID:25512542
An Approach to Absolute Position Control based on Object Coordinate
NASA Astrophysics Data System (ADS)
Nakano, Keisuke; Murakami, Toshiyuki
This paper describes an accurate position control in object coordinate. In case the motion control of industrial robot placed in global coordinate is considered in object coordinate, it is preferable and convenient to decide its motion by the teaching of robot operator. However the teaching procedure requires much time and effort. Moreover, as often as relative position between robot and object is changed, the operator needs to do the teaching operation again. To improve the above issue, it is required to develop the strategy that decides the robot motion without the teaching operation. This paper proposes a control strategy that is not required the teaching operation and enables to realize the desired motion without affecting the relative position error between the robot and the target object in object coordinate defined by PSD (Position Sensitive Detector). In the proposed approach, the estimation algorithm of the kinetic transformation between global and object coordinates is introduced by using PSD output, and the error of coordinate transformation estimated by the proposed approach is compensated in global coordinate. The validity of the proposed method is shown by simulations and experiments.
State estimation and absolute image registration for geosynchronous satellites
NASA Technical Reports Server (NTRS)
Nankervis, R.; Koch, D. W.; Sielski, H.
1980-01-01
Spacecraft state estimation and the absolute registration of Earth images acquired by cameras onboard geosynchronous satellites are described. The basic data type of the procedure consists of line and element numbers of image points called landmarks whose geodetic coordinates, relative to United States Geodetic Survey topographic maps, are known. A conventional least squares process is used to estimate navigational parameters and camera pointing biases from observed minus computed landmark line and element numbers. These estimated parameters along with orbit and attitude dynamic models are used to register images, using an automated grey level correlation technique, inside the span represented by the landmark data. In addition, the dynamic models can be employed to register images outside of the data span in a near real time mode. An important application of this mode is in support of meteorological studies where rapid data reduction is required for the rapid tracking and predicting of dynamic phenomena.
Wavelength division multiplexed fiber optic absolute position encoder
NASA Technical Reports Server (NTRS)
Park, Eric D.; Gat, Erann
1989-01-01
A wavelength division multiplexing (WDM) method for fiber optic sensors is proposed which uses a broadband light source and narrow bandpass thin film optical filter coatings on cylindrical graded index lenses. In the WDM system described here, all bits are multiplexed onto a single signal return fiber by assigning each bit a unique wavelength. A multielement photodetector array is used as the encoded position information is in parallel. Preliminary prototype test results are presented.
System providing limit switch function with simultaneous absolute position output
NASA Technical Reports Server (NTRS)
Alhorn, Dean C. (Inventor); Howard, David E. (Inventor); Smith, Dennis A. (Inventor)
2006-01-01
A limit and position sensing system includes a sensor assembly and an emitter. The sensor assembly includes first and second electrical conductors arranged in opposing parallel planes. The first electrical conductor is coiled outwardly from either end thereof in a clockwise fashion to form a first coil region and a second coil region. The second electrical conductor forms a single coil with portions of the single coil's rings lying between the first end and second end of the first electrical conductor being parallel to an axis of the first electrical conductor's plane. Ferromagnetic material is aligned with the first and second electrical conductors and spans beyond (a) the first and second ends of the first electrical conductor, and (b) the portions of the rings of the second electrical conductor's single coil that lie between the first end and second end of the first electrical conductor. The emitter is spaced apart from the sensor assembly and transmits a periodic electromagnetic wave towards the sensor assembly.
Zabaleta, Haritz; Valencia, David; Perry, Joel; Veneman, Jan; Keller, Thierry
2011-01-01
ArmAssist is a wireless robot for post stroke upper limb rehabilitation. Knowing the position of the arm is essential for any rehabilitation device. In this paper, we describe a method based on an artificial landmark navigation system. The navigation system uses three optical mouse sensors. This enables the building of a cheap but reliable position sensor. Two of the sensors are the data source for odometry calculations, and the third optical mouse sensor takes very low resolution pictures of a custom designed mat. These pictures are processed by an optical symbol recognition algorithm which will estimate the orientation of the robot and recognize the landmarks placed on the mat. The data fusion strategy is described to detect the misclassifications of the landmarks in order to fuse only reliable information. The orientation given by the optical symbol recognition (OSR) algorithm is used to improve significantly the odometry and the recognition of the landmarks is used to reference the odometry to a absolute coordinate system. The system was tested using a 3D motion capture system. With the actual mat configuration, in a field of motion of 710 × 450 mm, the maximum error in position estimation was 49.61 mm with an average error of 36.70 ± 22.50 mm. The average test duration was 36.5 seconds and the average path length was 4173 mm. PMID:22254744
Ilyas, Muhammad; Hong, Beomjin; Cho, Kuk; Baeg, Seung-Ho; Park, Sangdeok
2016-01-01
This paper provides algorithms to fuse relative and absolute microelectromechanical systems (MEMS) navigation sensors, suitable for micro planetary rovers, to provide a more accurate estimation of navigation information, specifically, attitude and position. Planetary rovers have extremely slow speed (~1 cm/s) and lack conventional navigation sensors/systems, hence the general methods of terrestrial navigation may not be applicable to these applications. While relative attitude and position can be tracked in a way similar to those for ground robots, absolute navigation information is hard to achieve on a remote celestial body, like Moon or Mars, in contrast to terrestrial applications. In this study, two absolute attitude estimation algorithms were developed and compared for accuracy and robustness. The estimated absolute attitude was fused with the relative attitude sensors in a framework of nonlinear filters. The nonlinear Extended Kalman filter (EKF) and Unscented Kalman filter (UKF) were compared in pursuit of better accuracy and reliability in this nonlinear estimation problem, using only on-board low cost MEMS sensors. Experimental results confirmed the viability of the proposed algorithms and the sensor suite, for low cost and low weight micro planetary rovers. It is demonstrated that integrating the relative and absolute navigation MEMS sensors reduces the navigation errors to the desired level. PMID:27223293
Ilyas, Muhammad; Hong, Beomjin; Cho, Kuk; Baeg, Seung-Ho; Park, Sangdeok
2016-01-01
This paper provides algorithms to fuse relative and absolute microelectromechanical systems (MEMS) navigation sensors, suitable for micro planetary rovers, to provide a more accurate estimation of navigation information, specifically, attitude and position. Planetary rovers have extremely slow speed (~1 cm/s) and lack conventional navigation sensors/systems, hence the general methods of terrestrial navigation may not be applicable to these applications. While relative attitude and position can be tracked in a way similar to those for ground robots, absolute navigation information is hard to achieve on a remote celestial body, like Moon or Mars, in contrast to terrestrial applications. In this study, two absolute attitude estimation algorithms were developed and compared for accuracy and robustness. The estimated absolute attitude was fused with the relative attitude sensors in a framework of nonlinear filters. The nonlinear Extended Kalman filter (EKF) and Unscented Kalman filter (UKF) were compared in pursuit of better accuracy and reliability in this nonlinear estimation problem, using only on-board low cost MEMS sensors. Experimental results confirmed the viability of the proposed algorithms and the sensor suite, for low cost and low weight micro planetary rovers. It is demonstrated that integrating the relative and absolute navigation MEMS sensors reduces the navigation errors to the desired level. PMID:27223293
Uncertainty Estimation in Intensity-Modulated Radiotherapy Absolute Dosimetry Verification
Sanchez-Doblado, Francisco . E-mail: paco@us.es; Hartmann, Guenther H.; Pena, Javier; Capote, Roberto; Paiusco, Marta; Rhein, Bernhard; Leal, Antonio; Lagares, Juan Ignacio
2007-05-01
Purpose: Intensity-modulated radiotherapy (IMRT) represents an important method for improving RT. The IMRT relative dosimetry checks are well established; however, open questions remain in reference dosimetry with ionization chambers (ICs). The main problem is the departure of the measurement conditions from the reference ones; thus, additional uncertainty is introduced into the dose determination. The goal of this study was to assess this effect systematically. Methods and Materials: Monte Carlo calculations and dosimetric measurements with five different detectors were performed for a number of representative IMRT cases, covering both step-and-shoot and dynamic delivery. Results: Using ICs with volumes of about 0.125 cm{sup 3} or less, good agreement was observed among the detectors in most of the situations studied. These results also agreed well with the Monte Carlo-calculated nonreference correction factors (c factors). Additionally, we found a general correlation between the IC position relative to a segment and the derived correction factor c, which can be used to estimate the expected overall uncertainty of the treatment. Conclusion: The increase of the reference dose relative standard uncertainty measured with ICs introduced by nonreference conditions when verifying an entire IMRT plan is about 1-1.5%, provided that appropriate small-volume chambers are used. The overall standard uncertainty of the measured IMRT dose amounts to about 2.3%, including the 0.5% of reproducibility and 1.5% of uncertainty associated with the beam calibration factor. Solid state detectors and large-volume chambers are not well suited to IMRT verification dosimetry because of the greater uncertainties. An action level of 5% is appropriate for IMRT verification. Greater discrepancies should lead to a review of the dosimetric procedure, including visual inspection of treatment segments and energy fluence.
Superharp: A wire scanner with absolute position readout for beam energy measurement at CEBAF
Yan, C.
1994-09-07
Superharp is an upgrade CEBAF wire scanner with absolute position readout from shaft encoder. As high precision absolute beam position probe ({Delta}x {approximately} 10{mu}m), three pairs of superharps are installed at the entrance, the mid-point, and the exit of Hall C arc beamline in beam switch yard, which will be tuned in dispersive mode as energy spectrometer performing 10{sup {minus}3} beam energy measurement. With dual sensor system: the direct current pickup and the bremsstrahlung detection electronics, beam profile can be obtained by superharp at wide beam current range from 1 {mu}A to 100 {mu}A.
Kaufman, A.N.; Brizard, A.J.; Morehead, J.J.; Tracy, E.R.
1997-12-31
The resonant interaction of a negative-energy wave with a positive-energy wave gives rise to a linear instability. Whereas a single crossing of rays in a nonuniform medium leads to a convectively saturated instability, we show that a double crossing can yield an absolute instability.
Position Estimation Using Image Derivative
NASA Technical Reports Server (NTRS)
Mortari, Daniele; deDilectis, Francesco; Zanetti, Renato
2015-01-01
This paper describes an image processing algorithm to process Moon and/or Earth images. The theory presented is based on the fact that Moon hard edge points are characterized by the highest values of the image derivative. Outliers are eliminated by two sequential filters. Moon center and radius are then estimated by nonlinear least-squares using circular sigmoid functions. The proposed image processing has been applied and validated using real and synthetic Moon images.
Dual-frequency-moiré based absolute position sensing for lens focusing
NASA Astrophysics Data System (ADS)
Yin, Didi; Wang, Yahui; Di, Chengliang
2015-10-01
Micro motor, a typical equipment to adjust the zoom lens, together with a position feedback sensor constitute the closed position loop, which is the key factor to perform successfully accurate lens focusing. Traditionally, the incremental grating ruler tends to be adopted as the position sensor, which continues counting the number of grating pitches on a dynamic one-dimensional moving platform. Instead of incremental counting, this paper proposes a dual-frequency-moiré based absolute position sensing method for reading immediate position at static environment. According to the relative positions of two kind of moiré, the absolute position of the measurement point can be retrieve at nano-meters level through look-up table. By the way, the measurement range can be expanded to millimeters level satisfying the demands of lens focusing, and furthermore the measurement efficiency is improved greatly without dynamic moving. In order to verify the performances of proposed method, a model of dual-frequency-moiré is built, and theological principles are deduced. Finally, the simulation results indicate that, with established configurations, dual-frequency-moiré could measure position within 0~5000μm. At the same time, the measurement accuracy achieves nano-meters level.
Bai, Yang; Lu, Yunfeng; Hu, Pengcheng; Wang, Gang; Xu, Jinxin; Zeng, Tao; Li, Zhengkun; Zhang, Zhonghua; Tan, Jiubin
2016-01-01
A simple differential capacitive sensor is provided in this paper to measure the absolute positions of length measuring systems. By utilizing a shield window inside the differential capacitor, the measurement range and linearity range of the sensor can reach several millimeters. What is more interesting is that this differential capacitive sensor is only sensitive to one translational degree of freedom (DOF) movement, and immune to the vibration along the other two translational DOFs. In the experiment, we used a novel circuit based on an AC capacitance bridge to directly measure the differential capacitance value. The experimental result shows that this differential capacitive sensor has a sensitivity of 2 × 10(-4) pF/μm with 0.08 μm resolution. The measurement range of this differential capacitive sensor is 6 mm, and the linearity error are less than 0.01% over the whole absolute position measurement range. PMID:27187393
Bai, Yang; Lu, Yunfeng; Hu, Pengcheng; Wang, Gang; Xu, Jinxin; Zeng, Tao; Li, Zhengkun; Zhang, Zhonghua; Tan, Jiubin
2016-01-01
A simple differential capacitive sensor is provided in this paper to measure the absolute positions of length measuring systems. By utilizing a shield window inside the differential capacitor, the measurement range and linearity range of the sensor can reach several millimeters. What is more interesting is that this differential capacitive sensor is only sensitive to one translational degree of freedom (DOF) movement, and immune to the vibration along the other two translational DOFs. In the experiment, we used a novel circuit based on an AC capacitance bridge to directly measure the differential capacitance value. The experimental result shows that this differential capacitive sensor has a sensitivity of 2 × 10−4 pF/μm with 0.08 μm resolution. The measurement range of this differential capacitive sensor is 6 mm, and the linearity error are less than 0.01% over the whole absolute position measurement range. PMID:27187393
ERIC Educational Resources Information Center
Friedman, Alinda; Montello, Daniel R.
2006-01-01
The authors examined whether absolute and relative judgments about global-scale locations and distances were generated from common representations. At the end of a 10-week class on the regional geography of the United States, participants estimated the latitudes of 16 North American cities and all possible pairwise distances between them. Although…
Position Estimation of Tranceivers in Communication Networks
Kent, C A; Dowla, F U
2003-10-13
With the rapid development in wireless sensor networks, there is an important need for transceiver position estimation independent of Global Positioning Systems (GPS) [1,3]. While GPS might be useful for outdoor sensor nodes, it is not for indoor node localization. In this case, position estimation is possible through network range estimates from time-of-flight (TOF) measurements, a technique well suited to large bandwidth physical links, such as in ultra-wideband (UWB) communications. For example, in our UWB systems, with pulse duration less than 200 pico-seconds, range can easily be resolved to less than a foot. Assuming an encoded UWB or spread spectrum physical layer, we developed algorithms and simulation tools to test transceiver position localization. Simulations were designed to lend insight into system characteristics such as position error sensitivities to network geometry, to range estimation errors, and to number of sensor nodes.
Burgett, S.; Meindl, M.
1994-09-01
It is useful in a variety of military and commercial application to accurately register the position of synthetic aperture radar (SAR) imagery in absolute coordinates. The two basic SAR measurements, range and doppler, can be used to solve for the position of the SAR image. Imprecise knowledge of the SAR collection platform`s position and velocity vectors introduce errors in the range and doppler measurements and can cause the apparent location of the SAR image on the ground to be in error by tens of meters. Recent advances in carrier phase GPS techniques can provide an accurate description of the collection vehicle`s trajectory during the image formation process. In this paper, highly accurate carrier phase GPS trajectory information is used in conjunction with SAR imagery to demonstrate a technique for accurate registration of SAR images in WGS-84 coordinates. Flight test data will be presented that demonstrates SAR image registration errors of less than 4 meters.
Absolute Position of Targets Measured Through a Chamber Window Using Lidar Metrology Systems
NASA Technical Reports Server (NTRS)
Kubalak, David; Hadjimichael, Theodore; Ohl, Raymond; Slotwinski, Anthony; Telfer, Randal; Hayden, Joseph
2012-01-01
Lidar is a useful tool for taking metrology measurements without the need for physical contact with the parts under test. Lidar instruments are aimed at a target using azimuth and elevation stages, then focus a beam of coherent, frequency modulated laser energy onto the target, such as the surface of a mechanical structure. Energy from the reflected beam is mixed with an optical reference signal that travels in a fiber path internal to the instrument, and the range to the target is calculated based on the difference in the frequency of the returned and reference signals. In cases when the parts are in extreme environments, additional steps need to be taken to separate the operator and lidar from that environment. A model has been developed that accurately reduces the lidar data to an absolute position and accounts for the three media in the testbed air, fused silica, and vacuum but the approach can be adapted for any environment or material. The accuracy of laser metrology measurements depends upon knowing the parameters of the media through which the measurement beam travels. Under normal conditions, this means knowledge of the temperature, pressure, and humidity of the air in the measurement volume. In the past, chamber windows have been used to separate the measuring device from the extreme environment within the chamber and still permit optical measurement, but, so far, only relative changes have been diagnosed. The ability to make accurate measurements through a window presents a challenge as there are a number of factors to consider. In the case of the lidar, the window will increase the time-of-flight of the laser beam causing a ranging error, and refract the direction of the beam causing angular positioning errors. In addition, differences in pressure, temperature, and humidity on each side of the window will cause slight atmospheric index changes and induce deformation and a refractive index gradient within the window. Also, since the window is a
Detecting Positioning Errors and Estimating Correct Positions by Moving Window
Song, Ha Yoon; Lee, Jun Seok
2015-01-01
In recent times, improvements in smart mobile devices have led to new functionalities related to their embedded positioning abilities. Many related applications that use positioning data have been introduced and are widely being used. However, the positioning data acquired by such devices are prone to erroneous values caused by environmental factors. In this research, a detection algorithm is implemented to detect erroneous data over a continuous positioning data set with several options. Our algorithm is based on a moving window for speed values derived by consecutive positioning data. Both the moving average of the speed and standard deviation in a moving window compose a moving significant interval at a given time, which is utilized to detect erroneous positioning data along with other parameters by checking the newly obtained speed value. In order to fulfill the designated operation, we need to examine the physical parameters and also determine the parameters for the moving windows. Along with the detection of erroneous speed data, estimations of correct positioning are presented. The proposed algorithm first estimates the speed, and then the correct positions. In addition, it removes the effect of errors on the moving window statistics in order to maintain accuracy. Experimental verifications based on our algorithm are presented in various ways. We hope that our approach can help other researchers with regard to positioning applications and human mobility research. PMID:26624282
Detecting Positioning Errors and Estimating Correct Positions by Moving Window.
Song, Ha Yoon; Lee, Jun Seok
2015-01-01
In recent times, improvements in smart mobile devices have led to new functionalities related to their embedded positioning abilities. Many related applications that use positioning data have been introduced and are widely being used. However, the positioning data acquired by such devices are prone to erroneous values caused by environmental factors. In this research, a detection algorithm is implemented to detect erroneous data over a continuous positioning data set with several options. Our algorithm is based on a moving window for speed values derived by consecutive positioning data. Both the moving average of the speed and standard deviation in a moving window compose a moving significant interval at a given time, which is utilized to detect erroneous positioning data along with other parameters by checking the newly obtained speed value. In order to fulfill the designated operation, we need to examine the physical parameters and also determine the parameters for the moving windows. Along with the detection of erroneous speed data, estimations of correct positioning are presented. The proposed algorithm first estimates the speed, and then the correct positions. In addition, it removes the effect of errors on the moving window statistics in order to maintain accuracy. Experimental verifications based on our algorithm are presented in various ways. We hope that our approach can help other researchers with regard to positioning applications and human mobility research. PMID:26624282
Superharp — A wire scanner with absolute position readout for beam energy measurement at CEBAF
NASA Astrophysics Data System (ADS)
Yan, C.; Adderley, P.; Barker, D.; Beaufait, J.; Capek, K.; Carlini, R.; Dahlberg, J.; Feldl, E.; Jordan, K.; Kross, B.; Oren, W.; Wojcik, R.; VanDyke, J.
1995-02-01
The CEBAF superharp is an upgraded beam wire scanner which provides absolute beam position readout using a shaft encoder. Superharps allow for high precision measurements of the beam's profile and position ( Δx ˜ 10 μm). The Hall C endstation at CEBAF will use three pairs of superharps to perform beam energy measurements with 10 -3 accuracy. The three pairs are installed at the beginning, the mid-point and the end of the Hall C arc beamline. Using superharps in conjunction with a dual sensor system: the direct current pick-up and the bremsstrahlung detectors, beam profile measurements can be obtained over a wide beam current range of 1 ˜ 200 μA.
Absolute magnitude estimation and relative judgement approaches to subjective workload assessment
NASA Technical Reports Server (NTRS)
Vidulich, Michael A.; Tsang, Pamela S.
1987-01-01
Two rating scale techniques employing an absolute magnitude estimation method, were compared to a relative judgment method for assessing subjective workload. One of the absolute estimation techniques used was an unidimensional overall workload scale and the other was the multidimensional NASA-Task Load Index technique. Thomas Saaty's Analytic Hierarchy Process was the unidimensional relative judgment method used. These techniques were used to assess the subjective workload of various single- and dual-tracking conditions. The validity of the techniques was defined as their ability to detect the same phenomena observed in the tracking performance. Reliability was assessed by calculating test-retest correlations. Within the context of the experiment, the Saaty Analytic Hierarchy Process was found to be superior in validity and reliability. These findings suggest that the relative judgment method would be an effective addition to the currently available subjective workload assessment techniques.
Absolute value optimization to estimate phase properties of stochastic time series
NASA Technical Reports Server (NTRS)
Scargle, J. D.
1977-01-01
Most existing deconvolution techniques are incapable of determining phase properties of wavelets from time series data; to assure a unique solution, minimum phase is usually assumed. It is demonstrated, for moving average processes of order one, that deconvolution filtering using the absolute value norm provides an estimate of the wavelet shape that has the correct phase character when the random driving process is nonnormal. Numerical tests show that this result probably applies to more general processes.
NASA Astrophysics Data System (ADS)
Skaloud, J.; Rehak, M.; Lichti, D.
2014-03-01
This study highlights the benefit of precise aerial position control in the context of mapping using frame-based imagery taken by small UAVs. We execute several flights with a custom Micro Aerial Vehicle (MAV) octocopter over a small calibration field equipped with 90 signalized targets and 25 ground control points. The octocopter carries a consumer grade RGB camera, modified to insure precise GPS time stamping of each exposure, as well as a multi-frequency/constellation GNSS receiver. The GNSS antenna and camera are rigidly mounted together on a one-axis gimbal that allows control of the obliquity of the captured imagery. The presented experiments focus on including absolute and relative aerial control. We confirm practically that both approaches are very effective: the absolute control allows omission of ground control points while the relative requires only a minimum number of control points. Indeed, the latter method represents an attractive alternative in the context of MAVs for two reasons. First, the procedure is somewhat simplified (e.g. the lever-arm between the camera perspective and antenna phase centers does not need to be determined) and, second, its principle allows employing a single-frequency antenna and carrier-phase GNSS receiver. This reduces the cost of the system as well as the payload, which in turn increases the flying time.
An Absolute Proper motions and position catalog in the galaxy halos
NASA Astrophysics Data System (ADS)
Qi, Zhaoxiang
2015-08-01
We present a new catalog of absolute proper motions and updated positions derived from the same Space Telescope Science Institute digitized Schmidt survey plates utilized for the construction of the Guide Star Catalog II. As special attention was devoted to the absolutization process and removal of position, magnitude and color dependent systematic errors through the use of both stars and galaxies, this release is solely based on plate data outside the galactic plane, i.e. |b| ≥ 27o. The resulting global zero point error is less than 0.6 mas/yr, and the precision better than 4.0 mas/yr for objects brighter than RF = 18.5, rising to 9.0 mas/yr for objects with magnitude in the range 18.5 < RF < 20.0. The catalog covers 22,525 square degrees and lists 100,777,385 objects to the limiting magnitude of RF ˜ 20.8. Alignment with the International Celestial Reference System (ICRS) was made using 1288 objects common to the second realization of the International Celestial Reference Frame (ICRF2) at radio wavelengths. As a result, the coordinate axes realized by our astrometric data are believed to be aligned with the extragalactic radio frame to within ±0.2 mas at the reference epoch J2000.0. This makes our compilation one of the deepest and densest ICRF-registered astrometric catalogs outside the galactic plane. Although the Gaia mission is poised to set the new standard in catalog astronomy and will in many ways supersede this catalog, the methods and procedures reported here will prove useful to remove astrometric magnitude- and color-dependent systematic errors from the next generation of ground-based surveys reaching significantly deeper than the Gaia catalog.
Position estimation of transceivers in communication networks
Kent, Claudia A.; Dowla, Farid
2008-06-03
This invention provides a system and method using wireless communication interfaces coupled with statistical processing of time-of-flight data to locate by position estimation unknown wireless receivers. Such an invention can be applied in sensor network applications, such as environmental monitoring of water in the soil or chemicals in the air where the position of the network nodes is deemed critical. Moreover, the present invention can be arranged to operate in areas where a Global Positioning System (GPS) is not available, such as inside buildings, caves, and tunnels.
Synthetic Estimation Filters For Determination Of Position
NASA Technical Reports Server (NTRS)
Juday, Richard D.; Monroe, Stanley E., Jr.
1989-01-01
Concept of synthetic estimation filter (SEF) proposed to extend concept of matched filter from mere recognition of object to recognition of position and orientation relative to observing apparatus. Optical filter of this general type correlated with input image to obtain signal indicative of match between input and filter images.
Improving absolute gravity estimates by the L p -norm approximation of the ballistic trajectory
NASA Astrophysics Data System (ADS)
Nagornyi, V. D.; Svitlov, S.; Araya, A.
2016-04-01
Iteratively re-weighted least squares (IRLS) were used to simulate the L p -norm approximation of the ballistic trajectory in absolute gravimeters. Two iterations of the IRLS delivered sufficient accuracy of the approximation without a significant bias. The simulations were performed on different samplings and perturbations of the trajectory. For the platykurtic distributions of the perturbations, the L p -approximation with 3 < p < 4 was found to yield several times more precise gravity estimates compared to the standard least-squares. The simulation results were confirmed by processing real gravity observations performed at the excessive noise conditions.
Position estimator for underground mine equipment
Shaffer, G.K.; Stentz, A.; Whittaker, W.L.; Fitzpatrick, K.W. )
1992-10-01
This paper describes a 2-D perception system that exploits the accuracy and resolution of a laser range sensor to determine the position and orientation of a mobile robot in a mine environment. The perception system detects features from range sensor data and matches the features to a map of the mine to compute the sensor position. The features used are line segments and corners, which represent the typical geometry of the mine walls and intersections found in room-0and-pillar type mining. The position estimate is refined by minimizing the error between the map and sensed features. This position information can be used for autonomous navigation when a map of the mine is available or to survey the mine to build such a map. The technique is applied to robot navigation in a mine mockup. A refinement of this system could guide machines to yield productive, safe mining operations.
NASA Astrophysics Data System (ADS)
Favreau, G.; Boucher, M.; Luck, B.; Pfeffer, J.; Genthon, P.; Hinderer, J.
2009-04-01
Important and fast groundwater storage changes occur in tropical monsoon regions in response to seasonal rainfall and subsequent surface water redistribution. In West Africa, one main goal of the GHYRAF experiment (Gravity and Hydrology in Africa, 2008-2010) is to compare absolute gravimetric measurements with dense hydrological surveys to better estimate and model water storage changes at various time scales. Magnetic Resonance Sounding (MRS) is a non-invasive geophysical method having a signal directly related to groundwater quantity. In SW Niger, MRS surveys were performed concurrently with gravimetric (FG5) measurements for monitoring seasonal changes in groundwater storage. Water table levels were recorded on a 4-piezometers profile (~500 m) near a temporary pond (area ~2 ha) fed by sandy gullies. The volume of water drained from the pond to the phreatic aquifer was computed to be ~100,000 m3/yr. Large piezometric fluctuations (3-6 m) occurred in response to indirect recharge through the pond during the 2008 rainy season (July-Sept.), with stronger water table fluctuations recorded near the pond. Absolute gravimetric (FG5) measurements were performed at a distance of 150 m from the pond, in order to minimize the influence of 2D effects on gravimetric records. The increase in absolute gravity measured between two dates (July-Sept.) was 8.7 ± 2.6 µGal; for the same period, the measured water table rise was +3.0 m. Considering these values, a first estimate of the groundwater storage increase is 0.2 m, corresponding to a porosity filled up by the water table rise of ~7%. Repeated MRS surveys were performed at the same location for different dates (three soundings in Sept., one in Dec.). The MRS water content was 13%, with little variation in space (±3%) along the piezometric profile. In response to a 3 metres drop in the water table (Sept- Dec), there was no significant recorded change in the MRS water content and/or in the estimated MRS water table depth. MRS
Ludwig, Christina; Claassen, Manfred; Schmidt, Alexander; Aebersold, Ruedi
2012-03-01
For many research questions in modern molecular and systems biology, information about absolute protein quantities is imperative. This information includes, for example, kinetic modeling of processes, protein turnover determinations, stoichiometric investigations of protein complexes, or quantitative comparisons of different proteins within one sample or across samples. To date, the vast majority of proteomic studies are limited to providing relative quantitative comparisons of protein levels between limited numbers of samples. Here we describe and demonstrate the utility of a targeting MS technique for the estimation of absolute protein abundance in unlabeled and nonfractionated cell lysates. The method is based on selected reaction monitoring (SRM) mass spectrometry and the "best flyer" hypothesis, which assumes that the specific MS signal intensity of the most intense tryptic peptides per protein is approximately constant throughout a whole proteome. SRM-targeted best flyer peptides were selected for each protein from the peptide precursor ion signal intensities from directed MS data. The most intense transitions per peptide were selected from full MS/MS scans of crude synthetic analogs. We used Monte Carlo cross-validation to systematically investigate the accuracy of the technique as a function of the number of measured best flyer peptides and the number of SRM transitions per peptide. We found that a linear model based on the two most intense transitions of the three best flying peptides per proteins (TopPep3/TopTra2) generated optimal results with a cross-correlated mean fold error of 1.8 and a squared Pearson coefficient R(2) of 0.88. Applying the optimized model to lysates of the microbe Leptospira interrogans, we detected significant protein abundance changes of 39 target proteins upon antibiotic treatment, which correlate well with literature values. The described method is generally applicable and exploits the inherent performance advantages of SRM
A modified algorithm for estimating Absolute Salinity in the global ocean
NASA Astrophysics Data System (ADS)
Uchida, H.; Kawano, T.; Aoyama, M.; Wakita, M.; Nishino, S.; Ozawa, S.
2012-04-01
In 2010, the Intergovernmental Oceanographic Commission (IOC), International Association for the Physical Sciences of the Ocean (IAPSO) and the Scientific Committee on Oceanic Research (SCOR) adopted the new Thermodynamic Equation of Seawater - 2010 (TEOS-10). One of the substantial changes from previous practice is the use of Absolute Salinity (g/kg) instead of Practical Salinity in TEOS-10. Since there is no sensor that can precisely measure Absolute Salinity in situ, an algorithm to estimate Absolute Salinity was provided along with TEOS-10. The algorithm exploits the correlation between the Absolute Salinity anomaly (dSA) relative to the Reference-Composition Salinity and the silicate concentration, making use of the global atlas of silicate concentrations, and the correlation coefficient is a function of latitude determined for each ocean basin (McDougall et al., Ocean Sci. Discuss., 6, 215-242, 2009). However, the dSA shows latitude dependent systematic discrepancy from dSA estimated from another model which exploits more precisely the correlation between dSA and nutrient concentrations and carbonate system parameters based on mathematical investigation (Pawlowicz et al., Ocean Sci., 7, 363-387, 2011). These two models for estimating dSA were evaluated using measured dSA with an oscillation-type density meter for the North Pacific, the Bering Sea, and the Arctic Ocean. The measured dSA agreed well with the estimates of the multi-parameter model. These results suggest that the algorithm for estimating dSA used in TEOS-10 have latitude dependent systematic biases (~0.01 g/kg), probably due to systematic biases in density data used. To minimize these systematic biases, a simple relationship between dSA and silicate concentration was determined for the global ocean, regardless of latitude dependency, by combining previously used and newly obtained density data. For the surface water of the Arctic Ocean, however, dSA is related with alkalinity by the input of
Zhang, Dapeng; Long, Zhiqiang; Xue, Song; Zhang, Junge
2012-01-01
This paper studies an absolute positioning sensor for a high-speed maglev train and its fault diagnosis method. The absolute positioning sensor is an important sensor for the high-speed maglev train to accomplish its synchronous traction. It is used to calibrate the error of the relative positioning sensor which is used to provide the magnetic phase signal. On the basis of the analysis for the principle of the absolute positioning sensor, the paper describes the design of the sending and receiving coils and realizes the hardware and the software for the sensor. In order to enhance the reliability of the sensor, a support vector machine is used to recognize the fault characters, and the signal flow method is used to locate the faulty parts. The diagnosis information not only can be sent to an upper center control computer to evaluate the reliability of the sensors, but also can realize on-line diagnosis for debugging and the quick detection when the maglev train is off-line. The absolute positioning sensor we study has been used in the actual project. PMID:23112619
Zhang, Dapeng; Long, Zhiqiang; Xue, Song; Zhang, Junge
2012-01-01
This paper studies an absolute positioning sensor for a high-speed maglev train and its fault diagnosis method. The absolute positioning sensor is an important sensor for the high-speed maglev train to accomplish its synchronous traction. It is used to calibrate the error of the relative positioning sensor which is used to provide the magnetic phase signal. On the basis of the analysis for the principle of the absolute positioning sensor, the paper describes the design of the sending and receiving coils and realizes the hardware and the software for the sensor. In order to enhance the reliability of the sensor, a support vector machine is used to recognize the fault characters, and the signal flow method is used to locate the faulty parts. The diagnosis information not only can be sent to an upper center control computer to evaluate the reliability of the sensors, but also can realize on-line diagnosis for debugging and the quick detection when the maglev train is off-line. The absolute positioning sensor we study has been used in the actual project. PMID:23112619
Position Estimation of Transceivers in Communication Networks
Dowla, F; Kent, C
2004-01-20
With rapid developments in wireless sensor networks, there is a growing need for transceiver position estimation independent of GPS, which may not be available in indoor networks. Our approach is to use range estimates from time-of-flight (TOF) measurements, a technique well suited to large bandwidth physical links, such as in ultra-wideband (UWB) systems. In our UWB systems, pulse duration less than 200 psecs can easily be resolved to less than a foot. Assuming an encoded UWB physical layer, we first test positioning accuracy using simulations. We are interested in sensitivity to range errors and the required number of ranging nodes, and we show that in a high-precision environment, such as UWB, the optimal number of transmitters is four. Four transmitters with {+-}20ft. range error can locate a receiver to within one or two feet. We then implement these algorithms on an 802.11 wireless network and demonstrate the ability to locate a network access point to approximately 20 feet.
Thorbjarnarson, K.W.; Huntley, D.; McCarty, J.J.
1998-01-01
Independent estimates of absolute hydraulic conductivity were obtained by a standard aquifer pumping test and a forced-gradient tracer test in a highly heterogeneous aquifer. An aquifer hydraulic test was conducted to evaluate the average hydraulic conductivity (K), and to establish steady-state flow for the tracer test. An average K of 48 m/day was interpreted from the draw-down data in a fully screened well. Type-curve matching and simulation with MODFLOW of the hydraulic response in partially screened wells indicates K of 10 to 15 m/day for the upper section and 71 to 73 m/day for the deeper section. Iodide and fluorescent dye tracers were injected at low rates in wells located approximately 8 m upgradient of the production well. Tracer breakthrough was monitored in the production well and at ten depth intervals within the fully screened monitoring well. Interpretation of tracer response in the production well reveals tracer transport is limited to a 3.9 m thick section of the 20 m thick aquifer, with a hydraulic conductivity of 248 m/day. However, the depth distribution of these permeable strata cannot be determined from the production well tracer response. When sampled at 1.5 m depth intervals in the monitoring well, breakthrough was observed in only three intervals along the entire 18.2 m screened well. K estimates from tracer travel time within discrete high-permeability strata range from 31 to 317 m/day. Inclusion of permeameter K estimates for the lower permeability aquifer sands result in a range in relative K of 0.01 to 1.0. This field site has the highest absolute K estimate for a discrete stratum and the widest range in relative hydraulic conductivity among research field sites with K estimates for discrete strata. Within such a highly stratified aquifer, the use of an average K from an aquifer pumping test to predict solute transport results in great underestimation of transport distances for a given time period.
Evaluating multi-exposure speckle imaging estimates of absolute autocorrelation times.
Kazmi, S M Shams; Wu, Rebecca K; Dunn, Andrew K
2015-08-01
Multi-exposure speckle imaging (MESI) is a camera-based flow-imaging technique for quantitative blood-flow monitoring by mapping the speckle-contrast dependence on camera exposure duration. The ability of laser speckle contrast imaging to measure the temporal dynamics of backscattered and interfering coherent fields, in terms of the accuracy of autocorrelation measurements, is a major unresolved issue in quantitative speckle flowmetry. MESI fits for a number of parameters including an estimate of the electric field autocorrelation decay time from the imaged speckles. We compare the MESI-determined correlation times in vitro and in vivo with accepted true values from direct temporal measurements acquired with a photon-counting photon-multiplier tube and an autocorrelator board. The correlation times estimated by MESI in vivo remain on average within 14±11% of those obtained from direct temporal autocorrelation measurements, demonstrating that MESI yields highly comparable statistics of the time-varying fields that can be useful for applications seeking not only quantitative blood flow dynamics but also absolute perfusion. PMID:26258378
NASA Technical Reports Server (NTRS)
Anderson, James E.
1986-01-01
Airborne remote sensing systems, as well as those on board Earth orbiting satellites, sample electromagnetic energy in discrete wavelength regions and convert the total energy sampled into data suitable for processing by digital computers. In general, however, the total amount of energy reaching a sensor system located at some distance from the target is composed not only of target related energy, but, in addition, contains a contribution originating from the atmosphere itself. Thus, some method must be devised for removing or at least minimizing the effects of the atmosphere. The LOWTRAN-6 Program was designed to estimate atmospheric transmittance and radiance for a given atmospheric path at moderate spectral resolution over an operational wavelength region from 0.25 to 28.5 microns. In order to compute the Thermal Infrared Multispectral Scanner (TIMS) digital values which were recorded in the absence of the atmosphere, the parameters derived from LOWTRAN-6 are used in a correction equation. The TIMS data were collected at 1:00 a.m. local time on November 21, 1983, over a recirculating cooling pond for a power plant in southeastern Mississippi. The TIMS data were analyzed before and after atmospheric corrections were applied using a band ratioing model to compute the absolute surface temperature of various points on the power plant cooling pond. The summarized results clearly demonstrate the desirability of applying atmospheric corrections.
Surveying implicit solvent models for estimating small molecule absolute hydration free energies
Knight, Jennifer L.
2011-01-01
Implicit solvent models are powerful tools in accounting for the aqueous environment at a fraction of the computational expense of explicit solvent representations. Here, we compare the ability of common implicit solvent models (TC, OBC, OBC2, GBMV, GBMV2, GBSW, GBSW/MS, GBSW/MS2 and FACTS) to reproduce experimental absolute hydration free energies for a series of 499 small neutral molecules that are modeled using AMBER/GAFF parameters and AM1-BCC charges. Given optimized surface tension coefficients for scaling the surface area term in the nonpolar contribution, most implicit solvent models demonstrate reasonable agreement with extensive explicit solvent simulations (average difference 1.0-1.7 kcal/mol and R2=0.81-0.91) and with experimental hydration free energies (average unsigned errors=1.1-1.4 kcal/mol and R2=0.66-0.81). Chemical classes of compounds are identified that need further optimization of their ligand force field parameters and others that require improvement in the physical parameters of the implicit solvent models themselves. More sophisticated nonpolar models are also likely necessary to more effectively represent the underlying physics of solvation and take the quality of hydration free energies estimated from implicit solvent models to the next level. PMID:21735452
Precision absolute measurement and alignment of laser beam direction and position.
Schütze, Daniel; Müller, Vitali; Heinzel, Gerhard
2014-10-01
For the construction of high-precision optical assemblies, direction and position measurement and control of the involved laser beams are essential. While optical components such as beamsplitters and mirrors can be positioned and oriented accurately using coordinate measuring machines (CMMs), the position and direction control of laser beams is a much more intriguing task since the beams cannot be physically contacted. We present an easy-to-implement method to both align and measure the direction and position of a laser beam using a CMM in conjunction with a position-sensitive quadrant photodiode. By comparing our results to calibrated angular and positional measurements we can conclude that with the proposed method, a laser beam can be both measured and aligned to the desired direction and position with 10 μrad angular and 3 μm positional accuracy. PMID:25322238
ERIC Educational Resources Information Center
Koskey, Kristin L. K.; Stewart, Victoria C.
2014-01-01
This small "n" observational study used a concurrent mixed methods approach to address a void in the literature with regard to the qualitative meaningfulness of the data yielded by absolute magnitude estimation scaling (MES) used to rate subjective stimuli. We investigated whether respondents' scales progressed from less to more and…
NASA Astrophysics Data System (ADS)
Nielsen, Lars; Hansen, Jens Morten; Hede, Mikkel Ulfeldt; Clemmensen, Lars B.; Pejrup, Morten; Noe-Nygaard, Nanna
2014-11-01
Relative sea level curves contain coupled information about absolute sea level change and vertical lithospheric movement. Such curves may be constructed based on, for example tide gauge data for the most recent times and different types of geological data for ancient times. Correct account for vertical lithospheric movement is essential for estimation of reliable values of absolute sea level change from relative sea level data and vise versa. For modern times, estimates of vertical lithospheric movement may be constrained by data (e.g. GPS-based measurements), which are independent from the relative sea level data. Similar independent data do not exist for ancient times. The purpose of this study is to test two simple inversion approaches for simultaneous estimation of lithospheric uplift rates and absolute sea level change rates for ancient times in areas where a dense coverage of relative sea level data exists and well-constrained average lithospheric movement values are known from, for example glacial isostatic adjustment (GIA) models. The inversion approaches are tested and used for simultaneous estimation of lithospheric uplift rates and absolute sea level change rates in southwest Scandinavia from modern relative sea level data series that cover the period from 1900 to 2000. In both approaches, a priori information is required to solve the inverse problem. A priori information about the average vertical lithospheric movement in the area of interest is critical for the quality of the obtained results. The two tested inversion schemes result in estimated absolute sea level rise of ˜1.2/1.3 mm yr-1 and vertical uplift rates ranging from approximately -1.4/-1.2 mm yr-1 (subsidence) to about 5.0/5.2 mm yr-1 if an a priori value of 1 mm yr-1 is used for the vertical lithospheric movement throughout the study area. In case the studied time interval is broken into two time intervals (before and after 1970), absolute sea level rise values of ˜0.8/1.2 mm yr-1 (before
HIV-positive woman's appeal for absolute discharge dismissed on grounds of public safety.
2008-07-01
On 7 December 2007, the Nova Scotia Court of Appeal dismissed an appeal from a June 2007 order of the Nova Scotia Review Board providing that an HIV-positive woman, "K.A.S.," be discharged with conditions to reside in hospital-approved premises, to continue with recommended mental health treatment, and to abstain from alcohol and illicit drug use because she continued to present a significant risk to the safety of the public. PMID:18727198
NASA Technical Reports Server (NTRS)
Roush, Ted L.; Roush, Eileen A.; Singer, Robert B.; Lucey, Paul G.
1992-01-01
IRTF spectrophotometric observations of Mars obtained during the 1986 opposition are the bases for the present estimates of 2.0-4.15 micron absolute flux and radiance factor values. The bright/dark ratios obtained show a wavelength dependence similar to that observed by Bell and Crisp (1991) in 1990, but the spectral contrast for 1986 is lower than in those observations; this difference could be due to changes in the location, sample are size, and/or suspended atmospheric dust.
Integration Window Position Estimation in TR Receivers
Nekoogar, F; Dowla, F; Spiridon, A
2005-03-15
Transmitted-reference (TR) receivers avoid the stringent synchronization requirements that exist in conventional pulse detection schemes. However, the performance of such receivers is highly sensitive to precise timing acquisition and tracking as well as the length of their integration window. This window in TR receivers defines the limits of the finite integrator prior to the final decision making block. In this paper, we propose a novel technique that allows us to extract the timing information of the integration window very accurately in UWB-TR receivers in the presence of channel noise. The principles of the method are presented and the BER performance of a modified UWB-TR receiver is investigated by computer simulation. Our studies show that the proposed estimation technique adds value to the conventional TR receiver structure with modest increase in complexity.
NASA Astrophysics Data System (ADS)
Allouche, Fatmé; Glindemann, Andreas; Aristidi, Eric; Vakili, Farrokh
2010-07-01
For the detection and direct imaging of exoplanets, when the intensity ratio between a star and its orbiting planet can largely exceed 106, coronagraphic methods are mandatory. In 1996, a concept of achromatic interferocoronagraph (AIC) was presented by J. Gay and Y. Rabbia for the detection of very faint stellar companions, such as exoplanets. In an earlier paper, we presented a modified version of the AIC permitting to determine the relative position of these faint companions with respect to the parent star, a problem unsolved in the original design of the AIC. Our modification lied in the use of cylindrical lens doublets as field rotator. By placing two of them in one arm of the interferometric set-up of AIC, we destroyed the axis of symmetry induced by the AIC's original design. Our theoretical study, along with the numerical computations, presented then, and the preliminary test bench results aiming at validating the cylindrical lens doublet field rotation capability, presented in this paper, show that the axis of symmetry is destroyed when one of the cylindrical doublets is rotated around the optic axis.
Holleczek, Bernd; Brenner, Hermann
2013-05-01
Period analysis is increasingly employed in analyses of long-term survival of patients with chronic diseases such as cancer, as it derives more up-to-date survival estimates than traditional cohort based approaches. It has recently been extended with regression modelling using generalized linear models, which increases the precision of the survival estimates and enables to assess and account for effects of additional covariates. This paper provides a detailed presentation how model based period analysis may be used to derive population-based absolute and relative survival estimates using the freely available R language and statistical environment and already available R programs for period analysis. After an introduction of the underlying regression model and a description of the software tools we provide a step-by-step implementation of two regression models in R and illustrate how estimates and a test for trend over time in relative survival may be derived using data from a population based cancer registry. PMID:23116692
Estimation of base station position using timing advance measurements
NASA Astrophysics Data System (ADS)
Raitoharju, Matti; Ali-Löytty, Simo; Wirola, Lauri
2011-10-01
Timing Advance is used in TDMA (Time Division Multiple Access) systems, such as GSM and LTE, to synchronize the mobile phone to the cellular BS (Base Station). Mobile phone positioning can use TA measurements if BS positions are known, but in many cases BS positions are not in the public domain. In this work we study how to use a set of TA measurements taken by mobile phones at known positions to estimate the position of a BS. This paper describes two methods -- GMF (Gaussian Mixture Filter) and PMF (Point Mass Filter) for estimation of the BS position. Positioning performance is evaluated using simulated and real measurements. In suburban field tests, TA measurements suffice to determine BS position with an error comparable to the TA granularity (550m). GMF computes BS position much faster than PMF and is only slightly less accurate.
Minimum mean absolute error estimation over the class of generalized stack filters
NASA Astrophysics Data System (ADS)
Lin, Jean-Hsang; Coyle, Edward J.
1990-04-01
A class of sliding window operators called generalized stack filters is developed. This class of filters, which includes all rank order filters, stack filters, and digital morphological filters, is the set of all filters possessing the threshold decomposition architecture and a consistency property called the stacking property. Conditions under which these filters possess the weak superposition property known as threshold decomposition are determined. An algorithm is provided for determining a generalized stack filter which minimizes the mean absolute error (MAE) between the output of the filter and a desired input signal, given noisy observations of that signal. The algorithm is a linear program whose complexity depends on the window width of the filter and the number of threshold levels observed by each of the filters in the superposition architecture. The results show that choosing the generalized stack filter which minimizes the MAE is equivalent to massively parallel threshold-crossing decision making when the decisions are consistent with each other.
Byun, Yeun-Sub; Jeong, Rag-Gyo; Kang, Seok-Won
2015-01-01
The real-time recognition of absolute (or relative) position and orientation on a network of roads is a core technology for fully automated or driving-assisted vehicles. This paper presents an empirical investigation of the design, implementation, and evaluation of a self-positioning system based on a magnetic marker reference sensing method for an autonomous vehicle. Specifically, the estimation accuracy of the magnetic sensing ruler (MSR) in the up-to-date estimation of the actual position was successfully enhanced by compensating for time delays in signal processing when detecting the vertical magnetic field (VMF) in an array of signals. In this study, the signal processing scheme was developed to minimize the effects of the distortion of measured signals when estimating the relative positional information based on magnetic signals obtained using the MSR. In other words, the center point in a 2D magnetic field contour plot corresponding to the actual position of magnetic markers was estimated by tracking the errors between pre-defined reference models and measured magnetic signals. The algorithm proposed in this study was validated by experimental measurements using a test vehicle on a pilot network of roads. From the results, the positioning error was found to be less than 0.04 m on average in an operational test. PMID:26580622
Byun, Yeun-Sub; Jeong, Rag-Gyo; Kang, Seok-Won
2015-01-01
The real-time recognition of absolute (or relative) position and orientation on a network of roads is a core technology for fully automated or driving-assisted vehicles. This paper presents an empirical investigation of the design, implementation, and evaluation of a self-positioning system based on a magnetic marker reference sensing method for an autonomous vehicle. Specifically, the estimation accuracy of the magnetic sensing ruler (MSR) in the up-to-date estimation of the actual position was successfully enhanced by compensating for time delays in signal processing when detecting the vertical magnetic field (VMF) in an array of signals. In this study, the signal processing scheme was developed to minimize the effects of the distortion of measured signals when estimating the relative positional information based on magnetic signals obtained using the MSR. In other words, the center point in a 2D magnetic field contour plot corresponding to the actual position of magnetic markers was estimated by tracking the errors between pre-defined reference models and measured magnetic signals. The algorithm proposed in this study was validated by experimental measurements using a test vehicle on a pilot network of roads. From the results, the positioning error was found to be less than 0.04 m on average in an operational test. PMID:26580622
Positional estimation techniques for an autonomous mobile robot
NASA Technical Reports Server (NTRS)
Nandhakumar, N.; Aggarwal, J. K.
1990-01-01
Techniques for positional estimation of a mobile robot navigation in an indoor environment are described. A comprehensive review of the various positional estimation techniques studied in the literature is first presented. The techniques are divided into four different types and each of them is discussed briefly. Two different kinds of environments are considered for positional estimation; mountainous natural terrain and an urban, man-made environment with polyhedral buildings. In both cases, the robot is assumed to be equipped with single visual camera that can be panned and tilted and also a 3-D description (world model) of the environment is given. Such a description could be obtained from a stereo pair of aerial images or from the architectural plans of the buildings. Techniques for positional estimation using the camera input and the world model are presented.
Estimating Relative Positions of Outer-Space Structures
NASA Technical Reports Server (NTRS)
Balian, Harry; Breckenridge, William; Brugarolas, Paul
2009-01-01
A computer program estimates the relative position and orientation of two structures from measurements, made by use of electronic cameras and laser range finders on one structure, of distances and angular positions of fiducial objects on the other structure. The program was written specifically for use in determining errors in the alignment of large structures deployed in outer space from a space shuttle. The program is based partly on equations for transformations among the various coordinate systems involved in the measurements and on equations that account for errors in the transformation operators. It computes a least-squares estimate of the relative position and orientation. Sequential least-squares estimates, acquired at a measurement rate of 4 Hz, are averaged by passing them through a fourth-order Butterworth filter. The program is executed in a computer aboard the space shuttle, and its position and orientation estimates are displayed to astronauts on a graphical user interface.
NASA Astrophysics Data System (ADS)
Omori, Takayuki; Sano, Katsuhiro; Yoneda, Minoru
2014-05-01
This paper presents new correction approaches for "early" radiocarbon ages to reconstruct the Paleolithic absolute chronology. In order to discuss time-space distribution about the replacement of archaic humans, including Neanderthals in Europe, by the modern humans, a massive data, which covers a wide-area, would be needed. Today, some radiocarbon databases focused on the Paleolithic have been published and used for chronological studies. From a viewpoint of current analytical technology, however, the any database have unreliable results that make interpretation of radiocarbon dates difficult. Most of these unreliable ages had been published in the early days of radiocarbon analysis. In recent years, new analytical methods to determine highly-accurate dates have been developed. Ultrafiltration and ABOx-SC methods, as new sample pretreatments for bone and charcoal respectively, have attracted attention because they could remove imperceptible contaminates and derive reliable accurately ages. In order to evaluate the reliability of "early" data, we investigated the differences and variabilities of radiocarbon ages on different pretreatments, and attempted to develop correction functions for the assessment of the reliability. It can be expected that reliability of the corrected age is increased and the age applied to chronological research together with recent ages. Here, we introduce the methodological frameworks and archaeological applications.
Easy Absolute Values? Absolutely
ERIC Educational Resources Information Center
Taylor, Sharon E.; Mittag, Kathleen Cage
2015-01-01
The authors teach a problem-solving course for preservice middle-grades education majors that includes concepts dealing with absolute-value computations, equations, and inequalities. Many of these students like mathematics and plan to teach it, so they are adept at symbolic manipulations. Getting them to think differently about a concept that they…
Huber's M-estimation in relative GPS positioning: computational aspects
NASA Astrophysics Data System (ADS)
Chang, X.-W.; Guo, Y.
2005-08-01
When GPS signal measurements have outliers, using least squares (LS) estimation is likely to give poor position estimates. One of the typical approaches to handle this problem is to use robust estimation techniques. We study the computational issues of Huber’s M-estimation applied to relative GPS positioning. First for code-based relative positioning, we use simulation results to show that Newton’s method usually converges faster than the iteratively reweighted least squares (IRLS) method, which is often used in geodesy for computing robust estimates of parameters. Then for code- and carrier-phase-based relative positioning, we present a recursive modified Newton method to compute Huber’s M-estimates of the positions. The structures of the model are exploited to make the method efficient, and orthogonal transformations are used to ensure numerical reliability of the method. Economical use of computer memory is also taken into account in designing the method. Simulation results show that the method is effective.
Hensen, Ulf; Grubmüller, Helmut; Lange, Oliver F
2009-07-01
The quasiharmonic approximation is the most widely used estimate for the configurational entropy of macromolecules from configurational ensembles generated from atomistic simulations. This method, however, rests on two assumptions that severely limit its applicability, (i) that a principal component analysis yields sufficiently uncorrelated modes and (ii) that configurational densities can be well approximated by Gaussian functions. In this paper we introduce a nonparametric density estimation method which rests on adaptive anisotropic kernels. It is shown that this method provides accurate configurational entropies for up to 45 dimensions thus improving on the quasiharmonic approximation. When embedded in the minimally coupled subspace framework, large macromolecules of biological interest become accessible, as demonstrated for the 67-residue coldshock protein. PMID:19658735
NASA Astrophysics Data System (ADS)
Shaar, R.; Tauxe, L.
2015-12-01
Absolute paleointensity data are essential for understanding Earth's deep interior, climatic modeling, and geochronology applications, among others. Paleointensity data are derived from experiments in which the ancient TRM is replaced by a laboratory controlled TRM. This procedure is built on the assumption that the process of ancient TRM acquisition is entirely reproducible in the lab. Here we show experimental results violating this assumption in a manner not expected from standard theory. We prepared 118 pairs of nearly identical specimens. One specimen from each pair was given laboratory TRM and allowed to "age" in a controlled fixed field, identical and parallel to the laboratory TRM field, for two years. After two years the second specimen was given a "fresh" TRM. Thus, the two specimens in each pair differ in only one significant respect: the time elapsed from the TRM acquisition. We carried out IZZI-type absolute paleointensity experiments on the two groups. Under the assumption of TRM stability we expect that the behavior of the twin specimens in the experiment would be exactly the same. Yet, we found a small but systematic difference between the "aged" and the "fresh" TRM. The "aged" TRM yield more curved and zigzaggy Arai plots, and exhibit a shift in the blocking/unblocking spectra. This effect leads to a systematic bias in paleointensity estimates caused only by room-temperature instability of TRM. The change in TRM properties is likely caused by irreversible changes in micromagnetic structures of non single domains.
Rapid position estimation and tracking for autonomous driving
NASA Astrophysics Data System (ADS)
Wang, Patrick K.; Torrione, Peter A.; Collins, Leslie M.; Morton, Kenneth D., Jr.
2012-06-01
A method is presented for determining the position and orientation of a vehicle from a single, color video taken from the hood of the vehicle, for the purpose of assisting its autonomous operation at very high speeds on rural roads. An implicit perspective transformation allows estimation of the vehicle's orientation and cross-road image features. From these, an adaptive road model is built and the horizontal position of the vehicle can be estimated. This method makes very few assumptions about the structure of the road or the path of the vehicle. In a realistic, simulated environment, good road model construction and vehicle position estimation are achieved at frame rates suitable for real-time high speed driving.
On-line dialysate infusion to estimate absolute blood volume in dialysis patients.
Schneditz, Daniel; Schilcher, Gernot; Ribitsch, Werner; Krisper, Peter; Haditsch, Bernd; Kron, Joachim
2014-01-01
It was the aim to measure the distribution volume and the elimination of ultra-pure dialysate in stable hemodialysis patients during on-line hemodiafiltration (HDF). Dialysate was automatically infused as a volume indicator using standard on-line HDF equipment. Indicator concentration was noninvasively measured in the arterial blood-line (using the blood volume monitor, Fresenius Medical Care, Bad Homburg vor der Höhe, Germany), and its time course was analyzed to obtain the elimination rate and the distribution volume V(t) at the time of dilution. Blood volume at treatment start (V0) was calculated accounting for the degree of intradialytic hemoconcentration. Five patients (two females) were studied during 15 treatments. Two to six measurements using indicator volumes ranging from 60 to 210 ml were done in each treatment. V0 was 4.59 ± 1.15 L and larger than the volume of 4.08 ± 0.48 L estimated from anthropometric relationships. The mean half-life of infused volume was 17.2 ± 29.7 min. Given predialysis volume expansion V0 was consistent with blood volume determined from anthropometric measurements. Information on blood volume could substantially improve volume management in hemodialysis patients and fluid therapy in intensive care patients undergoing extracorporeal blood treatment. The system has the potential for complete automation using proper control inputs for BVM and HDF modules of the dialysis machine. PMID:24814842
Use of vehicle magnetic signatures for position estimation
NASA Astrophysics Data System (ADS)
Taghvaeeyan, S.; Rajamani, R.
2011-09-01
This letter analyzes the magnetic signatures of cars and investigates the use of anisotropic magnetoresistive sensors to estimate the relative position of a vehicle from its magnetic signature. Theoretical analysis and experimental measurements both show that vehicle magnetic field has a first order inverse relationship with distance at small distances. However, the parameters in the magnetic field-distance relationship vary significantly with the type and size of car. A sensor system consisting of 2 magnetoresistive sensors and an extended Kalman filter can adaptively estimate these parameters in real-time. Experimental results from tests with various vehicles show that the developed sensor system can reliably estimate vehicle distance from magnetic field measurements.
Approaches to relativistic positioning around Earth and error estimations
NASA Astrophysics Data System (ADS)
Puchades, Neus; Sáez, Diego
2016-01-01
In the context of relativistic positioning, the coordinates of a given user may be calculated by using suitable information broadcast by a 4-tuple of satellites. Our 4-tuples belong to the Galileo constellation. Recently, we estimated the positioning errors due to uncertainties in the satellite world lines (U-errors). A distribution of U-errors was obtained, at various times, in a set of points covering a large region surrounding Earth. Here, the positioning errors associated to the simplifying assumption that photons move in Minkowski space-time (S-errors) are estimated and compared with the U-errors. Both errors have been calculated for the same points and times to make comparisons possible. For a certain realistic modeling of the world line uncertainties, the estimated S-errors have proved to be smaller than the U-errors, which shows that the approach based on the assumption that the Earth's gravitational field produces negligible effects on photons may be used in a large region surrounding Earth. The applicability of this approach - which simplifies numerical calculations - to positioning problems, and the usefulness of our S-error maps, are pointed out. A better approach, based on the assumption that photons move in the Schwarzschild space-time governed by an idealized Earth, is also analyzed. More accurate descriptions of photon propagation involving non symmetric space-time structures are not necessary for ordinary positioning and spacecraft navigation around Earth.
Estimating missing marker positions using low dimensional Kalman smoothing.
Burke, M; Lasenby, J
2016-06-14
Motion capture is frequently used for studies in biomechanics, and has proved particularly useful in understanding human motion. Unfortunately, motion capture approaches often fail when markers are occluded or missing and a mechanism by which the position of missing markers can be estimated is highly desirable. Of particular interest is the problem of estimating missing marker positions when no prior knowledge of marker placement is known. Existing approaches to marker completion in this scenario can be broadly divided into tracking approaches using dynamical modelling, and low rank matrix completion. This paper shows that these approaches can be combined to provide a marker completion algorithm that not only outperforms its respective components, but also solves the problem of incremental position error typically associated with tracking approaches. PMID:27155749
ERIC Educational Resources Information Center
Ladin, Keren; Daniels, Norman; Kawachi, Ichiro
2010-01-01
Purpose: Socioeconomic inequality has been associated with higher levels of morbidity and mortality. This study explores the role of absolute and relative deprivation in predicting late-life depression on both individual and country levels. Design and Methods: Country- and individual-level inequality indicators were used in multivariate logistic…
2013-01-01
Background National smoking-specific lung cancer mortality rates are unavailable, and studies presenting estimates are limited, particularly by histology. This hinders interpretation. We attempted to rectify this by deriving estimates indirectly, combining data from national rates and epidemiological studies. Methods We estimated study-specific absolute mortality rates and variances by histology and smoking habit (never/ever/current/former) based on relative risk estimates derived from studies published in the 20th century, coupled with WHO mortality data for age 70–74 for the relevant country and period. Studies with populations grossly unrepresentative nationally were excluded. 70–74 was chosen based on analyses of large cohort studies presenting rates by smoking and age. Variations by sex, period and region were assessed by meta-analysis and meta-regression. Results 148 studies provided estimates (Europe 59, America 54, China 22, other Asia 13), 54 providing estimates by histology (squamous cell carcinoma, adenocarcinoma). For all smoking habits and lung cancer types, mortality rates were higher in males, the excess less evident for never smokers. Never smoker rates were clearly highest in China, and showed some increasing time trend, particularly for adenocarcinoma. Ever smoker rates were higher in parts of Europe and America than in China, with the time trend very clear, especially for adenocarcinoma. Variations by time trend and continent were clear for current smokers (rates being higher in Europe and America than Asia), but less clear for former smokers. Models involving continent and trend explained much variability, but non-linearity was sometimes seen (with rates lower in 1991–99 than 1981–90), and there was regional variation within continent (with rates in Europe often high in UK and low in Scandinavia, and higher in North than South America). Conclusions The indirect method may be questioned, because of variations in definition of smoking and
A Landmark Based Position Estimation for Pinpoint Landing on Mars
NASA Technical Reports Server (NTRS)
Cheng, Yang; Ansar, Adnan
2005-01-01
Real-time position estimation for a descent lander is a critical technological need for many of NASA's planned in situ missions including landing on a number of bodies at locations of greatest scientific interest and sample return. In particular, it enables the capability to land precisely and safely in a scientifically promising but hazardous site and is a key technology to be demonstrated by NASA in the next decade. The key challenge of pinpoint landing (PPL) is how to localize the lander by recognizing the landmarks (craters) in the landing area and match them positively to a preexisting landmark database while the spacecraft is descending. In this paper, a real-time landmark based position estimation technique for pinpoint landing is suggested. This system includes three crucial components: (1) real time landmark detection, (2) real-time landmark matching and (3) state (both position and velocity) estimation. We discuss the performance analysis of this system. Finally, we show that the suggested technology is able to deliver a spacecraft to less than 100 m from a pre-selected landing site on Mars.
Hyperbolic Position Location Estimation in the Multipath Propagation Environment
NASA Astrophysics Data System (ADS)
Stefański, Jacek
The efficiency analysis a hyperbolic position location estimation in the multipath propagation environment in the wideband code division multiple access (WCDMA) interface was presented. Four, the most popular methods: Chan’s [1], Foy’s [2], Fang’s [3] and Friedlander’s [4] were considered. These algorithms enable the calculation of the geographical position of a mobile station (MS) using the time differences of arrival (TDOA) between several base stations (BS) and MS. The simulation model is outlined and simulation results are presented.
Predictive Attitude Estimation Using Global Positioning System Signals
NASA Technical Reports Server (NTRS)
Crassidis, John L.; Markley, F. Landis; Lightsey, E. Glenn; Ketchum, Eleanor
1997-01-01
In this paper, a new algorithm is developed for attitude estimation using Global Positioning System (GPS) signals. The new algorithm is based on a predictive filtering scheme designed for spacecraft without rate measuring devices. The major advantage of this new algorithm over traditional Kalman filter approaches is that the model error is not assumed to represented by an unbiased Gaussian noise process with known covariance, but instead is determined during the estimation process. This is achieved by simultaneously solving system optimality conditions and an output error constraint. This approach is well suited for GPS attitude estimation since some error sources that contribute to attitude inaccuracy, such as signal multipath, are known to be non-Gaussian processes. Also, the predictive filter scheme can use either GPS signals or vector observations or a combination of both for attitude estimation, so that performance characteristics can be maintained during periods of GPS attitude sensor outage. The performance of the new algorithm is tested using flight data from the REX-2 spacecraft. Results are shown using the predictive filter to estimate the attitude from both GPS signals and magnetometer measurements, and comparing that solution to a magnetometer-only based solution. Results using the new estimation algorithm indicate that GPS-based solutions are verified to within 2 degrees using the magnetometer cross-check for the REX-2 spacecraft. GPS attitude accuracy of better than 1 degree is expected per axis, but cannot be reliably proven due to inaccuracies in the magnetic field model.
Time-based position estimation in monolithic scintillator detectors.
Tabacchini, Valerio; Borghi, Giacomo; Schaart, Dennis R
2015-07-21
Gamma-ray detectors based on bright monolithic scintillation crystals coupled to pixelated photodetectors are currently being considered for several applications in the medical imaging field. In a typical monolithic detector, both the light intensity and the time of arrival of the earliest scintillation photons can be recorded by each of the photosensor pixels every time a gamma interaction occurs. Generally, the time stamps are used to determine the gamma interaction time while the light intensities are used to estimate the 3D position of the interaction point. In this work we show that the spatio-temporal distribution of the time stamps also carries information on the location of the gamma interaction point and thus the time stamps can be used as explanatory variables for position estimation. We present a model for the spatial resolution obtainable when the interaction position is estimated using exclusively the time stamp of the first photon detected on each of the photosensor pixels. The model is shown to be in agreement with experimental measurements on a 16 mm × 16 mm × 10 mm LSO : Ce,0.2%Ca crystal coupled to a digital photon counter (DPC) array where a spatial resolution of 3 mm (root mean squared error) is obtained. Finally we discuss the effects of the main parameters such as scintillator rise and decay time, light output and photosensor single photon time resolution and pixel size. PMID:26133784
Time-based position estimation in monolithic scintillator detectors
NASA Astrophysics Data System (ADS)
Tabacchini, Valerio; Borghi, Giacomo; Schaart, Dennis R.
2015-07-01
Gamma-ray detectors based on bright monolithic scintillation crystals coupled to pixelated photodetectors are currently being considered for several applications in the medical imaging field. In a typical monolithic detector, both the light intensity and the time of arrival of the earliest scintillation photons can be recorded by each of the photosensor pixels every time a gamma interaction occurs. Generally, the time stamps are used to determine the gamma interaction time while the light intensities are used to estimate the 3D position of the interaction point. In this work we show that the spatio-temporal distribution of the time stamps also carries information on the location of the gamma interaction point and thus the time stamps can be used as explanatory variables for position estimation. We present a model for the spatial resolution obtainable when the interaction position is estimated using exclusively the time stamp of the first photon detected on each of the photosensor pixels. The model is shown to be in agreement with experimental measurements on a 16 mm × 16 mm × 10 mm LSO : Ce,0.2%Ca crystal coupled to a digital photon counter (DPC) array where a spatial resolution of 3 mm (root mean squared error) is obtained. Finally we discuss the effects of the main parameters such as scintillator rise and decay time, light output and photosensor single photon time resolution and pixel size.
Global positioning system watches for estimating energy expenditure.
Hongu, Nobuko; Orr, Barron J; Roe, Denise J; Reed, Rebecca G; Going, Scott B
2013-11-01
Global positioning system (GPS) watches have been introduced commercially, converting frequent measurements of time, location, speed (pace), and elevation into energy expenditure (EE) estimates. The purpose of this study was to compare EE estimates of 4 different GPS watches (Forerunner, Suunto, Polar, Adeo), at various walking speeds, with EE estimate from a triaxial accelerometer (RT3), which was used as a reference measure in this study. Sixteen healthy young adults completed the study. Participants wore 4 different GPS watches and an RT3 accelerometer and walked at 6-minute intervals on an outdoor track at 3 speeds (3, 5, and 7 km/hr). The statistical significance of differences in EE between the 3 watches was assessed using linear contrasts of the coefficients from the overall model. Reliability across trials for a given device was assessed using intraclass correlation coefficients as estimated in the mixed model. The GPS watches demonstrated lower reliability (intraclass correlation coefficient) across trials when compared with the RT3, particularly at the higher speed, 7 km/hr. Three GPS watches (Forerunner, Polar, and Suunto) significantly and consistently underestimated EE compared with the reference EE given by the RT3 accelerometer (average mean difference: Garmin, -50.5%; Polar, -41.7%; and Suunto, -41.7%; all p < 0.001). Results suggested that caution should be exercised when using commercial GPS watches to estimate EE in athletes during field-based testing and training. PMID:23439338
NASA Astrophysics Data System (ADS)
Zhao, Xiang; Lin, Jiming
2016-04-01
Image sensor-based visible light positioning can be applied not only to indoor environments but also to outdoor environments. To determine the performance bounds of the positioning accuracy from the view of statistical optimization for an outdoor image sensor-based visible light positioning system, we analyze and derive the maximum likelihood estimation and corresponding Cramér-Rao lower bounds of vehicle position, under the condition that the observation values of the light-emitting diode (LED) imaging points are affected by white Gaussian noise. For typical parameters of an LED traffic light and in-vehicle camera image sensor, simulation results show that accurate estimates are available, with positioning error generally less than 0.1 m at a communication distance of 30 m between the LED array transmitter and the camera receiver. With the communication distance being constant, the positioning accuracy depends on the number of LEDs used, the focal length of the lens, the pixel size, and the frame rate of the camera receiver.
Monocular camera and IMU integration for indoor position estimation.
Zhang, Yinlong; Tan, Jindong; Zeng, Ziming; Liang, Wei; Xia, Ye
2014-01-01
This paper presents a monocular camera (MC) and inertial measurement unit (IMU) integrated approach for indoor position estimation. Unlike the traditional estimation methods, we fix the monocular camera downward to the floor and collect successive frames where textures are orderly distributed and feature points robustly detected, rather than using forward oriented camera in sampling unknown and disordered scenes with pre-determined frame rate and auto-focus metric scale. Meanwhile, camera adopts the constant metric scale and adaptive frame rate determined by IMU data. Furthermore, the corresponding distinctive image feature point matching approaches are employed for visual localizing, i.e., optical flow for fast motion mode; Canny Edge Detector & Harris Feature Point Detector & Sift Descriptor for slow motion mode. For superfast motion and abrupt rotation where images from camera are blurred and unusable, the Extended Kalman Filter is exploited to estimate IMU outputs and to derive the corresponding trajectory. Experimental results validate that our proposed method is effective and accurate in indoor positioning. Since our system is computationally efficient and in compact size, it's well suited for visually impaired people indoor navigation and wheelchaired people indoor localization. PMID:25570179
Using Visual Odometry to Estimate Position and Attitude
NASA Technical Reports Server (NTRS)
Maimone, Mark; Cheng, Yang; Matthies, Larry; Schoppers, Marcel; Olson, Clark
2007-01-01
A computer program in the guidance system of a mobile robot generates estimates of the position and attitude of the robot, using features of the terrain on which the robot is moving, by processing digitized images acquired by a stereoscopic pair of electronic cameras mounted rigidly on the robot. Developed for use in localizing the Mars Exploration Rover (MER) vehicles on Martian terrain, the program can also be used for similar purposes on terrestrial robots moving in sufficiently visually textured environments: examples include low-flying robotic aircraft and wheeled robots moving on rocky terrain or inside buildings. In simplified terms, the program automatically detects visual features and tracks them across stereoscopic pairs of images acquired by the cameras. The 3D locations of the tracked features are then robustly processed into an estimate of overall vehicle motion. Testing has shown that by use of this software, the error in the estimate of the position of the robot can be limited to no more than 2 percent of the distance traveled, provided that the terrain is sufficiently rich in features. This software has proven extremely useful on the MER vehicles during driving on sandy and highly sloped terrains on Mars.
Position, velocity and acceleration estimates from the noisy radar measurements
NASA Astrophysics Data System (ADS)
Ramachandra, K. V.
1984-04-01
A two-dimensional Kalman tracking filter is described for obtaining optimum estimates of position, velocity and acceleration of an aircraft whose acceleration is perturbed due to maneuvers and/or other random factors. In a track-while-scan operation, a two-dimensional radar sensor is assumed to measure the range and bearing of the vehicle at uniform sampling intervals of time T seconds through random noise. The steady-state gain characteristics of the filter have been analytically obtained and the computer results are presented.
Precision of vertical position estimates from very long baseline interferometry
NASA Technical Reports Server (NTRS)
Herring, T. A.
1986-01-01
It is found that the precision of VLBI measurements of vertical crustal motions is limited by errors in the modeling of the propagation delay through the earth's neutral atmosphere, and by errors in finding the orientation of a fixed crust coordinate system in the VLBI reference frame. The repeatability of baseline length measurements study indicates a vertical position precision of about 8 cm, averaged over 13 sites and 4.5 years of data, while the repeatability of vertical position estimates for a Richmond, FL site is found to yield a precision of about 7 cm for 42 observations made over an 11-month period. An overall precision of 8 cm for a 24-hour VLBI observing session is obtained, and the effects of earth orientation parameter errors is contingent on the distances between the VLBI sites.
Sensor fusion method for off-road vehicle position estimation
NASA Astrophysics Data System (ADS)
Guo, Linsong; Zhang, Qin; Han, Shufeng
2002-07-01
A FOG-aided GPS fusion system was developed for positioning an off-road vehicle, which consists of a six-axis inertial measurement unit (IMU) and a Garmin global positioning system (GPS). An observation-based Kalman filter was designed to integrate the readings from both sensors so that the noise in GPS signal was smoothed out, the redundant information was fused and a high update rate of output signals was obtained. The drift error of FOG was also compensated. By using this system, a low cost GPS can be used to replace expensive GPS with a higher accuracy. Measurement and fusion results showed that the positioning error of the vehicle estimated using this fusion system was greatly reduced from a GPS-only system. At a vehicle speed of about 1.34 m/s, the mean bias in East axis of the fusion system was 0.48 m comparing to the GPS mean bias of 1.28 m, and the mean bias in North axis was reduced to 0.32 m from 1.48 m. The update frequency of the fusion system was increased to 9 Hz from 1 Hz of the GPS. A prototype system was installed on a sprayer for vehicle positioning measurement.
Meckley, Trevor D.; Holbrook, Christopher M.; Wagner, C. Michael; Binder, Thomas R.
2014-01-01
The use of position precision estimates that reflect the confidence in the positioning process should be considered prior to the use of biological filters that rely on a priori expectations of the subject’s movement capacities and tendencies. Position confidence goals should be determined based upon the needs of the research questions and analysis requirements versus arbitrary selection, in which filters of previous studies are adopted. Data filtering with this approach ensures that data quality is sufficient for the selected analyses and presents the opportunity to adjust or identify a different analysis in the event that the requisite precision was not attained. Ignoring these steps puts a practitioner at risk of reporting errant findings.
SU-E-T-33: An EPID-Based Method for Testing Absolute Leaf Position for MLC Without Backup Jaws
Hancock, S; Whitaker, M
2014-06-01
Purpose: Methods in common use for MLC leaf position QA are limited to measurements relative to an arbitrary reference position. The authors previously presented an EPID-based method for efficiently testing accuracy of leaf position relative to the mechanical isocenter for MLC with backup jaws. The purpose of this work is to extend that method to the general case of MLC without backup jaws. Methods: A pair of collimator walkout images is used to determine the location of the mechanical isocenter relative to the center of one field using a parameter called X-offset. The method allows for shift of the imager panel to cover subsets of MLC leaves within the limited field of view of the imager. For a shifted panel position, an image of three beam strips defined by a subset of MLC leaves allows determination of the position of each leaf relative to the isocenter. The location of the isocenter is determined by applying X-offset to an image of a single rectangular field obtained at that panel position. The method can also be used to test backup jaws instead of MLC leaves. A software tool was developed to efficiently analyze the images. Results: The software tool reports leaf position and deviation from nominal position, and provides visual displays to facilitate rapid qualitative interpretation. Test results using this method agree well with results using the previous method requiring backup jaws. Test results have been successfully used to recalibrate one model MLC (Elekta MLCi2™). Work in progress includes extension of the software tool to other MLC models, and quantification of reproducibility of the measurements. Conclusion: This work successfully demonstrates a method to efficiently and accurately measure MLC leaf position, or backup jaw position, relative to the mechanical isocenter of the collimator.
NASA Astrophysics Data System (ADS)
Kawasaki, Makoto; Kohno, Ryuji
Wireless communication devices in the field of medical implant, such as cardiac pacemakers and capsule endoscopes, have been studied and developed to improve healthcare systems. Especially it is very important to know the range and position of each device because it will contribute to an optimization of the transmission power. We adopt the time-based approach of position estimation using ultra wideband signals. However, the propagation velocity inside the human body differs in each tissue and each frequency. Furthermore, the human body is formed of various tissues with complex structures. For this reason, propagation velocity is different at a different point inside human body and the received signal so distorted through the channel inside human body. In this paper, we apply an adaptive template synthesis method in multipath channel for calculate the propagation time accurately based on the output of the correlator between the transmitter and the receiver. Furthermore, we propose a position estimation method using an estimation of the propagation velocity inside the human body. In addition, we show by computer simulation that the proposal method can perform accurate positioning with a size of medical implanted devices such as a medicine capsule.
Fetal position and size data for dose estimation.
Osei, E K; Faulkner, K
1999-04-01
In order to establish both positional and size data for estimation of fetal absorbed dose from radiological examinations, the depth from the mother's anterior surface to the mid-line of the fetal head and abdomen were measured from ultrasound scans in 215 pregnant women. Depths were measured along a ray path projected in the anteroposterior (AP) direction from the mother's abdomen. The fetal size was estimated from measurements of the fetal abdominal and head circumference, femur length and the biparietal diameter. The effects of fetal presentation, maternal bladder volume, placenta location, gestational age and maternal AP thickness on fetal depth and size were analysed. The fetal position from the anterior surface of the mother's abdomen is shorter for posterior placenta and empty bladder volume, but longer for anterior placenta and full bladder volume. Mean fetal depth (MFD) observed for all bladder volumes, fetal presentations and placenta locations increased from 6.5 +/- 0.5 cm to 10.2 +/- 0.7 cm over the duration of pregnancy. Similarly, mean fetal skull depth (FSD) increased from 6.6 +/- 0.6 cm to 9.8 +/- 0.6 cm over the period of pregnancy, but only from about 6.6 cm to 7.8 cm over the period (8-25 weeks) when damage to the developing brain has been observed to result in mental retardation. Using the range of mean fetal depth (4.7-13.9 cm) observed in this study and depth dose data at 75 kVp and 3.0 mmAl half value thickness (HVT), fetal absorbed dose would be overestimated by up to 66% or underestimated by up to 77% if the mean value of MFD (8.1 cm) is used rather than actual individual values. These errors increase with lower tube potential and filtration up to over 90% overestimation and up to 100% underestimation at 60 kVp and 1.0 mmAl filtration. PMID:10474497
Bono, G.; Di Cecco, A.; Sanna, N.; Buonanno, R.; Stetson, P. B.; VandenBerg, D. A.; Calamida, A.; Amico, P.; Marchetti, E.; D'Odorico, S.; Gilmozzi, R.; Dall'Ora, M.; Iannicola, G.; Caputo, F.; Corsi, C. E.; Ferraro, I.; Monelli, M.; Walker, A. R.; Zoccali, M.; Degl'Innocenti, S.
2010-01-10
We present a new method to estimate the absolute ages of stellar systems. This method is based on the difference in magnitude between the main-sequence turnoff (MSTO) and a well-defined knee located along the lower main sequence (MSK). This feature is caused by the collisionally induced absorption of molecular hydrogen, and it can easily be identified in near-infrared (NIR) and in optical-NIR color-magnitude diagrams of stellar systems. We took advantage of deep and accurate NIR images collected with the Multi-Conjugate Adaptive Optics Demonstrator temporarily available on the Very Large Telescope and of optical images collected with the Advanced Camera for Surveys Wide Field Camera on the Hubble Space Telescope and with ground-based telescopes to estimate the absolute age of the globular NGC 3201 using both the MSTO and the {delta}(MSTO-MSK). We have adopted a new set of cluster isochrones, and we found that the absolute ages based on the two methods agree to within 1{sigma}. However, the errors of the ages based on the {delta}(MSTO-MSK) method are potentially more than a factor of 2 smaller, since they are not affected by uncertainties in cluster distance or reddening. Current isochrones appear to predict slightly bluer ({approx}0.05 mag) NIR and optical-NIR colors than observed for magnitudes fainter than the MSK.
Daily estimates of the earth's pole position with the Global Positioning System
NASA Technical Reports Server (NTRS)
Lindqwister, Ulf J.; Freedman, Adam P.; Blewitt, Geoffrey
1992-01-01
Daily estimates of the earth's pole position have been obtained with measurements from a worldwide network of GPS receivers, obtained during the three week GIG '91 experiment in January-February 1991. For this short-term study, the GPS based polar motion series agrees with the other space based geodetic techniques (Very Long Baseline Interferometry and Satellite Laser Ranging) to about 0.4 mas rms, after the removal of mean biases of order 1-3 mas. The small error in day-to-day variability is not sensitive to the fiducial strategy used, nor are fiducial sites even necessary for monitoring high frequency pole position variability. The small biases indicate that the applied reference frames of the three geodetic techniques are nearly aligned, that the GPS fiducial errors are small, and that systematic errors in GPS are also small (of order 5 ppb). A well determined reference frame is necessary for monitoring the long-term stability of polar motion and for separating it from other long-term signals such as tectonic motion and internal systematic errors.
A sensorless initial rotor position's estimation for permanent magnet synchronous machines
NASA Astrophysics Data System (ADS)
Krasnov, I.; Langraf, S.; Odnolopylov, I.; Koltun, V.
2015-10-01
Permanent magnet synchronous motors for the effective start require information about the initial position of a rotor. In this regard, most systems use position sensors, which substantially increase entirely a cost of an electrical drive [1-3]. The aim of this article is to develop a new method, allowing determining the absolute angular position of the permanent magnet synchronous motors’ rotor [4,5]. With a certain voltage pulses applied to the motor, its stator is magnetized by currents leakage in the windings. This allows using a special algorithm to calculate the absolute position of the rotor without using any motor parameters [6]. Simulation results prove the simplicity and efficiency of this method for determining an initial position of the permanent magnet synchronous motors’ rotor. Thus, this method can be widely used in the electrical industry.
COMPARISON OF RECURSIVE ESTIMATION TECHNIQUES FOR POSITION TRACKING RADIOACTIVE SOURCES
K. MUSKE; J. HOWSE
2000-09-01
This paper compares the performance of recursive state estimation techniques for tracking the physical location of a radioactive source within a room based on radiation measurements obtained from a series of detectors at fixed locations. Specifically, the extended Kalman filter, algebraic observer, and nonlinear least squares techniques are investigated. The results of this study indicate that recursive least squares estimation significantly outperforms the other techniques due to the severe model nonlinearity.
Mou, Weimin; Zhang, Lei
2014-12-01
This project examined the roles of idiothetic cues due to individuals' movement and allothetic cues independent of individuals' movement in individuals' estimations of their position and heading during locomotion. In an immersive virtual environment, participants learned the locations of five objects and then moved along two legs of a path before positioning the origin and the objects. Participants' estimations of their test position and their test heading were calculated based on the responded objects' locations, using a method of dissociating position estimation and heading estimation developed in this project. Results showed that when a conflicting visual orientation cue was presented after walking, participants relied on the allothetic cues (i.e., the visual orientation cue) for their heading estimation, but on idiothetic cues for their position estimation. These results indicate that after participants updated their position in terms the origin of the path (homing vector) via path integration, they estimated their heading. These results are inconsistent with the theoretical models stipulating that homing vectors are specified in terms of participants' body coordinate systems, but are consistent with the models stipulating that both homing vectors and participants' heading are specified in terms of a fixed reference direction in the environment. PMID:25215931
Novel rotor position estimation technique for switched reluctance motor (SRM)
NASA Astrophysics Data System (ADS)
Moradi, Hassan; Afjei, Ebrahim
2011-09-01
This article presents a new and novel method which is designed to detect the rotor position at standstill and at low speeds in switched reluctance motor. Since the inductance parameter plays a significant role both in the steady state and in the dynamic characteristics of an electromagnetic device, the rotor position can be determined using inductance bridge systems to measure unknown inductance and resistance values. In this method we use motor winding in Maxwell-Wien Bridge, with the standard capacitor and the resistor in parallel with it adjusted to achieve balance in an aligned position when the maximum inductance occurs. The supply voltage, in conjunction with the drive transistor, produces short pulses for this AC bridge. The condition of the balanced bridge v 0 = 0 leads to the relation between the impedances of the bridge branches. The phase inductance varies with the rotor position. Therefore the motor goes into an unaligned position and the Maxwell-Wien Bridge goes into an unbalanced condition thus causing variation in the state of the bridge output. It then continues to sense the rotor position with the motor running by applying the same procedure, but only to the un-energised phases winding. The simulation and experimentally obtained results demonstrate the feasibility and practicability of this method.
NASA Astrophysics Data System (ADS)
Donnelly, Russell J.; Sheibley, D.; Belloni, M.; Stamper-Kurn, D.; Vinen, W. F.
2006-12-01
Absolute Zero is a two hour PBS special attempting to bring to the general public some of the advances made in 400 years of thermodynamics. It is based on the book “Absolute Zero and the Conquest of Cold” by Tom Shachtman. Absolute Zero will call long-overdue attention to the remarkable strides that have been made in low-temperature physics, a field that has produced 27 Nobel Prizes. It will explore the ongoing interplay between science and technology through historical examples including refrigerators, ice machines, frozen foods, liquid oxygen and nitrogen as well as much colder fluids such as liquid hydrogen and liquid helium. A website has been established to promote the series: www.absolutezerocampaign.org. It contains information on the series, aimed primarily at students at the middle school level. There is a wealth of material here and we hope interested teachers will draw their student’s attention to this website and its substantial contents, which have been carefully vetted for accuracy.
Mars lander position estimation in the presence of ephemeris biases.
NASA Technical Reports Server (NTRS)
Blackshear, W. T.; Tolson, R. H.; Day, G. M.
1972-01-01
The process of estimating the location of a spacecraft landed on the surface of Mars is investigated through the application of statistical estimation techniques to earth-based radio tracking data. The spacecraft location and the tracking geometry and schedule are consistent with Viking-type mission constraints. With mission control requirements in mind, the investigation is restricted to analysis of a short data arc (approximately 3 days). Statistics of the spacecraft location are obtained through analysis of (direct-link) tracking data for the landed spacecraft and through simultaneous analysis of tracking data for both a landed and an orbiting spacecraft. These estimates include the effects of model uncertainties in the ephemeris of Mars, tracking station locations, the Mars rotational period, the Mars gravity field, and the orientation of Mars axis of rotation. The most significant of these effects is shown to be due to the Mars ephemeris uncertainty. A dual spacecraft tracking technique is presented for substantially reducing these ephemeris effects.
Extension of synthetic estimation filters for relative position measurements
NASA Technical Reports Server (NTRS)
Monroe, Stanley E., Jr.; Juday, Richard D.
1988-01-01
The construction of synthetic estimation filters (SEF) for out-of-plane rotation is reported. When images corresponding to rotations between the angles which were used to construct the estimator were input to the simulator, the yaw measurement accuracy was a little better than one-half of a degree over the five degree range. If individual phase-only filters were used and the only criteria for yaw angle was 'best correlation', 11 filter would be required for the same range and accuracy. The technique proposed here is invariant to translation.
The Joint Position-Amplitude Formulation for Hurricane State Estimation
NASA Astrophysics Data System (ADS)
Ravela, S.; Williams, J.; Emanuel, K.
2008-12-01
Classical formulations of data assimilation, whether sequential, ensemble-based or variational, are amplitude adjustment methods. Such approaches can perform poorly when forecast locations of weather systems are displaced from their observations. Compensating position errors by adjusting amplitudes can produce unacceptably 'distorted' states, adversely affecting analysis, verification and subsequent forecasts. There are many sources of position error. It is non-trivial to decompose position error into constituent sources and yet correcting position errors during assimilation can be essential for operationally predicting strong, localized weather events such as tropical cyclones. We will argue and show that if we assume a perfect world where forecast errors do not have position errors and have a Gaussian uncertainty, then in the real world, the bias or variance induced by position errors is the only reason for suboptimal performance of contemporary assimilation methods. Therefore, we propose a method that accounts for both position and amplitude errors using a variational approach. We show that the objective can be solved for position and amplitude decision variables using stochastic methods, thus corresponding with ensemble data assimilation. We then show that if an Euler-Lagrange approximation is made, can solve the objective nearly as well in two steps. This approach is entirely consistent with contemporary data assimilation practice. In the two-step approach, the first step is field alignment, where the current model state is aligned with observations by adjusting a continuous field of local displacements, subject to certain constraints. The second step is amplitude adjustment, where contemporary assimilation approaches are used. We will then demonstrate several choices of constraints on the displacement field, first starting with fluid-like viscous constraints and then proceeding to a multiscale wavelet representation that allows better balance in the
Distributed estimation of sensors position in underwater wireless sensor network
NASA Astrophysics Data System (ADS)
Zandi, Rahman; Kamarei, Mahmoud; Amiri, Hadi
2016-05-01
In this paper, a localisation method for determining the position of fixed sensor nodes in an underwater wireless sensor network (UWSN) is introduced. In this simple and range-free scheme, the node localisation is achieved by utilising an autonomous underwater vehicle (AUV) that transverses through the network deployment area, and that periodically emits a message block via four directional acoustic beams. A message block contains the actual known AUV position as well as a directional dependent marker that allows a node to identify the respective transmit beam. The beams form a fixed angle with the AUV body. If a node passively receives message blocks, it could calculate the arithmetic mean of the coordinates existing in each messages sequence, to find coordinates at two different time instants via two different successive beams. The node position can be derived from the two computed positions of the AUV. The major advantage of the proposed localisation algorithm is that it is silent, which leads to energy efficiency for sensor nodes. The proposed method does not require any synchronisation among the nodes owing to being silent. Simulation results, using MATLAB, demonstrated that the proposed method had better performance than other similar AUV-based localisation methods in terms of the rates of well-localised sensor nodes and positional root mean square error.
Bayesian Estimation of the Logistic Positive Exponent IRT Model
ERIC Educational Resources Information Center
Bolfarine, Heleno; Bazan, Jorge Luis
2010-01-01
A Bayesian inference approach using Markov Chain Monte Carlo (MCMC) is developed for the logistic positive exponent (LPE) model proposed by Samejima and for a new skewed Logistic Item Response Theory (IRT) model, named Reflection LPE model. Both models lead to asymmetric item characteristic curves (ICC) and can be appropriate because a symmetric…
Noise estimation of beam position monitors at RHIC
Shen, X.; Bai, M.; Lee, S. Y.
2014-02-10
Beam position monitors (BPM) are used to record the average orbits and transverse turn-by-turn displacements of the beam centroid motion. The Relativistic Hadron Ion Collider (RHIC) has 160 BPMs for each plane in each of the Blue and Yellow rings: 72 dual-plane BPMs in the insertion regions (IR) and 176 single-plane modules in the arcs. Each BPM is able to acquire 1024 or 4096 consecutive turn-by-turn beam positions. Inevitably, there are broadband noisy signals in the turn-by-turn data due to BPM electronics as well as other sources. A detailed study of the BPM noise performance is critical for reliable optics measurement and beam dynamics analysis based on turn-by-turn data.
NASA Astrophysics Data System (ADS)
Phillips, Alfred, Jr.
Summ means the entirety of the multiverse. It seems clear, from the inflation theories of A. Guth and others, that the creation of many universes is plausible. We argue that Absolute cosmological ideas, not unlike those of I. Newton, may be consistent with dynamic multiverse creations. As suggested in W. Heisenberg's uncertainty principle, and with the Anthropic Principle defended by S. Hawking, et al., human consciousness, buttressed by findings of neuroscience, may have to be considered in our models. Predictability, as A. Einstein realized with Invariants and General Relativity, may be required for new ideas to be part of physics. We present here a two postulate model geared to an Absolute Summ. The seedbed of this work is part of Akhnaton's philosophy (see S. Freud, Moses and Monotheism). Most important, however, is that the structure of human consciousness, manifest in Kenya's Rift Valley 200,000 years ago as Homo sapiens, who were the culmination of the six million year co-creation process of Hominins and Nature in Africa, allows us to do the physics that we do. .
Estimation of Subdaily Polar Motion with the Global Positioning System During the Spoch '92 Campaign
NASA Technical Reports Server (NTRS)
Ibanez-Meier, R.; Freedman, A. P.; Herring, T. A.; Gross, R. S.; Lichten, S. M.; Lindqwister, U. J.
1994-01-01
Data collected over six days from a worldwide Global Positioning System (GPS) tracking network during the Epoch '92 campaign are used to estimate variations of the Earth's pole position every 30 minutes.
NASA Astrophysics Data System (ADS)
Myers, S.; Johannesson, G.
2012-12-01
Arrival time measurements based on waveform cross correlation are becoming more common as advanced signal processing methods are applied to seismic data archives and real-time data streams. Waveform correlation can precisely measure the time difference between the arrival of two phases, and differential time data can be used to constrain relative location of events. Absolute locations are needed for many applications, which generally requires the use of absolute time data. Current methods for measuring absolute time data are approximately two orders of magnitude less precise than differential time measurements. To exploit the strengths of both absolute and differential time data, we extend our multiple-event location method Bayesloc, which previously used absolute time data only, to include the use of differential time measurements that are based on waveform cross correlation. Fundamentally, Bayesloc is a formulation of the joint probability over all parameters comprising the multiple event location system. The Markov-Chain Monte Carlo method is used to sample from the joint probability distribution given arrival data sets. The differential time component of Bayesloc includes scaling a stochastic estimate of differential time measurement precision based the waveform correlation coefficient for each datum. For a regional-distance synthetic data set with absolute and differential time measurement error of 0.25 seconds and 0.01 second, respectively, epicenter location accuracy is improved from and average of 1.05 km when solely absolute time data are used to 0.28 km when absolute and differential time data are used jointly (73% improvement). The improvement in absolute location accuracy is the result of conditionally limiting absolute location probability regions based on the precise relative position with respect to neighboring events. Bayesloc estimates of data precision are found to be accurate for the synthetic test, with absolute and differential time measurement
Reliable estimation of shock position in shock-capturing compressible hydrodynamics codes
Nelson, Eric M
2008-01-01
The displacement method for estimating shock position in a shock-capturing compressible hydrodynamics code is introduced. Common estimates use simulation data within the captured shock, but the displacement method uses data behind the shock, making the estimate consistent with and as reliable as estimates of material parameters obtained from averages or fits behind the shock. The displacement method is described in the context of a steady shock in a one-dimensional lagrangian hydrodynamics code, and demonstrated on a piston problem and a spherical blast wave.The displacement method's estimates of shock position are much better than common estimates in such applications.
Nakano, Alberto Yoshihiro; Nakagawa, Seiichi; Yamamoto, Kazumasa
2009-12-01
A method which automatically provides the position and orientation of a directional acoustic source in an enclosed environment is proposed. In this method, different combinations of the estimated parameters from the received signals and the microphone positions of each array are used as inputs to the artificial neural network (ANN). The estimated parameters are composed of time delay estimates (TDEs), source position estimates, distance estimates, and energy features. The outputs of the ANN are the source orientation (one out of four possible orientations shifted by 90 degrees and either the best array which is defined as the nearest to the source) or the source position in two dimensional/three dimensional (2D/3D) space. This paper studies the position and orientation estimation performances of the ANN for different input/output combinations (and different numbers of hidden units). The best combination of parameters (TDEs and microphone positions) yields 21.8% reduction in the average position error compared to the following baselines and a correct orientation ratio greater than 99%. Position localization baselines consist of a time delay of arrival based method with an average position error of 34.1 cm and the steered response power with phase transform method with an average position error of 29.8 cm in 3D space. PMID:20000922
Piñero, David P; Camps, Vicente J; Ramón, María L; Mateo, Verónica; Pérez-Cambrodí, Rafael J
2015-01-01
Purpose: To evaluate the predictability of the refractive correction achieved with a positional accommodating intraocular lenses (IOL) and to develop a potential optimization of it by minimizing the error associated with the keratometric estimation of the corneal power and by developing a predictive formula for the effective lens position (ELP). Materials and Methods: Clinical data from 25 eyes of 14 patients (age range, 52–77 years) and undergoing cataract surgery with implantation of the accommodating IOL Crystalens HD (Bausch and Lomb) were retrospectively reviewed. In all cases, the calculation of an adjusted IOL power (PIOLadj) based on Gaussian optics considering the residual refractive error was done using a variable keratometric index value (nkadj) for corneal power estimation with and without using an estimation algorithm for ELP obtained by multiple regression analysis (ELPadj). PIOLadj was compared to the real IOL power implanted (PIOLReal, calculated with the SRK-T formula) and also to the values estimated by the Haigis, HofferQ, and Holladay I formulas. Results: No statistically significant differences were found between PIOLReal and PIOLadj when ELPadj was used (P = 0.10), with a range of agreement between calculations of 1.23 D. In contrast, PIOLReal was significantly higher when compared to PIOLadj without using ELPadj and also compared to the values estimated by the other formulas. Conclusions: Predictable refractive outcomes can be obtained with the accommodating IOL Crystalens HD using a variable keratometric index for corneal power estimation and by estimating ELP with an algorithm dependent on anatomical factors and age. PMID:26139807
In-Flight Estimation of Center of Gravity Position Using All-Accelerometers
Al-Rawashdeh, Yazan Mohammad; Elshafei, Moustafa; Al-Malki, Mohammad Fahad
2014-01-01
Changing the position of the Center of Gravity (CoG) for an aerial vehicle is a challenging part in navigation, and control of such vehicles. In this paper, an all-accelerometers-based inertial measurement unit is presented, with a proposed method for on-line estimation of the position of the CoG. The accelerometers' readings are used to find and correct the vehicle's angular velocity and acceleration using an Extended Kalman Filter. Next, the accelerometers' readings along with the estimated angular velocity and acceleration are used in an identification scheme to estimate the position of the CoG and the vehicle's linear acceleration. The estimated position of the CoG and motion measurements can then be used to update the control rules to achieve better trim conditions for the air vehicle. PMID:25244585
NASA Astrophysics Data System (ADS)
Wang, Shi-tai; Peng, Jun-huan
2015-12-01
The characterization of ionosphere delay estimated with precise point positioning is analyzed in this paper. The estimation, interpolation and application of the ionosphere delay are studied based on the processing of 24-h data from 5 observation stations. The results show that the estimated ionosphere delay is affected by the hardware delay bias from receiver so that there is a difference between the estimated and interpolated results. The results also show that the RMSs (root mean squares) are bigger, while the STDs (standard deviations) are better than 0.11 m. When the satellite difference is used, the hardware delay bias can be canceled. The interpolated satellite-differenced ionosphere delay is better than 0.11 m. Although there is a difference between the between the estimated and interpolated ionosphere delay results it cannot affect its application in single-frequency positioning and the positioning accuracy can reach cm level.
Direct Rotor-Position Estimation Method for Salient Pole PM Motor by Using High-Frequency Voltage
NASA Astrophysics Data System (ADS)
Ito, Masato; Kinpara, Yoshihiko
Recently, a number of methods have been proposed for estimating the rotor position of a salient pole PM motor, and methods using a high-frequency voltage can estimate the rotor position accurately, even at low speeds. In the conventional method, the rotor position is estimated indirectly by minimizing the position error signal associated with the difference between the estimated position and the real one. This paper proposes a novel direct rotor-position estimation method for salient pole PM motors. In this method, a rotating high-frequency voltage is supplied to the motor, and the rotor position is estimated directly from the high-frequency current in the motor.
Galgon, Anne K.; Shewokis, Patricia A.
2016-01-01
The objectives of this communication are to present the methods used to calculate mean absolute relative phase (MARP), deviation phase (DP) and point estimate relative phase (PRP) and compare their utility in measuring postural coordination during the performance of a serial reaching task. MARP and DP are derived from continuous relative phase time series representing the relationship between two body segments or joints during movements. MARP is a single measure used to quantify the coordination pattern and DP measures the stability of the coordination pattern. PRP also quantifies coordination patterns by measuring the relationship between the timing of maximal or minimal angular displacements of two segments within cycles of movement. Seven young adults practiced a bilateral serial reaching task 300 times over 3 days. Relative phase measures were used to evaluate inter-joint relationships for shoulder-hip (proximal) and hip-ankle (distal) postural coordination at early and late learning. MARP, PRP and DP distinguished between proximal and distal postural coordination. There was no effect of practice on any of the relative phase measures for the group, but individual differences were seen over practice. Combined, MARP and DP estimated stability of in-phase and anti-phase postural coordination patterns, however additional qualitative movement analyses may be needed to interpret findings in a serial task. We discuss the strengths and limitations of using MARP and DP and compare MARP and DP to PRP measures in assessing coordination patterns in the context of various types of skillful tasks. Key points MARP, DP and PRP measures coordination between segments or joint angles Advantages and disadvantages of each measure should be considered in relationship to the performance task MARP and DP may capture coordination patterns and stability of the patterns during discrete tasks or phases of movements within a task PRP and SD or PRP may capture coordination patterns and
Deng, Zhi-An; Wang, Guofeng; Hu, Ying; Cui, Yang
2016-01-01
This paper proposes a novel heading estimation approach for indoor pedestrian navigation using the built-in inertial sensors on a smartphone. Unlike previous approaches constraining the carrying position of a smartphone on the user’s body, our approach gives the user a larger freedom by implementing automatic recognition of the device carrying position and subsequent selection of an optimal strategy for heading estimation. We firstly predetermine the motion state by a decision tree using an accelerometer and a barometer. Then, to enable accurate and computational lightweight carrying position recognition, we combine a position classifier with a novel position transition detection algorithm, which may also be used to avoid the confusion between position transition and user turn during pedestrian walking. For a device placed in the trouser pockets or held in a swinging hand, the heading estimation is achieved by deploying a principal component analysis (PCA)-based approach. For a device held in the hand or against the ear during a phone call, user heading is directly estimated by adding the yaw angle of the device to the related heading offset. Experimental results show that our approach can automatically detect carrying positions with high accuracy, and outperforms previous heading estimation approaches in terms of accuracy and applicability. PMID:27187391
Deng, Zhi-An; Wang, Guofeng; Hu, Ying; Cui, Yang
2016-01-01
This paper proposes a novel heading estimation approach for indoor pedestrian navigation using the built-in inertial sensors on a smartphone. Unlike previous approaches constraining the carrying position of a smartphone on the user's body, our approach gives the user a larger freedom by implementing automatic recognition of the device carrying position and subsequent selection of an optimal strategy for heading estimation. We firstly predetermine the motion state by a decision tree using an accelerometer and a barometer. Then, to enable accurate and computational lightweight carrying position recognition, we combine a position classifier with a novel position transition detection algorithm, which may also be used to avoid the confusion between position transition and user turn during pedestrian walking. For a device placed in the trouser pockets or held in a swinging hand, the heading estimation is achieved by deploying a principal component analysis (PCA)-based approach. For a device held in the hand or against the ear during a phone call, user heading is directly estimated by adding the yaw angle of the device to the related heading offset. Experimental results show that our approach can automatically detect carrying positions with high accuracy, and outperforms previous heading estimation approaches in terms of accuracy and applicability. PMID:27187391
A Novel Position Estimation Method Based on Displacement Correction in AIS
Jiang, Yi; Zhang, Shufang; Yang, Dongkai
2014-01-01
A new position estimation method by using the signals from two automatic identification system (AIS) stations is proposed in this paper. The time of arrival (TOA) method is enhanced with the displacement correction, so that the vessel's position can be determined even for the situation where it can receive the signals from only two AIS base stations. Its implementation scheme based on the mathematical model is presented. Furthermore, performance analysis is carried out to illustrate the relation between the positioning errors and the displacement vector provided by auxiliary sensors. Finally, the positioning method is verified and its performance is evaluated by simulation. The results show that the positioning accuracy is acceptable. PMID:25232913
Estimating Position of Mobile Robots From Omnidirectional Vision Using an Adaptive Algorithm.
Li, Luyang; Liu, Yun-Hui; Wang, Kai; Fang, Mu
2015-08-01
This paper presents a novel and simple adaptive algorithm for estimating the position of a mobile robot with high accuracy in an unknown and unstructured environment by fusing images of an omnidirectional vision system with measurements of odometry and inertial sensors. Based on a new derivation where the omnidirectional projection can be linearly parameterized by the positions of the robot and natural feature points, we propose a novel adaptive algorithm, which is similar to the Slotine-Li algorithm in model-based adaptive control, to estimate the robot's position by using the tracked feature points in image sequence, the robot's velocity, and orientation angles measured by odometry and inertial sensors. It is proved that the adaptive algorithm leads to global exponential convergence of the position estimation errors to zero. Simulations and real-world experiments are performed to demonstrate the performance of the proposed algorithm. PMID:25265622
Altini, Marco; Penders, Julien; Vullers, Ruud; Amft, Oliver
2015-01-01
Several methods to estimate energy expenditure (EE) using body-worn sensors exist; however, quantifications of the differences in estimation error are missing. In this paper, we compare three prevalent EE estimation methods and five body locations to provide a basis for selecting among methods, sensors number, and positioning. We considered 1) counts-based estimation methods, 2) activity-specific estimation methods using METs lookup, and 3) activity-specific estimation methods using accelerometer features. The latter two estimation methods utilize subsequent activity classification and EE estimation steps. Furthermore, we analyzed accelerometer sensors number and on-body positioning to derive optimal EE estimation results during various daily activities. To evaluate our approach, we implemented a study with 15 participants that wore five accelerometer sensors while performing a wide range of sedentary, household, lifestyle, and gym activities at different intensities. Indirect calorimetry was used in parallel to obtain EE reference data. Results show that activity-specific estimation methods using accelerometer features can outperform counts-based methods by 88% and activity-specific methods using METs lookup for active clusters by 23%. No differences were found between activity-specific methods using METs lookup and using accelerometer features for sedentary clusters. For activity-specific estimation methods using accelerometer features, differences in EE estimation error between the best combinations of each number of sensors (1 to 5), analyzed with repeated measures ANOVA, were not significant. Thus, we conclude that choosing the best performing single sensor does not reduce EE estimation accuracy compared to a five sensors system and can reliably be used. However, EE estimation errors can increase up to 80% if a nonoptimal sensor location is chosen. PMID:24691168
Experimental verification of an interpolation algorithm for improved estimates of animal position.
Schell, Chad; Jaffe, Jules S
2004-07-01
This article presents experimental verification of an interpolation algorithm that was previously proposed in Jaffe [J. Acoust. Soc. Am. 105, 3168-3175 (1999)]. The goal of the algorithm is to improve estimates of both target position and target strength by minimizing a least-squares residual between noise-corrupted target measurement data and the output of a model of the sonar's amplitude response to a target at a set of known locations. Although this positional estimator was shown to be a maximum likelihood estimator, in principle, experimental verification was desired because of interest in understanding its true performance. Here, the accuracy of the algorithm is investigated by analyzing the correspondence between a target's true position and the algorithm's estimate. True target position was measured by precise translation of a small test target (bead) or from the analysis of images of fish from a coregistered optical imaging system. Results with the stationary spherical test bead in a high signal-to-noise environment indicate that a large increase in resolution is possible, while results with commercial aquarium fish indicate a smaller increase is obtainable. However, in both experiments the algorithm provides improved estimates of target position over those obtained by simply accepting the angular positions of the sonar beam with maximum output as target position. In addition, increased accuracy in target strength estimation is possible by considering the effects of the sonar beam patterns relative to the interpolated position. A benefit of the algorithm is that it can be applied "ex post facto" to existing data sets from commercial multibeam sonar systems when only the beam intensities have been stored after suitable calibration. PMID:15295985
Experimental verification of an interpolation algorithm for improved estimates of animal position
NASA Astrophysics Data System (ADS)
Schell, Chad; Jaffe, Jules S.
2004-07-01
This article presents experimental verification of an interpolation algorithm that was previously proposed in Jaffe [J. Acoust. Soc. Am. 105, 3168-3175 (1999)]. The goal of the algorithm is to improve estimates of both target position and target strength by minimizing a least-squares residual between noise-corrupted target measurement data and the output of a model of the sonar's amplitude response to a target at a set of known locations. Although this positional estimator was shown to be a maximum likelihood estimator, in principle, experimental verification was desired because of interest in understanding its true performance. Here, the accuracy of the algorithm is investigated by analyzing the correspondence between a target's true position and the algorithm's estimate. True target position was measured by precise translation of a small test target (bead) or from the analysis of images of fish from a coregistered optical imaging system. Results with the stationary spherical test bead in a high signal-to-noise environment indicate that a large increase in resolution is possible, while results with commercial aquarium fish indicate a smaller increase is obtainable. However, in both experiments the algorithm provides improved estimates of target position over those obtained by simply accepting the angular positions of the sonar beam with maximum output as target position. In addition, increased accuracy in target strength estimation is possible by considering the effects of the sonar beam patterns relative to the interpolated position. A benefit of the algorithm is that it can be applied ``ex post facto'' to existing data sets from commercial multibeam sonar systems when only the beam intensities have been stored after suitable calibration.
Underwater terrain positioning method based on least squares estimation for AUV
NASA Astrophysics Data System (ADS)
Chen, Peng-yun; Li, Ye; Su, Yu-min; Chen, Xiao-long; Jiang, Yan-qing
2015-12-01
To achieve accurate positioning of autonomous underwater vehicles, an appropriate underwater terrain database storage format for underwater terrain-matching positioning is established using multi-beam data as underwater terrainmatching data. An underwater terrain interpolation error compensation method based on fractional Brownian motion is proposed for defects of normal terrain interpolation, and an underwater terrain-matching positioning method based on least squares estimation (LSE) is proposed for correlation analysis of topographic features. The Fisher method is introduced as a secondary criterion for pseudo localization appearing in a topographic features flat area, effectively reducing the impact of pseudo positioning points on matching accuracy and improving the positioning accuracy of terrain flat areas. Simulation experiments based on electronic chart and multi-beam sea trial data show that drift errors of an inertial navigation system can be corrected effectively using the proposed method. The positioning accuracy and practicality are high, satisfying the requirement of underwater accurate positioning.
Electronic Absolute Cartesian Autocollimator
NASA Technical Reports Server (NTRS)
Leviton, Douglas B.
2006-01-01
An electronic absolute Cartesian autocollimator performs the same basic optical function as does a conventional all-optical or a conventional electronic autocollimator but differs in the nature of its optical target and the manner in which the position of the image of the target is measured. The term absolute in the name of this apparatus reflects the nature of the position measurement, which, unlike in a conventional electronic autocollimator, is based absolutely on the position of the image rather than on an assumed proportionality between the position and the levels of processed analog electronic signals. The term Cartesian in the name of this apparatus reflects the nature of its optical target. Figure 1 depicts the electronic functional blocks of an electronic absolute Cartesian autocollimator along with its basic optical layout, which is the same as that of a conventional autocollimator. Referring first to the optical layout and functions only, this or any autocollimator is used to measure the compound angular deviation of a flat datum mirror with respect to the optical axis of the autocollimator itself. The optical components include an illuminated target, a beam splitter, an objective or collimating lens, and a viewer or detector (described in more detail below) at a viewing plane. The target and the viewing planes are focal planes of the lens. Target light reflected by the datum mirror is imaged on the viewing plane at unit magnification by the collimating lens. If the normal to the datum mirror is parallel to the optical axis of the autocollimator, then the target image is centered on the viewing plane. Any angular deviation of the normal from the optical axis manifests itself as a lateral displacement of the target image from the center. The magnitude of the displacement is proportional to the focal length and to the magnitude (assumed to be small) of the angular deviation. The direction of the displacement is perpendicular to the axis about which the
Position Estimation and Local Mapping Using Omnidirectional Images and Global Appearance Descriptors
Berenguer, Yerai; Payá, Luis; Ballesta, Mónica; Reinoso, Oscar
2015-01-01
This work presents some methods to create local maps and to estimate the position of a mobile robot, using the global appearance of omnidirectional images. We use a robot that carries an omnidirectional vision system on it. Every omnidirectional image acquired by the robot is described only with one global appearance descriptor, based on the Radon transform. In the work presented in this paper, two different possibilities have been considered. In the first one, we assume the existence of a map previously built composed of omnidirectional images that have been captured from previously-known positions. The purpose in this case consists of estimating the nearest position of the map to the current position of the robot, making use of the visual information acquired by the robot from its current (unknown) position. In the second one, we assume that we have a model of the environment composed of omnidirectional images, but with no information about the location of where the images were acquired. The purpose in this case consists of building a local map and estimating the position of the robot within this map. Both methods are tested with different databases (including virtual and real images) taking into consideration the changes of the position of different objects in the environment, different lighting conditions and occlusions. The results show the effectiveness and the robustness of both methods. PMID:26501289
Berenguer, Yerai; Payá, Luis; Ballesta, Mónica; Reinoso, Oscar
2015-01-01
This work presents some methods to create local maps and to estimate the position of a mobile robot, using the global appearance of omnidirectional images. We use a robot that carries an omnidirectional vision system on it. Every omnidirectional image acquired by the robot is described only with one global appearance descriptor, based on the Radon transform. In the work presented in this paper, two different possibilities have been considered. In the first one, we assume the existence of a map previously built composed of omnidirectional images that have been captured from previously-known positions. The purpose in this case consists of estimating the nearest position of the map to the current position of the robot, making use of the visual information acquired by the robot from its current (unknown) position. In the second one, we assume that we have a model of the environment composed of omnidirectional images, but with no information about the location of where the images were acquired. The purpose in this case consists of building a local map and estimating the position of the robot within this map. Both methods are tested with different databases (including virtual and real images) taking into consideration the changes of the position of different objects in the environment, different lighting conditions and occlusions. The results show the effectiveness and the robustness of both methods. PMID:26501289
NASA Astrophysics Data System (ADS)
Qiao, Bing; Tang, Shuren; Ma, Kexin; Liu, Zhenya
2013-10-01
The capacity to acquire the relative position and attitude information between the chaser and the target satellites in real time is one of the necessary prerequisites for the successful implementation of autonomous rendezvous and docking. This paper addresses a vision based relative position and attitude estimation algorithm for the final phase of spacecraft rendezvous and docking. By assuming that the images of feature points on the target satellite lie within the convex regions, the estimation of the relative position and attitude is converted into solving a convex optimization problem in which the dual quaternion method is employed to represent the rotational and translational transformation between the chaser body frame and the target body frame. Due to the point-to-region correspondence instead of the point-to-point correspondence is used, the proposed estimation algorithm shows good performance in robustness which is verified through computer simulations.
A demonstration of position angle-only weak lensing shear estimators on the GREAT3 simulations
NASA Astrophysics Data System (ADS)
Whittaker, Lee; Brown, Michael L.; Battye, Richard A.
2015-12-01
We develop and apply the position angle-only shear estimator of Whittaker, Brown & Battye to realistic galaxy images. This is done by demonstrating the method on the simulations of the third GRavitational lEnsing Accuracy Testing (GREAT3) challenge, which include contributions from anisotropic point spread functions (PSFs). We measure the position angles of the galaxies using three distinct methods - the integrated light method, quadrupole moments of surface brightness, and using model-based ellipticity measurements provided by IM3SHAPE. A weighting scheme is adopted to address biases in the position angle measurements which arise in the presence of an anisotropic PSF. Biases on the shear estimates, due to measurement errors on the position angles and correlations between the measurement errors and the true position angles, are corrected for using simulated galaxy images and an iterative procedure. The properties of the simulations are estimated using the deep field images provided as part of the challenge. A method is developed to match the distributions of galaxy fluxes and half-light radii from the deep fields to the corresponding distributions in the field of interest. We recover angle-only shear estimates with a performance close to current well-established model and moments-based methods for all three angle measurement techniques. The Q-values for all three methods are found to be Q ˜ 400. The code is freely available online at http://www.jb.man.ac.uk/mbrown/angle_only_shear/.
3D position estimation using an artificial neural network for a continuous scintillator PET detector
NASA Astrophysics Data System (ADS)
Wang, Y.; Zhu, W.; Cheng, X.; Li, D.
2013-03-01
Continuous crystal based PET detectors have features of simple design, low cost, good energy resolution and high detection efficiency. Through single-end readout of scintillation light, direct three-dimensional (3D) position estimation could be another advantage that the continuous crystal detector would have. In this paper, we propose to use artificial neural networks to simultaneously estimate the plane coordinate and DOI coordinate of incident γ photons with detected scintillation light. Using our experimental setup with an ‘8 + 8’ simplified signal readout scheme, the training data of perpendicular irradiation on the front surface and one side surface are obtained, and the plane (x, y) networks and DOI networks are trained and evaluated. The test results show that the artificial neural network for DOI estimation is as effective as for plane estimation. The performance of both estimators is presented by resolution and bias. Without bias correction, the resolution of the plane estimator is on average better than 2 mm and that of the DOI estimator is about 2 mm over the whole area of the detector. With bias correction, the resolution at the edge area for plane estimation or at the end of the block away from the readout PMT for DOI estimation becomes worse, as we expect. The comprehensive performance of the 3D positioning by a neural network is accessed by the experimental test data of oblique irradiations. To show the combined effect of the 3D positioning over the whole area of the detector, the 2D flood images of oblique irradiation are presented with and without bias correction.
Teaching Absolute Value Meaningfully
ERIC Educational Resources Information Center
Wade, Angela
2012-01-01
What is the meaning of absolute value? And why do teachers teach students how to solve absolute value equations? Absolute value is a concept introduced in first-year algebra and then reinforced in later courses. Various authors have suggested instructional methods for teaching absolute value to high school students (Wei 2005; Stallings-Roberts…
Estimation of shoreline position and change using airborne topographic lidar data
Stockdon, H.F.; Sallenger, A.H., Jr.; List, J.H.; Holman, R.A.
2002-01-01
A method has been developed for estimating shoreline position from airborne scanning laser data. This technique allows rapid estimation of objective, GPS-based shoreline positions over hundreds of kilometers of coast, essential for the assessment of large-scale coastal behavior. Shoreline position, defined as the cross-shore position of a vertical shoreline datum, is found by fitting a function to cross-shore profiles of laser altimetry data located in a vertical range around the datum and then evaluating the function at the specified datum. Error bars on horizontal position are directly calculated as the 95% confidence interval on the mean value based on the Student's t distribution of the errors of the regression. The technique was tested using lidar data collected with NASA's Airborne Topographic Mapper (ATM) in September 1997 on the Outer Banks of North Carolina. Estimated lidar-based shoreline position was compared to shoreline position as measured by a ground-based GPS vehicle survey system. The two methods agreed closely with a root mean square difference of 2.9 m. The mean 95% confidence interval for shoreline position was ?? 1.4 m. The technique has been applied to a study of shoreline change on Assateague Island, Maryland/Virginia, where three ATM data sets were used to assess the statistics of large-scale shoreline change caused by a major 'northeaster' winter storm. The accuracy of both the lidar system and the technique described provides measures of shoreline position and change that are ideal for studying storm-scale variability over large spatial scales.
Markov Jump Linear Systems-Based Position Estimation for Lower Limb Exoskeletons
Nogueira, Samuel L.; Siqueira, Adriano A. G.; Inoue, Roberto S.; Terra, Marco H.
2014-01-01
In this paper, we deal with Markov Jump Linear Systems-based filtering applied to robotic rehabilitation. The angular positions of an impedance-controlled exoskeleton, designed to help stroke and spinal cord injured patients during walking rehabilitation, are estimated. Standard position estimate approaches adopt Kalman filters (KF) to improve the performance of inertial measurement units (IMUs) based on individual link configurations. Consequently, for a multi-body system, like a lower limb exoskeleton, the inertial measurements of one link (e.g., the shank) are not taken into account in other link position estimation (e.g., the foot). In this paper, we propose a collective modeling of all inertial sensors attached to the exoskeleton, combining them in a Markovian estimation model in order to get the best information from each sensor. In order to demonstrate the effectiveness of our approach, simulation results regarding a set of human footsteps, with four IMUs and three encoders attached to the lower limb exoskeleton, are presented. A comparative study between the Markovian estimation system and the standard one is performed considering a wide range of parametric uncertainties. PMID:24451469
NASA Astrophysics Data System (ADS)
Jakobsen, Jakob; Jensen, Anna B. O.; Nielsen, Allan Aasbjerg
2015-05-01
The paper describes the development and testing of a simulation tool, called QualiSIM. The tool estimates GNSS-based position accuracy based on a simulation of the environment surrounding the GNSS antenna, with a special focus on city-scape environments with large amounts of signal reflections from non-line-of-sight satellites. The signal reflections are implemented using the extended geometric path length of the signal path caused by reflections from the surrounding buildings. Based on real GPS satellite positions, simulated Galileo satellite positions, models of atmospheric effect on the satellite signals, designs of representative environments e.g. urban and rural scenarios, and a method to simulate reflection of satellite signals within the environment we are able to estimate the position accuracy given several prerequisites as described in the paper. The result is a modelling of the signal path from satellite to receiver, the satellite availability, the extended pseudoranges caused by signal reflection, and an estimate of the position accuracy based on a least squares adjustment of the extended pseudoranges. The paper describes the models and algorithms used and a verification test where the results of QualiSIM are compared with results from collection of real GPS data in an environment with much signal reflection.
A maximum likelihood approach to estimating articulator positions from speech acoustics
Hogden, J.
1996-09-23
This proposal presents an algorithm called maximum likelihood continuity mapping (MALCOM) which recovers the positions of the tongue, jaw, lips, and other speech articulators from measurements of the sound-pressure waveform of speech. MALCOM differs from other techniques for recovering articulator positions from speech in three critical respects: it does not require training on measured or modeled articulator positions, it does not rely on any particular model of sound propagation through the vocal tract, and it recovers a mapping from acoustics to articulator positions that is linearly, not topographically, related to the actual mapping from acoustics to articulation. The approach categorizes short-time windows of speech into a finite number of sound types, and assumes the probability of using any articulator position to produce a given sound type can be described by a parameterized probability density function. MALCOM then uses maximum likelihood estimation techniques to: (1) find the most likely smooth articulator path given a speech sample and a set of distribution functions (one distribution function for each sound type), and (2) change the parameters of the distribution functions to better account for the data. Using this technique improves the accuracy of articulator position estimates compared to continuity mapping -- the only other technique that learns the relationship between acoustics and articulation solely from acoustics. The technique has potential application to computer speech recognition, speech synthesis and coding, teaching the hearing impaired to speak, improving foreign language instruction, and teaching dyslexics to read. 34 refs., 7 figs.
Estimation of Rotor Position in a 3-Phase SRM at Standstill and Low Speeds
NASA Astrophysics Data System (ADS)
Komatsuzaki, Akitomo; Bamba, Tatsunori; Miki, Ichiro
Switched reluctance motors (SRMs) are widely employed as industrial drives because they are inexpensive, simple, and sturdy, further, they deliver a robust and reliable performance. SRMs are controlled with a rotor position sensor attached to the motor shaft. Normally, encoders, resolvers, or Hall sensors are used as position sensors. The use of these sensors, however, increases the size and cost of the machine and degrades its performance. Therefore, to overcome these difficulties, several sensorless drive techniques have been reported. In this paper, a method for estimating the position of a rotor in an SRM; this method is based on calculation of the space vector of phase inductance at standstill and low speeds. The position at standstill is obtained simply without making use of the magnetic characteristics of the motor or any additional hardware. Assuming the inductance waveform to be a sine wave, the position of rotor at standstill is obtained from the phase inductance vectors of all phases. At low speeds, position estimation is carried out by applying a DC link voltage to the unenergized phases. The validity of the proposed method is experimentally verified.
NASA Technical Reports Server (NTRS)
Lichten, S. M.
1991-01-01
Data from the Global Positioning System (GPS) were used to determine precise polar motion estimates. Conservatively calculated formal errors of the GPS least squares solution are approx. 10 cm. The GPS estimates agree with independently determined polar motion values from very long baseline interferometry (VLBI) at the 5 cm level. The data were obtained from a partial constellation of GPS satellites and from a sparse worldwide distribution of ground stations. The accuracy of the GPS estimates should continue to improve as more satellites and ground receivers become operational, and eventually a near real time GPS capability should be available. Because the GPS data are obtained and processed independently from the large radio antennas at the Deep Space Network (DSN), GPS estimation could provide very precise measurements of Earth orientation for calibration of deep space tracking data and could significantly relieve the ever growing burden on the DSN radio telescopes to provide Earth platform calibrations.
Absolute transition probabilities of phosphorus.
NASA Technical Reports Server (NTRS)
Miller, M. H.; Roig, R. A.; Bengtson, R. D.
1971-01-01
Use of a gas-driven shock tube to measure the absolute strengths of 21 P I lines and 126 P II lines (from 3300 to 6900 A). Accuracy for prominent, isolated neutral and ionic lines is estimated to be 28 to 40% and 18 to 30%, respectively. The data and the corresponding theoretical predictions are examined for conformity with the sum rules.-
Impact of the Fano Factor on Position and Energy Estimation in Scintillation Detectors
Bora, Vaibhav; Barrett, Harrison H.; Jha, Abhinav K.; Clarkson, Eric
2015-01-01
The Fano factor for an integer-valued random variable is defined as the ratio of its variance to its mean. Light from various scintillation crystals have been reported to have Fano factors from sub-Poisson (Fano factor < 1) to super-Poisson (Fano factor > 1). For a given mean, a smaller Fano factor implies a smaller variance and thus less noise. We investigated if lower noise in the scintillation light will result in better spatial and energy resolutions. The impact of Fano factor on the estimation of position of interaction and energy deposited in simple gamma-camera geometries is estimated by two methods - calculating the Cramér-Rao bound and estimating the variance of a maximum likelihood estimator. The methods are consistent with each other and indicate that when estimating the position of interaction and energy deposited by a gamma-ray photon, the Fano factor of a scintillator does not affect the spatial resolution. A smaller Fano factor results in a better energy resolution. PMID:26523069
Impact of the Fano Factor on Position and Energy Estimation in Scintillation Detectors.
Bora, Vaibhav; Barrett, Harrison H; Jha, Abhinav K; Clarkson, Eric
2015-02-01
The Fano factor for an integer-valued random variable is defined as the ratio of its variance to its mean. Light from various scintillation crystals have been reported to have Fano factors from sub-Poisson (Fano factor < 1) to super-Poisson (Fano factor > 1). For a given mean, a smaller Fano factor implies a smaller variance and thus less noise. We investigated if lower noise in the scintillation light will result in better spatial and energy resolutions. The impact of Fano factor on the estimation of position of interaction and energy deposited in simple gamma-camera geometries is estimated by two methods - calculating the Cramér-Rao bound and estimating the variance of a maximum likelihood estimator. The methods are consistent with each other and indicate that when estimating the position of interaction and energy deposited by a gamma-ray photon, the Fano factor of a scintillator does not affect the spatial resolution. A smaller Fano factor results in a better energy resolution. PMID:26523069
Estimating the spatial position of marine mammals based on digital camera recordings
Hoekendijk, Jeroen P A; de Vries, Jurre; van der Bolt, Krissy; Greinert, Jens; Brasseur, Sophie; Camphuysen, Kees C J; Aarts, Geert
2015-01-01
Estimating the spatial position of organisms is essential to quantify interactions between the organism and the characteristics of its surroundings, for example, predator–prey interactions, habitat selection, and social associations. Because marine mammals spend most of their time under water and may appear at the surface only briefly, determining their exact geographic location can be challenging. Here, we developed a photogrammetric method to accurately estimate the spatial position of marine mammals or birds at the sea surface. Digital recordings containing landscape features with known geographic coordinates can be used to estimate the distance and bearing of each sighting relative to the observation point. The method can correct for frame rotation, estimates pixel size based on the reference points, and can be applied to scenarios with and without a visible horizon. A set of R functions was written to process the images and obtain accurate geographic coordinates for each sighting. The method is applied to estimate the spatiotemporal fine-scale distribution of harbour porpoises in a tidal inlet. Video recordings of harbour porpoises were made from land, using a standard digital single-lens reflex (DSLR) camera, positioned at a height of 9.59 m above mean sea level. Porpoises were detected up to a distance of ∽3136 m (mean 596 m), with a mean location error of 12 m. The method presented here allows for multiple detections of different individuals within a single video frame and for tracking movements of individuals based on repeated sightings. In comparison with traditional methods, this method only requires a digital camera to provide accurate location estimates. It especially has great potential in regions with ample data on local (a)biotic conditions, to help resolve functional mechanisms underlying habitat selection and other behaviors in marine mammals in coastal areas. PMID:25691982
Precise Point Positioning with Ionosphere Estimation and application of Regional Ionospheric Maps
NASA Astrophysics Data System (ADS)
Galera Monico, J. F.; Marques, H. A.; Rocha, G. D. D. C.
2015-12-01
The ionosphere is one of most difficult source of errors to be modelled in the GPS positioning, mainly when applying data collected by single frequency receivers. Considering Precise Point Positioning (PPP) with single frequency data the options available include, for example, the use of Klobuchar model or applying Global Ionosphere Maps (GIM). The GIM contains Vertical Electron Content (VTEC) values that are commonly estimated considering a global network with poor covering in certain regions. For this reason Regional Ionosphere Maps (RIM) have been developed considering local GNSS network, for instance, the La Plata Ionospheric Model (LPIM) developed inside the context of SIRGAS (Geocentric Reference System for Americas). The South American RIM are produced with data from nearly 50 GPS ground receivers and considering these maps are generated for each hour with spatial resolution of one degree it is expected to provide better accuracy in GPS positioning for such region. Another possibility to correct for ionosphere effects in the PPP is to apply the ionosphere estimation technique based on Kalman filter. In this case, the ionosphere can be treated as a stochastic process and a good initial guess is necessary what can be obtained from an ionospheric map. In this paper we present the methodology involved with ionosphere estimation by using Kalman filter and also the application of global and regional ionospheric maps in the PPP as first guess. The ionosphere estimation strategy was implemented in the house software called RT_PPP that is capable of accomplishing PPP either for single or dual frequency data. GPS data from Brazilian station near equatorial region were processed and results with regional maps were compared with those by using global maps. Improvements of the order 15% were observed. In case of ionosphere estimation, the estimated coordinates were compared with ionosphere free solution and after PPP convergence the results reached centimeter accuracy.
Network-based estimation of time-dependent noise in GPS position time series
NASA Astrophysics Data System (ADS)
Dmitrieva, Ksenia; Segall, Paul; DeMets, Charles
2015-06-01
Some estimates of GPS velocity uncertainties are very low, 0.1 mm/year with 10 years of data. Yet, residual velocities relative to rigid plate models in nominally stable plate interiors can be an order of magnitude larger. This discrepancy could be caused by underestimating low-frequency time-dependent noise in position time series, such as random walk. We show that traditional estimators, based on individual time series, are insensitive to low-amplitude random walk, yet such noise significantly increases GPS velocity uncertainties. Here, we develop a method for determining representative noise parameters in GPS position time series, by analyzing an entire network simultaneously, which we refer to as the network noise estimator (NNE). We analyze data from the aseismic central-eastern USA, assuming that residual motions relative to North America, corrected for glacial isostatic adjustment (GIA), represent noise. The position time series are decomposed into signal (plate rotation and GIA) and noise components. NNE simultaneously processes multiple stations with a Kalman filter and solves for average noise components for the network by maximum likelihood estimation. Synthetic tests show that NNE correctly estimates even low-level random walk, thus providing better estimates of velocity uncertainties than conventional, single station methods. To test NNE on actual data, we analyze a heterogeneous 15 station GPS network from the central-eastern USA, assuming the noise is a sum of random walk, flicker and white noise. For the horizontal time series, NNE finds higher average random walk than the standard individual station-based method, leading to velocity uncertainties a factor of 2 higher than traditional methods.
Estimating the spatial position of marine mammals based on digital camera recordings.
Hoekendijk, Jeroen P A; de Vries, Jurre; van der Bolt, Krissy; Greinert, Jens; Brasseur, Sophie; Camphuysen, Kees C J; Aarts, Geert
2015-02-01
Estimating the spatial position of organisms is essential to quantify interactions between the organism and the characteristics of its surroundings, for example, predator-prey interactions, habitat selection, and social associations. Because marine mammals spend most of their time under water and may appear at the surface only briefly, determining their exact geographic location can be challenging. Here, we developed a photogrammetric method to accurately estimate the spatial position of marine mammals or birds at the sea surface. Digital recordings containing landscape features with known geographic coordinates can be used to estimate the distance and bearing of each sighting relative to the observation point. The method can correct for frame rotation, estimates pixel size based on the reference points, and can be applied to scenarios with and without a visible horizon. A set of R functions was written to process the images and obtain accurate geographic coordinates for each sighting. The method is applied to estimate the spatiotemporal fine-scale distribution of harbour porpoises in a tidal inlet. Video recordings of harbour porpoises were made from land, using a standard digital single-lens reflex (DSLR) camera, positioned at a height of 9.59 m above mean sea level. Porpoises were detected up to a distance of ∽3136 m (mean 596 m), with a mean location error of 12 m. The method presented here allows for multiple detections of different individuals within a single video frame and for tracking movements of individuals based on repeated sightings. In comparison with traditional methods, this method only requires a digital camera to provide accurate location estimates. It especially has great potential in regions with ample data on local (a)biotic conditions, to help resolve functional mechanisms underlying habitat selection and other behaviors in marine mammals in coastal areas. PMID:25691982
Indoor patient position estimation using particle filtering and wireless body area networks.
Ren, Hongliang; Meng, Max Q H; Xu, Lisheng
2007-01-01
Wireless Body Area Network (WBAN) has been recently promoted to monitor the physiological parameters of patient in an unobtrusive and natural way. This paper towards to make advantage of those ongoing wireless communication links between the body sensors to provide estimated position information of patients or particular body area networks, which make daily activity surveillance possible for further analysis. The proposed particle filtering based localization algorithm just picks up the received radio signal strength information from beacons or its neighbors to infer its own pose, which do not require additional hardware or instruments. Theoretical analysis and simulation experiments are presented to examine the performance of location estimating method. PMID:18002445
Vector Observation-Aided/Attitude-Rate Estimation Using Global Positioning System Signals
NASA Technical Reports Server (NTRS)
Oshman, Yaakov; Markley, F. Landis
1997-01-01
A sequential filtering algorithm is presented for attitude and attitude-rate estimation from Global Positioning System (GPS) differential carrier phase measurements. A third-order, minimal-parameter method for solving the attitude matrix kinematic equation is used to parameterize the filter's state, which renders the resulting estimator computationally efficient. Borrowing from tracking theory concepts, the angular acceleration is modeled as an exponentially autocorrelated stochastic process, thus avoiding the use of the uncertain spacecraft dynamic model. The new formulation facilitates the use of aiding vector observations in a unified filtering algorithm, which can enhance the method's robustness and accuracy. Numerical examples are used to demonstrate the performance of the method.
Hu Tao; Shao Zhengyi; Peng Qiuhe E-mail: taohu.nju@gmail.com
2013-01-10
The inclination (i) and position angle (PA) of the Whirlpool galaxy (M51) are critical to modeling and interpreting observations. Here we make improved estimates of these parameters by fitting logarithmic spirals to the main arms. From separate fits to each major arm, we obtain i = 20. Degree-Sign 3 {+-} 2. Degree-Sign 8 and PA = 12. Degree-Sign 0 {+-} 2. Degree-Sign 5. We then use Poisson's equation for the logarithmic perturbation of the density to estimate the mean vertical scale height (H) of M51 to be 95-178 pc.
Eosinophils; Absolute eosinophil count ... the white blood cell count to give the absolute eosinophil count. ... than 500 cells per microliter (cells/mcL). Normal value ranges may vary slightly among different laboratories. Talk ...
Optimal Position Estimation for the Automatic Alignment of a High Energy Laser
Candy, J V; Mcclay, W A; Awwal, A S; Ferguson, S W
2004-07-20
The alignment of high energy laser beams for potential fusion experiments demand high precision and accuracy by the underlying positioning algorithms whether it be for actuator control or monitoring the beam line for potential anomalies. This paper discusses the feasibility of employing on-line optimal position estimators in the form of model-based processors to achieve the desired results. Here we discuss the modeling, development, implementation and processing of model-based processors applied to both simulated and actual beam line data.
NASA Technical Reports Server (NTRS)
Galante, Joseph M.; Van Eepoel, John; D' Souza, Chris; Patrick, Bryan
2016-01-01
The Raven ISS Hosted Payload will feature several pose measurement sensors on a pan/tilt gimbal which will be used to autonomously track resupply vehicles as they approach and depart the International Space Station. This paper discusses the derivation of a Relative Navigation Filter (RNF) to fuse measurements from the different pose measurement sensors to produce relative position and attitude estimates. The RNF relies on relative translation and orientation kinematics and careful pose sensor modeling to eliminate dependence on orbital position information and associated orbital dynamics models. The filter state is augmented with sensor biases to provide a mechanism for the filter to estimate and mitigate the offset between the measurements from different pose sensors.
NASA Technical Reports Server (NTRS)
Galante, Joseph M.; Van Eepoel, John; D'Souza, Chris; Patrick, Bryan
2016-01-01
The Raven ISS Hosted Payload will feature several pose measurement sensors on a pan/tilt gimbal which will be used to autonomously track resupply vehicles as they approach and depart the International Space Station. This paper discusses the derivation of a Relative Navigation Filter (RNF) to fuse measurements from the different pose measurement sensors to produce relative position and attitude estimates. The RNF relies on relative translation and orientation kinematics and careful pose sensor modeling to eliminate dependence on orbital position information and associated orbital dynamics models. The filter state is augmented with sensor biases to provide a mechanism for the filter to estimate and mitigate the offset between the measurements from different pose sensors
What Can We Learn From The Shape Of A Correlation Peak For Position Estimation?
Awwal, A S
2009-08-25
Matched filtering is a robust technique to identify and locate objects in the presence of noise. Traditionally, the amplitude of the correlation peak is used for detection of a match. However, when distinguishing objects that are not significantly different or detecting objects under high noise imaging conditions, the normalized peak amplitude alone may not provide sufficient discrimination. In this paper, we demonstrate that measurements derived from the shape of the correlation peak offer not only higher levels of discrimination but also accurate position estimation. To our knowledge, this is the first time such features have been used in a real-time system, like the National Ignition Facility, where such techniques enable real-time, accurate position estimation and alignment under challenging imaging conditions. It is envisioned that systems utilizing matched filtering will greatly benefit from incorporating additional shape based information.
Indoor positioning system using WLAN channel estimates as fingerprints for mobile devices
NASA Astrophysics Data System (ADS)
Schmidt, Erick; Akopian, David
2015-03-01
With the growing integration of location based services (LBS) such as GPS in mobile devices, indoor position systems (IPS) have become an important role for research. There are several IPS methods such as AOA, TOA, TDOA, which use trilateration for indoor location estimation but are generally based on line-of-sight. Other methods rely on classification such as fingerprinting which uses WLAN indoor signals. This paper re-examines the classical WLAN fingerprinting accuracy which uses received signal strength (RSS) measurements by introducing channel estimates for improvements in the classification of indoor locations. The purpose of this paper is to improve existing classification algorithms used in fingerprinting by introducing channel estimates when there are a low number of APs available. The channel impulse response, or in this case the channel estimation from the receiver, should characterize a complex indoor area which usually has multipath, thus providing a unique signature for each location which proves useful for better pattern recognition. In this experiment, channel estimates are extracted from a Software-Defined Radio (SDR) environment, thus exploiting the benefits of SDR from a NI-USRP model and LabVIEW software. Measurements are taken from a known building, and several scenarios with one and two access points (APs) are used in this experiment. Also, three granularities in distance between locations are analyzed. A Support Vector Machine (SVM) is used as the algorithm for pattern recognition of different locations based on the samples taken from RSS and channel estimation coefficients.
ERIC Educational Resources Information Center
Conone, Ruth M.
The key to positioning is the creation of a clear benefit image in the consumer's mind. One positioning strategy is creating in the prospect's mind a position that takes into consideration the company's or agency's strengths and weaknesses as well as those of its competitors. Another strategy is to gain entry into a position ladder owned by…
Woerner, Michael; Sendtner, Ernst; Springorum, Robert; Craiovan, Benjamin; Worlicek, Michael; Renkawitz, Tobias; Grifka, Joachim; Weber, Markus
2016-06-01
Background and purpose - In hip arthroplasty, acetabular inclination and anteversion-and also femoral stem torsion-are generally assessed by eye intraoperatively. We assessed whether visual estimation of cup and stem position is reliable. Patients and methods - In the course of a subgroup analysis of a prospective clinical trial, 65 patients underwent cementless hip arthroplasty using a minimally invasive anterolateral approach in lateral decubitus position. Altogether, 4 experienced surgeons assessed cup position intraoperatively according to the operative definition by Murray in the anterior pelvic plane and stem torsion in relation to the femoral condylar plane. Inclination, anteversion, and stem torsion were measured blind postoperatively on 3D-CT and compared to intraoperative results. Results - The mean difference between the 3D-CT results and intraoperative estimations by eye was -4.9° (-18 to 8.7) for inclination, 9.7° (-16 to 41) for anteversion, and -7.3° (-34 to 15) for stem torsion. We found an overestimation of > 5° for cup inclination in 32 hips, an overestimation of > 5° for stem torsion in 40 hips, and an underestimation < 5° for cup anteversion in 42 hips. The level of professional experience and patient characteristics had no clinically relevant effect on the accuracy of estimation by eye. Altogether, 46 stems were located outside the native norm of 10-20° as defined by Tönnis, measured on 3D-CT. Interpretation - Even an experienced surgeon's intraoperative estimation of cup and stem position by eye is not reliable compared to 3D-CT in minimally invasive THA. The use of mechanical insertion jigs, intraoperative fluoroscopy, or imageless navigation is recommended for correct implant insertion. PMID:26848628
Position Estimation of Access Points in 802.11 Wireless Networks
Kent, C A; Dowla, F U; Atwal, P K; Lennon, W J
2003-12-05
We developed a technique to locate wireless network nodes using multiple time-of-flight range measurements in a position estimate. When used with communication methods that allow propagation through walls, such as Ultra-Wideband and 802.11, we can locate network nodes in buildings and in caves where GPS is unavailable. This paper details the implementation on an 802.11a network where we demonstrated the ability to locate a network access point to within 20 feet.
Woerner, Michael; Sendtner, Ernst; Springorum, Robert; Craiovan, Benjamin; Worlicek, Michael; Renkawitz, Tobias; Grifka, Joachim; Weber, Markus
2016-01-01
Background and purpose In hip arthroplasty, acetabular inclination and anteversion—and also femoral stem torsion—are generally assessed by eye intraoperatively. We assessed whether visual estimation of cup and stem position is reliable. Patients and methods In the course of a subgroup analysis of a prospective clinical trial, 65 patients underwent cementless hip arthroplasty using a minimally invasive anterolateral approach in lateral decubitus position. Altogether, 4 experienced surgeons assessed cup position intraoperatively according to the operative definition by Murray in the anterior pelvic plane and stem torsion in relation to the femoral condylar plane. Inclination, anteversion, and stem torsion were measured blind postoperatively on 3D-CT and compared to intraoperative results. Results The mean difference between the 3D-CT results and intraoperative estimations by eye was −4.9° (−18 to 8.7) for inclination, 9.7° (−16 to 41) for anteversion, and −7.3° (−34 to 15) for stem torsion. We found an overestimation of > 5° for cup inclination in 32 hips, an overestimation of > 5° for stem torsion in 40 hips, and an underestimation < 5° for cup anteversion in 42 hips. The level of professional experience and patient characteristics had no clinically relevant effect on the accuracy of estimation by eye. Altogether, 46 stems were located outside the native norm of 10–20° as defined by Tönnis, measured on 3D-CT. Interpretation Even an experienced surgeon’s intraoperative estimation of cup and stem position by eye is not reliable compared to 3D-CT in minimally invasive THA. The use of mechanical insertion jigs, intraoperative fluoroscopy, or imageless navigation is recommended for correct implant insertion. PMID:26848628
Initial rotor position estimation and sliding preventing for elevators with surface-mounted PMSMs
NASA Astrophysics Data System (ADS)
Liu, Feng; Shen, Anwen; Tang, Qipeng; Xu, Jinbang
2016-03-01
Improved methods of initial rotor position estimation and sliding prevention are presented in this paper for elevators with surface-mounted permanent magnet synchronous machines (SPMSMs). In contrast to most of the existing literature, in this paper, estimation errors caused by stator resistance and dead time are analysed in detail. The improved estimation method can reduce the errors greatly without dead-time compensations and knowledge of motor parameters. Besides, an observer-based feedforward compensation of load torque is introduced to elevator applications to prevent sliding during the starting process. Since the torque observer is widely used in other motor applications, we focus on the impact caused by the change in inertia. Finally, a series of experiments are performed on a testing system with two 13.4 kW SPMSMs and drivers to illustrate the effectiveness and improvement of the method.
Ouellette, Karli J; de Linage, Caroline; Famiglietti, James S
2013-01-01
[1] Accurate estimation of the characteristics of the winter snowpack is crucial for prediction of available water supply, flooding, and climate feedbacks. Remote sensing of snow has been most successful for quantifying the spatial extent of the snowpack, although satellite estimation of snow water equivalent (SWE), fractional snow covered area, and snow depth is improving. Here we show that GPS observations of vertical land surface loading reveal seasonal responses of the land surface to the total weight of snow, providing information about the stored SWE. We demonstrate that the seasonal signal in Scripps Orbit and Permanent Array Center (SOPAC) GPS vertical land surface position time series at six locations in the western United States is driven by elastic loading of the crust by the snowpack. GPS observations of land surface deformation are then used to predict the water load as a function of time at each location of interest and compared for validation to nearby Snowpack Telemetry observations of SWE. Estimates of soil moisture are included in the analysis and result in considerable improvement in the prediction of SWE. Citation: Ouellette, K. J., C. de Linage, and J. S. Famiglietti (2013), Estimating snow water equivalent from GPS vertical site-position observations in the western United States, Water Resour. Res., 49, 2508–2518, doi:10.1002/wrcr.20173. PMID:24223442
Ouellette, Karli J; de Linage, Caroline; Famiglietti, James S
2013-05-01
[1] Accurate estimation of the characteristics of the winter snowpack is crucial for prediction of available water supply, flooding, and climate feedbacks. Remote sensing of snow has been most successful for quantifying the spatial extent of the snowpack, although satellite estimation of snow water equivalent (SWE), fractional snow covered area, and snow depth is improving. Here we show that GPS observations of vertical land surface loading reveal seasonal responses of the land surface to the total weight of snow, providing information about the stored SWE. We demonstrate that the seasonal signal in Scripps Orbit and Permanent Array Center (SOPAC) GPS vertical land surface position time series at six locations in the western United States is driven by elastic loading of the crust by the snowpack. GPS observations of land surface deformation are then used to predict the water load as a function of time at each location of interest and compared for validation to nearby Snowpack Telemetry observations of SWE. Estimates of soil moisture are included in the analysis and result in considerable improvement in the prediction of SWE. Citation: Ouellette, K. J., C. de Linage, and J. S. Famiglietti (2013), Estimating snow water equivalent from GPS vertical site-position observations in the western United States, Water Resour. Res., 49, 2508-2518, doi:10.1002/wrcr.20173. PMID:24223442
Koeppe, Robert; Neulinger, Anton; Bartu, Petr; Bauer, S
2010-02-01
A large-area photosensor is presented that uses the coupling of light into the planar waveguide mode of a polycarbonate foil by luminescent dyes to extend the active area of silicon photodiodes attached to the surface of the foil in a regular pattern. The photodiode signal is directly related to the distance between the point where light is coupled into the foil and the photodiode, thus enabling a precise recovery of the position of a localized light signal hitting the foil. We present a large-area device that can trace the movement of a light point generated by a laser pointer hitting its surface. PMID:20174049
High-precision position estimation in PET using artificial neural networks
NASA Astrophysics Data System (ADS)
Mateo, F.; Aliaga, R. J.; Ferrando, N.; Martínez, J. D.; Herrero, V.; Lerche, Ch. W.; Colom, R. J.; Monzó, J. M.; Sebastiá, A.; Gadea, R.
2009-06-01
Traditionally, the most popular technique to predict the impact position of gamma photons on a PET detector has been Anger's logic. However, it introduces nonlinearities that compress the light distribution, reducing the useful field of view and the spatial resolution, especially at the edges of the scintillator crystal. In this work, we make use of neural networks to address a bias-corrected position estimation from real stimulus obtained from a 2D PET system setup. The preprocessing and data acquisition were performed by separate custom boards, especially designed for this application. The results show that neural networks yield a more uniform field of view while improving the systematic error and the spatial resolution. Therefore, they stand as a better performing and readily available alternative to classic positioning methods.
Using identity by descent estimation with dense genotype data to detect positive selection.
Han, Lide; Abney, Mark
2013-02-01
Identification of genomic loci and segments that are identical by descent (IBD) allows inference on problems such as relatedness detection, IBD disease mapping, heritability estimation and detection of recent or ongoing positive selection. Here, employing a novel statistical method, we use IBD to find signals of selection in the Maasai from Kinyawa, Kenya (MKK). In doing so, we demonstrate the advantage of statistical tools that can probabilistically estimate IBD sharing without having to thin genotype data because of linkage disequilibrium (LD), and that allow for both inbreeding and more than one allele to be shared IBD. We use our novel method, GIBDLD, to estimate IBD sharing between all pairs of individuals at all genotyped SNPs in the MKK, and, by looking for genomic regions showing excess IBD sharing in unrelated pairs, find loci that are known to have undergone recent selection (eg, the LCT gene and the HLA region) as well as many novel loci. Intriguingly, those loci that show the highest amount of excess IBD, with the exception of HLA, also show a substantial number of unrelated pairs sharing all four of their alleles IBD. In contrast to other IBD detection methods, GIBDLD provides accurate probabilistic estimates at each locus for all nine possible IBD sharing states between a pair of individuals, thus allowing for consanguinity, while also modeling LD, thus removing the need to thin SNPs. These characteristics will prove valuable for those doing genetic studies, and estimating IBD, in the wide variety of human populations. PMID:22781100
Application of NTR ZTD estimates from GBAS network to improve fast-static GNSS positioning
NASA Astrophysics Data System (ADS)
Wielgosz, P.; Paziewski, J.; Stepniak, K.; Krukowska, M.; Kaplon, J.; Sierny, J.; Hadas, T.; Bosy, J.
2012-04-01
In precise GNSS positioning, the correlated tropospheric effects are usually reduced by double differencing of the observations and applying mathematical atmospheric models. However, with a growing distance between the receivers, the tropospheric errors decorrelate causing large residual errors affecting positioning quality. These errors mostly concern the height component of the user position and are related to a high correlation of this component with zenith tropospheric delays (ZTD). This is why nowadays the troposphere is considered as an ultimate accuracy limiting factor in geodetic applications of GNSS. Currently, the most popular solution in the state of the art applications is to estimate ZTD together with station coordinates in the common data adjustment. This approach requires long data spans, e.g., at least 30-60 minutes. However, in fast-static positioning when short data spans (a few minutes only) are available, this method in not feasible and the troposphere is very difficult to model. Therefore, fast-static positioning requires external tropospheric information in order to improve its accuracy. This can be achieved by a network of the reference GNSS stations (GBAS), where ZTD can be obtained in the adjustment of GNSS data or directly from the ground meteorological data in near real-time (NRT) and provided as an external supporting product. The presented research are carried out in the frame of the "ASG+" project aimed at the development of NRT supporting modules for the ASG-EUPOS system. In this paper we present the analysis of the application of several ZTD modeling techniques to fast-static GNSS positioning, namely: (1) NRT ZTD estimates obtained based on GNSS data from Polish GBAS system called ASG-EUPOS and IGS/EPN and IERS products, (2) NRT ZTD determination based on meteorological data collected in real time from ASG-EUPOS, METAR and SYNOP systems. In order to assess the accuracy of these ZTD modeling techniques, test baselines of several tens
Estimated SLR station position and network frame sensitivity to time-varying gravity
NASA Astrophysics Data System (ADS)
Zelensky, Nikita P.; Lemoine, Frank G.; Chinn, Douglas S.; Melachroinos, Stavros; Beckley, Brian D.; Beall, Jennifer Wiser; Bordyugov, Oleg
2014-06-01
This paper evaluates the sensitivity of ITRF2008-based satellite laser ranging (SLR) station positions estimated weekly using LAGEOS-1/2 data from 1993 to 2012 to non-tidal time-varying gravity (TVG). Two primary methods for modeling TVG from degree-2 are employed. The operational approach applies an annual GRACE-derived field, and IERS recommended linear rates for five coefficients. The experimental approach uses low-order/degree coefficients estimated weekly from SLR and DORIS processing of up to 11 satellites (tvg4x4). This study shows that the LAGEOS-1/2 orbits and the weekly station solutions are sensitive to more detailed modeling of TVG than prescribed in the current IERS standards. Over 1993-2012 tvg4x4 improves SLR residuals by 18 % and shows 10 % RMS improvement in station stability. Tests suggest that the improved stability of the tvg4x4 POD solution frame may help clarify geophysical signals present in the estimated station position time series. The signals include linear and seasonal station motion, and motion of the TRF origin, particularly in Z. The effect on both POD and the station solutions becomes increasingly evident starting in 2006. Over 2008-2012, the tvg4x4 series improves SLR residuals by 29 %. Use of the GRGS RL02 series shows similar improvement in POD. Using tvg4x4, secular changes in the TRF origin Z component double over the last decade and although not conclusive, it is consistent with increased geocenter rate expected due to continental ice melt. The test results indicate that accurate modeling of TVG is necessary for improvement of station position estimation using SLR data.
Inter-system biases estimation in multi-GNSS relative positioning with GPS and Galileo
NASA Astrophysics Data System (ADS)
Deprez, Cecile; Warnant, Rene
2016-04-01
The recent increase in the number of Global Navigation Satellite Systems (GNSS) opens new perspectives in the field of high precision positioning. Particularly, the European Galileo program has experienced major progress in 2015 with the launch of 6 satellites belonging to the new Full Operational Capability (FOC) generation. Associated with the ongoing GPS modernization, many more frequencies and satellites are now available. Therefore, multi-GNSS relative positioning based on GPS and Galileo overlapping frequencies should entail better accuracy and reliability in position estimations. However, the differences between satellite systems induce inter-system biases (ISBs) inside the multi-GNSS equations of observation. Once these biases estimated and removed from the model, a solution involving a unique pivot satellite for the two considered constellations can be obtained. Such an approach implies that the addition of even one single Galileo satellite to the GPS-only model will strengthen it. The combined use of L1 and L5 from GPS with E1 and E5a from Galileo in zero baseline double differences (ZB DD) based on a unique pivot satellite is employed to resolve ISBs. This model removes all the satellite- and receiver-dependant error sources by differentiating and the zero baseline configuration allows atmospheric and multipath effects elimination. An analysis of the long-term stability of ISBs is conducted on various pairs of receivers over large time spans. The possible influence of temperature variations inside the receivers over ISB values is also investigated. Our study is based on the 5 multi-GNSS receivers (2 Septentrio PolaRx4, 1 Septentrio PolaRxS and 2 Trimble NetR9) installed on the roof of our building in Liege. The estimated ISBs are then used as corrections in the multi-GNSS observation model and the resulting accuracy of multi-GNSS positioning is compared to GPS and Galileo standalone solutions.
Hussain, Zahra; Svensson, Carl-Magnus; Besle, Julien; Webb, Ben S.; Barrett, Brendan T.; McGraw, Paul V.
2015-01-01
We describe a method for deriving the linear cortical magnification factor from positional error across the visual field. We compared magnification obtained from this method between normally sighted individuals and amblyopic individuals, who receive atypical visual input during development. The cortical magnification factor was derived for each subject from positional error at 32 locations in the visual field, using an established model of conformal mapping between retinal and cortical coordinates. Magnification of the normally sighted group matched estimates from previous physiological and neuroimaging studies in humans, confirming the validity of the approach. The estimate of magnification for the amblyopic group was significantly lower than the normal group: by 4.4 mm deg−1 at 1° eccentricity, assuming a constant scaling factor for both groups. These estimates, if correct, suggest a role for early visual experience in establishing retinotopic mapping in cortex. We discuss the implications of altered cortical magnification for cortical size, and consider other neural changes that may account for the amblyopic results. PMID:25761341
Indoor Positioning in Wireless Local Area Networks with Online Path-Loss Parameter Estimation
Bruno, Luigi
2014-01-01
Location based services are gathering an even wider interest also in indoor environments and urban canyons, where satellite systems like GPS are no longer accurate. A much addressed solution for estimating the user position exploits the received signal strengths (RSS) in wireless local area networks (WLANs), which are very common nowadays. However, the performances of RSS based location systems are still unsatisfactory for many applications, due to the difficult modeling of the propagation channel, whose features are affected by severe changes. In this paper we propose a localization algorithm which takes into account the nonstationarity of the working conditions by estimating and tracking the key parameters of RSS propagation. It is based on a Sequential Monte Carlo realization of the optimal Bayesian estimation scheme, whose functioning is improved by exploiting the Rao-Blackwellization rationale. Two key statistical models for RSS characterization are deeply analyzed, by presenting effective implementations of the proposed scheme and by assessing the positioning accuracy by extensive computer experiments. Many different working conditions are analyzed by simulated data and corroborated through the validation in a real world scenario. PMID:25165755
Indoor positioning in wireless local area networks with online path-loss parameter estimation.
Bruno, Luigi; Addesso, Paolo; Restaino, Rocco
2014-01-01
Location based services are gathering an even wider interest also in indoor environments and urban canyons, where satellite systems like GPS are no longer accurate. A much addressed solution for estimating the user position exploits the received signal strengths (RSS) in wireless local area networks (WLANs), which are very common nowadays. However, the performances of RSS based location systems are still unsatisfactory for many applications, due to the difficult modeling of the propagation channel, whose features are affected by severe changes. In this paper we propose a localization algorithm which takes into account the nonstationarity of the working conditions by estimating and tracking the key parameters of RSS propagation. It is based on a Sequential Monte Carlo realization of the optimal Bayesian estimation scheme, whose functioning is improved by exploiting the Rao-Blackwellization rationale. Two key statistical models for RSS characterization are deeply analyzed, by presenting effective implementations of the proposed scheme and by assessing the positioning accuracy by extensive computer experiments. Many different working conditions are analyzed by simulated data and corroborated through the validation in a real world scenario. PMID:25165755
NASA Astrophysics Data System (ADS)
Kiso, Atsushi; Taniguchi, Yu; Seki, Hirokazu
This paper describes the estimation of the optimal measurement position by discriminant analysis based on Wilks' lambda for myoelectric hand control. In previous studies, for motion discrimination, the myoelectric signals were measured at the same positions. However, the optimal measurement positions of the myoelectric signals for motion discrimination differ depending on the remaining muscles of amputees. Therefore, the purpose of this study is to estimate the optimal and fewer measurement positions for precise motion discrimination of a human forearm. This study proposes a method for estimating the optimal measurement positions by discriminant analysis based on Wilks' lambda, using the myoelectric signals measured at multiple positions. The results of some experiments on the myoelectric hand simulator show the effectiveness of the proposed optimal measurement position estimation method.
Absolute Income, Relative Income, and Happiness
ERIC Educational Resources Information Center
Ball, Richard; Chernova, Kateryna
2008-01-01
This paper uses data from the World Values Survey to investigate how an individual's self-reported happiness is related to (i) the level of her income in absolute terms, and (ii) the level of her income relative to other people in her country. The main findings are that (i) both absolute and relative income are positively and significantly…
NASA Technical Reports Server (NTRS)
Battin, R. H.; Croopnick, S. R.; Edwards, J. A.
1977-01-01
The formulation of a recursive maximum likelihood navigation system employing reference position and velocity vectors as state variables is presented. Convenient forms of the required variational equations of motion are developed together with an explicit form of the associated state transition matrix needed to refer measurement data from the measurement time to the epoch time. Computational advantages accrue from this design in that the usual forward extrapolation of the covariance matrix of estimation errors can be avoided without incurring unacceptable system errors. Simulation data for earth orbiting satellites are provided to substantiate this assertion.
Absolute nuclear material assay
Prasad, Manoj K.; Snyderman, Neal J.; Rowland, Mark S.
2012-05-15
A method of absolute nuclear material assay of an unknown source comprising counting neutrons from the unknown source and providing an absolute nuclear material assay utilizing a model to optimally compare to the measured count distributions. In one embodiment, the step of providing an absolute nuclear material assay comprises utilizing a random sampling of analytically computed fission chain distributions to generate a continuous time-evolving sequence of event-counts by spreading the fission chain distribution in time.
Absolute nuclear material assay
Prasad, Manoj K.; Snyderman, Neal J.; Rowland, Mark S.
2010-07-13
A method of absolute nuclear material assay of an unknown source comprising counting neutrons from the unknown source and providing an absolute nuclear material assay utilizing a model to optimally compare to the measured count distributions. In one embodiment, the step of providing an absolute nuclear material assay comprises utilizing a random sampling of analytically computed fission chain distributions to generate a continuous time-evolving sequence of event-counts by spreading the fission chain distribution in time.
Using Spitzer to Estimate the Kepler False Positive Rate and to Validate Kepler Candidates.
NASA Astrophysics Data System (ADS)
Desert, Jean-Michel; Charbonneau, D.; Fressin, F.; Torres, G.
2012-01-01
I present the results from an ongoing large campaign with the Spitzer Space Telescope to gather near-infrared photometric measurements of Kepler Objects of Interest (KOI). Our goals are (1) to validate the planetary status of these Kepler candidates, (2) to estimate observationally the false positive rate, and (3) to study the atmospheres of confirmed planets through measurements of their secondary eclipses. Our target list spans of wide range of candidate sizes and periods orbiting various spectral type stars. The Spitzer observations provide constraints on the possibility of astrophysical false positives resulting from stellar blends, including eclipsing binaries and hierarchical triples. The number of possible blends per star is estimated using stellar population synthesis models and observational probes of the KOI close environments from direct imaging (e.g. Adaptive Optics, Speckle images, Kepler centroids). Combining all the above information with the shape of the transit lightcurves from the Kepler photometry, we compute odd ratios for the 34 candidates we observed in order to determine their false positive probability. Our results suggest that the Kepler false positive rate in this subset of candidates is low. I finally present a new list of Kepler candidates that we were able to validate using this method. This work is based on observations made with the Spitzer, which is operated by JPL/Caltech, under a contract with NASA. Support was provided by NASA through an award issued by JPL/Caltech. Kepler was selected as the 10th mission of the Discovery Program. Funding for this mission is provided by NASA, Science Mission Directorate.
Optomechanics for absolute rotation detection
NASA Astrophysics Data System (ADS)
Davuluri, Sankar
2016-07-01
In this article, we present an application of optomechanical cavity for the absolute rotation detection. The optomechanical cavity is arranged in a Michelson interferometer in such a way that the classical centrifugal force due to rotation changes the length of the optomechanical cavity. The change in the cavity length induces a shift in the frequency of the cavity mode. The phase shift corresponding to the frequency shift in the cavity mode is measured at the interferometer output to estimate the angular velocity of absolute rotation. We derived an analytic expression to estimate the minimum detectable rotation rate in our scheme for a given optomechanical cavity. Temperature dependence of the rotation detection sensitivity is studied.
Wood, Nathan A.; del Agua, Diego Moral; Zenati, Marco A.; Riviere, Cameron N.
2012-01-01
HeartLander, a small mobile robot designed to provide treatments to the surface of the beating heart, overcomes a major difficulty of minimally invasive cardiac surgery, providing a stable operating platform. This is achieved inherently in the way the robot adheres to and crawls over the surface of the heart. This mode of operation does not require physiological motion compensation to provide this stable environment; however, modeling of physiological motion is advantageous in providing more accurate position estimation as well as synchronization of motion to the physiological cycles. The work presented uses an Extended Kalman Filter framework to estimate parameters of non-stationary Fourier series models of the motion of the heart due to the respiratory and cardiac cycles as well as the position of the robot as it moves over the surface of the heart. The proposed method is demonstrated in the laboratory with HeartLander operating on a physiological motion simulator. Improved performance is demonstrated in comparison to the filtering methods previously used with HeartLander. The use of detected physiological cycle phases to synchronize locomotion of HeartLander is also described. PMID:23066511
NASA Technical Reports Server (NTRS)
Chen, Lingli; Fathpour, Nanaz; Mehra, Raman K.
2005-01-01
As more and more nonlinear estimation techniques become available, our interest is in finding out what performance improvement, if any, they can provide for practical nonlinear problems that have been traditionally solved using linear methods. In this paper we examine the problem of estimating spacecraft position using conical scan (conscan) for NASA's Deep Space Network antennas. We show that for additive disturbances on antenna power measurement, the problem can be transformed into a linear one, and we present a general solution to this problem, with the least square solution reported in literature as a special case. We also show that for additive disturbances on antenna position, the problem is a truly nonlinear one, and we present two approximate solutions based on linearization and Unscented Transformation respectively, and one 'exact' solution based on Markov Chain Monte Carlo (MCMC) method. Simulations show that, with the amount of data collected in practice, linear methods perform almost the same as MCMC methods. It is only when we artificially reduce the amount of collected data and increase the level of noise that nonlinear methods show significantly better accuracy than that achieved by linear methods, at the expense of more computation.
A Simple Interface for 3D Position Estimation of a Mobile Robot with Single Camera.
Chao, Chun-Tang; Chung, Ming-Hsuan; Chiou, Juing-Shian; Wang, Chi-Jo
2016-01-01
In recent years, there has been an increase in the number of mobile robots controlled by a smart phone or tablet. This paper proposes a visual control interface for a mobile robot with a single camera to easily control the robot actions and estimate the 3D position of a target. In this proposal, the mobile robot employed an Arduino Yun as the core processor and was remote-controlled by a tablet with an Android operating system. In addition, the robot was fitted with a three-axis robotic arm for grasping. Both the real-time control signal and video transmission are transmitted via Wi-Fi. We show that with a properly calibrated camera and the proposed prototype procedures, the users can click on a desired position or object on the touchscreen and estimate its 3D coordinates in the real world by simple analytic geometry instead of a complicated algorithm. The results of the measurement verification demonstrates that this approach has great potential for mobile robots. PMID:27023556
A Simple Interface for 3D Position Estimation of a Mobile Robot with Single Camera
Chao, Chun-Tang; Chung, Ming-Hsuan; Chiou, Juing-Shian; Wang, Chi-Jo
2016-01-01
In recent years, there has been an increase in the number of mobile robots controlled by a smart phone or tablet. This paper proposes a visual control interface for a mobile robot with a single camera to easily control the robot actions and estimate the 3D position of a target. In this proposal, the mobile robot employed an Arduino Yun as the core processor and was remote-controlled by a tablet with an Android operating system. In addition, the robot was fitted with a three-axis robotic arm for grasping. Both the real-time control signal and video transmission are transmitted via Wi-Fi. We show that with a properly calibrated camera and the proposed prototype procedures, the users can click on a desired position or object on the touchscreen and estimate its 3D coordinates in the real world by simple analytic geometry instead of a complicated algorithm. The results of the measurement verification demonstrates that this approach has great potential for mobile robots. PMID:27023556
NASA Astrophysics Data System (ADS)
Lorrain, Anne; Graham, Brittany S.; Popp, Brian N.; Allain, Valérie; Olson, Robert J.; Hunt, Brian P. V.; Potier, Michel; Fry, Brian; Galván-Magaña, Felipe; Menkes, Christophe E. R.; Kaehler, Sven; Ménard, Frédéric
2015-03-01
Assessment of isotopic compositions at the base of food webs is a prerequisite for using stable isotope analysis to assess foraging locations and trophic positions of marine organisms. Our study represents a unique application of stable-isotope analyses across multiple trophic levels (primary producer, primary consumer and tertiary consumer) and over a large spatial scale in two pelagic marine ecosystems. We found that δ15N values of particulate organic matter (POM), barnacles and phenylalanine from the muscle tissue of yellowfin tuna all showed similar spatial patterns. This consistency suggests that isotopic analysis of any of these can provide a reasonable proxy for isotopic variability at the base of the food web. Secondly, variations in the δ15N values of yellowfin tuna bulk-muscle tissues paralleled the spatial trends observed in all of these isotopic baseline proxies. Variation in isotopic composition at the base of the food web, rather than differences in tuna diet, explained the 11‰ variability observed in the bulk-tissue δ15N values of yellowfin tuna. Evaluating the trophic position of yellowfin tuna using amino-acid isotopic compositions across the western Indian and equatorial Pacific Oceans strongly suggests these tuna occupy similar trophic positions, albeit absolute trophic positions estimated by this method were lower than expected. This study reinforces the importance of considering isotopic baseline variability for diet studies, and provides new insights into methods that can be applied to generate nitrogen isoscapes for worldwide comparisons of top predators in marine ecosystems.
Airdata sensor based position estimation and fault diagnosis in aerial refueling
NASA Astrophysics Data System (ADS)
Sevil, Hakki Erhan
Aerial refueling is the process of transferring fuel from one aircraft (the tanker) to another (the receiver) during flight. In aerial refueling operations, the receiver aircraft is exposed to nonuniform wind field induced by tanker aircraft, and this nonuniform wind field leads to differences in readings of airdata sensors placed at different locations on the receiver aircraft. There are advantages and disadvantages of this phenomenon. As an advantage, it is used as a mechanism to estimate relative position of the receiver aircraft inside the nonuniform wind field behind the tanker. Using the difference in the measurements from multiple identical sensors, a model of the nonuniform wind field that is organized as maps of the airspeed, side slip angle and angle of attack as functions of the relative position is prepared. Then, using the developed algorithms, preformed maps and instant sensor readings, the relative position receiver aircraft is determined. The disadvantage of the phenomenon is that the differences in readings of airdata sensors cause false fault detections in a redundant-sensor-based Fault Detection and Isolation (FDI) system developed based on the assumption of identical sensor readings from three airdata sensors. Such FDI algorithm successfully performs detection and isolation of sensor faults when the receiver aircraft flies solo or outside the wake of the tanker aircraft. However, the FDI algorithm yields false fault detection when the receiver aircraft enters the tanker's wake. This problem can be eliminated by modifying the FDI algorithm. For the robustness, the expected values of the sensor measurements are incorporated in the FDI algorithm, instead of the assumption of identical measurements from the sensors. The expected values, which depend on the position of the receiver relative to the tanker, are obtained from the maps of the nonuniform wind field as functions of the relative position. The new robust FDI detects and isolates sensor
Needle position estimation from sub-sampled k-space data for MRI-guided interventions
NASA Astrophysics Data System (ADS)
Schmitt, Sebastian; Choli, Morwan; Overhoff, Heinrich M.
2015-03-01
MRI-guided interventions have gained much interest. They profit from intervention synchronous data acquisition and image visualization. Due to long data acquisition durations, ergonomic limitations may occur. For a trueFISP MRI-data acquisition sequence, a time sparing sub-sampling strategy has been developed that is adapted to amagnetic needle detection. A symmetrical and contrast rich susceptibility needle artifact, i.e. an approximately rectangular gray scale profile is assumed. The 1-D-Fourier transformed of a rectangular function is a sinc-function. Its periodicity is exploited by sampling only along a few orthogonal trajectories in k-space. Because a needle moves during intervention, its tip region resembles a rectangle in a time-difference image that is reconstructed from such sub-sampled k-spaces acquired at different time stamps. In different phantom experiments, a needle was pushed forward along a reference trajectory, which was determined from a needle holders geometric parameters. In addition, the trajectory of the needle tip was estimated by the method described above. Only ca. 4 to 5% of the entire k-space data was used for needle tip estimation. The misalignment of needle orientation and needle tip position, i.e. the differences between reference and estimated values, is small and even in its worst case less than 2 mm. The results show that the method is applicable under nearly real conditions. Next steps are addressed to the validation of the method for clinical data.
Plate Motion and Crustal Deformation Estimated with Geodetic Data from the Global Positioning System
NASA Technical Reports Server (NTRS)
Argus, Donald F.; Heflin, Michael B.
1995-01-01
We use geodetic data taken over four years with the Global Positioning System (GPS) to estimate: (1) motion between six major plates and (2) motion relative to these plates of ten sites in plate boundary zones. The degree of consistency between geodetic velocities and rigid plates requires the (one-dimensional) standard errors in horizontal velocities to be approx. 2 mm/yr. Each of the 15 angular velocities describing motion between plate pairs that we estimate with GPS differs insignificantly from the corresponding angular velocity in global plate motion model NUVEL-1A, which averages motion over the past 3 m.y. The motion of the Pacific plate relative to both the Eurasian and North American plates is observed to be faster than predicted by NUVEL-1A, supporting the inference from Very Long B ase- line Interferometry (VLBI) that motion of the Pacific plate has speed up over the past few m.y. The Eurasia-North America pole of rotation is estimated to be north of NUVEL-1A, consistent with the independent hypothesis that the pole has recently migrated northward across northeast Asia to near the Lena River delta. Victoria, which lies above the main thrust at the Cascadia subduction zone, moves relative to the interior of the overriding plate at 30% of the velocity of the subducting plate, reinforcing the conclusion that the thrust there is locked beneath the continental shelf and slope.
Regularized Positive-Definite Fourth Order Tensor Field Estimation from DW-MRI★
Barmpoutis, Angelos; Vemuri, Baba C.; Howland, Dena; Forder, John R.
2009-01-01
In Diffusion Weighted Magnetic Resonance Image (DW-MRI) processing, a 2nd order tensor has been commonly used to approximate the diffusivity function at each lattice point of the DW-MRI data. From this tensor approximation, one can compute useful scalar quantities (e.g. anisotropy, mean diffusivity) which have been clinically used for monitoring encephalopathy, sclerosis, ischemia and other brain disorders. It is now well known that this 2nd-order tensor approximation fails to capture complex local tissue structures, e.g. crossing fibers, and as a result, the scalar quantities derived from these tensors are grossly inaccurate at such locations. In this paper we employ a 4th order symmetric positive-definite (SPD) tensor approximation to represent the diffusivity function and present a novel technique to estimate these tensors from the DW-MRI data guaranteeing the SPD property. Several articles have been reported in literature on higher order tensor approximations of the diffusivity function but none of them guarantee the positivity of the estimates, which is a fundamental constraint since negative values of the diffusivity are not meaningful. In this paper we represent the 4th-order tensors as ternary quartics and then apply Hilbert’s theorem on ternary quartics along with the Iwasawa parametrization to guarantee an SPD 4th-order tensor approximation from the DW-MRI data. The performance of this model is depicted on synthetic data as well as real DW-MRIs from a set of excised control and injured rat spinal cords, showing accurate estimation of scalar quantities such as generalized anisotropy and trace as well as fiber orientations. PMID:19063978
Locating the position of objects in non-line-of-sight based on time delay estimation
NASA Astrophysics Data System (ADS)
Wang, Xue-Feng; Wang, Yuan-Qing; Su, Jin-Shan; Yang, Xing-Yu
2016-08-01
Non-line-of-sight imaging detection is to detect hidden objects by indirect light and intermediary surface (diffuser). It has very important significance in indirect access to an object or dangerous object detection, such as medical treatment and rescue. An approach to locating the positions of hidden objects is proposed based on time delay estimation. The time delays between the received signals and the source signal can be obtained by correlation analysis, and then the positions of hidden objects will be located. Compared with earlier systems and methods, the proposed approach has some modifications and provides significant improvements, such as quick data acquisition, simple system structure and low cost, and can locate the positions of hidden objects as well: this technology lays a good foundation for developing a practical system that can be used in real applications. Project supported by the National Science and Technology Major Project of China (Grant No. AHJ2011Z001) and the Major Research Project of Yili Normal University (Grant No. 2016YSZD05).
NASA Astrophysics Data System (ADS)
Guarnieri, A.; Milan, N.; Pirotti, F.; Vettore, A.
2011-12-01
In the automotive sector, especially in these last decade, a growing number of investigations have taken into account electronic systems to check and correct the behavior of drivers, increasing road safety. The possibility to identify with high accuracy the vehicle position in a mapping reference frame for driving directions and best-route analysis is also another topic which attracts lot of interest from the research and development sector. To reach the objective of accurate vehicle positioning and integrate response events, it is necessary to estimate time by time the position, orientation and velocity of the system. To this aim low cost GPS and MEMS (sensors can be used. In comparison to a four wheel vehicle, the dynamics of a two wheel vehicle (e.g. a scooter) feature a higher level of complexity. Indeed more degrees of freedom must be taken into account to describe the motion of the latter. For example a scooter can twist sideways, thus generating a roll angle. A slight pitch angle has to be considered as well, since wheel suspensions have a higher degree of motion with respect to four wheel vehicles. In this paper we present a method for the accurate reconstruction of the trajectory of a motorcycle ("Vespa" scooter), which can be used as alternative to the "classical" approach based on the integration of GPS and INS sensors. Position and orientation of the scooter are derived from MEMS data and images acquired by on-board digital camera. A Bayesian filter provides the means for integrating the data from MEMS-based orientation sensor and the GPS receiver.
Estimation of trapping position in three-dimensional off-axis trapping with optical vortices
NASA Astrophysics Data System (ADS)
Ando, Taro; Otsu, Tomoko; Takiguchi, Yu; Ohtake, Yoshiyuki; Toyoda, Haruyoshi; Itoh, Hiroyasu
2014-08-01
Dynamics of micrometer-sized dielectric objects can be controlled by optical tweezers with scanning light, however, the trapped objects fail to track the scan when drag exceeds the trapping by too quick movement. On the other hand, optical vortices (OVs), which have a property of carrying angular momenta, can directly control torque on objects rather than their position. Laguerre-Gaussian (LG) beams are the most familiar examples of OV and have been studied extensively so far. Revolution of the objects trapped by the LG beams provides typical models of nonequilibrium statistical system, but stable mid-water trapping by the LG beams becomes essential to evaluate physical properties of the system without extrinsic hydrodynamic effects,. Nevertheless, off-axis revolutions of small objects trapped in mid-water by the LG beams have not yet been established with secure evidences. Here we report stable off-axis trapping of dielectric spheres in mid-water using high-quality LG beams generated by a holographic complex-amplitude modulation method. Direct evidence of the three-dimensional off-axis LG trapping was established via estimating the trapping position by measuring the change of revolution radii upon pressing the spheres onto glass walls. Resultantly, the axial trapping position was determined as about half the wavelength behind the beam waist position. This result provides a direct scientific evidence for possibility of off-axis three-dimensional trapping with a single LG beam, moreover, suggests applications as powerful tools for studying energy-conversion mechanisms and nonequilibrium nature in biological molecules under torque.
NASA Technical Reports Server (NTRS)
Bagri, Durgadas S.; Majid, Walid
2009-01-01
At present spacecraft angular position with Deep Space Network (DSN) is determined using group delay estimates from very long baseline interferometer (VLBI) phase measurements employing differential one way ranging (DOR) tones. As an alternative to this approach, we propose estimating position of a spacecraft to half a fringe cycle accuracy using time variations between measured and calculated phases as the Earth rotates using DSN VLBI baseline(s). Combining fringe location of the target with the phase allows high accuracy for spacecraft angular position estimate. This can be achieved using telemetry signals of at least 4-8 MSamples/sec data rate or DOR tones.
Laitinen, Elina; Lohan, Elena Simona
2016-01-01
The positioning based on Wireless Local Area Networks (WLAN) is one of the most promising technologies for indoor location-based services, generally using the information carried by Received Signal Strengths (RSS). One challenge, however, is the huge amount of data in the radiomap database due to the enormous number of hearable Access Points (AP) that could make the positioning system very complex. This paper concentrates on WLAN-based indoor location by comparing fingerprinting, path loss and weighted centroid based positioning approaches in terms of complexity and performance and studying the effects of grid size and AP reduction with several choices for appropriate selection criterion. All results are based on real field measurements in three multi-floor buildings. We validate our earlier findings concerning several different AP selection criteria and conclude that the best results are obtained with a maximum RSS-based criterion, which also proved to be the most consistent among the different investigated approaches. We show that the weighted centroid based low-complexity method is very sensitive to AP reduction, while the path loss-based method is also very robust to high percentage removals. Indeed, for fingerprinting, 50% of the APs can be removed safely with a properly chosen removal criterion without increasing the positioning error much. PMID:27213395
Laitinen, Elina; Lohan, Elena Simona
2016-01-01
The positioning based on Wireless Local Area Networks (WLAN) is one of the most promising technologies for indoor location-based services, generally using the information carried by Received Signal Strengths (RSS). One challenge, however, is the huge amount of data in the radiomap database due to the enormous number of hearable Access Points (AP) that could make the positioning system very complex. This paper concentrates on WLAN-based indoor location by comparing fingerprinting, path loss and weighted centroid based positioning approaches in terms of complexity and performance and studying the effects of grid size and AP reduction with several choices for appropriate selection criterion. All results are based on real field measurements in three multi-floor buildings. We validate our earlier findings concerning several different AP selection criteria and conclude that the best results are obtained with a maximum RSS-based criterion, which also proved to be the most consistent among the different investigated approaches. We show that the weighted centroid based low-complexity method is very sensitive to AP reduction, while the path loss-based method is also very robust to high percentage removals. Indeed, for fingerprinting, 50% of the APs can be removed safely with a properly chosen removal criterion without increasing the positioning error much. PMID:27213395
The power of being positive: Robust state estimation made possible by quantum mechanics
NASA Astrophysics Data System (ADS)
Kalev, Amir; Baldwin, Charles
Quantum-state tomography (QST) is generally expensive to implement experimentally. Nevertheless, in state-of-the-art experiments in quantum information science the goal is not to produce arbitrary states but states that have very high purity. Including this prior information in QST results in more manageable tomography protocols. In the context of pure-state tomography, and more generally, of bounded-rank states (states with rank <= r) tomography, a natural notion of informational completeness emerges, rank- r completeness. The purpose of this contribution is two fold. First, to prove and emphasize the significance of a less intuitive, yet more powerful, notion of completeness for practical QST, rank- r strict-completeness. This notion is made possible due to the positive semidefinite property of density matrices. Strictly-complete quantum measurements ensure a robust estimation of the state of the system, regardless of the convex estimator we use. Thus, pragmatically, quantum state tomography should be done using these kind of measurements. Second, to argue, based on strong numerical indication, that it is fairly straightforward to experimentally implement such measurements by measuring only few random orthonormal bases. For example, in our numerical experi This work was supported by NSF Grants PHY-1212445, PHY-1521016, and PHY-1521431.
Position estimation and driving of an autonomous vehicle by monocular vision
NASA Astrophysics Data System (ADS)
Hanan, Jay C.; Kayathi, Pavan; Hughlett, Casey L.
2007-04-01
Automatic adaptive tracking in real-time for target recognition provided autonomous control of a scale model electric truck. The two-wheel drive truck was modified as an autonomous rover test-bed for vision based guidance and navigation. Methods were implemented to monitor tracking error and ensure a safe, accurate arrival at the intended science target. Some methods are situation independent relying only on the confidence error of the target recognition algorithm. Other methods take advantage of the scenario of combined motion and tracking to filter out anomalies. In either case, only a single calibrated camera was needed for position estimation. Results from real-time autonomous driving tests on the JPL simulated Mars yard are presented. Recognition error was often situation dependent. For the rover case, the background was in motion and may be characterized to provide visual cues on rover travel such as rate, pitch, roll, and distance to objects of interest or hazards. Objects in the scene may be used as landmarks, or waypoints, for such estimations. As objects are approached, their scale increases and their orientation may change. In addition, particularly on rough terrain, these orientation and scale changes may be unpredictable. Feature extraction combined with the neural network algorithm was successful in providing visual odometry in the simulated Mars environment.
A positional estimation technique for an autonomous land vehicle in an unstructured environment
NASA Technical Reports Server (NTRS)
Talluri, Raj; Aggarwal, J. K.
1990-01-01
This paper presents a solution to the positional estimation problem of an autonomous land vehicle navigating in an unstructured mountainous terrain. A Digital Elevation Map (DEM) of the area in which the robot is to navigate is assumed to be given. It is also assumed that the robot is equipped with a camera that can be panned and tilted, and a device to measure the elevation of the robot above the ground surface. No recognizable landmarks are assumed to be present in the environment in which the robot is to navigate. The solution presented makes use of the DEM information, and structures the problem as a heuristic search in the DEM for the possible robot location. The shape and position of the horizon line in the image plane and the known camera geometry of the perspective projection are used as parameters to search the DEM. Various heuristics drawn from the geometric constraints are used to prune the search space significantly. The algorithm is made robust to errors in the imaging process by accounting for the worst care errors. The approach is tested using DEM data of areas in Colorado and Texas. The method is suitable for use in outdoor mobile robots and planetary rovers.
McLeod, Stephen
2014-07-01
Absolute needs (as against instrumental needs) are independent of the ends, goals and purposes of personal agents. Against the view that the only needs are instrumental needs, David Wiggins and Garrett Thomson have defended absolute needs on the grounds that the verb 'need' has instrumental and absolute senses. While remaining neutral about it, this article does not adopt that approach. Instead, it suggests that there are absolute biological needs. The absolute nature of these needs is defended by appeal to: their objectivity (as against mind-dependence); the universality of the phenomenon of needing across the plant and animal kingdoms; the impossibility that biological needs depend wholly upon the exercise of the abilities characteristic of personal agency; the contention that the possession of biological needs is prior to the possession of the abilities characteristic of personal agency. Finally, three philosophical usages of 'normative' are distinguished. On two of these, to describe a phenomenon or claim as 'normative' is to describe it as value-dependent. A description of a phenomenon or claim as 'normative' in the third sense does not entail such value-dependency, though it leaves open the possibility that value depends upon the phenomenon or upon the truth of the claim. It is argued that while survival needs (or claims about them) may well be normative in this third sense, they are normative in neither of the first two. Thus, the idea of absolute need is not inherently normative in either of the first two senses. PMID:23586876
Pakkenberg, B; Møller, A; Gundersen, H J; Mouritzen Dam, A; Pakkenberg, H
1991-01-01
Using an unbiased stereological technique, the total numbers of pigmented and non-pigmented neurons were estimated in the substantia nigra of seven patients with Parkinson's disease and seven control patients. Compared with the controls, in which the average total number of pigmented neurons was 550,000, the number of neurons was reduced by 66% in the patients. The average total number of non-pigmented neurons was 260,000 in controls and reduced by 24% in the patients. A significant correlation (r = 0.81) existed between the total numbers of pigmented and non-pigmented neurons in the controls, whereas a similar correlation (r = 0.72) in the patients fell just short of statistical significance. The stereological estimates made in this study are unbiased, in that they are independent of nerve cell size, section thickness and of dimensional changes in brain tissue induced by histological procedures. The stereological method is considerably more efficient than previous conventional methods. PMID:2010756
Estimating fresh grass/herb biomass from HYMAP data using the red edge position
NASA Astrophysics Data System (ADS)
Cho, Moses A.; Sobhan, Istiak M.; Skidmore, Andrew K.
2006-08-01
Remote sensing of grass/herb quantity is essential for rangeland management of livestock and wildlife. Spectral indices such as NDVI, determined from red and near infrared bands are affected by variable soil and atmospheric conditions and saturate in dense vegetation. Alternatively, the wavelength of maximum slope in the red-NIR transition, termed the red edge position (REP) has potential to mitigate these effects. But the utility of the REP using air- and space-borne imagery is determined by the availability of narrow bands in the region of the red edge and the simplicity of the extraction method. Very recently, we proposed a simple technique for extracting the REP called the linear extrapolation method [Cho and Skidmore, Remote Sens. Environ., 101(2006)118.]. The purpose of this study was to evaluate the potential of the linear extrapolation method for estimating fresh grass/herb biomass and compare its performance with the four-point linear interpolation and three-point Lagrangian interpolation methods. The REPs were derived from atmospherically corrected HYMAP images collected over Majella National Park, Italy in July 2004. The predictive capabilities of various REP linear regression models were evaluated using leave-one-out cross validation and test set validation methods. For both validation methods, the linear extrapolation REP models produced higher correlations with grass/herb biomass and lower prediction errors compared with the linear interpolation and Lagrangian REP models. This study demonstrates the potential of REPs extracted by the linear extrapolation method using HYMAP data for estimating fresh grass/herb biomass.
Robust 3D Position Estimation in Wide and Unconstrained Indoor Environments
Mossel, Annette
2015-01-01
In this paper, a system for 3D position estimation in wide, unconstrained indoor environments is presented that employs infrared optical outside-in tracking of rigid-body targets with a stereo camera rig. To overcome limitations of state-of-the-art optical tracking systems, a pipeline for robust target identification and 3D point reconstruction has been investigated that enables camera calibration and tracking in environments with poor illumination, static and moving ambient light sources, occlusions and harsh conditions, such as fog. For evaluation, the system has been successfully applied in three different wide and unconstrained indoor environments, (1) user tracking for virtual and augmented reality applications, (2) handheld target tracking for tunneling and (3) machine guidance for mining. The results of each use case are discussed to embed the presented approach into a larger technological and application context. The experimental results demonstrate the system’s capabilities to track targets up to 100 m. Comparing the proposed approach to prior art in optical tracking in terms of range coverage and accuracy, it significantly extends the available tracking range, while only requiring two cameras and providing a relative 3D point accuracy with sub-centimeter deviation up to 30 m and low-centimeter deviation up to 100 m. PMID:26694388
Yokota, Yusuke; Igarashi, Yasuhiko; Okada, Masato; Naruse, Yasushi
2015-08-01
Quantitative estimation of the workload in the brain is an important factor for helping to predict the behavior of humans. The reaction time when performing a difficult task is longer than that when performing an easy task. Thus, the reaction time reflects the workload in the brain. In this study, we employed an N-back task in order to regulate the degree of difficulty of the tasks, and then estimated the reaction times from the brain activity. The brain activity that we used to estimate the reaction time was the auditory steady-state response (ASSR) evoked by a 40-Hz click sound. Fifteen healthy participants participated in the present study and magnetoencephalogram (MEG) responses were recorded using a 148-channel magnetometer system. The least absolute shrinkage and selection operator (LASSO), which is a type of sparse modeling, was employed to estimate the reaction times from the ASSR recorded by MEG. The LASSO showed higher estimation accuracy than the least squares method. This result indicates that LASSO overcame the over-fitting to the learning data. Furthermore, the LASSO selected channels in not only the parietal region, but also in the frontal and occipital regions. Since the ASSR is evoked by auditory stimuli, it is usually large in the parietal region. However, since LASSO also selected channels in regions outside the parietal region, this suggests that workload-related neural activity occurs in many brain regions. In the real world, it is more practical to use a wearable electroencephalography device with a limited number of channels than to use MEG. Therefore, determining which brain areas should be measured is essential. The channels selected by the sparse modeling method are informative for determining which brain areas to measure. PMID:26737821
Estimated Position Replacement Costs for Technician Personnel in a State's Public Facilities
ERIC Educational Resources Information Center
Zaharia, E. S.; Baumeister, A. A.
1978-01-01
Estimates and fiscal data were gathered from three public institutions for the developmentally disabled to estimate technician replacement costs in the residential service delivery system of a southeastern state. (Author/SBH)
Energy Science and Technology Software Center (ESTSC)
2012-05-11
The ap command traveres all symlinks in a given file, directory, or executable name to identify the final absolute path. It can print just the final path, each intermediate link along with the symlink chan, and the permissions and ownership of each directory component in the final path. It has functionality similar to "which", except that it shows the final path instead of the first path. It is also similar to "pwd", but it canmore » provide the absolute path to a relative directory from the current working directory.« less
Moody, A.
2012-05-11
The ap command traveres all symlinks in a given file, directory, or executable name to identify the final absolute path. It can print just the final path, each intermediate link along with the symlink chan, and the permissions and ownership of each directory component in the final path. It has functionality similar to "which", except that it shows the final path instead of the first path. It is also similar to "pwd", but it can provide the absolute path to a relative directory from the current working directory.
NASA Technical Reports Server (NTRS)
Boland, J. S., III
1975-01-01
A general simulation program is presented (GSP) involving nonlinear state estimation for space vehicle flight navigation systems. A complete explanation of the iterative guidance mode guidance law, derivation of the dynamics, coordinate frames, and state estimation routines are given so as to fully clarify the assumptions and approximations involved so that simulation results can be placed in their proper perspective. A complete set of computer acronyms and their definitions as well as explanations of the subroutines used in the GSP simulator are included. To facilitate input/output, a complete set of compatable numbers, with units, are included to aid in data development. Format specifications, output data phrase meanings and purposes, and computer card data input are clearly spelled out. A large number of simulation and analytical studies were used to determine the validity of the simulator itself as well as various data runs.
NASA Astrophysics Data System (ADS)
Li, Damei; Lu, Jun-An; Wu, Xiaoqun; Chen, Guanrong
2006-11-01
To estimate the ultimate bound and positively invariant set for a dynamic system is an important but quite challenging task in general. In this paper, we attempt to investigate the ultimate bound and positively invariant set for two specific systems, the Lorenz system and a unified chaotic system. We derive an ellipsoidal estimate of the ultimate bound and positively invariant set for the Lorenz system, for all the positive values of its parameters a, b and c, and obtain the minimum value of volume for the ellipsoid. Comparing with the best results in the current literature [D. Li, J. Lu, X. Wu, G. Chen, Estimating the bounds for the Lorenz family of chaotic systems, Chaos Solitons Fractals 23 (2005) 529-534; X. Liao, On the global basin of attraction and positively invariant set for the Lorenz chaotic system and its application in chaos control and synchronization, Sci. China Ser. E 34 (2004) 1404-1419], our new results fill up the gap of the estimate for the cases of 0positively invariant set for the Lorenz chaotic system and its application in chaos control and synchronization, Sci. China Ser. E 34 (2004) 1404-1419]. Furthermore, the estimation derived here contains the results given in [D. Li, J. Lu, X. Wu, G. Chen, Estimating the bounds for the Lorenz family of chaotic systems, Chaos Solitons Fractals 23 (2005) 529-534] and [X. Liao, On the global basin of attraction and positively invariant set for the Lorenz chaotic system and its application in chaos control and synchronization, Sci. China Ser. E 34 (2004) 1404-1419] as special cases. Along the same line, we also provide estimates of cylindrical and ellipsoidal bounds for a unified chaotic system, for its parameter range , and obtain the minimum value of volume for the ellipsoid. The estimate is more accurate than and also extends the result of [D. Li, J. Lu, X. Wu, G. Chen, Estimating the bounds for the Lorenz family of chaotic systems, Chaos
NASA Astrophysics Data System (ADS)
Collilieux, Xavier; Lebarbier, Emilie; Coulot, David; Bernard, Etienne
2014-05-01
GNSS position time series computed from permanent station observations have been shown to be affected by a significant number of offsets that can be explained (equipment changes, antenna malfunction, earthquakes) or not. If not corrected, velocities or inter-annual signals estimated from the series will be biased. In addition to these offsets, GNSS position series show dominant periodic signals at seasonal and specific frequencies related to real ground displacements or systematic errors. As a consequence, it is relevant to estimate both the frequencies of the periodic signals and the positions of the offsets. This supplies a synthetic description of the series and should improve the velocity determination. In this poster, we propose to study two methods that rely on two different approaches on real and synthetic series in order to solve this problem. We then propose to quantify if the estimation of low-frequency signals could help to improve the offsets detection.
Son preference in Indian families: absolute versus relative wealth effects.
Gaudin, Sylvestre
2011-02-01
The desire for male children is prevalent in India, where son preference has been shown to affect fertility behavior and intrahousehold allocation of resources. Economic theory predicts less gender discrimination in wealthier households, but demographers and sociologists have argued that wealth can exacerbate bias in the Indian context. I argue that these apparently conflicting theories can be reconciled and simultaneously tested if one considers that they are based on two different notions of wealth: one related to resource constraints (absolute wealth), and the other to notions of local status (relative wealth). Using cross-sectional data from the 1998-1999 and 2005-2006 National Family and Health Surveys, I construct measures of absolute and relative wealth by using principal components analysis. A series of statistical models of son preference is estimated by using multilevel methods. Results consistently show that higher absolute wealth is strongly associated with lower son preference, and the effect is 20%-40% stronger when the household's community-specific wealth score is included in the regression. Coefficients on relative wealth are positive and significant although lower in magnitude. Results are robust to using different samples, alternative groupings of households in local areas, different estimation methods, and alternative dependent variables. PMID:21302027
Relich, Peter K; Olah, Mark J; Cutler, Patrick J; Lidke, Keith A
2016-04-01
The movement of a particle described by Brownian motion is quantified by a single parameter, D, the diffusion constant. The estimation of D from a discrete sequence of noisy observations is a fundamental problem in biological single-particle tracking experiments since it can provide information on the environment and/or the state of the particle itself via the hydrodynamic radius. Here, we present a method to estimate D that takes into account several effects that occur in practice, important for the correct estimation of D, and that have hitherto not been combined together for an estimation of D. These effects are motion blur from the finite integration time of the camera, intermittent trajectories, and time-dependent localization uncertainty. Our estimation procedure, a maximum-likelihood estimation with an information-based confidence interval, follows directly from the likelihood expression for a discretely observed Brownian trajectory that explicitly includes these effects. We begin with the formulation of the likelihood expression and then present three methods to find the exact solution. Each method has its own advantages in either computational robustness, theoretical insight, or the estimation of hidden variables. The Fisher information for this likelihood distribution is calculated and analyzed to show that localization uncertainties impose a lower bound on the estimation of D. Confidence intervals are established and then used to evaluate our estimator on simulated data with experimentally relevant camera effects to demonstrate the benefit of incorporating variable localization errors. PMID:27176323
NASA Astrophysics Data System (ADS)
Relich, Peter K.; Olah, Mark J.; Cutler, Patrick J.; Lidke, Keith A.
2016-04-01
The movement of a particle described by Brownian motion is quantified by a single parameter, D , the diffusion constant. The estimation of D from a discrete sequence of noisy observations is a fundamental problem in biological single-particle tracking experiments since it can provide information on the environment and/or the state of the particle itself via the hydrodynamic radius. Here, we present a method to estimate D that takes into account several effects that occur in practice, important for the correct estimation of D , and that have hitherto not been combined together for an estimation of D . These effects are motion blur from the finite integration time of the camera, intermittent trajectories, and time-dependent localization uncertainty. Our estimation procedure, a maximum-likelihood estimation with an information-based confidence interval, follows directly from the likelihood expression for a discretely observed Brownian trajectory that explicitly includes these effects. We begin with the formulation of the likelihood expression and then present three methods to find the exact solution. Each method has its own advantages in either computational robustness, theoretical insight, or the estimation of hidden variables. The Fisher information for this likelihood distribution is calculated and analyzed to show that localization uncertainties impose a lower bound on the estimation of D . Confidence intervals are established and then used to evaluate our estimator on simulated data with experimentally relevant camera effects to demonstrate the benefit of incorporating variable localization errors.
NASA Astrophysics Data System (ADS)
Khalaf-Allah, Mohamed
2007-12-01
The mobile terminal positioning problem is categorized into three different types according to the availability of (1) initial accurate location information and (2) motion measurement data. Location estimation refers to the mobile positioning problem when both the initial location and motion measurement data are not available. If both are available, the positioning problem is referred to as position tracking. When only motion measurements are available, the problem is known as global localization. These positioning problems were solved within the Bayesian filtering framework. Filter derivation and implementation algorithms are provided with emphasis on the mapping approach. The radio maps of the experimental area have been created by a 3D deterministic radio propagation tool with a grid resolution of 5 m. Real-world experimentation was conducted in a GSM network deployed in a semiurban environment in order to investigate the performance of the different positioning algorithms.
Time-Dependent Noise in GPS Position Time Series By a Network Noise Estimator
NASA Astrophysics Data System (ADS)
Dmitrieva, K.; Segall, P.
2014-12-01
Some current estimates of GPS velocity uncertainties for continuous stations with more than a decade of data can be very low, < 0.1 mm per year. Yet, velocities with respect to rigid plates can be an order of magnitude larger, even in nominally stable plate interiors. This could be caused by underestimating low frequency, time-dependent noise, such as random walk. Traditional estimators, based on individual time series, are insensitive to low amplitude random walk, yet such noise significantly increases GPS velocity uncertainties. We develop a new approach to estimating noise in GPS time series, focusing on areas where the signal in the data is well characterized. We analyze data from the seismically inactive parts of central US. The data is decomposed into signal, plate rotation and Glacial Isostatic Adjustment (GIA), and various noise components. Our method processes multiple stations simultaneously with a Kalman Filter, and estimates average noise components for the network by maximum likelihood. Currently, we model white noise, flicker noise and random walk. Synthetic tests show that this approach correctly estimates the velocity uncertainty by determining a good estimate of random walk variance, even when it is too small to be correctly estimated by traditional approaches. We present preliminary results from a network of 15 GPS stations in the central USA. The data is in a North America fixed reference frame, we subtract seasonal components and GIA displacements used in the SNARF model. Hence, all data in this reference frame is treated as noise. We estimate random walk of 0.82 mm/yr0.5, flicker noise of 3.96 mm/yr0.25 and white noise of 1.05 mm. From these noise parameters the estimated velocity uncertainty is 0.29 mm/yr for 10 years of daily data. This uncertainty is significantly greater than estimated by the traditional methods, at 0.12 mm/yr. The estimated uncertainty is still less than the median residual velocity in the North America fixed reference
Stimulus probability effects in absolute identification.
Kent, Christopher; Lamberts, Koen
2016-05-01
This study investigated the effect of stimulus presentation probability on accuracy and response times in an absolute identification task. Three schedules of presentation were used to investigate the interaction between presentation probability and stimulus position within the set. Data from individual participants indicated strong effects of presentation probability on both proportion correct and response times. The effects were moderated by the ubiquitous stimulus position effect. The accuracy and response time data were predicted by an exemplar-based model of perceptual cognition (Kent & Lamberts, 2005). The bow in discriminability was also attenuated when presentation probability for middle items was relatively high, an effect that will constrain future model development. The study provides evidence for item-specific learning in absolute identification. Implications for other theories of absolute identification are discussed. (PsycINFO Database Record PMID:26478959
Nam, Kyung-Tae; Lee, Seung-Joon; Kuc, Tae-Yong; Kim, Hyungjong
2015-01-01
In this paper, we consider the state estimation problem for flexible joint manipulators that involve nonlinear characteristics in their stiffness. The two key ideas of our design are that (a) an accelerometer is used in order that the estimation error dynamics do not depend on nonlinearities at the link part of the manipulators and (b) the model of the nonlinear stiffness is indeed a Lipschitz function. Based on the measured acceleration, we propose a nonlinear observer under the Lipschitz condition of the nonlinear stiffness. In addition, in order to effectively compensate for the estimation error, the gain of the proposed observer is chosen from the ARE (algebraic Riccati equations) which depend on the Lipschitz constant. Comparative experimental results verify the effectiveness of the proposed method. PMID:26729125
NASA Technical Reports Server (NTRS)
Mach, Douglas M.; Rust, W. D.
1993-01-01
Velocities, optical risetimes, and transmission line model peak currents for seven natural positive return strokes are reported. The average 2D positive return stroke velocity for channel segments of less than 500 m in length starting near the base of the channel is 0.8 +/- 0.3 x 10 exp 8 m/s, which is slower than the present corresponding average velocity for natural negative first return strokes of 1.7 +/- 0.7 x 10 exp 8/s. It is inferred that positive stroke peak currents in the literature, which assume the same velocity as negative strokes, are low by a factor of 2. The average 2D positive return stroke velocity for channel segments of greater than 500 m starting near the base of the channel is 0.9 +/- 0.4 x 10 exp 8 m/s. The corresponding average velocity for the present natural negative first strokes is 1.2 +/- 0.6 x 10 exp 8 m/s. No significant velocity change with height is found for positive return strokes.
Impact of orbit modeling on DORIS station position and Earth rotation estimates
NASA Astrophysics Data System (ADS)
Štěpánek, Petr; Rodriguez-Solano, Carlos Javier; Hugentobler, Urs; Filler, Vratislav
2014-04-01
The high precision of estimated station coordinates and Earth rotation parameters (ERP) obtained from satellite geodetic techniques is based on the precise determination of the satellite orbit. This paper focuses on the analysis of the impact of different orbit parameterizations on the accuracy of station coordinates and the ERPs derived from DORIS observations. In a series of experiments the DORIS data from the complete year 2011 were processed with different orbit model settings. First, the impact of precise modeling of the non-conservative forces on geodetic parameters was compared with results obtained with an empirical-stochastic modeling approach. Second, the temporal spacing of drag scaling parameters was tested. Third, the impact of estimating once-per-revolution harmonic accelerations in cross-track direction was analyzed. And fourth, two different approaches for solar radiation pressure (SRP) handling were compared, namely adjusting SRP scaling parameter or fixing it on pre-defined values. Our analyses confirm that the empirical-stochastic orbit modeling approach, which does not require satellite attitude information and macro models, results for most of the monitored station parameters in comparable accuracy as the dynamical model that employs precise non-conservative force modeling. However, the dynamical orbit model leads to a reduction of the RMS values for the estimated rotation pole coordinates by 17% for x-pole and 12% for y-pole. The experiments show that adjusting atmospheric drag scaling parameters each 30 min is appropriate for DORIS solutions. Moreover, it was shown that the adjustment of cross-track once-per-revolution empirical parameter increases the RMS of the estimated Earth rotation pole coordinates. With recent data it was however not possible to confirm the previously known high annual variation in the estimated geocenter z-translation series as well as its mitigation by fixing the SRP parameters on pre-defined values.
OKADA; BRAVAR, A.; BUNCE, G.; GILL, R.; HUANG, H.; MAKDISI, Y.; NASS, A.; WOOD, J.; ZELENSKI, Z.; ET AL.
2007-09-10
Precise and absolute beam polarization measurements are critical for the RHIC spin physics program. Because all experimental spin-dependent results are normalized by beam polarization, the normalization uncertainty contributes directly to final physics uncertainties. We aimed to perform the beam polarization measurement to an accuracy Of {Delta}P{sub beam}/P{sub beam} < 5%. The absolute polarimeter consists of Polarized Atomic Hydrogen Gas Jet Target and left-right pairs of silicon strip detectors and was installed in the RHIC-ring in 2004. This system features proton-proton elastic scattering in the Coulomb nuclear interference (CNI) region. Precise measurements of the analyzing power A{sub N} of this process has allowed us to achieve {Delta}P{sub beam}/P{sub beam} = 4.2% in 2005 for the first long spin-physics run. In this report, we describe the entire set up and performance of the system. The procedure of beam polarization measurement and analysis results from 2004-2005 are described. Physics topics of AN in the CNI region (four-momentum transfer squared 0.001 < -t < 0.032 (GeV/c){sup 2}) are also discussed. We point out the current issues and expected optimum accuracy in 2006 and the future.
NASA Technical Reports Server (NTRS)
Gaines, Joseph; Johnston, Nick
1999-01-01
The Video Guidance Sensor, part of the Automated Rendezvous and Capture mechanism, is due to undergo formal qualification testing at Marshall Space Flight Center. Before it undergoes this qualification, a test was needed to verify repeatability of the sensor, and to allow different sensor configurations to be compared. This test was developed at the Flight Robotics Laboratory. The test uses a software script to drive the sensor target to the same position and thus allows sensor runs to be compared. The sensor target is the Dynamic Overhead Target Simulator. The simulator uses encoders as its position indicator. Distance Measuring Device's were used to independently verify the software script, the sensor reading, and the target position. The test area, sensor, and other test equipment are briefly described. The actual data is tabulated and will serve as a baseline for future tests. The software script was found to be adequate for the test. Position repeatability was acceptable for all the equipment. The system test is now ready to be used in formal qualification testing.
Ng, L.C.; Kelly, M.F.
1988-03-01
The report summarized the mathematical algorithm and the computed results developed for the prediction of a balloon's position uncertainty as a function of time from a given statistical wind velocity profile. The predicted results were used for mission plannings in support of a recent ship launch ballon observation experiment. 30 figs.
Stimulus Probability Effects in Absolute Identification
ERIC Educational Resources Information Center
Kent, Christopher; Lamberts, Koen
2016-01-01
This study investigated the effect of stimulus presentation probability on accuracy and response times in an absolute identification task. Three schedules of presentation were used to investigate the interaction between presentation probability and stimulus position within the set. Data from individual participants indicated strong effects of…
High-precision positioning of radar scatterers
NASA Astrophysics Data System (ADS)
Dheenathayalan, Prabu; Small, David; Schubert, Adrian; Hanssen, Ramon F.
2016-05-01
Remote sensing radar satellites cover wide areas and provide spatially dense measurements, with millions of scatterers. Knowledge of the precise position of each radar scatterer is essential to identify the corresponding object and interpret the estimated deformation. The absolute position accuracy of synthetic aperture radar (SAR) scatterers in a 2D radar coordinate system, after compensating for atmosphere and tidal effects, is in the order of centimeters for TerraSAR-X (TSX) spotlight images. However, the absolute positioning in 3D and its quality description are not well known. Here, we exploit time-series interferometric SAR to enhance the positioning capability in three dimensions. The 3D positioning precision is parameterized by a variance-covariance matrix and visualized as an error ellipsoid centered at the estimated position. The intersection of the error ellipsoid with objects in the field is exploited to link radar scatterers to real-world objects. We demonstrate the estimation of scatterer position and its quality using 20 months of TSX stripmap acquisitions over Delft, the Netherlands. Using trihedral corner reflectors (CR) for validation, the accuracy of absolute positioning in 2D is about 7 cm. In 3D, an absolute accuracy of up to ˜ 66 cm is realized, with a cigar-shaped error ellipsoid having centimeter precision in azimuth and range dimensions, and elongated in cross-range dimension with a precision in the order of meters (the ratio of the ellipsoid axis lengths is 1/3/213, respectively). The CR absolute 3D position, along with the associated error ellipsoid, is found to be accurate and agree with the ground truth position at a 99 % confidence level. For other non-CR coherent scatterers, the error ellipsoid concept is validated using 3D building models. In both cases, the error ellipsoid not only serves as a quality descriptor, but can also help to associate radar scatterers to real-world objects.
NASA Technical Reports Server (NTRS)
Gage, K. S.; Jasperson, W. H.
1977-01-01
An analysis is presented of the tropospheric turbulence data obtained by the Metrac positioning system, a radio location system which employs the Doppler principle to track inexpensive expendable balloon-borne transmitters. A Minneapolis field test of the Metrac system provided one-second samples of transmitter frequency from balloons tracked by four ground stations for more than an hour. The derivation of diffusion coefficients from the turbulence data was conducted by two methods, yielding highly consistent results.
A Two-dimensional Position Estimate of Two Sound Sources Using Two Microphones with Reflectors
NASA Astrophysics Data System (ADS)
Nakashima, Hiromichi; Kawamoto, Mitsuru; Ito, Masanori; Mukai, Toshiharu
Human beings and living things have the capability of identifying the directions of two or more sounds by a certain amount of correctness with only two ears. However it is difficult to give this capability to robots. Almost all the robots which have been proposed until now have three or more microphones in order to localize sound sources. In this paper, we propose a technique of estimating two kinds of directions, that is, vertical and horizontal directions, using a robot head consisted of two microphones, where the microphones of the robot head have reflectors working like the pinna.
Two-stage model of African absolute motion during the last 30 million years
NASA Astrophysics Data System (ADS)
Pollitz, Fred F.
1991-07-01
The absolute motion of Africa (relative to the hotspots) for the past 30 My is modeled with two Euler vectors, with a change occurring at 6 Ma. Because of the high sensitivity of African absolute motions to errors in the absolute motions of the North America and Pacific plates, both the pre-6 Ma and post-6 Ma African absolute motions are determined simultaneously with North America and Pacific absolute motions for various epochs. Geologic data from the northern Atlantic and hotspot tracks from the African plate are used to augment previous data sets for the North America and Pacific plates. The difference between the pre-6 Ma and post-6 Ma absolute plate motions may be represented as a counterclockwise rotation about a pole at 48 °S, 84 °E, with angular velocity 0.085 °/My. This change is supported by geologic evidence along a large portion of the African plate boundary, including the Red Sea and Gulf of Aden spreading systems, the Alpine deformation zone, and the central and southern mid-Atlantic Ridge. Although the change is modeled as one abrupt transition at 6 Ma, it was most likely a gradual change spanning the period 8-4 Ma. As a likely mechanism for the change, we favor strong asthenospheric return flow from the Afar hotspot towards the southwest; this could produce the uniform southwesterly shift in absolute motion which we have inferred as well as provide a mechanism for the opening of the East African Rift. Comparing the absolute motions of the North America and Pacific plates with earlier estimates, the pole positions are revised by up to 5° and the angular velocities are decreased by 10-20%.
Improving HST Pointing & Absolute Astrometry
NASA Astrophysics Data System (ADS)
Lallo, Matthew; Nelan, E.; Kimmer, E.; Cox, C.; Casertano, S.
2007-05-01
Accurate absolute astrometry is becoming increasingly important in an era of multi-mission archives and virtual observatories. Hubble Space Telescope's (HST's) Guidestar Catalog II (GSC2) has reduced coordinate error to around 0.25 arcsecond, a factor 2 or more compared with GSC1. With this reduced catalog error, special attention must be given to calibrate and maintain the Fine Guidance Sensors (FGSs) and Science Instruments (SIs) alignments in HST to a level well below this in order to ensure that the accuracy of science product's astrometry keywords and target positioning are limited only by the catalog errors. After HST Servicing Mission 4, such calibrations' improvement in "blind" pointing accuracy will allow for more efficient COS acquisitions. Multiple SIs and FGSs each have their own footprints in the spatially shared HST focal plane. It is the small changes over time in primarily the whole-body positions & orientations of these instruments & guiders relative to one another that is addressed by this work. We describe the HST Cycle 15 program CAL/OTA 11021 which, along with future variants of it, determines and maintains positions and orientations of the SIs and FGSs to better than 50 milli- arcseconds and 0.04 to 0.004 degrees of roll, putting errors associated with the alignment sufficiently below GSC2 errors. We present recent alignment results and assess their errors, illustrate trends, and describe where and how the observer sees benefit from these calibrations when using HST.
Implants as absolute anchorage.
Rungcharassaeng, Kitichai; Kan, Joseph Y K; Caruso, Joseph M
2005-11-01
Anchorage control is essential for successful orthodontic treatment. Each tooth has its own anchorage potential as well as propensity to move when force is applied. When teeth are used as anchorage, the untoward movements of the anchoring units may result in the prolonged treatment time, and unpredictable or less-than-ideal outcome. To maximize tooth-related anchorage, techniques such as differential torque, placing roots into the cortex of the bone, the use of various intraoral devices and/or extraoral appliances have been implemented. Implants, as they are in direct contact with bone, do not possess a periodontal ligament. As a result, they do not move when orthodontic/orthopedic force is applied, and therefore can be used as "absolute anchorage." This article describes different types of implants that have been used as orthodontic anchorage. Their clinical applications and limitations are also discussed. PMID:16463910
NASA Technical Reports Server (NTRS)
Shebalin, John V.
1997-01-01
The entropy associated with absolute equilibrium ensemble theories of ideal, homogeneous, fluid and magneto-fluid turbulence is discussed and the three-dimensional fluid case is examined in detail. A sigma-function is defined, whose minimum value with respect to global parameters is the entropy. A comparison is made between the use of global functions sigma and phase functions H (associated with the development of various H-theorems of ideal turbulence). It is shown that the two approaches are complimentary though conceptually different: H-theorems show that an isolated system tends to equilibrium while sigma-functions allow the demonstration that entropy never decreases when two previously isolated systems are combined. This provides a more complete picture of entropy in the statistical mechanics of ideal fluids.
NASA Astrophysics Data System (ADS)
Webb, S. R.; Penna, N. T.; Clarke, P. J.; Webster, S.; Martin, I.
2013-12-01
The estimation of total precipitable water vapour (PWV) using kinematic GNSS has been investigated since around 2001, aiming to extend the use of static ground-based GNSS, from which PWV estimates are now operationally assimilated into numerical weather prediction models. To date, kinematic GNSS PWV studies suggest a PWV measurement agreement with radiosondes of 2-3 mm, almost commensurate with static GNSS measurement accuracy, but only shipborne experiments have so far been carried out. As a first step towards extending such sea level-based studies to platforms that operate at a range of altitudes, such as airplanes or land based vehicles, the kinematic GNSS estimation of PWV over an exactly repeated trajectory is considered. A data set was collected from a GNSS receiver and antenna mounted on a carriage of the Snowdon Mountain Railway, UK, which continually ascends and descends through 950 m of vertical relief. Static GNSS reference receivers were installed at the top and bottom of the altitude profile, and derived zenith wet delay (ZWD) was interpolated to the altitude of the train to provide reference values together with profile estimates from the 100 m resolution runs of the Met Office's Unified Model. We demonstrate similar GNSS accuracies as obtained from previous shipborne studies, namely a double difference relative kinematic GNSS ZWD accuracy within 14 mm, and a kinematic GNSS precise point positioning ZWD accuracy within 15 mm. The latter is a more typical airborne PWV estimation scenario i.e. without the reliance on ground-based GNSS reference stations. We show that the kinematic GPS-only precise point positioning ZWD estimation is enhanced by also incorporating GLONASS observations.
Molecular iodine absolute frequencies. Final report
Sansonetti, C.J.
1990-06-25
Fifty specified lines of {sup 127}I{sub 2} were studied by Doppler-free frequency modulation spectroscopy. For each line the classification of the molecular transition was determined, hyperfine components were identified, and one well-resolved component was selected for precise determination of its absolute frequency. In 3 cases, a nearby alternate line was selected for measurement because no well-resolved component was found for the specified line. Absolute frequency determinations were made with an estimated uncertainty of 1.1 MHz by locking a dye laser to the selected hyperfine component and measuring its wave number with a high-precision Fabry-Perot wavemeter. For each line results of the absolute measurement, the line classification, and a Doppler-free spectrum are given.
NASA Astrophysics Data System (ADS)
Kassem Jebai, Al; Malrait, François; Martin, Philippe; Rouchon, Pierre
2016-03-01
Sensorless control of permanent-magnet synchronous motors at low velocity remains a challenging task. A now well-established method consists of injecting a high-frequency signal and using the rotor saliency, both geometric and magnetic-saturation induced. This paper proposes a clear and original analysis based on second-order averaging of how to recover the position information from signal injection; this analysis blends well with a general model of magnetic saturation. It also proposes a simple parametric model of the saturated motor, based on an energy function which simply encompasses saturation and cross-saturation effects. Experimental results on a surface-mounted motor and an interior magnet motor illustrate the relevance of the approach.
Ultra-wideband radios for time-of-flight-ranging and network position estimation
Hertzog, Claudia A.; Dowla, Farid U.; Dallum, Gregory E.; Romero, Carlos E.
2011-06-14
This invention provides a novel high-accuracy indoor ranging device that uses ultra-wideband (UWB) RF pulsing with low-power and low-cost electronics. A unique of the present invention is that it exploits multiple measurements in time and space for very accurate ranging. The wideband radio signals utilized herein are particularly suited to ranging in harsh RF environments because they allow signal reconstruction in spite of multipath propagation distortion. Furthermore, the ranging and positioning techniques discussed herein directly address many of the known technical challenges encountered in UWB localization regarding synchronization and sampling. In the method developed, noisy, corrupted signals can be recovered by repeating range measurements across a channel, and the distance measurements are combined from many locations surrounding the target in a way that minimizes the range biases associated to indirect flight paths and through-wall propagation delays.
NASA Technical Reports Server (NTRS)
Larson, Kristine M.; Freymueller, Jeff
1995-01-01
Global Positioning System (GPS) measurements spanning approximately 3 years have been used to determine velocities for 7 sites on the Australian, Pacific and Antarctic plates. The site velocities agree with both plate model predictions and other space geodetic techniques. We find no evidence for internal deformation of the interior of the Australian plate. Wellington, New Zealand, located in the Australian-Pacific plate boundary zone, moves 20 +/- 5 mm/yr west-southwest relative to the Australian plate. Its velocity lies midway between the predicted velocities of the two plates. Relative Euler vectors for the Australia-Antarctica and Pacific-Antarctica plates agree within one standard deviation with the NUVEL-1A predictions.
Updated Absolute Flux Calibration of the COS FUV Modes
NASA Astrophysics Data System (ADS)
Massa, D.; Ely, J.; Osten, R.; Penton, S.; Aloisi, A.; Bostroem, A.; Roman-Duval, J.; Proffitt, C.
2014-03-01
We present newly derived point source absolute flux calibrations for the COS FUV modes at both the original and second lifetime positions. The analysis includes observa- tions through the Primary Science Aperture (PSA) of the standard stars WD0308-565, GD71, WD1057+729 and WD0947+857 obtained as part of two calibration programs. Data were were obtained for all of the gratings at all of the original CENWAVE settings at both the original and second lifetime positions and for the G130M CENWAVE = 1222 at the second lifetime position. Data were also obtained with the FUVB segment for the G130M CENWAVE = 1055 and 1096 setting at the second lifetime position. We also present the derivation of L-flats that were used in processing the data and show that the internal consistency of the primary standards is 1%. The accuracy of the absolute flux calibrations over the UV are estimated to be 1-2% for the medium resolution gratings, and 2-3% over most of the wavelength range of the G140L grating, although the uncertainty can be as large as 5% or more at some G140L wavelengths. We note that these errors are all relative to the optical flux near the V band and small additional errors may be present due to inaccuracies in the V band calibration. In addition, these error estimates are for the time at which the flux calibration data were obtained; the accuracy of the flux calibration at other times can be affected by errors in the time dependent sensitivity (TDS) correction.
NASA Astrophysics Data System (ADS)
Olesen, Jacob Bjerring; Villagomez-Hoyos, Carlos Armando; Traberg, Marie Sand; Chee, Adrian J. Y.; Yiu, Billy Y. S.; Ho, Chung Kit; Yu, Alfred C. H.; Jensen, Jørgen Arendt
2016-04-01
This paper presents a method for measuring pressure changes in deep-tissue vessels using vector velocity ultrasound data. The large penetration depth is ensured by acquiring data using a low frequency phased array transducer. Vascular pressure changes are then calculated from 2-D angle-independent vector velocity fields using a model based on the Navier-Stokes equations. Experimental scans are performed on a fabricated flow phantom having a constriction of 36% at a depth of 100 mm. Scans are carried out using a phased array transducer connected to the experimental scanner, SARUS. 2-D fields of angle-independent vector velocities are acquired using directional synthetic aperture vector flow imaging. The obtained results are evaluated by comparison to a 3-D numerical simulation model with equivalent geometry as the designed phantom. The study showed pressure drops across the constricted phantom varying from -40 Pa to 15 Pa with a standard deviation of 32%, and a bias of 25% found relative to the peak simulated pressure drop. This preliminary study shows that pressure can be estimated non-invasively to a depth that enables cardiac scans, and thereby, the possibility of detecting the pressure drops across the mitral valve.
NASA Astrophysics Data System (ADS)
Sage, J. P.; Mayles, W. P. M.; Mayles, H. M.; Syndikus, I.
2014-10-01
Maximum likelihood estimation (MLE) is presented as a statistical tool to evaluate the contribution of measurement error to any measurement series where the same quantity is measured using different independent methods. The technique was tested against artificial data sets; generated for values of underlying variation in the quantity and measurement error between 0.5 mm and 3 mm. In each case the simulation parameters were determined within 0.1 mm. The technique was applied to analyzing external random positioning errors from positional audit data for 112 pelvic radiotherapy patients. Patient position offsets were measured using portal imaging analysis and external body surface measures. Using MLE to analyze all methods in parallel it was possible to ascertain the measurement error for each method and the underlying positional variation. In the (AP / Lat / SI) directions the standard deviations of the measured patient position errors from portal imaging were (3.3 mm / 2.3 mm / 1.9 mm), arising from underlying variations of (2.7 mm / 1.5 mm / 1.4 mm) and measurement uncertainties of (1.8 mm / 1.8 mm / 1.3 mm), respectively. The measurement errors agree well with published studies. MLE used in this manner could be applied to any study in which the same quantity is measured using independent methods.
De Neve, Jan-Emmanuel; Oswald, Andrew J.
2012-01-01
The question of whether there is a connection between income and psychological well-being is a long-studied issue across the social, psychological, and behavioral sciences. Much research has found that richer people tend to be happier. However, relatively little attention has been paid to whether happier individuals perform better financially in the first place. This possibility of reverse causality is arguably understudied. Using data from a large US representative panel, we show that adolescents and young adults who report higher life satisfaction or positive affect grow up to earn significantly higher levels of income later in life. We focus on earnings approximately one decade after the person’s well-being is measured; we exploit the availability of sibling clusters to introduce family fixed effects; we account for the human capacity to imagine later socioeconomic outcomes and to anticipate the resulting feelings in current well-being. The study’s results are robust to the inclusion of controls such as education, intelligence quotient, physical health, height, self-esteem, and later happiness. We consider how psychological well-being may influence income. Sobel–Goodman mediation tests reveal direct and indirect effects that carry the influence from happiness to income. Significant mediating pathways include a higher probability of obtaining a college degree, getting hired and promoted, having higher degrees of optimism and extraversion, and less neuroticism. PMID:23169627
NASA Astrophysics Data System (ADS)
Ng, J. A.; Booth, J.; Poulsen, P.; Kuncic, Z.; Keall, P. J.
2013-09-01
Kilovoltage intratreatment monitoring (KIM) is a novel real-time localization modality where the tumor position is continuously measured during intensity modulated radiation therapy (IMRT) or intensity modulated arc therapy (IMAT) by a kilovoltage (kV) x-ray imager. Adding kV imaging during therapy adds radiation dose. The additional effective dose is quantified for prostate radiotherapy and compared to dose from other localization modalities. The software PCXMC 2.0 was used to calculate the effective dose delivered to a phantom as a function of imager angle and field size for a Varian On-Board Imager. The average angular effective dose was calculated for a field size of 6 cm × 6 cm. The average angular effective dose was used in calculations for different treatment scenarios. Treatment scenarios considered were treatment type and fractionation. For all treatment scenarios, (i.e. conventionally fractionated and stereotactic body radiotherapy (SBRT), IMRT and IMAT), the total KIM dose at 1 Hz ranged from 2-10 mSv. This imaging dose is less than the Navotek radioactive implant dose (64 mSv) and a standard SBRT cone beam computed tomography pretreatment scan dose (22 mSv) over an entire treatment regime. KIM delivers an acceptably low effective dose for daily use as a real-time image-guidance method for prostate radiotherapy.
Absolute neutrino mass measurements
NASA Astrophysics Data System (ADS)
Wolf, Joachim
2011-10-01
The neutrino mass plays an important role in particle physics, astrophysics and cosmology. In recent years the detection of neutrino flavour oscillations proved that neutrinos carry mass. However, oscillation experiments are only sensitive to the mass-squared difference of the mass eigenvalues. In contrast to cosmological observations and neutrino-less double beta decay (0v2β) searches, single β-decay experiments provide a direct, model-independent way to determine the absolute neutrino mass by measuring the energy spectrum of decay electrons at the endpoint region with high accuracy. Currently the best kinematic upper limits on the neutrino mass of 2.2eV have been set by two experiments in Mainz and Troitsk, using tritium as beta emitter. The next generation tritium β-experiment KATRIN is currently under construction in Karlsruhe/Germany by an international collaboration. KATRIN intends to improve the sensitivity by one order of magnitude to 0.2eV. The investigation of a second isotope (137Rh) is being pursued by the international MARE collaboration using micro-calorimeters to measure the beta spectrum. The technology needed to reach 0.2eV sensitivity is still in the R&D phase. This paper reviews the present status of neutrino-mass measurements with cosmological data, 0v2β decay and single β-decay.
Absolute neutrino mass measurements
Wolf, Joachim
2011-10-06
The neutrino mass plays an important role in particle physics, astrophysics and cosmology. In recent years the detection of neutrino flavour oscillations proved that neutrinos carry mass. However, oscillation experiments are only sensitive to the mass-squared difference of the mass eigenvalues. In contrast to cosmological observations and neutrino-less double beta decay (0v2{beta}) searches, single {beta}-decay experiments provide a direct, model-independent way to determine the absolute neutrino mass by measuring the energy spectrum of decay electrons at the endpoint region with high accuracy.Currently the best kinematic upper limits on the neutrino mass of 2.2eV have been set by two experiments in Mainz and Troitsk, using tritium as beta emitter. The next generation tritium {beta}-experiment KATRIN is currently under construction in Karlsruhe/Germany by an international collaboration. KATRIN intends to improve the sensitivity by one order of magnitude to 0.2eV. The investigation of a second isotope ({sup 137}Rh) is being pursued by the international MARE collaboration using micro-calorimeters to measure the beta spectrum. The technology needed to reach 0.2eV sensitivity is still in the R and D phase. This paper reviews the present status of neutrino-mass measurements with cosmological data, 0v2{beta} decay and single {beta}-decay.
NASA Astrophysics Data System (ADS)
Mochizuki, N.; Yamamoto, Y.; Hatakeyama, T.; Shibuya, H.
2013-12-01
Absolute geomagnetic paleointensities (APIs) have been estimated from igneous rocks, while relative paleomagnetic intensities (RPIs) have been reported from sediment cores. These two datasets have been treated separately, as correlations between APIs and RPIs are difficult on account of age uncertainties. High-resolution RPI stacks have been constructed from globally distributed sediment cores with high sedimentation rates. Previous studies often assumed that the RPI stacks have a linear relationship with geomagnetic axial dipole moments, and calibrated the RPI values to API values. However, the assumption of a linear relationship between APIs and RPIs has not been evaluated. Also, a quantitative calibration method for the RPI is lacking. We present a procedure for directly comparing API and RPI stacks, thus allowing reliable calibrations of RPIs. Direct comparisons between APIs and RPIs were conducted with virtually no associated age errors using both tephrochronologic correlations and RPI minima. Using the stratigraphic positions of tephra layers in oxygen isotope stratigraphic records, we directly compared the RPIs and APIs reported from welded tuffs contemporaneously extruded with the tephra layers. In addition, RPI minima during geomagnetic reversals and excursions were compared with APIs corresponding to the reversals and excursions. The comparison of APIs and RPIs at these exact points allowed a reliable calibration of the RPI values. We applied this direct comparison procedure to the global RPI stack PISO-1500. For six independent calibration points, virtual axial dipole moments (VADMs) from the corresponding APIs and RPIs of the PISO-1500 stack showed a near-linear relationship. On the basis of the linear relationship, RPIs of the stack were successfully calibrated to the VADMs. The direct comparison procedure provides an absolute calibration method that will contribute to the recovery of temporal variations and distributions of geomagnetic axial dipole
Makeev, Andrey; Clajus, Martin; Snyder, Scott; Wang, Xiaolang; Glick, Stephen J.
2015-01-01
Abstract. Semiconductor photon-counting detectors based on high atomic number, high density materials [cadmium zinc telluride (CZT)/cadmium telluride (CdTe)] for x-ray computed tomography (CT) provide advantages over conventional energy-integrating detectors, including reduced electronic and Swank noise, wider dynamic range, capability of spectral CT, and improved signal-to-noise ratio. Certain CT applications require high spatial resolution. In breast CT, for example, visualization of microcalcifications and assessment of tumor microvasculature after contrast enhancement require resolution on the order of 100 μm. A straightforward approach to increasing spatial resolution of pixellated CZT-based radiation detectors by merely decreasing the pixel size leads to two problems: (1) fabricating circuitry with small pixels becomes costly and (2) inter-pixel charge spreading can obviate any improvement in spatial resolution. We have used computer simulations to investigate position estimation algorithms that utilize charge sharing to achieve subpixel position resolution. To study these algorithms, we model a simple detector geometry with a 5×5 array of 200 μm pixels, and use a conditional probability function to model charge transport in CZT. We used COMSOL finite element method software to map the distribution of charge pulses and the Monte Carlo package PENELOPE for simulating fluorescent radiation. Performance of two x-ray interaction position estimation algorithms was evaluated: the method of maximum-likelihood estimation and a fast, practical algorithm that can be implemented in a readout application-specific integrated circuit and allows for identification of a quadrant of the pixel in which the interaction occurred. Both methods demonstrate good subpixel resolution; however, their actual efficiency is limited by the presence of fluorescent K-escape photons. Current experimental breast CT systems typically use detectors with a pixel size of 194
Makeev, Andrey; Clajus, Martin; Snyder, Scott; Wang, Xiaolang; Glick, Stephen J
2015-04-01
Semiconductor photon-counting detectors based on high atomic number, high density materials [cadmium zinc telluride (CZT)/cadmium telluride (CdTe)] for x-ray computed tomography (CT) provide advantages over conventional energy-integrating detectors, including reduced electronic and Swank noise, wider dynamic range, capability of spectral CT, and improved signal-to-noise ratio. Certain CT applications require high spatial resolution. In breast CT, for example, visualization of microcalcifications and assessment of tumor microvasculature after contrast enhancement require resolution on the order of [Formula: see text]. A straightforward approach to increasing spatial resolution of pixellated CZT-based radiation detectors by merely decreasing the pixel size leads to two problems: (1) fabricating circuitry with small pixels becomes costly and (2) inter-pixel charge spreading can obviate any improvement in spatial resolution. We have used computer simulations to investigate position estimation algorithms that utilize charge sharing to achieve subpixel position resolution. To study these algorithms, we model a simple detector geometry with a [Formula: see text] array of [Formula: see text] pixels, and use a conditional probability function to model charge transport in CZT. We used COMSOL finite element method software to map the distribution of charge pulses and the Monte Carlo package PENELOPE for simulating fluorescent radiation. Performance of two x-ray interaction position estimation algorithms was evaluated: the method of maximum-likelihood estimation and a fast, practical algorithm that can be implemented in a readout application-specific integrated circuit and allows for identification of a quadrant of the pixel in which the interaction occurred. Both methods demonstrate good subpixel resolution; however, their actual efficiency is limited by the presence of fluorescent [Formula: see text]-escape photons. Current experimental breast CT systems typically use
Improved Strategies and Optimization of Calibration Models for Real-time PCR Absolute Quantification
Real-time PCR absolute quantification applications rely on the use of standard curves to make estimates of DNA target concentrations in unknown samples. Traditional absolute quantification approaches dictate that a standard curve must accompany each experimental run. However, t...
NASA Astrophysics Data System (ADS)
Iwata, Akitoshi; Ichikawa, Shinji; Tomita, Mutuwo; Doki, Shinji; Okuma, Shigeru
This paper presents a novel on-line parameter identification method for sensorless control of Synchronous Reluctance Motors (SynRMs). Although conventional sensorless control methods based on mathematical models usually need some complex measurements of motor parameters in advance, the proposed identification method does not require them and can be realized on-line. The proposed method identifies motor parameters under sensorless control, so rotor position and velocity can not be used to identify these parameters. However, the proposed method does not need rotor position and veocity, identified parameters are not affected by these estimation errors. The sensorless control using identified motor parameters is realized, and effective of the proposed method is verified by experimental results.
Broeckx, B J G; Verhoeven, G; Coopman, F; Van Haeringen, W; Bosmans, T; Gielen, I; Henckens, S; Saunders, J H; van Bree, H; Van Ryssen, B; Verbeke, V; Van Steendam, K; Van Nieuwerburgh, F; Deforce, D
2014-09-01
Although the prevalence of canine hip dysplasia (HD) has been the subject of a number of published studies, estimates vary widely. This study evaluated several possible causes for these differences. Sixty Belgian, Dutch and German veterinarians were asked to submit all hip radiographs obtained for screening purposes (irrespective of HD status) over a 2-year period, resulting in a database of 583 dogs. Each set of radiographs was accompanied by information on the reason for screening (breeding soundness examination, clinical complaint, assistance dogs, or other reasons), and dog breed, date of birth and age. Dog positioning exerted an effect at multiple levels. The agreement among different observers regarding correct or incorrect positioning was limited and incorrect positioning itself reduced the inter-observer agreement for radiographic hip conformation. Dysplastic dogs were more commonly positioned incorrectly than non-dysplastic dogs. The clinical complaint population had a high prevalence of dysplastic dogs (>70%) compared with the breeding population (11%) and the assistance dogs (6%). There was a significantly lower prevalence of HD among cases referred by veterinarians who frequently submitted hip-extended radiographs for evaluation (P = 0.002) compared to those who refer less frequently. However, this was likely to be selection bias, as radiographs that were from dogs suspected to be dysplastic were not submitted by frequent senders. The prevalence of dysplastic dogs varied widely between breeds (16.7-71.4%). Dogs diagnosed with dysplasia were significantly older than dogs considered healthy (P = 0.001) and dogs classified as borderline dysplastic (P = 0.035). Inter-observer agreement for hip conformation was moderately low, resulting in >7% variation in prevalence estimates for dysplasia. PMID:24986314
Nielsen, Jens M; Popp, Brian N; Winder, Monika
2015-07-01
Estimating trophic structures is a common approach used to retrieve information regarding energy pathways, predation, and competition in complex ecosystems. The application of amino acid (AA) compound-specific nitrogen (N) isotope analysis (CSIA) is a relatively new method used to estimate trophic position (TP) and feeding relationships in diverse organisms. Here, we conducted the first meta-analysis of δ(15)N AA values from measurements of 359 marine species covering four trophic levels, and compared TP estimates from AA-CSIA to literature values derived from food items, gut or stomach content analysis. We tested whether the AA trophic enrichment factor (TEF), or the (15)N enrichment among different individual AAs is constant across trophic levels and whether inclusion of δ(15)N values from multiple AAs improves TP estimation. For the TEF of glutamic acid relative to phenylalanine (Phe) we found an average value of 6.6‰ across all taxa, which is significantly lower than the commonly applied 7.6‰. We found that organism feeding ecology influences TEF values of several trophic AAs relative to Phe, with significantly higher TEF values for herbivores compared to omnivores and carnivores, while TEF values were also significantly lower for animals excreting urea compared to ammonium. Based on the comparison of multiple model structures using the metadata of δ(15)N AA values we show that increasing the number of AAs in principle improves precision in TP estimation. This meta-analysis clarifies the advantages and limitations of using individual δ(15)N AA values as tools in trophic ecology and provides a guideline for the future application of AA-CSIA to food web studies. PMID:25843809
Absolute Identification by Relative Judgment
ERIC Educational Resources Information Center
Stewart, Neil; Brown, Gordon D. A.; Chater, Nick
2005-01-01
In unidimensional absolute identification tasks, participants identify stimuli that vary along a single dimension. Performance is surprisingly poor compared with discrimination of the same stimuli. Existing models assume that identification is achieved using long-term representations of absolute magnitudes. The authors propose an alternative…
Be Resolute about Absolute Value
ERIC Educational Resources Information Center
Kidd, Margaret L.
2007-01-01
This article explores how conceptualization of absolute value can start long before it is introduced. The manner in which absolute value is introduced to students in middle school has far-reaching consequences for their future mathematical understanding. It begins to lay the foundation for students' understanding of algebra, which can change…
Absolute calibration of TFTR helium proportional counters
Strachan, J.D.; Diesso, M.; Jassby, D.; Johnson, L.; McCauley, S.; Munsat, T.; Roquemore, A.L.; Barnes, C.W. |; Loughlin, M. |
1995-06-01
The TFTR helium proportional counters are located in the central five (5) channels of the TFTR multichannel neutron collimator. These detectors were absolutely calibrated using a 14 MeV neutron generator positioned at the horizontal midplane of the TFTR vacuum vessel. The neutron generator position was scanned in centimeter steps to determine the collimator aperture width to 14 MeV neutrons and the absolute sensitivity of each channel. Neutron profiles were measured for TFTR plasmas with time resolution between 5 msec and 50 msec depending upon count rates. The He detectors were used to measure the burnup of 1 MeV tritons in deuterium plasmas, the transport of tritium in trace tritium experiments, and the residual tritium levels in plasmas following 50:50 DT experiments.
NASA Astrophysics Data System (ADS)
Shi, Junbo; Xu, Chaoqian; Li, Yihe; Gao, Yang
2015-08-01
Global Positioning System (GPS) has become a cost-effective tool to determine troposphere zenith total delay (ZTD) with accuracy comparable to other atmospheric sensors such as the radiosonde, the water vapor radiometer, the radio occultation and so on. However, the high accuracy of GPS troposphere ZTD estimates relies on the precise satellite orbit and clock products available with various latencies. Although the International GNSS Service (IGS) can provide predicted orbit and clock products for real-time applications, the predicted clock accuracy of 3 ns cannot always guarantee the high accuracy of troposphere ZTD estimates. Such limitations could be overcome by the use of the newly launched IGS real-time service which provides 5 cm orbit and 0.2-1.0 ns (an equivalent range error of 6-30 cm) clock products in real time. Considering the relatively larger magnitude of the clock error than that of the orbit error, this paper investigates the effect of real-time satellite clock errors on the GPS precise point positioning (PPP)-based troposphere ZTD estimation. Meanwhile, how the real-time satellite clock errors impact the GPS PPP-based troposphere ZTD estimation has also been studied to obtain the most precise ZTD solutions. First, two types of real-time satellite clock products are assessed with respect to the IGS final clock product in terms of accuracy and precision. Second, the real-time GPS PPP-based troposphere ZTD estimation is conducted using data from 34 selected IGS stations over three independent weeks in April, July and October, 2013. Numerical results demonstrate that the precision, rather than the accuracy, of the real-time satellite clock products impacts the real-time PPP-based ZTD solutions more significantly. In other words, the real-time satellite clock product with better precision leads to more precise real-time PPP-based troposphere ZTD solutions. Therefore, it is suggested that users should select and apply real-time satellite products with
NASA Astrophysics Data System (ADS)
Khan, Yasin; Nur Budiman, Firmansiah; Béroual, Abderrahmane; Hussain Malik, Nazar; Al-Arainy, Abdulrehman Ali
2013-05-01
The presence of metallic particles has been recognized as a dangerous threat in gas-insulated substation (GIS). Such particles are initially free and move toward higher electric field regions such as triple junction i.e., spacer-electrode-gas interface. However, once these particles reach the spacer surface, they adhere to the spacer easily due to electrostatic image forces. From insulation point of view, the triple junction is the weakest point in GIS. The presence of such metallic particles on the spacer surface deteriorates the insulation strength. Thus, in order to improve the reliability of GIS, it is important to identify the size and the position of the particle adhering to the insulating spacer surface. One of the most promising methods to carry out such identification is by recognizing the partial discharges (PDs) provoked by such particles. This paper is aimed to discuss the particle size and position estimation by using the PD patterns and statistical analysis. The PD patterns were acquired using IEC 60270 method. Measurements were made to determine various PD signals caused by particle of different sizes at different locations on the spacer surface. The acquired PD patterns were characterized by a number of statistical parameters. The results show that the implemented technique could be used to distinguish between various particle sizes and positions at different SF6 pressures with a fairly high accuracy.
Absolute enantioselective separation: optical activity ex machina.
Bielski, Roman; Tencer, Michal
2005-11-01
The paper describes methodology of using three independent macroscopic factors affecting molecular orientation to accomplish separation of a racemic mixture without the presence of any other chiral compounds, i. e., absolute enantioselective separation (AES) which is an extension of a concept of applying these factors to absolute asymmetric synthesis. The three factors may be applied simultaneously or, if their effects can be retained, consecutively. The resulting three mutually orthogonal or near orthogonal directors constitute a true chiral influence and their scalar triple product is the measure of the chirality of the system. AES can be executed in a chromatography-like microfluidic process in the presence of an electric field. It may be carried out on a chemically modified flat surface, a monolithic polymer column made of a mesoporous material, each having imparted directional properties. Separation parameters were estimated for these media and possible implications for the natural homochirality are discussed. PMID:16342798
Iqbal, Sumaiya; Hoque, Md Tamjidul
2016-01-01
A set of features computed from the primary amino acid sequence of proteins, is crucial in the process of inducing a machine learning model that is capable of accurately predicting three-dimensional protein structures. Solutions for existing protein structure prediction problems are in need of features that can capture the complexity of molecular level interactions. With a view to this, we propose a novel approach to estimate position specific estimated energy (PSEE) of a residue using contact energy and predicted relative solvent accessibility (RSA). Furthermore, we demonstrate PSEE can be reasonably estimated based on sequence information alone. PSEE is useful in identifying the structured as well as unstructured or, intrinsically disordered region of a protein by computing favorable and unfavorable energy respectively, characterized by appropriate threshold. The most intriguing finding, verified empirically, is the indication that the PSEE feature can effectively classify disorder versus ordered residues and can segregate different secondary structure type residues by computing the constituent energies. PSEE values for each amino acid strongly correlate with the hydrophobicity value of the corresponding amino acid. Further, PSEE can be used to detect the existence of critical binding regions that essentially undergo disorder-to-order transitions to perform crucial biological functions. Towards an application of disorder prediction using the PSEE feature, we have rigorously tested and found that a support vector machine model informed by a set of features including PSEE consistently outperforms a model with an identical set of features with PSEE removed. In addition, the new disorder predictor, DisPredict2, shows competitive performance in predicting protein disorder when compared with six existing disordered protein predictors. PMID:27588752
NASA Astrophysics Data System (ADS)
Désert, Jean-Michel; Charbonneau, David; Torres, Guillermo; Fressin, François; Ballard, Sarah; Bryson, Stephen T.; Knutson, Heather A.; Batalha, Natalie M.; Borucki, William J.; Brown, Timothy M.; Deming, Drake; Ford, Eric B.; Fortney, Jonathan J.; Gilliland, Ronald L.; Latham, David W.; Seager, Sara
2015-05-01
NASA’s Kepler mission has provided several thousand transiting planet candidates during the 4 yr of its nominal mission, yet only a small subset of these candidates have been confirmed as true planets. Therefore, the most fundamental question about these candidates is the fraction of bona fide planets. Estimating the rate of false positives of the overall Kepler sample is necessary to derive the planet occurrence rate. We present the results from two large observational campaigns that were conducted with the Spitzer Space Telescope during the the Kepler mission. These observations are dedicated to estimating the false positive rate (FPR) among the Kepler candidates. We select a sub-sample of 51 candidates, spanning wide ranges in stellar, orbital, and planetary parameter space, and we observe their transits with Spitzer at 4.5 μm. We use these observations to measures the candidate’s transit depths and infrared magnitudes. An authentic planet produces an achromatic transit depth (neglecting the modest effect of limb darkening). Conversely a bandpass-dependent depth alerts us to the potential presence of a blending star that could be the source of the observed eclipse: a false positive scenario. For most of the candidates (85%), the transit depths measured with Kepler are consistent with the transit depths measured with Spitzer as expected for planetary objects, while we find that the most discrepant measurements are due to the presence of unresolved stars that dilute the photometry. The Spitzer constraints on their own yield FPRs between 5% and depending on the Kepler Objects of Interest. By considering the population of the Kepler field stars, and by combining follow-up observations (imaging) when available, we find that the overall FPR of our sample is low. The measured upper limit on the FPR of our sample is 8.8% at a confidence level of 3σ. This observational result, which uses the achromatic property of planetary transit signals that is not investigated
NASA Technical Reports Server (NTRS)
Goad, Clyde C.; Chadwell, C. David
1993-01-01
GEODYNII is a conventional batch least-squares differential corrector computer program with deterministic models of the physical environment. Conventional algorithms were used to process differenced phase and pseudorange data to determine eight-day Global Positioning system (GPS) orbits with several meter accuracy. However, random physical processes drive the errors whose magnitudes prevent improving the GPS orbit accuracy. To improve the orbit accuracy, these random processes should be modeled stochastically. The conventional batch least-squares algorithm cannot accommodate stochastic models, only a stochastic estimation algorithm is suitable, such as a sequential filter/smoother. Also, GEODYNII cannot currently model the correlation among data values. Differenced pseudorange, and especially differenced phase, are precise data types that can be used to improve the GPS orbit precision. To overcome these limitations and improve the accuracy of GPS orbits computed using GEODYNII, we proposed to develop a sequential stochastic filter/smoother processor by using GEODYNII as a type of trajectory preprocessor. Our proposed processor is now completed. It contains a correlated double difference range processing capability, first order Gauss Markov models for the solar radiation pressure scale coefficient and y-bias acceleration, and a random walk model for the tropospheric refraction correction. The development approach was to interface the standard GEODYNII output files (measurement partials and variationals) with software modules containing the stochastic estimator, the stochastic models, and a double differenced phase range processing routine. Thus, no modifications to the original GEODYNII software were required. A schematic of the development is shown. The observational data are edited in the preprocessor and the data are passed to GEODYNII as one of its standard data types. A reference orbit is determined using GEODYNII as a batch least-squares processor and the